
IBM Db2 V11.5

Compatibility Features
2020-08-21

IBM

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2016, 2020 i

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

ii Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices iii

iv IBM Db2 V11.5: Compatibility Features

Contents

Notices...i
Trademarks...ii
Terms and conditions for product documentation..ii

Tables... vii

Chapter 1. Compatibility features.. 1
Compatibility features for Oracle ..1

Data types provided for Oracle compatability... 1
Implicit casting for character and graphic constants..10
SQL data-access-level enforcement... 10
Outer join operator... 11
Hierarchical queries... 13
Compatibility database configuration parameters..20
ROWNUM pseudocolumn...21
DUAL table..22
Changed syntax for the TRUNCATE statement... 22
Insensitive cursor...22
INOUT parameters... 23
Currently committed semantics.. 24
Oracle data dictionary-compatible views..26
Oracle database link syntax...28
Synonym usage.. 28

DB2_COMPATIBILITY_VECTOR registry variable...29
Setting up Db2 for Oracle application enablement.. 33
Terminology mapping: Oracle to Db2 products..35
Netezza to Db2 migration.. 39

Migrating from a Netezza system to a Db2 system...39
Netezza and Db2 compatibility..54

Compatibility features for Netezza Platform Software (NPS)...82
Data type aliases.. 83
DATASLICEID pseudocolumn..83
Routines written in NZPLSQL... 84
Using column aliases in a HAVING clause...89
Using column aliases in a WHERE clause.. 90
Double-dot notation... 90
BETWEEN scalar functions syntax...91
TRANSLATE scalar function syntax... 91
Operators..92
Grouping by SELECT clause columns.. 93
Expressions refer to column aliases..94
CREATE TABLE statement can use CTAS syntax.. 95
SUBSTR allows non-positive start values..95
AGE returns a decimal duration...96
Precision and scale for DECIMAL and NUMERIC scalar functions... 96
Installing the DB SQL Extension Toolkit.. 97
Using DB2_REVERSE_NULL_ORDER... 99

IBM Database Conversion Workbench (DCW).. 100

 v

Index.. 101

vi

Tables

1. TIMESTAMPDIFF computations... 3

2. Rounding for numeric assignments and casts..5

3. Modified rules for result data types that involve character strings... 7

4. Data Type and lengths of concatenated operands ..7

5. The italicized variables in the previous table have the following values... 8

6. Oracle data dictionary-compatible views...27

7. DB2_COMPATIBILITY_VECTOR bit positions.. 30

8. Mapping of common Oracle concepts to Db2 concepts.. 35

9. Object privileges..44

10. Administration privileges.. 45

11. Fuzzy string search functions... 48

12. Phonetic matching functions.. 48

13. Value functions..48

14. Trigonometric functions..49

15. Random number functions... 49

16. Numeric functions...49

17. Binary mathematical functions...49

18. Date and time functions..49

19. Character string functions.. 50

20. Conversion functions.. 50

21. Miscellaneous non-aggregate functions.. 50

22. Additional functions.. 50

23. SQL Extensions toolkit functions..50

 vii

24. Unsupported Netezza data types... 54

25. Netezza and Db2 data type differences... 55

26. PureData System for Analytics (Netezza) command support ...57

27. Functions for association rules...61

28. Functions for classification... 62

29. Functions for clustering.. 62

30. Functions for column properties.. 63

31. Functions for data transformation..63

32. Functions for diagnostic measures...63

33. Functions for discretization and moments...64

34. Functions for model management..64

35. Functions for probability distributions... 65

36. Functions for quantiles and outliers...69

37. Functions for regression... 69

38. Functions for sampling..70

39. Functions for sequential patterns...70

40. Functions for statistics..70

41. Functions for timeseries... 72

42. Functions for utilities.. 72

43. SQL compatibility: commands..73

44. SQL compatibility: operators.. 82

45. SQL compatibility: miscellaneous items.. 82

46. ...100

47. ...100

viii

Chapter 1. Compatibility features
You might have an application that was written for use with a relational database that is not a Db2®

database. Compatibility features enable such applications to use Db2 databases without having to be
rewritten.

Compatibility features for Oracle
Db2 provides features that enable applications that were written for an Oracle database to use a Db2
database without having to be rewritten.

Attention: Setting the “DB2_COMPATIBILITY_VECTOR registry variable” on page 29 is required
to enable some Oracle compatibility features.

Data types provided for Oracle compatability

DATE data type based on TIMESTAMP(0)
The DATE data type supports applications that use the Oracle DATE data type and expect that the DATE
values include time information (for example, '2009-04-01-09.43.05').

Enablement

You enable DATE as TIMESTAMP(0) support at the database level, before creating the database where
you require the support. To enable the support, set the DB2_COMPATIBILITY_VECTOR registry variable
to hexadecimal value 0x40 (bit position 7), and then stop and restart the instance to have the new setting
take effect.

db2set DB2_COMPATIBILITY_VECTOR=40
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

After you create a database with DATE as TIMESTAMP(0) support enabled, the date_compat database
configuration parameter is set to ON.

If you create a database with DATE as TIMESTAMP(0) support enabled, you cannot disable that support
for that database, even if you reset the DB2_COMPATIBILITY_VECTOR registry variable. Similarly, if you
create a database with DATE as TIMESTAMP(0) support disabled, you cannot enable that support for that
database later, even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

Effects

The date_compat database configuration parameter indicates whether the DATE compatibility
semantics associated with the TIMESTAMP(0) data type are applied to the connected database. The
effects of setting date_compat to ON are as follows.

When the DATE data type is explicitly encountered in SQL statements, it is implicitly mapped to
TIMESTAMP(0) in most cases. An exception is the specification of SQL DATE in the xml-index-
specification clause of a CREATE INDEX statement. As a result of the implicit mapping, messages refer to
the TIMESTAMP data type instead of DATE, and any operations that describe data types for columns or
routines return TIMESTAMP instead of DATE.

Datetime literal support is changed as follows:

• The value of an explicit DATE literal is a TIMESTAMP(0) value in which the time portion is all zeros. For
example, DATE '2008-04-28' represents the timestamp value '2008-04-28-00.00.00'.

© Copyright IBM Corp. 2016, 2020 1

• The database manager supports two additional formats for the string representation of a date, which
correspond to 'DD-MON-YYYY' and 'DD-MON-RR'. Only English abbreviations of the month are
supported. For example, '28-APR-2008' or '28-APR-08' can be used as string representations of a date,
which represents the TIMESTAMP(0) value '2008-04-28-00.00.00'.

Starting from Version 9.7 Fix Pack 6, the database manager also supports the following formats for the
string representation of a date in English only:

– 'DDMONYYYY' or 'DDMONRR'
– 'DD-MONYYYY' or 'DD-MONRR'
– 'DDMON-YYYY' or 'DDMON-RR'

For example, the following strings all represent the TIMESTAMP(0) value '2008-04-28-00.00.00':

– '28APR2008' or '28APR08'
– '28-APR2008' or '28-APR08'
– '28APR-2008' or '28APR-08'

For a description of the format elements, see TIMESTAMP_FORMAT scalar function (see SQL Reference
Volume 1).

The CURRENT_DATE (also known as CURRENT DATE) special register returns a TIMESTAMP(0) value that
is the same as the CURRENT_TIMESTAMP(0) value.

When you add a numeric value to a TIMESTAMP value or subtract a numeric value from a TIMESTAMP
value, it is assumed that the numeric value represents a number of days. The numeric value can have any
numeric data type, and any fractional value is considered to be a fractional portion of a day. For example,
TIMESTAMP '2008-03-28 12:00:00' + 1.3 adds 1 day, 7 hours, and 12 minutes to the TIMESTAMP
value, resulting in '2008-03-29 19:12:00'. If you are using expressions for partial days, such as 1/24 (1
hour) or 1/24/60 (1 minute), ensure that the number_compat database configuration parameter is set to
ON so that the division is performed using DECFLOAT arithmetic.

The results of some functions change:

• If you pass a string argument to the ADD_YEARS, ADD_MONTHS, or ADD_DAYS scalar function, it
returns a TIMESTAMP(0) value.

• The DATE scalar function returns a TIMESTAMP(0) value for all input types.
• If you pass a string argument to the FIRST_DAY or LAST_DAY scalar function, it returns a

TIMESTAMP(0) value.
• If you pass a DATE argument to the ADD_YEARS, ADD_MONTHS, ADD_DAYS, ADD_HOURS,

ADD_MINUTES, ADD_SECONDS, LAST_DAY, NEXT_DAY, ROUND, or TRUNCATE scalar function, the
function returns a TIMESTAMP(0) value.

• The adding of one date value to another returns TIMESTAMP(0) value.
• Subtracting one timestamp value from another returns DECFLOAT(34), which represents the difference

as a number of days, with exception to expressions that are used to define the following scalar
functions:

– YEARS_BETWEEN
– YMD_BETWEEN
– AGE

The expressions in these scalar functions retain the existing semantic of returning a timestamp
duration.

• Subtracting one date value from another returns DECFLOAT(34), which represents a number of days.
• If you specify the fractional second format (FF) for the TO_DATE or TO_TIMESTAMP function, the

fractional second format is equivalent to specifying 10-9 precision value (FF9).
• The second parameter in the TIMESTAMPDIFF scalar function does not represent a timestamp

duration. Rather it represents the difference between two timestamps as a number of days. The

2 IBM Db2 V11.5: Compatibility Features

returned estimate may vary by a number of days. For example, if the number of months (interval 64) is
requested for the difference between '2010-03-31-00.00.00.000000' and
'2010-03-01-00.00.00.000000', the result is 1. This is because the difference between the timestamps
is 30 days, and the assumption of 30 days in a month applies. The following table shows how the
returned value is determined for each interval.

Table 1. TIMESTAMPDIFF computations

Result interval
Computation using the difference between two
timestamps as a number of days

Years integer value of (days/365)

Quarters integer value of (days/90)

Months integer value of (days/30)

Weeks integer value of (days/7)

Days integer value of days

Hours integer value of (days*24)

Minutes (the absolute value of the number of days
must not exceed 1491308.0888888888888882)

integer value of (days*24*60)

Seconds (the absolute value of the number of
days must be less than
24855.1348148148148148)

integer value of (days*24*60*60)

Microseconds (the absolute value of the number
of days must be less than
0.02485513481481481)

integer value of (days*24*60*60*1000000)

If you use the import or load utility to input data into a DATE column, you must use the timestampformat
file type modifier instead of the dateformat file type modifier.

NUMBER data type
The NUMBER data type supports applications that use the Oracle NUMBER data type.

Enablement

You enable NUMBER support at the database level, before creating the database where you require the
support. To enable the support, set the DB2_COMPATIBILITY_VECTOR registry variable to hexadecimal
value 0x10 (bit position 5), and then stop and restart the instance to have the new setting take effect.

db2set DB2_COMPATIBILITY_VECTOR=10
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

When you create a database with NUMBER support enabled, the number_compat database configuration
parameter is set to ON.

If you create a database with NUMBER support enabled, you cannot disable NUMBER support for that
database, even if you reset the DB2_COMPATIBILITY_VECTOR registry variable. Similarly, if you create a
database with NUMBER support disabled, you cannot enable NUMBER support for that database later,
even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

Effects

The effects of setting the number_compat database configuration parameter to ON are as follows.

Chapter 1. Compatibility features 3

When the NUMBER data type is explicitly encountered in SQL statements, the data type is implicitly
mapped as follows:

• If you specify NUMBER without precision and scale attributes, it is mapped to DECFLOAT(16).
• If you specify NUMBER(p), it is mapped to DECIMAL(p).
• If you specify NUMBER(p,s), it is mapped to DECIMAL(p,s).

The maximum supported precision is 31, and the scale must be a positive value that is no greater than the
precision. Also, a result of the implicit mapping, messages refer to data types DECFLOAT and DECIMAL
instead of NUMBER. In addition, any operations that describe data types for columns or routines return
either DECIMAL or DECFLOAT instead of NUMBER.

Tip: The DECFLOAT(16) data type provides a lower maximum precision than that of the Oracle NUMBER
data type. If you need more than 16 digits of precision for storing numbers in columns, then explicitly
define those columns as DECFLOAT(34).

Numeric literal support is unchanged: the rules for integer, decimal, and floating-point constants continue
to apply. These rules limit decimal literals to 31 digits and floating-point literals to the range of binary
double-precision floating-point values. If necessary, you can use a string-to-DECFLOAT(34) cast, using
the CAST specification or the DECFLOAT function, for values beyond the range of DECIMAL or DOUBLE up
to the range of DECFLOAT(34). There is currently no support for a numeric literal that ends in either D,
representing 64-bit binary floating-point values, or F, representing 32-bit binary floating-point values. A
numeric literal that includes an E has the data type of DOUBLE, which you can cast to REAL using the
CAST specification or the cast function REAL

If you cast NUMBER data values to character strings, using either the CAST specification or the VARCHAR
or CHAR scalar function, all leading zeros are stripped from the result.

The default data type that is used for a sequence value in the CREATE SEQUENCE statement is
DECIMAL(27) instead of INTEGER.

All arithmetic operations and arithmetic or mathematical functions involving DECIMAL or DECFLOAT data
types are effectively performed using decimal floating-point arithmetic and return a value with a data type
of DECFLOAT(34). This type of performance also applies to arithmetic operations where both operands
have a DECIMAL or DECFLOAT(16) data type, which differs from the description of decimal arithmetic in
the "Expressions with arithmetic operators" section of Expressions (see SQL Reference Volume 1).
Additionally, all division operations involving only integer data types (SMALLINT, INTEGER, or BIGINT)
are effectively performed using decimal floating-point arithmetic. These operations return a value with a
data type of DECFLOAT(34) instead of an integer data type. Division by zero with integer operands returns
infinity and a warning instead of an error.

In some cases function resolution is also changed, such that an argument of data type DECIMAL is
considered to be a DECFLOAT value during the resolution process. Also functions with arguments that
correspond to the NUMBER(p[,s]) data type are effectively treated as if the argument data types were
NUMBER. However, this change in function resolution does not apply to the set of functions that have a
variable number of arguments and base their result data types on the set of data types of the arguments.
The functions included in this set are as follows:

• COALESCE
• DECODE
• GREATEST
• LEAST
• MAX (scalar)
• MIN (scalar)
• NVL
• VALUE

In addition to the general changes to numeric functions, a special consideration also applies to the MOD
function; if the second argument in the MOD function is zero, then the function returns the value of the
first argument.

4 IBM Db2 V11.5: Compatibility Features

For more information on how the rules for result data types are extended to make DECFLOAT(34) the
result data type if the precision of a DECIMAL result data type would have exceeded, see rules for result
data types (see SQL Reference Volume 1). These rules also apply to the following items:

• Corresponding columns in set operations: UNION, EXCEPT(MINUS), and INTERSECT
• Expression values in the IN list of an IN predicate
• Corresponding expressions of a multiple row VALUES clause

The rounding mode that is used for assignments and casts depends on the data types that are involved. In
some cases, truncation is used. In cases where the target is a binary floating-point (REAL or DOUBLE)
value, round-half-even is used, as usual. In other cases, usually involving a DECIMAL or DECFLOAT value,
the rounding is based on the value of the decflt_rounding database configuration parameter. The
value of this parameter defaults to round-half-even, but you can set it to round-half-up to match the
Oracle rounding mode. The following table summarizes the rounding that is used for various numeric
assignments and casts.

Table 2. Rounding for numeric assignments and casts

Source data type Target data type

Integer types DECIMAL DECFLOAT REAL/DOUBLE

Integer types not applicable not applicable decflt_rounding round_half_even

DECIMAL decflt_rounding decflt_rounding decflt_rounding round_half_even

DECFLOAT decflt_rounding decflt_rounding decflt_rounding round_half_even

REAL/DOUBLE truncate decflt_rounding decflt_rounding round_half_even

String (cast only) not applicable decflt_rounding decflt_rounding round_half_even

The Db2 decimal floating-point values are based on the IEEE 754R standard. Retrieval of DECFLOAT data
and casting of DECFLOAT data to character strings removes any trailing zeros after the decimal point.

Starting in Db2 Version 10.5 Fix Pack 4, in a database with NUMBER support enabled, the built-in
functions STDDEV, VAR and VARIANCE with integer input returns DECFLOAT instead of DOUBLE. Any view
column or materialized query table (MQT) column with a result type that depends on this function
continues to return the old result type until the view or MQT is regenerated or recreated. In the case of an
MQT, any queries that previously routed to the MQT will not longer do so until the MQT is recreated.

Client-server compatibility

Client applications working with a Db2 database server that you enable for NUMBER data type support
never receive a NUMBER data type from the server. Any column or expression that would report NUMBER
from an Oracle server report either DECIMAL or DECFLOAT from a Db2 database server.

Because an Oracle environment expects the rounding mode to be round-half-up, it is important that the
client rounding mode match the server rounding mode. This means that the db2cli.ini file setting
must match the value of the decflt_rounding database configuration parameter. To most closely
match the Oracle rounding mode, you should specify ROUND_HALF_UP for the database configuration
parameter.

Restrictions

NUMBER data type support has the following restrictions:

• There is no support for the following items:

– A precision attribute greater than 31
– A precision attribute of asterisk (*)
– A scale attribute that exceeds the precision attribute

Chapter 1. Compatibility features 5

– A negative scale attribute

There is no corresponding DECIMAL precision and scale support for NUMBER data type specifications.
• You cannot invoke the trigonometric functions or the DIGITS scalar function with arguments of data

type NUMBER without a precision (DECFLOAT).
• You cannot create a distinct type with the name NUMBER.

VARCHAR2 and NVARCHAR2 data types
The VARCHAR2 and NVARCHAR2 data types support applications that use the Oracle VARCHAR2 and
NVARCHAR2 data types.

Enablement

You enable VARCHAR2 and NVARCHAR2 (subsequently jointly referred to as VARCHAR2) support at the
database level, before creating the database where you require support. To enable the support, set the
DB2_COMPATIBILITY_VECTOR registry variable to hexadecimal value 0x20 (bit position 6), and then
stop and restart the instance to have the new setting take effect. Create your Db2 database by issuing the
CREATE DATABASE command. By default, databases are created as Unicode databases. For example, to
create a database that is named DB, issue the following command:

db2set DB2_COMPATIBILITY_VECTOR=20
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

When you create a database with VARCHAR2 support enabled, the varchar2_compat database
configuration parameter is set to ON.

If you create a database with VARCHAR2 support enabled, you cannot disable VARCHAR2 support for that
database, even if you reset the DB2_COMPATIBILITY_VECTOR registry variable. Similarly, if you create a
database with VARCHAR2 support disabled, you cannot enable VARCHAR2 support for that database
later, even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

To use the NVARCHAR2 data type, a database must be a Unicode database.

Effects

The effects of setting the varchar2_compat database configuration parameter to ON are as follows.

When the VARCHAR2 data type is explicitly encountered in SQL statements, it is implicitly mapped to the
VARCHAR data type. The maximum length for VARCHAR2 is 32672 BYTE or 8168 CHAR which is the
same as the maximum length for VARCHAR of 32672 OCTETS or 8168 CODEUNITS32. Similarly, when
the NVARCHAR2 data type is explicitly encountered in SQL statements, it is implicitly mapped following
the same rules as the NVARCHAR data type.

Character string literals can have a data type of CHAR or VARCHAR, depending on the length and the
string units of the environment. Character string literals up to the maximum length of a CHAR in the string
units of the environment (255 OCTETS or 63 CODEUNITS32) have a data type of CHAR. Character string
literals longer than the maximum length of a CHAR in the string units of the environment have a data type
of VARCHAR.

Comparisons involving varying-length string types use non-padded comparison semantics, and
comparisons with only fixed-length string types continue to use blank-padded comparison semantics,
with two exceptions:

• Comparisons involving string column information from catalog views always use the IDENTITY collation
with blank-padded comparison semantics, regardless of the database collation.

• String comparisons involving a data type with the FOR BIT DATA attribute always use the IDENTITY
collation with blank-padded comparison semantics.

The rules for result data types are modified as follows:

6 IBM Db2 V11.5: Compatibility Features

Table 3. Modified rules for result data types that involve character strings

If one operand is... And the other operand is... The data type of the result is...

CHAR(x) CHAR(x) CHAR(x)

CHAR(x) CHAR(y) VARCHAR(z), where x != y and z =
max(x,y)

GRAPHIC(x) GRAPHIC(x) GRAPHIC(x)

GRAPHIC(x) GRAPHIC(y) VARGRAPHIC(z), where x != y
and z = max(x,y)

GRAPHIC(x) CHAR(y) VARGRAPHIC(z), where z =
max(x,y)

If the result type for the IN list of an IN predicate would resolve to a fixed-length string data type and the
left operand of the IN predicate is a varying-length string data type, the IN list expressions are treated as
having a varying-length string data type.

Character and binary string values (other than LOB values) with a length of zero are generally treated as
null values. An assignment or cast of an empty string value to CHAR, NCHAR, VARCHAR, NVARCHAR,
BINARY, or VARBINARY produces a null value.

Functions that return character or binary string arguments, or that are based on parameters with
character or binary string data types, also treat empty string CHAR, NCHAR, VARCHAR, NVARCHAR,
BINARY, or VARBINARY values as null values. Therefore, the result of some built-in functions and casts
that return character or graphic string can be null even when all of the arguments are not null. Special
considerations apply for some functions when the varchar2_compat database configuration parameter
is set to ON, as follows:

• CONCAT function and the concatenation operator. A null or empty string value is ignored in the
concatenated result. The result type of the concatenation is shown in the following table.

Table 4. Data Type and lengths of concatenated operands

Operands

Combined
length
attributes1 Result1

CHAR(A) CHAR(B) <=S CHAR(A+B)

CHAR(A) CHAR(B) >S VARCHAR(A+B)

CHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B, W))

VARCHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B, W))

CLOB(A) CHAR(B) - CLOB(MIN(A+B, X))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B X))

CLOB(A) CLOB(B) CLOB(MIN(A+B, X))

GRAPHIC(A) GRAPHIC(B) <=T GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >T VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) - VARGRAPHIC(MIN(A+B, Y))

VARGRAPHIC(A) VARGRAPHIC(B) - VARGRAPHIC(MIN(A+B, Y))

DBCLOB(A) CHAR(B) - DBCLOB(MIN(A+B, Z))

DBCLOB(A) VARCHAR(B) - DBCLOB(MIN(A+B, Z))

Chapter 1. Compatibility features 7

Table 4. Data Type and lengths of concatenated operands (continued)

Operands

Combined
length
attributes1 Result1

DBCLOB(A) DCLOB(B) DBCLOB(MIN(A+B, Z))

1. See the following table for values for italicized variables.

Table 5. The italicized variables in the previous table have the following values

Variable

If no operand has string units
of
CHAR (or CODEUNITS32)

If either operand has string
units of
CHAR (or CODEUNITS32

S 255 63

T 127 63

W 32672 8168

X 2G 536870911

Y 16336 8168

Z 1G 536870911

• DECODE function. If the first result expression is an untyped null it is assumed to be VARCHAR(0). If the
first result expression is CHAR or GRAPHIC, it is promoted to VARCHAR or VARGRAPHIC.

• GREATEST function. If the first expression is CHAR, BINARY, or GRAPHIC, it is promoted to VARCHAR,
VARBINARY or VARGRAPHIC.

• INSERT function. A null value or empty string as the fourth argument results in deletion of the number
of bytes indicated by the third argument, beginning at the byte position indicated by the second
argument from the first argument.

• LEAST function. If the first expression is CHAR, BINARY, or GRAPHIC, it is promoted to VARCHAR,
VARBINARY or VARGRAPHIC.

• LENGTH function. The value returned by the LENGTH function is the number of bytes in the character
string. An empty string value returns the null value.

• NVL function. If the first expression is CHAR, BINARY, or GRAPHIC, it is promoted to VARCHAR,
VARBINARY, or VARGRAPHIC.

• NVL2 function. If the result expression is an untyped null it is assumed to be VARCHAR(0). If the result
expression is CHAR, BINARY, or GRAPHIC, it is promoted to VARCHAR, VARBINARY, or VARGRAPHIC.

• REGEXP_REPLACE function. A null value or empty string as the third argument is treated as an empty
string. Nothing replaces the string that is removed from the source string that is based on the matched
string that is determined by the other arguments.

• REPLACE function. If all of the argument values have a data type of CHAR, VARCHAR, , BINARY,
VARBINARY, GRAPHIC, or VARGRAPHIC, then:

– A null value or empty string as the second argument is treated as an empty string, and consequently
the first argument is returned as the result

– A null value or empty string as the third argument is treated as an empty string, and nothing replaces
the string that is removed from the source string by the second argument.

If any argument value has a data type of CLOB or BLOB and any argument is the null value, the result is
the null value. All three arguments of the REPLACE function must be specified.

• SUBSTR function. References to SUBSTR are replaced with the following function invocation based on
the first argument:

8 IBM Db2 V11.5: Compatibility Features

– SUBSTRB when the first argument is a binary string or character string with string units defined as
OCTETS.

– SUBSTR2 when the first argument is a graphic string with string units defined as CODEUNITS16.
– SUBSTR4 when the first argument is a character string or graphic string with string units defined as

CODEUNITS32.
• TO_CHAR function. If two arguments are specified and the first argument is a string, the first argument

is cast to a decimal floating point. This behavior applies to Version 10.5 Fix Pack 3 and later fix packs.
• TO_NCHAR function. If two arguments are specified and the first argument is a string, the first

argument is cast to a decimal floating point. This behavior applies to Version 10.5 Fix Pack 3 and later
fix packs.

• TRANSLATE function. The from-string-exp is the second argument, and the to-string-exp is the third
argument. If the to-string-exp is shorter than the from-string-exp, the extra characters in the from-
string-exp that are found in the char-string-exp (the first argument) are removed; that is, the default
pad-char argument is effectively an empty string, unless a different pad character is specified in the
fourth argument.

• TRIM function. If the trim character argument of a TRIM function invocation is a null value or an empty
string, the function returns a null value.

• VARCHAR_FORMAT function. If two arguments are specified and the first argument is a string, the first
argument is cast to a decimal floating point. This behavior applies to Version 10.5 Fix Pack 3 and later
fix packs.

In the ALTER TABLE statement or the CREATE TABLE statement, when a DEFAULT clause is specified
without an explicit value for a column defined with the VARCHAR or the VARGRAPHIC data type, the
default value is a blank character. If the column is defined with the VARBINARY data type, the default
value is a hexadecimal zero.

Empty strings in catalog view columns are converted to a blank character when the database
configuration parameter varchar2_compat is set to ON. For example:

• SYSCAT.DATAPARTITIONS.STATUS has a single blank character when the data partition is visible.
• SYSCAT.PACKAGES.PKGVERSION has a single blank character when the package version has not been

explicitly set.
• SYSCAT.ROUTINES.COMPILE_OPTIONS has a null value when compile options have not been set.

If SQL statements use parameter markers, a data type conversion that affects VARCHAR2 usage can
occur. For example, if the input value is a VARCHAR of length zero and it is converted to a LOB, the result
will be a null value. However, if the input value is a LOB of length zero and it is converted to a LOB, the
result will be a LOB of length zero. The data type of the input value can be affected by deferred prepare.

When defining a data type, CHAR can be used as a synonym for CODEUNITS32, and BYTE can be used as
a synonym for OCTETS.

Restrictions

The VARCHAR2 data type and associated character string processing support have the following
restrictions:

• The VARCHAR2 length attribute qualifier CHAR is accepted only in a Unicode database as a synonym for
CODEUNITS32.

• The LONG VARCHAR and LONG VARGRAPHIC data types are not supported (but are not explicitly
blocked) when the varchar2_compat database configuration parameter is set to ON.

• Without specifying the maximum length for a VARCHAR2 parameter, the default is 4000 bytes.
• NLSCHAR collation, used for sorting characters in a TIS620-1 (code page 874) Thai database, is not

supported when setting DB2_COMPATIBILITY_VECTOR=ORA.

Chapter 1. Compatibility features 9

Implicit casting for character and graphic constants
Implicit casting (or weak typing) is an alternative way to parse character or graphic constants for
applications that expect these constants to be assigned the data types CHAR or GRAPHIC.

Enablement

To enable implicit casting for character and graphic constants, set the DB2_COMPATIBILITY_VECTOR
registry variable to hexadecimal value 0x100 (bit position 9), then stop and restart the instance:

db2set DB2_COMPATIBILITY_VECTOR=100
db2stop
db2start

To activate all the compatibility features for Oracle applications, set the DB2_COMPATIBILITY_VECTOR
to ORA, then stop and restart the instance:

db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start

If implicit casting for character and graphic constants is disabled, an application that uses weak typing in
its SQL will fail to compile for the Db2 product. If enabled, strings and numbers can be compared,
assigned, and operated on in a very flexible fashion. Because this data type assignment affects the result
types of some SQL statements, it is strongly recommended that this registry variable setting not be
toggled for a particular database.

