IBM Db2 V11.5

Developing Node.JS, Perl, PHP, Python,
and Rubyon Rails Applications
2020-08-19

.||I

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

© Copyright IBM Corp. 2016, 2020 i

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

ii Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices iii

iv IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Contents

V0] 4 o ==t i
TrAAEMAIKS. c. vt iteerie ettt ettt et e st e et e e st e sbe e tee st e s beesseessbaesseesssaesseesase e seesaseenbaesaseenseessaessaensaeensaensaenns ii
Terms and conditions for product doCUMENtAtION.......ccciiieciiiieeeee e e e ii

L= 1 o1 (= vii

Chapter 1. Developing Node.jsl Applications......c.cccceuiieiiniiniieiieiieieiecicieniecienian 1
1\ FoT L= TN =TT PR 1

Resources for the NOAe-ibm _db AriVEI ... e e e e e s e e e e e s 1
Installing the node-ibm_db driver on Linux and UNIX SYStEmMS......ccceeevueeieiiieiciiee e eevee e 1
Verifying the node-ibm_db driver installation...........cociieeiieccieccecee e e 2

Chapter 2. Developing Perl Applications......ccccceiuiieiieiieiieiieiinciciiienieiieniecieceecenses 5

P Lttt ettt s bt et e e et s e e et e e e e s h e e e b e e e R e e et e e e hee st e e bee s bt e nhee s te e beeeate e beesaaeenteenaaenares 5
Perl downloads and related rESOUICES.iivviiriiriirreeeteee ettt sttt sreesbe e st e e sbeesaaesbeesaness 5
Database CONNECHIONS...cccuiiiiiiiieieceeee ettt et et e et esb e e be e st e s beesaaessbaessnesaseensaesnseenee 5
FOECRING FESULLS. .. eeieiieecte ettt e e e et e e e bt e e et beeessee e staesesaaeessee e nseeennseesnnsaesnees 6
ParAMETET MAIKEIS. .ciiiiiitiieiieseesite ettt et e ste st e st e ste s teeste s beesseessbeesseesbaessaesaseenbeesaseenseesaseenseesssesnses 8
SQLSTATE and SQLCODE VAriables.....ccuiviiiieriiieirieceeseeiesesste st esieseestesssesveeseesseessesssessesssessesssessesnnes 8
RESTIICTIONS. . e titeeieeete ettt ettt et s bt e bt e st e e be e s et e e beesab e e beesabesabe e baesate e bee e st e e beeeateebaenareentaan 8
[STUT =Y 1 Ta o I =Y o DTSR 8
RUNNING Perl SAMPLE PrOSIamS. . .cccuiieeiieeeiieeeitteeiteeeiteeesteeestreeesaaessasaessssaesssseeannsasssnsaeensseessnseesnnses 10
EXECULING FOULINES. .. eiieiiiee ettt ettt e e vt e e e ete e e e be e e s tae e s bee e sabeeeenbaeeenbeeesnseeesnsaeesnsaeennseas 11

Chapter 3. Developing PHP applications........ccccciieieniiniiniieiinnienieiieiieniecececeeceens 13

o LTSRS 13
PHP downloads and related FESOUICES......c.uiriiiriiirieeieete ettt ste st e sresbeesaeesbeesbeesaseesbeesaseesseesanesn 13
Setting Up the PHP @NVIFONMENT.......oiiieeeeecce ettt eae e s eate e e ate e s sabe e e are e e naaeenes 14
Application development With ibmM_db2........coo i e e 17
Application development With PDO.......ccuiiiciieeiiie ettt ecte e sette e setre e seveeeseraeesveeessaeessaeesans 32

Chapter 4. Developing Python applications......c.cccccciiiieiieiieiieiieiienieciccicinieciannen 43

Python, SQLAlchemy, and Django FrameEWOrK........ccuiiciieieiiieeciee ettt eeree et e e te e e te e e ateeeearaeenes 43
Python downloads and related rESOUICES........ccciiicciiiiecie ettt et e eree e s bae e e aee e e vaeeeaes 43
Setting up the Python @nVIFONMENt.......cociiiieiecceeee et e e e are e e nae s 44
Verifying the Python driver, SQLAlchemy adapter, and Django adapter installation..........c.ccceeuenee. 46
Application development With ibmM_db........oociiiieiecee e e a7

Chapter 5. Developing Ruby on Rails applications.......ccccccceiiiiniiniieiieiieciecencencenens 59

RUDY ON RAILS .. eiiiieeeiie ettt ettt e e e te e e e teeseteeeeteeesateeeestaeeestaeeassaeaassaeeensaseassseeassaeessseeennsaeannes 59
Getting started With RUDY ON RAILS........oiiiiieiiieceecee ettt et e e s n 59
Installing the IBM_DB Ruby driver and Rails adapter as a Ruby 8em.......ccccvvveeviiiiciieeccieeccee e 59
Configuring Rails application connections to IBM data Servers......cccceeceeeccieeecieececiee e eevee e 62
IBM Ruby driver and trusted CONtEXES......uiiiiiiiciii ettt et e e re e e te e e ebe e e e e e e e baeeenes 62
IBM_DB Rails adapter dependencies and CONSEQUENCES.......cccveeecieeeeirieeeirieeeieeeeireeeesreeeessreesssneenans 63
The IBM_DB Ruby driver and Rails adapter are not supported on JRUDY......cccceeeeiiiciieecciieecieeeee, 63
Heap size considerations With DD2 0N RaLS......cccvieeiieieiieeciiecciee ettt e et e e tee e aee e 63

vi

Tables

1. Resources for the node-ibm_db driver and required IBM data server products........ccccceeeveeeecieeeeveeennen. 1
2. Perl downloads and related FESOUICES.ciuutriiireeriteete ettt st et e st e be e st e s beesseesabeesreesanesseesnnenns 5
3. PHP downloads and related reSOUICES.......c..uicirierieerteteetet ettt sttt sbe e st s e b e 13
A, TbmM_dD2 CONNECHION FUNCEIONS. ... ittt e e e e e e e s e s bsbbebe e e e eeeeeesesssssssrsesrreseens 17
1oL e Lo YA =Y (ol A T 10 [e A o] TR 23
6. IDM_AD2 FEICH fUNCHIONS . .eeiiiiii e e e e e e s e e ese s sbsabeaeeeeeeeeesessssssssernennes 26
7.ibm_db2 functions for handling CONNECHION EITOIS....ccuviiiciiecceeece e e 28
8. ibm_db2 functions for Nandling SQL EITOrS....cucuiiiiiieiirieirreeertesree s sree e ee e s ree s s bee e s ree s s beeessseeesnses 29
9. ibm_db2 metadata retrieVal fUNCIIONS........ciiiiieeeeeeeeee e e e e e e e e s ssssssasarrereeesees 30
10. Python downloads and related rESOUICES.uuiiicuiiieeecieee e ccrree e ettt e e e eetre e e e eerreeeserabreeeeesrsaeesesssasesans 43
T o] g W [o X edo] aTaT=Tor oY g TR 101 a1 {1] SRR 48
71010 e | o R =] (o] a I (VT Ted A (o] F-T R TRRRRRRRRRRNY 51
ISR o] W Lo I =] (o] a1 LV 1 Yo 110] 1T ORI 54
14. ibm_db functions for handling CONNECTION EITOIS....cicviiiiiieicieeeee e e e e bee e s 56
15. ibm_db functions for handling SQL EITOrS.....uueeieieeeeiie et eee e ee e e e e e sbee e e aae s e beeesreeeenneas 56
16. ibm_db metadata retrieVal fUNCIIONS.........oii e e e e e e e e rrae e e e eeee s 56

vii

Chapter 1. Developing Node.jsl Applications

node-ibm_db driver for Node.js applications

You can use the node-ibm_db driver in your Node.js applications to access IBM® database servers.

Node.js is a software platform that is built on JavaScript. Node.js provides a fast, scalable, lightweight
application solution for data-intensive real-time applications.

The node-ibm_db driver is a Node.js binding for IBM database servers. The node-ibm_db driver contains
both asynchronous and synchronous interfaces.

You can install the node-ibm_db driver with the following IBM data server client products:

« All supported versions, releases, and fix packs of the IBM Data Server Driver Package product
« All Db2° Cancun Release 10.5.0.4 or later IBM data server products

Resources for the node-ibm_db driver
A list of URLs for the node-ibm_db driver.

Table 1 lists resources that are related to the node-ibm_db driver and required IBM data server products.

Table 1. Resources for the node-ibm_db driver and required IBM data server products

Description URL

Latest information about the IBM node-ibm_db https://www.npmjs.org/package/ibm_db?
driver. The link does not point to an IBM site.

Sample code. The link does not point to an IBM https://github.com/ibmdb/node-ibm_db/?
site.

List of installation requirements for Db2 database [http://www-01.ibm.com/support/
products. knowledgecenter/SSEPGG_10.5.0/
com.ibm.db2.luw.gb.server.doc/doc/
r0025127.html

List of installation requirements for theIBM http://www-021.ibm.com/support/

Informix® server. knowledgecenter/SSGU8G_11.50.0/
com.ibm.expr.doc/ids_in_004x.htm

IBM Data Server Driver Package software https://www.ibm.com/support/pages/node/

download site 387577

IBM node-ibm_db driver forum. The link does not | https://groups.google.com/forum/#!forum/node-
point to an IBM site. ibm_db?

Reported issues. The link does not point to an IBM | https://github.com/ibmdb/node-ibm_db/issuest
site.

Installing the node-ibm_db driver on Linux and UNIX systems
You can install the node-ibm_db driver on Linux® and UNIX systems for use with Node.js applications.

1 Any references to non-IBM websites are provided for convenience only and do not in any manner serve as
an endorsement of those websites. The content available at those non-IBM websites is not part of any
materials relating to the IBM products described herein. Your use of any non-IBM website is at your own
risk.

© Copyright IBM Corp. 2016, 2020

https://www.npmjs.org/package/ibm_db
https://github.com/ibmdb/node-ibm_db/
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://www-01.ibm.com/support/knowledgecenter/SSGU8G_11.50.0/com.ibm.expr.doc/ids_in_004x.htm
http://www-01.ibm.com/support/knowledgecenter/SSGU8G_11.50.0/com.ibm.expr.doc/ids_in_004x.htm
http://www-01.ibm.com/support/knowledgecenter/SSGU8G_11.50.0/com.ibm.expr.doc/ids_in_004x.htm
https://www.ibm.com/support/pages/node/387577
https://www.ibm.com/support/pages/node/387577
https://groups.google.com/forum/#!forum/node-ibm_db
https://groups.google.com/forum/#!forum/node-ibm_db
https://github.com/ibmdb/node-ibm_db/issues

Before you begin

You must install one of the listed IBM data server products on the system where you are installing or
running the Node.js application:

- All supported versions, releases, and fix packs of the IBM Data Server Driver Package product

« All Db2 Cancun Release 10.5.0.4 or later IBM data server products

Procedure

To install the node-ibm_db driver:

1. Set the IBM_DB_HOME environment variable to your IBM data server product installation directory by
issuing the following command:

export IBM_DB_HOME=DB2HOME

where DB2HOME is the directory where the IBM data server product is installed. In a IBM Data Server
Driver Package environment, DB2HOME is the directory in which the client package is installed. For
example, if the client package is installed in the /home/db2instl/dsdriver directory, issue the
following command:

export IBM_DB_HOME=/home/db2instl/dsdriver
2. Issue the npm install command:

npm install ibm_db

What to do next

Before you run any Node.js application that connects to an IBM database server, you must ensure that the
node-ibm_db driver can access the CLI driver by sourcing the db2profile script. The script is in the IBM
data server product installation directory. To source the script, issue the following command:

source DB2HOME/db2profile

Verifying the node-ibm_db driver installation
You can test the node-ibm_db driver with a sample Node.js application.

Procedure

To verify the node-ibm_db driver installation:
1. Create a sample Node.js application to test the connection to the sample database.
Copy the following sample code into a file and save the file as testl. js.

//testl.]js
var ibmdb = require('ibm_db');

ibmdb.open ("DRIVER={DB2} ; DATABASE=sample; HOSTNAME=<hostname>;
UID=<user_id>;PWD=<password>;PORT=<port>;
PROTOCOL=TCPIP", function (err,conn) f{

if (err) return console.log(err);

conn.query('select * from staff where id = ?', [10], function (err, data) {
if (err) console.log(err);

console.log(data);
conn.close(function () {
console.log('done');
5)g

)
)

where:

« <hostname> is the fully qualified host name of your IBM database server.

2 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

 <user_id> and <password> are a valid user ID and password for connecting to the sample database.

« <port> is the listener port of the IBM database server.
2. Runthe testl.js application by issuing the node testl.js command:

C:\Users\IBM_ADMIN>node testl.js
The node testil.js command results in the following output.

[{ ID: 10,

NAME: 'Sanders',

DEPT: 20,

JoB: ‘'Mgr ',

YEARS: 7,

SALARY: 98357.5,

COMM: 1.5537297e-317 % 1]
done

Chapter 1. Developing Node.jsl Applications 3

4 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Chapter 2. Developing Perl Applications

Programming considerations for Perl

Perl database Interface (DBI) is an open standard application programming interface (API) that provides
database access for client applications that are written in Perl. Perl DBI defines a set of functions,
variables, and conventions that provide a platform-independent database interface.

You can use the IBM Db2 database driver for Perl DBI (the DBD::DB2 driver) available from http://
search.cpan.org/~ibmtordb2/ along with the Perl DBI Module available from http://search.cpan.org/
~timb/ to create a Perl application that access the IBM database server.

Because Perl is an interpreted language and the Perl DBI module uses dynamic SQL, Perl is an ideal
language for quickly creating and revising prototypes of Db2 applications. The Perl DBI module uses an
interface that is similar to the CLI and JDBC interfaces, which makes it easy for you to port your Perl
prototypes to CLI and JDBC.

The working versions of Perl that works with Db2 are Activestate Perl and 32-bit Strawberry Perl. For 32-
bit Strawberry Perl specifically, you must email opendev@us.ibm.com or contact IBM support for the
required binaries.

For information about supported Database servers, installation instructions, and prerequisites, see http://
search.cpan.org/~ibmtordb2/

Perl downloads and related resources
Several resources are available to help you develop Perl applications that access IBM database servers.

Table 2. Perl downloads and related resources

Downloads Related resources

Perl Database Interface (DBI) Module http://search.cpan.org/~timb/

DBD::DB2 driver http://search.cpan.org/~ibmtordb2/

IBM Data Server Driver Package (DS Driver) http://www.ibm.com/software/data/support/data-
server-clients/index.html

DBI API documentation http://search.cpan.org/~timb/DBI/DBI.pm

Db2 Perl Database Interface for Db2 technote, http://www.ibm.com/software/data/db2/perl

including readme and installation instructions

Perl driver bug reporting system http://rt.cpan.org/

Reporting bugs to the Open Source team at IBM opendev@us.ibm.com

Database connections in Perl

The DBD::DB2 driver provides support for standard database connection functions defined by the DBI
API.

To enable Perl to load the DBI module, you must include the use DBI; line in your application:

The DBI module automatically loads the DBD::DB2 driver when you create a database handle using the
DBI->connect statement with the listed syntax:

my $dbhandle = DBI->connect('dbi:DB2:dsn', $userID, $password);

where:

© Copyright IBM Corp. 2016, 2020 5

http://search.cpan.org/~ibmtordb2/
http://search.cpan.org/~ibmtordb2/
http://search.cpan.org/~timb/
http://search.cpan.org/~timb/
http://search.cpan.org/~ibmtordb2/
http://search.cpan.org/~ibmtordb2/
http://search.cpan.org/~timb/
http://search.cpan.org/~ibmtordb2/
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://search.cpan.org/~timb/DBI/DBI.pm
http://www.ibm.com/software/data/db2/perl
http://rt.cpan.org/

$dbhandle
represents the database handle returned by the connect statement

dsn
for local connections, represents a Db2 alias cataloged in your Db2 database directory

for remote connections, represents a complete connection string that includes the host name, port
number, protocol, user ID, and password for connecting to the remote host

$userID
represents the user ID used to connect to the database

$password
represents the password for the user ID used to connect to the database

For more information about the DBI API, see http://search.cpan.org/~timb/DBI/DBI.pmhttp://
search.cpan.org/~timb/DBI/DBI.pm.

Examples

Example 1: Connect to a database on the local host (client and server are on the same workstation)

use DBI;

$DATABASE = 'dbname’;
$USERID = 'username';
$PASSWORD = 'password';

my $dbh = DBI->connect("dbi:DB2:$DATABASE", $USERID, $PASSWORD, {PrintError => 0%)
or die "Couldn't connect to database: " . DBI->errstr;

$dbh->disconnect;

Example 2: Connect to a database on the remote host (client and server are on different workstations)

use DBI;

$DSN="DATABASE=sample; HOSTNAME=host; PORT=60000; PROTOCOL=TCPIP; UID=username;
PWD=password";

my $dbh = DBI->connect("dbi:DB2:$DSN", $USERID, $PASSWORD, {PrintError => 0%)
or die "Couldn't connect to database: " . DBI->errstr;

$dbh->disconnect;

Fetching results in Perl

The Perl DBI module provides methods for connecting to a database, preparing and issuing SQL
statements, and fetching rows from result sets.

About this task
This procedure fetches results from an SQL query.
Restrictions

Because the Perl DBI module supports only dynamic SQL, you cannot use host variables in your Perl Db2
applications.

Procedure

To fetch results:
1. Create a database handle by connecting to the database with the DBI->connect statement.
2. Create a statement handle from the database handle.

6 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://search.cpan.org/~timb/DBI/DBI.pm
http://search.cpan.org/~timb/DBI/DBI.pm
http://search.cpan.org/~timb/DBI/DBI.pm

For example, you can return the statement handle $sth from the database handle by calling the
prepare method and passing an SQL statement as a string argument, as demonstrated in the Perl
statement example:

my $sth = $dbhandle->prepare(
'SELECT firstnme, lastname
FROM employee '
)i

3. Issue the SQL statement by calling the execute method on the statement handle. A successful call to
the execute method associates a result set with the statement handle.
For example, you can run the statement prepared in the previous Perl statement by using the listed
example:

#Note: $rc represents the return code for the execute call
my $rc = $sth->execute();

4. Fetch a row from the result set associated with the statement handle by calling the fetchrow
method. The Perl DBI returns a row as an array with one value per column.
For example, you can return all of the rows from the statement handle in the previous example by
using the listed Perl statement:

while (($firstnme, $lastname) = $sth->fetchrow()) {
print "$firstnme $lastname\n";

Examples

The example shows how to connect to a database and issue a SELECT statement from an application
written in Perl.

