IBM Db2 V11.5

Partitioning and Clustering Guide
2020-08-21

.||I

Notice regarding this document

This document in PDF form is provided as a courtesy to customers who have requested documentation in
this format. It is provided As-Is without warranty or maintenance commitment..

© Copyright IBM Corp. 2016, 2020

ii IBM Db2 V11.5: Partitioning and Clustering Guide

About this book

The functionality of the DB2° relational database management system is significantly impacted by the
partitioning and clustering features which allow administrators and system operators to effectively
enhance performance of the database and to distribute many of the database objects across hardware
resources. Quicker data retrieval and the ability to distribute objects across ever-growing hardware
resources, to take advantage of parallelism and storage capacity, ultimately results in greater
productivity. This book contains an organized collection of topics from the DB2 database library resulting
in a single source of comprehensive information solely focused on the planning, design, implementation,
use, and maintenance of database partitions, table partitions, table clusters, table range-clusters, multi-
dimensional clustering tables, and parallelism.

Who should use this book

This book is intended primarily for database administrators, system administrators, security
administrators, and system operators who need to design, implement, or maintain partitioned or
clustered databases to be accessed by local and remote clients. It can also be used by application
developers and other users who require both a comprehensive information source and an understanding
of the administration and operation of the DB2 relational database management system as it pertains to
the partitioning, clustering, and parallelism features. For those contemplating a future implementation of
any or all of the major features discussed here, this book will serve as an excellent informational
resource.

How this book is structured

This collection of topics from the DB2 library provides a single source of comprehensive information that
is solely focused on the DB2 partitioning, clustering, and parallelism features. This book, for reasons of
convenience and efficiency, is divided into six major parts, the first five of which represent the main
administrative themes that are of concern to administrators, system operators, and application
developers. A topic, contained within a major part in this book, can be mapped to a theme that represents
the content of another book in the DB2 library, allowing for easy cross-referencing to more general
information as it relates to a host of other DB2 features and objects. For example, after reading a topic in
Part 4, Chapter 20 about how optimization strategies for multi-dimensional clustered tables exhibit
improved performance, you may wish to examine other general performance enhancements on regular
tables that can be configured by consulting the Tuning Database Performance book to which that
particular example topic maps. In Table 1 below, you'll find this book's major parts mapped to other
books that can be consulted for additional information about other DB2 objects and features along a
similar theme.

Table 1. The mapping of this book's Parts to other books in the DB2 library

Parts in the Partitioning and Clustering
Guide Mapping to Books in the DB2 library

Part 1. Planning and design considerations | patabase Administration Concepts and Configuration
Reference

Database Security Guide

Part 2. Installation considerations Database Administration Concepts and Configuration
Reference

Installing Db2 Servers

© Copyright IBM Corp. 2016, 2020 iiii

Table 1. The mapping of this book's Parts to other books in the DB2 library (continued)

Parts in the Partitioning and Clustering
Guide Mapping to Books in the DB2 library

Part 3. Implementation and maintenance | patq Movement Utilities Guide and Reference
Data Recovery and High Availability Guide and Reference

Database Administration Concepts and Configuration
Reference

Upgrading to Db2 Version 10.5
Database Monitoring Guide and Reference

XQuery Reference

Part 4. Performance issues Database Administration Concepts and Configuration
Reference

Troubleshooting and Tuning Database Performance

Part 5. Administrative APIs, commands, Administrative API Reference

SQL statements o)))
Administrative Routines and Views

Command Reference

Developing ADO.NET and OLE DB Applications
Developing Embedded SQL Applications
Developing Java Applications

Developing Perl, PHP, Python, and Ruby on Rails
Applications

Developing User-defined Routines (SQL and External)
Getting Started with Database Application Development
SQL Reference Volume 1

SQL Reference Volume 2

Part 6. Appendixes Data Recovery and High Availability Guide and Reference
Installing Db2 Servers
SQL Reference Volume 1

The major subject areas discussed in the chapters of this book are as follows:

Part 1. Planning and design considerations
All of the following chapters contain conceptual information relevant to the planning and design of
databases/tables that will either be partitioned, clustered, or used in parallel database systems.

- Chapter 1, "Partitioned databases and tables," introduces relevant concepts concerning the
features and benefits of partitioning databases and tables.

- Chapter 2, "Range-clustered tables," provides general conceptual information about the features
and advantages to using range-clustered tables.

« Chapter 3, "Multi-dimensional clustered (MDC) tables," describes the use of multi-dimensional
clustering as an elegant method for clustering data in tables.

« Chapter 4, "Parallel database systems," describes how parallelism can be exploited to dramatically
enhance performance.

iv About this book

Part 2. Installation considerations
The following chapters provide information about the preinstallation and installation tasks that are
necessary in preparation for database partitioning.

Chapter 5, "Installation prerequisites," describes the prerequisites and restrictions concerned with
preparing a DB2 server that will be involved in a partitioned database environment.

Chapter 6, "Before you install," discusses additional preinstallation tasks and considerations in the
case of UNIX and Linux® operating systems.

Chapter 7, "Installing your DB2 server product,” describes how to install database partition servers
and set up a partitioned database environment.

Chapter 8, "After you install," describes how to verify the installation on Windows, UNIX and Linux
operating systems.

Part 3. Implementation and maintenance
Once the planning, designing, and installation steps are complete, the following chapters discuss how
to implement and maintain the features and/or objects for which preparations were made earlier.

Chapter 9, "Before creating a database," describes what should be considered before creating a
database, such as enabling parallelism, creating partitioned database environments, creating and
configuring database partitions, and establishing communications between database partitions.

Chapter 10, "Creating and managing partitioned database environments," describes how to create
and manage database partitions and partition groups.

Chapter 11, "Creating tables and other related table objects," presents information on how to create
and set up partitioned tables, range-clustered tables, and MDC tables.

Chapter 12, "Altering a database," describes how to alter an instance and/or a database.

Chapter 13, "Altering tables and other related table objects," provides information on how to modify
partitioned tables.

Chapter 14, "Load," discusses load considerations in cases of parallelism, multi-dimensional
clustering, and partitioned tables.

Chapter 15, "Loading data in a partitioned database environment," describes how to start, resume,
restart or terminate data load operations in partitioned database environments.

Chapter 16, "Migration of partitioned database environments," briefly gives an overview about
migrating partitioned databases and a reference for more detailed information.

Chapter 17, "Using snapshot and event monitors," gives relevant information about using snapshot
monitor results to monitor table reorganization or to assess the global status of a partitioned
database system, in addition to describing how to use the CREATE EVENT MONITOR statement.

Chapter 18, "Developing a good backup and recovery strategy," describes the concepts behind
crash recovery in a partitioned database environment which will help to develop backup and
recovery strategies before a failure occurs.

Chapter 19, "Troubleshooting," gives a brief overview of troubleshooting and useful information
about how to issue commands useful in troubleshooting, such as db2txc, across all computers in
the instance, or on all database partition servers.

Part 4. Performance issues
The following chapters contain pertinent information that will allow you to enhance the performance
of your partitioned and/or clustered environment.

Chapter 20, "Performance issues in database design," describes performance enhancing features of
table partitioning and multi-dimensional clustering, including optimization strategies for both.

Chapter 21, "Indexes," presents conceptual information that is helpful in understanding indexes on
partitioned tables.

Chapter 22, "Design advisor," describes how to use the design advisor to obtain information about
migrating from a single-partition to a multi-partition database, as well as recommendations about
distributing your data and creating new indexes, materialized query tables, and multi-dimensional
clustering tables.

About this book v

- Chapter 23, "Managing concurrency," provides information about lock modes.

« Chapter 24, "Agent management," describes how to optimize database agents that are used to
service application requests.

« Chapter 25, "Optimizing access plans," describes how to improve an access plan, how the optimizer
uses information from various scans to optimize data access strategies, and includes information
about join strategies, all to improve performance in partitioned database environments, clustered
tables, and/or systems using parallelism.

« Chapter 26, "Data redistribution," helps you to determine if data redistribution should be done, and,
if so, it describes how to redistribute data across database partitions.

« Chapter 27, "Configuring self-tuning memory," discusses the use of the self-tuning memory feature
in a partitioned database environment and provides configuration recommendations.

- Chapter 28, "DB2 configuration parameters and variables," presents information about how to set
database configuration parameters and environmental variables across multiple partitions, and lists

the parameters and variables related to partitioned database environments and the parallelism
feature.

Part 5. Administrative APIs, commands, SQL statements
The following chapters collectively consolidate information about administrative APIs, commands,
and SQL elements that is pertinent to partitioned database environments.

- Chapter 29, "Administrative APIs," provides information about the APIs pertinent only to partitioned
database environments.

« Chapter 30, "Commands," provides information about the commands pertinent only to partitioned
database environments.

« Chapter 31, "SQL language elements," presents database partition-compatible data types and
special registers.

« Chapter 32, "SQL functions," describes SQL functions pertinent only to partitioned database
environments.

« Chapter 33, "SQL statements," describes SQL statements pertinent only to partitioned database
environments.

» Chapter 34, "Supported administrative SQL routines and views," describes SQL routines and views
pertinent only to partitioned database environments.

Part 6. Appendixes

- Appendix A, "Install as non-root user," describes installing the DB2 database product as a non-root
user on UNIX and Linux operating systems.

« Appendix B, "Using backup," describes how to use the BACKUP DATABASE command.

- Appendix C, "Partitioned database environment catalog views," lists the catalog views particular to
a partitioned database environment.

Highlighting conventions

The following highlighting conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are predefined by the
system.
Italics Indicates one of the following:

« Names or values (variables) that must be supplied by the user
« General emphasis

« The introduction of a new term

- Areference to another source of information

vi About this book

Monospace Indicates one of the following:

Files and directories

Information that you are instructed to type at a command prompt or in a window

Examples of specific data values

Examples of text similar to what might be displayed by the system

Examples of system messages

Samples of programming code

About this book vii

viii IBM Db2 V11.5: Partitioning and Clustering Guide

Contents

Notice regarding this document..........ccciuiiiiniiiiiiiiieiiiniiiiiniiisniiiecececesssssans |

ADOUL thisS DOOK.....c.cieieiirieiiiirieieretierereereteseesesessasesessesessssssessssesessssesessssessssnsesassasase I

UL Lo BT o101 (o MU TT =T 4 Tl o o Lo | iii
[(o) VR A AT E o 1o I3 (W [ox U1 =T PR iii
Highlighting CONVENTIONS....ccuiiiiiiee ettt ee e tee e e te e e e tee e e tee s e bae e eabeeesasaeeensaesensaesensaeennsens Vi

Chapter 1. Planning and design considerations.......ccccccceciiuiiniiniieiieiiecieccecncncnennann

Partitioned databases and tables.......cuiiiiiiiieeee e e saa e sre e 1
Setting up partitioned database eNVIFONMENTS......cccuiieiiieieeeceeee e e 1
PartitioNEd 1aDLES..ciuiieiieie ettt e e st et e e st e e be e aae s beenbaesnraens 9

RANGE-CLUSIEIEA taDLES. ...ttt e re e e te e e te e e s abe e e abee e abeeenntaeennsaeennseas 29
Restrictions on range-clustered tables. ... 30

Multi-dimensional clustered (MDC) tables.......uiiiiieeiieeecieeecte ettt ree e e ee e e sae e e e aee e e aae e enes 30
Multidimensional ClUSTENNG tablES......ciccii e bre e s sbae e sraeeeans 30
Comparison of regular and MDC tables.......cccuiiiiiieciiecee e e e e s eaaeeea 31
Choosing MDC table diMENSIONS.ccccuiiicieeecieeeciee et et e e e e e e e e e sreeesbeeeestaeesssaeesssaeesnsasennseens 32
Considerations when creating MDC or ITC tables.....uiiiciiiiciiiieieeeetee ettt e 39
BLOCK INAEXES. . eeutieieisieeit ettt ettt sttt sttt e st e st e e s aae s bt esbeesabeebeesateebaesasesnseesssesnseesaesnsesnsens 44
Multidimensional clustered (MDC) tables........ccuiiiciieieiieccee et ae e e aee s 46
Block indexes and qUErY PErfOrMANCE ...cccuiiiiiiiieiieecee ettt e ree e re e e e e e e s bee e e bee e eareeeenneas 49
Maintaining clustering automatically during INSERT 0perations.......cccceeeceeeecieeeecieececieeeceeeeevee e 52
2] FoTod [1 F=Y o1 53
Deleting from MDC and ITC tableS....cucuiiieiieeeiiecceeecee et e e e e rae e e bee e s bae e e aae e ebeeesnnes 55
Updates to MDC and ITC tables.....uiiiiiiieiiecieecteeete ettt vte e e are e e aa e e e aa e e e s e e snaeeeanaeean 55
Multidimensional and insert time clustering extent management.........cccceveceeeeceeecieeeccieeeeciee e, 55
Table partitioning and multidimensional clustering tables.......ccccveeeiieecieccciecce e, 56

Parallel database SYSTEMS.....ciiiiic ettt e et e e et e e et e e e abe e e abee e ntaeennsaeesnseeennsaeennses 61
ParALLELISM. ettt st b e st e et e e s te e be e saeeebeesateeteenaeesbeenaaeens 61
Partitioned database ENVIFONMENTS........cccciiiiiie e e e aee e e bee e e ree e ebeeeeaaeas 64
Database partition and proCcessor ENVIFONMENTS......c..iiccieieiiieecieeccieeeecteeecieeeereeesrreeesbeeeesreeesssaeeeaes 65

Chapter 2. Installation considerations.......cccccceiieiiniiniieiieiieiieniecincicinicinienienee 73

INStAllatioN PrErEQUISITES. . ciiiiieeciiecctee ettt et e et e et e e te e e tte e e tb e e s atee s sbeesssbeeessseeenseessseesnnseenns 73
Installing Db2 database servers using the Db2 Setup wizard (WindOWS).....ccccveeecieeeecieeecceeeeceeeennee. 73
An overview of installing Db2 database servers (Linux and UNIX)......ccoccovvirneeniiinneenieenneenieessiesnnens 77
21T (o oYL o TV I T o =] 7| 84
Additional partitioned database environment preinstallation tasks (Linux and UNIX).......c.ccceoueen... 84
Installing your DB2 SEIVEr ProQUCT......uiicciieeeiieeeiteeetteee e eeee e e ste e e e te e e e teeeetaeeesaeesbseeessaeesnsaeesnsseasnsseeas 94
Setting up a partitioned database enViroNMENT.......c..cicciii i 94
Installing database partition servers on participating computers using a response file
(WINQOWS) e eueieeiieeiteniesite et seeste st e st e s bt e sbe e s beesbeeseteesbeesaseesbaesasessbaesssessbeesssessseensaessseenseensseensasnnns 96
Installing database partition servers using a response file (Linux and UNIX).....c.cccooveereverieenivennuens 98
AFLEE YOU INSTALL c.teitiieieetieece ettt ettt ettt s e e be e st e s be e saaesbeessaesabeesbeesaseenbaesaseesaessseensenes 98
Verifying the INStAllation.......cccee et e e ae e e ae e e abe e e s nteeesnraean 98

Chapter 3. Implementation and maintenance........ccccccecceuieniiniieiienienieciencecnnenen. 101

Before creating @ database.......ccuei e et et e b e e aaeeenrae s 101
Setting up partitioned database eNVIrONMENTS......ccuiiiciiiiccieccee e 101
Creating node coNfigUration filES.......iiuiiiicii it te e s e e e s ta e e sreeeenes 102

Enabling inter-partition query paralleliSm.......cooie it s 110

Enabling intrapartition paralleliSm for QUETIES.....cucuiiiiiiiiieitesee et 111
Management of data SEIrVEr CAPACITY....cuivuiiiiiiiiriierrite ettt e e e s bee e sbee e s bee s sbeeesaneas 114
Fast COMMUNICATIONS MANAEET....cicciiiiiieeeiieerite ettt eerte e st e e st e e steessteesssbeessbaeessaessseesssaessseesnne 115
Creating and managing partitioned database enviroNmMENtS......ccceevviiiiiiiiniieeenieeee e 118
Managing database PartitioNS.......uiiciii ittt e s e e s e e s e ssarae s 118
Scenario: Redistributing data in new database partitions.......cccceevrveiiiiiiniieeineece e, 129
Issuing commands in partitioned database enviroNMENTS......cccccvvrriiiiiieeiiieenece e 132
rah and db2_all COMMANUS OVEIVIEW.....ecciiiiiiiieiiiiiteieeeee e eeeecciiirrreeeeeeeeeeeseesssssseeeeeseseessesessnsssseens 133
Creating tables and other related table ObJECES.....c.uiiiciiiiciiicecee e 142
Tables in partitioned database ENVIFONMENTS.........cuiiiciiiiee e e e e e e e e nraeeeeeas 142
Large object (LOB) behavior in partitioned tables........ccevceeeieecieeiereee e 143
Creating PartitioNed tabLES....uiii ettt e s ae e s e 144
Partitioned materialized query table (MQT) behavior........cccuiieciieeciiecceeeeeeeeeee e 152
Creating range-ClUuSTEred tableS. ...t s e s ae e s e e s be e ssaaesas 154
Considerations when creating MDC or ITC tables....ccuuiiiiiiiiiinieceieceie e 156
LN R =T g == W b= =1 o = 1T PSP 160
ALLEIING AN INSTANCE...utiiiiieieiiee ettt ettt ettt e st e s bt e e ssabeesbteesbeaessteesasseesanseesssaesssaesnnseenn 160
ALLEINING @ AtADASE...iiiiiiciee ettt et e st e e s ee e s eree e s beeeenes 160
Altering tables and other related table 0bJECTS......civciiiiiiiiie e 160
Altering partitioned TablES......coi i st e s e eas 160
Guidelines and restrictions on altering partitioned tables........ccoviiiiviiiiiiiiniieceee e 161
Considerations for XML indexes when altering a table with a partition......cccccceevevinvininieinnieennee, 163
AtTaChing data PArtiTioNS..ccciii ittt see e s te e s te e s ateessrteessateesenteesentaesasaeesan 164
Guidelines for attaching data partitions to partitioned tables.......cccccvevivriviiiniieiiiienicececiee s 168
Conditions for matching a source table index with a target table partitioned indexX..........ccecueennee 171
Detaching data PartitiONS. . ..o iei ettt e s s saee s s ebe e s s e e s sbe e e sbee s sabeeesbaessaneas 173
Attributes of detached data PartitioNS......cc.uieei e e e e e e e e e reeeeeeas 175
Data partition detaCh PRasSEs. ... i et e e e e e rbe e e e s e b e e e e e eenbeeaeeeeannes 177
Asynchronous partition detach for data partitioned tables.........ccceeciieeiccciiiei e, 178
JA¥e o 1o T X 2= W oF- T A AT] 413 O OSSP 180
Dropping data PartitioNS....cucueeicieeiiieeeeiee sttt sttt st e s sare e s abeessatee s sbeessabe e s sbae e sraesanreenan 182
Rotating data in @ partitioned table.......ui i 183
Scenarios: Rolling in and rolling out partitioned table data........ccoccueeviiiiiriieiniieeccieeree e 184
[o= Lo S USRI 187
Parallelism and LOAING.......coeciiiriiiieiiieerieeect sttt et e st e s st e s abe e s s aaeessabeessaseessaseessaraessnsens 187
110103 TaTo I N L O3 ole]a -1 e [T =1 1 To] o TSP 187
Load considerations for partitioned tables.........uuieiicciiee i 188
Loading data in a partitioned database enviroNMENT.......ccceiviiiiriieiicieeeee e 190
Load overview-partitioned database enVirONMENTS........cc.uueieieciiieeieciiiee e e e 190
Loading data in a partitioned database environment-hints and tipS.......cccceveveiriieiniiennieennceeennen, 192
Loading data in a partitioned database environmMeNt.......cccocieiiieiiiieiiciee e 193
Monitoring a partitioned database load using the LOAD QUERY command.........ccceecveerceerrcveennnnen. 198
Resuming, restarting, or terminating load operations in a partitioned database environment...... 199
Partitioned database load configuration OPLiONS.......cccveiicieiiiieiicie et 201
Load sessions in a partitioned database environment - CLP examples.......cccceeeciveeeiecciieeeeecciveeenn. 205
Migration and version COMPAtIDILITY......ciiiieiiiiii e 207
Migration of partitioned database eNVIrONMENTS......ccuiiiiiiiiiiieiee e 208
Migrating partitioned databases......ccuiiviiiiiiiiiiece s e s 208
Using snapshot and EVENT MONITOIS.....ciiiiiiiiieiiieeee sttt e e s s e e s s e e s sbee s s beeesbeessaseessnnens 208
Monitoring the reorganization of a partitioned table.......ccccvviiiiiiiiniiini e, 208
Global snapshots on partitioned database SYyStEMS........ceeieeciiieicciiiie e 215
Creating an event monitor for partitioned databases, or for databases in a Db2 pureScale
LY N Vo] 1 =10) SRR 215
Developing a good backup and reCOVEIY STrat@8Y......cccvirviiiriiiiriieiriie sttt e e see e s ae e s saeeesaeas 216
L0 = 1] g I =Yoo)V/=T Y 2RSS 216
Recovering from transaction failures in a partitioned database environment.......ccccccevcveernvieennnnen. 218

Recovering from the failure of a database partition SErVer......ccccvivveiieeeirieeeeee e 220

Rebuilding partitioned databases.......cciiiiiiiiiiiiieccec e s s 221

(1T T = e | 012 LT | PP 222
Synchronizing clocks in a partitioned database environment.......ccccovcieiriieinciiincieeceeecee e 236
Bl e8] o] =T g oo 4T o= PR PP TROPPPPRPPPPROTPPPINS 237
Troubleshooting partitioned database enVirONMENTS......cccccivirriiiiriieinieereeeeee e 237

Chapter 4. Performance iSSUES.....cccituirierteteiteriecestensetestecatassecassossasassessssassscssss 239

Performance issues in database dESIZN......cuiiviiiiiiiiiiiierieee ettt sae e s saee e s saee e s saaeessaeae s 239
Performance enhanCing fEATUIMES.cuiiiiiiiiiieereecrt ettt e s e e s bee s sbee s sbeeesaneas 239
|1 Ta L= T U PRPPRPP 249
Indexes in PartitioNed taDLES.....uuui e e e e e e e ae e s e e nrre e e e enns 249
LTy T= (a1 To AV <o] OO RUPTR 256
Using the Design Advisor to convert from a single-partition to a multi-partition database............ 256
MaANAZINE CONCUITENCY .utttiureeieiieeraieerateesasteesasteesasteesaseessaseesssseesssseesssseesssssesssseesssssesssssessssesssssessseessns 256
Lock modes for MDC and ITC tables and RID iNAEX SCANS.......iivrueerrieeriiieeniieesnieessieesseeesseeessnens 256
Lock modes for MDC BlOCK INAEX SCANS.....cuuiiiciiiiiieeiciiee sttt e st e seireeseieeessbeeeseaeeessreeeseneeesaseeesane 261
Locking behavior on partitioned tables........uiiiiiiiiiiieeceesee e 264
ABENT MANAEZEMENT . ..ciiiiittiee ettt ettt e e e ettt e e e e et e e e e e see e e e e e aseeeee s nneteessannrteesseanseeeeseasreeeeasnneees 266
Agents in a partitioned database. ... s a e sra e eaee 266
OPLIMIZING QCCESS PLANS....utiiieiiiiiee ettt ettt s st e s ste e s saee e ssaee e sbeeesbeeesseeesneeesseassnseeesnnens 267
Index acCesS aNd CLUSTEE FATIOS...uuiiiiiieeiiiercite ettt sttt et e st e s sate e ssae e s sabeessabeessabeeesabeessaneas 267
Optimization strategies for intrapartition paralleliSm. ... 270
[11 - TSR 272
B Wy To =y A] 01U} Ao o PP PROPPRRRPRRRN 282
Comparison of logged, recoverable redistribution and minimally logged, not roll-forward
recoverable rediStribDULION.t s s e s e s 282
Prerequisites for data redistribULION.......ccuuiii i rree e e e nree e e e 284
Restrictions on data redistribDULION........coiciiiiiiiie e 285
Determining if data redistribution iS NEEAEd.......cociiiiiiiiriiiicere e 286
Redistributing data across database PartitionS.......cccecueeecieiriieeicieeceee e 287
Redistributing data in a database partition SroUP.......cciiiriieiriieiniee e see e 288
Log space requirements for data rediStribUtioN........ccieircieiniiiine e 289
Redistribution @VENT LOZ fIlES...ciuiiiiiiiiciieeecrteeee et e st s e e s sre e s e e s sasae s 290
Redistributing data using the STEPWISE_REDISTRIBUTE_DBPG procedure........ccceeveerevveernveenne 290
Configuring Self-tUNING MEMOIY..cciciiiiiiieiite ettt s e e st e s s te e s sseeesssbeesssbeessssaesnsseesas 292
Self-tuning memory in partitioned database enviroNMENTS.......cccccvvviieiriieiniieeree e 292
Using self-tuning memory in partitioned database environments.......cc.ccccvvveeerieeenieeinieecsciee e, 293
DB2 configuration parameters and variables. ...t 295
Configuring databases across multiple PartitionS.......ccoeceeircieiiieeinee e 295
Partitioned database ENVIFONMENTcocciiiiiiiiieeeee e sare e s bae e saae e saeee s 296
Partitioned database environment configuration parameters......ccceereeenieeencieeeseeesee e 299

Chapter 5. Administrative APIs, commands, SQL statementscccceevereennee.. 305

AAMUNISTIATIVE APLS...iiiiiiiieiieeetecete ettt ete et e st e e st e e sbt e e s bt e e sbaeesbaeesssaeessaeessaesssaessseesssseeesssaeenns 305
sqleaddn - Add a database partition to the partitioned database environment.........cccccceeeeuuneeennn. 305
sqlecran - Create a database on a database partition SErVEr.......cccueeeeecciiiee e eeeree e 307
sqledpan - Drop a database on a database partition SErVer........ccccieeeieciiiee e 308
sqledrpn - Check whether a database partition server can be dropped.......cccccceeeciveeeicccieeeeccnneen, 309
sqlugrpn - Get the database partition server nUMber for @ rOW......c.ueveceeieiieeniieieiiecscieceee e 310

(60010 0] 4= V2T =TT USRI 312
REDISTRIBUTE DATABASE PARTITION GROUP......ciiciiiiiiiiriieeniee sttt esineesineessieeesaneesvaeesane 312
db2nchg - Change database partition server CONfiguration.......cccovcveeviieeriiieeniieenrieesriee e 319
db2ncrt - Add database partition server to an iNStANCE......cccciiieeeeciieee e veee e 320
db2ndrop - Drop database partition server from an iNStaNCe.......ccccvuieeeieciiiee e 322

SOL laNgUALE ELEMENTS...ciciiiieiieiciieeeie ettt sttt e st e s st e e s s bt essateesssbeesssteesssbeessssaessssaeenssaesnsseesnnes 323
DY €= V] 1= TSP 323
Y=Y ol = LN =T =L =Y T OSSP 324

xi

xii

Y O] I (V] g ot £ o 2 =TT U SRR 325

DATAPARTITIONNUM. ..ottt sttt s st s et e ssiae e s ae e s sae e ssate e sssaeessasaessssaesnssaesnsseesnsseesnnses 325
DBPARTITIONNUDM ... ettt ste sttt e ssaae e s aee e s aee e s st e e s bee e sataessasaesstaesnssaesnnsaesnssnessnsens 326
1O IS] £ 1 (=1 0 0= 0L £ T 327
ALTER DATABASE PARTITION GROUP....cciccitiiiieiitessite st st st e st e s e e ssteesste e ssvaesssaesssnaeens 327
CREATE DATABASE PARTITION GROUP....ccicctiiiiteiriteciee sttt esste e ssiee e ssiee e ssree e senae s sneeessneas 330
Supported administrative SQL routines and VIEWS.........uuieeieciiieeececiireeeecitreesesiree e e e esnreeeesssseeeessesnseneas 332
ADMIN_CMD stored procedure and associated administrative SQL routines.......cccceccvveeeeccvveeennne 332
Configuration administrative SQL routines and VIEWS.......ccoeuierriierniienniiensieeeneesseesssveesssveessnees 334
Stepwise redistribute administrative SQL rOULINES......c.uuiieiieciiie ettt eerree e eevree e e vaee e 336

T =) . X 1°

Chapter 1. Planning and design considerations

Partitioned databases and tables

Setting up partitioned database environments

The decision to create a multi-partition database must be made before you create your database. As part
of the database design decisions you make, you will have to determine if you should take advantage of
the performance improvements database partitioning can offer.

About this task

In a partitioned database environment, you still use the CREATE DATABASE command or the sqlecreal()
function to create a database. Whichever method is used, the request can be made through any of the
partitions listed in the db2nodes. cfg file. The db2nodes. cfg file is the database partition server
configuration file.

Except on the Windows operating system environment, any editor can be used to view and update the
contents of the database partition server configuration file (db2nodes. cfg). On the Windows operating
system environment, use db2ncxt and db2nchg commands to create and change the database partition
server configuration file

Before creating a multi-partition database, you must select which database partition will be the catalog
partition for the database. You can then create the database directly from that database partition, or from
a remote client that is attached to that database partition. The database partition to which you attach and
execute the CREATE DATABASE command becomes the catalog partition for that particular database.

The catalog partition is the database partition on which all system catalog tables are stored. All access to
system tables must go through this database partition. All federated database objects (for example,
wrappers, servers, and nicknames) are stored in the system catalog tables at this database partition.

If possible, you should create each database in a separate instance. If this is not possible (that is, you
must create more than one database per instance), you should spread the catalog partitions among the
available database partitions. Doing this reduces contention for catalog information at a single database
partition.

Note: You should regularly do a backup of the catalog partition and avoid putting user data on it
(whenever possible), because other data increases the time required for the backup.

When you create a database, it is automatically created across all the database partitions defined in the
db2nodes.cfg file.

When the first database in the system is created, a system database directory is formed. It is appended
with information about any other databases that you create. When working on UNIX, the system database
directory is sqldbdizr and is located in the sqllib directory under your home directory, or under the
directory where Db2° database was installed. When working on UNIX, this directory must reside on a
shared file system, (for example, NFS on UNIX platforms) because there is only one system database
directory for all the database partitions that make up the partitioned database environment. When
working on Windows, the system database directory is located in the instance directory.

Also resident in the sqldbdir directory is the system intention file. It is called sqldbins, and ensures

that the database partitions remain synchronized. The file must also reside on a shared file system since
there is only one directory across all database partitions. The file is shared by all the database partitions
making up the database.

Configuration parameters have to be modified to take advantage of database partitioning. Use the GET
DATABASE CONFIGURATION and the GET DATABASE MANAGER CONFIGURATION commands to find
out the values of individual entries in a specific database, or in the database manager configuration file.

© Copyright IBM Corp. 2016, 2020 1

To modify individual entries in a specific database, or in the database manager configuration file, use the
UPDATE DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER CONFIGURATION
commands respectively.

The database manager configuration parameters affecting a partitioned database environment include
conn_elapse, fcm_num_buffers, fcm_num_channels, max_connretries, max_coordagents,
max_time_diff, num_poolagents, and start_stop_time.

Database partitioning across multiple database partitions
The database manager allows great flexibility in spreading data across multiple database partitions of a
partitioned database.

Users can choose how to distribute their data by declaring distribution keys, and can determine which and
how many database partitions their table data can be spread across by selecting the database partition
group and table space in which the data is to be stored.

In addition, a distribution map (which is updatable) specifies the mapping of distribution key values to
database partitions. This makes it possible for flexible workload parallelization across a partitioned
database for large tables, while allowing smaller tables to be stored on one or a small number of
database partitions if the application designer so chooses. Each local database partition can have local
indexes on the data it stores to provide high performance local data access.

In a partitioned database, the distribution key is used to distribute table data across a set of database
partitions. Index data is also partitioned with its corresponding tables, and stored locally at each
database partition.

Before database partitions can be used to store data, they must be defined to the database manager.
Database partitions are defined in a file called db2nodes.cfg.

The distribution key for a table in a table space on a partitioned database partition group is specified in
the CREATE TABLE statement or the ALTER TABLE statement. When specified through the CREATE TABLE
statement the distribution key selection is dependent on the DISTRIBUTE BY clause in use:

- IfDISTRIBUTE BY HASH is specified, the distribution keys are the keys explicitly included in the
column list following the HASH keyword.

- IfDISTRIBUTE BY RANDOM is specified, the distribution key is selected by the database manager in an
effort to spread data evenly across all database partitions the table is defined on. There are two
methods that the database manager uses to achieve this:

— Random by unique: If the table includes a unique or primary key, it uses the unique characteristics
of the key columns to create a random spread of the data. The columns of the unique or primary key
are used as the distribution keys.

— Random by generation: If the table does not have a unique or primary key, the database manager
will include a column in the table to generate and store a generated value to use in the hashing
function. The column will be created with the IMPLICITLY HIDDEN clause so that it does not
appear in queries unless explicitly included. The value of the column will be automatically generated
as new rows are added to the table. By default, the column name is RANDOM_DISTRIBUTION_KEY. If
it collides with the existing column, a non-conflicting name will be generated by the database
manager.

« IfDISTRIBUTE BY REPLICATION is specified, this means that a copy of all of the data in the table
exists on each database partition, so no distribution keys are selected. This option can only be specified
for a materialized query table

« If not specified, a distribution key for a table is created by default. A table in a table space that isin a
single partition database partition group will have a distribution key only if it is explicitly specified.

Rows are placed in a database partition as follows:

1. A hashing algorithm (database partitioning function) is applied to all of the columns of the distribution
key, which results in the generation of a distribution map index value.

2. The database partition number at that index value in the distribution map identifies the database
partition in which the row is to be stored.

2 IBM Db2 V11.5: Partitioning and Clustering Guide

The database manager supports partial declustering, which means that a table can be distributed across a
subset of database partitions in the system (that is, a database partition group). Tables do not have to be
distributed across all of the database partitions in the system.

The database manager has the capability of recognizing when data being accessed for a join or a
subquery is located at the same database partition in the same database partition group. This is known as
table collocation. Rows in collocated tables with the same distribution key values are located on the same
database partition. The database manager can choose to perform join or subquery processing at the
database partition in which the data is stored. This can have significant performance advantages.

Random distribution tables that are using random by generation method generally cannot take advantage
of table collocation because the distribution key is based on the generated value of the
RANDOM_DISTRIBUTION_KEY column.

Collocated tables must:

« Be in the same database partition group, one that is not being redistributed. (During redistribution,
tables in the database partition group might be using different distribution maps - they are not
collocated.)

« Have distribution keys with the same number of columns.
- Have the corresponding columns of the distribution key be database partition-compatible.

- Single-partition tables are collocated only if they are defined in the same database partition group.

Partitioned database authentication considerations

In a partitioned database, each partition of the database must have the same set of users and groups
defined. If the definitions are not the same, the user may be authorized to do different things on different
partitions.

Consistency across all partitions is recommended.

Database partition groups
A database partition group is a named set of one or more database partitions that belong to a database.

A database partition group that contains more than one database partition is known as a multiple partition
database partition group. Multiple partition database partition groups can only be defined with database
partitions that belong to the same instance.

Figure 1 on page 4 shows an example of a database with five database partitions.

« Database partition group 1 contains all but one of the database partitions.
- Database partition group 2 contains one database partition.
- Database partition group 3 contains two database partitions.

The database partition in Group 2 is shared (and overlaps) with Group 1.

A single database partition in Group 3 is shared (and overlaps) with Group 1.

Chapter 1. Planning and design considerations 3

Database

Datahasa
partition group 1
Database Databasze
partition group 2 riition group 3
D
S | |
Database Database
partition partition
Databasa
= nartition

Figure 1. Database partition groups in a database

When a database is created, all database partitions that are specified in the database partition
configuration file named db2nodes . cfg are created as well. Other database partitions can be added or
removed with the ADD DBPARTITIONNUM or DROP DBPARTITIONNUM VERIFY command, respectively.
Data is divided across all of the database partitions in a database partition group.

When a database partition group is created, a distribution map is associated with the group. The
distribution map, along with a distribution key and a hashing algorithm are used by the database manager
to determine which database partition in the database partition group will store a given row of data.

Default database partition groups
Three database partition groups are defined automatically at database creation time:

- IBMCATGROUP for the SYSCATSPACE table space, holding system catalog tables

« IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary tables created during database
processing

« IBMDEFAULTGROUP for the USERSPACE1 table space, holding user tables and indexes. A user
temporary table space for a declared temporary table or a created temporary table can be created in
IBMDEFAULTGROUP or any user-created database partition group, but not in IBMTEMPGROUP.

Table spaces in database partition groups

When a table space is associated with a multiple partition database partition group (during execution of
the CREATE TABLESPACE statement), all of the tables within that table space are partitioned across each
database partition in the database partition group. A table space that is associated with a particular
database partition group cannot later be associated with another database partition group.

Creating a database partition group

Create a database partition group by using the CREATE DATABASE PARTITION GROUP statement. This
statement specifies the set of database partitions on which the table space containers and table data are
to reside. This statement also performs the following actions:

« It creates a distribution map for the database partition group.
- It generates a distribution map ID.
« Itinserts records into the following catalog views:

— SYSCAT.DBPARTITIONGROUPDEF

— SYSCAT.DBPARTITIONGROUPS

4 IBM Db2 V11.5: Partitioning and Clustering Guide

— SYSCAT.PARTITIONMAPS

Altering a database partition group

Use the ALTER DATABASE PARTITION GROUP statement to add database partitions to (or drop them
from) a database partition group. After adding or dropping database partitions, use the REDISTRIBUTE
DATABASE PARTITION GROUP command to redistribute the data across the set of database partitions in
the database partition group.

Database partition group design considerations

Place small tables in single-partition database partition groups, except when you want to take advantage
of collocation with a larger table. Collocation is the placement of rows from different tables that contain
related data in the same database partition. Collocated tables help the database manager to use more
efficient join strategies. Such tables can exist in a single-partition database partition group. Tables are
considered to be collocated if they are in a multiple partition database partition group, have the same
number of columns in the distribution key, and if the data types of corresponding columns are
compatible. Rows in collocated tables with the same distribution key value are placed on the same
database partition. Tables can be in separate table spaces in the same database partition group, and still
be considered collocated.

Avoid extending medium-sized tables across too many database partitions. For example, a 100-MB table
might perform better on a 16-partition database partition group than on a 32-partition database partition

group.

You can use database partition groups to separate online transaction processing (OLTP) tables from
decision support (DSS) tables. This will help to ensure that the performance of OLTP transactions is not
adversely affected.

If you are using a multiple partition database partition group, consider the following points:

- In a multiple partition database partition group, you can only create a unique index if the index is a
superset of the distribution key.

« Each database partition must be assigned a unique number, because the same database partition might
be found in one or more database partition groups.

- To ensure fast recovery of a database partition containing system catalog tables, avoid placing user
tables on the same database partition. Place user tables in database partition groups that do not
include the database partition in the IBMCATGROUP database partition group.

Distribution maps
In a partitioned database environment, the database manager must know where to find the data that it
needs. The database manager uses a map, called a distribution map, to find the data.

A distribution map is an internally generated array containing either 32 768 entries for multiple-partition
database partition groups, or a single entry for single-partition database partition groups. For a single-
partition database partition group, the distribution map has only one entry containing the number of the
database partition where all the rows of a database table are stored. For multiple-partition database
partition groups, the numbers of the database partition group are specified in a way such that each
database partition is used one after the other to ensure an even distribution across the entire map. Just
as a city map is organized into sections using a grid, the database manager uses a distribution key to
determine the location (the database partition) where the data is stored.

For example, assume that you have a database on four database partitions (numbered 0-3). The
distribution map for the IBMDEFAULTGROUP database partition group of this database is:

0123012 ...

If a database partition group had been created in the database using database partitions 1 and 2, the
distribution map for that database partition group is:

1212121 ...

Chapter 1. Planning and design considerations 5

If the distribution key for a table to be loaded into the database is an integer with possible values
between 1 and 500 000, the distribution key is hashed to a number between 0 and 32 767. That number
is used as an index into the distribution map to select the database partition for that row.

Figure 2 on page 6 shows how the row with the distribution key value (c1, c2, c3) is mapped to humber
2, which, in turn, references database partition n5.

Distribution key

Row: (...cl1,c2,c3, ...)

Distribution map

ni n2 ng nid neG

0 i 2 3 4 e 32767

Partition number

Figure 2. Data distribution using a distribution map

A distribution map is a flexible way of controlling where data is stored in a multi-partition database. If you
must change the data distribution across the database partitions in your database, you can use the data
redistribution utility. This utility allows you to rebalance or introduce skew into the data distribution.

You can use the db2GetDistMap API to obtain a copy of a distribution map that you can view. If you
continue to use the sqlugtpi API to obtain the distribution information, this API might return error
message SQL2768N, because it can only retrieve distribution maps containing 4096 entries.

Distribution keys
A distribution key is a column (or group of columns) that is used to determine the database partition in
which a particular row of data is stored.

A distribution key is defined on a table using the CREATE TABLE statement. The selection of the
distribution key is dependent on the DISTRIBUTE BY clause in use:

- IfDISTRIBUTE BY HASH is specified, the distribution keys are the keys explicitly included in the
column list following the HASH keyword.

- IfDISTRIBUTE BY RANDOM is specified, the distribution key is selected by the database manager in an
effort to spread data evenly across all database partitions the table is defined on. There are two
methods that the database manager uses to achieve this:

— Random by unique: If the table includes a unique or primary key, it uses the unique characteristics
of the key columns to create a random spread of the data. The columns of the unique or primary key
are used as the distribution keys.

— Random by generation: If the table does not have a unique or primary key, the database manager
will include a column in the table to generate and store a generated value to use in the hashing
function. The column will be created with theIMPLICITLY HIDDEN clause so that it does not appear
in queries unless explicitly included. The value of the column will be automatically generated as new
rows are added to the table. By default, the column name is RANDOM_DISTRIBUTION_KEY. If it
collides with the existing column, a non-conflicting name will be generated by the database manager.

- IfDISTRIBUTE BY REPLICATION is selected, this means that a copy of all of the data in the table
exists on each database partition, so no distribution keys are selected. This option can only be specified
for a materialized query table.

« If not specified, and the table is defined in a table space that is divided across more than one database
partition, a distribution key for a table is created by default from the first column of the primary key. If
no primary key is defined, the default distribution key is the first column defined in that table that has a

6 IBM Db2 V11.5: Partitioning and Clustering Guide

data type other than a long or a LOB data type. Tables in partitioned databases must have at least one
column that is neither a long nor a LOB data type.

« If not specified and the table is in a table space that is in a single partition database partition group, no
distribution key is defined. Tables without a distribution key are only allowed in single-partition
database partition groups. You can add or drop distribution keys later, using the ALTER TABLE
statement. Altering the distribution key can only be done to a table whose table space is associated
with a single-partition database partition group.

Choosing a good distribution key is important. Take into consideration:

« How tables are to be accessed
« The nature of the query workload
- The join strategies employed by the database system

If collocation is not a major consideration, a good distribution key for a table is one that spreads the data
evenly across all database partitions in the database partition group. The distribution key for each table in
a table space that is associated with a database partition group determines if the tables are collocated.
Tables are considered collocated when:

« The tables are placed in table spaces that are in the same database partition group
- The distribution keys in each table have the same number of columns
- The data types of the corresponding columns are partition-compatible.

These characteristics ensure that rows of collocated tables with the same distribution key values are
located on the same database partition.

An inappropriate distribution key can cause uneven data distribution. Do not choose columns with
unevenly distributed data or columns with a small number of distinct values for the distribution key. The
number of distinct values must be great enough to ensure an even distribution of rows across all database
partitions in the database partition group. The cost of applying the distribution algorithm is proportional to
the size of the distribution key. The distribution key cannot be more than 16 columns, but fewer columns
result in better performance. Do not include unnecessary columns in the distribution key.

Random distribution can remove the guess work of the distribution key selection. This method will
instruct the database manager to pick the distribution keys. It will pick them to ensure that data is spread
evenly across all database partitions in the database partition group. However, if the random distribution
method is random by generation, you will lose the ability to control collocation and joining of tables
cannot be done in an efficient manner. If those will be issues for the expected usage of the table, then
explicit selection of the distribution keys is recommended.

Consider the following points when defining a distribution key:

« Creation of a multiple-partition table that contains only BLOB, CLOB, DBCLOB, LONG VARCHAR, LONG
VARGRAPHIC, XML, or structured data types is not supported.

« The distribution key definition cannot be altered.

« Include the most frequently joined columns in the distribution key.

« Include columns that often participate in a GROUP BY clause in the distribution key.
« Any unique key or primary key must contain all of the distribution key columns.

« Inan online transaction processing (OLTP) environment, ensure that all columns in the distribution key
participate in a transaction through equality predicates. For example, assume that you have an
employee number column, EMP_NO, that is often used in transactions such as:

UPDATE emp_table SET ... WHERE
emp_no = host-variable

In this case, the EMP_NO column makes a good single column distribution key for EMP_TABLE.

Database partitioning is the method by which the placement of each row in the table is determined. The
method works as follows:

Chapter 1. Planning and design considerations 7

1. A hashing algorithm is applied to the value of the distribution key, and generates a number between
zero (0) and 32 767.

2. The distribution map is created when a database partition group is created. Each of the numbers is
sequentially repeated in a round-robin fashion to fill the distribution map.

3. The number is used as an index into the distribution map. The number at that location in the
distribution map is the number of the database partition where the row is stored.

Table collocation

If two or more tables frequently contribute data in response to certain queries, you will want related data
from these tables to be physically located as close together as possible. In a partitioned database
environment, this process is known as table collocation.

Tables are collocated when they are stored in the same database partition group, and when their
distribution keys are compatible. Placing both tables in the same database partition group ensures a
common distribution map. The tables might be in different table spaces, but the table spaces must be
associated with the same database partition group. The data types of the corresponding columns in each
distribution key must be partition-compatible. Collocation is not possible for random distribution tables
using the random by generation method.

When more than one table is accessed for a join or a subquery, the database manager determines
whether the data to be joined is located at the same database partition. When this happens, the join or
subquery is performed at the database partition where the data is stored, instead of having to move data
between database partitions. This ability has significant performance advantages.

Partition compatibility

The base data types of corresponding columns of distribution keys are compared and can be declared
partition-compatible. Partition-compatible data types have the property that two variables, one of each
type, with the same value, are mapped to the same number by the same partitioning algorithm.

Partition-compatibility has the following characteristics:

« A base data type is compatible with another of the same base data type.

- Internal formats are used for DATE, TIME, and TIMESTAMP data types. They are not compatible with
each other, and none are compatible with character or graphic data types.

« Partition compatibility is not affected by the nullability of a column.

« Partition-compatibility is affected by collation. Locale-sensitive UCA-based collations require an exact
match in collation, except that the strength (S) attribute of the collation is ignored. All other collations
are considered equivalent for the purposes of determining partition compatibility.

 Character columns defined with FOR BIT DATA are only compatible with character columns without
FOR BIT DATA when a collation other than a locale-sensitive UCA-based collation is used.

« NULL values of compatible data types are treated identically; those of non-compatible data types might
not be.

« Base data types of a user-defined type are used to analyze partition-compatibility.

« Decimals of the same value in the distribution key are treated identically, even if their scale and
precision differ.

« Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC) are ignored by the
hashing algorithm.

« BIGINT, SMALLINT, and INTEGER are compatible data types.

« When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
are compatible data types. When another collation is used, CHAR and VARCHAR of different lengths are
compatible types and GRAPHIC and VARGRAPHIC are compatible types, but CHAR and VARCHAR are
not compatible types with GRAPHIC and VARGRAPHIC.

« Partition-compatibility does not apply to LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, and
BLOB data types, because they are not supported as distribution keys.

8 IBM Db2 V11.5: Partitioning and Clustering Guide

Partitioned tables
Partitioned tables use a data organization scheme in which table data is divided across multiple storage

objects, called data partitions or ranges, according to values in one or more table partitioning key columns
of the table.

A data partition or range is part of a table, containing a subset of rows of a table, and stored separately
from other sets of rows. Data from a given table is partitioned into multiple data partitions or ranges
based on the specifications provided in the PARTITION BY clause of the CREATE TABLE statement. These
data partitions or ranges can be in different table spaces, in the same table space, or a combination of
both. If a table is created using the PARTITION BY clause, the table is partitioned.

All of the table spaces specified must have the same page size, extent size, storage mechanism (DMS or
SMS), and type (REGULAR or LARGE), and all of the table spaces must be in the same database partition
group.

A partitioned table simplifies the rolling in and rolling out of table data and a partitioned table can contain
vastly more data than an ordinary table. You can create a partitioned table with a maximum of 32,767

data partitions. Data partitions can be added to, attached to, and detached from a partitioned table, and
you can store multiple data partition ranges from a table in one table space.

Indexes on a partitioned table can be partitioned or nonpartitioned. Both nonpartitioned and partitioned
indexes can exist together on a single partitioned table.

Restrictions

Partitioned hierarchical or temporary tables, range-clustered tables, and partitioned views are not
supported for use in partitioned tables.

Table partitioning

Table partitioning is a data organization scheme in which table data is divided across multiple storage
objects called data partitions according to values in one or more table columns. Each data partition is
stored separately. These storage objects can be in different table spaces, in the same table space, or a
combination of both.

Storage objects behave much like individual tables, making it easy to accomplish fast roll-in by
incorporating an existing table into a partitioned table using the ALTER TABLE ... ATTACH statement.
Likewise, easy roll-out is accomplished with the ALTER TABLE ... DETACH statement. Query processing
can also take advantage of the separation of the data to avoid scanning irrelevant data, resulting in better
query performance for many data warehouse style queries.

Table data is partitioned as specified in the PARTITION BY clause of the CREATE TABLE statement. The
columns used in this definition are referred to as the table partitioning key columns.

This organization scheme can be used in isolation or in combination with other organization schemes. By
combining the DISTRIBUTE BY and PARTITION BY clauses of the CREATE TABLE statement, data can be
spread across database partitions spanning multiple table spaces. The organization schemes include:

- DISTRIBUTE BY HASH
« PARTITION BY RANGE
» ORGANIZE BY DIMENSIONS

Table partitioning is available with the Db2 Version 9.1 Enterprise Server Edition for Linux, UNIX, and
Windows, and later.

Benefits of table partitioning

If any of the following circumstances apply to you and your organization, consider the numerous benefits
of table partitioning;:

« You have a data warehouse that would benefit from easier roll-in and roll-out of table data.
« You have a data warehouse that includes large tables.

Chapter 1. Planning and design considerations 9

 You are considering a migration to a Version 9.1 database from a previous release or a competitive
database product.

« You want to use hierarchical storage management (HSM) solutions more effectively.

Table partitioning offers easy roll-in and roll-out of table data, easier administration, flexible index
placement, and better query processing.

Efficient roll-in and roll-out
Table partitioning allows for the efficient roll-in and roll-out of table data. You can achieve this
efficiency by using the ATTACH PARTITION and DETACH PARTITION clauses of the ALTER TABLE
statement. Rolling in partitioned table data allows a new range to be easily incorporated into a
partitioned table as an additional data partition. By rolling out partitioned table data, you can easily
separate ranges of data from a partitioned table for subsequent purging or archiving.

With Db2 Version 9.7 Fix Pack 1 and later releases, when detaching a data partition from a partitioned
table by using the ALTER TABLE statement with the DETACH PARTITION clause, the source
partitioned table remains accessible to dynamic queries that run under the RS, CS, or UR isolation
level. Similarly, when attaching a data partition to a partitioned table by using the ALTER TABLE
statement with the ATTACH PARTITION clause, the target partitioned table remains accessible to
dynamic queries that run under the RS, CS, or UR isolation level.

Easier administration of large tables
Table level administration is more flexible because you can perform administrative tasks on individual
data partitions. These tasks include: detaching and reattaching of a data partition, backing up and
restoring individual data partitions, and reorganizing individual indexes. Time consuming maintenance
operations can be shortened by breaking them down into a series of smaller operations. For example,
backup operations can work data partition by data partition when the data partitions are placed in
separate table spaces. Thus, it is possible to back up one data partition of a partitioned table at a
time.

Flexible index placement
Indexes can now be placed in different table spaces, allowing for more granular control of index
placement. Some benefits of this design include:

« Improved performance when dropping indexes and during online index creation.

« The ability to use different values for any of the table space characteristics between each index on
the table (for example, different page sizes for each index might be appropriate to ensure better
space utilization).

« Reduced I/0O contention that provides more efficient concurrent access to the index data for the
table.

« When individual indexes are dropped, space immediately becomes available to the system without
the need for index reorganization.

- If you choose to perform index reorganization, an individual index can be reorganized.

Both DMS and SMS table spaces support the use of indexes in a different location than the table.

Improved performance for business intelligence style queries
Query processing is enhanced to automatically eliminate data partitions based on predicates of the
query. This query processing is known as data partition elimination, and can benefit many decision
support queries.

The following example creates a table named CUSTOMER, where rows with [_shipdate >='01/01/2006'
and |_shipdate <='03/31/2006' are stored in table space TS1, rows with |_shipdate >="'04/01/2006' and
|_shipdate <='06/30/2006' are stored in table space TS2, and so on.

CREATE TABLE customer (1_shipdate DATE, 1_name CHAR(30))

IN tsl1, ts2, ts3, ts4, tsb

PARTITION BY RANGE(1l_shipdate) (STARTING FROM ('01/01/2006"')
ENDING AT ('12/31/2006') EVERY (3 MONTHS))

Related information
Best practices: Managing data growth

10 IBM Db2 V11.5: Partitioning and Clustering Guide

https://ibm.biz/Bdx2Gq

Data partitions and ranges

Partitioned tables use a data organization scheme in which table data is divided across multiple storage
objects called data partitions according to values in one or more table partitioning key columns of the
table. The ranges specified for each data partition can be generated automatically or manually when
creating a table.

Data partitions are referred to in various ways throughout the Db2 library. The following list represents
the most common references:

- DATAPARTITIONNAME is the permanent name assigned to a data partition for a given table at create
time. This column value is stored in the SYSCAT.DATAPARTITIONS catalog view. This name is not
preserved on an attach or detach operation.

- DATAPARTITIONID is the permanent identifier assigned to a data partition for a given table at create
time. It is used to uniquely identify a particular data partition in a given table. This identifier is not
preserved on an attach or detach operation. This value is system-generated and might appear in output
from various utilities.

« SEQNO indicates the order of a particular data partition range with regards to other data partition
ranges in the table, with detached data partitions sorting after all visible and attached data partitions.

Related information
Best practices: Managing data growth

Data organization schemes

With the introduction of table partitioning, a Db2 database offers a three-level data organization scheme.
There are three clauses of the CREATE TABLE statement that include an algorithm to indicate how the
data is to be organized.

The following three clauses demonstrate the levels of data organization that can be used together in any
combination:

- DISTRIBUTE BY to spread data evenly across database partitions (to enable intraquery parallelism and
to balance the load across each database partition) (database partitioning)

« PARTITION BY to group rows with similar values of a single dimension in the same data partition (table
partitioning)

« ORGANIZE BY to group rows with similar values on multiple dimensions in the same table extent
(multidimensional clustering) or to group rows according to the time of the insert operation (insert time
clustering table).

This syntax allows consistency between the clauses and allows for future algorithms of data organization.
Each of these clauses can be used in isolation or in combination with one another. By combining the
DISTRIBUTE BY and PARTITION BY clauses of the CREATE TABLE statement data can be spread across
database partitions spanning multiple table spaces. This approach allows for similar behavior to the
Informix® Dynamic Server and Informix Extended Parallel Server hybrid.

In a single table, you can combine the clauses used in each data organization scheme to create more
sophisticated partitioning schemes. For example, partitioned database environments are not only
compatible, but also complementary to table partitioning.

Chapter 1. Planning and design considerations 11

https://ibm.biz/Bdx2Gq

Database partition (dbpart1)

Table space (ts1) Table space (ts2)
Tablasales . S
| Jan Feb i
: Mar Apr '
| May Jun i
i Jul Aug |
i Sap Oct !
i Mo Dec !
Taksle Y
Legend

= Data partiticn

Figure 3. Demonstrating the table partitioning organization scheme where a table representing monthly
sales data is partitioned into multiple data partitions. The table also spans two table spaces (ts1 and ts2).

12 IBM Db2 V11.5: Partitioning and Clustering Guide

Database partition group (dbgroup1)

Database Database Database
partition (dbpart1) partition (dbpart2) partition (dbpart3)
Table space (ts1) Table space (is1) Table space (ts1)
Table Sales | amn. A N
i Jan Jan Jan i
| Mar Mar Mar
: May May May |
: Jul Jul Jul i
| Sep Sep Sep |
: Mo Mow Mowv '
Table space (ts2) Table space (t32) Table space (ts2) i
E Feb Feb Feb i
! Ao Apr Apr
B & i
! g ug
: Oct Oct Oct !
i Dec Dec Dec !
I__________________l___ __)
|
Legend
= Data partition

Figure 4. Demonstrating the complementary organization schemes of database partitioning and table
partitioning. A table representing monthly sales data is partitioned into multiple data partitions, spanning
two table spaces (ts1 and ts2) that are distributed across multiple database partitions (dbpartl, dbpart2,
dbpart3) of a database partition group (dbgroupl).

The salient distinction between multidimensional clustering (MDC) and table partitioning is multi-
dimension versus single dimension. MDC is suitable to cubes (that is, tables with multiple dimensions),
and table partitioning works well if there is a single dimension which is central to the database design,
such as a DATE column. MDC and table partitioning are complementary when both of these conditions are
met. This is demonstrated in Figure 5 on page 14.

Chapter 1. Planning and design considerations 13

Database partition group (dbgroup1)

Database Database Database
partition {dbparti) partition (dbpart2) partition (dbpart3)
Table space (ts1) Table space (ts1) Table space (ts1)
Table Sales = | A] A
E Jan Jan Jan i
' ﬂﬂl mar mar !
i ay ay
[Jul .JuEI'5|r Julf i
; Sep Sep Sep |
[Mow Mo Moy |
Table space (ts2) Table space (ts2) Table space (ts2) i
i Feb Feb Feb |
. Apr Apr Apr |
; Jun Jun dun |
; ALg ALig Aug |
; Oct Oct Oct |
Dec Dec Dec
____________________ i '"_"""""""""I"|"|"|"_"""""""J

Multidimensional clustering block

East East Morth South West

a7 99] 29 00

Legend

['= = Data partition

Figure 5. A representation of the database partitioning, table partitioning and multidimensional
organization schemes where data from table SALES is not only distributed across multiple database
partitions, partitioned across table spaces ts1 and ts2, but also groups rows with similar values on both the
date and region dimensions.

There is another data organization scheme which cannot be used with any of the schemes that were listed
previously. This scheme is ORGANIZE BY KEY SEQUENCE. It is used to insert each record into a row that
was reserved for that record at the time of table creation (Range-clustered table).

Data organization terminology

Database partitioning
A data organization scheme in which table data is divided across multiple database partitions based
on the hash values in one or more distribution key columns of the table, and based on the use of a
distribution map of the database partitions. Data from a given table is distributed based on the
specifications provided in the DISTRIBUTE BY HASH clause of the CREATE TABLE statement.

Database partition
A portion of a database on a database partition server consisting of its own user data, indexes,
configuration file, and transaction logs. Database partitions can be logical or physical.

14 IBM Db2 V11.5: Partitioning and Clustering Guide

Table partitioning
A data organization scheme in which table data is divided across multiple data partitions according to
values in one or more partitioning columns of the table. Data from a given table is partitioned into
multiple storage objects based on the specifications provided in the PARTITION BY clause of the
CREATE TABLE statement. These storage objects can be in different table spaces.

Data partition
A set of table rows, stored separately from other sets of rows, grouped by the specifications provided
in the PARTITION BY RANGE clause of the CREATE TABLE statement.

Multidimensional clustering (MDC)
A table whose data is physically organized into blocks along one or more dimensions, or clustering
keys, specified in the ORGANIZE BY DIMENSIONS clause.

Insert time clustering (ITC)
A table whose data is physically clustered based on row insert time, specified by the ORGANIZE BY
INSERT TIME clause.

Benefits of each data organization scheme

Understanding the benefits of each data organization scheme can help you to determine the best
approach when planning, designing, or reassessing your database system requirements. Table 2 on page
15 provides a high-level view of common customer requirements and shows how the various data
organization schemes can help you to meet those requirements.

Table 2. Using table partitioning with the Database Partitioning Feature

Issue Recommended scheme Explanation

Data roll-out Table partitioning Uses detach to roll out large
amounts of data with minimal
disruption

Parallel query execution (query Database Partitioning Feature Provides query parallelism for

performance) improved query performance

Data partition elimination (query Table partitioning Provides data partition

performance) elimination for improved query
performance

Maximization of query Both Maximum query performance

performance when used together: query

parallelism and data partition
elimination are complementary

Heavy administrator workload Database Partitioning Feature Execute many tasks for each
database partition

Table 3. Using table partitioning with MDC tables

Issue Recommended scheme Explanation

Data availability during roll-out Table partitioning Use the DETACH PARTITION
clause to roll out large amounts
of data with minimal disruption.

Query performance Both MDC is best for querying multiple
dimensions. Table partitioning
helps through data partition
elimination.

Minimal reorganization MDC MDC maintains clustering, which
reduces the need to reorganize.

Chapter 1. Planning and design considerations 15

Note: Table partitioning is now recommended over UNION ALL views.

Data organization schemes in Db2 and Informix databases

Table partitioning is a data organization scheme in which table data is divided across multiple storage
objects called data partitions according to values in one or more table columns. Each data partition is
stored separately. These storage objects can be in different table spaces, in the same table space, or a
combination of both.

Table data is partitioned as specified in the PARTITION BY clause of the CREATE TABLE statement. The
columns used in this definition are referred to as the table partitioning key columns. Db2 table
partitioning maps to the data fragmentation approach to data organization offered by Informix Dynamic
Server and Informix Extended Parallel Server.

The Informix approach

Informix supports several data organization schemes, which are called fragmentation in the Informix

products. One of the more commonly used types of fragmentation is FRAGMENT BY EXPRESSION. This
type of fragmentation works much like a CASE statement, where there is an expression associated with
each fragment of the table. These expressions are checked in order to determine where to place a row.

An Informix and Db2 database system comparison

Db2 database provides a rich set of complementary features that map directly to the Informix data
organization schemes, making it relatively easy for customers to convert from the Informix syntax to the
Db2 syntax. The Db2 database manager handles complicated Informix schemes using a combination of
generated columns and the PARTITION BY RANGE clause of the CREATE TABLE statement. Table 4 on
page 16 compares data organizations schemes used in Informix and Db2 database products.

Table 4. A mapping of all Informix and Db2 data organization schemes

Data organization scheme Informix syntax Db2 Version 9.1 syntax

« Informix: expression-based FRAGMENT BY EXPRESSION PARTITION BY RANGE
- Db2: table partitioning

« Informix: round-robin FRAGMENT BY ROUND ROBIN No syntax: Db2 database
) manager automatically spreads
- Db2: default data among containers

Informix: range distribution FRAGMENT BY RANGE PARTITION BY RANGE

- Db2: table partitioning

Informix: system defined-hash FRAGMENT BY HASH DISTRIBUTE BY HASH
« Db2: database partitioning

Informix: HYBRID FRAGMENT BY HYBRID DISTRIBUTE BY HASH,
PARTITION BY RANGE

« Db2: database partitioning with
table partitioning

Informix: n/a n/a ORGANIZE BY DIMENSIONS

« Db2: Multidimensional
clustering

Examples

The following examples provide details on how to accomplish Db2 database equivalent outcomes for any
Informix fragment by expression scheme.

16 IBM Db2 V11.5: Partitioning and Clustering Guide

Example 1: The following basic create table statement shows Informix fragmentation and the equivalent
table partitioning syntax for a Db2 database system:

Informix syntax:

CREATE TABLE demo(a INT) FRAGMENT BY EXPRESSION
a 1 IN dbi,
a 2 IN db2,
a 3 IN db3;

Db2 syntax:

CREATE TABLE demo(a INT) PARTITION BY RANGE(a)
(STARTING(1) IN db1,
STARTING(2) IN db2,
STARTING(3) ENDING(3) IN db3);

Informix XPS supports a two-level fragmentation scheme known as hybrid where data is spread across
co-servers with one expression and within the co-server with a second expression. This allows all co-
servers to be active on a query (that is, there is data on all co-servers) as well as allowing the query to
take advantage of data partition elimination.

The Db2 database system achieves the equivalent organization scheme to the Informix hybrid using a
combination of the DISTRIBUTE BY and PARTITION BY clauses of the CREATE TABLE statement.

Example 2:The following example shows the syntax for the combined clauses:

Informix syntax

CREATE TABLE demo(a INT, b INT) FRAGMENT BY HYBRID HASH(a)
EXPRESSION b = 1 IN dbsli,
b = 2 IN dbsl2;

Db2 syntax

CREATE TABLE demo(a INT, b INT) IN dbsll, dbsl2
DISTRIBUTE BY HASH(a),
PARTITION BY RANGE(b) (STARTING 1 ENDING 2 EVERY 1);

In addition, you can use multidimensional clustering to gain an extra level of data organization:

CREATE TABLE demo(a INT, b INT, c INT) IN dbsll, dbsl2
DISTRIBUTE BY HASH(a),
PARTITION BY RANGE(b) (STARTING 1 ENDING 2 EVERY 1)
ORGANIZE BY DIMENSIONS(c);

Thus, all rows with the same value of column a are in the same database partition. All rows with the same
value of column b are in the same table space. For a given value of a and b, all rows with the same value ¢
are clustered together on disk. This approach is ideal for OLAP-type drill-down operations, because only
one or several extents (blocks)in a single table space on a single database partition must be scanned to
satisfy this type of query.

Table partitioning applied to common application problems

The following sections discuss how to apply the various features of Db2 table partitioning to common
application problems. In each section, particular attention is given to best practices for mapping various
Informix fragmentation schemes into equivalent Db2 table partitioning schemes.

Considerations for creating simple data partition ranges

One of the most common applications of table partitioning is to partition a large fact table based on a date
key. If you need to create uniformly sized ranges of dates, consider using the automatically generated
form of the CREATE TABLE syntax.

Chapter 1. Planning and design considerations 17

Examples

Example 1: The following example shows the automatically generated form of the syntax:

CREATE TABLE orders
(

1_orderkey DECIMAL(10,0) NOT NULL,
1_partkey INTEGER,

1_suppkey INTEGER,

1 _linenumberx INTEGER,
1_quantity DECIMAL(12,2),
1_extendedprice DECIMAL(12,2),
1 _discount DECIMAL(12,2),
1_tax DECIMAL(12,2),
1_returnflag CHAR(1),

1 linestatus CHAR(1),
1_shipdate DATE,

1_commitdate DATE,
1_receiptdate DATE,
1_shipinstruct CHAR(25),
1_shipmode CHAR(10),

1_comment VARCHAR (44))

PARTITION BY RANGE(1_shipdate)
(STARTING '1/1/1992' ENDING '12/31/1993' EVERY 1 MONTH);

This creates 24 ranges, one for each month in 1992-1993. Attempting to insert a row with |_shipdate
outside of that range results in an error.

Example 2: Compare the preceding example to the following Informix syntax:

create table orders

1_orderkey decimal(10,0) not null,
1_partkey integer,

1_suppkey integer,

1_linenumber integer,

1_quantity decimal(12,2),
1_extendedprice decimal(12,2),
1_discount decimal(12,2),

1_tax decimal(12,2),

1_returnflag char(1),

1_linestatus char(1),

1_shipdate date,

1_commitdate date,

1_receiptdate date,

1_shipinstruct char(25),

1_shipmode char(10),

1_comment varchar(44)
) fragment by expression
1_shipdate < '1992-02-01' in 1ldbs1,
1_shipdate >= '1992-02-01' and 1_shipdate
1_shipdate >= '1992-03-01' and 1_shipdate
1_shipdate >= '1992-04-01' and 1_shipdate
1_shipdate >= '1992-05-01' and 1_shipdate
1_shipdate >= '1992-06-01' and 1_shipdate
1_shipdate >= '1992-07-01' and 1_shipdate
1_shipdate >= '1992-08-01' and 1_shipdate
1_shipdate >= '1992-09-01' and 1_shipdate
1_shipdate >= '1992-10-01' and 1_shipdate
1_shipdate >= '1992-11-01' and 1_shipdate
1_shipdate >= '1992-12-01' and 1_shipdate
1_shipdate >= '1993-01-01' and 1_shipdate
1_shipdate >= '1993-02-01' and 1_shipdate
1_shipdate >= '1993-03-01' and 1_shipdate
1_shipdate >= '1993-04-01' and 1_shipdate
1_shipdate >= '1993-05-01' and 1_shipdate
1_shipdate >= '1993-06-01' and 1_shipdate
1_shipdate >= '1993-07-01' and 1_shipdate
1_shipdate >= '1993-08-01' and 1_shipdate
1_shipdate >= '1993-09-01' and 1_shipdate
1_shipdate >= '1993-10-01' and 1_shipdate
1_shipdate >= '1993-11-01' and 1_shipdate
1_shipdate >= '1993-12-01' and 1_shipdate
1_shipdate >= '1994-01-01' in 1ldbs25;

'1992-03-01"' in 1ldbs2,
'1992-04-01"' in 1dbs3,
'1992-05-01"' in 1ldbs4,
'1992-06-01"' in 1ldbs5,
'1992-07-01"' in 1dbsé,
'1992-08-01"' in 1dbs7,
'1992-09-01"' in 1dbs8,
'1992-10-01"' in 1dbs9,
'1992-11-01' in 1dbs10,
'1992-12-01"' in 1ldbsi1,
'1993-01-01"' in 1dbsi2,
'1993-02-01"' in 1dbs13,
'1993-03-01"' in 1ldbsi4,
'1993-04-01"' in 1dbsi15,
'1993-05-01"' in 1dbsi16,
'1993-06-01"' in 1dbs17,
'1993-07-01"' in 1dbsi18,
'1993-08-01' in 1dbs19,
'1993-09-01"' in 1ldbs20,
'1993-10-01"' in 1dbs21,
'1993-11-01"' in 1dbs22,
'1993-12-01"' in 1dbs23,
'1994-01-01"' in 1ldbs24,

ANNNNNNANNNNNNNNNNANNNNNNANN

18 IBM Db2 V11.5: Partitioning and Clustering Guide

Notice that the Informix syntax provides an open ended range at the top and bottom to catch dates that
are not in the expected range. The Db2 syntax can be modified to match the Informix syntax by adding
ranges that make use of MINVALUE and MAXVALUE.

Example 3: The following example modifies Example 1 to mirror the Informix syntax::

CREATE TABLE orders
(

1_orderkey DECIMAL(10,0) NOT NULL,
1_partkey INTEGER,

1_suppkey INTEGER,

1 _linenumber INTEGER,

1_quantity DECIMAL(12,2),
1_extendedprice DECIMAL(12,2),

1 _discount DECIMAL(12,2),

1_tax DECIMAL(12,2),

1_returnflag CHAR(1),
1 _linestatus CHAR(1),
1_shipdate DATE,
1_commitdate DATE,
1_receiptdate DATE,
1_shipinstruct CHAR(25),
1_shipmode CHAR(10),
1_comment VARCHAR (44)
) PARTITION BY RANGE(1_shipdate)
(STARTING MINVALUE,
STARTING '1/1/1992' ENDING '12/31/1993' EVERY 1 MONTH,
ENDING MAXVALUE) ;

This technique allows any date to be inserted into the table.

Partition by expression using generated columns

Although Db2 database does not directly support partitioning by expression, partitioning on a generated
column is supported, making it possible to achieve the same result.

Consider the following usage guidelines before deciding whether to use this approach:

« The generated column is a real column that occupies physical disk space. Tables that make use of a
generated column can be slightly larger.

- Altering the generated column expression for the column on which a partitioned table is partitioned is
not supported. Attempting to do so will result in the message SQL0190. Adding a new data partition to a
table that uses generated columns in the manner described in the next section generally requires you to
alter the expression that defines the generated column. Altering the expression that defines a
generated column is not currently supported.

« There are limitations on when you can apply data partition elimination when a table uses generated
columns.

Examples

Example 1: The following uses the Informix syntax, where it is appropriate to use generated columns. In
this example, the column to be partitioned on holds Canadian provinces and territories. Because the list
of provinces is unlikely to change, the generated column expression is unlikely to change.

CREATE TABLE customer (
cust_id INT,
cust_prov CHAR(2))
FRAGMENT BY EXPRESSION
cust_prov = "AB" IN dbspace_ab
cust_prov = "BC" IN dbspace_bc
cust_prov = "MB" IN dbspace_mb

éﬂét_prov = "YT" IN dbspace_yt
REMAINDER IN dbspace_remainder;

Example 2: In this example, the Db2 table is partitioned using a generated column:

CREATE TABLE customer (
cust_id INT,

Chapter 1. Planning and design considerations 19

cust_prov CHAR(2),
cust_prov_gen GENERATED ALWAYS AS (CASE
WHEN cust_prov = '"AB' THEN 1
WHEN cust_prov = 'BC' THEN 2
WHEN cust_prov = 'MB' THEN 3
WHEN cust_prov = 'YT' THEN 13
ELSE 14 END))

IN tbspace_ab, tbspace_bc, tbspace_mb, tbspace_remainder

PARTITION BY RANGE (cust_prov_gen)
(STARTING 1 ENDING 14 EVERY 1);

Here the expressions within the case statement match the corresponding expressions in the FRAGMENT
BY EXPRESSION clause. The case statement maps each original expression to a number, which is stored
in the generated column (cust_prov_gen in this example). This column is a real column stored on disk, so
the table could occupy slightly more space than would be necessary if Db2 supported partition by

expression directly. This example uses the short form of the syntax. Therefore, the table spaces in which

to place the data partitions must be listed in the IN clause of the CREATE TABLE statement. Using the
long form of the syntax requires a separate IN clause for each data partition.

Note: This technique can be applied to any FRAGMENT BY EXPRESSION clause.

Table partitioning keys

A table partitioning key is an ordered set of one or more columns in a table. The values in the table
partitioning key columns are used to determine in which data partition each table row belongs.

To define the table partitioning key on a table use the CREATE TABLE statement with the PARTITION BY

clause.

Choosing an effective table partitioning key column is essential to taking full advantage of the benefits of
table partitioning. The following guidelines can help you to choose the most effective table partitioning

key columns for your partitioned table.

- Define range granularity to match data roll-out. It is most common to use week, month, or quarter.

- Define ranges to match the data roll-in size. It is most common to partition data on a date or time

column.

- Partition on a column that provides advantages in partition elimination.

Supported data types

Table 5 on page 20 shows the data types (including synonyms) that are supported for use as a table

partitioning key column:

Table 5. Supported data types

Data type column 1

Data type column 2

SMALLINT INTEGER

INT BIGINT

FLOAT REAL

DOUBLE DECIMAL

DEC DECFLOAT

NUMERIC NUM

CHARACTER CHAR

VARCHAR DATE

TIME GRAPHIC
VARGRAPHIC CHARACTER VARYING

20 IBM Db2 V11.5: Partitioning and Clustering Guide

Table 5. Supported data types (continued)

Data type column 1

Data type column 2

TIMESTAMP

CHAR VARYING

CHARACTER FOR BIT DATA

CHAR FOR BIT DATA

VARCHAR FOR BIT DATA

CHARACTER VARYING FOR BIT DATA

CHAR VARYING FOR BIT DATA

User defined types (distinct)

Unsupported data types

The following data types can occur in a partitioned table, but are not supported for use as a table
partitioning key column:

« User defined types (structured)
« LONG VARCHAR

« LONG VARCHAR FOR BIT DATA
- BLOB

« BINARY LARGE OBJECT

- CLOB

« CHARACTER LARGE OBJECT

- DBCLOB

« LONG VARGRAPHIC

- REF

- Varying length string for C

« Varying length string for Pascal
« XML

If you choose to automatically generate data partitions using the EVERY clause of the CREATE TABLE
statement, only one column can be used as the table partitioning key. If you choose to manually generate
data partitions by specifying each range in the PARTITION BY clause of the CREATE TABLE statement,
multiple columns can be used as the table partitioning key, as shown in the following example:

CREATE TABLE sales (year INT, month INT)
PARTITION BY RANGE(year, month)
(STARTING FROM (2001, 1) ENDING (2001,3) IN tbspil,
ENDING (2001,6) IN thsp2, ENDING (2001,9)
IN tbsp3, ENDING (2001,12) IN tbsp4,
ENDING (2002,3) IN tbsp5, ENDING (2002,6)
IN tbsp6, ENDING (2002,9) IN tbsp7,
ENDING (2002,12) IN tbsp8)

This results in eight data partitions, one for each quarter in year 2001 and 2002.
Note:

1. When multiple columns are used as the table partitioning key, they are treated as a composite key
(which are similar to composite keys in an index), in the sense that trailing columns are dependent on
the leading columns. Each starting or ending value (all of the columns, together) must be specified in
512 characters or less. This limit corresponds to the size of the LOWVALUE and HIGHVALUE columns
of the SYSCAT.DATAPARTITIONS catalog view. A starting or ending value specified with more than
512 characters will result in error SQLO636N, reason code 9.

2. Table partitioning is multicolumn not multidimension. In table partitioning, all columns used are part
of a single dimension.

Chapter 1. Planning and design considerations 21

Generated columns

Generated columns can be used as table partitioning keys. This example creates a table with twelve data
partitions, one for each month. All rows for January of any year will be placed in the first data partition,
rows for February in the second, and so on.

Example 1

CREATE TABLE monthly_sales (sales_date date,
sales_month int GENERATED ALWAYS AS (month(sales_date)))
PARTITION BY RANGE (sales_month)
(STARTING FROM 1 ENDING AT 12 EVERY 1);

Note:

1. You cannot alter or drop the expression of a generated column that is used in the table partitioning
key. Adding a generated column expression on a column that is used in the table partitioning key is not
permitted. Attempting to add, drop or alter a generated column expression for a column used in the
table partitioning key results in error (SQLO270N rc=52).

2. Data partition elimination will not be used for range predicates if the generated column is not
monotonic, or the optimizer can not detect that it is monotonic. In the presence of non-monotonic

expressions, data partition elimination can only take place for equality or IN predicates. For a detailed
discussion and examples of monotonicity see “Considerations when creating MDC or ITC tables” on

page 39.

Load considerations for partitioned tables

All of the existing load features are supported when the target table is partitioned with the exception of
the following general restrictions:

« Consistency points are not supported when the number of partitioning agents is greater than one.

« Loading data into a subset of data partitions while the remaining data partitions remain fully online is
not supported.

« The exception table used by a load operation cannot be partitioned.
- An exception table cannot be specified if the target table contains an XML column.

« A unique index cannot be rebuilt when the load utility is running in insert mode or restart mode, and the
load target table has any detached dependents.

- Similar to loading MDC tables, exact ordering of input data records is not preserved when loading
partitioned tables. Ordering is only maintained within the cell or data partition.

« Load operations utilizing multiple formatters on each database partition only preserve approximate
ordering of input records. Running a single formatter on each database partition, groups the input
records by cell or table partitioning key. To run a single formatter on each database partition, explicitly
request CPU_PARALLELISM of 1.

General load behavior

The load utility inserts data records into the correct data partition. There is no requirement to use an
external utility, such as a splitter, to partition the input data before loading.

The load utility does not access any detached or attached data partitions. Data is inserted into visible
data partitions only. Visible data partitions are neither attached nor detached. In addition, a load
replace operation does not truncate detached or attached data partitions. Since the load utility
acquires locks on the catalog system tables, the load utility waits for any uncommitted ALTER TABLE
transactions. Such transactions acquire an exclusive lock on the relevant rows in the catalog tables,
and the exclusive lock must terminate before the load operation can proceed. This means that there
can be no uncommitted ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION transactions while
load operation is running. Any input source records destined for an attached or detached data
partition are rejected, and can be retrieved from the exception table if one is specified. An
informational message is written to the message file to indicate some of the target table data
partitions were in an attached or detached state. Locks on the relevant catalog table rows
corresponding to the target table prevent users from changing the partitioning of the target table by

22 IBM Db2 V11.5: Partitioning and Clustering Guide

issuing any ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION operations while the load utility is
running.

Handling of invalid rows

When the load utility encounters a record that does not belong to any of the visible data partitions the
record is rejected and the load utility continues processing. The number of records rejected because
of the range constraint violation is not explicitly displayed, but is included in the overall number of
rejected records. Rejecting a record because of the range violation does not increase the number of
row warnings. A single message (SQL0O327N) is written to the load utility message file indicating that
range violations are found, but no per-record messages are logged. In addition to all columns of the
target table, the exception table includes columns describing the type of violation that had occurred
for a particular row. Rows containing invalid data, including data that cannot be partitioned, are
written to the dump file.

Because exception table inserts are expensive, you can control which constraint violations are
inserted into the exception table. For instance, the default behavior of the load utility is to insert rows
that were rejected because of a range constraint or unique constraint violation, but were otherwise
valid, into the exception table. You can turn off this behavior by specifying, respectively,
NORANGEEXC or NOUNIQUEEXC with the FOR EXCEPTION clause. If you specify that these constraint
violations should not be inserted into the exception table, or you do not specify an exception table,
information about rows violating the range constraint or unique constraint is lost.

History file

If the target table is partitioned, the corresponding history file entry does not include a list of the table
spaces spanned by the target table. A different operation granularity identifier ('R' instead of 'T")
indicates that a load operation ran against a partitioned table.

Terminating a load operation

Terminating a load replace completely truncates all visible data partitions, terminating a load insert
truncates all visible data partitions to their lengths before the load. Indexes are invalidated during a
termination of an ALLOW READ ACCESS load operation that failed in the load copy phase. Indexes are
also invalidated when terminating an ALLOW NO ACCESS load operation that touched the index (It is
invalidated because the indexing mode is rebuild, or a key was inserted during incremental
maintenance leaving the index in an inconsistent state). Loading data into multiple targets does not
have any effect on load recovery operations except for the inability to restart the load operation from
a consistency point taken during the load phase In this case, the SAVECOUNT load option is ignored if
the target table is partitioned. This behavior is consistent with loading data into a MDC target table.

Generated columns

If a generated column is in any of the partitioning, dimension, or distribution keys, the
generatedoverride file type modifier is ignored and the load utility generates values as if the
generatedignore file type modifier is specified. Loading an incorrect generated column value in this
case can place the record in the wrong physical location, such as the wrong data partition, MDC block
or database partition. For example, once a record is on a wrong data partition, set integrity has to
move it to a different physical location, which cannot be accomplished during online set integrity
operations.

Data availability

The current ALLOW READ ACCESS load algorithm extends to partitioned tables. An ALLOW READ
ACCESS load operation allows concurrent readers to access the whole table, including both loading
and non-loading data partitions.

Important: The ALLOW READ ACCESS parameter is deprecated and might be removed in a future
release. For more details, see ALLOW READ ACCESS parameter in the LOAD command is deprecated.

The ingest utility also supports partitioned tables and is better suited to allow data concurrency and
availability than the LOAD command with the ALLOW READ ACCESS parameter. It can move large
amounts of data from files and pipes without locking the target table. In addition, data becomes
accessible as soon as it is committed based on elapsed time or number of rows.

Chapter 1. Planning and design considerations 23

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060625.html

Data partition states

After a successful load, visible data partitions might change to either or both Set Integrity Pending or
Read Access Only table state, under certain conditions. Data partitions might be placed in these
states if there are constraints on the table which the load operation cannot maintain. Such constraints
might include check constraints and detached materialized query tables. A failed load operation
leaves all visible data partitions in the Load Pending table state.

Error isolation

Error isolation at the data partition level is not supported. Isolating the errors means continuing a load
on data partitions that did not run into an error and stopping on data partitions that did run into an
error. Errors can be isolated between different database partitions, but the load utility cannot commit
transactions on a subset of visible data partitions and roll back the remaining visible data partitions.

Other considerations

- Incremental indexing is not supported if any of the indexes are marked invalid. An index is
considered invalid if it requires a rebuild or if detached dependents require validation with the SET
INTEGRITY statement.

« Loading into tables partitioned using any combination of partitioned by range, distributed by hash,
or organized by dimension algorithms is also supported.

« For log records which include the list of object and table space IDs affected by the load, the size of
these log records (LOAD START and COMMIT (PENDING LIST)) could grow considerably and hence
reduce the amount of active log space available to other applications.

- When a table is both partitioned and distributed, a partitioned database load might not affect all
database partitions. Only the objects on the output database partitions are changed.

- During a load operation, memory consumption for partitioned tables increases with the number of
tables. Note, that the total increase is not linear as only a small percentage of the overall memory
requirement is proportional to the number of data partitions.

Replicated materialized query tables

A materialized query table is defined by a query that also determines the data in the table. Materialized
query tables can be used to improve the performance of queries. If the database manager determines
that a portion of a query can be resolved by using a materialized query table, the query might be rewritten
to use the materialized query table.

In a partitioned database environment, you can replicate materialized query tables and use them to
improve query performance. A replicated materialized query table is based on a table that might have
been created in a single-partition database partition group, but that you want replicated across all of the
database partitions in another database partition group. To create the replicated materialized query table,
use the CREATE TABLE statement with the REPLICATED option.

By using replicated materialized query tables, you can obtain collocation between tables that are not
typically collocated. Replicated materialized query tables are particularly useful for joins in which you
have a large fact table and small dimension tables. To minimize the extra storage required and the effect
of having to update every replica, tables that are to be replicated should be small and updated
infrequently.

Note: You should also consider replicating larger tables that are updated infrequently: the onetime cost
of replication is offset by the performance benefits that can be obtained through collocation.

By specifying a suitable predicate in the subselect clause that is used to define the replicated table, you
can replicate selected columns, selected rows, or both.

DELETE or UPDATE statements that contain non-deterministic operations are not supported with
replicated materialized query tables.

24 IBM Db2 V11.5: Partitioning and Clustering Guide

Table spaces in database partition groups
By placing a table space in a multiple-partition database partition group, all of the tables within the table
space are divided or partitioned across each database partition in the database partition group.

The table space is created into a database partition group. Once in a database partition group, the table
space must remain there; it cannot be changed to another database partition group. The CREATE
TABLESPACE statement is used to associate a table space with a database partition group.

Table partitioning and multidimensional clustering tables

In a table that is both multidimensional clustered and data partitioned, columns can be used both in the
table partitioning range-partition-spec and in the multidimensional clustering (MDC) key. A table that is
both multidimensional clustered and partitioned can achieve a finer granularity of data partition and block
elimination than could be achieved by either functionality alone.

There are also many applications where it is useful to specify different columns for the MDC key than
those on which the table is partitioned. It should be noted that table partitioning is multicolumn, while
MDC is multi-dimension.

Characteristics of a mainstream Db2 data warehouse

The following recommendations were focused on typical, mainstream warehouses that were new for Db2
V9.1. The following characteristics are assumed:

« The database runs on multiple machines or multiple AIX® logical partitions.

« Partitioned database environments are used (tables are created using the DISTRIBUTE BY HASH
clause).

« There are four to fifty data partitions.

« The table for which MDC and table partitioning is being considered is a major fact table.
« The table has 100,000,000 to 100,000,000,000 rows.

- New data is loaded at various time frames: nightly, weekly, monthly.

« Daily ingest volume is 10 thousand to 10 million records.

« Data volumes vary: The biggest month is 5X the size of the smallest month. Likewise, the biggest
dimensions (product line, region) have a 5X size range.

« 1to 5 years of detailed data is retained.
« Expired data is rolled out monthly or quarterly.

« Tables use a wide range of query types. However, the workload is mostly analytical queries with the
following characteristics, relative to OLTP workloads:

— larger results sets with up to 2 million rows
— most or all queries are hitting views, not base tables
» SQL clauses selecting data by ranges (BETWEEN clause), items in lists, and so on.

Characteristics of a mainstream Db2 V9.1 data warehouse fact table

A typical warehouse fact table, might use the following design:

« Create data partitions on the Month column.

« Define a data partition for each period you roll-out, for example, 1 month, 3 months.

» Create MDC dimensions on Day and on 1 to 4 additional dimensions. Typical dimensions are: product
line and region.

« All data partitions and MDC clusters are spread across all database partitions.

MDC and table partitioning provide overlapping sets of benefits. The following table lists potential needs
in your organization and identifies a recommended organization scheme based on the characteristics
identified previously.

Chapter 1. Planning and design considerations 25

Table 6. Using table partitioning with MDC tables

Issue

Recommended scheme

Recommendation

Data availability during roll-out

Table partitioning

Use the DETACH PARTITION
clause to roll out large amounts
of data with minimal disruption.

Query performance

Table partitioning and MDC

MDC is best for querying multiple
dimensions. Table partitioning
helps through data partition
elimination.

Minimal reorganization

MDC

MDC maintains clustering, which
reduces the need to reorganize.

Rollout a month or more of data
during a traditional offline
window

Table partitioning

Data partitioning addresses this
need fully. MDC adds nothing and
would be less suitable on its own.

Rollout a month or more of data
during a micro-offline window
(less than 1 minute)

Table partitioning

Data partitioning addresses this
need fully. MDC adds nothing and
would be less suitable on its own.

Rollout a month or more of data
while keeping the table fully
available for business users
submitting queries without any
loss of service.

MDC

MDC only addresses this need
somewhat. Table partitioning
would not be suitable due to the
short period the table goes
offline.

Load data daily (LOAD or INGEST
command)

Table partitioning and MDC

MDC provides most of the benefit
here. Table partitioning provides
incremental benefits.

Load data "continually" (LOAD
command with ALLOW READ
ACCESS or INGEST command)

Table partitioning and MDC

MDC provides most of the benefit
here. Table partitioning provides
incremental benefits.

Query execution performance for
“traditional BI" queries

Table partitioning and MDC

MDC is especially good for
querying cubes/multiple
dimensions. Table partitioning
helps via partition elimination.

Minimize reorganization pain, by
avoiding the need for
reorganization or reducing the
pain associated with performing
the task

MDC

MDC maintains clustering which
reduces the need to reorg. If
MDC is used, data partitioning
does not provide incremental
benefits. However if MDC is not
used, table partitioning helps
reduce the need for reorg by
maintaining some course grain
clustering at the partition level.

Example 1:

Consider a table with key columns YearAndMonth and Province. A reasonable approach to planning this
table might be to partition by date with 2 months per data partition. In addition, you might also organize
by Province, so that all rows for a particular province within any two month date range are clustered

together, as shown in Figure 6 on page 27.

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)

26 IBM Db2 V11.5: Partitioning and Clustering Guide

(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (Province);

Table orders
MDC block (Province)
AB 1 BC | ON | QB
1] [32]) (e (4] [11)
)
0001
9802
= Cs 1[4 | 2] [C31] [18]
€ (702 (5] [3=]
g
i
S 3] i
5 ()
g (30 (%]
9904
(34 | [50] [24
(=)
53
Legend
[] =block 1

Figure 6. A table partitioned by YearAndMonth and organized by Province

Example 2:

Finer granularity can be achieved by adding YearAndMonth to the ORGANIZE BY DIMENSIONS clause, as
shown in Figure 7 on page 28.

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)

(STARTING 9901 ENDING 9904 EVERY 2)

ORGANIZE BY (YearAndMonth, Province);

Chapter 1. Planning and design considerations 27

Table orders

MDC block (Province)
AB T BC | ON | QB
(1])[12]) (8 |[4] [
R i)
£ [5 1] [2][3] [18]
E e (10 () (O5) ()
3
g
$ (3]]
E 22
g (30 (36
(&) (8] (=)
0008 (25
(5
Legend
[T =block 1

Figure 7. A table partitioned by YearAndMonth and organized by Province and YearAndMonth

In cases where the partitioning is such that there is only a single value in each range, nothing is gained by
including the table partitioning column in the MDC key.

Considerations

« Compared to a basic table, both MDC tables and partitioned tables require more storage. These storage
needs are additive but are considered reasonable given the benefits.

- If you choose not to combine table partitioning and MDC functionality in your partitioned database
environment, table partitioning is best in cases where you can confidently predict the data distribution,
which is generally the case for the types of systems discussed here. Otherwise, MDC should be
considered.

« For a data-partitioned MDC table created with Db2 Version 9.7 Fix Pack 1 or later releases, the MDC
block indexes on the table are partitioned. For a data-partitioned MDC table created with Db2 V9.7 or
earlier releases, the MDC block indexes on the table are nonpartitioned.

28 IBM Db2 V11.5: Partitioning and Clustering Guide

Table partitioning in a Db2 pureScale environment
You can use table partitioning in Db2 pureScale to divide large table objects between multiple partitions
for better performance.

You can use table partitioning in Db2 pureScale tables; this includes tables that use the PARTITION BY
RANGE clause. In addition, the commands associated with table partitioning can be used in a Db2
pureScale environment.

This means, for example, that all of the following operations are supported:

« The roll-in and roll-out partition operations available through the ALTER TABLE statement
« The PARTITIONED and NOT PARTITIONED clauses for the CREATE INDEX statement

« For partitioned indexes, the ON DATA PARTITION clause of the REORG TABLE and REORG INDEXES ALL
statements

In addition, the MON_GET_PAGE_ACCESS_INFO table function has been updated to work with
partitioned tables. All existing monitoring functions that operate on data partitions will work with Db2
pureScale tables.

If you are already using the Db2 pureScale Feature, you can use table partitioning to help resolve page
contention issues. By spreading contention out over a larger range, you can reduce data page contention;
similarly, you can reduce contention with index pages by using partitioned indexes.

Note: From a Db2 pureScale performance perspective, the amount of memory used depends on the
number of table partitions and the number of indexes. The memory resource used for the partitioning on
the member comes from the dbheap configuration parameter. On the CF, the memory resource is defined
by the c£_sca_sz configuration parameter.

Range-clustered tables

A range-clustered table (RCT) has a table layout scheme in which each record in the table has a
predetermined record ID (RID). The RID is an internal identifier that is used to locate a record in the table.

An algorithm is used to associate a record key value with the location of a specific table row. This
approach provides exceptionally fast access to specific table rows. The algorithm does not use hashing,
because hashing does not preserve key-value order. Preserving this order eliminates the need to
reorganize the table data over time.

Each record key value in the table must be:

« Unique

Not null

An integer (SMALLINT, INTEGER, or BIGINT)
= Monotonically increasing

« Within a predetermined set of ranges based on each column in the key. (If necessary, use the ALLOW
OVERFLOW option on the CREATE TABLE statement to allow rows with key values that are outside of
the defined range of values.)

In addition to direct access to specific table rows, there are other advantages to using range-clustered
tables.

 Less maintenance is required. A secondary structure, such as a B+ tree index, which would need to be
updated after every insert, update, or delete operation, does not exist.

« Less logging is required for RCTs, when compared to similarly-sized regular tables with B+ tree indexes.

« Less buffer pool memory is required. There is no additional memory required to store a secondary
structure, such as a B+ tree index.

Space for an RCT is pre-allocated and reserved for use by the table even when records do not yet exist.
Consequently, range-clustered tables have no need for free space control records (FSCR). At table
creation time, there are no records in the table; however, the entire range of pages is pre-allocated.

Chapter 1. Planning and design considerations 29

Preallocation is based on the record size and the maximum number of records to be stored. If a variable-
length field (such as VARCHAR) is defined, the maximum length of the field is used, and the overall record
size is of fixed length. This can result in less than optimal use of space. If key values are sparse, the
unused space has a negative impact on range scan performance. Range scans must visit all possible rows
within a range, even rows that do not yet contain data.

If a schema modification on a range-clustered table is required, the table must be recreated with a new
schema name and then populated with the data from the old table. For example, if a table's ranges need
to be altered, create a table with new ranges and populate it with data from the old table.

If an RCT allows overflow records, and a new record has a key value that falls outside of the defined range
of values, the record is placed in an overflow area, which is dynamically allocated. As more records are
added to this overflow area, operations against the table that involve the overflow area require more
processing time. The larger the overflow area, the more time is required to access it. If this becomes a
problem, consider reducing the size of the overflow area by exporting the data to a new RCT with wider
ranges.

Restrictions on range-clustered tables

There are contexts in which range-clustered tables cannot be used, and there are certain utilities that
cannot operate on range-clustered tables.

The following restrictions apply to range-clustered tables:

« Range-clustered tables cannot be specified in a Db2 pureScale environment (SQLSTATE 42997).
- Partitioned tables cannot be range-clustered tables.

« Declared temporary tables and created temporary tables cannot be range-clustered tables.

« Automatic summary tables (AST) cannot be range-clustered tables.

- The load utility is not supported. Data can be inserted into a range-clustered table through the import
utility or through a parallel insert application.

- The REORG utility is not supported. Range-clustered tables that are defined with the DISALLOW
OVERFLOW option do not need to be reorganized. Range-clustered tables that are defined with the
ALLOW OVERFLOW option cannot have the data in this overflow region reorganized.

« The DISALLOW OVERFLOW clause on the CREATE TABLE statement cannot be specified if the table is a
range-clustered materialized query table.

« The design advisor will not recommend range-clustered tables.

« Multidimensional clustering and clustering indexes are incompatible with range-clustered tables.
« Value and default compression are not supported.

- Reverse scans on range-clustered tables are not supported.

« The REPLACE parameter on the IMPORT command is not supported.

« The WITH EMPTY TABLE option on the ALTER TABLE...ACTIVATE NOT LOGGED INITIALLY statement is
not supported.

Multi-dimensional clustered (MDC) tables

Multidimensional clustering tables

Multidimensional clustering (MDC) provides an elegant method for clustering data in tables along multiple
dimensions in a flexible, continuous, and automatic way. MDC can significantly improve query
performance.

In addition, MDC can significantly reduce the overhead of data maintenance, such as reorganization and
index maintenance operations during insert, update, and delete operations. MDC is primarily intended for
data warehousing and large database environments, but it can also be used in online transaction
processing (OLTP) environments.