Effects

When implicit casting for character and graphic constants is enabled, the data type of a character or
graphic constant depends on the setting of the environment string unit and on the length of the constant:

String Constant Type Environment String
Unit

Size Data Type

Character CODEUNITS16 or
OCTETS

≤ 255 bytes CHAR

CODEUNITS32 ≤ 63 code units

CODEUNITS16 or
OCTETS

> 255 bytes VARCHAR

CODEUNITS32 > 63 code units

Graphic CODEUNITS16 or
OCTETS

≤ 254 bytes GRAPHIC

CODEUNITS32 ≤ 63 code units

CODEUNITS16 or
OCTETS

> 254 bytes VARGRAPHIC

CODEUNITS32 > 63 code units

SQL data-access-level enforcement
The degree to which a routine (stored procedure or user-defined function) can execute SQL statements is
determined by its SQL-access-level.

There are four SQL data-access-levels:

• NO SQL
• CONTAINS SQL
• READS SQL DATA

10 IBM Db2 V11.5: Compatibility Features

• MODIFIES SQL DATA

By default, SQL PL and PL/SQL routines enforce data-access levels at compile time. If a routine contains
an SQL statement that requires a data-access level that exceeds that of the routine, an error is returned
when you create the routine. Similarly, if a routine invokes another routine whose data-access level
exceeds that of the calling routine, an error is returned when you create the first routine. Additionally, if
you define a compiled user-defined function as MODIFIES SQL DATA, you can use it only as the sole
element on the right side of an assignment statement within a compound SQL (compiled) statement. This
check is also performed when you compile the statement.

Starting with Version 9.7 Fix Pack 3, you can have SQL PL and PL/SQL routines enforce data-access levels
at run time instead of at compile time by setting the DB2_COMPATIBILITY_VECTOR registry variable. To
enable the support, set the registry variable to hexadecimal value 0x10000 (bit position 17), and then
stop and restart the instance to have the new setting take effect.

db2set DB2_COMPATIBILITY_VECTOR=10000
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

The enforcement is performed at run-time at the statement level. An error is returned when a statement
that exceeds the current SQL data access level is performed. If a routine invokes another routine defined
with a more restrictive SQL data-access level, the called routine inherits the data-access level of its
parent. Additionally, if you define a compiled user-defined function as MODIFIES SQL DATA and it is not
the sole element on the right side of an assignment statement within a compound SQL (compiled)
statement, an error is returned only if the function issues an SQL statement that modifies SQL data.

In addition, starting with Version 9.7 Fix Pack 6, COMMIT and ROLLBACK statements are allowed in a
compiled PL/SQL user-defined function and a compiled language SQL user-defined function that has been
defined with the MODIFIES SQL DATA clause in a CREATE FUNCTION statement.

Outer join operator
Queries can use the outer join operator (+) as alternative syntax within predicates of the WHERE clause.

A join is the process of combining data from two or more tables based on some common domain of
information. Rows from one table are paired with rows from another table when information in the
corresponding rows match on the basis of the joining criterion. An outer join returns all rows that satisfy
the join condition and also returns some or all of the rows from one or both tables for which no rows
satisfy the join condition. You should use the outer join syntax of RIGHT OUTER JOIN, LEFT OUTER JOIN,
or FULL OUTER JOIN wherever possible. You should use the outer join operator only when enabling
applications from database products other than the Db2 product to run on a Db2 database system.

Enablement

You enable outer join operator support by setting the DB2_COMPATIBILITY_VECTOR registry variable to
hexadecimal value 0x04 (bit position 3), and then stop and restart the instance to have the new setting
take effect.

db2set DB2_COMPATIBILITY_VECTOR=04
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

Examples

You apply the outer join operator (+) in parentheses following a column name within predicates that refer
to columns from two tables, as shown in the following examples:

Chapter 1. Compatibility features 11

• The following query performs a left outer join of tables T1 and T2. Include both tables in the FROM
clause, separated by a comma. Apply the outer join operator to all columns of T2 in predicates that also
reference T1.

 SELECT * FROM T1
 LEFT OUTER JOIN T2 ON T1.PK1 = T2.FK1
 AND T1.PK2 = T2.FK2

The previous query is equivalent to the following one, which uses the outer join operator:

 SELECT * FROM T1, T2
 WHERE T1.PK1 = T2.FK1(+)
 AND T1.PK2 = T2.FK2(+)

• The following query performs a right outer join of tables T1 and T2. Include both tables in the FROM
clause, separated by a comma, and apply the outer join operator to all columns of T1 in predicates that
also reference T2.

 SELECT * FROM T1
 RIGHT OUTER JOIN T2 ON T1.FK1 = T2.PK1
 AND T1.FK2 = T2.PK2

The previous query is equivalent to the following one, which uses the outer join operator:

 SELECT * FROM T1, T2
 WHERE T1.FK1(+) = T2.PK1
 AND T1.FK2(+) = T2.PK2

A table that has columns marked with the outer join operator is sometimes referred to as a NULL-
producer.

A set of predicates that are separated by AND operators is known as an AND-factor. If there are no AND
operators in a WHERE clause, the set of predicates in the WHERE clause is considered to be the only
AND-factor.

Rules

The following rules apply to the outer join operator:

• Predicates

– The WHERE predicate is considered on a granularity of ANDed Boolean factors.
– Local predicates such as T1.A(+) = 5 can exist, but they are executed with the join. A local

predicate without (+) is executed after the join.
• Boolean

– Each Boolean term can refer to at most two tables, for example, T1.C11 + T2.C21 = T3.C3(+) is
not allowed.

– Correlation for outer join Boolean terms is not allowed.
• Outer join operator

– You cannot specify the outer join operator in the same subselect as the explicit JOIN syntax
– You can specify the outer join operator only in the WHERE clause on columns that are associated with

tables that you specify in the FROM clause of the same subselect.
– You cannot apply the outer join operator to an entire expression. Within an AND-factor, each column

reference from the same table must be followed by the outer join operator, for example, T1.COL1
(+) - T1.COL2 (+) = T2.COL1.

– You can specify the outer join operator only in the WHERE clause on columns that are associated with
tables that you specify in the FROM clause of the same subselect.

• NULL-producer

12 IBM Db2 V11.5: Compatibility Features

– Each table can be the NULL-producer with respect to at most one other table. If a table is joined to a
third table, it must be the outer table.

– You can use a table only once as the NULL-producer for one other table within a query.
– You cannot use the same table as both the outer table and the NULL-producer in separate outer joins

that form a cycle. A cycle can be formed across multiple joins when the chain of predicates comes
back to an earlier table.

For example, the following query starts with T1 as the outer table in the first predicate and then
cycles back to T1 in the third predicate. T2 is used as both the NULL-producer in the first predicate
and the outer table in the second predicate, but this usage is not itself a cycle.

SELECT ... FROM T1,T2,T3
 WHERE T1.a1 = T2.b2(+)
 AND T2.b2 = T3.c3(+)
 AND T3.c3 = T1.a1(+) -- invalid cycle

• AND-factor

– An AND-factor can have only one table as a NULL-producer. Each column reference that is followed
by the outer join operator must be from the same table.

– An AND-factor that includes an outer join operator can reference at most two tables.
– If you require multiple AND-factors for the outer join between two tables, you must specify the outer

join operator in all of these AND-factors. If an AND-factor does not specify the outer join operator, it
is processed on the result of the outer join.

– An AND-factor with predicates that involve only one table can specify the outer join operator if there
is at least one other AND-factor that meets the following criteria:

- The AND-factor must involve the same table as the NULL-producer.
- The AND-factor must involve another table as the outer table.

– An AND-factor with predicates involving only one table and without an outer join operator is
processed on the result of the join.

– An AND-factor that includes an outer join operator must follow the rules for a join-condition of an ON
clause that is defined under a joined-table.

Hierarchical queries
A hierarchical query is a form of recursive query that retrieves a hierarchy, such as a bill of materials, from
relational data by using a CONNECT BY clause.

Enablement

You enable hierarchical query support by setting the DB2_COMPATIBILITY_VECTOR registry variable to
hexadecimal value 0x08 (bit position 4), and then stop and restart the instance to have the new setting
take effect.

db2set DB2_COMPATIBILITY_VECTOR=08
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

You can then use CONNECT BY syntax, including pseudocolumns, unary operators, and the
SYS_CONNECT_BY_PATH scalar function.

A hierarchical query contains a CONNECT BY clause that defines the join conditions between parent and
child elements. Connect-by recursion uses the same subquery for the seed (START WITH clause) and the
recursive step (CONNECT BY clause). This combination provides a concise method of representing
recursions such as bills-of-material, reports-to-chains, or email threads.

Chapter 1. Compatibility features 13

Connect-by recursion returns an error if a cycle occurs. A cycle occurs when a row produces itself, either
directly or indirectly. By using the optional CONNECT BY NOCYCLE clause, you can direct the recursion to
ignore the duplicated row, thus avoiding both the cycle and the error. Hierarchical queries or connect-by
recursion differs fromDb2 recursion. For more information about the differences, see Port CONNECT BY to
DB2®.

hierarchical-query-clause

A subselect that includes a hierarchical-query-clause is called a hierarchical query.

●

start-with-clause

● connect-by-clause ●

start-with-clause
START WITH search-condition

connect-by-clause
CONNECT BY

NOCYCLE

search-condition

start-with-clause
START WITH denotes the seed of the recursion. The start-with-clause specifies the intermediate
result table H1 for the hierarchical query. Table H1 consists of those rows of R for which the search-
condition is true. If you do not specify the start-with-clause, H1 is the entire intermediate result table
R. The rules for the search-condition within the start-with-clause are the same as those within the
WHERE clause.

connect-by-clause
CONNECT BY describes the recursive step. The connect-by-clause produces the intermediate result
table Hn+1 from Hn by joining Hn with R, using the search condition. If you specify the NOCYCLE
keyword, the repeated row is not included in the intermediate result table Hn+1. An error is not
returned. The rules for the search-condition within the connect-by-clause are the same as those
within the WHERE clause, except that OLAP specifications cannot be specified (SQLSTATE 42903).

After a first intermediate result table H1 is established, subsequent intermediate result tables H2, H3, and
so forth are generated. The subsequently created intermediate result tables are generated by joining Hn
with table R using the connect-by-clause as a join condition to produce Hn+1. R is the result of the FROM
clause of the subselect and any join predicates in the WHERE clause. The process stops when Hn+1 yields
an empty result table. The result table H of the hierarchical-query-clause is the result as if UNION ALL
were applied for every intermediate result table..

You can use the unary operator PRIOR to distinguish column references to Hn, the previous recursive step
or parent, from column references to R. Consider the following example:

 CONNECT BY MGRID = PRIOR EMPID

MGRID is resolved with R, and EMPID is resolved within the columns of the previous intermediate result
table Hn.

Rules

• If the intermediate result table Hn+1 would return a row from R for a hierarchical path that is the same
as a row from R that is already in that hierarchical path, an error is returned (SQLSTATE 560CO).

• If the NOCYCLE keyword is specified, an error is not returned, but the repeated row is not included in
the intermediate result table Hn+1.

• A maximum of 64 levels of recursion is supported (SQLSTATE 54066).
• A subselect that is a hierarchical query returns the intermediate result set in a partial order, unless you

destroy that order by using an explicit ORDER BY clause, a GROUP BY or HAVING clause, or a DISTINCT
keyword in the select list. The partial order returns rows such that rows produced in Hn+1 for a particular

14 IBM Db2 V11.5: Compatibility Features

https://www.ibm.com/developerworks/data/library/techarticle/dm-0510rielau/index.html
https://www.ibm.com/developerworks/data/library/techarticle/dm-0510rielau/index.html

hierarchy immediately follow the row in Hn that produced them. You can use the ORDER SIBLINGS BY
clause to enforce order within a set of rows produced by the same parent.

• A hierarchical query is not supported for a materialized query table (SQLSTATE 428EC).
• You cannot use the CONNECT BY clause with XML functions or XQuery (SQLSTATE 428H4).
• You cannot specify a NEXT VALUE expression for a sequence in the following places (SQLSTATE 428F9):

– The parameter list of the CONNECT_BY_ROOT operator or a SYS_CONNECT_BY_PATH function
– START WITH and CONNECT BY clauses

Notes

• Hierarchical query support affects the subselect in the following ways:

– The clauses of the subselect are processed in the following sequence:

1. FROM clause
2. hierarchical-query-clause
3. WHERE clause
4. GROUP BY clause
5. HAVING clause
6. SELECT clause
7. ORDER BY clause
8. FETCH FIRST clause

– Special rules apply to the order of processing the predicates in the WHERE clause. The search-
condition is factored into predicates along with its AND conditions (conjunctions). If a predicate is an
implicit join predicate (that is, it references more than one table in the FROM clause), the predicate is
applied before the hierarchical-query-clause is applied. Any predicate referencing at most one table
in the FROM clause is applied to the intermediate result table of the hierarchical-query-clause.

If you write a hierarchical query involving joins, use explicit joined tables with an ON clause to avoid
confusion about the application of WHERE clause predicates.

– You can specify the ORDER SIBLINGS BY clause. This clause specifies that the ordering applies only
to siblings within the hierarchies.

• A pseudocolumn is a qualified or unqualified identifier that has meaning in a specific context and shares
the same namespace as columns and variables. If an unqualified identifier does not identify a column or
a variable, the identifier is checked to see whether it identifies a pseudocolumn.

LEVEL is a pseudocolumn for use in hierarchical queries. The LEVEL pseudocolumn returns the
recursive step in the hierarchy at which a row was produced. All rows that are produced by the START
WITH clause return the value 1. Rows that are produced by applying the first iteration of the CONNECT
BY clause return 2, and so on. The data type of the column is INTEGER NOT NULL.

You must specify LEVEL in the context of a hierarchical query. You cannot specify LEVEL in the START
WITH clause, as an argument of the CONNECT_BY_ROOT operator, or as an argument of the
SYS_CONNECT_BY_PATH function (SQLSTATE 428H4).

• Unary operators that support hierarchical queries are CONNECT_BY_ROOT and PRIOR.
• A functions that supports hierarchical queries is the SYS_CONNECT_BY_PATH scalar function.

Examples

• The following reports-to-chain example illustrates connect-by recursion. The example is based on a
table named MY_EMP, which is created and populated with data as follows:

CREATE TABLE MY_EMP(
 EMPID INTEGER NOT NULL PRIMARY KEY,
 NAME VARCHAR(10),
 SALARY DECIMAL(9, 2),

Chapter 1. Compatibility features 15

 MGRID INTEGER);

INSERT INTO MY_EMP VALUES (1, 'Jones', 30000, 10);
INSERT INTO MY_EMP VALUES (2, 'Hall', 35000, 10);
INSERT INTO MY_EMP VALUES (3, 'Kim', 40000, 10);
INSERT INTO MY_EMP VALUES (4, 'Lindsay', 38000, 10);
INSERT INTO MY_EMP VALUES (5, 'McKeough', 42000, 11);
INSERT INTO MY_EMP VALUES (6, 'Barnes', 41000, 11);
INSERT INTO MY_EMP VALUES (7, 'O''Neil', 36000, 12);
INSERT INTO MY_EMP VALUES (8, 'Smith', 34000, 12);
INSERT INTO MY_EMP VALUES (9, 'Shoeman', 33000, 12);
INSERT INTO MY_EMP VALUES (10, 'Monroe', 50000, 15);
INSERT INTO MY_EMP VALUES (11, 'Zander', 52000, 16);
INSERT INTO MY_EMP VALUES (12, 'Henry', 51000, 16);
INSERT INTO MY_EMP VALUES (13, 'Aaron', 54000, 15);
INSERT INTO MY_EMP VALUES (14, 'Scott', 53000, 16);
INSERT INTO MY_EMP VALUES (15, 'Mills', 70000, 17);
INSERT INTO MY_EMP VALUES (16, 'Goyal', 80000, 17);
INSERT INTO MY_EMP VALUES (17, 'Urbassek', 95000, NULL);

The following query returns all employees working for Goyal, as well as some additional information,
such as the reports-to-chain:

 1 SELECT NAME,
 2 LEVEL,
 3 SALARY,
 4 CONNECT_BY_ROOT NAME AS ROOT,
 5 SUBSTR(SYS_CONNECT_BY_PATH(NAME, ':'), 1, 25) AS CHAIN
 6 FROM MY_EMP
 7 START WITH NAME = 'Goyal'
 8 CONNECT BY PRIOR EMPID = MGRID
 9 ORDER SIBLINGS BY SALARY;

 NAME LEVEL SALARY ROOT CHAIN
 ---------- ----------- ----------- ----- ---------------
 Goyal 1 80000.00 Goyal :Goyal
 Henry 2 51000.00 Goyal :Goyal:Henry
 Shoeman 3 33000.00 Goyal :Goyal:Henry:Shoeman
 Smith 3 34000.00 Goyal :Goyal:Henry:Smith
 O'Neil 3 36000.00 Goyal :Goyal:Henry:O'Neil
 Zander 2 52000.00 Goyal :Goyal:Zander
 Barnes 3 41000.00 Goyal :Goyal:Zander:Barnes
 McKeough 3 42000.00 Goyal :Goyal:Zander:McKeough
 Scott 2 53000.00 Goyal :Goyal:Scott

Lines 7 and 8 comprise the core of the recursion: The optional START WITH clause describes the
WHERE clause that is to be used on the source table to seed the recursion. In this case, only the row for
employee Goyal is selected. If the START WITH clause is omitted, the entire source table is used to
seed the recursion. The CONNECT BY clause describes how, given the existing rows, the next set of
rows is to be found. The unary operator PRIOR is used to distinguish values in the previous step from
those in the current step. PRIOR identifies EMPID as the employee ID of the previous recursive step,
and MGRID as originating from the current recursive step.

The LEVEL pseudocolumn in line 2 indicates the current level of recursion.

CONNECT_BY_ROOT is a unary operator that always returns the value of its argument as it was during
the first recursive step; that is, the values that are returned by an explicit or implicit START WITH
clause.

SYS_CONNECT_BY_PATH() is a binary function that prepends the second argument to the first and then
appends the result to the value that it produced in the previous recursive step. The arguments must be
character types.

Unless explicitly overridden, connect-by recursion returns a result set in a partial order; that is, the rows
that are produced by a recursive step always follow the row that produced them. Siblings at the same
level of recursion have no specific order. The ORDER SIBLINGS BY clause in line 9 defines an order for
these siblings, which further refines the partial order, potentially into a total order.

• Return the organizational structure of the DEPARTMENT table. Use the level of the department to
visualize the hierarchy.

16 IBM Db2 V11.5: Compatibility Features

 SELECT LEVEL, CAST(SPACE((LEVEL - 1) * 4) || '/' || DEPTNAME
 AS VARCHAR(40)) AS DEPTNAME
 FROM DEPARTMENT
 START WITH DEPTNO = 'A00'
 CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

The query returns:

LEVEL DEPTNAME
----------- --
 1 /SPIFFY COMPUTER SERVICE DIV.
 2 /PLANNING
 2 /INFORMATION CENTER
 2 /DEVELOPMENT CENTER
 3 /MANUFACTURING SYSTEMS
 3 /ADMINISTRATION SYSTEMS
 2 /SUPPORT SERVICES
 3 /OPERATIONS
 3 /SOFTWARE SUPPORT
 3 /BRANCH OFFICE F2
 3 /BRANCH OFFICE G2
 3 /BRANCH OFFICE H2
 3 /BRANCH OFFICE I2
 3 /BRANCH OFFICE J2

CONNECT_BY_ROOT unary operator
The CONNECT_BY_ROOT unary operator is for use only in hierarchical queries. For every row in the
hierarchy, this operator returns the expression for the root ancestor of the row.

CONNECT_BY_ROOT expression

expression
An expression that does not contain a NEXT VALUE expression, a hierarchical query construct (such
as the LEVEL pseudocolumn), the SYS_CONNECT_BY_PATH function, or an OLAP function. If you
specify any of these items, SQLSTATE 428H4 is returned.

Usage

The result type of the operator is the result type of the expression.

The following rules apply to the CONNECT_BY_ROOT operator:

• A CONNECT_BY_ROOT operator has a higher precedence than that of any infix operator, such as the
plus sign (+) or double vertical bar (||). Therefore, to pass an expression with infix operators as an
argument, you must use parentheses. For example, the following expression returns the FIRSTNME
value of the root ancestor row concatenated with the LASTNAME value of the actual row in the
hierarchy:

 CONNECT_BY_ROOT FIRSTNME || LASTNAME

That expression is equivalent to the first one in the following list but not the second one:

 (CONNECT_BY_ROOT FIRSTNME) || LASTNAME
 CONNECT_BY_ROOT (FIRSTNME || LASTNAME)

• A CONNECT_BY_ROOT operator cannot be specified in the START WITH clause or the CONNECT BY
clause of a hierarchical query (SQLSTATE 428H4).

• A CONNECT_BY_ROOT operator cannot be specified as an argument to the SYS_CONNECT_BY_PATH
function (SQLSTATE 428H4).

The following query returns the hierarchy of departments and their root departments in the DEPARTMENT
table:

 SELECT CONNECT_BY_ROOT DEPTNAME AS ROOT, DEPTNAME
 FROM DEPARTMENT START WITH DEPTNO IN ('B01','C01','D01','E01')
 CONNECT BY PRIOR DEPTNO = ADMRDEPT

Chapter 1. Compatibility features 17

This query returns the following results:

ROOT DEPTNAME
------------------ -----------------------
PLANNING PLANNING
INFORMATION CENTER INFORMATION CENTER
DEVELOPMENT CENTER DEVELOPMENT CENTER
DEVELOPMENT CENTER MANUFACTURING SYSTEMS
DEVELOPMENT CENTER ADMINISTRATION SYSTEMS
SUPPORT SERVICES SUPPORT SERVICES
SUPPORT SERVICES OPERATIONS
SUPPORT SERVICES SOFTWARE SUPPORT
SUPPORT SERVICES BRANCH OFFICE F2
SUPPORT SERVICES BRANCH OFFICE G2
SUPPORT SERVICES BRANCH OFFICE H2
SUPPORT SERVICES BRANCH OFFICE I2
SUPPORT SERVICES BRANCH OFFICE J2

PRIOR unary operator
The PRIOR unary operator is for use only in the CONNECT BY clause of hierarchical queries. To get all
subordinates over all levels, the PRIOR operator must be added to the CONNECT BY clause of the
hierarchical query.

PRIOR expression

expression
Any expression that does not contain a NEXT VALUE expression, an hierarchical query construct (such
as the LEVEL pseudocolumn), the SYS_CONNECT_BY_PATH function, or an OLAP function. If you
specify any of these items, SQLSTATE 428H4 is returned.

Usage

The CONNECT BY clause performs an inner join between the intermediate result table Hn of a hierarchical
query and the source result table that you specify in the FROM clause. All column references to tables
that are referenced in the FROM clause and that are arguments to the PRIOR operator are considered to
range over table Hn.

The result data type of the operator is the result data type of the expression.

As shown in the following example, you typically join the primary key of the intermediate result table Hn
to the foreign keys of the source result table to recursively traverse the hierarchy:.

 CONNECT BY PRIOR T.PK = T.FK

If the primary key is a composite key, prefix each column with PRIOR, as shown in the following example:

 CONNECT BY PRIOR T.PK1 = T.FK1 AND PRIOR T.PK2 = T.FK2

A PRIOR operator has a higher precedence than any infix operator, such as the plus sign (+) or double
vertical bar (||). Therefore, to pass an expression with infix operators as an argument, you must use
parentheses. The parentheses surrounding groups of operands and operators are necessary to indicate
the intended order in which operations are to be performed. For example, the following expression
returns the FIRSTNME value of the prior row concatenated with the LASTNAME value of the actual row in
the hierarchy:

 PRIOR FIRSTNME || LASTNAME

That expression is equivalent to the first one in the following list but not the second one:

 (PRIOR FIRSTNME) || LASTNAME
 PRIOR (FIRSTNME || LASTNAME)

If you specify the PRIOR operator outside a CONNECT BY clause of a hierarchical query, SQLSTATE
428H4 is returned.

18 IBM Db2 V11.5: Compatibility Features

Example

• The following query returns the hierarchy of departments in the DEPARTMENT table:

 SELECT LEVEL, DEPTNAME
 FROM DEPARTMENT START WITH DEPTNO = 'A00'
 CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

This query returns the following results:

LEVEL DEPTNAME
----------- --
 1 SPIFFY COMPUTER SERVICE DIV.
 2 PLANNING
 2 INFORMATION CENTER
 2 DEVELOPMENT CENTER
 3 MANUFACTURING SYSTEMS
 3 ADMINISTRATION SYSTEMS
 2 SUPPORT SERVICES
 3 OPERATIONS
 3 SOFTWARE SUPPORT
 3 BRANCH OFFICE F2
 3 BRANCH OFFICE G2
 3 BRANCH OFFICE H2
 3 BRANCH OFFICE I2
 3 BRANCH OFFICE J2

SYS_CONNECT_BY_PATH
The SYS_CONNECT_BY_PATH function builds a string representing a path from the root to a node in
hierarchical queries.

SYS_CONNECT_BY_PATH (string-expression1 , string-expression2)

The schema is SYSIBM.
string-expression1

A character string expression that identifies the row. The expression must not include any of the items
in the following list; otherwise, the SQLSTATE in parentheses is returned:

• A NEXT VALUE expression for a sequence (SQLSTATE 428F9)
• Any hierarchical query construct, such as the LEVEL pseudocolumn or the CONNECT_BY_ROOT

operator (SQLSTATE 428H4)
• An OLAP function (SQLSTATE 428H4)
• An aggregate function (SQLSTATE 428H4)

string-expression2
A constant string that serves as a separator. The expression must not include any of the items in the
following list; otherwise, the SQLSTATE in parentheses is returned:

• A NEXT VALUE expression for a sequence (SQLSTATE 428F9)
• Any hierarchical query construct, such as the LEVEL pseudocolumn or the CONNECT_BY_ROOT

operator (SQLSTATE 428H4)
• An OLAP function (SQLSTATE 428H4)
• An aggregate function (SQLSTATE 428H4)

The result is a varying-length character string. The length attribute of the result data type is the greater of
1000 and the length attribute of string-expression1.

The string units of the result data type is the same as the string units of the data type of string-
expression1.

The string for a particular row at pseudocolumn LEVEL n is built as follows:

Chapter 1. Compatibility features 19

• Step 1 (using the values of the root row from the first intermediate result table H1):

path1 := string-expression2 || string-expression1

• Step n (based on the row from the intermediate result table Hn):

pathn := pathn-1 || string-expression2 || string-expression1

The following rules apply to the SYS_CONTEXT_BY_PATH function:

• If you specify the function outside the context of a hierarchical query, SQLSTATE 428H4 is returned.
• If you use the function in a START WITH clause or a CONNECT BY clause, SQLSTATE 428H4 is returned.

The following example returns the hierarchy of departments in the DEPARTMENT table:

 SELECT CAST(SYS_CONNECT_BY_PATH(DEPTNAME, '/')
 AS VARCHAR(76)) AS ORG
 FROM DEPARTMENT START WITH DEPTNO = 'A00'
 CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

This query returns the following results:

ORG

/SPIFFY COMPUTER SERVICE DIV.
/SPIFFY COMPUTER SERVICE DIV./PLANNING
/SPIFFY COMPUTER SERVICE DIV./INFORMATION CENTER
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER/MANUFACTURING SYSTEMS
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER/ADMINISTRATION SYSTEMS
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/OPERATIONS
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/SOFTWARE SUPPORT
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE F2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE G2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE H2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE I2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE J2

Compatibility database configuration parameters
You can use database configuration parameters to indicate whether the compatibility semantics
associated with the certain data types are applied to the connected database.

The compatibility parameters that can be checked are:
date_compat

Indicates whether the DATE data type compatibility semantics that are associated with the
TIMESTAMP(0) data type are applied to the connected database.

number_compat
Indicates whether the compatibility semantics that are associated with the NUMBER data type are
applied to the connected database.

varchar2_compat
Indicates whether the compatibility semantics that are associated with the VARCHAR2 data type are
applied to the connected database.

The value of each of these parameters is determined at database creation time, and is based on the
setting of the DB2_COMPATIBILITY_VECTOR registry variable. You cannot change the value.

20 IBM Db2 V11.5: Compatibility Features

ROWNUM pseudocolumn
Any unresolved and unqualified column reference to the ROWNUM pseudocolumn is converted to the
OLAP specification ROW_NUMBER() OVER().