#!/usxr/bin/perl
use DBI;

my $database='dbi:DB2:sample’;

my $user='";
my $password='";

my $dbh = DBI->connect($database, $user, $password)
or die "Can't connect to $database: $DBI::errstr";

my $sth = $dbh->prepare(
g3 SELECT firstnme, lastname
FROM employee %
or die "Can't prepare statement: $DBI::errstr";

my $rc = $sth->execute
or die "Can't execute statement: $DBI::errstr";

print "Query will return $sth->{NUM_OF_FIELDS% fields.\n\n";
print "$sth->{NAME}->[0]: $sth->{NAME:->[1]\n";

while (($firstnme, $lastname) = $sth->fetchrow()) %
print "$firstnme: $lastname\n";
check for problems that might have terminated the fetch early

warn $DBI::errstr if $DBI::err;

$sth->finish;
$dbh->disconnect;

Chapter 2. Developing Perl Applications 7

Parameter markers in Perl

The Perl DBI module supports executing a prepared statement that includes parameter markers for
variable input. To include a parameter marker in an SQL statement, use the question mark (?) character or
a colon followed by a name (: name).

The Perl code example creates a statement handle that accepts a parameter marker for the WHERE
clause of a SELECT statement. The code then executes the statement twice using the input values 25000
and 35000 to replace the parameter marker.

my $sth = $dbhandle->prepare(
'SELECT firstnme, lastname
FROM employee
WHERE salary > ?'
)3

my $rc = $sth->execute(25000);

my $rc = $sth->execute(35000);

SQLSTATE and SQLCODE variables in Perl

The Perl DBI module provides methods for returning the SQLSTATE and SQLCODE associated with a Perl
DBI database or statement handle.

To return the SQLSTATE associated with a Perl DBI database handle or statement handle, call the state
method. For example, to return the SQLSTATE associated with the database handle $dbhandle, include
themy $sqglstate = $dbhandle->state; Perl statement in your application:

To return the SQLCODE associated with a Perl DBI database handle or statement handle, call the err
method. To return the message for an SQLCODE associated with a Perl DBI database handle or statement
handle, call the exrstr method. For example, to return the SQLCODE associated with the database
handle $dbhandle, include the my $sqlcode = $dbhandle->err; Perl statement in your application:

Perl Restrictions
Some restrictions apply to the support that is available for application development in Perl.

The Perl DBI module supports only dynamic SQL. When you must execute a statement multiple times,

you can improve the performance of your Perl applications by issuing a pxepazxe call to prepare the
statement.

For current information about the restrictions on a specific version of the DBD::DB2 driver installation, see
the CAVEATS file in the DBD::Db2 driver package.

pureXML and Perl

The DBD::DB2 driver supports Db2 pureXML®. Support for pureXML allows more direct access to your
data through the DBD::DB2 driver and helps to decrease application logic by providing more transparent
communication between your application and database.

With pureXML support, you can directly insert XML documents into your Db2 database. Your application
no longer needs to parse XML documents because the pureXML parser is automatically run when you
insert XML data into the database. Having document parsing handled outside your application improves
application performance and reduces maintenance efforts. Retrieval of XML stored data with the
DBD::DB2 driver is easy as well; you can access the data using a BLOB or record.

For information about the Db2 Perl Database Interface and how to download the latest DBD::DB2 driver,
see http://www.ibm.com/software/data/db2/perl.

8 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://www.ibm.com/software/data/db2/perl

Examples

The example is a Perl program that uses pureXML:

#!/usr/bin/perl
use DBI;
use strict ;

Use DBD:DB2 module:

to create a simple Db2 table with an XML column

Add one row of data

retreive the XML data as a record or a LOB (based on $datatype).

NOTE: the Db2 SAMPLE database must already exist.

my $database='dbi:Db2:sample’;

my $user='";
my $password='";

"record"
" OB"

my $datatype
$datatype

my $dbh = DBI->connect($database, $user, $password)
or die "Can't connect to $database: $DBI::errstr";

For LOB datatype, LongReadlLen = 0 -- no data is retrieved on initial fetch
$dbh->f{LongReadlLent = 0 if $datatype eq "LOB" ;

SQL CREATE TABLE to create test table

my $stmt = "CREATE TABLE xmlTest (id INTEGER, data XML)";
my $sth = $dbh->prepare($stmt);

$sth->execute();

#insert one row of data into table
insertData() ;

SQL SELECT statement returns home phone element from XML data
$stmt = qq(
SELECT XMLQUERY ('
\$d/*:customerinfo/x:phone[\@type = "home"]
passing data as "d")
FROM xmlTest

prepare and execute SELECT statement
$sth = $dbh->prepare($stmt);
$sth->execute();
Print data returned from select statement
if($datatype eq "LOB") %

printLOB() ;
else §

printRecord() ;

Drop table
$stmt = "DROP TABLE xmlTest"
$sth = $dbh->prepare($stmt);
$sth->execute();
warn $DBI::errstr if $DBI::err;
$sth->finish;
$dbh->disconnect;
FHHHHHHHHHHHHHE
sub printRecord $
print "output data as record\n" ;

while(my @row = $sth->fetchrow)
i
print $row[0] . "\n";

warn $DBI::errstr if $DBI::err;

Chapter 2. Developing Perl Applications 9

sub printLOB §
print "output as Blob data\n" ;

my $offset = 0;

my $buff="";

$sth->fetch();

while($buff = $sth->blob_read(1,$offset,1000000)) {
print $buff;
$offset+=length ($buff);
$buff:““;

warn $DBI::errstr if $DBI::err;

sub insertData §

insert a row of data
my $xmlInfo = qq(\'
<customerinfo xmlns="http://posample.org" Cid="1011">
<name>Bill Jones</name>
<addr country="Canada">
<street>5 Redwood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W 1E9</pcode-zip>
</addr>
<phone type="work">416-555-9911</phone>
<phone type="home">416-555-1212</phone>
</customerinfo>
\")
my $catID = 1011 ;
SQL statement to insert data.
my $Sql = qq(

INSERT INTO xmlTest (id, data)
VALUES ($catID, $xmlInfo)

’

$sth = $dbh->prepare($Sql)
or die "Can't prepare statement: $DBI::errstr";

my $rc = $sth->execute
or die "Can't execute statement: $DBI::errstr";

check for problems
warn $DBI::errstr if $DBI::err;

Running Perl sample programs

Perl sample programs demonstrate how to connect and run database operations with the IBM database
server..

Before you begin

Before running the Perl sample programs, you must install the latest DBD : : DB2 driver for Perl DBI. For
information about how to obtain the latest driver, see http://search.cpan.org/~ibmtordb2/.

About this task
The Perl sample programs for Db2 database are available in the sqllib/samples/pexrl directory.

Procedure

To run a Perl sample program through the Perl interpreter:
« Enter the interpreter name and the program name (including the file extension):

- If connecting locally on the server:

10 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://search.cpan.org/~ibmtordb2/

perl dbauth.pl
- If connecting from a remote client:

perl dbauth.pl sample <userid> <password>

Some of the sample programs require you to run support files. For example, the tbsel sample
program requires several tables that are created by the tbselcreate.db2 CLP script. The
tbselinit script (UNIX), or the thselinit.bat batch file (Windows), first calls thseldrop.db2 to
drop the tables if they exist, and then calls thselcreate.db2 to create them. Therefore, to run the
tbsel sample program, issue the listed commands:

- If connecting locally on the server:

tbhselinit
perl thsel.pl

- If connecting from a remote client:

tbselinit
perl thsel.pl sample <userid> <password>

Note: For a remote client, you must modify the connect statement in the thselinit or
tbhselinit.bat file to hardcode your user ID and password: db2 connect to sample user
<userid> using <password>

Executing routines from Perl applications

Db2 client applications can access routines (stored procedures and user-defined functions) that are
created by supported host languages or by SOQL procedures. For example, the sample program
spclient.pl can access the SQL procedures spserver shared library, if it exists in the database.

Before you begin

To build a host language routine, you must have the appropriate compiler set up on the server. SQL
procedures do not require a compiler. The shared library can be built on the server only, and not from a
remote client.

Procedure

To create SQL procedures in a shared library and then accesses the procedures from a Perl application:

1. Create and catalog the SQL procedures in the library. For example, go to the samples/sqlpl
directory on the server, and run the listed commands to create and catalog the SQL procedures in the
spserver library:

db2 connect to sample
db2 -td@ -vf spserver.db2

2. Go back to the perl samples directory (this can be on a remote client workstation), and run the Perl
interpreter on the client program to access the spsexrver shared library:

- If connecting locally on the server:
perl spclient
- If connecting from a remote client:

perl spclient sample <userid> <password>

Chapter 2. Developing Perl Applications 11

12 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Chapter 3. Developing PHP applications

PHP application development for IBM Database servers

PHP: Hypertext Preprocessor (PHP) is an interpreted programming language that is widely used for
developing web applications. PHP is a popular language for web development because it is easy to learn,
focuses on practical solutions, and supports the most commonly required functionality in web
applications.

PHP is a modular language that enables you to customize the available functionality through the use of
extensions. These extensions can simplify tasks such as reading, writing, and manipulating XML, creating
SOAP clients and servers, and encrypting communications between server and browser. The most
popular extensions for PHP, however, provide read and write access to databases so that you can easily
create a dynamic database-driven website.

IBM provides the following PHP extensions for accessing IBM Database servers:

ibm_db2
A procedural application programming interface (API) that, in addition to the normal create, read,
update, and write database operations, also offers extensive access to the database metadata. You
can compile the ibm_db2 extension with either PHP 4 or PHP 5.

pdo_ibm
A driver for the PHP Data Objects (PDO) extension that offers access to IBM Database servers through
the standard object-oriented database interface that is introduced in PHP 5.1.

The most recent versions of the ibm_db2 and pdo_ibm extensions are also available from the PHP
Extension Community Library (PECL) at http://pecl.php.net/.

PHP downloads and related resources
Many resources are available to help you develop PHP applications for IBM Database servers.

Table 3. PHP downloads and related resources

Downloads

Complete PHP source code 1 http://www.php.net/downloads.php

The ibm_db2 extension from the PHP Extension http://pecl.php.net/package/ibm_db2

Community Library (PECL)

The pdo_ibm extension from the PHP Extension http://pecl.php.net/package/pdo_ibm

Community Library

Compiled ibm_db2 extension for Windows http://windows.php.net/downloads/pecl/releases/
ibm_db2/

Compiled pdo_ibm extension for Windows http://windows.php.net/downloads/pecl/releases/
pdo_ibm/

IBM Data Server Driver Package (DS Driver) https://www.ibm.com/support/pages/node/
387577

Zend Server http://www.zend.com/en/products/server/
downloads

PHP Manual http://www.php.net/docs.php

ibm_db2 API documentation http:/www.php.net/ibm_db2%20

© Copyright IBM Corp. 2016, 2020 13

http://pecl.php.net/
http://www.php.net/downloads.php
http://pecl.php.net/package/ibm_db2
http://pecl.php.net/package/pdo_ibm
http://windows.php.net/downloads/pecl/releases/ibm_db2/
http://windows.php.net/downloads/pecl/releases/ibm_db2/
http://windows.php.net/downloads/pecl/releases/pdo_ibm/
http://windows.php.net/downloads/pecl/releases/pdo_ibm/
https://www.ibm.com/support/pages/node/387577
https://www.ibm.com/support/pages/node/387577
http://www.zend.com/en/products/server/downloads
http://www.zend.com/en/products/server/downloads
http://www.php.net/docs.php
http://www.php.net/ibm_db2%20

Table 3. PHP downloads and related resources (continued)

Downloads

PDO API documentation http://php.net/manual/en/book.pdo.php
PHP website http://www.php.net/

1. Includes the Windows binary files. Most Linux distributions come with PHP already precompiled.

Setting up the PHP environment for IBM Data Servers products

You can set up the PHP environment on Linux, UNIX, or Windows operating systems by installing a
precompiled binary version of PHP and enabling support for IBM Data Servers products.

About this task

For the easiest installation and configuration experience on Linux, UNIX, or Windows operating systems,
you can download and install Zend Server for use in production systems at http://www.zend.com/en/
products/server/downloads. Packaging details are available at http://www.zend.com/en/products/server/
editions.

On Windows, precompiled binary versions of PHP are available for download from http://www.php.net/
downloads.php. Most Linux distributions include a precompiled version of PHP. On UNIX operating
systems that do not include a precompiled version of PHP, you can compile your own version of PHP.

For more information about installing and configuring PHP, see http://www.php.net/manual/en/
install.php.

Setting up the PHP environment for IBM Data Server products on Windows
Before you can connect to an IBM database server and run SQL statements, you must set up the PHP
environment.

Before you begin

You must have the following required software installed on your system:

« PHP version 5 or later

- If your PHP application will connect to a remote IBM database, one of the following products on the
computer where your application will run:

The IBM Data Server Client product
The IBM Data Server Runtime Client product

The IBM Data Server Driver Package product
The IBM Data Server Driver for ODBC and CLI product

If your PHP application connects to an IBM database server on the local computer, no additional IBM
data server products are required.

Procedure

To install the ibm_db2 and pdo_ibm php extensions:

1. Copy the ibm_db2 and pdo_ibm extension files into the \ext\ subdirectory of your PHP installation
directory.
The ibm_db2 and pdo_ibm extension files can be obtained from the following sources:

« IBM Data Server product installation path
« PHP Extension Community Library (PECL)

— For the ibm_db2 extension file, see http://windows.php.net/downloads/pecl/releases/ibm_db2/

— For the pdo_ibm extension file, see http://windows.php.net/downloads/pecl/releases/pdo_ibm/

14 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://php.net/manual/en/book.pdo.php
http://www.php.net/
http://www.zend.com/en/products/server/downloads
http://www.zend.com/en/products/server/downloads
http://www.zend.com/en/products/server/editions
http://www.zend.com/en/products/server/editions
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://www.php.net/manual/en/install.php
http://www.php.net/manual/en/install.php
http://windows.php.net/downloads/pecl/releases/ibm_db2/
http://windows.php.net/downloads/pecl/releases/pdo_ibm/

Note: If you installed the IBM Data Server Driver for ODBC and CLI software, you must obtain the
ibm_db2 and pdo_ibm extension files separately from the PHP Extension Community Library (PECL).

- Ifyou have thread safe PHP environment, copy the following extension files from the IBM Data
Server product installation path into the \ext\ subdirectory of your PHP installation directory:

— php_ibm_db2_X_X_XXX_ts.dl1l
— php_pdo_ibm_X_X_XXX_ts.dll

- Ifyou have non-thread safe PHP environment, copy the following extension files from the IBM Data
Server product installation path into the \ext\ subdirectory of your PHP installation directory:

— php_ibm_db2_X_X_XXX_nts.dll
— php_pdo_ibm_X_X_XXX_nts.dll

2. Open the php.ini file in an editor of your choice. Edit the extension entry in the php.ini file in the
PHP installation directory to reference the PHP driver.

« For the thread safe PHP environment:

extension=php_pdo.dll
extension=php_ibm_db2_X_X_XXX_ts.dll
extension=php_pdo_ibm_X_X_XXX_ts.dll

« For the non-thread safe PHP environment:

extension=php_pdo.dll
extension=php_ibm_db2_X_X_XXX_nts.dll
extension=php_pdo_ibm_X_X_XXX_nts.dll

3. If the PHP application that is connecting to an IBM database server is running in the HTTP server
environment, restart the HTTP Server so the new configuration settings take effect.

Setting up the PHP environment for IBM Data Server products on Linux or UNIX
Before you can connect to an IBM database server and run SQL statements, you must set up the PHP
environment.

Before you begin

You must have the following required software installed on your system:

« PHP version 5 or later

« If your PHP application connects to a remote IBM database, the computer that runs your PHP
application requires one of the following products:

The IBM Data Server Client product
The IBM Data Server Runtime Client product

The IBM Data Server Driver Package product
The IBM Data Server Driver for ODBC and CLI product

If your PHP application connects to an IBM database server on the local computer, no additional IBM
data server products are required.

Procedure

To install the ibm_db2 and pdo_ibm php extensions:
1. Using the export command, set the environment variable IBM_DB_HOME.

$export IBM_DB_HOME=DB2HOME
The DB2HOME is the directory where the IBM Data Server product is installed. For example:

$ export IBM_DB_HOME=/home/db2instl/sqllib

Chapter 3. Developing PHP applications 15

2. Using one of the following three methods, install the ibm_db and pdo_ibm extensions.
« Usethe pecl install command included in the PHP Extension Community Library (PECL).

— Toinstall the ibm_db2 extension:
$ pecl install ibm_db2

— Toinstall the pdo_ibm extension:
$ pecl install pdo_ibm

« Use the commands included in the source code:

a. Extract the source archive.
b. Run the following commands from the extracted directory:

$ phpize --clean
$ phpize

$./configure

$ make

$ make install

c. If you are installing the pdo_ibm extension, you must run the following configure command:

$./configure --with-PDO_IBM=DB2HOME

The DB2HOME variable is the directory where the IBM Data Server product is installed.
« Use the compiled extensions included with the IBM Data Server products:

a. You must determine whether your PHP environment is threadsafe or not threadsafe by issuing
the following command:

$ php -info| grep "Thread Safe"

b. The IBM data server client and IBM Data Server Driver Package software are shipped with two
types of PHP drivers:

— Threadsafe: ibm_db2_XX_ts.so and pdo_ibm_XX_ts.so
— Not threadsafe: ibm_db2_XX_nts.soand pdo_ibm_XX_nts.so

Using the cp command, copy the appropriate PHP driver share library files to the installed PHP
extension directory as ibm_db2.so and pdo_ibm. so files.

For a 32-bit PHP driver:

$ cp DB2HOME/php/php32/ibm_db2_XX_[ts/nts].so <local_php_directory>/php/lib/php/extensions/ibm_db2.so
$ cp DB2HOME/php/php32/pdo_ibm_XX_[ts/nts].so <local_php_directory>/php/lib/php/extensions/pdo_ibm.so

For a 64-bit PHP driver:

$ cp DB2HOME/php/php64/ibm_db2_XX_[ts/nts].so <local_php_directory>/php/lib/php/extensions/ibm_db2.so
$ cp DB2HOME/php/php64/pdo_ibm_XX_[ts/nts].so <local_php_directory>/php/lib/php/extensions/pdo_ibm.so

The DB2HOME variable is the directory where the IBM Data Server product is installed.

3. Open the php.ini file in an editor of your choice. Edit the extension entry in the php.ini file in the
<local_php_directory>/php/1lib directory to reference the PHP driver:

extension=pdo.so
extension=ibm_db2.so
extension=pdo_ibm.so

4. Ensure that the PHP driver can access the 1ibdb2. so CLI driver file by setting the LD_LIBRARY_PATH
variable for Linux and UNIX operating systems other than the AIX operating system. For AIX operating
system, you must set LIBPATH variable.