30 IBM Db2 V11.5: Partitioning and Clustering Guide

Related information
Best practices: Managing data growth

Comparison of regular and MDC tables

Regular tables have indexes that are record-based. Any clustering of the indexes is restricted to a single
dimension. Prior to Version 8, the database manager supported only single-dimensional clustering of
data, through clustering indexes. Using a clustering index, the database manager attempts to maintain
the physical order of data on pages in the key order of the index when records are inserted and updated in
the table.

Clustering indexes greatly improve the performance of range queries that have predicates containing the
key (or keys) of the clustering index. Performance is improved with a good clustering index because only a
portion of the table needs to be accessed, and more efficient prefetching can be performed.

Data clustering using a clustering index has some drawbacks, however. First, because space is filled up
on data pages over time, clustering is not guaranteed. An insert operation will attempt to add a record to a
page nearby to those having the same or similar clustering key values, but if no space can be found in the
ideal location, it will be inserted elsewhere in the table. Therefore, periodic table reorganizations may be
necessary to re-cluster the table and to set up pages with additional free space to accommodate future
clustered insert requests.

Second, only one index can be designated as the "clustering" index, and all other indexes will be
unclustered, because the data can only be physically clustered along one dimension. This limitation is
related to the fact that the clustering index is record-based, as all indexes have been prior to Version 8.1.

Third, because record-based indexes contain a pointer for every single record in the table, they can be
very large in size.

Clustering index

Clustaring
Region index
- - —
- \ N
- / \
T

Table

Year Unclustered
index

Figure 8. A regular table with a clustering index

The table in Figure 8 on page 31 has two record-based indexes defined on it:

« Aclustering index on "Region"

« Another index on "Year"
The "Region" index is a clustering index which means that as keys are scanned in the index, the
corresponding records should be found for the most part on the same or neighboring pages in the table.

In contrast, the "Year" index is unclustered which means that as keys are scanned in that index, the
corresponding records will likely be found on random pages throughout the table. Scans on the clustering

Chapter 1. Planning and design considerations 31

https://ibm.biz/Bdx2Gq

index will exhibit better I/O performance and will benefit more from sequential prefetching, the more
clustered the data is to that index.

MDC introduces indexes that are block-based. "Block indexes" point to blocks or groups of records
instead of to individual records. By physically organizing data in an MDC table into blocks according to
clustering values, and then accessing these blocks using block indexes, MDC is able not only to address
all of the drawbacks of clustering indexes, but to provide significant additional performance benefits.

First, MDC enables a table to be physically clustered on more than one key, or dimension, simultaneously.
With MDC, the benefits of single-dimensional clustering are therefore extended to multiple dimensions, or
clustering keys. Query performance is improved where there is clustering of one or more specified
dimensions of a table. Not only will these queries access only those pages having records with the correct
dimension values, these qualifying pages will be grouped into blocks, or extents.

Second, although a table with a clustering index can become unclustered over time, in most cases an
MDC table is able to maintain and guarantee its clustering over all dimensions automatically and
continuously. This eliminates the need to frequently reorganize MDC tables to restore the physical order
of the data. While record order within blocks is always maintained, the physical ordering of blocks (that is,
from one block to another, in a block index scan) is not maintained on inserts (or even on the initial load,
in some cases).

Third, in MDC the clustering indexes are block-based. These indexes are drastically smaller than regular
record-based indexes, so take up much less disk space and are faster to scan.

Choosing MDC table dimensions

After you have decided to work with multidimensional clustering tables, the dimensions that you choose
will depend not only on the type of queries that will use the tables and benefit from block-level clustering,
but even more importantly on the amount and distribution of your actual data.

Queries that will benefit from MDC

The first consideration when choosing clustering dimensions for your table is the determination of which
queries will benefit from clustering at a block level. Typically, there will be several candidates when
choosing dimensions based on the queries that make up the work to be done on the data. The ranking of
these candidates is important. Columns that are involved in equality or range predicate queries, and
especially columns with low cardinalities, show the greatest benefit from clustering dimensions. Consider
creating dimensions for foreign keys in an MDC fact table involved in star joins with dimension tables.
Keep in mind the performance benefits of automatic and continuous clustering on more than one
dimension, and of clustering at the extent or block level.

There are many queries that can take advantage of multidimensional clustering. Examples of such queries
follow. In some of these examples, assume that there is an MDC table t1 with dimensions c1, c2, and c3.
In the other examples, assume that there is an MDC table mdctable with dimensions color and nation.

Example 1:

SELECT FROM t1 WHERE c3 < 5000

This query involves a range predicate on a single dimension, so it can be internally rewritten to access the
table using the dimension block index on ¢3. The index is scanned for block identifiers (BIDs) of keys
having values less than 5000, and a mini-relational scan is applied to the resulting set of blocks to
retrieve the actual records.

Example 2:

SELECT FROM t1 WHERE c2 IN (1,2037)

This query involves an IN predicate on a single dimension, and can trigger block index based scans. This
guery can be internally rewritten to access the table using the dimension block index on c2. The index is
scanned for BIDs of keys having values of 1 and 2037, and a mini-relational scan is applied to the
resulting set of blocks to retrieve the actual records.

32 IBM Db2 V11.5: Partitioning and Clustering Guide

Example 3:

SELECT * FROM MDCTABLE WHERE COLOR='BLUE' AND NATION='USA'

Key from the dimension block index on Colour

Blue ‘ 4,0 ‘ 12,0 ‘ 48,0 100,0 ‘ 21E,D|

52,0 | 78,0

+ (AND)
Key from the dimension block index on Nation

100,0 | 1120 ‘ 216,0 ‘ 2760 |

UsA ‘ 12,0 ‘ 76,0 ‘ 92,0

Resulting block ID {BID) list of blocks to scan

12.0 ‘ 76,0 100.0‘ 2160 |

Figure 9. A query request that uses a logical AND operation with two block indexes

To carry out this query request, the following is done (and is shown in Figure 9 on page 33):

« A dimension block index lookup is done: one for the Blue slice and another for the USA slice.

- Ablock logical AND operation is carried out to determine the intersection of the two slices. That is, the
logical AND operation determines only those blocks that are found in both slices.

- A mini-relation scan of the resulting blocks in the table is carried out.

Example 4:

SELECT ... FROM t1
WHERE c2 > 100 AND c1 = '16/03/1999' AND c3 > 1000 AND c3 < 5000

This query involves range predicates on c2 and ¢3 and an equality predicate on c1, along with a logical
AND operation. This can be internally rewritten to access the table on each of the dimension block
indexes:

« A scan of the c2 block index is done to find BIDs of keys having values greater than 100

Chapter 1. Planning and design considerations 33

« A scan of the c3 block index is done to find BIDs of keys having values between 1000 and 5000
- A scan of the c1 block index is done to find BIDs of keys having the value '16/03/1999".

A logical AND operation is then done on the resulting BIDs from each block scan, to find their intersection,
and a mini-relational scan is applied to the resulting set of blocks to find the actual records.

Example 5:

SELECT * FROM MDCTABLE WHERE COLOR='BLUE' OR NATION='USA'

To carry out this query request, the following is done:

« A dimension block index lookup is done: one for each slice.
- Alogical OR operation is done to find the union of the two slices.
« A mini-relation scan of the resulting blocks in the table is carried out.

Example 6:
SELECT FROM t1 WHERE c1 < 5000 OR c2 IN (1,2,3)

This query involves a range predicate on the c1 dimension, an IN predicate on the c2 dimension, and a
logical OR operation. This can be internally rewritten to access the table on the dimension block indexes
c1 and c2. A scan of the c1 dimension block index is done to find values less than 5000 and another scan
of the c2 dimension block index is done to find values 1, 2, and 3. A logical OR operation is done on the
resulting BIDs from each block index scan, then a mini-relational scan is applied to the resulting set of
blocks to find the actual records.

Example 7:
SELECT FROM t1 WHERE c1 = 15 AND c4 < 12

This query involves an equality predicate on the c1 dimension and another range predicate on a column
that is not a dimension, along with a logical AND operation. This can be internally rewritten to access the
dimension block index on c1, to get the list of blocks from the slice of the table having value 15 for c1. If
there is a RID index on c4, an index scan can be done to retrieve the RIDs of records having c4 less than
12, and then the resulting list of blocks undergoes a logical AND operation with this list of records. This
intersection eliminates RIDs not found in the blocks having c1 of 15, and only those listed RIDs found in
the blocks that qualify are retrieved from the table.

If there is no RID index on c4, then the block index can be scanned for the list of qualifying blocks, and
during the mini-relational scan of each block, the predicate c4 < 12 can be applied to each record found.

Example 8:

Given a scenario where there are dimensions for color, year, nation and a row ID (RID) index on the part
number, the following query is possible.

SELECT % FROM MDCTABLE WHERE COLOR='BLUE' AND PARTNO < 1000

34 IBM Db2 V11.5: Partitioning and Clustering Guide

Key from the dimension block index on Colour

Blue 4,0 12,0 ‘ 480 ‘ 52,0 | 76,0 | 1000 21B,U|
+ (AND)
Row IDs (RID) from RID index on Partno
6.4 B2 501 773 | 107.0 | 1150 | 2195 E?&.Ql
-
LA

Resulting row IDs to fetch

64 501 77d | 219,56

Figure 10. A query request that uses a logical AND operation on a block index and a row ID (RID) index

To carry out this query request, the following is done (and is shown in Figure 10 on page 35):

« A dimension block index lookup and a RID index lookup are done.

« Alogical AND operation is used with the blocks and RIDs to determine the intersection of the slice and
those rows meeting the predicate condition.

« Theresult is only those RIDs that also belong to the qualifying blocks.

Example 9:

SELECT * FROM MDCTABLE WHERE COLOR='BLUE' OR PARTNO < 1000

Chapter 1. Planning and design considerations 35

Key from the dimension block index on Colour

Blue ‘ 4,0 ‘ 12,0 ‘ 48,0 ‘ 52,0 | 76,0 | 100,0 ‘ 21a,u|
+ (OR)
Row IDs (RID) from RID index on Partno
6.4 ‘ 812 | 501 ‘ 773 ‘ 107,0 115,:.1‘ 219,5 m.al
-
LIR
Resulting blocks and RIDs to fetch
40 | 120 480 | 520 | 78,0 | 1000 216, |

812 1070 1150 | 2768

Figure 11. How block index and row ID using a logical OR operation works

To carry out this query request, the following is done (and is shown in Figure 11 on page 36):

« A dimension block index lookup and a RID index lookup are done.

« Alogical OR operation is used with the blocks and RIDs to determine the union of the slice and those
rows meeting the predicate condition.

- The result is all of the rows in the qualifying blocks, plus additional RIDs that fall outside the qualifying
blocks that meet the predicate condition. A mini-relational scan of each of the blocks is performed to
retrieve their records, and the additional records outside these blocks are retrieved individually.

Example 10:
SELECT ... FROM t1 WHERE c1 < 5 OR c4 = 100

This query involves a range predicate on dimension ¢, an equality predicate on a non-dimension column
c4, and a logical OR operation. If there is a RID index on the c4 column, this might be internally rewritten
to do a logical OR operation using the dimension block index on c1 and the RID index on c4. If there is no

36 IBM Db2 V11.5: Partitioning and Clustering Guide

index on c4, a table scan might be chosen instead, because all records must be checked. The logical OR
operation uses a block index scan on c1 for values less than 4, and a RID index scan on c4 for values of
100. A mini-relational scan is performed on each block that qualifies, because all records within those
blocks will qualify, and any additional RIDs for records outside of those blocks are retrieved as well.

Example 11:

SELECT FROM t1,d1,d2,d3
WHERE t1.c1l = d1.cl1l and dl.region = 'NY'
AND t2.c2 = d2.c3 and d2.year='1994'
AND t3.c3 = d3.c3 and d3.product="'basketball'

This query involves a star join. In this example, t1 is the fact table and it has foreign keys c1, c¢2, and c3,
corresponding to the primary keys of d1, d2, and d3, the dimension tables. The dimension tables do not
need to be MDC tables. Region, year, and product are columns of the dimension tables that can be
indexed using regular or block indexes (if the dimension tables are MDC tables). When accessing the fact
table on c1, c2, and c3 values, block index scans of the dimension block indexes on these columns can be
done, followed by a logical AND operation using the resulting BIDs. When there is a list of blocks, a mini-
relational scan can be done on each block to get the records.

Density of cells

The choices made for the appropriate dimensions and for the extent size are of critical importance to
MDC design. These factors determine the table's expected cell density. They are important because an
extent is allocated for every existing cell, regardless of the number of records in the cell. The right choices
will take advantage of block-based indexing and multidimensional clustering, resulting in performance
gains. The goal is to have densely-filled blocks to get the most benefit from multidimensional clustering,
and to get optimal space utilization.

Thus, a very important consideration when designing a multidimensional table is the expected density of
cells in the table, based on present and anticipated data. You can choose a set of dimensions, based on
query performance, that cause the potential number of cells in the table to be very large, based on the
number of possible values for each of the dimensions. The number of possible cells in the table is equal to
the Cartesian product of the cardinalities of each of the dimensions. For example, if you cluster the table
on dimensions Day, Region and Product and the data covers 5 years, you might have 1821 days * 12
regions * 5 products = 109 260 different possible cells in the table. Any cell that contains only a
few records still requires an entire block of pages to store its records. If the block size is large, this table
might end up being much larger than it needs to be.

There are several design factors that can contribute to optimal cell density:
« Varying the number of dimensions.

- Varying the granularity of one or more dimensions.

« Varying the block (extent) size and page size of the table space.

Carry out the following steps to achieve the best design possible:

1. Identify candidate dimensions.

Determine which queries will benefit from block-level clustering. Examine the potential workload for
columns which have some or all of the following characteristics:

- Range and equality of any IN-list predicates

« Roll-in or roll-out of data

« Group-by and order-by clauses

« Join clauses (especially in star schema environments).
2. Estimate the number of cells.

Identify how many potential cells are possible in a table organized along a set of candidate
dimensions. Determine the number of unique combinations of the dimension values that occur in the
data. If the table exists, an exact number can be determined for the current data by selecting the

Chapter 1. Planning and design considerations 37

number of distinct values in each of the columns that will be dimensions for the table. Alternatively, an
approximation can be determined if you only have the statistics for a table, by multiplying the column
cardinalities for the dimension candidates.

Note: If your table is in a partitioned database environment, and the distribution key is not related to
any of the dimensions considered, determine an average amount of data per cell by taking all of the
data and dividing by the number of database partitions.

3. Estimate the space occupancy or density.

On average, consider that each cell has one partially-filled block where only a few rows are stored.
There will be more partially-filled blocks as the number of rows per cell becomes smaller. Also, note
that on average (assuming little or no data skew), the number of records per cell can be found by
dividing the number of records in the table by the number of cells. However, if your table is in a
partitioned database environment, consider how many records there are per cell on each database
partition, because blocks are allocated for data on a database partition basis. When estimating the
space occupancy and density in a partitioned database environment, consider the average number of
records per cell on each database partition, not across the entire table.

There are several ways to improve the density:
« Reduce the block size so that partially-filled blocks take up less space.

Reduce the size of each block by making the extent size appropriately small. Each cell that has a
partially-filled block, or that contains only one block with few records on it, wastes less space. The
trade-off, however, is that for those cells having many records, more blocks are needed to contain
them. This increases the number of block identifiers (BIDs) for these cells in the block indexes,
making these indexes larger and potentially resulting in more inserts and deletes to these indexes as
blocks are more quickly emptied and filled. It also results in more small groupings of clustered data
in the table for these more populated cell values, versus a smaller number of larger groupings of
clustered data.

« Reduce the number of cells by reducing the number of dimensions, or by increasing the granularity
of the cells with a generated column.

You can roll up one or more dimensions to a coarser granularity to give it a lower cardinality. For
example, you can continue to cluster the data in the previous example on Region and Product, but
replace the dimension of Day with a dimension of YearAndMonth. This gives cardinalities of 60 (12
months times 5 years), 12, and 5 for YearAndMonth, Region, and Product, with a possible number of
cells of 3600. Each cell then holds a greater range of values and is less likely to contain only a few
records.

Take into account predicates commonly used on the columns involved, such as whether many are on
Month of Date, or Quarter, or Day. This affects the desirability of changing the granularity of the
dimension. If, for example, most predicates are on particular days and you have clustered the table
on Month, Db2 can use the block index on YearAndMonth to quickly narrow down which months
contain the required days and access only those associated blocks. When scanning the blocks,
however, the Day predicate must be applied to determine which days qualify. However, if you cluster
on Day (and Day has high cardinality), the block index on Day can be used to determine which blocks
to scan, and the Day predicate only has to be reapplied to the first record of each cell that qualifies.
In this case, it might be better to consider rolling up one of the other dimensions to increase the
density of cells, as in rolling up the Region column, which contains 12 different values, to Regions
West, North, South and East, using a user-defined function.

38 IBM Db2 V11.5: Partitioning and Clustering Guide

Considerations when creating MDC or ITC tables

There are many factors to consider when creating MDC or ITC tables. Decisions on how to create, place,
and use your MDC or ITC tables can be influenced by your current database environment (for example,
whether you have a partitioned database or not), and by your choice of dimensions.

Moving data from existing tables to MDC tables

To improve query performance and reduce the requirements of data maintenance operations in a data
warehouse or large database environment, you can move data from regular tables into multidimensional
clustering (MDC) tables. To move data from an existing table to an MDC table:

1. export your data,
2. drop the original table (optional),

3. create a multidimensional clustering (MDC) table (using the CREATE TABLE statement with the
ORGANIZE BY DIMENSIONS clause),

4. load the MDC table with your data.

An ALTER TABLE procedure called SYSPROC.ALTOBJ can be used to carry out the translation of data from
an existing table to an MDC table. The procedure is called from the Db2 Design Advisor. The time required
to translate the data between the tables can be significant and depends on the size of the table and the
amount of data that needs to be translated.

The ALTOBJ procedure runs the following steps when altering a table:

1. drop all dependent objects of the table,

. rename the table,

. create the table with the new definition,

. recreate all dependent objects of the table,

. transform existing data in the table into the data required in the new table. That is, the selecting of
data from the old table and loading that data into the new one where column functions can be used to
transform from an old data type to a new data type.

g b~ W N

Moving data from existing tables to ITC tables

To reduce the requirements of data maintenance operations, you can move data from regular tables into
insert time clustering (ITC) tables. To move data from an existing table to an ITC table use the online
table move stored procedure.

The ExampleBank scenario shows how data from an existing table is moved into an ITC table. The
scenario also shows how convenient reclaiming space is when using ITC tables. For more information, see
the Related concepts links.

MDC Advisor feature on the Db2 Design Advisor

The Db2 Design Advisor (db2advis) has an MDC feature. This feature recommends clustering
dimensions for use in an MDC table, including coarsifications on base columns in order to improve
workload performance. The term coarsification refers to a mathematical expression to reduce the
cardinality (the number of distinct values) of a clustering dimension. A common example is coarsification
by date, week of the date, month of the date, or quarter of the year.

A requirement to use the MDC feature of the Db2 Design Advisor is the existence of at least several
extents of data within the database. The Db2 Design Advisor uses the data to model data density and
cardinality.

If the database does not have data in the tables, the Db2 Design Advisor does not recommend MDC, even
if the database contains empty tables but has a mocked up set of statistics to imply a populated
database.

The recommendation includes identifying potential generated columns that define coarsification of
dimensions. The recommendation does not include possible block sizes. The extent size of the table

Chapter 1. Planning and design considerations 39

space is used when making recommendations for MDC tables. The assumption is that the recommended
MDC table is created in the same table space as the existing table, and therefore has the same extent
size. The recommendations for MDC dimensions change depending on the extent size of the table space,
because the extent size affects the number of records that can fit into a block or cell. The extent size
directly affects the density of the cells.

Only single-column dimensions, and not composite-column dimensions, are considered, although single
or multiple dimensions might be recommended for the table. The MDC feature recommends
coarsifications for most supported data types with the goal of reducing the cardinality of cells in the
resulting MDC solution. The data type exceptions include: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
data types. All supported data types are cast to INTEGER and are coarsified through a generated
expression.

The goal of the MDC feature of the Db2 Design Advisor is to select MDC solutions that result in improved
performance. A secondary goal is to keep the storage expansion of the database constrained to a modest
level. A statistical method is used to determine the maximum storage expansion on each table.

The analysis operation within the advisor includes not only the benefits of block index access but also the
effect of MDC on insert, update, and delete operations against dimensions of the table. These actions on
the table have the potential to cause records to be moved between cells. The analysis operation also
models the potential performance effect of any table expansion resulting from the organization of data
along particular MDC dimensions.

The MDC feature is run by using the -m <advise type> flag on the db2advis utility. The "C" advise type
is used to indicate multidimensional clustering tables. The advise types are: "I" for index, "M" for
materialized query tables, "C" for MDC, and "P" for partitioned database environment. The advise types
can be used in combination with each other.

Note: The Db2 Design Advisor does not explore tables that are less than 12 extents in size.
The advisor analyzes both MQTs and regular base tables when coming up with recommendations.
The output from the MDC feature includes:

« Generated column expressions for each table for coarsified dimensions that appear in the MDC solution.
« An ORGANIZE BY DIMENSIONS clause recommended for each table.

The recommendations are reported both to stdout and to the ADVISE tables that are part of the explain
facility.

MDC tables and partitioned database environments

Multidimensional clustering can be used in a partitioned database environment. In fact, MDC can
complement a partitioned database environment. A partitioned database environment is used to
distribute data from a table across multiple physical or logical database partitions to:

- take advantage of multiple machines to increase processing requests in parallel,
« increase the physical size of the table beyond the limits of a single database partition,
- improve the scalability of the database.

The reason for distributing a table is independent of whether the table is an MDC table or a regular table.
For example, the rules for the selection of columns to make up the distribution key are the same. The
distribution key for an MDC table can involve any column, whether those columns make up part of a
dimension of the table or not.

If the distribution key is identical to a dimension from the table, then each database partition contains a
different portion of the table. For instance, if our example MDC table is distributed by color across two
database partitions, then the Color column is used to divide the data. As a result, the Red and Blue slices
might be found on one database partition and the Yellow slice on the other. If the distribution key is not
identical to the dimensions from the table, then each database partition has a subset of data from each
slice. When choosing dimensions and estimating cell occupancy, note that on average the total amount of
data per cell is determined by taking all of the data and dividing by the number of database partitions.

40 IBM Db2 V11.5: Partitioning and Clustering Guide

MDC tables with multiple dimensions

If you know that certain predicates are heavily used in queries, you can cluster the table on the columns
involved. You can do this by using the ORGANIZE BY DIMENSIONS clause.

Example 1:

CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)
ORGANIZE BY DIMENSIONS (cl1, c3, c4)

The table in Example 1 is clustered on the values within three columns forming a logical cube (that is,
having three dimensions). The table can now be logically sliced up during query processing on one or
more of these dimensions such that only the blocks in the appropriate slices or cells are processed by the
relational operators involved. The size of a block (the number of pages) is the extent size of the table.

MDC tables with dimensions based on more than one column

Each dimension can be made up of one or more columns. As an example, you can create a table that is
clustered on a dimension containing two columns.

Example 2:

CREATE TABLE T1 (cl1 DATE, c2 INT, c3 INT, c4 DOUBLE)
ORGANIZE BY DIMENSIONS (cl1, (c3, c4))

In Example 2, the table is clustered on two dimensions, c1 and (c3,c4). Thus, in query processing, the
table can be logically sliced up on either the c1 dimension, or on the composite (c3, c4) dimension. The
table has the same number of blocks as the table in Example 1, but one less dimension block index. In
Example 1, there are three dimension block indexes, one for each of the columns c1, ¢3, and c4. In
Example 2, there are two dimension block indexes, one on the column c1 and the other on the columns
c3 and c4. The main difference between the two approaches is that, in Example 1, queries involving c4
can use the dimension block index on c4 to quickly and directly access blocks of relevant data. In
Example 2, c4 is a second key part in a dimension block index, so queries involving c4 involve more
processing. However, in Example 2 there is one less block index to maintain and store.

The Db2 Design Advisor does not make recommendations for dimensions containing more than one
column.

MDC tables with column expressions as dimensions

Column expressions can also be used for clustering dimensions. The ability to cluster on column
expressions is useful for rolling up dimensions to a coarser granularity, such as rolling up an address to a
geographic location or region, or rolling up a date to a week, month, or year. To implement the rolling up
of dimensions in this way, you can use generated columns. This type of column definition allows the
creation of columns using expressions that can represent dimensions. In Example 3, the statement
creates a table clustered on one base column and two column expressions.

Example 3:

CREATE TABLE T1(cl DATE, c2 INT, c3 INT, c4 DOUBLE,
c5 DOUBLE GENERATED ALWAYS AS (c3 + c4),
c6 INT GENERATED ALWAYS AS (MONTH(C1)))
ORGANIZE BY DIMENSIONS (c2, c5, c6)

In Example 3, column c¢5 is an expression based on columns c3 and c4, and column c¢6 rolls up column c1
to a coarser granularity in time. The statement clusters the table based on the values in columns c2, ¢5,
and cé.

Range queries on generated column dimensions

Range queries on a generated column dimension require monotonic column functions. Expressions must
be monotonic to derive range predicates for dimensions on generated columns. If you create a dimension
on a generated column, queries on the base column are able to take advantage of the block index on the

Chapter 1. Planning and design considerations 41

generated column to improve performance, with one exception. For range queries on the base column
(date, for example) to use a range scan on the dimension block index, the expression used to generate the
column in the CREATE TABLE statement must be monotonic. Although a column expression can include
any valid expression (including user-defined functions (UDFs)), if the expression is non-monotonic, only
equality or IN predicates are able to use the block index to satisfy the query when these predicates are on
the base column.

As an example, assume that you create an MDC table with dimensions on the generated column month,
where month = INTEGER (date)/100. For queries on the dimension (month), block index scans can
be done. For queries on the base column (date), block index scans can also be done to narrow down
which blocks to scan, and then apply the predicates on date to the rows in those blocks only.

The compiler generates additional predicates to be used in the block index scan. For example, with the
query:

SELECT % FROM MDCTABLE WHERE DATE > "1999-03-03" AND DATE < "2000-01-15"

the compiler generates the additional predicates: "month >=199903" and "month <= 200001" which can
be used as predicates for a dimension block index scan. When scanning the resulting blocks, the original
predicates are applied to the rows in the blocks.

A non-monotonic expression allows equality predicates to be applied to that dimension. A good example
of a non-monotonic function is MONTH() as seen in the definition of column cé in Example 3. If the c1
column is a date, timestamp, or valid string representation of a date or timestamp, then the function
returns an integer value in the range of 1 to 12. Even though the output of the function is deterministic, it
actually produces output similar to a step function (that is, a cyclic pattern):

MONTH (date ('01/05/1999"))
MONTH (date('02/08/1999"))
MONTH (date('03/24/1999"))
MONTH (date ('04/30/1999"'))
)
)
)

MONTH (date ('12/69/1999")
MONTH (date (' ©1/18/2000")
MONTH (date (' ©2/24/2000")

NP P ArwN PP

Although date in this example is continually increasing, MONTH(date) is not. More specifically, it is not
guaranteed that whenever datel is larger than date2, MONTH(datel) is greater than or equal to
MONTH(date2). It is this condition that is required for monotonicity. This non-monotonicity is allowed, but
it limits the dimension in that a range predicate on the base column cannot generate a range predicate on
the dimension. However, a range predicate on the expression is fine, for example, where month(cl)
between 4 and 6. This can use the index on the dimension in the typical way, with a starting key of 4
and a stop key of 6.

To make this function monotonic, include the year as the high-order part of the month. There is an
extension to the INTEGER built-in function to help in defining a monotonic expression on date.
INTEGER(date) returns an integer representation of the date, which then can be divided to find an integer
representation of the year and month. For example, INTEGER (date ('2000/05/24")) returns
20000524, and therefore INTEGER (date ('2000/05/24"')) /100 = 200005. The function
INTEGER(date)/100 is monotonic.

Similarly, the built-in functions DECIMAL and BIGINT also have extensions so that you can derive
monotonic functions. DECIMAL (timestamp) returns a decimal representation of a timestamp, and this can
be used in monotonic expressions to derive increasing values for month, day, hour, minute, and so on.
BIGINT(date) returns a big integer representation of the date, similar to INTEGER(date).

The database manager determines the monotonicity of an expression, where possible, when creating the
generated column for the table, or when creating a dimension from an expression in the dimensions
clause. Certain functions can be recognized as monotonicity-preserving, such as DAYS() or YEAR(). Also,
various mathematical expressions such as division, multiplication, or addition of a column and a constant
are monotonicity-preserving. Where Db2 determines that an expression is not monotonicity-preserving,

42 IBM Db2 V11.5: Partitioning and Clustering Guide

or if it cannot determine this, the dimension supports only the use of equality predicates on its base
column.

Load considerations for MDC and ITC tables

If you roll data in to your data warehouse on a regular basis, you can use multidimensional clustering
(MDC) tables to your advantage. In MDC tables, load first reuses previously emptied blocks in the table
before extending the table and adding new blocks for the remaining data.

After you delete a set of data, for example, all the data for a month, you can use the load utility to roll in
the next month of data and it can reuse the blocks that were emptied after the (committed) deletion. You
can also choose to use the MDC rollout feature with deferred cleanup. After the rollout, which is also a
deletion, is committed, the blocks are not free and cannot yet be reused. A background process is invoked
to maintain the record ID (RID) based indexes. When the maintenance is complete, the blocks are freed
and can be reused. For insert time clustering (ITC) tables, blocks that are not in use are reused where
possible before the table is extended. This includes blocks that were reclaimed. Rollout is not supported
on ITC tables.

When loading data into MDC tables, the input data can be either sorted or unsorted. If unsorted, and the
table has more than one dimension, consider doing the following:

 Increase the util_heap_sz configuration parameter.

To improve the performance of the load utility when loading MDC tables, increase the util_heap_sz
database configuration parameter value. The mdc-load algorithm performs better when more memory
is available to the utility. This reduces disk I/O during the clustering of data that is performed during the
load phase. If the LOAD command is being used to load several MDC tables concurrently,
util_heap_sz must be increased accordingly.

- Increase the value given with the DATA BUFFER clause of the LOAD command.

Increasing this value affects a single load request. The utility heap size must be large enough to
accommodate the possibility of multiple concurrent load requests. Beginning in version 9.5, the value of
the DATA BUFFER parameter of the LOAD command can temporarily exceed util_heap_sz if more
memory is available in the system.

- Ensure the page size used for the buffer pool is the same as the largest page size for the temporary
table space.

During the load phase, extra logging for the maintenance of the block map is performed. There are
approximately two extra log records per extent allocated. To ensure good performance, the logbufsz
database configuration parameter must be set to a value that takes this into account.

The following restrictions apply when loading data into MDC or ITC tables:

« The SAVECOUNT parameter in the LOAD command is not supported.

- The totalfreespace file type modifier is not supported since these tables manage their own free
space.

- The anyozrder file type modifier is required for MDC or ITC tables. If a load is executed into an MDC or
ITC table without the anyordexr modifier, it is explicitly enabled by the utility.

When using the LOAD command with an MDC or ITC table, violations of unique constraints are handled as
follows:

« If the table included a unique key before the load operation and duplicate records are loaded into the
table, the original record remains and the new records are deleted during the delete phase.

« If the table did not include a unique key prior to the load operation and both a unique key and duplicate
records are loaded into the table, only one of the records with the unique key is loaded and the others
are deleted during the delete phase.

Note: There is no explicit technique for determining which record is loaded and which is deleted.

Load begins at a block boundary, so it is best used for data belonging to new cells, for the initial
populating of a table, and for loading additional data into ITC tables.

MDC and ITC load operations always have a build phase since all MDC and ITC tables have block indexes.

Chapter 1. Planning and design considerations 43

Logging considerations for MDC and ITC tables
Index maintenance and logging is reduced when dimensions and therefore block indexes are used, as
compared to cases where RID indexes are used.

The database manager removes the BID from the block indexes only when the last record in an entire
block is deleted. This index operation is also logged at this time. Similarly, the database manager inserts a
BID into the block index only when a record is inserted into a new block. That record must be the first
record of a logical cell or an insert to a logical cell of blocks that are currently full. This index operation is
also logged at this time.

Because blocks can be 2 - 256 pages of records, this block index maintenance and logging is relatively
small. Inserts and deletes to the table and to RID indexes are still logged. For roll out deletions, the
deleted records are not logged. Instead, the pages that contain the records are made to look empty by
reformatting parts of the pages. The changes to the reformatted parts are logged, but the records
themselves are not logged.

Block indexes for MDC and ITC tables

Dimension block indexes are created when you define dimensions for a multidimensional clustering
(MDC) table. A composite block index is created when you define multiple dimensions. If you define only
one dimension for your MDC table, or if your table is an insert time clustering (ITC) table, the database
manager creates only one block index, which serves as both the dimension block index and the composite
block index. If your MDC or ITC table is partitioned, the block index is also partitioned.

If you create an MDC table that has dimensions on column A and on (column A, column B), the database
manager creates a dimension block index on column A and a dimension block index on (column A, column
B). Because a composite block index is a block index of all the dimensions in the table, the dimension
block index on (column A, column B) also serves as the composite block index.

The composite block index for an MDC table is used in query processing to access data with specific
dimension values. The order of key parts in the composite block index has no effect on insert processing,
but might affect its use or applicability for query processing. The order of key parts is determined by the
order of columns in the ORGANIZE BY DIMENSIONS clause when the MDC table is created. Multicolumn
dimensions in the ORGANIZE BY DIMENSION clause take precedence when there is a duplicate. For
example, if a table is created by using the following statement, the composite block index is created on
columns (c4, c3, c1, c2).

CREATE TABLE t1 (cl1 int, c2 int, c3 int, c4 int)
ORGANIZE BY DIMENSIONS (cl1, c4, (c3, cl), c2)

Although c1 is specified twice in the ORGANIZE BY DIMENSIONS clause, it is used only once as a key part
for the composite block index; (c3, c1) replaces (c1). The following example shows you how to create a
table whose composite block index has a column order of (c1, c2, c3, c4):

CREATE TABLE t1 (cl1 int, c2 int, c3 int, c4 int)
ORGANIZE BY DIMENSIONS (c2, cl1, (c2, c3), c4)

Block indexes for MDC tables
This topic shows how records are organized in MDC tables using block indexes.

The MDC table shown in Figure 12 on page 45 is physically organized such that records having the same
"Region" and "Year" values are grouped together into separate blocks, or extents. An extent is a set of
contiguous pages on disk, so these groups of records are clustered on physically contiguous data pages.
Each table page belongs to exactly one block, and all blocks are of equal size (that is, an equal number of
pages). The size of a block is equal to the extent size of the table space, so that block boundaries line up
with extent boundaries. In this case, two block indexes are created, one for the "Region" dimension, and
another for the "Year" dimension. These block indexes contain pointers only to the blocks in the table. A
scan of the "Region" block index for all records having "Region" equal to "East" will find two blocks that
qualify. All records, and only those records, having "Region" equal to "East" will be found in these two
blocks, and will be clustered on those two sets of contiguous pages or extents. At the same time, and
completely independently, a scan of the "Year" index for records between 1999 and 2000 will find three
blocks that qualify. A data scan of each of these three blocks will return all records and only those records

44 1BM Db2 V11.5: Partitioning and Clustering Guide

that are between 1999 and 2000, and will find these records clustered on the sequential pages within
each of the blocks.

Multidimensional clustering index

Block

Region index
l e l

East East North South Wast
97 99 o8 a9 00
- A —F
'\-_____h__ f -
-\-\-\""-\-.___ |'I __,.o--""-'--
-\-H-""‘-\-.. a— -
Block
Year

Figure 12. A multidimensional clustering table

In addition to these clustering improvements, MDC tables provide the following benefits:

« Probes and scans of block indexes are much faster due to their incredibly small size in relation to
record-based indexes

- Block indexes and the corresponding organization of data allows for fine-grained "database partition
elimination”, or selective table access

« Queries that utilize the block indexes benefit from the reduced index size, optimized prefetching of
blocks, and guaranteed clustering of the corresponding data

« Reduced locking and predicate evaluation is possible for some queries

« Block indexes have much less overhead associated with them for logging and maintenance because
they only need to be updated when adding the first record to a block, or removing the last record from a
block

« Data rolled in can reuse the contiguous space left by data previously rolled out.

Note: An MDC table defined with even just a single dimension can benefit from these MDC attributes, and
can be a viable alternative to a regular table with a clustering index. This decision should be based on
many factors, including the queries that make up the workload, and the nature and distribution of the
data in the table. Refer to “Choosing MDC table dimensions” on page 32 and “Considerations when
creating MDC or ITC tables” on page 39.

When you create a table, you can specify one or more keys as dimensions along which to cluster the data.
Each of these MDC dimensions can consist of one or more columns similar to regular index keys. A
dimension block index will be automatically created for each of the dimensions specified, and it will be
used by the optimizer to quickly and efficiently access data along each dimension. A composite block
index will also automatically be created, containing all columns across all dimensions, and will be used to
maintain the clustering of data over insert and update activity. A composite block index will only be
created if a single dimension does not already contain all the dimension key columns. The composite
block index may also be selected by the optimizer to efficiently access data that satisfies values from a
subset, or from all, of the column dimensions.

Note: The usefulness of this index during query processing depends on the order of its key parts. The key
part order is determined by the order of the columns encountered by the parser when parsing the

Chapter 1. Planning and design considerations 45

dimensions specified in the ORGANIZE BY DIMENSIONS clause of the CREATE TABLE statement. Refer to
“Block indexes for MDC and ITC tables” on page 44 for more information.

Block indexes are structurally the same as regular indexes, except that they point to blocks instead of
records. Block indexes are smaller than regular indexes by a factor of the block size multiplied by the
average number of records on a page. The number of pages in a block is equal to the extent size of the
table space, which can range from 2 to 256 pages. The page size can be 4 KB, 8 KB, 16 KB, or 32 KB.

Row index Block index

i

As seen in Figure 13 on page 46, in a block index there is a single index entry for each block compared to
a single entry for each row. As a result, a block index provides a significant reduction in disk usage and
significantly faster data access.

Figure 13. How row indexes differ from block indexes

In an MDC table, every unique combination of dimension values form a logical cell, which may be
physically made up of one or more blocks of pages. The logical cell will only have enough blocks
associated with it to store the records having the dimension values of that logical cell. If there are no
records in the table having the dimension values of a particular logical cell, no blocks will be allocated for
that logical cell. The set of blocks that contain data having a particular dimension key value is called a
slice.

An MDC table can be partitioned. The block index on a partitioned MDC table can be either nonpartitioned
or partitioned:

 For a partitioned MDC table created with Db2 Version 9.7 Fix Pack 1 or later releases, the block indexes
on the table are partitioned.

« For a partitioned MDC table created with Db2 V9.7 or earlier releases, the block indexes on the table are
nonpartitioned.

Nonpartitioned block index are supported after upgrading the database to Db2 V9.7 Fix Pack 1 or later
releases.

Scenario: Multidimensional clustered (MDC) tables

As a scenario of how to work with an MDC table, we will imagine an MDC table called "Sales" that records
sales data for a national retailer. The table is clustered along the dimensions "YearAndMonth" and
"Region". Records in the table are stored in blocks, which contain enough consecutive pages on disk to fill
an extent.

In Figure 14 on page 47, a block is represented by a rectangle, and is numbered according to the logical
order of allocated extents in the table. The grid in the diagram represents the logical database partitioning

46 IBM Db2 V11.5: Partitioning and Clustering Guide

of these blocks, and each square represents a logical cell. A column or row in the grid represents a slice
for a particular dimension. For example, all records containing the value 'South-central' in the "Region"
column are found in the blocks contained in the slice defined by the 'South-central’' column in the grid. In
fact, each block in this slice also only contains records having 'South-central' in the "Region" field. Thus, a
block is contained in this slice or column of the grid if and only if it contains records having 'South-central'
in the "Region" field.

Region
— Northwest —— Southwest T South-centralT— Northeast *‘

(8 J[42]) [}
6001 &]
[5 1[4] [2]1[s] | [8]
so0p 10 () (O8] (3]
£ (7] (43]
=
'E |
< EN &)
s’im =)
[0 (36
(34 50 [2a (a5] (54
9904 [25)
=N
Legend
[1] =block1

Figure 14. Multidimensional table with dimensions of 'Region' and 'YearAndMonth'that is called Sales

To determine which blocks comprise a slice, or equivalently, which blocks contain all records having a
particular dimension key value, a dimension block index is automatically created for each dimension
when the table is created.

In Figure 15 on page 48, a dimension block index is created on the "YearAndMonth" dimension, and
another on the "Region" dimension. Each dimension block index is structured in the same manner as a
traditional RID index, except that at the leaf level the keys point to a block identifier (BID) instead of a
record identifier (RID). A RID identifies the location of a record in the table by a physical page number and
a slot number - the slot on the page where the record is found. A BID represents a block by the physical
page number of the first page of that extent, and a dummy slot (0). Because all pages in the block are
physically consecutive starting from that one, and we know the size of the block, all records in the block
can be found using this BID.

A slice, or the set of blocks containing pages with all records having a particular key value in a dimension,
will be represented in the associated dimension block index by a BID list for that key value.

Chapter 1. Planning and design considerations 47

Region

— Morthwest —T Southwest - Sauth—cantral—l— Mortheast

(] Oz (8][] [11]
9901
(s J(14] (2][3] [18]
9902 L7 J(=2] [15][33]
FE
= Dimension
2 Do e
L4
= (3] [16) (20]
s‘-‘ms [22)
(84] (80] [24) 45] (54]
8904 =) 50 ()
(53]
| Dimension block r
index on Region
Legend
[1] =block1

Figure 15. Sales table with dimensions of 'Region’' and 'YearAndMonth' showing dimension block indexes

Figure 16 on page 48 shows how a key from the dimension block index on "Region" would appear. The
key is made up of a key value, namely 'South-central', and a list of BIDs. Each BID contains a block
location. In Figure 16 on page 48, the block numbers listed are the same that are found in the 'South-
central' slice found in the grid for the Sales table (see Figure 14 on page 47).

Block 1D (BID)

South-central g 16 18 19 22 24 25 30 36 39 41 42

Figure 16. Key from the dimension block index on 'Region’

Similarly, to find the list of blocks containing all records having '9902' for the "YearAndMonth" dimension,
look up this value in the "YearAndMonth" dimension block index, shown in Figure 17 on page 49.

48 IBM Db2 V11.5: Partitioning and Clustering Guide

Block ID (BID)

8502 2 5 7 B 14 15 17 18 a1 32 33 43

|— Key value J | BID list

Figure 17. Key from the dimension block index on 'YearAndMonth'

Block indexes and query performance for MDC tables

Scans on any of the block indexes of an MDC table provide clustered data access, because each block
identifier (BID) corresponds to a set of sequential pages in the table that is guaranteed to contain data
having the specified dimension value. Moreover, dimensions or slices can be accessed independently
from each other through their block indexes without compromising the cluster factor of any other
dimension or slice. This provides the multidimensionality of multidimensional clustering.

Queries that take advantage of block index access can benefit from a number of factors that improve
performance.

» Because block indexes are so much smaller than regular indexes, a block index scan is very efficient.

« Prefetching of data pages does not rely on sequential detection when block indexes are used. The Db2
database manager looks ahead in the index, prefetching blocks of data into memory using big-block
I/0, and ensuring that the scan does not incur I/O costs when data pages are accessed in the table.

- The data in the table is clustered on sequential pages, optimizing I/0 and localizing the result set to a
selected portion of the table.

« If a block-based buffer pool is used, and the block size is equal to the extent size, MDC blocks are
prefetched from sequential pages on disk into sequential pages in memory, further increasing the
positive effect of clustering on performance.

« The records from each block are retrieved using a mini-relational scan of its data pages, which is often
faster than scanning data through RID-based retrieval.

Queries can use block indexes to narrow down a portion of the table having a particular dimension value
or range of values. This provides a fine-grained form of "database partition elimination", that is, block
elimination. This can translate into better concurrency for the table, because other queries, loads, inserts,
updates and deletes may access other blocks in the table without interacting with this query's data set.

If the Sales table is clustered on three dimensions, the individual dimension block indexes can also be
used to find the set of blocks containing records which satisfy a query on a subset of all of the dimensions
of the table. If the table has dimensions of "YearAndMonth", "Region" and "Product", this can be thought
of as a logical cube, as illustrated in Figure 18 on page 50.

Chapter 1. Planning and design considerations 49

(e J[42] (O]
0001 y
(a8]
%
(5 J[14]) [2][=3] [18] &ﬁ
L7 I3] [15][3]
£ 9902 éé
=
'E |E—
< (3] (4]
£ 9903 (28]
%
(B4] (50) (2] ((54]
9904 (25]
(58]
— Northwest L Snumwasi—J—South-cemralJ— NnrtheastA‘
Region
Legend

[1] =block1

Figure 18. Multidimensional table with dimensions of 'Region’, 'YearAndMonth', and 'Product’

Four block indexes will be created for the MDC table shown in Figure 18 on page 50: one for each of the
individual dimensions, "YearAndMonth", "Region", and "Product"; and another with all of these dimension
columns as its key. To retrieve all records having a "Product" equal to "ProductA" and "Region" equal to
"Northeast", the database manager would first search for the ProductA key from the "Product” dimension
block index. (See Figure 19 on page 50.) The database manager then determines the blocks containing
all records having "Region" equal to "Northeast", by looking up the "Northeast" key in the "Region"
dimension block index. (See Figure 20 on page 50.)

Product A 1 2 3 ias 11 iaa 20 22 24 25 26 20 | eee 56

Figure 19. Key from dimension block index on 'Product’

Mortheast 1 20 23 26 27 28 a5 ar 40 45 46 47 a1 53 54 56

Figure 20. Key from dimension block index on 'Region’

Block index scans can be combined through the use of the logical AND and logical OR operators and the
resulting list of blocks to scan also provides clustered data access.

50 IBM Db2 V11.5: Partitioning and Clustering Guide

Using the previous example, in order to find the set of blocks containing all records having both dimension
values, you have to find the intersection of the two slices. This is done by using the logical AND operation
on the BID lists from the two block index keys. The common BID values are 11, 20, 26, 45, 54, 51, 53,
and 56.

The following example illustrates how to use the logical OR operation with block indexes to satisfy a
query having predicates that involve two dimensions. Figure 21 on page 51 assumes an MDC table
where the two dimensions are "Colour" and "Nation". The goal is to retrieve all those records in the MDC
table that meet the conditions of having "Colour" of "blue" or having a "Nation" name "USA".

Key from the dimension block index on Colour

Blue 4.0 12,0 | 480 @520 | 760 | 100,0 | 2160
+ (OR)
Key from the dimension block index on Mation
Usa | 120 | 780 | 920 | 1000 | 1120 | 2160 | 276,0
Resulting block ID (BID) list of blocks to scan
4.0 12,0 ‘ 48,0 ‘ 520 ‘ 76,0 ‘ 820 100,0 | 1120 | 2160 ETB.D‘|

Figure 21. How the logical OR operation can be used with block indexes

This diagram shows how the result of two separate block index scans are combined to determine the
range of values that meet the predicate restrictions. (The numbers indicate record identifiers (RIDs), slot
fields.)

Based on the predicates from the SELECT statement, two separate dimension block index scans are done;
one for the blue slice, and another for the USA slice. A logical OR operation is done in memory in order to
find the union of the two slices, and determine the combined set of blocks found in both slices (including
the removal of duplicate blocks).

Chapter 1. Planning and design considerations 51

Once the database manager has list of blocks to scan, the database manager can do a mini-relational
scan of each block. Prefetching of the blocks can be done, and will involve just one I/O per block, as each
block is stored as an extent on disk and can be read into the buffer pool as a unit. If predicates need to be
applied to the data, dimension predicates need only be applied to one record in the block, because all
records in the block are guaranteed to have the same dimension key values. If other predicates are
present, the database manager only needs to check these on the remaining records in the block.

MDC tables also support regular RID-based indexes. Both RID and block indexes can be combined using a
logical AND operation, or a logical OR operation, with the index. Block indexes provide the optimizer with
additional access plans to choose from, and do not prevent the use of traditional access plans (RID scans,
joins, table scans, and others). Block index plans will be costed by the optimizer along with all other
possible access plans for a particular query, and the most inexpensive plan will be chosen.

The Db2 Design Advisor can help to recommend RID-based indexes on MDC tables, or to recommend
MDC dimensions for a table.

Maintaining clustering automatically during INSERT operations

Automatic maintenance of data clustering in an MDC table is ensured using the composite block index. It
is used to dynamically manage and maintain the physical clustering of data along the dimensions of the
table over the course of INSERT operations.

A key is found in this composite block index only for each of those logical cells of the table that contain
records. This block index is therefore used during an INSERT to quickly and efficiently determine if a
logical cell exists in the table, and only if so, determine exactly which blocks contain records having that
cell's particular set of dimension values.

When an insert occurs:

« The composite block index is probed for the logical cell corresponding to the dimension values of the
record to be inserted.

« If the key of the logical cell is found in the index, its list of block ID (BIDs) gives the complete list of
blocks in the table having the dimension values of the logical cell. (See Figure 22 on page 52.) This
limits the numbers of extents of the table to search for space to insert the record.

- If the key of the logical cell is not found in the index; or, if the extents containing these values are full, a
new block is assigned to the logical cell. If possible, the reuse of an empty block in the table occurs first
before extending the table by another new extent of pages (a new block).

| Composite block index on YearAndMonth, Region

b2y 8] [#E]) [O1] 5134 [2] =0 8] 3]
[43]
?l?::?‘tiﬁ I 8901, I 901, I 8802, I o802, IBQDE I 8803, I
west South-central | Northeast Marthwest Southwest | South-central | Northwest

Lagend

[1] =block 1

Figure 22. Composite block index on 'YearAndMonth', 'Region’

Data records having particular dimension values are guaranteed to be found in a set of blocks that contain
only and all the records having those values. Blocks are made up of consecutive pages on disk. As a
result, access to these records is sequential, providing clustering. This clustering is automatically
maintained over time by ensuring that records are only inserted into blocks from cells with the record's

52 IBM Db2 V11.5: Partitioning and Clustering Guide

dimension values. When existing blocks in a logical cell are full, an empty block is reused or a new block is
allocated and added to the set of blocks for that logical cell. When a block is emptied of data records, the
block ID (BID) is removed from the block indexes. This disassociates the block from any logical cell values
so that it can be reused by another logical cell in the future. Thus, cells and their associated block index
entries are dynamically added and removed from the table as needed to accommodate only the data that
exists in the table. The composite block index is used to manage this, because it maps logical cell values
to the blocks containing records having those values.

Because clustering is automatically maintained in this way, reorganization of an MDC table is never
needed to re-cluster data. However, reorganization can still be used to reclaim space. For example, if
cells have many sparse blocks where data could fit on fewer blocks, or if the table has many pointer-
overflow pairs, a reorganization of the table would compact records belonging to each logical cell into the
minimum number of blocks needed, as well as remove pointer-overflow pairs.

The following example illustrates how the composite block index can be used for query processing. If you
want to find all records in the table in Figure 22 on page 52 having "Region" of '‘Northwest' and
"YearAndMonth" of '9903', the database manager would look up the key value 9903, Northwest in the
composite block index, as shown in Figure 23 on page 53. The key is made up a key value, namely

'9903, Northwest', and a list of BIDs. You can see that the only BIDs listed are 3 and 10, and indeed there
are only two blocks in the Sales table containing records having these two particular values.

Block 1D (BID)

8903, Morthwest 3 10

|— Kay value J |— BID list J

Figure 23. Key from composite block index on 'YearAndMonth', 'Region’

To illustrate the use of the composite block index during insert, take the example of inserting another
record with dimension values 9903 and Northwest. The database manager would look up this key value in
the composite block index and find BIDs for blocks 3 and 10. These blocks contain all records and the
only records having these dimension key values. If there is space available, the database manager inserts
the new record into one of these blocks. If there is no space on any pages in these blocks, the database
manager allocates a new block for the table, or uses a previously emptied block in the table. Note that, in
this example, block 48 is currently not in use by the table. The database manager inserts the record into
the block and associates this block to the current logical cell by adding the BID of the block to the
composite block index and to each dimension block index. See Figure 24 on page 53 for an illustration of
the keys of the dimension block indexes after the addition of Block 48.

8503 3 4 10 16 20 22 26 30 36 48

Morthwest 1 3 5 & 7 a8 10 12 13 14 a2 48

9903, Northwest 3 10 48

Figure 24. Keys from the dimension block indexes after addition of Block 48

Block maps for MDC and ITC tables

For MDC tables, when a block is emptied, it is disassociated from its current logical cell values by
removing its BID from the block indexes. The block can then be reused by another logical cell. For ITC
tables, all blocks are associated with a single cell. Freeing a block within a cell means it can be reused by
a subsequent insert. This reuse reduces the need to extend the table with new blocks.

Chapter 1. Planning and design considerations 53

When a new block is needed, previously emptied blocks need to be found quickly without having to
search the table for them.

The block map is a structure used to facilitate locating empty blocks in the MDC or ITC table. The block
map is stored as a separate object:

« In SMS, as a separate .BKM file
« In DMS, as a new object descriptor in the object table.

The block map is an array containing an entry for each block of the table. Each entry comprises a set of
status bits for a block.

Block

map Extents in the table
0 X 0
1 F 1
2 U 2 East, 1998

Morth,

3 U 1996 3 —
4 u 4 Morih, 1897 +—— Year
5 F 5
6 U [+ South, 1998 -

Legend

X Reserved F Free — no status U Inuse — data

bits set assigned 1o a cell

Figure 25. How a block map works

In Figure 25 on page 54, the left side shows the block map array with different entries for each block in
the table. The right side shows how each extent of the table is being used: some are free, most are in use,
and records are only found in blocks marked in use in the block map. For simplicity, only one of the two
dimension block indexes is shown in the diagram.

Note:
1. There are pointers in the block index only to blocks which are marked IN USE in the block map.
2. The first block is reserved. This block contains system records for the table.

Free blocks are found easily for use in a cell, by scanning the block map for FREE blocks, that is, blocks
without any bits set.

Table scans also use the block map to access only extents currently containing data. Any extents not in
use do not need to be included in the table scan at all. To illustrate, a table scan in this example (Figure
25 on page 54) would start from the third extent (extent 2) in the table, skipping the first reserved extent

54 IBM Db2 V11.5: Partitioning and Clustering Guide

and the subsequent empty extent, scan blocks 2, 3 and 4 in the table, skip the next extent (not touching
the data pages of that extent), and then continue scanning from there.

Deleting from MDC and ITC tables

When a record is deleted in an MDC or ITC table, if it is not the last record in the block, the database
manager merely deletes the record and removes its RID from any record-based indexes defined on the
table.

When a delete removes the last record in a block, the database manager frees the block. The block is
freed by changing the IN_USE status bit and removing the BID of the block from all block indexes. If there
are record-based indexes as well, the RID is removed from them.

Note: Therefore, block index entries are removed once per entire block and only if the block is emptied,
instead of once per deleted row in a record-based index.

Updates to MDC and ITC tables

In an MDC table, updates of non-dimension values are done in place just as they are done with regular
tables. If the update of a record in an MDC or ITC table causes the record to grow in length and it no
longer fits on the page, another page with sufficient space is found.

The search for this new page begins within the same block. If there is no space in that block, the
algorithm to insert a new record is used to find a page in the logical cell with enough space. There is no
need to update the block indexes, unless no space is found in the cell and a new block needs to be added
to the cell.

For an ITC table, if there is insufficient room in the block to place the updated row, the row is moved to a
new block. This move causes the row to no longer be clustered with rows that were inserted at a similar
time.

Considerations for MDC tables only

Updates of dimension values are treated as a delete of the current record followed by an insert of the
changed record, because the record is changing the logical cell to which it belongs. If the deletion of the
current record causes a block to be emptied, the block index needs to be updated. Similarly, if the insert
of the new record requires it to be inserted into a new block, the block index needs to be updated.

MDC tables are treated like any existing table; that is, triggers, referential integrity, views, and
materialized query tables can all be defined upon them.

Considerations for MDC and ITC tables

Block indexes need be only updated when inserting the first record into a block or when deleting the last
record from a block. Index resources and requirements associated with block indexes for maintenance
and logging is therefore much less than regular indexes. For every block index that would have otherwise
been a regular index, the maintenance and logging resources and requirement is greatly reduced.

When you are reusing blocks that were recently made empty, a conditional Z lock on the block must be
used to ensure that it is not currently being scanned by a UR scanner.

Multidimensional and insert time clustering extent management

Freeing data extents from within the multidimensional (MDC) or insert time clustering (ITC) table is done
through the reorganization of the table.

Within an MDC and ITC table, a block map tracks all the data extents belonging to a table and indicates
which blocks and extents have data on them and which do not. Blocks with data are marked as being "in
use". Whenever deletions on MDC or ITC tables, or rollouts on MDC tables happen, block entries with the
block map are no longer marked "in use" but rather are freed for reuse by the table.

However, these blocks and extents cannot be used by other objects within the table space. You can
release these free data extents from the table through the reorganization of the table. You can use the
REORG TABLE command with the RECLAIM EXTENTS parameter so the table is available and online to

Chapter 1. Planning and design considerations 55

your users while space is reclaimed. The freeing of extents from the MDC or ITC table is only supported
for tables in DMS table spaces.

The REORG TABLE command uses the RECLAIM EXTENTS parameter to free extents from exclusive use
by the MDC or ITC table and makes the space available for use by other database objects within the table
space.

The option also allows for your control of concurrent access to the MDC or ITC table while the extents are
being freed. Write access is the default, read access and no access are also choices to control concurrent
access.

If the MDC or ITC table is also range or database partitioned, by default the freeing of extents occurs on
all data or database partitions. You can run the command to free extents only on a specific partition by
specifying a partition name (for data partitions) or a partition number (for database partitions).

Both the REORG TABLE command and the db2Reorg API can be used to free extents.

Automatic support is available to make the freeing of extents part of your automatic maintenance
activities for the database. To enable a reorganization to free extents in an MDC or ITC table, the
auto_maint, auto_tbl_maint, and auto_xeoxg database configuration parameters must all have a
value of ON. The configuring of these database configuration parameters can be carried out using the
command line. On a Db2 instance where the database partitioning feature is enabled, the configuring of
the parameters must be issued on the catalog partition.

A maintenance policy controls when an automatic reorganization of an MDC or ITC table takes place to
free unused extents. The Db2 system stored procedures AUTOMAINT_SET_POLICY and
AUTOMAINT_SET_POLICYFILE are used to set this maintenance policy. XML is used to store the
automated maintenance policy.

Table partitioning and multidimensional clustering tables

In a table that is both multidimensional clustered and data partitioned, columns can be used both in the
table partitioning range-partition-spec and in the multidimensional clustering (MDC) key. A table that is
both multidimensional clustered and partitioned can achieve a finer granularity of data partition and block
elimination than could be achieved by either functionality alone.

There are also many applications where it is useful to specify different columns for the MDC key than
those on which the table is partitioned. It should be noted that table partitioning is multicolumn, while
MDC is multi-dimension.

Characteristics of a mainstream Db2 data warehouse

The following recommendations were focused on typical, mainstream warehouses that were new for Db2
V9.1. The following characteristics are assumed:

« The database runs on multiple machines or multiple AIX logical partitions.

- Partitioned database environments are used (tables are created using the DISTRIBUTE BY HASH
clause).

« There are four to fifty data partitions.

« The table for which MDC and table partitioning is being considered is a major fact table.
« The table has 100,000,000 to 100,000,000,000 rows.

« New data is loaded at various time frames: nightly, weekly, monthly.

« Daily ingest volume is 10 thousand to 10 million records.

- Data volumes vary: The biggest month is 5X the size of the smallest month. Likewise, the biggest
dimensions (product line, region) have a 5X size range.

« 1 to 5 years of detailed data is retained.
« Expired data is rolled out monthly or quarterly.

« Tables use a wide range of query types. However, the workload is mostly analytical queries with the
following characteristics, relative to OLTP workloads:

56 IBM Db2 V11.5: Partitioning and Clustering Guide

— larger results sets with up to 2 million rows
— most or all queries are hitting views, not base tables
« SQL clauses selecting data by ranges (BETWEEN clause), items in lists, and so on.

Characteristics of a mainstream Db2 V9.1 data warehouse fact table

A typical warehouse fact table, might use the following design:

« Create data partitions on the Month column.

- Define a data partition for each period you roll-out, for example, 1 month, 3 months.

« Create MDC dimensions on Day and on 1 to 4 additional dimensions. Typical dimensions are: product
line and region.

« All data partitions and MDC clusters are spread across all database partitions.
MDC and table partitioning provide overlapping sets of benefits. The following table lists potential needs

in your organization and identifies a recommended organization scheme based on the characteristics
identified previously.

Table 7. Using table partitioning with MDC tables

Issue Recommended scheme Recommendation

Data availability during roll-out Table partitioning Use the DETACH PARTITION
clause to roll out large amounts
of data with minimal disruption.

Query performance Table partitioning and MDC MDC is best for querying multiple
dimensions. Table partitioning
helps through data partition

elimination.
Minimal reorganization MDC MDC maintains clustering, which
reduces the need to reorganize.
Rollout a month or more of data | Table partitioning Data partitioning addresses this
during a traditional offline need fully. MDC adds nothing and
window would be less suitable on its own.
Rollout a month or more of data | Table partitioning Data partitioning addresses this
during a micro-offline window need fully. MDC adds nothing and
(less than 1 minute) would be less suitable on its own.
Rollout a month or more of data | MDC MDC only addresses this need
while keeping the table fully somewhat. Table partitioning
available for business users would not be suitable due to the
submitting queries without any short period the table goes
loss of service. offline.
Load data daily (LOAD or INGEST | Table partitioning and MDC MDC provides most of the benefit
command) here. Table partitioning provides
incremental benefits.
Load data "continually" (LOAD Table partitioning and MDC MDC provides most of the benefit
command with ALLOW READ here. Table partitioning provides
ACCESS or INGEST command) incremental benefits.
Query execution performance for | Table partitioning and MDC MDC is especially good for
"traditional BI" queries querying cubes/multiple

dimensions. Table partitioning
helps via partition elimination.

Chapter 1. Planning and design considerations 57

Table 7. Using table partitioning with MDC tables (continued)

Issue

Recommended scheme

Recommendation

Minimize reorganization pain, by
avoiding the need for
reorganization or reducing the
pain associated with performing
the task

MDC

MDC maintains clustering which
reduces the need to reorg. If
MDC is used, data partitioning
does not provide incremental
benefits. However if MDC is not
used, table partitioning helps
reduce the need for reorg by
maintaining some course grain
clustering at the partition level.

Example 1:

Consider a table with key columns YearAndMonth and Province. A reasonable approach to planning this
table might be to partition by date with 2 months per data partition. In addition, you might also organize
by Province, so that all rows for a particular province within any two month date range are clustered

together, as shown in Figure 26 on page 59.

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))

PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)

ORGANIZE BY (Province);

58 IBM Db2 V11.5: Partitioning and Clustering Guide

Table orders

MDC block (Province)
AB T BC | ON | QB
(1])[12]) (8 |[4] [
8]
0001
99802
= [5 1] [2][3] [18]
€ (7] [2) (5] [3]
g
g
$ (3]]
§ (22
§ (30 (3]
s
() (50 (2]
]
[83)
Legend
[) =block 1

Figure 26. A table partitioned by YearAndMonth and organized by Province

Example 2:

Finer granularity can be achieved by adding YearAndMonth to the ORGANIZE BY DIMENSIONS clause, as
shown in Figure 27 on page 60.

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)

(STARTING 9901 ENDING 9904 EVERY 2)

ORGANIZE BY (YearAndMonth, Province);

Chapter 1. Planning and design considerations 59

Table orders

MDC block (Province)
AB T BC | ON | QB
(1])[12]) (8 |[4] [
R i)
£ [5 1] [2][3] [18]
E e (10 () (O5) ()
3
g
$ (3]]
E 22
g (30 (36
(&) (8] (=)
0008 (25
(5
Legend
[T =block 1

Figure 27. A table partitioned by YearAndMonth and organized by Province and YearAndMonth

In cases where the partitioning is such that there is only a single value in each range, nothing is gained by
including the table partitioning column in the MDC key.

Considerations

« Compared to a basic table, both MDC tables and partitioned tables require more storage. These storage
needs are additive but are considered reasonable given the benefits.

- If you choose not to combine table partitioning and MDC functionality in your partitioned database
environment, table partitioning is best in cases where you can confidently predict the data distribution,
which is generally the case for the types of systems discussed here. Otherwise, MDC should be
considered.

« For a data-partitioned MDC table created with Db2 Version 9.7 Fix Pack 1 or later releases, the MDC
block indexes on the table are partitioned. For a data-partitioned MDC table created with Db2 V9.7 or
earlier releases, the MDC block indexes on the table are nonpartitioned.

60 IBM Db2 V11.5: Partitioning and Clustering Guide

Parallel database systems

Parallelism

Components of a task, such as a database query, can be run in parallel to dramatically enhance
performance. The nature of the task, the database configuration, and the hardware environment, all
determine how the Db2 database product will perform a task in parallel.

These factors are interrelated. Consider them all when you work on the physical and logical design of a
database. The following types of parallelism are supported by the Db2 database system:

- I/0

« Query

- Utility

Input/output parallelism

When there are multiple containers for a table space, the database manager can use parallel I/0. Parallel
I/0 refers to the process of writing to, or reading from, two or more I/O devices simultaneously; it can
result in significant improvements in throughput.

Query parallelism
There are two types of query parallelism: interquery parallelism and intraquery parallelism.

Interquery parallelism refers to the ability of the database to accept queries from multiple applications at
the same time. Each query runs independently of the others, but the database manager runs all of them
at the same time. Db2 database products have always supported this type of parallelism.

Intraquery parallelism refers to the simultaneous processing of parts of a single query, using either
intrapartition parallelism, interpartition parallelism, or both.

Intrapartition parallelism

Intrapartition parallelism refers to the ability to break up a query into multiple parts. Some Db2 utilities
also perform this type of parallelism.

Intrapartition parallelism subdivides what is typically considered to be a single database operation such
as index creation, database loading, or SQL queries into multiple parts, many or all of which can be runin
parallel within a single database partition.

Figure 28 on page 62 shows a query that is broken into three pieces that can be run in parallel, with the
results returned more quickly than if the query were run in serial fashion. The pieces are copies of each
other. To use intrapartition parallelism, you must configure the database appropriately. You can choose
the degree of parallelism or let the system do it for you. The degree of parallelism represents the number
of pieces of a query running in parallel.

Chapter 1. Planning and design considerations 61

SELECT... FROM...

Query
Database partition

Data

Figure 28. Intrapartition parallelism

Interpartition parallelism

Interpartition parallelism refers to the ability to break up a query into multiple parts across multiple
partitions of a partitioned database, on one machine or multiple machines. The query is run in parallel.
Some Db2 utilities also perform this type of parallelism.

Interpartition parallelism subdivides what is typically considered a single database operation such as
index creation, database loading, or SQL queries into multiple parts, many or all of which can be runin
parallel across multiple partitions of a partitioned database on one machine or on multiple machines.

Figure 29 on page 63 shows a query that is broken into three pieces that can be run in parallel, with the
results returned more quickly than if the query were run in serial fashion on a single database partition.

The degree of parallelism is largely determined by the number of database partitions you create and how
you define your database partition groups.

62 IBM Db2 V11.5: Partitioning and Clustering Guide

SELECT... FROM...

Query

Database Database Database
partition partition partition

Data Data Data

Figure 29. Interpartition parallelism

Simultaneous intrapartition and interpartition parallelism

You can use intrapartition parallelism and interpartition parallelism at the same time. This combination
provides two dimensions of parallelism, resulting in an even more dramatic increase in the speed at which
queries are processed.

SELECT... FROM...
Query
l | |
SELECT... FROM... SELECT... FROM...
Database Database
partition partition

Figure 30. Simultaneous interpartition and intrapartition parallelism

Chapter 1. Planning and design considerations 63

Utility parallelism

Db2 utilities can take advantage of intrapartition parallelism. They can also take advantage of
interpartition parallelism; where multiple database partitions exist, the utilities run in each of the
database partitions in parallel.

The load utility can take advantage of intrapartition parallelism and I/O parallelism. Loading data is a
CPU-intensive task. The load utility takes advantage of multiple processors for tasks such as parsing and
formatting data. It can also use parallel I/O servers to write the data to containers in parallel.

In a partitioned database environment, the LOAD command takes advantage of intrapartition,
interpartition, and I/0 parallelism by parallel invocations at each database partition where the table
resides.

During index creation, the scanning and subsequent sorting of the data occurs in parallel. The Db2 system
exploits both I/O parallelism and intrapartition parallelism when creating an index. This helps to speed up
index creation when a CREATE INDEX statement is issued, during restart (if an index is marked invalid),
and during the reorganization of data.

Backing up and restoring data are heavily I/O-bound tasks. The Db2 system exploits both I/O parallelism
and intrapartition parallelism when performing backup and restore operations. Backup exploits I/O
parallelism by reading from multiple table space containers in parallel, and asynchronously writing to
multiple backup media in parallel.

Partitioned database environments

A partitioned database environment is a database installation that supports the distribution of data across
database partitions.

- A database partition is a part of a database that consists of its own data, indexes, configuration files,
and transaction logs. A partitioned database environment is a database installation that supports the
distribution of data across database partitions.

- Asingle-partition database is a database having only one database partition. All data in the database is
stored in that single database partition. In this case, database partition groups, although present,
provide no additional capability.

« A multi-partition database is a database with two or more database partitions. Tables can be located in
one or more database partitions. When a table is in a database partition group consisting of multiple
database partitions, some of its rows are stored in one database partition, and other rows are stored in
other database partitions.

Usually, a single database partition exists on each physical machine, and the processors on each system
are used by the database manager at each database partition to manage its part of the total data in the
database.

Because data is distributed across database partitions, you can use the power of multiple processors on
multiple physical machines to satisfy requests for information. Data retrieval and update requests are
decomposed automatically into sub-requests, and executed in parallel among the applicable database
partitions. The fact that databases are split across database partitions is transparent to users issuing SQL
statements.

User interaction occurs through one database partition, known as the coordinator partition for that user.
The coordinator partition runs on the same database partition as the application, or in the case of a
remote application, the database partition to which that application is connected. Any database partition
can be used as a coordinator partition.

The database manager allows you to store data across several database partitions in the database. This
means that the data is physically stored across more than one database partition, and yet can be
accessed as though it were located in the same place. Applications and users accessing data in a multi-
partition database are unaware of the physical location of the data.

Although the data is physically split, it is used and managed as a logical whole. Users can choose how to
distribute their data by declaring distribution keys. Users can also determine across which and over how
many database partitions their data is distributed by selecting the table space and the associated

64 IBM Db2 V11.5: Partitioning and Clustering Guide

database partition group in which the data is to be stored. Suggestions for distribution and replication can
be done using the Db2 Design Advisor. In addition, an updatable distribution map is used with a hashing
algorithm to specify the mapping of distribution key values to database partitions, which determines the
placement and retrieval of each row of data. As a result, you can spread the workload across a multi-
partition database for large tables, and store smaller tables on one or more database partitions. Each
database partition has local indexes on the data it stores, resulting in increased performance for local
data access.

Note: You are not restricted to having all tables divided across all database partitions in the database.
The database manager supports partial declustering, which means that you can divide tables and their
table spaces across a subset of database partitions in the system.

An alternative to consider when you want tables to be positioned on each database partition, is to use
materialized query tables and then replicate those tables. You can create a materialized query table
containing the information that you need, and then replicate it to each database partition.

A non-root installation of a Db2 database product does not support database partitioning. Do not
manually update the db2nodes. cfg file. A manual update returns an error (SQL6031N).

Related information
Best practices: Managing data growth

Database partition and processor environments

This section provides an overview of both single database partition and multiple database partition
configurations. The former include single processor (uniprocessor) and multiple processor (SMP)
configurations, and the latter include database partitions with one processor (MPP) or multiple
processors (cluster of SMPs), and logical database partitions.

Capacity refers to the number of users and applications able to access the database. This is in large part
determined by memory, agents, locks, I/O, and storage management. Scalability refers to the ability of a
database to grow and continue to exhibit the same operating characteristics and response times.
Capacity and scalability are discussed for each environment.

Single database partition on a single processor

This environment is made up of memory and disk, but contains only a single CPU (see Figure 31 on page
65). The database in this environment serves the needs of a department or small office, where the data
and system resources (including a single processor or CPU) are managed by a single database manager.

Uniprocessor
environment

Database partition

CPU

Memary

" il

L @ Disks

Figure 31. Single database partition on a single processor

Capacity and scalability

Chapter 1. Planning and design considerations 65

https://ibm.biz/Bdx2Gq

In this environment you can add more disks. Having one or more I/0 servers for each disk allows for more
than one I/0 operation to take place at the same time.

A single-processor system is restricted by the amount of disk space the processor can handle. As
workload increases, a single CPU might not be able to process user requests any faster, regardless of
other components, such as memory or disk, that you might add. If you have reached maximum capacity
or scalability, you can consider moving to a single database partition system with multiple processors.

Single database partition with multiple processors

This environment is typically made up of several equally powerful processors within the same machine
(see Figure 32 on page 66), and is called a symmetric multiprocessor (SMP) system. Resources, such as
disk space and memory, are shared.

With multiple processors available, different database operations can be completed more quickly. Db2
database systems can also divide the work of a single query among available processors to improve
processing speed. Other database operations, such as loading data, backing up and restoring table
spaces, and creating indexes on existing data, can take advantage of multiple processors.

Symmetric multiprocessor

(SMP) environment
Database partition
CFU CFU
CPU CPU
Memaory

&E Disks

Figure 32. Single partition database symmetric multiprocessor environment

Capacity and scalability

You can increase the I/0 capacity of the database partition associated with your processor by increasing
the number of disks. You can establish I/O servers to specifically deal with I/O requests. Having one or
more I/0 servers for each disk allows for more than one I/0 operation to take place at the same time.

If you have reached maximum capacity or scalability, you can consider moving to a system with multiple
database partitions.

Multiple database partition configurations

You can divide a database into multiple database partitions, each on its own machine. Multiple machines
with multiple database partitions can be grouped together. This section describes the following database
partition configurations:

« Database partitions on systems with one processor
« Database partitions on systems with multiple processors
« Logical database partitions

66 IBM Db2 V11.5: Partitioning and Clustering Guide

Database partitions with one processor

In this environment, there are many database partitions. Each database partition resides on its own
machine, and has its own processor, memory, and disks (Figure 33 on page 67). All the machines are
connected by a communications facility. This environment is referred to by many different names,
including: cluster, cluster of uniprocessors, massively parallel processing (MPP) environment, and
shared-nothing configuration. The latter name accurately reflects the arrangement of resources in this
environment. Unlike an SMP environment, an MPP environment has no shared memory or disks. The MPP
environment removes the limitations introduced through the sharing of memory and disks.

A partitioned database environment allows a database to remain a logical whole, despite being physically
divided across more than one database partition. The fact that data is distributed remains transparent to
most users. Work can be divided among the database managers; each database manager in each
database partition works against its own part of the database.

Communications
facility
Uniprocessor Uniprocessor Uniprocessor
environment environment environment
Database partition Database parfition Database partition
CPU CPU CPU
Memory Memory Memory

m Disks (o] Disks o] v

Figure 33. Massively parallel processing (MPP) environment

Capacity and scalability

In this environment you can add more database partitions to your configuration. On some platforms the
maximum number is 512 database partitions. However, there might be practical limits on managing a
high number of machines and instances.

If you have reached maximum capacity or scalability, you can consider moving to a system where each
database partition has multiple processors.

Database partitions with multiple processors

An alternative to a configuration in which each database partition has a single processor, is a
configuration in which each database partition has multiple processors. This is known as an SMP cluster
(Figure 34 on page 68).

This configuration combines the advantages of SMP and MPP parallelism. This means that a query can be
performed in a single database partition across multiple processors. It also means that a query can be
performed in parallel across multiple database partitions.

Chapter 1. Planning and design considerations 67

Communications

facility
|
SMP environment SMP environment
Database partition Database partition
CPU CPU cPU CPU
CPU CPU CPU CPU
Memory Memory

@ Disks @ Disks

Figure 34. Several symmetric multiprocessor (SMP) environments in a cluster

Capacity and scalability

In this environment you can add more database partitions, and you can add more processors to existing
database partitions.

Logical database partitions

A logical database partition differs from a physical partition in that it is not given control of an entire
machine. Although the machine has shared resources, database partitions do not share the resources.
Processors are shared but disks and memory are not.

Logical database partitions provide scalability. Multiple database managers running on multiple logical
partitions can make fuller use of available resources than a single database manager can. Figure 35 on
page 69 illustrates the fact that you can gain more scalability on an SMP machine by adding more
database partitions; this is particularly true for machines with many processors. By distributing the
database, you can administer and recover each database partition separately.

68 IBM Db2 V11.5: Partitioning and Clustering Guide

Big SMP environment

Communications
facility
Database Database
partition 1 partition 2
CPU cPU
CPU CcPU
Memory Memory

Figure 35. Partitioned database with symmetric multiprocessor environment

Figure 36 on page 70 illustrates that you can multiply the configuration shown in Figure 35 on page 69

to increase processing power.

Chapter 1. Planning and design considerations 69

Communications

Big SMP Big SMP
environment environment
Communications Communications
facility
Database Database Database Database
partition 1 partition 2 partition 1 partition 2
CPU CPU CPU CPU
CPU CPU CPU CPU
Memory Memory Memaory Memary

\ \ \
(5] owe o o

Figure 36. Partitioned database with symmetric multiprocessor environments clustered together

Note: The ability to have two or more database partitions coexist on the same machine (regardless of the
number of processors) allows greater flexibility in designing high availability configurations and failover
strategies. Upon machine failure, a database partition can be automatically moved and restarted on a
second machine that already contains another database partition of the same database.

Summary of parallelism best suited to each hardware environment

The following table summarizes the types of parallelism best suited to take advantage of the various
hardware environments.

Table 8. Types of Possible Parallelism in Each Hardware Environment

Hardware Environment I/0 Parallelism Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Processors (SMP)

Single Database Partition, Single Yes No1l No
Processor
Single Database Partition, Multiple Yes Yes No

70 IBM Db2 V11.5: Partitioning and Clustering Guide

Table 8. Types of Possible Parallelism in Each Hardware Environment (continued)

Hardware Environment

I/0 Parallelism

Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Multiple Database Partitions, One Yes Nol Yes
Processor (MPP)

Multiple Database Partitions, Multiple Yes Yes Yes
Processors (cluster of SMPs)

Logical Database Partitions Yes Yes Yes

1 There can be an advantage to setting the degree of parallelism (using one of the configuration
parameters) to some value greater than one, even on a single processor system, especially if your
queries are not fully using the CPU (for example, if they are I/O bound).

Chapter 1. Planning and design considerations 71

72 IBM Db2 V11.5: Partitioning and Clustering Guide

Chapter 2. Installation considerations

Installation prerequisites

Installing Db2 (Windows)

This task describes how to download and install the Db2 Community Edition for Windows. Db2
Community Edition is a full-featured server installation. After a three-month trial period, you can apply
either a Standard or Advanced license to receive product support and additional functionality.

Before you begin

Before you download and install Db2 Community Edition:

If you are planning on setting up a partitioned database environment, refer to Setting up a partitioned
database environment.

Ensure that your system meets installation, memory, and disk requirements.

If you are planning to use LDAP to register the Db2 server in Windows operating systems Active
Directory, extend the directory schema before you install. Otherwise, you must manually register the
node and catalog the databases. For more information, see Extending the Active Directory Schema for
LDAP directory services (Windows).

You must have a local Administrator user account with the recommended user rights to perform the
installation. In Db2 database servers where LocalSystem can be used as the DAS and Db2 instance user
and you are not using the database partitioning feature, a non-administrator user with elevated
privileges can perform the installation.

Although not mandatory, it is recommended that you close all programs so that the installation program
can update any files on the computer without requiring a reboot.

Installing Db2 products from a virtual drive or an unmapped network drive (such as ||hostname
|sharename in Windows Explorer) is not supported. Before you attempt to install Db2 products, you
must map the network drive to a Windows drive letter (for example, Z:).

Restrictions

You cannot have more than one instance of the Db2 Setup wizard that is running in any user account.

The Db2 copy name and the instance name cannot start with a numeric value.The Db2 copy name is
limited to 64 English characters that consists of the characters A-Z, a-z and 0-9.

The Db2 copy name and the instance name must be unique among all Db2 copies.
The use of XML features is restricted to a database that has only one database partition.

If you installed one of the following products, then no other Db2 database product can be installed in
the same path:

— IBMP® Data Server Runtime Client
— IBM Data Server Driver Package
The Db2 Setup wizard fields do not accept non-English characters.

If you enable extended security on Windows or higher, the users must belong to the DB2ADMNS or
DB2USERS group to run local Db2 commands and applications. This setup is required because of an
extra security feature (User Access Control) that limits the privileges that local administrators have by
default. If users do not belong to one of these groups, they will not have read access to local Db2
configuration or application data.

© Copyright IBM Corp. 2016, 2020 73

https://www.ibm.com/support/pages/system-requirements-ibm-db2-linux-unix-and-windows

Procedure

Use the Db2 Setup wizard to define your installation and install your Db2 database product on your
system.
To install Db2 Community Edition on a Windows machine:

1. Go to the Db2 Download page and sign in with your IBM account credentials.

2. Choose your contact option (e.g., email), review the Terms and Conditions, and then click Continue.

3. From the Downloads page that appears, locate the IBM® Db2 11.5 Edition for Windows® on AMD64
and Intel® EM64T systems option and click the associated Download now link.

4. From the pop-up box that appears, choose Save File.
The file is downloaded to your browser's default location on your Windows server machine.
5. Log on to the system with the local Administrator account.

6. Using Windows Explorer, navigate to the v11.5_ntx64_dec.zip file that you downloaded and
extract it the desired location on your server.

7. Expand the extracted folder, \v11.5_ntx64_dec\SERVER_DEC\image, right-click the setup.exe
file and select Run as administrator to start the Db2 Setup Launchpad..

Attention: You must never start the installation package(".msi" file) present in the Db2 installation
media directly. Installation must always be started by setup.exe with full administrative
privileges.
8. If a User Account Control window is displayed, click Yes.
9. Click Install a Product.
10. Scroll to the end of the DB2 Version 11.5.0.0 Server Editions and click Install New.
11. Click Next to begin the installation.
12. Review the software licence agreement, click the option to accept, and then click Next.
13. Select the Typical install option and then click Next.

14. Select the option, Install DB2 Server Edition on this computer and save my settings in a response
file and then click Next.

15. Accept the default install path and then click Next.
16. Select the option, Do no autostart the IBM SSH server at system startup and then click Next.

17. From the Domain drop-down list box, select None- use local user account as the domain name,
enter and confirm a password, and then click Next.

18. Accept DB2 as the default instance and then click Next.

19. Ensure that the Set up your DB2 server to send notifications check box is NOT SELECTED and then
click Next.

20. Select the option, enable operating system security for DB2 objects, and then click Next.
21. When the Start copying files window is displayed, click Finish.
22. When the setup is complete, click Finish.

Results

Your Db2 database product is installed, by default, in the Program_Files\IBM\sqllib directory,
where Program_Files represents the location of the Program Files directory.

If you are installing on a system where this directory is already being used, the Db2 database product
installation path has _xa added to it. The xx are digits, starting at 91 and increasing, depending on how
many Db2 copies you installed.

You can also specify your own Db2 database product installation path.

What to do next

« Verify your installation. You can use the db2val tool for verification.

74 1IBM Db2 V11.5: Partitioning and Clustering Guide

https://www.ibm.com/account/reg/ca-en/signup?formid=urx-33669

« Perform the necessary post-installation tasks.

For information about errors that are encountered during installation, review the installation log file that is
located in the My Documents\DB2LOG\ directory. The log file uses the following format: DB2-
ProductAbrrev-DateTime.log, for example, DB2-ESE-Tue Apr 04 17_04_45 2012.1og.

If this is a new Db2 product installation on Windows 64-bit, and you use a 32-bit OLE DB provider, you
must manually register the IBMDADB2 DLL. To register this DLL, run the following command:

c:\windows\SysWOW64\regsvr32 /s c:\Program_Files\IBM\SQLLIB\bin\ibmdadb2.d11l

where Program_Files represents the location of the Program Files directory.

IBM Data Studio can be installed by running the Db2 Setup wizard.

Preparing the environment for a partitioned Db2 server (Windows)
This topic describes the steps required to prepare your Windows environment for a partitioned
installation of the Db2 database product.

Before you begin

When you add a new machine as a partition in a partitioned database environment, the new machine
must:

« Have the same operating system version as the instance owning machine.

« Have the same CPU architecture (x32 bit or x64 bit) as the instance owning machine.

If the new machine does not meet these requirements, adding the partition might fail.

Procedure

To prepare your Windows environment for installation:
1. Ensure that the primary computer and participating computers belong to the same Windows domain.

Check the domain to which the computer belongs by using the System Properties dialog, accessible
through the Control Panel.

2. Ensure that time and date settings on the primary computer and participating computers are
consistent.

To be considered consistent, the difference in GMT time between all computers must be no greater
than one hour.

System date and time can be modified using the Date/Time Properties dialog, accessible through the
Control Panel. You can use the max_time_diff configuration parameter to change this restriction.
The defaultismax_time_diff = 60, which allows a difference of less than 60 minutes.

3. Ensure that each computer object that participates in the partitioned database environment has the
"Trust computer for delegation" privilege flagged.

You can verify that the "Trust computer for delegation" check box on the General tab of each
computer's account Properties dialog box in the Active Directory Users and Computers console is
checked.

4. Ensure that all participating computers can communicate with each other using TCP/IP:

a) On one participating computer, enter the hostname command, which will return the hostname of
the computer.

b) On another participating computer, enter the following command:
ping hostname

where hostname represents the hostname of the primary computer. If the test is successful, you
will receive output similar to the following:

Pinging ServerA.ibm.com [9.21.27.230] with 32 bytes of data:
Reply from 9.21.27.230: bytes=32 time<10ms TTL=128

Chapter 2. Installation considerations 75

Reply from 9.21.27.230: bytes=32 time<10ms TTL=128
Reply from 9.21.27.230: bytes=32 time<10ms TTL=128

Repeat these steps until you are sure that all participating computers can communicate with each
other using TCP/IP. Each computer must have a static IP address.

If you are planning to use multiple network adapters, you can specify which adapter to use to
communicate between database partition servers. Use thedb2nchg command to specify the
netname field in the db2nodes. cfg file after the installation is complete.

5. During the installation you will be asked to provide a Db2 Administration Server user account.

This is a local or domain user account that will be used by the Db2 Administration Server (DAS). The
DAS is an administration service used to support the GUI tools and assist with administration tasks.
You can define a user now or have the Db2 Setup wizard create one for you. If you want to create a
new domain user using the Db2 Setup wizard, the account used to perform the installation must have
authority to create domain users.

6. On the primary computer, where you will install the instance-owning partition, you must have a
domain user account that belongs to the local Administrators group.

You will log on as this user when you install Db2 database products. You must add the same user
account to the local Administrators group on each participating computer. This user must have the Act
as part of the operating system user right.

7. Ensure that all computers in the instance have the database directory on the same local drive letter.

You can check this condition by running the GET DATABASE CONFIGURATION command and verifying
the value of the dftdbpath DBM configuration parameter.

8. During the installation you will be asked to provide a domain user account to be associated with the
Db2 instance.

Every Db2 instance has one user assigned. The Db2 database system logs on with this user name
when the instance is started. You can define a user now, or you can have the Db2 Setup wizard create
a new domain user for you.

When adding a new node to a partitioned environment the Db2 copy name must be the same on all
computers.

If you want to create a new domain user using the Db2 Setup wizard, the account used to perform the
installation must have authority to create domain users. The instance user domain account must
belong to the local Administrators group on all the participating computers and will be granted the
following user rights:

« Act as part of the operating system
« Create token object

« Lock pages in memory

« Log on as a service

« Increase quotas

« Replace a process level token

If extended security was selected, the account must also be a member of the DB2ADMNS group. The
DB2ADMNS group already has these privileges so the privileges are already explicitly added to the
account.

Fast communications manager (Windows)

In multiple member environments, each member has a pair of FCM daemons to support communication
between members that is related to agent requests. One daemon is for sending communications, and the
other is for receiving. These daemons and supporting infrastructure are activated when an instance is
started. FCM communication is also used for agents working within the same member; this type of
communication is also known as intra-member communication.

76 IBM Db2 V11.5: Partitioning and Clustering Guide

You can specify the number of FCM message buffers by using the £cm_num_buffers database manager
configuration parameter. You can specify the number of FCM channels by using the £cm_num_channels
database manager configuration parameter. By default, the £cm_num_buffers and
fcm_num_channels database manager configuration parameters are set to AUTOMATIC. If the setting is
AUTOMATIC, which is the recommended setting, the FCM monitors resource usage and adjusts resources
to accommodate workload demand.

An overview of installing Db2 database servers (Linux and UNIX)
This topic outlines the steps for installing your Db2 server product on AIX, and Linux.

Procedure

To install your Db2 server product:

1.
2.
3.

Review your Db2 product prerequisites.
Review Db2 upgrade information if applicable.

On all platforms, except for Linux on x86_32, you must install a 64-bit kernel before proceeding with
the installation, otherwise the installation will fail.

. Download an installation image and extract the file.
. Install your Db2 database product using:

« the Db2 Setup wizard.
« asilent installation with a response file.

. Install your Db2 product using one of the available methods:

« The Db2 Setup wizard
« Asilent installation using a response file
» Payload file deployment

For Db2 servers, you can use the Db2 Setup wizard to perform installation and configuration tasks,
such as:

« Selecting Db2 installation type (typical, compact, or custom).
« Selecting Db2 product installation location.

« Install the languages that you can specify later as the default language for the product interface and
messages.

« Install or upgrade the IBM Tivoli® System Automation for Multiplatforms (Linux and AIX).

- Setting up a Db2 instance.

« Setting up the Db2 Administration Server (including DAS user setup).

« Setting up the Db2 Text Search server.

« Setting up Administration contact and health monitor notification.

« Setting up and configuring your instance setup and configuration (including instance user setup).
« Setting up Informix data source support.

« Preparing the Db2 tools catalog.

« Creating response files.

. If you installed a Db2 server using a method other than the Db2 Setup wizard, post-installation

configuration steps are required.

Db2 installation methods
You can install Db2 database products in multiple methods. Each installation method is suited for specific
circumstances.

The following table shows the installation methods that are available by operating system.

Chapter 2. Installation considerations 77

Table 9. Installation method by operating system.

Installation method Windows Linux or UNIX
Db2 Setup wizard Yes Yes

Response file installation Yes Yes
db2_install command No Yes

Payload file deployment No Yes

The following list describes Dbh2 installation methods.

Db2 Setup wizard
The Db2 Setup wizard is a GUI installer available on Linux, UNIX, and Windows operating systems.
The Db2 Setup wizard provides an easy-to-use interface for installing Db2 database products and
executing initial setup and configuration tasks.

The Db2 Setup wizard can also create Db2 instances and response files that can be used to duplicate
this installation on other workstations.

Note: For non-root installations on Linux and UNIX operating systems, only one Db2 instance can
exist. The Db2 Setup wizard automatically creates the non-root instance.

On Linux and UNIX operating systems, to install a Db2 product by using the Db2 Setup wizard, you
require an X Window System (X11) to display the graphical user interface (GUI). To display the GUI on
your local workstation, the X Window System software must be installed and running. You must also
set the DISPLAY variable to the IP address of the workstation you use to install the Db2 product
(export DISPLAY=<ip-address>:0.0). For example, export DISPLAY=192.168.1.2:0.0. For more
information, see this article.

Db2 Docker image
Docker containers provide you with a virtualized run-time environment from which to run Db2,
without impacting your existing operating system. You can now pull a Docker image of Db2
Community Edition from Docker Hub and install it in a Docker container on Windows 10, Mac 0OS
10.10 or higher, an a number of Linux distributions. See Installing Db2 Community Edition with
Docker for more information.

Response file installation
A response file is a text file that contains setup and configuration values. The file is read by the Db2
Setup program and the installation is executed according to the values that were specified.

A response file installation is also referred to as a silent installation.

Another advantage to response files is that they provide access to parameters that cannot be set by
using the Db2 Setup wizard.

On Linux and UNIX operating systems, if you embed the Db2 installation image in your own
application, your application might receive installation progress information and prompts from the
installer in computer-readable form. This behavior is controlled by the INTERACTIVE response file
keyword.

A response file can be created in a number of ways:

Using the response file generator.
You can use the response file generator to create a response file that replicates an existing
installation. For example, you might install an IBM data server client, fully configure the client,
then generate a response file to replicate the installation and configuration of the client to other
computers.

Using the Db2 Setup wizard.
The Db2 Setup wizard can create a response file based on the selections you make as you
proceed through the Db2 Setup wizard. Your selections are recorded in a response file that you
can save to a location on your system. If you select a partitioned database installation, two

78 IBM Db2 V11.5: Partitioning and Clustering Guide

https://ibm.biz/BdqKJp
https://hub.docker.com/r/ibmcom/db2

response files are generated, one for the instance-owning computer and one for participating
computers.

One benefit of this installation method is that you can create a response file without performing an
installation. This feature can be useful to capture the options that are required to install the Db2
database product. The response file can be used later to install the Db2 database product
according to the exact options you specified.

You can export a client or server profile with the db2cfexp command to save your client or server
configuration. Import the profile by using the db2c£imp command. A client or server profile that
is exported with the db2cfexp command can also be imported during a response file installation
by using the CLIENT_IMPORT_PROFILE keyword.

Export the client or server profile after you install and catalog any data sources.

Customizing the sample response files that are provided for each Db2 database product.
An alternative to using the response file generator or the Db2 Setup wizard to create a response
file is to manually modify a sample response file. Sample response files are provided on the Db2
database installation media. The sample response files provide details about all the valid
keywords for each product.

db2_install command (Linux and UNIX operating systems only)
The db2_install command installs all components for the Db2 database product you specify with
the English interface support. You can select additional languages to support with the =L parameter.
You cannot select or clear components.

Although the db2_install command installs all components for the Db2 database product you
specify, it does not install user and group creation, instance creation, or configuration. This method of
installation might be preferred in cases where configuration is to be done after installation. To
configure your Db2 database product while you install it, you can use the Db2 Setup wizard.

On Linux and UNIX operating systems, if you embed the Db2 installation image in your own
application, your application might receive installation progress information and prompts from the
installer in computer-readable form.

This installation method requires manual configuration after the product files are deployed.

Payload file deployment (Linux and UNIX only)
This method is an advanced installation method that is not recommended for most users. It requires
the user to physically install payload files. A payload file is a compressed .tar file that contains all of
the files and metadata for an installable component.

This method is not supported for Db2 pureScale installation.
This installation method requires manual configuration after the product files are deployed.

Note: Db2 database product installations are no longer operating system packages on Linux and UNIX. As
a result, you can no longer use operating system commands for installation. Any existing scripts that you
use to interface and query with Db2 database product installations must change.

Installing Db2 servers using the Db2 Setup wizard (Linux and UNIX)

This task describes how to download and install the Db2 Community Edition for Linux and UNIX operating
systems. Db2 Community Edition is a full-featured server installation. After a three-month trial period,
you can apply either a Standard or Advanced license to receive product support and additional
functionality.

Before you begin
Before you start the Db2 Setup wizard:

« If you are planning on setting up a partitioned database environment, refer to "Setting up a partitioned
database environment" in Installing Db2 Servers.

 Ensure that your system meets installation, memory, and disk requirements.

« Ensure that you installed a supported browser.

Chapter 2. Installation considerations 79

« You can install a Db2 database server by using either root or non-root authority. For more information
about non-root installation, see Non-root installation overview (Linux and UNIX). When Ubuntu Linux
18.04 LTS is installed, root login is disabled by default. Follow these steps to enable root user access:

1. From the terminal window, enter this command:
sudo passwd root
2. Enter the password for the administrative user account when the prompt
[sudo] password for [AdminUser]: is displayed.
3. Press ENTER.

4. Create a new password for the root user when the prompt
Entexr new Unix Passwoxd is displayed. Re-enter the same password in the next prompt.

You should see this message:
passwd: password updated successfully
If this message is not displayed, go through the steps again, making any corrections suggested by the

error message or messages that are returned.

« The Db2 database product image must be available. You can obtain a Db2 installation image by
downloading an installation image from Passport Advantage®.

- If you are installing a non-English version of a Db2 database product, you must have the appropriate
National Language Packages.

« The Db2 Setup wizard is a graphical installer. To display the graphical user interface (GUI) on your local
workstation, the X Window System (X11) software must be installed and running. You must also set the
DISPLAY variable to the IP address of the workstation you use to install the Db2 product:

export DISPLAY=<ip-address>:0.0
For example,

export DISPLAY=192.168.1.2:0.0

For more information, see this developerWorks article.

- If you are using the security software in your environment, you must manually create required Db2
users before you start the Db2 Setup wizard.

Prerequisites
Before you begin, ensure that you have access to the following software on your server machine:

« Ubuntu Linux 18.04 LTS (Desktop)* — The latest long-term support (LTS) version of the Ubuntu Linux
operating system.

« Db2 Community Edition Version 11.5.0.0 — Free, fully functional version of Db2 intended for
development, test, and small production environments.

« libaiol - Linux kernel asynchronous input/output (I/0) shared library. (Enables a single application
thread to overlap I/O operations with other processing, by providing an interface for submitting one or
more I/O requests in a single system call without waiting for completion.)

« binutils — GNU Binary Utilities shared library. (A set of programming tools for creating and managing
binary programs, object files, libraries, profile data, and assembly source code.)

« liblogger-syslog-perl — An interface to the UNIX program that sends messages to the system logger,
written in Perl. (Takes care of everything regarding Syslog communication; provides one function for
each of the following Syslog message levels: debug, info, warning, error, notice, critical, and alert.)