Enablement
You enable ROWNUM pseudocolumn support by setting the DB2_COMPATIBILITY_VECTOR registry
variable to hexadecimal value 0x01 (bit position 1), and then stop and restart the instance to have the
new setting take effect.

db2set DB2_COMPATIBILITY_VECTOR=01
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

ROWNUM numbers the records in a result set. The first record that meets the WHERE clause criteria in a
SELECT statement is given a row number of 1, and every subsequent record meeting that same criteria
increases the row number.

Both ROWNUM and ROW_NUMBER() OVER() are allowed in the WHERE clause of a subselect and are
useful for restricting the size of a result set. If you use ROWNUM in the WHERE clause and there is an
ORDER BY clause in the same subselect, the ordering is applied before the ROWNUM predicate is
evaluated. Similarly, if you use the ROW_NUMBER() OVER() function in the WHERE clause and there is an
ORDER BY clause in the same subselect, the ordering is applied before the ROW_NUMBER() OVER()
function is evaluated. If you use the ROW_NUMBER() OVER() function in the WHERE clause, you cannot
specify a window-order-clause or a window-partition-clause.

Before translating an unqualified reference to 'ROWNUM' as ROW_NUMBER() OVER() function, Db2
attempts to resolve the reference to one of the following items:

• A column within the current SQL query
• A local variable
• A routine parameter
• A global variable

Avoid using 'ROWNUM' as a column name or a variable name while ROWNUM pseudocolumn support is
enabled.

Example

Assuming that ROWNUM pseudocolumn support is enabled for the connected database, retrieve the 20th
to the 40th rows of a result set that is stored in a temporary table.

 SELECT TEXT FROM SESSION.SEARCHRESULTS
 WHERE ROWNUM BETWEEN 20 AND 40
 ORDER BY ID

Note that ROWNUM is affected by the ORDER BY clause.

Chapter 1. Compatibility features 21

DUAL table
Any unqualified reference to the table with the name DUAL is resolved as a built-in view that returns one
row and one column. The name of the column is DUMMY and its value is 'X'. The DUAL table is similar to
the SYSIBM.SYSDUMMY1 table.

Enablement

To enable DUAL table support, set the DB2_COMPATIBILITY_VECTOR registry variable to hexadecimal
0x02 (bit position 2), then stop and restart the instance:

db2set DB2_COMPATIBILITY_VECTOR=02
db2stop
db2start

To activate all compatibility features for Oracle applications, set the DB2_COMPATIBILITY_VECTOR
registry variable to ORA, then stop and restart the instance:

db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start

Unqualified table references to the DUAL table are resolved as SYSIBM.DUAL.

If a user-defined table named DUAL exists, the Db2 server resolves a table reference to the user-defined
table.

Example 1

Generate a random number by selecting from DUAL.

 SELECT RAND() AS RANDOM_NUMBER FROM DUAL

Example 2

Retrieve the value of the CURRENT SCHEMA special register.

 SET SCHEMA = MYSCHEMA;
 SELECT CURRENT SCHEMA AS CURRENT_SCHEMA FROM DUAL;

Changed syntax for the TRUNCATE statement
A TRUNCATE statement does not require that the IMMEDIATE keyword to be specified explicitly. The
truncate operation is processed immediately regardless of whether IMMEDIATE is specified. If the
TRUNCATE statement is not the first statement in the logical unit of work, an implicit commit operation is
performed before the TRUNCATE statement is run.

Otherwise, the TRUNCATE statement behaves as described in TRUNCATE statement.

Insensitive cursor
You can make cursors insensitive to subsequent statements by materializing the cursor at OPEN time.
Statements that are executed while the cursor is open do not affect the result table once all the rows have
been materialized in the temporary copy of the result table.

Enablement
You can enable insensitive cursors by setting the DB2_COMPATIBILITY_VECTOR registry variable to
hexadecimal value 0x1000 (bit position 13), and then stop and restart the instance to have the new
setting take effect.

db2set DB2_COMPATIBILITY_VECTOR=1000
db2stop
db2start

22 IBM Db2 V11.5: Compatibility Features

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

When the result set is materialized at OPEN time, the cursor behaves as a read only cursor. All cursors
defined as WITH RETURN are INSENSITIVE as long as they are not explicitly marked as FOR UPDATE. If
you do not enable insensitive cursor support, there is no guarantee that Db2 cursors will be materialized
at OPEN time. Therefore, the result sets that are generated when you run the same query against a Db2
database and a relational database that immediately materializes cursors might be different. For
example, Sybase TSQL includes the capability of issuing a query from a batch statement or a procedure
that produces a result set for the invoker. The query is materialized immediately. Other statements in the
block expect that they cannot affect the result and issue statements, such as DELETE, against the same
table that was referenced in the query. When a similar scenario is run without an insensitive cursor, the
result set from that cursor will be different from the Sybase result.

Insensitive cursors can also be set in the following ways:

• You can define a cursor as INSENSITIVE in a DECLARE CURSOR statement that is used in a compound
SQL (compiled) statement.

• If you bind a package with the STATICREADONLY INSENSITIVE parameter of the BIND command, all
read-only and ambiguous cursors are insensitive.

• If you specify the STATICREADONLY INSENSITIVE option for the DB2_SQLROUTINE_PREPOPTS
registry variable or the SET_ROUTINE_OPTS procedure, at OPEN time, SQL routines materialize all-read
only and ambiguous cursors that are issued as static SQL.

Restrictions

The INSENSITIVE keyword is not supported by any of the precompilers. CLI and JDBC do not provide
support for identifying insensitive nonscrollable cursors (either cursor attributes or result set attributes).

Examples

This code returns the entire result set of the SELECT statement to the client before executing the DELETE
statement.

BEGIN
 DECLARE res INSENSITIVE CURSOR WITH RETURN TO CLIENT FOR
 SELECT * FROM T;
 OPEN T;
 DELETE FROM T;
END

INOUT parameters
You can define the INOUT parameter for a procedure to have a default value, by using the DEFAULT
keyword.

Enablement
You enable INOUT parameter support by setting the DB2_COMPATIBILITY_VECTOR registry variable to
hexadecimal value 0x2000 (bit position 14), and then stop and restart the instance to have the new
setting take effect.

db2set DB2_COMPATIBILITY_VECTOR=2000
db2stop
db2start

To take full advantage of the Db2 compatibility features for Sybase applications, the recommended
setting for the DB2_COMPATIBILITY_VECTOR is SYB, which sets all of the compatibility bits.

An INOUT parameter is both an input and an output parameter. You can use the DEFAULT keyword to
define the default value for an INOUT parameter as either an expression or NULL. If you then invoke the
procedure by specifying DEFAULT or no argument for the parameter, the default value that you defined for
the parameter is used to initialize it. No value is returned for this parameter when the procedure exits.

Chapter 1. Compatibility features 23

Restrictions

The DEFAULT keyword is not supported for INOUT parameters in functions.

Examples

The following code creates a procedure with optional INOUT parameters:

 CREATE OR REPLACE PROCEDURE paybonus
 (IN empid INTEGER,
 IN percentbonus DECIMAL(2, 2),
 INOUT budget DECFLOAT DEFAULT NULL)
 ...

The procedure computes the amount of bonus from the employee's salary, issues the bonus, and then
deducts the bonus from the departmental budget. If no budget is specified for the procedure, then the
deduction portion is ignored. Examples of how to invoke the procedure follow:

 CALL paybonus(12, 0.05, 50000);
 CALL paybonus(12, 0.05, DEFAULT);
 CALL paybonus(12, 0.05);

Currently committed semantics
Under currently committed semantics, only committed data is returned to readers. However, readers do
not wait for writers to release row locks. Instead, readers return data that is based on the currently
committed version of data: that is, the version of the data before the start of the write operation.

Lock timeouts and deadlocks can occur under the cursor stability (CS) isolation level with row-level
locking, especially with applications that are not designed to prevent such problems. Some high-
throughput database applications cannot tolerate waiting on locks that are issued during transaction
processing. Also, some applications cannot tolerate processing uncommitted data but still require non-
blocking behavior for read transactions.

Currently committed semantics are turned on by default for new databases. You do not have to make
application changes to take advantage of the new behavior. To override the default behavior, Set the
cur_commit database configuration parameter to DISABLED. Overriding the behavior might be useful,
for example, if applications require the blocking of writers to synchronize internal logic. During database
upgrade from V9.5 or earlier, the cur_commit configuration parameter is set to DISABLED to maintain
the same behavior as in previous releases. If you want to use currently committed on cursor stability
scans, you need to set the cur_commit configuration parameter to ON after the upgrade.

Currently committed semantics apply only to read-only scans that do not involve catalog tables and
internal scans that are used to evaluate or enforce constraints. Because currently committed semantics
are decided at the scan level, the access plan of a writer might include currently committed scans. For
example, the scan for a read-only subquery can involve currently committed semantics.

Because currently committed semantics obey isolation level semantics, applications running under
currently committed semantics continue to respect isolation levels.

Currently committed semantics require increased log space for writers. Additional space is required for
logging the first update of a data row during a transaction. This data is required for retrieving the currently
committed image of the row. Depending on the workload, this can have an insignificant or measurable
impact on the total log space used. The requirement for additional log space does not apply when
cur_commit database configuration parameter is set to DISABLED.

Applications running under currently committed semantics will always disregard uncommitted insertions.
See Option to disregard uncommitted insertions or ../../com.ibm.db2.luw.admin.regvars.doc/doc/
r0005665.dita for details.

Restrictions

The following restrictions apply to currently committed semantics:

24 IBM Db2 V11.5: Compatibility Features

• The target table object in a section that is to be used for data update or deletion operations does not
use currently committed semantics. Rows that are to be modified must be lock protected to ensure that
they do not change after they have satisfied any query predicates that are part of the update operation.

• A transaction that makes an uncommitted modification to a row forces the currently committed reader
to access appropriate log records to determine the currently committed version of the row. Although log
records that are no longer in the log buffer can be physically read, currently committed semantics do
not support the retrieval of log files from the log archive. This affects only databases that you configure
to use infinite logging.

• The following scans do not use currently committed semantics:

– Catalog table scans. Currently committed semantics to apply only to read-only scans that do not
involve internal scans that are used to evaluate or enforce constraints. Currently Committed does not
apply to internal scans on catalog tables, but may be applied to external scans on catalog tables if the
registry variable, DB2COMPOPT, is set to LOCKAVOID_EXT_CATSCANS.

– Scans that are used to enforce referential integrity constraints
– Scans that reference LONG VARCHAR or LONG VARGRAPHIC columns
– Range-clustered table (RCT) scans
– Scans that use spatial or extended indexes

• If an indoubt transaction occurs (due to an application crash or an unexpected transaction or resource
manager outage), any rows that were locked by this indoubt transaction will remain locked until the
indoubt transaction is resolved. During this time, a currently committed reader can read the currently
committed version of these rows only if the indoubt transaction had previously used currently
committed semantics prior to the crash or outage. If not, a currently committed reader will wait for the
indoubt transaction to be resolved (and these locks to be released) before reading these rows.

• In a Db2®pureScale® environment, currently committed semantics apply to applications on any
member. If a row reader is attempting to access a row which is being updated or deleted by an
application on a remote member, the local member will retrieve the currently committed row data from
the remote member. However, with the following restrictions:

– If the remote member is down or performing member crash recovery, then currently committed
semantics do not apply. The row reader will wait for member crash recovery to complete on the
remote member and for the lock to be released, before reading the row.

– If communication to the remote member fails while attempting to retrieve the currently committed
row data, then currently committed semantics do not apply. The row reader will wait for the lock to
be released before reading the row.

– If the transaction which is updating or deleting the row on the remote member has committed or
rolled back before the row reader’s communication reaches it, then the row reader will attempt to
read the row again. If a transaction on another remote member updates or deletes the row during
this time, then the row reader will again attempt to retrieve the currently committed row data from
that member. The row reader may give up after a number of attempts and instead wait for the lock to
be released before reading the row data.

Monitoring
Currently committed row data retrievals can be monitored on a per-table basis through the db2pd -
tcbstats option. See CCLogReads, CCRemoteReqs, CCLockWaits, and CCRemRetryLckWs values in ../../
com.ibm.db2.luw.admin.cmd.doc/doc/r0011729.dita.

Examples

Example 1:

Consider the following scenario, in which deadlocks are avoided by using currently committed semantics.
In this scenario, two applications update two separate tables, as shown in step 1, but do not yet commit.
Each application then attempts to use a read-only cursor to read from the table that the other application
updated, as shown in step 2. These applications are running under the CS isolation level.

Chapter 1. Compatibility features 25

Step Application A Application B

1 update T1 set col1 = ? where col2 = ? update T2 set col1 = ? where col2 = ?

2 select col1, col3, col4 from T2 where col2
>= ?

select col1, col5, from T1 where col5 = ? and col2
= ?

3 commit commit

Without currently committed semantics, these applications running under the cursor stability isolation
level might create a deadlock, causing one of the applications to fail. This happens when each application
must read data that is being updated by the other application.

Under currently committed semantics, if one of the applications that is running a query in step 2 requires
the data that is being updated by the other application, the first application does not wait for the lock to
be released. As a result, a deadlock is impossible. The first application locates and uses the previously
committed version of the data instead.

Example 2:

Consider the following scenario, in a Db2®pureScale® environment, in which an application avoids a lock
wait condition. Application-A on member 1 has updated data on table T1 but not yet committed its
changes, and application-B on either member 1 (same member as Application-A) or member 2 (different
member then Application-B) using cursor stability isolation level attempts to read that data:

Step Application-A on
pureScale member 1

Application-B on any pureScale member

1 update T1 set col1 =
12where col2 = ‘Ava’

2 select col1 from T1 where col2 = ‘Ava’

3 commit

Without currently committed semantics, application-B would wait until application-A committed its
update and released the row lock, before reading the data. Under currently committed semantics,
application-B will use the previously committed version of the data instead.

Oracle data dictionary-compatible views
When you set the DB2_COMPATIBILITY_VECTOR registry variable to support Oracle data dictionary-
compatible views, the views are automatically created when you create a database.

You enable Oracle data dictionary-compatible view support by setting the
DB2_COMPATIBILITY_VECTOR registry variable to hexadecimal value 0x400 (bit position 11), and then
stop and restart the instance to have the new setting take effect.

db2set DB2_COMPATIBILITY_VECTOR=400
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

The data dictionary is a repository for database metadata. The data dictionary views are self-describing.
The DICTIONARY view returns a listing of all data dictionary views with comments that describe the
content of each view. The DICT_COLUMNS view returns a list of all columns in all data dictionary views.
With these two views, you can determine what information is available and how to access it.

There are three different versions of each data dictionary view, and each version is identified by the prefix
of the view name.

• ALL_* views return information about objects to which the current user has access.

26 IBM Db2 V11.5: Compatibility Features

• DBA_* views return information about all objects in the database, regardless of who owns them.
• USER_* views return information about objects that are owned by the current database user.

Not all versions apply to each view.

The data dictionary definition includes CREATE VIEW, CREATE PUBLIC SYNONYM, and COMMENT
statements for each view that is compatible with the Oracle data dictionary. The views, which are created
in the SYSIBMADM schema, are listed in Table 6 on page 27.

Table 6. Oracle data dictionary-compatible views

Category Defined views

General DICTIONARY, DICT_COLUMNS
USER_CATALOG, DBA_CATALOG, ALL_CATALOG
USER_DEPENDENCIES, DBA_DEPENDENCIES, ALL_DEPENDENCIES
USER_OBJECTS, DBA_OBJECTS, ALL_OBJECTS
USER_SEQUENCES, DBA_SEQUENCES, ALL_SEQUENCES
USER_TABLESPACES, DBA_TABLESPACES

Tables or views USER_CONSTRAINTS, DBA_CONSTRAINTS, ALL_CONSTRAINTS
USER_CONS_COLUMNS, DBA_CONS_COLUMNS, ALL_CONS_COLUMNS
USER_INDEXES, DBA_INDEXES, ALL_INDEXES
USER_IND_COLUMNS, DBA_IND_COLUMNS, ALL_IND_COLUMNS
USER_TAB_PARTITIONS, DBA_TAB_PARTITIONS, ALL_TAB_PARTITIONS
USER_PART_TABLES, DBA_PART_TABLES, ALL_PART_TABLES
USER_PART_KEY_COLUMNS, DBA_PART_KEY_COLUMNS, ALL_PART_KEY_COLUMNS
USER_SYNONYMS, DBA_SYNONYMS, ALL_SYNONYMS
USER_TABLES, DBA_TABLES, ALL_TABLES
USER_TAB_COMMENTS, DBA_TAB_COMMENTS, ALL_TAB_COMMENTS
USER_TAB_COLUMNS, DBA_TAB_COLUMNS, ALL_TAB_COLUMNS
USER_COL_COMMENTS, DBA_COL_COMMENTS, ALL_COL_COMMENTS
USER_TAB_COL_STATISTICS, DBA_TAB_COL_STATISTICS, ALL_TAB_COL_STATISTICS
USER_VIEWS, DBA_VIEWS, ALL_VIEWS
USER_VIEW_COLUMNS, DBA_VIEW_COLUMNS, ALL_VIEW_COLUMNS

Programming objects USER_PROCEDURES, DBA_PROCEDURES, ALL_PROCEDURES
USER_SOURCE, DBA_SOURCE, ALL_SOURCE
USER_TRIGGERS, DBA_TRIGGERS, ALL_TRIGGERS
USER_ERRORS, DBA_ERRORS, ALL_ERRORS
USER_ARGUMENTS, DBA_ARGUMENTS, ALL_ARGUMENTS

Security USER_ROLE_PRIVS, DBA_ROLE_PRIVS, ROLE_ROLE_PRIVS
SESSION_ROLES
USER_SYS_PRIVS, DBA_SYS_PRIVS, ROLE_SYS_PRIVS
SESSION_PRIVS
USER_TAB_PRIVS, DBA_TAB_PRIVS, ALL_TAB_PRIVS, ROLE_TAB_PRIVS
USER_TAB_PRIVS_MADE, ALL_TAB_PRIVS_MADE
USER_TAB_PRIVS_RECD, ALL_TAB_PRIVS_RECD
DBA_ROLES

Examples

The following examples show how to enable, get information about, and use data dictionary-compatible
views for a database that is named MYDB:

• Enable the creation of data dictionary-compatible views:

 db2set DB2_COMPATIBILITY_VECTOR=ORA
 db2stop
 db2start
 db2 create db mydb

• Determine what data dictionary-compatible views are available:

 connect to mydb
 select * from dictionary

• Use the USER_SYS_PRIVS view to show all the system privileges that the current user has been
granted:

 connect to mydb
 select * from user_sys_privs

• Determine the column definitions for the DBA_TABLES view:

Chapter 1. Compatibility features 27

 connect to mydb
 describe select * from dba_tables

Oracle database link syntax
When you set the “DB2_COMPATIBILITY_VECTOR registry variable” on page 29 to enable the use of
Oracle database link syntax, you can connect with a remote database, table, or view.

Enablement
You enable Oracle database link syntax support by setting the DB2_COMPATIBILITY_VECTOR registry
variable to hexadecimal value 0x20000 (bit position 18), and then stop and restart the instance to have
the new setting take effect.

db2set DB2_COMPATIBILITY_VECTOR=20000
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, the recommended setting
for the DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

The database link syntax uses the @ (at sign) to indicate an in or membership condition. For example, to
access a remote object pencils under schema user using a database link to stock, you can use:

SELECT * FROM user.pencils@stock;

Note: The Db2 system supports the use of the @ character as a valid character in an ordinary identifier.
For example, you can create a table with pencils@stock as its name. When database link support is
enabled, the @ character is treated as a special delimiter in table, view, and column references. If you
want to use @ in database object names when link support is enabled, you must enclose the name with
double quotes.

Examples

Remote object references are formatted as:

<schema_name>,<object_name>@<server_name>

Column references can also be included:

<schema_name>,<object_name>,<column_name>@<server_name>

The following SELECT statements query a remote table named EMPLOYEE:

SELECT birthdate FROM rschema.employee@sudb WHERE firstname='SAM'
SELECT rschema.employee.birthdate@sudb FROM rschema.employee@sudb
 WHERE rschema.employee.firstname@sudb ='SAM'

You can also issue UPDATE, INSERT, and DELETE statements against a remote table:

UPDATE rschema.employee@sudb SET firstname='MARY'
INSERT INTO rschema.employee@sudb VALUES ('Bob')
DELETE FROM rschema.employee@sudb

Synonym usage
You can set the DB2_COMPATIBILITY_VECTOR registry variable to restrict the use of synonyms.

28 IBM Db2 V11.5: Compatibility Features

Enablement
You can restrict synonym usage by setting the DB2_COMPATIBILITY_VECTOR registry variable to the
hexadecimal value 0x40000 (bit position 19), and then stopping and starting the database, as follows:

db2set DB2_COMPATIBILITY_VECTOR=40000
db2stop
db2start

To take full advantage of the Db2 compatibility features for Oracle applications, you can set the
DB2_COMPATIBILITY_VECTOR registry variable to ORA, which sets all the compatibility bits.

When you set the DB2_COMPATIBILITY_VECTOR registry variable to restrict synonym usage, you cannot
issue the following statements with a table synonym as the target:

• ALTER TABLE
• DROP TABLE
• RENAME TABLE
• TRUNCATE

You cannot issue the following statements with a view synonym as the target:

• ALTER VIEW
• DROP VIEW

You cannot issue the following statements with a sequence synonym as the target:

• ALTER SEQUENCE
• DROP SEQUENCE

Examples

The following DROP statement for a table synonym returns an error when you set the
DB2_COMPATIBILITY_VECTOR registry variable to support the use of synonyms:

 CREATE TABLE T (C1 INT)
 CREATE SYNONYM S FOR TABLE T
 DROP TABLE S

DB2_COMPATIBILITY_VECTOR registry variable
The Db2 product provides optional features that simplify the task of migrating applications from other
relational database products such as Oracle, Sybase, and MySQL. These features are inactive by default,
but the DB2_COMPATIBILITY_VECTOR registry variable can be used to activate any subset of them.

Registry variable settings

The following values can be set for the DB2_COMPATIBILITY_VECTOR registry variable:
NULL

No compatibility features are activated. This is the default.
A hexadecimal number in the range 00000000 - FFFFFFFF

A hexadecimal number that represents a binary string. The value (0 or 1) of each bit position in the
string indicates whether the corresponding compatibility feature is enabled (1) or disabled (0). Table
7 on page 30 maps each bit to the feature that it controls.

ORA
This value improves the compatibility of Oracle applications. It activates the compatibility features for
which there is a bullet in the ORA column of Table 7 on page 30. (For more information about the
Oracle compatibility features, see Oracle to DB2 Conversion Guide: Compatibility Made Easy.) In
addition, it changes the default value of the DB2_DEFERRED_PREPARE_SEMANTICS registry variable

Chapter 1. Compatibility features 29

http://www.redbooks.ibm.com/abstracts/sg247736.html?Open

to either 'YES' (in a single-byte character set environment) or 'YES_DBCS_GRAPHIC_TO_CHAR' (in a
double-byte character set environment).

SYB
This value improves the compatibility of Sybase applications. It activates the compatibility features
for which there is a bullet in the SYB column of Table 7 on page 30. In addition, it changes the
default value of the DB2_DEFERRED_PREPARE_SEMANTICS registry variable to 'YES'.

MYS
This value improves the compatibility of MySQL applications. It changes the default value of the
DB2_DEFERRED_PREPARE_SEMANTICS registry variable to either 'YES' (in a single-byte character
set environment) or 'YES_DBCS_GRAPHIC_TO_CHAR' (in a double-byte character set environment).

For more information about the DB2_DEFERRED_PREPARE_SEMANTICS registry variable, see Query
compiler variables.

Important: When you enable a compatibility feature, some SQL behavior will vary from what is
documented in the SQL reference information. These behavior differences are described in the
documentation for the corresponding features.

Table 7. DB2_COMPATIBILITY_VECTOR bit positions

Bit
position

Hexadeci
mal value

O
R
A

S
Y
B Compatibility feature Description

1 0x01 • ROWNUM pseudocolumn This bit enables the use of the
ROWNUM pseudocolumn as a synonym
for the ROW_NUMBER() OVER()
function and permits the ROWNUM
pseudocolumn to appear in the WHERE
clause of SQL statements.

2 0x02 • DUAL table This bit resolves unqualified references
to the DUAL table as SYSIBM.DUAL.

3 0x04 (obsolete) This bit formerly activated support for
the outer join operator. That feature is
now always active and now this bit is
ignored.

4 0x08 • Hierarchical queries This bit enables support for hierarchical
queries, which use the CONNECT BY
clause.

5 0x10 • NUMBER data type 1 This bit enables support for the
NUMBER data type and associated
numeric processing. When you create a
database with this support enabled, the
number_compat database
configuration parameter is set to ON.

6 0x20 • VARCHAR2 data type 1 This bit enables support for the
VARCHAR2 and NVARCHAR2 data types
and associated character string
processing. When you create a
database with this support enabled, the
varchar2_compat database
configuration parameter is set to ON.

30 IBM Db2 V11.5: Compatibility Features

Table 7. DB2_COMPATIBILITY_VECTOR bit positions (continued)

Bit
position

Hexadeci
mal value

O
R
A

S
Y
B Compatibility feature Description

7 0x40 • DATE data type 1 This bit enables the interpretation of
the DATE data type as the
TIMESTAMP(0) data type so that it
includes time information as well as
date information. For example, in date
compatibility mode, the statement
"VALUES CURRENT DATE" returns a
value like 2016-02-17-10.43.55. When
you create a database with this support
enabled, the date_compat database
configuration parameter is set to ON.

8 0x80 • TRUNCATE TABLE This bit enables alternative semantics
for the TRUNCATE statement so that
IMMEDIATE is an optional keyword and
is the default. If the TRUNCATE
statement is not the first statement in
the logical unit of work, an implicit
commit operation is carried out before
the TRUNCATE statement is executed.

9 0x100 • • Character literals This bit enables the ability to assign a
CHAR or GRAPHIC data type instead of
a VARCHAR or VARGRAPHIC data type
to a character or graphic string constant
whose byte length is less than or equal
to 254.

10 0x200 • Collection methods This bit enables the use of methods to
perform operations on arrays, such as
first, last, next, and previous. This value
also enables the use of parentheses in
place of square brackets in references
to specific elements in an array. For
example, array1(i) refers to element i of
array1.

11 0x400 • Oracle data dictionary-
compatible views 1

This bit enables the creation of Oracle
data dictionary-compatible views.

12 0x800 • PL/SQL compilation 2 This bit enables the compilation and
execution of PL/SQL statements and
language elements.

13 0x1000 • Insensitive cursors This bit enables cursors that are
defined with WITH RETURN to be
insensitive if the select-statement does
not explicitly specify FOR UPDATE.

14 0x2000 • “INOUT parameters” on page
23

This bit enables the specification of
DEFAULT for INOUT parameter
declarations.

Chapter 1. Compatibility features 31

Table 7. DB2_COMPATIBILITY_VECTOR bit positions (continued)

Bit
position

Hexadeci
mal value

O
R
A

S
Y
B Compatibility feature Description

15 0x4000 (obsolete) This bit formerly activated LIMIT and
OFFSET support, but that feature is now
always active and this bit is now
ignored.

16 0x8000 (reserved) This bit is currently not used.

17 0x10000 • “SQL data-access-level
enforcement” on page 10

This bit enables routines to enforce SQL
data-access levels at run time.

18 0x20000 • “Oracle database link syntax”
on page 28

This bit enables Oracle database link
syntax for accessing objects in other
databases.

19 0x40000 • “Synonym usage” on page 28 This bit disables the use of synonyms in
some SQL statements. When you set
the DB2_COMPATIBILITY_VECTOR
registry variable to restrict synonym
usage, you cannot issue the alter, drop,
rename, or truncate statements with a
table synonym as the target. You
cannot issue the alter or drop
statements with a view synonym as the
target. You cannot issue the alter or
drop statement with a sequence
synonym as the target.

1. This feature applies only at the time of database creation. Enabling or disabling this feature does not
affect existing databases, but only newly created databases.

2. See Restrictions on PL/SQL support.

Usage

You set and update the DB2_COMPATIBILITY_VECTOR registry variable by using the db2set command.
You can set the DB2_COMPATIBILITY_VECTOR registry variable with combination of the compatibility
features by adding the digits of the hexadecimals values that are associated with the compatibility
features. A new setting for the registry variable does not take effect until after you stop and restart the
instance. Also, you must rebind Db2 packages for the change to take effect. Packages that you do not
rebind explicitly pick up the change at the next implicit rebind.