16 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

« Fora 32-bit Linux and UNIX operating systems other than the AIX operating system, use the expoxt
command to set the IBM_DB_HOME /1ib32 directory to the LD_LIBRARY_PATH variable.

export LD_LIBRARY_PATH=DB2HOME/1ib32

« For a 32-bit AIX operating system, use the expoxt command to set the IBM_DB_HOME/1ib32
directory to the: LIBPATH variable.

export LIBPATH=DB2HOME/1ib32

« For a 64-bit Linux and UNIX operating systems other than the AIX operating system, use the expoxrt
command to set the LD_LIBRARY_PATH variable to the IBM_DB_HOME /1ib64 directory.

export LD_LIBRARY_PATH=DB2HOME/1lib64

« For a 64-bit AIX operating system, use the expoxt command to set the LD_LIBRARY_PATH variable
to the IBM_DB_HOME /1ib64 directory.

export LIBPATH=DB2HOME/1lib64

5. Optional: If the PHP application that is connecting to an IBM database server is running in the HTTP
server environment:
a) Add the LD_LIBRARY_PATH variable in the httpd. conf file.
For a 32-bit architecture, set LD_LIBRARY_PATH to the DB2HOME\1ib32 directory. For a 64-bit
architecture set LD_LIBRARY_PATH to the DB2HOME\lib64 directory.

b) Restart the HTTP server so the new configuration settings take effect.

Application development in PHP (ibm_db2)

The ibm_db2 extension provides a variety of useful PHP functions for accessing and manipulating data in
an IBM data server database. The extension includes functions for connecting to a database, executing
and preparing SQL statements, fetching rows from result sets, calling stored procedures, handling errors,
and retrieving metadata.

Connecting to an IBM data server database in PHP (ibm_db2)

Before you can issue SQL statements to create, update, delete, or retrieve data, you must connect to a
database from your PHP application. You can use the ibm_db2 API to connect to an IBM data server
database through either a cataloged connection or a direct TCP/IP connection. To improve performance,
you can also create a persistent connection.

Before you begin

Before connecting to an IBM data server database through the ibm_db2 extension, you must set up the
PHP environment on your system and enable the ibm_db2 extension.

Procedure

To return a connection resource that you can use to call SQL statements, call one of the listed connection
functions:

Table 4. ibm_db2 connection functions

Function Description
db2_connect Creates a non-persistent connection.
db2_pconnect Creates a persistent connection. A persistent

connection remains open between PHP requests,
which allows subsequent PHP script requests to
reuse the connection if they have an identical set of
credentials.

Chapter 3. Developing PHP applications 17

The database values that you pass as arguments to these functions can specify either a cataloged
database name or a complete database connection string for a direct TCP/IP connection. You can specify
optional arguments that control when transactions are committed, the case of the column names that are
returned, and the cursor type.

If the connection attempt fails, you can retrieve diagnostic information by calling the db2_conn_error
or db2_stmt_errormsg function.

When you create a connection by calling the db2_connect function, PHP closes the connection to the
database when one of the listed events occurs:

« You call the db2_close function for the connection
« You set the connection resource to NULL
« The PHP script finishes

When you create a connection by calling the db2_pconnect function, PHP ignores any calls to the
db2_close function for the specified connection resource, and keeps the connection to the database
open for subsequent PHP scripts.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Connect to a cataloged database.

<?php

$database = "sample";
$user = "db2instl";
$password = "";

$conn = db2_connect($database, $user, $password);
if ($conn) §

echo "Connection succeeded.";

db2_close($conn);

else §
echo "Connection failed.";

?>

What to do next

If the connection attempt is successful, you can use the connection resource when you call ibm_db2
functions that execute SQL statements. Next, prepare and execute SQL statements.

Trusted contexts in PHP applications (ibm_db2)
Starting in Version 9.5 Fix Pack 3 (or later), the ibm_db2 extension supports trusted contexts by using
connection string keywords.

Trusted contexts provide a way of building much faster and more secure three-tier applications. The
user's identity is always preserved for auditing and security purposes. When you need secure
connections, trusted contexts improve performance because you do not have to get new connections.

Examples

Enable trusted contexts, switch users, and get the current user ID.

<?php
$database = "SAMPLE";
$hostname = "localhost";

$port = 50000;
$authID = "db2instl";
$auth_pass = "ibmdb2";

"tcuser";
"tcpassword";

$tc_user
$tc_pass

18 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://www.php.net/docs.php

$dsn = "DATABASE=$database;HOSTNAME=$hostname;PORT=$port; PROTOCOL=TCPIP;UID=$authID;PWD=$auth_pass;";
$options = array ("trustedcontext" => DB2_TRUSTED_CONTEXT_ENABLE);

$tc_conn = db2_connect($dsn, "", "", $options);
if($tc_conn) {
echo "Explicit Trusted Connection succeeded.\n";

if(db2_get_option($tc_conn, "trustedcontext")) {
$userBefore = db2_get_option($tc_conn, "trusted_user");

//Do some work as user 1.

//Switching to trusted user.
$parameters = array("trusted_user" => $tc_user, "trusted_password" => $tcuser_pass);
$res = db2_set_option ($tc_conn, $parameters, 1);

$userAfter = db2_get_option($tc_conn, "trusted_user");
//Do more work as trusted user.

if($userBefore != $userAfter) {
echo "User has been switched." . "\n";

¥
db2_close($tc_conn);

else {
echo "Explicit Trusted Connection failed.\n";

?>

Executing SQL statements in PHP (ibm_db2)

After connecting to a database, use functions available in the ibm_db2 API to prepare and execute SQL
statements. The SQL statements can contain static text, XQuery expressions, or parameter markers that
represent variable input.

Executing a single SQL statement in PHP (ibm_db2)

To prepare and execute a single SQL statement that accepts no input parameters, use the db2_exec
function. A typical use of the db2_exec function is to set the default schema for your application in a
common include file or base class.

Before you begin

To avoid the security threat of SQL injection attacks, use the db2_exec function only to execute SQL
statements composed of static strings. Interpolation of PHP variables representing user input into the
SQL statement can expose your application to SQL injection attacks.

Obtain a connection resource by calling one of the connection functions in the ibm_db2 API. Refer to
“Connecting to an IBM data server database in PHP (ibm_db2)” on page 17.

Procedure

To prepare and execute a single SQL statement, call the db2_exec function, passing the listed
arguments:

connection
A valid database connection resource returned from the db2_connect or db2_pconnect function.

statement
A string that contains the SQL statement. This string can include an XQuery expression that is called
by the XMLQUERY function.

options
Optional: An associative array that specifies statement options:
DB2_ATTR_CASE
For compatibility with database systems that do not follow the SQL standard, this option sets the

case in which column names will be returned to the application. By default, the case is set to
DB2_CASE_NATURAL, which returns column names as they are returned by the database. You

Chapter 3. Developing PHP applications 19

can set this parameter to DB2_CASE_LOWER to force column names to lowercase, or to
DB2_CASE_UPPER to force column names to upper case.

DB2_ATTR_CURSOR
This option sets the type of cursor that ibm_db2 returns for result sets. By default, ibm_db2
returns a forward-only cursor (DB2_FORWARD_ONLY) which returns the next row in a result set
for every call to db2_fetch_array, db2_fetch_assoc, db2_fetch_both,
db2_fetch_object, ordb2_fetch_row. You can set this parameter to DB2_SCROLLABLE to
request a scrollable cursor so that the ibm_db2 fetch functions accept a second argument
specifying the absolute position of the row that you want to access within the result set.

If the function call succeeds, it returns a statement resource that you can use in subsequent function
calls related to this query.

If the function call fails (returns False), you can use the db2_stmt_error or db2_stmt_errormsg
function to retrieve diagnostic information about the error.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Example 1: Executing a single SQL statement.

<?php

$conn = db2_connect("sample", "db2insti", "");
$sql = "SELECT *= FROM DEPT";

$stmt = db2_exec($conn, $sql);
db2_close($conn);

?>

Example 2: Executing an XQuery expression

<?php

$xquery = '$doc/customerinfo/phone’;

$stmt = db2_exec($conn, "select xmlquery('$xquery'
PASSING INFO AS \"doc\") from customer");?>

What to do next

If the SQL statement selected rows using a scrollable cursor, or inserted, updated, or deleted rows, you
can call the db2_num_rows function to return the number of rows that the statement returned or
affected. If the SQL statement returned a result set, you can begin fetching rows.

Preparing and executing SQL statements with variable input in PHP (ibm_db2)

To prepare and execute an SQL statement that includes variable input, use the db2_prepare,
db2_bind_param, and db2_execute functions. Preparing a statement improves performance because
the database server creates an optimized access plan for data retrieval that it can reuse if the statement
is executed again.

Before you begin

Obtain a connection resource by calling one of the connection functions in the ibm_db2 API. Refer to
“Connecting to an IBM data server database in PHP (ibm_db2)” on page 17.

Procedure
To prepare and execute an SQL statement that includes parameter markers:
1. Call the db2_prepare function, passing the listed arguments:

connection
A valid database connection resource returned from the db2_connect or db2_pconnect
function.

20 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://www.php.net/docs.php

statement
A string that contains the SQL statement, including question marks (?) as parameter markers for
any column or predicate values that require variable input. This string can include an XQuery
expression that is called the XMLQUERY function. You can only use parameter markers as a place
holder for column or predicate values. The SQL compiler is unable to create an access plan for a
statement that uses parameter markers in place of column names, table names, or other SQL
identifiers.

options
Optional: An associative array that specifies statement options:

DB2_ATTR_CASE
For compatibility with database systems that do not follow the SQL standard, this option sets
the case in which column names will be returned to the application. By default, the case is set
to DB2_CASE_NATURAL, which returns column names as they are returned by the database.
You can set this parameter to DB2_CASE_LOWER to force column names to lowercase, or to
DB2_CASE_UPPER to force column names to upper case.

DB2_ATTR_CURSOR
This option sets the type of cursor that ibm_db2 returns for result sets. By default, ibm_db2
returns a forward-only cursor (DB2_FORWARD_ONLY) which returns the next row in a result
set for every call to db2_fetch_array, db2_fetch_assoc, db2_fetch_both,
db2_fetch_object, ordb2_fetch_row. You can set this parameter to DB2_SCROLLABLE to
request a scrollable cursor so that the ibm_db2 fetch functions accept a second argument
specifying the absolute position of the row that you want to access within the result set.

If the function call succeeds, it returns a statement handle resource that you can use in subsequent
function calls that are related to this query.

If the function call fails (returns False), you can use the db2_stmt_error or db2_stmt_errormsg
function to retrieve diagnostic information about the error.

2. Optional: For each parameter marker in the SQL string, call the db2_bind_pazram function, passing
the listed arguments. Binding input values to parameter markers ensures that each input value is
treated as a single parameter, which prevents SQL injection attacks against your application.

stmt
A prepared statement returned by the call to the db2_prepaxre function.

parameter-number
An integer that represents the position of the parameter marker in the SQL statement.

variable-name
A string that specifies the name of the PHP variable to bind to the parameter specified by
parameter-number.

3. Call the db2_execute function, passing the listed arguments:

stmt
A prepared statement returned by the db2_pzrepare function.

parameters
Optional: An array that contains the values to use in place of the parameter markers, in order.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Prepare and execute a statement that includes variable input.

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";
$stmt = db2_prepare($conn, $sql);
if (!$stmt) §

// Handle errors

// Explicitly bind parameters
db2_bind_param($stmt, 1, $_POST['lower']);

Chapter 3. Developing PHP applications 21

http://www.php.net/docs.php

db2_bind_param($stmt, 2, $_POST['upper']);

db2_execute($stmt) ;
// Process results

// Invoke prepared statement again using dynamically bound parameters
db2_execute($stmt, array($_POST['lower'], $_POST['upper'l));

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows from the statement
resource.

Inserting large objects in PHP (ibm_db2)

When you insert a large object into the database, rather than loading all of the data for a large object into
a PHP string and passing it to the IBM data server database through an INSERT statement, you can insert
large objects directly from a file on your PHP server.

Before you begin

Obtain a connection resource by calling one of the connection functions in the ibm_db2 API.

Procedure

To insert a large object into the database directly from a file:

1. Call the db2_prepare function to prepare an INSERT statement with a parameter marker that
represents the large object column.

2. Set the value of a PHP variable to the path and name of the file that contains the data for the large
object. The path can be relative or absolute, and is subject to the access permissions of the PHP
executable file.

3. Call the db2_bind_param function to bind the parameter marker to the variable. The third argument
to this function is a string representing the name of the PHP variable that holds the path and name of
the file. The fourth argument is DB2_PARAM_FILE, which tells the ibm_db2 extension to retrieve the
data from a file.

4. Call the db2_execute function to issue the INSERT statement.

Example

Insert a large object into the database.

$stmt = db2_prepare($conn, "INSERT INTO animal_pictures(picture) VALUES (?)");
$picture = "/opt/albums/spook/grooming.jpg";

$rc db2_bind_param($stmt, 1, "picture", DB2_PARAM_FILE);
$rc = db2_execute($stmt);

Reading query result sets

Fetching rows or columns from result sets in PHP (ibm_db2)

When you run a statement that returns one or more result sets, use one of the functions available in the
ibm_db2 extension to iterate through the returned rows of each result set. If your result set includes
columns that contain large data, you can retrieve the data on a column-by-column basis to avoid large
memory usage.

Before you begin

You must have a statement resource returned by either the db2_exec or db2_execute function that
has one or more associated result sets.

22 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Procedure

To fetch data from a result set:
1. Fetch data from a result set by calling one of the fetch functions.

Table 5. ibm_db2 fetch functions

Function Description

Returns an array,. The columns are 0-
indexed by columnindexed.
position, representing a
row in a result set

Returns an array,.
indexed by column
name, representing a
row in a result set

Returns an array,
indexed by both column
name and position,
representing a row in a
result set

Sets the result set. Use this function to
pointer to the next rowiterate through a result
or requested rowset.

Returns an object with. The properties of the
properties representingobject map to the names
columns in the fetchedof the columns in the
rowresult set.

These functions accept the listed arguments:

stmt
A valid statement resource.

row_number
The number of the row that you want to retrieve from the result set. Row numbering begins with 1.
Specify a value for this optional parameter if you requested a scrollable cursor when you called the
db2_exec or db2_prepare function. With the default forward-only cursor, each call to a fetch
method returns the next row in the result set.

2. Optional: If you called the db2_fetch_row function, for each iteration over the result set, retrieve a
value from the specified column by calling the db2_result function. You can specify the column by
either passing an integer that represents the position of the column in the row (starting with 0), or a
string that represents the name of column.

3. Continue fetching rows until the fetch function returns False, which indicates that you have reached
the end of the result set.

For more information about the ibm_db2 extension, see http://www.php.net/docs.php.

Example

Example 1: Fetch rows from a result set by calling the db2_fetch_object function

<?php
$conn = db2_connect("sample", "db2instl", "password");
$sql = 'SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?';
$stmt = db2_prepare($conn, $sql);
db2_execute($stmt, array('000010'));
while ($row = db2_fetch_object($stmt)) $
print "Name:

Chapter 3. Developing PHP applications 23

http://www.php.net/docs.php

{$row->FIRSTNME} {$row->LASTNAME?

",
’

db2_close($conn);
?>

Example 2: Fetch rows from a result set by calling the db2_fetch_row function

<?php
$conn = db2_connect("sample", "db2instl", "password");
$sql = 'SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?';
$stmt = db2_prepare($conn, $sql);
db2_execute($stmt, array('000010'));
while (db2_fetch_row($stmt)) {
$fname = db2_result($stmt, 0);
$1lname = db2_result($stmt, 'LASTNAME');
print "
Name: $fname $1lname

",
’

db2_close($conn);
?>

Example 3: Fetch rows from a result set by calling the db2_fetch_both function

<?php
$conn = db2_connect("sample", "db2instl", "password");
$sql = 'SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?';
$stmt = db2_prepare($conn, $sql);
db2_execute($stmt, array('000010'));
while ($row = db2_fetch_both($stmt)) {
print "
NAME: $row[0] $row([1]
print "
NAME: " . $row['FIRSTNME'] . " " . $row['LASTNAME'] . "

",
’

db2_close($conn);
?>

What to do next

When you are ready to close the connection to the database, call the db2_close function. If you attempt
to close a persistent connection that you created by using db2_pconnect, the close request returns
TRUE, and the IBM data server client connection remains available for the next caller.

Fetching large objects in PHP (ibm_db2)

When you fetch a large object from a result set, rather than treating the large object as a PHP string, you
can save system resources by fetching large objects directly into a file on your PHP server.

Before you begin

Obtain a connection resource by calling one of the connection functions in the ibm_db2 API.

Procedure

To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream. For example, assign the return value from a call to the
fopen function to a variable.

2. Create a SELECT statement by calling the db2_prepazxe function.

3. Bind the output column for the large object to the PHP variable representing the stream by calling the
db2_bind_pazram function. The third argument to this function is a string representing the name of

24 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

the PHP variable that holds the path and name of the file. The fourth argument is DB2_PARAM_FILE,
which tells the ibm_db2 extension to write the data into a file.

4. Issue the SQL statement by calling the db2_execute function.
5. Retrieve the next row in the result set by calling an ibm_db2 fetch function (for example,
db2_fetch_object).

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Fetch a large object from the database.

$stmt = db2_prepare($conn, "SELECT name, picture FROM animal_pictures");
$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");

$rc = db2_bind_param($stmt, 1, "nickname", DB2_CHAR, 32);
$rc = db2_bind_param($stmt, 2, "picture", DB2_PARAM_FILE);
$rc = db2_execute($stmt) ;

$rc = db2_fetch_object($stmt);

Calling stored procedures in PHP (ibm_db2)

To call a stored procedure from a PHP application, you prepare and execute an SQL CALL statement. The
procedure that you call can include input parameters (IN), output parameters (OUT), and input and output
parameters (INOUT).

Before you begin

Obtain a connection resource by calling one of the connection functions in the ibm_db2 API. Refer to
“Connecting to an IBM data server database in PHP (ibm_db2)” on page 17.

Procedure

To call a stored procedure:
1. Call the db2_prepare function, passing the listed arguments:

connection
A valid database connection resource returned from db2_connect or db2_pconnect.

statement
A string that contains the SQL CALL statement, including parameter markers (?) for any input or
output parameters

options
Optional: A associative array that specifies the type of cursor to return for result sets. You can use
this parameter to request a scrollable cursor on database servers that support this type of cursor.
By default, a forward-only cursor is returned.

2. For each parameter marker in the CALL statement, call the db2_bind_pazram function, passing the
listed arguments:
stmt
The prepared statement returned by the call to the db2_prepare function.

parameter-number
An integer that represents the position of the parameter marker in the SQL statement.

variable-name
The name of the PHP variable to bind to the parameter specified by parameter-number.

parameter-type
A constant that specifies whether to bind the PHP variable to the SQL parameter as an input
parameter (DB2_PARAM_IN), an output parameter (DB2_PARAM_QOUT), or a parameter that
accepts input and returns output (DB2_PARAM_INOUT).

This step binds each parameter marker to the name of a PHP variable that will hold the output.