« zlibdg-dev — A shared Linux library that implements the deflate compression method found in gzip and
PKZIP.

« libpamO0g:i386 — Linux Pluggable Authentication Modules for Intel x86. (Enables the local system
administrator to choose how applications authenticate users.)

80 IBM Db2 V11.5: Partitioning and Clustering Guide

http://www.ibm.com/developerworks/community/blogs/paixperiences/entry/remotex11aix?lang=en

o li

bstdc++6:i386 — GNU Standard C++ Library, Version 3 for Intel x86. (A runtime library for C++

programs built with the GNU compiler.)

To
1.
2.
3.

install the newest versions of all Linux packages that are currently on the system, follow these steps:
Open a terminal window if you do not already have one open.
Run the command su - root.

When the Passwoxd prompt is displayed, provide the password you created for the root user earlier.
The command line prompt should change from $ to #.

. Run the command apt-get upgrade to fetch and install the newest versions of all Linux packages

that are currently on the system.

. Run the following commands to install the prerequisite Linux packages:

apt-get -y install libaiol

apt-get -y install binutilsapt-get -y install zliblg-dev
apt-get -y install liblogger-syslog-perl

apt-get -y install libpam@g:i386

apt-get -y install libstdc++6:1386

. Run the command apt-get update to update the list of all Linux packages that are installed on the

system.

Restrictions

= You cannot have more than one instance of the Dh2 Setup wizard running in any user account.

. T
(¢]

. T

he use of XML features is restricted to a database that is defined with the code set UTF-8 and has only
ne database partition.

he Db2 Setup wizard fields do not accept non-English characters.

Procedure

Use the Db2 Setup wizard to define your installation and install the Db2 database product on your system.

To

1.
2.

0 3 o ol

10.

install Db2 Community Edition on a Linux machine:
Go to the Db2 Download page and sign in with your IBM account credentials.

Choose your contact option (for example, email), review the Terms and Conditions, and click
Continue.

. Locate the IBM® Db2 for Linux® on AMD64 and Intel® EM64T systems (x64) option from the Downloads
page and click the associated Download now link.

. Choose Save File from the pop-up box.
You can now extract the downloaded software and install Db2 Community Edition on your machine.
. Open a terminal window.
. Run the command su - root.
. Provide the correct password for the root user when the passwoxrd prompt is displayed.

. Create a directory named software in the /home directory and run the following commands to make
the software directory accessible to everyone:

mkdir /home/software
chmod 777 /home/software

. Run the following command to move the downloaded file to the directory:
mv /home/AdminUser/Download/*.gz /home/software

Go to the /home/software directory and run the following commands to extract and untar the file.

Chapter 2. Installation considerations 81

https://www.ibm.com/account/reg/ca-en/signup?formid=urx-33669

On Linux operating systems:

cd /home/software
gunzip *.gz
tar -xvf v11.5_linuxx64_dec.tar

On AIX operating systems:

cd /home/software
gunzip *.gz
gnutar -xvf v11.5_aix64_server.tar.gz
11. Delete the . tar file that was created in the previous step.

12. Make the sub-directory (sexver_dec) accessible to everyone, then run the following commands to
rename the sub-directory to ibm-db2:

rm -f vx.tar
chmod 777 server_dec
mv server_dec ibm-db2

13. Move to the /home/software/ibm-db2 directory and run the following commands to verify that
the server has everything needed to install and run Db2:

cd ibm-db2
./db2prereqcheck -v 11.5.0.0s

When all checks are complete, the following message is displayed:

DBT3533I The db2prereqcheck utility has confirmed that all installation prerequisites were
met.

If this message is not displayed, review the output of the db2prereqcheck utility and resolve any
problems identified.

14. Run the command . /db2setup to load and start the Db2 Setup/Installation program. From the
Welcome window, click New Install.

15. Select DB2 Version 11.5.0.0 Server Editions and then click Next.

16. Click Click to view to view the IBM terms . Click the I agree to the IBM terms check box and then
click Next.

17. Enter a password for the Db2 instance owner (db2instl). The instance owner username and
password provided is the user ID and password you will use to work with Db2. Click Next.

18. Enter a password for the Db2 fenced user (db2fencl). The fenced user is used to run user-defined
functions and stored procedures outside of the address space that is used by a Db2 database. Click
Next.

19. Verify that the Install DB2 Server Edition on this computer and save my settings in a response file
option is selected.

20. Click Finish to start the Db2 installation process.
21. When the installation process is complete, click Post-install steps.
Carefully read the information:
« Verify that the Db2 software was installed correctly
» View your Db2 license entitlements
- Start using Db2
« Access the online Db2 documentation
22. Click Close.

23. Click Log file to review the contents of the log file after control returns to the Setup Complete
window.

24. Click Close to return to the Setup Complete window. Click Finish to close the Db2 Setup installation
program.

82 IBM Db2 V11.5: Partitioning and Clustering Guide

Results

For non-root installations, Db2 database products are always installed in the $HOME/sql1ib directory,
where $HOME represents the non-root user's home directory.

For root installations, Db2 database products are installed, by default, in one of the following directories:

AIX
/opt/IBM/db2/V11.5

Linux
/opt/ibm/db2/V11.5

If you are installing on a system where this directory is already being used, the Db2 database product
installation path has _xx added to it. The _xx are digits, starting at 01 and increasing, depending on how
many Db2 copies you have installed.

You can also specify a custom Db2 database product installation path.
Db2 installation paths have the following rules:

« Caninclude lowercase letters (a-z), uppercase letters (A-Z), and the underscore character (_).
- Cannot exceed 128 characters.

« Cannot contain spaces.

« Cannot contain characters that are other than English characters.

The path name cannot be a subdirectory of an existing Db2 installation.

The installation paths cannot be symbolic links.
The installation log files are:
« The Db2 setup log file. This file captures all Db2 installation information, including errors.

— For root installations, the Db2 setup log file name is db2setup.log.

— For non-root installations, the Db2 setup log file name is db2setup_username.log, where
username is the non-root user ID under which the installation was performed.

« The Db2 error log file. This file captures any error output that is returned by Java™ (for example,
exceptions and trap information).

— Forroot installations, the Db2 error log file name is db2setup.err.

— For non-root installations, the Db2 error log file name is db2setup_username.exrx, where
username is the non-root user ID under which the installation was performed.

By default, these log files are located in the /tmp directory. You can specify the location of the log files.

There is no longer a db2setup. his file. Instead, the Db2 installer saves a copy of the Db2 setup log file
inthe DB2_DIR/install/logs/ directory, and renames it db2install.histozry. If the name exists,
then the Db2 installer renames it db2install.history.xxxx, where xxxx is 0000-9999, depending on
the number of installations you have on that machine.

Each installation copy has a separate list of history files. If an installation copy is removed, the history
files under this install path are removed as well. This copying action is done near the end of the
installation and if the program is stopped or aborted before completion, the history file will not be
created.

What to do next

« Verify your installation.
« Perform the necessary post-installation tasks.

National Language Packs can also be installed by running the . /db2setup command from the directory,
where the National Language Pack resides, after you install the Db2 database product.

On Linux x86, if you want your Db2 database product to have access to Db2 documentation either on your
local computer or on another computer on your network, then you must install the Db2 Information

Chapter 2. Installation considerations 83

Center. The Db2 Information Center contains documentation for the Db2 database system and Db2
related products.

Fast communications manager (Linux and UNIX)
The fast communications manager (FCM) provides communications support for partitioned database
environments.

In multiple member environments, each member has a pair of FCM daemons to support communication
between members that is related to agent requests. One daemon is for sending communications, and the
other is for receiving. These daemons and supporting infrastructure are activated when an instance is
started. FCM communication is also used for agents working within the same member; this type of
communication is also known as intra-member communication.

The FCM daemon collects information about communication activities. You can obtain information about
FCM communications by using the database system monitor. If communications fail between members or
if they re-establish communications, the FCM daemons update monitor elements with this information.
The FCM daemons also trigger the appropriate action for this event. An example of an appropriate action
is the rollback of an affected transaction. You can use the database system monitor to help you set the
FCM configuration parameters.

You can specify the number of FCM message buffers by using the £fcm_num_buffexrs database manager
configuration parameter. You can specify the number of FCM channels by using the £cm_num_channels
database manager configuration parameter. By default, the £cm_num_buffexrs and
fcm_num_channels database manager configuration parameters are set to AUTOMATIC. If the setting is
AUTOMATIC, which is the recommended setting, the FCM monitors resource usage and adjusts resources
to accommodate workload demand.

Before you install

Additional partitioned database environment preinstallation tasks (Linux and UNIX)

Updating environment settings for a partitioned Db2 installation (AIX)
This task describes the environment settings that you need to update on each computer that will
participate in your partitioned database system.

Procedure

To update AIX environment settings:
1. Log on to the computer as a user with root user authority.

2. Set the AIX maxupzroc (maximum number of processes per user) device attribute to 4096 by entering
the following command:

chdev -1 sys0 -a maxuproc='4096'

Note: A bosboot/reboot may be required to switch to the 64-bit kernel if a different image is being
run.

3. Set the TCP/IP network parameters on all the workstations that are participating in your partitioned
database system to the following values. These values are the minimum values for these parameters.
If any of the network-related parameters are already set to a higher value, do not change it.

thewall = 65536
sh_max = 1310720
rfc1323 =1
tcp_sendspace = 221184
tcp_recvspace = 221184
udp_sendspace = 65536
udp_recvspace = 65536
ipgmaxlen = 250
somaxconn = 1024

84 IBM Db2 V11.5: Partitioning and Clustering Guide

To list the current settings of all network-related parameters, enter the following command:
no -a | more

To set a parameter, enter the follow command:
no -o parameter_name=value

where:

« parameter_name represents the parameter you want to set.
« value represents the value that you want to set for this parameter.

For example, to set the tcp_sendspace parameter to 221184, enter the following command:
no -o tcp_sendspace=221184

. If you are using a high speed interconnect, you must set the spoolsize and rpoolsize for cssO to
the following values:

spoolsize 16777216
rpoolsize 16777216

To list the current settings of these parameters, enter the following command:

lsattr -1 css0O -E
To set these parameters, enter the following commands:

/usr/lpp/ssp/css/chgcss -1 cssO -a spoolsize=16777216
/usr/lpp/ssp/css/chgecss -1 css@ -a rpoolsize=16777216

If you are not using the /tftpboot/tuning. cst file to tune your system, you can use the DB2DIR/
misc/rc.local.sample sample script file, where DB2DIR is path where the Db2 database product
has been installed, to update the network-related parameters after installation. To update the
network-related parameters using the sample script file after installation, perform the following steps:

a) Copy this script file to the /etc directory and make it executable by root by entering the following
commands:

cp /usr/opt/db2_09_01/misc/rc.local.sample /etc/rc.local
chown root:sys /etc/rc.local
chmod 744 /etc/rc.local

b) Review the /etc/rc.local file and update it if necessary.

c) Add an entry to the /etc/inittab file so that the /etc/xc.local scriptis executed whenever
the machine is rebooted.

You can use the mkitab command to add an entry to the /etc/inittab file.
To add this entry, enter the following command:

mkitab "rclocal:2:wait:/etc/rc.local > /dev/console 2>&1"

d) Ensure that /etc/rc.nfs entryisincluded in the /etc/inittab file by entering the following
command:

lsitab rcnfs

e) Update the network parameters without rebooting your system by entering the following
command:

/etc/rc.local

. Ensure that you have enough paging space for a partitioned installation of Db2 Enterprise Server
Edition to run.

Chapter 2. Installation considerations 85

If you do not have sufficient paging space, the operating system will kill the process that is using the
most virtual memory (this is likely to be one of the Db2 processes).

To check for available paging space, enter the following command:
lsps -a
This command will return output similar to the following:

Page Space Physical Volume Volume Group Size %Used Active Auto Type

pagingbo hdiskl rootvg 60MB 19 yes yes lv
hdé hdisko rootvg 60MB 21 yes yes 1lv
hdé hdisk2 rootvg 64MB 21 yes yes 1lv

The paging space available should be equal to twice the amount of physical memory installed on your
computer.

6. If you are creating a small to intermediate size partitioned database system, the number of network
file system daemons (NFSDs) on the instance-owning computer should be close to:

of biod on a computer x # of computers in the instance
Ideally, you should run 10 biod processes on every computer. According to the preceding formula, on
a four computer system with 10 biod processes, you use 40 NFSDs.
If you are installing a larger system, you can have up to 120 NFSDs on the computer.

For additional information about NFS, refer to your NFS documentation.

Setting up a working collective to distribute commands to multiple AIX nodes

In a partitioned database environment on AIX, you can set up a working collective to distribute
commands to the set of System p SP workstations that participate in your partitioned database system.
Commands can be distributed to the workstations by the dsh command.

Before you begin

This can be useful when installing or administrating a partitioned database system on AIX, to enable you
to quickly execute the same commands on all the computers in your environment with less opportunity
for error.

You must know the host name of each computer that you want to include in the working collective.
You must be logged on to the Control workstation as a user with root user authority.

You must have a file that lists the host names for all of the workstations that will participate in your
partitioned database system.

Procedure

To set up the working collective to distribute commands to a list of workstations:

1. Create afile called nodelist. txt that will list the host names for all of the workstations that will
participate in the working collective.

For example, assume that you wanted to create a working collective with two workstations called
workstationl and workstation2. The contents of nodelist.txt would be:

workstationl
workstation2

2. Update the working collective environment variable.
To update this list, enter the following command:

export DSH_NODE_LIST=path/nodelist.txt

where path is the location where nodelist.txt was created, and nodelist. txt is the name of the
file that you created that lists the workstations in the working collective.

86 IBM Db2 V11.5: Partitioning and Clustering Guide

3. Verify that the names in the working collective are indeed the workstations that you want, by entering
the following command:

dsh -q
You will receive output similar to the following:

Working collective file /nodelist.txt:
workstationl

workstation2

Fanout: 64

Verifying that NFS is running (Linux and UNIX)
Before setting up a database partitioned environment, you should verify that Network File System (NFS) is
running on each computer that will participate in your partitioned database system.

Procedure
« To verify that NFS is running on each computer:
« AIX operating systems:
Type the following command on each computer:

lssrc -g nfs

The Status field for NFS processes should indicate active. After you have verified that NFS is
running on each system, you should check for the specific NFS processes required by Db2 database
products. The required processes are:

rpc.lockd
rpc.statd

« Linux operating systems:

Type the following command on each computer:
showmount -e hostname

Enter the showmmount command without the hostname parameter to check the local system.

If NFS is not active you will receive a message similar to the following:

showmount: ServerA: RPC: Program not registered

After you have verified that NFS is running on each system, you should check for the specific NFS
processes required by Db2 database products. The required process is rpc.statd.

You canuse theps -ef | grep rpc.statd commands to check for this process.

If these processes are not running, consult your operating system documentation.

Verifying port range availability on participating computers (Linux and UNIX)

This task describes the steps required to verify port range availability on participating computers. The
port range is used by the Fast Communications Manager (FCM). FCM is a feature of Db2 that handles
communications between database partition servers.

Before you begin

Verifying the port range availability on participating computers should be done after you install the
instance-owning database partition server and before you install any participating database partition
servers.

When you install the instance-owning database partition server on the primary computer, Db2 reserves a
port range according to the specified number of logical database partition servers participating in

Chapter 2. Installation considerations 87

partitioned database environment. The default range is four ports. For each server that participates in the
partitioned database environment, you must manually configure the /etc/services file for the FCM
ports. The range of the FCM ports depends on how many logical partitions you want to use on the
participating computer. A minimum of two entries are required, DB2_instance and
DB2_instance_END. Other requirements for the FCM ports specified on participating computers are:

« The starting port number must match the starting port number of the primary computer

- Subsequent ports must be sequentially numbered

« Specified port numbers must be free

To make changes to the services file, you require root user authority.

Procedure

To verify the port range availability on participating computers:
1. Open the sexvices file located in the /etc/sexrvices directory.

2. Locate the ports reserved for the Db2 Fast Communications Manager (FCM). The entries should appear
similar to the following example:

DB2_db2instl 60000/tcp
DB2_db2instl_1 60001/tcp
DB2_db2instl1_2 60002 /tcp
DB2_db2inst1_END 60003 /tcp

Db2 reserves the first four available ports after 60000.

3. On each participating computer, open the services file and verify that the ports reserved for Db2
FCM in the services file of the primary computer are not being used.

4. In the event that the required ports are in use on a participating computer, identify an available port
range for all computers and update each service file, including the services file on the primary
computer.

What to do next

After you install the instance-owning database partition server on the primary computer, you must install
your Db2 database product on the participating database partition servers. You can use the response file
generated for the partitioning servers (default name is db2ese_addpaxrt. rsp), you need to manually
configure the /etc/services files for the FCM ports. The range of the FCM ports depend on how many
logical partitions you want to use on the current machine. The minimum entries are for DB2_ and
DB2__END two entries with consecutive free port numbers. The FCM port numbers used on each
participating machines must have the same starting port number, and subsequent ports must be
sequentially numbered.

Creating a Db2 home file system for a partitioned database system (Linux)

As part of setting up your partitioned database system on Linux operating systems, you need to create a
Db2 home file system. Then you must NFS export the home file system and mount it from each computer
participating in the partitioned database system.

About this task

You must have a file system that is available to all machines that will participate in your partitioned
database system. This file system will be used as the instance home directory.

For configurations that use more than one machine for a single database instance, NFS (Network File
System) is used to share this file system. Typically, one machine in a cluster is used to export the file
system using NFS, and the remaining machines in the cluster mount the NFS file system from this
machine. The machine that exports the file system has the file system mounted locally.

For more information on setting up NFS on Db2 products, see Setting up DB2 for UNIX and Linux on NFS
mounted file systems.

88 IBM Db2 V11.5: Partitioning and Clustering Guide

ftp://ftp.software.ibm.com/software/dw/dm/db2/dm-0609lee/DB2_on_NFS.pdf
ftp://ftp.software.ibm.com/software/dw/dm/db2/dm-0609lee/DB2_on_NFS.pdf

For more command information, see your Linux distribution documentation.

Procedure

To create, NFS export, and NFS mount the Db2 home file system, perform the following steps:
1. On one machine, select a disk partition or create one using £disk.
2. Using a utility like mk£s, create a file system on this partition.

The file system should be large enough to contain the necessary Db2 program files as well as enough
space for your database needs.

3. Locally mount the file system you have just created and add an entry to the /etc/fstab file so that
this file system is mounted each time the system is rebooted.
For example:

/dev/hdal /db2home ext3 defaults 12

4, To automatically export an NFS file system on Linux at boot time, add an entry to the /etc/exports
file.
Be sure to include all of the host names participating in the cluster as well as all of the names that a
machine might be known as. Also, ensure that each machine in the cluster has root authority on the
exported file system by using the "root" option.

The /etc/exports file is an ASCII file which contains the following type of information:
/db2home machinel_name(xw) machine2_name (xrw)

To export the NFS directory, run
/usr/sbin/exportfs -r

5. On each of the remaining machines in the cluster, add an entry to the /etc/fstab file to NFS mount
the file system automatically at boot time.

As in the following example, when you specify the mount point options, ensure that the file system is
mounted at boot time, is read-write, is mounted hard, includes the bg (background) option, and that
setuid programs can be run properly.

fusion-en:/db2home /db2home nfs rw,timeo=7,
hard,intr,bg,suid, lock

where fusion-en represents the machine name.

6. NFS mount the exported file system on each of the remaining machines in the cluster.
Enter the following command:

mount /db2home

If the mount command fails, use the showmount command to check the status of the NFS server. For
example:

showmount -e fusion-en

where fusion-en represents the machine name.

This showmount command should list the file systems which are exported from the machine named
fusion-en. If this command fails, the NFS server may not have been started. Run the following
command as root on the NFS server to start the server manually:

/etc/rc.d/init.d/nfs restart

Assuming the present run level is 3, you can have this command run automatically at boot time by
renaming K20nfs to S20nfs under the following directory: /etc/xc.d/xrc3.d.

Chapter 2. Installation considerations 89

Results

By performing these steps, you have completed the following tasks:

1. On a single computer in the partitioned database environment, you have created a file system to be
used as the instance and home directory.

2. If you have a configuration that uses more than one machine for a single database instance, you have
exported this file system using NFS.

3. You have mounted the exported file system on each participating computer.
Creating a Db2 home file system for a partitioned database system (AIX)
As part of setting up your partitioned database system, you need to create a Db2 home file system. Then

you must NFS export the home file system and mount it from each computer participating in the
partitioned database system.

Before you begin

It is recommended that you create a home file system that is as large as the content on the Db2 database
product DVD. You can use the following command to check the size, KB:

du -sk DVD_mounting_point

A Db2 instance will require at least 200 MB of space. If you do not have enough free space, you can
mount the Db2 database product DVD from each participating computer as an alternative to copying the
contents to disk.

You must have:

« root authority to create a file system
 Created a volume group where your file system is to be physically located.

Procedure

To create, NFS export, and NFS mount the Db2 home file system, perform the following steps:
1. Create the Db2 home file system.

Log on to the primary computer (ServerA) in your partitioned database system as a user with root
authority and create a home file system for your partitioned database system called /db2home.

a) Enter the smit jfs command.

b) Click on the Add a Journaled File System icon.

c) Click on the Add a Standard Journaled File System icon.

d) Select an existing volume group from the Volume Group Name list where you want this file system
to physically reside.

e) Set the SIZE of file system (SIZE of file system (in 512-byte blocks) (Num.) field).

This sizing is enumerated in 512-byte blocks, so if you only need to create a file system for the
instance home directory, you can use 180 000, which is about 90 MB. If you need to copy the

product DVD image over to run the installation, you can create it with a value of 2 000 000, which is
about 1 GB.

f) Enter the mount point for this file system in the MOUNT POINT field. In this example, the mount
point is /db2home.

g) Set the Mount AUTOMATICALLY at system restart field to yes.

The remaining fields can be left to the default settings.
h) Click OK.
2. Export the Db2 home file system.

90 IBM Db2 V11.5: Partitioning and Clustering Guide

NFS export the /db2home file system so that it is available to all of the computers that will participate
in your partitioned database system.

a) Enter the smit nfs command.
b) Click on the Network File System (NFS) icon.
c) Click on the Add a Directory to Exports List icon.

d) Enter the path name and directory to export (for example, /db2home) in the PATHNAME of
directory to export field.

e) Enter the name of each workstation that will participate in your partitioned database system in the
HOSTS allowed root access field.

Use a comma (,) as the delimiter between each name. For example, ServerA, ServerB,
SexrverC. If you are using a high speed interconnect, it is recommended that you specify the high
speed interconnect names for each workstation in this field as well. The remaining fields can be left
to the default settings.

f) Click OK.
. Log out.
. Mount the Db2 home file system from each participating computer.

Log on to each participating computer (ServerB, ServerC, ServerD) and NFS mount the file system that
you exported by performing the following steps:

a) Enter the smit nfs command.

b) Click on the Network File System (NFS) icon.

c) Click on the Add a File System for Mounting icon.

d) Enter the path name of the mount point in the PATHNAME of the mount point (Path) field.

The path name of the mount point is where you should create the Db2 home directory. For this
example, use/db2home.

e) Enter the path name of the remote directory in the PATHNAME of the remote directory field.

For this example, you should enter the same value that you entered in the PATHNAME of the
mount point (Path) field.

f) Enter the hostname of the machine where you exported the file system in the HOST where the
remote directory resides field.

This value is the hostname of the machine where the file system that you are mounting was
created.

To improve performance, you may want to NFS mount the file system that you created over a high
speed interconnect. If you want to mount this file system using a high speed interconnect, you
must enter its name in the HOST where remote directory resides field.

You should be aware that if the high speed interconnect ever becomes unavailable for some
reason, every workstation that participates in your partitioned database system will lose access to
the Db2 home directory.

g) Set the MOUNT now, add entry to /etc/filesystems or both? field to both.

h) Set the /etc/filesystems entry will mount the directory on system RESTART field to yes.
i) Set the MODE for this NFS file system field to read-write.

i) Set the Mount file system soft or hard field to hard.

A soft mount means that the computer will not try for an infinite period of time to remotely mount
the directory. A hard mount means that your machine will infinitely try to mount the directory. This
could cause problems in the event of a system crash. It is recommended that you set this field to
hard.

The remaining fields can be left to the default settings.

Chapter 2. Installation considerations 91

k) Ensure that this file system is mounted with the Allow execution of SUID and sgid programs in
this file system? field set to Yes.

This is the default setting.
1) Click OK.
m) Log out.
Creating required users for a Db2 server installation in a partitioned database environment (Linux)

Three users and groups are required to operate Db2 databases in partitioned database environments on
Linux operating systems.

Before you begin

« You must have root user authority to create users and groups.

« If you manage users and groups with security software, additional steps might be required when
defining Db2 users and groups.

About this task

The user and group names used in the following instructions are documented in the following table. You
can specify your own user and group names if they adhere to your system naming rules and Db2 naming
rules.

If you are planning to use the Db2 Setup wizard to install your Db2 database product, the Db2 Setup
wizard will create these users for you.

Table 10. Required users and groups

Required user User name Group name
Instance owner db2instl db2iadm1
Fenced user db2fencl db2fadml
Db2 administration server user dasusrl dasadml

If the Db2 administration server user is an existing user, this user must exist on all the participating
computers before the installation. If you use the Db2 Setup wizard to create a new user for the Db2
administration server on the instance-owning computer, then the new user is also created (if necessary)
during the response file installations on the participating computers. If the user already exists on the
participating computers, the user must have the same primary group.

Restrictions

The user names you create must conform to both your operating system's naming rules, and those of the
Db2 database system.

Procedure

To create all three of these users, perform the following steps:
1. Log on to the primary computer.

2. Create a group for the instance owner (for example, db2iadml), the group that will run UDFs or stored
procedures (for example, db2fadml), and the group that will own the Db2 administration server (for
example, dasadml) by entering the following commands:

groupadd -g 999 db2iadml
groupadd -g 998 db2fadml
groupadd -g 997 dasadml

Ensure that the specific numbers you are using do not currently exist on any of the machines.

92 IBM Db2 V11.5: Partitioning and Clustering Guide

3. Create a user that belongs to each group that you created in the previous step using the following
commands. The home directory for each user will be the Db2 home directory that you previously
created and shared (db2home).

useradd -u 1004 -g db2iadml -m -d /db2home/db2instl db2instl
useradd -u 1003 -g db2fadml -m -d /db2home/db2fencl db2fencl
useradd -u 1002 -g dasadml -m -d /home/dasusrl dasusrl

4. Set an initial password for each user that you created by entering the following commands:

passwd db2instl
passwd db2fencl
passwd dasusrl

5. Log out.

6. Log on to the primary computer as each user that you created (db2inst1, db2fenci, and dasusrl).
You might be prompted to change each user's password because this is the first time that these users
have logged onto the system.

7. Log out.

8. Create the exact same user and group accounts on each computer that will participate in your
partitioned database environment.

Creating required users for a Db2 server installation in a partitioned database environment (AIX)
Three users and groups are required to operate Db2 databases in partitioned database environments on
AIX operating systems.

Before you begin

« You must have root user authority to create users and groups.

« If you manage users and groups with security software, additional steps might be required when
defining Db2 users and groups.

About this task

The user and group names used in the following instructions are documented in the following table. You
can specify your own user and group names if they adhere to your system naming rules and Db2 naming
rules.

If you are planning to use the Db2 Setup wizard to install your Db2 database product, the Db2 Setup
wizard will create these users for you.

Table 11. Required users and groups

Required user User name Group name
Instance owner db2instl db2iadml
Fenced user db2fencl db2fadml
Db2 administration server user dasusrl dasadml

If the Db2 administration server user is an existing user, this user must exist on all the participating
computers before the installation. If you use the Db2 Setup wizard to create a new user for the Db2
administration server on the instance-owning computer, then the new user is also created (if necessary)
during the response file installations on the participating computers. If the user already exists on the
participating computers, the user must have the same primary group.

Restrictions

The user names you create must conform to both your operating system's naming rules, and those of the
Db2 database system.

Chapter 2. Installation considerations 93

Procedure

To create all three of these users, perform the following steps:
1. Log on to the primary computer.

2. Create a group for the instance owner (for example, db2iadml), the group that will run UDFs or stored
procedures (for example, db2fadml), and the group that will own the Db2 administration server (for
example, dasadml) by entering the following commands:

mkgroup id=999 db2iadml
mkgroup i1d=998 db2fadml
mkgroup id=997 dasadml

3. Create a user that belongs to each group that you created in the previous step using the following
commands. The home directory for each user will be the Db2 home directory that you previously
created and shared (db2home).

mkuser id=1004 pgrp=db2iadml groups=db2iadml home=/db2home/db2instl
core=-1 data=491519 stack=32767 rss=-1 fsize=-1 db2instl

mkuser id=1003 pgrp=db2fadml groups=db2fadml home=/db2home/db2fencl
db2fencl

mkuser id=1002 pgrp=dasadml groups=dasadml home=/home/dasusrl
dasusrl

4. Set an initial password for each user that you created by entering the following commands:

passwd db2instl
passwd db2fencl
passwd dasusrl

5. Log out.

6. Log on to the primary computer as each user that you created (db2inst1, db2fencl, and dasusrl).
You might be prompted to change each user's password because this is the first time that these users
have logged onto the system.

7. Log out.

8. Create the exact same user and group accounts on each computer that will participate in your
partitioned database environment.

Installing your DB2 server product

Setting up a partitioned database environment

This topic describes how to set up a partitioned database environment. You will use the Db2 Setup
wizard to install your instance-owning database server and to create the response files that will in turn be
used to create your participating database servers.

Before you begin

Note: A partitioned database environment is not supported in non-root installations.

« Ensure that you have the Db2 Warehouse Activation CD license key that will need to be copied over to
all participating computers.

- The same number of consecutive ports must be free on each computer that is to participate in the
partitioned database environment. For example, if the partitioned database environment will be
comprised of four computers, then each of the four computers must have the same four consecutive
ports free. During instance creation, a number of ports equal to the number of logical partitions on the
current server will be reserved in the /etc/services on Linux and UNIX and in the %SystemRoot%
\system32\drivers\etc\services on Windows. These ports will be used by the Fast
Communication Manager. The reserved ports will be in the following format:

DB2_InstanceName
DB2_InstanceName_1

94 IBM Db2 V11.5: Partitioning and Clustering Guide

DB2_InstanceName_2
DB2_InstanceName_END

The only mandatory entries are the beginning (DB2_InstanceName) and ending
(DB2_InstanceName_END) ports. The other entries are reserved in the services file so that other
applications do not use these ports

« To support multiple participating Db2 database servers, the computer on which you want to install Db2
must belong to an accessible domain. However, you can add local partitions to this computer even
though the computer doesn't belong to a domain.

« On Linux and UNIX systems, a remote shell utility is required for partitioned database systems. Db2
database systems support the following remote shell utilities:
- rsh
- ssh

By default, Db2 database systems use rsh when executing commands on remote Db2 nodes, for
example, when starting a remote Db2 database partition.

To use the Db2 default, the rsh-server package must be installed. For more information, see "Security
considerations when installing and using the Db2 database manager" in Database Security Guide.

If you choose to use the rsh remote shell utility, inetd (or xinetd) must be installed and running as well.
If you choose to use the ssh remote shell utility, you need to set the DB2RSHCMD registry variable
immediately after the Db2 installation is complete. If this registry variable is not set, rsh is used.

« On Linux and UNIX operating systems, ensure the hosts file under the etc directory does not contain
an entry for "127.0.0.2" if that IP address maps to the fully qualified hostname of the machine.

About this task

A database partition is part of a database that consists of its own data, indexes, configuration files, and
transaction logs. A partitioned database is a database with two or more partitions.

Procedure

To set up a partitioned database environment:

1. Install your instance-owning database server using the Db2 Setup wizard. For detailed instructions,
see the appropriate "Installing Db2 servers" topic for your platform.

« On the Select installation, response files creation, or both window, ensure that you select the
Save my installation settings in a response files option. After the installation has completed, two
files will be copied to the directory specified in the Db2 Setup wizard: PROD_ESE . rsp and
PROD_ESE_addpart.xsp. The PROD_ESE. rsp file is the response file for instance-owning
database servers. The PROD_ESE_addpart. rsp file is the response file for participating database
servers.

« On the Set up partitioning options for the Db2 instance window, ensure that you select Multiple
partition instance, and enter the maximum number of logical partitions.

2. Make the Db2 install image available to all participating computers in the partitioned database
environment.

3. Distribute the participating database servers response file (PROD_ESE_addpart.rsp).

4. Install a Db2 database server on each of the participating computers using the db2setup command
on Linux and UNIX, or the setup command on Windows:

Linux and UNIX
Go to the directory where the Db2 database product code is available and run:

./db2setup -r /responsefile_directory/response_file_name

Chapter 2. Installation considerations 95

Windows
setup -u x:\responsefile_directory\response_file_name

For example, here is the command using the PROD_ESE_addpart. rsp as the response file:
Linux and UNIX
Go to the directory where the Db2 database product code is available and run:

./db2setup -r /db2home/PROD_ESE_addpart.zrsp

where /db2home is the directory where you have copied the response file.
Windows

setup -u c:\resp_files\PROD_ESE_addpart.rsp

where c:\resp_files)\ is the directory where you have copied the response file.

5. (Linux and UNIX only) Configure the db2nodes. cfg file. The Db2 installation only reserves the
maximum number of logical partitions you want to use for the current computer, but does not
configure the db2nodes. cfg file. If you do not configure the db2nodes. cfg file, the instance is still
a single partitioned instance.

6. Update the sexrvices file on the participating servers to define the corresponding FCM port for the
Db2 instance.

The services file is in the following location:
- /etc/sexrvices on Linux and UNIX
« %SystemRoot%\system32\drivers\etc\services on Windows

7. For partitioned database environments on Windows 2000 or later, start the Db2 Remote Command
Service security feature to protect your data and resources.

To be fully secure, start either the computer (if the service is running under the context of the
LocalSystem account) or a user for delegation (if the service is being run under the logon context of a
user).

To start the Db2 Remote Command Service security feature:

a) Open the Active Directory Users and Computers window on the domain controller, click Start and
select Programs > Administrative tools > Active Directory Users and Computers

b) In the right window panel, right-click the computer or user to start, select Properties

c) Click the General tab and select the Trust computer for delegation check box. For user setting,
click the Account tab and select the Account is trusted for delegation check box in the Account
option group. Ensure that the Account is sensitive and cannot be delegated box has not been
checked.

d) Click OK to start the computer or user for delegation.

Repeat these steps for each computer or user that needs to be started. You must restart your
computer for the security change to take effect.

Installing database partition servers on participating computers using a response file
(Windows)

In this task you will use the response file you created using the Db2 Setup wizard to install database
partition servers on participating computers.

Before you begin

« You have installed a Db2 copy on the primary computer using the Db2 Setup wizard.

 You have created a response file for installing on participating computers and copied it onto the
participating computer.

96 IBM Db2 V11.5: Partitioning and Clustering Guide

« You must have administrative authority on participating computers.

Procedure

To install additional database partition servers using a response file:

1.

2.

Log to the computer that will participate in the partitioned database environment with the local
Administrator account that you have defined for the Db2 installation.

Change to the directory containing the Db2 database product DVD.
For example:

cd c:\db2dvd

where db2dvd represents the name of the directory containing the Db2 database product DVD.

. From a command prompt, enter the setup command as follows:

setup -u responsefile_directory\response_file_name

In the following example, the response file, Addpart.file can be found in the c: \responsefile
directory. The command for this example, would be:

setup -u c:\reponsefile\Addpart.file

. Check the messages in the log file when the installation finishes. You can find the log file in the My

Documents\DB2LOG\ directory. You should see output similar to the following at the end of the log
file:

=== Logging stopped: 5/9/2007 10:41:32 ===

MSI (c) (CO:A8) [10:41:32:984]: Product: Db2 Enterprise Server
Edition - DB2COPY1 -- Installation

operation completed successfully.

. When you install the instance-owning database partition server on the primary computer, the Db2

database product reserves a port range according to the specified number of logical database partition
servers participating in partitioned database environment. The default range is four ports. For each
server that participates in the partitioned database environment, you must manually configure

the /etc/sexvices file for the FCM ports. The range of the FCM ports depends on how many logical
partitions you want to use on the participating computer. A minimum of two entries are required,
DB2_instance and DB2_instance_END. Other requirements for the FCM ports specified on
participating computers are:

« The starting port number must match the starting port number of the primary computer.
« Subsequent ports must be sequentially numbered.
« Specified port numbers must be free.

Results

You must log onto each participating computer and repeat these steps.

What to do next

If you want your Db2 database product to have access to Db2 documentation either on your local
computer or on another computer on your network, then you must install the Db2 Information Center. The
Db2 Information Center contains documentation for the Db2 database system and Db2 related products.

Chapter 2. Installation considerations 97

Installing database partition servers on participating computers using a response file
(Linux and UNIX)

In this task you will use the response file you created using the Db2 Setup wizard to install database
partition servers on participating computers.

Before you begin

» You have installed Db2 database product on the primary computer using the Db2 Setup wizard and
have created a response file for installing on participating computers.

« You must have root user authority on participating computers.

Procedure

To install additional database partition servers using a response file:
1. As root, log on to a computer that will participate in the partitioned database environment.

2. Change to the directory where you copied the contents of the Db2 database product DVD.
For example:

cd /db2home/db2dvd
3. Enter the db2setup command as follows:
./db2setup -1 /responsefile_directory/response_file_name

In this example, the response file, AddPartitionResponse.file, was saved to the /db2home
directory. The command for this situation would be:

./db2setup -r /db2home/AddPartitionResponse.file

4. Check the messages in the log file when the installation finishes.

Results

You must log onto each participating computer and perform a response file installation.

What to do next

If you want your Db2 database product to have access to Db2 database documentation either on your
local computer or on another computer on your network, then you must install the Db2 Information
Center. The Db2 Information Center contains documentation for the Db2 database system and Db2
database related products.

After you install

Verifying the installation

Verifying a partitioned database environment installation (Windows)

To verify that your Db2 database server installation was successful, you will create a sample database
and run SQL commands to retrieve sample data and to verify that the data has been distributed to all
participating database partition servers.

Before you begin
You have completed all of the installation steps.

Procedure
To create the SAMPLE database:

98 IBM Db2 V11.5: Partitioning and Clustering Guide

1. Log on to the primary computer (ServerA) as user with SYSADM authority.
2. Enter the db2sampl command to create the SAMPLE database.
This command can take a few minutes to process. When the command prompt returns, the process is
complete.
The SAMPLE database is automatically cataloged with the database alias SAMPLE when it is created.
3. Start the database manager by entering the db2staxt command.

4. Enter the following Db2 commands from a Db2 command window to connect to the SAMPLE database,
retrieve a list of all the employees that work in department 20:

db2 connect to sample
db2 "select * from staff where dept = 20"

5. To verify that data has been distributed across database partition servers, enter the following
commands from a Db2 command window:

db2 "select distinct dbpartitionnum(empno) from employee"

The output will list the database partitions used by the employee table. The specific output will
depend on the number of database partitions in the database and the number of database partitions in
the database partition group that is used by the table space where the employee table was created.

What to do next

After you have verified the installation, you can remove the SAMPLE database to free up disk space.
However, it is useful to keep the sample database, if you plan to make use of the sample applications.

Enter the db2 drop database sample command to drop the SAMPLE database.

Verifying a partitioned database server installation (Linux and UNIX)

Use the db2val tool to verify the core functions of a Db2 copy by validating installation files, instances,
database creation, connections to that database, and the state of partitioned database environments. For
details, see "Validating your Db2 copy". The state of a partitioned database environment is only verified if
there are at least 2 nodes. In addition, to verify that your Db2 database server installation was successful,
you will create a sample database and run SQL commands to retrieve sample data and to verify that the
data has been distributed to all participating database partition servers.

Before you begin
Before following these steps, make sure you have completed all of the installation steps.

Procedure

To create the SAMPLE database:

1. Log on to the primary computer (ServerA) as the instance-owning user.
For this example, db2instl is the instance-owning user.

2. Enter the db2sampl command to create the SAMPLE database.

By default, the sample database will be created in the instance-owner's home directory. In our
example /db2home/db2inst1/ is the instance owner's home directory. The instance owner's home
directory is the default database path.

This command can take a few minutes to process. There is no completion message; when the

command prompt returns, the process is complete.

The SAMPLE database is automatically cataloged with the database alias SAMPLE when it is created.
3. Start the database manager by entering the db2staxt command.

4. Enter the following Db2 commands from a Db2 command window to connect to the SAMPLE database,
retrieve a list of all the employees that work in department 20:

Chapter 2. Installation considerations 99

db2 connect to sample
db2 "select * from staff where dept = 20"

5. To verify that data has been distributed across database partition servers, enter the following
commands from a Db2 command window:

db2 "select distinct dbpartitionnum(empno) from employee"

The output will list the database partitions used by the employee table. The specific output will
depend on:

« The number of database partitions in the database

- The number of database partitions in the database partition group that is used by the table space
where the employee table was created

What to do next

After you have verified the installation, you can remove the SAMPLE database to free up disk space. Enter
the db2 drop database sample command to drop the SAMPLE database.

100 IBM Db2 V11.5: Partitioning and Clustering Guide

Chapter 3. Implementation and maintenance

Before creating a database

Setting up partitioned database environments

The decision to create a multi-partition database must be made before you create your database. As part
of the database design decisions you make, you will have to determine if you should take advantage of
the performance improvements database partitioning can offer.

About this task

In a partitioned database environment, you still use the CREATE DATABASE command or the sqlecreal()
function to create a database. Whichever method is used, the request can be made through any of the
partitions listed in the db2nodes. cfg file. The db2nodes. cfg file is the database partition server
configuration file.

Except on the Windows operating system environment, any editor can be used to view and update the
contents of the database partition server configuration file (db2nodes. cfg). On the Windows operating
system environment, use db2ncxt and db2nchg commands to create and change the database partition
server configuration file

Before creating a multi-partition database, you must select which database partition will be the catalog
partition for the database. You can then create the database directly from that database partition, or from
a remote client that is attached to that database partition. The database partition to which you attach and
execute the CREATE DATABASE command becomes the catalog partition for that particular database.

The catalog partition is the database partition on which all system catalog tables are stored. All access to
system tables must go through this database partition. All federated database objects (for example,
wrappers, servers, and nicknames) are stored in the system catalog tables at this database partition.

If possible, you should create each database in a separate instance. If this is not possible (that is, you
must create more than one database per instance), you should spread the catalog partitions among the
available database partitions. Doing this reduces contention for catalog information at a single database
partition.

Note: You should regularly do a backup of the catalog partition and avoid putting user data on it
(whenever possible), because other data increases the time required for the backup.

When you create a database, it is automatically created across all the database partitions defined in the
db2nodes.cfg file.

When the first database in the system is created, a system database directory is formed. It is appended
with information about any other databases that you create. When working on UNIX, the system database
directory is sqldbdizr and is located in the sqllib directory under your home directory, or under the
directory where Db2 database was installed. When working on UNIX, this directory must reside on a
shared file system, (for example, NFS on UNIX platforms) because there is only one system database
directory for all the database partitions that make up the partitioned database environment. When
working on Windows, the system database directory is located in the instance directory.

Also resident in the sqldbdir directory is the system intention file. It is called sqldbins, and ensures

that the database partitions remain synchronized. The file must also reside on a shared file system since
there is only one directory across all database partitions. The file is shared by all the database partitions
making up the database.

Configuration parameters have to be modified to take advantage of database partitioning. Use the GET
DATABASE CONFIGURATION and the GET DATABASE MANAGER CONFIGURATION commands to find
out the values of individual entries in a specific database, or in the database manager configuration file.

© Copyright IBM Corp. 2016, 2020 101

To modify individual entries in a specific database, or in the database manager configuration file, use the
UPDATE DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER CONFIGURATION
commands respectively.

The database manager configuration parameters affecting a partitioned database environment include
conn_elapse, fcm_num_buffers, fcm_num_channels, max_connretries, max_coordagents,
max_time_diff, num_poolagents, and start_stop_time.

Creating node configuration files

If your database is to operate in a partitioned database environment, you must create a node
configuration file called db2nodes.cfg.

About this task

To enable database partitioning, the db2nodes. cfg file must be located in the sql1ib subdirectory of
the home directory for the instance before you start the database manager. This file contains
configuration information for all database partitions in an instance, and is shared by all database
partitions for that instance.

Windows considerations

If you are using Db2 Enterprise Server Edition on Windows, the node configuration file is created for you
when you create the instance. You should not attempt to create or modify the node configuration file
manually. You can use the db2ncxt command to add a database partition server to an instance. You can
use the db2ndxop command to drop a database partition server from an instance. You can use the
db2nchg command to modify a database partition server configuration including moving the database
partition server from one computer to another; changing the TCP/IP host name; or, selecting a different
logical port or network name.

Note: You should not create files or directories under the sql1ib subdirectory other than those created
by the database manager to prevent the loss of data if an instance is deleted. There are two exceptions. If
your system supports stored procedures, put the stored procedure applications in the function
subdirectory under the sqllib subdirectory. The other exception is when user-defined functions (UDFs)
have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance. Each line has the
following format:

dbpartitionnum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

dbpartitionnum
The database partition number, which can be from 0 to 999, uniquely defines a database partition.
Database partition numbers must be in ascending sequence. You can have gaps in the sequence.

Once a database partition number is assigned, it cannot be changed. (Otherwise the information in the
distribution map, which specifies how data is distributed, would be compromised.)

If you drop a database partition, its database partition number can be used again for any new
database partition that you add.

The database partition number is used to generate a database partition name in the database
directory. It has the format:

NODE nnnn

The nnnn is the database partition number, which is left-padded with zeros. This database partition
number is also used by the CREATE DATABASE and DROP DATABASE commands.

hostname
The host name of the IP address for inter-partition communications. Use the fully-qualified name for
the host name. The /etc/hosts file also should use the fully-qualified name. If the fully-qualified

102 IBM Db2 V11.5: Partitioning and Clustering Guide

name is not used in the db2nodes. cfg file and in the /etc/hosts file, you might receive error
message SQL30082N RC=3.

(There is an exception when netname is specified. In this situation, netname is used for most
communications, with host name being used only for db2start, db2stop, and db2_all.)

logical-port
This parameter is optional, and specifies the logical port number for the database partition. This
number is used with the database manager instance name to identify a TCP/IP service name entry in
the etc/sexrvices file.

The combination of the IP address and the logical port is used as a well-known address, and must be
unique among all applications to support communications connections between database partitions.

For each host name, one logical-port must be either 0 (zero) or blank (which defaults to 0). The
database partition associated with this logical-port is the default node on the host to which clients
connect. You can override this behavior with the DB2NODE environment variable in db2profile
script, or with the sqlesetc () APIL.

netname
This parameter is optional, and is used to support a host that has more than one active TCP/IP
interface, each with its own host name.

The following example shows a possible node configuration file for a system on which SP2EN1 has
multiple TCP/IP interfaces, two logical partitions, and uses SP2SW1 as the Db2 database interface. It also
shows the database partition numbers starting at 1 (rather than at 0), and a gap in the dbpartitionnum
sequence:

Table 12. Database partition number example table.

dbpartitionnum hostname logical-port netname
1 SP2EN1.machl.xxx.com 0 SP2SW1
2 SP2EN1.mach1.xxx.com 1 SP2SW1
4 SP2EN2.mach1.xxx.com 0

5 SP2EN3.machl.xxx.com

You can update the db2nodes. cfg file using an editor of your choice. (The exception is: an editor should
not be used on Windows.) You must be careful, however, to protect the integrity of the information in the
file, as database partitioning requires that the node configuration file is locked when you issue START
DBM and unlocked after STOP DBM ends the database manager. The START DBM command can update
the file, if necessary, when the file is locked. For example, you can issue START DBM with the RESTART
option or the ADD DBPARTITIONNUM option.

Note: If the STOP DBM command is not successful and does not unlock the node configuration file, issue
STOP DBM FORCE to unlock it.

Format of the Db2 node configuration file

The db2nodes. cfg file is used to define the database partition servers that participate in a Db2 instance.
The db2nodes. cfg file is also used to specify the IP address or host name of a high-speed interconnect,
if you want to use a high-speed interconnect for database partition server communication.

The format of the db2nodes. cfg file on Linux and UNIX operating systems is as follows:

dbpartitionnum hostname logicalport netname resourcesetname

dbpartitionnum, hostname, logicalport, netname, and resourcesetname are defined in the following
section.

The format of the db2nodes. cfg file on Windows operating systems is as follows:

dbpartitionnum hostname computername logicalport netname resourcesetname

Chapter 3. Implementation and maintenance 103

On Windows operating systems, these entries to the db2nodes. cfg are added by the db2ncxt or START
DBM ADD DBPARTITIONNUM commands. The entries can also be modified by the db2nchg command.
You should not add these lines directly or edit this file.

dbpartitionnum
A unique number, between 0 and 999, that identifies a database partition server in a partitioned
database system.

To scale your partitioned database system, you add an entry for each database partition server to the
db2nodes. cig file. The dbpartitionnum value that you select for additional database partition
servers must be in ascending order, however, gaps can exist in this sequence. You can choose to put a
gap between the dbpartitionnum values if you plan to add logical partition servers and want to keep
the nodes logically grouped in this file.

This entry is required.

hostname
The TCP/IP host name of the database partition server for use by the FCM. This entry is required.
Canonical hostname is strongly recommended.

When the system has more than one network interface card installed and the hostname that is used in
the db2nodes. cfg file cannot be resolved to be the default host of the system, it might be treated as
a remote host. This setup imposes a limitation that database migration cannot be done successfully
because the local database directory cannot be found if the instance is not started. Therefore, HADR
might require the hostname to match the name that is used by the operating system to identify the
host to make migration possible. In addition to this, the operating system name of the host must be
specified in db2nodes. cfg when it is running in a Tivoli SA MP, PowerHA® SystemMirror®, and other
high availability environments, including the Db2 fault monitor.

Starting with Db2 Version 9.1, both TCP/IPv4 and TCP/IPv6 protocols are supported. The method to
resolve host names has changed.

While the method used in pre-Version 9.1 releases resolves the string as defined in the

db2nodes. cig file, the method in Version 9.1 or later tries to resolve the Fully Qualified Domain
Names (FQDN) when short names are defined in the db2nodes. cfg file. Specifying short configured
for fully qualified host names, this may lead to unnecessary delays in processes that resolve host
names.

To avoid any delays in Db2 commands that require host name resolution, use any of the following
workarounds:

1. If short names are specified in the db2nodes. cfg files and the operating system host name file,
specify the short name and the fully qualified domain name for host name in the operating system
host files.

2. To use only IPv4 addresses when you know that the Db2 server listens on an IPv4 port, issue the
following command:

db2 catalog tcpip4
node db2tcp2 remote 192.0.32.67
server db2instl with "Look up IPv4 address from 192.0.32.67"

3. To use only IPv6 addresses when you know that the Db2 server listens on an IPv6 port, issue the
following command:

db2 catalog tcpipé
node db2tcp3 1080:0:0:0:8:800:200C:417A
server 50000
with "Look up IPv6 address from 1080:0:0:0:8:800:200C:417A"

logicalport

Specifies the logical port number for the database partition server. This field is used to specify a
particular database partition server on a workstation that is running logical database partition servers.

104 IBM Db2 V11.5: Partitioning and Clustering Guide

Db2 reserves a port range (for example, 60000 - 60003) in the /etc/sexrvices file for interpartition
communications at the time of installation. This logicalport field in db2nodes. cfg specifies which
port in that range you want to assign to a particular logical partition server.

If there is no entry for this field, the default is 0. However, if you add an entry for the netname field,
you must enter a number for the logicalport field.

If you are using logical database partitions, the logicalport value you specify must start at © and
continue in ascending order (for example, 0,1,2).

Furthermore, if you specify a logicalport entry for one database partition server, you must specify a
logicalport for each database partition server listed in your db2nodes. cfg file.

Each physical server must have a logical node 0.
This field is optional only if you are not using logical database partitions or a high speed interconnect.

netname
Specifies the host name or the IP address of the high speed interconnect for FCM communication.

If an entry is specified for this field, all communication between database partition servers (except for
communications as a result of the db2start, db2stop, and db2_all commands) is handled through
the high speed interconnect.

This parameter is required only if you are using a high speed interconnect for database partition
communications.

resourcesetname
The resourcesetname defines the operating system resource that the node should be started in. The
resourcesetname is for process affinity support, used for Multiple Logical Nodes (MLNs). This support
is provided with a string type field formerly known as quadname.

This parameter is only supported on AIX.

On AIX, this concept is known as "resource sets", refer to AIX documentation for more information
about resource management.

On Windows operating systems, process affinity for a logical node can be defined through the
DB2PROCESSORS registry variable.

On Linux operating systems, the resourcesetname column defines a number that corresponds to a
Non-Uniform Memory Access (NUMA) node on the system. The system utility numactl must be
available as well as a 2.6 Kernel with NUMA policy support.

The netname parameter must be specified if the resourcesetname parameter is used.

Example configurations

Use the following example configurations to determine the appropriate configuration for your
environment.

One computer, four database partitions servers
If you are not using a clustered environment and want to have four database partition servers on one
physical workstation called ServerA, update the db2nodes. cfg file as follows:

ServerA
ServerA
ServerA
ServerA

WNPFP O
WNPFP O

Two computers, one database partition server per computer
If you want your partitioned database system to contain two physical workstations, called SexrverA
and ServerB, update the db2nodes. cfg file as follows:

0] ServerA 0]
1 ServerB 0

Chapter 3. Implementation and maintenance 105

Two computers, three database partition server on one computer
If you want your partitioned database system to contain two physical workstations, called ServerA
and ServerB, and ServerA is running 3 database partition servers, update the db2nodes. cfg file
as follows:

ServerA
ServerA
ServerA
ServerB

O 00O~
ONPFP O

Two computers, three database partition servers with high speed switches
If you want your partitioned database system to contain two computers, called ServerA and
ServerB (with ServerB running two database partition servers), and use a high speed interconnect
called switchl and switch2, update the db2nodes.cfg file as follows:

0 ServerA 0 switchl
1 ServerB 0 switch2
2 ServerB 1 switch2

Examples using resourcesetname
These restrictions apply to the following examples:

« This example shows the usage of resourcesetname when there is no high speed interconnect in the
configuration.

« The netname is the fourth column and a hostname also can be specified on that column where there is
no switch name and you want to use resourcesetname. The fifth parameter is resourcesetname if it is
defined. The resource group specification can only show as the fifth column in the db2nodes. cfg file.
This means that for you to specify a resource group, you must also enter a fourth column. The fourth
column is intended for a high speed switch.

- If you do not have a high speed switch or you do not want to use it, you must then enter the hostname
(same as the second column). In other words, the Db2 database management system does not support
column gaps (or interchanging them) in the db2nodes. cfg files. This restriction already applies to the
first three columns, and now it applies to all five columns.

AIX example
Here is an example of how to set up the resource set for AIX operating systems.

In this example, there is one physical node with 32 processors and 8 logical database partitions (MLNs).
This example shows how to provide process affinity to each MLN.

1. Define resource sets by using the AIX mkrset command:

mkrset -c @ 1 2 3 DB2/MLN1
mkrset -c 4 5 6 7 DB2/MLN2
mkrset -c 8 9 10 11 DB2/MLN3
mkrset -c 12 13 14 15 DB2/MLN4
mkrset -c 16 17 18 19 DB2/MLN5
mkrset -c 20 21 22 23 DB2/MLN6
mkrset -c 24 25 26 27 DB2/MLN7
mkrset -c 28 29 30 31 DB2/MLNS8

2. Give instance permissions to use resource sets:

chuser capabilities=
CAP_BYPASS_RAC_VMM, CAP_PROPAGATE, CAP_NUMA_ATTACH db2instl

3. Add the resource set name as the fifth column in db2nodes.cfg:

1 regatta 0 regatta DB2/MLN1
2 regatta 1 regatta DB2/MLN2
3 regatta 2 regatta DB2/MLN3
4 regatta 3 regatta DB2/MLN4
5 regatta 4 regatta DB2/MLN5
6 regatta 5 regatta DB2/MLN6

106 IBM Db2 V11.5: Partitioning and Clustering Guide

7 regatta 6 regatta DB2/MLN7
8 regatta 7 regatta DB2/MLN8

Linux example

On Linux operating systems, the resourcesetname column defines a number that corresponds to a Non-
Uniform Memory Access (NUMA) node on the system. The numactl system utility must be available in
addition to a 2.6 kernel with NUMA policy support. Refer to the man page for numactl for more
information about NUMA support on Linux operating systems.

This example shows how to set up a four node NUMA computer with each logical node associated with a
NUMA node.

1. Ensure that NUMA capabilities exist on your system.
2. Issue the following command:

$ numactl --hardware
Output similar to the following displays:

available: 4 nodes (0-3)
node 0 size: 1901 MB

node 0 free: 1457 MB

node 1 size: 1910 MB

node 1 free: 1841 MB

node 2 size: 1910 MB

node 2 free: 1851 MB

node 3 size: 1905 MB
3

node free: 1796 MB

3. In this example, there are four NUMA nodes on the system. Edit the db2nodes. cfg file as follows to
associate each MLN with a NUMA node on the system:

0 hostname O hostname
1 hostname 1 hostname
2 hostname 2 hostname
3 hostname 3 hostname

WN PO

Specifying the list of machines in a partitioned database environment
By default, the list of computers is taken from the database partition configuration file, db2nodes.cfg.

About this task

Note: On Windows, to avoid introducing inconsistencies into the database partition configuration file, do
not edit it manually. To obtain the list of computers in the instance, use the db2nlist command.

Procedure
« To override the list of computers in db2nodes.cfg:

« Specify a path name to the file that contains the list of computers by exporting (on Linux and UNIX
operating systems) or setting (on Windows) the environment variable RAHOSTFILE.

« Specify the list explicitly, as a string of names separated by spaces, by exporting (on Linux and
UNIX operating systems) or setting (on Windows) the environment variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST takes precedence.

Eliminating duplicate entries from a list of machines in a partitioned database environment
If you are running multiple logical database partition servers on one computer, your db2nodes. cfg file
contains multiple entries for that computer.

About this task
In this situation, the xrah command needs to know whether you want the command to be executed only
once on each computer or once for each logical database partition listed in the db2nodes. cfg file. Use

Chapter 3. Implementation and maintenance 107

the rah command to specify computers. Use the db2_all command to specify logical database
partitions.

Note: On Linux and UNIX operating systems, if you specify computers, xah normally eliminates
duplicates from the computer list, with the following exception: if you specify logical database partitions,
db2_all prepends the following assignment to your command:

export DB2NODE=nnn (for Korn shell syntax)

where nnn is the database partition number taken from the corresponding line in the db2nodes. cfg file,
so that the command is routed to the desired database partition server.

When specifying logical database partitions, you can restrict the list to include all logical database
partitions except one, or specify only one using the <<-nnn< and <<+nnn< prefix sequences. You might
want to do this if you want to run a command to catalog the database partition first, and when that has
completed, run the same command at all other database partition servers, possibly in parallel. This is
usually required when running the RESTART DATABASE command. You need to know the database
partition number of the catalog partition to do this.

If you execute RESTART DATABASE using the rah command, duplicate entries are eliminated from the
list of computers. However if you specify the " prefix, then duplicates are not eliminated, because it is
assumed that use of the " prefix implies sending to each database partition server, rather than to each
computer.

Updating the node configuration file (Linux and UNIX)
In a Db2 partitioned database environment, this task provides steps for updating the db2nodes. cfg file
to include entries for participating computers.

Before you begin

« The Db2 database product must be installed on all participating computers.
« A Db2 instance must exist on the primary computer.
« You must be a user with SYSADM authority.

 Review the configuration examples and file format information provided in the Format of the Db2 node
configuration file topic if either of the following conditions apply:

— You plan to use a high speed switch for communication between database partition servers
— Your partitioned configuration will have multiple logical partitions

About this task

The node configuration file (db2nodes. cfg), located in the instance owner's home directory, contains
configuration information that tells the Db2 database system which servers participate in an instance of
the partitioned database environment. A db2nodes. cfg file exists for each instance in a partitioned
database environment.

The db2nodes. cfg file must contain one entry for each server participating in the instance. When you
create an instance, the db2nodes. cfg file is automatically created and an entry for the instance-owning
server is added.

For example, when you created the Db2 instance using the Db2 Setup wizard, on the instance-owning
server ServerA, the db2nodes. cfg file is updated as follows:

0 ServerA 0

Restrictions

The hostnames used in the steps of the Procedure section must be fully qualified hostnames.

108 IBM Db2 V11.5: Partitioning and Clustering Guide

Procedure
To update the db2nodes. cfg file:
1. Log on as the instance owner.
For example, db2instl is the instance owner in these steps.
2. Ensure that the Db2 instance is stopped by entering:

INSTHOME/sqllib/adm/db2stop

where INSTHOME is the home directory of the instance owner (the db2nodes. cfg file is locked when
the instance is running and can only be edited when the instance is stopped).

For example, if your instance home directory is /db2home /db2inst1, enter the following command:
/db2home/db2instl/sqllib/adm/db2stop

3. Add an entry to the . rhosts file for each Db2 instance.
Update the file by adding the following:

hostname db2instance

where hostname is the TCP/IP host name of the database server and db2instance is the name of the
instance you use to access the database server.

4. Add an entry to the db2nodes. cfg file of each participating server.
When you first view the db2nodes. cfg file, it should contain an entry similar to the following:

0 ServerA 0

This entry includes the database partition server number (node number), the TCP/IP host name of the
server where the database partition server resides, and a logical port number for the database
partition server.

For example, if you are installing a partitioned configuration with four computers and a database
partition server on each computer, the updated db2nodes. cfg should appear similar to the following:

0 ServerA
1 ServerB
2 ServerC
3

0
0
0
ServerD 0

5. When you have finished updating the db2nodes. cfg file, enter the INSTHOME /sqllib/adm/
db2start command, where INSTHOME is the home directory of the instance owner.
For example, if your instance home directory is /db2home /db2inst1, enter the following command:

/db2home/db2inst1/sqllib/adm/db2start

6. Log out.

Setting up multiple logical partitions
There are several situations in which it is advantageous to have several database partition servers running
on the same computer.

This means that the configuration can contain more database partitions than computers. In these cases,
the computer is said to be running multiple logical partitions if they participate in the same instance. If
they participate in different instances, this computer is not hosting multiple logical partitions.

With multiple logical partition support, you can choose from three types of configurations:

« A standard configuration, where each computer has only one database partition server

- A multiple logical partition configuration, where a computer has more than one database partition
server

- A configuration where several logical partitions run on each of several computers

Chapter 3. Implementation and maintenance 109

Configurations that use multiple logical partitions are useful when the system runs queries on a computer
that has symmetric multiprocessor (SMP) architecture. The ability to configure multiple logical partitions
on a computer is also useful if a computer fails. If a computer fails (causing the database partition server
or servers on it to fail), you can restart the database partition server (or servers) on another computer
using the START DBM DBPARTITIONNUM command. This ensures that user data remains available.

Another benefit is that multiple logical partitions can use SMP hardware configurations. In addition,
because database partitions are smaller, you can obtain better performance when performing such tasks
as backing up and restoring database partitions and table spaces, and creating indexes.

Configuring multiple logical partitions
There are two methods of configuring multiple logical partitions.

About this task

« Configure the logical partitions (database partitions) in the db2nodes. cfg file. You can then start all
the logical and remote partitions with the db2staxt command or its associated APL.

Note: For Windows, you must use db2ncxt to add a database partition if there is no database in the
system; or, db2start addnode command if there is one or more databases. Within Windows, the
db2nodes. cfg file should never be manually edited.

« Restart a logical partition on another processor on which other logical partitions are already running.
This allows you to override the hostname and port number specified for the logical partition in
db2nodes.cfg.

To configure a logical database partition in db2nodes. cfg, you must make an entry in the file to allocate
a logical port number for the database partition. Following is the syntax you should use:

nodenumber hostname logical-port netname

Note: For Windows, you must use db2ncxt to add a database partition if there is no database in the
system; or, db2start addnode command if there is one or more databases. Within Windows, the
db2nodes.cfg file should never be manually edited.

The format for the db2nodes. cfg file on Windows is different when compared to the same file on UNIX.
On Windows, the column format is:

nodenumber hostname computername logical_port netname

Use the fully-qualified name for the hostname. The /etc/hosts file also should use the fully-qualified
name. If the fully-qualified name is not used in the db2nodes. cfg file and in the/etc/hosts file, you
might receive error message SQL30082N RC=3.

You must ensure that you define enough ports in the services file of the etc directory for FCM
communications.

Enabling inter-partition query parallelism
Inter-partition parallelism occurs automatically based on the number of database partitions and the

distribution of data across these database partitions.

About this task

You must modify configuration parameters to take advantage of parallelism within a database partition or
within a non-partitioned database. For example, intra-partition parallelism can be used to take advantage
of the multiple processors on a symmetric multi-processor (SMP) machine.

Procedure

« To enable parallelism when loading data:

110 IBM Db2 V11.5: Partitioning and Clustering Guide

The load utility automatically makes use of parallelism, or you can use the following parameters on the
LOAD command:

— CPU_PARALLELISM
— DISK_PARALLELISM

In a partitioned database environment, inter-partition parallelism for data loading occurs
automatically when the target table is defined on multiple database partitions. Inter-partition
parallelism for data loading can be overridden by specifying OUTPUT_DBPARTNUMS. The load utility
also intelligently enables database partitioning parallelism depending on the size of the target
database partitions. MAX_NUM_PART_AGENTS can be used to control the maximum degree of
parallelism selected by the load utility. Database partitioning parallelism can be overridden by
specifying PARTITIONING_DBPARTNUMS when ANYORDER is also specified.

- To enable parallelism when creating an index:

— The table must be large enough to benefit from parallelism
— Multiple processors must be enabled on an SMP computer.
« Toenable I/O parallelism when backing up a database or table space:

— Use more than one target media.

— Configure table spaces for parallel I/O by defining multiple containers, or use a single container with
multiple disks, and the appropriate use of the DB2_PARALLEL_IO registry variable. If you want to
take advantage of parallel I/O, you must consider the implications of what must be done before you
define any containers. This cannot be done whenever you see a need; it must be planned for before
you reach the point where you need to backup your database or table space.

— Use the PARALLELISM parameter on the BACKUP command to specify the degree of parallelism.

— Use the WITH num-buffers BUFFERS parameter on the BACKUP command to ensure that enough
buffers are available to accommodate the degree of parallelism. The number of buffers should equal
the number of target media you have plus the degree of parallelism selected plus a few extra.

Also, use a backup buffer size that is:

- As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of thumb.

- At least as large as the largest (extent size * number of containers) product of the table spaces
being backed up.

- Toenable I/O parallelism when restoring a database or table space:
— Use more than one source media.

— Configure table spaces for parallel I/O. You must decide to use this option before you define your
containers. This cannot be done whenever you see a need; it must be planned for before you reach
the point where you need to restore your database or table space.

— Use the PARALLELISM parameter on the RESTORE command to specify the degree of parallelism.

— Use the WITH num-buffers BUFFERS parameter on the RESTORE command to ensure that enough
buffers are available to accommodate the degree of parallelism. The number of buffers should equal
the number of target media you have plus the degree of parallelism selected plus a few extra.

Also, use a restore buffer size that is:

- As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of thumb.

- At least as large as the largest (extent size * number of containers) product of the table spaces
being restored.

- The same as, or an even multiple of, the backup buffer size.

Enabling intrapartition parallelism for queries

To enable intrapartition query parallelism, modify one or more database or database manager
configuration parameters, precompile or bind options, or a special register. Alternatively, use the
MAXIMUM DEGREE option on the CREATE or ALTER WORKLOAD statement, or the

Chapter 3. Implementation and maintenance 111

ADMIN_SET_INTRA_PARALLEL procedure to enable or disable intrapartition parallelism at the
transaction level.

Before you begin
Use the following controls to specify what degree of intrapartition parallelism the optimizer is to use:

« CURRENT DEGREE special register (for dynamic SQL)
« DEGREE bind option (for static SQL)

- dft_degree database configuration parameter (provides the default value for the previous two
parameters)

Use the following controls to limit the degree of intrapartition parallelism at run time. The runtime
settings override the optimizer settings.

- max_querydegree database manager configuration parameter

« SET RUNTIME DEGREE command

« MAXIMUM DEGREE workload option

« MAXIMUM DEGREE service class option

Use any of the following controls to enable or disable intrapartition parallelism:

- intra_parallel database manager configuration parameter
« ADMIN_SET_INTRA_PARALLEL stored procedure
« MAXIMUM DEGREE workload option

About this task

Use the GET DATABASE CONFIGURATION orthe GET DATABASE MANAGER CONFIGURATION
command to find the values of individual entries in a specific database or instance configuration file. To
modify one or more of these entries, use the UPDATE DATABASE CONFIGURATION or the UPDATE
DATABASE MANAGER CONFIGURATION command.

intra_parallel
Database manager configuration parameter that specifies whether or not the database manager can
use intrapartition parallelism. The default is NO, which means that applications in this instance are run
without intrapartition parallelism. For example:

update dbm cfg using intra_parallel yes;
get dbm cfg;

max_querydegree
Database manager configuration parameter that specifies the maximum degree of intrapartition
parallelism that is used for any SQL statement running on this instance. An SQL statement does not
use more than this value when running parallel operations within a database partition. The default is
-1, which means that the system uses the degree of intrapartition parallelism that is determined by
the optimizer, not the user-specified value. For example:

update dbm cfg using max_querydegree any;
get dbm cfg;

The intra_parallel database manager configuration parameter must also be set to YES for the
value of max_querydegree to be used.

dft_degree
Database configuration parameter that specifies the default value for the DEGREE precompile or bind
option and the CURRENT DEGREE special register. The default is 1. A value of -1 (or ANY) means that

112 IBM Db2 V11.5: Partitioning and Clustering Guide

the system uses the degree of intrapartition parallelism that is determined by the optimizer. For
example:

connect to sample;

update db cfg using dft_degree -1;
get db cfg;

connect reset;

DEGREE
Precompile or bind option that specifies the degree of intrapartition parallelism for the execution of
static SQL statements on a symmetric multiprocessing (SMP) system. For example:

connect to prod;
prep demoapp.sqc bindfile;
bind demoapp.bnd degree 2;

CURRENT DEGREE
Special register that specifies the degree of intrapartition parallelism for the execution of dynamic
SQL statements. Use the SET CURRENT DEGREE statement to assign a value to the CURRENT
DEGREE special register. For example:

connect to sample;
set current degree = '1';
connect reset;

The intra_parallel database manager configuration parameter must also be set to YES to use
intrapartition parallelism. If it is set to NO, the value of this special register is ignored, and the
statement will not use intrapartition parallelism. The value of the intra_parallel database
manager configuration parameter and the CURRENT DEGREE special register can be overridden in a
workload by setting the MAXIMUM DEGREE workload attribute.

MAXIMUM DEGREE
CREATE WORKLOAD or CREATE SERVICE CLASS statement (or ALTER WORKLOAD or ALTER SERVICE
CLASS statement) option that specifies the maximum runtime degree of parallelism for a workload or
service class.

For example, suppose that bank_trans is a packaged application that mainly executes short OLTP
transactions, and bank_report is another packaged application that runs complex queries to
generate a business intelligence (BI) report. Neither application can be modified, and both are bound
with degree 4 to the database. While bank_trans is running, it is assigned to workload trans, which
disables intrapartition parallelism. This OLTP application will run without any performance
degradation associated with intrapartition parallelism overhead. While bank_xrepozxt is running, it is
assigned to workload b1i, which enables intrapartition parallelism and specifies a maximum runtime
degree of 8. Because the compilation degree for the package is 4, the static SQL statements in this
application run with only a degree of 4. If this BI application contains dynamic SQL statements, and
the CURRENT DEGREE special register is set to 16, these statements run with a degree of 8.

connect to sample;

create workload trans
applname('bank_trans')
maximum degree 1
enable;

create workload bi
applname ('bank_report')
maximum degree 8
enable;

connect reset;

ADMIN_SET_INTRA_PARALLEL
Procedure that enables or disables intrapartition parallelism for a database application. Although the
procedure is called in the current transaction, it takes effect starting with the next transaction. For

Chapter 3. Implementation and maintenance 113

example, assume that the following code is part of the demoapp application, which uses the
ADMIN_SET_INTRA_PARALLEL procedure with both static and dynamic SQL statements:

EXEC SQL CONNECT TO pzrod;

// Disable intrapartition parallelism:

EXEC SQL CALL SYSPROC.ADMIN_SET_INTRA_PARALLEL('NO');
// Commit so that the effect of this call

// starts in the next statement:

EXEC SQL COMMIT;

// All statements in the next two transactions run
// without intrapartition parallelism:
strcpy(stmt, "SELECT deptname FROM org");

EXEC SQL PREPARE rstmt FROM :stmt;

EXEC SQL DECLARE cl1 CURSOR FOR zrstmt;

EXEC SQL OPEN c1;

EXEC SQL FETCH c1 INTO :deptname;

EXEC SQL CLOSE c1;

))'New section for this static statement:
EXEC SQL SELECT COUNT(x) INTO :numRecords FROM org;

EXEC SQL COMMIT;

// Enable intrapartition parallelism:

EXEC SQL CALL SYSPROC.ADMIN_SET_INTRA_PARALLEL('YES');
// Commit so that the effect of this call

// starts in the next statement:

EXEC SQL COMMIT;

strcpy(stmt, "SET CURRENT DEGREE='4'");
// Set the degree of parallelism to 4:
EXEC SQL EXECUTE IMMEDIATE :stmt;

// All dynamic statements in the next two transactions
// run with intrapartition parallelism and degree 4:
strcpy(stmt, "SELECT deptname FROM org");

EXEC SQL PREPARE rstmt FROM :stmt;

EXEC SQL DECLARE c2 CURSOR FOR rstmt;

EXEC SQL OPEN c2;

EXEC SQL FETCH c2 INTO :deptname;

EXEC SQL CLOSE c2;

))'All static statements in the next two transactions
// run with intrapartition parallelism and degree 2:
EXEC SQL SELECT COUNT (%) INTO :numRecords FROM oxrg;

EXEC SQL COMMIT:

The degree of intrapartition parallelism for dynamic SQL statements is specified through the
CURRENT DEGREE special register, and for static SQL statements, it is specified through the DEGREE
bind option. The following commands are used to prepare and bind the demoapp application:

connect to prod;
prep demoapp.sqc bindfile;
bind demoapp.bnd degree 2;

Management of data server capacity

If data server capacity does not meet your present or future needs, you can expand its capacity by adding
disk space and creating additional containers, or by adding memory. If these simple strategies do not add
the capacity you need, also consider adding processors or physical partitions. When you scale your
system by changing the environment, be aware of the impact that such a change can have on your
database procedures such as loading data, or backing up and restoring databases.

Adding processors

If a single-partition database configuration with a single processor is used to its maximum capacity, you
might either add processors or add logical partitions. The advantage of adding processors is greater
processing power. In a single-partition database configuration with multiple processors (SMP),
processors share memory and storage system resources. All of the processors are in one system, so

114 IBM Db2 V11.5: Partitioning and Clustering Guide

communication between systems and coordination of tasks between systems does not factor into the
workload. Utilities such as load, back up, and restore can take advantage of the additional processors.

Note: Some operating systems can dynamically turn processors on- and offline.

If you add processors, review and modify some database configuration parameters that determine the
number of processors used. The following database configuration parameters determine the number of
processors used and might need to be updated:

« Default degree (dft_degree)
« Maximum degree of parallelism (max_quexrydegree)
« Enable intrapartition parallelism (intra_parallel)

You should also evaluate parameters that determine how applications perform parallel processing.

In an environment where TCP/IP is used for communication, review the value for the DB2TCPCONNMGRS
registry variable.

Adding additional computers

If you have an existing partitioned database environment, you can increase processing power and data-
storage capacity by adding additional computers (either single-processor or multiple-processor) and
storage resource to the environment. The memory and storage resources are not shared among
computers. This choice provides the advantage of balancing data and user access across storage and
computers.

After adding the new computers and storage, you would use the START DATABASE MANAGER command
to add new database partition servers to the new computers. A new database partition is created and
configured for each database in the instance on each new database partition server that you add. In most
situations, you do not need to restart the instance after adding the new database partition servers.

Fast communications manager

Fast communications manager (Windows)

In multiple member environments, each member has a pair of FCM daemons to support communication
between members that is related to agent requests. One daemon is for sending communications, and the
other is for receiving. These daemons and supporting infrastructure are activated when an instance is
started. FCM communication is also used for agents working within the same member; this type of
communication is also known as intra-member communication.

You can specify the number of FCM message buffers by using the £cm_num_buffexrs database manager
configuration parameter. You can specify the number of FCM channels by using the £cm_num_channels
database manager configuration parameter. By default, the £cm_num_buffexrs and
fcm_num_channels database manager configuration parameters are set to AUTOMATIC. If the setting is
AUTOMATIC, which is the recommended setting, the FCM monitors resource usage and adjusts resources
to accommodate workload demand.

Fast communications manager (Linux and UNIX)
The fast communications manager (FCM) provides communications support for partitioned database
environments.

In multiple member environments, each member has a pair of FCM daemons to support communication
between members that is related to agent requests. One daemon is for sending communications, and the
other is for receiving. These daemons and supporting infrastructure are activated when an instance is
started. FCM communication is also used for agents working within the same member; this type of
communication is also known as intra-member communication.

The FCM daemon collects information about communication activities. You can obtain information about
FCM communications by using the database system monitor. If communications fail between members or
if they re-establish communications, the FCM daemons update monitor elements with this information.
The FCM daemons also trigger the appropriate action for this event. An example of an appropriate action

Chapter 3. Implementation and maintenance 115

is the rollback of an affected transaction. You can use the database system monitor to help you set the
FCM configuration parameters.

You can specify the number of FCM message buffers by using the £cm_num_buffers database manager
configuration parameter. You can specify the number of FCM channels by using the £cm_num_channels
database manager configuration parameter. By default, the £cm_num_buffers and
fcm_num_channels database manager configuration parameters are set to AUTOMATIC. If the setting is
AUTOMATIC, which is the recommended setting, the FCM monitors resource usage and adjusts resources
to accommodate workload demand.

Enabling communication between database partitions using FCM communications
In a partitioned database environment, most communication between database partitions is handled by
the fast communications manager (FCM).

To enable the FCM at a database partition and allow communication with other database partitions, you
must create a service entry in the database partition's services file of the etc directory as shown later
in this section. The FCM uses the specified port to communicate. If you have defined multiple database
partitions on the same host, you must define a range of ports, as shown later in this section.

Before attempting to manually configure memory for the fast communications manager (FCM), it is
recommended that you start with the automatic setting, which is also the default setting, for the number
of FCM Buffers (fcm_num_buffexrs) and for the number of FCM Channels (fcm_num_channels). Use
the system monitor data for FCM activity to determine if this setting is appropriate.

Windows Considerations
The TCP/IP port range is automatically added to the services file by:

- The install program when it creates the instance or adds a new database partition
e The db2icxrt utility when it creates a new instance
« The db2ncxt utility when it adds the first database partition on the computer

The syntax of a service entry is as follows:

DB2_instance port/tcp H#comment

DB2_instance
The value for instance is the name of the database manager instance. All characters in the name must
be lowercase. Assuming an instance name of DB2PUSER, you specify DB2_db2puser.

port/tcp
The TCP/IP port that you want to reserve for the database partition.

#comment
Any comment that you want to associate with the entry. The comment must be preceded by a pound
sign (#).

If the services file of the etc directory is shared, you must ensure that the number of ports allocated in
the file is either greater than or equal to the largest number of multiple database partitions in the
instance. When allocating ports, also ensure that you account for any processor that can be used as a
backup.

If the services file of the etc directory is not shared, the same considerations apply, with one
additional consideration: you must ensure that the entries defined for the Db2 database instance are the
samein all services files of the etc directory (though other entries that do not apply to your partitioned
database environment do not have to be the same).

If you have multiple database partitions on the same host in an instance, you must define more than one
port for the FCM to use. To do this, include two lines in the services file of the etc directory to indicate
the range of ports that you are allocating. The first line specifies the first port, and the second line

116 IBM Db2 V11.5: Partitioning and Clustering Guide

indicates the end of the block of ports. In the following example, five ports are allocated for the SALES
instance. This means no processor in the instance has more than five database partitions. For example:

DB2_sales 9000/tcp
DB2_sales_END 9004 /tcp

Note: You must specify END in uppercase only. You must also ensure that you include both underscore (_)
characters.

Enabling communications between database partition servers (Linux and UNIX)

This task describes how to enable communication between the database partition servers that participate
in your partitioned database system. Communication between database partition servers is handled by
the Fast Communications Manager (FCM). To enable FCM, a port or port range must be reserved in

the /etc/services file on each computer in your partitioned database system.

Before you begin
You must have a user ID with root user authority.

You must perform this task on all computers that participate in the instance.

About this task

The number of ports to reserve for FCM is equal to the maximum number of database partitions hosted, or
potentially hosted, by any computer in the instance.

In the following example, the db2nodes. cfg file contains these entries:

serverl
serverl
server2
server2
server2
server3
server3
server3
server3

OO UITRARWNEFPO
WNPFPONFPORFRO

Assume that the FCM ports are numbered starting at 60000. In this situation:

- serverl uses two ports (60000, 60001) for its two database partitions
- server2 uses three ports (60000, 60001, 60002) for its three database partitions
- server3 uses four ports (60000, 60001, 60002, 60003) for its four database partitions

All computers must reserve 60000, 60001, 60002, and 60003, since this is the largest port range
required by any computer in the instance.

If you use a high availability solution such as Tivoli System Automation or IBM PowerHA SystemMirror for
AIX to fail over database partitions from one computer to another, you must account for potential port
requirements. For example, if a computer normally hosts four database partitions, but another
computer's two database partitions could potentially fail over to it, six ports must be planned for that
computer.

When you create an instance, a port range is reserved on the primary computer. The primary computer is
also known as the instance-owning computer. However, if the port range originally added to the /etc/
services file is not sufficient for your needs, you will need to extend the range of reserved ports by
manually adding additional entries.

Procedure

To enable communications between servers in a partitioned database environment using /etc/
services:

1. Log on to the primary computer (instance owning computer) as a user with root authority.

2. Create an instance.

Chapter 3. Implementation and maintenance 117

3. View the default port range that has been reserved in the /etc/sexrvices file.
In addition to the base configuration, the FCM ports should appear similar to the following:

db2c_db2instl 50000/tcp
#Add FCM port information

DB2_db2instl 60000/tcp
DB2_db2instl_1 60001 /tcp
DB2_db2instl1_2 60002/tcp
DB2_db2instl_END 60003/tcp

By default, the first port (50000) is reserved for connection requests, and the first available four ports
above 60000 are reserved for FCM communication. One port is for the instance-owning database
partition server and three ports are for logical database partition servers that you might choose to add
to the computer after installation is complete.

The port range must include a start and an END entry. Intermediate entries are optional. Explicitly
including intermediate values can be useful for preventing other applications from using these ports,
but these entries are not verified by the database manager.

Db2 port entries use the following format:
DB2_instance_name_suffix port_number/tcp # comment

where:

« instance_name is the name of the partitioned instance.

« suffix is not used for the first FCM port. Intermediate entries are those between the lowest and
highest port. If you include the intermediate entries between the first and ending FCM port, the suffix
consists of an integer that you increment by one for each additional port. For example, the second
port is numbered 1, and third is numbered 2, and so on to ensure uniqueness. The word END must be
used as the suffix for the last entry.

= port_number is the port number that you reserve for database partition server communications.
- comment is an optional comment describing an entry.

4. Ensure that there are sufficient ports reserved for FCM communication.
If the range of reserved ports is insufficient, add new entries to the file.

5. Ensure that none of the ports that are reserved for FCM communication is the same as the port used
for the svcename - TCP/IP sexvice name configuration parameter.

For more information about defining ports in the /etc/services file, see http://www.ibm.com/
support/docview.wss?uid=swg21386030.

6. Log on as a root user to each computer participating in the instance and add identical entries to
the /etc/sexvices file.

Creating and managing partitioned database environments

Managing database partitions
You can start or stop partitions, drop partitions, or trace partitions.

Before you begin

To work with database partitions, you need authority to attach to an instance. Anyone with SECADM or
ACCESSCTRL authority can grant you the authority to access a specific instance.

Procedure

« To start or to stop a specific database partition, use the START DATABASE MANAGER command or the
STOP DATABASE MANAGER command with the DBPARTITIONNUM parameter.

- Todrop a specific database partition from the db2nodes. cfg configuration file, use the STOP
DATABASE MANAGER command with the DROP DBPARTITIONNUM parameter.

118 IBM Db2 V11.5: Partitioning and Clustering Guide

Before using the DROP DBPARTITIONNUM parameter, run the DROP DBPARTITIONNUM VERIFY
command to ensure that there is no user data on this database partition.

- To trace the activity on a database partition, use the options specified by IBM Support.

Attention: Use the trace utility only when directed to do so by IBM Support or by a technical support
representative.

The trace utility records and formats information about Db2 operations. For more details, see the
"db2trc - Trace command" topic.

Adding database partitions in partitioned database environments

You can add database partitions to the partitioned database system either when it is running, or when it is
stopped. Because adding a new server can be time consuming, you might want to do it when the database
manager is already running.

Use the ADD DBPARTITIONNUM command to add a database partition to a system. This command can be
invoked in the following ways:

« As an option on the START DBM command
With the ADD DBPARTITIONNUM command
With the sqleaddn API

With the sqlepstart API

If your system is stopped, use the START DBM command. If it is running, you can use any of the other
choices.

When you use the ADD DBPARTITIONNUM command to add a new database partition to the system, all
existing databases in the instance are expanded to the new database partition. You can also specify
which containers to use for temporary table spaces for the databases. The containers can be:

« The same as those defined for the catalog partition for each database. (This is the default.)
« The same as those defined for another database partition.

» Not created at all. You must use the ALTER TABLESPACE statement to add temporary table space
containers to each database before the database can be used.

Note: Any uncataloged database is not recognized when adding a new database partition. The
uncataloged database will not be present on the new database partition. An attempt to connect to the
database on the new database partition returns the error message SQL1013N.

You cannot use a database on the new database partition to contain data until one or more database
partition groups are altered to include the new database partition.

You cannot change from a single-partition database to a multi-partition database by adding a database
partition to your system. This is because the redistribution of data across database partitions requires a
distribution key on each affected table. The distribution keys are automatically generated when a table is
created in a multi-partition database. In a single-partition database, distribution keys can be explicitly
created with the CREATE TABLE or ALTER TABLE SQL statements.

Note: If no databases are defined in the system and you are running Enterprise Server Edition on a UNIX
operating system, edit the db2nodes. cfg file to add a new database partition definition; do not use any
of the procedures described, as they apply only when a database exists.

Windows Considerations: If you are using Enterprise Server Edition on a Windows operating system and
have no databases in the instance, use the db2ncxt command to scale the database system. If, however,
you already have databases, use the START DBM ADD DBPARTITIONNUM command to ensure that a
database partition is created for each existing database when you scale the system. On Windows
operating systems, do not manually edit the database partition configuration file (db2nodes.cfg),
because this can introduce inconsistencies to the file.

Chapter 3. Implementation and maintenance 119

Adding an online database partition
You can add new database partitions that are online to a partitioned database environment while it is
running and while applications are connected to databases.

Procedure

To add an online database partition to a running database manager using the command line:
1. On any existing database partition, run the START DBM command.

On all platforms, specify the new database partition values for DBPARTITIONNUM, ADD
DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters. On the Windows platform, you also
specify the COMPUTER, USER, and PASSWORD parameters.

You can also specify the source for any temporary table space container definitions that must be
created with the databases. If you do not provide table space information, temporary table space
container definitions are retrieved from the catalog partition for each database.

For example, to add three new database partitions to an existing database, issue the following
commands:

START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAMES
PORT PORT5;

2. Optional: Alter the database partition group to incorporate the new database partition.
This action can also be an option when redistributing the data to the new database partition.

3. Optional: Redistribute data to the new database partition.

This action is not really optional if you want to take advantage of the new database partitions. You can
also include the alter database partition group option as part of the redistribution operation.
Otherwise, altering the database partition group to incorporate the new database partitions must be
done as a separate action before redistributing the data to the new database partition.

4. Optional: Back up all databases on the new database partition.
Although optional, this would be helpful to have for the new database partition and for the other
database partitions particularly if you redistributed the data across both the old and the new database
partitions.

Restrictions when working online to add a database partition

The status of the new database partition following its addition to the instance depends on the status of
the original database partition. Applications may or may not be aware of the new database partition
following its addition to the instance if the application uses WITH HOLD cursors.

When adding a new database partition to a single-partition database instance:

- If the original database partition is up when the database partition is added, then the new database
partition is down when the add database partition operation completes.

- If the original database partition is down when the database partition is added, then the new database
partition is up when the add database partition operation completes.

Applications using WITH HOLD cursors that are started before the add database partition operation runs
are not aware of the new database partition when the add database partition operation completes. If the
WITH HOLD cursors are closed before the add database partition operation runs, then applications are
aware of the new database partition when the add database partition operation completes

120 IBM Db2 V11.5: Partitioning and Clustering Guide

Adding a database partition offline (Windows)

You can add new database partitions to a partitioned database system while it is stopped. The newly
added database partition becomes available to all databases when the database manager is started
again.

Before you begin

« You must install the new server before you can create a database partition on it.

- Set the default value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable to TRUE to
enforce that any added database partitions is offline.

Procedure

To add a database partition to a stopped partitioned database server using the command line:

1. Issue STOP DBM to stop all the database partitions.

2. Run the ADD DBPARTITIONNUM command on the new server.
A database partition is created locally for every database that already exists in the system. The
database parameters for the new database partitions are set to the default value, and each database

partition remains empty until you move data to it. Update the database configuration parameter values
to match those on the other database partitions.

3. Run the START DBM command to start the database system.

Note that the database partition configuration file has already been updated by the database manager
to include the new server during the installation of the new server.

4. Update the configuration file on the new database partition as follows:
a) On any existing database partitions, run the START DBM command.
Specify the new database partition values for DBPARTITIONNUM, ADD DBPARTITIONNUM,

HOSTNAME, PORT, and NETNAME parameters as well as the COMPUTER, USER, and PASSWORD
parameters.

You can also specify the source for any temporary table space container definitions that need to be
created with the databases. If you do not provide table space information, temporary table space
container definitions are retrieved from the catalog partition for each database.

For example, to add three new database partitions to an existing database, issue the following
commands:

START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAMES
PORT PORT5;
When the START DBM command is complete, the new server is stopped.
b) Stop the database manager by running the STOP DBM command.
When you stop all the database partitions in the system, the node configuration file is updated to
include the new database partitions. The node configuration file is not updated with the new server
information until STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM command,
which is called when you specify the ADD DBPARTITIONNUM parameter to the START DBM

command, runs on the correct database partitions. When the utility ends, the new server partitions
are stopped.

5. Start the database manager by running the START DBM command.

The newly added database partitions are now started with the rest of the system.

Chapter 3. Implementation and maintenance 121

When all the database partitions in the system are running, you can run system-wide activities, such as
creating or dropping a database.

Note: You might have to issue the START DBM command twice for all database partition servers to
access the new db2nodes. cfg file.

. Optional: Alter the database partition group to incorporate the new database partition.
This action could also be an option when redistributing the data to the new database partition.

. Optional: Redistribute data to the new database partition.

This action is not really optional if you want to take advantage of the new database partition. You can
also include the alter database partition group option as part of the redistribution operation.
Otherwise, altering the database partition group to incorporate the new database partition must be
done as a separate action before redistributing the data to the new database partition.

. Optional: Back up all databases on the new database partition.

Although optional, this would be helpful to have for the new database partition and for the other
database partitions particularly if you have redistributed the data across both the old and the new
database partitions.

Adding a database partition offline (Linux and UNIX)
You can add new database partitions that are offline to a partitioned database system. The newly added
database partition becomes available to all databases when the database manager is started again.

Before you begin

Install the new server if it does not exist before you can create a database partition on it.
Make the executables accessible using shared filesystem mounts or local copies.
Synchronize operating system files with those on existing processors.

Ensure that the sql1lib directory is accessible as a shared file system.

Ensure that the relevant operating system parameters (such as the maximum number of processes) are
set to the appropriate values.

Register the host name with the name server or in the hosts file in the /etc directory on all database
partitions. The host name for the computer must be registered in . rhosts to run remote commands
using xrsh or xah.

Set the default value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable to TRUE to
enforce that the added database partitions is offline.

Procedure

To add a database partition to a stopped partitioned database server using the command line:

a) Issue STOP DBM to stop all the database partitions.

b) Run the ADD DBPARTITIONNUM command on the new server.
A database partition is created locally for every database that exists in the system. The database
parameters for the new database partitions are set to the default value, and each database

partition remains empty until you move data to it. Update the database configuration parameter
values to match those on the other database partitions.

c) Run the START DBM command to start the database system.

Note that the database partition configuration file (db2nodes. cfg) has already been updated by
the database manager to include the new server during the installation of the new server.

d) Update the configuration file on the new database partition as follows:
a. On any existing database partition, run the START DBM command.

Specify the new database partition values for DBPARTITIONNUM, ADD DBPARTITIONNUM,
HOSTNAME, PORT, and NETNAME parameters as well as the COMPUTER, USER, and PASSWORD
parameters.

122 IBM Db2 V11.5: Partitioning and Clustering Guide

You can also specify the source for any temporary table space container definitions that must be
created with the databases. If you do not provide table space information, temporary table
space container definitions are retrieved from the catalog partition for each database.

For example, to add three new database partitions to an existing database, issue the following
commands:

START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAMES
PORT PORT5;
When the START DBM command is complete, the new server is stopped.
b. Stop the entire database manager by running the STOP DBM command.
When you stop all the database partitions in the system, the node configuration file is updated
to include the new database partitions. The node configuration file is not updated with the new
server information until STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM
command, which is called when you specify the ADD DBPARTITIONNUM parameter to the

START DBM command, runs on the correct database partition. When the utility ends, the new
server partitions are stopped.

e) Start the database manager by running the START DBM command.
The newly added database partition is now started with the rest of the system.

When all the database partitions in the system are running, you can run system-wide activities,
such as creating or dropping a database.

Note: You might have to issue the START DBM command twice for all database partition servers to
access the new db2nodes. cfg file.

f) Optional: Alter the database partition group to incorporate the new database partition.
This action might also be an option when redistributing the data to the new database partition.

g) Optional: Redistribute data to the new database partition.

This action is not really optional if you want to take advantage of the new database partition. You
can also include the alter database partition group option as part of the redistribution operation.
Otherwise, altering the database partition group to incorporate the new database partition must be
done as a separate action before redistributing the data to the new database partition.

h) Optional: Back up all databases on the new database partition.

Although optional, this would be helpful to have for the new database partition and for the other
database partitions particularly if you redistributed the data across both the old and the new
database partitions.

You can also update the configuration file manually, as follows:
a) Edit the db2nodes. cfg file and add the new database partition to it.

b) Issue the following command to start the new database partition: START DBM DBPARTITIONNUM
partitionnum

Specify the number you are assigning to the new database partition as the value of partitionnum.

c¢) If the new server is to be a logical partition (that is, it is not database partition 0), use db2set
command to update the DBPARTITIONNUM registry variable.

Specify the number of the database partition you are adding.
d) Run the ADD DBPARTITIONNUM command on the new database partition.

This command creates a database partition locally for every database that exists in the system. The
database parameters for the new database partitions are set to the default value, and each

Chapter 3. Implementation and maintenance 123

database partition remains empty until you move data to it. Update the database configuration
parameter values to match those on the other database partitions.

e) When the ADD DBPARTITIONNUM command completes, issue the START DBM command to start
the other database partitions in the system.

Do not perform any system-wide activities, such as creating or dropping a database, until all
database partitions are successfully started.

Error recovery when adding database partitions
Adding database partitions does not fail as a result of nonexistent buffer pools, because the database
manager creates system buffer pools to provide default automatic support for all buffer pool page sizes.

However, if one of these system buffer pools is used, performance might be seriously affected, because
these buffer pools are very small. If a system buffer pool is used, a message is written to the
administration notification log. System buffer pools are used in database partition addition scenarios in
the following circumstances:

» You add database partitions to a partitioned database environment that has one or more system
temporary table spaces with a page size that is different from the default of 4 KB. When a database
partition is created, only the IBMDEFAULTDP buffer pool exists, and this buffer pool has a page size of 4
KB.

Consider the following examples:

1. You use the START DBM command to add a database partition to the current multi-partition
database:

START DBM DBPARTITIONNUM 2 ADD DBPARTITIONNUM HOSTNAME newhost PORT 2

2. You use the ADD DBPARTITIONNUM command after you manually update the db2nodes. cfg file
with the new database partition description.

One way to prevent these problems is to specify the WITHOUT TABLESPACES clause on the ADD
DBPARTITIONNUM or the START DBM commands. After doing this, use the CREATE BUFFERPOOL
statement to create the buffer pools using the appropriate SIZE and PAGESIZE values, and associate
the system temporary table spaces to the buffer pool using the ALTER TABLESPACE statement.

« You add database partitions to an existing database partition group that has one or more table spaces
with a page size that is different from the default page size, which is 4 KB. This occurs because the non-
default page-size buffer pools created on the new database partition have not been activated for the
table spaces.

Note: In previous versions, this command used the NODEGROUP keyword instead of the DATABASE
PARTITION GROUP keywords.