Example 1
To set the registry variable to enable all the supported Oracle compatibility features:

db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start

32 IBM Db2 V11.5: Compatibility Features

Example 2
To set the registry variable to provide both the ROWNUM pseudocolumn (0x01) and DUAL table (0x02)
support that is specified in the previous table:

db2set DB2_COMPATIBILITY_VECTOR=03
db2stop
db2start

Example 3
To disable all compatibility features by resetting the DB2_COMPATIBILITY_VECTOR registry variable:

db2set DB2_COMPATIBILITY_VECTOR=
db2stop
db2start

Setting up the Db2 environment for Oracle application enablement
You can reduce the time and complexity of enabling Oracle applications to work with Db2 data servers if
you set up the Db2 environment appropriately.

Before you begin

• A Db2 data server product must be installed.
• You require SYSADM and the appropriate operating system authority to issue the db2set command.
• You require SYSADM or SYSCTRL authority to issue the CREATE DATABASE command.

About this task

The Db2 product can support many commonly referenced features from other database products. This
task is a prerequisite for executing PL/SQL statements or SQL statements that reference Oracle data
types from Db2 interfaces or for using any other SQL compatibility features. You enable Db2 compatibility
features at the database level; you cannot disable them.

Procedure

To enable Oracle applications to work with Db2 data servers:
1. In a Db2 command window, start the Db2 database manager by issuing the following command:

db2start

2. Set the DB2_COMPATIBILITY_VECTOR registry variable to one of the following values:

• The hexadecimal value that enables the specific compatibility feature that you want to use.
• To take advantage of all theDb2 compatibility features, ORA, as shown in the following command.

This is the recommended setting.

db2set DB2_COMPATIBILITY_VECTOR=ORA

3. Enable deferred prepare support by setting the DB2_DEFERRED_PREPARE_SEMANTICS registry
variable to YES, as shown:

db2set DB2_DEFERRED_PREPARE_SEMANTICS=YES

If you set the DB2_COMPATIBILITY_VECTOR registry variable to ORA and do not set the
DB2_DEFERRED_PREPARE_SEMANTICS registry variable, a default value of YES is used in the SBCS or
Unicode database environment. When you are in the DBCS environment, the default value is
YES_DBCS_GRAPHIC_TO_CHAR.

4. Stop the database manager by issuing the db2stop command:

Chapter 1. Compatibility features 33

db2stop

5. Start the database manager by issuing the db2start command:

db2start

6. Create your Db2 database by issuing the CREATE DATABASE command. By default, databases are
created as Unicode databases.
For example, to create a database that is named DB, issue the following command:

db2 CREATE DATABASE DB

7. Optional: Run a Command Line Processor Plus (CLPPlus) or command line processor (CLP) script (for
example, script.sql) to verify that the database supports PL/SQL statements and data types.
The following CLPPlus script creates and then calls a simple procedure:

CONNECT user@hostname:port/dbname;

CREATE TABLE t1 (c1 NUMBER);

CREATE OR REPLACE PROCEDURE testdb(num IN NUMBER, message OUT VARCHAR2)
AS
BEGIN
 INSERT INTO t1 VALUES (num);

 message := 'The number you passed is: ' || TO_CHAR(num);
END;
/

CALL testdb(100, ?);

DISCONNECT;
EXIT;

To run the CLPPlus script, issue the following command:

clpplus @script.sql

The following example shows the CLP version of the same script. This script uses the SET SQLCOMPAT
PLSQL command to enable recognition of the forward slash character (/) on a new line as a PL/SQL
statement termination character.

CONNECT TO DB;

SET SQLCOMPAT PLSQL;

-- Semicolon is used to terminate
-- the CREATE TABLE statement:
CREATE TABLE t1 (c1 NUMBER);

-- Forward slash on a new line is used to terminate
-- the CREATE PROCEDURE statement:
CREATE OR REPLACE PROCEDURE testdb(num IN NUMBER, message OUT VARCHAR2)
AS
BEGIN
 INSERT INTO t1 VALUES (num);

 message := 'The number you passed is: ' || TO_CHAR(num);
END;
/

CALL testdb(100, ?);

SET SQLCOMPAT DB2;

CONNECT RESET;

To run the CLP script, issue the following command:

db2 -tvf script.sql

34 IBM Db2 V11.5: Compatibility Features

Results

The Db2 database that you created is enabled for Oracle applications. You can now use the compatibility
features that you enabled. Only databases created after the DB2_COMPATIBILITY_VECTOR registry
variable is set are enabled for Oracle applications.

What to do next

• Start using the CLPPlus interface.
• Execute PL/SQL scripts and statements.
• Transfer database object definitions.
• Enable database applications.

Terminology mapping: Oracle to Db2 products
Because Oracle applications can be enabled to work with Db2 data servers when the Db2 environment is
set up appropriately, it is important to understand how certain Oracle concepts map to Db2 concepts.

This section provides an overview of the data management concepts used by Oracle, and the similarities
or differences between these concepts and those used by Db2 products. Table 8 on page 35 provides a
concise summary of commonly used Oracle terms and their Db2 equivalents.

Table 8. Mapping of common Oracle concepts to Db2 concepts

Oracle concept Db2 concept Notes

active log active log The concepts are the same.

actual parameter argument The concepts are the same.

alert log db2diag log files and
administration notification log

The db2diag log files are
primarily intended for use by IBM
Software Support for
troubleshooting. The
administration notification log is
primarily intended for use by
database and system
administrators for
troubleshooting. Administration
notification log messages are
also logged in the db2diag log
files, using a standardized
message format.

archive log offline archive log The concepts are the same.

archive log mode log archiving The concepts are the same.

background_dump_dest diagpath The concepts are the same.

created global temporary table created global temporary table The concepts are the same.

cursor sharing statement concentrator The concepts are the same.

data block data page The concepts are the same.

data buffer cache buffer pool The concepts are the same.
However, in the Db2 product, you
can have as many buffer pools as
you like, of any page size.

Chapter 1. Compatibility features 35

Table 8. Mapping of common Oracle concepts to Db2 concepts (continued)

Oracle concept Db2 concept Notes

data dictionary system catalog The Db2 system catalog contains
metadata in the form of tables
and views. The database
manager creates and maintains
two sets of system catalog views
that are defined on the base
system catalog tables:
SYSCAT views

Read-only views.
SYSSTAT views

Updatable views that contain
statistical information that is
used by the optimizer.

data dictionary cache catalog cache The concepts are the same.

data file container Db2 data is physically stored in
containers, which contain
objects.

database link nickname A nickname is an identifier that
refers to an object at a remote
data source, that is, a federated
database object.

dual table dual table The concepts are the same.

dynamic performance views SQL administrative views SQL administrative views, which
use schema SYSIBMADM, return
system data, database
configuration, and monitor data
about a specific area of the
database system.

extent extent A Db2 extent is made up of a set
of contiguous data pages.

formal parameter parameter The concepts are the same.

global index nonpartitioned index The concepts are the same.

inactive log online archive log The concepts are the same.

36 IBM Db2 V11.5: Compatibility Features

Table 8. Mapping of common Oracle concepts to Db2 concepts (continued)

Oracle concept Db2 concept Notes

init.ora file and Server
Parameter File (SPFILE)

database manager configuration
file and database configuration
file

A Db2 instance can contain
multiple databases. Therefore,
configuration parameters and
their values are stored at both
the instance level, in the
database manager configuration
file, and at the database level, in
the database configuration file.
You manage the database
manager configuration file
through the GET DBM CFG or
UPDATE DBM CFG command.
You manage the database
configuration file through the GET
DB CFG or UPDATE DB CFG
command.

instance instance or database manager An instance is a combination of
background processes and
shared memory. A Db2 instance
is also known as a database
manager.

large pool utility heap The utility heap is used by the
backup, restore, and load
utilities.

library cache package cache The package cache, which is
allocated from database shared
memory, is used to cache
sections for static and dynamic
SQL and XQuery statements
executed on a database.

local index partitioned index This is the same concept.

materialized view materialized query table (MQT) An MQT is a table whose
definition is based on the results
of a query and can help improve
performance. The Db2 SQL
compiler determines whether a
query would run more efficiently
against an MQT than it would
against the base table on which
the MQT is based.

noarchive log mode circular logging The concepts are the same.

Oracle Call Interface (OCI) Oracle
Call Interface (OCI)

DB2CI DB2CI is a C and C++ application
programming interface that uses
function calls to connect to Db2
databases, manage cursors, and
perform SQL statements. For
more information, see "IBM Data
Server Driver for DB2CI" for a list
of OCI APIs supported by the
Db2CI driver.

Chapter 1. Compatibility features 37

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0056467.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0056467.html

Table 8. Mapping of common Oracle concepts to Db2 concepts (continued)

Oracle concept Db2 concept Notes

Oracle Call Interface (OCI) Oracle
Call Interface (OCI)

Call Level Interface (CLI) CLI is a C and C++ application
programming interface that uses
function calls to pass dynamic
SQL statements as function
arguments. In most cases, you
can replace an OCI function with
a CLI function and relevant
changes to the supporting
program code.

ORACLE_SID environment
variable

DB2INSTANCE environment
variable

The concepts are the same.

partitioned tables partitioned tables The concepts are the same.

Procedural Language/Structured
Query Language (PL/SQL)

SQL Procedural Language (SQL
PL)

SQL PL is an extension of SQL
that consists of statements and
other language elements. SQL PL
provides statements for declaring
variables and condition handlers,
assigning values to variables, and
implementing procedural logic.
SQL PL is a subset of the SQL/
Persistent Stored Modules (SQL/
PSM) language standard.

You can use Db2 data server
interfaces to compile and
execute Oracle PL/SQL
statements.

program global area (PGA) application shared memory and
agent private memory

Application shared memory
stores information that is shared
between a database and a
particular application: primarily,
rows of data that are passed to or
from the database. Agent private
memory stores information that
is used to service a particular
application, such as sort heaps,
cursor information, and session
contexts.

redo log transaction log The transaction log records
database transactions. You can
use it for recovery.

role role The concepts are the same.

segment storage object The concepts are the same.

session session; database connection The concepts are the same.

startup nomount command db2start command The command used to start the
instance.

38 IBM Db2 V11.5: Compatibility Features

Table 8. Mapping of common Oracle concepts to Db2 concepts (continued)

Oracle concept Db2 concept Notes

synonym alias An alias is an alternative name
for a table, a view, a nickname, or
another alias. The term synonym
can be specified instead of alias.
Aliases are not used to control
what version of a Db2 procedure
or user-defined function is used
by an application. To control the
version, use the SET PATH
statement to add the required
schema to the value of the
CURRENT PATH special register.

system global area (SGA) instance shared memory and
database shared memory

The instance shared memory
stores all of the information for a
particular instance, such as lists
of all active connections and
security information. The
database shared memory stores
information for a particular
database, such as package
caches, log buffers, and buffer
pools.

SYSTEM table space SYSCATSPACE table space The SYSCATSPACE table space
contains the system catalog. This
table space is created by default
when you create a database.

table space table space The concepts are the same.

user global area (UGA) application global memory Application global memory
comprises application shared
memory and application-specific
memory.

IBM PureData System for Analytics (Netezza) to Db2 migration
Use the information in this section to migrate from IBM PureData® System for Analytics (Netezza®) to Db2
systems and to learn about Netezza and Db2 compatibility. A Netezza system and a Db2 system are
highly compatible.

Migrating from IBM PureData System for Analytics (Netezza) to a Db2 system
Use the information in this topic to understand and perform the end-to-end process of migrating from
IBM PureData System for Analytics (Netezza) to a Db2 system.

Procedure

1. Plan your migration.
2. Acquire your system:

• IBM provisions the Db2 managed service environment. For information, see the IBM Bluemix®

page.

Chapter 1. Compatibility features 39

http://www.ibm.com/cloud-computing/bluemix/?cm_mmc=Search_gsn-_-Cloud_Bluemix_Keyword-Branded_Try-_-WW_CA-_-bluemix_Phrase

• You provision your own Db2 Warehouse environment. For information, see Deploying Db2
Warehouse.

3. Create database objects, such as tables.
You do not need to create the Db2 database itself; it is created for you. To create database objects,
execute the converted DDL on the web console Analytics or Run SQL tab, or use another command-
line interface.

4. Move your data.
For the Db2 managed service, use IBM BlueMix Lift. When you use BlueMix Lift, you can set up
processes to keep the moved data synchronized with the source during the activities in the following
steps. For Db2 Warehouse, use the db_migrate command; see Moving data using db_migrate.

5. Migrate your users, groups and security configuration.
For more information, see Security.

6. Map your system views.
7. Migrate your queries.
8. Migrate your routines.
9. Migrate user-defined extensions.

See “IBM PureData System for Analytics (Netezza) and Db2 user-defined extensions compatibility”
on page 52, Deploying R, and Installing Python packages.

10. Redirect users and applications to the Db2 database. For example, change drivers or BI tools to point
to the database.

11. Validate your migration.

Planning to migrate from IBM PureData System for Analytics to Db2
You should review the migration steps and prepare your environment before you migrate your system.

Procedure

• Become familiar with the differences between Db2 offerings. For information, see the Db2 overview.
• Learn about PureData® System for Analytics and Db2 compatibility by reviewing the migration process

and the compatibility topics.
• Evaluate the compatibility of your PureData System for Analytics SQL commands in a Db2 environment

by using IBM Database Harmony Profiler. For information about this tool, see the Database Conversion
Workbench page. By submitting your evaluation reports to askdcw@ca.ibm.com, you can help IBM to
prioritize and plan for the closure of compatibility gaps.

• Determine your network requirements. For example, for IBM Db2 Warehouse, review your firewall and
port requirements and ground-to-cloud connectivity requirements, and review the "Network
prerequisites" section in the applicable prerequisites topic. For the Db2 managed services, decide
whether you need a VPN and understand how to set it up.

You can use the IBM Cloud Integrated Analytics Environment (CIAE) to set up a secure connection
between your Db2 system and services such as your business intelligence tool and the source
database that feeds your Db2 system.

• Determine your security requirements.
• Review your architecture: the products that you are using and where they are located.
• Size your system.
• If you are using Db2 Warehouse:

– Determine your file transfer requirements: your backup requirements, daily transfer volumes, and
SLAs for load time.

– Back up your data. For information, see Snapshot backup and restore on Db2 Warehouse.

Restriction: You cannot use an IBM PureData System for Analytics backup to restore to a Db2
database.

40 IBM Db2 V11.5: Compatibility Features

https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.doc/admin/local_setup.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.doc/admin/local_setup.html
http://www-03.ibm.com/software/products/en/ibm-bluemix--lift
http://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.apdv.porting.doc/doc/using_db_migrate.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.security.doc/doc/security.html
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=05901c97-75b2-47a1-9c32-25f748855913
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=05901c97-75b2-47a1-9c32-25f748855913

IBM PureData System for Analytics (Netezza) and Db2 database, table, and schema compatibility
In a PureData System for Analytics (Netezza) system, you can have multiple databases. In a Db2 system,
there is one database, named BLUDB.

By default, when you move Netezza databases to a Db2 system by using the db_migrate command or
Database Harmony Profiler, the Netezza databases are migrated to schemas within the BLUDB database.
For information about the db_migrate command, see Moving data using db_migrate; for information
about Database Harmony Profiler, see the Database Conversion Workbench page. If you configured your
Netezza databases to use multiple schemas, the tools move the Netezza schemas to the BLUDB
database, but if you are using the multiple schemas within multiple databases, additional work is required
before you migrate. For information about how to proceed with your migration if you are using multiple
databases with multiple schemas, see “IBM PureData System for Analytics (Netezza) configuration
choices that impact migration to Db2products” on page 60.

Other notable differences between a Netezza system and a Db2 include:

• By default, data in Db2 tables is organized by column (it is possible to organize data by row). Organizing
data by column reduces the amount of I/O that is needed for processing a query because only the
columns that are referenced in the query must be loaded into memory from disk. A column-based
organization benefits analytic queries that access a large number of values from a subset of the
columns and heavily use aggregations and joins.

• A Db2 system uses UTF-8 encoding. A Netezza system uses Latin-9 encoding for single-byte characters
and UTF-8 for multibyte characters.

• Clustered base tables (CBTs) are not supported in a Db2 system.
• Materialized views are not supported in a Db2 system. Materialized query tables (MQTs) might be a

suitable alternative. An MQT is a table whose definition is based on the result of a query and whose data
is in the form of precomputed results that are taken from the table or tables on which the MQT
definition is based.

• In a Db2 system, whether primary key constraints are enforced by default is determined by the setting
of the ddl_constraint_def configuration parameter. The default setting of this parameter is YES (for
ENFORCED). You can override the default behavior by explicitly specifying either ENFORCED or NOT
ENFORCED in your DDL statements.

• Unlike Netezza, when Db2 performs query optimization, it always trusts that primary keys are unique.
Consequently, if primary key constraints are not enforced, and if a primary key column contains
duplicate values, query results might be incorrect.

For details about differences between Netezza and Db2 DDL, see “IBM PureData System for Analytics
(Netezza) and Db2 SQL compatibility” on page 73.

IBM PureData System for Analytics (Netezza) and Db2 data loading compatibility
There are multiple options for loading data into a Db2 database. These including loading data from a local
file by using the web console, loading from an IBM Cloudant® database, and loading by using IBM
InfoSphere® DataStage® or IBM InfoSphere Data Replication. A CLPPlus IMPORT command is also
available.

For more information about how to load data in a Db2 environment, see Loading your data and IMPORT
CLPPlus command.

IBM PureData System for Analytics (Netezza) and Db2 security compatibility
In Netezza, authentication can occur either within the database or with an external entity such as an
external LDAP server, if you configured the product to support that. Authorization occurs within the
database. In Db2, authentication occurs outside the database, and authorization generally occurs inside
the database.

In Netezza, privileges are typically not granted directly to the user. Instead, they are granted indirectly, to
groups to which users are assigned. Db2 products also use database objects to help simplify
administration. In Db2, privileges and authorities (a somewhat similar concept to privileges) are typically
granted to roles to which users or other roles are assigned. All of the authorities and privileges that you

Chapter 1. Compatibility features 41

http://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.apdv.porting.doc/doc/using_db_migrate.html
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=05901c97-75b2-47a1-9c32-25f748855913
http://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.doc/learn_how/loaddata_overview.html
http://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.clpplus.doc/doc/r0059535.html
http://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.clpplus.doc/doc/r0059535.html

grant to a particular role are inherited by whatever users or other roles that you assign to that particular
role. A Db2 system comes with two built-in user roles:
Administrator

People with the Administrator role have access to all of the features in the web console. They can
manage database access by creating and deleting users, assigning users to roles, and performing
other security-related functions, such as changing user passwords. A Db2 environment comes with a
built-in ID called bluadmin that has the Administrator role.

User
People with the User role have access to many of the features in the web console and can manage
their own user profiles. They also have full access to their own tables and can give other users
permission to access and use those tables.

If the built-in user roles do not provide enough flexibility, people with the Administrator role can create
user-defined roles with different authorities and privileges and assign those roles to users.

To add or delete users and assign them to or remove them from built-in roles, people with the
Administrator role use the web console. People with the Administrator role can also use the console to
grant privileges and authorities to roles and revoke that access by creating GRANT and REVOKE SQL
statements either directly or, in some cases, by using GUI controls. To create or delete user-defined roles
and manage membership in those roles, people with the Administrator role can issue SQL statements by
using the web console, CLPPlus, or the Data Studio client.

In a Netezza system, you can use Multi-Level Security (MLS) to define rules to control access to row-
secure tables. In a Db2 system, you can use row and column access control (RCAC) to control access to a
table at the row level, column level, or both. RCAC is based on two sets of rules: one set operates on rows
(row permissions), and the other set operates on columns (column masks). To create, alter, and drop
RCAC rules, you use SQL statements.

For details about differences between Netezza and Db2 SQL that are related to security, see “IBM
PureData System for Analytics (Netezza) and Db2 SQL compatibility” on page 73.

Related information
Security features of IBM® Db2 on Cloud, IBM Db2 Warehouse on Cloud, and IBM Db2 Warehouse
Row and column access control (RCAC) overview
Setting up an external LDAP server for IBM Db2 Warehouse

Migrating users, groups, and privileges from IBM PureData System for Analytics (Netezza) to Db2
As part of Netezza to Db2 migration, you must migrate your Netezza users, groups, and privileges.

Procedure

1. Collect information about your Netezza environment by issuing the statements and commands in the
following table for each Netezza database.
To issue each SELECT statement, put it in a file and issue the following command:

nzsql dbname –f sql_file > output_file_dbname

Information to collect Statement or command to issue

List of users SELECT USERNAME FROM _V_USER

List of groups SELECT DISTINCT(GROUPNAME) FROM
_V_USERGROUPS

List of users and their associated groups SELECT USERNAME, GROUPNAME FROM
_V_GROUPUSERS

42 IBM Db2 V11.5: Compatibility Features

https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.security.doc/doc/security.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.security.doc/doc/rcac_overview.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.doc/admin/configuring_ext_LDAP.html

Information to collect Statement or command to issue

List of group privileges nz_ddl_grant_group -usrobj dbname >
output_file_dbname

List of user privileges nz_ddl_grant_user -usrobj dbname >
output_file_dbname

2. Replicate the roles on your Db2 system as follows:

a. Create the roles by issuing the following statement:

CREATE ROLE ROLE_NAME

b. Verify that the roles were added in one of the following ways:

• Issue the dbsql command with the \dr option.
• Issue the following statement:

SELECT ROLENAME FROM SYSCAT.ROLES

3. Grant privileges and authorities to roles as follows.
For a mapping of Netezza privileges to Db2 privileges and authorities, see “IBM PureData System for
Analytics (Netezza) and Db2 privilege compatibility” on page 44.

a. Issue the following statements:

GRANT PRIVILEGE ON OBJECT TO ROLE ID
GRANT AUTHORITY ON DATABASE TO ROLE ID

b. Verify that the privileges were granted by issuing the following statement:

SELECT * FROM SYSIBMADM.PRIVILEGES WHERE AUTHID='BLUADMIN’ AND OBJECTNAME
=’MY_OBJECT’

c. Verify that the authorities were granted by issuing the following statement:

SELECT CHAR(GRANTEE,8) AS GRANTEE, CHAR(GRANTEETYPE,1) AS TYPE,
CHAR(DBADMAUTH,1) AS DBADM, CHAR(CREATETABAUTH,1) AS CREATETAB,
CHAR(BINDADDAUTH,1) AS BINDADD, CHAR(CONNECTAUTH,1) AS CONNECT,
CHAR(NOFENCEAUTH,1) AS NOFENCE, CHAR(IMPLSCHEMAAUTH,1) AS IMPLSCHEMA,
CHAR(LOADAUTH,1) AS LOAD, CHAR(EXTERNALROUTINEAUTH,1) AS EXTROUTINE,
CHAR(QUIESCECONNECT AUTH,1) AS QUIESCECONN, CHAR(LIBRARYADMAUTH,1) AS LIBADM,
CHAR(SECURITYADMAUTH,1) AS SECURITYADM
FROM SYSCAT.DBAUTH WHERE GRANTEE=’BLUADMIN’

4. Replicate the users on your Db2 system as follows:

a. Create the users by using one of the following methods:

• Use the web console.
• Use the REST API as follows:

curl -k -u "bluadmin:bluadmin"
-H 'Content-Type: application/json'
-H 'Accept: t'
-d '{"users":
[{"password":"password","userid":"userid","userProfile":"","userRole":
[{"role":"Administrator"}]}]}'
-X POST "https://<dashlocal-host>:8443/dashdb-api/users"

b. Check that the users were created by using one of the following methods:

• Use the web console.
• Issue the dbsql command with the \du option.

Chapter 1. Compatibility features 43

5. Grant roles to users as follows:

a. Issue the following statement:

GRANT ROLE ROLE1 TO USER USER1

b. Verify the role–user mapping by issuing the dbsql command with the \dR option.
6. If necessary, grant privileges and authorities directly to users.

This is usually not recommended: using roles simplifies administration.

To grant privileges and authorities to users, adapt the instructions in step “3” on page 43.

Related reference
GRANT (database authorities)
GRANT (schema privileges)
GRANT (table, view, or nickname privileges)
GRANT (sequence privileges)
GRANT (routine privileges)

IBM PureData System for Analytics (Netezza) and Db2 privilege compatibility
Many Netezza privileges have similar or equivalent Db2 privileges. In some cases, a Netezza privilege
maps to a Db2 authority.

Object privileges

Use the following table to map Netezza object privileges to Db2 privileges or authorities.

For sequences, only the ALTER and USAGE privileges apply.

Table 9. Object privileges

Netezza privilege Db2 mapping

ABORT WLMADM authority (required if you want to cancel
an activity by using the WLM_CANCEL_ACTIVITY
procedure)

ALTER ALTER privilege; also, ALTERIN privilege (applies
only to schemas)

DELETE DELETE privilege

DROP DROPIN privilege (applies only to schemas)

EXECUTE EXECUTE privilege (applies only to functions and
procedures)

EXECUTE AS No equivalent available

GENSTATS CONTROL privilege (for a particular table)

SQLADM authority (for all tables in the database)

GROOM CONTROL privilege (for a particular table)

SQLADM authority (for all tables in the database)

INSERT INSERT privilege

LABEL ACCESS SECADM authority

LABEL EXPAND SECADM authority

LABEL RESTRICT SECADM authority

44 IBM Db2 V11.5: Compatibility Features

Table 9. Object privileges (continued)

Netezza privilege Db2 mapping

LIST No equivalent available

LOAD INSERT privilege

SELECT SELECT privilege

TRUNCATE DELETE privilege

UPDATE UPDATE privilege

Administration privileges
Use the following table to map Netezza administration privileges to Db2 privileges or authorities.

Table 10. Administration privileges

Netezza privilege Db2 mapping

BACKUP No equivalent available

CREATE AGGREGATE CREATE_EXTERNAL_ROUTINE authority

CREATE DATABASE CREATE SCHEMA authority or DBADM authority,
which includes CREATE SCHEMA authority
(Netezza databases are mapped to Db2 schemas)

CREATE EXTERNAL TABLE CREATETAB authority

CREATE FUNCTION CREATE_EXTERNAL_ROUTINE authority

CREATE GROUP SECADM authority (required to create a role)

CREATE INDEX CONTROL privilege

CREATE LIBRARY No equivalent available

CREATE MATERIALIZED VIEW CREATETAB authority

CREATE PROCEDURE CREATEIN privilege (use to restrict creation
privileges at the schema level)

CREATE SCHEDULER RULE WLMADM authority

CREATE SCHEMA DBADM authority

CREATE SEQUENCE CREATEIN (use to restrict creation privileges at the
schema level)

CREATE SYNONYM CREATEIN (use to restrict creation privileges at the
schema level)

CREATE TABLE CREATETAB authority

CREATE TEMP TABLE CREATETAB authority

CREATE USER No equivalent available

CREATE VIEW CREATEIN (use to restrict creation privileges at the
schema level)

MANAGE HARDWARE No equivalent available

MANAGE SECURITY SECADM authority

MANAGE SYSTEM DBADM authority

Chapter 1. Compatibility features 45

Table 10. Administration privileges (continued)

Netezza privilege Db2 mapping

RESTORE No equivalent available

UNFENCE CREATE_NOT_FENCED_ROUTINE

VACUUM No equivalent available

Related tasks
“Migrating users, groups, and privileges from IBM PureData System for Analytics (Netezza) to Db2” on
page 42
As part of Netezza to Db2 migration, you must migrate your Netezza users, groups, and privileges.

IBM PureData System for Analytics (Netezza) and Db2 system view compatibility
Netezza system views are not automatically mapped to Db2 system views, but you can manually replace
Netezza views with similar Db2 views.

The following table maps some of the most commonly used Netezza system views to their closest Db2
equivalents. Also, if you used _t_* Netezza system tables, use the following table to help determine which
Db2 system views to use instead.

Netezza system view Db2 system view

_v_aggregate SYSCAT.ROUTINES

_v_environ SYSIBMADM.ENV_INST_INFO

_v_external SYSCAT.EXTERNAL_TABLEOPTIONS

_v_extobject SYSCAT.TABLES

_v_function SYSCAT.ROUTINES

_v_procedure SYSCAT.ROUTINES

_v_relation_column SYSCAT.COLUMNS

_v_relation_column_def SYSCAT.COLUMNS

_v_schema SYSCAT.SCHEMAMATA

_v_statistic SYSSTAT.TABLES

_v_synonym SYSCAT.TABLES (when querying, specify TYPE
='A', as shown in the following example:

select * from SYSCAT.TABLES where TYPE = 'A'

_v_sys_columns SYSCAT.COLUMNS

_v_sys_datatype SYSCAT.DATATYPES

_v_table SYSCAT.TABLES

_v_view SYSCAT.VIEWS

In addition, instead of the Netezza _v_session view, you can use the Db2 MON_GET_CONNECTION table
function.