3. Call the db2_execute function, passing the prepared statement as an argument.

Chapter 3. Developing PHP applications 25

http://www.php.net/docs.php

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Prepare and execute an SQL CALL statement.

$sql = 'CALL match_animal(?, ?)';
$stmt = db2_prepare($conn, $sql);

$second_name = "Rickety Ride";
$weight = 0;

db2_bind_param($stmt, 1, "second_name", DB2_PARAM_INOUT);

db2_bind_param($stmt, 2, "weight", DB2_PARAM_OUT);

print "Values of bound parameters _before_ CALL:\n";

print " 1: $$second_name} 2: {$weighti\n";

db2_execute($stmt) ;

print "Values of bound parameters _after_CALL:\n";

print " 1: {$second_name} 2: {$weighti\n";

What to do next

If the procedure call returns one or more result sets, you can begin fetching rows from the statement

resource.

Retrieving multiple result sets from a stored procedure in PHP (ibm_db2)
When a single call to a stored procedure returns more than one result set, you can use the
db2_next_result function of the ibm_db2 API to retrieve the result sets.

Before you begin

You must have a statement resource returned by the db2_exec or db2_execute function that has

multiple result sets.

Procedure

To retrieve multiple result sets:

1. Fetch rows from the first result set returned from the procedure by calling one of the ibm_db2 fetch
functions, passing the statement resource as an argument. (The first result set that is returned from
the procedure is associated with the statement resource.)

Table 6. ibm_db2 fetch functions

Function

Description

Returns an array,
indexed by column
position, representing a
row in a result set

. The columns are 0-
indexed.

Returns an array,.

indexed by column
name, representing a
row in a result set

Returns an array,
indexed by both column
name and position,
representing a row in a
result set

26 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://www.php.net/docs.php

Table 6. ibm_db2 fetch functions (continued)

Function Description

Sets the result set. Use this function to
pointer to the next rowiterate through a result
or requested rowset.

Returns an object with. The properties of the
properties representingobject map to the names
columns in the fetchedof the columns in the
rowresult set.

2. Retrieve the subsequent result sets by passing the original statement resource as the first argument to
the db2_next_result function. You can fetch rows from the statement resource until no more rows
are available in the result set.

The db2_next_result function returns False when no more result sets are available or if the
procedure did not return a result set.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Retrieve multiple result sets from a stored procedure.

$stmt = db2_exec($conn, 'CALL multiResults()');

print "Fetching first result set\n";
while ($row = db2_fetch_array($stmt)) §
// work with row

print "\nFetching second result set\n";
$result_2 = db2_next_result($stmt);
if ($result_2) §
while ($row = db2_fetch_array($result_2)) {
// work with row

¥

print "\nFetching third result set\n";
$result_3 = db2_next_result($stmt);
if ($result_3) {
while ($row = db2_fetch_array($result_3)) {
// work with row

What to do next

When you are ready to close the connection to the database, call the db2_close function. If you attempt
to close a persistent connection that you created by using db2_pconnect, the close request returns
TRUE, and the persistent IBM data server client connection remains available for the next caller.

Commit modes in PHP applications (ibm_db2)

You can control how groups of SQL statements are committed by specifying a commit mode for a
connection resource. The ibm_db2 extension supports two commit modes: autocommit and manual
commit.

You must use a regular connection resource returned by the db2_connect function to control database
transactions in PHP. Persistent connections always use autocommit mode.

autocommit mode
In autocommit mode, each SQL statement is a complete transaction, which is automatically
committed. Autocommit mode helps prevent locking escalation issues that can impede the

Chapter 3. Developing PHP applications 27

http://www.php.net/docs.php

performance of highly scalable Web applications. By default, the ibm_db2 extension opens every
connection in autocommit mode.

You can turn on autocommit mode after disabling it by calling db2_autocommit ($conn,
DB2_AUTOCOMMIT_ON), where conn is a valid connection resource.

Calling the db2_autocommit function might affect the performance of your PHP scripts because it
requires additional communication between PHP and the database management system.

manual commit mode
In manual commit mode, the transaction ends when you call the db2_commit or db2_rollback
function. This means that all statements executed on the same connection between the start of a
transaction and the call to the commit or rollback function are treated as a single transaction.

Manual commit mode is useful if you might have to roll back a transaction that contains one or more
SQL statements. If you issue SQL statements in a transaction, and the script ends without explicitly
committing or rolling back the transaction, the ibm_db2 extension automatically rolls back any work
performed in the transaction.

You can turn off autocommit mode when you create a database connection by using the
"AUTOCOMMIT" => DB2_AUTOCOMMIT_OFF settingin the db2_connect options array. You can also
turn off autocommit mode for an existing connection resource by calling db2_autocommit ($conn,
DB2_AUTOCOMMIT_OFF), where conn is a valid connection resource.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Examples

End the transaction when db2_commit or db2_rollback is called.

$conn = db2_connect('SAMPLE', 'db2instl', 'ibmdb2', array(
'AUTOCOMMIT' => DB2_AUTOCOMMIT_ON));

// Issue one or more SQL statements within the transaction
$result = db2_exec($conn, 'DELETE FROM TABLE employee');
if ($result === FALSE)
print '<p>Unable to complete transaction!</p>';
db2_rollback($conn);

else {
print '<p>Successfully completed transaction!</p>';
db2_commit($conn);

%

Error-handling functions in PHP applications (ibm_db2)

Sometimes errors happen when you attempt to connect to a database or issue an SQL statement. The
username or password might be incorrect, a table or column name might be misspelled, or the SQL
statement might be invalid. The ibm_db2 API provides error-handling functions to help you recover
gracefully from the error situations.

Connection errors

Use one of the listed functions to retrieve diagnostic information if a connection attempt fails.

Table 7. ibm_db2 functions for handling connection errors

Function Description

db2_conn_error Retrieves the SQLSTATE returned by the last
connection attempt

db2_conn_errormsg Retrieves a descriptive error message appropriate
for an application error log

28 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://www.php.net/docs.php

SQL errors

Use one of the listed functions to retrieve diagnostic information if an attempt to prepare or execute an
SQL statement or to fetch a result from a result set fails.

Table 8. ibm_db2 functions for handling SQL errors

Function Description

db2_stmt_error Retrieves the SQLSTATE returned by the last
attempt to prepare or execute an SQL statement or
to fetch a result from a result set

db2_stmt_errormsg Retrieves a descriptive error message appropriate
for an application error log

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Tip: To avoid security vulnerabilities that might result from directly displaying the raw SQLSTATE returned
from the database, and to offer a better overall user experience in your web application, use a switch
structure to recover from known error states or return custom error messages. For example:

switch($this->state):

case '22001':
// More data than allowed for the defined column
$message = "You entered too many characters for this value.";
break;
Examples

Example 1: Handle connection errors

$connection = db2_connect($database, $user, $password);
if (!$connection) {

$this->state = db2_conn_error();

return false;

L)
Example 2: Handle SQL errors

$stmt = db2_prepare($connection, "DELETE FROM employee
WHERE firstnme = ?");
if (!$stmt) {

$this->state = db2_stmt_error();

return false;

k)
Example 3: Handle SQL errors that result from executing prepared statements

$success = db2_execute($stmt, array('Dan');
if (!$success) {
$this->state = db2_stmt_error($stmt);
return $false;

Database metadata retrieval functions in PHP (ibm_db2)
You can use functions in the ibm_db2 API to retrieve metadata for databases served by Db2, IBM
Cloudscape, and, through Db2 Connect, Db2 for z/0OS® and Db2 for i.

Some classes of applications, such as administration interfaces, must dynamically reflect the structure
and SQL objects contained in arbitrary databases. One approach to retrieving metadata about a database
is to issue SELECT statements directly against the system catalog tables; however, the schema of the
system catalog tables might change between versions of Db2, or the schema of the system catalog tables
on Db2 might differ from the schema of the system catalog tables on Db2 for z/OS. Rather than
laboriously maintaining these differences in your application code, you can use PHP functions available in
the ibm_db2 extension to retrieve database metadata.

Chapter 3. Developing PHP applications 29

http://www.php.net/docs.php

Before calling these functions, you must set up the PHP environment and have a connection resource
returned by the db2_connect or db2_pconnect function.

Important: Calling metadata functions uses a significant amount of space. If possible, cache the results

of your calls for use in subsequent calls.

Table 9. ibm_db2 metadata retrieval functions

Function

Description

db2_client_info

Returns a read-only object with information about
the IBM data server client

db2_column_privileges

Returns a result set listing the columns and
associated privileges for a table

db2_columns

Returns a result set listing the columns and
associated metadata for a table

db2_foreign_keys

Returns a result set listing the foreign keys for a
table

db2_primary_keys

Returns a result set listing the primary keys for a
table

db2_procedure_columns

Returns a result set listing the parameters for one
or more stored procedures

db2_procedures

Returns a result set listing the stored procedures
registered in the database

db2_server_info

Returns a read-only object with information about
the database management system software and
configuration

db2_special_columns

Returns a result set listing the unique row
identifiers for a table

db2_statistics

Returns a result set listing the indexes and
statistics for a table

db2_table_privileges

Returns a result set listing tables and their
associated privileges in the database

Most of the ibm_db2 database metadata retrieval functions return result sets with columns defined for
each function. To retrieve rows from the result sets, use the ibm_db2 functions that are available for this

purpose.

The db2_client_infoand db2_server_info functions directly return a single object with read-only
properties. You can use the properties of these objects to create an application that behaves differently
depending on the database management system to which it connects. For example, rather than encoding
a limit of the lowest common denominator for all possible database management systems, a Web-based
database administration application built on the ibm_db2 extension could use the
db2_server_info()->MAX_COL_NAME_LEN property to dynamically display text fields for naming
columns with maximum lengths that correspond to the maximum length of column names on the
database management system to which it is connected.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Examples

Example 1: Display a list of columns and associated privileges for a table

<?php
$conn = db2_connect('sample', 'db2instl',

"ibmdb2"');

30 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://www.php.net/docs.php

if ($conn) §
$stmt = db2_column_privileges($conn, NULL, NULL, 'DEPARTMENT');
$row = db2_fetch_array($stmt);
print $row[2] . "\n";
print $row[3] . "\n";
print $row[7];
db2_close($conn);

else §
echo db2_conn_errormsg();
printf("Connection failed\n\n");

?>

Example 2: Display a list of primary keys for a table

<?php
$conn = db2_connect('sample', 'db2instl', 'ibmdb2');

if ($conn) §
$stmt = db2_primary_keys($conn, NULL, NULL, 'DEPARTMENT');
while ($row = db2_fetch_array($stmt)) {
echo "TABLE_NAME:\t" . $row[2] . "\n";
echo "COLUMN_NAME:\t" . $row[3] . "\n";
echo "KEY_SEQ:\t" . $row[4] . "\n";

db2_close($conn);

else §
echo db2_conn_errormsg();
printf("Connection failed\n\n");

?>

Example 3: Display a list of parameters for one or more stored procedures

<?php
$conn = db2_connect('sample', 'db2instl', 'ibmdb2');

if ($conn) §
$stmt = db2_procedures($conn, NULL, 'SYS%', '%%');

$row = db2_fetch_assoc($stmt);
var_dump ($row) ;

db2_close($conn);

else §
echo "Connection failed.\n";

?>

Example 4: Display a list of the indexes and statistics for a table

<?php
$conn = db2_connect('sample', 'db2instl', 'ibmdb2');

if ($conn) §
echo "Test DEPARTMENT table:\n";
$result = db2_statistics($conn, NULL, NULL, "EMPLOYEE", 1);
while ($row = db2_fetch_assoc($result)) {
var_dump ($row) ;
t

echo "Test non-existent table:\n";
$result = db2_statistics($conn,NULL,NULL, "NON_EXISTENT_TABLE",1);
$row = db2_fetch_array($result);

if ($row) %
echo "Non-Empty\n";
t else §

echo "Empty\n";
3

db2_close($conn);

else §

Chapter 3. Developing PHP applications 31

echo 'no connection: . db2_conn_errormsg();

%

?>

Example 5: Display a list of tables and their associated privileges in the database

<?php
$conn = db2_connect('sample', 'db2instl', 'ibmdb2');

if ($conn) §
$stmt = db2_table_privileges($conn, NULL, "%%", "DEPARTMENT");
while ($row = db2_fetch_assoc($stmt)) {
var_dump ($row) ;

t
db2_close($conn);

else §
echo db2_conn_errormsg();
printf("Connection failed\n\n");

?>

Application development in PHP (PDO)
The PDO_IBM extension provides a variety of useful PHP functions for accessing and manipulating data
through the standard object-oriented database interface introduced in PHP 5.1. The extension includes
functions for connecting to a database, executing and preparing SQL statements, fetching rows from
result sets, managing transactions, calling stored procedures, handling errors, and retrieving metadata.

Connecting to an IBM data server database with PHP (PDO)

Before you can issue SQL statements to create, update, delete, or retrieve data, you must connect to a
database. You can use the PHP Data Objects (PDO) interface for PHP to connect to an IBM data server
database through either a cataloged connection or a direct TCP/IP connection. To improve performance,
you can also create a persistent connection.

Before you begin

You must set up the PHP 5.1 (or later) environment on your system and enable the PDO and PDO_IBM
extensions.

About this task

This procedure returns a connection object to an IBM data server database. This connection stays open
until you set the PDO object to NULL, or the PHP script finishes.

Procedure

To connect to an IBM data server database:

1. Create a connection to the database by calling the PDO constructor within a try{} block. Pass a DSN
value that specifies ibm: for the PDO_IBM extension, followed by either a cataloged database name
or a complete database connection string for a direct TCP/IP connection.

« (Windows): By default, the PDO_IBM extension uses connection pooling to minimize connection
resources and improve connection performance.

« (Linux and UNIX): To create a persistent connection, pass array (PDO: : ATTR_PERSISTENT =>
TRUE) as the driver_options (fourth) argument to the PDO constructor.

2. Optional: Set error handling options for the PDO connection in the fourth argument to the PDO
constructor:

« By default, PDO sets an error message that can be retrieved through PDO: :exrorInfo () and an
SQLCODE that can be retrieved through PDO: :erroxrCode () when any error occurs; to request this
mode explicitly, set PDO: : ATTR_ERRMODE => PDO: :ERRMODE_SILENT

32 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

« Toissue a PHP E_WARNING when any error occurs, in addition to setting the error message and
SQLCODE, set PDO: : ATTR_ERRMODE => PDO: :ERRMODE_WARNING

« To throw a PHP exception when any error occurs, set PDO: : ATTR_ERRMODE =>
PDO: : ERRMODE_EXCEPTION

3. Catch any exception thrown by the try{ ¥ block in a corresponding catch {3} block.
For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Example

Connect to an IBM data server database over a persistent connection.

try {
$connection = new PDO("ibm:SAMPLE", "db2instl", "ibmdb2", array(
PDO: : ATTR_PERSISTENT => TRUE,
PDO: :ATTR_ERRMODE => PDO: :ERRMODE_EXCEPTION)
)8

3t
catch (Exception $e) {
echo($e->getMessage());

What to do next

Next, you prepare and execute SQL statements.

Executing SQL statements in PHP (PDO)

After connecting to a database, use methods available in the PDO API to prepare and execute SQL
statements. The SQL statements can contain static text or parameter markers that represent variable
input.

Executing a single SQL statement in PHP (PDO)

To prepare and execute a single SQL statement that accepts no input parameters, use the PDO: : exec or
PDO: :query method. Use the PDO: : exec method to execute a statement that returns no result set. Use
the PDO: : query method to execute a statement that returns one or more result sets.

Before you begin

Important: To avoid the security threat of SQL injection attacks, use the PDO: :exec or PDO: :query
method only to execute SQL statements composed of static strings. Interpolation of PHP variables
representing user input into the SQL statement can expose your application to SQL injection attacks.

Obtain a connection object by calling the PDO constructor.

Procedure

To prepare and execute a single SQL statement that accepts no input parameters, call one of the listed
methods:

« To execute an SQL statement that returns no result set, call the PDO: : exec method on the PDO
connection object, passing in a string that contains the SQL statement. For example, a typical use of
PDO: :exec is to set the default schema for your application in a common include file or base class.

If the SQL statement succeeds (successfully inserts, modifies, or deletes rows), the PDO: : exec
method returns an integer value representing the number of rows that were inserted, modified, or
deleted.

To determine if the PDO: : exec method failed (returned FALSE or 0), use the === operator to strictly
test the returned value against FALSE.

« To execute an SQL statement that returns one or more result sets, call the PDO: : query method on
the PDO connection object, passing in a string that contains the SQL statement. For example, you
might want to call this method to execute a static SELECT statement.

Chapter 3. Developing PHP applications 33

http://php.net/manual/en/book.pdo.php

If the method call succeeds, it returns a PDOStatement resource that you can use in subsequent
method calls.

If the method call fails (returns FALSE), you can use the PDO: :errorCode and PDO: :errorInfo
method to retrieve diagnostic information about the error.

For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Example

Example 1: Call the PDO: : exec method to set the default schema for your application

$conn = new PDO('ibm:SAMPLE', 'db2instl', 'ibmdb2');

$result = $conn->exec('SET SCHEMA myapp');

if ($result === FALSE) {
print "Failed to set schema:

. $conn->errorMsg();

Example 2: Call the PDO: : query method to issue an SQL SELECT statement

$conn = new PDO('ibm:SAMPLE', 'db2instl', 'ibmdb2');
$result = $conn->query('SELECT firstnme, lastname FROM employee');
if (!$result) {

print "<p>Could not retrieve employee list:

. $conn->errorMsg(). "</p>";

while ($row = $result->fetch()) {
print "<p>Name: $$row[0]3% $$row[1]3</p>";

What to do next

If you called the PDO: : query method to create a PDOStatement object, you can begin retrieving rows
from the object by calling the PDOStatement: : fetch or PDOStatement: :fetchAll method.

Preparing and executing SQL statements in PHP (PDO)

To prepare and execute an SQL statement that includes variable input, use the PDO: : prepare,
PDOStatement: :bindParam, and PDOStatement: : execute methods. Preparing a statement
improves performance because the database server creates an optimized access plan for data retrieval
that it can reuse if the statement is executed again.

Before you begin

Obtain a connection object by calling the PDO constructor. Refer to “Connecting to an IBM data server
database with PHP (PDO)” on page 32.

Procedure

To prepare and execute an SQL statement that includes parameter markers:
1. Call the PDO: : prepare method, passing the listed arguments:

statement
A string that contains the SQL statement, including question marks (?) or named variables (: name)
as parameter markers for any column or predicate values that require variable input. You can only
use parameter markers as a place holder for column or predicate values. The SQL compiler is
unable to create an access plan for a statement that uses parameter markers in place of column
names, table names, or other SQL identifiers. You cannot use both question mark (?) parameter
markers and named parameter markers (: name) in the same SQL statement.

driver_options
Optional: An array that contains statement options:

PDO::ATTR_CURSOR
This option sets the type of cursor that PDO returns for result sets. By default, PDO returns a
forward-only cursor (PDO::CURSOR_FWDONLY), which returns the next row in a result set for

34 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://php.net/manual/en/book.pdo.php

every call to PDOStatement: :fetch (). You can set this parameter to
PDO::CURSOR_SCROLL to request a scrollable cursor.