Consider the following example:

— You use the ALTER DATABASE PARTITION GROUP statement to add a database partition to a
database partition group, as follows:

START DBM
CONNECT TO mppl
ALTER DATABASE PARTITION GROUP ngl ADD DBPARTITIONNUM (2)

One way to prevent this problem is to create buffer pools for each page size and then to reconnect to
the database before issuing the following ALTER DATABASE PARTITION GROUP statement:

START DBM

CONNECT TO mppl

CREATE BUFFERPOOL bpl SIZE 1000 PAGESIZE 8192

CONNECT RESET

CONNECT TO mppl

ALTER DATABASE PARTITION GROUP ngl ADD DBPARTITIONNUM (2)

Note: If the database partition group has table spaces with the default page size, message SQL1759W is
returned.

124 IBM Db2 V11.5: Partitioning and Clustering Guide

Dropping database partitions
You can drop a database partition that is not being used by any database and free the computer for other
uses.

Before you begin
Verify that the database partition is not in use by issuing the DROP DBPARTITIONNUM VERIFY command
or the sqledrpn API.

« If you receive message SQL6034W (Database partition not used in any database), you can drop the
database partition.

« If you receive message SQL6035W (Database partition in use by database), use the REDISTRIBUTE
DATABASE PARTITION GROUP command to redistribute the data from the database partition that you
are dropping to other database partitions from the database alias.

Also ensure that all transactions for which this database partition was the coordinator have all committed
or rolled back successfully. This might require doing crash recovery on other servers. For example, if you
drop the coordinator partition, and another database partition participating in a transaction crashed
before the coordinator partition was dropped, the crashed database partition will not be able to query the
coordinator partition for the outcome of any indoubt transactions.

Procedure

Issue the STOP DBM command with the DROP DBPARTITIONNUM parameter to drop the database
partition.

After the command completes successfully, the system is stopped. Then start the database manager with
the START DBM command.

Listing database partition servers in an instance (Windows)
On Windows, use the db2nlist command to obtain a list of database partition servers that participate in
an instance.

About this task

The command is used as follows:

db2nlist

When using this command as shown, the default instance is the current instance (set by the
DB2INSTANCE environment variable). To specify a particular instance, you can specify the instance using:

db2nlist /i:instName
where instName is the particular instance name you want.
You can also optionally request the status of each database partition server by using:

db2nlist /s
The status of each database partition server might be one of: starting, running, stopping, or stopped.

Adding database partition servers to an instance (Windows)
On Windows, use the db2ncxt command to add a database partition server to an instance.

About this task

Note: Do not use the db2ncxt command if the instance already contains databases. Instead, use the
START DBM ADD DBPARTITIONNUM command. This ensures that the database is correctly added to the
new database partition server. DO NOT EDIT the db2nodes. cfg file, since changing the file might cause
inconsistencies in the partitioned database environment.

The command has the following required parameters:

Chapter 3. Implementation and maintenance 125

db2ncrt /n:partition_number
/u:username,password
/p:logical_port

/n:partition_number
The unique database partition number to identify the database partition server. The number can be
from 1 to 999 in ascending sequence.

/u:username,password
The logon account name and password of the Db2 service.

/p:logical_port
The logical port number used for the database partition server if the logical port is not zero (0). If not
specified, the logical port number assigned is 0.

The logical port parameter is only optional when you create the first database partition on a computer. If
you create a logical database partition, you must specify this parameter and select a logical port number
that is not in use. There are several restrictions:

« On every computer there must be a database partition server with a logical port 0.

« The port number cannot exceed the port range reserved for FCM communications in the services file in
%SystemRoot%\system32\drivers\etc directory. For example, if you reserve a range of four ports for
the current instance, then the maximum port number would be 3 (ports 1, 2, and 3; port 0 is for the
default logical database partition). The port range is defined when db2icxt is used with the /
r:base_port, end_port parameter.

There are also several optional parameters:

/g:network_name
Specifies the network name for the database partition server. If you do not specify this parameter,
Db2 uses the first IP address it detects on your system.

Use this parameter if you have multiple IP addresses on a computer and you want to specify a specific
IP address for the database partition server. You can enter the network_name parameter using the
network name or IP address.

/h:host_name
The TCP/IP host name that is used by FCM for internal communications if the host name is not the
local host name. This parameter is required if you add the database partition server on a remote
computer.

/izinstance_name
The instance name; the default is the current instance.

/m:computer_name
The computer name of the Windows workstation on which the database partition resides; the default
name is the computer name of the local computer.

[o:instance_owning_computer
The computer name of the computer that is the instance-owning computer; the default is the local
computer. This parameter is required when the db2ncxt command is invoked on any computer that
is not the instance-owning computer.

For example, if you want to add a new database partition server to the instance TESTMPP (so that you are
running multiple logical database partitions) on the instance-owning computer MYMACHIN, and you want
this new database partition to be known as database partition 2 using logical port 1, enter:

db2ncrt /n:2 /p:1 /u:my_id,my_pword /i:TESTMPP
/M:TEST /0:MYMACHIN

126 IBM Db2 V11.5: Partitioning and Clustering Guide

Changing database partitions (Windows)
On Windows, use the db2nchg command to change database partitions.

About this task

- Move the database partition from one computer to another.
« Change the TCP/IP host name of the computer.

If you are planning to use multiple network adapters, you must use this command to specify the TCP/IP
address for the "netname" field in the db2nodes. cfg file.

« Use a different logical port number.
« Use a different name for the database partition server.

The command has the following required parameter:

db2nchg /n:node_number

The parameter /n: is the number of the database partition server that you want to change. This
parameter is required.

Optional parameters include:

[izinstance_name
Specifies the instance that this database partition server participates in. If you do not specify this
parameter, the default is the current instance.

[u:username,password
Changes the logon account name and password for the Db2 database service. If you do not specify
this parameter, the logon account and password remain the same.

/p:logical_port
Changes the logical port for the database partition server. This parameter must be specified if you
move the database partition server to a different computer. If you do not specify this parameter, the
logical port number remains unchanged.

/h:host_name
Changes the TCP/IP host name used by FCM for internal communications. If you do not specify this
parameter, the host name is unchanged.

/m:computer_name
Moves the database partition server to another computer. The database partition server can be moved
only if there are no existing databases in the instance.

/g:network_name
Changes the network name for the database partition server.

Use this parameter if you have multiple IP addresses on a computer and you want to use a specific IP
address for the database partition server. You can enter the network_name using the network name or
the IP address.

For example, to change the logical port assigned to database partition 2, which participates in the
instance TESTMPP, to use the logical port 3, enter the following command:

db2nchg /n:2 /i:TESTMPP /p:3
The Db2 database manager provides the capability of accessing Db2 database system registry variables
at the instance level on a remote computer.

Currently, Db2 database system registry variables are stored in three different levels: computer or global
level, instance level, and database partition level. The registry variables stored at the instance level
(including the database partition level) can be redirected to another computer by using DB2REMOTEPREG.

Chapter 3. Implementation and maintenance 127

When DB2REMOTEPREG is set, the Db2 database manager accesses the Db2 database system registry
variables from the computer pointed to by DB2REMOTEPREG. The db2set command would appear as:

db2set DB2REMOTEPREG=remote_workstation

where remote_workstation is the remote workstation name.
Note:

« Care must be taken in setting this option since all Db2 database instance profiles and instance listings
will be located on the specified remote computer name.

« If your environment includes users from domains, ensure that the logon account associated with the
Db2 instance service is a domain account. This ensures that the Db2 instance has the appropriate
privileges to enumerate groups at the domain level.

This feature might be used in combination with setting DBINSTPROF to point to a remote LAN drive on the
same computer that contains the registry.

Adding containers to SMS table spaces on database partitions
You can add a container to an SMS table space only on a database partition that currently has no
containers.

Procedure

- Toadd acontainer to an SMS table space using the command line, enter the following;:

ALTER TABLESPACE name
ADD ('path')
ON DBPARTITIONNUM (database_partition_number)

The database partition specified by number, and every partition in the range of database partitions,
must exist in the database partition group on which the table space is defined. A
database_partition_number might only appear explicitly or within a range in exactly one db-partitions-
clause for the statement.

Example

The following example shows how to add a new container to database partition number 3 of the database
partition group used by table space "plans" on a UNIX operating system:

ALTER TABLESPACE plans
ADD ('/dev/rhdisk0')
ON DBPARTITIONNUM (3)

Dropping a database partition from an instance (Windows)

On Windows, use the db2ndxop command to drop a database partition server from an instance that has
no databases. If you drop a database partition server, its database partition number can be reused for a
new database partition server.

About this task

Exercise caution when you drop database partition servers from an instance. If you drop the instance-
owning database partition server zero (0) from the instance, the instance becomes unusable. If you want
to drop the instance, use the db2idxrop command.

Note: Do not use the db2ndxop command if the instance contains databases. Instead, use the STOP DBM
DROP DBPARTITIONNUM command. This ensures that the database is correctly removed from the
database partition. DO NOT EDIT the db2nodes. cfg file, since changing the file might cause
inconsistencies in the partitioned database environment.

If you want to drop a database partition that is assigned the logical port 0 from a computer that is running
multiple logical database partitions, you must drop all the other database partitions assigned to the other

128 IBM Db2 V11.5: Partitioning and Clustering Guide

logical ports before you can drop the database partition assigned to logical port 0. Each database
partition server must have a database partition assigned to logical port O.

The command has the following parameters:

db2ndrop /n:dbpartitionnum /i:instance_name

/n:dbpartitionnum
The unique database partition number (dbpartitionnum) to identify the database partition server. This
is a required parameter. The number can be from zero (0) to 999 in ascending sequence. Recall that
database partition zero (0) represents the instance-owning computer.

/izinstance_name
The instance name (instance_name). This is an optional parameter. If not given, the default is the
current instance (set by the DB2INSTANCE registry variable).

Scenario: Redistributing data in new database partitions
This scenario shows how to add new database partitions to a database and redistribute data between the

database partitions. The REDISTRIBUTE DATABASE PARTITION GROUP command is demonstrated as
part of showing how to redistribute data on different table sets within a database partition group.

About this task

Scenario:
A database DBPG1 has two database partitions, specified as (0, 1) and a database partition group
definition (0, 1).

The following table spaces are defined on database partition group DBPG_1:

« Table space TS1 - this table space has two tables, T1 and T2
« Table space TS2 - this table space has three tables defined, T3, T4, and T5

Starting in Version 9.7, you can add database partitions while the database is running and while
applications are connected to it. However, the operation can be performed offline in this scenario by
changing the default value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable to TRUE.

Procedure

To redistribute data between the database partitions in DBPG1:
1. Identify objects that must be disabled or removed before the redistribution.

a) Replicate MQTs: This type of MQT is not supported as part of the redistribution operation. They
must be dropped before running the redistribution and recreated afterward.

SELECT tabschema, tabname
FROM syscat.tables
WHERE partition_mode = 'R’

b) Write-to-table event monitors: Disable any automatically activated write-to-table event monitors
that have a table that resides in the database partition group to be redistributed.

SELECT distinct evmonname
FROM syscat.eventtables E
JOIN syscat.tables T on T.tabname = E.tabname
AND T.tabschema = E.tabschema
JOIN syscat.tablespaces S on S.tbspace = T.thspace
AND S.ngname = 'DBPG_1'

¢) Explain tables: It is recommended to create the explain tables in a single partition database
partition group. If they are defined in a database partition group that requires redistribution,
however, and the data generated to date does not need to be maintained, consider dropping
them. The explain tables can be redefined once the redistribution is complete.

d) Table access mode and state: Ensure that all tables in the database partition groups to be
redistributed are in full access mode and normal table states.

Chapter 3. Implementation and maintenance 129

SELECT DISTINCT TRIM(T.OWNER) || \'.\' || TRIM(T.TABNAME)
AS NAME, T.ACCESS_MODE, A.LOAD_STATUS
FROM SYSCAT.TABLES T, SYSCAT.DBPARTITIONGROUPS
N, SYSIBMADM.ADMINTABINFO A
WHERE T.PMAP_ID = N.PMAP_ID
AND A.TABSCHEMA = T.OWNER
AND A.TABNAME = T.TABNAME
AND N.DBPGNAME = 'DBPG_1'
AND (T.ACCESS_MODE <> 'F' OR A.LOAD_STATUS IS NOT NULL)

e) Statistics profiles: If a statistics profile is defined for the table, table statistics can be updated as
part of the redistribution process. Having the redistribution utility update the statistics for the
table reduces I/0, as all the data is scanned for the redistribution and no additional scan of the
data is needed for RUNSTATS.

RUNSTATS on table schema.table
USE PROFILE runstats_profile
SET PROFILE ONLY

2. Review the database configuration.

The util_heap_sz is critical to the data movement processing between database partitions -
allocate as much memory as possible to util_heap_sz for the duration of the redistribution.

Sufficient soxrtheap is required, if index rebuild is done as part of the redistribution. Increase

util_heap_sz and sortheap as necessary to improve redistribution performance.

3. Retrieve the database configuration settings to be used for the new database partitions.

When adding database partitions, a default database configuration is used. As a result, it is important
to update the database configuration on the new database partitions before the REDISTRIBUTE
DATABASE PARTITION GROUP command is issued. This sequence of events ensures that the
configuration is balanced.

SELECT name,
CASE WHEN deferred_value_flags = 'AUTOMATIC'

THEN deferred_value_flags

ELSE substr(deferred_value,1,20)

END

AS deferred_value
FROM sysibmadm.dbcfg
WHERE dbpartitionnum = existing-node

AND deferred_value != ''

AND name NOT IN ('hadr_local_host', 'hadr_local_svc', 'hadr_peer_window',
'hadr_remote_host', 'hadr_remote_inst', 'hadr_remote_svc',
"hadr_syncmode', 'hadr_timeout', 'backup_pending', 'codepage’,
‘codeset', 'collate_info', 'country', 'database_consistent',
'database_level', 'hadr_db_role', 'log_retain_status',
'loghead', 'logpath', 'multipage_alloc', 'numsegs', 'pagesize’,
'release', 'restore_pending', 'restrict_access',
'rollfwd_pending', 'territory', 'user_exit_status',
'number_compat', 'varchar2_compat', 'database_memory')

4. Back up the database (or the table spaces in the pertinent database partition group), before starting
the redistribution process.
This action ensures a recent recovery point.

5. Add three new database partitions to the database.
Issue the following commands:

START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3 WITHOUT TABLESPACES;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4 WITHOUT TABLESPACES;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAMES
PORT PORT5 WITHOUT TABLESPACES;

130 IBM Db2 V11.5: Partitioning and Clustering Guide

10.

11.

12.

If the DB2_FORCE_OFFLINE_ADD_PARTITION is set to TRUE, new database partitions are not
visible to the instance until it has been shut down and restarted. For example:

STOP DBM;
START DBM;

. Define system temporary table space containers on the newly defined database partitions.

ALTER TABLESPACE tablespace_name
ADD container_information
ON dbpartitionnums (3 to 5)

. Add the new database partitions to the database partition groups.

The following command changes the DBPG_1 definition from (0, 1) to (0, 1, 3, 4, 5):

ALTER DATABASE PARTITION GROUP DBPG_1
ADD dbpartitionnums (3 to 5)
WITHOUT TABLESPACES

. Define permanent data table space containers on the newly defined database partitions.

ALTER TABLESPACE tablespace_name
ADD container_information
ON dbpartitionnums (3 to 5)

. Apply the database configuration settings to the new database partitions (or issue a single UPDATE

DB CFG command against all database partitions).

Capture the definition of and then drop any replicated MQTs existing in the database partition groups
to be redistributed.

db2look -d DBPG1 -e -z
schema -t replicated_MQT_table_names
-0 repMQTs.clp

Disable any write-to-table event monitors that exist in the database partition groups to be
redistributed.

SET EVENT MONITOR monitor_name STATE O
Run the redistribution utility to redistribute uniformly across all database partitions.

REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM STOP AT 2006-03-10-07.00.00.000000;

Let us presume that the command ran successfully for tables T1, T2 and T3, and then stopped due to
the specification of the STOP AT option.

To abort the data redistribution for the database partition group and to revert the changes made to
tables T1, T2, and T3, issue the following command:

REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1
NOT ROLLFORWARD RECOVERABLE ABORT;

You might abort the data redistribution when an error or an interruption occurs and you do not want
to continue the redistribute operation. For this scenario, presume that this command was run
successfully and that tables T1 and T2 were reverted to their original state.

To redistribute T5 and T4 only with 5000 4K pages as DATA BUFFER:

REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM TABLE (T5, T4) ONLY DATA BUFFER 5000;

If the command ran successfully, the data in tables T4 and T5 have been redistributed successfully.

To complete the redistribution of data on table T1, T2, and T3 in a specified order, issue:

Chapter 3. Implementation and maintenance 131

REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
CONTINUE TABLE (T1) FIRST;

Specifying TABLE (T1) FIRST forces the database manager to process table T1 first so that it can
return to being online (read-only) before other tables. All other tables are processed in an order
determined by the database manager.

Note:

« The ADD DBPARTITIONNUM parameter can be specified in the REDISTRIBUTE DATABASE
PARTITION GROUP command as an alternative to performing the ALTER DATABASE PARTITION
GROUP and ALTER TABLESPACE statements in steps “7” on page 131 and “8” on page 131. When
a database partition is added by using this command parameter, containers for table spaces are
based on the containers of the corresponding table space on the lowest numbered existing
partition in the database partition group.

« The REDISTRIBUTE DATABASE PARTITION GROUP command in this example is not roll-forward
recoverable.

» After the REDISTRIBUTE DATABASE PARTITION GROUP command finishes, all the table spaces
it accessed will be left in the BACKUP PENDING state. Such table spaces must be backed up before
the tables they contain are accessible for write operations.

For more information, refer to the "REDISTRIBUTE DATABASE PARTITION GROUP command".

Consider also specifying a table list as input to the REDISTRIBUTE DATABASE PARTITION GROUP
command to enforce the order that the tables are processed. The redistribution utility will move the
data (compressed and compacted). Optionally, indexes will be rebuilt and statistics updated if
statistics profiles are defined. Therefore instead of previous command, the following script can be
run:

REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1
NOT ROLLFORWARD RECOVERABLE uniform
TABLE (t1, t2,...) FIRST;

Issuing commands in partitioned database environments

In a partitioned database environment, you might want to issue commands to be run on computers in the
instance, or on database partition servers. You can do so using the xrah command or the db2_all
command. The xrah command allows you to issue commands that you want to run at computers in the
instance.

If you want the commands to run at database partition servers in the instance, you run the db2_all
command. This section provides an overview of these commands. The information that follows applies to
partitioned database environments only.

On Windows, to run the xrah command or the db2_all command, you must be logged on with a user
account that is a member of the Administrators group.

On Linux and UNIX operating systems, your login shell can be a Korn shell or any other shell; however,
there are differences in the way the different shells handle commands containing special characters.

Also, on Linux and UNIX operating systems, xrah uses the remote shell program specified by the
DB2RSHCMD registry variable. You can select between the two remote shell programs: ssh (for additional
security), or rsh. If DB2RSHCMD is not set, rsh is used. The ssh remote shell program is used to prevent the
transmission of passwords in clear text in UNIX operating system environments.

If a command runs on one database partition server and you want it to run on all of them, use db2_all.
The exception is the db2txc command, which runs on all the logical database partition servers on a
computer. If you want to run db2tzxc on all logical database partition servers on all computers, use rah.

Note: The db2_all command does not support commands that require interactive user input.

132 IBM Db2 V11.5: Partitioning and Clustering Guide

rah and db2_all commands overview

You can run the commands sequentially at one database partition server after another, or you can run the
commands in parallel.

On Linux and UNIX operating systems, if you run the commands in parallel, you can either choose to have
the output sent to a buffer and collected for display (the default behavior) or the output can be displayed
at the computer where the command is issued. On Windows, if you run the commands in parallel, the
output is displayed at the computer where the command is issued.

To use the xrah command, type:

rah command

To use the db2_all command, type:

db2_all command

To obtain help about xah syntax, type:

rah "?"

The command can be almost anything that you can type at an interactive prompt, including, for example,
multiple commands to be run in sequence. On Linux and UNIX operating systems, you separate multiple
commands using a semicolon (;). On Windows, you separate multiple commands using an ampersand (&).
Do not use the separator character following the last command.

The following example shows how to use the db2_all command to change the database configuration
on all database partitions that are specified in the database partition configuration file. Because the ;
character is placed inside double quotation marks, the request runs concurrently.

db2_all ";DB2 UPDATE DB CFG FOR sample USING LOGFILSIZ 160"
Note: The db2_all command does not support commands that require interactive user input.

Specifying the rah and db2_all commands
You can specify xrah command from the command line as the parameter, or in response to the prompt if
you do not specify any parameter.

Use the prompt method if the command contains the following special characters:

| & ; <> () {1 3% [] unsubstituted $

If you specify the command as the parameter on the command line, you must enclose it in double
guotation marks if it contains any of the special characters just listed.

Note: On Linux and UNIX operating systems, the command is added to your command history just as if
you typed it at the prompt.

All special characters in the command can be entered normally (without being enclosed in quotation
marks, except for \). If you require a \ in your command, you must type two backslashes (\\).

Note: On Linux and UNIX operating systems, if you are not using a Korn shell, all special characters in the
command can be entered normally (without being enclosed in quotation marks, except for ", \,
unsubstituted $, and the single quotation mark (). If you require one of these characters in your
command, you must precede them by three backslashes (\\\). For example, if you require a \ in your
command, you must type four backslashes (\\\\).

If you require a double quotation mark (") in your command, you must precede it by three backslashes,
for example, \\\".

Note:

Chapter 3. Implementation and maintenance 133

1. On Linux and UNIX operating systems, you cannot include a single quotation mark () in your command
unless your command shell provides some way of entering a single quotation mark inside a singly
quoted string.

2. On Windows, you cannot include a single quotation mark () in your command unless your command
window provides some way of entering a single quotation mark inside a singly quoted string.

When you run any korn-shell shell-script that contains logic to read from stdin in the background,
explicitly redirect stdin to a source where the process can read without getting stopped on the terminal
(SIGTTIN message). To redirect stdin, you can run a script with the following form:

shell_script </dev/null &

if there is no input to be supplied.

In a similar way, always specify </dev/null when running db2_all in the background. For example:

db2_all ";run_this_command" </dev/null &

By doing this you can redirect stdin and avoid getting stopped on the terminal.

An alternative to this method, when you are not concerned about output from the remote command, is to
use the "daemonize" option in the db2_all prefix:

db2_all ";daemonize_this_command" &

Running commands in parallel (Linux, UNIX)

By default, the command is run sequentially at each computer, but you can specify to run the commands
in parallel using background rshells by prefixing the command with certain prefix sequences. If the rshell
is run in the background, then each command puts the output in a buffer file at its remote computer.

Note: The information in this section applies to Linux and UNIX operating systems only.
This process retrieves the output in two pieces:

1. After the remote command completes.
2. After the rshell terminates, which might be later if some processes are still running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be specified by the environment
variables $RAHBUFDIR or $RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by default, this script prefixes an
additional command to the command sent to all hosts to check that $RAHBUFDIR and $RAHBUFNAME are
usable for the buffer file. It creates $RAHBUFDIR. To suppress this, export an environment variable
RAHCHECKBUF=no. You can do this to save time if you know that the directory exists and is usable.

Before using xrah to run a command concurrently at multiple computers:

« Ensure that a directory /tmp/$USER exists for your user ID at each computer. To create a directory if
one does not exist, run:

rah ")mkdir /tmp/$USER"

« Add the following line to your . kshrc (for Korn shell syntax) or .profile, and also type it into your
current session:

export RAHCHECKBUF=no

« Ensure that each computer ID at which you run the remote command has an entry inits . rhosts file
for the ID which runs xah; and the ID which runs xah has an entry in its . rhosts file for each computer
ID at which you run the remote command.

134 IBM Db2 V11.5: Partitioning and Clustering Guide

Extension of the rah command to use tree logic (AIX)

To enhance performance, rah has been extended to use tree_logic on large systems. That is, rah will
check how many database partitions the list contains, and if that number exceeds a threshold value, it
constructs a subset of the list and sends a recursive invocation of itself to those database partitions.

At those database partitions, the recursively invoked rah follows the same logic until the list is small
enough to follow the standard logic (now the "leaf-of-tree" logic) of sending the command to all database
partitions on the list. The threshold can be specified by the RAHTREETHRESH environment variable, or
defaults to 15.

In the case of a multiple-logical-database partitions-per-physical-database partition system, db2_all
will favor sending the recursive invocation to distinct physical database partitions, which will then rsh to
other logical database partitions on the same physical database partition, thus also reducing inter-
physical-database partition traffic. (This point applies only to db2_all, not rah, because rah always
sends only to distinct physical database partitions.)

rah and db2_all commands
This topic includes descriptions of the xrah and db2_all commands.

Command
Description

rah
Runs the command on all computers.

db2_all
Runs a non-interactive command on all database partition servers that you specify. db2_all does not
support commands that require interactive user input.

db2_kill
Abruptly stops all processes being run on multiple database partition servers and cleans up all
resources on all database partition servers. This command renders your databases inconsistent. Do
not issue this command except under direction from IBM Software Support or as directed to recover
from a sustained trap.

db2_call_stack
On Linux and UNIX operating systems, causes all processes running on all database partition servers
to write call traceback to the syslog.

On Linux and UNIX operating systems, these commands execute xrah with certain implicit settings
such as:

e Runin parallel at all computers
« Buffer command output in /tmp/$USER/db2_kill, /tmp/$USER/db2_call_stack
respectively.

The command db2_call_stack is not available on Windows. Use the db2pd -stack command
instead.

rah and db2_all command prefix sequences
A prefix sequence is one or more special characters.

Type one or more prefix sequences immediately preceding the characters of the command without any
intervening blanks. If you want to specify more than one sequence, you can type them in any order, but
characters within any multicharacter sequence must be typed in order. If you type any prefix sequences,
you must enclose the entire command, including the prefix sequences in double quotation marks, as in
the following examples:

« On Linux and UNIX operating systems:

rah "};ps -F pid,ppid,etime,args -u $USER"
db2_all "%;ps -F pid,ppid,etime,args -u $USER"

Chapter 3. Implementation and maintenance 135

« On Windows operating systems:

rah "||db2 get db cfg for sample"
db2_all "||db2 get db cfg for sample"

The prefix sequences are:

Sequence
Purpose

Runs the commands in sequence in the background.

Runs the commands in sequence in the background and terminates the command after all remote
commands have completed, even if some processes are still running. This might be later if, for
example, child processes (on Linux and UNIX operating systems) or background processes (on
Windows operating systems) are still running. In this case, the command starts a separate
background process to retrieve any remote output generated after command termination and writes it
back to the originating computer.

Note: On Linux and UNIX operating systems, specifying & degrades performance, because more xsh
commands are required.

Runs the commands in parallel in the background.

[1&
Runs the commands in parallel in the background and terminates the command after all remote
commands have completed as described previously for the |& case.

Note: On Linux and UNIX operating systems, specifying & degrades performance, because more xsh
commands are required.

Same as ||&. This is an alternative shorter form.

Note: On Linux and UNIX operating systems, specifying ; degrades performance relative to ||, because
more xrsh commands are required.

Prepends dot-execution of user's profile before executing command.

Note: Available on Linux and UNIX operating systems only.

}
Prepends dot-execution of file named in $RAHENV (probably . kshrc) before executing command.
Note: Available on Linux and UNIX operating systems only.
1}
Prepends dot-execution of user's profile followed by execution of file named in $RAHENV
(probably . kshxc) before executing command.
Note: Available on Linux and UNIX operating systems only.
)
Suppresses execution of user's profile and of file named in SRAHENV.
Note: Available on Linux and UNIX operating systems only.
Echoes the command invocation to the computer.
<

Sends to all the computers except this one.

136 IBM Db2 V11.5: Partitioning and Clustering Guide

<<-nnn<

Sends to all-but-database partition server nnn (all database partition servers in db2nodes.cfg
except for database partition number nnn, see the first paragraph following the last prefix sequence in
this table).

nnn is the corresponding 1-, 2-, or 3-digit database partition number to the nodenum value in the
db2nodes.cfg file.

<<-nnn< is only applicable to db2_all.
<<+nnn<

Sends to only database partition server nnn (the database partition server in db2nodes.cfg whose
database partition number is nnn, see the first paragraph following the last prefix sequence in this
table).

nnn is the corresponding 1-, 2-, or 3-digit database partition number to the nodenum value in the
db2nodes.cfg file.

<<+nnn< is only applicable to db2_all.

(blank character)
Runs the remote command in the background with stdin, stdout, and stderzr all closed. This
option is valid only when running the command in the background, that is, only in a prefix sequence
which also includes \ or ;. It allows the command to complete much sooner (as soon as the remote
command has been initiated). If you specify this prefix sequence on the xrah command line, then
either enclose the command in single quotation marks, or enclose the command in double quotation
marks, and precede the prefix character by \ . For example,

rah '; mydaemon'
or

rah ";\ mydaemon"

When run as a background process, the xrah command never waits for any output to be returned.
Substitutes occurrences of > with the computer name.

Substitutes occurrences of () by the computer index, and substitutes occurrences of ## by the
database partition number.

« The computer index is a number that associated with a computer in the database system. If you are
not running multiple logical partitions, the computer index for a computer corresponds to the
database partition number for that computer in the database partition configuration file. To obtain
the computer index for a computer in a multiple logical partition database environment, do not
count duplicate entries for those computers that run multiple logical partitions. For example, if
MACH1 is running two logical partitions and MACH2 is also running two logical partitions, the
database partition number for MACH3 is 5 in the database partition configuration file. The computer
index for MACH3, however, would be 3.

— On Windows operating systems, do not edit the database partition configuration file. To obtain
the computer index, use the db2nlist command.

- When " is specified, duplicates are not eliminated from the list of computers.

Usage notes

« Prefix sequences are considered to be part of the command. If you specify a prefix sequence as part of
a command, you must enclose the entire command, including the prefix sequences, in double quotation
marks.

Chapter 3. Implementation and maintenance 137

Controlling the rah command
This topic lists the environment variables to control the xrah command.

Table 13. Environment variables that control the rah command

Name Meaning Default

$RAHBUFDIR Directory for buffer /tmp/$USER

Note: Available on
Linux and UNIX
operating systems
only.

$RAHBUFNAME File name for buffer rahout

Note: Available on
Linux and UNIX
operating systems
only.

$RAHOSTFILE (on File containing list of hosts db2nodes.cfg
Linux and UNIX

operating

systems);

RAHOSTFILE (on

Windows operating

systems)

$RAHOSTLIST (on List of hosts as a string extracted from
Linux and UNIX $RAHOSTFILE
operating

systems);

RAHOSTLIST (on

Windows operating

systems)

$RAHCHECKBUF If set to "no", bypass checks not set

Note: Available on
Linux and UNIX
operating systems

only.

$RAHSLEEPTIME Time in seconds this script waits for initial output from 86400 seconds for
(on Linux and UNIX commands run in parallel. db2_kill, 200
operating seconds for all
systems); others
RAHSLEEPTIME

(on Windows
operating systems)

138 IBM Db2 V11.5: Partitioning and Clustering Guide

Table 13. Environment variables that control the rah command (continued)

Name Meaning Default

$SRAHWAITTIME On Windows operating systems, interval in seconds between 45 seconds
(on Linux and UNIX successive checks that remote jobs are still running.
operating
systems);
RAHWAITTIME (on
Windows operating
systems) On all operating systems, specify any positive integer. Prefix
value with a leading zero to suppress messages, for example,
export RAHWAITTIME=045.

It is not necessary to specify a low value as xah does not rely
on these checks to detect job completion.

On Linux and UNIX operating systems, interval in seconds
between successive checks that remote jobs are still running
and rah: waiting for pid> ... messages.

$RAHENV Specifies file name to be executed if SRAHDOTFILES=E or K = $ENV
Note: Available on orPEorB

Linux and UNIX

operating systems

only.

$RAHUSER (on On Linux and UNIX operating systems, user ID under which $USER
Linux and UNIX the remote command is to be run.

operating

On Windows operating systems, the logon account associated

systems); RAHUSER with the Db2 Remote Command Service

(on Windows
operating systems)

Note: On Linux and UNIX operating systems, the value of SRAHENV where rah is run is used, not the
value (if any) set by the remote shell.

Specifying which . files run with rah (Linux and UNIX)
This topics lists the . files that are run if no prefix sequence is specified.

Note: The information in this section applies to Linux and UNIX operating systems only.

P
.profile

File named in $RAHENV (probably . kshzxc)
K
SameasE

PE
.profile followed by file named in $RAHENV (probably . kshrc)

B
Same as PE

N
None (or Neither)

Note: If your login shell is not a Korn shell, any dot files you specify to be executed are executed in a Korn
shell process, and so must conform to Korn shell syntax. So, for example, if your login shellis a C shell, to
have your . cshxc environment set up for commands executed by xah, you should either create a Korn
shell INSTHOME/ .profile equivalent to your . cshxc and specify in your INSTHOME/ . cshzxc:

setenv RAHDOTFILES P

Chapter 3. Implementation and maintenance 139

or you should create a Korn shell INSTHOME/ . kshxc equivalent to your .cshrc and specify in your
INSTHOME/ .cshzxc:

setenv RAHDOTFILES E
setenv RAHENV INSTHOME/.kshrc

Also, it is your .cshrc must not write to stdout if there is no tty (as when invoked by xsh). You can
ensure this by enclosing any lines which write to stdout by, for example,

if § tty -s % then echo "executed .cshrc";
endif

Determining problems with rah (Linux, UNIX)
This topic gives suggestions on how to handle some problems that you might encounter when you are
running rah.

Note: The information in this section applies to Linux and UNIX operating systems only.
1. rah hangs (or takes a very long time)
This problem might be caused because:

« rah has determined that it needs to buffer output, and you did not export RAHCHECKBUF=no.
Therefore, before running your command, xrah sends a command to all computers to check the
existence of the buffer directory, and to create it if it does not exist.

« One or more of the computers where you are sending your command is not responding. The xrsh
command will eventually time out but the time-out interval is quite long, usually about 60 seconds.

2. You have received messages such as:

- Login incorrect
« Permission denied

Either one of the computers does not have the ID running xah correctly defined in its /etc/hosts
file, or the ID running xrah does not have one of the computers correctly defined in its . rhosts file. If
the DB2RSHCMD registry variable has been configured to use ssh, then the ssh clients and servers on
each computer might not be configured correctly.

Note: You might need to have greater security regarding the transmission of passwords in clear text
between database partitions. This will depend on the remote shell program you are using. xah uses
the remote shell program specified by the DB2RSHCMD registry variable. You can select between the
two remote shell programs: ssh (for additional security), or rsh. If this registry variable is not set, rsh is
used.

3. When running commands in parallel using background remote shells, although the commands run and
complete within the expected elapsed time at the computers, rah takes a long time to detect this and
put up the shell prompt.

The ID running xah does not have one of the computers correctly defined in its . rhosts file, or if the
DB2RSHCMD registry variable has been configured to use ssh, then the ssh clients and servers on each
computer might not be configured correctly.

4. Although rah runs fine when run from the shell command lineg, if you run xrah remotely using rsh, for
example,
rsh somewher -1 $USER db2_kill

rah never completes.

This is normal. xah starts background monitoring processes, which continue to run after it has exited.
Those processes normally persist until all processes associated with the command you ran have
themselves terminated. In the case of db2_kill, this means termination of all database managers.
You can terminate the monitoring processes by finding the process whose command is xrahwaitfox
and kill process_id>. Do not specify a signal number. Instead, use the default (15).

140 IBM Db2 V11.5: Partitioning and Clustering Guide

5. The output from xah is not displayed correctly, or xah incorrectly reports that SRAHBUFNAME does not
exist, when multiple commands of xah were issued under the same $RAHUSER.

This is because multiple concurrent executions of xah are trying to use the same buffer file (for
example, $SRAHBUFDIR or $RAHBUFNAME) for buffering the outputs. To prevent this problem, use a
different SRAHBUFNAME for each concurrent xrah command, for example in the following ksh:

export RAHBUFNAME=rahout
rah ";$command_1" &
export RAHBUFNAME=rah2out
rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically such as:

RAHBUFNAME=rahout.$$ db2_all "..... !

Whatever method you use, you must ensure that you clean up the buffer files at some point if disk
space is limited. xrah does not erase a buffer file at the end of execution, although it will erase and
then re-use an existing file the next time you specify the same buffer file.

6. You entered
rah '"print from ()'
and received the message:

ksh: syntax error at line 1 : (' unexpected

Prerequisites for the substitution of () and ## are:

» Use db2_all, not xah.

« Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by defaulting to your /sqllib/
db2nodes. cfg file. Without these prerequisites, xah leaves the () and ## as is. You receive an error
because the command pxint from () is not valid.

For a performance tip when running commands in parallel, use | rather than |&, and use || rather than
||& or ; unless you truly need the function provided by &. Specifying & requires more remote shell
commands and therefore degrades performance.

Monitoring rah processes (Linux, UNIX)

While any remote commands are still running or buffered output is still being accumulated, processes
started by rah monitor activity to write messages to the terminal indicating which commands have not
been run, and retrieve the buffered output.

About this task
Note: The information in this section applies to Linux and UNIX operating systems only.

The informative messages are written at an interval controlled by the environment variable
RAHWAITTIME. Refer to the help information for details on how to specify this. All informative messages
can be suppressed by exporting RAHNAITTIME=0.

The primary monitoring process is a command whose command name (as shown by the ps command) is
rahwaitfor. The first informative message tells you the pid (process id) of this process. All other
monitoring processes appear as ksh commands running the xah script (or the name of the symbolic link).
If you want, you can stop all monitoring processes by the command:

kill pid

where pid is the process ID of the primary monitoring process. Do not specify a signal number. Leave the
default of 15. This does not affect the remote commands at all, but prevents the automatic display of
buffered output. Note that there might be two or more different sets of monitoring processes executing at
different times during the life of a single execution of xrah. However, if at any time you stop the current
set, then no more are started.

Chapter 3. Implementation and maintenance 141

If your regular login shell is not a Korn shell (for example /bin/ksh), you can use xah, but there are
some slightly different rules on how to enter commands containing the following special characters:

" unsubstituted $ '

For more information, type rah "?". Also, in a Linux or UNIX operating system, if the login shell at the ID
which executes the remote commands is not a Korn shell, then the login shell at the ID which executes
rah must also not be a Korn shell. (xah decides whether the shell of the remote ID is a Korn shell based
on the local ID). The shell must not perform any substitution or special processing on a string enclosed in
single quotation marks. It must leave it exactly as is.

Setting the default environment profile for rah on Windows
To set the default environment profile for the xrah command, use a file called db2rah.env, which should
be created in the instance directory.

About this task
Note: The information in this section applies to Windows only.

The file should have the following format:

; This is a comment line
DB2INSTANCE=instancename
DB2DBDFT=database

; End of file

You can specify all the environment variables that you need to initialize the environment for xah.

Creating tables and other related table objects

Tables in partitioned database environments

There are performance advantages to creating a table across several database partitions in a partitioned
database environment. The work associated with the retrieval of data can be divided among the database
partitions.

Before you begin
Before creating a table that will be physically divided or distributed, you need to consider the following:

« Table spaces can span more than one database partition. The number of database partitions they span
depends on the number of database partitions in a database partition group.

« Tables can be collocated by being placed in the same table space or by being placed in another table
space that, together with the first table space, is associated with the same database partition group.

About this task

Creating a table that will be a part of several database partitions is specified when you are creating the
table. There is an additional option when creating a table in a partitioned database environment: the
distribution key. A distribution key is a key that is part of the definition of a table. It determines the
database partition on which each row of data is stored.

If you do not specify the distribution key explicitly, a default distribution key is automatically defined.

You must be careful to select an appropriate distribution key because it cannot be changed later.
Furthermore, any unique indexes (and therefore unique or primary keys) must be defined as a superset of
the distribution key. That is, if a distribution key is defined, unique keys and primary keys must include all
of the same columns as the distribution key (they might have more columns).

The size of a database partition of a table is the smaller amount of a specific limit associated with the type
of table space and page size used, and the amount of disk space available. For example, assuming a large
DMS table space with a 4 KB page size, the size of a table is the smaller amount of 8 TB multiplied by the

142 IBM Db2 V11.5: Partitioning and Clustering Guide

number of database partitions and the amount of available disk space. See the related links for the
complete list of database manager page size limits.

To create a table in a partitioned database environment using the command line, enter:

CREATE TABLE name>
(<column_name> <data_type> <null_attribute>)
IN <tagle_space_name>
INDEX IN <index_space_name>
LONG IN <long_space_name>
DISTRIBUTE BY HASH (<column_name>)

Following is an example:

CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,
MIX_DESC CHAR(20) NOT NULL,
MIX_CHR CHAR(9) NOT NULL,
MIX_INT INTEGER NOT NULL,
MIX_INTS SMALLINT NOT NULL,
MIX_DEC DECIMAL NOT NULL,
MIX_FLT FLOAT NOT NULL,
MIX_DATE DATE NOT NULL,
MIX_TIME TIME NOT NULL,
MIX_TMSTMP TIMESTAMP NOT NULL)
IN MIXTS12
DISTRIBUTE BY HASH (MIX_INT)

In the preceding example, the table space is MIXTS12 and the distribution key is MIX_INT. If the
distribution key is not specified explicitly, it is MIX_CNTL. (If no primary key is specified and no
distribution key is defined, the distribution key is the first non-long column in the list.)

A row of a table, and all information about that row, always resides on the same database partition.

Large object behavior in partitioned tables

A partitioned table uses a data organization scheme in which table data is divided across multiple storage
objects, called data partitions or ranges, according to values in one or more table partitioning key columns
of the table. Data from a given table is partitioned into multiple storage objects based on the
specifications provided in the PARTITION BY clause of the CREATE TABLE statement. These storage
objects can be in different table spaces, in the same table space, or a combination of both.

A large object for a partitioned table is, by default, stored in the same table space as its corresponding
data object. This applies to partitioned tables that use only one table space or use multiple table spaces.
When a partitioned table's data is stored in multiple table spaces, the large object data is also stored in
multiple table spaces.

Use the LONG IN clause of the CREATE TABLE statement to override this default behavior. You can
specify a list of table spaces for the table where long data is to be stored. If you choose to override the
default behavior, the table space specified in the LONG IN clause must be a large table space. If you
specify that long data be stored in a separate table space for one or more data partitions, you must do so
for all the data partitions of the table. That is, you cannot have long data stored remotely for some data
partitions and stored locally for others. Whether you are using the default behavior or the LONG IN clause
to override the default behavior, a long object is created to correspond to each data partition. All the table
spaces used to store long data objects corresponding to each data partition must have the same:
pagesize, extentsize, storage mechanism (DMS or AMS), and type (regular or large). Remote large table
spaces must be of type LARGE and cannot be SMS.

For example, the following CREATE TABLE statement creates objects for the CLOB data for each data
partition in the same table space as the data:

CREATE TABLE document(id INT, contents CLOB)
PARTITION BY RANGE (id)

(STARTING FROM 1 ENDING AT 100 IN tbspl,
STARTING FROM 101 ENDING AT 200 IN tbsp2,
STARTING FROM 201 ENDING AT 300 IN tbsp3,
STARTING FROM 301 ENDING AT 400 IN tbsp4);

Chapter 3. Implementation and maintenance 143

You can use LONG IN to place the CLOB data in one or more large table spaces, distinct from those the
datais in.

CREATE TABLE document(id INT, contents CLOB)

PARTITION BY RANGE (id)

(STARTING FROM 1 ENDING AT 100 IN tbspl LONG IN largel,
STARTING FROM 101 ENDING AT 200 IN tbsp2 LONG IN largel,
STARTING FROM 201 ENDING AT 300 IN tbsp3 LONG IN large2,
STARTING FROM 301 ENDING AT 400 IN tbsp4 LONG IN large2);

Note: Only a single LONG IN clause is allowed at the table level and for each data partition.

Creating partitioned tables
Partitioned tables use a data organization scheme in which table data is divided across multiple storage
objects, called data partitions or ranges, according to values in one or more table partitioning key columns
of the table. Data from a given table is partitioned into multiple storage objects based on the
specifications provided in the PARTITION BY clause of the CREATE TABLE statement. These storage
objects can be in different table spaces, in the same table space, or a combination of both.

Before you begin
To create a table, the privileges held by the authorization ID of the statement must include at least one of
the following authorities or privileges:

« CREATETAB authority on the database and USE privilege on all the table spaces used by the table, as
well as one of:

— IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the table
does not exist

— CREATEIN privilege on the schema, if the schema name of the table refers to an existing schema
« DBADM authority

About this task
You can create a partitioned table by using the CREATE TABLE statement.

Procedure

« To create a partitioned table from the command line, issue the CREATE TABLE statement:

CREATE TABLE NAME (column_name data_type null_attribute) IN
table_space_list PARTITION BY RANGE (column_expression)
STARTING FROM constant ENDING constant EVERY constant

For example, the following statement creates a table where rows witha = 1 and a < 20 are in PARTO
(the first data partition), rows with 21 < a < 40 are in PART1 (the second data partition), upto 81 <a <
100 are in PARTA4 (the last data partition).

CREATE TABLE foo(a INT)
PARTITION BY RANGE (a) (STARTING FROM (1)
ENDING AT (100) EVERY (20))

Defining ranges on partitioned tables

You can specify a range for each data partition when you create a partitioned table. A partitioned table
uses a data organization scheme in which table data is divided across multiple data partitions according
to the values of the table partitioning key columns of the table.

About this task

Data from a given table is partitioned into multiple storage objects based on the specifications provided in
the PARTITION BY clause of the CREATE TABLE statement. A range is specified by the STARTING FROM
and ENDING AT values of the PARTITION BY clause.

144 IBM Db2 V11.5: Partitioning and Clustering Guide

To completely define the range for each data partition, you must specify sufficient boundaries. The
following is a list of guidelines to consider when defining ranges on a partitioned table:

- The STARTING clause specifies a low boundary for the data partition range. This clause is mandatory for
the lowest data partition range (although you can define the boundary as MINVALUE). The lowest data
partition range is the data partition with the lowest specified bound.

« The ENDING (or VALUES) clause specifies a high boundary for the data partition range. This clause is
mandatory for the highest data partition range (although you can define the boundary as MAXVALUE).
The highest data partition range is the data partition with the highest specified bound.

« If you do not specify an ENDING clause for a data partition, then the next greater data partition must
specify a STARTING clause. Likewise, if you do not specify a STARTING clause, then the previous data
partition must specify an ENDING clause.

- MINVALUE specifies a value that is smaller than any possible value for the column type being used.
MINVALUE and INCLUSIVE or EXCLUSIVE cannot be specified together.

« MAXVALUE specifies a value that is larger than any possible value for the column type being used.
MAXVALUE and INCLUSIVE or EXCLUSIVE cannot be specified together.

« INCLUSIVE indicates that all values equal to the specified value are to be included in the data partition
containing this boundary.

« EXCLUSIVE indicates that all values equal to the specified value are NOT to be included in the data
partition containing this boundary.

« The NULLS FIRST and NULLS LAST clauses of the CREATE TABLE statement specify whether null values
are to be sorted high or low when considering data partition placement. By default, null values are
sorted high. Null values in the table partitioning key columns are treated as positive infinity, and are
placed in a range ending at MAXVALUE. If no such data partition is defined, null values are considered to
be out-of-range values. Use the NOT NULL constraint if you want to exclude null values from table
partitioning key columns. LAST specifies that null values are to appear last in a sorted list of values.
FIRST specifies that null values are to appear first in a sorted list of values.

- When using the long form of the syntax, each data partition must have at least one bound specified.

Tip: Before you begin defining data partitions on a table it is important to understand how tables benefit
from table partitioning and what factors influence the columns you choose as partitioning columns.

The ranges specified for each data partition can be generated automatically or manually.
Automatically generated

Automatic generation is a simple method of creating many data partitions quickly and easily. This method
is appropriate for equal sized ranges based on dates or numbers.

Examples 1 and 2 demonstrate how to use the CREATE TABLE statement to define and generate
automatically the ranges specified for each data partition.

Example 1:

Issue a create table statement with the following ranges defined:

CREATE TABLE lineitem (
1_orderkey DECIMAL (10,0) NOT NULL,
1_quantity DECIMAL(12,2),
1_shipdate DATE,
1_year_month INT GENERATED ALWAYS AS (YEAR(1_shipdate)*100 + MONTH(1_shipdate)))
PARTITION BY RANGE(1_shipdate)
(STARTING ('1/1/1992') ENDING ('12/31/1992') EVERY 1 MONTH);

This statement results in 12 data partitions each with 1 key value (I_shipdate) >= ('1/1/1992"),
(I_shipdate) < ('3/1/1992"), (I_shipdate) < ('4/1/1992"), (I_shipdate) < ('5/1/1992"), ..., (I_shipdate) <
('12/1/1992"), (I_shipdate) <= ('12/31/1992").

The starting value of the first data partition is inclusive because the overall starting bound ('1/1/1992") is
inclusive (default). Similarly, the ending bound of the last data partition is inclusive because the overall
ending bound ('12/31/1992") is inclusive (default). The remaining STARTING values are inclusive and the

Chapter 3. Implementation and maintenance 145

remaining ENDING values are all exclusive. Each data partition holds n key values where n is given by the
EVERY clause. Use the formula (start + every) to find the end of the range for each data partition. The last
data partition might have fewer key values if the EVERY value does not divide evenly into the START and
END range.

Example 2:

Issue a create table statement with the following ranges defined:

CREATE TABLE t(a INT, b INT)
PARTITION BY RANGE(b) (STARTING FROM (1)
EXCLUSIVE ENDING AT (1000) EVERY (100))

This statement results in 10 data partitions each with 100 key values (1 < b <=101, 101 < b <= 201, ...,
901 < b <=1000).

The starting value of the first data partition (b > 1 and b <= 101) is exclusive because the overall starting
bound (1) is exclusive. Similarly the ending bound of the last data partition (b > 901 b <=1000) is
inclusive because the overall ending bound (1000) is inclusive. The remaining STARTING values are all
exclusive and the remaining ENDING values are all inclusive. Each data partition holds n key values where
nis given by the EVERY clause. Finally, if both the starting and ending bound of the overall clause are
exclusive, the starting value of the first data partition is exclusive because the overall starting bound (1) is
exclusive. Similarly the ending bound of the last data partition is exclusive because the overall ending
bound (1000) is exclusive. The remaining STARTING values are all exclusive and the ENDING values are
allinclusive. Each data partition (except the last) holds n key values where n is given by the EVERY clause.

Example 3:

Issue a create table statement with the following ranges defined:

db2 "
CREATE TABLE lineitem2 (

1_oxrderkey DECIMAL(10,0) NOT NULL,

1_quantity DECIMAL(12,2),

1_shipdate TIMESTAMP,

1_year_month INT GENERATED ALWAYS AS (YEAR(1_shipdate)*100 + MONTH(1_shipdate)))

PARTITION BY RANGE(1_shipdate)

(STARTING ('1992-01-01-00.00.00.000000') ENDING ('1992-12-31-23.59.59.999999') EVERY 1 MONTH)

This statement results in 12 data partitions each with 1 key value (I_shipdate) >=
("1992-01-01-00.00.00.000000%, (I_shipdate) < ('1992-03-01-00.00.00.000000"), (I_shipdate) <
("1992-04-01-00.00.00.000000%, (I_shipdate) < ('1992-05-01-00.00.00.000000", ..., (I_shipdate) <
("1992-12-01-00.00.00.000000), (I_shipdate) <= ('11992-12-31-23.59.59.999999").

The starting value of the first data partition is inclusive because the overall starting bound
("1992-01-01-00.00.00.000000" is inclusive (default). Similarly, the ending bound of the last data
partition is inclusive because the overall ending bound ('11992-12-31-23.59.59.999999") is inclusive
(default). The remaining STARTING values are inclusive and the remaining ENDING values are all
exclusive. Each data partition holds n key values where n is given by the EVERY clause. Use the formula
(start + every) to find the end of the range for each data partition. The last data partition might have fewer
key values if the EVERY value does not divide evenly into the START and END range.

Further, during implicit conversion in case bounds specified as DATE, the ending bound of the last data
partition is different:

db2 "
CREATE TABLE lineitem3 (
1_orderkey DECIMAL(10,0) NOT NULL,
1_quantity DECIMAL(12,2),
1_shipdate TIMESTAMP,
1_year_month INT GENERATED ALWAYS AS (YEAR(1_shipdate)*100 + MONTH(1_shipdate)))
PARTITION BY RANGE(1_shipdate)
(STARTING ('1/1/1992') ENDING ('12/31/1992') EVERY 1 MONTH)

146 IBM Db2 V11.5: Partitioning and Clustering Guide

This statement results in 12 data partitions each with 1 key value (I_shipdate) >=
("1992-01-01-00.00.00.000000%, (I_shipdate) < ('1992-03-01-00.00.00.000000"), (I_shipdate) <
("1992-04-01-00.00.00.000000", (I_shipdate) < ('1992-05-01-00.00.00.000000", ..., (I_shipdate) <
('1992-12-01-00.00.00.000000), (I_shipdate) <= ('1992-12-31-00.00.00.000000").

Manually generated

Manual generation creates a new data partition for each range listed in the PARTITION BY clause. This
form of the syntax allows for greater flexibility when defining ranges thereby increasing your data and LOB
placement options. Examples 4 and 5 demonstrate how to use the CREATE TABLE statement to define
and generate manually the ranges specified for a data partition.

Example 4:

This statement partitions on two date columns both of which are generated. Notice the use of the
automatically generated form of the CREATE TABLE syntax and that only one end of each range is
specified. The other end is implied from the adjacent data partition and the use of the INCLUSIVE option:

CREATE TABLE sales(invoice_date date, inv_month int NOT NULL
GENERATED ALWAYS AS (month(invoice_date)), inv_year INT NOT
NULL GENERATED ALWAYS AS (year(invoice_date)),

item_id int NOT NULL,

cust_id int NOT NULL) PARTITION BY RANGE (inv_year,
inv_month)

(PART Q1_02 STARTING (2002,1) ENDING (2002, 3) INCLUSIVE,
PART Q2_02 ENDING (2002, 6) INCLUSIVE,

PART Q3_02 ENDING (2002, 9) INCLUSIVE,

PART Q4_02 ENDING (2002,12) INCLUSIVE,

PART CURRENT ENDING (MAXVALUE, MAXVALUE));

Gaps in the ranges are permitted. The CREATE TABLE syntax supports gaps by allowing you to specify a
STARTING value for a range that does not line up against the ENDING value of the previous data partition.
Example 5:

Creates a table with a gap between values 101 and 200.

CREATE TABLE foo(a INT)
PARTITION BY RANGE(a)
(STARTING FROM (1) ENDING AT (100),
STARTING FROM (201) ENDING AT (300))

Use of the ALTER TABLE statement, which allows data partitions to be added or removed, can also cause
gaps in the ranges.

When you insert a row into a partitioned table, it is automatically placed into the proper data partition
based on its key value and the range it falls within. If it falls outside of any ranges defined for the table,
the insert fails and the following error is returned to the application:

SQLO327N The row cannot be inserted into table <tablename>
because it is outside the bounds of the defined data partition ranges.
SQLSTATE=22525

Restrictions
« Table level restrictions:

— Tables created using the automatically generated form of the syntax (containing the EVERY clause)
are constrained to use a numeric or date time type in the table partitioning key.

« Statement level restrictions:

MINVALUE and MAXVALUE are not supported in the automatically generated form of the syntax.

Ranges are ascending.

Only one column can be specified in the automatically generated form of the syntax.

The increment in the EVERY clause must be greater than zero.
The ENDING value must be greater than or equal to the STARTING value.

Chapter 3. Implementation and maintenance 147

Placement of the data, index and long data of a data partition
By its very nature, creating a partitioned table allows you to place the various parts of the table and the
associated table objects in specific table spaces.

When creating a table you can specify in which table space the entire table data and associated table
objects will be placed. Or, you can place the table's index, long or large data, or table partitions in specific
table spaces. All of the table spaces must be in the same database partition group.

The CREATE TABLE statement has the following clauses which demonstrate this ability to place the table
data and associated table objects within specific table spaces:

CREATE TABLE table_name IN table_space_namel
INDEX IN table_space_name2
LONG IN table_space_name3
PARTITIONED BY ...
PARTITION partition_name | boundary specification | IN table_space_named
INDEX IN table_space_name5
LONG IN table_space_nameé

Each of the partitions of the partitioned table can be placed in different table spaces.

You can also specify the table space for a user-created nonpartitioned index on a partitioned table using
the CREATE INDEX ... IN table_space_namel statement, which can be different from the index
table space specified in the CREATE TABLE ... INDEX IN table_space_name2 statement. The IN
clause of the CREATE INDEX statement is used for partitioned tables only. If the INDEX IN clause is not
specified on the CREATE TABLE or CREATE INDEX statements, the index is placed in the same table
space as the first visible or attached partition of the table.

System generated nonpartitioned indexes, such as XML column paths indexes, are placed in the table
space specified in the INDEX IN clause of the CREATE TABLE statement.

On a partitioned table with XML data, the XML region index is always partitioned in the same way as the
table data. The table space of the partitioned indexes is defined at the partition level

XML data resides in the table spaces used by the long data for a table. XML data placement on a
partitioned table follows the long data placement rules.

The table space for long data can be specified explicitly by you or determined by the database manager
implicitly. For a partitioned table, the table level LONG IN clause can be used together with the partition
level LONG IN clause. If both are specified, the partition level LONG IN clause takes precedence over any
table level LONG IN clauses.

Migrating existing tables and views to partitioned tables
You can migrate a nonpartitioned table or a UNION ALL view to an empty partitioned table.

Before you begin

Attaching a data partition is not allowed if SYSCAT.COLUMNS.IMPLICITVALUE for a specific column is a
nonnull value for both the source column and the target column, and the values do not match. In this
case, you must drop the source table and then recreate it.

A column can have a nonnull value in the SYSCAT.COLUMNS IMPLICITVALUE field if any one of the
following conditions is met:

« The IMPLICITVALUE field is propagated from a source table during an attach operation.

e The IMPLICITVALUE field is inherited from a source table during a detach operation.

« The IMPLICITVALUE field is set during migration from V8 to V9, where it is determined to be an added
column, or might be an added column. An added column is a column that is created as the result of an
ALTER TABLE...ADD COLUMN statement.

Always create the source and target tables involved in an attach operation with the same columns
defined. In particular, never use the ALTER TABLE statement to add columns to the target table of an
attach operation.

148 IBM Db2 V11.5: Partitioning and Clustering Guide

For advice on avoiding a mismatch when working with partitioned tables, see “Guidelines for attaching
data partitions to partitioned tables” on page 168.

About this task

When migrating regular tables, unload the source table by using the EXPORT command or high
performance unload. Create a new, empty partitioned table, and use the LOAD command to populate that
partitioned table. To move the data from the old table directly into the partitioned table without any
intermediate steps, use the LOAD FROM CURSOR command (see Step 1.

You can convert nonpartitioned data in a UNION ALL view to a partitioned table (see Step 2). UNION ALL
views are used to manage large tables and achieve easy roll-in and roll-out of table data while providing
the performance advantages of branch elimination. Using the ALTER TABLE...ATTACH PARTITION
statement, you can achieve conversion with no movement of data in the base table. Nonpartitioned
indexes and dependent views or materialized query tables (MQTs) must be recreated after the
conversion. The recommended strategy to convert UNION ALL views to partitioned tables is to create a
partitioned table with a single dummy data partition, then attach all of the tables of the union all view. Be
sure to drop the dummy data partition early in the process to avoid problems with overlapping ranges.

Procedure

1. Migrate a regular table to a partitioned table.

Use the LOAD FROM CURSOR command to avoid any intermediate steps. The following example
shows how to migrate table T1 to the SALES_DP table.

a. Create and populate a regular table T1.

CREATE TABLE t1 (cl1 int, c2 int);
INSERT INTO t1 VALUES (0,1), (4, 2), (6, 3);

b. Create an empty partitioned table.

CREATE TABLE sales_dp (cl int, c2 int)
PARTITION BY RANGE (cl1)
(STARTING FROM © ENDING AT 10 EVERY 2);

c. Use the LOAD FROM CURSOR command to pull the data from an SQL query directly into the new
partitioned table.

SELECT * FROM t1;
DECLARE c1 CURSOR FOR SELECT % FROM t1;
LOAD FROM c1 of CURSOR INSERT INTO sales_dp;SELECT * FROM sales_dp;

2. Convert nonpartitioned data in a UNION ALL view to a partitioned table.

The following example shows how to convert the UNION ALL view named ALL_SALES to the SALES_DP
table.

a. Create the UNION ALL view.

CREATE VIEW all_sales AS

(

SELECT * FROM sales_0198

WHERE sales_date BETWEEN '01-01-1998' AND '01-31-1998'
UNION ALL

SELECT * FROM sales_0298

WHERE sales_date BETWEEN '02-01-1998' AND '02-28-1998'
UNION ALL

UNION ALL

SELECT * FROM sales_1200

WHERE sales_date BETWEEN '12-01-2000' AND '12-31-2000'
)8

b. Create a partitioned table with a single dummy partition. Choose the range so that it does not
overlap with the first data partition to be attached.

Chapter 3. Implementation and maintenance 149

CREATE TABLE sales_dp (
sales_date DATE NOT NULL,
prod_id INTEGER,
city_id INTEGER,
channel_id INTEGER,
revenue DECIMAL(20,2))
PARTITION BY RANGE (sales_date)
(PART dummy STARTING FROM '01-01-1900' ENDING AT '01-01-1900');

c. Attach the first table.

ALTER TABLE sales_dp ATTACH PARTITION
STARTING FROM '01-01-1998' ENDING AT '0©1-31-1998'
FROM sales_0198;

d. Drop the dummy partition.

ALTER TABLE sales_dp DETACH PARTITION dummy
INTO dummy;
DROP TABLE dummy;

e. Attach the remaining partitions.

ALTER TABLE sales_dp ATTACH PARTITION
STARTING FROM '©2-01-1998' ENDING AT '02-28-1998'
FROM sales_0298;

ALTER TABLE sales_dp ATTACH PARTITION
STARTING FROM '12-01-2000' ENDING AT '12-31-2000"
FROM sales_1200;

f. Issue the SET INTEGRITY statement to make data in the newly attached partition accessible to
gueries.

SET INTEGRITY FOR sales_dp IMMEDIATE CHECKED
FOR EXCEPTION IN sales_dp USE sales_ex;

Tip: If data integrity checking, including range validation and other constraints checking, can be
done through application logic that is independent of the data server before an attach operation,
newly attached data can be made available for use much sooner. You can optimize the data roll-in
process by using the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and
constraints violation checking. In this case, the table is brought out of SET INTEGRITY pending
state, and the new data is available for applications to use immediately, as long as there are no
nonpartitioned user indexes on the target table.

g. Create indexes, as appropriate.

Converting existing indexes to partitioned indexes

System-created and user-created indexes might need to be migrated from nonpartitioned to partitioned.
User-created indexes can be converted while maintaining availability to the table and indexes for most of
the migration. System-created indexes used to enforce primary key constraints or unique constraints will
not be able to have the constraints maintained while the conversion is done.

Before you begin

Indexes created in an earlier release of the product might be nonpartitioned. This could include both
indexes created by you, or system-created indexes created by the database manager. Examples of
system-created indexes are indexes to enforce unique and primary constraints and the block indexes of
an MDC table.

About this task

Indexes created by you can be converted from nonpartitioned to partitioned while having continuous
availability to the data using the index. You can create a partitioned index with the same keys as the
corresponding nonpartitioned index. While the partitioning index is created, you can still use the current
indexes and the table where the index is being created. Once the partitioned index is created, you can
drop the corresponding nonpartitioned index and rename the new partitioned index if desired.

150 IBM Db2 V11.5: Partitioning and Clustering Guide

Results
The following examples demonstrate how to convert existing nonpartitioned indexes into partitioned
indexes.

Example

Here is an example of converting a nonpartitioned index created by you to one that is a partitioned index:

UPDATE COMMAND OPTIONS USING C OFF;

CREATE INDEX data_part ON sales(sale_date) PARTITIONED;
DROP INDEX dateidx;

RENAME INDEX data_part TO dateidx;

COMMIT;

Here is an example of converting a nonpartitioned index created by the database manager to one that is a
partitioned index. In this case, there will be a period of time between the dropping of the original
constraint, and the creation of the new constraint.

ALTER TABLE employees DROP CONSTRAINT emp_uniq;
ALTER TABLE employees ADD CONSTRAINT emp_uniq UNIQUE (employee_id);

MDC tables created using Db2 Version 9.7 and earlier releases have nonpartitioned block indexes. To take
advantage of partitioned table data availability features such as data roll in and roll out and partition level
reorganization of table data and indexes, the data in the multidimensional clustering (MDC) table created
using Db2 V9.7 and earlier releases must be moved to a partitioned MDC table with partitioned block
indexes created using Db2 V9.7 Fix Pack 1 or a later release.

Online move of a partitioned MDC table to use partitioned block indexes

You can move data from a MDC table with nonpartitioned block indexes to an MDC table with partitioned
block indexes using an online table move.

In the following example, companyl.parts table has xregion and colox as the MDC key columns; and
the corresponding block indexes are nonpartitioned.

CALL SYSPROC.ADMIN_MOVE_TABLE(

'COMPANY1', --Table schema

'"PARTS ', --Table name

o, --null; No change to columns definition
, --null; No additional options
'"MOVE") ; --Move the table in one step

Offline move of a partitioned MDC table to use partitioned block indexes

To minimize data movement, you can move data from a MDC table with nonpartitioned block indexes to
an MDC table with partitioned block indexes when the table is offline. The process uses the following
steps:

1. Create a new, single-partition MDC table with the same definition as the table to be converted. When
specifying the range for the partition, use a range outside the ranges of the partitioned MDC table to be
converted.

The block indexes of new, single-partition MDC table are partitioned. The partition created when
specifying the range is detached in a later step.

2. Detach each partition of the MDC table. Each partition becomes a stand-alone MDC table.

When a partition is detached, the partition data is attached to a new, target table without moving the
data in the partition.

Note: The last partition of the MDC table cannot be detached. It is a single-partition MDC table with
nonpartitioned block indexes.

3. For each stand-alone table created by detaching the MDC table partitions, and the single-partition
MDC table with nonpartitioned block indexes, attach the table to the new partitioned MDC table
created in Step 1.

Chapter 3. Implementation and maintenance 151

When the table is attached, the table data is attached to the new partitioned MDC table without
moving the data, and the block indexes are created as partitioned block indexes.

4. After attaching the first stand-alone MDC table, you can detach the empty partition created when you
created the new MDC table.

5. Issue SET INTEGRITY statement on the new partitioned MDC table.

What to do next

Partitioned materialized query table (MQT) behavior

All types of materialized query tables (MQTs) are supported with partitioned tables. When working with
partitioned MQTs, there are a number of guidelines that can help you to administer attached and
detached data partitions most effectively.

The following guidelines and restrictions apply when working with partitioned MQTs or partitioned tables
with detached dependent tables:

« If youissue an ALTER TABLE ... DETACH PARTITION statement, the DETACH operation creates the
target table for the detached partition data. If there are any dependent tables that need to be
incrementally maintained with respect to the detached data partition (these dependent tables are
referred to as detached dependent tables), the SET INTEGRITY statement is required to be run on the
detached dependent tables to incrementally maintain the tables. With Db2 V9.7 Fix Pack 1 or later
releases, after the SET INTEGRITY statement is run on all detached dependent tables, the
asynchronous partition detach task makes the data partition into a stand-alone target table. Until the
asynchronous partition detach operation completes, the target table is unavailable. The target table will
be marked 'L' in the TYPE column of the SYSCAT.TABLES catalog view. This is referred to as a detached
table. This prevents the target table from being read, modified or dropped until the SET INTEGRITY
statement is run to incrementally maintain the detached dependent tables. After the SET INTEGRITY
statement is run on all detached dependent tables, the data partition is logically detached from the
source table and the asynchronous partition detach operation detaches data partition from the source
table into the target table. Until the asynchronous partition detach operation completes, the target table
is unavailable.

« To detect that a detached table is not yet accessible, query the SYSCAT.TABDETACHEDDEP catalog
view. If any inaccessible detached tables are detected, run the SET INTEGRITY statement with the
IMMEDIATE CHECKED option on all the detached dependent tables to transition the detached table to a
regular accessible table. If you try to access a detached table before all its detached dependents are
maintained, error code SQL20285N is returned.

« The DATAPARTITIONNUM function cannot be used in an materialized query table (MQT) definition.
Attempting to create an MQT using this function returns an error (SQLCODE SQL20058N, SQLSTATE
428EC).

- When creating a nonpartitioned index on a table with detached data partitions with STATUS 'D' in
SYSCAT.DATAPARTITIONS, the index does not include the data in the detached data partitions unless
the detached data partition has a dependent materialized query table (MQT) that needs to be
incrementally refreshed with respect to it. In this case, the index includes the data for this detached
data partition.

« Altering a table with attached data partitions to an MQT is not allowed.
- Partitioned staging tables are not supported.
« Attaching to an MQT is not directly supported. See Example 1 for details.

Example 1: Converting a partitioned MQT to an ordinary table

Although the ATTACH operation is not directly supported on partitioned MQTs, you can achieve the same
effect by converting a partitioned MQT to an ordinary table, performing the desired roll-in and roll-out of
table data, and then converting the table back into an MQT. The following CREATE TABLE and ALTER
TABLE statements demonstrate the effect:

CREATE TABLE lineitem (
1_orderkey DECIMAL(10,0) NOT NULL,

152 IBM Db2 V11.5: Partitioning and Clustering Guide

1_quantity DECIMAL(12,2),

1_shipdate DATE,

1_year_month INT GENERATED ALWAYS AS (YEAR(1_shipdate)*100 + MONTH(1_shipdate)))
PARTITION BY RANGE(1_shipdate)
(STARTING ('1/1/1992') ENDING ('12/31/1993') EVERY 1 MONTH);

CREATE TABLE lineitem_ex (

1_orderkey DECIMAL(10,0) NOT NULL,

1_quantity DECIMAL(12,2),

1_shipdate DATE,

1_year_month INT,

ts TIMESTAMP,

msg CLOB(32K));

CREATE TABLE quan_by_month (
g_year_month, g_count) AS
(SELECT 1_year_month AS q_year_month, COUNT(%x) AS q_count
FROM lineitem
GROUP BY 1_year_month)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
PARTITION BY RANGE(q_year_month)
(STARTING (199201) ENDING (199212) EVERY (1),
STARTING (199301) ENDING (199312) EVERY (1));
CREATE TABLE quan_by_month_ex(
g_year_month INT,

g_count INT NOT NULL,
ts TIMESTAMP,
msg CLOB(32K));

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;
CREATE INDEX gbmx ON quan_by_month(q_year_month);

ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;
ALTER TABLE lineitem DETACH PARTITION part® INTO 1li_reuse;
ALTER TABLE quan_by_month DETACH PARTITION part® INTO gm_reuse;

SET INTEGRITY FOR 1li_reuse OFF;
ALTER TABLE 1i_reuse ALTER 1_year_month SET GENERATED ALWAYS
AS (YEAR(1_shipdate)*100 + MONTH(1l_shipdate));

LOAD FROM part_mgt_rotate.del OF DEL MODIFIED BY GENERATEDIGNORE
MESSAGES load.msg REPLACE INTO li_reuse;

DECLARE load_cursor CURSOR FOR
SELECT 1_year_month, COUNT (%)
FROM 1i_reuse
GROUP BY 1_year_month;
LOAD FROM load_cursor OF CURSOR MESSAGES load.msg
REPLACE INTO gm_reuse;

ALTER TABLE lineitem ATTACH PARTITION STARTING '1/1/1994'
ENDING '1/31/1994' FROM li_reuse;

SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED
FOR EXCEPTION IN lineitem USE lineitem_ex;

ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401
ENDING 199401 FROM gm_reuse;

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED
FOR EXCEPTION IN quan_by_month USE quan_by_month_ex;

ALTER TABLE quan_by_month ADD MATERIALIZED QUERY
(SELECT 1_year_month AS q_year_month, COUNT(%) AS g_count
FROM lineitem
GROUP BY 1_year_month)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

Use the SET INTEGRITY statement with the IMMEDIATE CHECKED option to check the attached data
partition for integrity violations. This step is required before changing the table back to an MQT. The SET
INTEGRITY statement with the IMMEDIATE UNCHECKED option is used to bypass the required full
refresh of the MQT. The index on the MQT is necessary to achieve optimal performance. The use of
exception tables with the SET INTEGRITY statement is recommended, where appropriate.

Typically, you create a partitioned MQT on a large fact table that is also partitioned. If you do roll out or
roll in table data on the large fact table, you must adjust the partitioned MQT manually, as demonstrated
in Example 2.

Chapter 3. Implementation and maintenance 153

Example 2: Adjusting a partitioned MQT manually
Alter the MQT (quan_by_month) to convert it to an ordinary partitioned table:

ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;

Detach the data to be rolled out from the fact table (lineitem) and the MQT and re-load the staging table
li_reuse with the new data to be rolled in:

ALTER TABLE lineitem DETACH PARTITION part® INTO li_reuse;
LOAD FROM part_mqt_rotate.del OF DEL MESSAGES load.msg REPLACE INTO li_reuse;

ALTER TABLE quan_by_month DETACH PARTITION part® INTO gm_reuse;

Prune gm_reuse before doing the insert. This deletes the detached data before inserting the subselect
data. This is accomplished with a load replace into the MQT where the data file of the load is the content
of the subselect.

db2 load from datafile.del of del replace into gm_reuse

You can refresh the table manually using INSERT INTO ... (SELECT ...) This is only necessary on the new
data, so the statement should be issued before attaching:

INSERT INTO gm_reuse
(SELECT COUNT (%) AS g_count, 1_year_month AS q_year_month
FROM 1li_reuse
GROUP BY 1_year_month);

Now you can roll in the new data for the fact table:

ALTER TABLE lineitem ATTACH PARTITION STARTING '1/1/1994'

ENDING '1/31/1994' FROM TABLE 1li_reuse;

SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED FOR
EXCEPTION IN 1i_reuse USE 1li_reuse_ex;

Next, roll in the data for the MQT:

ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401
ENDING 199401 FROM TABLE qgm_reuse;
SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;

After attaching the data partition, the new data must be verified to ensure that it is in range.

ALTER TABLE quan_by_month ADD MATERIALIZED QUERY
(SELECT COUNT (%) AS g_count, 1_year_month AS q_year_month
FROM lineitem
GROUP BY 1_year_month)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE;
SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

The data is not accessible until it has been validated by the SET INTEGRITY statement. Although the
REFRESH TABLE operation is supported, this scenario demonstrates the manual maintenance of a
partitioned MQT through the ATTACH PARTITION and DETACH PARTITION operations. The data is
marked as validated by the user through the IMMEDIATE UNCHECKED clause of the SET INTEGRITY
statement.

Creating range-clustered tables

Guidelines for using range-clustered tables
This topic lists some guidelines to follow when working with range-clustered tables (RCT).

- Because the process of creating a range-clustered table pre-allocates the required disk space, that
space must be available.

154 IBM Db2 V11.5: Partitioning and Clustering Guide

« When defining the range of key values, the minimum value is optional; if it is not specified, the default is
1. A negative minimum value must be specified explicitly. For example:

ORGANIZE BY KEY SEQUENCE (f1 STARTING FROM -100 ENDING AT -10)
= You cannot create a regular index on the same key values that are used to define the range-clustered
table.
- ALTER TABLE statement options that affect the physical structure of the table are not allowed.
Scenarios: Range-clustered tables
Range-clustered tables can have single-column or multiple-column keys, and can allow or disallow rows

with key values that are outside of the defined range of values. This section contains scenarios that
illustrate how such tables can be created.

Scenario 1: Creating a range-clustered table (overflow allowed)

The following example shows a range-clustered table that can be used to retrieve information about a
specific student. Each student record contains the following information:

= School ID

« Program ID

 Student number

- Student ID

« Student first name

« Student last name

« Student grade point average (GPA)

CREATE TABLE students (

school_id INT NOT NULL,
program_id INT NOT NULL,
student_num INT NOT NULL,
student_id INT NOT NULL,
first_name CHAR(30),
last_name CHAR(30),

gpa FLOAT

ORGANIZE BY KEY SEQUENCE
(student_id STARTING FROM 1 ENDING AT 1000000)
ALLOW OVERFLOW

In this example, the STUDENT_ID column, which serves as the table key, is used to add, update, or delete
student records.

The size of each record is based on the sum of the column lengths. In this example, each record is 97
bytes long (10-byte header + 4 + 4 + 4 + 4 + 30 + 30 + 8 + 3 bytes for nullable columns). With a 4-KB (or
4096-byte) page size, after accounting for overhead, there are 4038 bytes (enough for 41 records)
available per page. A total of 24391 such pages is needed to accommodate 1 million student records.
Assuming four pages for table overhead and three pages for extent mapping, 24384 4-KB pages would be
pre-allocated when this table is created. (The extent mapping assumes a single three-page container for
the table.)

Scenario 2: Creating a range-clustered table (overflow not allowed)

In the following example, a school board administers 200 schools, each having 20 classrooms with a
capacity of 35 students per classroom. This school board can accommodate a maximum of 140,000
students.

CREATE TABLE students (

school_id INT NOT NULL,
class_id INT NOT NULL,
student_num INT NOT NULL,
student_id INT NOT NULL,

Chapter 3. Implementation and maintenance 155

first_name CHAR(30),
last_name CHAR(30),
gpa FLOAT

ORGANIZE BY KEY SEQUENCE
(school_id STARTING FROM 1 ENDING AT 200,
class_id STARTING FROM 1 ENDING AT 20,
student_num STARTING FROM 1 ENDING AT 35)
DISALLOW OVERFLOW

In this example, the SCHOOL_ID, CLASS_ID, and STUDENT_NUM columns together serve as the table
key, which is used to add, update, or delete student records.

Overflow is not allowed, because school board policy restricts the number of students in each classroom,
and there is a fixed number of schools and classrooms being administered by this school board. Some
smaller schools (schools with fewer classrooms than the largest school) will have pre-allocated space in
the table that will likely never be used.

Considerations when creating MDC or ITC tables

There are many factors to consider when creating MDC or ITC tables. Decisions on how to create, place,
and use your MDC or ITC tables can be influenced by your current database environment (for example,
whether you have a partitioned database or not), and by your choice of dimensions.

Moving data from existing tables to MDC tables

To improve query performance and reduce the requirements of data maintenance operations in a data
warehouse or large database environment, you can move data from regular tables into multidimensional
clustering (MDC) tables. To move data from an existing table to an MDC table:

1. export your data,

2. drop the original table (optional),

3. create a multidimensional clustering (MDC) table (using the CREATE TABLE statement with the
ORGANIZE BY DIMENSIONS clause),

4. load the MDC table with your data.

An ALTER TABLE procedure called SYSPROC.ALTOBJ can be used to carry out the translation of data from
an existing table to an MDC table. The procedure is called from the Db2 Design Advisor. The time required
to translate the data between the tables can be significant and depends on the size of the table and the
amount of data that needs to be translated.

The ALTOBJ procedure runs the following steps when altering a table:

1. drop all dependent objects of the table,

. rename the table,

. create the table with the new definition,

. recreate all dependent objects of the table,

. transform existing data in the table into the data required in the new table. That is, the selecting of
data from the old table and loading that data into the new one where column functions can be used to
transform from an old data type to a new data type.

o b WN

Moving data from existing tables to ITC tables

To reduce the requirements of data maintenance operations, you can move data from regular tables into
insert time clustering (ITC) tables. To move data from an existing table to an ITC table use the online
table move stored procedure.

The ExampleBank scenario shows how data from an existing table is moved into an ITC table. The
scenario also shows how convenient reclaiming space is when using ITC tables. For more information, see
the Related concepts links.

156 IBM Db2 V11.5: Partitioning and Clustering Guide

MDC Advisor feature on the Db2 Design Advisor

The Db2 Design Advisor (db2advis) has an MDC feature. This feature recommends clustering
dimensions for use in an MDC table, including coarsifications on base columns in order to improve
workload performance. The term coarsification refers to a mathematical expression to reduce the
cardinality (the number of distinct values) of a clustering dimension. A common example is coarsification
by date, week of the date, month of the date, or quarter of the year.

A requirement to use the MDC feature of the Db2 Design Advisor is the existence of at least several
extents of data within the database. The Db2 Design Advisor uses the data to model data density and
cardinality.

If the database does not have data in the tables, the Db2 Design Advisor does not recommend MDC, even
if the database contains empty tables but has a mocked up set of statistics to imply a populated
database.

The recommendation includes identifying potential generated columns that define coarsification of
dimensions. The recommendation does not include possible block sizes. The extent size of the table
space is used when making recommendations for MDC tables. The assumption is that the recommended
MDC table is created in the same table space as the existing table, and therefore has the same extent
size. The recommendations for MDC dimensions change depending on the extent size of the table space,
because the extent size affects the number of records that can fit into a block or cell. The extent size
directly affects the density of the cells.

Only single-column dimensions, and not composite-column dimensions, are considered, although single
or multiple dimensions might be recommended for the table. The MDC feature recommends
coarsifications for most supported data types with the goal of reducing the cardinality of cells in the
resulting MDC solution. The data type exceptions include: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
data types. All supported data types are cast to INTEGER and are coarsified through a generated
expression.

The goal of the MDC feature of the Db2 Design Advisor is to select MDC solutions that result in improved
performance. A secondary goal is to keep the storage expansion of the database constrained to a modest
level. A statistical method is used to determine the maximum storage expansion on each table.

The analysis operation within the advisor includes not only the benefits of block index access but also the
effect of MDC on insert, update, and delete operations against dimensions of the table. These actions on
the table have the potential to cause records to be moved between cells. The analysis operation also
models the potential performance effect of any table expansion resulting from the organization of data
along particular MDC dimensions.

The MDC feature is run by using the -m <advise type> flag on the db2advis utility. The "C" advise type
is used to indicate multidimensional clustering tables. The advise types are: "I" for index, "M" for
materialized query tables, "C" for MDC, and "P" for partitioned database environment. The advise types
can be used in combination with each other.

Note: The Db2 Design Advisor does not explore tables that are less than 12 extents in size.
The advisor analyzes both MQTs and regular base tables when coming up with recommendations.
The output from the MDC feature includes:

« Generated column expressions for each table for coarsified dimensions that appear in the MDC solution.
« An ORGANIZE BY DIMENSIONS clause recommended for each table.

The recommendations are reported both to stdout and to the ADVISE tables that are part of the explain
facility.
MDC tables and partitioned database environments

Multidimensional clustering can be used in a partitioned database environment. In fact, MDC can
complement a partitioned database environment. A partitioned database environment is used to
distribute data from a table across multiple physical or logical database partitions to:

Chapter 3. Implementation and maintenance 157

- take advantage of multiple machines to increase processing requests in parallel,
- increase the physical size of the table beyond the limits of a single database partition,
« improve the scalability of the database.

The reason for distributing a table is independent of whether the table is an MDC table or a regular table.
For example, the rules for the selection of columns to make up the distribution key are the same. The
distribution key for an MDC table can involve any column, whether those columns make up part of a
dimension of the table or not.

If the distribution key is identical to a dimension from the table, then each database partition contains a
different portion of the table. For instance, if our example MDC table is distributed by color across two
database partitions, then the Color column is used to divide the data. As a result, the Red and Blue slices
might be found on one database partition and the Yellow slice on the other. If the distribution key is not
identical to the dimensions from the table, then each database partition has a subset of data from each
slice. When choosing dimensions and estimating cell occupancy, note that on average the total amount of
data per cell is determined by taking all of the data and dividing by the number of database partitions.

MDC tables with multiple dimensions

If you know that certain predicates are heavily used in queries, you can cluster the table on the columns
involved. You can do this by using the ORGANIZE BY DIMENSIONS clause.

Example 1:

CREATE TABLE T1 (cl DATE, c2 INT, c3 INT, c4 DOUBLE)
ORGANIZE BY DIMENSIONS (cl1, c3, c4)

The table in Example 1 is clustered on the values within three columns forming a logical cube (that is,
having three dimensions). The table can now be logically sliced up during query processing on one or
more of these dimensions such that only the blocks in the appropriate slices or cells are processed by the
relational operators involved. The size of a block (the number of pages) is the extent size of the table.

MDC tables with dimensions based on more than one column

Each dimension can be made up of one or more columns. As an example, you can create a table that is
clustered on a dimension containing two columns.

Example 2:

CREATE TABLE T1 (cl1 DATE, c2 INT, c3 INT, c4 DOUBLE)
ORGANIZE BY DIMENSIONS (cl1, (c3, c4))

In Example 2, the table is clustered on two dimensions, c1 and (c3,c4). Thus, in query processing, the
table can be logically sliced up on either the c1 dimension, or on the composite (c3, c4) dimension. The
table has the same number of blocks as the table in Example 1, but one less dimension block index. In
Example 1, there are three dimension block indexes, one for each of the columns c1, c3, and c4. In
Example 2, there are two dimension block indexes, one on the column c1 and the other on the columns
c3 and c4. The main difference between the two approaches is that, in Example 1, queries involving c4
can use the dimension block index on c4 to quickly and directly access blocks of relevant data. In
Example 2, c4 is a second key part in a dimension block index, so queries involving c4 involve more
processing. However, in Example 2 there is one less block index to maintain and store.

The Db2 Design Advisor does not make recommendations for dimensions containing more than one
column.

MDC tables with column expressions as dimensions

Column expressions can also be used for clustering dimensions. The ability to cluster on column
expressions is useful for rolling up dimensions to a coarser granularity, such as rolling up an address to a
geographic location or region, or rolling up a date to a week, month, or year. To implement the rolling up
of dimensions in this way, you can use generated columns. This type of column definition allows the

158 IBM Db2 V11.5: Partitioning and Clustering Guide

creation of columns using expressions that can represent dimensions. In Example 3, the statement
creates a table clustered on one base column and two column expressions.

Example 3:

CREATE TABLE T1(cl1l DATE, c2 INT, c3 INT, c4 DOUBLE,
c5 DOUBLE GENERATED ALWAYS AS (c3 + c4),
c6 INT GENERATED ALWAYS AS (MONTH(C1)))
ORGANIZE BY DIMENSIONS (c2, c5, cé6)

In Example 3, column c5 is an expression based on columns c3 and ¢4, and column cé6 rolls up column c1
to a coarser granularity in time. The statement clusters the table based on the values in columns c2, ¢5,
and cé.

Range queries on generated column dimensions

Range queries on a generated column dimension require monotonic column functions. Expressions must
be monotonic to derive range predicates for dimensions on generated columns. If you create a dimension
on a generated column, queries on the base column are able to take advantage of the block index on the
generated column to improve performance, with one exception. For range queries on the base column
(date, for example) to use a range scan on the dimension block index, the expression used to generate the
column in the CREATE TABLE statement must be monotonic. Although a column expression can include
any valid expression (including user-defined functions (UDFs)), if the expression is non-monotonic, only
equality or IN predicates are able to use the block index to satisfy the query when these predicates are on
the base column.

As an example, assume that you create an MDC table with dimensions on the generated column month,
where month = INTEGER (date)/100. For queries on the dimension (month), block index scans can
be done. For queries on the base column (date), block index scans can also be done to narrow down
which blocks to scan, and then apply the predicates on date to the rows in those blocks only.

The compiler generates additional predicates to be used in the block index scan. For example, with the
query:

SELECT * FROM MDCTABLE WHERE DATE > "1999-03-03" AND DATE < "2000-01-15"

the compiler generates the additional predicates: "month >=199903" and "month <= 200001" which can
be used as predicates for a dimension block index scan. When scanning the resulting blocks, the original
predicates are applied to the rows in the blocks.

A non-monotonic expression allows equality predicates to be applied to that dimension. A good example
of a non-monotonic function is MONTH() as seen in the definition of column c6 in Example 3. If the c1
column is a date, timestamp, or valid string representation of a date or timestamp, then the function
returns an integer value in the range of 1 to 12. Even though the output of the function is deterministic, it
actually produces output similar to a step function (that is, a cyclic pattern):

MONTH (date('01/05/1999')) = 1
MONTH(date('02/08/1999")) = 2
MONTH (date('03/24/1999')) = 3
MONTH(date('04/30/1999')) = 4
MONTH (date('12/09/1999')) = 12
MONTH(date('01/18/2000'); =1
=2

MONTH (date ('02/24/2000")

Although date in this example is continually increasing, MONTH(date) is not. More specifically, it is not
guaranteed that whenever datel is larger than date2, MONTH(datel) is greater than or equal to
MONTH(date2). It is this condition that is required for monotonicity. This non-monotonicity is allowed, but
it limits the dimension in that a range predicate on the base column cannot generate a range predicate on
the dimension. However, a range predicate on the expression is fine, for example, where month(cl)
between 4 and 6. This can use the index on the dimension in the typical way, with a starting key of 4
and a stop key of 6.

Chapter 3. Implementation and maintenance 159

To make this function monotonic, include the year as the high-order part of the month. There is an
extension to the INTEGER built-in function to help in defining a monotonic expression on date.
INTEGER(date) returns an integer representation of the date, which then can be divided to find an integer
representation of the year and month. For example, INTEGER (date ('2000/05/24"')) returns
20000524, and therefore INTEGER (date('2000/05/24"')) /100 = 200005. The function
INTEGER(date)/100 is monotonic.

Similarly, the built-in functions DECIMAL and BIGINT also have extensions so that you can derive
monotonic functions. DECIMAL(timestamp) returns a decimal representation of a timestamp, and this can
be used in monotonic expressions to derive increasing values for month, day, hour, minute, and so on.
BIGINT(date) returns a big integer representation of the date, similar to INTEGER(date).

The database manager determines the monotonicity of an expression, where possible, when creating the
generated column for the table, or when creating a dimension from an expression in the dimensions
clause. Certain functions can be recognized as monotonicity-preserving, such as DAYS() or YEAR(). Also,
various mathematical expressions such as division, multiplication, or addition of a column and a constant
are monotonicity-preserving. Where Db2 determines that an expression is not monotonicity-preserving,
or if it cannot determine this, the dimension supports only the use of equality predicates on its base
column.

Altering a database

Altering an instance

Changing the database configuration across multiple database partitions
When you have a database that is distributed across more than one database partition, the database
configuration file should be the same on all database partitions.

About this task

Consistency is required since the SQL compiler compiles distributed SQL statements based on
information in the database partition configuration file and creates an access plan to satisfy the needs of
the SQL statement. Maintaining different configuration files on database partitions could lead to different
access plans, depending on which database partition the statement is prepared. Use db2_all to
maintain the configuration files across all database partitions.

Altering a database

Altering tables and other related table objects

Altering partitioned tables

All relevant clauses of the ALTER TABLE statement are supported for a partitioned table. In addition, the
ALTER TABLE statement allows you to add new data partitions, roll-in (attach) new data partitions, and
roll-out (detach) existing data partitions.

Before you begin

To alter a partitioned table to detach a data partition the user must have the following authorities or
privileges:

« The user performing the DETACH PARTITION operation must have the authority necessary to ALTER, to
SELECT from, and to DELETE from the source table.

- The user must also have the authority necessary to create the target table. Therefore, to alter a table to
detach a data partition, the privilege held by the authorization ID of the statement must include at least
one of the following authorities or privileges on the target table:

— DBADM authority

160 IBM Db2 V11.5: Partitioning and Clustering Guide

— CREATETAB authority on the database and USE privilege on the table spaces used by the table as
well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the table
does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers to an existing schema.

To alter a partitioned table to attach a data partition, the privileges held by the authorization ID of the
statement must include at least one of the following authorities or privileges on the source table:

« DATAACCESS authority or SELECT privilege on the source table and DBADM authority or DROPIN
privilege on the schema of the source table

« INSERT privilege on target table
« CONTROL privilege on the source table

To alter a partitioned table to add a data partition, the privileges held by the authorization ID of the
statement must have privileges to use the table space where the new partition is added, and include at
least one of the following authorities or privileges on the source table:

« ALTER privilege

« CONTROL privilege

- DBADM

« ALTERIN privilege on the table schema

About this task

« Each ALTER TABLE statement issued with the PARTITION clause must be in a separate SQL statement.

« No other ALTER operations are permitted in an SQL statement containing an ALTER TABLE ...
PARTITION operation. For example, you cannot attach a data partition and add a column to the table in
a single SQL statement.

« Multiple ALTER statements can be executed, followed by a single SET INTEGRITY statement.

Procedure

« To alter a partitioned table from the command line, issue the ALTER TABLE statement.

Guidelines and restrictions on altering partitioned tables
This topic identifies the most common alter table actions and special considerations in the presence of
attached and detached data partitions.

The STATUS column of the SYSCAT.DATAPARTITIONS catalog view contains the state information for the
partitions of a table.
« If the STATUS is the empty string, the partition is visible and is in the normal state.

- If the STATUS is 'A', the partition is newly attached and the SET INTEGRITY statement must be issued
to bring the attached partition into the normal state.

- Ifthe STATUS is 'D', 'L', or 'T', the partition is being detached, but the detach operation has not
completed.
— For a partition in the 'D' state, the SET INTEGRITY statement must be issued on all detached
dependent tables in order to transition the partition to the logically detached state.

— For a partition in the 'L' state, the partition is a logically detached partition and the asynchronous
partition detach task is completing the detach of the partition for Db2 Version 9.7 Fix Pack 1 and later
releases.

— For a partition in the 'I' state the asynchronous partition detach task has completed and
asynchronous index cleanup is updating nonpartitioned indexes defined on the partition.

Chapter 3. Implementation and maintenance 161

Adding or attaching a data partition - locking behavior
For information about locking behavior during an add partition or attach partition operation, see the
"Scenarios: Rolling in and rolling out partitioned table data" topic.

Adding or altering a constraint
Adding a check or a foreign key constraint is supported with attached and detached data partitions.
When a partitioned table has detached partitions in state 'D' or 'L', adding a primary or unique
constraint will return an error if the system has to generate a new partitioned index to enforce the
constraint. For a partition in the 'L' state, the operation returns SQL20285N (SQLSTATE 55057). For a
partition in the 'D' state, the operation returns SQL20054 (SQLSTATE 55019).

Adding a column
When adding a column to a table with attached data partitions, the column is also added to the
attached data partitions. When adding a column to a table with detached data partitions in the 'T'
state, the column is not added to the detached data partitions because the detached data partitions
are no longer physically associated to the table.

For a detached partition in the 'L' or 'D' state, the operation fails and an error is returned. For a
partition in the 'L' state, the operation returns SQL20285N (SQLSTATE 55057). For a partition in the
'D' state, the operation returns SQL20296N (SQLSTATE 55057).

Altering a column
When altering a column in a table with attached data partitions, the column will also be altered on the
attached data partitions. When altering a column in a table with detached data partitions, the column
is not altered on the detached data partitions, because the detached data partitions are no longer
physically associated to the table.

When dropping or renaming a column when a partition is detached in the 'L' or 'D' state the operation
fails and an error is returned. For a partition in the 'L' state, the operation returns SQL20285N
(SQLSTATE 55057). For a partition in the 'D' state, the operation returns SQLO270N (SQLSTATE
42997).

Adding a generated column
When adding a generated column to a partitioned table with attached or detached data partitions, it
must respect the rules for adding any other types of columns.

Adding or modifying a nonpartitioned index
When creating, recreating, or reorganizing an index on a table with attached data partitions, the index
does not include the data in the attached data partitions because the SET INTEGRITY statement
maintains all indexes for all attached data partitions. When creating, recreating or reorganizing an
index on a table with detached data partitions, the index does not include the data in the detached
data partitions, unless the detached data partition has a detached dependent table or staging tables
that need to be incrementally refreshed with respect to the data partition, the partition is in the 'D'
state. In this case, the index includes the data for this detached data partition.

Adding or modifying a partitioned index

When creating a partitioned index in the presence of attached data partitions, an index partition for
each attached data partition will be created. The index entries for index partitions on attached data
partitions will not be visible until the SET INTEGRITY statement is run to bring the attached data
partitions online. Note that because create index includes the attached data partitions, creation of a
unique partitioned index may find rows in the attached data partition which are duplicate key values
and thus fail the index creation. It is recommended that users do not attempt to create partitioned
indexes in the presence of attached partitions to avoid this problem.

If the table has any detached dependent tables, creation of partitioned indexes is not supported on
partitioned tables with detached dependent tables. Any attempt to create a partitioned index in this
situation will result in SQLSTATE 55019. When creating a partitioned index on a table that has
partitions in 'L' state, the operation returns SQL20285N (SQLSTATE 55057).

WITH EMPTY TABLE
You cannot empty a table with attached data partitions.

162 IBM Db2 V11.5: Partitioning and Clustering Guide

ADD MATERIALIZED QUERY AS
Altering a table with attached data partitions to an MQT is not allowed.

Altering additional table attributes that are stored in a data partition
The following table attributes are also stored in a data partition. Changes to these attributes are
reflected on the attached data partitions, but not on the detached data partitions.

» DATA CAPTURE

« VALUE COMPRESSION

« APPEND

- COMPACT/LOGGED FOR LOB COLUMNS

Creating and accessing data partitions within the same transaction
If a table has a nonpartitioned index, you cannot access a new data partition in that table within the
same transaction as the add or attach operation that created the partition, if the transaction does not
have the table locked in exclusive mode (SQL0O668N, reason code 11).

Special considerations for XML indexes when altering a table to ADD, ATTACH, or
DETACH a partition

Similar to a nonpartitioned relational index, a nonpartitioned index over an XML column is an independent
object that is shared among all data partitions of a partitioned table. XML region indexes and column path
indexes are affected when you alter a table by adding, attaching, or detaching a partition. Indexes over
XML column paths are always nonpartitioned, and indexes over XML data are generated as partitioned by
default.

XML regions index

ADD PARTITION will create a new regions index partition for the new empty data partition being added. A
new entry for the regions index partition will be added to the SYSINDEXPARTITIONS table. The table
space for the partitioned index object on the new partition will be determined by the INDEX IN <table
space> in the ADD PARTITION clause. If no INDEX IN <table space> is specified for the ADD PARTITION
clause, the table space for the partitioned index object will be the same as the table space used by the
corresponding data partition by default.