46 IBM Db2 V11.5: Compatibility Features

Migrating IBM PureData System for Analytics (Netezza) queries to Db2
Netezza and Db2 queries are generally compatible, but some exceptions apply. You can automatically fix
many of the incompatibilities.

Procedure

Use one of the following approaches:

• If your query was generated by a third-party tool, re-create the query by selecting the Db2 connector
option in the tool.

• If your query was not generated by a third-party tool, perform the following steps:

a. Evaluate compatibility by using the Database Conversion Workbench or Database Harmony Profiler.
For information about how to obtain and use these tools, see the Database Conversion Workbench
page and IBM Database Conversion Workbench (DCW) topic.

b. If the tool flags incompatibilities that it cannot fix, manually fix them.
c. Automatically fix the remaining incompatibilities by running the Database Conversion Workbench or

Database Harmony Profiler again.

Related concepts
“IBM PureData System for Analytics (Netezza) and Db2 SQL compatibility” on page 73
In most cases, Db2 and Netezza products provides equivalent SQL support. For example, in most cases, a
particular Netezza SQL command has an equivalent Db2 SQL statement, which you can use without
modifying your code. In a limited number of cases, changes are required.

IBM PureData System for Analytics (Netezza) and Db2 query compatibility
Although Netezza and Db2 queries are generally compatible, you should be aware of certain differences
in support.

Following are some of the differences:
Intervals

In a Db2 query, you can use a labeled duration. A labeled duration represents a specific unit of time as
expressed by a number (which can be the result of an expression) followed by a duration keyword,
such as YEARS, MONTHS, or DAYS. For example, 2 MONTHS is a labeled duration.

Consider the following Netezza examples:

select current_timestamp + INTERVAL '1 DAY' FROM FOO
SELECT CURRENT_TIMESTAMP + INTERVAL('1 DAY') FROM FOO

The equivalent Db2 example is as follows:

SELECT current_timestamp + 1 DAY FROM FOO

Isolation levels
A Netezza query supports serializable transaction isolation. A Db2 query supports the following
isolation levels:

• The repeatable read (RR) isolation level, for row-organized tables only
• The read stability (RS) isolation level, for row-organized tables only
• The cursor stability (CS) isolation level
• The uncommitted read (UR) isolation level

SELECT statements without FROM clauses
In a Db2 query, the FROM clause is mandatory. For example, the following SELECT statement is not
supported:

SELECT constant as
alias;

Chapter 1. Compatibility features 47

https://www.ibm.com/developerworks/community/blogs/05901c97-75b2-47a1-9c32-25f748855913/entry/Introducing_DCW_Lite?lang=en
https://www.ibm.com/developerworks/community/blogs/05901c97-75b2-47a1-9c32-25f748855913/entry/Introducing_DCW_Lite?lang=en

If you are referencing a value, use the VALUES statement or use FROM sysibm.sysdummy1 as. If
you are invoking a procedure, use the CALL statement.

For more details about differences between Netezza and Db2 DML, see “IBM PureData System for
Analytics (Netezza) and Db2 SQL compatibility” on page 73.

You can use the Db2 SQL_COMPAT global variable to enable certain Netezza behavior that is not
supported by default in a Db2 system. For information, see Compatibility features for Netezza Platform
Software (NPS®).

Db2 compatibility for IBM PureData System for Analytics (Netezza) built-in and SQL Extensions
toolkit functions
Db2 products provide many of the same functions that are available in IBM PureData System for Analytics
(Netezza). In some cases, you must use an alternative, such as a Db2 function with a different name that
provides similar support.

The following tables identify the Netezza functions that do not have corresponding Db2 functions with the
same names and behaviors. Alternatives to the Netezza functions are mentioned where possible.

Netezza SQL functions

Table 11. Fuzzy string search functions

Netezza function Db2 alternatives

dle_dst No alternative is available.

le_dst No alternative is available.

Table 12. Phonetic matching functions

Netezza function Db2 alternatives

dbl_mp No alternative is available.

nysiis No alternative is available.

pri_mp No alternative is available.

score_mp No alternative is available.

sec_mp No alternative is available.

Table 13. Value functions

Netezza function Db2 alternatives

current_catalog Create a session variable.

current_db Create a session variable.

current_tx_path Create a session variable.

current_tx_schema Create a session variable.

current_userid Create a session variable.

current_useroid Create a session variable.

48 IBM Db2 V11.5: Compatibility Features

http://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.apdv.porting.doc/doc/c_compat_nz.html
http://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.apdv.porting.doc/doc/c_compat_nz.html

Netezza SQL extensions functions

Table 14. Trigonometric functions

Netezza function Db2 alternatives

pi Create a user-defined function (UDF).

Table 15. Random number functions

Netezza function Db2 alternatives

setseed Pass the seed to the RANDOM function.

Table 16. Numeric functions

Netezza function Db2 alternatives

dceil Use the CEIL function with an input type of
DOUBLE.

dfloor Use the FLOOR function with an input type of
DOUBLE.

fpow Use the POW function with an input type of
DOUBLE.

numeric_sqrt Use the SQRT function with an input type of
DECFLOAT.

n! No alternative is available.

Table 17. Binary mathematical functions

Netezza function Db2 alternatives

intNshl Use two's complement multiplication.

intNshr Use two's complement division.

Table 18. Date and time functions

Netezza function Db2 alternatives

age (both versions) A Db2 AGE function is available, but it returns
INTEGER.

duration_add Use a labeled duration or use date, time, or
timestamp arithmetic, as documented in Datetime
operations and durations.

duration_subtract Use a labeled duration or use date, time, or
timestamp arithmetic, as documented in Datetime
operations and durations.

timeofday Use the VARCHAR_FORMAT function with the
CURRENT_TIMESTAMP special register.

Chapter 1. Compatibility features 49

https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.doc/doc/r0023457.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.doc/doc/r0023457.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.doc/doc/r0023457.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.doc/doc/r0023457.html

Table 19. Character string functions

Netezza function Db2 alternatives

translate A Db2 TRANSLATE function is available, but the
default order of options for this function is
different from the order of options for the Netezza
translate function. To enable the Netezza order of
options for the Db2 TRANSLATE function, set the
SQL_COMPAT global variable to 'NPS'.

unichr No alternative is available.

unicode No alternative is available.

unicodes No alternative is available.

Table 20. Conversion functions

Netezza function Db2 alternatives

hex_to_binary Use the HEXTORAW function.

hex_to_geometry No alternative is available.

int_to_string No alternative is available.

string_to_int No alternative is available.

Table 21. Miscellaneous non-aggregate functions

Netezza function Db2 alternatives

get_viewdef Query the SYSCAT.VIEWS TEXT column.

Table 22. Additional functions

Netezza function Db2 alternatives

dense_rank This function is supported only in OLAP queries.

rank This function is supported only in OLAP queries.

trim There are differences in more complex usage.

SQL Extensions toolkit functions

Table 23. SQL Extensions toolkit functions

Category of SQL Extensions
toolkit functions

Specific functions Db2 alternatives

XML All functions, for example,
IsValidXML

There is no one-to-one mapping
between Netezza XML functions
and Db2 XML functions. Use the
appropriate Db2 XML function.

50 IBM Db2 V11.5: Compatibility Features

Table 23. SQL Extensions toolkit functions (continued)

Category of SQL Extensions
toolkit functions

Specific functions Db2 alternatives

Data transformation The compress,
compress_nvarchar,
decompress,
decompress_nvarchar,
uudecode, and uuencode
functions

No alternatives are available.
However, Db2 products use
compression on BLU tables by
default, so you might not need to
compress data at the column
level yourself.

The encrypt, encrypt_nvarchar,
decrypt, decrypt_nvarchar,
fpe_decrypt, and fpe_encrypt
functions

The Db2 databases are
encrypted. However, if you want
to use a function, consider using
the Db2 ENCRYPT,
DECRYPT_BIN, and
DECRYPT_CHAR functions. For
masking, you can use row and
column access control (RCAC).

Hashing The hash_nvarchar function Using the Db2 HASH function,
you can create a sourced
function with the name
hash_nvarchar.

Text analytics functions The regexp_extract_all,
regexp_extract_all_sp,
regexp_extract_sp, and
regexp_replace_sp functions

Consider rewriting your code to
use the Db2 REGEXP_EXTRACT
function.

Array functions All functions, for example,
add_element

Consider using SQL PL array
support.

Collection functions The collection and element_type
functions

Consider using SQL PL array
support instead.

Miscellaneous functions The corr, covar_pop, and
covar_samp functions

The following Db2 functions are
available, with synonyms that
correspond to the Netezza
names:

• CORR is a synonym for the
CORRELATION function.

• COVAR_POP is a synonym for
the COVARIANCE function.

• COVAR_SAMP is a synonym for
the COVARIANCE_SAMP
function.

The mt_random function If using the Mersenne Twister
pseudorandom number
generator is not necessary, use
the Db2 RANDOM function.

Chapter 1. Compatibility features 51

Migrating IBM PureData System for Analytics (Netezza) routines to Db2
Using IBM tools, you can automatically change much of the source code of your Netezza NZPLSQL
routines to Db2 SQL PL.

About this task

If you are moving from Netezza to Db2, you might want to permanently change your NZPLSQL source
code to SQL PL, as described in the following procedure. You can then take advantage of any future SQL
PL enhancements. However, if you do not want to permanently change your code, you can set the
SQL_COMPAT global variable to 'NPS' before you compile your NZPLSQL source in Db2. The routine is
then sent to an NZPLSQL cross-compiler, which attempts to convert the routine from NZPLSQL to SQL PL
before sending it to the SQL PL compiler. Some manual changes might still be needed.

For more information about NZPLSQL support in Db2, see Routines written in NZPLSQL.

Procedure

1. Evaluate compatibility by using the Database Conversion Workbench or Database Harmony Profiler.
For information about how to obtain and use these tools, see the Database Conversion Workbench
page and IBM Database Conversion Workbench (DCW) topic.

2. If the tool flags NZPLSQL code that it cannot convert to SQL PL, manually change the code.
3. Automatically convert the remaining code to SQL PL by running the Database Conversion Workbench

or Database Harmony Profiler again.

IBM PureData System for Analytics (Netezza) and Db2 user-defined extensions compatibility
If your Netezza databases used user-defined functions (UDFs), user-defined aggregates (UDAs), or user-
defined shared libraries and you want to run these objects in a Db2 environment, you must create new
compiled source and register the objects by using Db2 processes.

For more information about using user-defined extensions with Db2 products, see Creating and managing
user-defined extensions (UDXs).

For details about differences between Netezza and Db2 SQL that are related to user-defined extensions,
see “IBM PureData System for Analytics (Netezza) and Db2 SQL compatibility” on page 73.

Migrating workload management settings
You cannot migrate your IBM PureData System for Analytics (formerly Netezza) workload management
settings to IBM Db2 Warehouse. However, you can take advantage of the workload management
capabilities offered by Db2 Warehouse.

PureData System for Analytics offers the following workload management features:

• Guaranteed resource allocation (GRA)
• Prioritized query execution (PQE)
• Scheduler rules
• Short query bias (SQB)

Db2 Warehouse offers customizable adaptive workload management capability that is comparable and
that you can use to automatically manage your workload.

Db2 Warehouse uses service classes, which are analogous to Netezza resource groups. Db2 Warehouse
provides the following pre-defined service classes:

• SYSDEFAULTMAINTENANCECLASS
• SYSDEFAULTSYSTEMCLASS
• SYSDEFAULTUSERCLASS

In addition, you can issue CREATE SERVICE CLASS statements to define your own service classes.

A service class can specify the type of the workloads (mixed, interactive, or batch) for which it is to be
used. Each service class can be assigned a resource share and a minimum resource share. A resource

52 IBM Db2 V11.5: Compatibility Features

https://www.ibm.com/developerworks/community/blogs/05901c97-75b2-47a1-9c32-25f748855913/entry/Introducing_DCW_Lite?lang=en
https://www.ibm.com/developerworks/community/blogs/05901c97-75b2-47a1-9c32-25f748855913/entry/Introducing_DCW_Lite?lang=en
https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.udx.doc/doc/udx_c_udx_ref.html
https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.udx.doc/doc/udx_c_udx_ref.html

share is conceptually similar to a guaranteed resource allocation (GRA). For example, the following
statement creates a service class that assigns 2000 resource shares for mixed workloads:

CREATE SERVICE CLASS SC1 FOR WORKLOAD TYPE MIXED RESOURCE SHARES 2000

You can use a workload to group similar work items, to apply thresholds, or to route work to a particular
service class. You can use the console to monitor a workload. For more information about query history
and workload monitoring, see Query history and workload monitoring. For example, the following
statement creates a workload that runs on the service class SC1:

CREATE WORKLOAD MONTHLYSALES APPLNAME('monthlyrpt') SERVICE CLASS SC1

Use thresholds to define and enforce rules on the database to detect and control rogue queries. A
threshold is conceptually similar to a scheduler rule. For example:

• Create a threshold for a workload:

CREATE THRESHOLD FORCELONGUOW FOR WORKLOAD MONTHLYSALES ACTIVITIES ENFORCEMENT DATABASE WHEN
UOWTOTALTIME > 10 MINUTES FORCE APPLICATION

• Create a threshold for a service class:

CREATE THRESHOLD BIGQUERIESLONGRUNNINGTIME FOR SERVICE CLASS SC1 ACTIVITIES ENFORCEMENT
DATABASE WHEN ACTIVITYTOTALTIME > 10 HOURS COLLECT ACTIVITY DATA WITH DETAILS AND VALUES

• Create a threshold for a database:

CREATE THRESHOLD DBMAX1HOURRUNTIME FOR DATABASE BLUDB ENFORCEMENT DATABASE WHEN
ACTIVITYTOTALTIME > 1 HOUR STOP EXECUTION

Use session priority to influence the scheduling of work within a service class. Session priority is
conceptually similar to prioritized query execution in PureData System for Analytics.

• Specify the priority of all work from a particular user or application by using the PRIORITY property of a
WORKLOAD object. This method is similar to specifying the priority on a resource group. For example, to
identify all work that is submitted by user NEWTON as high priority, you can create the following
WORKLOAD object:

CREATE WORKLOAD PAYROLL SESSION_USER('NEWTON') PRIORITY HIGH

• Specify the priority of a particular connection by using the WLM_SET_SESSION_PRIORITY stored
procedure. This method is similar to specifying a priority for an application by using the
nzsession command or the NzAdmin tool. For example, to reduce the priority of an application with
handle 2361, use the following stored procedure call:

call SYSPROC.WLM_SET_SESSION_PRIORITY(2361, 'LOW')

Validating migration of IBM PureData System for Analytics (Netezza) to Db2
After migrating your Netezza system to Db2, you should validate your new system.

Procedure

Perform the following steps:

• Ensure that your Netezza and Db2 objects are comparable, based on the conversions that you
performed by using the Database Conversion Workbench or Database Harmony Profiler or by making
manual changes.

• Test applications that contain converted SQL, such as by using the web console. Ensure that the results
for your Netezza workloads and Db2 workloads are equivalent. Ensure that the performance of your
Netezza workloads and the performance of your Db2 workloads are comparable.

Chapter 1. Compatibility features 53

IBM PureData System for Analytics (Netezza) and Db2 compatibility
A IBM PureData System for Analytics (Netezza) system and a Db2 system are highly compatible. Use the
information in this section to learn about the differences between them to make it easier to migrate your
Netezza system to a Db2 system and adapt to using it afterward.

Before reading this section, see “Migrating from IBM PureData System for Analytics (Netezza) to a Db2
system” on page 39 to learn about the overall migration process.

For more information about Db2 compatibility features, see Compatibility features.

IBM PureData System for Analytics (Netezza) and Db2 data type compatibility
Netezza and Db2 databases share a large common set of data types. To learn about data type
incompatibilities and how to manage them when migrating from a Netezza database to a Db2 database,
review the following topics.

You can use tools such as IBM Database Harmony Profiler to assess and migrate data definitions and SQL
commands. Database Harmony Profiler can help to identify possible conversion considerations and
convert SQL commands. During conversion, Database Harmony Profiler maps Netezza data types to the
equivalent Db2 types. These changes typically do not alter the nature of the data nor the queries that
process data that is stored in columns of those types. Database Harmony Profiler and similar tools cannot
automatically make some data type changes, so manual intervention is required.

IBM PureData System for Analytics (Netezza) non-internal data types that are unsupported in Db2
products
As documented in this topic, some non-internal Netezza data types do not have corresponding Db2 data
types. For information about Db2 support for internal Netezza data types, such as ROWID, see “IBM
PureData System for Analytics (Netezza) and Db2 differences in internal data types ” on page 57.

The following table lists the non-internal Netezza data types that do not have corresponding Db2 data
types.

Table 24. Unsupported Netezza data types

Netezza data type Db2 data type alternatives

BOOL Use one of the following approaches:

• Use the built-in BOOLEAN type. IBM Database
Harmony Profiler automatically converts BOOL to
BOOLEAN.

• Create a type by using the CREATE TYPE
(distinct) statement, as follows:

CREATE TYPE BOOL AS BOOLEAN WITH WEAK TYPE
RULES

BYTEINT (alias INT1) Use one of the following approaches:

• Use the built-in SMALLINT (SHORT) type. IBM
Database Harmony Profiler automatically
converts BYTEINT to SMALLINT.

• Create a type by using the CREATE TYPE
(distinct) statement, as follows:

CREATE TYPE BYTEINT AS SMALLINT WITH WEAK
TYPE RULES

Test your queries to ensure that the data type
change does not affect results.

54 IBM Db2 V11.5: Compatibility Features

http://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.apdv.porting.doc/doc/c0052882.html

Table 24. Unsupported Netezza data types (continued)

Netezza data type Db2 data type alternatives

INTERVAL (alias TIMESPAN) Consider using the DECIMAL data type to store
appropriate date, time, and time stamp duration
values. Alternatively, replace the INTERVAL data
type with the INTEGER or BIGINT data type, and
store the value in units of seconds. Additional work
is required to convert the INTEGER value to days,
minutes, seconds, etc.

TIME WITH TIMEZONE (alias TIMETZ) Store time zone information in a new separate
column of the table. You can use an additional
column to store the time zone component and
include the value of this column in all time
calculations. Alternatively, you can keep the
database server on Coordinated Universal Time
(UTC) and convert all time-zoned values to UTC.

IBM PureData System for Analytics (Netezza) and Db2 differences in non-internal data types
Some non-internal data types that are supported in both Netezza and Db2 products are supported
differently, as described in this topic. For information about Db2 support for internal Netezza data types,
such as ROWID, see “IBM PureData System for Analytics (Netezza) and Db2 differences in internal data
types ” on page 57.

The following table describes differences in support and recommendations for migrating to a Db2 product
if the differences result in problems. IBM Database Harmony Profiler maps Netezza data types to Db2
data types and, in some cases, can perform the changes that are recommended in the table. Carefully
review the Database Harmony Profiler assessment report to understand the conversions and to learn
about differences that might require some changes to queries and reporting. Data truncation might occur
as a result of conversion.

Table 25. Netezza and Db2 data type differences

Data type Difference Recommendations for migrating

CHAR The maximum length for the Db2 data
type is 255 bytes. The maximum length
for the Netezza data type is 64,000
bytes.

Check whether you can redefine the length
of the data type to comply with the Db2
limit. If not, use the VARCHAR data type.

Database Harmony Profiler converts
CHAR(n) values where n is 255 - 32,592 to
VARCHAR(n). Database Harmony Profiler
also converts CHAR(n) values where n is
greater than 32,592 to VARCHAR(32592).

VARCHAR The maximum length for the Db2 data
type is 32,592 bytes. The maximum
length for the Netezza data type is
64,000 bytes.

Check whether you can redefine the length
of the data type to comply with the Db2
limit. If not, use the CLOB data type in a
row-organized table.

Database Harmony Profiler converts
CHAR(n) values where n is greater than
32,592 to VARCHAR(32592).

Chapter 1. Compatibility features 55

Table 25. Netezza and Db2 data type differences (continued)

Data type Difference Recommendations for migrating

NCHAR The maximum length for the Db2 data
type is 63 bytes. The maximum length
for the Netezza data type is 16,000
bytes.

Check whether you can redefine the length
of the data type to comply with the Db2
limit. If not, use the NVARCHAR data type.

Database Harmony Profiler converts
NCHAR(n) values where n is 64 - 8148 to
NVARCHAR(n). Database Harmony Profiler
also converts NCHAR(n) values where n is
greater than 8148 to NVARCHAR(8148).

NVARCHAR The maximum length for the Db2 data
type is 8148 bytes. The maximum
length for the Netezza data type is
16,000 bytes.

Check whether you can redefine the length
of the data type to comply with the Db2
limit. If not, use an NCLOB data type in a
row-organized table.

Database Harmony Profiler converts
NVARCHAR(n) values where n is greater
than 8148 to NVARCHAR(8148).

VARBINARY The maximum length for the Db2 data
type is 32,592 bytes. The maximum
length for the Netezza VARBINARY and
ST_GEOMETRY data types is 64,000
bytes.

Check whether you can redefine the length
of the data type to comply with the Db2
limit. If not, use a BLOB data type in a row-
organized table.

Database Harmony Profiler converts
VARBINARY(n) values where n is greater
than 32592 to VARBINARY(32592).

DECIMAL
(NUMERIC)

The maximum precision of the Db2 data
type is 31 digits. The maximum
precision of the Netezza data type is 38
digits.

Check whether you can redefine the
precision of the data type to comply with
the Db2 limit. If not, consider using the
DECFLOAT data type, which has a
maximum precision of 34 digits.

Database Harmony Profiler converts
DECIMAL(p,s) values where p is greater
than 31 to DECIMAL(31,s). Similarly,
Database Harmony Profiler converts
NUMERIC(p,s) values where p is greater
than 31 to NUMERIC(31,s).

Floating-point
types

If you specify a precision (n) for a Db2
floating-point type, SQL standard
precision ranges apply. Netezza does
not use the standard precision ranges.

If you specify a precision, ensure that you
are using the appropriate type (REAL or
DOUBLE). It is preferable to change
Netezza types with explicit precisions, as
follows:

• If you were using the Netezza DOUBLE
PRECISION or FLOAT(15) type, change to
the Db2 FLOAT type.

• If you were using the Netezza REAL or
FLOAT(6) type, change to the Db2 REAL
type.

56 IBM Db2 V11.5: Compatibility Features

Table 25. Netezza and Db2 data type differences (continued)

Data type Difference Recommendations for migrating

TIME The Db2 TIME data type does not
support the microseconds portion of
the Netezza TIME data type (for
example, 999999 in the value
23:59:59.999999).

Check whether you require microsecond-
level precision and can therefore use the
TIME data type. If not, use the TIMESTAMP
data type.

IBM PureData System for Analytics (Netezza) and Db2 differences in internal data types
Netezza internal data types, such as ROWID, are supported differently or are unsupported in Db2.

Netezza data type Netezza column name Db2 support

rowid rowid You can use the ROWID
pseudocolumn, which has a
VARCHAR (16) FOR BIT DATA
data type. ROWID is an
alternative to the RID_BIT()
function.

dataslice datasliceid You can use the DATASLICEID
pseudocolumn. This column
contains the database partition
number for a row. The value can
be 0.

transaction ID createxid, deletexid If required, you can use an
identity column (hidden, if need
be) in your table to provide a
unique row identifier.

Other types Other internal data types are not
supported. If you need help
migrating these to Db2, contact
IBM.

IBM PureData System for Analytics (Netezza) and Db2 backup and restore compatibility
You cannot use an IBM PureData System for Analytics (Netezza) backup to restore to a Db2 database.

IBM PureData System for Analytics (Netezza) and Db2 CLI command compatibility
Most PureData System for Analytics (Netezza) CLI commands (nz* commands) do not have
corresponding Db2 commands. In some cases, there's a different mechanism. In other cases, no
equivalent is necessary.

Table 26. PureData System for Analytics (Netezza) command support

Netezza CLI command Db2 support

nzbackup

nzcontents There is no Db2 equivalent.

nzconvert For information about how to load data in a Db2
environment, see Loading your data.

nzds The Db2 environment does not use data slices.

nzevent Use a Db2 web console.

Chapter 1. Compatibility features 57

Table 26. PureData System for Analytics (Netezza) command support (continued)

Netezza CLI command Db2 support

nzhistcleanupdb The Db2 environment does not use a history
database. To collect and view historical data about
database usage, use the Db2 monitoring
capabilities.

nzhistcreatedb The Db2 environment does not use a history
database. To collect and view historical data about
database usage, use the Db2 monitoring
capabilities.

nzhostbackup

nzhostrestore

nzhw There is no Db2 equivalent. In the Db2 managed
service environment, hardware is managed for you.

nzload For information about how to load data in a Db2
environment, see Loading your data.

nzodbcsql For information about defining and testing ODBC
connections, see Connecting programmatically
with ODBC or CLI.

nzpassword Use a Db2 web console.

nzreclaim For column-organized tables, reorganization is
done automatically. For row-organized tables, use
the REORG TABLE statement.

nzrestore

nzrev Use a Db2 web console or CLPPlus.

nzsession Use a Db2 web console to obtain a list of
connected applications.

nzspupart The Db2 environment does not use SPUs.

nzsql Use the dbsql command. For more information,
see Overview of the support tools.

nzstart

nzstate Use a Db2 web console.

nzstats Use a Db2 web console.

nzstop

nzsystem Use a Db2 web console.

IBM PureData System for Analytics (Netezza) and IBM ODBC, JDBC, OLE DB, and .NET compatibility
The driver package for the Db2 instance contains multiple drivers that you can use to connect client
applications to the Db2 database. The package includes drivers for ODBC, JDBC, .NET, and OLE DB. You
can also connect programmatically by using ODBC, JDBC, or .NET.For information about connecting an
application to a Db2 database, see Connecting to your Db2 database.

58 IBM Db2 V11.5: Compatibility Features

https://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.doc/connecting/connecting_overview.html

Query history and workload monitoring
You can enable query history for monitoring and analysis of workloads by using the IBM Db2 Warehouse
console.

Procedure

1. Log in to the Db2 Warehouse web console as bluadmin.

https://<virtual_ip>:8443/console

2. Select Monitor > Workloads
3. For Time mode:, select History.

This starts the collection of query history.

When query history monitoring is enabled in the Db2 Warehouse web console, default monitoring
profile properties are pre-defined so that you don't have to configure the database activity monitoring.

Note: Query history is stored in the IBMOTS.SQL_DIM table. The
IBM_RTMON_EVMON.EVENT_ACTIVITY table stores the following additional information:

• planid
• user id
• application name
• service class
• workload id
• estimated cost
• and more.

You can join these tables to get detailed information about a query.
4. To monitor a specific workload, click the Database drop-down menu and choose the workload.

Chapter 1. Compatibility features 59

IBM PureData System for Analytics (Netezza) configuration choices that impact migration to
Db2products
Some PureData System for Analytics (Netezza) configuration choices can result in compatibility issues
when you migrate to a Db2 product.

Some of these choices are as follows:
Multiple schemas

If you configured your Netezza system to support multiple schemas in multiple databases, migrate by
using one of the following approaches. For each approach, use the db_migrate command or
Database Harmony Profile tool.

• If there are no conflicting schemas across the databases, drop the database identifiers, and then
migrate to a single BLUDB database.

• If there are conflicting schemas across the databases, merge each database identifier and each
schema into a single schema, and then migrate to a single BLUDB database.

In each case, the schemas are moved to the BLUDB database when you migrate. You can perform the
above with the -prefixSchema parameter of the db_migrate utility.

Case setting for identifiers
In a Db2 system, lowercase identifiers, such as for table names, are converted to uppercase. This is
also the default behavior in a Netezza system. However, if you used the nzinitsystem -
lowercase or nzconvertsyscase command to force the Netezza system to use lowercase ...

Time zone
Netezza uses UTC by default, but you might have configured Netezza to use a different time zone. The
Db2 products also use UTC by default. If you require time stamps, times, or dates to use a different
time zone, use the TO_UTC_TIMESTAMP or TIMEZONE function.

60 IBM Db2 V11.5: Compatibility Features

Encoding and collation

A Db2 system uses UTF-8 encoding with IDENTITY collation. A Netezza system uses Latin-9 encoding
for single-byte characters and UTF-8 encoding for multibyte characters, with a default collation of
BINARY. The differences between systems can result in data expansion when you load data and
differences in how character data is ordered.

In-database analytics compatibility
In most cases, provide the same analytic functions that are available in IBM PureData System for
Analytics (Netezza). For example, in most cases, a particular Netezza analytic function has an equivalent
analytic function. In some cases, changes are required.

Compatibility matrix for IBM PureData System for Analytics (Netezza) built-in and analytic functions

The following tables identify the Netezza functions of the corresponding category and, if ported to , the
corresponding functions. The tables also show changes and limitations.