If the function call succeeds, it returns a PDOStatement object that you can use in subsequent method
calls that are related to this query.

If the function call fails (returns False), you can use the PDO: :errorCode or PDO: :errorInfo
method to retrieve diagnostic information about the error.

2. Optional: For each parameter marker in the SQL string, call the PDOStatement: :bindParam
method, passing the listed arguments. Binding input values to parameter markers ensures that each
input value is treated as a single parameter, which prevents SQL injection attacks against your
application.

parameter
A parameter identifier. For question mark parameter markers (?), this is an integer that represents
the 1-indexed position of the parameter in the SQL statement. For named parameter markers
(:name), this is a string that represents the parameter name.

variable
The value to use in place of the parameter marker

3. Call the PDOStatement: : execute method, optionally passing an array that contains the values to
use in place of the parameter markers, either in order for question mark parameter markers, or as
a :name => value associative array for named parameter markers.

For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Example

Prepare and execute a statement that includes variable input.

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";
$stmt = $conn->prepare($sql);
if (!$stmt) {

// Handle errors

// Explicitly bind parameters
$stmt->bindParam(1, $_POST['lower']);
$stmt->bindParam(2, $_POST['upper']);
$stmt->execute ($stmt) ;

// Invoke statement again using dynamically bound parameters
$stmt->execute ($stmt, array($_POST['lower'], $_POST['upper']l));

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows from the statement
resource by calling the PDOStatement: : fetch or PDOStatement: : fetchAll method.

Inserting large objects in PHP (PDO)

When you insert a large object into the database, rather than loading all of the data for a large object into
a PHP string and passing it to the IBM data server database through an INSERT statement, you can insert
large objects directly from a file on your PHP server.

Before you begin

Obtain a connection object by calling the PDO constructor.

Procedure

To insert a large object into the database directly from a file:

1. Call the PDO: : prepare method to create a PDOStatement object from an INSERT statement with a
parameter marker that represents the large object column.

Chapter 3. Developing PHP applications 35

http://php.net/manual/en/book.pdo.php

2. Create a PHP variable that represents a stream (for example, by assigning the value returned by the
fopen function to variable).

3. Call the PDOStatement: :bindParam method, passing the listed arguments to bind the parameter
marker to the PHP variable that represents the stream of data for the large object:

parameter
A parameter identifier. For question mark parameter markers (?), this is an integer that represents
the 1-indexed position of the parameter in the SQL statement. For named parameter markers
(:name), this is a string that represents the parameter name.

variable
The value to use in place of the parameter marker

data_type
The PHP constant, PDO: : PARAM_LOB, which tells the PDO extension to retrieve the data from a
file.

4. Call the PDOStatement: :execute method to issue the INSERT statement.

Example

Insert a large object into the database.

$stmt = $conn->prepare("INSERT INTO animal_pictures(picture) VALUES (?2)");
$picture = fopen("/opt/albums/spook/grooming.jpg", "rb");
$stmt->bindParam(1, $picture, PDO::PARAM_LOB);

$stmt->execute();

Reading query result sets

Fetching rows or columns from result sets in PHP (PDO)

After executing a statement that returns one or more result sets, use one of the methods available in the
PDO API to iterate through the returned rows. The PDO API also provides methods to fetch a single
column from one or more rows in the result set.

Before you begin

You must have a statement resource returned by either the PDO: : query or PDOStatement: :execute
method that has one or more associated result sets.

Procedure

To fetch data from a result set:
1. Fetch data from a result set by calling one of the fetch methods:

« Toreturn asingle row from a result set as an array or object, call the PDOStatement: :fetch
method.

- Toreturn all of the rows from the result set as an array of arrays or objects, call the
PDOStatement: :fetchAll method.

By default, PDO returns each row as an array indexed by the column name and 0-indexed column
position in the row. To request a different return style, specify one of the PDO: : FETCH_x* constants as
the first parameter when you call the PDOStatement: : fetch method:

PDO: :FETCH_ASSOC
Returns an array indexed by column name as returned in your result set.

PDO: : FETCH_BOTH (default)
Returns an array indexed by both column name and 0-indexed column number as returned in your
result set

PDO: : FETCH_BOUND
Returns TRUE and assigns the values of the columns in your result set to the PHP variables to
which they were bound with the PDOStatement: :bindParam method.

36 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

PDO: :FETCH_CLASS
Returns a new instance of the requested class, mapping the columns of the result set to named
properties in the class.

PDO: :FETCH_INTO
Updates an existing instance of the requested class, mapping the columns of the result set to
named properties in the class.

PDO: : FETCH_LAZY
Combines PDO: : FETCH_BOTH and PDO: : FETCH_OBJ, creating the object variable names as they
are accessed.

PDO: : FETCH_NUM
Returns an array indexed by column number as returned in your result set, starting at column 0.
PDO: :FETCH_OBJ

Returns an anonymous object with property names that correspond to the column names returned
in your result set.

If you requested a scrollable cursor when you called the PDO: : query or PDOStatement: :execute
method, you can pass the listed optional parameters that control which rows are returned to the
caller:

« One of the PDO: : FETCH_ORI_* constants that represents the fetch orientation of the fetch request:

PDO: : FETCH_ORI_NEXT (default)
Fetches the next row in the result set.

PDO: : FETCH_ORI_PRIOR
Fetches the previous row in the result set.

PDO: : FETCH_ORI_FIRST
Fetches the first row in the result set.

PDO: :FETCH_ORI_LAST
Fetches the last row in the result set.

PDO: :FETCH_ORI_ABS
Fetches the absolute row in the result set. Requires a positive integer as the third argument to
the PDOStatement: :fetch method.

PDO: :FETCH_ORI_REL
Fetches the relative row in the result set. Requires a positive or negative integer as the third
argument to the PDOStatement: : fetch method.

- Aninteger requesting the absolute or relative row in the result set, corresponding to the fetch
orientation requested in the second argument to the PDOStatement: : fetch method.

2. Optional: Fetch a single column from one or more rows in a result set by calling one of the listed
methods:
- Toreturn asingle column from a single row in the result set:

Call the PDOStatement: : fetchColumn method, specifying the column you want to retrieve as
the first argument of the method. Column numbers start at 0. If you do not specify a column, the
PDOStatement: :fetchColumn returns the first column in the row.

« Toreturn an array that contains a single column from all of the remaining rows in the result set:
Call the PDOStatement: : fetchAll method, passing the PDO::FETCH_COLUMN constant as the
first argument, and the column you want to retrieve as the second argument. Column numbers start

at 0. If you do not specify a column, calling PDOStatement: : fetchAl1 (PDO: : FETCH_COLUMN)
returns the first column in the row.

For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Chapter 3. Developing PHP applications 37

http://php.net/manual/en/book.pdo.php

Example

Return an array indexed by column number.

$stmt = $conn->query("SELECT firstnme, lastname FROM employee");
while ($row = $stmt->fetch(PDO::FETCH_NUM)) §

print "Name: <p>{$row[0] $row[1]¥</p>";
3

What to do next

When you are ready to close the connection to the database, set the PDO object to NULL. The connection
closes automatically when the PHP script finishes.

Fetching large objects in PHP (PDO)

When you fetch a large object from a result set, rather than treating the large object as a PHP string, you
can save system resources by fetching large objects directly into a file on your PHP server.

Before you begin

Obtain a connection object by calling the PDO constructor.

Procedure

To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream. For example, assign the return value from a call to the
fopen function to a variable.

2. Create a PDOStatement object from an SQL statement by calling the PDO: : prepare method.

3. Bind the output column for the large object to the PHP variable representing the stream by calling the
PDOStatement: :bindColumn method. The second argument is a string representing the name of
the PHP variable that holds the path and name of the file. The third argument is a PHP constant,
PDO::PARAM_LOB, which tells the PDO extension to write the data into a file. You must call the
PDOStatement: :bindColumn method to assign a different PHP variable for every column in the
result set.

4. Issue the SQL statement by calling the PDOStatement: : execute method.
5. Call PDOStatement: :fetch (PDO: :FETCH_BOUND) to retrieve the next row in the result set, binding

the column output to the PHP variables that you associated when you called the
PDOStatement: :bindColumn method.

Example

Fetch a large object from the database directly into a file.

$stmt = $conn->prepare("SELECT name, picture FROM animal_pictures");
$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");
$stmt->bindColumn('NAME', $nickname, PDO::PARAM_STR, 32);
$stmt->bindColumn('PICTURE', $picture, PDO::PARAM_LOB);
$stmt->execute();

$stmt->fetch (PDO: : FETCH_BOUND) ;

Calling stored procedures in PHP (PDO)

To call a stored procedure from a PHP application, you execute an SQL CALL statement. The procedure
that you call can include input parameters (IN), output parameters (OUT), and input and output
parameters (INOUT).

Before you begin

Obtain a connection object by calling the PDO constructor.

38 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

About this task

This procedure prepares and executes an SQL CALL statement. For more information, also see the topic
about preparing and executing SQL statements.

Procedure

To call a stored procedure:

1. Call the PDO: : prepare method to prepare a CALL statement with parameter markers that represent
the OUT and INOUT parameters.

2. For each parameter marker in the CALL statement, call the PDOStatement: :bindParam method to
bind each parameter marker to the name of the PHP variable that will hold the output value of the
parameter after the CALL statement has been issued. For INOUT parameters, the value of the PHP
variable is passed as the input value of the parameter when the CALL statement is issued.

a) Set the third parameter, data_type, to one of the PDO::PARAM_* constants that specifies the type
of data being bound:

PDO::PARAM_NULL
Represents the SQL NULL data type.

PDO::PARAM_INT
Represents SQL integer types.

PDO::PARAM_LOB
Represents SQL large object types.

PDO::PARAM_STR
Represents SQL character data types.

For an INOUT parameter, use the bitwise OR operator to append PDO: : PARAM_INPUT_OUTPUT to
the type of data being bound.

b) Set the fourth parameter, length, to the maximum expected length of the output value.
3. Call the PDOStatement: :execute method, passing the prepared statement as an argument.

For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Example

Prepare and execute an SQL CALL statement.

$sql = 'CALL match_animal(?, ?)';
$stmt = $conn->prepare($sql);

$second_name = "Rickety Ride";
$weight = 0;

$stmt->bindParam(1l, $second_name, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 32);
$stmt->bindParam(2, $weight, PDO::PARAM_INT, 10);

print "Values of bound parameters _before_ CALL:\n";
print " 1: $$second_name} 2: {$weighti\n";

$stmt->execute();
print "Values of bound parameters _after_CALL:\n";

print " 1: {$second_name} 2: {$weighti\n";

Retrieving multiple result sets from a stored procedure in PHP (PDO)
When a single call to a stored procedure returns more than one result set, you can use the
PDOStatement: :nextRow method of the PDO API to retrieve the result sets.

Before you begin

Chapter 3. Developing PHP applications 39

http://php.net/manual/en/book.pdo.php

You must have a PDOStatement object returned by calling a stored procedure with the PDO: : query or
PDOStatement: :execute method.

Procedure

To retrieve multiple result sets:

1. Fetch rows from the first result set returned from the procedure by calling one of the PDO fetch
methods. (The first result set that is returned from the procedure is associated with the PDOStatement
object returned by the CALL statement.)

- Toreturn asingle row from a result set as an array or object, call the PDOStatement: :fetch
method.

- Toreturn all of the rows from the result set as an array of arrays or objects, call the
PDOStatement: :fetchAll method.

Fetch rows from the PDOStatement object until no more rows are available in the first result set.

2. Retrieve the subsequent result sets by calling the PDOStatement: : nextRowset method to return
the next result set. You can fetch rows from the PDOStatement object until no more rows are available
in the result set.

The PDOStatement: : nextRowset method returns False when no more result sets are available or
the procedure did not return a result set.

For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Example

Retrieve multiple result sets from a stored procedure.

$sql = 'CALL multiple_results()';
$stmt = $conn->query($sql);
do $
$rows = $stmt->fetchAll(PDO: :FETCH_NUM);
if ($rows) %
print_r($rows);

t while ($stmt->nextRowset());

What to do next

When you are ready to close the connection to the database, set the PDO object to NULL. The connection
closes automatically when the PHP script finishes.

Commit modes in PHP (PDO)
You can control how groups of SQL statements are committed by specifying a commit mode for a
connection resource. The PDO extension supports two commit modes: autocommit and manual commit.

autocommit mode
In autocommit mode, each SQL statement is a complete transaction, which is automatically
committed. Autocommit mode helps prevent locking escalation issues that can impede the
performance of highly scalable Web applications. By default, the PDO extension opens every
connection in autocommit mode.

manual commit mode
In manual commit mode, the transaction begins when you call the PDO: :beginTransaction
method, and it ends when you call either the PDO: : commit or PDO: : rol1Back method. This means
that any statements executed (on the same connection) between the start of a transaction and the
call to the commit or rollback method are treated as a single transaction.

Manual commit mode is useful if you might have to roll back a transaction that contains one or more
SQL statements. If you issue SQL statements in a transaction and the script ends without explicitly
committing or rolling back the transaction, PDO automatically rolls back any work performed in the
transaction.

40 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

http://php.net/manual/en/book.pdo.php

After you commit or rollback the transaction, PDO automatically resets the database connection to
autocommit mode.

For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Examples

End the transaction when PDO: : commit or PDO: : rollBack is called.

$conn = new PDO('ibm:SAMPLE', 'db2instl', 'ibmdb2', array(
PDO: :ATTR_ERRMODE => PDO: :ERRMODE_EXCEPTION));
// PDO::ERRMODE_EXCEPTION means an SQL error throws an exception
try {
// Issue these SQL statements in a transaction within a try{% block
$conn->beginTransaction();

// One or more SQL statements
$conn->commit () ;

&
catch (Exception $e) {
// If something raised an exception in our transaction block of statements,
// roll back any work performed in the transaction
print '<p>Unable to complete transaction!</p>';
$conn->rollBack();

Handling errors and warnings in PHP (PDO)

Sometimes errors happen when you attempt to connect to a database or issue an SQL statement. The
password for your connection might be incorrect, a table you referred to in a SELECT statement might not
exist, or the SQL statement might be invalid. PDO provides error-handling methods to help you recover
gracefully from the error situations.

Before you begin

You must set up the PHP environment on your system and enable the PDO and PDO_IBM extensions.

About this task

PDO gives you the option of handling errors as warnings, errors, or exceptions. However, when you create
a new PDO connection object, PDO always throws a PDOException object if an error occurs. If you do not
catch the exception, PHP prints a backtrace of the error information that might expose your database
connection credentials, including your user name and password.

This procedure catches a PDOException object and handles the associated error.

Procedure

1. To catch a PDOException object and handle the associated error:
a) Wrap the call to the PDO constructorin a try block.
b) Following the try block, include a catch block that catches the PDOException object.

¢) Retrieve the error message associated with the error by invoking the Exception: : getMessage
method on the PDOException object.

2. Toretrieve the SQLSTATE associated with a PDO or PDOStatement object, invoke the exrorCode
method on the object.

3. To retrieve an array of error information associated with a PDO or PDOStatement object, invoke the
errorInfo method on the object. The array contains a string representing the SQLSTATE as the first
element, an integer representing the SQL or CLI error code as the second element, and a string
containing the full text error message as the third element.

For more information about the PDO API, see http://php.net/manual/en/book.pdo.php.

Chapter 3. Developing PHP applications 41

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

42 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Chapter 4. Developing Python applications

Python, SQLAlchemy, and Django Framework application development for
IBM Database servers

Python is a general purpose, high-level scripting language that is well suited for rapid application
development. Python emphasizes code readability and supports various programming paradigms,
including procedural, object-oriented, aspect-oriented, meta, and functional programming. The Python
language is managed by the Python Software Foundation.

The listed extensions are available for accessing IBM Database servers from a Python application:

ibm_db
This API is defined by IBM and provides the best support for advanced features. In addition to issuing
SQL queries, calling stored procedures, and using pureXML, you can access metadata information.
ibm_db_dbi
This API implements Python Database API Specification v2.0. Because the ibm_db_dbi API conforms
to the specification, it does not offer some of the advanced features that the ibm_db API supports. If
you have an application with a driver that supports Python Database API Specification v2.0, you can
easily switch to ibm_db. The ibm_db and ibm_db_dbi APIs are packaged together.
ibm_db_sa
This adapter supports SQLAlchemy, which offers a flexible way to access IBM Database servers.
SQLAlchemy is a popular open source Python SQL toolkit and object-to-relational mapper (ORM).
ibm_db_django
This adapter provides access to IBM Database servers from Django. Django is a popular web
framework used to build high-performing, elegant web applications quickly.

If you want to connect your Python applications to Db2 for IBM i V5R4 and later servers, you must have
PTF SI27256 applied to those servers.

Python downloads and related resources
Many resources are available to help you develop Python applications for IBM data servers.

Table 10. Python downloads and related resources

Downloads

Python 2 http://www.python.org/download/
SQLAlchemy http://www.sqlalchemy.org/download.html
Django http://www.djangoproject.com/download/
ibm_db and ibm_db_dbi extensions (including http://pypi.python.org/pypi/ibm_db/

source code) https://github.com/ibmdb/python-ibmdb

ibm_db_sa adapter for SQLAlchemy 0.4 https://github.com/ibmdb/python-ibmdbsa

http://pypi.python.org/pypi/ibm_db_sa
ibm_db_django adaptor for Django 1.0.x and 1.1 https://github.com/ibmdb/python-ibmdb-django

http://pypi.python.org/pypi/ibm_db_django

setuptools program http://pypi.python.org/pypi/setuptools

2 Includes Windows binaries. Most Linux distributions come with Python already precompiled.

© Copyright IBM Corp. 2016, 2020 43

http://www.python.org/download/
http://www.sqlalchemy.org/download.html
http://www.djangoproject.com/download/
http://pypi.python.org/pypi/ibm_db/
https://github.com/ibmdb/python-ibmdb
https://github.com/ibmdb/python-ibmdbsa
http://pypi.python.org/pypi/ibm_db_sa
https://github.com/ibmdb/python-ibmdb-django
http://pypi.python.org/pypi/ibm_db_django
http://pypi.python.org/pypi/setuptools

Table 10. Python downloads and related resources (continued)

Downloads

IBM Data Server Driver Package (DS Driver) https://www.ibm.com/support/pages/node/
387577

API documentation

ibm_db API documentation https://github.com/ibmdb/python-ibmdb/wiki/APIs

Python Database API Specification v2.0 http://www.python.org/dev/peps/pep-0249/

SQLAlchemy documentation

Quick Getting Started Steps for ibm_db_sa https://github.com/ibmdb/python-ibmdbsa/blob/

master/ibm_db_sa/README.md

SQLAlchemy Documentation http://www.sqlalchemy.org/docs/index.html

Django documentation

Getting Started steps for ibm_db_django https://github.com/ibmdb/python-ibmdb-django/
blob/master/README.md

Django Documentation http://www.djangoproject.com

Additional resources

Python Programming Language website http://www.python.org/

The Python SQL Toolkit and Object Relational http://www.sqlalchemy.org/
Mapper website

Setting up the Python environment for IBM database servers

Before you can connect to an IBM database server and run SQL statements, you must set up the Python
environment by installing the ibm_db (Python) driver and, optionally, the ibm_db_sa (SQLAlchemy) or
ibm_db_django (Django) adapter.