The system-generated XML regions index on a partitioned table is always partitioned. A partitioned index
uses an index organization scheme in which index data is divided across multiple storage objects, called
index partitions, according to the table partitioning scheme of the table. Each index partition only refers to
table rows in the corresponding data partition.

For ATTACH, since the regions index on a partitioned table with XML column is always partitioned, the
region index on the source table can be kept as the new regions index partition for the new table partition
after completing the ATTACH operation. Data and index objects do not move, therefore the catalog table
entries need to be updated. The catalog table entry for the regions index on the source table will be
removed on ATTACH and one regions index partition will be added in the SYSINDEXPARTITIONS table.
The pool ID and object ID will remain the same as they were on the source table. The index ID (IID) will
be modified to match that of the regions index on the target.

After completing the DETACH operation, the regions index will be kept on the detached table. The index
partition entry associated to the partition being detached will be removed from the
SYSINDEXPARTITIONS table. One new regions index entry will be added in the SYSINDEXES catalog
table for the detached table, which will have the same pool ID and object ID as the region index partition
before the DETACH.

Index over XML data

Starting in Db2 Version 9.7 Fix Pack 1, you can create an index over XML data on a partitioned table as
either partitioned or nonpartitioned. The default is a partitioned index.

Partitioned and nonpartitioned indexes over XML data are treated like any other relational indexes during
ATTACH and DETACH operations.

Chapter 3. Implementation and maintenance 163

Indexes on the source table will be dropped during the ATTACH operation. This applies to both the logical
and physical XML indexes. Their entries in the system catalogs will be removed during the ATTACH
operation.

Set integrity must be run after ATTACH, to maintain the nonpartitioned indexes over XML data on the
target table.

For DETACH, nonpartitioned indexes over XML columns on the source table are not inherited by the target
table.

XML column path indexes

Indexes over XML column paths are always nonpartitioned indexes. The XML column path indexes on the
source and target tables are maintained during roll-in and rollout operations.

For ATTACH, the Db2 database manager will maintain the nonpartitioned XML column path indexes on
the target table (this is unlike other nonpartitioned indexes, which are maintained during SET INTEGRITY
after completing the ATTACH operation). Afterwards, the XML column path indexes on the source table
will be dropped and their catalog entries will be removed because the column path indexes on the target
table are nonpartitioned.

For rollout, recall that the XML column path indexes are nonpartitioned, and nonpartitioned indexes are
not carried along to the standalone target table. However, XML column path indexes (one for each
column) must exist on a table with XML columns before the table can be accessible to external user,
therefore XML column path indexes must be created on the target table before it can be used. The time at
which the column path indexes will be created depends on whether there are any detached dependent
tables during the DETACH operation. If there are no detached dependent tables, then the paths indexes
will be created during the DETACH operation, otherwise they will be created by SET INTEGRITY or MQT
refresh to maintain the detach dependent objects.

After DETACH, the XML column path indexes created on the target table will reside in the same index
object along with all other indexes on that table.

Attaching data partitions

Table partitioning allows for the efficient roll-in and roll-out of table data. The ALTER TABLE statement
with the ATTACH PARTITION clause makes data roll-in easier.

Before you begin

If data integrity checking, including range validation and other constraints checking, can be done through
application logic that is independent of the data server before an attach operation, newly attached data
can be made available for use much sooner. You can optimize the data roll-in process by using the SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and constraints violation checking. In
this case, the table is brought out of SET INTEGRITY pending state, and the new data is available for
applications to use immediately, as long as all user indexes on the target table are partitioned indexes.

If there are nonpartitioned indexes (except XML column path indexes) on the table to maintain after an
attach operation, the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement behaves as though it
were a SET INTEGRITY...IMMEDIATE CHECKED statement. All integrity processing, nonpartitioned index
maintenance, and table state transitions are performed as though a SET INTEGRITY...IMMEDIATE
CHECKED statement was issued. This behavior ensures that a roll-in script that uses SET
INTEGRITY...ALL IMMEDIATE UNCHECKED does not stop working if a nonpartitioned index is created for
the target table some time after the roll-in script is put into service.

To alter a table to attach a data partition, the privileges held by the authorization ID of the statement
must include at least one of the following authorities or privileges on the source table:

« SELECT privilege on the table and DROPIN privilege on the schema of the table
« CONTROL privilege on the table
« DATAACCESS authority

164 IBM Db2 V11.5: Partitioning and Clustering Guide

About this task

Attaching data partitions takes an existing table (source table) and attaches it to the target table as a new
data partition. When attaching a data partition to a partitioned table by using the ALTER TABLE statement
with the ATTACH PARTITION clause, the target partitioned table remains online, and dynamic queries
against the table, running under the RS, CS, or UR isolation level, continue to run.

Restrictions and usage guidelines
The following conditions must be met before you can attach a data partition:

- The target table to which you want to attach the new data partition must be an existing partitioned
table.

- The source table must be an existing nonpartitioned table or a partitioned table with a single data
partition and no attached data partitions or detached data partitions. To attach multiple data partitions,
you must issue multiple ATTACH statements.

« The source table cannot be a typed table.

« The source table cannot be a range-clustered table.

« The source and target table definitions must match.

« The number, type, and ordering of source and target columns must match.

« Source and target table columns must match in terms of whether they contain default values.
« Source and target table columns must match in terms of whether they allow null values.

« Source and target table compression specifications, including the VALUE COMPRESSION and
COMPRESS SYSTEM DEFAULT clauses, must match.

« Source and target table specifications for the DATA CAPTURE, ACTIVATE NOT LOGGED INITIALLY, and
APPEND options must match.

- Attaching a data partition is allowed even when a target column is a generated column and the
corresponding source column is not a generated column. The following statement generates the values
for the generated column of the attached rows:

SET INTEGRITY FOR table-name
ALLOW WRITE ACCESS
IMMEDIATE CHECKED FORCE GENERATED

The source table column that matches a generated column must match in type and nullability; however,
a default value is not required. The recommended approach is to guarantee that the source table for the
attach operation has the correct generated value in the generated column. If you follow the
recommended approach, you are not required to use the FORCE GENERATED option, and the following
statements can be used.

SET INTEGRITY FOR table-name
GENERATED COLUMN
IMMEDIATE UNCHECKED

This statement indicates that checking of the generated column is to be bypassed.

SET INTEGRITY FOR table-name
ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN table-name USE table-name

This statement performs integrity checking of the attached data partition but does not check the
generated column.

- Attaching a data partition is allowed even when the target column is an identity column and the source
column is not an identity column. The statement SET INTEGRITY IMMEDIATE CHECKED does not
generate identity values for the attached rows. The statement SET INTEGRITY FOR T GENERATE
IDENTITY ALLOW WRITE ACCESS IMMEDIATE CHECKED fills in the identity values for the attached
rows. The column that matches an identity column must match in type and nullability. There is no
requirement on the default values of this column. The recommended approach is for you to fill in the

Chapter 3. Implementation and maintenance 165

correct identity values at the staging table. Then after the ATTACH, there is no requirement to use the
GENERATE IDENTITY option because the identity values are already guaranteed in the source table.

« For tables whose data is distributed across database partitions, the source table must also be
distributed, in the same database partition group using the same distribution key and the same
distribution map.

« The source table must be dropable (that is, it cannot have RESTRICT DROP set).
- If a data partition name is specified, it must not exist in the target table.

- If the target table is a multidimensional clustering (MDC) table, the source table must also be an MDC
table.

- When using a nonpartitioned table, the data table space for the source table must match the data table
spaces for the target table in type (that is, DMS or SMS), page size, extent size, and database partition
group. A warning is returned if the prefetch size does not match. The index table space for the source
table must match the index table spaces used by the partitioned indexes for the target table in type,
database partition group, page size, and extent size. The large table space for the source table must
match the large table spaces for the target table in type, database partition group, and page size. When
using a partitioned table, the data table space for the source table must match the data table spaces for
the target table in type, page size, extent size, and database partition group.

« When you issue the ALTER TABLE ATTACH statement to a partitioned table with any structured, XML, or
LOB columns, the INLINE LENGTH of any structured, XML, or LOB columns on the source table must
match with the INLINE LENGTH of the corresponding structured, XML, or LOB columns on the target
table.

« When you use the REQUIRE MATCHING INDEXES clause with the ATTACH PARTITION clause, if there
are any partitioned indexes on the target table that do not have a match on the source table,
SQL20307N is returned.

- Attaching a source table that does not have a matching index for each partitioned unique index on the
target table causes the attach operation to fail with error SQL20307N, reason code 17.

- When a table has a deferred index cleanup operation in progress as the result of an MDC rollout, since
MDC rollout using the deferred index cleanup mechanism is not supported for partitioned indexes, the
attach operation is not allowed if there are any RID indexes on the source table that are kept during the
attach operation, not rebuilt, and are pending asynchronous index cleanup of the rolled-out blocks.

- Attaching a source table with an XML data format that is different from the XML data format of the
target table is not supported.

« If a table contains XML columns that use the Version 9.5 or earlier XML record format, attaching the
table to a partitioned table that contains XML columns that use the Version 9.7 or later record format is
not supported.

Before attaching the table, you must update the XML record format of the table to match the record
format of the target partitioned table. Either of the following two methods updates the XML record
format of a table:

— Perform an online table move on the table by using the ADMIN_MOVE_TABLE procedure.
— Perform the following steps:
1. Use the EXPORT command to create a copy of the table data.

2. Use the TRUNCATE statement to delete all the rows from the table and release the storage
allocated to the table.

3. Use the LOAD command to add the data into the table.

After the XML record format of the table is updated, attach the table to the target partitioned table.

- If a table has a nonpartitioned index, you cannot access a new data partition in that table within the
same transaction as the add or attach operation that created the partition, if the transaction does not
have the table locked in exclusive mode (SQLO668N, reason code 11).

Before running the attach operation, create indexes on the source table that match each of the
partitioned indexes in the target table. Matching the partitioned indexes makes the roll-in operation more

166 IBM Db2 V11.5: Partitioning and Clustering Guide

efficient and less active log space is needed. If the indexes on the source table are not properly prepared,
the database manager is required to maintain them for you. To ensure that your roll-in does not incur any
additional cost to maintain the partitioned indexes, you can specify REQUIRE MATCHING INDEXES on the
attach partition operation. Specifying REQUIRE MATCHING INDEXES ensures that the attach operation
fails if a source table does not have indexes to match the partitioned indexes on the target. You can then
take the corrective action and reissue the attach operation.

In addition, drop any extra indexes on the source table before running the attach operation. Extra indexes
are those indexes on the source table that either do not have a match on the target table, or that match
nonpartitioned indexes on the target table. Dropping extra indexes before running the attach operation
makes it run faster.

For example, assume that a partitioned table called ORDERS has 12 data partitions (one for each month
of the year). At the end of each month, a separate table called NEWORDERS is attached to the partitioned
ORDERS table.

1. Create partitioned indexes on the ORDERS table.

CREATE INDEX idx_delivery_date ON orders(delivery) PARTITIONED
CREATE INDEX idx_order_price ON orders(price) PARTITIONED

2. Prepare for the attach operation by creating the corresponding indexes on the NEWORDERS table.

CREATE INDEX idx_delivery_date_for_attach ON neworders(delivery)
CREATE INDEX idx_order_price_for_attach ON neworders(price)

3. There are two steps to the attach operation:

a. ATTACH. The indexes on the NEWORDERS table that match the partitioned indexes on the ORDERS
table are kept.

ALTER TABLE orders ATTACH PARTITION part_jan2009
STARTING FROM ('01/01/2009"')
ENDING AT ('01/31/2009') FROM TABLE neworders

The ORDERS table is automatically placed into the Set Integrity Pending state. Both the
idx_delivery_date_for_attach index and the idx_order_price_for_attach index become part of the
ORDERS table after the completion of the attach operation. No data movement occurs during this
operation.

b. SET INTEGRITY. A range check is done on the newly attached partition. Any constraints that exist
are enforced. Upon completion, the newly attached data becomes visible within the database.

SET INTEGRITY FOR orders IMMEDIATE CHECKED

When nonpartitioned indexes exist on the target table, the SET INTEGRITY statement has to maintain the
index along with other tasks, such as range validation and constraints checking on the data from the
newly attached partition. Nonpartitioned index maintenance requires a large amount of active log space
that is proportional to the data volumes in the newly attached partition, the key size of each
nonpartitioned index, and the number of nonpartitioned indexes.

Each partitioned index on the new data partition is given an entry in the SYSINDEXPARTITIONS catalog
table using the table space identifier and object identifier from the source table. The identifier information
is taken from either the SYSINDEXES table (if the table is nonpartitioned) or the SYSINDEXPARTITIONS
table (if the table is partitioned). The index identifier is taken from the partitioned index of the matching
target table.

When the source table is partitioned, those partitioned indexes on the source table that match the
partitioned indexes on the target table are kept as part of the attach operation. Index partition entries in
the SYSINDEXPARTITIONS table are updated to show that they are index partitions on the new target
table with new index identifiers.

When attaching data partitions, some statistics for indexes as well as data are carried over from the
source table to the target table for the new partition. Specifically, all fields in the SYSDATAPARTITIONS
and SYSINDEXPARTITIONS tables for the new partition on the target are populated from the source.

Chapter 3. Implementation and maintenance 167

When the source table is nonpartitioned, these statistics come from the SYSTABLES and SYSINDEXES
tables. When the source table is a single-partition partitioned table, these statistics come from the
SYSDATAPARTITIONS and SYSINDEXPARTITIONS tables of the single source partition.

Note: Execute a runstats operation after the completion of an attach operation, because the statistics
that are carried over will not affect the aggregated statistics in the SYSINDEXES and SYSTABLES tables.

Nonpartitioned index maintenance during SET INTEGRITY...ALL IMMEDIATE UNCHECKED. When SET
INTEGRITY...ALL IMMEDIATE UNCHECKED is issued on a partitioned table to skip range checking for a
newly attached partition, if there are any nonpartitioned indexes (except the XML column path index) on
the table, SET INTEGRITY...ALL IMMEDIATE UNCHECKED performs as follows:

 If the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement references one target table, the
behavior is as though a SET INTEGRITY...ALLOW WRITE ACCESS...IMMEDIATE CHECKED statement
was issued instead. The SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement maintains all
nonpartitioned indexes (except XML column path indexes), performs all other integrity processing,
updates the constraints checking flag values in the CONST_CHECKED column in the SYSCAT.TABLES
catalog view, and returns errors and stops immediately when constraints violations are detected.

« If the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement references more than one target table,
an error is returned (SQL20209N with reason code 13).

Rebuild of invalid partitioned indexes during SET INTEGRITY. The SET INTEGRITY statement can
detect whether the partitioned index object for a newly attached partition is invalid and performs a
partitioned index rebuild if necessary.

Guidelines for attaching data partitions to partitioned tables

This topic provides guidelines for correcting various types of mismatches that can occur when attempting
to attach a data partition to a partitioned table when issuing the ALTER TABLE ...ATTACH PARTITION
statement. You can achieve agreement between tables by modifying the source table to match the
characteristics of the target table, or by modifying the target table to match the characteristics of the
source table.

The source table is the existing table you want to attach to a target table. The target table is the table to
which you want to attach the new data partition.

One suggested approach to performing a successful attach is to use the exact CREATE TABLE statement
for the source table as you did for the target table, but without the PARTITION BY clause. In cases where
it is difficult to modify the characteristics of either the source or target tables for compatibility, you can
create a new source table that is compatible with the target table. For details on creating a new source,
see "Creating tables like existing tables".

To help you prevent a mismatch from occurring, see the restrictions and usage guidelines section of
"Attaching data partitions". The section outlines conditions that must be met before you can successfully
attach a data partition. Failure to meet the listed conditions returns error SQL20408N or SQL20307N.

The following sections describe the various types of mismatches that can occur and provides the
suggested steps to achieve agreement between tables:

The (value) compression clause (the COMPRESSION column of SYSCAT.TABLES) does not match.
(SQL20307N reason code 2)

To achieve value compression agreement, use one of the following statements:

ALTER TABLE... ACTIVATE VALUE COMPRESSION
or
ALTER TABLE... DEACTIVATE VALUE COMPRESSION

To achieve row compression agreement use one of the following statements:

ALTER TABLE... COMPRESS YES
or
ALTER TABLE... COMPRESS NO

The APPEND mode of the tables does not match. (SQL20307N reason code 3)

168 IBM Db2 V11.5: Partitioning and Clustering Guide

To achieve append mode agreement use one of the following statements:

ALTER TABLE ... APPEND ON
or
ALTER TABLE ... APPEND OFF

The code pages of the source and target table do not match. (SQL20307N reason code 4)
Create a new source

The source table is a partitioned table with more than one data partition or with attached or
detached data partitions. (SQL20307N reason code 5)

Detach data partitions from the source table until there is a single visible data partition using the
statement:

ALTER TABLE ... DETACH PARTITION

Detached partitions remain detached until each of the following steps has been completed:

1. Execute any necessary SET INTEGRITY statements to incrementally refresh detached dependents.

2. In Version 9.7.1 and later, wait for the detach to complete asynchronously. To expedite this process,
ensure that all access to the table that started prior to the detach operation either completes or is
terminated.

3. If the source table has nonpartitioned indexes, wait for the asynchronous index cleanup to complete.
To expedite this process, one option might be to drop the nonpartitioned indexes on the source table.

If you want to perform an attach operation immediately, one option might be to create a new source
table.

The source table is a system table, a view, a typed table, a table ORGANIZED BY KEY SEQUENCE, a
created temporary table, or a declared temporary table. (SQL20307N reason code 6)

Create a new source.
The target and source table are the same. (SQL20307N reason code 7)
You cannot attach a table to itself. Determine the correct table to use as the source or target table.

The NOT LOGGED INITIALLY clause was specified for either the source table or the target table, but
not for both. (SQL20307N reason code 8)

Either make the table that is not logged initially be logged by issuing the COMMIT statement, or make the
table that is logged be not logged initially by entering the statement:

ALTER TABLE ... ACTIVATE NOT LOGGED INITIALLY

The DATA CAPTURE CHANGES clause was specified for either the source table or the target table,
but not both. (SQL20307N reason code 9)

To enable data capture changes on the table that does not have data capture changes turned on, run the
following statement:

ALTER TABLE ... DATA CAPTURE CHANGES

To disable data capture changes on the table that does have data capture changes turned on, run the
statement:

ALTER TABLE ... DATA CAPTURE NONE

The distribution clauses of the tables do not match. The distribution key must be the same for the
source table and the target table. (SQL20307N reason code 10)

Chapter 3. Implementation and maintenance 169

It is recommended that you create a new source table. You cannot change the distribution key of a table
spanning multiple database partitions. To change a distribution key on tables in single-partition database,
run the following statements:

ALTER TABLE ... DROP DISTRIBUTION;
ALTER TABLE ... ADD DISTRIBUTION(key-specification)

An error is returned when there are missing indexes during an attach operation (SQL20307N reason
code 18)

The attach operation implicitly builds missing indexes on the source table corresponding to the
partitioned indexes on the target table. The implicit creation of the missing indexes does take time to
complete. You have an option to create and error condition if the attach operation encounters any missing
indexes. The option is called ERROR ON MISSING INDEXES and is one of the attach operation options.
The error returned when this happens is SQL20307N, SQLSTATE 428GE, reason code 18. Information on
the nonmatching indexes is placed in the administration log.

The attach operation drops indexes on the source table that do not match the partitioned indexes on the
target table. The identification and dropping of these nonmatching indexes takes time to complete. You
should drop these indexes before attempting the attach operation.

An error is returned when the nonmatching indexes on the target table are unique indexes, or the
XML indexes are defined with the REJECT INVALID VALUES clause, during an attach operation
(SQL20307N reason code 17)

When there are partitioned indexes on the target table with no matching indexes on the source table and
the ERROR ON MISSING INDEXES is not used, then you could expect the following results:

1. If the nonmatching indexes on the target table are unique indexes, or the XML indexes are defined with
the REJECT INVALID VALUES clause, then the attach operation will fail and return the error message
SQL20307N, SQLSTATE 428GE, reason code 17.

2. If the nonmatching indexes on the target table do not meet the conditions in the previous point, the
index object on the source table is marked invalid during the attach operation. The attach operation
completes successfully, but the index object on the new data partition is marked invalid. The SET
INTEGRITY operation is used to rebuild the index objects on the newly attached partition. Typically
this is the next operation you would perform following the attaching of a data partition. The recreation
of the indexes takes time.

The administration log will have details about any mismatches between the indexes on the source and
target tables.

Only one of the tables has an ORGANIZE BY DIMENSIONS clause specified or the organizing
dimensions are different. (SQL20307N reason code 11)

Create a new source.
The data type of the columns (TYPENAME) does not match. (SQL20408N reason code 1)

To correct a mismatch in data type, issue the statement:
ALTER TABLE ... ALTER COLUMN ... SET DATA TYPE...

The nullability of the columns (NULLS) does not match. (SQL20408N reason code 2)

To alter the nullability of the column that does not match for one of the tables issue one of the following
statements:

ALTER TABLE... ALTER COLUMN... DROP NOT NULL
or
ALTER TABLE... ALTER COLUMN... SET NOT NULL

The implicit default value (SYSCAT.COLUMNS IMPLICITVALUE) of the columns are incompatible.
(SQL20408N reason code 3)

170 IBM Db2 V11.5: Partitioning and Clustering Guide

Create a new source table. Implicit defaults must match exactly if both the target table column and
source table column have implicit defaults (if IMPLICITVALUE is not NULL).

If IMPLICITVALUE is not NULL for a column in the target table and IMPLICITVALUE is not NULL for the
corresponding column in the source table, each column was added after the original CREATE TABLE
statement for the table. In this case, the value stored in IMPLICITVALUE must match for this column.

There is a situation, where through migration from a pre-V9.1 table or through attach of a data partition
from a pre-V9.1 table, that IMPLICITVALUE is not NULL because the system did not know whether or not
the column was added after the original CREATE TABLE statement. If the database is not certain whether
the column is added or not, it is treated as added. An added column is a column created as the result of
an ALTER TABLE ...ADD COLUMN statement. In this case, the statement is not allowed because the value
of the column could become corrupted if the attach were allowed to proceed. You must copy the data
from the source table to a new table (with IMPLICITVALUE for this column NULL) and use the new table
as the source table for the attach operation.

The code page (COMPOSITE_CODEPAGE) of the columns does not match. (SQL20408N reason code 4)
Create a new source table.
The system compression default clause (COMPRESS) does not match. (SQL20408N reason code 5)

To alter the system compression of the column issue one of the following statements to correct the
mismatch:

ALTER TABLE ... ALTER COLUMN ... COMPRESS SYSTEM DEFAULT

or
ALTER TABLE ... ALTER COLUMN ... COMPRESS OFF

Conditions for matching a source table index with a target table partitioned index

If you want to reuse the indexes on the source table as index partitions on a target table when attaching
data partitions, all index key columns or expressions for the indexes on the source table must match the
index key columns or expressions for the partitioned indexes on the target table.

If the source table has an expression-based index, the system-generated statistical view and package
that are associated with the index are dropped as part of the process to attach the partition. If the target
table has a partitioned expression-based index, the expression is used when determining whether the
source table has a matching index. If all other properties of the two indexes are the same, the index on
the source table is considered to match the partitioned index on the target table. That is, the index on the
source table can be used as an index on the target table.

The following table applies only when the target index is partitioned. The target index property is
assumed by the source index in all cases where they are considered to be a match.

Table 14. Determining whether the source index matches the target index when the target index property
is different from the source index property
Rule Target index Source index
number property property Does the source index match?
1. Non-unique Unique Yes, if the index is not an XML index.
2. Unique Non-unique No.
3. Column Xiis Column Xiis No.
descending ascending
4, Column Xis Column Xis No.
ascending descending
5. Column Xis Column Xis No.
random ascending

Chapter 3. Implementation and maintenance 171

Table 14. Determining whether the source index matches the target index when the target index property

is different from the source index property (continued)

Rule Target index Source index

number property property Does the source index match?

6. Column Xis Column Xis No.

ascending random

7. Column Xis Column Xis No.

random descending

8. Column Xis Column Xis No.

descending random

9. Partitioned Nonpartitioned No. It is assumed that the source table is
partitioned.

10. pctfree nl pctfree n2 Yes

11. level2pctfree nl level2pctfree n2 Yes.

12. minpctused nl minpctused n2 Yes.

13. Disallow reverse Allow reverse scans | Yes, the physical index structure is the same

scans irrespective of whether reverse scans are
allowed.

14. Allow reverse scans | Disallow reverse Yes, the same reason as 9.

scans

15. pagesplit [LIH|S] pagesplit [LIH[S] Yes.

16. Sampled statistics | Detailed statistics | Yes.

17. Detailed statistics | Sampled statistics | Yes.

18. Not clustered Clustered Yes.

19. Clustered Not clustered Yes. The index becomes a clustering index,
but the data is not clustered according to this
index until the data is reorganized. You can
use a partition-level reorganization after
attaching the data partition to cluster the data
according to this index partition.

20. Ignore invalid Reject invalid Yes.

values values
21. Reject invalid Ignore invalid No. The target index property of rejecting
values values invalid values must be respected, and the
source table might have rows that violate this
index constraint.

22. Index compression | Index compression |Yes. Compression of the underlying index data

enabled not enabled does not occur until the index is rebuilt.

23. Index compression | Index compression | Yes. Decompression of the index data does

not enabled enabled not occur until the index is rebuilt.

Note: With rule number 9, an ALTER TABLE ... ATTACH PARTITION statement fails and returns error
message SQL20307N, SQLSTATE 428GE if both of the following conditions are true:

« You attempt to attach a multidimensional clustering (MDC) table (with nonpartitioned block indexes)
that you created by using Db2 Version 9.7 or earlier to a new MDC partitioned table (with partitioned
block indexes) that you created by using Db2 Version 9.7 Fix Pack 1 or later.

172 IBM Db2 V11.5: Partitioning and Clustering Guide

 You specify the ERROR ON MISSING INDEXES clause.

Removing the ERROR ON MISSING INDEXES clause allows the attachment to be completed because the
database manager maintains the indexes during the attach operation. If you receive error message
SQL20307N, SQLSTATE 428GE, consider removing the ERROR ON MISSING INDEXES clause. An
alternative is to use the online table move procedure to convert an MDC partitioned table that has
nonpartitioned block indexes to a table that has partitioned block indexes.

Detaching data partitions

Table partitioning allows for the efficient roll-in and roll-out of table data. This efficiency is achieved by
using the ATTACH PARTITION and DETACH PARTITION clauses of the ALTER TABLE statement.

Before you begin
To detach a data partition from a partitioned table you must have the following authorities or privileges:

« The user performing the DETACH PARTITION operation must have the authority necessary to ALTER, to
SELECT from and to DELETE from the source table.

« The user must also have the authority necessary to create the target table. Therefore, to alter a table to
detach a data partition, the privilege held by the authorization ID of the statement must include at least
one of the following authorities or privileges on the target table:

— DBADM authority

— CREATETAB authority on the database and USE privilege on the table spaces used by the table as
well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the table
does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers to an existing schema.

Note: When detaching a data partition, the authorization ID of the statement is going to effectively
perform a CREATE TABLE statement and therefore must have the necessary privileges to perform that
operation. The authorization ID of the ALTER TABLE statement becomes the definer of the new table with
CONTROL authority, as if the user had issued the CREATE TABLE statement. No privileges from the table
being altered are transferred to the new table. Only the authorization ID of the ALTER TABLE statement
and users with DBADM or DATAACCESS authority have access to the data immediately after the ALTER
TABLE...DETACH PARTITION statement.

About this task

Rolling-out partitioned table data allows you to easily separate ranges of data from a partitioned table.
Once a data partition is detached into a separate table, the table can be handled in several ways. You can
drop the separate table (whereby, the data from the data partition is destroyed); archive it or otherwise
use it as a separate table; attach it to another partitioned table such as a history table; or you can
manipulate, cleanse, transform, and reattach to the original or some other partitioned table.

With Db2 Version 9.7 Fix Pack 1 and later releases, when detaching a data partition from a partitioned
table by using the ALTER TABLE statement with the DETACH PARTITION clause, the source partitioned
table remains online. Queries running against the table continue to run. The data partition being detached
is converted into a stand-alone table in the following two-phase process:

1. The ALTER TABLE...DETACH PARTITION operation logically detaches the data partition from the
partitioned table.

2. An asynchronous partition detach task converts the logically detached partition into a stand-alone
table.

If there are any dependent tables that need to be incrementally maintained with respect to the detached
data partition (these dependent tables are referred to as detached dependent tables), the asynchronous
partition detach task starts only after the SET INTEGRITY statement is run on all detached dependent
tables.

Chapter 3. Implementation and maintenance 173

In absence of detached dependent tables, the asynchronous partition detach task starts after the
transaction issuing the ALTER TABLE...DETACH PARTITION statement commits.

Restrictions

If the source table is an MDC table created by Db2 Version 9.7 or earlier releases, block indexes are not
partitioned. Access to the newly detached table is not allowed in the same unit of work as the ALTER
TABLE...DETACH PARTITION operation. MDC tables do not support partitioned block indexes. In that
case, block indexes are created upon first access to the table after the ALTER TABLE...DETACH
PARTITION operation is committed. If the source table had any other partitioned indexes before detach
time then the index object for the target table is marked invalid to allow for creation of the block indexes.
As a result access time is increased while the block indexes are created and any partitioned indexes are
recreated.

When the source table is an MDC created by Db2 V9.7 Fix Pack 1 or later releases, the block indexes are
partitioned, and partitioned indexes become indexes on the target table of detach without the need to be
recreated.

You must meet the following conditions before you can perform a DETACH PARTITION operation:

« The table to be detached from (source table) must exist and be a partitioned table.
The data partition to be detached must exist in the source table.

« The source table must have more than one data partition. A partitioned table must have at least one
data partition. Only visible and attached data partitions pertain in this context. An attached data
partition is a data partition that is attached but not yet validated by the SET INTEGRITY statement.

« The name of the table to be created by the DETACH PARTITION operation (target table) must not exist.

DETACH PARTITION is not allowed on a table that is the parent of an enforced referential integrity (RI)
relationship. If you have tables with an enforced RI relationship and want to detach a data partition
from the parent table, a workaround is available. In the following example, all statements are run within
the same unit of work (UOW) to lock out concurrent updates:

// Change the RI constraint to informational:
ALTER TABLE child ALTER FOREIGN KEY fk NOT ENFORCED;

ALTER TABLE parent DETACH PARTITION pO INTO TABLE pdet;
SET INTEGRITY FOR child OFF;

// Change the RI constraint back to enforced:
ALTER TABLE child ALTER FOREIGN KEY fk ENFORCED;

SET INTEGRITY FOR child ALL IMMEDIATE UNCHECKED;

// Assuming that the CHILD table does not have any dependencies on partition PO,
// and that no updates on the CHILD table are permitted

// until this UOW is complete,

// no RI violation is possible during this UOW.

COMMIT WORK;

« If there are any dependent tables that need to be incrementally maintained with respect to the
detached data partition (these dependent tables are referred to as detached dependent tables), the SET
INTEGRITY statement is required to be run on the detached dependent tables to incrementally
maintain the tables. With Db2 V9.7 Fix Pack 1 or later releases, after the SET INTEGRITY statement is
run on all detached dependent tables, the asynchronous partition detach task makes the data partition
into a stand-alone target table. Until the asynchronous partition detach operation completes, the target
table is unavailable.

Procedure

1. To alter a partitioned table and to detach a data partition from the table, issue the ALTER TABLE
statement with the DETACH PARTITION clause.

2. Optional: If you wish to have the same constraints on the newly detached stand-alone table, run the
ALTER TABLE... ADD CONSTRAINT on the target table after completing the detach operation.

174 IBM Db2 V11.5: Partitioning and Clustering Guide

If the index was partitioned on the source table, any indexes necessary to satisfy the constraint
already exist on the target table.

Results

The detached partition is renamed with a system-generated name (using the form
SQLyymmddhhmmssxxx) so that a subsequent attach can reuse the detached partition name
immediately.

Each of the index partitions defined on the source table for the data partition being detached becomes an
index on the target table. The index object is not physically moved during the detach partition operation.
However, the metadata for the index partitions of the table partition being detached are removed from
the catalog table SYSINDEXPARTITIONS. New index entries are added in SYSINDEXES for the new table
as a result of the detach partition operation. The original index identifier (IID) is kept and stays unique
just as it was on the source table.

The index names for the surviving indexes on the target table are system-generated (using the form
SQLyymmddhhmmssxxx). The schema for these indexes is the same as the schema of the target table
except for any path indexes, regions indexes, and MDC or ITC block indexes, which are in the SYSIBM
schema. Other system-generated indexes like those to enforce unique and primary key constraints will
have a schema of the target table because the indexes are carried over to the detached table but the
constraints are not. You can use the RENAME statement to rename the indexes that are not in the SYSIBM
schema.

The table level INDEX IN option specified when creating the source table is not inherited by the target
table. Rather, the partition level INDEX IN (if specified) or the default index table space for the detach
partition continues to be the index table space for the target table.

When detaching data partitions, some statistics are carried over from the partition being detached into
the target table. Specifically, statistics from SYSINDEXPARTITIONS for partitioned indexes will be carried
over to the entries SYSINDEXES for the newly detached table. Statistics from SYSDATAPARTITIONS will
be copied over to SYSTABLES for the newly detached table.

What to do next

Run RUNSTATS after the completion of the DETACH PARTITION operation on both the new detached
table and the source table, because many of the statistics will not be carried over following the
completion of the detach partition operation.

Attributes of detached data partitions

When you detach a data partition from a partitioned table by using the DETACH PARTITION clause of the
ALTER TABLE statement, the detached data partition becomes a stand-alone, nonpartitioned table.

Many attributes of the target table are inherited from the source table. Any attributes that are not
inherited from the source table are set by using default values on the CREATE TABLE statement. If there
is a partitioned index on the source table, that index is carried over to the target table. If the source table
has a partitioned index with expression-based key parts, the system-generated statistical view and
package are created and associated with the index in the target table.

The target table inherits all the partitioned indexes that are defined on the source table. These indexes
include both system-generated indexes and user-defined indexes. The index object is not physically
moved during the detach operation. The index partition metadata of the detached data partition is
removed from the SYSINDEXPARTITIONS catalog table. Entries for the new table are added to the
SYSINDEXES catalog table. The index identifier (IID) for a particular partitioned index from the source
table is used as the IID for the index on the target table. The IID remains unique with respect to the table.

The index names for the surviving indexes on the new table are system generated in the form
SQLyymmddhhmmssxxx. Path indexes, region indexes, and MDC or ITC indexes are made part of the
SYSIBM schema. All other indexes are made part of the schema of the new table. System-generated
indexes such as those to enforce unique and primary key constraints are made part of the schema of the

Chapter 3. Implementation and maintenance 175

new table because the indexes are carried over to the new table. You can use the RENAME statement to
rename the indexes that are not in the SYSIBM schema.

Constraints on the source table are not inherited by the target table. After the detach operation, you can
use the ALTER TABLE ... ADD CONSTRAINT statement on the new table to enforce the same constraints
that are on the source table.

The table space location that is specified by the table-level INDEX IN clause on the source table is not
inherited by the target table. Rather, the table space location that is specified by the partition-level INDEX
IN clause or the default index table space for the new table is used as the index table space location for
the new table.

Attributes that are inherited by the target table
Attributes that are inherited by the target table include:
 The following column definitions:

— Column name

— Data type (includes length and precision for types that have length and precision, such as CHAR and
DECIMAL)

— Nullability

— Column default values

— INLINE LENGTH

— Code page (CODEPAGE column of the SYSCAT.COLUMNS catalog view)

— Logging for LOBs (LOGGED column of the SYSCAT.COLUMNS catalog view)

— Compaction for LOBs (COMPACT column of the SYSCAT.COLUMNS catalog view)
— Compression (COMPRESS column of the SYSCAT.COLUMNS catalog view)

— Type of hidden column (HIDDEN column of the SYSCAT.COLUMNS catalog view)
— Column order

« If the source table is a multidimensional clustering (MDC) or insert time clustering (ITC) table, the target
table is also an MDC or ITC table that is defined with the same dimension columns.

- Block index definitions. The indexes are rebuilt on first access to the target table after the detach
operation is committed.

« The table space ID and table object ID are inherited from the data partition, not from the source table,
because no table data is moved during a detach operation. The TBSPACEID column value in the
SYSCAT.DATAPARTITIONS catalog view becomes the TBSPACEID column value in the SYSCAT.TABLES
catalog view. The PARTITIONOBJECTID column value in the SYSCAT.DATAPARTITIONS catalog view
becomes the TABLEID column value in the SYSCAT.TABLES catalog view.

e The LONG_TBSPACEID column value in the SYSCAT.DATAPARTITIONS catalog view is translated into a
table space name and becomes the LONG_TBSPACE column value in the SYSCAT.TABLES catalog view.

« The INDEX_TBSPACEID column value in the SYSCAT.DATAPARTITIONS catalog view (the partition-level
index table space) is translated into a table space name and becomes the INDEX_TBSPACE value in the
SYSCAT.TABLES catalog view. The target table does not inherit the index table space that is specified by
the table-level INDEX IN table space clause in the CREATE TABLE statement.

« Table space location

« ID of the distribution map for a multipartition database (PMAP_ID column of the SYSCAT.TABLES
catalog view)

 Percent free (PCTFREE column of the SYSCAT.TABLES catalog view)

« Append mode (APPEND_MODE column of the SYSCAT.TABLES catalog view)

« Preferred lock granularity (LOCKSIZE column of the SYSCAT.TABLES catalog view)
« Data capture (DATA_CAPTURE column of the SYSCAT.TABLES catalog view)

« VOLATILE (VOLATILE column of the SYSCAT.TABLES catalog view)

176 IBM Db2 V11.5: Partitioning and Clustering Guide

« DROPRULE (DROPRULE column of the SYSCAT.TABLES catalog view)
« Compression (COMPRESSION column of the SYSCAT.TABLES catalog view)
« Maximum free space search (MAXFREESPACESEARCH column of the SYSCAT.TABLES catalog view)

Partitioned hierarchical or temporary tables, range-clustered tables, and partitioned views are not
supported.

Attributes that are not inherited from the source table
Attributes that are not inherited from the source table include:

- Target table type. The target table is always a regular table.
- Privileges and authorities.
e Schema.

« Generated columns, identity columns, check constraints, and referential constraints. If a source column
is a generated column or an identity column, the corresponding target column has no explicit default
value, meaning that it has a default value of NULL.

« Table-level index table space (INDEX_TBSPACE column of the SYSCAT.TABLES catalog view). Indexes
for the table resulting from the detach operation are in the same table space as the table.

 Triggers.
« Primary key constraints and unique key constraints.
« Statistics for nonpartitioned indexes.

« All other attributes that are not mentioned in the list of attributes that are explicitly inherited from the
source table.

Data partition detach phases

With Db2 Version 9.7 Fix Pack 1 and later releases, detaching a data partition from a data partitioned
table consists of two phases. The first phase logically detaches the partition from the table, the second
phase converts the data partition into a stand-alone table.

The detach process is initiated when an ALTER TABLE...DETACH PARTITION statement is issued:

1. The ALTER TABLE...DETACH PARTITION operation logically detaches the data partition from the
partitioned table.

2. An asynchronous partition detach task converts the logically detached partition into the stand-alone
table.

If there are any dependent tables that need to be incrementally maintained with respect to the detached
data partition (these dependent tables are referred to as detached dependent tables), the asynchronous
partition detach task starts only after the SET INTEGRITY statement is run on all detached dependent
tables.

In absence of detached dependent tables, the asynchronous partition detach task starts after the
transaction issuing the ALTER TABLE...DETACH PARTITION statement commits.

DETACH operation
The ALTER TABLE...DETACH PARTITION operation performs in the following manner:

« The DETACH operation does not wait for dynamic uncommitted read (UR) isolation level queries before
it proceeds, nor does it interrupt any currently running dynamic UR queries. This behavior occurs even
when the UR query is accessing the partition being detached.

« If dynamic non-UR queries (read or write queries) did not lock the partition to be detached, the DETACH
operation can complete while dynamic non-UR queries are running against the table.

- If dynamic non-UR queries locked the partition to be detached, the DETACH operation waits for the lock
to be released.

Chapter 3. Implementation and maintenance 177

- Hard invalidation must occur on all static packages that are dependent on the table before the DETACH
operation can proceed.

« The following restrictions that apply to data definition language (DDL) statements also apply to a
DETACH operation because DETACH requires catalogs to be updated:

— New queries cannot be compiled against the table.
— A bind or rebind cannot be performed on queries that run against the table.

To minimize the impact of these restrictions, issue a COMMIT immediately after a DETACH operation.

During the DETACH operation, the data partition name is changed to a system-generated name of the
form SQLyymmddhhmmssxxax, and in SYSCAT.DATAPARTITIONS, the status of the partition is set to 'L' if
there are no detached dependent tables, or 'D' if there are detached dependent tables.

During the DETACH operation, an entry is created in SYSCAT.TABLES for the target table. If there are
detached dependent tables, the table TYPE is set to 'L'. After SET INTEGRITY is run on all detached
dependent tables, the TYPE is set to 'T', however, the target table continues to be unavailable. The
asynchronous partition detach task completes the detach and makes the target table available.

Soft invalidation of dynamic SQL during the DETACH operation allows dynamic SQL queries that started
before the ALTER TABLE...DETACH PARTITION statement to continue running concurrently with the
DETACH operation. The ALTER TABLE...DETACH PARTITION statement acquires an IX lock on the
partitioned table and an X lock on the data partition being detached.

Asynchronous partition detach task

After the DETACH operation commits and any detached dependent tables are refreshed, the
asynchronous partition detach task converts the logically detached partition into the stand-alone table.

The asynchronous partition detach task waits for the completion of all access on the partitioned table that
started before phase 1 of the detach operation. If the partitioned table has nonpartitioned indexes, the
asynchronous partition detach task creates the asynchronous index cleanup task for deferred indexed
cleanup. After the access completes, the asynchronous partition detach task completes phase 2 of the
detached operation, by converting the logically detached partition into a stand-alone table.

The LIST UTILITIES command can be used to monitor the process of the asynchronous partition
detach task. The LIST UTILITIES command indicates whether the asynchronous partition detach task
is in one of the following states:

« Waiting for old access to the partitioned table to complete
- Finalizing the detach operation and making the target table available

Asynchronous partition detach for data partitioned tables

For Db2 Version 9.7 Fix Pack 1 and later releases, the asynchronous partition detach task completes the
detach of a data partition from a partitioned table that was initiated by an ALTER TABLE...DETACH
operation. The task is an asynchronous background process (ABP) that is initiated after the partition
becomes a logically detached partition.

The asynchronous partition detach task accelerates the process of detaching a data partition from a
partitioned table. If the partitioned table has dependent materialized query tables (MQTs), the task is not
initiated until after a SET INTEGRITY statement is executed on the MQTs.

By completing the detach of the data partition asynchronously, queries accessing the partitioned table
that started prior to issuing ALTER TABLE...DETACH PARTITION statement continue while the partition is
immediately detached.

If there are any dependent tables that need to be incrementally maintained with respect to the detached
data partition (these dependent tables are referred to as detached dependent tables), the asynchronous
partition detach task starts only after the SET INTEGRITY statement is run on all detached dependent
tables.

178 IBM Db2 V11.5: Partitioning and Clustering Guide

In the absence of detached dependents, the asynchronous partition detach task starts after the
transaction issuing the ALTER TABLE...DETACH PARTITION statement commits.

The asynchronous partition detach task performs the following operations:

« Performs hard invalidation on cached statements on which the ALTER TABLE...DETACH operation
previously performed soft invalidation.

« Updates catalog entries for source partitioned table and target stand-alone table and makes the target
table available.

« For multidimensional clustering (MDC) tables with nonpartitioned block indexes and no other
partitioned indexes, creates an index object for target table. The block indexes are created upon first
access to the target table after the asynchronous partition detach task commits.

- Creates the system path index on the target table for table containing XML columns.

« Updates the minimum recovery time (MRT) of the table space containing the detached partition.

« Creates asynchronous index cleanup AIC tasks for nonpartitioned indexes. The AIC task performs index
cleanup after asynchronous partition detach completes.

» Releases the data partition ID if nonpartitioned indexes do not exist on the table.

Asynchronous partition detach task impact on performance

An asynchronous partition detach task incurs minimal performance impact. The task waits for all access
to the detached partition to complete by performing a hard invalidation on cached statements on which
the ALTER TABLE...DETACH operation previously performed soft invalidation. Then the task acquires the
required locks on the table and on the partition and continues the process to make the detached partition
a stand-alone table.

Monitoring the asynchronous partition detach task

The distribution daemon and asynchronous partition detach task agents are internal system applications
that appear in LIST APPLICATIONS command output with the application names db2taskd and
db2apd, respectively. To prevent accidental disruption, system applications cannot be forced. The
distribution daemon remains online as long as the database is active. The tasks remain active until detach
completes. If the database is deactivated while detach is in progress, the asynchronous partition detach
task resumes when the database is reactivated.

The LIST UTILITIES command indicates whether the asynchronous partition detach task is in one of
the following states:

- Waiting for old access to the partitioned table to complete
- Finalizing the detach operation and making the target table available

The following sample output for the LIST UTILITIES SHOW DETAIL command shows asynchronous
partition detach task activity in the WSDB database:

ID 1

Type = ASYNCHRONOUS PARTITION DETACH

Database Name = WSDB

Partition Number =0

Description = Finalize the detach for partition '4' of table 'USER1.0RDERS'.
Start Time = 07/15/2009 14:52:14.476131

State = Executing

Invocation Type = Automatic

Progress Monitoring:
Description
Start Time

Waiting for old access to the partitioned table to complete.
07/15/2009 14:52:51.268119

In the output of the LIST UTILITIES command, the main description for the asynchronous partition
detach task identifies the data partition being detached and the target table created by the detach
operation. The progress monitoring description provides information about the current state of the
asynchronous partition detach task.

Chapter 3. Implementation and maintenance 179

Note: The asynchronous partition detach task is an asynchronous process. To know when the target table
of a detach operation is available, a stored procedure can be created that queries the STATUS column of
the SYSCAT.DATAPARTITIONS catalog view and returns when the detach operation completes. If non-
partitioned indexes exist on the partitioned table, the target table of the detach operation becomes
available when the STATUS column is changed to 'I', which indicates that asynchronous index cleanup is
being performed on the non-partitioned index(es). Rows with a STATUS value of 'I' are removed when all
index records referring to the detached partition have been deleted. If there are no non-partitioned
indexes, then the asynchronous index cleanup phase is skipped and the row specified by the original
DATAPARTITIONID is removed from SYSCAT.DATAPARTITIONS. This data partition name is changed to a
system-generated name using the following form: 'SQLyymmddhhmmssxxx', which is done during the
DETACH operation.

Asynchronous partition detach processing in a partitioned database environment

One asynchronous partition detach task is created for each DETACH operation independent of the
number of database partitions in a partitioned database environment. The task is created on the catalog
database partition and distributes work to the remaining database partitions, as needed.

Error handling for the asynchronous partition detach task

The asynchronous partition detach task is transaction based. All the changes made by a task will be rolled
back internally if it fails. Any errors during asynchronous partition detach processing are logged in a
db2diag log file. A failed task is retried later by the system.

Adding data partitions to partitioned tables

You can use the ALTER TABLE statement to modify a partitioned table after the table is created.
Specifically, you can use the ADD PARTITION clause to add a new data partition to an existing partitioned
table.

About this task

Adding a data partition to a partitioned table is more appropriate than attaching a data partition when
data is added to the data partition over time, when data is trickling in rather than rolling in from an
external source, or when you are inserting or loading data directly into a partitioned table. Specific
examples include daily loads of data into a data partition for January data or ongoing inserts of individual
rows.

To add the new data partition to a specific table space location, the IN clause is added as an option on the
ALTER TABLE ADD PARTITION statement.

To add the partitioned index of a new data partition to a specific table space location separate from the
table space location of the data partition, the partition level INDEX IN clause is added as an option on the
ALTER TABLE ADD PARTITION statement. If the INDEX IN option is not specified, by default any
partitioned indexes on the new data partition reside in the same table space as the data partition. If any
partitioned indexes exist on the partitioned table, the ADD PARTITION clause creates the corresponding
empty index partitions for the new partition. A new entry is inserted into the SYSCAT.INDEXPARTITIONS
catalog view for each partitioned index.

To add the LONG, LOB, or XML data of a new data partition to a specific table space location that is
separate from the table space location of the data partition, the partition-level LONG IN clause is added
as an option on the ALTER TABLE ADD PARTITION statement.

When adding a data partition to a partitioned table by using the ALTER TABLE statement with the ADD
PARTITION clause, the target partitioned table remains online, and dynamic queries against the table,
running under the RS, CS, or UR isolation level, continue to run.

Restrictions and usage guidelines

« You cannot add a data partition to a nonpartitioned table. For details on migrating an existing table to a
partitioned table, see “Migrating existing tables and views to partitioned tables” on page 148.

- The range of values for each new data partition are determined by the STARTING and ENDING clauses.

180 IBM Db2 V11.5: Partitioning and Clustering Guide

« One or both of the STARTING and ENDING clauses must be supplied.
- The new range must not overlap with the range of an existing data partition.

« When adding a new data partition before the first existing data partition, the STARTING clause must be
specified. Use MINVALUE to make this range open ended.

« Likewise, the ENDING clause must be specified if you want to add a new data partition after the last
existing data partition. Use MAXVALUE to make this range open ended.

« If the STARTING clause is omitted, then the database manufactures a starting bound just after the
ending bound of the previous data partition. Likewise, if the ENDING clause is omitted, the database
creates an ending bound just before the starting bound of the next data partition.

« The start-clause and end-clause syntax is the same as specified in the CREATE TABLE statement.

« If the IN, INDEX IN, or LONG IN clauses are not specified for ADD PARTITION, the table space in which
to place the data partition is chosen by using the same method as is used by the CREATE TABLE
statement.

« Packages are invalidated during the ALTER TABLE...ADD PARTITION operation.
« The newly added data partition is available once the ALTER TABLE statement is committed.

- If atable has a nonpartitioned index, you cannot access a new data partition in that table within the
same transaction as the add or attach operation that created the partition, if the transaction does not
have the table locked in exclusive mode (SQLO668N, reason code 11).

Omitting the STARTING or ENDING bound for an ADD operation is also used to fill a gap in range values.
Here is an example of filling in a gap by using the ADD operation where only the starting bound is
specified:

CREATE TABLE hole (cl int) PARTITION BY RANGE (c1)
(STARTING FROM 1 ENDING AT 10, STARTING FROM 20 ENDING AT 30);
DB200OOI The SQL command completed successfully.

ALTER TABLE hole ADD PARTITION STARTING 15;
DB200OOI The SQL command completed successfully.

SELECT SUBSTR(tabname, 1,12) tabname,

SUBSTR(datapartitionname, 1, 12) datapartitionname,

seqno, SUBSTR(lowvalue, 1, 4) lowvalue, SUBSTR(highvalue, 1, 4) highvalue
FROM SYSCAT.DATAPARTITIONS WHERE TABNAME='HOLE' ORDER BY seqno;

TABNAME DATAPARTITIONNAME SEQNO LOWVALUE HIGHVALUE

HOLE PARTO 0 1 10
HOLE PART2 1 15 20
HOLE PART1 2 20 30

3 record(s) selected.

Example 1: Add a data partition to an existing partitioned table that holds a range of values 901 - 1000
inclusive. Assume that the SALES table holds nine ranges: 0 - 100, 101 - 200, and so on, up to the value
of 900. The example adds a range at the end of the table, indicated by the exclusion of the STARTING
clause:

ALTER TABLE sales ADD PARTITION dpl0
ENDING AT 1000 INCLUSIVE

To add the partitioned index of a new data partition to a specific table space location separate from the
table space location of the data partition, the partition level INDEX IN clause is added as an option on the
ALTER TABLE ADD PARTITION statement. If no INDEX IN option is specified, by default any partitioned
indexes on the new data partition reside in the same table space as the data partition. If any partitioned
indexes exist on the partitioned table, ADD PARTITION creates the corresponding empty index partitions
for the new partition. A new entry is inserted into the SYSCAT.INDEXPARTITIONS catalog view for each
partitioned index.

Chapter 3. Implementation and maintenance 181

Example 2: Add a data partition to an existing partitioned table by separating out long data and indexes
from the rest of the data partition.

ALTER TABLE newbusiness ADD PARTITION IN tsnewdata
INDEX IN tsnewindex LONG IN tsnewlong

Dropping data partitions

To drop a data partition, you detach the partition, and drop the table created by the detach operation. Use
the ALTER TABLE statement with the DETACH PARTITION clause to detach the partition and create a
stand-alone table, and use the DROP TABLE statement to drop the table.

Before you begin

To detach a data partition from a partitioned table the user must have the following authorities or

privileges:

« The user performing the DETACH operation must have the authority to ALTER, to SELECT from and to
DELETE from the source table.

« The user must also have the authority to CREATE the target table. Therefore, in order to alter a table to
detach a data partition, the privilege held by the authorization ID of the statement must include at least
one of the following on the target able:

— DBADM authority
— CREATETAB authority on the database and USE privilege on the table spaces used by the table as
well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the table
does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers to an existing schema.
To drop a table the user must have the following authorities or privileges:

« You must either be the definer as recorded in the DEFINER column of SYSCAT.TABLES, or have at least
one of the following privileges:

— DBADM authority
— DROPIN privilege on the schema for the table
— CONTROL privilege on the table

Note: The implication of the detach data partition case is that the authorization ID of the statement is
going to effectively issue a CREATE TABLE statement and therefore must have the necessary privileges to
perform that operation. The table space is the one where the data partition that is being detached already
resides. The authorization ID of the ALTER TABLE statement becomes the definer of the new table with
CONTROL authority, as if the user issued the CREATE TABLE statement. No privileges from the table being
altered are transferred to the new table. Only the authorization ID of the ALTER TABLE statement and
DBADM or SYSADM have access to the data immediately after the ALTER TABLE...DETACH PARTITION
operation.

Procedure

« To detach a data partition of a partitioned table, issue the ALTER TABLE statement with the DETACH
PARTITION clause.

Example

In the following example, the dec01 data partition is detached from table STOCK and placed in table
JUNK. After ensuring that the asynchronous partition detach task made the target table JUNK available,
you can drop the table JUNK, effectively dropping the associated data partition.

182 IBM Db2 V11.5: Partitioning and Clustering Guide

ALTER TABLE stock DETACH PART dec0l INTO junk;
-- After the target table becomes available, issue the DROP TABLE statement
DROP TABLE junk;

What to do next

To make the ALTER TABLE...DETACH as fast as possible with Db2 Version 9.7 Fix Pack 1 and later
releases, the asynchronous partition detach task completes the detach operation asynchronously. If
there are detached dependent tables, the asynchronous partition detach task does not start and the
detached data partition does not become a stand-alone table. In this case, the SET INTEGRITY statement
must be issued on all detached dependent tables. After SET INTEGRITY completes, the asynchronous
partition detach task starts and makes the target table accessible. When the target table is accessible it
can be dropped.

Scenario: Rotating data in a partitioned table

Rotating data in Db2 databases refers to a method of reusing space in a data partition by removing
obsolete data from a table (a detach partition operation) and then adding new data (an attach partition
operation).

Before you begin

Alternatively, you can archive the detached partition and load the new data into a different source table
before an attach operation is performed. In the following scenario, a detach operation precedes the other
steps; it could as easily be the last step, depending on your specific requirements.

To alter a table to detach a data partition, the authorization ID of the statement must hold the following
privileges and authorities:

- At least one of the following authorities on the target table of the detached partition:

— CREATETAB authority on the database, and USE privilege on the table spaces used by the table, as
well as one of the following authorities or privileges:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the new
table does not exist

- CREATEIN privilege on the schema, if the schema name of the new table refers to an existing
schema

— DBADM authority
- At least one of the following privileges and authorities on the source table:
— SELECT, ALTER, and DELETE privileges on the table
— CONTROL privilege on the table
— DATAACCESS authority

To alter a table to attach a data partition, the authorization ID of the statement must include the following
privileges and authorities:

« At least one of the following authorities or privileges on the source table:
— SELECT privilege on the table and DROPIN privilege on the schema of the table
— CONTROL privilege on the table
— DATAACCESS authority
« A least one of the following authorities or privileges on the target table:
— ALTER and INSERT privileges on the table
— CONTROL privilege on the table
— DATAACCESS authority

Chapter 3. Implementation and maintenance 183

Procedure

To rotate data in a partitioned table, issue the ALTER TABLE statement.

The following example shows how to update the STOCK table by removing the data from December 2008
and replacing it with the latest data from December 2010.

a. Remove the old data from the STOCK table.
ALTER TABLE stock DETACH PARTITION dec08 INTO newtable;
b. Load the new data. Using the LOAD command with the REPLACE option overwrites existing data.

LOAD FROM data_file OF DEL REPLACE INTO newtable

Note: If there are detached dependents, issue the SET INTEGRITY statement on the detached
dependents before loading the detached table. If SQL20285N is returned, wait until the asynchronous
partition detach task is complete before issuing the SET INTEGRITY statement again.

c. If necessary, perform data cleansing activities, which can include the following actions:
« Filling in missing values
- Deleting inconsistent and incomplete data
« Removing redundant data arriving from multiple sources
« Transforming data

— Normalization. Data from different sources that represents the same value in different ways must
be reconciled as part of rolling the data into the warehouse.

— Aggregation. Raw data that is too detailed to store in the warehouse must be aggregated before
being rolled in.

d. Attach the data as a new range.

ALTER TABLE stock
ATTACH PARTITION dec10
STARTING '12/01/2008' ENDING '12/31/2010'
FROM newtable;

e. Use the SET INTEGRITY statement to update indexes and other dependent objects. Read and write
access is permitted during execution of the SET INTEGRITY statement.

SET INTEGRITY FOR stock
ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN stock USE stock_ex;

Scenarios: Rolling in and rolling out partitioned table data

A common administrative operation in data warehouses is to periodically roll in new data and roll out
obsolete data. The following scenarios illustrate these tasks.

Scenario 1: Rolling out obsolete data by detaching a data partition

The following example shows how to detach an unneeded data partition (DEC01) from a partitioned table
named STOCK. The detached data partition is used to create a table named STOCK_DROP without any
data movement.

ALTER TABLE stock DETACH PART dec@l1 INTO stock_drop;
COMMIT WORK;

To expedite the detach operation, index cleanup on the source table is done automatically and in the
background through an asynchronous index cleanup process. If there are no detached dependent tables
defined on the source table, there is no need to issue a SET INTEGRITY statement to complete the detach
operation.

184 IBM Db2 V11.5: Partitioning and Clustering Guide

The new table can be dropped or attached to another table, or it can be truncated and loaded with new
data before being reattached to the source table. You can perform these operations immediately, even
before asynchronous index cleanup completes, unless the source table detached dependent tables.

To determine whether a detached table is accessible, query the SYSCAT.TABDETACHEDDEP catalog view.
If a detached table is found to be inaccessible, issue the SET INTEGRITY statement with the IMMEDIATE
CHECKED option against all of the detached dependent tables. If you try to access a detached table
before all of its detached dependent tables are maintained, an error (SQL20285N) is returned.

Scenario 2: Creating a new, empty range

The following example shows how to add an empty data partition (DEC02) to a partitioned table named
STOCK. The STARTING FROM and ENDING AT clauses specify the range of values for the new data
partition.

ALTER TABLE stock ADD PARTITION dec0©2
STARTING FROM '12/01/2002' ENDING AT '12/31/2002';

This ALTER TABLE...ADD PARTITION statement drains existing static or repeatable-read queries that are
running against the STOCK table and invalidates packages on the table; that is, the statement allows such
queries to complete normally before it exclusively locks the table (by using a Z lock) and performs the add
operation. Existing dynamic non-repeatable-read queries against the STOCK table continue, and can run
concurrently with the add operation. Any new queries attempting to access the STOCK table after the add
operation starts must wait until the transaction in which the statement is issued commits.

Tip: Issue a COMMIT statement immediately after the add operation to make the table available for use
sooner.

Load data into the table:

LOAD FROM data_file OF DEL
INSERT INTO stock
ALLOW READ ACCESS;

Issue a SET INTEGRITY statement to validate constraints and refresh dependent materialized query
tables (MQTs). Any rows that violate defined constraints are moved to the exception table STOCK_EX.

SET INTEGRITY FOR stock

ALLOW READ ACCESS

IMMEDIATE CHECKED

FOR EXCEPTION IN stock USE stock_ex;

COMMIT WORK;

Scenario 3: Rolling in new data by attaching a loaded data partition

The following example shows how an attach operation can be used to facilitate loading a new range of
data into an existing partitioned table (the target table named STOCK). Data is loaded into a new, empty
table (DECO03), where it can be checked and cleansed, if necessary, without impacting the target table.
Data cleansing activities include:

« Filling in missing values

- Deleting inconsistent and incomplete data

« Removing redundant data that arrived from multiple sources
« Transforming the data through normalization or aggregation:

— Normalization. Data from different sources that represents the same values in different ways must be
reconciled as part of the roll-in process.

— Aggregation. Raw data that is too detailed to store in a warehouse must be aggregated during roll-in.

Chapter 3. Implementation and maintenance 185

After the data is prepared in this way, the newly loaded data partition can be attached to the target table.

CREATE TABLE dec03(..);

LOAD FROM data_file OF DEL REPLACE INTO dec03;
(data cleansing, if necessary)

ALTER TABLE stock ATTACH PARTITION dec03

STARTING FROM '12/01/2003' ENDING AT '12/31/2003'
FROM dec03;

During an attach operation, one or both of the STARTING FROM and ENDING AT clauses must be
specified, and the lower bound (STARTING FROM clause) must be less than or equal to the upper bound
(ENDING AT clause). The newly attached data partition must not overlap an existing data partition range
in the target table. If the high end of the highest existing range is defined as MAXVALUE, any attempt to
attach a new high range fails, because that new range would overlap the existing high range. A similar
restriction applies to low ranges that end at MINVALUE. Moreover, you cannot add or attach a new data
partition in the middle, unless its new range falls within a gap in the existing ranges. If boundaries are not
specified by the user, they are determined when the table is created.

This ALTER TABLE...ATTACH PARTITION statement drains existing static or repeatable-read queries that
are running against the STOCK table and invalidates packages on the table; that is, the statement allows
such queries to complete normally before it exclusively locks the table (by using a Z lock) and performs
the attach operation. Existing dynamic non-repeatable-read queries against the STOCK table continue,
and can run concurrently with the attach operation. Any new queries attempting to access the STOCK
table after the attach operation starts must wait until the transaction in which the statement is issued
commits.

Tip:
« Issue a COMMIT statement immediately after the attach operation to make the table available for use.

 Issue a SET INTEGRITY statement immediately after the attach operation commits to make the data
from the new data partition available sooner.

The data in the attached data partition is not yet visible because it is not yet validated by the SET
INTEGRITY statement. The SET INTEGRITY statement is necessary to verify that the newly attached data
is within the defined range. It also performs any necessary maintenance activities on indexes and other
dependent objects, such as MQTs. New data is not visible until the SET INTEGRITY statement commits;
however, if the SET INTEGRITY statement is running online, existing data in the STOCK table is fully
accessible for both read and write operations.

Tip: If data integrity checking, including range validation and other constraints checking, can be done
through application logic that is independent of the data server before an attach operation, newly
attached data can be made available for use much sooner. You can optimize the data roll-in process by
using the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and constraints
violation checking. In this case, the table is brought out of SET INTEGRITY pending state, and the new
data is available for applications to use immediately, as long as there are no nonpartitioned user indexes
on the target table.

Note: You cannot execute data definition language (DDL) statements or utility operations against the
table while the SET INTEGRITY statement is running. These operations include, but are not restricted to,
the following statements and commands:

« LOAD command

« REDISTRIBUTE DATABASE PARTITION GROUP command
« REORG INDEXES/TABLE command

« ALTER TABLE statement

ADD COLUMN

ADD PARTITION

ATTACH PARTITION

DETACH PARTITION

- CREATE INDEX statement

186 IBM Db2 V11.5: Partitioning and Clustering Guide

The SET INTEGRITY statement validates the data in the newly attached data partition:

SET INTEGRITY FOR stock

ALLOW WRITE ACCESS

IMMEDIATE CHECKED

FOR EXCEPTION IN stock USE stock_ex;

Committing the transaction makes the table available for use:

COMMIT WORK;

Any rows that are out of range, or that violate other constraints, are moved to the exception table
STOCK_EX. You can query this table, fix the rows, and insert them into the STOCK table.

Load

Parallelism and loading

The load utility takes advantage of a hardware configuration in which multiple processors or multiple
storage devices are used, such as in a symmetric multiprocessor (SMP) environment.

There are several ways in which parallel processing of large amounts of data can take place using the load
utility. One way is through the use of multiple storage devices, which allows for I/O parallelism during the
load operation (see Figure 37 on page 187). Another way involves the use of multiple processors in an
SMP environment, which allows for intra-partition parallelism (see Figure 38 on page 187). Both can be
used together to provide even faster loading of data.

|;4.nagnm $uM(s "I

Figure 37. Taking Advantage of I/O Parallelism When Loading Data

Source data (DEL, ASC, |XF, CURSOR)

parse, parse, parse, parse,

convert figlds, caonvert fields, convert fields, convert figlds,

build record, build record, build record, build record,

insert into table insert into table insert into table insert into table
Database

Figure 38. Taking Advantage of Intra-partition Parallelism When Loading Data

MDC and ITC considerations

The following restrictions apply when loading data into multidimensional clustering (MDC) and insert time
clustering (ITC) tables:

« The SAVECOUNT option of the LOAD command is not supported.

Chapter 3. Implementation and maintenance 187

- The totalfreespace file type modifier is not supported since these tables manage their own free
space.

- The anyorder file type modifier is required for MDC or ITC tables. If a load is executed into an MDC or
ITC table without the anyorder modifier, it will be explicitly enabled by the utility.

When using the LOAD command with an MDC or ITC table, violations of unique constraints are be handled
as follows:

- If the table included a unique key before the load operation and duplicate records are loaded into the
table, the original record remains and the new records are deleted during the delete phase.

« If the table did not include a unique key before the load operation and both a unique key and duplicate
records are loaded into the table, only one of the records with the unique key is loaded and the others
are deleted during the delete phase.

Note: There is no explicit technique for determining which record is loaded and which is deleted.

Performance Considerations

To improve the performance of the load utility when loading MDC tables with more than one dimension,
the util_heap_sz database configuration parameter value should be increased. The mdc-load algorithm
performs significantly better when more memory is available to the utility. This reduces disk I/O during
the clustering of data that is performed during the load phase. Beginning in version 9.5, the value of the
DATA BUFFER option of the LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system. .

MDC or ITC load operations always have a build phase since all MDC and ITC tables have block indexes.

During the load phase, extra logging for the maintenance of the block map is performed. There are
approximately two extra log records per extent allocated. To ensure good performance, the logbufsz
database configuration parameter should be set to a value that takes this into account.

A system temporary table with an index is used to load data into MDC and ITC tables. The size of the table
is proportional to the number of distinct cells loaded. The size of each row in the table is proportional to
the size of the MDC dimension key. ITC tables only have one cell and use a 2-byte dimension key. To
minimize disk I/0O caused by the manipulation of this table during a load operation, ensure that the buffer
pool for the temporary table space is large enough.

Load considerations for partitioned tables

All of the existing load features are supported when the target table is partitioned with the exception of
the following general restrictions:

« Consistency points are not supported when the number of partitioning agents is greater than one.

« Loading data into a subset of data partitions while the remaining data partitions remain fully online is
not supported.

» The exception table used by a load operation cannot be partitioned.
« An exception table cannot be specified if the target table contains an XML column.

« A unique index cannot be rebuilt when the load utility is running in insert mode or restart mode, and the
load target table has any detached dependents.

- Similar to loading MDC tables, exact ordering of input data records is not preserved when loading
partitioned tables. Ordering is only maintained within the cell or data partition.

« Load operations utilizing multiple formatters on each database partition only preserve approximate
ordering of input records. Running a single formatter on each database partition, groups the input
records by cell or table partitioning key. To run a single formatter on each database partition, explicitly
request CPU_PARALLELISM of 1.

General load behavior

The load utility inserts data records into the correct data partition. There is no requirement to use an
external utility, such as a splitter, to partition the input data before loading.

188 IBM Db2 V11.5: Partitioning and Clustering Guide

The load utility does not access any detached or attached data partitions. Data is inserted into visible
data partitions only. Visible data partitions are neither attached nor detached. In addition, a load
replace operation does not truncate detached or attached data partitions. Since the load utility
acquires locks on the catalog system tables, the load utility waits for any uncommitted ALTER TABLE
transactions. Such transactions acquire an exclusive lock on the relevant rows in the catalog tables,
and the exclusive lock must terminate before the load operation can proceed. This means that there
can be no uncommitted ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION transactions while
load operation is running. Any input source records destined for an attached or detached data
partition are rejected, and can be retrieved from the exception table if one is specified. An
informational message is written to the message file to indicate some of the target table data
partitions were in an attached or detached state. Locks on the relevant catalog table rows
corresponding to the target table prevent users from changing the partitioning of the target table by
issuing any ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION operations while the load utility is
running.

Handling of invalid rows

When the load utility encounters a record that does not belong to any of the visible data partitions the
record is rejected and the load utility continues processing. The number of records rejected because
of the range constraint violation is not explicitly displayed, but is included in the overall number of
rejected records. Rejecting a record because of the range violation does not increase the number of
row warnings. A single message (SQL0O327N) is written to the load utility message file indicating that
range violations are found, but no per-record messages are logged. In addition to all columns of the
target table, the exception table includes columns describing the type of violation that had occurred
for a particular row. Rows containing invalid data, including data that cannot be partitioned, are
written to the dump file.

Because exception table inserts are expensive, you can control which constraint violations are
inserted into the exception table. For instance, the default behavior of the load utility is to insert rows
that were rejected because of a range constraint or unique constraint violation, but were otherwise
valid, into the exception table. You can turn off this behavior by specifying, respectively,
NORANGEEXC or NOUNIQUEEXC with the FOR EXCEPTION clause. If you specify that these constraint
violations should not be inserted into the exception table, or you do not specify an exception table,
information about rows violating the range constraint or unique constraint is lost.

History file

If the target table is partitioned, the corresponding history file entry does not include a list of the table
spaces spanned by the target table. A different operation granularity identifier ('R' instead of 'T")
indicates that a load operation ran against a partitioned table.

Terminating a load operation

Terminating a load replace completely truncates all visible data partitions, terminating a load insert
truncates all visible data partitions to their lengths before the load. Indexes are invalidated during a
termination of an ALLOW READ ACCESS load operation that failed in the load copy phase. Indexes are
also invalidated when terminating an ALLOW NO ACCESS load operation that touched the index (It is
invalidated because the indexing mode is rebuild, or a key was inserted during incremental
maintenance leaving the index in an inconsistent state). Loading data into multiple targets does not
have any effect on load recovery operations except for the inability to restart the load operation from
a consistency point taken during the load phase In this case, the SAVECOUNT load option is ignored if
the target table is partitioned. This behavior is consistent with loading data into a MDC target table.

Generated columns

If a generated column is in any of the partitioning, dimension, or distribution keys, the
generatedoverride file type modifier is ignored and the load utility generates values as if the
generatedignore file type modifier is specified. Loading an incorrect generated column value in this
case can place the record in the wrong physical location, such as the wrong data partition, MDC block
or database partition. For example, once a record is on a wrong data partition, set integrity has to
move it to a different physical location, which cannot be accomplished during online set integrity
operations.

Chapter 3. Implementation and maintenance 189

Data availability

The current ALLOW READ ACCESS load algorithm extends to partitioned tables. An ALLOW READ
ACCESS load operation allows concurrent readers to access the whole table, including both loading
and non-loading data partitions.

Important: The ALLOW READ ACCESS parameter is deprecated and might be removed in a future
release. For more details, see ALLOW READ ACCESS parameter in the LOAD command is deprecated.

The ingest utility also supports partitioned tables and is better suited to allow data concurrency and
availability than the LOAD command with the ALLOW READ ACCESS parameter. It can move large
amounts of data from files and pipes without locking the target table. In addition, data becomes
accessible as soon as it is committed based on elapsed time or number of rows.

Data partition states

After a successful load, visible data partitions might change to either or both Set Integrity Pending or
Read Access Only table state, under certain conditions. Data partitions might be placed in these
states if there are constraints on the table which the load operation cannot maintain. Such constraints
might include check constraints and detached materialized query tables. A failed load operation
leaves all visible data partitions in the Load Pending table state.

Error isolation

Error isolation at the data partition level is not supported. Isolating the errors means continuing a load
on data partitions that did not run into an error and stopping on data partitions that did run into an
error. Errors can be isolated between different database partitions, but the load utility cannot commit
transactions on a subset of visible data partitions and roll back the remaining visible data partitions.

Other considerations

- Incremental indexing is not supported if any of the indexes are marked invalid. An index is
considered invalid if it requires a rebuild or if detached dependents require validation with the SET
INTEGRITY statement.

« Loading into tables partitioned using any combination of partitioned by range, distributed by hash,
or organized by dimension algorithms is also supported.

« For log records which include the list of object and table space IDs affected by the load, the size of
these log records (LOAD START and COMMIT (PENDING LIST)) could grow considerably and hence
reduce the amount of active log space available to other applications.

- When a table is both partitioned and distributed, a partitioned database load might not affect all
database partitions. Only the objects on the output database partitions are changed.

« During a load operation, memory consumption for partitioned tables increases with the number of
tables. Note, that the total increase is not linear as only a small percentage of the overall memory
requirement is proportional to the number of data partitions.

Loading data in a partitioned database environment

Load overview-partitioned database environments

In a multi-partition database, large amounts of data are located across many database partitions.
Distribution keys are used to determine on which database partition each portion of the data resides. The
data must be distributed before it can be loaded at the correct database partition.

When loading tables in a multi-partition database, the load utility can:

« Distribute input data in parallel
« Load data simultaneously on corresponding database partitions
« Transfer data from one system to another system

Loading data into a multi-partition database takes place in two phases: the setup phase, during which
database partition resources such as table locks are acquired, and the load phase, during which the data

190 IBM Db2 V11.5: Partitioning and Clustering Guide

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060625.html

is loaded into the database partitions. You can use the ISOLATE_PART_ERRS option of the LOAD
command to select how errors are handled during either of these phases, and how errors on one or more
of the database partitions affect the load operation on the database partitions that are not experiencing
errors.

When loading data into a multi-partition database you can use one of the following modes:

PARTITION_AND_LOAD
Data is distributed (perhaps in parallel) and loaded simultaneously on the corresponding database
partitions. When loading into a random distribution table that uses the random by generation method,
this is the only supported mode.

PARTITION_ONLY
Data is distributed (perhaps in parallel) and the output is written to files in a specified location on each
loading database partition. Each file includes a partition header that specifies how the data was
distributed across the database partitions, and that the file can be loaded into the database using the
LOAD_ONLY mode.

LOAD_ONLY
Data is assumed to be already distributed across the database partitions; the distribution process is
skipped, and the data is loaded simultaneously on the corresponding database partitions.

LOAD_ONLY_VERIFY_PART
Data is assumed to be already distributed across the database partitions, but the data file does not
contain a partition header. The distribution process is skipped, and the data is loaded simultaneously
on the corresponding database partitions. During the load operation, each row is checked to verify
that it is on the correct database partition. Rows containing database partition violations are placed in
adump file if the dumpfile file type modifier is specified. Otherwise, the rows are discarded. If
database partition violations exist on a particular loading database partition, a single warning is
written to the load message file for that database partition.

ANALYZE
An optimal distribution map with even distribution across all database partitions is generated.

Concepts and terminology

The following terminology is used when discussing the behavior and operation of the load utility in a
partitioned database environment with multiple database partitions:

« The coordinator partition is the database partition to which the user connects in order to perform the
load operation. In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, it is assumed
that the data file resides on this database partition unless the CLIENT option of the LOAD command is
specified. Specifying CLIENT indicates that the data to be loaded resides on a remotely connected
client.

« Inthe PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, the pre-partitioning agent
reads the user data and distributes it to the next agent in the pipeline. The actual agent depends on the
distribution method.

— For random distribution tables using random by generation method, the data is distributed in a
round-robin fashion directly to the loading agents.

— Otherwise, data is distributed in a round-robin fashion to the partitioning agents which then distribute
the data. This process is always performed on the coordinator partition. A maximum of one
partitioning agent is allowed per database partition for any load operation.

e Inthe PARTITION_AND_LOAD, LOAD_ONLY, and LOAD_ONLY_VERIFY_PART modes, load agents run
on each output database partition and coordinate the loading of data to that database partition.

« Load to file agents run on each output database partition during a PARTITION_ONLY load operation.
They receive data from partitioning agents and write it to a file on their database partition.

« The SOURCEUSEREXIT option provides a facility through which the load utility can execute a
customized script or executable, referred to herein as the user exit.

Chapter 3. Implementation and maintenance 191

— Load agent -—

Partitioning N
agent —_— Load agent +
Pre-partitioning
agent
Partitioning
agent — Load agent -~

Figure 39. Partitioned Database Load Overview

Loading data in a partitioned database environment-hints and tips
The following is some information to consider before loading a table in a multi-partition database:

« Familiarize yourself with the load configuration options by using the utility with small amounts of data.

- Ifthe input data is already sorted, or in some chosen order, and you want to maintain that order during
the loading process, only one database partition should be used for distributing. Parallel distribution
cannot guarantee that the data is loaded in the same order it was received. The load utility chooses a
single partitioning agent by default if the anyordex modifier is not specified on the LOAD command.

« If large objects (LOBs) are being loaded from separate files (that is, if you are using the lobsinfile
modifier through the load utility), all directories containing the LOB files must be read-accessible to all
the database partitions where loading is taking place. The LOAD lob-path parameter must be fully
qualified when working with LOBs.

« You can force a job running in a multi-partition database to continue even if the load operation detects
(at startup time) that some loading database partitions or associated table spaces or tables are offline,
by setting the ISOLATE_PART_ERRS option to SETUP_ERRS_ONLY or SETUP_AND_LOAD_ERRS.

e Use the STATUS_INTERVAL load configuration option to monitor the progress of a job running in a
multi-partition database. The load operation produces messages at specified intervals indicating how
many megabytes of data have been read by the pre-partitioning agent. These messages are dumped to
the pre-partitioning agent message file. To view the contents of this file during the load operation,
connect to the coordinator partition and issue a LOAD QUERY command against the target table.

« Better performance can be expected if the database partitions participating in the distribution process
(as defined by the PARTITIONING_DBPARTNUMS option) are different from the loading database
partitions (as defined by the OUTPUT_DBPARTNUMS option), since there is less contention for CPU
cycles. When loading data into a multi-partition database, invoke the load utility on a database partition
that is not participating in either the distributing or the loading operation.

« Specifying the MESSAGES parameter in the LOAD command saves the messages files from the pre-
partitioning, partitioning, and load agents for reference at the end of the load operation. To view the
contents of these files during a load operation, connect to the appropriate database partition and issue
a LOAD QUERY command against the target table.

« The load utility chooses only one output database partition on which to collect statistics. The
RUN_STAT_DBPARTNUM database configuration option can be used to specify the database partition.

« Before loading data in a multi-partition database, run the Design Advisor to determine the best partition
for each table. For more information, see "The Design Advisor" in Troubleshooting and Tuning Database
Performance.

192 IBM Db2 V11.5: Partitioning and Clustering Guide

Troubleshooting

If the load utility is hanging, you can:

Use the STATUS_INTERVAL parameter to monitor the progress of a multi-partition database load
operation. The status interval information is dumped to the pre-partitioning agent message file on the
coordinator partition.

Check the partitioning agent messages file to see the status of the partitioning agent processes on each
database partition. If the load is proceeding with no errors, and the TRACE option has been set, there
should be trace messages for a number of records in these message files.

Check the load messages file to see if there are any load error messages.
Note: You must specify the MESSAGES option of the LOAD command in order for these files to exist.

Interrupt the current load operation if you find errors suggesting that one of the load processes
encountered errors.

Loading data in a partitioned database environment
Using the load utility to load data into a partitioned database environment.

Before you begin

Before loading a table in a multi-partition database:

Ensure that the svcename database manager configuration parameter and the DB2COMM profile registry
variable are set correctly. This step is important because the load utility uses TCP/IP to transfer data
from the pre-partitioning agent to the partitioning agents, and from the partitioning agents to the
loading database partitions.

Before invoking the load utility, you must be connected to (or be able to implicitly connect to) the
database into which you want to load the data.

Since the load utility issues a COMMIT statement, complete all transactions and release any locks by
issuing either a COMMIT or a ROLLBACK statement before beginning the load operation. If the
PARTITION_AND_LOAD, PARTITION_ONLY, or ANALYZE mode is being used, the data file that is being
loaded must reside on this database partition unless:

1. The CLIENT parameter has been specified, in which case the data must reside on the client
machine;

2. The input source type is CURSOR, in which case there is no input file.

Run the Design Advisor to determine the best database partition for each table. For more information,
see "The Design Advisor" in Troubleshooting and Tuning Database Performance.

Restrictions

The following restrictions apply when using the load utility to load data in a multi-partition database:

The location of the input files to the load operation cannot be a tape device.
The ROWCOUNT parameter is not supported unless the ANALYZE mode is being used.

If the target table has an identity column that is needed for distributing and the identityovexrride
file type modifier is not specified, or if you are using multiple database partitions to distribute and then
load the data, the use of a SAVECOUNT greater than O on the LOAD command is not supported.

If an identity column forms part of the distribution key or it is a random distribution table using the
random by generation method, only the PARTITION_AND_LOAD mode is supported.

The LOAD_ONLY and LOAD_ONLY_VERIFY_PART modes cannot be used with the CLIENT parameter of
the LOAD command.

The LOAD_ONLY_VERIFY_PART mode cannot be used with the CURSOR input source type.

The distribution error isolation modes LOAD_ERRS_ONLY and SETUP_AND_LOAD_ERRS cannot be used
with the ALLOW READ ACCESS and COPY YES parameters of the LOAD command.

Chapter 3. Implementation and maintenance 193

« Multiple load operations can load data into the same table concurrently if the database partitions
specified by theOUTPUT_DBPARTNUMS and PARTITIONING_DBPARTNUMS options do not overlap. For
example, if a table is defined on database partitions 0 through 3, one load operation can load data into
database partitions 0 and 1 while a second load operation can load data into database partitions 2 and
3. If the database partitions specified by the PARTITIONING_DBPARTNUMS options do overlap, then
load will automatically choose a PARTITIONING_DBPARTNUMS parameter where no load partitioning
subagent is already executing on the table, or fail if none are available.

Starting with Version 9.7 Fix Pack 6, if the database partitions specified by the
PARTITIONING_DBPARTNUMS options do overlap, the load utility automatically tries to pick up a
PARTITIONING_DBPARTNUMS parameter from the database partitions indicated by
OUTPUT_DBPARTNUMS where no load partitioning subagent is already executing on the table, or fail if
none are available.

It is strongly recommended that if you are going to explicitly specify partitions with the
PARTITIONING_DBPARTNUMS option, you should use that option with all concurrent LOAD commands,
with each command specifying different partitions. If you only specify PARTITIONING_DBPARTNUMS on
some of the concurrent load commands or if you specify overlapping partitions, the LOAD command will
need to pick alternate partitioning nodes for at least some of the concurrent loads, and in rare cases the
command might fail (SQL2038N).

« Only non-delimited ASCII (ASC) and Delimited ASCII (DEL) files can be distributed across tables
spanning multiple database partitions. PC/IXF files cannot be distributed, however, you can load a
PC/IXF file into a table that is distributed over multiple database partitions by using the load operation
in the LOAD_ONLY_VERIFY_PART mode.

Examples

The following examples illustrate how to use the LOAD command to initiate various types of load
operations. The database used in the following examples has five database partitions: 0, 1, 2, 3 and 4.
Each database partition has a local directory /db2/data/. Two tables, TABLE1 and TABLE2, are defined
on database partitions 0, 1, 3 and 4. When loading from a client, the user has access to a remote client
that is not one of the database partitions.

Distribute and load example

In this scenario, you are connected to a database partition that might or might not be a database
partition where TABLE1 is defined. The data file 1oad.del resides in the current working directory of
this database partition. To load the data from 1oad.del into all of the database partitions where
TABLE1 is defined, issue the following command:

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1l

Note: In this example, default values are used for all of the configuration parameters for partitioned
database environments: The MODE parameter defaults to PARTITION_AND_LOAD. The
OUTPUT_DBPARTNUMS parameter defaults to all database partitions on which TABLE1 is defined. The
PARTITIONING_DBPARTNUMS defaults to the set of database partitions selected according to the
LOAD command rules for choosing database partitions when none are specified.

To perform a load operation where data is distributed over database partitions 3 and 4, issue the
following command:

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG PARTITIONING_DBPARTNUMS (3,4)

194 IBM Db2 V11.5: Partitioning and Clustering Guide

N\

Load Client

—
T

Firenwal

|

Server database database database database database
partition 0 partition 1 partition 2 partition 3 partition 4

Load
Coordinator

I

Load Agent Load Agent Load Agent Load Agent
Pra-Partition
Agent
Raw Data File: Partition Partition
LOAD.DEL Agent Agent

Figure 40. Loading data into database partitions 3 and 4.

Distribute only example

In this scenario, you are connected to a database partition that might or might not be a database
partition where TABLE1 is defined. The data file 1oad.del resides in the current working directory of
this database partition. To distribute (but not load) 1oad.del to all the database partitions on which
TABLE1 is defined, using database partitions 3 and 4 issue the following command:

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1l
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data
PARTITIONING_DBPARTNUMS (3,4)

This results in a file load.del.xxx being stored in the /db2/data directory on each database
partition, where xxx is a three-digit representation of the database partition number.

To distribute the 1oad. del file to database partitions 1 and 3, using only one partitioning agent
running on database partition 0 (which is the default for PARTITIONING_DBPARTNUMS), issue the
following command:

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (1, 3)

Chapter 3. Implementation and maintenance 195

N\

Load Client
Firewal
Server dalabase database database database database
partition 0 partition 1 partition 2 partition 3 partition 4
Load
Coordinator
”
Load-to-File Load-to-File
Agent Agent
Pre-Partition
Agent
Partition Raw Data File:
Agent LOAD.DEL
' Distributed Distributed
data file: data file:
fdb2/data/ Mdb2/data/
LOAD.DEL.OO1 LOAD.DEL.OD3

Figure 41. Loading data into database partitions 1 and 3 using one partitioning agent.

Load only example

If you have already performed a load operation in the PARTITION_ONLY mode and want to load the
partitioned files in the /db2/data directory of each loading database partition to all the database
partitions on which TABLE1 is defined, issue the following command:

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data

196 IBM Db2 V11.5: Partitioning and Clustering Guide

\
Load Client
T"

Firenwal

}

Server database database database database database
partition 0 partition 1 partition 2 partition 3 partition 4

Load
Coordinator

5

I

Load Agent Load Agent Load Agent Load Agent
Distributed Distributed Distributed Distributed
data file: data file: data file: data file:
fdb2/dataf /db2/data/l /db2/datal /db2/datas
LOAD.DEL.OOO LOAD.DEL.OO1 LOAD.DEL.OO3 LOAD.DEL.OO4

Figure 42. Loading data into all database partitions where a specific table is defined.
To load into database partition 4 only, issue the following command:

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (4)

Loading pre-distributed files without distribution map headers

The LOAD command can be used to load data files without distribution headers directly into several
database partitions. If the data files exist in the /db2/data directory on each database partition
where TABLEL is defined and have the name load.del.xxx, where xxx is the database partition
number, the files can be loaded by issuing the following command:

LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows
REPLACE INTO TABLE1l
PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
PART_FILE_LOCATION /db2/data

To load the data into database partition 1 only, issue the following command:

LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.zrows
REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (1)

Note: Rows that do not belong on the database partition from which they were loaded are rejected
and put into the dump file, if one has been specified.

Chapter 3. Implementation and maintenance 197

Loading from a remote client to a multi-partition database

To load data into a multi-partition database from a file that is on a remote client, you must specify the
CLIENT parameter of the LOAD command. This parameter indicates that the data file is not on a
server partition. For example:

LOAD CLIENT FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

Note: You cannot use the LOAD_ONLY or LOAD_ONLY_VERIFY_PART modes with the CLIENT
parameter.

Loading from a cursor

As in a single-partition database, you can load from a cursor into a multi-partition database. In this
example, for the PARTITION_ONLY and LOAD_ONLY modes, the PART_FILE_LOCATION parameter
must specify a fully qualified file name. This name is the fully qualified base file name of the
distributed files that are created or loaded on each output database partition. Multiple files can be
created with the specified base name if there are LOB columns in the target table.

To distribute all the rows in the answer set of the statement SELECT * FROM TABLEZ to a file on
each database partition named /db2/data/select.out.xxx (where xxx is the database partition
number), for future loading into TABLEZ, issue the following commands:

DECLARE C1 CURSOR FOR SELECT % FROM TABLE1

LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data/select.out

The data files produced by the previous operation can then be loaded by issuing the following LOAD
command:

LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
PARTITIONED CB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data/select.out

Monitoring a load operation in a partitioned database environment using the LOAD
QUERY command

During a load operation in a partitioned database environment, message files are created by some of the
load processes on the database partitions where they are being executed.

The message files store all information, warning, and error messages produced during the execution of
the load operation. The load processes that produce message files that can be viewed by the user are the
load agent, pre-partitioning agent, and partitioning agent. The content of the message file is only available
after the load operation is finished.

You can connect to individual database partitions during a load operation and issue the LOAD QUERY
command against the target table. When issued from the CLP, this command displays the contents of the
load message files that currently reside on that database partition for the table that is specified in the
LOAD QUERY command.

For example, table TABLE1 is defined on database partitions 0 through 3 in database WSDB. You are
connected to database partition 0 and issue the following LOAD command:

load from load.del of del replace into tablel partitioned db config
partitioning_dbpartnums (1)

This command initiates a load operation that includes load agents running on database partitions 0, 1, 2,
and 3; a partitioning agent running on database partition 1; and a pre-partitioning agent running on
database partition 0.

Database partition O contains one message file for the pre-partitioning agent and one for the load agent
on that database partition. To view the contents of these files at the same time, start a new session and
issue the following commands from the CLP:

198 IBM Db2 V11.5: Partitioning and Clustering Guide

set client connect_node 0
connect to wsdb
load query table tablel

Database partition 1 contains one file for the load agent and one for the partitioning agent. To view the
contents of these files, start a new session and issue the following commands from the CLP:

set client connect_node 1
connect to wsdb
load query table tablel

Note: The messages generated by the STATUS_INTERVAL load configuration option appear in the pre-
partitioning agent message file. To view these message during a load operation, you must connect to the
coordinator partition and issue the LOAD QUERY command.

Saving the contents of message files

If a load operation is initiated through the db2Load API, the messages option (piLocalMsgFileName)
must be specified and the message files are brought from the server to the client and stored for you to
view.

For multi-partition database load operations initiated from the CLP, the message files are not displayed to
the console or retained. To save or view the contents of these files after a multi-partition database load is
complete, the MESSAGES option of the LOAD command must be specified. If this option is used, once the
load operation is complete the message files on each database partition are transferred to the client
machine and stored in files using the base name indicated by the MESSAGES option. For multi-partition
database load operations, the name of the file corresponding to the load process that produced it is listed
in the following table:

Process type File name

Load Agent <message-file-name>.LOAD.<dbpartition-number>
Partitioning Agent <message-file-name>.PART.<dbpartition-number>
Pre-partitioning Agent <message-file-name>.PREP.<dbpartition-number>

For example, if the MESSAGES option specifies /wsdb/messages/load, the load agent message file for
database partition 2 is /wsdb/messages/load.LOAD.00O2.

Note: It is strongly recommended that the MESSAGES option be used for multi-partition database load
operations initiated from the CLP.

Resuming, restarting, or terminating load operations in a partitioned database
environment
The steps you need to take following failed load operations in a partitioned database environment depend
on when the failure occurred.
The load process in a multi-partition database consists of two stages:

1. The setup stage, during which database partition-level resources such as table locks on output
database partitions are acquired

In general, if a failure occurs during the setup stage, restart and terminate operations are not
necessary. What you need to do depends on the error isolation mode that was specified for the failed
load operation.

If the load operation specified that setup stage errors were not to be isolated, the entire load
operation is canceled and the state of the table on each database partition is rolled back to the state it
was in before the load operation.

If the load operation specified that setup stage errors were to be isolated, the load operation
continues on the database partitions where the setup stage was successful, but the table on each of

Chapter 3. Implementation and maintenance 199

the failing database partitions is rolled back to the state it was in before the load operation. This
means that a single load operation can fail at different stages if some partitions fail during the setup
stage and others fail during the load stage

2. The load stage, during which data is formatted and loaded into tables on the database partitions

If a load operation fails on at least one database partition during the load stage of a multi-partition
database load operation, a LOAD RESTART or LOAD TERMINATE command must be issued. This is
necessary because loading data in a multi-partition database is done through a single transaction.

If you can fix the problems that caused the failed load to occur, choose a LOAD RESTART. This saves
time because if a load restart operation is initiated, the load operation continues from where it left off
on all database partitions.

If you want the table returned to the state it was in before the initial load operation, choose a LOAD
TERMINATE.

Determining when a load failed

The first thing you need to do if your load operation in a partitioned environment fails is to determine on
which partitions it failed and at what stage each of them failed. This is done by looking at the partition
summary. If the LOAD command was issued from the CLP, the partition summary is displayed at the end
of the load (see following example). If the LOAD command was issued from the db2Load API, the
partition summary is contained in the poAgentInfolist field of the db2PartLoadOut structure.

If there is an entry of "LOAD" for "Agent Type", for a given partition, then that partition reached the load
stage, otherwise a failure occurred during the setup stage. A negative SQL Code indicates that it failed. In
the following example, the load failed on partition 1 during the load stage.

Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 -00000289 Error. May require RESTART.
LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.

Resuming, restarting, or terminating a failed load

Only loads with the ISOLATE_PART_ERRS option specifying SETUP_ERRS_ONLY or
SETUP_AND_LOAD_ERRS should fail during the setup stage. For loads that fail on at least one output
database partition fail during this stage, you can issue a LOAD REPLACE or LOAD INSERT command. Use
the OUTPUT_DBPARTNUMS option to specify only those database partitions on which it failed.

For loads that fail on at least one output database partition during the load stage, issue a LOAD RESTART
or LOAD TERMINATE command.

For loads that fail on at least one output database partition during the setup stage and at least one output
database partition during the load stage, you need to perform two load operations to resume the failed
load-one for the setup stage failures and one for the load stage failures, as previously described. To
effectively undo this type of failed load operation, issue a LOAD TERMINATE command. However, after
issuing the command, you must account for all partitions because no changes were made to the table on
the partitions that failed during the setup stage, and all the changes are undone for the partitions that
failed during the load stage.

For example, TABLEL is defined on database partitions O through 3 in database WSDB. The following
command is issued:

load from load.del of del insert into tablel partitioned db config
isolate_part_errs setup_and_load_errs

200 IBM Db2 V11.5: Partitioning and Clustering Guide

There is a failure on output database partition 1 during the setup stage. Since setup stage errors are
isolated, the load operation continues, but there is a failure on partition 3 during the load stage. To
resume the load operation, you would issue the following commands:

load from load.del of del replace into tablel partitioned db config
output_dbpartnums (1)

load from load.del of del restart into tablel partitioned db config
isolate_part_errs setup_and_load_errs

Note: For load restart operations, the options specified in the LOAD RESTART command are honored, so
it is important that they are identical to the ones specified in the original LOAD command.

Load configuration options for partitioned database environments

There are a number of configuration options that you can use to modify a load operation in a partitioned
database environment.

MODE X
Specifies the mode in which the load operation occurs when loading a multi-partition database.
PARTITION_AND_LOAD is the default. Valid values are:

« PARTITION_AND_LOAD. Data is distributed (perhaps in parallel) and loaded simultaneously on the
corresponding database partitions.

« PARTITION_ONLY. Data is distributed (perhaps in parallel) and the output is written to files in a
specified location on each loading database partition. For file types other than CURSOR, the format
of the output file name on each database partition is filename .xxx, where filename is the input
file name specified in the LOAD command and xxx is the 3-digit database partition number. For the
CURSOR file type, the name of the output file on each database partition is determined by the
PART_FILE_LOCATION option. See the PART_FILE_LOCATION option for details on how to specify
the location of the distribution file for each database partition.

Note:

1. This mode cannot be used for a CLI load operation.

2. If the table contains an identity column that is needed for distribution, then this mode is not
supported, unless the identityoverride file type modifier is specified.

3. This mode cannot be used for random distribution tables that use the random by generation
method.

4. Distribution files generated for file type CURSOR are not compatible between Db2 releases. This
means that distribution files of file type CURSOR that were generated in a previous release
cannot be loaded using the LOAD_ONLY mode. Similarly, distribution files of file type CURSOR
that were generated in the current release cannot be loaded in a future release using the
LOAD_ONLY mode.

« LOAD_ONLY. Data is assumed to be already distributed; the distribution process is skipped, and the
data is loaded simultaneously on the corresponding database partitions. For file types other than
CURSOR, the format of the input file name for each database partition should be filename . xxx,
where filename is the name of the file specified in the LOAD command and xxx is the 3-digit
database partition number. For the CURSOR file type, the name of the input file on each database
partition is determined by the PART_FILE_LOCATION option. See the PART_FILE_LOCATION
option for details on how to specify the location of the distribution file for each database partition.

Note:

1. This mode cannot be used for a CLI load operation, or when the CLIENT parameter of LOAD
command is specified.

2. If the table contains an identity column that is needed for distribution, then this mode is not
supported, unless the identityoverride file type modifier is specified.