The categories and the corresponding functions are sorted alphabetically.

• “Association rules” on page 61
• “Classification” on page 62
• “Clustering” on page 62
• “Column properties” on page 63
• “Data transformation” on page 63
• “Diagnostic measures” on page 63
• “Discretization” on page 64
• “Model management” on page 64
• “Probability distributions” on page 65
• “Quantiles and outliers” on page 69
• “Regression” on page 69
• “Sampling” on page 70
• “Sequential patterns” on page 70
• “Statistics” on page 70
• “Timeseries” on page 72
• “Utilities” on page 72

Association rules

Table 27. Functions for association rules

Netezza function function Changes and limitations

ARULE ASSOCRULES New routine with new
parameters. Migration required.

PREDICT_ARULE PREDICT_ASSOCRULES New routine with new
parameters. Migration required.

PRINT_ARULE PRINT_MODEL New routine with new
parameters. Migration required.

VERIFY_ARULE No alternative is available. Not applicable.

Back to top ￪

Chapter 1. Compatibility features 61

Classification

Table 28. Functions for classification

Netezza function function Changes and limitations

CROSS_VALIDATION No alternative is available. Not applicable.

DECTREE DECTREE None.

GROW_DECTREE GROW_DECTREE None.

KNN KNN New sampling: 10000 by default
instead of unlimited sampling.

Additional parameters: maxsize
and randseed.

NAIVEBAYES NAIVEBAYES None.

PERCENTAGE_SPLIT No alternative is available. Use classification algorithms and
quality measures instead.

PMML_DECTREE PMML_MODEL None.

PMML_NAIVEBAYES No alternative is available. Not applicable.

PREDICT_DECTREE PREDICT_DECTREE None.

PREDICT_KNN PREDICT_KNN None.

PREDICT_NAIVEBAYES PREDICT_NAIVEBAYES None.

PRINT_DECTREE PRINT_MODEL Use PRINT_MODEL instead.

PRUNE_DECTREE PRUNE_DECTREE None.

TRAIN_TEST No alternative is available. Use classification algorithms and
quality measures instead.

Back to top ￪
Clustering

Table 29. Functions for clustering

Netezza function function Changes and limitations

DIVCLUSTER No alternative is available. Not applicable.

KMEANS KMEANS The mahalanobis parameter
values is not available.

PREDICT_DIVCLUSTER No alternative is available. Not applicable.

PREDICT_KMEANS PREDICT_KMEANS Not all parameter values
available.

PREDICT_TWOSTEP No alternative is available. This stored procedure is
implemented using Apache
Spark, and can be used only on a
system for which Spark capability
is enabled.

PRINT_KMEANS PRINT_MODEL Use PRINT_MODEL and the
respective parameters for
KMEANS instead.

62 IBM Db2 V11.5: Compatibility Features

Table 29. Functions for clustering (continued)

Netezza function function Changes and limitations

PRINT_TWOSTEP PRINT_MODEL New routine with new
parameters. Migration required.

SET_CLUSTERNAME No alternative is available. Not applicable.

TWOSTEP No alternative is available. None.

Back to top ￪
Column properties

Table 30. Functions for column properties

Netezza function function Changes and limitations

COLUMN_PROPERTIES COLUMN_PROPERTIES None.

GET_COLUMN_LIST GET_COLUMN_LIST None.

SET_COLUMN_PROPERTIES SET_COLUMN_PROPERTIES None.

Back to top ￪
Data transformation

Table 31. Functions for data transformation

Netezza function function Changes and limitations

IMPUTE_DATA IMPUTE_DATA None.

PCA No alternative is available. Not applicable.

PROJECT_PCA No alternative is available. Not applicable.

SPLIT_DATA SPLIT_DATA None.

STD_NORM STD_NORM None.

Back to top ￪
Diagnostic measures

Table 32. Functions for diagnostic measures

Netezza function function Changes and limitations

ACC ACC None.

CERROR CERROR None.

CMATRIX_ACC CMATRIX_ACC None.

CMATRIX_STATS CMATRIX_STATS None.

CMATRIX_WACC CMATRIX_WACC None.

CONFUSION_MATRIX CONFUSION_MATRIX None.

FMEASURE FMEASURE None.

FPR FPR None.

Chapter 1. Compatibility features 63

Table 32. Functions for diagnostic measures (continued)

Netezza function function Changes and limitations

MAE MAE None.

MSE MSE None.

PPV PPV None.

RAE RAE None.

RSE RSE None.

TPR TPR None.

WACC WACC None.

Back to top ￪
Discretization

Table 33. Functions for discretization and moments

Netezza function function Changes and limitations

No Netezza function is available. AGGDISC None.

APPLY_DISC APPLY_DISC None.

EFDISC EFDISC None.

EMDISC EMDISC None.

EWDISC EWDISC None.

EWDISC_NICE EWDISC_NICE None.

Back to top ￪
Model management

Table 34. Functions for model management

Netezza function function Changes and limitations

ALTER_MODEL ALTER_MODEL None.

CLEANUP CLEANUP None.

COPY_MODEL COPY_MODEL None.

DROP_ALL_MODELS DROP_ALL_MODELS None.

DROP_MODEL DROP_MODEL None.

EXPORT_MODEL EXPORT_MODEL None.

EXPORT_PMML EXPORT_PMML None.

GRANT_MODEL GRANT_MODEL None.

IMPORT_MODEL IMPORT_MODEL None.

INITIALIZE INITIALIZE Only needed on a system.

IS_INITIALIZED IS_INITIALIZED Only needed on a system.

64 IBM Db2 V11.5: Compatibility Features

Table 34. Functions for model management (continued)

Netezza function function Changes and limitations

LIST_COLPROPS LIST_COLPROPS None.

LIST_COMPONENTS LIST_COMPONENTS None.

LIST_MODELS LIST_MODELS None.

LIST_PARAMS LIST_PARAMS None.

LIST_PRIVILEGES LIST_PRIVILEGES None.

METADATA_ANALYZE No alternative is available. Not applicable.

MIGRATE_MODEL No alternative is available. Not required on Db2 systems.

MODEL_EXISTS MODEL_EXISTS None.

PMML_MODEL PMML_MODEL None.

PRINT_MODEL PRINT_MODEL None.

REGISTER_MODEL No alternative is available. Not required on Db2 systems.

REVOKE_MODEL REVOKE_MODEL None.

Back to top ￪
Probability distributions

Table 35. Functions for probability distributions

Netezza function function Changes and limitations

CUMULATIVE No alternative is available. Not applicable.

DBERN DBERN None.

DBETA DBETA None.

DBINOM DBINOM None.

DCAUCHY DCAUCHY None.

DCHISQ DCHISQ None.

DENSITY DENSITY None.

DEXP DEXP None.

DF DF None.

DFISK DFISK None.

DGAMMA DGAMMA None.

DGEOM DGEOM None.

DHYPER DHYPER None.

DLNORM DLNORM None.

DLOGIS DLOGIS None.

DMWW DMWW None.

DNBINOM DNBINOM None.

Chapter 1. Compatibility features 65

Table 35. Functions for probability distributions (continued)

Netezza function function Changes and limitations

DNORM DNORM None.

DNORM3P DNORM3P None.

DPOIS DPOIS None.

DT DT None.

DUNIF DUNIF None.

DWALD DWALD None.

DWEIBULL DWEIBULL None.

DWILCOX DWILCOX None.

PBERN PBERN None.

PBERN_H PBERN_H None.

PBETA PBETA None.

PBETA_H PBETA_H None.

PBINOM PBINOM None.

PBINOM_H PBINOM_H None.

PCAUCHY PCAUCHY None.

PCAUCHY_H PCAUCHY_H None.

PCHISQ PCHISQ None.

PCHISQ_H PCHISQ_H None.

PCHISQ_S PCHISQ_S None.

PEXP PEXP None.

PEXP_H PEXP_H None.

PF PF None.

PF_H PF_H None.

PFISK PFISK None.

PFISK_H PFISK_H None.

PGAMMA PGAMMA None.

PGAMMA_H PGAMMA_H None.

PGEOM PGEOM None.

PGEOM_H PGEOM_H None.

PHYPER PHYPER None.

PHYPER_H PHYPER_H None.

PLNORM PLNORM None.

PLNORM_H PLNORM_H None.

PLOGIS PLOGIS None.

66 IBM Db2 V11.5: Compatibility Features

Table 35. Functions for probability distributions (continued)

Netezza function function Changes and limitations

PLOGIS_H PLOGIS_H None.

PMWW PMWW None.

PMWW_H PMWW_H None.

PNBINOM PNBINOM None.

PNBINOM_H PNBINOM_H None.

PNORM PNORM None.

PNORM3P PNORM3P None.

PNORM_H PNORM_H None.

PPOINT PPOINT None.

PPOIS PPOIS None.

PPOIS_H PPOIS_H None.

PT PT None.

PT_H PT_H None.

PUNIF PUNIF None.

PUNIF_H PUNIF_H None.

PWALD PWALD None.

PWALD_H PWALD_H None.

PWEIBULL PWEIBULL None.

PWEIBULL_H PWEIBULL_H None.

PWILCOX PWILCOX None.

PWILCOX_H PWILCOX_H None.

QBERN QBERN None.

QBERN_H QBERN_H None.

QBETA QBETA None.

QBETA_H QBETA_H None.

QBINOM QBINOM None.

QBINOM_H QBINOM_H None.

QCAUCHY QCAUCHY None.

QCAUCHY_H QCAUCHY_H None.

QCHISQ QCHISQ None.

QCHISQ_H QCHISQ_H None.

QEXP QEXP None.

QEXP_H QEXP_H None.

QF QF None.

Chapter 1. Compatibility features 67

Table 35. Functions for probability distributions (continued)

Netezza function function Changes and limitations

QF_H QF_H None.

QFISK QFISK None.

QFISK_H QFISK_H None.

QGAMMA QGAMMA None.

QGAMMA_H QGAMMA_H None.

QGEOM QGEOM None.

QGEOM_H QGEOM_H None.

QHYPER QHYPER None.

QHYPER_H QHYPER_H None.

QLNORM QLNORM None.

QLNORM_H QLNORM_H None.

QLOGIS QLOGIS None.

QLOGIS_H QLOGIS_H None.

QMWW QMWW None.

QMWW_H QMWW_H None.

QNBINOM QNBINOM None.

QNBINOM_H QNBINOM_H None.

QNORM QNORM None.

QNORM3P QNORM3P None.

QNORM_H QNORM_H None.

QPOIS QPOIS None.

QPOIS_H QPOIS_H None.

QT QT None.

QT_H QT_H None.

QUNIF QUNIF None.

QUNIF_H QUNIF_H None.

QWALD QWALD None.

QWALD_H QWALD_H None.

QWEIBULL QWEIBULL None.

QWEIBULL_H QWEIBULL_H None.

QWILCOX QWILCOX None.

QWILCOX_H QWILCOX_H None.

Back to top ￪

68 IBM Db2 V11.5: Compatibility Features

Quantiles and outliers

Table 36. Functions for quantiles and outliers

Netezza function function Changes and limitations

IQR No alternative is available. Not applicable.

MEDIAN No alternative is available. Not applicable.

MEDIAN_DISC No alternative is available. Not applicable.

OUTLIERS No alternative is available. Not applicable.

QUANTILE No alternative is available. Not applicable.

QUANTILE_DISC No alternative is available. Not applicable.

QUARTILE No alternative is available. Not applicable.

QUARTILE_DISC No alternative is available. Not applicable.

Back to top ￪
Regression

Table 37. Functions for regression

Netezza function function Changes and limitations

BTBNET_GROW No alternative is available. Not applicable.

GLM No alternative is available. None.

GROW_REGTREE GROW_REGTREE None.

LINEAR_REGRESSION LINEAR_REGRESSION Not available on Linux on IBM z
Systems.

MTBNET_DIFF No alternative is available. Not applicable.

MTBNET_GROW No alternative is available. Not applicable.

PREDICT_GLM No alternative is available. None.

PREDICT_LINEAR_REGRESSION PREDICT_LINEAR_REGRESSION Not available on Linux on IBM z
Systems.

PREDICT_REGTREE PREDICT_REGTREE None.

PRINT_GLM No alternative is available. Not applicable.

PRINT_REGTREE PRINT_MODEL Use PRINT_MODEL instead.

PRUNE_REGTREE PRUNE_REGTREE None.

REGTREE REGTREE None.

TANET_APPLY No alternative is available. Not applicable.

TANET_CLASSAPPLY No alternative is available. Not applicable.

TANET_GROW No alternative is available. Not applicable.

TBNET1G No alternative is available. Not applicable.

TBNET1G2P No alternative is available. Not applicable.

TBNET2G No alternative is available. Not applicable.

Chapter 1. Compatibility features 69

Table 37. Functions for regression (continued)

Netezza function function Changes and limitations

TBNET_APPLY No alternative is available. Not applicable.

TBNET_GROW No alternative is available. Not applicable.

Back to top ￪
Sampling

Table 38. Functions for sampling

Netezza function function Changes and limitations

RANDOM_SAMPLE RANDOM_SAMPLE None.

Back to top ￪
Sequential patterns

Table 39. Functions for sequential patterns

Netezza function function Changes and limitations

PREDICT_SEQRULES PREDICT_SEQRULES None.

PRINT_SEQRULES PRINT_MODEL Use PRINT_MODEL instead.

PRUNE_SEQRULES PRUNE_SEQRULES None.

SEQRULES SEQRULES None.

Back to top ￪
Statistics

Table 40. Functions for statistics

Netezza function function Changes and limitations

ANOVA_CRD_TEST ANOVA_CRD_TEST None.

ANOVA_RBD_TEST ANOVA_RBD_TEST None.

BITABLE No alternative is available. Not applicable.

CHISQ_TEST CHISQ_TEST None.

CHISQ_TEST_AGG CHISQ_TEST_AGG None.

CHISQ_TEST_S_AGG CHISQ_TEST_S_AGG None.

COL2TRCV_MANOVA_ONE_WAY
_TEST

No alternative is available. Not applicable.

COL2TRCV_MANOVA_TWO_WAY
_TEST

No alternative is available. Not applicable.

DROP_SUMMARY1000 DROP_SUMMARY1000 None.

HIST No alternative is available. Not applicable.

JOINT_ENTROPY JOINT_ENTROPY None.

70 IBM Db2 V11.5: Compatibility Features

Table 40. Functions for statistics (continued)

Netezza function function Changes and limitations

KURTOSIS_AGG KURTOSIS_AGG None.

LDF_MANOVA_ONE_WAY_TEST No alternative is available. Not applicable.

LDF_MANOVA_TWO_WAY_TEST No alternative is available. Not applicable.

MANOVA_ONE_WAY_TEST No alternative is available. Not applicable.

MANOVA_TWO_WAY_TEST No alternative is available. Not applicable.

MOMENTS MOMENTS None.

MUTUALINFO MUTUALINFO None.

MUTUALINFO_AGG MUTUALINFO_AGG None.

MWW_TEST MWW_TEST None.

No Netezza function is available. NUMERIC_SUMMARY None.

PRINT_MANOVA_ONE_WAY_TES
T

No alternative is available. Not applicable.

PRINT_MANOVA_TWO_WAY_TES
T

No alternative is available. Not applicable.

SKEWNESS_AGG SKEWNESS_AGG None.

SPEARMAN_CORR SPEARMAN_CORR None.

SPEARMAN_CORR_S No alternative is available. Not applicable.

SUMMARY1000 SUMMARY1000 The talk parameter is
deprecated and has no action.

SUMMARY1000CHAR SUMMARY1000CHAR The talk parameter is
deprecated and has no action.

SUMMARY1000DATE SUMMARY1000DATE The talk parameter is
deprecated and has no action.

SUMMARY1000INTERVAL No alternative is available. Not applicable.

SUMMARY1000NUM SUMMARY1000NUM The talk parameter is
deprecated and has no action.

SUMMARY1000TIME SUMMARY1000TIME The talk parameter is
deprecated and has no action.

SUMMARY1000TIMESTAMP SUMMARY1000TIMESTAMP The talk parameter is
deprecated and has no action.

T_LS_TEST T_LS_TEST The output table has a different
format.

T_LS_TEST_S_AGG T_LS_TEST_S_AGG None.

T_ME_TEST T_ME_TEST The output table has a different
format.

T_ME_TEST_S_AGG T_ME_TEST_S_AGG None.

T_PMD_TEST T_PMD_TEST The output table has a different
format.

Chapter 1. Compatibility features 71

Table 40. Functions for statistics (continued)

Netezza function function Changes and limitations

T_PMD_TEST_S_AGG No alternative is available. Not applicable.

T_TEST_AGG T_TEST_AGG The output table has a different
format.

T_TEST_S_AGG T_TEST_S_AGG None.

No Netezza function is available. SPLIT_TEST_S None.

T_UMD_TEST T_UMD_TEST The output table has a different
format.

UNITABLE No alternative is available. Not applicable.

WILCOXON_TEST WILCOXON_TEST None.

Back to top ￪
Timeseries

Table 41. Functions for timeseries

Netezza function function Changes and limitations

PRINT_TIMESERIES No alternative is available. Not applicable.

TIMESERIES No alternative is available. Not applicable.

Back to top ￪
Utilities

Table 42. Functions for utilities

Netezza function function Changes and limitations

msghelp No alternative is available. Not applicable.

_sp_utl_dropAllAggregates No alternative is available. Not applicable.

_sp_utl_dropAllFunctions No alternative is available. Not applicable.

_sp_utl_dropAllLike No alternative is available. Not applicable.

_sp_utl_dropAllProcedures No alternative is available. Not applicable.

_sp_utl_dropAllUDX No alternative is available. Not applicable.

_sp_utl_justExecute No alternative is available. Not applicable.

DROP_TABLE No alternative is available. Not applicable.

_sp_utl_aggregateExists No alternative is available. Not applicable.

_sp_utl_columnContainsNulls No alternative is available. Not applicable.

_sp_utl_columnExists No alternative is available. Not applicable.

_sp_utl_columnIsId No alternative is available. Not applicable.

_sp_utl_columnIsNumeric No alternative is available. Not applicable.

_sp_utl_columnListExists No alternative is available. Not applicable.

72 IBM Db2 V11.5: Compatibility Features

Table 42. Functions for utilities (continued)

Netezza function function Changes and limitations

_sp_utl_columnsEqualTypes No alternative is available. Not applicable.

_sp_utl_functionExists No alternative is available. Not applicable.

_sp_utl_isTempTable No alternative is available. Not applicable.

_sp_utl_procedureExists No alternative is available. Not applicable.

_sp_utl_relationExists No alternative is available. Not applicable.

_sp_utl_sequenceExists No alternative is available. Not applicable.

_sp_utl_tableExists No alternative is available. Not applicable.

_sp_utl_viewExists No alternative is available. Not applicable.

ISDATE_TINY No alternative is available. Not applicable.

_sp_utl_getColumnType No alternative is available. Not applicable.

_sp_utl_getTableSize No alternative is available. Not applicable.

drand64 No alternative is available. Not applicable.

Back to top ￪
Related information
Analytic stored procedures

IBM PureData System for Analytics (Netezza) and Db2 SQL compatibility
In most cases, Db2 and Netezza products provides equivalent SQL support. For example, in most cases, a
particular Netezza SQL command has an equivalent Db2 SQL statement, which you can use without
modifying your code. In a limited number of cases, changes are required.

The following tables identify areas where Netezza SQL support differs from Db2 SQL support. For SQL
restrictions that are related to stored procedures, see Routines written in NZPLSQL.

Table 43. SQL compatibility: commands

Netezza SQL command Db2 support

ALTER AGGREGATE No Db2 ALTER AGGREGATE statement is available.
Change the definitions of aggregates by using the Db2
ALTER FUNCTION statement. The IBM Database
Harmony Profiler tool converts the ALTER AGGREGATE
command to the ALTER FUNCTION statement.

ALTER FUNCTION The only Netezza ALTER FUNCTION command
parameters that are supported by the Db2 ALTER
FUNCTION statement are FENCED and NOFENCED.
Change the definitions of functions by using the Db2
CREATE [OR REPLACE] FUNCTION statement.

ALTER GROUP No Db2 ALTER GROUP statement is available. Use roles
instead of groups.

ALTER HISTORY CONFIGURATION A Db2 ALTER HISTORY CONFIGURATION statement is
not available. To collect and view historical data about
database usage, use the Db2 monitoring capabilities.

Chapter 1. Compatibility features 73

https://www.ibm.com/support/knowledgecenter/en/SSCJDQ/com.ibm.swg.im.dashdb.analytics.doc/doc/r_analytic_stored_procedures.html
https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.apdv.porting.doc/doc/r_sql_compat_nzplsql.html

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

ALTER LIBRARY No Db2 ALTER LIBRARY statement is available. The
Database Harmony Profiler tool comments out the ALTER
LIBRARY command.

To ensure that dependent libraries are accessible to your
Db2 product, place them in the directory that is specified
by the LIBPATH or PATH environment variable on
Windows operating systems or in the instance-level
function directory ($inst_home_dir/sqllib/
function/) on Linux® and UNIX operating systems.

ALTER SCHEMA The Db2 ALTER SCHEMA statement does not support
some clauses of the Netezza ALTER SCHEMA command:

• The Db2 ALTER SCHEMA statement does not support
the AUTHORIZATION TO clause. Instead, reassign
ownership of the schema by using the Db2 TRANSFER
OWNERSHIP statement.

• The Db2 ALTER SCHEMA statement does not support
the SET PATH clause.

For dynamic SQL statements, the SQL path is the value
of the Db2 CURRENT PATH special register, which you
can change by using the SET PATH command. For
static SQL statements, specify the SQL path by using
the FUNCPATH bind option.

ALTER SESSION No Db2 ALTER SESSION statement is available. Consider
using the WLM_CANCEL_ACTIVITY or
WLM_SET_CONN_ENV procedure.

74 IBM Db2 V11.5: Compatibility Features

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

ALTER TABLE The Db2 ALTER TABLE statement does not support some
of the functionality of the Netezza ALTER TABLE
command:

• The Db2 ALTER TABLE statement does not support the
RENAME TO clause. Instead, use one of the following
approaches:

– Rename the table by using the RENAME statement.
– Drop the table and re-create it with the new name.
– Create an alias with the new name.

• The Db2 ALTER TABLE statement does not support the
SET PRIVILEGES TO clause.

• The row size limit in the Db2 ALTER TABLE statement is
32677.

• The Db2 ALTER TABLE statement does not support the
DEFERRABLE, NOT DEFERRABLE, or INITIALLY
DEFERRED clause. For alternative solutions, consult
your IBM representative. The IBM Database Harmony
Profiler tool comments out the clause.

• The Db2 ALTER TABLE statement does not support the
ORGANIZE ON clause. This clause is used in Netezza for
clustered base tables (CBTs), which are not supported
in Db2 products.

ALTER USER No Db2 ALTER USER statement is available. To alter
users, you can use the web console.

ALTER VIEW The Db2 ALTER VIEW statement does not support all
clauses of the Netezza ALTER VIEW command:

• The Db2 ALTER VIEW statement does not support the
SET PRIVILEGES TO clause.

• The Db2 ALTER VIEW statement does not support the
MATERIALIZE SUSPEND clause, which is used in
Netezza for materialized views. Materialized query
tables (MQTs) are a possible replacement for Netezza
materialized views. The Database Harmony Profiler tool
converts materialized views to MQTs.

To suspend the use of an MQT by the query optimizer,
use one of the following approaches:

– Issue the ALTER TABLE ... DISABLE QUERY
OPTIMIZATION statement.

– Convert the MQT to a regular table by issuing the
ALTER TABLE ... DROP MATERIALIZED QUERY
statement.

Chapter 1. Compatibility features 75

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

ALTER VIEWS ON No Db2 ALTER VIEWS ON statement is available. The
ALTER VIEWS ON command is used in Netezza for
materialized views.

Materialized query tables (MQTs) are a possible
replacement for Netezza materialized views. The
Database Harmony Profiler tool converts materialized
views to MQTs. Modify the MQTs that are associated with
the base table in the ALTER VIEWS ON command.

BEGIN No Db2 BEGIN TRANSACTION statement is available.

The Db2 products automatically begin transactions (units
of work). Remove the BEGIN TRANSACTION command
and, if necessary, adjust the application code to disable
the autocommit feature.

COMMENT ON The Db2 COMMENT ON statement does not support the
LIBRARY and DATABASE object types. Instead on
commenting on a database, comment on a schema.

COMMIT [WORK|TRANSACTION] The TRANSACTION parameter is not supported. Remove
it or use the WORK parameter. (The ROLLBACK
TRANSACTION statement behaves the same way
regardless of whether you specify the WORK parameter.)

CREATE AGGREGATE No Db2 CREATE AGGREGATE statement is available.
Define aggregates by using the Db2 CREATE FUNCTION
statement. The Database Harmony Profiler tool converts
the CREATE AGGREGATE command to the CREATE
FUNCTION statement.

CREATE DATABASE A Db2 CREATE DATABASE statement is not available. The
Database Harmony Profiler tool assumes that the
database has only one schema and converts the CREATE
DATABASE command to a Db2 SET CURRENT SCHEMA
statement so that any subsequently created objects are
placed under the same schema.

CREATE GROUP No Db2 CREATE GROUP statement is available. To create
groups, you can use the web console.

CREATE HISTORY CONFIGURATION A Db2 CREATE HISTORY CONFIGURATION statement is
not available. To collect and view historical data about
database usage, use the Db2 monitoring capabilities.

76 IBM Db2 V11.5: Compatibility Features

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

CREATE [OR REPLACE] FUNCTION The Db2 CREATE FUNCTION statement does not support
all of the clauses of the Netezza CREATE [OR REPLACE]
FUNCTION command:

• The TABLE ALLOWED and TABLE FINAL ALLOWED
clauses have no effect in a Db2 CREATE FUNCTION
statement. The Database Harmony Profiler tool
comments out the TABLE ALLOWED and TABLE FINAL
ALLOWED clauses.

• In Db2 products, the DEPENDENCIES clause is not
used. The Database Harmony Profiler tool comments
out the DEPENDENCIES clause.

To ensure that dependent libraries are accessible, place
them in the directory that is specified by the LIBPATH
or PATH environment variable on Windows operating
systems or in the instance-level function directory
($inst_home_dir/sqllib/function/) on Linux
and UNIX operating systems.

CREATE [OR REPLACE] LIBRARY No Db2 CREATE [OR REPLACE] LIBRARY statement is
available. The Database Harmony Profiler tool comments
out the CREATE [OR REPLACE] LIBRARY command.

To ensure that dependent libraries are accessible, place
them in the directory that is specified by the LIBPATH or
PATH environment variable on Windows operating
systems or in the instance-level function directory
($inst_home_dir/sqllib/function/) on Linux and
UNIX operating systems.

CREATE SCHEDULER RULE No Db2 CREATE SCHEDULER RULE statement is
available. Consider using Db2 WLM capabilities.

CREATE SCHEMA The Db2 CREATE SCHEMA statement does not support
the PATH clause.

For dynamic SQL statements, the SQL path is the value of
the Db2 CURRENT PATH special register, which you can
change by using the SET PATH command. For static SQL
statements, specify the SQL path by using the FUNCPATH
bind option.

Chapter 1. Compatibility features 77

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

CREATE TABLE There are several differences between the Db2 CREATE
TABLE statement and the Netezza CREATE TABLE
command:

• The Db2 CREATE TABLE statement does not support
the ROW SECURITY clause. Consider using row and
column access control (RCAC) instead.

• The NOT NULL constraint must be explicitly specified
for unique and primary key columns in the Db2 CREATE
TABLE statement.

• The Db2 CREATE TABLE statement does not support
the DEFERRABLE, NOT DEFERRABLE, or INITIALLY
DEFERRED clause. For alternative solutions, consult
your IBM representative. The Database Harmony
Profiler tool comments out the clause.

• The Db2 CREATE TABLE statement does not support
the ORGANIZE ON clause. This clause is used in
Netezza for clustered base tables (CBTs), which are not
supported in Db2 products. The Db2 ORGANIZE BY
clause is not equivalent to the Netezza ORGANIZE ON
clause; substituting the ORGANIZE BY clause for the
ORGANIZE ON clause will likely cause problems.

CREATE USER No Db2 CREATE USER statement is available. To create
users, you can use the web console.

DROP GROUP No Db2 DROP GROUP statement is available. Use roles
instead of groups.

DROP HISTORY CONFIGURATION A Db2 DROP HISTORY CONFIGURATION statement is not
available. To collect and view historical data about
database usage, use the Db2 monitoring capabilities.

DROP USER No Db2 DROP USER statement is available. To delete
users, you can use the web console.