Before you begin

Ensure that the following software is installed on your system:

« Python 2.5 or later. For Linux operating systems, you also require the python2.5-dev package.

« The setuptools program or the distribute program. The setuptools program is available at
http://pypi.python.org/pypi/setuptools, and the distxribute program is available at http://
pypi.python.org/pypi/distribute. You can use the setuptools program or the distxribute program to
download, build, install, upgrade, and uninstall Python packages.

- If your Python application will connect to a remote IBM database, one of the following products on the
computer where your application will run:

— The IBM Data Server Client product

— The IBM Data Server Runtime Client product

— The IBM Data Server Driver Package product

— The IBM Data Server Driver for ODBC and CLI product

If your Python application connects to an IBM database server on the local computer, no additional IBM
data server products are required.

Procedure

To set up the Python environment:

44 1BM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

https://www.ibm.com/support/pages/node/387577
https://www.ibm.com/support/pages/node/387577
https://github.com/ibmdb/python-ibmdb/wiki/APIs
http://www.python.org/dev/peps/pep-0249/
https://github.com/ibmdb/python-ibmdbsa/blob/master/ibm_db_sa/README.md
https://github.com/ibmdb/python-ibmdbsa/blob/master/ibm_db_sa/README.md
http://www.sqlalchemy.org/docs/index.html
https://github.com/ibmdb/python-ibmdb-django/blob/master/README.md
https://github.com/ibmdb/python-ibmdb-django/blob/master/README.md
http://www.djangoproject.com
http://www.python.org/
http://www.sqlalchemy.org/
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/distribute
http://pypi.python.org/pypi/distribute

1. Using the following method, install the ibm_db Python driver:
« Install from the remote repository:

a. If you want to avoid automatic installation of the clidriver and would like to use an existing copy
of the driver, you can set IBM_DB_HOME.

Set the IBM_DB_HOME environment variable by using the expoxt command:
$ export IBM_DB_HOME=DB2HOME

where DB2HOME is the directory where the IBM data server product is installed.

For example, issue the following command to set the IBM_DB_HOME environment variable:
$ export IBM_DB_HOME=/home/db2instl/<dsdriver installation>/clidriver
b. Issue the following command:
$ pip install ibm_db
or

$ easy_install ibm_db

2. Optional: Using the following method, install the ibm_db_sa SQLAlchemy adapter or ibm_db_django
Django adapter:

« Install from the remote repository:

— Toinstall the SQLAlchemy adapter, issue the following command:
$ pip install ibm_db_sa
or
$ easy_install ibm_db_sa
— Toinstall the django adapter, issue the following command:
$ pip install ibm_db_django
or

$ easy_install ibm_db_django

3. Ensure that the Python driver can access the 1ibdb2. so CLI driver file:

« For 32-bit Linux and UNIX operating systems other than the AIX operating system, set the
LD_LIBRARY_PATH variable to the IBM_DB_HOME/1ib32 directory by issuing the expoxt
command:

$ export LD_LIBRARY_PATH=IBM_DB_HOME/1ib32

« For 64-bit Linux and UNIX operating systems other than the AIX operating system, set the
LD_LIBRARY_PATH variable to the IBM_DB_HOME /1ib64 directory by issuing the expoxt
command:

$ export LD_LIBRARY_PATH=IBM_DB_HOME/1ib64

« For a 32-bit AIX operating system, set the LIBPATH variable to theIBM_DB_HOME /1ib32 directory
by issuing the expoxrt command:

$ export LIBPATH=IBM_DB_HOME/1ib32

Chapter 4. Developing Python applications 45

 For a 64-bit AIX operating system, set the LIBRARY_PATH variable to the IBM_DB_HOME/1ib64
directory by issuing the expoxt command:

$ export LIBPATH=IBM_DB_HOME/libé4

What to do next

Test the ibm_db Python driver, the ibm_db_sa SQLAlchemy adapter, and the ibm_db_django Django
adapter connection by using the test applications.

Verifying the Python driver, SQLAlchemy adapter, and Django adapter installation

When the installation of the Python driver and optional adapters are complete, it is a good practice to test
the new Python environment to verify that installation is working.

Before you begin

You must have the following software installed on your system:

Python 2.5 or later. For Linux operating systems, you also require the python2.5-dev package.

If your Python application connects to a remote IBM database, the computer that runs your Python
application requires one of the following products:

— IBM Data Server Client

— IBM Data Server Runtime Client

— IBM Data Server Driver Package

— IBM Data Server Driver for ODBC and CLI

If your Python application connects to local IBM database, no additional IBM Data Server products are
required.

The Python environment must be configured for the listed driver and adapters:

— ibm_db Python driver
— ibm_db_sa SQLAlchemy adapter
— ibm_db_django Django adapter

Procedure

To verify that your Python installation is successful:
1. Using the python command, start the Python interpreter.

$ python
2. Using the listed code, test the ibm_db Python driver:

import ibm_db

ibm_db_conn = ibm_db.connect('database', 'user', 'password')
import ibm_db_dbi

conn = ibm_db_dbi.Connection(ibm_db_conn)
conn.tables('SYSCAT', '%'

You must specify a valid database name (database), user ID (user), and password (password) in the
code. Successful connection indicates valid ibm_db Python driver installation.

3. Optional: Using the listed code, test the ibm_db_sa SQLAlchemy adapter:

import sglalchemy

from sqlalchemy import *

import ibm_db_sa.ibm_db_sa

db2 = sqlalchemy.create_engine('ibm_db_sa://user:password@host.name.com:50000/database")
metadata = MetaData()

users = Table('STAFF', metadata,

Column('ID', Integer, primary_key = True),

Column('NAME', String(9), nullable = False),

Column('DEPT', Integer, nullable = False),

46 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Column('JOB', String(5), nullable = False)
)

You must specify a valid database name (database), user ID (user), and password (password) in the
sqlalchemy.create_engine argument string. Successful connection indicates valid
ibm_db_django Django adapter installation.

4. Optional: Using the listed code, test the ibm_db_django Django adapter:
a. Using the django-admin.py startproject command, create a new Django project:
django-admin.py startproject myproj

b. Using the editor of your choice, edit DATABASES dictionary in the settings. py file to configure
access to the IBM database server:

DATABASES = {

'default': §

"ENGINE' : 'ibm_db_django',

'NAME' : 'database’,

"USER' : 'user',

'PASSWORD' : 'password',

'"HOST' : 'localhost’,

'PORT"' : '50000',

"PCONNECT' : Tzrue, #0ptional property. It is true by default
ks

3

You must specify a valid database name (database), user ID (user), password (password), host
name (localhost), and port number (50000) in the settings. py file entry.

c. Using the editor of your choice, add the following tuple of strings in the INSTALLED_APPS section
of the settings. py file:

‘django.contrib.flatpages’,
'django.contrib.redirects’,
'django.contrib.comments',
'django.contrib.admin',

d. Using the manage . py application, verify the Django configuration:

python manage.py test

Application development in Python with ibm_db

The ibm_db API provides a variety of Python functions for accessing and manipulating data in an IBM data
server database, including functions for connecting to a database, preparing and issuing SQL statements,
fetching rows from result sets, calling stored procedures, committing and rolling back transactions,
handling errors, and retrieving metadata.

Connecting to an IBM database server in Python

Before you can run SQL statements to create, update, delete, or retrieve data, you must connect to a
database. You can use the ibm_db API to connect to a database through either a cataloged or
uncataloged connection. To improve performance, you can also create a persistent connection.

Before you begin

- Setting up the Python environment for IBM Database servers.

« Issue the import ibm_db command from your Python script.

Procedure

Call one of the listed functions to establish connection to an IBM database server:

Chapter 4. Developing Python applications 47

Table 11. ibm_db connection functions

Function Description

Creates a nonpersistent.
connection

Creates a persistent. A persistent connection

connectionremains open after the
initial Python script
request, which allows
subsequent Python
requests to reuse the
connection. The
subsequent Python
connect requests must
have an identical set of
credentials.

The database value that you pass as an argument to these functions can be either a cataloged database
name or a complete database connection string for a direct TCP/IP connection. You can specify optional
arguments that control the timing of committing transactions, the case of the column names that are
returned, and the cursor type.

If the connection attempt fails, you can retrieve diagnostic information by calling the
ibm_db.conn_erroxr or ibm_db.conn_exrrormsg function.

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Example

Example 1: Connect to a local or cataloged database

import ibm_db
conn = ibm_db.connect("database", "username", "password")

Example 2: Connect to an uncataloged database

impoxrt ibm_db
ibm_db.connect ("DATABASE=name; HOSTNAME=host; PORT=60000; PROTOCOL=TCPIP;UID=username;

un [||)

PWD=passwoxrd;", '

What to do next

If the connection attempt is successful, you can use the connection resource when you call ibm_db
functions that execute SQL statements. Next, you prepare and execute SQL statements.

Executing SQL statements in Python

After connecting to a database, use functions available in the ibm_db API to prepare and execute SQL
statements. The SQL statements can contain static text, XQuery expressions, or parameter markers that
represent variable input.

Preparing and executing a single SQL statement in Python

To prepare and execute a single SQL statement, use the ibm_db.exec_immediate function. To avoid
the security threat of SQL injection attacks, use the ibm_db.exec_immediate function only to execute
SQL statements that are composed of static strings. Interpolation of Python variables representing user
input into the SQL statement can expose your application to SQL injection attacks.

48 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

https://github.com/ibmdb/python-ibmdb/wiki/APIs

Before you begin

Obtain a connection resource by calling one of the connection functions in the ibm_db API. For more
information, see “Connecting to an IBM database server in Python” on page 47.

Procedure

To prepare and execute a single SQL statement, call the ibm_db.exec_immediate function, passing the
listed arguments:

connection
A valid database connection resource that is returned from the ibm_db.connect or
ibm_db.pconnect function.

statement
A string that contains the SQL statement. This string can include an XQuery expression that is called
by the XMLQUERY function.

options
Optional: A dictionary that specifies the type of cursor to return for result sets. You can use this
parameter to request a scrollable cursor for database servers that support this type of cursor. By
default, a forward-only cursor is returned.

If the function call fails (returns False), you can use the ibm_db.stmt_error or
ibm_db.stmt_erroxrmsg function to retrieve diagnostic information about the error.

If the function call succeeds, you can use the ibm_db.num_xrows function to return the number of rows
that the SQL statement returned or affected. If the SQL statement returns a result set, you can begin
fetching the rows.

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Example

Example 1: Execute a single SQL statement

import ibm_db

conn = ibm_db.connect("database","username", "password")

stmt = ibm_db.exec_immediate(conn, "UPDATE employee SET bonus = '1000' WHERE job = 'MANAGER'")
print "Number of affected rows: ", ibm_db.num_rows(stmt)

Example 2: Execute an XQuery expression

import ibm_db
conn = ibm_db.connect("database", "username", "password")
if conn:
sql = "SELECT XMLSERIALIZE(XMLQUERY('for $i in $t/address where $i/city = \"Olathe\" return <zip>
{$i/zip/text()¥</zip>' passing c.xmlcol as \"t\") AS CLOB(32k)) FROM xml_test c WHERE id = 1"
stmt = ibm_db.exec_immediate(conn, sql)
result = ibm_db.fetch_both(stmt)
while(result):
print "Result from XMLSerialize and XMLQuery:", result[0]
result = ibm_db.fetch_both(stmt)

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows from the statement
resource.

Preparing and executing SQL statements with variable input in Python

To prepare and execute an SQL statement that includes variable input, use the ibm_db.prepare,
ibm_db.bind_param, and ibm_db.execute functions. Preparing a statement improves performance
because the database server creates an optimized access plan for data retrieval that it can reuse if the
statement is executed again.

Before you begin

Obtain a connection resource by calling one of the connection functions in the ibm_db API. Refer to
“Connecting to an IBM database server in Python” on page 47.

Chapter 4. Developing Python applications 49

https://github.com/ibmdb/python-ibmdb/wiki/APIs

Procedure

To prepare and execute an SQL statement that includes parameter markers:
1. Call the ibm_db. prepare function, passing the listed arguments:

connection
A valid database connection resource that is returned from the ibm_db.connect or
ibm_db.pconnect function.

statement
A string that contains the SQL statement, including question marks (?) as parameter markers for
column or predicate values that require variable input. This string can include an XQuery
expression that is called by the XMLQUERY function.

options
Optional: A dictionary that specifies the type of cursor to return for result sets. You can use this
parameter to request a scrollable cursor for database servers that support this type of cursor. By
default, a forward-only cursor is returned.

If the function call succeeds, it returns a statement handle resource that you can use in subsequent
function calls that are related to the query.

If the function call fails (returns False), you can use the ibm_db.stmt_error or
ibm_db.stmt_erroxrmsg function to retrieve diagnostic information about the error.

2. Optional: For each parameter marker in the SQL string, call the ibm_db.bind_param function,
passing the listed arguments. Binding input values to parameter markers ensures that each input value
is treated as a single parameter, which prevents SQL injection attacks.

stmt
The prepared statement that is returned by the call to the ibm_db. prepare function.

parameter-number
An integer that represents the position of the parameter marker in the SQL statement.

variable
The value to use in place of the parameter marker.

3. Call the ibm_db.execute function, passing the listed arguments:

stmt
A prepared statement that is returned from ibm_db. prepare.

parameters
A tuple of input parameters that match parameter markers that are contained in the prepared
statement.

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Example

Prepare and execute a statement that includes variable input.

import ibm_db

conn = ibm_db.connect("database", "username", "password")
sql = "SELECT EMPNO, LASTNAME FROM EMPLOYEE WHERE EMPNO > ? AND EMPNO < ?"
stmt = ibm_db.prepare(conn, sql)

max = 50

min = 0

Explicitly bind parameters

ibm_db.bind_param(stmt, 1, min)

ibm_db.bind_param(stmt, 2, max)

ibm_db.execute (stmt)

Process results

Invoke prepared statement again using dynamically bound parameters

param = max, min,
ibm_db.execute(stmt, param)

50 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

https://github.com/ibmdb/python-ibmdb/wiki/APIs

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows from the statement
resource.

Fetching rows or columns from result sets in Python

After executing a statement that returns one or more result sets, use one of the functions available in the
ibm_db API to iterate through the returned rows. If your result set includes columns that contain large
data (such as BLOB or CLOB data), you can retrieve the data on a column-by-column basis to avoid large
memory usage.

Before you begin

You must have a statement resource that is returned by either the ibm_db.exec_immediate or
ibm_db.execute function that has one or more associated result sets.

Procedure

To fetch data from a result set:
1. Fetch data from a result set by calling one of the fetch functions.

Table 12. ibm_db fetch functions

Function Description

Returns a tuple, which is. The columns are 0-
indexed by columnindexed.
position, representing a
row in a result set

Returns a dictionary,.
which is indexed by
column name,
representing a row in a
result set

Returns a dictionary,.
which is indexed by both
column name and
position, representing a
row in a result set

Sets the result set. Use this function to
pointer to the next rowiterate through a result
or requested rowset.

These functions accept the listed arguments:

stmt
A valid statement resource.

row_number
The number of the row that you want to retrieve from the result set. Specify a value for this
parameter if you requested a scrollable cursor when you called the ibm_db.exec_immediate or
ibm_db.prepare function. With the default forward-only cursor, each call to a fetch method
returns the next row in the result set.

2. Optional: If you called the ibm_db. fetch_xrow function, for each iteration through the result set,
retrieve a value from a specified column by calling the ibm_db.result function. You can specify the
column by passing either an integer that represents the position of the column in the row (starting with
0) or a string that represents the name of the column.

Chapter 4. Developing Python applications 51

3. Continue fetching rows until the fetch method returns False, which indicates that you have reached the
end of the result set.

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Example
Example 1: Fetch rows from a result set by calling the ibm_db. fetch_both function

impoxrt ibm_db

conn = ibm_db.connect("database", "username", "password")
sql = "SELECT = FROM EMPLOYEE"
stmt = ibm_db.exec_immediate(conn, sql)
dictionary = ibm_db.fetch_both(stmt)
while dictionary != False:
print "The ID is : ", dictionary["EMPNO"]
print "The Name is : ", dictionary[1]
dictionary = ibm_db.fetch_both(stmt)

Example 2: Fetch rows from a result set by calling the ibm_db . fetch_tuple function

import ibm_db
conn = ibm_db.connect("database", "username", "password")
sql = "SELECT = FROM EMPLOYEE"
stmt = ibm_db.exec_immediate(conn, sql)
tuple = ibm_db.fetch_tuple(stmt)
while tuple != False:
print "The ID is : ", tuple[0]
print "The name is : ", tuple[1]
tuple = ibm_db.fetch_tuple(stmt)

Example 3: Fetch rows from a result set by calling the ibm_db. fetch_assoc function

import ibm_db

conn = ibm_db.connect("database", "username", "password")
sql = "SELECT = FROM EMPLOYEE"

stmt = ibm_db.exec_immediate(conn, sql)

dictionary = ibm_db.fetch_assoc(stmt)

while dictionary != False:
print "The ID is : ", dictionary["EMPNO"]
print "The name is : ", dictionary["FIRSTNME"]

dictionary = ibm_db.fetch_assoc(stmt)
Example 4: Fetch columns from a result set

impoxrt ibm_db

conn = ibm_db.connect("database", "username", "password")

sql = "SELECT = FROM EMPLOYEE"

stmt = ibm_db.exec_immediate(conn, sql)

while ibm_db.fetch_row(stmt) != False:
print "The Employee number is : ", ibm_db.result(stmt, 0)
print "The last name is : ", ibm_db.result(stmt, "LASTNAME")

What to do next
When you are ready to close the connection to the database, call the ibm_db. close function. If you

attempt to close a persistent connection that you created with ibm_db.pconnect, the close request
returns True, and the connection remains available for the next caller.

52 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

https://github.com/ibmdb/python-ibmdb/wiki/APIs

Calling stored procedures in Python

To call a stored procedure from a Python application, use ibm_db.callproc function. The procedure
that you call can include input parameters (IN), output parameters (OUT), and input and output
parameters (INOUT).

Before you begin

Obtain a connection resource by calling one of the connection functions in the ibm_db API.