3. This mode cannot be used for random distribution tables that use the random by generation
method.

Chapter 3. Implementation and maintenance 201

« LOAD_ONLY_VERIFY_PART. Data is assumed to be already distributed, but the data file does not
contain a partition header. The distributing process is skipped, and the data is loaded
simultaneously on the corresponding database partitions. During the load operation, each row is
checked to verify that it is on the correct database partition. Rows containing database partition
violations are placed in a dump file if the dumpfile file type modifier is specified. Otherwise, the
rows are discarded. If database partition violations exist on a particular loading database partition, a
single warning is written to the load message file for that database partition. The format of the input
file name for each database partition should be filename.xxx, where filename is the name of the
file specified in the LOAD command and xxx is the 3-digit database partition number. See the
PART_FILE_LOCATION option for details on how to specify the location of the distribution file for
each database partition.

Note:

1. This mode cannot be used for a CLI load operation, or when the CLIENT parameter of LOAD
command is specified.

2. If the table contains an identity column that is needed for distribution, then this mode is not
supported, unless the identityoverride file type modifier is specified.

3. This mode cannot be used for random distribution tables that use the random by generation
method.

« ANALYZE. An optimal distribution map with even distribution across all database partitions is
generated.

PART_FILE_LOCATION X
In the PARTITION_ONLY, LOAD_ONLY, and LOAD_ONLY_VERIFY_PART modes, this parameter can
be used to specify the location of the distributed files. This location must exist on each database
partition specified by the OUTPUT_DBPARTNUMS option. If the location specified is a relative path
name, the path is appended to the current directory to create the location for the distributed files.

For the CURSOR file type, this option must be specified, and the location must refer to a fully qualified
file name. This name is the fully qualified base file name of the distributed files that are created on
each output database partition in the PARTITION_ONLY mode, or the location of the files to be read
from for each database partition in the LOAD_ONLY mode. When using the PARTITION_ONLY mode,
multiple files can be created with the specified base name if the target table contains LOB columns.

For file types other than CURSOR, if this option is not specified, the current directory is used for the
distributed files.

OUTPUT_DBPARTNUMS X
X represents a list of database partition numbers. The database partition numbers represent the
database partitions on which the load operation is to be performed. Any data that does not partition to
any of the database partitions listed will not be loaded. Unless we are loading a random distribution
table that uses random by generation method. In that case all data will be loaded into the set of
database partitions listed.

The database partition numbers must be a subset of the database partitions on which the table is
defined, except for column-organized tables, in which case all database partitions must be specified
(SQL27906N). All database partitions are selected by default. The list must be enclosed in
parentheses and the items in the list must be separated by commas. Ranges are permitted (for
example, (0, 2 to0 10, 15)).

PARTITIONING_DBPARTNUMS X
X represents a list of database partition numbers that are used in the distribution process. The list
must be enclosed in parentheses and the items in the list must be separated by commas. Ranges are
permitted (for example, (0, 2 to 10, 15)). The database partitions specified for the distribution process
can be different from the database partitions being loaded. If PARTITIONING_DBPARTNUMS is not
specified, the load utility determines how many database partitions are needed and which database
partitions to use in order to achieve optimal performance.

If the anyozxder file type modifier is not specified in the LOAD command, only one partitioning agent
is used in the load session. Furthermore, if there is only one database partition specified for the

202 IBM Db2 V11.5: Partitioning and Clustering Guide

OUTPUT_DBPARTNUMS option, or the coordinator partition of the load operation is not an element of
OUTPUT_DBPARTNUMS, the coordinator partition of the load operation is used in the distribution
process. Otherwise, the first database partition (not the coordinator partition) in
OUTPUT_DBPARTNUMS is used in the distribution process.

If the anyozxder file type modifier is specified, the number of database partitions used in the
distribution process is determined as follows: (number of partitions in OUTPUT_DBPARTNUMS/4 + 1).

This option is ignored when loading random distribution tables using the random by generation
method. That distribution method does not use partitioning agents.

MAX_NUM_PART_AGENTS X
Specifies the maximum numbers of partitioning agents to be used in a load session. The default is 25.
This option has no affect when loading into a random distribution table using random by generation
method. That distribution method does not use partitioning agents.

ISOLATE_PART_ERRS X
Indicates how the load operation reacts to errors that occur on individual database partitions. The
default is LOAD_ERRS_ONLY, unless both the ALLOW READ ACCESS and COPY YES parameters of
the LOAD command are specified, in which case the default is NO_ISOLATION. Valid values are:

« SETUP_ERRS_ONLY. Errors that occur on a database partition during setup, such as problems
accessing a database partition, or problems accessing a table space or table on a database
partition, cause the load operation to stop on the failing database partitions but to continue on the
remaining database partitions. Errors that occur on a database partition while data is being loaded
cause the entire operation to fail.

« LOAD_ERRS_ONLY. Errors that occur on a database partition during setup cause the entire load
operation to fail. If an error occurs while data is being loaded, the load operation will stop on the
database partition where the error occurred. The load operation continues on the remaining
database partitions until a failure occurs or until all the data is loaded. The newly loaded data will
not be visible until a load restart operation is performed and completes successfully.

Note: This mode cannot be used when both the ALLOW READ ACCESS and the COPY YES
parameters of the LOAD command are specified.

- SETUP_AND_LOAD_ERRS. In this mode, database partition-level errors during setup or loading data
cause processing to stop only on the affected database partitions. As with the LOAD_ERRS_ONLY
mode, when partition errors do occur while data is loaded, newly loaded data will not be visible until
a load restart operation is performed and completes successfully.

Note: This mode cannot be used when both the ALLOW READ ACCESS and the COPY YES options
of the LOAD command are specified.
« NO_ISOLATION. Any error during the load operation causes the load operation to fail.
STATUS_INTERVAL X
X represents how often you are notified of the volume of data that has been read. The unit of

measurement is megabytes (MB). The default is 100 MB. Valid values are whole numbers from 1 to
4000.

PORT_RANGE X
X represents the range of TCP ports used to create sockets for internal communications. The default
range is from 49152 to 65535. If defined at the time of invocation, the value of the DB2ATLD_PORTS
registry variable replaces the value of the PORT_RANGE load configuration option. For the
DB2ATLD_PORTS registry variable, the range should be provided in the following format:

<lower-port-number:higher-port-number>
From the CLP, the format is:

(lower-port-number, higher-port-number)

Chapter 3. Implementation and maintenance 203

CHECK_TRUNCATION
Specifies that the program should check for truncation of data records at input/output. The default
behavior is that data is not checked for truncation at input/output.

MAP_FILE_INPUT X
X specifies the input file name for the distribution map. This parameter must be specified if the
distribution map is customized, as it points to the file containing the customized distribution map. A
customized distribution map can be created by using the db2gpmap program to extract the map from
the database system catalog table, or by using the ANALYZE mode of the LOAD command to generate
an optimal map. The map generated by using the ANALYZE mode must be moved to each database
partition in your database before the load operation can proceed.

MAP_FILE_OUTPUT X
X represents the output filename for the distribution map. The output file is created on the database
partition issuing the LOAD command assuming that database partition is participating in the database
partition group where partitioning is performed. If the LOAD command is invoked on a database
partition that is not participating in partitioning (as defined by PARTITIONING_DBPARTNUMS), the
output file is created at the first database partition defined with the PARTITIONING_DBPARTNUMS
parameter. Consider the following partitioned database environment setup:

servl 0O
servl 1
serv2 0
serv2 1
serv3 0

abwN R

Running the following LOAD command on serv3, creates the distribution map on serv1.

LOAD FROM file OF ASC METHOD L (...) INSERT INTO table CONFIG
MODE ANALYZE PARTITIONING_DBPARTNUMS(1,2,3,4)
MAP_FILE_OUTPUT '/home/db2user/distribution.map'

This parameter should be used when the ANALYZE mode is specified. An optimal distribution map
with even distribution across all database partitions is generated. If this parameter is not specified
and the ANALYZE mode is specified, the program exits with an error.

TRACE X
Specifies the number of records to trace when you require a review of a dump of the data conversion
process and the output of the hashing values. The default is 0.

NEWLINE
Used when the input data file is an ASC file with each record delimited by a new line character and the
reclen file type modifier is specified in the LOAD command. When this option is specified, each
record is checked for a new line character. The record length, as specified in the xreclen file type
modifier, is also checked.

DISTFILE X
If this option is specified, the load utility generates a database partition distribution file with the given
name. The database partition distribution file contains 32 768 integers: one for each entry in the
distribution map for the target table. Each integer in the file represents the number of rows in the
input files being loaded that hashed to the corresponding distribution map entry. This information can
help you identify skew in your data and also help you decide whether a new distribution map should
be generated for the table using the ANALYZE mode of the utility. If this option is not specified, the
default behavior of the load utility is to not generate the distribution file.

Note: When this option is specified, a maximum of one partitioning agent is used for the load
operation. Even if you explicitly request multiple partitioning agents, only one is used.

OMIT_HEADER
Specifies that a distribution map header should not be included in the distribution file. If not specified,
a header is generated.

RUN_STAT_DBPARTNUM X
If the STATISTICS USE PROFILE parameter is specified in the LOAD command, statistics are
collected only on one database partition. This parameter specifies on which database partition to

204 IBM Db2 V11.5: Partitioning and Clustering Guide

collect statistics. If the value is -1 or not specified at all, statistics are collected on the first database
partition in the output database partition list.

Load sessions in a partitioned database environment - CLP examples
The following examples demonstrate loading data in a multi-partition database.

The database has four database partitions numbered 0 through 3. Database WSDB is defined on all of the
database partitions, and table TABLE1 resides in the default database partition group which is also
defined on all of the database partitions.

Example 1

To load data into TABLEL from the user data file 1oad. del which resides on database partition O,
connect to database partition 0 and then issue the following command:

load from load.del of del replace into tablel

If the load operation is successful, the output will be as follows:

Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 +00000000 Success.

LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.
PARTITION 001 +00000000 Success.
PRE_PARTITION 000 +00000000 Success.
RESULTS: 4 of 4 LOADs completed successfully.

Summary of Partitioning Agents:

Rows Read = 0000
Rows Rejected =

Rows Partitioned = 100000
Summary of LOAD Agents:

Number of rows read = 100000
Number of rows skipped =0
Number of rows loaded = 100000
Number of rows rejected =0
Number of rows deleted =0
Number of rows committed = 100000

The output indicates that there was one load agent on each database partition and each ran successfully.
It also shows that there was one pre-partitioning agent running on the coordinator partition and one
partitioning agent running on database partition 1. These processes completed successfully with a
normal SQL return code of 0. The statistical summary shows that the pre-partitioning agent read 100,000
rows, the partitioning agent distributed 100,000 rows, and the sum of all rows loaded by the load agents
is 100,000.

Example 2

In the following example, data is loaded into TABLEL in the PARTITION_ONLY mode. The distributed
output files is stored on each of the output database partitions in the directory /db/data:

load from load.del of del replace into tablel partitioned db config mode
partition_only part_file_location /db/data

The output from the load command is as follows:

Agent Type Node SQL Code Result

Chapter 3. Implementation and maintenance 205

LOAD_TO_FILE 000 +000000060 Success.

LOAD_TO_FILE 001 +00000000 Success.
LOAD_TO_FILE 002 +00000000 Success.
LOAD_TO_FILE 003 +00000000 Success.
PARTITION 001 +00000000 Success.
PRE_PARTITION 000 +00000000 Success.

Summary of Partitioning Agents:

Rows Read = 100000
Rows Rejected =0
Rows Partitioned = 100000

The output indicates that there was a load-to-file agent running on each output database partition, and
these agents ran successfully. There was a pre-partitioning agent on the coordinator partition, and a
partitioning agent running on database partition 1. The statistical summary indicates that 200,000 rows
were successfully read by the pre-partitioning agent and 100,000 rows were successfully distributed by
the partitioning agent. Since no rows were loaded into the table, no summary of the number of rows
loaded appears.

Example 3

To load the files that were generated during the PARTITION_ONLY load operation shown previously,
issue the following command:

load from load.del of del replace into tablel partitioned db config mode
load_only part_file_location /db/data

The output from the load command will be as follows:

Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 +00000000 Success.

LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.
RESULTS: 4 of 4 LOADs completed successfully.

Summary of LOAD Agents:

Number of rows read = 100000
Number of rows skipped =0
Number of rows loaded = 100000
Number of rows rejected =0
Number of rows deleted =0
Number of rows committed = 100000

The output indicates that the load agents on each output database partition ran successfully and that the
sum of the number of rows loaded by all load agents is 200,000. No summary of rows distributed is
indicated since distribution was not performed.

Example 4

If the following LOAD command is issued:

load from load.del of del replace into tablel

and one of the loading database partitions runs out of space in the table space during the load operation,
the following output might be returned:

SQLO289N Unable to allocate new pages in table space "DMS4KT".
SQLSTATE=57011

206 IBM Db2 V11.5: Partitioning and Clustering Guide

Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 -00000289 Error. May require RESTART.
LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.

PARTITION 001 +00000000 Success.

PRE_PARTITION 000 +00000000 Success.

RESULTS: 3 of 4 LOADs completed successfully.

Summary of Partitioning Agents:
Rows Read =0
Rows Rejected 0
Rows Partitioned 0

Summary of LOAD Agents:
Number of rows read
Number of rows skipped
Number of rows loaded
Number of rows rejected
Number of rows deleted
Number of rows committed

L T | A A |
[c¥oNoNoNoNo]

The output indicates that the load operation returned error SQL0289. The database partition summary
indicates that database partition 1 ran out of space. If additional space is added to the containers of the
table space on database partition 1, the load operation can be restarted as follows:

load from load.del of del restart into tablel

Migration and version compatibility
The DB2_PARTITIONEDLOAD_DEFAULT registry variable can be used to revert to pre-Db2 Universal
Database Version 8 load behavior in a multi-partition database.

Note: The DB2_PARTITIONEDLOAD_DEFAULT registry variable is deprecated and might be removed in a
later release.

Reverting to the pre-Db2 Version 8 behavior of the LOAD command in a multi-partition database, allows
you to load a file with a valid distribution header into a single database partition without specifying any
extra partitioned database configuration options. You can do this by setting the value of
DB2_PARTITIONEDLOAD_DEFAULT to NO. You might choose to use this option if you want to avoid
modifying existing scripts that issue the LOAD command against single database partitions. For example,
to load a distribution file into database partition 3 of a table that resides in a database partition group with
four database partitions, issue the following command:

db2set DB2_PARTITIONEDLOAD_DEFAULT=NO
Then issue the following commands from the Db2 Command Line Processor:

CONNECT RESET

SET CLIENT CONNECT_NODE 3

CONNECT TO DB MYDB

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
In a multi-partition database, when no multi-partition database load configuration options are specified,
the load operation takes place on all the database partitions on which the table is defined. The input file

does not require a distribution header, and the MODE option defaults to PARTITION_AND_LOAD. To load a
single database partition, the OUTPUT_DBPARTNUMS option must be specified.

Chapter 3. Implementation and maintenance 207

Migration of partitioned database environments

Migrating partitioned databases

Migrating partitioned database environments requires that you install the latest release of the database
product on all database partition servers, migrate the instances and then migrate the databases.

You can migrate database partition servers from the catalog database partition server or any other
database partition server. Should the migration process fail, you can retry migration from the catalog
database partition server or any other database partition server again.

Since a migration of this sort is a significant undertaking, a description of the migration procedure, its
prerequisites and restrictions, is beyond the scope of this book. A detailed description is provided in the
topic "Migrating partitioned database environments" in the Migration Guide, which, in addition, will refer
you to numerous other topics to review prior to performing the migration.

Using snapshot and event monitors

Using snapshot monitor data to monitor the reorganization of a partitioned table

The following information describes some of the most useful methods of monitoring the global status of a
table reorganization.

About this task

There is no separate data group indicating the overall table reorganization status for a partitioned table. A
partitioned table uses a data organization scheme in which table data is divided across multiple storage
objects, called data partitions or ranges, according to values in one or more table partitioning key columns
of the table. However, you can deduce the global status of a table reorganization from the values of
elements in the individual data partition data group being reorganized. The following information
describes some of the most useful methods of monitoring the global status of a table reorganization.

Determining the number of data partitions being reorganized
You can determine the total number of data partitions being reorganized on a table by counting the
number of monitor data blocks for table data that have the same table name and schema name. This
value indicates the number of data partitions on which reorganization has started. Examples 1 and 2
indicate that three data partitions are being reorganized.

Identifying the data partition being reorganized
You can deduce the current data partition being reorganized from the phase start time
(reorg_phase_start). During the SORT/BUILD/REPLACE phase, the monitor data corresponding to the
data partition that is being reorganized shows the most recent phase start time. During the
INDEX_RECREATE phase, the phase start time is the same for all the data partitions. In Examples 1
and 2, the INDEX_RECREATE phase is indicated, so the start time is the same for all the data
partitions.

Identifying an index rebuild requirement
You can determine if an index rebuild is required by obtaining the value of the maximum reorganize
phase element (reorg_max_phase), corresponding to any one of the data partitions being
reorganized. If reorg_max_phase has a value of 3 or 4, then an Index Rebuild is required. Examples 1
and 2 report a reorg_max_phase value of 3, indicating an index rebuild is required.

Examples

The following sample output is from a three-node server that contains a table with three data partitions:

CREATE TABLE sales (c1l INT, c2 INT, c3 INT)
PARTITION BY RANGE (c1)
(PART P1 STARTING FROM (1) ENDING AT (10) IN parttbs,
PART P2 STARTING FROM (11) ENDING AT (20) IN parttbs,

208 IBM Db2 V11.5: Partitioning and Clustering Guide

PART P3 STARTING FROM (21) ENDING AT (30) IN parttbs)
DISTRIBUTE BY (c2)

Statement executed:
REORG TABLE sales ALLOW NO ACCESS ON ALL DBPARTITIONNUMS
Example 1:
GET SNAPSHOT FOR TABLES ON DPARTDB GLOBAL
The output is modified to include table information for the relevant table only.

Table Snapshot

06/28/2005 13:46:43.061690
06/28/2005 13:46:47.440046
06/28/2005 13:46:50.964033

First database connect timestamp
Last reset timestamp
Snapshot timestamp

Database name DPARTDB
Database path /work/sales/NODEOGOO/SQLOEOOOL/
Input database alias DPARTDB
Number of accessed tables 5
Table List
Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id =0
Data Object Pages =3
Rows Read = 12
Rows Written =1
Overflows =0
Page Reorgs =0
Table Reorg Information
Node number = 0
Reorg Type =
Reclaiming

Table Reorg

Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index =0

Reorg Tablespace = 3
Long Temp space ID = 3

Start Time = 06/28/2005 13:46:49.816883

Reorg Phase = 3 - Index Recreate

Max Phase =3

Phase Start Time = 06/28/2005 13:46:50.362918

Status = Completed

Current Counter = 0

Max Counter =0

Completion =0

End Time = 06/28/2005 13:46:50.821244
Table Reorg Informatlon

Node number =1

Reorg Type =

Reclaiming

Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only
Reorg Index
Reorg Tablespace
Long Temp space ID

0
8

8
06/28/2005 13:46:49.822701

Start Time =

Reorg Phase = 3 - Index Recreate

Max Phase =3

Phase Start Time = 06/28/2005 13:46:50.420741
Status = Completed

Current Counter = 0

Max Counter =0

Completion =0

End Time = 06/28/2005 13:46:50.899543

Table Reorg Informatlon
Node number =2

Chapter 3. Implementation and maintenance 209

Reorg Type
Reclaiming
Table Reorg

Allow No Access

Recluster Via Table Scan

Reorg Data Only
0

Reorg Index

Reorg Tablespace
Long Temp space ID

Start Time

Reorg Phase

Max Phase

Phase Start Time

Status

Current Counter

Max Counter

Completion

End Time

Table Schema
Table Name

Table Type

Data Partition Id
Data Object Pages
Rows Read

Rows Written
Overflows

Page Reorgs

Table Reorg Informati

Node number

Reorg Type
Reclaiming
Table Reorg

Allow No Access

LI e | | | | I [1

S

3

06/28/2005 13:46:49.814813
3 - Index Recreate

3

06/28/2005 13:46:50.344277
Completed

0]

0
0
06/28/2005 13:46:50.803619

NEWTON
SALES
User

[ol=NoNoN Sie NV

Recluster Via Table Scan

Reorg Data Only
0

Reorg Index

Reorg Tablespace
Long Temp space ID

Start Time

Reorg Phase

Max Phase

Phase Start Time

Status

Current Counter

Max Counter

Completion

End Time

3

3

06/28/2005 13:46:50.014617
3 - Index Recreate

3

06/28/2005 13:46:50.362918
Completed

0

0
0
06/28/2005 13:46:50.821244

Table Reorg Informatlon

Node number

Reorg Type
Reclaiming
Table Reorg

Allow No Access

1

Recluster Via Table Scan

Reorg Data Only

Reorg Index

Reorg Tablespace
Long Temp space ID

Start Time

Reorg Phase

Max Phase

Phase Start Time

Status

Current Counter

Max Counter

Completion

End Time

0]

3

3

06/28/2005 13:46:50.026278
3 - Index Recreate

3

06/28/2005 13:46:50.420741
Completed

0]

0]

0]

06/28/2005 13:46:50.899543

Table Reorg Informatlon

Node number

Reorg Type
Reclaiming
Table Reorg

Allow No Access

Recluster Via Table Scan

Reorg Data Only

Reorg Index
Reorg Tablespace
Long Temp space ID

0
8
8

210 IBM Db2 V11.5: Partitioning and Clustering Guide

Start Time

Reorg Phase

Max Phase

Phase Start Time
Status

Current Counter
Max Counter
Completion

End Time

Table Schema
Table Name

Table Type

Data Partition Id
Data Object Pages
Rows Read

Rows Written
Overflows

Page Reorgs

Table Reorg Informati

Node number

Reorg Type
Reclaiming
Table Reorg

Allow No Access

LI O || | | I [1

06/28/2005 13:46:50.006392
3 - Index Recreate

3

06/28/2005 13:46:50.344277
Completed

0]

0
0
06/28/2005 13:46:50.803619

NEWTON
SALES
User

[ol=NoNoN IR ey V]

Recluster Via Table Scan

Reorg Data Only
0

Reorg Index

Reorg Tablespace
Long Temp space ID

Start Time

Reorg Phase

Max Phase

Phase Start Time

Status

Current Counter

Max Counter

Completion

End Time

3

3

06/28/2005 13:46:50.199971
3 - Index Recreate

3

06/28/2005 13:46:50.362918
Completed

0

0
0
06/28/2005 13:46:50.821244

Table Reorg Informatlon

Node number

Reorg Type
Reclaiming
Table Reorg

Allow No Access

1

Recluster Via Table Scan

Reorg Data Only

Reorg Index

Reorg Tablespace
Long Temp space ID

Start Time

Reorg Phase

Max Phase

Phase Start Time

Status

Current Counter

Max Counter

Completion

End Time

0]

3

3

06/28/2005 13:46:50.223742
3 - Index Recreate

3

06/28/2005 13:46:50.420741
Completed

0

0]

0]

06/28/2005 13:46:50.899543

Table Reorg Informatlon

Node number

Reorg Type
Reclaiming
Table Reorg

Allow No Access

Recluster Via Table Scan

Reorg Data Only

Reorg Index

Reorg Tablespace
Long Temp space ID

Start Time

Reorg Phase

Max Phase

Phase Start Time

Status

Current Counter

Max Counter

0]

3

3

06/28/2005 13:46:50.179922
3 - Index Recreate

3

06/28/2005 13:46:50.344277
Completed

0]

0]

Chapter 3. Implementation and maintenance 211

0
06/28/2005 13:46:50.803619

Completion
End Time

Example 2:

GET SNAPSHOT FOR TABLES ON DPARTDB AT DBPARTITIONNUM 2
The output is modified to include table information for the relevant table only.

Table Snapshot

First database connect timestamp
Last reset timestamp

Snapshot timestamp

Database name

Database path

Input database alias

Number of accessed tables

06/28/2005 13:46:43.617833

06/28/2005 13:46:51.016787
DPARTDB
/work/sales/NODEGOOO/SQLOOOOL/
DPARTDB

8

Table List
Table Schema
Table Name
Table Type
Data Partition Id
Data Object Pages
Rows Read
Rows Written
Overflows
Page Reorgs
Table Reorg Informat
Node number
Reorg Type
Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Onl
Reorg Index =0
Reorg Tablespace 3
Long Temp space ID

NEWTON
SALES
User

o

(Si=NoJoNoNol o]

n e

3
06/28/2005 13:46:49.814813

Start Time =
Reorg Phase = 3 - Index Recreate
Max Phase =3
Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed
Current Counter =0
Max Counter =0
Completion =0
End Time = 06/28/2005 13:46:50.803619
Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id = i
Data Object Pages =1
Rows Read =0
Rows Written =0
Overflows =0
Page Reorgs =0
Table Reorg Information:
Node number =2
Reorg Type =
Reclaiming

Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Onl
Reorg Index =0
Reorg Tablespace 3
Long Temp space ID

8
Start Time 06/28/2005 13:46:50.006392

Reorg Phase = 3 - Index Recreate

Max Phase =3

Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed

Current Counter =0

Max Counter =0

212 IBM Db2 V11.5: Partitioning and Clustering Guide

Completion
End Time

Table Schema
Table Name
Table Type

Data Partition Id
Data Object Pages

Rows Read
Rows Written
Overflows
Page Reorgs

Table Reorg Informat

Node number
Reorg Type

0

NEWTO
SALES
User

o

[SE=NoNoN iRl V]

nneE

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Onl

Reorg Index

Reorg Tablespace
Long Temp space ID

Start Time
Reorg Phase
Max Phase

Phase Start Time

Status

Current Counter

Max Counter
Completion
End Time

Example 3:

=0
3
8

3 -1
Compl

0
0

N

ndex Recreate

eted

SELECT * FROM SYSIBMADM.SNAPLOCK WHERE tabname

06/28/2005 13:46:50.803619

06/28/2005 13:46:50.179922

8
06/28/2005 13:46:50.344277

0
06/28/2005 13:46:50.803619

= 'SALES';

The output is modified to include a subset of table information for the relevant table only.

TBSP_NAME TABNAME LOCK_OBJECT_TYPE

PARTTBS

PARTTBS
PARTTBS

PARTTBS
PARTTBS

PARTTBS

SALES
SALES
SALES
SALES
SALES
SALES
SALES
SALES
SALES

9 record(s) selected.

Output from this query (continued).

LOCK_ESCALATION LOCK_ATTRIBUTES DATA_PARTITION_ID

DBPARTITIONNUM

INSERT
NONE
NONE
INSERT
NONE
NONE
INSERT
NONE

LOCK_MODE LOCK_STATUS ...

ROW_LOCK X GRNT
TABLE_LOCK IX GRNT
TABLE_PART_LOCK IX GRNT
ROW_LOCK X GRNT
TABLE_LOCK IX GRNT
TABLE_PART_LOCK IX GRNT
ROW_LOCK X GRNT
TABLE_LOCK IX GRNT
TABLE_PART_LOCK IX GRNT

2 2

= 2

2 2

0 0

- 0

0 0

1 1

= 1

1 1

oo oJojoNoJoNoNo)

NONE

Chapter 3. Implementation and maintenance 213

Example 4:

SELECT * FROM SYSIBMADM.SNAPTAB WHERE tabname = 'SALES';

The output is modified to include a subset of table information for the relevant table only.

. TABSCHEMA TABNAME TAB_FILE_ID TAB_TYPE DATA_OBJECT_PAGES ROWS_WRITTEN

.. NEWTON SALES 2 USER_TABLE 1 1 ...
. NEWTON SALES 4 USER_TABLE 1 1.
. NEWTON SALES 3 USER_TABLE 1 1.,

3 record(s) selected.

Output from this query (continued).

. OVERFLOW_ACCESSES PAGE_REORGS DBPARTITIONNUM TBSP_ID DATA_PARTITION_ID

0 0 0 3 0
0 0 2 8 2
0 0 1 3 1

Example 5:

SELECT * FROM SYSIBMADM.SNAPTAB_REORG WHERE tabname = 'SALES';;

The output is modified to include a subset of table information for the relevant table only.

REORG_PHASE REORG_MAX_PHASE REORG_TYPE

INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY
INDEX_RECREATE RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY

WWWWwWwwwww

9 record(s) selected.

Output from this query (continued).

REORG_STATUS REORG_TBSPC_ID DBPARTITIONNUM DATA_PARTITION_ID

.. COMPLETED 3 2 0
.. COMPLETED 3 2 1
.. COMPLETED 3 2 2
.. COMPLETED 3 1 0
.. COMPLETED 3 1 1
.. COMPLETED 3 1 2
.. COMPLETED 3 0 0
.. COMPLETED 3 0 1

. COMPLETED 3 0 2

Example 6:
The Table Reorg Information includes information about reclaiming extents as part of a reorganization
operation. The example that follows shows the relevant output.

db2 -v "get snapshot for tables on wsdb"

Table Reorg Information:
Reorg Type =

214 IBM Db2 V11.5: Partitioning and Clustering Guide

Reclaim Extents
Allow Write Access

Reorg Index =0

Reorg Tablespace = 0

Start Time = 10/22/2008 15:49:35.477532
Reorg Phase = 12 - Release

Max Phase =3

Note: Any snapshot requests from a monitor version before SQLM_DBMON_VERSION9_7 will not
return any Reclaim Reorg status to the requesting client.

Global snapshots on partitioned database systems

On a partitioned database system, you can use the snapshot monitor to take a snapshot of the current
partition, a specified partition, or all partitions. When taking a global snapshot across all the partitions of a
partitioned database, data is aggregated before the results are returned.

Data is aggregated for the different element types as follows:
- Counters, Time, and Gauges

Contains the sum of all like values collected from each partition in the instance. For example, GET
SNAPSHOT FOR DATABASE XYZ ON TEST GLOBAL would return the number of rows read (rows_read)
from the database for all partitions in the partitioned database instance.

- Watermarks
Returns the highest (for high water) or lowest (for low water) value found for any partition in the

partitioned database system. If the value returned is of concern, then snapshots for individual partitions
can be taken to determine if a particular partition is over utilized, or if the problem is instance-wide.

« Timestamp
Set to the timestamp value for the partition where the snapshot monitor instance agent is attached.
Note that all timestamp values are under control of the timestamp monitor switch.

- Information
Returns the most significant information for a partition that may be impeding work. For example, for the

element appl_status, if the status on one partition was UOW Executing, and on another partition Lock
Wait, Lock Wait would be returned, since it is the state that's holding up execution of the application.

You can also reset counters, set monitor switches, and retrieve monitor switch settings for individual
partitions or all partitions in your partitioned database.

Note: When taking a global snapshot, if one or more partitions encounter an error, then data is collected
from the partitions where the snapshot was successful and a warning (sglcode 1629) is also returned. If a
global get or update of monitor switches, or a counter reset fails on one or more partitions, then those
partitions will not have their switches set, or data reset.

Creating an event monitor for partitioned databases, or for databases in a Db2 pureScale
environment
Generally speaking, event monitors on partitioned database systems, orin a Db2 pureScale environment

work similarly to ones that run on single-member databases. However, there are some differences to
keep in mind when you create an event monitor for these environments.
Procedure

« Specify the partition to be monitored.

CREATE EVENT MONITOR tabmon FOR TABLES
WRITE TO FILE '/tmp/tabevents'
ON PARTITION 3

tabmon represents the name of the event monitor.

Chapter 3. Implementation and maintenance 215

/tmp/tab eventsisthe name of the directory path (on UNIX) where the event monitor is to write
the event files.

3 represents the partition number to be monitored.

« Specify if the event monitor data is to be collected at a local or global scope.
For example, to collect event monitor reports from all partitions issue the following statement:

CREATE EVENT MONITOR dlmon FOR DEADLOCKS
WRITE TO FILE '/tmp/dlevents'
ON PARTITION 3 GLOBAL

Note: Only deadlock and deadlock with details event monitors can be defined as GLOBAL.

All partitions report deadlock-related event records to partition 3.
« To collect event monitor reports from only the local partition issue the following statement:

CREATE EVENT MONITOR dlmon FOR TABLES
WRITE TO FILE '/tmp/dlevents'
ON PARTITION 3 LOCAL

This is the default behavior for file and pipe event monitors in partitioned databases. The LOCAL and
GLOBAL clauses are ignored for write-to-table event monitors.

- Itis possible to review the monitor partition and scope values for existing event monitors. To do this
query the SYSCAT.EVENTMONITORS table with the following statement:

SELECT EVMONNAME, NODENUM, MONSCOPE FROM SYSCAT.EVENTMONITORS
Results

After an event monitor is created and activated, it records monitoring data as its specified events occur.

Developing a good backup and recovery strategy

Crash recovery

Transactions (or units of work) against a database can be interrupted unexpectedly. If a failure occurs
before all of the changes that are part of the unit of work are completed, committed, and written to disk,
the database is left in an inconsistent and unusable state. Crash recovery is the process by which the
database is moved back to a consistent and usable state. This is done by rolling back incomplete
transactions and completing committed transactions that were still in memory when the crash occurred
(Figure 43 on page 217).

216 IBM Db2 V11.5: Partitioning and Clustering Guide

Urnits ofwork o | | rollback
2 [rollback
a [’ rollback
4 [rollback
&
Crash

Al four rolled back

TIME

L

Figure 43. Rolling back units of work (crash recovery)

If the database or the database manager fails, the database can be left in an inconsistent state. The
contents of the database might include changes made by transactions that were incomplete at the time of
failure. The database might also be missing changes that were made by transactions that completed
before the failure but which were not yet flushed to disk. A crash recovery operation must be performed
in order to roll back the partially completed transactions and to write to disk the changes of completed
transactions that were previously made only in memory.

Conditions that can necessitate a crash recovery include:

« A power failure on the machine, causing the database manager and the database partitions on it to go
down.

« A hardware failure such as memory, disk, CPU, or network failure.
- A serious operating system error that causes the Db2 instance to end abnormally.

If you want crash recovery to be performed automatically by the database manager, enable the automatic
restart (autorestart) database configuration parameter by setting it to ON. (This is the default value.) If
you do not want automatic restart behavior, set the autorestart database configuration parameter to
OFF. As a result, you must issue the RESTART DATABASE command when a database failure occurs. If
the database I/O was suspended before the crash occurred, you must specify the WRITE RESUME option
of the RESTART DATABASE command in order for the crash recovery to continue.

If you are using the IBM Db2 pureScale Feature, there are two specific types of crash recovery to be
aware of: member crash recovery and group crash recovery. Member crash recovery is the process of
recovering a portion of a database using the log stream of a single member after a member failure.
Member crash recovery, which is usually initiated automatically as a part of a member restart, is an online
operation-meaning that other members can still access the database. Multiple members can be
undergoing member crash recovery at the same time. Group crash recovery is the process of recovering a
database using multiple members' log streams after a failure that causes no viable cluster caching facility
to remain in the cluster. Group crash recovery is also usually initiated automatically (as a part of a group
restart) and the database is inaccessible while it is in progress, as with Db2 crash recovery operations
outside of a Db2 pureScale environment.

If crash recovery occurs on a database that is enabled for rollforward recovery (that is, the
logarchmethi configuration parameter is not set to OFF), and an error occurs during crash recovery that
is attributable to an individual table space, that table space is taken offline, and cannot be accessed until

Chapter 3. Implementation and maintenance 217

it is repaired. Crash recovery continues on other table spaces. At the completion of crash recovery, the
other table spaces in the database are accessible, and connections to the database can be established.
However, if the table space that is taken offline is the table space that contains the system catalogs, it
must be repaired before any connections are permitted. This behavior does not apply to Db2 pureScale
environments. If an error occurs during member crash recovery or group crash recovery, the crash
recovery operation fails.

If the database is configured for connectivity during crash recovery, the database might become
connectable while crash recovery is in progress. Tables, indexes or objects that are still undergoing
rollback will be locked in exclusive mode or super exclusive mode. For more information, see Database
accessibility during backward phase of crash recovery or HADR takeover.

Recovering from transaction failures in a partitioned database environment

If a transaction failure occurs in a partitioned database environment, database recovery is usually
necessary on both the failed database partition server and any other database partition server that was
participating in the transaction.

There are two types of database recovery:

« Crash recovery occurs on the failed database partition server after the failure condition is corrected.

« Database partition failure recovery on the other (still active) database partition servers occurs
immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which a transaction is submitted
is the coordinator partition, and the first agent that processes the transaction is the coordinator agent.
The coordinator agent is responsible for distributing work to other database partition servers, and it keeps
track of which ones are involved in the transaction. When the application issues a COMMIT statement for
a transaction, the coordinator agent commits the transaction by using the two-phase commit protocol.
During the first phase, the coordinator partition distributes a PREPARE request to all the other database
partition servers that are participating in the transaction. These servers then respond with one of the
following:

READ-ONLY
No data change occurred at this server

YES
Data change occurred at this server

NO
Because of an error, the server is not prepared to commit

If one of the servers responds with a NO, the transaction is rolled back. Otherwise, the coordinator
partition begins the second phase.

During the second phase, the coordinator partition writes a COMMIT log record, then distributes a
COMMIT request to all the servers that responded with a YES. After all the other database partition
servers have committed, they send an acknowledgement of the COMMIT to the coordinator partition. The
transaction is complete when the coordinator agent has received all COMMIT acknowledgments from all
the participating servers. At this point, the coordinator agent writes a FORGET log record.

Transaction failure recovery on an active database partition server

If any database partition server detects that another server is down, all work that is associated with the
failed database partition server is stopped:

« If the still active database partition server is the coordinator partition for an application, and the
application was running on the failed database partition server (and not ready to COMMIT), the
coordinator agent is interrupted to do failure recovery. If the coordinator agent is in the second phase of
COMMIT processing, SQLO279N is returned to the application, which in turn loses its database
connection. Otherwise, the coordinator agent distributes a ROLLBACK request to all other servers
participating in the transaction, and SQL1229N is returned to the application.

218 IBM Db2 V11.5: Partitioning and Clustering Guide

- If the failed database partition server was the coordinator partition for the application, then agents that
are still working for the application on the active servers are interrupted to do failure recovery. The
transaction is rolled back locally on each database partition where the transaction is not in prepared
state. On those database partitions where the transaction is in a prepared state, the transaction
becomes an indoubt transaction. The coordinator database partition is not aware that the transaction is
indoubt on some database partitions because the coordinator database partition is not available.

- If the application connected to the failed database partition server (before it failed), but neither the
local database partition server nor the failed database partition server is the coordinator partition,
agents working for this application are interrupted. The coordinator partition will either send a
ROLLBACK or a DISCONNECT message to the other database partition servers. The transaction will only
be indoubt on database partition servers that are still active if the coordinator partition returns
SQLO279.

Any process (such as an agent or deadlock detector) that attempts to send a request to the failed server
is informed that it cannot send the request.

Transaction failure recovery on the failed database partition server

If the transaction failure causes the database manager to end abnormally, you can issue the db2staxrt
command with the RESTART option to restart the database manager once the database partition has
been restarted. If you cannot restart the database partition, you can issue db2start to restart the
database manager on a different database partition.

If the database manager ends abnormally, database partitions on the server can be left in an inconsistent
state. To make them usable, crash recovery can be triggered on a database partition server:

 Explicitly, through the RESTART DATABASE command

« Implicitly, through a CONNECT request when the autorestart database configuration parameter has
been set to ON

Crash recovery reapplies the log records in the active log files to ensure that the effects of all complete
transactions are in the database. After the changes have been reapplied, all uncommitted transactions
are rolled back locally, except for indoubt transactions. There are two types of indoubt transaction in a
partitioned database environment:

« On a database partition server that is not the coordinator partition, a transaction is indoubt if it is
prepared but not yet committed.

- On the coordinator partition, a transaction is indoubt if it is committed but not yet logged as complete
(that is, the FORGET record is not yet written). This situation occurs when the coordinator agent has not
received all the COMMIT acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the following. The action
that is taken depends on whether the database partition server was the coordinator partition for an
application:

- If the server that restarted is not the coordinator partition for the application, it sends a query message
to the coordinator agent to discover the outcome of the transaction.

- If the server that restarted is the coordinator partition for the application, it sends a message to all the
other agents (subordinate agents) that the coordinator agent is still waiting for COMMIT
acknowledgments.

It is possible that crash recovery might not be able to resolve all the indoubt transactions as part of crash
recovery. For example, some of the database partition servers might not be available. If the coordinator
partition completes crash recovery before other database partitions involved in the transaction, crash
recovery will not be able to resolve the indoubt transaction. This is expected because crash recovery is
performed by each database partition independently. In Db2 V11.5.3 and later versions, and when
DB2_DPF_ASYNC_INDOUBT_RESOLUTION is enabled, the coordinator partition will continue to attempt
to resolve the indoubt transactions with the other database partitions until the indoubt is finally resolved.
Prior to Db2 V11.5.3, or when DB2_DPF_ASYNC_INDOUBT_RESOLUTION is OFF, the coordinator partition
will only make one attempt to resolve the indoubt transaction and if the indoubt transaction cannot be

Chapter 3. Implementation and maintenance 219

resolved the SQL warning message SQL1061W is returned. Because indoubt transactions hold resources,
such as locks and active log space, it is possible to get to a point where no changes can be made to the
database because the active log space is being held up by indoubt transactions. For this reason, you
should determine whether indoubt transactions remain after crash recovery, and recover all database
partition servers that are required to resolve the indoubt transactions as quickly as possible.

Note: In a partitioned database server environment, the RESTART database command is run on a per-
node basis. In order to ensure that the database is restarted on all nodes, use the following
recommended command:

db2_all "db2 restart database <database_name>"

If one or more servers that are required to resolve an indoubt transaction cannot be recovered in time,
and access is required to database partitions on other servers, you can manually resolve the indoubt
transaction by making an heuristic decision. You can use the LIST INDOUBT TRANSACTIONS command
to query, commit, and roll back the indoubt transaction on the server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a distributed transaction
environment. To distinguish between the two types of indoubt transactions, the originator field in the
output that is returned by the LIST INDOUBT TRANSACTIONS command displays one of the following:

- Db2 Enterprise Server Edition, which indicates that the transaction originated in a partitioned database
environment.
- XA, which indicates that the transaction originated in a distributed environment.

Identifying the failed database partition server

When a database partition server fails, the application will typically receive one of the following
SQLCODEs. The method for detecting which database manager failed depends on the SQLCODE received:

SQLO279N
This SQLCODE is received when a database partition server involved in a transaction is terminated
during COMMIT processing.

SQL1224N
This SQLCODE is received when the database partition server that failed is the coordinator partition
for the transaction.

SQL1229N
This SQLCODE is received when the database partition server that failed is not the coordinator
partition for the transaction.

Determining which database partition server failed is a two-step process.

1. Find the partition server that detected the failure by examining the SQLCA. The SQLCA associated with
SQLCODE SQL1229N contains the node number of the server that detected the error in the sixth array
position of the sqlerrd field. (The node number that is written for the server corresponds to the node
number in the db2nodes. cfg file.)

2. Examine the administration notification log on the server found in step one for the node number of the
failed server.

Note: If multiple logical nodes are being used on a processor, the failure of one logical node can cause
other logical nodes on the same processor to fail.

Recovering from the failure of a database partition server

You can recover from a failed database partition server by identifying and correcting the issue that caused
the failure.

Procedure

To recover from the failure of a database partition server, perform the following steps.
1. Correct the problem that caused the failure.

220 IBM Db2 V11.5: Partitioning and Clustering Guide

2. Restart the database manager by issuing the db2staxrt command from any database partition server.

3. Restart the database by issuing the RESTART DATABASE command on the failed database partition
SErver or servers.

Rebuilding partitioned databases

To rebuild a partitioned database, rebuild each database partition separately. For each database partition,
beginning with the catalog partition, first restore all the table spaces that you require. Any table spaces
that are not restored are placed in restore pending state. Once all the database partitions are restored,
you then issue the ROLLFORWARD DATABASE command on the catalog partition to roll all of the database
partitions forward.

About this task

Note: If, at a later date, you need to restore any table spaces that were not originally included in the
rebuild phase, you need to make sure that when you subsequently roll the table space forward that the
rollforward utility keeps all the data across the database partitions synchronized. If a table space is
missed during the original restore and rollforward operation, it might not be detected until there is an
attempt to access the data and a data access error occurs. You will then need to restore and roll the
missing table space forward to get it back in sync with the rest of the partitions.

To rebuild a partitioned database using table space level backup images, consider the following example.
In this example, there is a recoverable database called SAMPLE with three database partitions:

« Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and USERSP2, and is the catalog
partition

« Database partition 2 contains table spaces USERSP1 and USERSP3

« Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3
The following backups have been taken, where BKxy represents backup number x on partition y:
« BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2

« BK12 is a backup of USERSP2 and USERSP3

« BK13 is a backup of USERSP1, USERSP2 and USERSP3

« BK21 is a backup of USERSP1

« BK22 is a backup of USERSP1

« BK23 is a backup of USERSP1

« BK31 is a backup of USERSP2

« BK33 is a backup of USERSP2

» BK42 is a backup of USERSP3

« BK43 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and ROLLFORWARD DATABASE
commands, issued through the CLP, to rebuild the entire database to the end of logs.

Procedure
1. On database partition 1, issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db sample rebuild with all tablespaces in database
taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db sample rebuild with tablespaces in database
taken at BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the REBUILD option:

Chapter 3. Implementation and maintenance 221

db2 restore db sample rebuild with all tablespaces in database
taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option:

db2 rollforward db sample to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

db2 rollforward db sample stop

What to do next
At this point the database is connectable on all database partitions and all table spaces are in NORMAL
state.

Recovering data using db2adutl

You can perform cross-node recovery using the db2adutl command, logaxrchoptl and vendoxopt
database configuration parameters. This recovery is demonstrated in examples from a few different Tivoli
Storage Manager (TSM) environments.

Note: Tivoli Storage Manager (TSM) Version 7.1.8+ and Version 8.1.2+ introduce significant
enhancements for improved security between client and server communication. Starting with 7.1.8 and
8.1.2 the trusted communications agent (TCA) is no longer available, and users must configure each Db2
instance as an authorized user with access to the node password. The examples provided below assume
that a legacy TCA authentication method is in use, which require that the ‘-fromowner=<owner>’ option is
specified in the LOGARCHOPT1 and VENDOROPT database configuration options, or the TSM OPTIONS
restore option, in order to perform cross-node recovery. When the authorized user method is used, the ‘-
fromowner=<owner>’ option should be omitted. For more details about using a cross-node recovery
technique in the authorized user access model, see Configuration changes needed for IBM Spectrum
Protect (formerly Tivoli Storage Manager) client versions starting with 7.1.8 and 8.1.2.

For the following examples, computer 1 is called bax and is running the AIX operating system. The user
on this machine is roecken. The database on bar is called zample. Computer 2 is called dps. This
computer is also running the AIX operating system, and the user is regress9.

Example 1: TSM server manages passwords automatically (PASSWORDACCESS option set to
GENERATE)

This cross-node recovery example shows how to set up two computers so that you can recover data from
one computer to another when log archives and backups are stored on a TSM server and where
passwords are managed using the PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline backup of the
database.

1. To enable the database for log archiving for the bar computer to the TSM server, update the
database configuration parameter logaxrchmethi for the zample database using the following
command:

bar:/home/roecken> db2 update db cfg for zample using LOGARCHMETH1 tsm
The following information is returned:
DB200OOI The UPDATE DATABASE CONFIGURATION command completed successfully.
2. Disconnect all users and applications from the database using the following command:
db2 force applications all

3. Verify that there are no applications connected to the database using the following command:

222 IBM Db2 V11.5: Partitioning and Clustering Guide

https://www-01.ibm.com/support/docview.wss?uid=ibm10715763
https://www-01.ibm.com/support/docview.wss?uid=ibm10715763

db2 list applications

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on all database partitions.
. Create a backup of the database on the TSM server using the following command:

db2 backup db zample use tsm
Information similar to the following is returned:
Backup successful. The timestamp for this backup imagge is : 20090216151025

Note: In a partitioned database environment, you must perform this step on all database partitions.
The order in which you perform this step on the database partitions differs depending on whether you
are performing an online backup or an offline backup. For more information, see Backing up data.

. Connect to the zample database using the following command:
db2 connect to zample

. Generate new transaction logs for the database by creating a table and loading data into the TSM
server using the following command:

bar:/home/roecken> db2 load from mr of del modified by noheader replace
into employee copy yes use tsm

where in this example, the table is called employee, and the data is being loaded from a delimited
ASCII file called mx. The COPY YES option is specified to make a copy of the data that is loaded, and
the USE TSM option specifies that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for roll-forward recovery;
that is, the logaxrchmethl database configuration parameter must be set to USEREXIT,
LOGRETAIN, DISK, or TSM.

To indicate its progress, the load utility returns a series of messages:

SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".
SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".
SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read
Number of rows skipped
Number of rows loaded
Number of rows rejected
Number of rows deleted
Number of rows committed

o nn
POOROR

Chapter 3. Implementation and maintenance 223

7. After the data has been loaded into the table, confirm that there is one backup image, one load copy
image, and one log file on the TSM server by running the following query on the zample database:

bar:/home/roecken/sqllib/adsm> db2adutl query db zample
The following information is returned:

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: SOOEOEEO00.LOG Log stream: 0O
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: SOOGEEOEO0.LOG, Chain Num: @, Log stream: O,
Taken at: 2009-02-16-15.10.38

8. To enable cross-node recovery, you must give access to the objects associated with the bax
computer to another computer and account. In this example, give access to the computer dps and
the user regress9 using the following command:

bar:/home/roecken/sqllib/adsm> db2adutl grant user regress9
on nodename dps for db zample

The following information is returned:
Successfully added permissions for regress9 to access ZAMPLE on node dps.

Note: You can confirm the results of the db2adutl grant operation by issuing the following
command to retrieve the current access list for the current node:

bar:/home/roecken/sgllib/adsm> db2adutl queryaccess
The following information is returned:

Node Usexrname Database Name Type

Access Types: B - backup images L - logs A - both

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of the zample database.
Verify that there is no data associated with this user and computer on the TSM server using the
following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample

The following information is returned:

224 IBM Db2 V11.5: Partitioning and Clustering Guide

--- Database directory is empty ---
Warning: There are no file spaces created by Db2 on the ADSM server
Warning: No Db2 backup images found in ADSM for any alias.

10. Query the TSM server for a list of objects for the zample database associated with user roecken and

11.

12.

computer bar using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename
bar owner roecken

The following information is returned:

--- Database directory is empty ---
Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: SOOEEEO00.LOG Log stream: 0O
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: SOOOOOOO.LOG, Chain Num: O, Log stream: 0,
Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously and confirms that you
can restore this image onto the dps computer.

Restore the zample database from the TSM server to the dps computer using the following
command:

dps:/home/regress9> db2 restore db zample use tsm options
"'-fromnode=bar -fromowner=roecken'" without prompting

The following information is returned:
DB20OOOI The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter would be omitted,
and the database configuration parameter vendoxopt would be used. This configuration parameter
overrides the OPTIONS parameter for a backup or restore operation.

Perform a roll-forward operation to apply the transactions recorded in the zample database log file
when a new table was created and new data loaded. In this example, the following attempt for the
roll-forward operation will fail because the roll-forward utility cannot find the log files because the
user and computer information is not specified:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The command returns the following error:

Chapter 3. Implementation and maintenance 225

SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
specified stop point (end-of-log or point-in-time) because of missing log
file(s) on node(s) "0".

Force the roll-forward utility to look for log files associated with another computer using the proper
logarchopt value. In this example, use the following command to set the logaxrchoptl database
configuration parameter and search for log files associated with user roecken and computer baz:

dps:/home/regress9> db2 update db cfg for zample using logarchoptl
"'-fromnode=bar -fromowner=roecken'"

13. Enable the roll-forward utility to use the backup and load copy images by setting the vendoxopt
database configuration parameter using the following command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
“'-fromnode=bar -fromowner=roecken'"

14. You can finish the cross-node data recovery by applying the transactions recorded in the zample
database log file using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

Rollforward Status

Input database alias = zample
Number of members have returned status = 1
Member number Rollforward Next log to Log files processed Last committed
transaction
status be read
0 not pending SO000000.L0G-SEE00000. LOG

2009-05-06-15.28.11.000000 UTC

DB200OOI The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to the same point
as the database on computerbar under user roecken.

Example 2: Passwords are user-managed (PASSWORDACCESS option set to PROMPT)

This cross-node recovery example shows how to set up two computers so that you can recover data from
one computer to another when log archives and backups are stored on a TSM server and where
passwords are managed by the users. In these environments, extra information is required, specifically
the TSM nodename and password of the computer where the objects were created.

1. Update the client dsm. sys file by adding the following line because computer bax is the name of the
source computer

NODENAME bar

Note: On Windows operating systems, this file is called the dsm. opt file. When you update this file,
you must reboot your system for the changes to take effect.

2. Query the TSM server for the list of objects associated with user roecken and computer bar using the
following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename bar
owner roecken password xxxkkkx

The following information is returned:

226 IBM Db2 V11.5: Partitioning and Clustering Guide

Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 O0Oldest log: SOOEOO000.LOG Log stream: O
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: SOOO0000.LOG, Chain Num: O, Log stream: O,
Taken at: 2009-02-16-15.10.38

3. If the zample database does not exist on computer dps, perform the following steps:

a. Create an empty zample database using the following command:
dps:/home/regress9> db2 create db zample
b. Update the database configuration parameter tsm_nodename using the following command:
dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar
c. Update the database configuration parameter tsm_passwoxd using the following command:

dps:/home/regress9> db2 update db cfg for zample using
tsm_password *kxxxkkkk

4. Attempt to restore the zample database using the following command:

dps:/home/regress9> db2 restore db zample use tsm options
"'-fromnode=bar -fromowner=roecken'" without prompting

The restore operation completes successfully, but a warning is issued:

SQL2540W Restore is successful, however a warning "2523" was
encountered during Database Restore while processing in No
Interrupt mode.

5. Perform a roll-forward operation using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

In this example, because the restore operation replaced the database configuration file, the roll-
forward utility cannot find the correct log files and the following error message is returned:

SQL1268N Roll-forward recovery stopped due to error "-2112880618"
while retrieving log file "SOGO0000.LOG" for database "ZAMPLE" on node "0".

Reset the following TSM database configuration values to the correct values:

Chapter 3. Implementation and maintenance 227

a. Set the tsm_nodename configuration parameter using the following command:
dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

b. Set the tsm_password database configuration parameter using the following command:
dps:/home/regress9> db2 update db cfg for zample using tsm_password kkkkkkx

c. Set the logaxrchoptl database configuration parameter so that the roll-forward utility can find the
correct log files using the following command:

dps:/home/regress9> db2 update db cfg for zample using logarchoptl
"'-fromnode=bar -fromowner=roecken'"

d. Set the vendoropt database configuration parameter so that the load recovery file can also be
used during the roll-forward operation using the following command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"'-fromnode=bar -fromowner=roecken'"

6. You can finish the cross-node recovery by performing the roll-forward operation using the following
command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

Rollforward Status

Input database alias = zample
Number of members have returned status = 1
Member number Rollforward Next log to Log files processed Last committed
transaction
status be read
0 not pending SO000000O.LOG-SOEERER0.LOG

2009-05-06-15.28.11.000000 UTC

DB200OOI The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to the same point as
the database on computerbar under user roecken

Example 3: TSM server is configured to use client proxy nodes

This cross-node recovery example shows how to set up two computers as proxy nodes so that you can
recover data from one computer to another when log archives and backups are stored on a TSM server
and where passwords are managed using the PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline backup of the
database.

In this example, the computers bar and dps are registered under the proxy name of clusternode. The
computers are already setup as proxy nodes.

1. Register the computers bar and dps on the TSM server as proxy nodes using the following
commands:

REGISTER NODE clusternode mypasswozrd
GRANT PROXYNODE TARGET=clusternode AGENT=bar,dps

228 IBM Db2 V11.5: Partitioning and Clustering Guide

2. To enable the database for log archiving to the TSM server, update the database configuration
parameter logaxrchmethil for the zample database using the following command:

bar:/home/roecken> db2 update db cfg for zample using
LOGARCHMETH1 tsm logarchoptl "'-asnodename=clusternode'"

The following information is returned:
DB200OOI The UPDATE DATABASE CONFIGURATION command completed successfully.
3. Disconnect all users and applications from the database using the following command:
db2 force applications all
4. Verify that there are no applications connected to the database using the following command:
db2 list applications

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on all database partitions.
5. Create a backup of the database on the TSM server using the following command:

db2 backup db zample use tsm options -asnodename=clusternode'"

Information similar to the following is returned:
Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the ~asnodename option on the BACKUP DATABASE command, you can update
the vendoxropt database configuration parameter instead.

Note: In a partitioned database environment, you must perform this step on all database partitions.
The order in which you perform this step on the database partitions differs depending on whether you
are performing an online backup or an offline backup. For more information, see Backing up data.

6. Connect to the zample database using the following command:
db2 connect to zample

7. Generate new transaction logs for the database by creating a table and loading data into the TSM
server using the following command:

bar:/home/roecken> db2 load from mr of del modified by noheader
replace into employee copy yes use tsm

where in this example, the table is called employee, and the data is being loaded from a delimited
ASCII file called mx. The COPY YES option is specified to make a copy of the data that is loaded, and
the USE TSM option specifies that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for roll-forward recovery;
that is, the logarchmethil database configuration parameter must be set to USEREXIT,
LOGRETAIN, DISK, or TSM.

To indicate its progress, the load utility returns a series of messages:
SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

Chapter 3. Implementation and maintenance 229

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".
SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read
Number of rows skipped
Number of rows loaded
Number of rows rejected
Number of rows deleted
Number of rows committed

RPOORLROR

8. After the data has been loaded into the table, confirm that there is one backup image, one load copy
image, and one log file on the TSM server by running the following query on the zample database:

bar:/home/roecken/sqllib/adsm> db2adutl query db zample
options "-asnodename=clusternode"

The following information is returned:

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 O0ldest log: SOOGEOO00.LOG Log stream: 0O
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: SOOGOEM00.LOG, Chain Num: O, Log stream: O,
Taken at: 2009-02-16-15.10.38

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of the zample database.
Verify that there is no data associated with this user and computer using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample
The following information is returned:

--- Database directory is empty ---
Warning: There are no file spaces created by Db2 on the ADSM server
Warning: No Db2 backup images found in ADSM for any alias.

10. Query the TSM server for a list of objects for the zample database associated with the proxy node
clusternode using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample
options="-asnodename=clusternode"

230 IBM Db2 V11.5: Partitioning and Clustering Guide

The following information is returned:

--- Database directory is empty ---
Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 O0Oldest log: SOOEOEO00.LOG Log stream: 0O
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: SOOOOO00.LOG, Chain Num: O, Log stream: 0,
Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously and confirms that you
can restore this image onto the dps computer.

11. Restore the zample database from the TSM server to the dps computer using the following
command:

dps:/home/regress9> db2 restore db zample use tsm options
"'-asnodename=clusternode'" without prompting

The following information is returned:
DB200OOI The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter would be omitted,
and the database configuration parameter vendoxopt would be used. This configuration parameter
overrides the OPTIONS parameter for a backup or restore operation.

12. Perform a roll-forward operation to apply the transactions recorded in the zample database log file
when a new table was created and new data loaded. In this example, the following attempt for the
roll-forward operation will fail because the roll-forward utility cannot find the log files because the
user and computer information is not specified:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop
The command returns the following error:

SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
specified stop point (end-of-log or point-in-time) because of missing log
file(s) on node(s) "0".

Chapter 3. Implementation and maintenance 231

Force the roll-forward utility to look for log files on another computer using the proper logaxchopt
value. In this example, use the following command to set the logaxchoptl database configuration
parameter and search for log files associated with user roecken and computer bar:

dps:/home/regress9> db2 update db cfg for zample using logarchoptl
"'-asnodename=clusternode'"

13. Enable the roll-forward utility to use the backup and load copy images by setting the vendoxopt
database configuration parameter using the following command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"'-asnodename=clusternode"'"

14. You can finish the cross-node data recovery by applying the transactions recorded in the zample
database log file using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

Rollforward Status

Input database alias = zample
Number of members have returned status = 1
Member number Rollforward Next log to Log files processed Last committed
transaction
status be read
not pending S0000000. LOG-SO000000.L0G

2009-05-06-15.28.11.000000 UTC

DB200OOI The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to the same point
as the database on computer bar under user roecken.

Example 4: TSM server is configured to use client proxy nodes in a Db2 pureScale environment

This example shows how to set up two members as proxy nodes so that you can recover data from one
member to the other when log archives and backups are stored on a TSM server and where passwords are
managed using the PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline backup of the
database.

In this example, the members memberl and membexr?2 are registered under the proxy name of
clusternode. In Db2 pureScale environments, you can perform backup or data recovery operations
from any member. In this example, data will be recovered from membex2

1. Register the members memberl and membexr2 on the TSM server as proxy nodes using the following
commands:

REGISTER NODE clusternode mypasswozrd
GRANT PROXYNODE TARGET=clusternode AGENT=memberl,member2

2. To enable the database for log archiving to the TSM server, update the database configuration
parameter logaxrchmethil for the zample database using the following command:

memberl:/home/roecken> db2 update db cfg for zample using
LOGARCHMETH1 tsm logarchoptl "'-asnodename=clusternode'"

Note: In Db2 pureScale environments, you can set the global logarchmetha database configuration
parameters once from any member.

232 IBM Db2 V11.5: Partitioning and Clustering Guide

The following information is returned:
DB200OOI The UPDATE DATABASE CONFIGURATION command completed successfully.
. Disconnect all users and applications from the database using the following command:
db2 force applications all
. Verify that there are no applications connected to the database using the following command:
db2 list applications global

You should receive a message that says that no data was returned.
. Create a backup of the database on the TSM server using the following command:

db2 backup db zample use tsm options '-asnodename=clusternode’

Information similar to the following is returned:
Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the ~asnodename option on the BACKUP DATABASE command, you can update
the vendoropt database configuration parameter instead.

Note: In Db2 pureScale environments, you can run this command from any member to back up all
data for the database.

. Connect to the zample database using the following command:
db2 connect to zample

. Generate new transaction logs for the database by creating a table and loading data into the TSM
server using the following command:

memberl:/home/roecken> db2 load from mr of del modified by noheader replace
into employee copy yes use tsmwhere

where in this example, the table is called employee, and the data is being loaded from a delimited
ASCII file called mx. The COPY YES option is specified to make a copy of the data that is loaded, and
the USE TSM option specifies that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for roll-forward recovery;
that is, the logarchmethl database configuration parameter must be set to USEREXIT,
LOGRETAIN, DISK, or TSM.

To indicate its progress, the load utility returns a series of messages:

SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".
SQL3520W Load Consistency Point was successful.

SQL31160N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".
SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Chapter 3. Implementation and maintenance 233

Number of rows read
Number of rows skipped
Number of rows loaded
Number of rows rejected
Number of rows deleted
Number of rows committed

POORLOR

8. After the data has been loaded into the table, confirm that there is one backup image, one load copy
image, and one log file on the TSM server by running the following query on the zample database:

memberl:/home/roecken/sqllib/adsm> db2adutl query db zample
options "-asnodename=clusternode"

The following information is returned:

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 O0ldest log: SOOOEEEO.LOG Log stream: 0O
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

Log file: SO00G000.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.01.10

Log file: SOGOEEEO.LOG, Chain Num: 1, Log stream: O, Taken at:
2009-02-16-13.01.11

Log file: SO00GOGO.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.01.19

Log file: SOOOGEOL1.LOG, Chain Num: 1, Log stream: O, Taken at:
2009-02-16-13.02.49

Log file: SO00000L1.LO0G, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.02.49

Log file: SOOEOEEEO1.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.02.49

Log file: SO0OOGEO2.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.03.15

Log file: SOGOEEEG2.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.03.15

Log file: S0O000002.L0G, Chain Num: 1, Log stream: O, Taken at:
2009-02-16-13.03.16

234 IBM Db2 V11.5: Partitioning and Clustering Guide

9. Query the TSM server for a list of objects for the zample database associated with the proxy node
clusternode using the following command:

member2: /home/regress9/sqllib/adsm> db2adutl query db zample
options="-asnodename=clusternode"

The following information is returned:

--- Database directory is empty ---

Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: SOOEEO00.LOG Log stream: O
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

Log file: SO0OGGEMO.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.01.10

Log file: SO000000.LOG, Chain Num: 1, Log stream: O, Taken at:
2009-02-16-13.01.11

Log file: SO00G000.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.01.19

Log file: SO00GOOL1.LOG, Chain Num: 1, Log stream: O, Taken at:
2009-02-16-13.02.49

Log file: SOOOEOEO1.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.02.49

Log file: SO00GOOL1.LO0G, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.02.49

Log file: S0000002.L0G, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.03.15

Log file: SOOEOEEEO2.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.03.15

Log file: SOOOGEO2.LO0G, Chain Num: 1, Log stream: O, Taken at:
2009-02-16-13.03.16

This information matches the TSM information that was generated previously and confirms that you
can restore this image onto the member2 member.

Chapter 3. Implementation and maintenance 235

10. Restore the zample database on the TSM server from the membexr2 member using the following
command:

member2:/home/regress9> db2 restore db zample use tsm options
' -asnodename=clusternode' without prompting

The following information is returned:
DB200OOI The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on member2, the OPTIONS parameter would be
omitted, and the database configuration parameter vendoxopt would be used. This configuration
parameter overrides the OPTIONS parameter for a backup or restore operation.

11. Enable the roll-forward utility to use the backup and load copy images by setting the vendoxopt
database configuration parameter using the following command:

member2:/home/regress9> db2 update db cfg for zample using VENDOROPT
"'-asnodename=clusternode""

Note: In Db2 pureScale environments, you can set the global vendoxopt database configuration
parameters once from any member.

12. You can finish the cross-member data recovery by applying the transactions recorded in the zample
database log file using the following command:

member2:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

Rollforward Status

Input database alias = zample
Number of members have returned status = 3
Member number Rollforward Next log to Log files processed Last committed
transaction
status be read
0 not pending SO000001.L0G-SEE00012.L0G
2009-05-06-15.28.11.000000 UTC
1 not pending S0000001.L0G-SEE00012.L0G
2009-05-06-15.28.11.000000 UTC
2 not pending SO000001.L0G-SEE00012. L0G

2009-05-06-15.28.11.000000 UTC
DB200OOI The ROLLFORWARD command completed successfully.

The database zample on member membexr2 under user regress9 has been recovered to the same
point as the database on member memberl under user roecken.

Synchronizing clocks in a partitioned database environment

You should maintain relatively synchronized system clocks across the database partition servers to
ensure smooth database operations and unlimited forward recoverability. Time differences among the
database partition servers, plus any potential operational and communications delays for a transaction
should be less than the value specified for the max_time_diff (maximum time difference among nodes)
database manager configuration parameter.

To ensure that the log record time stamps reflect the sequence of transactions in a partitioned database
environment, Db2 uses the system clock and the virtual timestamp stored in the SQLOGCTL . LFH file on
each machine as the basis for the time stamps in the log records. If, however, the system clock is set
ahead, the log clock is automatically set ahead with it. Although the system clock can be set back, the
clock for the logs cannot, and remains at the same advanced time until the system clock matches this

236 IBM Db2 V11.5: Partitioning and Clustering Guide

time. The clocks are then in synchrony. The implication of this is that a short term system clock error on a
database node can have a long lasting effect on the time stamps of database logs.

For example, assume that the system clock on database partition server A is mistakenly set to November
7, 2005 when the year is 2003, and assume that the mistake is corrected after an update transaction is
committed in the database partition at that database partition server. If the database is in continual use,
and is regularly updated over time, any point between November 7, 2003 and November 7, 2005 is
virtually unreachable through rollforward recovery. When the COMMIT on database partition server A
completes, the time stamp in the database log is set to 2005, and the log clock remains at November 7,
2005 until the system clock matches this time. If you attempt to roll forward to a point in time within this
time frame, the operation will stop at the first time stamp that is beyond the specified stop point, which is
November 7, 2003.

Although Db2 cannot control updates to the system clock, the max_time_diff database manager
configuration parameter reduces the chances of this type of problem occurring:

« The configurable values for this parameter range from 1 minute to 24 hours.

« When the first connection request is made to a non-catalog partition, the database partition server
sends its time to the catalog partition for the database. The catalog partition then checks that the time
on the database partition requesting the connection, and its own time are within the range specified by
the max_time_diff parameter. If this range is exceeded, the connection is refused.

« An update transaction that involves more than two database partition servers in the database must
verify that the clocks on the participating database partition servers are in synchrony before the update
can be committed. If two or more database partition servers have a time difference that exceeds the
limit allowed by max_time_diff, the transaction is rolled back to prevent the incorrect time from being
propagated to other database partition servers.

Troubleshooting

Troubleshooting partitioned database environments

Issuing commands in partitioned database environments

In a partitioned database environment, you might want to issue commands to be run on computers in the
instance, or on database partition servers. You can do so using the xrah command or the db2_all
command. The xrah command allows you to issue commands that you want to run at computers in the
instance.

If you want the commands to run at database partition servers in the instance, you run the db2_all
command. This section provides an overview of these commands. The information that follows applies to
partitioned database environments only.

On Windows, to run the xrah command or the db2_all command, you must be logged on with a user
account that is a member of the Administrators group.

On Linux and UNIX operating systems, your login shell can be a Korn shell or any other shell; however,
there are differences in the way the different shells handle commands containing special characters.

Also, on Linux and UNIX operating systems, xrah uses the remote shell program specified by the
DB2RSHCMD registry variable. You can select between the two remote shell programs: ssh (for additional
security), or rsh. If DB2RSHCMD is not set, rsh is used. The ssh remote shell program is used to prevent the
transmission of passwords in clear text in UNIX operating system environments.

If a command runs on one database partition server and you want it to run on all of them, use db2_all.
The exception is the db2txc command, which runs on all the logical database partition servers on a
computer. If you want to run db2txc on all logical database partition servers on all computers, use rah.

Note: The db2_all command does not support commands that require interactive user input.

Chapter 3. Implementation and maintenance 237

238 IBM Db2 V11.5: Partitioning and Clustering Guide

Chapter 4. Performance issues

Performance issues in database design

Performance enhancing features

Table partitioning and multidimensional clustering tables

In a table that is both multidimensional clustered and data partitioned, columns can be used both in the
table partitioning range-partition-spec and in the multidimensional clustering (MDC) key. A table that is
both multidimensional clustered and partitioned can achieve a finer granularity of data partition and block
elimination than could be achieved by either functionality alone.

There are also many applications where it is useful to specify different columns for the MDC key than
those on which the table is partitioned. It should be noted that table partitioning is multicolumn, while
MDC is multi-dimension.

Characteristics of a mainstream Db2 data warehouse

The following recommendations were focused on typical, mainstream warehouses that were new for Db2
V9.1. The following characteristics are assumed:

- The database runs on multiple machines or multiple AIX logical partitions.

- Partitioned database environments are used (tables are created using the DISTRIBUTE BY HASH
clause).

« There are four to fifty data partitions.

 The table for which MDC and table partitioning is being considered is a major fact table.
« The table has 100,000,000 to 100,000,000,000 rows.

« New data is loaded at various time frames: nightly, weekly, monthly.

« Daily ingest volume is 10 thousand to 10 million records.

« Data volumes vary: The biggest month is 5X the size of the smallest month. Likewise, the biggest
dimensions (product line, region) have a 5X size range.

« 1to 5 years of detailed data is retained.
« Expired data is rolled out monthly or quarterly.

« Tables use a wide range of query types. However, the workload is mostly analytical queries with the
following characteristics, relative to OLTP workloads:

— larger results sets with up to 2 million rows
— most or all queries are hitting views, not base tables
« SQL clauses selecting data by ranges (BETWEEN clause), items in lists, and so on.

Characteristics of a mainstream Db2 V9.1 data warehouse fact table

A typical warehouse fact table, might use the following design:

« Create data partitions on the Month column.

« Define a data partition for each period you roll-out, for example, 1 month, 3 months.

« Create MDC dimensions on Day and on 1 to 4 additional dimensions. Typical dimensions are: product
line and region.

« All data partitions and MDC clusters are spread across all database partitions.

© Copyright IBM Corp. 2016, 2020 239

MDC and table partitioning provide overlapping sets of benefits. The following table lists potential needs
in your organization and identifies a recommended organization scheme based on the characteristics

identified previously.

Table 15. Using table partitioning with MDC tables

Issue

Recommended scheme

Recommendation

Data availability during roll-out

Table partitioning

Use the DETACH PARTITION
clause to roll out large amounts
of data with minimal disruption.

Query performance

Table partitioning and MDC

MDC is best for querying multiple
dimensions. Table partitioning
helps through data partition
elimination.

Minimal reorganization

MDC

MDC maintains clustering, which
reduces the need to reorganize.

Rollout a month or more of data
during a traditional offline
window

Table partitioning

Data partitioning addresses this
need fully. MDC adds nothing and
would be less suitable on its own.

Rollout a month or more of data
during a micro-offline window
(less than 1 minute)

Table partitioning

Data partitioning addresses this
need fully. MDC adds nothing and
would be less suitable on its own.

Rollout a month or more of data
while keeping the table fully
available for business users
submitting queries without any
loss of service.

MDC

MDC only addresses this need
somewhat. Table partitioning
would not be suitable due to the
short period the table goes
offline.

Load data daily (LOAD or INGEST
command)

Table partitioning and MDC

MDC provides most of the benefit
here. Table partitioning provides
incremental benefits.

Load data "continually" (LOAD
command with ALLOW READ
ACCESS or INGEST command)

Table partitioning and MDC

MDC provides most of the benefit
here. Table partitioning provides
incremental benefits.

Query execution performance for
“traditional BI" queries

Table partitioning and MDC

MDC is especially good for
querying cubes/multiple
dimensions. Table partitioning
helps via partition elimination.

Minimize reorganization pain, by
avoiding the need for
reorganization or reducing the
pain associated with performing
the task

MDC

MDC maintains clustering which
reduces the need to reorg. If
MDC is used, data partitioning
does not provide incremental
benefits. However if MDC is not
used, table partitioning helps
reduce the need for reorg by
maintaining some course grain
clustering at the partition level.

Example 1:

Consider a table with key columns YearAndMonth and Province. A reasonable approach to planning this
table might be to partition by date with 2 months per data partition. In addition, you might also organize

240 IBM Db2 V11.5: Partitioning and Clustering Guide

by Province, so that all rows for a particular province within any two month date range are clustered
together, as shown in Figure 44 on page 241.

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)

(STARTING 9901 ENDING 9904 EVERY 2)

ORGANIZE BY (Province);

Table orders
MDC block (Province)
AB 1 BC | ON | QB
(1] [32]) (9 |[4] [11)
(6]
ot
9902
= [s 1@] (2][3] [18]
€ 70 () 5] =]
g
=
Jp—
2 (3] [a]
E (22]
g (30] (36]
s
(84][50] [24a]
(25]
[53]
Legend
(1] =block1

Figure 44. A table partitioned by YearAndMonth and organized by Province

Example 2:

Finer granularity can be achieved by adding YearAndMonth to the ORGANIZE BY DIMENSIONS clause, as
shown in Figure 45 on page 242.

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)

(STARTING 9901 ENDING 9904 EVERY 2)

ORGANIZE BY (YearAndMonth, Province);

Chapter 4. Performance issues 241

Table orders

MDC block (Province)
AB T BC | ON | QB
(1])[12]) (8 |[4] [
R i)
£ [5 1] [2][3] [18]
E e (10 () (O5) ()
3
g
$ (3]]
E 22
g (30 (36
(&) (8] (=)
0008 (25
(5
Legend
[T =block 1

Figure 45. A table partitioned by YearAndMonth and organized by Province and YearAndMonth

In cases where the partitioning is such that there is only a single value in each range, nothing is gained by
including the table partitioning column in the MDC key.

Considerations

« Compared to a basic table, both MDC tables and partitioned tables require more storage. These storage
needs are additive but are considered reasonable given the benefits.

- If you choose not to combine table partitioning and MDC functionality in your partitioned database
environment, table partitioning is best in cases where you can confidently predict the data distribution,
which is generally the case for the types of systems discussed here. Otherwise, MDC should be
considered.

« For a data-partitioned MDC table created with Db2 Version 9.7 Fix Pack 1 or later releases, the MDC
block indexes on the table are partitioned. For a data-partitioned MDC table created with Db2 V9.7 or
earlier releases, the MDC block indexes on the table are nonpartitioned.

242 IBM Db2 V11.5: Partitioning and Clustering Guide

Optimization strategies for partitioned tables
Data partition elimination refers to the database server's ability to determine, based on query predicates,
that only a subset of the data partitions in a table need to be accessed to answer a query. Data partition
elimination is particularly useful when running decision support queries against a partitioned table.

A partitioned table uses a data organization scheme in which table data is divided across multiple storage
objects, called data partitions or ranges, according to values in one or more table partitioning key columns

of the table. Data from a table is partitioned into multiple storage objects based on specifications
provided in the PARTITION BY clause of the CREATE TABLE statement. These storage objects can be in
different table spaces, in the same table space, or a combination of both.

The following example demonstrates the performance benefits of data partition elimination.

create table custlist(
subsdate date, province char(2), accountid int)
partition by range(subsdate) (

starting from '1/1/1990' in ts1,
starting from '1/1/1991' in tsi,
starting from '1/1/1992' in tsi,
starting from '1/1/1993' in ts2,
starting from '1/1/1994' in ts2,
starting from '1/1/1995' in ts2,
starting from '1/1/1996' in ts3,
starting from '1/1/1997' in ts3,
starting from '1/1/1998' in ts3,
starting from '1/1/1999' in ts4,
starting from '1/1/2000' in ts4,
starting from '1/1/2001'

ending '12/31/2001' in ts4)
Assume that you are only interested in customer information for the year 2000.

select * from custlist
where subsdate between '1/1/2000' and '12/31/2000'
As Figure 46 on page 243 shows, the database server determines that only one data partition in table

space TS4 must be accessed to resolve this query.

Scan
Table Table Table Table
space (ts1) space (ts2) space (is3) space (ts4)
table custlist I B I
! a=1990 gaﬂm a-1996 a=1999 |
! a=1991 a=1994 a=19a97 a=2000 .
! a=1992 a=1995 a=1998 a=200
_________________ i Y I I I
Legend
= Data partition
a = subsdate

Figure 46. The performance benefits of data partition elimination
Another example of data partition elimination is based on the following scheme:

create table multi (
sale_date date, region char(2))
partition by (sale_date) (
starting '01/01/2005'

Chapter 4. Performance issues 243

ending '12/31/2005'
every 1 month)

create index sx on multi(sale_date)

create index rx on multi(region)

Assume that you issue the following query:

select * from multi
where sale_date between '6/1/2005'
and '7/31/2005' and region = 'NW'
Without table partitioning, one likely plan is index ANDing. Index ANDing performs the following tasks:
« Reads all relevant index entries from each index
« Saves both sets of row identifiers (RIDs)
« Matches RIDs to determine which occur in both indexes
« Uses the RIDs to fetch the rows

As Figure 47 on page 244 demonstrates, with table partitioning, the index is read to find matches for both
REGION and SALE_DATE, resulting in the fast retrieval of matching rows.

Index ANDing Data partition elimination
fetch fetch
present matching
’_' in both ‘—‘ range?
RIDs for RIDs for 1
data ranga W RIDs for
| | "
sale_date reglon region

Figure 47. Optimizer decision path for both table partitioning and index ANDing

Db2 Explain

You can also use the explain facility to determine the data partition elimination plan that was chosen by
the query optimizer. The "DP Elim Predicates" information shows which data partitions are scanned to
resolve the following query:

select * from custlist
where subsdate between '12/31/1999' and '1/1/2001'

Arguments:

DPESTFLG: (Number of data partitions accessed are Estimated)
FALSE
DPLSTPRT: (List of data partitions accessed)
9-11
DPNUMPRT: (Number of data partitions accessed)
3

DP Elim Predicates:

Range 1)

Stop Predicate:
Start Predicate:

(Q1.A <= '01/01/2001")
('12/31/1999"' <= Q1.A)

244 1BM Db2 V11.5: Partitioning and Clustering Guide

Objects Used in Access Plan:

Schema: MRSRINI

Name: CUSTLIST
Type: Data Partitioned Table
Time of creation: 2005-11-30-14.21.33.857039
Last statistics update: 2005-11-30-14.21.34.339392
Number of columns: 3
Number of rows: 100000
Width of rows: 19
Number of buffer pool pages: 1200
Number of data partitions: 12
Distinct row values: No
Tablespace name: <VARIOUS>

Multi-column support

Data partition elimination works in cases where multiple columns are used as the table partitioning key.
For example:

create table sales (
year int, month int)

partition by range(year, month) (

starting from (2001,1)

ending at (2001,3) in tsi,
ending at (2001,6) in ts2,
ending at (2001,9) in ts3,
ending at (2001,12) in ts4,
ending at (2002,3) in ts5,
ending at (2002,6) in tsé6,
ending at (2002,9) in ts7,
ending at (2002,12) in ts8)

select * from sales where year = 2001 and month < 8

The query optimizer deduces that only data partitions in TS1, TS2, and TS3 must be accessed to resolve
this query.

Note: In the case where multiple columns make up the table partitioning key, data partition elimination is
only possible when you have predicates on the leading columns of the composite key, because the non-
leading columns that are used for the table partitioning key are not independent.

Multi-range support

It is possible to obtain data partition elimination with data partitions that have multiple ranges (that is,
those that are ORed together). Using the SALES table that was created in the previous example, execute
the following query:

select * from sales
where (year = 2001 and month <= 3)
or (year = 2002 and month >= 10)

The database server only accesses data for the first quarter of 2001 and the last quarter of 2002.

Generated columns

You can use generated columns as table partitioning keys. For example:

create table sales (
a int, b int generated always as (a / 5))
in tsi1,ts2,ts3,ts4,ts5,ts6,ts7,ts8,ts9,ts10
partition by range(b) (
starting from (0)
ending at (1000) every (50))

In this case, predicates on the generated column are used for data partition elimination. In addition, when
the expression that is used to generate the columns is monotonic, the database server translates

Chapter 4. Performance issues 245

predicates on the source columns into predicates on the generated columns, which enables data partition
elimination on the generated columns. For example:

select * from sales where a > 35

The database server generates an extra predicate on b (b > 7) from a (a > 35), thus allowing data partition
elimination.

Join predicates

Join predicates can also be used in data partition elimination, if the join predicate is pushed down to the
table access level. The join predicate is only pushed down to the table access level on the inner join of a
nested loop join (NLIN).

Consider the following tables:

create table t1 (a int, b int)
partition by range(a,b) (

starting from (1,1)

ending (1,10) in tsi,
ending (1,20) in ts2,
ending (2,10) in ts3,
ending (2,20) in ts4,
ending (3,10) in ts5,
ending (3,20) in tsé6,
ending (4,10) in ts7,
ending (4,20) in ts8)

create table t2 (a int, b int)
The following two predicates will be used:

P1: T1.A

=T2.A
P2: T1.B > 15

In this example, the exact data partitions that will be accessed at compile time cannot be determined,
due to unknown outer values of the join. In this case, as well as cases where host variables or parameter
markers are used, data partition elimination occurs at run time when the necessary values are bound.

During run time, when T1 is the inner of an NLIN, data partition elimination occurs dynamically, based on
the predicates, for every outer value of T2.A. During run time, the predicates TL.A=3 and T1.B > 15 are
applied for the outer value T2.A = 3, which qualifies the data partitions in table space TS6 to be accessed.

Suppose that column Ain tables T1 and T2 have the following values:

Outer table T2: column Innertable T1: column Inner table T1: column Inner table T1: data

A A B partition location
2 3 20 TS6
3 2 10 TS3
3 2 18 TS4
3 15 TS6
1 40 TS3

To perform a nested loop join (assuming a table scan for the inner table), the database manager performs
the following steps:

1. Reads the first row from T2. The value for A is 2.

2. Binds the T2.A value (which is 2) to the column T2.A in the join predicate T1.A = T2.A. The predicate
becomes T1.A = 2.

3. Applies data partition elimination using the predicates T1.A = 2 and T1.B > 15. This qualifies data
partitions in table space TS4.

246 IBM Db2 V11.5: Partitioning and Clustering Guide

4. After applying T1.A =2 and T1.B > 15, scans the data partitions in table space TS4 of table T1 until a
row is found. The first qualifying row found is row 3 of T1.

5. Joins the matching row.

6. Scans the data partitions in table space TS4 of table T1 until the next match (T1.A =2 and T1.B > 15)
is found. No more rows are found.

7. Repeats steps 1 through 6 for the next row of T2 (replacing the value of A with 3) until all the rows of
T2 have been processed.

Indexes over XML data

Starting in Db2 Version 9.7 Fix Pack 1, you can create an index over XML data on a partitioned table as
either partitioned or nonpartitioned. The default is a partitioned index.

Partitioned and nonpartitioned XML indexes are maintained by the database manager during table insert,
update, and delete operations in the same way as any other relational indexes on a partitioned table are
maintained. Nonpartitioned indexes over XML data on a partitioned table are used in the same way as
indexes over XML data on a nonpartitioned table to speed up query processing. Using the query predicate,
it is possible to determine that only a subset of the data partitions in the partitioned table need to be
accessed to answer the query.

Data partition elimination and indexes over XML columns can work together to enhance query
performance. Consider the following partitioned table:

create table employee (a int, b xml, c xml)
index in tbspx
partition by (a) (
starting 0 ending 10,
ending 20,
ending 30,
ending 40)

Now consider the following query:

select = from employee
where a > 21
and xmlexist('$doc/Person/Name/First[.="Eric"]"'
passing "EMPLOYEE"."B" as "doc")

The optimizer can immediately eliminate the first two partitions based on the predicate a > 21. If the
nonpartitioned index over XML data on column B is chosen by the optimizer in the query plan, an index
scan using the index over XML data will be able to take advantage of the data partition elimination result
from the optimizer and only return results belonging to partitions that were not eliminated by the
relational data partition elimination predicates.

Optimization strategies for MDC tables

If you create multidimensional clustering (MDC) tables, the performance of many queries might improve,
because the optimizer can apply additional optimization strategies. These strategies are primarily based
on the improved efficiency of block indexes, but the advantage of clustering on more than one dimension
also permits faster data retrieval.

MDC table optimization strategies can also exploit the performance advantages of intrapartition
parallelism and interpartition parallelism. Consider the following specific advantages of MDC tables:

« Dimension block index lookups can identify the required portions of the table and quickly scan only the
required blocks.

Because block indexes are smaller than record identifier (RID) indexes, lookups are faster.
Index ANDing and ORing can be performed at the block level and combined with RIDs.

- Data is guaranteed to be clustered on extents, which makes retrieval faster.
« Rows can be deleted faster when rollout can be used.

Chapter 4. Performance issues 247

Consider the following simple example for an MDC table named SALES with dimensions defined on the
REGION and MONTH columns:

select x from sales
where month = 'March' and region = 'SE'

For this query, the optimizer can perform a dimension block index lookup to find blocks in which the
month of March and the SE region occur. Then it can scan only those blocks to quickly fetch the result set.

Rollout deletion

When conditions permit delete using rollout, this more efficient way to delete rows from MDC tables is
used. The required conditions are:

« The DELETE statement is a searched DELETE, not a positioned DELETE (the statement does not use the
WHERE CURRENT OF clause).

« There is no WHERE clause (all rows are to be deleted), or the only conditions in the WHERE clause apply
to dimensions.

« The table is not defined with the DATA CAPTURE CHANGES clause.
- The table is not the parent in a referential integrity relationship.

« The table does not have ON DELETE triggers defined.

- The table is not used in any MQTs that are refreshed immediately.

« A cascaded delete operation might qualify for rollout if its foreign key is a subset of the table's
dimension columns.

« The DELETE statement cannot appear in a SELECT statement executing against the temporary table
that identifies the set of affected rows prior to a triggering SQL operation (specified by the OLD TABLE
AS clause on the CREATE TRIGGER statement).

During a rollout deletion, the deleted records are not logged. Instead, the pages that contain the records
are made to look empty by reformatting parts of the pages. The changes to the reformatted parts are
logged, but the records themselves are not logged.

The default behavior, immediate cleanup rollout, is to clean up RID indexes at delete time. This mode can
also be specified by setting the DB2_MDC_ROLLOUT registry variable to IMMEDIATE, or by specifying
IMMEDIATE on the SET CURRENT MDC ROLLOUT MODE statement. There is no change in the logging of
index updates, compared to a standard delete operation, so the performance improvement depends on
how many RID indexes there are. The fewer RID indexes, the better the improvement, as a percentage of
the total time and log space.

An estimate of the amount of log space that is saved can be made with the following formula:
S + 38%*N - 50*P

where N is the number of records deleted, S is total size of the records deleted, including overhead such
as null indicators and VARCHAR lengths, and P is the number of pages in the blocks that contain the
deleted records. This figure is the reduction in actual log data. The savings on active log space required is
double that value, due to the saving of space that was reserved for rollback.

Alternatively, you can have the RID indexes updated after the transaction commits, using deferred
cleanup rollout. This mode can also be specified by setting the DB2_MDC_ROLLOUT registry variable to
DEFER, or by specifying DEFERRED on the SET CURRENT MDC ROLLOUT MODE statement. In a deferred
rollout, RID indexes are cleaned up asynchronously in the background after the delete commits. This
method of rollout can result in significantly faster deletion times for very large deletes, or when a number
of RID indexes exist on the table. The speed of the overall cleanup operation is increased, because during
a deferred index cleanup, the indexes are cleaned up in parallel, whereas in an immediate index cleanup,
each row in the index is cleaned up one by one. Moreover, the transactional log space requirement for the
DELETE statement is significantly reduced, because the asynchronous index cleanup logs the index
updates by index page instead of by index key.

248 IBM Db2 V11.5: Partitioning and Clustering Guide

Note: Deferred cleanup rollout requires additional memory resources, which are taken from the database
heap. If the database manager is unable to allocate the memory structures it requires, the deferred
cleanup rollout fails, and a message is written to the administration notification log.

When to use a deferred cleanup rollout

If delete performance is the most important factor, and there are RID indexes defined on the table, use
deferred cleanup rollout. Note that prior to index cleanup, index-based scans of the rolled-out blocks
suffer a small performance penalty, depending on the amount of rolled-out data. The following issues
should also be considered when deciding between immediate index cleanup and deferred index cleanup:

- Size of the delete operation

Choose deferred cleanup rollout for very large deletions. In cases where dimensional DELETE
statements are frequently issued on many small MDC tables, the overhead to asynchronously clean
index objects might outweigh the benefit of time saved during the delete operation.

« Number and type of indexes

If the table contains a number of RID indexes, which require row-level processing, use deferred cleanup
rollout.

« Block availability

If you want the block space freed by the delete operation to be available immediately after the DELETE
statement commits, use immediate cleanup rollout.

« Log space
If log space is limited, use deferred cleanup rollout for large deletions.
« Memory constraints

Deferred cleanup rollout consumes additional database heap space on all tables that have deferred
cleanup pending.

To disable rollout behavior during deletions, set the DB2_MDC_ROLLOUT registry variable to OFF or
specify NONE on the SET CURRENT MDC ROLLOUT MODE statement.

Note: In Db2 Version 9.7 and later releases, deferred cleanup rollout is not supported on a data
partitioned MDC table with partitioned RID indexes. Only the NONE and IMMEDIATE modes are
supported. The cleanup rollout type will be IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set
to DEFER, or if the CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to override the
DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup rollout is supported.

Indexes

Indexes in partitioned tables

Index behavior on partitioned tables

Indexes on partitioned tables operate similarly to indexes on nonpartitioned tables. However, indexes on
partitioned tables are stored using a different storage model, depending on whether the indexes are
partitioned or nonpartitioned.

Although the indexes for a regular nonpartitioned table all reside in a shared index object, a
nonpartitioned index on a partitioned table is created in its own index object in a single table space, even
if the data partitions span multiple table spaces. Both database managed space (DMS) and system
managed space (SMS) table spaces support the use of indexes in a different location than the table data.
Each nonpartitioned index can be placed in its own table space, including large table spaces. Each index
table space must use the same storage mechanism as the data partitions, either DMS or SMS. Indexes in
large table spaces can contain up to 229 pages. All of the table spaces must be in the same database
partition group.

Chapter 4. Performance issues 249

A partitioned index uses an index organization scheme in which index data is divided across multiple
index partitions, according to the partitioning scheme of the table. Each index partition refers only to table
rows in the corresponding data partition. All index partitions for a specific data partition reside in the
same index object.

Starting in Db2 Version 9.7 Fix Pack 1, user-created indexes over XML data on XML columns in partitioned
tables can be either partitioned or nonpartitioned. The default is partitioned. System-generated XML
region indexes are always partitioned, and system-generated column path indexes are always
nonpartitioned. In Db2 V9.7, indexes over XML data are nonpartitioned.

Benefits of a nonpartitioned index include:

- The fact that indexes can be reorganized independently of one another
« Improved performance of drop index operations

« The fact that when individual indexes are dropped, space becomes immediately available to the system
without the need for index reorganization

Benefits of a partitioned index include:

« Improved data roll-in and roll-out performance
- Less contention on index pages, because the index is partitioned
- Anindex B-tree structure for each index partition, which can result in the following benefits:

— Improved insert, update, delete, and scan performance because the B-tree for an index partition
normally contains fewer levels than an index that references all data in the table

— Improved scan performance and concurrency when partition elimination is in effect. Although
partition elimination can be used for both partitioned and nonpartitioned index scans, it is more
effective for partitioned index scans because each index partition contains keys for only the
corresponding data partition. This configuration can result in having to scan fewer keys and fewer
index pages than a similar query over a nonpartitioned index.

Although a nonpartitioned index always preserves order on the index columns, a partitioned index might
lose some order across partitions in certain scenarios; for example, if the partitioning columns do not
match the index columns, and more than one partition is to be accessed.

During online index creation, concurrent read and write access to the table is permitted. After an online
index is built, changes that were made to the table during index creation are applied to the new index.
Write access to the table is blocked until index creation completes and the transaction commits. For
partitioned indexes, each data partition is quiesced to read-only access only while changes that were
made to that data partition (during the creation of the index partition) are applied.

Partitioned index support becomes particularly beneficial when you are rolling data in using the ALTER
TABLE...ATTACH PARTITION statement. If nonpartitioned indexes exist (not including the XML columns
path index, if the table has XML data), issue a SET INTEGRITY statement after partition attachment. This
statement is necessary for nonpartitioned index maintenance, range validation, constraints checking, and
materialized query table (MQT) maintenance. Nonpartitioned index maintenance can be time-consuming
and require large amounts of log space. Use partitioned indexes to avoid this maintenance cost.

If there are nonpartitioned indexes (except XML columns path indexes) on the table to maintain after an
attach operation, the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement behaves as though it
were a SET INTEGRITY...IMMEDIATE CHECKED statement. All integrity processing, nonpartitioned index
maintenance, and table state transitions are performed as though a SET INTEGRITY...IMMEDIATE
CHECKED statement was issued.

The Figure 48 on page 251 diagram shows two nonpartitioned indexes on a partitioned table, with each
index in a separate table space.

250 IBM Db2 V11.5: Partitioning and Clustering Guide

Table space (ts1)

Table space (ts2)

Imecdiece (%1}

Irichen: (%2}

Table space (ts3)

Table A

0o

00

Legend

= Data parlition

Figure 48. Nonpartitioned indexes on a partitioned table

The Figure 49 on page 252 diagram shows a partitioned index on a partitioned table that spans two

database partitions and resides in a single table space.

Chapter 4. Performance issues 251

Database partition group (dbgroup1)

Database partition (dbpart1)

Table space (ts1) Table space (is2)
Index (x1) Index (x2)
Table space (ts3)
TableA
)
S

Databage partition (dbpart2)

Table space (ts1) Table space (ts2)
Index (x1) Index (x2)
Ta!:tle space {153]. |
I 1
I 1
| 1
-
I :._g: :
Y-
el
i]

Legend

(& = Data partition

Figure 49. Nonpartitioned index on a table that is both distributed and partitioned

The Figure 50 on page 253 diagram shows a mix of partitioned and nonpartitioned indexes on a
partitioned table.

252 IBM Db2 V11.5: Partitioning and Clustering Guide

Table space (ts3)

i1
P
i -L=‘_F_|E Imdax (x2)
| Partd | Incles: (%3)
_, !
Table space (ts2) Table space (ts1) Table space (ts5)
[E L i Index (x2
Index (x1) L ndex (x2)
' Parti i Index (x3)
i Table space (ts4)
' -L=.1_._|i Index (x2)
Part2 | Index (x3)
b
Ly T ! Imdax (x2)
i Part3 | Index (x3)
: . -= , Index (x2)
i Part4 :I— Index (x3)

Figure 50. Partitioned and nonpartitioned indexes on a partitioned table

The nonpartitioned index X1 refers to rows in all of the data partitions. By contrast, the partitioned
indexes X2 and X3 refer only to rows in the data partition with which they are associated. Table space TS3
also shows the index partitions sharing the table space of the data partitions with which they are
associated. This configuration is the default for partitioned indexes.

You can override the default location for nonpartitioned and partitioned indexes, although the way that
you do this is different for each. With nonpartitioned indexes, you can specify a table space when you
create the index; for partitioned indexes, you need to determine the table spaces in which the index
partitions are stored when you create the table.

Nonpartitioned indexes

To override the index location for nonpartitioned indexes, use the IN clause on the CREATE INDEX
statement to specify an alternative table space location for the index. You can place different indexes
in different table spaces, as required. If you create a partitioned table without specifying where to
place its nonpartitioned indexes, and you then create an index by using a CREATE INDEX statement
that does not specify a table space, the index is created in the table space of the first attached or

Chapter 4. Performance issues 253

visible data partition. Each of the following three possible cases is evaluated in order, starting with
case 1, to determine where the index is to be created. This evaluation to determine table space
placement for the index stops when a matching case is found.