GENERATE [EXPRESS] STATISTICS A Db2 GENERATE [EXPRESS] STATISTICS statement is
not available. Use the Db2 RUNSTATS command or
automatic statistics collection.

The IBM Database Harmony Profiler tool converts the
GENERATE STATISTICS command to the RUNSTATS
command. The RUNSTATS command does not support
the column range syntax as used in the GENERATE
STATISTICS command, so the Database Harmony Profiler
tool does not preserve that syntax.

78 IBM Db2 V11.5: Compatibility Features

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

GRANT The Db2 GRANT statement does not support all the
object types and privileges that the Netezza GRANT
command supports:

• The Db2 GRANT statement does not support the
following object types: AGGREGATE, DATABASE,
EXTERNAL, GROUP, MANAGEMENT TABLE,
MANAGEMENT VIEW, SYNONYM, SYSTEM TABLE,
SYSTEM VIEW, and USER. For a suitable alternative,
review the Db2 documentation.

• Some administration privileges are not supported. For a
suitable alternative, review the Db2 documentation.

GROOM TABLE A Db2 GROOM TABLE statement is not available. For
column-organized tables, reorganization is done
automatically. For row-organized tables, use the REORG
TABLE statement.

INSERT The Db2 INSERT statement does not support the
DEFAULT VALUES clause. Replace the DEFAULT VALUES
clause with the DEFAULT keyword for each of the
columns. For example, change INSERT INTO tb1(c1,
c2) DEFAULT VALUES to INSERT INTO tb1(c1, c2)
VALUES (DEFAULT, DEFAULT).

LOCK TABLE The Db2 LOCK TABLE statement does not support the
NOWAIT parameter of the Netezza LOCK TABLE
command. Also, you must use either the SHARE or the
EXCLUSIVE lock mode parameter in the Db2 statement.
Consider replacing the Netezza ACCESS EXCLUSIVE mode
parameter with the Db2 EXCLUSIVE mode parameter, and
consider replacing the Netezza SHARE, SHARE ROW
EXCLUSIVE, and EXCLUSIVE mode parameters with the
Db2 SHARE mode parameter.

The Database Harmony Profiler tool performs the
following actions:

• Removes the NOWAIT parameter
• If you did not specify a mode parameter, adds the IN

EXCLUSIVE MODE clause
• Replaces the ACCESS EXCLUSIVE mode parameter with

the EXCLUSIVE mode parameter
• Replaces the SHARE, SHARE ROW EXCLUSIVE, and

EXCLUSIVE mode parameters with the SHARE mode
parameter

If you use the Database Harmony Profiler tool, you must
manually convert all other mode parameters to SHARE or
EXCLUSIVE. Also, review the LOCK TABLE statements to
ensure that your concurrency requirements are still met.

Chapter 1. Compatibility features 79

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

REVOKE The Db2 REVOKE statement does not support all the
object types and privileges that the Netezza REVOKE
command supports:

• The Db2 REVOKE statement does not support the
following object types: AGGREGATE, DATABASE,
EXTERNAL, GROUP, MANAGEMENT TABLE,
MANAGEMENT VIEW, SYNONYM, SYSTEM TABLE,
SYSTEM VIEW, and USER. For a suitable alternative,
review the Db2 documentation.

• Some administration privileges are not supported. For a
suitable alternative, review the Db2 documentation.

ROLLBACK [WORK|TRANSACTION] The TRANSACTION parameter is not supported. Remove
it or use the WORK parameter. (The ROLLBACK
TRANSACTION statement behaves the same way
regardless of whether you specify the WORK parameter.)

80 IBM Db2 V11.5: Compatibility Features

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

SELECT There are multiple differences between the Db2 SELECT
statement and the Netezza SELECT command, some of
which you can resolve by setting the SQL_COMPAT global
variable to 'NPS':

• In Db2 products, expressions on column aliases in the
SELECT list, as shown in the following example, are not
supported by default:

SELECT c1 AS a, a+3 AS
b FROM t1;

Enable support by setting the SQL_COMPAT global
variable to 'NPS'.

• Referencing SELECT list elements by ordinal positions
in the GROUP BY clause, as shown in the following
example, is not supported by default:

SELECT c1 AS a, c2+c3 AS b,
COUNT(*) AS c FROM t1
GROUP BY 1, 2;

Enable support by setting the SQL_COMPAT global
variable to 'NPS'.

Referencing SELECT list elements by ordinal positions
in the GROUP BY clause is also not supported by
default, but you can enable support by setting the
SQL_COMPAT global variable to 'NPS'.

• Referencing SELECT list elements by aliases in the
GROUP BY clause, as shown in the following example, is
not supported by default:

SELECT c1 as a, count(*)
FROM t1 GROUP BY a
ORDER BY a;

Enable support by setting the SQL_COMPAT global
variable to 'NPS'.

Referencing SELECT list elements by aliases in the
ORDER BY clause is also not supported by default, but
you can enable support by setting the SQL_COMPAT
global variable to 'NPS'.

• The syntax in the following example is not supported by
default:

SELECT A + B as C , C+2 FROM T1

Enable support by setting the SQL_COMPAT global
variable to 'NPS'.

• A column alias in a HAVING or WHERE clause of the
Db2 SELECT statement is not supported. Replace the
alias in the HAVING or WHERE clause with the
corresponding column or expression.

• The ORDER BY clause is not supported in the definition
of a materialized query table (MQT), which is a possible
replacement for a Netezza materialized view. The IBM
Database Harmony Profiler tool converts materialized
views to MQTs.

Rewrite the query to move the ORDER BY clause to an
inner SELECT statement. For example, instead of
SELECT * from tb1 WHERE c1 < 10 ORDER BY
1, you could write SELECT * from (SELECT * FROM
tb1 ORDER BY 1) tbSorted WHERE c1 < 10.

• The FROM clause is mandatory. For example, the
following SELECT statement is not supported:

SELECT constant as
alias;

If you are referencing a value, use the VALUES
statement or use FROM sysibm.sysdummy1 as. If
you are invoking a procedure, use the CALL statement.

• The Db2 SELECT statement does not support the TABLE
WITH FINAL clause. The Database Harmony Profiler
tool removes this clause. Review each occurrence of
this clause to verify that removing it does not impact the
logic of your queries.

• The NATURAL keyword is not supported for joins.
Instead, use a join with explicit conditions.

Chapter 1. Compatibility features 81

Table 43. SQL compatibility: commands (continued)

Netezza SQL command Db2 support

SET Db2 products do not support most Netezza session
variables. Use other techniques to tune and configure
your Db2 product.

SHOW LIBRARY No Db2 SHOW LIBRARY statement is available. The
Database Harmony Profiler tool comments out the SHOW
LIBRARY command.

TRUNCATE TABLE The Db2 TRUNCATE TABLE statement requires the
IMMEDIATE parameter. This parameter specifies that the
truncate operation is processed immediately and cannot
be undone.

Table 44. SQL compatibility: operators

Netezza operator Db2 support

! factorial operator This operator is not supported. Instead, you can create a factorial
function.

^ and ** exponential operators These operators are not supported by default. Enable support by
setting the SQL_COMPAT global variable to 'NPS'.

bitwise XOR operator This operator is not supported by default. Enable support by
setting the SQL_COMPAT global variable to 'NPS'.

<< and >> bitwise left shift and
right shift operators

These operators are not supported. You can replace the operators
with multiplication or division by powers of 2. For example, col1
<< 4 is equivalent to col1 * power(2, 4).

Table 45. SQL compatibility: miscellaneous items

Netezza language construct Db2 support

System views (which have names of _V_viewname or
_VT_viewname) and system tables (which have names of
_T_tablename)

System views and system tables are not
supported. Use the Db2 SYSCAT views,
where possible. Otherwise, create your
own views.

Ampersand (&) in a column name This syntax is not supported unless you
use delimiters, for example, "SALES&".

Underscore (_) as the starting character for an identifier This syntax is not supported unless you
use delimiters, for example, "_SALES".

Compatibility features for Netezza Platform Software (NPS)
Db2 provides features that enable applications that were written for a Netezza Platform Software (NPS)
database to use a Db2 database without having to be rewritten.

Some NPS compatibility features (such as equivalent data type names and the DATASLICEID
pseudocolumn) are always active; others are active only if the SQL_COMPAT global variable is set to
'NPS'.

82 IBM Db2 V11.5: Compatibility Features

Data type aliases
The DATETIME, INT2, INT4, INT8, FLOAT4, FLOAT8, and BPCHAR built-in data types correspond to the
identically named Netezza data types.

• DATETIME is an alias for the TIMESTAMP data type.
• INT2 is an alias for the SMALLINT data type.
• INT4 is an alias for the INTEGER data type.
• INT8 is an alias for the BIGINT data type.
• FLOAT4 is an alias for the REAL data type.
• FLOAT8 is an alias for the DOUBLE data type.
• NUMERIC is an alias for the DECIMAL data type.
• BPCHAR is an alias for VARCHAR data type.

If you have a user-defined data type that uses any of these names, you must use a fully-qualified
reference to ensure that the user-defined data type is not overridden by the built-in data type alias.

DATASLICEID pseudocolumn
Any unresolved and unqualified column reference to the DATASLICEID pseudocolumn is converted to
NODENUMBER function and returns the database partition number for a row. For example, if
DATASLICEID is used in a SELECT clause, the database partition number for each row is returned in the
result set.

The specific row (and table) for which the database partition number is returned by DATASLICEID is
determined from the context of the SQL statement that uses it.

The database partition number returned on transition variables and tables is derived from the current
transition values of the distribution key columns.

Before an unqualified reference to 'DATASLICEID' is translated as a NODENUMBER() function, an attempt
is made to resolve the reference to one of the following items:

• A column within the current SQL query
• A local variable
• A routine parameter
• A global variable

Avoid using 'DATASLICEID' as a column name or a variable name while DATASLICEID pseudocolumn is
needed. All limitations of the DBPARTITIONNUM function (and its alternative, the NODENUMBER
function) apply to the DATASLICEID pseusocolumn.

Examples
Example 1

The following example counts the number of instances in which the row for a given employee in the
EMPLOYEE table is on a different database partition from the description of the employee's
department in the DEPARTMENT table:

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E WHERE D.DEPTNO=E.WORKDEPT AND E.DATASLICEID
<> D.DATASLICEID

Example 2
The following example joins the EMPLOYEE and DEPARTMENT tables so that the rows of the two
tables are on the same database partition:

SELECT * FROM DEPARTMENT D, EMPLOYEE E WHERE E.DATASLICEID = D.DATASLICEID

Chapter 1. Compatibility features 83

Routines written in NZPLSQL
The NZPLSQL language can be used in addition to the SQL PL language.

SQL PL is a procedural programming language that can be used to write routines. NZPLSQL is a different
procedural programming language that is similar to Postgres PL/pgSQL and is used by Netezza Platform
Software (NPS). NZPLSQL statements and grammar describes NZPLSQL and its structure.

A NZPLSQL routine is a sent to the NZPLSQL cross-compiler, which converts it from NZPLSQL to SQL PL
before sending it on to the SQL PL compiler. If a routine is written in SQL PL, the cross-compiler usually
will realize this and will not attempt to convert it before sending it on to the SQL PL compiler. However,
because the cross-compiler might mistake SQL PL code for NZPLSQL code, try to convert it, and fail, it is
recommended that you do not submit routines written in SQL PL.

Limitations for routines written in NZPLSQL
For a routine written in NZPLSQL, the following limitations apply.

• The routine must define exactly one alias for each of its parameters.
• The routine cannot contain argument lists or variable arguments (varargs).
• If the routine returns a non-null value that has a data type other than binary integer or Boolean, the

routine will automatically be converted to a MODIFIES SQL DATA compiled SQL function. This function
can then be invoked in the same way as any other compiled SQL function.

Also, use of the following syntax keywords is restricted:

Syntax Keyword Description

IN EXECUTE If the routine uses a FOR...IN EXECUTE statement to iterate through the
results of a query, it must use a structured record (see “Records in a
FOR...IN EXECUTE statement” on page 87).

INTERVAL The routine cannot use the INTERVAL data type.

LAST_OID The routine cannot use the LAST_OID clause.

RAISE The routine cannot use the DEBUG level for RAISE. It can use the NOTICE
level, but SERVER OUTPUT must be set to ON for you to be able to see the
output.

SELECT The routine can contain a SELECT statement only if that statement contains
a FROM clause. It cannot use a SELECT statement to call another
procedure or to retrieve a scalar value. To call another procedure, the
routine must use a CALL statement.

TIMETZ The routine cannot use the TIMETZ data type.

TRANSACTION_ABORTED The routine cannot issue TRANSACTION_ABORTED exceptions. All
exceptions it issues are routed to OTHERS.

NZPLSQL procedures as functions
A routine that returns a non-null value of data type other than binary integer or Boolean is automatically
converted to a MODIFIES SQL DATA compiled SQL function. You can then invoke this function in the same
way as any other compiled SQL function. A routine that returns a null value, or a binary integer, or a
Boolean can also be created as a function by explicitly replacing the PROCEDURE keyword with the
FUNCTION keyword.

These procedures that are created either implicitly or explicitly as functions must be dropped by using
DROP FUNCTION instead of DROP PROCEDURE.

You can't call these created functions by using the CALL statement but you must use VALUES instead. If
you must use a CALL statement, create an SQL PL procedure that calls the NZPLSQL function. The SQL PL
procedure must match names and arguments of the function and define the return type as an output
parameter.

84 IBM Db2 V11.5: Compatibility Features

https://www.ibm.com/support/knowledgecenter/en/SSULQD_7.2.1/com.ibm.nz.sproc.doc/r_sproc_nzplqsl_language.html

Example

CREATE PROCEDURE MYPROC(INTEGER)
RETURNS VARCHAR(32)
LANGUAGE NZPLSQL
AS
BEGIN_PROC
BEGIN
RETURN 'ABC';
END;
END_PROC;

CREATE PROCEDURE MYPROC(IN myvar INTEGER, OUT output VARCHAR(32))
LANGUAGE SQL
BEGIN
SET output = MYPROC(myvar) ;
END

Records in NZPLSQL
In NZPLSQL, a record can be used in a SELECT operation or FOR statement to hold one database row.

A variable of type RECORD can be used for different selections. Accessing an empty record, or attempting
to assign a value to a field of an empty record, results in a runtime error.

A record can be either structured or unstructured:

• An unstructured record does not specify a row type, and can be used when the structure of the row
being read is unknown. Issue the following statement to declare an unstructured record:

recordname RECORD;

where recordname represents the name of the record.
• A structured record explicitly specifies a row type by means of either an AS keyword or the

%ROWTYPE attribute. Issue one of the following statements to declare a structured record:

recordname RECORD AS row_type;
recordname tablename%ROWTYPE;

where row_type represents the name of a predefined row type and tablename represents the name
of a table whose rows structure corresponds to the desired row type.

To define a row type, issue a CREATE TYPE statement, for example:

CREATE TYPE DEPTROW AS ROW (DEPTNO VARCHAR(3),
 DEPTNAME VARCHAR(29),
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3),
 LOCATION CHAR(16))

Assigning a complete selection into a record or row

You can use the following query to assign a complete selection into a record or row:

SELECT expressions INTO target FROM ...;

The target value can be a record, a row variable, or a comma-separated list of variables and record fields
or row fields. If the query returns several rows, only the first row is moved into the target fields; all others
are discarded.

Note: This interpretation of SELECT INTO is different from that of SQL, in which the INTO target is a newly
created table. To create a table from a SELECT result from within an NZPLSQL procedure, use a CREATE
TABLE AS SELECT statement.

If the target is a row, record, or variable list, the selected values must exactly match the structure of the
target. The FROM keyword can be followed by any valid qualification, grouping, or sorting clauses that can
be specified for a SELECT statement.

Chapter 1. Compatibility features 85

After a record or row is assigned to a record, you can use dot notation to access the fields of that record.
For example, to access the first_name and last_name fields in the record users_rec:

DECLARE
 users_rec RECORD AS users_rowtype;
 full_name varchar;
BEGIN
 SELECT * INTO users_rec FROM users WHERE user_id=3;
 full_name := users_rec.first_name || ' ' || users_rec.last_name;

Checking whether a value was assigned to a record

There are several ways to check whether a value was assigned to a record by a SELECT INTO statement:

• Use the special variable named FOUND of type Boolean immediately after the SELECT INTO statement.
For example:

SELECT * INTO myrec FROM EMP WHERE empname = myname;
IF NOT FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
END IF;

• Use ROW_COUNT >= 1 instead of FOUND.
• Use IS NULL or ISNULL conditionals to test whether a record or row is NULL. For example:

DECLARE
 users_rec RECORD AS users_rowtype;
 full_name varchar;
BEGIN
 SELECT * INTO users_rec FROM users WHERE user_id=3;
 IF users_rec.homepage IS NULL THEN
 -- user entered no homepage, return "http://"
 return 'http://';
 END IF;
END;

Iterating through the results of a query

There are two methods for iterating through the results of a query and manipulating the result data. In
both methods, the record or row is assigned all the rows that are returned by the select clause and the
loop body runs for each row.
Use a FOR...IN statement

The syntax of a FOR...IN statement is:

[<<label>>]
FOR record_or_row IN select_clause
LOOP
 statements
END LOOP;

A FOR...IN statement can use either a structured or an unstructured record type. If the loop is
terminated with an EXIT statement, the last assigned row is still accessible.

For example:

DECLARE
 mviews RECORD AS cs_materialized_views_rowtype;
 -- this record is usable ONLY for the cs_materialized_views table
BEGIN
 CALL cs_log('Refreshing materialized views...');
 FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key
 LOOP
 -- Now "mviews" has one record from cs_materialized_views
 RAISE EXCEPTION, 'Can't execute SQL while processing SQL for %',
 mview.my_name;
 END LOOP;
 CALL cs_log('Done refreshing materialized views.');
 return 1;
end;

86 IBM Db2 V11.5: Compatibility Features

Use a FOR...IN EXECUTE statement
The syntax of a FOR...IN EXECUTE statement is similar to that of a FOR...IN statement, except that the
source SELECT statement is specified as a string expression:

[<<label>>]
FOR record_or_row IN EXECUTE 'select_clause'
LOOP
 statements
END LOOP;

A FOR...IN EXECUTE statement must use a structured record type. A FOR...IN EXECUTE statement
lets you create a dynamic statement. For example, you can pass in the SELECT statement as a
VARCHAR string into the NZPLSQL procedure.

Records in a FOR...IN EXECUTE statement
A record in a FOR...IN EXECUTE statement must be structured, that is, its row type must be explicitly
specified.

Here is an example of an NZPLSQL procedure written for use with Netezza Platform Software (NPS):

CREATE or replace PROCEDURE myproc(varchar(256))
 RETURNS INT4
 LANGUAGE NZPLSQL
AS
BEGIN_PROC
 declare
 sqlstr alias for $1;
 r1 record;
 begin
 FOR r1 IN EXECUTE sqlstr
 loop
 insert into t1 values r1.c1;
 end loop;
 end;
END_PROC@

Because the input SQL statement is unknown, the procedure uses a record with an unstructured (that is,
generic) row type to retrieve the result. However, Db2 requires that such records use a structured data
type. To work around this limitation:

• If you know the structure of the record, define a new row type, then use the AS keyword to specify that
type for the record that retrieves the result. For example, define a new row type called myrecord and
use it to define the type of record r1:

CREATE TYPE myrecord AS ROW (c1 INTEGER)@

CREATE or replace PROCEDURE myproc(varchar(256))
 RETURNS INT4
 LANGUAGE NZPLSQL
AS
BEGIN_PROC
 declare
 sqlstr alias for $1;
 r1 record AS myrecord;
 begin
 FOR r1 IN EXECUTE sqlstr
 loop
 insert into t1 values r1.c1;
 end loop;
 end;
END_PROC@

• If you know that the procedure will select from a particular table (or a table with an identical structure),
use an anchored row type for the record that retrieves the result. For example, if the table being read
from is table t2, use that table to define the row type of record r1:

CREATE or replace PROCEDURE myproc(varchar(256))
 RETURNS INT4
 LANGUAGE NZPLSQL
AS
BEGIN_PROC
 declare

Chapter 1. Compatibility features 87

 sqlstr alias for $1;
 r1 t2%ROWTYPE;
 begin
 FOR r1 IN EXECUTE sqlstr
 loop
 insert into t1 values r1.c1;
 end loop;
 end;
END_PROC@

Returning a result set
Typically, an NZPLSQL procedure returns a simple return value. However, a NZPLSQL procedure can also
be made to return a result set, which has the form of a table.

To create a NZPLSQL procedure that returns a result set:

• Define the procedure with a return clause of the form RETURNS REFTABLE (<table-name>). This
indicates that the procedure is to return a result set with the same layout as the specified table. The
specified table must exist at the time that the procedure is created, although the table can be empty.

• Within the body of the procedure, use the variable REFTABLENAME to refer to the result table.

Example

A 2-column table with the name tbl1 was defined by the following command:

CREATE TABLE tbl1 (i INT4, i2 bigint);

The layout of tbl is:

 Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
I SYSIBM INTEGER 4 0 Yes
I2 SYSIBM BIGINT 8 0 Yes

The following command defines a procedure with the name returntwo that returns a result set that uses
tbl1 as its reference table:

DEV.SCH1(ADMIN)=> CREATE OR REPLACE PROCEDURE returntwo(timestamp) RETURNS
REFTABLE(tbl1) LANGUAGE NZPLSQL AS
BEGIN_PROC
 BEGIN
 EXECUTE IMMEDIATE 'INSERT INTO ' || REFTABLENAME ||' values (1,1)';
 EXECUTE IMMEDIATE 'INSERT INTO ' || REFTABLENAME ||' values (2,2)';
 RETURN REFTABLE;
 END;
 END_PROC;

Call returntwo by issuing the following statement:

DEV.SCH1(ADMIN)=> CALL PROCEDURE returntwo(now());

This produces the following result:

 Result set 1

 I I2
 ----------- --------------------
 1 1
 2 2
 2 record(s) selected.
 Return Status = 0

Restrictions

An NZPLSQL procedure that returns a result set is subject to the following restrictions:

88 IBM Db2 V11.5: Compatibility Features

• The procedure can be invoked only via the CALL statement. When invoked, the database:

– Generates a table name of the form SESSION.<routinename>, where <routinename> represents
the object ID of the procedure that was invoked

– Issues the following statement to create a temporary table, with no initial contents, for the result set:

DECLARE GLOBAL TEMPORARY TABLE <temp-table-name>
 LIKE <table-name> WITH REPLACE ON COMMIT PRESERVE ROWS

– Opens a cursor on SELECT * FROM <temp-table-name> and returns the result set

To use this in a procedure, you must use the REFTABLENAME variable to obtain the name the of
temporary table indicated by <temp-table-name>, and insert your results into that table. This SQL
command must be invoked dynamically to use the REFTABLENAME variable.

• You must return NULL in your procedure by one of the following methods:

– RETURN REFTABLE; (this is the recommended method)
– RETURN NULL;
– RETURN;
– By not specifying a RETURN clause

If you do not return NULL, the procedure returns an error.
• One NZPLSQL procedure that returns a result set can call another. However, due to the temporary-table

logic that it employs, if a NZPLSQL procedure that returns a result set calls itself (either directly or
recursively), the results are unpredictable. Therefore, avoid designing such procedures.

• Do not issue a ROLLBACK command inside the procedure body unless you first issue a COMMIT
command to create the temporary table in which the result is to be stored. Otherwise, the procedure
will fail.

• If you run a stored procedure that runs a SELECT statement on a large data set, there might not be
enough memory to hold the result. For example, the following stored procedure reads each record from
the table with the name table1 and carries out an action on each record:

FOR rec in SELECT * from table1 LOOP
--perform processing steps
END LOOP:

The SELECT operation caches its results in memory or as a temporary file on disk, depending upon the
size of the result set. The procedure then applies the steps in the inner processing loop. If the input
table is very large, the temporary file might use up all the free disk space on the host.

Using column aliases in a HAVING clause
When operating in NPS compatibility mode, you can specify the exposed name of a SELECT clause column
in the HAVING clause of a query.

Whether NPS compatibility mode is being used depends on the setting of the SQL_COMPAT global
variable:

• When SQL_COMPAT='NPS', a HAVING clause can refer to a column of a SELECT clause by either its
name or its exposed name.

• Otherwise, a HAVING clause can refer to a column of a SELECT clause only by its name, not by its
exposed name.

Examples

The following examples illustrate the use of exposed names of SELECT clause columns in having clauses
when SQL_COMPAT='NPS':

SELECT c1 as a, COUNT(*) as c
FROM t1
GROUP BY c1 having a > 20 and c > 10;

Chapter 1. Compatibility features 89

SELECT t1.c1 as a, t1.c2+t2.c3 as b, COUNT(*) as c
FROM t1 JOIN t2 ON t1.c1 = t2.c1
GROUP BY t1.c1, b having a+5 = 10 ;

SELECT var(c1) as a
FROM t1
GROUP BY c1 having a > 200

Using column aliases in a WHERE clause
When operating in NPS compatibility mode, you can reference an expression in the WHERE clause by its
alias in the select list.

Whether NPS compatibility mode is being used depends on the setting of the SQL_COMPAT global
variable.

When the SQL_COMPAT='NPS' parameter is set, an expression in the WHERE clause can be referenced
by its alias in the select list.

Attention: The SQL_COMPAT='NPS' feature is only available in Db2 Version 11.5 Mod Pack 1 or
later versions.

The WHERE clause can contain non-correlated aliases and correlated aliases.

Examples

The following examples illustrate the use of non-correlated column aliases in the WHERE clause:

SELECT c1 as a
FROM t1
WHERE a = 5;

SELECT t1.c1 as a, t1.c2+t2.c3 as b
FROM t1 , t2
WHERE a = t2.c2;

SELECT abs(c1) as a
FROM t1
WHERE a = 4;

SELECT length(c1) as a
FROM t1
WHERE a = 5
GROUP BY c1;

The following examples illustrate the use of correlated column aliases in the WHERE clause:

select c1 as a1
FROM t1
WHERE c2 in (select c3 from t2 where c3 = a1);

select abs(c1) as a1
FROM t1
WHERE c2 in (select c3 as a3 from t2 where a3 = a1);

Double-dot notation
When operating in NPS compatibility mode, you can use double-dot notation to specify a database object.

Double-dot notation follows this format:

<NPS_DatabaseName>..<NPS_ObjectName>

The two dots indicate that the schema name is not specified. How such a statement is interpreted
depends on the setting of the SQL_COMPAT global variable:

• When SQL_COMPAT='NPS', the statement is interpreted as:

<SchemaName>.<ObjectName>

90 IBM Db2 V11.5: Compatibility Features

Provided that you moved your NPS database to a schema that has the same name as the database, you
can use existing SQL scripts that were written for the NPS database without having to adjust their
syntax.

• Otherwise, because two dots refer to a method invocation of an abstract data type, a statement with
two dots would result in a syntax error.

BETWEEN scalar functions syntax
In NPS compatibility mode, the DAYS_BETWEEN, HOURS_BETWEEN, MINUTES_BETWEEN,
MONTHS_BETWEEN, SECONDS_BETWEEN, and WEEK_BETWEEN scalar functions always return a
positive number.

Whether NPS compatibility mode is being used depends on the setting of the SQL_COMPAT global
variable.

When SQL_COMPAT='NPS', the DAYS_BETWEEN, HOURS_BETWEEN, MINUTES_BETWEEN,
MONTHS_BETWEEN, SECONDS_BETWEEN, and WEEK_BETWEEN scalar functions always return a
positive number.

For information about the syntax of these scalar functions, see the following descriptions:

• DAYS_BETWEEN scalar function
• HOURS_BETWEEN scalar function
• MINUTES_BETWEEN scalar function
• MONTHS_BETWEEN scalar function
• SECONDS_BETWEEN scalar function
• WEEKS_BETWEEN scalar function

TRANSLATE scalar function syntax
The syntax of the TRANSLATE scalar function depends on whether NPS compatibility mode is being used.

Whether NPS compatibility mode is being used depends on the setting of the SQL_COMPAT global
variable:

• When SQL_COMPAT='NPS', the syntax of the TRANSLATE scalar function is as described in “Syntax of
the TRANSLATE scalar function when SQL_COMPAT='NPS'” on page 92. For example:

translate('12345', '143', 'ax')

returns:

a2x5

In the string '12345':

– The character 1 is translated to a.
– The character 4 is translated to x.
– The character 3 does not have a corresponding character in the "to" string, so it is removed.

• Otherwise, the syntax of the TRANSLATE scalar function is as described in TRANSLATE scalar function.
For example:

translate('12345', 'ax', '143')

returns:

a2 x5

In the string '12345':

– The character 1 is translated to a.

Chapter 1. Compatibility features 91

– The character 4 is translated to x.
– The character 3 does not have a corresponding character in the "to" string, so it is replaced with a

padding character. The default padding character is a blank.