Procedure
Call the ibm_db.callpzroc function by passing the listed arguments:

connection
A valid database connection resource that is returned from the ibm_db.connect or
ibm_db.pconnect function.

procname
A valid stored procedure name

parameters
A tuple of parameters that matches the parameters that are declared in the stored procedure.

Example

To call a stored procedure with the ibm_db.callproc function:

import ibm_db
conn = ibm_db.connect("sample", "username", "password")
if conn:

name = "Peaches"

second_name = "Rickety Ride"

weight = 0

print "Values of bound parameters _before_ CALL:"
print " 1: %s 2: %s 3: %d\n" % (name, second_name, weight)

stmt, name, second_name, weight = ibm_db.callproc(conn, 'match_animal', (name, second_name, weight))
if stmt is not None:

print "Values of bound parameters _after_ CALL:"
print " 1: %s 2: %s 3: %d\n" % (name, second_name, weight)

What to do next

If the procedure call returns one or more result sets, you can begin fetching rows from the statement
resource.

Retrieving multiple result sets from a stored procedure in Python
When a single call to a stored procedure returns more than one result set, you can use the
ibm_db.next_result function of the ibm_db API to retrieve the result sets.

Before you begin

You must have a statement resource returned by the ibm_db.exec_immediate or ibm_db.execute
function that has multiple result sets.

Procedure

To retrieve multiple result sets:

1. Fetch rows from the first result set returned from the procedure by calling one of the listed ibm_db
fetch functions, passing the statement resource as an argument. (The first result set that is returned
from the procedure is associated with the statement resource.)

Chapter 4. Developing Python applications 53

Table 13. ibm_db fetch functions

Function Description

Returns a tuple, which is. The columns are 0-
indexed by columnindexed.
position, representing a
row in a result set

Returns a dictionary,.
which is indexed by
column name,
representing a row in a
result set

Returns a dictionary,.
which is indexed by both
column name and
position, representing a
row in a result set

Sets the result set. Use this function to
pointer to the next rowiterate through a result
or requested rowset.

2. Retrieve the subsequent result sets by passing the original statement resource as the first argument to
the ibm_db.next_result function. You can fetch rows from the statement resource until no more
rows are available in the result set.

The ibm_db.next_result function returns False when no more result sets are available or if the
procedure did not return a result set.

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Example

Retrieve multiple result sets from a stored procedure.

import ibm_db
conn = ibm_db.connect("sample", "user", "password")
if conn:
sql = 'CALL sp_multi()'
stmt = ibm_db.exec_immediate(conn, sql)
row = ibm_db.fetch_assoc(stmt)
while row != False :
print "The value returned : ", row
row = ibm_db.fetch_assoc(stmt)

stmtl = ibm_db.next_result(stmt)
while stmtl != False:
row = ibm_db.fetch_assoc(stmtl)
while row != False :
print "The value returned : ", row
row = ibm_db.fetch_assoc(stmtl
stmtl = ibm_db.next_result(stmt)

What to do next
When you are ready to close the connection to the database, call the ibm_db. close function. If you

attempt to close a persistent connection that you created by using ibm_db. pconnect, the close request
returns True, and the IBM data server client connection remains available for the next caller.

54 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

https://github.com/ibmdb/python-ibmdb/wiki/APIs

Commit modes in Python applications
You can control how groups of SQL statements are committed by specifying a commit mode for a
connection resource. The ibm_db API supports two commit modes: autocommit and manual commit.

Autocommit mode
In autocommit mode, each SQL statement is a complete transaction, which is automatically
committed. Autocommit mode helps prevent locking escalation issues that can impede the
performance of highly scalable web applications. By default, the ibm_db API opens every connection
in autocommit mode.

If autocommit mode is disabled, you can enable the autocommit mode by calling
ibm_db.autocommit(conn, ibm_db.SQL_AUTOCOMMIT_ON), where connis a valid connection
resource.

Calling the ibm_db.autocommit function might affect the performance of your Python scripts
because it requires additional communication between Python and the database management
system.

Manual commit mode
In manual commit mode, the transaction ends when you call the ibm_db.commit or
ibm_db.rollback function. This means that all statements executed on the same connection
between the start of a transaction and the call to the commit or rollback function are treated as a
single transaction.

Manual commit mode is useful if you might have to roll back a transaction that contains one or more
SQL statements. If you execute SQL statements in a transaction and the script ends without explicitly
committing or rolling back the transaction, the ibm_db extension automatically rolls back any work
that is performed in the transaction.

You can turn off autocommit mode when you create a database connection by using the

{1 ibm_db.SQL_ATTR_AUTOCOMMIT: ibm_db.SQL_AUTOCOMMIT_OFF }% settinginthe
ibm_db.connect or ibm_db.pconnect options array. You can also turn off autocommit mode for a
connection resource by calling ibm_db.autocommit (conn, ibm_db.SQL_AUTOCOMMIT_OFF),
where conn is a valid connection resource.

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Examples

Turn off autocomit mode and end the transaction when ibm_db.commit or ibm_db.rollback s called.

import ibm_db
array = { ibm_db.SQL_ATTR_AUTOCOMMIT : ibm_db.SQL_AUTOCOMMIT_OFF %

conn = ibm_db.pconnect("SAMPLE", "user", "password", array)
sql = "DELETE FROM EMPLOYEE"
try:
stmt = ibm_db.exec_immediate(conn, sql)
except:

print "Transaction couldn't be completed."
ibm_db.rollback(conn)
else:
ibm_db.commit (conn)
print "Transaction complete."

Error-handling functions in Python

Sometimes errors happen when you attempt to connect to a database or issue an SQL statement. The
user name or password might be incorrect, a table or column name might be misspelled, or the SQL
statement might be invalid. The ibm_db API provides error-handling functions to help you recover
gracefully from the error situations.

Connection errors

Use one of the listed functions to retrieve diagnostic information if a connection attempt fails.

Chapter 4. Developing Python applications 55

https://github.com/ibmdb/python-ibmdb/wiki/APIs

Table 14. ibm_db functions for handling connection errors

Function Description

ibm_db.conn_error Retrieves the SQLSTATE returned by the last
connection attempt

ibm_db. conn_errormsg Retrieves a descriptive error message appropriate
for an application error log

SQL errors

Use one of the listed functions to retrieve diagnostic information if an attempt to prepare or execute an
SQL statement or to fetch a result from a result set fails.

Table 15. ibm_db functions for handling SQL errors

Function Description

ibm_db.stmt_error Retrieves the SQLSTATE returned by the last
attempt to prepare or execute an SQL statement or
to fetch a result from a result set

ibm_db.stmt_errormsg Retrieves a descriptive error message appropriate
for an application error log

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Examples

Example 1: Handle connection errors

import ibm_db

try:

conn = ibm_db.connect("database", "username", "password")
except:

print "no connection:", ibm_db.conn_errormsg()
else:

print "The connection was successful"
Example 2: Handle SQL errors

import ibm_db

conn = ibm_db.connect("database", "username", "password")
sql = "DELETE FROM EMPLOYEE"

try:

stmt = ibm_db.exec_immediate(conn, sql)
except:

print "Transaction couldn't be completed:" , ibm_db.stmt_errormsg()
else:

print "Transaction complete."

Database metadata retrieval functions in Python
You can use functions in the ibm_db API to retrieve metadata for IBM databases.

Before calling these functions, you must set up the Python environment, issue impoxrt_db in your Python
script, and obtain a connection resource by calling the ibm_db.connect or ibm_db.pconnect function.

Important: Calling metadata functions uses a significant amount of space. If possible, cache the results
of your calls for use in subsequent calls.

Table 16. ibm_db metadata retrieval functions

Function Description

56 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

https://github.com/ibmdb/python-ibmdb/wiki/APIs

Table 16. ibm_db metadata retrieval functions (continued)

Function Description

Returns a result set listing
the columns and
associated privileges for a
table

Returns a result set listing
the columns and
associated metadata for a
table

Returns a result set listing
the foreign keys for a
table

Returns a result set listing
the primary keys for a
table

Returns a result set listing
the parameters for one or
more stored procedures

Returns a result set listing
the stored procedures
registered in a database

Returns a result set listing
the unique row identifier
columns for a table

Returns a result set listing
the index and statistics
for atable

Returns a result set listing
the tables in a database
and the associated
privileges

For more information about the ibm_db API, see https://github.com/ibmdb/python-ibmdb/wiki/APIs.

Examples

Example 1: Display information about the IBM data server client

import ibm_db

conn = ibm_db.connect("sample", "user", "password")
client = ibm_db.client_info(conn)

if client:
print "DRIVER_NAME: string(%d) \"%s\"" % (len(client.DRIVER_NAME), client.DRIVER_NAME)
print "DRIVER_VER: string(%d) \"%s\"" % (len(client.DRIVER_VER), client.DRIVER_VER)
print "DATA_SOURCE_NAME: string(%d) \"%s\"" % (len(client.DATA_SOURCE_NAME), cIlient.DATA_SOURCE_NAME)
print "DRIVER_ODBC_VER: string(%d) \"%s\"" % (len(client.DRIVER_ODBC_VER), client.DRIVER_ODBC_VER)
print "ODBC_VER: string(%d) \"%s\"" % (len(client.ODBC_VER), client.ODBC_VER)
print "ODBC_SQL_CONFORMANCE: string(%d) \"%s\"" % (len(client.ODBC_SQL_CONFORMANCE), client.ODBC_SQL_CONFORMANCE)
print "APPL_CODEPAGE: int(%s)" % client.APPL_CODEPAGE
print "CONN_CODEPAGE: int(%s)" % client.CONN_CODEPAGE
ibm_db.close(conn)
else:
print "Error."

Chapter 4. Developing Python applications 57

https://github.com/ibmdb/python-ibmdb/wiki/APIs

Example 2: Display information about the IBM data server

import ibm_db

conn = ibm_db.connect("sample", "user", "password")
server = ibm_db.server_info(conn)

if server:
print "DBMS_NAME: string(%d) \"%s\"" % (len(server.DBMS_NAME), server.DBMS_NAME)
print "DBMS_VER: string(%d) \"%s\"" % (len(server.DBMS_VER), server.DBMS_VER)
print "DB_NAME: string(%d) \"%s\"" % (len(server.DB_NAME), server.DB_NAME)
ibm_db.close(conn)

else:
print "Error."

58 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Chapter 5. Developing Ruby on Rails applications

The IBM_DB Ruby driver and Rails adapter

Collectively known as the IBM_DB gem, the IBM_DB Ruby driver, and Rails adapter allows Ruby
applications to access the IBM database servers.

Ruby applications that are connecting to Db2 for z/OS servers and Db2 for IBM i servers requires the use

of the Db2 Connect license.

The IBM_DB Ruby adapter allows any database-backed Rails application to interface with IBM data
servers.

For more information about IBM Ruby projects, see https://github.com/ibmdb/ruby-ibmdb3

For a list of installation requirements for Db2 database products, see ../../
com.ibm.db2.luw.gb.server.doc/doc/r0025127.dita

For a list of installation requirements for IBM Informix server, see http://www-01.ibm.com/support/
knowledgecenter/SSGU8G_11.50.0/com.ibm.expr.doc/ids_in_004x.htm

For information about downloading an IBM Data Server Driver Package, see https://www.ibm.com/
support/pages/node/387577.

Getting started with Ruby on Rails

Before you can develop Ruby on Rails applications for IBM Database servers, you must set up the Rails
environment with an IBM data server client.

Procedure

To set up the Ruby on Rails environment with an IBM data server client:
1. Download and install the latest version of Ruby from http://www.ruby-lang.org/en/downloads/.
2. Install the Rails gem and its dependencies by issuing the gem installation command:

gem install rails --include-dependencies

What to do next

You are now ready to install the IBM_DB Ruby driver and Rails adapter as a gem.

Installing the IBM_DB Ruby driver and Rails adapter as a Ruby gem

The IBM_DB Ruby driver and Rails adapter is available as a Ruby gem for installation in the IBM data
server clients. Ruby Gems is the standard packaging and installation framework for libraries and
applications in the Ruby runtime environment. A single file for each bundle is called a gem, which
complies to the standardized package format. This package is then distributed and stored in a central
repository, allowing simultaneous deployment of multiple versions of the same library or application.

3 Any references to non-IBM websites are provided for convenience only and do not in any manner serve as

an endorsement of those websites. The content available at those non-IBM websites is not part of any
materials relating to the IBM products described herein. Your use of any non-IBM website is at your own
risk.

© Copyright IBM Corp. 2016, 2020

59

https://github.com/ibmdb/ruby-ibmdb
http://www-01.ibm.com/support/knowledgecenter/SSGU8G_11.50.0/com.ibm.expr.doc/ids_in_004x.htm
http://www-01.ibm.com/support/knowledgecenter/SSGU8G_11.50.0/com.ibm.expr.doc/ids_in_004x.htm
https://www.ibm.com/support/pages/node/387577
https://www.ibm.com/support/pages/node/387577
http://www.ruby-lang.org/en/downloads/

Before you begin

Similar to package management and bundles (.rpm, .deb) used in Linux distributions, these gems can also
be queried, installed, uninstalled, and manipulated through the gem utility.

The gem utility can: seamlessly query the remote Gemcutter central repository; and look up and install
any of the many readily available utilities. When the IBM_DB gem is installed, the IBM_DB Ruby driver
and Rails adapter is immediately accessible from any application in the Ruby runtime environment,
through the require command:

require 'ibm_db'
or on Windows:

require 'mswin32/ibm_db'

Procedure

To install the IBM_DB Ruby driver and Rails adapter as a Ruby gem:

1. On all supported platforms, issue the gem install command to install the IBM_DB Ruby driver and
Rails adapter:

$ gem install ibm_db

2. Before running any Ruby script that connects to the IBM database server, you must ensure that the
IBM_DB Ruby driver can access the CLI driver on Linux or UNIX platforms by adding the 1ibdb2. so
file path to the LD_LIBRARY_PATH environmental variable. If the IBM_DB Ruby driver cannot access
the CLI driver, themissing libraries - libdb2.so.1 error message is returned to your Ruby
program.

When using the IBM Data Server Driver Package software, the 1ibdb2. so file is in the
odbc_cli_driver/linux/clidrivex/1ib directory.

In the IBM data server product environment, 1ibdb2.sois in the sql1ib/1ib/ path.

Verifying the IBM_DB Ruby driver installation with the interactive Ruby shell
To verify the IBM_DB Ruby driver installation, use the interactive Ruby shell (irb) to connect to the
database and issue a query.

Procedure
- To verify the Ruby driver installation with the interactive Ruby shell, run the listed commands:

C:\>irb

irb(main):001:0> require 'mswin32/ibm_db"'

#If you are using Linux based platform issue require 'ibm_db')
=>true

irb(main):002:0> conn = IBM_DB.connect 'devdb', 'username', 'password’
=> #t<IBM_DB: :Connection:0x2dddf40>

#Here ‘devdb’ is the database cataloged in client’s

f#database directory or db entry in the db2dsdriver.cfg file.

#To connect to a remote database you

#will need to specify all the necessary attributes like

#hostname, port etc as follows.

ffIBM_DB. connect(DRIVER={IBM DB2 ODBC=DRIVER}; DATABASE devdb HOSTNAME=myhost;
PORT= 60000; PROTOCOL= TCPIP UID=uname; PWD=| password)

irb(main): 003 0> stmt = IBM DB.exec conn, 'select * from staff'

=> #<IBM_DB: :Statement:@x2beaabc>

irb(main):004:0> IBM_DB.fetch_assoc stmt

{#Fetches the first row of the result set

Verifying the IBM_DB Rails adapter installation
To verify that the IBM_DB Rails adapter is installed correctly, build and run a sample Rails application.

Procedure

1. Create a new Rails application by issuing the following command:

C:\>rails new newapp --database=ibm_db
create

60 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

create app/controllers
create app/helpers

create app/models

create app/views/layouts
create config/environments
create config/initializers
create db

[connn.]

create log/server.log
create log/production.log
create log/development.log
create log/test.log

2. Change the current directory to the newly created newapp directory:
C:\>cd newapp

3. Optional: If you are using a Rails version before the Rails 2.0, you must register the IBM_DB adapter to
the list of connection adapters in the Rails framework. You can register the IBM_DB adapter to the list
of connection adapters in the Rails framework by manually adding ibm_db to the list of connection
adapters in <RubyHome>\gems\1.8\gems\activerecord-1.15.6\1ib\active_record.zrb at
approximately line 77:

RAILS_CONNECTION_ADAPTERS = %w(mysql postgresql sqlite firebird
sqlserver db2 oracle sybase openbase frontbase ibm_db)

4. To configure the connections for the Rails applications, edit the database.yml file. A sample
development section entry for the database.yml file is listed in the following example:

development:

adapter: ibm_db

username: db2instl

password: secret

database: devdb # Database name

#schema: db2instl

{#host: localhost #Host on which the database resides

{#fport: 50000 #port to which the remote Dataserver is listening

5. Create a model and a scaffold by issuing the xrails command:

C:\>rails generate scaffold Tool name:string model_num:integer
exists app/models/

exists app/controllers/

[...]

create db/migrate

create db/migrate/20080716103959_create_tools.rb

6. Create the tools table in the devdb database by issuing the rake db:migrate command:

C:\ >rake db:migrate
(in C:/xuby trials/newapp)
== 20080716111617 CreateTools: migrating

-- create_table(:tools)
-> 0.5320s
== 20080716111617 CreateTools: migrated (0.5320s)

The Rails application can now access the tools table.
7. To test the application, issue the rails console command:

C:\ruby trials\newapp>rails console

Loading development environment (Rails)

>> tool = Tool.new

=> #<Tool id: nil, name: nil, model_num: nil, created_at: nil,
updated_at: nil>

>> tool.name = 'chistel’

=> "chistel"

>> tool.model_num = '007'

= "ee7"

>> tool.save

=> true

>> Tool.find :all

=> [#<Tool id: 100, name: "chistel", model_num: 7, created_at:

Chapter 5. Developing Ruby on Rails applications 61

"2008-07-16 11:29:35", updated_at: "2008-07-16 11:29:35">]
>>

Configuring Rails application connections to IBM data servers

You configure database connections for a Rails application by specifying connection details in the
database.yml file.

Procedure

Edit the database configuration details in rails_application_path\config\database.yml, and
specify the listed connection attributes:

The IBM_DB Adapter requires the native Ruby driver (ibm_db)
for IBM data servers (ibm_db.so).
+config+ the hash passed as an initializer argument content:

== mandatory parameters

adapter: "ibm_db' // IBM_DB Adapter name

username: "db2user" // data server (database) user

password: 'secret’ // data server (database) password

database: 'DEVDB' // remote database name (or catalog entry alias)
== optional (highly recommended for data server auditing and monitoring purposes)
schema: 'rails123’' // name space qualifier

account: 'tester’ // 0S account (client workstation)

app_user: 'test11’ // authenticated application user

application: 'rtests' // application name

workstation: 'plato' // client workstation name

== remote TCP/IP connection (required when no local database catalog entry available)
host: 'Socrates’ // fully qualified hostname or IP address

port: '50000' // data server TCP/IP port number

i

When schema is not specified, the username value is used instead.