Case 1:
When an index table space is specified in the CREATE INDEX...IN
tbspace statement, use the specified table space for this index.

Case 2:

When an index table space is specified in the CREATE TABLE...
INDEX IN tbspace statement, use the specified

table space for this index.

Case 3:
When no table space is specified, choose the table space that is used
by the first attached or visible data partition.

Partitioned indexes
By default, index partitions are placed in the same table space as the data partitions that they
reference. To override this default behavior, you must use the INDEX IN clause for each data partition
that you define by using the CREATE TABLE statement. In other words, if you plan to use partitioned
indexes for a partitioned table, you must anticipate where you want the index partitions to be stored
when you create the table. If you try to use the INDEX IN clause when creating a partitioned index,
you receive an error message.

Example 1: Given partitioned table SALES (a int, b int, c int), create a unique index A_IDX.

create unique index a_idx on sales (a)

Because the table SALES is partitioned, index a_idx is also created as a partitioned index.

Example 2: Create index B_IDX.

create index b_idx on sales (b)

Example 3: To override the default location for the index partitions in a partitioned index, use the INDEX
IN clause for each partition that you define when creating the partitioned table. In the example that
follows, indexes for the table Z are created in table space TS3.

create table z (a int, b int)
partition by range (a) (starting from (1)
ending at (100) index in ts3)

create index c_idx on z (a) partitioned

Clustering of nonpartitioned indexes on partitioned tables
Clustering indexes offer the same benefits for partitioned tables as they do for regular tables. However,
care must be taken with the table partitioning key definitions when choosing a clustering index.

You can create a clustering index on a partitioned table using any clustering key. The database server
attempts to use the clustering index to cluster data locally within each data partition. During a clustered
insert operation, an index lookup is performed to find a suitable record identifier (RID). This RID is used
as a starting point in the table when looking for space in which to insert the record. To achieve optimal
clustering with good performance, there should be a correlation between the index columns and the table
partitioning key columns. One way to ensure such correlation is to prefix the index columns with the table
partitioning key columns, as shown in the following example:

partition by range (month, region)
create index...(month, region, department) cluster

Although the database server does not enforce this correlation, there is an expectation that all keys in the
index will be grouped together by partition IDs to achieve good clustering. For example, suppose that a

254 IBM Db2 V11.5: Partitioning and Clustering Guide

table is partitioned on QUARTER and a clustering index is defined on DATE. There is a relationship
between QUARTER and DATE, and optimal clustering of the data with good performance can be achieved
because all keys of any data partition are grouped together within the index. Figure 51 on page 255
shows that optimal scan performance is achieved only when clustering correlates with the table
partitioning key.

Clustering with the

partitioning key as prefix (correlated)

Clustering does not
match partitioning key (locally clustered)

Legend

= Data partition

Figure 51. The possible effects of a clustered index on a partitioned table.

Benefits of clustering include:

- Rows are in key order within each data partition.

Chapter 4. Performance issues 255

- Clustering indexes improve the performance of scans that traverse the table in key order, because the
scanner fetches the first row of the first page, then each row in that same page before moving on to the
next page. This means that only one page of the table needs to be in the buffer pool at any given time.
In contrast, if the table is not clustered, rows are likely fetched from different pages. Unless the buffer
pool can hold the entire table, most pages will likely be fetched more than once, greatly slowing down
the scan.

If the clustering key is not correlated with the table partitioning key, but the data is locally clustered, you
can still achieve the full benefit of the clustered index if there is enough space in the buffer pool to hold
one page of each data partition. This is because each fetched row from a particular data partition is near
the row that was previously fetched from that same partition (see the second example in Figure 51 on

page 255).

Design advisor

Using the Design Advisor to convert from a single-partition to a multi-partition database

You can use the Design Advisor to help you convert a single-partition database into a multi-partition
database.

About this task

In addition to making suggestions about new indexes, materialized query tables (MQTs), and
multidimensional clustering (MDC) tables, the Design Advisor can provide you with suggestions for
distributing data.

Procedure

1. Use the db21icm command to register the partitioned database environment license key.
2. Create at least one table space in a multi-partition database partition group.

Note: The Design Advisor can only suggest data redistribution to existing table spaces.
3. Run the Design Advisor with the partitioning option specified on the db2advis command.

4. Modify the db2advis output file slightly before running the DDL statements that were generated by
the Design Advisor.

Because database partitioning must be set up before you can run the DDL script that the Design
Advisor generates, suggestions are commented out of the script that is returned. It is up to you to
transform your tables in accordance with the suggestions.

Managing concurrency

Lock modes for MDC and ITC tables and RID index scans

The type of lock that a multidimensional clustering (MDC) or insert time clustering (ITC) table obtains
during a table or RID index scan depends on the isolation level that is in effect and on the data access
plan that is being used.

The following tables show the types of locks that are obtained for MDC and ITC tables under each
isolation level for different access plans. Each entry has three parts: the table lock, the block lock, and the
row lock. A hyphen indicates that a particular lock granularity is not available.

Tables 9-14 show the types of locks that are obtained for RID index scans when the reading of data pages
is deferred. Under the UR isolation level, if there are predicates on include columns in the index, the
isolation level is upgraded to CS and the locks are upgraded to an IS table lock, an IS block lock, or NS
row locks.

« Table 1. Lock Modes for Table Scans with No Predicates

256 IBM Db2 V11.5: Partitioning and Clustering Guide

« Table 2. Lock Modes for Table Scans with Predicates on Dimension Columns Only

- Table 3. Lock Modes for Table Scans with Other Predicates (sargs, resids)

- Table 4. Lock Modes for RID Index Scans with No Predicates

- Table 5. Lock Modes for RID Index Scans with a Single Qualifying Row

« Table 6. Lock Modes for RID Index Scans with Start and Stop Predicates Only
« Table 7. Lock Modes for RID Index Scans with Index Predicates Only

« Table 8. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

« Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan with No
Predicates

« Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID Index Scan with
No Predicates

« Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan with
Predicates (sargs, resids)

» Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID Index Scan with
Predicates (sargs, resids)

« Table 13. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan with Start
and Stop Predicates Only

« Table 14. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID Index Scan with
Start and Stop Predicates Only

Note: Lock modes can be changed explicitly with the lock-request-clause of a SELECT statement.

Table 16. Lock Modes for Table Scans with No Predicates

Isolation Read-only and Cursored operation Searched update or delete
level ambiguous scans Scan Where current of Scan Update or
delete
RR S/-/- u/-/- SIX/IX/X X/-/- X/-/-
RS IS/IS/NS IX/IX/U IX/IX/U IX/X/- IX/1/-
CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-
UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 17. Lock Modes for Table Scans with Predicates on Dimension Columns Only

Isolation Read-only and Cursored operation Searched update or delete
level ambiguous scans Scan Where current of Scan Update or
delete
RR S/-/- u/-/- SIX/IX/X u/-/- SIX/X/-
RS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-
CS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X[-
UR IN/IN/- IX/IX/U IX/IX/X IX/U/- X/X[-

Table 18. Lock Modes for Table Scans with Other Predicates (sargs, resids)

Isolation Read-only and Cursored operation Searched update or delete
level ambiguous scans Scan Where current of Scan Update or
delete
RR S/-/- u/-/- SIX/IX/X u/-/- SIX/IX/X

Chapter 4. Performance issues 257

Table 18. Lock Modes for Table Scans with Other Predicates (sargs, resids) (continued)

Isolation Read-only and Cursored operation Searched update or delete
level ambiguous scans Scan Where current of Scan Update or
delete
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 19. Lock Modes for RID Index Scans with No Predicates

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR S/-/- IX/IX/S IX/IX/X X/-/- X/-/-
RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X
CS IS/IS/NS IX/IX/U IX/IX/X X/X[X X/X/X
UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 20. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/IS/S IX/IX/U IX/IX/X X/X/X X/X/X
RS IS/IS/NS IX/IX/U IX/IX/X X/X/[X X/X/X
cS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X
UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 21. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/1S/S IX/IX/S IX/IX/X IX/IX/X IX/IX/X
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Table 22. Lock Modes for RID Index Scans with Index Predicates Only

Isolation level Read-only and Cursored operation Searched update or delete
bi
ambiguous scans Scan Where current Scan Update or
of delete
RR I1S/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

258 IBM Db2 V11.5: Partitioning and Clustering Guide

Table 22. Lock Modes for RID Index Scans with Index Predicates Only (continued)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 23. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR 1S/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 24. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan with No
Predicates

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/S/S IX/IX/S X/-/-
RS IN/IN/- IN/IN/- IN/IN/-
cS IN/IN/- IN/IN/- IN/IN/-
UR IN/IN/- IN/IN/- IN/IN/-

Table 25. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID Index Scan with
No Predicates

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IN/IN/- IX/IX/S IX/IX/X X/-/- X/-/-
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Chapter 4. Performance issues 259

Table 26. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan with
Predicates (sargs, resids)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/S/- IX/IX/S IX/IX/S
RS IN/IN/- IN/IN/- IN/IN/-
CS IN/IN/- IN/IN/- IN/IN/-
UR IN/IN/- IN/IN/- IN/IN/-

Table 27. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID Index Scan with
Predicates (sargs, resids)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IN/IN/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 28. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan with Start and

Stop Predicates Only
Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/IS/S IX/IX/S IX/IX/X
RS IN/IN/- IN/IN/- IN/IN/-
cS IN/IN/- IN/IN/- IN/IN/-
UR IN/IN/- IN/IN/- IN/IN/-

Table 29. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID Index Scan with
Start and Stop Predicates Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IN/IN/- IX/IX/S IX/IX/X IX/IX/X IX/IX/X
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
UR 1S/-/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

260 IBM Db2 V11.5: Partitioning and Clustering Guide

Lock modes for MDC block index scans

The type of lock that a multidimensional clustering (MDC) table obtains during a block index scan
depends on the isolation level that is in effect and on the data access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables under each isolation level
for different access plans. Each entry has three parts: the table lock, the block lock, and the row lock. A
hyphen indicates that a particular lock granularity is not available.

Tables 5-12 show the types of locks that are obtained for block index scans when the reading of data
pages is deferred.

« Table 1. Lock Modes for Index Scans with No Predicates

» Table 2. Lock Modes for Index Scans with Predicates on Dimension Columns Only

« Table 3. Lock Modes for Index Scans with Start and Stop Predicates Only

« Table 4. Lock Modes for Index Scans with Predicates

 Table 5. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with No
Predicates

« Table 6. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan with
No Predicates

« Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with
Predicates on Dimension Columns Only

- Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan with
Predicates on Dimension Columns Only

« Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with Start
and Stop Predicates Only

« Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan
with Start and Stop Predicates Only

« Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with
Other Predicates (sargs, resids)

« Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan
with Other Predicates (sargs, resids)

Note: Lock modes can be changed explicitly with the lock-request-clause of a SELECT statement.

Table 30. Lock Modes for Index Scans with No Predicates

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR S/--/-- IX/IX/S IX/IX/X X/--/-- X/--]--
RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--
CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--
UR IN/IN/- IX/IX/U IX/IX/X X/X/-- X/X/--

Table 31. Lock Modes for Index Scans with Predicates on Dimension Columns Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/-/- IX/IX/S IX/IX/X X/-/- X/-/-
RS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

Chapter 4. Performance issues 261

Table 31. Lock Modes for Index Scans with Predicates on Dimension Columns Only (continued)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-
UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 32. Lock Modes for Index Scans with Start and Stop Predicates Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/S/- IX/IX/S IX/IX/S IX/IX/S IX/IX/S
RS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-
CcS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/- IX/IX/-

Table 33. Lock Modes for Index Scans with Predicates

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/S/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X
Table 34. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with No
Predicates
Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/S/-- IX/IX/S X/--/--
RS IN/IN/-- IN/IN/-- IN/IN/--
CS IN/IN/-- IN/IN/-- IN/IN/--
UR IN/IN/-- IN/IN/-- IN/IN/--

Table 35. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan with
No Predicates

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IN/IN/-- IX/IX/S IX/IX/X X/--/-- X/--]--

262 IBM Db2 V11.5: Partitioning and Clustering Guide

Table 35. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan with
No Predicates (continued)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--
CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--
UR IN/IN/-- IX/IX/U IX/IX/X X/X/-- X/X/--

Table 36. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with
Predicates on Dimension Columns Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR 1S/S/-- IX/IX/-- IX/S/--
RS IS/IS/NS IX/--/-- IX/--/--
CS IS/IS/NS IX/--/-- IX/--/--
UR IN/IN/-- IX/--/-- IX/--/--

Table 37. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan with
Predicates on Dimension Columns Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IN/IN/-- IX/IX/S IX/IX/X IX/S/-- IX/X/--
RS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--
cS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--
UR IN/IN/-- IX/IX/U IX/IX/X IX/U/-- IX/X/--

Table 38. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with Start
and Stop Predicates Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IS/S/-- IX/IX/-- IX/X/--
RS IN/IN/-- IN/IN/-- IN/IN/--
CS IN/IN/-- IN/IN/-- IN/IN/--
UR IN/IN/-- IN/IN/-- IN/IN/--

Chapter 4. Performance issues 263

Table 39. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan with
Start and Stop Predicates Only

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IN/IN/-- IX/IX/X IX/X/--
RS IS/IS/NS IN/IN/-- IN/IN/--
CS IS/IS/NS IN/IN/-- IN/IN/--
UR 1S/--/-- IN/IN/-- IN/IN/--

Table 40. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index Scan with Other
Predicates (sargs, resids)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR 1S/S/-- IX/IX/-- IX/IX/--
RS IN/IN/-- IN/IN/-- IN/IN/--
CS IN/IN/-- IN/IN/-- IN/IN/--
UR IN/IN/-- IN/IN/-- IN/IN/--

Table 41. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block Index Scan with
Other Predicates (sargs, resids)

Isolation level Read-only and Cursored operation Searched update or delete
ambiguous scans Scan Where current Scan Update or
of delete
RR IN/IN/-- IX/IX/S IX/IX/X IX/IX/S IX/IX/X
RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
CcS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X
UR IN/IN/-- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Locking behavior on partitioned tables
In addition to an overall table lock, there is a lock for each data partition of a partitioned table.

This allows for finer granularity and increased concurrency compared to a nonpartitioned table. The data
partition lock is identified in output from the db2pd command, event monitors, administrative views, and
table functions.

When a table is accessed, a table lock is obtained first, and then data partition locks are obtained as
required. Access methods and isolation levels might require the locking of data partitions that are not
represented in the result set. After these data partition locks are acquired, they might be held as long as
the table lock. For example, a cursor stability (CS) scan over an index might keep the locks on previously
accessed data partitions to reduce the cost of reacquiring data partition locks later.

Data partition locks also carry the cost of ensuring access to table spaces. For nonpartitioned tables, table
space access is handled by table locks. Data partition locking occurs even if there is an exclusive or share
lock at the table level.

264 IBM Db2 V11.5: Partitioning and Clustering Guide

Finer granularity allows one transaction to have exclusive access to a specific data partition and to avoid
row locking while other transactions are accessing other data partitions. This can be the result of the plan
that is chosen for a mass update, or because of the escalation of locks to the data partition level. The
table lock for many access methods is normally an intent lock, even if the data partitions are locked in
share or exclusive mode. This allows for increased concurrency. However, if non-intent locks are required
at the data partition level, and the plan indicates that all data partitions might be accessed, then a non-
intent lock might be chosen at the table level to prevent data partition deadlocks between concurrent
transactions.

LOCK TABLE statements

For partitioned tables, the only lock acquired by the LOCK TABLE statement is a table-level lock. This
prevents row locking by subsequent data manipulation language (DML) statements, and avoids deadlocks
at the row, block, or data partition level. The IN EXCLUSIVE MODE option can be used to guarantee
exclusive access when updating indexes, which is useful in limiting the growth of indexes during a large
update.

Effect of the LOCKSIZE TABLE option on the ALTER TABLE statement

The LOCKSIZE TABLE option ensures that a table is locked in share or exclusive mode with no intent
locks. For a partitioned table, this locking strategy is applied to both the table lock and to data partition
locks.

Row- and block-level lock escalation

Row- and block-level locks in partitioned tables can be escalated to the data partition level. When this
occurs, a table is more accessible to other transactions, even if a data partition is escalated to share,
exclusive, or super exclusive mode, because other data partitions remain unaffected. The notification log
entry for an escalation includes the impacted data partition and the name of the table.

Exclusive access to a nonpartitioned index cannot be ensured by lock escalation. For exclusive access,
one of the following conditions must be true:

« The statement must use an exclusive table-level lock
« An explicit LOCK TABLE IN EXCLUSIVE MODE statement must be issued
« The table must have the LOCKSIZE TABLE attribute

In the case of partitioned indexes, exclusive access to an index partition is ensured by lock escalation of
the data partition to an exclusive or super exclusive access mode.

Interpreting lock information

The SNAPLOCK administrative view can help you to interpret lock information that is returned for a
partitioned table. The following SNAPLOCK administrative view was captured during an offline index
reorganization.

SELECT SUBSTR(TABNAME, 1, 15) TABNAME, TAB_FILE_ID, SUBSTR(TBSP_NAME, 1, 15)
TBSP_NAME,
DATA_PARTITION_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_ESCALATION L_ESCALATION
FROM SYSIBMADM.SNAPLOCK
WHERE TABNAME like 'TP1' and LOCK_OBJECT_TYPE like 'TABLE_%'
ORDER BY TABNAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE, TAB_FILE_ID, LOCK_MODE

TABNAME TAB_FILE_ID TBSP_NAME DATA_PARTITION_ID LOCK_OBJECT_TYPE LOCK_MODE
L_ESCALATION

TP1 32768 - -1 TABLE_LOCK

z 0

TP1 4 USERSPACE1 O TABLE_PART_LOCK
z 0

TP1 5 USERSPACE1 1 TABLE_PART_LOCK

Chapter 4. Performance issues 265

z 0

TP1 6 USERSPACE1 2 TABLE_PART_LOCK
%Pl 7 UgERSPACEl 3 TABLE_PART_LOCK
%Pl 8 UgERSPACEl 4 TABLE_PART_LOCK
%Pl 9 UgERSPACEl 5 TABLE_PART_LOCK
%Pl 10 UgERSPACEl 6 TABLE_PART_LOCK
%Pl 11 UgERSPACEl 7 TABLE_PART_LOCK
%Pl 12 UgERSPACEl 8 TABLE_PART_LOCK
%Pl 13 UgERSPACEl 9 TABLE_PART_LOCK
%Pl 14 UgERSPACEl 10 TABLE_PART_LOCK
%Pl 15 UgERSPACEl 11 TABLE_PART_LOCK
%Pl 4 UgERSPACEl - TABLE_LOCK
%Pl 5 UgERSPACEl - TABLE_LOCK
%Pl 6 UgERSPACEl - TABLE_LOCK
%Pl 7 UgERSPACEl - TABLE_LOCK
%Pl 8 UgERSPACEl - TABLE_LOCK
%Pl 9 UgERSPACEl - TABLE_LOCK
%Pl 10 UgERSPACEl - TABLE_LOCK
%Pl 11 UgERSPACEl - TABLE_LOCK
%Pl 12 UgERSPACEl - TABLE_LOCK
%Pl 13 UgERSPACEl - TABLE_LOCK
%Pl 14 UgERSPACEl - TABLE_LOCK
%Pl 15 UgERSPACEl - TABLE_LOCK
'EPZL 16 UgERSPACEl - TABLE_LOCK

26 record(s) selected.

In this example, a lock object of type TABLE_LOCK and a DATA_PARTITION_ID of -1 are used to control
access to and concurrency on the partitioned table TP1. The lock objects of type TABLE_PART_LOCK are
used to control most access to and concurrency on each data partition.

There are additional lock objects of type TABLE_LOCK captured in this output (TAB_FILE_ID 4 through
16) that do not have a value for DATA_PARTITION_ID. A lock of this type, where an object with a
TAB_FILE_ID and a TBSP_NAME correspond to a data partition or index on the partitioned table, might be
used to control concurrency with the online backup utility.

Agent management

Agents in a partitioned database

In a partitioned database environment, or an environment in which intrapartition parallelism has been
enabled, each database partition has its own pool of agents from which subagents are drawn.

Because of this pool, subagents do not have to be created and destroyed each time one is needed or has
finished its work. The subagents can remain as associated agents in the pool and can be used by the

266 IBM Db2 V11.5: Partitioning and Clustering Guide

database manager for new requests from the application with which they are associated or from new
applications.

The impact on both performance and memory consumption within the system is strongly related to how
your agent pool is tuned. The database manager configuration parameter for agent pool size
(num_poolagents) affects the total number of agents and subagents that can be kept associated with
applications on a database partition. If the pool size is too small and the poolis full, a subagent
disassociates itself from the application it is working on and terminates. Because subagents must be
constantly created and reassociated with applications, performance suffers.

By default, num_poolagents is set to AUTOMATIC with a value of 100, and the database manager
automatically manages the number of idle agents to pool.

If the value of num_poolagents is manually set too low, one application could fill the pool with
associated subagents. Then, when another application requires a new subagent and has no subagents in
its agent pool, it will recycle inactive subagents from the agent pools of other applications. This behavior
ensures that resources are fully utilized.

If the value of num_poolagents is manually set too high, associated subagents might sit unused in the
pool for long periods of time, using database manager resources that are not available for other tasks.

When the connection concentrator is enabled, the value of num_poolagents does not necessarily reflect
the exact number of agents that might be idle in the pool at any one time. Agents might be needed
temporarily to handle higher workload activity.

In addition to database agents, other asynchronous database manager activities run as their own process
or thread, including;:

« Database I/O servers or I/0 prefetchers
« Database asynchronous page cleaners

Database loggers
Database deadlock detectors

« Communication and IPC listeners
« Table space container rebalancers

Optimizing access plans

Index access and cluster ratios

When it chooses an access plan, the optimizer estimates the number of I/Os that are required to fetch
pages from disk to the buffer pool. This estimate includes a prediction of buffer pool usage, because
additional I/Os are not required to read rows from a page that is already in the buffer pool.

For index scans, information from the system catalog helps the optimizer to estimate the I/O cost of
reading data pages into a buffer pool. It uses information from the following columns in the
SYSCAT.INDEXES view:

« CLUSTERRATIO information indicates the degree to which the table data is clustered in relation to this
index. The higher the number, the better the rows are ordered in index key sequence. If table rows are
in close to index-key sequence, rows can be read from a data page while the page is in the buffer. If the
value of this column is -1, the optimizer uses PAGE_FETCH_PAIRS and CLUSTERFACTOR information, if
it is available.

« The PAGE_FETCH_PAIRS column contains pairs of numbers that model the number of I/Os required to
read the data pages into buffer pools of various sizes, together with CLUSTERFACTOR information. Data
is collected for these columns only if you invoke the RUNSTATS command against the index, specifying
the DETAILED clause.

If index clustering statistics are not available, the optimizer uses default values, which assume poor
clustering of the data with respect to the index. The degree to which the data is clustered can have a
significant impact on performance, and you should try to keep one of the indexes that are defined on the

Chapter 4. Performance issues 267

table close to 100 percent clustered. In general, only one index can be one hundred percent clustered,
except when the keys for an index represent a superset of the keys for the clustering index, or when there
is an actual correlation between the key columns of the two indexes.

When you reorganize a table, you can specify an index that will be used to cluster the rows and keep them
clustered during insert processing. Because update and insert operations can make a table less clustered
in relation to the index, you might need to periodically reorganize the table. To reduce the number of
reorganizations for a table that experiences frequent insert, update, or delete operations, specify the
PCTFREE clause on the ALTER TABLE statement.

Table and index management for MDC and ITC tables
Table and index organization for multidimensional (MDC) and insert time clustering (ITC) tables is based
on the same logical structures as standard table organization.

Like standard tables, MDC and ITC tables are organized into pages that contain rows of data divided into
columns. The rows on each page are identified by record IDs (RIDs). However, the pages for MDC and ITC
tables are grouped into extent-sized blocks. For example, Figure 52 on page 269, shows a table with an
extent size of four. The first four pages, numbered 0 through 3, represent the first block in the table. The
next four pages, numbered 4 through 7, represent the second block in the table.

268 IBM Db2 V11.5: Partitioning and Clustering Guide

Logical Physical Logical view of

table view table view dimension block index
0 4020
1 4021
ok O
2 4022
BID
{2520
3 4023
BID (block 1d) = Page 252, slot 0
{first physical page of block, slot always)
F] 252 + |
5 Logical view of block map
253 for first 3 blocks
o1 2
block 1
X|UF
& 254
7 255
8 1488
9 1489
Legend
ok 2
[reserved for system records
10 1490 [FscA
[userrecords
X resarved
11 1481 U inuse
F fres

Figure 52. Logical table, record, and index structure for MDC and ITC tables

The first block contains special internal records, including the free space control record (FSCR), that are
used by the Db2 server to manage the table. In subsequent blocks, the first page contains the FSCR. An
FSCR maps the free space for new records that exists on each page of the block. This available free space
is used when inserting records into the table.

Chapter 4. Performance issues 269

As the name implies, MDC tables cluster data on more than one dimension. Each dimension is determined
by a column or set of columns that you specify in the ORGANIZE BY DIMENSIONS clause of the CREATE
TABLE statement. When you create an MDC table, the following two indexes are created automatically:

- A dimension-block index, which contains pointers to each occupied block for a single dimension

- A composite-block index, which contains all dimension key columns, and which is used to maintain
clustering during insert and update activity

The optimizer considers access plans that use dimension-block indexes when it determines the most
efficient access plan for a particular query. When queries have predicates on dimension values, the
optimizer can use the dimension-block index to identify-and fetch from-the extents that contain these
values. Because extents are physically contiguous pages on disk, this minimizes I/O and leads to better
performance.

You can also create specific RID indexes if analysis of data access plans indicates that such indexes
would improve query performance.

As the name implies, ITC tables cluster data based on row insert time. The differences between MDC and
ITC tables are:

« block indexes are not used for any data access,

- only a single composite block index is created for the table, and that index consists of a virtual
dimension, and

« the index is never chosen by the optimizer for plans because the column it contains cannot be
referenced by any SQL statement.

MDC and ITC tables can have their empty blocks released to the table space.

Optimization strategies for intrapartition parallelism

The optimizer can choose an access plan to execute a query in parallel within a single database partition if
a degree of parallelism is specified when the SQL statement is compiled.

At run time, multiple database agents called subagents are created to execute the query. The number of
subagents is less than or equal to the degree of parallelism that was specified when the SQL statement
was compiled.

To parallelize an access plan, the optimizer divides it into a portion that is run by each subagent and a
portion that is run by the coordinating agent. The subagents pass data through table queues to the
coordinating agent or to other subagents. In a partitioned database environment, subagents can send or
receive data through table queues from subagents in other database partitions.

intrapartition parallel scan strategies

Relational scans and index scans can be performed in parallel on the same table or index. For parallel
relational scans, the table is divided into ranges of pages or rows, which are assigned to subagents. A
subagent scans its assigned range and is assigned another range when it has completed work on the
current range.

For parallel index scans, the index is divided into ranges of records based on index key values and the
number of index entries for a key value. The parallel index scan proceeds like a parallel table scan, with
subagents being assigned a range of records. A subagent is assigned a new range when it has completed
work on the current range.

Parallel table scans can be run against range partitioned tables, and similarly, parallel index scans can be
run against partitioned indexes. For a parallel scan, partitioned indexes are divided into ranges of records,
based on index key values and the number of key entries for a key value. When a parallel scan begins,
subagents are assigned a range of records, and once the subagent completes a range, it is assigned a new
range. The index partitions are scanned sequentially with subagents potentially scanning unreserved
index partitions at any point in time without waiting for each other. Only the subset of index partitions that
is relevant to the query based on data partition elimination analysis is scanned.

The optimizer determines the scan unit (either a page or a row) and the scan granularity.

270 IBM Db2 V11.5: Partitioning and Clustering Guide

Parallel scans provide an even distribution of work among the subagents. The goal of a parallel scan is to
balance the load among the subagents and to keep them equally busy. If the number of busy subagents
equals the number of available processors, and the disks are not overworked with I/0 requests, the
machine resources are being used effectively.

Other access plan strategies might cause data imbalance as the query executes. The optimizer chooses
parallel strategies that maintain data balance among subagents.

intrapartition parallel sort strategies
The optimizer can choose one of the following parallel sort strategies:
« Round-robin sort

This is also known as a redistribution sort. This method uses shared memory to efficiently redistribute
the data as evenly as possible to all subagents. It uses a round-robin algorithm to provide the even
distribution. It first creates an individual sort for each subagent. During the insert phase, subagents
insert into each of the individual sorts in a round-robin fashion to achieve a more even distribution of
data.

« Partitioned sort

This is similar to the round-robin sort in that a sort is created for each subagent. The subagents apply a
hash function to the sort columns to determine into which sort a row should be inserted. For example, if
the inner and outer tables of a merge join are a partitioned sort, a subagent can use merge join to join
the corresponding table portions and execute in parallel.

» Replicated sort

This sort is used if each subagent requires all of the sort output. One sort is created and subagents are
synchronized as rows are inserted into the sort. When the sort is complete, each subagent reads the
entire sort. If the number of rows is small, this sort can be used to rebalance the data stream.

« Shared sort

This sort is the same as a replicated sort, except that subagents open a parallel scan on the sorted
result to distribute the data among the subagents in a way that is similar to a round-robin sort.

intrapartition parallel temporary tables

Subagents can cooperate to produce a temporary table by inserting rows into the same table. This is
called a shared temporary table. The subagents can open private scans or parallel scans on the shared
temporary table, depending on whether the data stream is to be replicated or split.

intrapartition parallel aggregation strategies

Aggregation operations can be performed by subagents in parallel. An aggregation operation requires the
data to be ordered on the grouping columns. If a subagent can be guaranteed to receive all the rows for a
set of grouping column values, it can perform a complete aggregation. This can happen if the stream is
already split on the grouping columns because of a previous partitioned sort.

Otherwise, the subagent can perform a partial aggregation and use another strategy to complete the
aggregation. Some of these strategies are:

« Send the partially aggregated data to the coordinator agent through a merging table queue. The
coordinator agent completes the aggregation.

- Insert the partially aggregated data into a partitioned sort. The sort is split on the grouping columns and
guarantees that all rows for a set of grouping columns are contained in one sort partition.

« If the stream needs to be replicated to balance processing, the partially aggregated data can be
inserted into a replicated sort. Each subagent completes the aggregation using the replicated sort, and
receives an identical copy of the aggregation result.

Chapter 4. Performance issues 271

intrapartition parallel join strategies

Join operations can be performed by subagents in parallel. Parallel join strategies are determined by the
characteristics of the data stream.

A join can be parallelized by partitioning or by replicating the data stream on the inner and outer tables of
the join, or both. For example, a nested-loop join can be parallelized if its outer stream is partitioned for a
parallel scan and the inner stream is again evaluated independently by each subagent. A merged join can
be parallelized if its inner and outer streams are value-partitioned for partitioned sorts.

Data filtering and data skew can cause workloads between subagents to become imbalanced while a
query executes. The inefficiency of imbalanced workloads is magnified by joins and other computationally
expensive operations. The optimizer looks for sources of imbalance in the query's access plan and applies
a balancing strategy, ensuring that work is evenly divided between the subagents. For an unordered outer
data stream, the optimizer balances the join using the REBAL operator on the outer data stream. For an
ordered data stream (where ordered data is produced by an index access or a sort), the optimizer
balances the data using a shared sort. A shared sort will be not be used if the sort overflows into the
temporary tables, due to the high cost of a sort overflow.

Joins
A join is the process of combining data from two or more tables based on some common domain of
information. Rows from one table are paired with rows from another table when information in the
corresponding rows match on the basis of the joining criterion (the join predicate).

For example, consider the following two tables:

TABLE1 TABLE2
PROJ PROJ_ID PROJ_ID NAME
A 1 1 Sam
B 2 3 Joe
C 3 4 Mary
D 4 1 Sue
2 Mike

To join TABLE1 and TABLEZ2, such that the PROJ_ID columns have the same values, use the following SQL
statement:
select proj, x.proj_id, name
from tablel x, table2 y
where x.proj_id = y.proj_id

In this case, the appropriate join predicate is: where x.proj_id = y.proj_id.

The query yields the following result set:

PROJ PROJ_ID NAME
A 1 Sam
A 1 Sue
B 2 Mike
C 3 Joe
D 4 Mary

Depending on the nature of any join predicates, as well as any costs determined on the basis of table and
index statistics, the optimizer chooses one of the following join methods:

« Nested-loop join

272 IBM Db2 V11.5: Partitioning and Clustering Guide

- Merge join
 Hash join

When two tables are joined, one table is selected as the outer table and the other table is regarded as the
inner table of the join. The outer table is accessed first and is scanned only once. Whether the inner table
is scanned multiple times depends on the type of join and the indexes that are available. Even if a query
joins more than two tables, the optimizer joins only two tables at a time. If necessary, temporary tables
are created to hold intermediate results.

You can provide explicit join operators, such as INNER or LEFT OUTER JOIN, to determine how tables are
used in the join. Before you alter a query in this way, however, you should allow the optimizer to
determine how to join the tables, and then analyze query performance to decide whether to add join
operators.

Database partition group impact on query optimization
In partitioned database environments, the optimizer recognizes and uses the collocation of tables when it
determines the best access plan for a query.

If tables are frequently involved in join queries, they should be divided among database partitions in such
a way that the rows from each table being joined are located on the same database partition. During the
join operation, the collocation of data from both joined tables prevents the movement of data from one
database partition to another. Place both tables in the same database partition group to ensure that the
data is collocated.

Depending on the size of the table, spreading data over more database partitions reduces the estimated
time to execute a query. The number of tables, the size of the tables, the location of the data in those
tables, and the type of query (such as whether a join is required) all affect the cost of the query.

Join strategies for partitioned databases

Join strategies for a partitioned database environment can be different than strategies for a
nonpartitioned database environment. Additional techniques can be applied to standard join methods to
improve performance.

Table collocation should be considered for tables that are frequently joined. In a partitioned database
environment, table collocation refers to a state that occurs when two tables that have the same number
of compatible partitioning keys are stored in the same database partition group. When this happens, join
processing can be performed at the database partition where the data is stored, and only the result set
needs to be moved to the coordinator database partition.

Table queues
Descriptions of join techniques in a partitioned database environment use the following terminology:

« Table queue (sometimes referred to as TQ) is a mechanism for transferring rows between database
partitions, or between processors in a single-partition database.

« Directed table queue (sometimes referred to as DTQ) is a table queue in which rows are hashed to one
of the receiving database partitions.

« Broadcast table queue (sometimes referred to as BTQ) is a table queue in which rows are sent to all of
the receiving database partitions, but are not hashed.

A table queue is used to pass table data:

« From one database partition to another when using interpartition parallelism
« Within a database partition when using intrapartition parallelism
- Within a database partition when using a single-partition database

Each table queue passes the data in a single direction. The compiler decides where table queues are
required, and includes them in the plan. When the plan is executed, connections between the database
partitions initiate the table queues. The table queues close as processes end.

There are several types of table queues:

Chapter 4. Performance issues 273

» Asynchronous table queues

These table queues are known as asynchronous, because they read rows in advance of any fetch
requests from an application. When a FETCH statement is issued, the row is retrieved from the table
queue.

Asynchronous table queues are used when you specify the FOR FETCH ONLY clause on the SELECT
statement. If you are only fetching rows, the asynchronous table queue is faster.

« Synchronous table queues

These table queues are known as synchronous, because they read one row for each FETCH statement
that is issued by an application. At each database partition, the cursor is positioned on the next row to
be read from that database partition.

Synchronous table queues are used when you do not specify the FOR FETCH ONLY clause on the
SELECT statement. In a partitioned database environment, if you are updating rows, the database
manager will use synchronous table queues.

- Merging table queues

These table queues preserve order.
- Non-merging table queues

These table queues, also known as regular table queues, do not preserve order.
« Listener table queues (sometimes referred to as LTQ)

These table queues are used with correlated subqueries. Correlation values are passed down to the
subquery, and the results are passed back up to the parent query block using this type of table queue.

Join methods for partitioned databases

Several join methods are available for partitioned database environments, including: collocated joins,
broadcast outer-table joins, directed outer-table joins, directed inner-table and outer-table joins,
broadcast inner-table joins, and directed inner-table joins.

In the following diagrams, g1, g2, and g3 refer to table queues. The referenced tables are divided across
two database partitions, and the arrows indicate the direction in which the table queues are sent. The
coordinator database partition is database partition 0.

If the join method chosen by the compiler is hash join, the filters created at each remote database
partition may be used to eliminate tuples before they are sent to the database partition where the hash
join is processed, thus improving performance.

Collocated joins

A collocated join occurs locally on the database partition on which the data resides. The database
partition sends the data to the other database partitions after the join is complete. For the optimizer to
consider a collocated join, the joined tables must be collocated, and all pairs of the corresponding
distribution keys must participate in the equality join predicates. Figure 53 on page 275 provides an
example.

274 IBM Db2 V11.5: Partitioning and Clustering Guide

End Users

Saelect...

Partition 0
(Coordinator Database Partition) 1

4

- Read g1

- Process

- Raturmn
RESULTS

- Scan
ORDERS

= Apply
predicates

- Scan
LINEITEM

- Apply
predicates

= Join

- Insert into g1

g1

Partition 1

= Scan
ORDERS

= Apply
predicates

= Scan
LIMEITEM

- Apply
predicates

= Join

- Insert into g1

ot

Figure 53. Collocated Join Example

The LINEITEM and ORDERS tables are both partitioned on the ORDERKEY column. The join is performed
locally at each database partition. In this example, the join predicate is assumed to be:

orders.orderkey = lineitem.orderkey.

Replicated materialized query tables (MQTs) enhance the likelihood of collocated joins.

Broadcast outer-table joins

Broadcast outer-table joins represent a parallel join strategy that can be used if there are no equality join
predicates between the joined tables. It can also be used in other situations in which it proves to be the
most cost-effective join method. For example, a broadcast outer-table join might occur when there is one
very large table and one very small table, neither of which is split on the join predicate columns. Instead
of splitting both tables, it might be cheaper to broadcast the smaller table to the larger table. Figure 54 on
page 276 provides an example.

Chapter 4. Performance issues 275

End Users

Select...

Partition 0

(Coordinator Database Partition) Partition 1
- Read g1 - Scan - Scan
- Pracess CORDERS ORDERS
= Retumn — = Apply —_— —— - Apply -
COUNT predicates predicates
- - Wirite g2 - Write g2
@2 g2 a2 @
- Scan - Scan
LIMEITEM LINEITEM
- Apply ' - Apply
— predicates predicates -
- Read g2 , -Aeadg2
- Join - Join
= Insert g1 = Inzert q1
qi

Figure 54. Broadcast Outer-Table Join Example

The ORDERS table is sent to all database partitions that have the LINEITEM table. Table queue g2 is

ql

broadcast to all database partitions of the inner table.

Directed outer-table joins

In the directed outer-table join strategy, each row of the outer table is sent to one portion of the inner
table, based on the splitting attributes of the inner table. The join occurs on this database partition. Figure

55 on page 277 provides an example.

276 IBM Db2 V11.5: Partitioning and Clustering Guide

End Users

Select...
Partition O
{Coordinator Database Partition) Partition 1
- Read g1 - Scan - Scan
- Process ORDERS ORDERS
= Retumn = Apply - Apply
COUNT — predicates predicates —_
- Hash = Hash
i 1 CRDERKEY ORDERKEY
- Write: g2 = Write g2
g2 g2 g2 g2
- Scan = Scan
LINEITEM LINEITEM
- Apply b - Apply
— predicates predicates -
- Read g2 , -Readqg2
= Join = Join
- Insert into g1 - Inzert into g1
a1

gl

The LINEITEM table is partitioned on the ORDERKEY column. The ORDERS table is partitioned on a
different column. The ORDERS table is hashed and sent to the correct database partition of the LINEITEM
table. In this example, the join predicate is assumed to be: orders.oxrderkey =
lineitem.orderkey.

Figure 55. Directed Outer-Table Join Example

Directed inner-table and outer-table joins

In the directed inner-table and outer-table join strategy, rows of both the outer and inner tables are
directed to a set of database partitions, based on the values of the joining columns. The join occurs on
these database partitions. Figure 56 on page 278 provides an example.

Chapter 4. Performance issues 277

End Users

Select... |——
Partition 0
(Coordinator Database Partition) Partition 1
- Read g1 - Scan - Scan
- Process ORDERS ORDERS
- Raturn = Apply - Apply
COUNT — predicates e —_— predicates
= Hash = Hash
i 1 CRDERKEY ORDERKEY
= Write g2 = Write g2
g2 g2
- Scan = Scan
LINEITEM LINEITEM
- Apply - Apply
7 predicates predicates 1
= Hash | = Hash
ORDERKEY ORDERKEY
= Write g3 = Write g3
q3 o3
| s =Headqg2 - Aead g2
= Read g3 = Read q3
= Join L % =dJoin
— - Inzert g1 L L .insert gl -
a1
gl

Figure 56. Directed Inner-Table and Outer-Table Join Example

Neither table is partitioned on the ORDERKEY column. Both tables are hashed and sent to new database
partitions, where they are joined. Both table queue g2 and g3 are directed. In this example, the join
predicate is assumed to be: orders.orderkey = lineitem.orderkey.

Broadcast inner-table joins

In the broadcast inner-table join strategy, the inner table is broadcast to all the database partitions of the
outer table. Figure 57 on page 279 provides an example.

278 IBM Db2 V11.5: Partitioning and Clustering Guide

End Users

Select...
Partition 0
(Coordinator Database Partition) Partition 1
- Read g1 - Scan - Scan
- Process ORDERS ORDERS
- Return — = Apply = Apply
COUNT predicates predicates
- - Write g2 = Write g2
g2 q2
- Scan = Scan l
LINEITEM LIMEITEM
— -Apply - Apply 1
predicates pradicatas
- Write 3 03 = Write g3
q3 o3
= Read g2 | = Read g2
—* - Head g3 - Read g3 p—
L, ~=dJoin |—.. = Jain —
- Insart g1 = Inzert g1
qt |
a1

The LINEITEM table is sent to all database partitions that have the ORDERS table. Table queue g3 is
broadcast to all database partitions of the outer table.

Figure 57. Broadcast Inner-Table Join Example

Directed inner-table joins

In the directed inner-table join strategy, each row of the inner table is sent to one database partition of
the outer table, based on the splitting attributes of the outer table. The join occurs on this database
partition. Figure 58 on page 280 provides an example.

Chapter 4. Performance issues 279

End Users

Select...
Partition 0
(Coordinator Database Partition) Partition 1
- Read g1 - Scan - Scan
- Process ORDERS ORDERS
= Return = Apply - Apply I
COUNT — predicates predicates
- Write g2 - Write g2
- Scan = Scan
2
a2 LINEITEM LIMEITEM 9
- Apply - Apply
— predicates pradicatas 1
- Hash | = Hash
ORDERKEY ORDERKEY
- Write g3 3 3 - Write g3
a3 e q 0 rite q o
- Read g2 | = Read g2
— - Head g3 - Read q3 -
- Join | s -<Join ‘
= Insert g1 = Inzert g1
q1 ‘

gl

The ORDERS table is partitioned on the ORDERKEY column. The LINEITEM table is partitioned on a
different column. The LINEITEM table is hashed and sent to the correct database partition of the ORDERS
table. In this example, the join predicate is assumed to be: orders.orderkey =
lineitem.orderkey.

Figure 58. Directed Inner-Table Join Example
Replicated materialized query tables in partitioned database environments

Replicated materialized query tables (MQTs) improve the performance of frequently executed joins in a

partitioned database environment by allowing the database to manage precomputed values of the table
data.

Note that a replicated MQT in this context pertains to intra-database replication. Inter-database
replication is concerned with subscriptions, control tables, and data that is located in different databases
and on different operating systems.

In the following example:

« The SALES table is in a multi-partition table space named REGIONTABLESPACE, and is split on the
REGION column.

« The EMPLOYEE and DEPARTMENT tables are in a single-partition database partition group.
Create a replicated MQT based on information in the EMPLOYEE table.

create table r_employee as (
select empno, firstnme, midinit, lastname, workdept
from employee

data initially deferred refresh immediate

in regiontablespace
replicated

280 IBM Db2 V11.5: Partitioning and Clustering Guide

Update the content of the replicated MQT:
refresh table r_employee

After using the REFRESH statement, you should invoke the runstats utility against the replicated table, as
you would against any other table.

The following query calculates sales by employee, the total for the department, and the grand total:

select d.mgrno, e.empno, sum(s.sales)
from department as d, employee as e, sales as s
where
s.sales_person = e.lastname and
e.workdept = d.deptno
group by rollup(d.mgrno, e.empno)
order by d.mgrno, e.empno

Instead of using the EMPLOYEE table, which resides on only one database partition, the database
manager uses R_EMPLOYEE, the MQT that is replicated on each of the database partitions on which the
SALES table is stored. The performance enhancement occurs because the employee information does not
have to be moved across the network to each database partition when performing the join.

Replicated materialized query tables in collocated joins

Replicated MQTs can also assist in the collocation of joins. For example, if a star schema contains a large
fact table that is spread across twenty database partitions, the joins between the fact table and the
dimension tables are most efficient if these tables are collocated. If all of the tables are in the same
database partition group, at most one dimension table is partitioned correctly for a collocated join. The
other dimension tables cannot be used in a collocated join, because the join columns in the fact table do
not correspond to the distribution key for the fact table.

Consider a table named FACT (C1, C2, C3, ...), split on C1; a table named DIM1 (C1, dimla, dimib, ...),
split on C1; a table named DIM2 (C2, dim2a, dim2b, ...), split on C2; and so on. In this case, the join
between FACT and DIM1 is perfect, because the predicate diml.c1l = fact.clis collocated. Both of
these tables are split on column C1.

However, the join involving DIM2 and the predicate dim2.c2 = fact.c2 cannot be collocated, because
FACT is split on column C1, not on column C2. In this case, you could replicate DIM2 in the database
partition group of the fact table so that the join occurs locally on each database partition.

When you create a replicated MQT, the source table can be a single-partition table or a multi-partition
table in a database partition group. In most cases, the replicated table is small and can be placed in a
single-partition database partition group. You can limit the data that is to be replicated by specifying only
a subset of the columns from the table, or by restricting the number of qualifying rows through
predicates.

A replicated MQT can also be created in a multi-partition database partition group, so that copies of the
source table are created on all of the database partitions. Joins between a large fact table and the
dimension tables are more likely to occur locally in this environment, than if you broadcast the source
table to all database partitions.

Indexes on replicated tables are not created automatically. You can create indexes that are different from
those on the source table. However, to prevent constraints violations that are not present in the source
table, you cannot create unique indexes or define constraints on replicated tables, even if the same
constraints occur on the source table.

Replicated tables can be referenced directly in a query, but you cannot use the DBPARTITIONNUM scalar
function with a replicated table to see the table data on a particular database partition.

Use the Db2 explain facility to determine whether a replicated MQT was used by the access plan for a
query. Whether or not the access plan that is chosen by the optimizer uses a replicated MQT depends on
the data that is to be joined. A replicated MQT might not be used if the optimizer determines that it would
be cheaper to broadcast the original source table to the other database partitions in the database
partition group.

Chapter 4. Performance issues 281

Data redistribution

Data redistribution is a database administration operation that can be performed to primarily move data
within a partitioned database environment when partitions are added or removed. The goal of this
operation is typically to balance the usage of storage space, improve database system performance, or
satisfy other system requirements.

Data redistribution can be performed by using one of the following interfaces:

- REDISTRIBUTE DATABASE PARTITION GROUP command
« ADMIN_CMD built-in procedure

« STEPWISE_REDISTRIBUTE_DBPG built-in procedure

» sqludrdt API

Data redistribution within a partitioned database is done for one of the following reasons:

« To rebalance data whenever a new database partition is added to the database environment or an
existing database partition is removed.

 Tointroduce user-specific data distribution across partitions.
- To secure sensitive data by isolating it within a particular partition.

Data redistribution is performed by connecting to a database at the catalog database partition and
beginning a data redistribution operation for a specific partition group by using one of the supported
interfaces. Data redistribution relies on the existence of distribution key definitions for the tables within
the partition group. The distribution key value for a row of data within the table is used to determine on
which partition the row of data will be stored. A distribution key is generated automatically when a table
is created in a multi-partition database partition group. A distribution key can also be explicitly defined by
using the CREATE TABLE or ALTER TABLE statements. By default during data redistribution, for each
table within a specified database partition group, table data is divided and redistributed evenly among the
database partitions. Other distributions, such as a skewed distribution, can be achieved by specifying an
input distribution map which defines how the data is to be distributed. Distribution maps can be
generated during a data redistribution operation for future use or can be created manually.

Comparison of logged, recoverable redistribution and minimally logged, not roll-forward
recoverable redistribution

When performing data redistribution by using either the REDISTRIBUTE DATABASE PARTITION GROUP
command or the ADMIN_CMD built-in procedure, you can choose between two methods of data
redistribution: logged, recoverable redistribution and minimally logged, not roll-forward recoverable
redistribution. The latter method is specified by using the NOT ROLLFORWARD RECOVERABLE command
parameter.

Data redistribution in capacity growth scenarios, during load balancing, or during performance tuning can
require precious maintenance window time, a considerable amount of planning time, as well as log space
and extra container space that can be expensive. Your choice of redistribution methods depends on
whether you prioritize recoverability or speed:

« When the logged, recoverable redistribution method is used, extensive logging of all row movement is
performed such that the database can be recovered in the event of any interruptions, errors, or other
business need.

« The not roll-forward recoverable redistribution method offers better performance because data is
moved in bulk and log records are no longer required for insert and delete operations.

The latter method is particularly beneficial if, in the past, large active log space and storage requirements
forced you to break a single data redistribution operation into multiple smaller redistribution tasks, which
might have resulted in even more time required to complete the end-to-end data redistribution operation.

The not roll-forward recoverable redistribution method is the best practice in most situations because the
data redistribution takes less time, is less error prone, and consumes fewer system resources. As a result,

282 IBM Db2 V11.5: Partitioning and Clustering Guide

the total cost of performing data redistribution is reduced, which frees up time and resources for other
business operations.

Minimally logged, not roll-forward recoverable redistribution

When the REDISTRIBUTE DATABASE PARTITION GROUP command isissued and the NOT
ROLLFORWARD RECOVERABLE parameter is specified, a minimal logging strategy is used that minimizes
the writing of log records for each moved row. This type of logging is important for the usability of the
redistribute operation since an approach that fully logs all data movement could, for large systems,
require an impractical amount of active and permanent log space and would generally have poorer
performance characteristics.

There are also features and optional parameters that are only available when you choose the not roll-
forward recoverable redistribution method. For example, by default this method of redistribution
quiesces the database and performs a precheck to ensure that prerequisites are met. You can also
optionally specify to rebuild indexes and collect table statistics as part of the redistribution operation. The
combination and automation of these otherwise manual tasks makes them less error prone, faster, and
more efficient, while providing you with more control over the operations.

The not roll-forward recoverable redistribution method automatically reorganizes the tables, which can
free up disk space. This table reorganization comes at no additional performance cost to the redistribute
operation. For tables with clustering indexes, the reorganization does not attempt to maintain clustering.
If perfect clustering is desired, it will be necessary to perform a REORG TABLE command on tables with a
clustering index after data redistribution completes. For multi-dimensional-clustered (MDC) tables, the
reorganization maintains the clustering of the table and frees unused blocks for reuse; however the total
size of the table after redistribution appears unchanged.

Note: It is critical that you back up each affected table space or the entire database when the redistribute
operation is complete because rolling forward through this type of redistribute operation results in all
tables that were redistributed being marked invalid. Such tables can only be dropped, which means there
is no way to recover the data in these tables. This is why, for recoverable databases, the REDISTRIBUTE
DATABASE PARTITION GROUP utility when issued with the NOT ROLLFORWARD RECOVERABLE option
puts all table spaces it touches into the BACKUP PENDING state. This state forces you to back up all
redistributed table spaces at the end of a successful redistribute operation. With a backup taken after the
redistribution operation, you should not have a need to roll-forward through the redistribute operation
itself.

There is one important consequence of the lack of roll-forward recoverability: If you choose to allow
updates to be made against tables in the database (even tables outside the database partition group
being redistributed) while the redistribute operation is running, including the period at the end of
redistribute where the table spaces touched by redistribute are being backed up, such updates can be
lost in the event of a serious failure, for example, a database container is destroyed. The reason that such
updates can be lost is that the redistribute operation is not roll-forward recoverable. If it is necessary to
restore the database from a backup taken before the redistribution operation, then it will not be possible
to roll-forward through the logs in order to replay the updates that were made during the redistribution
operation without also rolling forward through the redistribution which, as was described previously,
leaves the redistributed tables in the UNAVAILABLE state. Thus, the only thing that can be done in this
situation is to restore the database from the backup taken before the redistribution without rolling
forward. Then the redistribute operation can be performed again. Unfortunately, all the updates that
occurred during the original redistribute operation are lost.

The importance of this point cannot be overemphasized. In order to be certain that there will be no lost
updates during a redistribution operation, one of the following must be true:

« You must avoid making updates during the operation of the REDISTRIBUTE DATABASE PARTITION
GROUP command, including the period after the command finishes where the affected table spaces are
being backed up.

« The redistribution operation is performed with the QUIESCE DATABASE command parameter set to
YES. You must still ensure that any applications or users that are allowed to access the quiesced
database are not making updates.

Chapter 4. Performance issues 283

- Updates that are applied during the redistribute operation come from a repeatable source, meaning that
they can be applied again at any time. For example, if the source of updates is data that is stored in a
file and the updates are applied during batch processing, then clearly even in the event of a failure
requiring a database restore, the updates would not be lost since they could simply be applied again at
any time.

With respect to allowing updates to the database during the redistribution operation, you must decide
whether such updates are appropriate or not based on whether the updates can be repeated after a
database restore, if necessary.

Note: Not every failure during operation of the REDISTRIBUTE DATABASE PARTITION GROUP
command results in this problem. In fact, most do not. The REDISTRIBUTE DATABASE PARTITION
GROUP command is fully restartable, meaning that if the utility fails in the middle of its work, it can be
easily continued or aborted with the CONTINUE or ABORT options. The failures mentioned previously are
failures that require the user to restore from the backup taken before the redistribute operation.

Logged, recoverable redistribution

The original and default version of the REDISTRIBUTE DATABASE PARTITION GROUP command, this
method redistributes data by using standard SQL inserts and deletes. Extensive logging of all row
movement is performed such that the database is recoverable by restoring it using the RESTORE
DATABASE command then rolling forward through all changes using the ROLLFORWARD DATABASE
command.

After the data redistribution, the source table contains empty spaces because rows were deleted and
sent to new database partitions. If you want to free the empty spaces, you must reorganize the tables. To
reorganize the tables, you must use a separate operation, after the redistribution is complete. To improve
performance of this method, drop the indexes and re-create them after the redistribution is complete.

Prerequisites for data redistribution

Before data redistribution can be performed successfully for a set of tables within a database partition
group, certain prerequisites must be met.

The following is a list of mandatory prerequisites:

« Authorization to perform data redistribution from the supported data redistribution interface of choice.

« Asignificant amount of time during a period of low system activity in which to perform the redistribution
operation.

- All tables containing data to be redistributed as part of a data redistribution operation must be in a
NORMAL state. For example, tables cannot be in LOAD PENDING state or other inaccessible load table
states. To check the states of tables, establish a connection to each partition in the database partition
group and issue the LOAD QUERY command. The output of this command contains information about
the state of the table. The documentation of the LOAD QUERY command explains the meaning of each
of the table states and how to move tables from one state to another.

« All tables within the database partition being redistributed must have been defined with a distribution
key. If a new database partition is added to a single-partition system, data redistribution cannot be
performed until all of the tables within the partitions have a distribution key. For tables that were
created using the CREATE TABLE statement and have definitions that do not contain a distribution key,
you must alter the table by using the ALTER TABLE statement to add a distribution key before
redistributing the data.

« Replicated materialized query tables contained in a database partition group must be dropped before
you redistribute the data. Store a copy of the materialized query table definitions so that they can be
recreated after data redistribution completes.

- If a non-uniform redistribution is desired a distribution map must be created as a target distribution
map to be used a parameter to the redistribute interface.

« A backup of the database must be created by using the BACKUP DATABASE command. This backup is
not a mandatory prerequisite however it is strongly recommended that it be done.

A connection must be established to the database from the catalog database partition.

284 IBM Db2 V11.5: Partitioning and Clustering Guide

- Adequate space must be available to rebuild all indexes either during or after the data redistribution.
The INDEXING MODE command parameter affects when the indexes are rebuilt.

« When the NOT ROLLFORWARD RECOVERABLE command parameter is specified, adequate space
should be available for writing status information to control files used by IBM Service for problem
determination. The control files are generated in the following paths and should be manually deleted
when the data redistribution operation is complete:

— On Linux and UNIX operating systems: diagpath/redist/db_name/
db_partitiongroup_name/timestamp/

— On Windows operating systems: diagpath\redist\db_name\db_partitiongroup_name
\timestamp\

You can calculate the space requirements in bytes for the control files by using the following formula:

(number of pages for all tables in the database partition group) * 64 bytes
+ number of LOB values in the database partition group) * 600 bytes

To estimate number of LOB values in the database partition group, add the number of LOB columns in
your tables and multiply it by the number of rows in the largest table.

« When the NOT ROLLFORWARD RECOVERABLE command parameter is not specified, adequate log file
space must be available to contain the log entries associated with the INSERT and DELETE operations
performed during data redistribution otherwise data redistribution will be interrupted or fail.

The util_heap_sz database configuration parameter is critical to the processing of data movement
between database partitions - allocate as much memory as possible to util_heap_sz for the duration
of the redistribution operation. Sufficient soxtheap is also required if indexes are being rebuilt as part of
the redistribution operation. Increase the value of util_heap_sz and soxtheap database configuration
parameter, as necessary, to improve redistribution performance.

Restrictions on data redistribution

Restrictions on data redistribution are important to note before proceeding with data redistribution or
when troubleshooting problems related to data redistribution.

The following restrictions apply to data redistribution:

- Data redistribution on partitions where tables do not have partitioning key definitions is restricted.
« When data redistribution is in progress:

— Starting another redistribution operation on the same database partition group is restricted.

— Dropping the database partition group is restricted.

— Altering the database partition group is restricted.

— Executing an ALTER TABLE statement on any table in the database partition group is restricted.
— Creating new indexes in the table undergoing data redistribution is restricted.

— Dropping indexes defined on the table undergoing data redistribution is restricted.

— Querying data in the table undergoing data redistribution is restricted.

— Updating the table undergoing data redistribution is restricted.

- Updating tables in a database undergoing a data redistribution that was started using the
REDISTRIBUTE DATABASE PARTITION GROUP command where the NOT ROLLFORWARD
RECOVERABLE command parameter was specified is restricted. Although the updates can be made, if
data redistribution is interrupted the changes made to the data might be lost and so this practice is
strongly discouraged.

« When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued and the NOT
ROLLFORWARD RECOVERABLE command parameter is specified:

— Data distribution changes that occur during the redistribution are not roll-forward recoverable.

Chapter 4. Performance issues 285

— If the database is recoverable, the table space is put into the BACKUP PENDING state after accessing
the first table within the table space. To remove the table from this state, you must take a backup of
the table space changes when the redistribution operation completes.

— During data redistribution, the data in the tables in the database partition group being redistributed
cannot be updated - the data is read-only. Tables that are actively being redistributed are
inaccessible.

« For typed (hierarchy) tables, if the REDISTRIBUTE DATABASE PARTITION GROUP command is used
and the TABLE parameter is specified with the value ONLY, then the table name is restricted to being
the name of the root table only. Sub-table names cannot be specified.

« Data redistribution is supported for the movement of data between database partitions. For partitioned
tables, however, movement of data between ranges of a data partitioned table is restricted unless both
of the following are true:

— The partitioned table has an access mode of FULL ACCESS in the SYSTABLES.ACCESS_MODE catalog
table.

— The partitioned table does not have any partitions currently being attached or detached.

« Forreplicated materialized query tables, if the data in a database partition group contains replicated
materialized query tables, you must drop these tables before you redistribute the data. After data is
redistributed, you can recreate the materialized query tables.

« For database partitions that contain multi-dimensional-clustered tables (MDCs) use of the
REDISTRIBUTE DATABASE PARTITION GROUP command is restricted and will not proceed
successfully if there are any multi-dimensional-clustered tables in the database partition group that
contain rolled out blocks that are pending cleanup. These MDC tables must be cleaned up before data
redistribution can be resumed or restarted.

- Dropping tables that are currently marked in the Db2 catalog views as being in the state "Redistribute in
Progress" is restricted. To drop a table in this state, first run the REDISTRIBUTE DATABASE
PARTITION GROUP command with the ABORT or CONTINUE parameters and an appropriate table list
so that redistribution of the table is either completed or aborted.

Determining if data redistribution is needed

Determining the current data distribution for a database partition group or table can be helpfulin
determining if data redistribution is required. Details about the current data distribution can also be used
to create a custom distribution map that specifies how to distribute data.

About this task

If a new database partition is added to a database partition group, or an existing database partition is
dropped from a database partition group, perform data redistribution to balance data among all the
database partitions.

If no database partitions have been added or dropped from a database partition group, then data
redistribution is usually only indicated when there is an unequal distribution of data among the database
partitions of the database partition group. Note that in some cases an unequal distribution of data can be
desirable. For example, if some database partitions reside on a powerful machine, then it might be
beneficial for those database partitions to contain larger volumes of data than other partitions.

Procedure

To determine if data redistribution is needed:

1. Get information about the current distribution of data among database partitions in the database
partition group.

Run the following query on the largest table (alternatively, a representative table) in the database
partition group:

286 IBM Db2 V11.5: Partitioning and Clustering Guide

SELECT DBPARTITIONNUM(column_name), COUNT(x) FROM table_name
GROUP BY DBPARTITIONNUM(column_name)
ORDER BY DBPARTITIONNUM(column_name) DESC

Here, column_name is the name of the distribution key for table table_name.

The output of this query shows how many records from table_name reside on each database partition.

If the distribution of data among database partitions is not as desired, then proceed to the next step.
2. Get information about the distribution of data across hash partitions.

Run the following query with the same column_name and table_name that were used in the previous
step:

SELECT HASHEDVALUE (column_name), COUNT(*x) FROM table_name
GROUP BY HASHEDVALUE (column_name)
ORDER BY HASHEDVALUE (column_name) DESC

The output of this query can easily be used to construct the distribution file needed when the USING
DISTFILE parameterin the REDISTRIBUTE DATABASE PARTITION GROUP command is specified.
Refer to the REDISTRIBUTE DATABASE PARTITION GROUP command reference for a description of
the format of the distribution file.

3. Optional: If the data requires redistribution, you can plan to do this operation during a system
maintenance opportunity.

When the USING DISTFILE parameter is specified, the REDISTRIBUTE DATABASE PARTITION
GROUP command uses the information in the file to generate a new partition map for the database
partition group. This operation results in a uniform distribution of data among database partitions.

If a uniform distribution is not desired, you can construct your own target partition map for the
redistribution operation. The target partition map can be specified by using the USING TARGETMAP
parameter in the REDISTRIBUTE DATABASE PARTITION GROUP command.

Results

After doing this investigation, you will know if your data is uniformly distributed or not or if data
redistribution is required.

Redistributing data across database partitions by using the REDISTRIBUTE DATABASE
PARTITION GROUP command

The REDISTRIBUTE DATABASE PARTITION GROUP command is the recommended interface for
performing data redistribution.

Procedure

To redistribute data across database partitions in a database partition group:
1. Optional: Perform a backup of the database.
See the BACKUP DATABASE command.
It is strongly recommended that you create a backup copy of the database before you perform a data
redistribution that is not roll-forward recoverable.
2. Connect to the database partition that contains the system catalog tables.
See the CONNECT statement.
3. Issue the REDISTRIBUTE DATABASE PARTITION GROUP command.

Note: In previous versions of the Db2 database product, this command used the NODEGROUP keyword
instead of the DATABASE PARTITION GROUP keywords.

Specify the following arguments:

database partition group name
You must specify the database partition group within which data is to be redistributed.

Chapter 4. Performance issues 287

UNIFORM
OPTIONAL: Specifies that data is to be evenly distributed. UNIFORM is the default when no
distribution-type is specified, so if no other distribution type has been specified, it is valid to omit
this option.

USING DISTFILE distfile-name
OPTIONAL: Specifies that a customized distribution is desired and the file path name of a
distribution file that contains data that defines the desired data skew. The contents of this file is
used to generate a target distribution map.

USING TARGETMAP targetmap-name
OPTIONAL: Specifies that a target data redistribution map is to be used and the name of file that
contains the target redistribution map.

For details, see the REDISTRIBUTE DATABASE PARTITION GROUP command-line utility
information.

4. Allow the command to run uninterrupted.
When the command completes, perform the following actions if the data redistribution proceeded
successfully:

- Take a backup of all table spaces in the database partition group that are in the BACKUP PENDING
state. Alternatively, a full database backup can be performed.

Note: Table spaces are only put into the BACKUP PENDING state if the database is recoverable and
the NOT ROLLFORWARD RECOVERABLE command parameter is used in the REDISTRIBUTE
DATABASE PARTITION GROUP command.

« Recreate any replicated materialized query tables dropped before redistribution.
« Execute the RUNSTATS command if the following conditions are met:

— The STATISTICS NONE command parameter was specified in the REDISTRIBUTE DATABASE
PARTITION GROUP command, or the NOT ROLLFORWARD RECOVERABLE command parameter
was omitted. Both of these conditions mean that the statistics were not collected during data
redistribution.

— There are tables in the database partition group possessing a statistics profile.

The RUNSTATS command collects data distribution statistics for the SQL compiler and optimizer to
use when choosing data access plans for queries.

« If the NOT ROLLFORWARD RECOVERABLE command parameter was specified, delete the control
files located in the following paths :

— On Linux and UNIX operating systems: diagpath/redist/db_name/
db_partitiongroup_name/timestamp/

— On Windows operating systems: diagpath\redist\db_name\db_partitiongroup_name
\timestamp\

Results

Data redistribution is complete and information about the data redistribution process is available in the
redistribution log file. Information about the distribution map that was used can be found in the Db2
explain tables.

Redistributing data in a database partition group

To create an effective redistribution plan for your database partition group and redistribute your data,
issue the REDISTRIBUTE DATABASE PARTITION GROUP command or call the sqludrdt API.

Before you begin
To work with database partition groups, you must have SYSADM, SYSCTRL, or DBADM authority.

288 IBM Db2 V11.5: Partitioning and Clustering Guide

Procedure
- Toredistribute data in a database partition group:

» Issue a REDISTRIBUTE DATABASE PARTITION GROUP command in the command line processor
(CLP).

« Issue the REDISTRIBUTE DATABASE PARTITION GROUP command by using the ADMIN_CMD
procedure.

« Callthe sqludrdt API

Log space requirements for data redistribution

To successfully perform a data redistribution operation, adequate log file space must be allocated to
ensure that data redistribution is not interrupted. Log space requirements are less of a concern when you
specify the NOT ROLLFORWARD RECOVERABLE command parameter, since there is minimal logging
during that type of data redistribution.

The quantity of log file space required depends on multiple factors including which options of the
REDISTRIBUTE DATABASE PARTITION GROUP command are used.

When the redistribution is performed from any supported interface where the data redistribution is roll-
forward recoverable:

« The log must be large enough to accommodate the INSERT and DELETE operations at each database
partition where data is being redistributed. The heaviest logging requirements will be either on the
database partition that will lose the most data, or on the database partition that will gain the most data.

- If you are moving to a larger number of database partitions, use the ratio of current database partitions
to the new number of database partitions to estimate the number of INSERT and DELETE operations.
For example, consider redistributing data that is uniformly distributed before redistribution. If you are
moving from four to five database partitions, approximately twenty percent of the four original database
partitions will move to the new database partition. This means that twenty percent of the DELETE
operations will occur on each of the four original database partitions, and all of the INSERT operations
will occur on the new database partition.

« Consider a nonuniform distribution of the data, such as the case in which the distribution key contains
many NULL values. In this case, all rows that contain a NULL value in the distribution key move from one
database partition under the old distribution scheme and to a different database partition under the
new distribution scheme. As a result, the amount of log space required on those two database
partitions increases, perhaps well beyond the amount calculated by assuming uniform distribution.

« The redistribution of each table is a single transaction. For this reason, when you estimate log space,
you multiply the percentage of change, such as twenty percent, by the size of the largest table.
Consider, however, that the largest table might be uniformly distributed but the second largest table,
for example, might have one or more inflated database partitions. In such a case, consider using the
non-uniformly distributed table instead of the largest one.

Note: After you estimate the maximum amount of data to be inserted and deleted at a database partition,
double that estimate to determine the peak size of the active log. If this estimate is greater than the
active log limit of 1024 GB, then the data redistribution must be done in steps. For example, use the
STEPWISE_REDISTRIBUTE_DBPG procedure with a number of steps proportional to how much the
estimate is greater than active log limit. You might also set the logsecond database configuration
parameter to -1 to avoid most log space problems.

When the redistribution is performed from any supported interface where the data redistribution is not
roll-forward recoverable:

« Log records are not created when rows are moved as part of data redistribution. This behavior
significantly reduces log file space requirements; however, when this option is used with database roll-
forward recovery, the redistribute operation log record cannot be rolled forward, and any tables
processed as part of the roll-forward operation remain in UNAVAILABLE state.

« If the database partition group undergoing data redistribution contains tables with long-field (LF) or
large-object (LOB) data in the tables, the number of log records generated during data redistribution will

Chapter 4. Performance issues 289

be higher, because a log record is created for each row of data. In this case, expect the log space
requirement per database partition to be roughly one third of the amount of data moving on that
partition (that is, data being sent, received, or both).

Redistribution event log files
During data redistribution event logging is performed. Event information is logged to event log files which
can later be used to perform error recovery.

When data redistribution is performed, information about each table that is processed is logged in a pair
of event log files. The event log files are named database-name .database-partition-group-
name.timestamp.log and database-name.database-partition-group-name.timestamp.

The log files are located as follows:

« The homeinst/sqllib/redist directory on Linux and UNIX operating systems

« The db2instprof\instance\redist directory on Windows operating systems, where db2instprof is
the value of the DB2INSTPROF registry variable

The following is an example of the event log file names:

SAMPLE . IBMDEFAULTGROUP.2012012620240204
SAMPLE . IBMDEFAULTGROUP.2012012620240204.10g

These files are for a redistribution operation on a database named SAMPLE with a database partition
group named IBMDEFAULTGROUP. The files were created on January 26, 2012 at 8:24 PM local time.

The three main uses of the event log files are as follows:

« To provide general information about the redistribute operation, such as the old and new distribution
maps.

« Provide users with information that helps them determine which tables have been redistributed so far
by the utility.

- To provide information about each table that has been redistributed, including the indexing mode being
used for the table, an indication of whether the table was successfully redistributed or not, and the
starting and ending times for the redistribution operation on the table.

Redistributing database partition groups using the STEPWISE_REDISTRIBUTE_DBPG
procedure
Data redistribution can be performed using built-in procedures.

Procedure

To redistribute a database partition group using the STEPWISE_REDISTRIBUTE_DBPG procedure:

1. Analyze the database partition group regarding log space availability and data skew using the
ANALYZE_LOG_SPACE procedure.
The ANALYZE_LOG_SPACE procedure returns a result set (an open cursor) of the log space analysis
results, containing fields for each of the database partitions of the given database partition group.

2. Create a data distribution file for a given table using the GENERATE_DISTFILE procedure.
The GENERATE_DISTFILE procedure generates a data distribution file for the given table and saves it
using the provided file name.

3. Create and report the content of a stepwise redistribution plan for the database partition group using
the STEPWISE_REDISTRIBUTE_DBPG procedure.

4. Create a data distribution file for a given table using the GET_SWRD_SETTINGS and
SET_SWRD_SETTINGS procedures.

The GET_SWRD_SETTINGS procedure reads the existing redistribute registry records for the given
database partition group.

290 IBM Db2 V11.5: Partitioning and Clustering Guide

The SET_SWRD_SETTINGS procedure creates or makes changes to the redistribute registry. If the
registry does not exist, it creates it and add records into it. If the registry already exists, it uses
overwriteSpec to identify which of the field values need to be overwritten. The overwriteSpec field
enables this function to take NULL inputs for the fields that do not need to be updated.

5. Redistribute the database partition group according to the plan using the
STEPWISE_REDISTRIBUTE_DBPG procedure.

The STEPWISE_REDISTRIBUTE_DBPG procedure redistributes part of the database partition group
according to the input and the setting file.

Example

The following is an example of a CLP script on AIX:

T T
Set the database you wish to connect to

I e e T T
dbName="SAMPLE"

e L T T T
Set the target database partition group name
T O it
dbpgName="IBMDEFAULTGROUP"
e
Specify the table name and schema

BE = o mm e e

tbSchema="$USER"
tbName="STAFF"

JE = oo
Specify the name of the data distribution file

export DB2INSTANCE=$USER
export DB2COMM=TCPIP

L T L
Invoke call statements in clp

R R AR
db2start

db2 -v "connect to $dbName"

L T L T P
Analyzing the effect of adding a database partition without applying the changes - a 'what if'
hypothetical analysis

#

- In the following case, the hypothesis is adding database partition 40, 50 and 60 to the
database partition group, and for database partitions 10,20,30,40,50,60, using a respective
target ratio of 1:2:1:2:1:2.

#
NOTE: in this example only partitions 10, 20 and 30 actually exist in the database

i partition group

JE = oo

db2 -v "call sysproc.analyze_log_space('$dbpgName', '$tbSchema', '$tbName',6 2, ' ',
'A', '40,50,60', '10,20,30,40,50,60', '1,2,1,2,1,2')"

R e

Analyzing the effect of dropping a database partition without applying the changes

##

- In the following case, the hypothesis is dropping database partition 30 from the database
partition group, and redistributing the data in database partitions 10 and 20 using a

respective target ratio of 1 : 1

3

NOTE: In this example all database partitions 10, 20 and 30 should exist in the database
3 partition group

R e e L L L L L L L LR L L L EEE LS

db2 -v "call sysproc.analyze_log_space('$dbpgName', '$tbSchema', '$tbName',6 2, ' ',
IDI' I30I' I10'20I'I1'1I)II

JE = e m e e e e
Generate a data distribution file to be used by the redistribute process

Chapter 4. Performance issues 291

Write a step wise redistribution plan into a registry

3

Setting the 10th parameter to 1, may cause a currently running step wise redistribute
stored procedure to complete the current step and stop, until this parameter is reset
to 0, and the redistribute stored procedure is called again.

I e e T T T P T T T
db2 -v "call sysproc.set_swrd_settings('$dbpgName', 255, 0, ' ', '$distFile', 1000,

12, 2, 1, 0, '10,20,30', '50,50,50')"

T e e R
Report the content of the step wise redistribution plan for the given database
partition group.

e T
Redistribute the database partition group "dbpgName" according to the redistribution
plan stored in the registry by set_swrd_settings. It starting with step 3 and

redistributes the data until 2 steps in the redistribution plan are completed.

R L]
db2 -v "call sysproc.stepwise_redistribute_dbpg('$dbpgName', 3, 2)"

Configuring self-tuning memory

Self-tuning memory in partitioned database environments

When using the self-tuning memory feature in partitioned database environments, there are a few factors
that determine whether the feature will tune the system appropriately.

When self-tuning memory is enabled for partitioned databases, a single database partition is designated
as the tuning partition, and all memory tuning decisions are based on the memory and workload
characteristics of that database partition. After tuning decisions on that partition are made, the memory
adjustments are distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when all of the database
partitions have similar memory requirements. Use the following guidelines when determining whether to
enable self-tuning memory on your partitioned database.

Cases where self-tuning memory for partitioned databases is recommended

When all database partitions have similar memory requirements and are running on similar hardware,
self-tuning memory can be enabled without any modifications. These types of environments share the
following characteristics:

- All database partitions are on identical hardware, and there is an even distribution of multiple logical
database partitions to multiple physical database partitions

« There is a perfect or near-perfect distribution of data

« Workloads are distributed evenly across database partitions, meaning that no database partition has
higher memory requirements for one or more heaps than any of the others

In such an environment, if all database partitions are configured equally, self-tuning memory will properly
configure the system.

Cases where self-tuning memory for partitioned databases is recommended with qualification

In cases where most of the database partitions in an environment have similar memory requirements and
are running on similar hardware, it is possible to use self-tuning memory as long as some care is taken
with the initial configuration. These systems might have one set of database partitions for data, and a
much smaller set of coordinator partitions and catalog partitions. In such environments, it can be
beneficial to configure the coordinator partitions and catalog partitions differently than the database
partitions that contain data.

Self-tuning memory should be enabled on all of the database partitions that contain data, and one of
these database partitions should be designated as the tuning partition. And because the coordinator and

292 IBM Db2 V11.5: Partitioning and Clustering Guide

catalog partitions might be configured differently, self-tuning memory should be disabled on those
partitions. To disable self-tuning memory on the coordinator and catalog partitions, set the
self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not recommended

If the memory requirements of each database partition are different, or if different database partitions are
running on significantly different hardware, it is good practice to disable the self-tuning memory feature.
You can disable the feature by setting the self_tuning_mem database configuration parameter to OFF
on all partitions.

Comparing the memory requirements of different database partitions

The best way to determine whether the memory requirements of different database partitions are
sufficiently similar is to consult the snapshot monitor. If the following snapshot elements are similar on
all database partitions (differing by no more than 20%), the memory requirements of the database
partitions can be considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on <dbname>

Locks held currently

Lock waits

Time database waited on locks (ms)
Lock list memory in use (Bytes)
Lock escalations

Exclusive lock escalations

O
o
(0]

Total Shared Sort heap allocated
Shared Sort heap high water mark
Post threshold sorts (shared memory)
Sort overflows

Package cache lookups

Package cache inserts

Package cache overflows

Package cache high water mark (Bytes)

55360

Number of hash joins

Number of hash loops

Number of hash join overflows

Number of small hash join overflows

Post threshold hash joins (shared memory)

Number of OLAP functions
Number of OLAP function overflows
Active OLAP functions

[o¥oNo) [c¥oNoNoNo) O\OHS [oNoNoNo] [cYoR N oNoNo]

Collect the following data by issuing the command: get snapshot for bufferpools on <dbname>

Buffer pool data logical reads

Buffer pool data physical reads

Buffer pool index logical reads

Buffer pool index physical reads

Total buffer pool read time (milliseconds)
Total buffer pool write time (milliseconds)

LI | | A [
[ooNoNoNoNo]

Using self-tuning memory in partitioned database environments

When self-tuning memory is enabled in partitioned database environments, there is a single database
partition (known as the tuning partition) that monitors the memory configuration and propagates any
configuration changes to all other database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the number of database
partitions in the partition group and the number of buffer pools.

Chapter 4. Performance issues 293

- To determine which database partition is currently specified as the tuning partition, call the ADMIN_CMD
procedure as follows:

CALL SYSPROC.ADMIN_CMD('get stmm tuning dbpartitionnum')
« To change the tuning partition, call the ADMIN_CMD procedure as follows:

CALL SYSPROC.ADMIN_CMD('update stmm tuning dbpartitionnum <partitionnum>")

The tuning partition is updated asynchronously or at the next database startup. To have the memory
tuner automatically select the tuning partition, enter -1 for the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the database is activated by an
explicit ACTIVATE DATABASE command, because self-tuning memory requires that all partitions be
active.

Disabling self-tuning memory for a specific database partition

- To disable self-tuning memory for a subset of database partitions, set the self_tuning_mem database
configuration parameter to OFF for those database partitions.

- To disable self-tuning memory for a subset of the memory consumers that are controlled by
configuration parameters on a specific database partition, set the value of the relevant configuration
parameter or the buffer pool size to MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be consistent across all running
partitions.

« To disable self-tuning memory for a particular buffer pool on a specific database partition, issue the
ALTER BUFFERPOOL statement, specifying a size value and the partition on which self-tuning memory
is to be disabled.

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a particular database
partition will create an exception entry (or update an existing entry) for that buffer pool in the
SYSCAT.BUFFERPOOLDBPARTITIONS catalog view. If an exception entry for a buffer pool exists, that
buffer pool will not participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC. To remove an exception entry so that a buffer pool can be enabled for self tuning:

1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL statement, setting the
buffer pool size to a specific value.

2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer pool on this database
partition to the size value specified in Step 1.

3. Enable self tuning for this buffer pool by issuing another ALTER BUFFERPOOL statement, setting the
buffer pool size to AUTOMATIC.

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the workload that is run on
each partition should have similar memory requirements. If the data distribution is skewed, so that one or
more of your database partitions contain significantly more or less data than other database partitions,
these anomalous database partitions should not be enabled for self tuning. The same is true if the
memory requirements are skewed across the database partitions, which can happen, for example, if
resource-intensive sorts are only performed on one partition, or if some database partitions are
associated with different hardware and more available memory than others. Self tuning memory can still
be enabled on some database partitions in this type of environment. To take advantage of self-tuning
memory in environments with skew, identify a set of database partitions that have similar data and
memory requirements and enable them for self tuning. Memory in the remaining partitions should be
configured manually.

294 IBM Db2 V11.5: Partitioning and Clustering Guide

DB2 configuration parameters and variables

Configuring databases across multiple partitions

The database manager provides a single view of all database configuration elements across multiple
partitions. This means that you can update or reset a database configuration across all database
partitions without invoking the db2_all command against each database partition.

You can update a database configuration across partitions by issuing only one SQL statement or only one
administration command from any partition on which the database resides. By default, the method of
updating or resetting a database configuration is on all database partitions.

For backward compatibility of command scripts and applications, you have three options:

« Use the db2set command to set the DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable to
TRUE, as follows:

DB2_UPDDBCFG_SINGLE_DBPARTITION=TRUE

Note: Setting the registry variable does not apply to UPDATE DATABASE CONFIGURATION or RESET
DATABASE CONFIGURATION requests that you make using the ADMIN_CMD procedure.

« Use the DBPARTITIONNUM parameter with either the UPDATE DATABASE CONFIGURATION or the
RESET DATABASE CONFIGURATION command or with the ADMIN_CMD procedure. For example, to
update the database configurations on all database partitions, call the ADMIN_CMD procedure as
follows:

CALL SYSPROC.ADMIN_CMD
('UPDATE DB CFG USING sortheap 1000')

To update a single database partition, call the ADMIN_CMD procedure as follows:

CALL SYSPROC.ADMIN_CMD
('UPDATE DB CFG DBPARTITIONNUM 10 USING sortheap 1000')

« Use the DBPARTITIONNUM parameter with the db2CfgSet APL. The flags in the db2C£g structure
indicate whether the value for the database configuration is to be applied to a single database partition.
If you set a flag, you must also provide the DBPARTITIONNUM value, for example:

#define db2CfgSingleDbpartition 256

If you do not set the db2CfgSingleDbpartition value, the value for the database configuration
applies to all database partitions unless you set the DB2_UPDDBCFG_SINGLE_DBPARTITION registry
variable to TRUE or you set versionNumber to anything that is less than the version number for Version
9.5, for the db2CfgSet API that sets the database manager or database configuration parameters.

When upgrading your databases to Version 9.7, existing database configuration parameters, as a general
rule, retain their values after database upgrade. However, new parameters are added using their default
values and some existing parameters are set to their new Version 9.7 default values. For more details
about the changes to existing database configuration parameters, see "Db2 server behavior changes" in
Upgrading to Db2 Version 10.5. Any subsequent update or reset database configuration requests for the
upgraded databases will apply to all database partitions by default.

For existing update or reset command scripts, the same rules mentioned previously apply to all database
partitions. You can modify your scripts to include the DBPARTITIONNUM option of the UPDATE DATABASE
CONFIGURATION or RESET DATABASE CONFIGURATION command, or you can set the
DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable.

For existing applications that call the db2C£gSet API, you must use the instructions for Version 9.5 or
later. If you want the pre-Version 9.5 behavior, you can set the DB2_UPDDBCFG_SINGLE_DBPARTITION
registry variable or modify your applications to call the API with the Version 9.5 or later version humber,
including the new db2CfgSingleDbpartition flag and the new dbpaxtitionnum field to update or
reset database configurations for a specific database partition.

Chapter 4. Performance issues 295

Note: If you find that database configuration values are inconsistent, you can update or reset each
database partition individually.

Partitioned database environment variables

You use partitioned database environment variables to control the default behavior of a partitioned
database environment, including authorization, failover, and network behavior.

DB2_ASYNC_DPF_INDOUBT_RESOLUTION
« Operating system: All
- Default=0N, Values: ON or OFF
- When set to OFF, Db2 will make one attempt to resolve each indoubt transaction as part of crash
recovery. If the indoubt transactions are not resolved, no further attempt will be made by Db2 until

the next database restart. When set to ON, Db2 will continue to attempt to resolve indoubt
transactions asynchronously until all are resolved.

DB2CHGPWD_EEE

« Operating system: Db2 ESE on AIX, Linux, and Windows
 Default=NULL, Values: YES or NO

- This variable specifies whether you allow other users to change passwords on AIX or Windows ESE
systems. You must ensure that the passwords for all database partitions or nodes are maintained
centrally using either a Windows domain controller on Windows, or LDAP on AIX. If not maintained
centrally, passwords may not be consistent across all database partitions or nodes. This could
result in a password being changed only at the database partition to which the user connects to
make the change.

DB2_FCM_SETTINGS
« Operating system: Linux
» Default=YES, Values:

— FCM_MAXIMIZE_SET_SIZE:[YES|TRUE|NO|FALSE]. The default value for
FCM_MAXIMIZE_SET_SIZEis YES.

— FCM_CFG_BASE_AS_FLOOR: [YES|TRUE|NO|FALSE]. The default value for
FCM_CFG_BASE_AS_FLOOR is NO.

 You can set the DB2_FCM_SETTINGS registry variable with the FCM_MAXIMIZE_SET_SIZE token to
preallocate a default 4 GB of space for the fast communication manager (FCM) buffer. The token
must have a value of either YES or TRUE to enable this feature.

You can use the DB2_FCM_SETTINGS registry variable with the FCM_CFG_BASE_AS_FLOOR option
to set the base value as the floor for the fcm_num_buffers and fcm_num_channels database
manager configuration parameters. When the FCM_CFG_BASE_AS_FLOOR option is set to YES or
TRUE, and these parameters are set to AUTOMATIC and have an initial or starting value, Db2 will not
tune them below this value.

DB2_FORCE_OFFLINE_ADD_PARTITION
« Operating system: All
« Default=FALSE, Values: FALSE or TRUE

« This variable allows you to specify that add database partition server operations are to be
performed offline. The default setting of FALSE indicates that Db2 database partition servers can be
added without taking the database offline. However, if you want the operation to be performed
offline or if some limitation prevents you from adding database partition servers when the database
is online, set DB2_FORCE_OFFLINE_ADD_PARTITION to TRUE. When this variable is set to TRUE,
new Db2 database partition servers are added according to the Version 9.5 and earlier versions'
behavior; that is, new database partition servers are not visible to the instance until it has been shut
down and restarted.

296 IBM Db2 V11.5: Partitioning and Clustering Guide

DB2_NUM_FAILOVER_NODES
« Operating system: All
 Default=2, Values: 0 to the required number of database partitions

« Set DB2_NUM_FAILOVER_NODES to specify the number of additional database partitions that might
need to be started on a machine in the event of failover.

In a Db2 database high availability solution, if a database server fails, the database partitions on the
failed machine can be restarted on another machine. The fast communication manager (FCM) uses
DB2_NUM_FAILOVER_NODES to calculate how much memory to reserve on each machine to
facilitate this failover.

For example, consider the following configuration:

— Machine A has two database partitions: 1 and 2.
— Machine B has two database partitions: 3 and 4.
— DB2_NUM_FAILOVER_NODES is set to 2 on both A and B.

At START DBM, FCM will reserve enough memory on both A and B to manage up to four database
partitions so that if one machine fails, the two database partitions on the failed machine can be
restarted on the other machine. If machine A fails, database partitions 1 and 2 can be restarted on
machine B. If machine B fails, database partitions 3 and 4 can be restarted on machine A.

DB2_PARTITIONEDLOAD_DEFAULT

« Operating system: All supported ESE platforms
 Default=YES, Values: YES or NO

-« The DB2_PARTITIONEDLOAD_DEFAULT registry variable lets users change the default behavior of
the load utility in an ESE environment when no ESE-specific load options are specified. The default
value is YES, which specifies that in an ESE environment if you do not specify ESE-specific load
options, loading is attempted on all database partitions on which the target table is defined. When
the value is NO, loading is attempted only on the database partition to which the load utility is
currently connected.

Note: This variable is deprecated and may be removed in a later release. The LOAD command has
various options that can be used to achieve the same behavior. You can achieve the same results as
the NO setting for this variable by specifying the following with the LOAD command: PARTITIONED
DB CONFIG MODE LOAD_ONLY OUTPUT_DBPARTNUMS x, where x is the partition number of the
partition into which you want to load data.

DB2PORTRANGE
« Operating system: Windows
 Values: nnnn:nnnn

« This value is set to the TCP/IP port range used by FCM so that any additional database partitions
created on another machine will also have the same port range.

DB2_DEFAULT_TABLE_DISTRIBUTION
« Operating system: All
« Default=NULL

» Values: RANDOM - If explicit DISTRIBUTE BY clause is missing from CREATE TABLE statement,
create table as DISTRIBUTE BY RANDOM. Setting is silently ignored for tables that can't be created
as DISTRIBUTE BY RANDOM.

DB2CHGPWD_EEE

« Operating system: Db2 ESE on AIX, Linux, and Windows
 Default=NULL, Values: YES or NO

- This variable specifies whether you allow other users to change passwords on AIX or Windows ESE
systems. You must ensure that the passwords for all database partitions or nodes are maintained

Chapter 4. Performance issues 297

centrally using either a Windows domain controller on Windows, or LDAP on AIX. If not maintained
centrally, passwords may not be consistent across all database partitions or nodes. This could
result in a password being changed only at the database partition to which the user connects to
make the change.

DB2_FCM_SETTINGS
« Operating system: Linux
 Default=YES, Values:

— FCM_MAXIMIZE_SET_SIZE:[YES|TRUE|NO|FALSE]. The default value for
FCM_MAXIMIZE_SET_SIZE is YES.

— FCM_CFG_BASE_AS_FLOOR: [YES|TRUE|NO|FALSE]. The default value for
FCM_CFG_BASE_AS_FLOOR is NO.
» You can set the DB2_FCM_SETTINGS registry variable with the FCM_MAXIMIZE_SET_SIZE token to

preallocate a default 4 GB of space for the fast communication manager (FCM) buffer. The token
must have a value of either YES or TRUE to enable this feature.

You can use the DB2_FCM_SETTINGS registry variable with the FCM_CFG_BASE_AS_FLOOR option
to set the base value as the floor for the fcm_num_buffers and fcm_num_channels database
manager configuration parameters. When the FCM_CFG_BASE_AS_FLOOR option is set to YES or
TRUE, and these parameters are set to AUTOMATIC and have an initial or starting value, Db2 will not
tune them below this value.

DB2_FORCE_OFFLINE_ADD_PARTITION
« Operating system: All
« Default=FALSE, Values: FALSE or TRUE

« This variable allows you to specify that add database partition server operations are to be
performed offline. The default setting of FALSE indicates that Db2 database partition servers can be
added without taking the database offline. However, if you want the operation to be performed
offline or if some limitation prevents you from adding database partition servers when the database
is online, set DB2_FORCE_OFFLINE_ADD_PARTITION to TRUE. When this variable is set to TRUE,
new Db2 database partition servers are added according to the Version 9.5 and earlier versions'
behavior; that is, new database partition servers are not visible to the instance until it has been shut
down and restarted.

DB2_NUM_FAILOVER_NODES
« Operating system: All
« Default=2, Values: 0 to the required number of database partitions

» Set DB2_NUM_FAILOVER_NODES to specify the number of additional database partitions that might
need to be started on a machine in the event of failover.

In a Db2 database high availability solution, if a database server fails, the database partitions on the
failed machine can be restarted on another machine. The fast communication manager (FCM) uses
DB2_NUM_FAILOVER_NODES to calculate how much memory to reserve on each machine to
facilitate this failover.

For example, consider the following configuration:
— Machine A has two database partitions: 1 and 2.
— Machine B has two database partitions: 3 and 4.
— DB2_NUM_FAILOVER_NODES is set to 2 on both A and B.

At START DBM, FCM will reserve enough memory on both A and B to manage up to four database
partitions so that if one machine fails, the two database partitions on the failed machine can be
restarted on the other machine. If machine A fails, database partitions 1 and 2 can be restarted on
machine B. If machine B fails, database partitions 3 and 4 can be restarted on machine A.

298 IBM Db2 V11.5: Partitioning and Clustering Guide

DB2_PARTITIONEDLOAD_DEFAULT

« Operating system: All supported ESE platforms
« Default=YES, Values: YES or NO

« The DB2_PARTITIONEDLOAD_DEFAULT registry variable lets users change the default behavior of
the load utility in an ESE environment when no ESE-specific load options are specified. The default
value is YES, which specifies that in an ESE environment if you do not specify ESE-specific load
options, loading is attempted on all database partitions on which the target table is defined. When
the value is NO, loading is attempted only on the database partition to which the load utility is
currently connected.

Note: This variable is deprecated and may be removed in a later release. The LOAD command has
various options that can be used to achieve the same behavior. You can achieve the same results as
the NO setting for this variable by specifying the following with the LOAD command: PARTITIONED
DB CONFIG MODE LOAD_ONLY OUTPUT_DBPARTNUMS x, where x is the partition number of the
partition into which you want to load data.

DB2PORTRANGE

« Operating system: Windows
« Values: nnnn:nnnn

« This value is set to the TCP/IP port range used by FCM so that any additional database partitions
created on another machine will also have the same port range.

DB2_DEFAULT_TABLE_DISTRIBUTION
« Operating system: All
« Default=NULL

 Values: RANDOM - If explicit DISTRIBUTE BY clause is missing from CREATE TABLE statement,
create table as DISTRIBUTE BY RANDOM. Setting is silently ignored for tables that can't be created
as DISTRIBUTE BY RANDOM.

Partitioned database environment configuration parameters
Communications

conn_elapse - Connection elapse time
This parameter specifies the number of seconds within which a network connection is to be established
between Db2 members.

Configuration type
Database manager

Applies to
Db2 pureScale server (with more than one Db2 member)

Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
10 [0-100]

Unit of measure
Seconds

If the attempt to connect succeeds within the time specified by this parameter, communications are
established. If it fails, another attempt is made to establish communications. If the connection is
attempted the number of times specified by the max_connretxries parameter and always times out, an
error is issued.

Chapter 4. Performance issues 299

fem_num_buffers - Number of FCM buffers
You can use this parameter to specify the number of 4KB buffers that are used for internal
communications, referred to as messages, both among and within database servers.

Configuration type
Database manager

Applies to

« Database server with local and remote clients
- Database server with local clients
« Partitioned database server or Db2 pureScale database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]

32-bit platforms
AUTOMATIC [895 - 65300]

64-bit platforms
AUTOMATIC [895 - 524288]

- Database server with local and remote clients: 1024
« Database with local clients: 895
 Partitioned database server or Db2 pureScale database server with local and remote clients: 4096

Fast communication manager (FCM) buffers are used for both inter-member and intra-member
communications by default.

Important: The default value of the £cm_num_buffexrs parameter is subject to change by the Db2
Configuration Advisor after initial database creation.

You can set both an initial value and the AUTOMATIC value for the £cm_num_buffexs configuration
parameter. When you set the parameter to AUTOMATIC, FCM monitors resource usage and can increase
or decrease resources if they are not used within 30 minutes. The amount that resources are increased or
decreased depends on the operating system. On Linux operating systems, the number of buffers can be
increased only 25% more than the starting value. If the database manager attempts to start an instance
and cannot allocate the specified number of buffers, it decreases the number until it can start the
instance.

If you want to set the £cm_num_buffexs parameter to both a specific value and AUTOMATIC, and you do
not want the system controller thread to adjust resources lower than the specified value, set the
FCM_CFG_BASE_AS_FLOOR option of the DB2_FCM_SETTINGS registry variable to YES or TRUE. The
DB2_FCM_SETTINGS registry variable value is adjusted dynamically.

If you are using multiple logical nodes, one pool of £fcm_num_buffexs buffers is shared by all the logical
nodes on the same machine. You can determine the size of the pool by multiplying the value of the
fcm_num_buffers parameter by the number of logical nodes on the physical machine. Examine the
value that you are using; consider how many FCM buffers are allocated on a machine or machines with
multiple logical nodes. If you have multiple logical nodes on the same machine, you might have to
increase the value of the £cm_num_buffexrs parameter. The number of users on the system, the number
of database partition servers on the system, or the complexity of the applications can cause a system to
run out of message buffers.

fem_num_channels - Number of FCM channels
This parameter specifies the number of FCM channels for each database partition.

Configuration type
Database manager

300 IBM Db2 V11.5: Partitioning and Clustering Guide

Applies to

- Database server with local and remote clients

« Database server with local clients

« Partitioned database server orDb2 pureScale database server with local and remote clients
- Satellite database server with local clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]

UNIX 32-bit platforms
Automatic, with a starting value of 256, 512 or 2048 [128 - 120000]

UNIX 64-bit platforms
Automatic, with a starting value of 256, 512 or 2048 [128 - 524288]

Windows 32-bit
Automatic, with a starting value 10000 [128 - 120000]

Windows 64-bit
Automatic, with a starting value of 256, 512 or 2048 [128 - 524288]

The default starting values for different types of servers are as follows:

 For database server with local and remote clients, the starting value is 512.

» For database server with local clients, the starting value is 256.

- For partitioned database environment servers with local and remote clients, the starting value is
2048.