Syntax of the TRANSLATE scalar function when SQL_COMPAT='NPS'

If SQL_COMPAT='NPS', the syntax of the TRANSLATE scalar function is:
TRANSLATE (char-string-exp , from-string-exp , to-string-exp)

This function converts all the characters in char-string-exp that also occur in from-string-exp to the
corresponding characters in to-string-exp. If from-string-exp is longer than to-string-exp, occurrences of
the extra characters in from-string-exp are removed from char-string-exp.

char-string-exp
The string that is to be converted. The expression must return a value that is a built-in CHAR,
VARCHAR, GRAPHIC, VARGRAPHIC, numeric, or datetime data type. If the value is not a CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type, it is implicitly cast to VARCHAR before evaluating the
function.

from-string-exp
A string of characters that, if found in char-string-exp, are to be converted to the corresponding
character in to-string-exp.

The expression must return a value that is a built-in CHAR, VARCHAR, GRAPHIC, VARGRAPHIC,
numeric, or datetime data type. If the value is not a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type, it is implicitly cast to VARCHAR before evaluating the function. If from-string-exp contains
duplicate characters, the first one found will be used, and the duplicates will be ignored. If to-string-
exp is longer than from-string-exp, the surplus characters will be ignored. If to-string-exp is specified,
from-string-exp must also be specified.

to-string-exp
A string of characters to which certain characters in char-string-exp arre to be converted.

The expression must return a value that is a built-in CHAR, VARCHAR, GRAPHIC, VARGRAPHIC,
numeric, or datetime data type. If the value is not a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type, it is implicitly cast to VARCHAR before evaluating the function. If a value for to-string-exp is not
specified, and the data type is not graphic, all characters in char-string-exp will be in monocase; that
is, the characters a-z will be converted to the characters A-Z, and other characters will be converted
to their uppercase equivalents, if they exist. For example, in code page 850, é maps to É, but ÿ is not
mapped, because code page 850 does not include Ÿ. If the code point length of the result character is
not the same as the code point length of the source character, the source character is not converted.

Operators
Which symbols are used to represent operators in expressions depends on whether NPS compatibility
mode is being used.

Whether NPS compatibility mode is being used depends on the setting of the SQL_COMPAT global
variable:

• When SQL_COMPAT='NPS', the operators ^ and ** are both interpreted as the exponential operator,
and the operator # is interpreted as bitwise XOR.

• Otherwise, the operator ^ is interpreted as bitwise XOR, the operator ** is interpreted as the
exponential operator, and the operator # has no meaning (see Expressions).

92 IBM Db2 V11.5: Compatibility Features

Grouping by SELECT clause columns
When operating in NPS compatibility mode, you can specify the ordinal position or exposed name of a
SELECT clause column when grouping the results of a query.

A GROUP BY clause groups the results of a query that have matching values for one or more grouping
expressions. Each column included in a grouping expression must unambiguously identify a column of the
query's SELECT clause or an exposed column of the query's intermediate result. If a SELECT clause
contains column expressions that are not aggregate expressions, and if a GROUP BY clause is specified,
those column expressions must be in the GROUP BY clause. For example:

SELECT c1 as a, c2+c3 as b, COUNT(*) as c
FROM t1
GROUP BY c1, c2+c3;

The syntax of a GROUP BY clause is described in group-by-clause.

Whether NPS compatibility mode is being used depends on the setting of the SQL_COMPAT global
variable:

• When SQL_COMPAT='NPS', a grouping expression can refer to a SELECT clause column not only by its
name, but also by its ordinal position in the SELECT clause or by its exposed name. This applies to
simple grouping expressions, grouping sets, and super groups. The following restrictions apply:

– An expression is not allowed on an ordinal position or exposed name of a SELECT clause.
– An integer expression is not treated as an ordinal position of a SELECT clause. Instead, it is treated as

a constant and results are grouped by the constant value.
– The ordinal position of a SELECT clause column cannot be less than one or greater than the number

of columns in the result.
• Otherwise, a grouping expression can refer to a SELECT clause column only by its name, not by its

ordinal position in the SELECT clause or by its exposed name.

Examples

The following examples illustrate the use of ordinal positions and exposed names of SELECT clause
columns in GROUP BY clauses when SQL_COMPAT='NPS':

• A simple grouping expression in which columns c1 and c2+c3 are referred to by their ordinal positions
in the SELECT clause (1 and 2):

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY 1, 2;

• A simple grouping expression in which columns c1 and c2+c3 are referred to by their exposed names (a
and b):

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY a, b;

• A simple grouping expression in which the GROUP BY clause also references an exposed column of the
query's intermediate result (c6):

SELECT c1 as a, c2+c3 as b, c4 || c5 as c, COUNT(*) as d
FROM t1
GROUP BY 1, b, c4, c5, c6;

• A grouping set in which columns c1 and c2+c3 are referred to by their ordinal positions in the SELECT
clause (1 and 2):

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY GROUPING SETS ((1, 2), (1), (2));

• A grouping set in which columns c1 and c2+c3 are referred to by their exposed names (a and b):

Chapter 1. Compatibility features 93

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY GROUPING SETS ((a, b), (a), (b));

• A grouping set in which columns c1 and c2+c3 are referred to by both their ordinal positions in the
SELECT clause (1 and 2) and their exposed names (a and b):

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY GROUPING SETS ((1, b), (a), (2));

• A super group in which columns c1 and c2+c3 are referred to by their ordinal positions in the SELECT
clause (1 and 2):

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY ROLLUP (1), CUBE (1, 2);

• A super group in which columns c1 and c2+c3 are referred to by their exposed names (a and b):

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY ROLLUP (a), CUBE (a, b);

• A super group in which columns c1 and c2+c3 are referred to by both their ordinal positions in the
SELECT clause (1 and 2) and their exposed names (a and b):

SELECT c1 AS a, c2+c3 AS b, COUNT(*) AS c
FROM t1
GROUP BY a, ROLLUP (a, 2), CUBE (b);

• Each of the following statements groups by the column t.c1:

SELECT c1 FROM t GROUP BY 1
 SELECT c1 FROM t GROUP BY c1
 SELECT c1 AS c1_alias FROM t GROUP BY c1_alias

However, in the following statement, the 1 in c2+1 is interpreted as a number, not as an ordinal
position, so c2+1 is not equivalent to c2+c1:

SELECT c1,c2 FROM t GROUP BY c2+1

Expressions refer to column aliases
When operating in NPS compatibility mode, an expression can refer to column aliases that are set in the
select list.

Whether you are operating in NPS compatibility mode depends on the setting of the SQL_COMPAT global
variable:

• When SQL_COMPAT='NPS', an expression can refer to either a column name or a column alias that is
set in the select list. The column resolution order for an unqualified column reference in a select list is:

1. Resolve as a procedure argument or variable references.
2. Resolve in the input tables of the current operation.
3. Resolve against column aliases that appear before this reference in the select list.
4. Resolve as a correlated column reference.
5. Resolve as a trigger reference.
6. Resolve in an external reference table (used by LOAD).
7. Resolve as a global variable reference.

• Otherwise, a grouping expression can refer only to a column name.

94 IBM Db2 V11.5: Compatibility Features

Examples

The following examples illustrate the use, in an expression, of column aliases (a and b) that are set in the
select list:

SELECT c1 AS a, a+3 AS b FROM t1;

SELECT c1 AS a, ABS(a) AS b FROM t1 GROUP BY a, b HAVING c1 < 0;

SELECT c1+c3 AS a, CASE WHEN a < 5 THEN a ELSE NULL END AS b FROM t1;

CREATE TABLE statement can use CTAS syntax
When operating in NPS compatibility mode, the AS clause of a CREATE TABLE statement can use the
same syntax as the corresponding clause of a Netezza CREATE TABLE AS command (sometimes referred
to as a CTAS command).

Note: When the EXPLAIN mode is ON and a CTAS statement is explained, the target table is created but
no data is loaded into it.

Whether you are operating in NPS compatibility mode depends on the setting of the SQL_COMPAT global
variable:

• When SQL_COMPAT='NPS', the AS clause of a CREATE TABLE statement can use the following syntax:

AS fullselect
1

(fullselect)
WITH DATA

WITH NO DATA

Notes:
1 The table is populated with the result of the query that is specified in the fullselect statement. This
is equivalent to specifying (fullselect) WITH DATA.

• Otherwise, the AS clause of a CREATE TABLE statement must use the following syntax:
AS (fullselect) WITH DATA

WITH NO DATA

If WITH DATA is specified, the table is populated with the result of the query that is specified in the
fullselect statement. If WITH NO DATA is specified, the fullselect statement is used only to define the
table, but the table is not populated with the results of the query.

SUBSTR allows non-positive start values
When operating in NPS compatibility mode, the SUBSTR scalar function allows the start value to be
negative, zero, or positive.

The start argument of the SUBSTR scalar function specifies the position, relative to the beginning of the
input expression, from which the substring is to be calculated.

For example:

• Position 1 is the first string unit of the input expression.
• Position 2 is one position to the right of position 1.
• Position 0 is one position to the left of position 1.
• Position -1 is two positions to the left of position 1.

Which values are valid for the start argument is determined by the SQL_COMPAT global variable:

• If SQL_COMPAT='NPS', the value can be any positive, zero, or negative number:
• Otherwise, the value must be at least 1 and at most the maximum length of the input string (SQLSTATE

22011 if out of range). Also, it must be specified as a number of string units in the context of the
database code page, not the application code page.

Chapter 1. Compatibility features 95

Examples

If SQL_COMPAT='NPS':

• The statement SUBSTR('abcd',1,2) returns 'ab'.
• The statement SUBSTR('abcd',2,2) returns 'bc'.
• The statement SUBSTR('abcd',0,2) returns 'a'.
• The statement SUBSTR('abcd',-1,2) returns a zero-length string.
• The statement SUBSTR('BLUE JAY',0,4) returns 'BLU'.
• The statement SUBSTR('BLUE JAY',-1,4) returns 'BL'.

AGE returns a decimal duration
When operating in NPS compatibility mode, the AGE scalar function returns a decimal duration instead of
an integer value.

Whether NPS compatibility mode is being used depends on the setting of the SQL_COMPAT global
variable:

• When SQL_COMPAT='NPS', the AGE scalar function returns a decimal duration:

– When a single argument is specified and the data type of the input argument is DATE, the AGE scalar
function returns a date duration.

– When a single argument is specified and the data type of the input argument is TIMESTAMP, the AGE
scalar function returns a timestamp duration.

– When two arguments are specified and the data type of both input arguments is DATE, the AGE scalar
function returns a date duration.

– When two arguments are specified and the data type of either input argument is TIMESTAMP, the
AGE scalar function returns a timestamp duration.

For more information about date and timestamp durations, see Datetime operations and durations.
• Otherwise, the AGE scalar function returns an integer value as described in AGE scalar function.

If SQL_COMPAT='NPS'... ...is equivalent to...

AGE(date-expression) (CURRENT_DATE – date-expression)

AGE(timestamp-expression) (CURRENT_TIMESTAMP – timestamp-
expression)

AGE(date-expression1,date-expression2) (date-expression1 - date-expression2)

AGE(timestamp-expression1,timestamp-
expression2)

(timestamp-expression1 - timestamp-
expression2)

Precision and scale for DECIMAL and NUMERIC scalar functions
The default precision and scale used by the DECIMAL and NUMERIC scalar functions depend on whether
NPS compatibility mode is being used.

The default precision and scale used by the DECIMAL and NUMERIC scalar functions depend on the
setting of the SQL_COMPAT global variable:

• When SQL_COMPAT='NPS' and the data type of the input expression is:

– DECIMAL, the default precision and scale are the same as the precision and scale of the input data.
– REAL or DOUBLE, the default precision is 15 and the default scale is 6.

• Otherwise, the default precision and scale are as described in DECIMAL or DEC scalar function.

96 IBM Db2 V11.5: Compatibility Features

Installing the DB SQL Extension Toolkit
You can install the DB SQL Extension Toolkit in your Db2 environment to add a variety of functions that
perform XML processing, compression, hashing, and other analytics that you used in your Netezza SQL
queries.

About this task
DB SQL Extension Toolkit is supported on Db2 Warehouse, Db2 Warehouse on Cloud, and IBM Integrated
Analytics System. You can download the tool from IBM DeveloperWorks page.

For the list of functions that are implemented, see Release notes.

Refer to this link for details of available functions https://www.ibm.com/support/knowledgecenter/en/
SSULQD_7.2.1/com.ibm.nz.sqltk.doc/c_sqltk_plg_overview.html

Prerequisites:

• Db2 client driver must be installed on the system. CLPPLUS is required to run the setup.
• Database user credentials which has the privileges to create schema/functions in database.

Usage:

./setup.py [-user USER -schema SCHEMA] {[-dsn DSN] | [-pw PASS -port PORT -db DATABASE -host
HOST_IP]} [-cleanup]

 -h, --help show this help message and exit
 -user USER Username with which you want to register udx. Default is bluadmin.
 -pw PW Password of -u user; prompts user if -u is provided.
 -host HOST Host IP if you're using Db2WoC. Default is current host's IP.
 -port PORT Port number in case of SSL connections. Default is 50000.
 -db DB Database name. Default is BLUDB.
 -dsn DSN Used in case of SSL connection mostly.
 -schema SCHEMA Schema name in which user wants to register the UDXes. Default is $USER.
 -cleanup Cleanup the sqltoolkit funtions created.

Procedure

1. Download the package according to the architecture of your database server. For example, for x86_64
platform:

[bluadmin@host - Db2wh ga_1.2]$ uname -i
 x86_64
 [bluadmin@host - Db2wh ga_1.2]$ ls
 db_sqltoolkit_x86_64_1.2.tgz

2. Extract the package to the location accessible to the user you logged in:

-- tar -xzf db_sqltoolkit_arch.tgz

Example:

 [bluadmin@host - Db2wh ga_1.2]$ ls
 db_sqltoolkit_x86_64 db_sqltoolkit_x86_64_1.2.tgz

3. Change the directory to db_sqltoolkit_arch.
Example:

Chapter 1. Compatibility features 97

https://community.ibm.com/community/user/hybriddatamanagement/viewdocument/db2-sql-extension-toolkit-release?CommunityKey=71ceaea3-db2c-451d-87d1-51f254454c6a&tab=librarydocuments
https://www.ibm.com/support/knowledgecenter/en/SSULQD_7.2.1/com.ibm.nz.sqltk.doc/c_sqltk_plg_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSULQD_7.2.1/com.ibm.nz.sqltk.doc/c_sqltk_plg_overview.html

[bluadmin@host - Db2wh ga_1.2]$ cd db_sqltoolkit_x86_64
 [bluadmin@host - Db2wh db_sqltoolkit_x86_64]$ ll
 total 4100
 -rw-r--r-- 1 bluadmin bluadmin 40011 Sep 3 12:39 create_sql_function.base
 -rw-r--r-- 1 bluadmin bluadmin 182 Sep 5 13:09 deploy.base
 -rw-r--r-- 1 bluadmin bluadmin 536 Aug 14 14:19 deploy_toolkit.cpp
 -rw-r--r-- 1 bluadmin bluadmin 8556 Sep 5 13:33 drop_sql_function.base
 -rw-r--r-- 1 bluadmin bluadmin 22 Sep 5 10:10 get_string_units.base
 -rw-r--r-- 1 bluadmin bluadmin 80 Aug 29 14:05 get_upload_path.sql
 -rw-r--r-- 1 bluadmin bluadmin 2069 Aug 14 14:19 README
 -rwxr-xr-x 1 bluadmin bluadmin 11932 Sep 5 14:31 setup.py
 -rw-r--r-- 1 bluadmin bluadmin 4106240 Aug 14 14:19 toolkit_libs.tar
 -rw-r--r-- 1 bluadmin bluadmin 36 Aug 29 14:04 upload.sql

The directory contains a setup.sh file.
4. Run ./setup.sh -h to display help for options.
5. When DSN option is used, only the user, schema, and cleanup options are valid. Other connection

options are ignored.

Note: When using DSN option, add the DSN as follows:

a. In catalog, using db_catalog command.
b. Add DSN and database in db2dsdriver.cfg using db2cli writecfg. This enables WebAPIs

required for CLPPlus.
6. If the password is not provided in the command line argument, you will be prompted for it. In case of

DSN, enter the password only when prompted. Even if the password is provided as command line
argument, it will be ignored in case of DSN.

[bluadmin@host - Db2wh db_sqltoolkit_x86_64]$./setup.py -schema sqltk
 [INFO] : Checking required files ...
 [INFO] : Connecting user bluadmin with 172.16.176.74:50000/BLUDB
 Enter password for bluadmin :
 [INFO] : STRING_UNITS detected as : SYSTEM
 [INFO] : The files have been uploaded.
 [INFO] : Registering the functions ...
 [INFO] : Successfully operated ..
 [bluadmin@host - Db2wh db_sqltoolkit_x86_64]$

Note: It is advised to use the function with SCHEMA_NAME in which you've registered the toolkit.
Otherwise, it is possible that you may get unexpected results due to an already existing function with
same name. This function may exist in schema with higher precedence in CURRENT_PATH.

Example:

db2 => values CURRENT_PATH

1

"SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","BLUADMIN"

In the above path, SYSIBM schema has the highest precedence. If a function exists in both
SYSIBM and BLUADMIN schemas, and you run that function without mentioning the schema, the
version in SYSIBM will be executed.

db2 => values BLUADMIN.COMPRESS('some_string')

Known issues:

• For ARRAY_COMBINE function, more than one character delimiter does not work.
• ENCRYPT and COMPRESS results may vary as compared to Netezza. If you encrypt a string using

ENCRYPT function and use DECRYPT function on result of former returns original string. Similar for
COMPRESS and DECOMPRESS functions. For example, VALUES(DECRYPT(ENCRYPT('string'))
= 'string'

98 IBM Db2 V11.5: Compatibility Features

Best practices

• NVARCHAR is internally handled in VARCHAR in Db2. Thus, registering the functions with VARCHAR
variant only will internally handle NVARCHAR as well.

• ARRAY objects are fits in VARCHAR column of the table. It is user's responsibility to allocate
appropriate memory in VARCHAR.

For example, VARCHAR(100) might give error while adding multiple BIGINT values. However, changing
it to VARCHAR(10000) will solve the issue.

• Since BYTEINT is converted to SMALLINT in db2, ARRAY(1) gives error for such query. User is advised
to use ARRAY(2) , as BYTEINT values are handled in SMALLINT.

• User needs to use functions with schema name under which they are registered. Schema will be the
user name with which the package was installed.

• Output representation is different for DOUBLE/BOOLEAN in Db2 compared to PDA. So, you might
observe output difference in case you are using DOUBLE/BOOLEAN data types with the functions.

• If your workload/query involves "NCHAR", "NVARCHAR" data then your system must be set with
appropriate STRING_UNITS configurations.

Uninstalling the DB SQL Extension Toolkit
The cleanup of the SQL Extension Toolkit requires the schema which was provided while installing. If not
provided, the user with which the script is run will be treated as schema name.

Procedure

Use the following command to uninstall the tool:

[bluadmin@host - Db2wh db_sqltoolkit_x86_64]$./setup.py -schema sqltk -cleanup
 [INFO] : Checking required files ...
 [INFO] : Connecting user bluadmin with 172.16.176.74:50000/BLUDB
 Enter password for bluadmin :
 [INFO] : STRING_UNITS detected as : SYSTEM
 [INFO] : De-registering functions ...
 [INFO] : Successfully operated ..
 [bluadmin@host - Db2wh db_sqltoolkit_x86_64]$

Examples

Installing the toolkit:

• using connection identifiers:

./setup.py -user bluadmin -host myhost_ip -schema db_toolkit

• using DSN:

./setup.py -user bluadmin -dsn MY_DSN -schema db_toolkit

Uninstalling the toolkit:

• using connection identifiers:

./setup.py -user bluadmin -host myhost_ip -schema db_toolkit -cleanup

• using DSN:

./setup.py -user bluadmin -dsn MY_DSN -schema db_toolkit -cleanup

Using DB2_REVERSE_NULL_ORDER
In Db2, NULL values are considered higher than any other values. By enabling NULL ordering, NULLS are
considered as the smallest values in sorting. You can enable this new option by setting the

Chapter 1. Compatibility features 99

DB2_REVERSE_NULL_ORDER registry variable to DB2_REVERSE_NULL_ORDER=TRUE. By default, the
DB2_REVERSE_NULL_ORDER registry variable is set to FALSE.

To enable, set the registry variable DB2_REVERSE_NULL_ORDER to TRUE. By default,
DB2_REVERSE_NULL_ORDER is set to FALSE.

The following examples illustrate the use of DB2_REVERSE_NULL_ORDER:

CREATE table t1 (c1 integer, c2 char(1));
INSERT into t1 values
(1, 'A'),(2, NULL),(3, 'C'),(4, NULL),(5, 'E');

With DB2_REVERSE_NULL_ORDER disabled, select * from t1 order by c2:

Table 46.

c1 c2

1 A

3 C

5 E

2 -

4 -

With DB2_REVERSE_NULL_ORDER enabled, the following table displays DB2_REVERSE_NULL_ORDER
set to TRUE.

Table 47.

c1 c2

2 -

4 -

1 A

3 C

5 E

IBM Database Conversion Workbench (DCW)
IBM Database Conversion Workbench (DCW) is a no-charge plug-in that adds database migration
capabilities to IBM Data Studio.

You can download both Data Studio and DCW from IBM developerWorks.

Related information
DCW home page

100 IBM Db2 V11.5: Compatibility Features

http://www.ibm.com/developerworks/downloads/im/data/
https://community.ibm.com/community/user/hybriddatamanagement/communities/community-home?CommunityKey=582cbbdf-3409-4e35-b111-f1c05ee59b99
https://community.ibm.com/community/user/hybriddatamanagement/communities/community-home?CommunityKey=582cbbdf-3409-4e35-b111-f1c05ee59b99

Index

A
actual parameter 35
alert log 35
archive log 35
archive log mode 35

B
bdump directory 35
BPCHAR data type

details 83

C
character constants 10
compatibility

features summary 1, 82, 84, 85, 87–96, 100
concurrency

improving 24
configuration parameters

date_compat 1, 20
number_compat 3, 20
varchar2_compat 6, 20

CONNECT BY clause 13
CONNECT_BY_ROOT unary operator 17
constants

handling 10
cur_commit database configuration parameter

overview 24
cursor sharing 35
cursors

insensitive 22

D
data

access levels 10
data block 35
data buffer cache 35
data dictionaries

Db2-Oracle terminology mapping 35
Oracle

compatible views 26
data dictionary cache 35
data file 35
data types

BPCHAR 83
DATE 1
FLOAT4 83
FLOAT8 83
INT2 83
INT4 83
INT8 83
NUMBER 3
NVARCHAR2 6

data types (continued)
VARCHAR2 6

data-access levels
routines 10
stored procedures 10
user-defined functions 10

database links
syntax 28
terminology mapping 35

DATASLICEID
ROWNUM 83

DATASLICEID pseudocolumn 83
DATE data type

based on TIMESTAMP(0) 1
date_compat database configuration parameter

DATE based on TIMESTAMP(0) 1
overview 20

DB2_COMPATIBILITY_VECTOR registry variable
details 29

deadlocks
avoiding 24

DUAL table 22
dynamic performance views 35

F
FLOAT4 data type

details 83
FLOAT8 data type

details 83
formal parameter 35
functions

scalar
CONCAT 6
INSERT 6
LENGTH 6
REPLACE 6
SUBSTR 6
SYS_CONNECT_BY_PATH 19
TRANSLATE 6
TRIM 6

G
global index 35
graphic data

constants
handling 10

H
hierarchical queries 13

I
inactive log 35

Index 101

init.ora 35
INOUT parameters 23
insensitive cursors 22
INT2 data type

details 83
INT4 data type

details 83
INT8 data type

details 83

L
large pool 35
LEVEL pseudocolumn 13
library cache 35
literals

handling 10
local index 35
locks

timeouts
avoiding 24

M
materialized view 35

N
noarchive log mode 35
NULL-producer 11
NUMBER data type

details 3
number_compat database configuration parameter

effect 3
overview 20

NVARCHAR2 data type 6

O
OLAP

specification 21
operators

CONNECT_BY_ROOT 17
outer join 11
PRIOR 18
unary 13

Oracle
application enablement 33
data dictionary--compatible views 26
database link syntax 28
Db2 terminology mapping 35

Oracle Call Interface (OCI) 35
ORACLE_SID environment variable 35

P
parameters

INOUT 23
PL/SQL

Oracle application enablement 33
PRIOR unary operator 18
program global area (PGA) 35
pseudocolumns

pseudocolumns (continued)
LEVEL 13
ROWNUM 21

Q
queries

hierarchical 13
query history 59

R
redo log 35
registry variables

DB2_COMPATIBILITY_VECTOR 29
rounding 3
routines

data-access levels 10
ROW_NUMBER() OVER() function 21
ROWNUM pseudocolumn 21

S
segment 35
Server Parameter File (SPFILE) 35
session 35
START WITH clause 13
startup nomount 35
stored procedures

data-access levels 10
strings

NVARCHAR2 data type 6
VARCHAR2 data type 6

synonyms
DB2_COMPATIBILITY_VECTOR registry variable 28
Db2-Oracle terminology mapping 35

SYS_CONNECT_BY_PATH scalar function 19
system global area (SGA) 35
SYSTEM table space 35

T
tables

DUAL 22
terminology mapping

Db2-Oracle 35
TIMESTAMP(0) data type

DATE data type based on 1

U
UDFs

data-access levels 10
unary operators

CONNECT_BY_ROOT 13, 17
PRIOR 18

user global area (UGA) 35

V
VARCHAR2 data type

details 6

102 IBM Db2 V11.5: Compatibility Features

varchar2_compat database configuration parameter
overview 20
VARCHAR2 data type 6

views
Oracle data dictionary compatibility 26

W
workload monitoring 59

Index 103

104 IBM Db2 V11.5: Compatibility Features

IBM®

	Contents
	Notices
	Trademarks
	Terms and conditions for product documentation

	Tables
	Chapter 1. Compatibility features
	Compatibility features for Oracle
	Data types provided for Oracle compatability
	DATE data type based on TIMESTAMP(0)
	NUMBER
	VARCHAR2 and NVARCHAR2

	Implicit casting for character and graphic constants
	SQL data-access-level enforcement
	Outer join operator
	Hierarchical queries
	CONNECT_BY_ROOT
	PRIOR
	SYS_CONNECT_BY_PATH

	Compatibility database configuration parameters
	ROWNUM pseudocolumn
	DUAL table
	Changed syntax for the TRUNCATE statement
	Insensitive cursor
	INOUT parameters
	Currently committed semantics
	Oracle data dictionary-compatible views
	Oracle database link syntax
	Synonym usage

	DB2_COMPATIBILITY_VECTOR registry variable
	Setting up Db2 for Oracle application enablement
	Terminology mapping: Oracle to Db2 products
	Netezza to Db2 migration
	Migrating from a Netezza system to a Db2 system
	Planning to migrate
	Databases, tables, and schemas
	Data loading
	Security
	Migrating users, groups, and privileges
	Privileges

	System views
	Migrating queries
	Query compatibility

	SQL functions
	Migrating routines
	User-defined extensions
	Migrating workload management settings
	Validating migration

	Netezza and Db2 compatibility
	Data types
	Unsupported non-internal data types
	Differences in non-internal data types
	Support for internal data types

	Backups and restores
	Commands
	ODBC, JDBC, OLE DB, and .NET
	Query history and workload monitoring
	Netezza configuration choices that impact migration
	In-database analytics compatibility
	SQL summary

	Compatibility features for Netezza Platform Software (NPS)
	Data type aliases
	DATASLICEID pseudocolumn
	Routines written in NZPLSQL
	Limitations for routines written in NZPLSQL
	NZPLSQL procedures as functions
	Records in NZPLSQL
	Records in a FOR...IN EXECUTE statement
	Returning a result set

	Using column aliases in a HAVING clause
	Using column aliases in a WHERE clause
	Double-dot notation
	BETWEEN scalar functions syntax
	TRANSLATE scalar function syntax
	Operators
	Grouping by SELECT clause columns
	Expressions refer to column aliases
	CREATE TABLE statement can use CTAS syntax
	SUBSTR allows non-positive start values
	AGE returns a decimal duration
	Precision and scale for DECIMAL and NUMERIC scalar functions
	Installing the DB SQL Extension Toolkit
	Best practices
	Uninstalling the DB SQL Extension Toolkit
	Examples

	Using DB2_REVERSE_NULL_ORDER

	IBM Database Conversion Workbench (DCW)

	Index
	A
	B
	C
	D
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