Fast communication manager (FCM) buffers are used for both inter-member and intra-member
communications by default. To enable non-clustered database systems to use the FCM subsystem
and the £cm_num_channels parameter, you had to set the intxra_parallel parameter to YES

An FCM channel represents a logical communication end point between EDUs running in the Db2 engine.
Both control flows (request and reply) and data flows (table queue data) rely on channels to transfer data
between members.

When set to AUTOMATIC, FCM monitors channel usage, incrementally allocating and releasing resources
as requirements change.

max_connretries - Node connection retries
This parameter specifies the maximum number of times an attempt will be made to establish a network
connection between two Db2 members.

Configuration type
Database manager

Applies to
Partitioned database server with local and remote clients

Db2 pureScale server

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
5 [0-100]

If the attempt to establish communication between two Db2 members fails (for example, the value
specified by the conn_elapse parameter is reached), max_connretries specifies the number of

Chapter 4. Performance issues 301

connection retries that can be made to a Db2 member. If the value specified for this parameter is
exceeded, an error is returned.

max_time_diff - Maximum time difference between members
This parameter specifies the maximum time difference that is permitted between members in a Db2
pureScale environment that are listed in the node configuration file.

Configuration type
Database manager

Applies to
Members with local and remote clients

Parameter type
Configurable

Default [range]

In Db2 pureScale environments
1[1-1 440]

Outside of Db2 pureScale environments
60[1-1 440]

Unit of measure
Minutes

Each member has its own system clock. The time difference between two or more member system clocks
is checked periodically. If the time difference between the system clocks is more than the amount
specified by the max_time_diff parameter, warnings are logged in the db2diag log files.

In a Db2 pureScale environment, to ensure that members do not drift out of sync with each other, a
Network Time Protocol (NTP) setup is required and periodically verified on each member. If chronyd or
ntpd is not detected, warnings are logged in the db2diag log files.

The SQL1473N error message is returned in partitioned database environments where the system clock is
compared to the virtual time stamp (VTS) saved in the SQLOGCTL . LFH log control file. If the time stamp
in the . LFH log control file is less than the system time, the time in the database log is set to the VTS until
the system clock matches the VTS.

Db2 database manager uses Coordinated Universal Time (UTC), so different time zones are not a
consideration when you set the max_time_diff parameter. UTC is the same as Greenwich Mean Time.

start_stop_time - Start and stop timeout

This parameter specifies the time, in minutes, within which all database partition servers must respond to
a START DBMor a STOP DBM command. It is also used as the timeout value during ADD
DBPARTITIONNUM and DROP DBPARTITIONNUM operations.

Configuration type
Database manager

Applies to
Database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
10[1-1 440]

Unit of measure
Minutes

Member or nodes that do not respond to db2staxt or db2stop commands within the specified time will
be killed and cleaned up automatically by db2staxt or db2stop in a multi member/node instance. The

302 IBM Db2 V11.5: Partitioning and Clustering Guide

diagnostic messages are logged into the diagpath defined in the database manager configuration or at
its default value (for example, sql1ib/db2dump/ $mon UNIX operating systems).

If adb2start or db2stop operation is not completed within the value specified by the
start_stop_time database manager configuration parameter, the database members and partitions
being stopped will be killed and cleaned up automatically. Environments with a low value for
start_stop_time may experience this behavior. To resolve this behavior, increase the value of
start_stop_time.

When adding a new database partition using one of the db2start, START DATABASE MANAGER, or ADD
DBPARTITIONNUM commands, the add database partition operation must determine whether or not each
database in the instance is enabled for automatic storage. This is done by communicating with the catalog
partition for each database. If automatic storage is enabled, the storage path definitions are retrieved as
part of that communication. Likewise, if system temporary table spaces are to be created with the
database partition(s), the operation might have to communicate with another database partition server to
retrieve the table space definitions for the database partition(s) that reside on that server. These factors
should be considered when determining the value of the staxrt_stop_time parameter.

To allow the force application operation more time to succeed, for example to rollback a large batch
transaction, increase start_stop_time. If the timeout is configured to be too low or if the member/
partition(s) is in a state that cannot be successfully forced, the member/partition(s) will be killed and
possibly in need of crash recovery. db2staxt needs to be run before the crash recovery can occur and
release any retained locks, then db2stop to stop the member/partition(s) cleanly.

Note: On UNIX operating systems, the start_stop_time configuration parameter on multi-member
Db2 instances only includes the time required to stop any particular member locally; it does not include
the time required to send the stop request to remote members through rsh or ssh.

Parallel processing

intra_parallel - Enable intrapartition parallelism
This parameter specifies whether or not database connections will use intrapartition query parallelism by
default.

Configuration type
Database manager

Applies to
- Database server with local and remote clients
« Database server with local clients
- Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
NO (@) [SYSTEM (-1), NO (@), YES ()]

A value of YES enables intrapartition query parallelism. A value of NO disables intrapartition query
parallelism.

A value of SYSTEM causes the parameter value to be set to YES or NO based on the hardware on which
the database manager is running. If the number of logical CPUs on the system is > 1, when the value
is set to SYSTEM, intrapartition query parallelism is enabled.

Note: The default value is subject to change by the Db2 Configuration Advisor after initial database
creation.

Note:

- Parallel index creation does not use this configuration parameter.

- If you change this parameter value, packages might be rebound to the database, and some
performance degradation might occur.

Chapter 4. Performance issues 303

« The intra_parallel setting can be overridden in an application by a call to the
ADMIN_SET_INTRA_PARALLEL procedure. Both the intra_parallel setting and the value set in an
application by the ADMIN_SET_INTRA_PARALLEL procedure can be overridden in a workload by setting
the MAXIMUM DEGREE attribute in a workload definition.

max_querydegree - Maximum query degree of parallelism

This parameter specifies the maximum degree of intrapartition parallelism that is used for any SQL
statement executing on this instance of the database manager. An SQL statement will not use more than
this number of parallel operations within a database partition when the statement is executed.

Configuration type
Database manager

Applies to

« Database server with local and remote clients
« Database server with local clients
« Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Statement boundary

Default [range]
-1 (ANY) [ANY, 1 - 32 767] (ANY means system-determined)

Note: The default value is subject to change by the Db2 Configuration Advisor after initial database
creation.

The intra_parallel configuration parameter must be set to YES to enable the database partition to
use intrapartition parallelism for SQL statements. The intxra_parallel parameter is no longer required
for parallel index creation.

The default value for this configuration parameter is -1. This value means that the system uses the
degree of parallelism determined by the optimizer; otherwise, the user-specified value is used.

Note: The degree of parallelism for an SQL statement can be specified at statement compilation time
using the CURRENT DEGREE special register or the DEGREE bind option.

The maximum query degree of parallelism for an active application can be modified using the SET
RUNTIME DEGREE command. The actual runtime degree used is the lower of:

- max_querydegree configuration parameter
« Application runtime degree

« SQL statement compilation degree
MAXIMUM DEGREE service class option
MAXIMUM DEGREE workload option

This configuration parameter applies to queries only.

304 IBM Db2 V11.5: Partitioning and Clustering Guide

Chapter 5. Administrative APIs, commands, SQL
statements

Administrative APIs

sqleaddn - Add a database partition to the partitioned database environment
Adds a database partition to a database partition server.

Scope

This API only affects the database partition server on which it is executed.

Authorization
One of the following authorities:

« SYSADM
« SYSCTRL

Required connection

None

API include file

sqlenv.h

API and data structure syntax

SQL_API_RC SQL_API_FN
sqleaddn (
void * pAddNodeOptions,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgaddn (
unsigned short addnOptionsLen,
struct sglca * pSqlca,
void * pAddNodeOptions);

sqleaddn API parameters

pAddNodeOptions
Input. A pointer to the optional sqle_addn_options structure. This structure is used to specify the
source database partition server, if any, of the system temporary table space definitions for all
database partitions to be created. If not specified (that is, a NULL pointer is specified), the system
temporary table space definitions will be the same as those for the catalog partition.

pSqlca
Output. A pointer to the sqlca structure.

© Copyright IBM Corp. 2016, 2020 305

sqlgaddn API-specific parameters

addnOptionsLen
Input. A 2-byte unsigned integer representing the length of the optional sqle_addn_options
structure in bytes.

Usage notes

This API should only be used if a database partition server is added to an environment that has one
database and that database is not cataloged at the time of the add partition operation. In this situation,
because the database is not cataloged, the add partition operation does not recognize the database, and
does not create a database partition for the database on the new database partition server. Any attempt
to connect to the database partition on the new database partition server results in an error. The
database must first be cataloged before the sqleaddn API can be used to create the database partition
for the database on the new database partition server.

This API should not be used if the environment has more than one database and at least one of the
databases is cataloged at the time of the add partition operation. In this situation, use the sqlecran API
to create a database partition for each database that was not cataloged at the time of the add partition
operation. Each uncataloged database must first be cataloged before the sqlecran API can be used to
create the database partition for the database on the new database partition server.

Before adding a new database partition, ensure that there is sufficient storage for the containers that
must be created.

The add node operation creates an empty database partition on the new database partition server for
every database that exists in the instance. The configuration parameters for the new database partitions
are set to the default value.

Note: Any uncataloged database is not recognized when adding a new database partition. The
uncataloged database will not be present on the new database partition. An attempt to connect to the
database on the new database partition returns the error message SQL1013N.

If an add node operation fails while creating a database partition locally, it enters a clean-up phase, in
which it locally drops all databases that have been created. This means that the database partitions are
removed only from the database partition server being added (that is, the local database partition server).
Existing database partitions remain unaffected on all other database partition servers. If this fails, no
further clean up is done, and an error is returned.

The database partitions on the new database partition server cannot be used to contain user data until
after the ALTER DATABASE PARTITION GROUP statement has been used to add the database partition
server to a database partition group.

This API will fail if a create database or a drop database operation is in progress. The API can be called
again when the operation has completed.

The storage groups storage path definitions are retrieved when the sqleaddn API has to communicate
with the catalog partition for each of the databases in the instance. Likewise, if system temporary table
spaces are to be created with the database partitions, the sqleaddn API may have to communicate with
another database partition server in the partitioned database environment in order to retrieve the table
space definitions. The start_stop_time database manager configuration parameter is used to specify
the time, in minutes, by which the other database partition server must respond with the automatic
storage and table space definitions. If this time is exceeded, the API fails. Increase the value of
start_stop_time, and call the API again.

REXX API syntax
This API can be called from REXX through the SQLDB2 interface.

306 IBM Db2 V11.5: Partitioning and Clustering Guide

sqlecran - Create a database on a database partition server

Creates a database only on the database partition server that calls the API.

This API is not intended for general use. For example, it should be used with db2Restore if the database
partition at a database partition server was damaged and must be re-created. Improper use of this API
can cause inconsistencies in the system, so it should only be used with caution.

Note: If this API is used to re-create a database partition that was dropped (because it was damaged),
the database at this database partition server will be in the restore-pending state. After recreating the
database partition, the database must immediately be restored on this database partition server.

Scope

This API only affects the database partition server on which it is called.

Authorization
One of the following authorities:

« SYSADM
« SYSCTRL

Required connection

Instance. To create a database at another database partition server, it is necessary to first attach to that
database partition server. A database connection is temporarily established by this API during
processing.

API include file

sqlenv.h

API and data structure syntax

SQL_API_RC SQL_API_FN
sqlecran (
char = pDbName,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgcran (
unsigned short reservedlLen,
unsigned short dbNamelen,
struct sqlca * pSqlca,
void * pReserved,
char * pDbName) ;

sqlecran API parameters
pDbName
Input. A string containing the name of the database to be created. Must not be NULL.

pReserved
Input. A spare pointer that is set to null or points to zero. Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure.

sqlgcran API-specific parameters

reservedLen
Input. Reserved for the length of pResexved.

Chapter 5. Administrative APIs, commands, SQL statements 307

dbNamelLen
Input. A 2-byte unsigned integer representing the length of the database name in bytes.

Usage notes

When the database is successfully created, it is placed in restore-pending state. The database must be
restored on this database partition server before it can be used.

REXX API syntax
This API can be called from REXX through the SQLDB?2 interface.

sqledpan - Drop a database on a database partition server

Drops a database at a specified database partition server. Can only be run in a partitioned database
environment.

Scope

This API only affects the database partition server on which it is called.

Authorization
One of the following authorities:

« SYSADM
« SYSCTRL

Required connection

None. An instance attachment is established for the duration of the call.

API include file

sqlenv.h

API and data structure syntax

SQL_API_RC SQL_API_FN
sgledpan (
char = pDbAlias,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sglgdpan (
unsigned short Reservedl,
unsigned short DbAliaslen,
struct sgqlca * pSqlca,
void * pReserved2,
char * pDbAlias);

sqledpan API parameters

pDbAlias
Input. A string containing the alias of the database to be dropped. This name is used to reference the
actual database name in the system database directory.

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

308 IBM Db2 V11.5: Partitioning and Clustering Guide

sqlgdpan API-specific parameters
Reservedl
Reserved for future use.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the database alias.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future use.

Usage notes

Improper use of this API can cause inconsistencies in the system, so it should only be used with caution.

REXX API syntax
This API can be called from REXX through the SQLDB?2 interface.

sqledrpn - Check whether a database partition server can be dropped

Verifies whether a database partition server is being used by a database. A message is returned,
indicating whether the database partition server can be dropped.

Scope

This API only affects the database partition server on which it is issued.

Authorization
One of the following authorities:

» SYSADM
« SYSCTRL

API include file

sqlenv.h

API and data structure syntax

SQL_API_RC SQL_API_FN
sqledrpn (
unsigned short Action,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdrpn (
unsigned short Reservedl,
struct sqlca * pSqlca,
void * pReserved?2,
unsigned short Action);

sqledrpn API parameters

Action
The action requested. The valid value is: SQL_DROPNODE_VERIFY

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

Chapter 5. Administrative APIs, commands, SQL statements 309

sqlgdrpn API-specific parameters

Reservedl
Reserved for the length of pResexved2.

pReserved2
A spare pointer that is set to NULL or points to 0. Reserved for future use.

Usage notes

If a message is returned, indicating that the database partition server is not in use, use the db2stop
command with DROP NODENUM to remove the entry for the database partition server from the
db2nodes.cfg file, which removes the database partition server from the partitioned database
environment.

If a message is returned, indicating that the database partition server is in use, the following actions
should be taken:

1. The database partition server to be dropped will have a database partition on it for each database in
the instance. If any of these database partitions contain data, redistribute the database partition
groups that use these database partitions. Redistribute the database partition groups to move the data
to database partitions that exist at database partition servers that are not being dropped.

2. After the database partition groups are redistributed, drop the database partition from every database
partition group that uses it. To remove a database partition from a database partition group, you can
use either the drop node option of the sqludxrdt API or the ALTER DATABASE PARTITION GROUP
statement.

3. Drop any event monitors that are defined on the database partition server.

4. Rerun sqledzrpn to ensure that the database partition at the database partition server is no longer in
use.

REXX API syntax
This API can be called from REXX through the SQLDB?2 interface.

sqlugrpn - Get the database partition server number for a row

Beginning with Version 9.7, this API is deprecated. Use the db2GetRowPartNum (Get the database
partition server number for a row) API to return the database partition number and database partition
server number for a row. If you call the sqlugrpn API and the DB2_PMAP_COMPATIBILITY registry
variable is set to OFF, the error message SQL2768N is returned.

Returns the database partition number and the database partition server number based on the
distribution key values. An application can use this information to determine on which database partition
server a specific row of a table is stored.

The partitioning data structure, sqlupi, is the input for this API. The structure can be returned by the
sqlugtpi APL Another input is the character representations of the corresponding distribution key
values. The output is a database partition number generated by the distribution strategy and the
corresponding database partition server number from the distribution map. If the distribution map
information is not provided, only the database partition number is returned. This can be useful when
analyzing data distribution.

The database manager does not need to be running when this API is called.

Scope

This API must be invoked from a database partition server in the db2nodes. cfg file. This API should not
be invoked from a client, since it could result in erroneous database partitioning information being
returned due to differences in code page and endianess between the client and the server.

310 IBM Db2 V11.5: Partitioning and Clustering Guide

Authorization

None

API include file

sqlutil.h

API and data structure syntax

SQL_API_RC SQL_API_FN
sqlugrpn (
unsigned short num_ptrs,
unsigned char xx ptr_array,
unsigned short % ptr_lens,
unsigned short territory_ctrycode,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReservedl,
void * pReserved?);

SQL_API_RC SQL_API_FN
sqlggrpn (
unsigned short num_ptrs,
unsigned char %% ptr_array,
unsigned short % ptr_lens,
unsigned short territory_code,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReservedil,
void * pReserved2);

sqlugrpn API parameters

num_ptrs
The number of pointers in ptx_axrray. The value must be the same as the one specified for the
paxrt_info parameter; that is, part_info->sqld.

ptr_array
An array of pointers that points to the character representations of the corresponding values of each
part of the distribution key specified in paxrt_inZfo. If a null value is required, the corresponding
pointer is set to null. For generated columns, this function does not generate values for the row. The
user is responsible for providing a value that will lead to the correct partitioning of the row.

ptr_lens
An array of unsigned integers that contains the lengths of the character representations of the
corresponding values of each part of the partitioning key specified in paxt_info.

territory_ctrycode
The country/region code of the target database. This value can also be obtained from the database
configuration file using the GET DATABASE CONFIGURATION command.

codepage
The code page of the target database. This value can also be obtained from the database
configuration file using the GET DATABASE CONFIGURATION command.

part_info
A pointer to the sqlupi structure.

Chapter 5. Administrative APIs, commands, SQL statements 311

part_num
A pointer to a 2-byte signed integer that is used to store the database partition number.

node_num
A pointer to an SQL_PDB_NODE_TYPE field used to store the node number. If the pointer is null, no
node number is returned.

chklvl
An unsigned integer that specifies the level of checking that is done on input parameters. If the value
specified is zero, no checking is done. If any non-zero value is specified, all input parameters are
checked.

sqlca
Output. A pointer to the sqlca structure.

dataformat
Specifies the representation of distribution key values. Valid values are:

SQL_CHARSTRING_FORMAT
All distribution key values are represented by character strings. This is the default value.

SQL_IMPLIEDDECIMAL_FORMAT
The location of an implied decimal point is determined by the column definition. For example, if
the column definition is DECIMAL(8,2), the value 12345 is processed as 123.45.

SQL_PACKEDDECIMAL_FORMAT
All decimal column distribution key values are in packed decimal format.

SQL_BINARYNUMERICS_FORMAT
All numeric distribution key values are in big-endian binary format.

pReservedl
Reserved for future use.

pReserved2
Reserved for future use.

Usage notes

Data types supported on the operating system are the same as those that can be defined as a distribution
key.

Note: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data types must be converted to the database code
page before this API is called.

For numeric and datetime data types, the character representations must be at the code page of the
corresponding system where the API is invoked.

If node_num is not null, the distribution map must be supplied; that is, pmaplen field in paxt_info
parameter (paxrt_info->pmaplen) is either 2 or 8192. Otherwise, SQLCODE -6038 is returned. The
distribution key must be defined; that is, sqld field in paxrt_info parameter (paxrt_info->sqld) must
be greater than zero. Otherwise, SQLCODE -2032 is returned.

If a null value is assigned to a non-nullable partitioning column, SQLCODE -6039 is returned.

All the leading blanks and trailing blanks of the input character string are stripped, except for the CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC data types, where only trailing blanks are stripped.

Commands

REDISTRIBUTE DATABASE PARTITION GROUP

The REDISTRIBUTE DATABASE PARTITION GROUP command redistributes data across the partitions
in a database partition group. This command affects all objects present in the database partition group
and cannot be restricted to one object alone.

312 IBM Db2 V11.5: Partitioning and Clustering Guide

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following authorities is required:

- SYSADM

« SYSCTRL

- DBADM

In addition, one of the following groups of authorizations is also required:

« DELETE, INSERT, and SELECT privileges on all tables in the database partition group being redistributed
« DATAACCESS authority

Command syntax
»— REDISTRIBUTE DATABASE PARTITION GROUP — db-partition-group —»

Action

L >
NOT ROLLFORWARD RECOVERABLE ~ —| Action |— Not rollforward recoverable options }—J

o
ONLY
LTABLE — (ftable-name) r T
U st J

»
»

e —o

FIRST
> o — o0 —p
EXCLUDE —(ftable-n:mei)J
> °* g
L STOP AT — local-isotime —J
Action
» L UNIFORM J | Add/Drop DB partition ~ |——»<
USING DISTFILE — distfilename
L USING TARGETMAP — targetmapfilename J
CONTINUE
- ABORT J

Add/Drop DB partition

Chapter 5. Administrative APIs, commands, SQL statements 313

¥
4

ADD T DBPARTITIONNUM _J L _J
DBPARTITIONNUMS TO —m

A 4

DROP T DBPARTITIONNUM _J (n L _J
DBPARTITIONNUMS TO —m
Not rollforward recoverable options

INDEXING MODE REBUILD j f_ PRECHECK YES

»— o
L DATABUFFER —n —J L INDEXING MODE DEFERRED J k PRECHECK NO

PRECHECK ONLY

Ly
J

j_ QUIESCE DATABASE YES T

o
L QUIESCE DATABASE NO —J L STATISTICS NONE —J

r STATISTICS USE PROFILE T
o * »q

Command parameters

DATABASE PARTITION GROUP db-partition-group
The name of the database partition group. This one-part name identifies a database partition group
described in the SYSCAT.DBPARTITIONGROUPS catalog table. The database partition group cannot
currently be undergoing redistribution.

Note: Tables in the IBMCATGROUP and the IBMTEMPGROUP database partition groups cannot be
redistributed.

NOT ROLLFORWARD RECOVERABLE
When this option is used, the REDISTRIBUTE DATABASE PARTITION GROUP command is not
rollforward recoverable.

« Data is moved in bulk instead of by internal insert and delete operations. This reduces the number
of times that a table must be scanned and accessed, which results in better performance.

« Log records are no longer required for each of the insert and delete operations. This means that you
no longer need to manage large amounts of active log space and log archiving space in your system
when performing data redistribution.

« When using the REDISTRIBUTE DATABASE PARTITION GROUP command with the NOT
ROLLFORWARD RECOVERABLE option, the redistribute operation uses the INDEXING MODE
DEFERRED option for tables that contain XML columns. If a table does not contain an XML column,
the redistribute operation uses the indexing mode specified when issuing the command.

When this option is not used, extensive logging of all row movement is performed such that the
database can be recovered later in the event of any interruptions, errors, or other business need.

This option is not supported for column-organized tables.

UNIFORM
Specifies that the data is uniformly distributed across hash partitions (that is, every hash partition is
assumed to have the same number of rows), but the same number of hash partitions do not map to
each database partition. After redistribution, all database partitions in the database partition group
have approximately the same number of hash partitions.

314 IBM Db2 V11.5: Partitioning and Clustering Guide

USING DISTFILE distfilename
If the distribution of distribution key values is skewed, use this option to achieve a uniform
redistribution of data across the database partitions of a database partition group.

Use the distfilename to indicate the current distribution of data across the 32 768 hash partitions.

Use row counts, byte volumes, or any other measure to indicate the amount of data represented by
each hash partition. The utility reads the integer value associated with a partition as the weight of that
partition. When a distfilename is specified, the utility generates a target distribution map that it uses
to redistribute the data across the database partitions in the database partition group as uniformly as
possible. After the redistribution, the weight of each database partition in the database partition
group is approximately the same (the weight of a database partition is the sum of the weights of all
hash partitions that map to that database partition).

For example, the input distribution file might contain entries as follows:

10223
1345
112000
0

100

In the example, hash partition 2 has a weight of 112000, and partition 3 (with a weight of 0) has no
data mapping to it at all.

The distfilename should contain 32 768 positive integer values in character format. The sum of the
values should be less than or equal to 4 294 967 295.

USING TARGETMAP targetmapfilename
The file specified in targetmapfilename is used as the target distribution map. Data redistribution is
done according to this file.

The targetmapfilename should contain 32 768 integers, each representing a valid database partition
number. The number on any row maps a hash value to a database partition. This means that if row X
contains value Y, then every record with HASHEDVALUE() of X is to be located on database partition Y.

If a database partition, included in the target map, is not in the database partition group, an error is
returned. Issue ALTER DATABASE PARTITION GROUP ADD DBPARTITIONNUM statement before
running REDISTRIBUTE DATABASE PARTITION GROUP command.

If a database partition, excluded from the target map, is in the database partition group, that
database partition will not be included in the partitioning. Such a database partition can be dropped
using ALTER DATABASE PARTITION GROUP DROP DBPARTITIONNUM statement either before or
after the REDISTRIBUTE DATABASE PARTITION GROUP command.

CONTINUE
Continues a previously failed or stopped REDISTRIBUTE DATABASE PARTITION GROUP operation.
If none occurred, an error is returned.

ABORT
Aborts a previously failed or stopped REDISTRIBUTE DATABASE PARTITION GROUP operation. If
none occurred, an error is returned.

ADD
DBPARTITIONNUM n
TOm

nor n TO m specifies a list or lists of database partition numbers which are to be added into the
database partition group. Any specified partition must not already be defined in the database
partition group (SQLSTATE 42728). This is equivalent to executing the ALTER DATABASE
PARTITION GROUP statement with ADD DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n
TOm

Chapter 5. Administrative APIs, commands, SQL statements 315

n or n TO m specifies a list or lists of database partition numbers which are to be added into the
database partition group. Any specified partition must not already be defined in the database
partition group (SQLSTATE 42728). This is equivalent to executing the ALTER DATABASE
PARTITION GROUP statement with ADD DBPARTITIONNUM clause specified.

Note:

1. When a database partition is added using this option, containers for table spaces are based on
the containers of the corresponding table space on the lowest numbered existing partition in
the database partition group. If this would result in a naming conflict among containers, which
could happen if the new partitions are on the same physical machine as existing containers,
this option should not be used. Instead, the ALTER DATABASE PARTITION GROUP statement
should be used with the WITHOUT TABLESPACES option before issuing the REDISTRIBUTE
DATABASE PARTITION GROUP command. Table space containers can then be created
manually specifying appropriate names.

2. Data redistribution might create table spaces for all new database partitions if the ADD
DBPARTITIONNUMS parameter is specified.

DROP

DBPARTITIONNUM n
TOm
nor n TO m specifies a list or lists of database partition numbers which are to be dropped from the
database partition group. Any specified partition must already be defined in the database partition
group (SQLSTATE 42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TOm

n or n TO m specifies a list or lists of database partition numbers which are to be dropped from the
database partition group. Any specified partition must already be defined in the database partition
group (SQLSTATE 42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

TABLE tablename
Specifies a table order for redistribution processing.

ONLY
If the table order is followed by the ONLY keyword (which is the default), then, only the specified
tables will be redistributed. The remaining tables can be later processed by REDISTRIBUTE
CONTINUE commands. This is the default.

FIRST
If the table order is followed by the FIRST keyword, then, the specified tables will be
redistributed with the given order and the remaining tables in the database partition group will be
redistributed with random order.

EXCLUDE tablename
Specifies tables to omit from redistribution processing. For example, you can temporarily omit a table
until you can configure it to meet the requirements for data redistribution. The omitted tables can be
later processed by REDISTRIBUTE CONTINUE commands.

STOP AT local-isotime
When this option is specified, before beginning data redistribution for each table, the local-isotime is
compared with the current local timestamp. If the specified local-isotime is equal to or earlier than
the current local timestamp, the utility stops with a warning message. Data redistribution processing
of tables in progress at the stop time will complete without interruption. No new data redistribution
processing of tables begins. The unprocessed tables can be redistributed using the CONTINUE option.
This local-isotime value is specified as a time stamp, a 7-part character string that identifies a
combined date and time. The format is yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour,
minutes, seconds, microseconds) expressed in local time.

316 IBM Db2 V11.5: Partitioning and Clustering Guide

DATA BUFFERn
Specifies the number of 4 KB pages to use as buffered space for transferring data within the utility.
This command parameter can be used only when the NOT ROLLFORWARD RECOVERABLE parameter
is also specified.

If the value specified is lower than the minimum supported value, the minimum value is used and no
warning is returned. If a DATA BUFFER value is not specified, an intelligent default is calculated by
the utility at runtime at the beginning of processing each table. Specifically, the default is to use 50%
of the memory available in the utility heap at the time redistribution of the table begins and to take
into account various table properties as well.

This memory is allocated directly from the utility heap, whose size can be modified through the
util_heap_sz database configuration parameter. The value of the DATA BUFFER parameter of the
REDISTRIBUTE DATABASE PARTITION GROUP command can temporarily exceed util_heap_sz
if more memory is available in the system.

INDEXING MODE
Specifies how indexes are maintained during redistribution. This command parameter can be used
only when the NOT ROLLFORWARD RECOVERABLE parameter is also specified.

Valid values are:

REBUILD
Indexes will be rebuilt from scratch. Indexes do not have to be valid to use this option. As a result
of using this option, index pages will be clustered together on disk.

DEFERRED
Redistribute will not attempt to maintain any indexes. Indexes will be marked as needing a
refresh. The first access to such indexes might force a rebuild, or indexes might be rebuilt when
the database is restarted.

Note: For non-MDC and non-ITC tables, if there are invalid indexes on the tables, the
REDISTRIBUTE DATABASE PARTITION GROUP command automatically rebuilds them if you do
not specify INDEXING MODE DEFERRED. For an MDC or ITC table, even if you specify INDEXING
MODE DEFERRED, a composite index that is invalid is rebuilt before table redistribution begins
because the utility needs the composite index to process an MDC or ITC table.

PRECHECK
Verifies that the database partition group can be redistributed. This command parameter can be used
only when the NOT ROLLFORWARD RECOVERABLE parameter is also specified.

YES
This is the default value. The redistribution operation begins only if the verification completes
successfully. If the verification fails, the command terminates and returns an error message
related to the first check that failed.

NO
The redistribution operation begins immediately; no verification occurs.

ONLY
The command terminates after performing the verification; no redistribution occurs. By default it
will not quiesce the database. If the QUIESCE DATABASE command parameter was set to YES or
defaulted to a value of YES, the database remains quiesced. To restore connectivity to the
database, perform the redistribution operation or issue UNQUIESCE DATABASE command.

QUIESCE DATABASE
Specifies to force all users off the database and put it into a quiesced mode. This command parameter
can be used only when the NOT ROLLFORWARD RECOVERABLE parameter is also specified.

YES
This is the default value. Only users with SYSADM, SYSMAINT, or SYSCTRL authority or users who
have been granted QUIESCE_CONNECT authority will be able to access the database or its
objects. Once the redistribution completes successfully, the database is unquiesced.

NO
The redistribution operation does not quiesce the database; no users are forced off the database.

Chapter 5. Administrative APIs, commands, SQL statements 317

STATISTICS
Specifies that the utility should collect statistics for the tables that have a statistics profile. This
command parameter can be used only when the NOT ROLLFORWARD RECOVERABLE parameter is
also specified.

Specifying this option is more efficient than separately issuing the RUNSTATS command after the data
redistribution is completed.

USE PROFILE
Statistics will be collected for the tables with a statistics profile. For tables without a statistics
profile, nothing will be done. This is the default.

NONE
Statistics will not be collected for tables.

Examples

Redistribute database partition group DBPG_1 by providing the current data distribution through a data
distribution file, distfile_for_dbpg_1. Move the data onto two new database partitions, 6 and 7.

Redistribute database partition group DBPG_2 such that:

« The redistribution is not rollforward recoverable;

Data is uniformly distributed across hash partitions;

Indexes are rebuilt from scratch;

Statistics are not collected;
- 180,000 4 KB pages are used as buffered space for transferring the data.

This redistribution operation also quiesces the database and performs a precheck due to the default
values for the QUIESCE DATABASE and PRECHECK command parameters.

Usage notes

- Before starting a redistribute operation, ensure that the tables are in normal state and not in "load
pending" state or "reorg pending" state. Table states can be checked by using the LOAD QUERY
command.

« When the NOT ROLLFORWARD RECOVERABLE option is specified and the database is a recoverable
database, the first time the utility accesses a table space, it is put into the BACKUP PENDING state. All
the tables in that table space will become read-only until the table space is backed-up, which can only
be done when all tables in the table space have finished being redistributed.

- When a redistribution operation is running, it produces an event log file containing general information
about the redistribution operation and information such as the starting and ending time of each table
processed. This event log file is written to:

— The homeinst/sqllib/redist directory on Linux and UNIX operating systems, using the following
format for subdirectories and file name: database-name.database-partition-group-
name.timestamp.log.

— The DB2INSTPROF\instance\redist directory on Windows operating systems (where
DB2INSTPROF is the value of the DB2INSTPROF registry variable), using the following format for
subdirectories and file name: database-name.database-partition-group-
name.timestamp.log.

— The time stamp value is the time when the command was issued.
« This utility performs intermittent COMMITs during processing.

- All packages having a dependency on a table that has undergone redistribution are invalidated. It is
recommended to explicitly rebind such packages after the redistribute database partition group
operation has completed. Explicit rebinding eliminates the initial delay in the execution of the first SQL
request for the invalid package. The redistribute message file contains a list of all the tables that have
undergone redistribution.

318 IBM Db2 V11.5: Partitioning and Clustering Guide

« By default, the redistribute utility will update the statistics for those tables that have a statistics profile.
For the tables without a statistics profile, it is recommended that you separately update the table and
index statistics for these tables by calling the db2Runstats API or by issuing the RUNSTATS command
after the redistribute operation has completed.

- Database partition groups containing replicated materialized query tables or tables defined with DATA
CAPTURE CHANGES cannot be redistributed.

 Redistribution is not allowed if there are user temporary table spaces with existing declared temporary
tables or created temporary tables in the database partition group.

- Options such as INDEXING MODE are ignored on tables, on which they do not apply, without warning.
For example, INDEXING MODE will be ignored on tables without indexes.

« The REDISTRIBUTE DATABASE PARTITION GROUP command might fail (SQLSTATE 55071) if an add
database partition server request is either pending or in progress. This command might also fail
(SQLSTATE 55077) if a new database partition server is added online to the instance and not all
applications are aware of the new database partition server.

- The REDISTRIBUTE DATABASE PARTITION GROUP command is not allowed if there is an outstanding
asynchronous background process to create a column compression dictionary (SQL6056N).

Compatibilities

Tables containing XML columns that use the Db2 Version 9.5 or earlier XML record format cannot be

redistributed. Use the ADMIN_MOVE_TABLE stored procedure to migrate the table to the new format.

db2nchg - Change database partition server configuration

Modifies database partition server configuration. This includes moving the database partition server from
one machine to another; changing the TCP/IP host name of the machine; and selecting a different logical
port number or a different network name for the database partition server.

This command can only be used if the database partition server is stopped.

This command is available on Windows operating systems only.

Authorization

Local Administrator

Command syntax

»- db2nchg — /n: — dbpartitionnum L/i;_i,,stance_,,ame N >
L/u: — username,password J L/p: — logical_port J
L/h:—host_name J L/m:—macm'ne_name J ;
U e — nemarcrame

»
»

A 4

A 4

A 4

Command parameters

[/n:dbpartitionnum
Specifies the database partition number of the database partition server's configuration that is to be
changed.

Chapter 5. Administrative APIs, commands, SQL statements 319

/izinstance_name
Specifies the instance in which this database partition server participates. If a parameter is not
specified, the default is the current instance.

/u:username,password
Specifies the user name and password. If a parameter is not specified, the existing user name and
password will apply.

/p:logical_port
Specifies the logical port for the database partition server. This parameter must be specified to move
the database partition server to a different machine. If a parameter is not specified, the logical port
number will remain unchanged.

/h:host_name
Specifies TCP/IP host name used by FCM for internal communications. If this parameter is not
specified, the host name will remain the same.

/m:machine_name
Specifies the machine where the database partition server will reside. The database partition server
can only be moved if there are no existing databases in the instance.

/g:network_name
Changes the network name for the database partition server. This parameter can be used to apply a

specific IP address to the database partition server when there are multiple IP addresses on a
machine. The network name or the IP address can be entered.

Examples

To change the logical port assigned to database partition 2, which participates in the instance TESTMPP,
to logical port 3, enter the following command:

db2nchg /n:2 /i:TESTMPP /p:3

db2ncrt - Add database partition server to an instance
Adds a database partition server to an instance.

This command is available on Windows operating systems only.

Scope

If a database partition server is added to a computer where an instance already exists, a database
partition server is added as a logical database partition server to the computer. If a database partition
server is added to a computer where an instance does not exist, the instance is added and the computer
becomes a new physical database partition server. This command should not be used if there are
databases in an instance. Instead, the START DATABASE MANAGER command should be issued with the
ADD DBPARTITIONNUM option. This ensures that the database is correctly added to the new database
partition server. It is also possible to add a database partition server to an instance in which a database
has been created. The db2nodes. cfg file should not be edited since changing the file might cause
inconsistencies in the partitioned database environment.

Authorization

Local Administrator authority on the computer where the new database partition server is added.

320 IBM Db2 V11.5: Partitioning and Clustering Guide

Command syntax

»— db2ncrt — /n: — dbpartitionnum — [u: — username,password —»

] L /i. — instance_name —J L /m: — machine_name —J]
L /p: — logical_port —J L /h: — host_name —J L /8. — network_name J]

A 4

A 4

»d
1|

L /o: — instance_owning_machine —J

Command parameters

/n:dbpartitionnum
A unique database partition number which identifies the database partition server. The number
entered can range from 1 to 999.

[uzusername,password
Specifies the logon account name and password for Db2.

[izinstance_name
Specifies the instance name. If a parameter is not specified, the default is the current instance.

/m:machine_name
Specifies the computer name of the Windows workstation on which the database partition server
resides. This parameter is required if a database partition server is added on a remote computer.

/p:logical_port
Specifies the logical port number used for the database partition server. If this parameter is not
specified, the logical port number assigned will be 0. When creating a logical database partition
server, this parameter must be specified and a logical port number that is not in use must be selected.
Note the following restrictions:

« Every computer must have a database partition server that has a logical port O.

« The port number cannot exceed the port range reserved for FCM communications in the x : \winnt
\system32\drivers\etc\ directory. For example, if a range of 4 ports is reserved for the current
instance, then the maximum port number is 3. Port 0 is used for the default logical database
partition server.

/h:host_name
Specifies the TCP/IP host name that is used by FCM for internal communications. This parameter is
required when the database partition server is being added on a remote computer.

/g:network_name
Specifies the network name for the database partition server. If a parameter is not specified, the first
IP address detected on the system will be used. This parameter can be used to apply a specific IP
address to the database partition server when there are multiple IP addresses on a computer. The
network name or the IP address can be entered.

[o:instance_owning_machine
Specifies the computer name of the instance-owning computer. The default is the local computer.
This parameter is required when the db2ncxt command is invoked on any computer that is not the
instance-owning computer.

Usage notes

db2ncxt command can be executed only on a partitioned database instance.

Chapter 5. Administrative APIs, commands, SQL statements 321

Examples

To add a new database partition server to the instance TESTMPP on the instance-owning computer
SHAYER, where the new database partition server is known as database partition 2 and uses logical port
1, enter the following command:

db2ncrt /n:2 /u:QBPAULZ\paulz,glreeky /i:TESTMPP /m:TEST /p:1 /o:SHAYER /h:TEST

db2ndrop - Drop database partition server from an instance

Drops a database partition server from an instance that has no databases. If a database partition server is
dropped, its database partition number can be reused for a new database partition server.

This command can only be used if the database partition server is stopped.

This command is available on Windows operating systems only.

Authorization

Local Administrator authority on the machine where the database partition server is being dropped.

Command syntax

»— db2ndrop — /n: — dbpartitionnum L _J »><
/i: — instance_name

Command parameters

/n:dbpartitionnum
A unique database partition number which identifies the database partition server.

/izinstance_name
Specifies the instance name. If a parameter is not specified, the default is the current instance.

Examples

db2ndrop /n:2 /i=KMASCI

Usage notes

If the instance-owning database partition server (dbpartitionnum 0) is dropped from the instance, the
instance becomes unusable. To drop the instance, use the db2idxop command.

This command should not be used if there are databases in this instance. Instead, the db2stop drop
dbpartitionnum command should be used. This ensures that the database partition server is correctly
removed from the partition database environment. It is also possible to drop a database partition server
in an instance where a database exists. The db2nodes. cfg file should not be edited since changing the
file might cause inconsistencies in the partitioned database environment.

To drop a database partition server that is assigned to the logical port O from a machine that is running
multiple logical database partition servers, all other database partition servers assigned to the other
logical ports must be dropped first. Each database partition server must have a database partition server
assigned to logical port 0.

322 IBM Db2 V11.5: Partitioning and Clustering Guide

SQL language elements

Data types

Database partition-compatible data types

Database partition compatibility is defined between the base data types of corresponding columns of
distribution keys. Database partition-compatible data types have the property that two variables, one of
each type, with the same value, are mapped to the same distribution map index by the same database
partitioning function.

Table 42 on page 324 shows the compatibility of data types in database partitions.

Database partition compatibility has the following characteristics:

Internal formats are used for DATE, TIME, and TIMESTAMP. They are not compatible with each other,
and none are compatible with character or graphic data types.

Partition compatibility is not affected by the nullability of a column.

Partition compatibility is affected by collation. Locale-sensitive UCA-based collations require an exact
match in collation, except that the strength (S) attribute of the collation is ignored. All other collations
are considered equivalent for the purposes of determining partition compatibility.

Character columns defined with FOR BIT DATA are only compatible with character columns without
FOR BIT DATA when a collation other than a locale-sensitive UCA-based collation is used.

Null values of compatible data types are treated identically. Different results might be produced for null
values of non-compatible data types.

Base data type of the UDT is used to analyze database partition compatibility.

Timestamps of the same value in the distribution key are treated identically, even if their timestamp
precisions differ.

Decimals of the same value in the distribution key are treated identically, even if their scale and
precision differ.

Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or VARGRAPHIC) are ignored by the
system-provided hashing function.

When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
are compatible data types. When other collations are used, CHAR and VARCHAR are compatible types
and GRAPHIC and VARGRAPHIC are compatible types, but CHAR and VARCHAR are not compatible
types with GRAPHIC and VARGRAPHIC. CHAR or VARCHAR of different lengths are compatible data

types.

DECFLOAT values that are equal are treated identically even if their precision differs. DECFLOAT values
that are numerically equal are treated identically even if they have a different number of significant
digits.

Data types that are not supported as part of a distribution key are not applicable for database partition
compatibility. Examples of such data types are:

- BLOB

- CLOB

DBCLOB

- XML

A distinct type based on BLOB, CLOB, DBCLOB, or XML
A structured type

Chapter 5. Administrative APIs, commands, SQL statements 323

Table 42. Database Partition Compatibilities

Operands Binary Decimal Floating- Decimal Character Graphi Binary Date Time Time- Distinct Bo
Intege Number point Floating- String c String stamp Type ol
r point String ea

n

Binary Yes No No No No No No No No No 1 No

Integer

Decimal No Yes No No No No No No No No 1 No

Number

Floating- No No Yes No No No No No No No 1 No

point

Decimal No No No Yes No No No No No No 1 No

Floating-

point

Character No No No No Yes2 2,3 No No No No 1 No

String

Graphic No No No No 2,3 Yes2 No No No No 1 No

String

Binary Yes No

String

Date No No No No No No No Yes No No 1 No

Time No No No No No No No No Yes No 1 No

Timestamp No No No No No No No No No Yes 1 No

Distinct 1 1 1 1 1 1 1 1 1 1 1 1

Type

Boolean No No No No No No No No No No 1 Ye

s
Note:
1

A distinct type value is database partition compatible with the source data type of the distinct type or with any other distinct type with
the same source data type. The source data type of the distinct type must be a data type that is supported as part of a distribution key.
A user-defined distinct type (UDT) value is database partition compatible with the source type of the UDT or any other UDT with a
database partition compatible source type. A distinct type cannot be based on BLOB, CLOB, DBCLOB, or XML.

Character and graphic string types are compatible when they have compatible collations.

Character and graphic string types are compatible when a locale-sensitive UCA-based collation is in effect. Otherwise, they are not
compatible types.

Special registers

CURRENT MEMBER
The CURRENT MEMBER special register specifies an INTEGER value that identifies the coordinator
member for the statement.

For statements issued from an application, the coordinator is the member to which the application
connects. For statements issued from a routine, the coordinator is the member from which the routine is
invoked.

When used in an SQL statement inside a routine, CURRENT MEMBER is never inherited from the invoking
statement.

CURRENT MEMBER returns 0 if the database instance is not defined to support database partitioning or
the IBM Db2 pureScale Feature. The database instance is not defined for such support if there is no
db2nodes.cfg file. For a partitioned database or a Db2 pureScale environment, the db2nodes.cfg file
exists and contains database partition and member definitions.

324 IBM Db2 V11.5: Partitioning and Clustering Guide

CURRENT MEMBER can be changed through the CONNECT statement, but only under certain conditions.

For compatibility with previous versions of Db2 and with other database products, NODE can be specified
in place of MEMBER.

Examples

Example 1: Set the host variable APPL_NODE (integer) to the number of the member to which the
application is connected.

VALUES CURRENT MEMBER
INTO :APPL_NODE

Example 2: The following command is issued on member 0 and on a 4 member system in a partitioned
database environment. This query will retrieve the currently connected database member number.

VALUES CURRENT MEMBER

SQL functions

DATAPARTITIONNUM

The DATAPARTITIONNUM function returns the sequence number (SYSDATAPARTITIONS.SEQNO) of the
data partition in which the row resides.

»— DATAPARTITIONNUM — (— column-name —) >«

The schema is SYSIBM.

column-name
The qualified or unqualified name of any column in the table. Because row-level information is
returned, the result is the same regardless of which column is specified. The column can have any
data type.

If the column is a column of a view, the expression for the column in the view must reference a
column of the underlying base table, and the view must be deletable. A nested or common table
expression follows the same rules as a view.

Result
The data type of the result is INTEGER and is never null.

Data partitions are sorted by range, and sequence numbers start at 0. For example, the
DATAPARTITIONNUM function returns O for a row that resides in the data partition with the lowest range.

Notes

« This function cannot be used as a source function when creating a user-defined function. Because the
function accepts any data type as an argument, it is not necessary to create additional signatures to
support user-defined distinct types.

« The DATAPARTITIONNUM function cannot be used within check constraints or in the definition of
generated columns (SQLSTATE 42881). The DATAPARTITIONNUM function cannot be used in a
materialized query table (MQT) definition (SQLSTATE 428EC).

« The DATAPARTITIONNUM function cannot be used as part of an expression-based key in a CREATE
INDEX statement.

Chapter 5. Administrative APIs, commands, SQL statements 325

Examples

« Example 1: Retrieve the sequence number of the data partition in which the row for EMPLOYEE.EMPNO
resides.

SELECT DATAPARTITIONNUM (EMPNO)
FROM EMPLOYEE

« Example 2: To convert a sequence number that is returned by DATAPARTITIONNUM (for example, 0) to
a data partition name that can be used in other SQL statements (such as ALTER TABLE...DETACH
PARTITION), you can query the SYSCAT.DATAPARTITIONS catalog view. Include the SEQNO obtained
from DATAPARTITIONNUM in the WHERE clause, as shown in the following example.

SELECT DATAPARTITIONNAME
FROM SYSCAT.DATAPARTITIONS
WHERE TABNAME = 'EMPLOYEE' AND SEQNO = 0

results in the value 'PARTO'.

DBPARTITIONNUM

The DBPARTITIONNUM function returns the database partition number for a row. For example, if used in
a SELECT clause, it returns the database partition number for each row in the result set.

»»— DBPARTITIONNUM — (— column-name —) -»«

The schema is SYSIBM.

column-name
The qualified or unqualified name of any column in the table. Because row-level information is
returned, the result is the same regardless of which column is specified. The column can have any
data type.

If the column is a column of a view, the expression for the column in the view must reference a
column of the underlying base table, and the view must be deletable. A nested or common table
expression follows the same rules as a view.

The specific row (and table) for which the database partition number is returned by the
DBPARTITIONNUM function is determined from the context of the SQL statement that uses the function.

The database partition number returned on transition variables and tables is derived from the current
transition values of the distribution key columns. For example, in a before insert trigger, the function
returns the projected database partition number, given the current values of the new transition variables.
However, the values of the distribution key columns might be modified by a subsequent before insert
trigger. Thus, the final database partition number of the row when it is inserted into the database might
differ from the projected value.

Result
The data type of the result is INTEGER and is never null. If there is no db2nodes. cfg file, the result is 0.

Notes
« The DBPARTITIONNUM function cannot be used on replicated tables, within check constraints, or in the
definition of generated columns (SQLSTATE 42881).

« The DBPARTITIONNUM function cannot be used as a source function when creating a user-defined
function. Because it accepts any data type as an argument, it is not necessary to create additional
signatures to support user-defined distinct types.

« The DBPARTITIONNUM function cannot be used as part of an expression-based key in a CREATE INDEX
statement.

« Syntax alternatives: For compatibility with previous versions of Db2 products, the function name
NODENUMBER is a synonym for DBPARTITIONNUM.

326 IBM Db2 V11.5: Partitioning and Clustering Guide

Examples

« Example 1: Count the number of instances in which the row for a given employee in the EMPLOYEE
table is on a different database partition than the description of the employee's department in the
DEPARTMENT table.

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPTNO=E.WORKDEPT
AND DBPARTITIONNUM(E.LASTNAME) <> DBPARTITIONNUM(D.DEPTNO)

« Example 2: Join the EMPLOYEE and DEPARTMENT tables so that the rows of the two tables are on the
same database partition.

SELECT * FROM DEPARTMENT D, EMPLOYEE E
WHERE DBPARTITIONNUM(E.LASTNAME) = DBPARTITIONNUM(D.DEPTNO)

« Example 3: Using a before trigger on the EMPLOYEE table, log the employee number and the projected
database partition number of any new row in the EMPLOYEE table in a table named EMPINSERTLOG1.

CREATE TRIGGER EMPINSLOGTRIG1

BEFORE INSERT ON EMPLOYEE

REFERENCING NEW AW NEWTABLE

FOR EACH ROW

INSERT INTO EMPINSERTLOG1

VALUES (NEWTABLE .EMPNO, DBPARTITIONNUM
(NEWTABLE.EMPNO))

SQL statements

ALTER DATABASE PARTITION GROUP

The ALTER DATABASE PARTITION GROUP statement is used to add one or more database partitions to a
database partition group, or drop one or more database partitions from a database partition group.

Invocation

This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Syntax
»— ALTER DATABASE PARTITION GROUP — db-partition-name —»

&

ADD T DBPARTITIONNUM j—{db-partitions-clause }]=<
DBPARTITIONNUMS l—{ db-partition-options }—J

DROP DBPARTITIONNUM j—{ db-partitions-clause
1——DBPARTITIONNUMS

db-partitions-clause

»— (L db-partition-numberl]) >

L TO — db-partition-number2 —J

Chapter 5. Administrative APIs, commands, SQL statements 327

db-partition-options
»t LIKE DBPARTITIONNUM — db-partition-number j—n
WITHOUT TABLESPACES

Description

db-partition-name
Names the database partition group. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). It must be a database partition group described in the catalog. IBMCATGROUP and
IBMTEMPGROUP cannot be specified (SQLSTATE 42832).

ADD DBPARTITIONNUM
Specifies the specific database partition or partitions to add to the database partition group.
DBPARTITIONNUMS is a synonym for DBPARTITIONNUM. Any specified database partition must not
already be defined in the database partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM
Specifies the specific database partition or partitions to drop from the database partition group.
DBPARTITIONNUMS is a synonym for DBPARTITIONNUM. Any specified database partition must
already be defined in the database partition group (SQLSTATE 42729).

db-partitions-clause
Specifies the database partition or partitions to be added or dropped.

db-partition-numberl
Specify a specific database partition number.

TO db-partition-number2
Specify a range of database partition numbers. The value of db-partition-number2 must be greater
than or equal to the value of db-partition-number1 (SQLSTATE 428A9).

db-partition-options

LIKE DBPARTITIONNUM db-partition-number
Specifies that the containers for the existing table spaces in the database partition group will be
the same as the containers on the specified db-partition-number. The specified database partition
must be a partition that existed in the database partition group before this statement, and that is
not included in a DROP DBPARTITIONNUM clause of the same statement.

For table spaces that are defined to use automatic storage (that is, table spaces that were created
with the MANAGED BY AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement, or
for which no MANAGED BY clause was specified at all), the containers will not necessarily match
those from the specified partition. Instead, containers will automatically be assigned by the
database manager based on the storage paths that are associated with the database, and this
might or might not result in the same containers being used. The size of each table space is based
on the initial size that was specified when the table space was created, and might not match the
current size of the table space on the specified partition.

WITHOUT TABLESPACES
Specifies that the containers for existing table spaces in the database partition group are not
created on the newly added database partition or partitions. The ALTER TABLESPACE statement
using the db-partitions-clause or the MANAGED BY AUTOMATIC STORAGE clause must be used to
define containers for use with the table spaces that are defined on this database partition group.
If this option is not specified, the default containers are specified on newly added database
partitions for each table space defined on the database partition group.

This option is ignored for table spaces that are defined to use automatic storage (that is, table
spaces that were created with the MANAGED BY AUTOMATIC STORAGE clause of the CREATE
TABLESPACE statement, or for which no MANAGED BY clause was specified at all). There is no
way to defer container creation for these table spaces. Containers will automatically be assigned
by the database manager based on the storage paths that are associated with the database. The

328 IBM Db2 V11.5: Partitioning and Clustering Guide

size of each table space will be based on the initial size that was specified when the table space
was created.

Rules

Each database partition specified by number must be defined in the db2nodes. cfg file (SQLSTATE
42729).

Each db-partition-number listed in the db-partitions-clause must be for a unique database partition
(SQLSTATE 42728).

A valid database partition number is between 0 and 999 inclusive (SQLSTATE 42729).
A database partition cannot appear in both the ADD and DROP clauses (SQLSTATE 42728).

There must be at least one database partition remaining in the database partition group. The last
database partition cannot be dropped from a database partition group (SQLSTATE 428C0).

If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT TABLESPACES clause is specified when
adding a database partition, the default is to use the lowest database partition number of the existing
database partitions in the database partition group (say it is 2) and proceed as if LIKE
DBPARTITIONNUM 2 had been specified. For an existing database partition to be used as the default, it
must have containers defined for all the table spaces in the database partition group (column IN_USE of
SYSCAT.DBPARTITIONGROUPDEF is not 'T").

The ALTER DATABASE PARTITION GROUP statement might fail (SQLSTATE 55071) if an add database
partition server request is either pending or in progress. This statement might also fail (SQLSTATE
55077) if a new database partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes

When a database partition is added to a database partition group, a catalog entry is made for the
database partition (see SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed
immediately to include the new database partition, along with an indicator (IN_USE) that the database
partition is in the distribution map if either:

— no table spaces are defined in the database partition group or

— no tables are defined in the table spaces defined in the database partition group and the WITHOUT
TABLESPACES clause was not specified.

The distribution map is not changed and the indicator (IN_USE) is set to indicate that the database
partition is not included in the distribution map if either:

— Tables exist in table spaces in the database partition group or

— Table spaces exist in the database partition group and the WITHOUT TABLESPACES clause was
specified (unless all of the table spaces are defined to use automatic storage, in which case the
WITHOUT TABLESPACES clause is ignored)

To change the distribution map, the REDISTRIBUTE DATABASE PARTITION GROUP command must be
used. This redistributes any data, changes the distribution map, and changes the indicator. Table space
containers need to be added before attempting to redistribute data if the WITHOUT TABLESPACES
clause was specified.

When a database partition is dropped from a database partition group, the catalog entry for the
database partition (see SYSCAT.DBPARTITIONGROUPDEF) is updated. If there are no tables defined in
the table spaces defined in the database partition group, the distribution map is changed immediately
to exclude the dropped database partition and the entry for the database partition in the database
partition group is dropped. If tables exist, the distribution map is not changed and the indicator
(IN_USE) is set to indicate that the database partition is waiting to be dropped. The REDISTRIBUTE
DATABASE PARTITION GROUP command must be used to redistribute the data and drop the entry for
the database partition from the database partition group.

Chapter 5. Administrative APIs, commands, SQL statements 329

- Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

— NODE can be specified in place of DBPARTITIONNUM
— NODES can be specified in place of DBPARTITIONNUMS
— NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Example

Assume that you have a six-partition database that has the following database partitions: 0, 1, 2, 5, 7, and
8. Two database partitions (3 and 6) are added to the system.

« Example 1: Assume that you want to add database partitions 3 and 6 to a database partition group
called MAXGROUP, and have table space containers like those on database partition 2. The statement is
as follows:

ALTER DATABASE PARTITION GROUP MAXGROUP
ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

« Example 2: Assume that you want to drop database partition 1 and add database partition 6 to database
partition group MEDGROUP. You will define the table space containers separately for database partition
6 using ALTER TABLESPACE. The statement is as follows:

ALTER DATABASE PARTITION GROUP MEDGROUP
ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES
DROP DBPARTITIONNUM(1)

CREATE DATABASE PARTITION GROUP

The CREATE DATABASE PARTITION GROUP statement defines a new database partition group within the
database, assigns database partitions to the database partition group, and records the database partition
group definition in the system catalog.

Invocation

This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include SYSCTRL or SYSADM authority.

Syntax

»— CREATE DATABASE PARTITION GROUP — db-partition-group-name —>

J ON ALL DBPARTITIONNUMS

L ON DBPARTITIONNUMS (L db-partition-number1])‘J

E DBPARTITIONNUM J L TO — db-partition-number2 J

Description

db-partition-group-name
Names the database partition group. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The db-partition-group-name must not identify a database partition group that already

330 IBM Db2 V11.5: Partitioning and Clustering Guide

exists in the catalog (SQLSTATE 42710). The db-partition-group-name must not begin with the
characters 'SYS' or 'IBM' (SQLSTATE 42939).

ON ALL DBPARTITIONNUMS

Specifies that the database partition group is defined over all database partitions defined to the
database (db2nodes. cfg file) at the time the database partition group is created.

If a database partition is added to the database system, the ALTER DATABASE PARTITION GROUP
statement should be issued to include this new database partition in a database partition group
(including IBMDEFAULTGROUP). Furthermore, the REDISTRIBUTE DATABASE PARTITION GROUP
command must be issued to move data to the database partition.

ON DBPARTITIONNUMS

Specifies the database partitions that are in the database partition group. DBPARTITIONNUM is a
synonym for DBPARTITIONNUMS.

db-partition-number1
Specify a database partition number. (A node-name of the form NODEnnnnn can be specified for
compatibility with the previous version.)

TO db-partition-number2
Specify a range of database partition numbers. The value of db-partition-number2 must be greater
than or equal to the value of db-partition-number1 (SQLSTATE 428A9). All database partitions
between and including the specified database partition numbers are included in the database
partition group.

Rules

Each database partition specified by number must be defined in the db2nodes. cfg file (SQLSTATE
42729).

Each db-partition-number listed in the ON DBPARTITIONNUMS clause can appear only once (SQLSTATE
42728).

A valid db-partition-number is between 0 and 999 inclusive (SQLSTATE 42729).

The CREATE DATABASE PARTITION GROUP statement might fail (SQLSTATE 55071) if an add database
partition server request is either pending or in progress. This statement might also fail (SQLSTATE

55077) if a new database partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes

This statement creates a distribution map for the database partition group. A distribution map identifier
(PMAP_ID) is generated for each distribution map. This information is recorded in the catalog and can
be retrieved from SYSCAT.DBPARTITIONGROUPS and SYSCAT.PARTITIONMAPS. Each entry in the
distribution map specifies the target database partition on which all rows that are hashed reside. For a
single-partition database partition group, the corresponding distribution map has only one entry. For a
multiple partition database partition group, the corresponding distribution map has 32768 entries,
where the database partition numbers are assigned to the map entries in a round-robin fashion, by
default.

Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

— NODE can be specified in place of DBPARTITIONNUM
— NODES can be specified in place of DBPARTITIONNUMS
— NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Examples

The following examples are based on a partitioned database with six database partitions defined as 0, 1,
2,5,7,and 8.

Chapter 5. Administrative APIs, commands, SQL statements 331

« Example 1: Assume that you want to create a database partition group called MAXGROUP on all six
database partitions. The statement is as follows:

CREATE DATABASE PARTITION GROUP MAXGROUP ON ALL DBPARTITIONNUMS

« Example 2: Assume that you want to create a database partition group called MEDGROUP on database
partitions 0, 1, 2, 5, and 8. The statement is as follows:

CREATE DATABASE PARTITION GROUP MEDGROUP
ON DBPARTITIONNUMS(0 TO 2, 5, 8)

« Example 3: Assume that you want to create a single-partition database partition group MINGROUP on
database partition 7. The statement is as follows:

CREATE DATABASE PARTITION GROUP MINGROUP
ON DBPARTITIONNUM (7)

Supported administrative SQL routines and views

ADMIN_CMD stored procedure and associated administrative SQL routines

GET STMM TUNING command using the ADMIN_CMD procedure
The GET STMM TUNING command reads the catalog tables to report the user preferred self tuning
memory manager (STMM) tuning member number and current STMM tuning member number.

Authorization

The privileges held by the authorization ID of the statement must include at least one of the following
authorities or privilege:

. DBADM
« SECADM

« SQLADM

ACCESSCTRL

DATAACCESS

SELECT on SYSIBM.SYSTUNINGINFO

Required connection

Database

Command syntax

»— GET — STMM — TUNING — MEMBER -»«

Example

CALL SYSPROC.ADMIN_CMD('get stmm tuning member')
The following is an example of output from this query.

Result set 1

1 record(s) selected.

332 IBM Db2 V11.5: Partitioning and Clustering Guide

Return Status = 0

Usage notes

« The user preferred self tuning memory manager (STMM) tuning member number
(USER_PREFERRED_NUMBER) is set by the user and specifies the member on which the user wants to
run the memory tuner. While the database is running, the tuning member is applied a few times an hour.
As a result, it is possible that the CURRENT_NUMBER and USER_PREFERRED_NUMBER returned are not in
sync after an update of the user preferred STMM member. To resolve this, either wait for the
CURRENT_NUMBER to be updated asynchronously, or stop and start the database to force the update of
CURRENT_NUMBER.

Compatibilities
For compatibility with previous versions:

« DBPARTITIONNUM can be substituted for MEMBER, except when the DB2_ENFORCE_MEMBER_SYNTAX
registry variable is set to ON.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL statement. If execution is
successful, the command returns additional information in the following result set:

Table 43. Result set returned by the GET STMM TUNING command

Column name Data type Description

USER_PREFERRED_NUMBER INTEGER User preferred self tuning memory
manager (STMM) tuning member
number. In a partitioned database
environment, a value of -1 indicates that
the default member is used.

CURRENT_NUMBER INTEGER Current STMM tuning member number.
A value of -1 indicates that the default
member is used.

UPDATE STMM TUNING command by using the ADMIN_CMD procedure
The UPDATE STMM TUNING command updates the user preferred database member number on which
the self-tuning memory manager (STMM) tuner is created.

Authorization

The privileges that are held by the authorization ID of the statement must include at least one of the
following authorities:

. DBADM
. DATAACCESS
« SQLADM

Required connection

Database

Command syntax
»— UPDATE — STMM — TUNING — MEMBER — member-number -»«

Chapter 5. Administrative APIs, commands, SQL statements 333

Command parameter

member-number
The value of member-number is an integer.

In a partitioned database environment:

« If avalid member number is specified, the database server runs the STMM memory tuner on that
member.

« If -1 or a nonexistent member number is specified, the database server selects an appropriate
member on which to run the STMM memory tuner.

In a Db2 pureScale environment:

- If avalid member number is specified, database server runs the STMM memory tuner on that
member.

« If -2 is specified, then the database server enables STMM tuners to run and tune independently on
each member.

« If -1 or a nonexistent member number is specified, the database server selects an appropriate
member on which to run the STMM memory tuner.

Example

In a partitioned database environment, update the user preferred self-tuning memory manager (STMM)
tuning database partition to member 3.

CALL SYSPROC.ADMIN_CMD('update stmm tuning member 3')

Usage notes

« The STMM tuning process periodically checks for a change in the user preferred STMM tuning member
number value. The STMM tuning process moves to the user preferred STMM tuning member if member-
number exists and is an active member. If the specified STMM tuning member does not exist, the
database server selects an appropriate member. After this command changes the STMM tuning
member number, an immediate change is made to the current STMM tuning member number.

« Command execution status is returned in the SQLCA resulting from the CALL statement.
« This command commits its changes in the ADMIN_CMD procedure.

Compatibilities

For compatibility with previous versions:

« DBPARTITIONNUM can be substituted for MEMBER, except when the DB2_ENFORCE_MEMBER_SYNTAX
registry variable is set to ON.

Configuration administrative SQL routines and views

DB_PARTITIONS
The DB_PARTITIONS table function returns the contents of the db2nodes. cfg file in table format.

Note: This table function has been deprecated and replaced by the DB2_MEMBER and DB2_CF
administrative views and DB2_GET_INSTANCE_INFO table function.

Syntax
»— DB_PARTITIONS — (—) >«

The schemais SYSPROC.

334 IBM Db2 V11.5: Partitioning and Clustering Guide

Authorization
One of the following authorities is required to execute the routine:

« EXECUTE privilege on the routine
« DATAACCESS authority

- DBADM authority

* SQLADM authority

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the function is automatically
created.

Table function parameters

The function has no input parameters.

Examples

Retrieve information from a 4 member partitioned database instance.

SELECT * FROM TABLE(DB_PARTITIONS()) as T

The following is an example of the output from this query:

PARTITION_NUMBER HOST_NAME PORT_NUMBER SWITCHNAME

0 sol 0 sol-ib0
1 so2 0 s02-ib0
2 so3 0 s03-ib0
3 so4 0 so4-ib0

4 record(s) selected.

In a Db2 pureScale environment, retrieve information from a 3 member and 1 cluster caching facility Db2
pureScale instance.

SELECT * FROM TABLE(DB_PARTITIONS()) as T

The following is an example of the output from this query:

PARTITION_NUMBER HOST_NAME PORT_NUMBER SWITCHNAME

0 sol 0 sol-ib0
0 so02 0 s02-ib0
0 so3 0 s03-ib0

3 record(s) selected.

Usage notes

For Db2 Enterprise Server Edition and in a partitioned database environment, the DB_PARTITIONS table
function returns one row for each entry in the db2nodes. cfg file.

In a Db2 pureScale environment, the DB_PARTITIONS table function returns multiple rows, with the
following information in the columns:

« The PARTITION_NUMBER column always contains 0.

« The remaining columns show information for the entry in the db2nodes. cfg file for the current
member.

Chapter 5. Administrative APIs, commands, SQL statements 335

Information returned

Table 44. Information returned by the DB_PARTITIONS table function

Column name Data type Description

PARTITION_NUMBER SMALLINT partition_number - Partition
Number monitor element

HOST_NAME VARCHAR(256) host_name - Host name monitor
element

PORT_NUMBER SMALLINT The port number for the database
partition server.

SWITCH_NAME VARCHAR(128) The name of a high speed
interconnect, or switch, for
database partition
communications.

Stepwise redistribute administrative SQL routines

STEPWISE_REDISTRIBUTE_DBPG procedure - Redistribute part of database partition group
The STEPWISE_REDISTRIBUTE_DBPG procedure redistributes part of the database partition group
according to the input specified for the procedure, and the setting file created or updated by the
SET_SWRD_SETTINGS procedure.

Syntax
»»— STEPWISE_REDISTRIBUTE_DBPG — (— inDBPGroup — ,— inStartingPoint — ,—»
»— inNumSteps —) >«

The schemais SYSPROC.

Procedure parameters

inDBPGroup
An input argument of type VARCHAR (128) that specifies the name of the target database partition
group.

inStartingPoint
An input argument of type SMALLINT that specifies the starting point to use. If the parameter is set to
a positive integer and is not NULL, the STEPWISE_REDISTRIBUTE_DBPG procedure uses this value
instead of using the nextStep value specified in the setting file. This is a useful option when you want
to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure from a particular step. If the parameter is
set to NULL, the nextStep value is used.

inNumSteps
An input argument of type SMALLINT that specifies the number of steps to run. If the parameter is set
to a positive integer and is not NULL, the STEPWISE_REDISTRIBUTE_DBPG procedure uses this value
instead of using the stageSize value specified in the setting file. This is a useful option when you want
to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure with a different number of steps than what
is specified in the settings. For example, if there are five steps in a scheduled stage, and the
redistribution process failed at step 3, the STEPWISE_REDISTRIBUTE_DBPG procedure can be called
to run the remaining three steps once the error condition has been corrected. If the parameter is set
to NULL, the stageSize value is used. The value -2 can be used in this procedure to indicate that the
number is unlimited.

Note: There is no parameter for specifying the equivalent of the NOT ROLLFORWARD RECOVERABLE
option on the REDISTRIBUTE DATABASE PARTITION GROUP command. Logging is always performed
for row data redistribution performed when the STEPWISE_REDISTRIBUTE_DBPG procedure is used.

336 IBM Db2 V11.5: Partitioning and Clustering Guide

Authorization

« EXECUTE privilege on the STEPWISE_REDISTRIBUTE_DBPG procedure
« SYSADM, SYSCTRL or DBADM

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the procedure is
automatically created.

Example

Redistribute the database partition group "IBMDEFAULTGROUP" according to the redistribution plan
stored in the registry by the SET_SWRD_SETTINGS procedure. It is starting with step 3 and redistributes
the data until 2 steps in the redistribution plan are completed.

CALL SYSPROC.STEPWISE_REDISTRIBUTE_DBPG ('IBMDEFAULTGROUP', 3, 2)

For a full usage example of the stepwise redistribute procedures, refer to "Redistributing database
partition groups using the STEPWISE_REDISTRIBUTE_DBPG procedure" in the Partitioning and Clustering
Guide.

Usage notes

If the registry value for processState is updated to 1 using the SET_SWRD_SETTINGS procedure after the
STEPWISE_REDISTRIBUTE_DBPG procedure execution is started, the process stops at the beginning to
the next step and a warning message is returned.

As the SQL COMMIT statement is called by the redistribute process, running the redistribute process
under a Type-2 connection is not supported.

Chapter 5. Administrative APIs, commands, SQL statements 337

338 IBM Db2 V11.5: Partitioning and Clustering Guide

Index

A

add database partition API 305
ADMIN_CMD procedure
commands
GET STMM TUNING 332
UPDATE STMM TUNING 333
administration notification log
database restart operations 216
agents
partitioned databases 266
AIX
Db2 home file system creation 90
distributing commands to multiple nodes 86
environment settings 84
installing
Db2 server products 77
NFS 87
required users
creating 93
ALTER DATABASE PARTITION GROUP statement 327
ALTER NODEGROUP statement
See ALTER DATABASE PARTITION GROUP statement
327
APIs
sqleaddn 305
sqlecran 307
sqledpan 308
sqledrpn 309
sqlugrpn 310
asynchronous processing 178
authentication
partitioned databases 3
automatic restart
crash recovery 216

block indexes
insert time clustering (ITC) tables 44
multidimensional clustering (MDC) tables 44

C

capacity
management 114
overview 65

catalog database partitions 1, 101
catalog statistics

index cluster ratio 267
catalog tables

stored on catalog database partition 1, 101
change database partition server configuration command
319
clustering

data

multidimensional clustering tables 30

clustering (continued)
tables
multidimensional clustering tables 30
clustering indexes
partitioned tables 254
collocation
table 2,8
column expressions 39, 156
commands
db2adutl
cross-node recovery examples 222
db2nchg 319
db2ncrt 320
db2ndrop 322
GET STMM TUNING 332
REDISTRIBUTE DATABASE PARTITION GROUP 312
running in parallel 134
UPDATE STMM TUNING 333
communications
connection elapse time configuration parameter 299
fast communication manager (FCM) 84, 115
compatibility
partition 8
configuration
multiple partitions 65
configuration parameters
autorestart 216
conn_elapse 299
fem_num_buffers 76, 115, 300
fem_num_channels 300
intra_parallel 303
logarchoptl
cross-node recovery examples 222
max_connretries 301
max_querydegree 304
max_time_diff 302
partitioned database 1, 101
start_stop_time 302
vendoropt
cross-node recovery examples 222
conn_elapse configuration parameter 299
connection concentrator
agents in partitioned database 266
connection elapsed time configuration parameter 299
connections
elapsed time 299
containers
SMS table spaces
adding 128
Coordinated Universal Time
max_time_diff configuration parameter 302
coordinator partitions
details 64
crash recovery
details 216
create database at node API 307
CREATE DATABASE PARTITION GROUP statement 330

Index 339

CREATE NODEGROUP statement 330
cross-node database recovery examples 222
CURRENT MEMBER special register

details 324

D

data
distribution
organization schemes 11
partitioned database environments 64
organization
Informix comparison 16
overview 11
redistribution
database partition groups 288
determining need 286
event logging 290
log space requirements 289
methods 282
overview 282, 287
recovery 290
REDISTRIBUTE DATABASE PARTITION GROUP
command 312
data movement
multidimensional tables 39, 156
data partition elimination 243
data partitions
adding
procedure 180
altering 161
attaching
overview 160, 164
scenario 184
attributes 175
creating 144
detach phases 177
detaching
overview 160, 173
scenario 184
dropping 182
overview 9, 11
range definition 144
rolling in data
overview 160, 164
scenario 184
rolling out data
overview 160, 173
scenario 184
rotating
scenario 183
data types
partition compatibility 323
database configuration file
changing 160
database manager
starting 302
stopping 302
database partition compatibility
overview 323
database partition groups
adding partitions 327
creating 330
data location determination 5

340 IBM Db2 V11.5: Partitioning and Clustering Guide

database partition groups (continued)
distribution map creation 330
dropping partitions 327
IBMDEFAULTGROUP 142
overview 3
query optimization impact 273
tables 142
database partition servers
dropping 128
enabling communications (UNIX) 117
failed 218
installing using response file
Linux 98
UNIX 98
Windows 96
issuing commands 132, 237
multiple logical partitions 109
recovering from failure 220
specifying 107
database partitions
adding
overview 119
restrictions 120
running system 120
stopped system (UNIX) 122
stopped system (Windows) 121
catalog 1,101
changing (Windows) 127
database configuration updates 160
managing 118
overview 64
processor environments 65
spreading data across multiple partitions 2
synchronizing clocks 236
databases
configuring
multiple partitions 295
creating
partitioned database environments 1, 101
data partitioning enabling 1, 101
rebuilding
partitioned databases 221
DATAPARTITIONNUM scalar function 325
DB_PARTITIONS table function 334
Db2 pureScale environments
event monitoring 215
Db2 servers
installing
Linux 77
UNIX 77
Windows 73
partitioned
Windows 75
DB2 servers
capacity management 114
Db2 Setup wizard
installing
Db2 servers (Linux) Db2 servers (UNIX) 79
db2_all command
overview 133, 135
partitioned database environments 132, 237
specifying 133
db2_call_stack command 135
DB2_FCM_SETTINGS registry variable 296

DB2_FORCE_OFFLINE_ADD_PARTITION registry variable
296
db2_kill command 135
DB2_NUM_FAILOVER_NODES registry variable 296
DB2_PARTITIONEDLOAD_DEFAULT registry variable 296
db2adutl command
cross-node recovery examples 222
DB2CHGPWD_EEE registry variable 296
db2nchg command
changing database partition server configurations 127
details 319
db2ncrt command
adding database partition servers 125
details 320
db2ndrop command
details 322
dropping database partition servers 128
db2nlist command 125
db2nodes.cfg file
ALTER DATABASE PARTITION GROUP statement 327
CREATE DATABASE PARTITION GROUP statement 330
creating 102
DBPARTITIONNUM function 326
format 103
netname field 75
updating 108
DB2PORTRANGE registry variable 296
DBPARTITIONNUM function 326
declustering
partial 2, 64
Design Advisor
converting single-partition to multipartition databases
256
detached data partitions
attributes 175
detach phases 177
details 173
detached table partitions
asynchronous partition detach 178
dimensions of MDC tables 32
distribution keys
details 6
loading data 190
partitioned database environments 142
distribution maps
details 5
drop database on database partition server API 308
drop database partition server from an instance command
322

E

environment variables
$RAHBUFDIR 134
$RAHBUFNAME 134
$RAHENV 138
rah command 138
RAHDOTFILES 139
error messages
partitioned databases 124
event monitors
creating
Db2 pureScale environment 215
partitioned databases 215

extents
insert time clustering (ITC) tables 55
multidimensional clustering tables 55

F

fast communication manager
See FCM 84, 115
FCM
channels 300
communications between database partition servers
117
configuration parameters
fem_num_buffers 300
fcm_num_channels 300
message buffers 76, 115
overview
Linux 84, 115
UNIX 84, 115
Windows 76, 115
port numbers 117
service entry syntax 116
fcm_num_buffers configuration parameter
details 300
fast communication manager (FCM) 76, 115
overview 84, 115
fcm_num_channels configuration parameter
details 300
overview 84, 115
file systems
creating for partitioned database system
Linux 88
FRAGMENT BY EXPRESSION fragment 16
fragment elimination
see data partition elimination 243
free space control record (FSCR)
ITC tables 268
MDC tables 268
functions
scalar
DBPARTITIONNUM 326
NODENUMBER (see functions, scalar,
DBPARTITIONNUM) 326
table
DB_PARTITIONS 334

G

get row distribution number API 310
GET STMM TUNING command 332
global snapshots on partitioned database systems 215

H

hardware

parallelism 65

partitions 65

processors 65
hash partitioning 2
highlighting conventions vi
home file system

AIX 90
how this book is structured iii

Index 341

I

I/0
parallelism
overview 61
indexes
attaching partitions 171
block
insert time clustering (ITC) tables 44
multidimensional clustering (MDC) tables 44
cluster ratio 267
clustering
block-based comparison 31
details 254
managing
ITC tables 268
MDC tables 268
migrating 150
partitioned tables
details 249
XML
partition changes 163
insert time clustering (ITC) tables
block indexes 44
block maps 53
creating 39, 156
deleting from 55
loading 187
lock modes 256
logging 44
management of tables and indexes 268
moving data to 39, 156
updating 55
installation
database partition servers
response files (Linux) 98
response files (UNIX) 98
response files (Windows) 96
Db2 Enterprise Server Edition 75
methods
overview 77
updating AIX environment settings 84
instances
adding partition servers 125
listing database partition servers 125
partition servers
changing 127
dropping 128
inter-partition query parallelism 110
interquery parallelism 61
intra_parallel database manager configuration parameter
303
intrapartition parallelism
enabling 111
optimization strategies 270
used with inter-partition parallelism 61
intraquery parallelism 61

J

joins
methods 274
overview 272
partitioned database environments

342 IBM Db2 V11.5: Partitioning and Clustering Guide

joins (continued)
partitioned database environments (continued)
methods 274
table queue strategy 273

K

keys
distribution 6
table partitioning 20

L

large objects (LOBs)
partitioned tables 143
licenses
partitioned database environments 64
Linux
default port ranges 117
installing
Db2 servers 77,79
NFS verification 87
partitioned database system file systems 88
required users 92
LOAD command
partitioned database environments 193, 207
LOAD QUERY command
partitioned database environments 198
load utility
parallelism 187
loads
configuration options 201
database partitions 190, 192
examples
partitioned database environments 205
insert time clustering (ITC) tables 187
multidimensional clustering (MDC) tables 187
partitioned database environments 201
partitioned tables 22, 188
restarting
partitioned database environments 199
lock modes
insert time clustering (ITC) tables
RID index scans 256
table scans 256
multidimensional clustering (MDC) tables
block index scans 261
RID index scans 256
table scans 256

locks
partitioned tables 264
logarchoptl configuration parameter
cross-node recovery examples 222
logical database partitions
database partition servers 107, 109
details 65
logical partitions
multiple 109
logs
space requirements
data redistribution 289

M

max_connretries configuration parameter 301
max_querydegree configuration parameter 304

max_time_diff database manager configuration parameter

details 302

maximum query degree of parallelism configuration

parameter
details 304

maximum time difference between members configuration

parameter 302
MDC tables
block indexes 44, 49
block maps 53
column expressions as dimensions 39, 156
creating 39, 156
deleting from 55
density of values 32
details 30
dimensions 32
DMS table spaces 39, 156
loading 43, 187
lock modes
block index scans 261
RID index scans 256
table scans 256
logging 44
maintaining clustering automatically 52
management of tables and indexes 268
moving data to 39, 156
optimization strategies 247
partitioned tables 25, 56, 239
rollout deletion 247
scenarios 46
updating 55
members
maximum time difference among 302
memory
partitioned database environments 293
message buffers
fast communication manager (FCM) 76, 115
migration
indexes 150
partitioned database environments 208
monitoring
data partitions 208
rah processes 141
monotonicity 39, 156
MPP environments 65
MQTs
behavior 152
partitioned databases 280
partitioned tables 152
replicated 24, 280
multidimensional clustering (MDC) tables
block indexes 44
multidimensional clustering tables
See MDC tables 30
multiple logical partitions
configuring 110
multiple partition configurations 65
multiple-partition databases

converting from single-partition databases 256

database partition groups 3

N

Network File System (NFS)
verifying operation 87
node configuration files
creating 102
format 103
updating 108
node connection retries configuration parameter
NODENUMBER function 326
nodes

301

connection elapsed time configuration parameter 299

synchronization 236

o

optimization
intrapartition parallelism 270
joins
partitioned database environments 274
MDC tables 247
partitioned tables 243

P

parallelism
backups 61
configuration parameters
intra_parallel 303
max_querydegree 304
hardware environments 65
I/0
overview 61
index creation 61
inter-partition 61
intra-partition
enabling 111
overview 61
intrapartition
optimization strategies 270
load utility 61, 187
overview 61
partitioned database environments 64
partitions 65
processors 65
query 61
partial declustering
overview 64
partitioned database environments
creating 1, 101
data redistribution 129
database partition groups 3
dropping partitions 125
duplicate machine entries 107
errors when adding database partitions 124
event monitors 215
global snapshots 215
installation verification
Linux 99
UNIX 99
Windows 98
join methods 274
join strategies 273

Index 343

partitioned database environments (continued)
loading data
migration 207
monitoring 198
overview 190, 192
restrictions 193
version compatibility 207
machine list
duplicate entry elimination 107
specifying 107
migrating 207
overview 2, 64
partition compatibility 8, 323
rebuilding databases 221
redistributing data 287, 290
replicated materialized query tables 280
self-tuning memory 292, 293
settingup 1, 94, 101
transactions
failure recovery 218
version compatibility 207
partitioned tables
adding data partitions 160, 180
altering 160, 161
attaching partitions 160, 164
clustering indexes 254
converting 168
creating 144
data ranges 144
detached data partitions 175
detaching data partitions 160, 173,177, 182
indexes 249
large objects (LOBs) 143
loading 22, 148, 188
locking 264
materialized query tables (MQTs) 152
migrating
pre-Version 9.1 168
tables 148
views 148
mismatches 168

multidimensional clustering (MDC) tables 25, 56, 239

optimization strategies 243
overview 9

reorganizing 208

restrictions 9, 161

rolling in data partitions 160, 164
rolling out data partitions 160
scenarios

attaching and detaching data partitions 184
rolling in and rolling out data partitions 184

rotating data 183
partitioning keys
overview 20
partitioning maps
creating for database partition groups 330
performance
catalog information 1, 101
points of consistency
database 216
port number ranges
defining
Windows 125
enabling communications

344 IBM Db2 V11.5: Partitioning and Clustering Guide

port number ranges (continued)
enabling communications (continued)
Linux 117
UNIX 117
verifying availability
Linux 87
UNIX 87
prefix sequences 135
procedures
STEPWISE_REDISTRIBUTE_DBPG 290, 336
processors
adding 114
proxy nodes
Tivoli Storage Manager (TSM)
example 222

Q

queries
multidimensional clustering 32
parallelism 61

query optimization
database partition group effects 273

R

rah command
controlling 138
determining problems 140
environment variables 138
monitoring processes 141
overview 132,133, 135, 237
prefix sequences 135
RAHCHECKBUF environment variable 134
RAHDOTFILES environment variable 139
RAHOSTFILE environment variable 107
RAHOSTLIST environment variable 107
RAHWAITTIME environment variable 141
recursively invoked 135
running commands in parallel 134
setting default environment profile 142
specifying 133
RAHCHECKBUF environment variable 134
RAHDOTFILES environment variable 139
RAHOSTFILE environment variable 107
RAHOSTLIST environment variable 107
RAHTREETHRESH environment variable 135
RAHWAITTIME environment variable 141
range partitioning
See data partitions 11
See table partitioning 9
range-clustered tables
guidelines 154
overview 29
restrictions 30
scenarios 155
ranges
defining for data partitions 144
restrictions 144
recovery
after failure of database partition server 220
crash 216
cross-node examples 222

recovery (continued)
Tivoli Storage Manager (TSM) proxy nodes example 222
two-phase commit protocol 218
REDISTRIBUTE DATABASE PARTITION GROUP command
without using ADMIN_CMD procedure 312
redistribution of data
database partition groups 288, 290
event log file 290
methods 282
necessity 286
prerequisites 284
procedures 290, 336
restrictions 285
registry variables
DB2_FCM_SETTINGS 296
DB2_FORCE_OFFLINE_ADD_PARTITION 296
DB2_NO_MPFA_FOR _NEW_DB 39, 156
DB2_NUM_FAILOVER_NODES 296
DB2_PARTITIONEDLOAD__DEFAULT 296
DB2CHGPWD_ESE 296
DB2PORTRANGE 296
replicated materialized query tables 24
response files
installation
database partition servers 96, 98
RESTART DATABASE command
crash recovery 216
rollout
deferred detaching 178

S

scalability
hardware environments 65
scenarios
multidimensional clustering (MDC) tables 46
SIGTTIN message 133
single partitions
multiple-processor environments 65
single-processor environments 65
SMP cluster environment 65
SMS table spaces
adding containers 128
snhapshot monitoring
data partitions 208
partitioned database systems 215
special registers
CURRENT MEMBER 324
CURRENT NODE
See special registers, CURRENT MEMBER 324
SQL statements
ALTER DATABASE PARTITION GROUP 327
ALTER NODEGROUP
See SQL statements, ALTER DATABASE PARTITION
GROUP 327
CREATE DATABASE PARTITION GROUP 330
CREATE NODEGROUP
See SQL statements, CREATE DATABASE
PARTITION GROUP 330
sqleaddn API 305
sqlecran API 307
sqledpan API 308
sqledrpn API 309
sqlugrpn API 310

start and stop timeout configuration parameter 302
start_stop_time configuration parameter 302
stdin 133
STEPWISE_REDISTRIBUTE_DBPG procedure
details 336
redistributing data 290
STMM
partitioned database environments 292, 293
synchronization
partitioned database environments 236

T

table partitions
benefits 9
data placement 148
Db2 pureScale environments 29
detaching 178
details 9
table queues
overview 273
table spaces
creating
database partition groups 25
tables
altering
partitioned tables 180, 182
collocation 2, 8
converting 148
creating
partitioned databases 142
insert time clustering (ITC) 268
joining
partitioned databases 273
materialized query 152
migrating to partitioned tables 148
partitioned
clustering indexes 254
details 9
materialized query tables (MQTs) 152
multidimensional clustering (MDC) tables 25, 56,
239
overview 9
range-clustered
guidelines 154
overview 29
restrictions 30
scenarios 155
regular
multidimensional clustering (MDC) comparison 31
termination
load operations
partitioned database environments 199
time
maximum difference between members 302
Tivoli Storage Manager
recovery example 222
transactions
failures
recovery in partitioned database environment 218
reducing impact 216
tuning partition
determining 293

Index 345

two-phase commit
partitioned database environments 218

U

UNION ALL views
converting 148
uniprocessor environments 65
UNIX
default port ranges 117
installing
Db2 servers 79
updating node configuration file 108
UPDATE STMM TUNING command 333
updates
db2nodes.cfg file 108
node configuration file 108
users
creating required
Linux 92
partitioned database environments
AIX 93
utilities
parallelism 61

\'}

vendoropt configuration parameter
cross-node recovery examples 222

w

who should use this book iii
Windows
database partition additions 121
installation verification
partitioned database environments 98
installing
Db2 servers (with Db2 Setup wizard) 73

X

XML column path indexes
altering tables 163
XML data
partitioned indexes 249
XML indexes
altering table 163
XML region indexes
altering table 163

346 IBM Db2 V11.5: Partitioning and Clustering Guide

	Contents
	Notice regarding this document
	About this book
	Who should use this book
	How this book is structured
	Highlighting conventions

	Chapter 1. Planning and design considerations
	Partitioned databases and tables
	Setting up partitioned database environments
	Database partitioning across multiple database partitions
	Partitioned database authentication
	Database partition groups
	Distribution maps
	Distribution keys
	Table collocation
	Partition compatibility

	Partitioned tables
	Table partitioning
	Data partitions and ranges
	Data organization schemes
	Data organization schemes in Db2 and Informix databases
	Table partitioning keys
	Load considerations for partitioned tables
	Replicated materialized query tables
	Table spaces in database partition groups
	Table partitioning and multidimensional clustering tables
	Table partitioning in a Db2 pureScale® environment

	Range-clustered tables
	Restrictions on range-clustered tables

	Multi-dimensional clustered (MDC) tables
	Multidimensional clustering tables
	Comparison of regular and MDC tables
	Choosing MDC table dimensions
	Considerations when creating MDC or ITC tables
	Load considerations for MDC and ITC tables
	Logging considerations for MDC and ITC tables
	Block indexes for MDC and ITC tables

	Block indexes
	Multidimensional clustered (MDC) tables
	Block indexes and query performance
	Maintaining clustering automatically during INSERT operations
	Block maps
	Deleting from MDC and ITC tables
	Updates to MDC and ITC tables
	Multidimensional and insert time clustering extent management
	Table partitioning and multidimensional clustering tables

	Parallel database systems
	Parallelism
	Partitioned database environments
	Database partition and processor environments

	Chapter 2. Installation considerations
	Installation prerequisites
	Installing Db2 database servers using the Db2 Setup wizard (Windows)
	Preparing the environment for a partitioned Db2 server (Windows)
	Fast communications manager (Windows)

	An overview of installing Db2 database servers (Linux and UNIX)
	Db2 installation methods
	Installing Db2 servers using the Db2 Setup wizard (Linux and UNIX)
	Fast communications manager

	Before you install
	Additional partitioned database environment preinstallation tasks (Linux and UNIX)
	Updating environment settings for a partitioned Db2 installation (AIX)
	Setting up a working collective to distribute commands to multiple AIX nodes
	Verifying that NFS is running
	Verifying port range availability on participating computers
	Linux
	AIX
	Creating required users for a Db2 server installation in a partitioned database environment (Linux)
	AIX

	Installing your DB2 server product
	Setting up a partitioned database environment
	Installing database partition servers on participating computers using a response file (Windows)
	Installing database partition servers using a response file (Linux and UNIX)

	After you install
	Verifying the installation
	Verifying a partitioned database environment installation (Windows)
	Verifying a partitioned database server installation

	Chapter 3. Implementation and maintenance
	Before creating a database
	Setting up partitioned database environments
	Creating node configuration files
	Format of the Db2 node configuration file
	Specifying the list of machines in a partitioned database environment
	Eliminating duplicate entries from a list of machines in a partitioned database environment
	Updating the node configuration file
	Setting up multiple logical partitions
	Configuring multiple logical partitions

	Enabling inter-partition query parallelism
	Enabling intrapartition parallelism for queries
	Management of data server capacity
	Fast communications manager
	Fast communications manager (Windows)
	Fast communications manager
	Enabling communication between database partitions using FCM communications
	Enabling communications between database partition servers

	Creating and managing partitioned database environments
	Managing database partitions
	Adding database partitions in partitioned database environments
	Adding an online database partition
	Restrictions when working online to add a database partition
	Adding a database partition offline (Windows)
	Adding a database partition offline (Linux and UNIX)
	Error recovery when adding database partitions
	Dropping database partitions
	Listing database partition servers in an instance (Windows)
	Adding database partition servers to an instance (Windows)
	Changing database partitions (Windows)
	Adding containers to SMS table spaces on database partitions
	Dropping database partitions (Windows)

	Scenario: Redistributing data in new database partitions
	Issuing commands in partitioned database environments
	rah and db2_all commands overview
	Specifying the rah and db2_all commands
	Running commands in parallel (Linux and UNIX)
	Extension of the rah command to use tree logic (AIX)
	rah and db2_all commands
	rah and db2_all command prefix sequences
	Controlling the rah command
	Specifying which . files run with rah (Linux and UNIX)
	Determining problems with rah (Linux, UNIX)
	Monitoring rah processes (Linux and UNIX)
	Setting the default environment profile for rah (Windows)

	Creating tables and other related table objects
	Tables in partitioned database environments
	Large object (LOB) behavior in partitioned tables
	Creating partitioned tables
	Defining ranges
	Placement of the partitions
	Migrating existing tables and views to partitioned tables
	Converting existing indexes to partitioned indexes

	Partitioned materialized query table (MQT) behavior
	Creating range-clustered tables
	Guidelines for using range-clustered tables
	Scenarios: Range-clustered tables

	Considerations when creating MDC or ITC tables

	Altering a database
	Altering an instance
	Changing the database configuration across multiple database partitions

	Altering a database

	Altering tables and other related table objects
	Altering partitioned tables
	Guidelines and restrictions on altering partitioned tables
	Considerations for XML indexes when altering a table with a partition
	Attaching data partitions
	Guidelines for attaching data partitions to partitioned tables
	Conditions for matching a source table index with a target table partitioned index
	Detaching data partitions
	Attributes of detached data partitions
	Data partition detach phases
	Asynchronous partition detach for data partitioned tables
	Adding data partitions
	Dropping data partitions
	Rotating data in a partitioned table
	Scenarios: Rolling in and rolling out partitioned table data

	Load
	Parallelism and loading
	MDC and ITC considerations
	Load considerations for partitioned tables

	Loading data in a partitioned database environment
	Load overview-partitioned database environments
	Loading data in a partitioned database environment-hints and tips
	Loading data in a partitioned database environment
	Monitoring a partitioned database load using the LOAD QUERY command
	Resuming, restarting, or terminating load operations in a partitioned database environment
	Partitioned database load configuration options
	Load sessions in a partitioned database environment - CLP examples
	Migration and version compatibility

	Migration of partitioned database environments
	Migrating partitioned databases

	Using snapshot and event monitors
	Monitoring the reorganization of a partitioned table
	Global snapshots on partitioned database systems
	Creating an event monitor for partitioned databases, or for databases in a Db2 pureScale environment

	Developing a good backup and recovery strategy
	Crash recovery
	Recovering from transaction failures in a partitioned database environment
	Recovering from the failure of a database partition server
	Rebuilding partitioned databases
	Using db2adutl
	Synchronizing clocks in a partitioned database environment

	Troubleshooting
	Troubleshooting partitioned database environments
	Issuing commands in partitioned database environments

	Chapter 4. Performance issues
	Performance issues in database design
	Performance enhancing features
	Table partitioning and multidimensional clustering tables
	Optimization strategies for partitioned tables
	Optimization strategies for MDC tables

	Indexes
	Indexes in partitioned tables
	Index behavior on partitioned tables
	Clustering of nonpartitioned indexes on partitioned tables

	Design advisor
	Using the Design Advisor to convert from a single-partition to a multi-partition database

	Managing concurrency
	Lock modes for MDC and ITC tables and RID index scans
	Lock modes for MDC block index scans
	Locking behavior on partitioned tables

	Agent management
	Agents in a partitioned database

	Optimizing access plans
	Index access and cluster ratios
	Table and index management for MDC and ITC tables

	Optimization strategies for intrapartition parallelism
	Joins
	Database partition group impact on query optimization
	Join strategies for partitioned databases
	Join methods for partitioned databases
	Replicated materialized query tables in partitioned database environments

	Data redistribution
	Comparison of logged, recoverable redistribution and minimally logged, not roll-forward recoverable redistribution
	Prerequisites for data redistribution
	Restrictions on data redistribution
	Determining if data redistribution is needed
	Redistributing data across database partitions
	Redistributing data in a database partition group
	Log space requirements for data redistribution
	Redistribution event log files
	Redistributing data using the STEPWISE_REDISTRIBUTE_DBPG procedure

	Configuring self-tuning memory
	Self-tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	DB2 configuration parameters and variables
	Configuring databases across multiple partitions
	Partitioned database environment
	Partitioned database environment configuration parameters
	Communications
	conn_elapse - Connection elapse time
	fcm_num_buffers - Number of FCM buffers
	fcm_num_channels - Number of FCM channels
	max_connretries - Node connection retries
	max_time_diff - Maximum time difference between members
	start_stop_time - Start and stop timeout

	Parallel processing
	intra_parallel - Enable intrapartition parallelism
	max_querydegree - Maximum query degree of parallelism

	Chapter 5. Administrative APIs, commands, SQL statements
	Administrative APIs
	sqleaddn - Add a database partition to the partitioned database environment
	sqlecran - Create a database on a database partition server
	sqledpan - Drop a database on a database partition server
	sqledrpn - Check whether a database partition server can be dropped
	sqlugrpn - Get the database partition server number for a row

	Commands
	REDISTRIBUTE DATABASE PARTITION GROUP
	db2nchg - Change database partition server configuration
	db2ncrt - Add database partition server to an instance
	db2ndrop - Drop database partition server from an instance

	SQL language elements
	Data types
	Database partition-compatible data types

	Special registers
	CURRENT MEMBER

	SQL functions
	DATAPARTITIONNUM
	DBPARTITIONNUM

	SQL statements
	ALTER DATABASE PARTITION GROUP
	CREATE DATABASE PARTITION GROUP

	Supported administrative SQL routines and views
	ADMIN_CMD stored procedure and associated administrative SQL routines
	GET STMM TUNING using ADMIN_CMD
	UPDATE STMM TUNING using ADMIN_CMD

	Configuration administrative SQL routines and views
	DB_PARTITIONS - db2nodes.cfg information

	Stepwise redistribute administrative SQL routines
	STEPWISE_REDISTRIBUTE_DBPG - redistribute part of database partition group

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