Note: Changes to connection information in this file are applied when the Rails environment is initialized
during server startup. Any changes that you make after initialization do not affect the connections that are
created.

Schema, account, app_user, application and workstation are not supported for IBM Informix.

IBM Ruby driver and trusted contexts
The IBM_DB Ruby driver supports trusted contexts by using connection string keywords.

Trusted contexts provide a way of building much faster and more secure three-tier applications. The
user's identity is always preserved for auditing and security purposes. When you require secure
connections, trusted contexts improve performance because you do not have to get new connections.

Examples

The example establishes a trusted connection and switches the user on the same connection.

def trusted_connection(database,hostname,port,auth_user,auth_pass,tc_user,tc_pass)
dsn = "DATABASE=#{database};HOSTNAME=#{hostname}; PORT=#{port}; PROTOCOL=TCPIP;UID=#{auth_user};PWD=#fauth_pass};"
conn_options = {IBM_DB::SQL_ATTR_USE_TRUSTED_CONTEXT => IBM_DB::SQL_TRUE}
tc_options = {IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID => tc_user, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_PASSWORD => tc_pass}
tc_conn = IBM_DB.connect dsn, '', '', conn_options
if tc_conn
puts "Trusted connection established successfully."
val = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_USE_TRUSTED_CONTEXT, 1
if val
userBefore = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID, 1
i#do some work as user 1
&l 000
...
f#switch the user
result = IBM_DB.set_option tc_conn, tc_options, 1
userAfter = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID, 1
if userBefore != userAfter
puts "User has been switched."
J#do some work as user 2
&l 000
...
end
end
IBM_DB.close tc_conn
else
puts "Attempt to connect failed due to: #{IBM_DB.conn_errormsgi"
end
end

62 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

IBM_DB Rails adapter dependencies and consequences

The IBM_DB adapter (iom_db_adapter.rb) has a direct dependency on the IBM_DB driver, which uses
IBM Data Server Driver for ODBC and CLI to connect to IBM data servers. The IBM Call Level Interface
(CLI) is a callable SQL interface to IBM data servers, which is Open Database Connectivity (ODBC)
compliant.

This dependency has several ramifications for the IBM_DB adapter and driver.

« Installation of IBM Data Server Driver for ODBC and CLI, which meets the IBM_DB requirement, is
required.

IBM Data Server Driver for ODBC and CLI is included with a full Db2 database install, or you can obtain it
separately

Note: The IBM Data Server Driver for ODBC and CLI is included in the listed client packages:

— IBM Data Server Client
— IBM Data Server Runtime Client
— IBM Data Server Driver Package

« Driver behavior can be modified outside of a Rails application with use of CLI and IBM data server driver
configuration keywords.

The CLI keywords that are set in the db2c1i. ini file and IBM data server driver configuration
keywords in the IBM data server driver configuration file (db2dsdriver. cfg) affect Rails applications
in a same way as CLI applications. For example, CLI keywords can be used to set the current schema or
alter transactional elements such as turning off autocommit behavior.

- Any diagnostic gathering requires CLI driver tracing.

Because all requests through the IBM_DB driver are implemented through IBM Data Server Driver for
ODBC and CLI, the CLI trace facility can identify problems for applications that use the IBM_DB adapter
and driver.

A CLI trace captures all of the API calls made by an application to the IBM Data Server Driver for ODBC
and CLI (including all input parameters), and it captures all of the values returned from the driver to the
application. It is an interface trace that captures how an application interacts with the IBM Data Server
Driver for ODBC and CLI and offers information about the inner workings of the driver.

The IBM_DB Ruby driver and Rails adapter are not supported on JRuby
The IBM_DB adapter is not supported on JRuby.

The IBM_DB adapter is not supported on JRuby because (as stated in the JRuby Wiki, "Getting Started"):
"Many Gems will work fine in JRuby, however some Gems build native C libraries as part of their install
process. These Gems will not work in JRuby unless the Gem has also provided a Java™ equivalent to the
native library." For more information, see JRuby GitHub wiki.

The IBM_DB adapter relies on the IBM_DB Ruby driver (C extension) and the IBM Data Server Driver for
ODBC and CLI to access databases on IBM data servers. Alternatively, you can either use the regular C
implementation of Ruby, or use JDBC_adapter to access databases.

Heap size considerations with Db2 on Rails

Rails applications on Db2 require the applheapsz database configuration parameter to be set to values
above 1024.

You must set this parameter for each database for which you will be running Db2 on Rails applications.
Use the db2 update db cfgcommand to update the applheapsz parameter:

db2 update db cfg for database_name using APPLHEAPSZ 1024

To activate this parameter, you must restart your Db2 instance.

Chapter 5. Developing Ruby on Rails applications 63

https://github.com/jruby/jruby/wiki

64 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

Index

A

application design
prototyping in Node.js 1
prototyping in Perl 5
autocommit function (ibm_db) 55

bind_param function (ibm_db)
calling 49, 53

C

CALL statement
PHP 25, 38
Python 53

client_info function (ibm_db) 56
close function (ibm_db)

fetching from result sets 51

retrieving multiple result sets 53
column_privileges function (ibm_db) 56
columns

fetching

PHP 22, 36

columns function (ibm_db) 56
commit function (ibm_db) 55
commit modes

PHP applications 27, 40

Python applications 55
conn_error function (ibm_db) 55
conn_errormsg function (ibm_db) 55
connect function (ibm_db) 47
connect method (Perl DBI) 5
connections

Rails applications 62

D

db2_autocommit function (ibm_db2) 27
db2_bind_param function (ibm_db2)
calling stored procedures 25
executing SQL statements with variable input 20
inserting large objects 22
preparing SQL statements with variable input 20
db2_client_info function (ibm_db2) 29
db2_close function (ibm_db2) 22
db2_column_privileges function (ibm_db2) 29
db2_columns function (ibm_db2) 29
db2_commit function (ibm_db2) 27
db2_conn_error function (ibm_db2) 28
db2_conn_errormsg function (ibm_db2) 28
db2_connect function (ibm_db2) 17
db2_exec function (ibm_db2) 19
db2_execute function (ibm_db2)
calling stored procedures 25

db2_execute function (ibm_db2) (continued)

executing SQL statements 20

inserting large objects 22
db2_fetch_array function (ibm_db2)

fetching data from result set 22

retrieving multiple result sets 26
db2_fetch_assoc function (ibm_db2)

fetching data from result set 22

retrieving multiple result sets 26
db2_fetch_both function (ibm_db2)

fetching data from result set 22

retrieving multiple result sets 26
db2_fetch_object function (ibm_db2)

fetching data from result set 22

fetching large objects 24
db2_fetch_row function (ibm_db2)

fetching data from result set 22

retrieving multiple result sets 26
db2_foreign_keys function (ibm_db2) 29
db2_next_result function (ibm_db2)

retrieving multiple result sets 26
db2_pconnect function (ibm_db2) 17
db2_prepare function (ibm_db2)

calling stored procedures 25

inserting large objects 22

preparing SQL statements 20
db2_primary_keys function (ibm_db2) 29
db2_procedure_columns function (ibm_db2) 29
db2_procedures function (ibm_db2) 29
db2_result function (ibm_db2) 22
db2_rollback function (ibm_db2) 27
db2_server_info function (ibm_db2) 29
db2_special_columns function (ibm_db2) 29
db2_statistics function (ibm_db2) 29
db2_stmt_error function (ibm_db2) 28
db2_stmt_errormsg function (ibm_db2) 28
db2_table_privileges function (ibm_db2) 29
DB2::DB2 driver

downloads 5

pureXML support 8

resources 5
disconnect method (Perl DBI) 5
Django

IBM data server environment setup 44

installation verification 46
dynamic SQL

Node.js support 1

Perl support 5

E

err method 8
errors

Perl 8

PHP 28, 41

Python 55
errstr method 8

Index 65

exec_immediate function (ibm_db) 48

execute function (ibm_db)
calling stored procedures 53

executing SQL statements with variable input 49

execute method (Perl DBI) 6

F

fetch_assoc function (ibm_db)
fetching columns 51
fetching multiple result sets 53
fetching rows 51
fetch_both function (ibm_db)
fetching columns 51
fetching multiple result sets 53
fetching rows 51
fetch_row function (ibm_db)
fetching columns 51
fetching multiple result sets 53
fetching rows 51
fetch_tuple function (ibm_db)
fetching columns 51
fetching multiple result sets 53
fetching rows 51
fetchrow method (Perl DBI) 6
foreign_keys function (ibm_db) 56
functions
PHP
db2_autocommit 27
db2_bind_param 20, 22, 25
db2_client_info 29
db2_close 22, 26
db2_column_privileges 29
db2_columns 29
db2_commit 27
db2_conn_error 28
db2_conn_errormsg 28
db2_connect 17
db2_exec 19
db2_execute 20, 22, 25
db2_fetch_array 22, 26
db2_fetch_assoc 22, 26
db2_fetch_both 22, 26
db2_fetch_object 22, 24
db2_fetch_row 22, 26
db2_foreign_keys 29
db2_next_result 26
db2_pconnect 17
db2_prepare 20, 22, 25
db2_primary_keys 29
db2_procedure_columns 29
db2_procedures 29
db2_result 22
db2_rollback 27
db2_server_info 29
db2_special_columns 29
db2_statistics 29
db2_stmt_error 28
db2_stmt_errormsg 28
db2_table_privileges 29
Python
ibm_db.autocommit 55
ibm_db.bind_param 49, 53
ibm_db.client_info 56

functions (continued)

H

Python (continued)
ibm_db.close 51, 53
ibm_db.column_privileges 56
ibm_db.columns 56
ibm_db.commit 55
ibm_db.conn_error 55
ibm_db.conn_errormsg 55
ibm_db.connect 47
ibm_db.exec_immediate 48
ibm_db.execute 49, 53
ibm_db.fetch_assoc 51, 53
ibm_db.fetch_both 51, 53
ibm_db.fetch_row 51, 53
ibm_db.fetch_tuple 51, 53
ibm_db.foreign_keys 56
ibm_db.next_result 53
ibm_db.pconnect 47
ibm_db.prepare 49, 53
ibm_db.primary_keys 56
ibm_db.procedure_columns 56
ibm_db.procedures 56
ibm_db.result 51
ibm_db.rollback 55
ibm_db.server_info 56
ibm_db.special_columns 56
ibm_db.statistics 56
ibm_db.stmt_error 55
ibm_db.stmt_errormsg 55
ibm_db.table_privileges 56

host variables

I

Perl 6

ibm_db API

details 43
overview 47

IBM_DB Ruby driver and Rails adapter

dependencies 63

details 59

environment setup 59
installation verification 60
JRuby support 63

Ruby gem installation 59
trusted contexts 62

ibm_db_dbi API

details 43

ibm_db_sa adaptor

details 43

ibm_db2 API

J

details 13
PHP application development 17
trusted contexts 18

JRuby

IBM_DB Ruby driver and Rails adapter 63

66 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

L PDOStatement::bindParam method (PDO) 34, 35, 38
PDOStatement::execute method (PDO) 34, 35, 38

large objects (LOBSs) PDOStatement::fetch method (PDO) 36, 38, 39
fetching PDOStatement::fetchAll method (PDO) 36, 39
PHP 24, 38 PDOStatement::fetchColumn method (PDO) 36
inserting PDOStatement::nextRowset method (PDO) 39
PHP 22, 35 Perl
connecting to a database 5
M documentation 5
downloads 5
metadata drivers 5
retrieving errors 8
PHP 29 fetching rows 6
Python 56 methods
methods o connect 5
Perl disconnect 5
connect 5 err8
disconnect 5 errstr 8
err8 n execute 6
errg}r 8 fetchrow é
execute 6 prepare 6
fetchrow 6 state 8
prepare 6 overview 5
state8 parameter markers 8
PHP n problem reporting 5
PDO::beginTransaction 40 pureXML support 8
PDO::commit 40 o restrictions 8
PDO::exec 33 sample programs 10, 11
PDO::prepare 34, 35, 3 SQLCODE variables 8
PDO::query33 SQLSTATE variables 8
PDO::rollBack 40
PDOStatement::bindColumn 38 application development 13, 17, 32
PDOStatement::bindParam 34, 35, 38 connecting to database 17, 32
PDOStatement::execute 34, 35,38 database metadata retrieval 29
PDOStatement::fetch 36, 38,39 documentation 13
PDOStatement::fetchAll 36, 39 downloads 13
PDOStatement::fetchColumn 36 error handling 28, 41
PDOStatement::nextRowset 39 extensions for IBM data servers 13
7 fetching columns 22, 36
N fetching large objects 24, 38

next_result function (ibm_db) 53
node-ibm_db driver

installing 1

overview 1

resources 1

test connection 2

P

parameter markers

Perl 8
pconnect function (ibm_db) 47
pdo_ibm

details 13

developing PHP applications 32
PDO::beginTransaction method (PDO) 40
PDO::commit method (PDO) 40
PDO::exec method (PDO) 33
PDO::prepare method (PDO) 34, 35, 38
PDO::query method (PDO) 33
PDO::rollBack method (PDO) 40
PDOStatement::bindColumn method (PDO) 38

fetching rows 22, 36

functions
db2_autocommit 27
db2_bind_param 25
db2_client_info 29
db2_close 22, 26
db2_column_privileges 29
db2_columns 29
db2_commit 27
db2_conn_error 28
db2_conn_errormsg 28
db2_connect 17
db2_exec 19
db2_execute 25
db2_fetch_array 22, 26
db2_fetch_assoc 22, 26
db2_fetch_both 22, 26
db2_fetch_object 22, 24
db2_fetch_row 22, 26
db2_foreign_keys 29
db2_next_result 26
db2_pconnect 17
db2_prepare 25
db2_primary_keys 29

Index 67

PHP (continued)
functions (continued)
db2_procedure_columns 29
db2_procedures 29
db2_result 22
db2_rollback 27
db2_server_info 29
db2_special_columns 29
db2_statistics 29
db2_stmt_error 28
db2_stmt_errormsg 28
db2_table_privileges 29
IBM data server environment setup (Windows) 14
ibm_db2 API
connecting to database 17
overview 17
large objects 22, 35
methods
PDO::beginTransaction 40
PDO::commit 40
PDO::exec 33
PDO::prepare 34, 35, 38
PDO::query 33
PDO::rollBack 40
PDOStatement::bindColumn 38
PDOStatement::bindParam 34, 35, 38
PDOStatement::execute 34, 35, 38
PDOStatement::fetch 36, 38, 39
PDOStatement::fetchAll 36, 39
PDOStatement::fetchColumn 36
PDOStatement::nextRowset 39
PDO_IBM extension
connecting to database 32
executing single statement 33
procedures 25, 38
setup
Linux 15
overview 14
UNIX 15
SQL statements
executing (overview) 19, 33
executing single statement 19, 33
executing statements with variable input 20, 34
preparing statements with variable input 20, 34
stored procedures
calling 25, 38
retrieving results 26, 39
transactions 27, 40
trusted contexts 18
prepare function (ibm_db) 49, 53
prepare method (Perl DBI) 6
primary_keys function (ibm_db) 56
procedure_columns function (ibm_db) 56
procedures
PHP 25, 38
Python 53
procedures function (ibm_db) 56
pureXML
DB2::DB2 driver 8
Python
API documentation 43
application development 43, 47
connecting to database 47
database metadata retrieval 56

Python (continued)

downloading extensions 43

error handling 55

extensions for IBM data servers 43

fetching rows 51

functions
ibm_db.autocommit 55
ibm_db.bind_param 49, 53
ibm_db.client_info 56
ibm_db.close 51, 53
ibm_db.column_privileges 56
ibm_db.columns 56
ibm_db.commit 55
ibm_db.conn_error 55
ibm_db.conn_errormsg 55
ibm_db.connect 47
ibm_db.exec_immediate 48
ibm_db.execute 49, 53
ibm_db.fetch_assoc 51, 53
ibm_db.fetch_both 51, 53
ibm_db.fetch_row 51, 53
ibm_db.fetch_tuple 51, 53
ibm_db.foreign_keys 56
ibm_db.next_result 53
ibm_db.pconnect 47
ibm_db.prepare 49, 53
ibm_db.primary_keys 56
ibm_db.procedure_columns 56
ibm_db.procedures 56
ibm_db.result 51
ibm_db.rollback 55
ibm_db.server_info 56
ibm_db.special_columns 56
ibm_db.statistics 56
ibm_db.stmt_error 55
ibm_db.stmt_errormsg 55
ibm_db.table_privileges 56

IBM data server environment setup 44

ibm_db 47

installation verification 46

procedures 53

SQL statements 48, 49

stored procedures
calling 53
retrieving results 53

transactions 55

R

RadRails

IBM data server on Rails setup 59
Rails adapter

dependencies 63

details 59

getting started 59

installation verification 60

installing 59

JRuby support 63
Rails applications

connection configuration 62
result function (ibm_db) 51
rollback function (ibm_db) 55
rows

fetching

68 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

rows (continued)
fetching (continued)
Perl 6
PHP 22, 36
Python 51
Ruby driver
details 59
getting started 59
IBM_DB Ruby driver and Rails adapter installation 59
installation verification 60
JRuby support 63
trusted contexts 62
Ruby on Rails
heap size issues 63

S

samples
Perl 10, 11
server_info function (ibm_db) 56
special_columns function (ibm_db) 56
SQL statements
PHP 19, 20, 22, 33-36, 38
Python 48, 49
SQLAlchemy
adapter for IBM data servers 43
downloading extension 43
IBM data server environment setup 44
installation verification 46
state method 8
static SQL
Perl 8
statistics function (ibm_db) 56
stmt_error function (ibm_db) 55
stmt_errormsg function (ibom_db) 55
stored procedures
PHP
calling 25, 38
retrieving results 26, 39
Python
calling 53
retrieving results 53
retrieving result sets
PHP 26, 39
Python 53

T

table_privileges function (ibm_db) 56
transactions
PHP 27, 40
Python 55
trusted contexts
IBM_DB Ruby driver support 62
PHP applications 18

Index 69

70 IBM Db2 V11.5: Developing Node.JS, Perl, PHP, Python, and Rubyon Rails Applications

	Contents
	Notices
	Trademarks
	Terms and conditions for product documentation

	Tables
	Chapter 1. Developing Node.jsl Applications
	Node.js
	Resources for the node-ibm_db driver
	Installing the node-ibm_db driver on Linux and UNIX systems
	Verifying the node-ibm_db driver installation

	Chapter 2. Developing Perl Applications
	Perl
	Perl downloads and related resources
	Database connections
	Fetching results
	Parameter markers
	SQLSTATE and SQLCODE variables
	Restrictions
	pureXML and Perl
	Running Perl sample programs
	Executing routines

	Chapter 3. Developing PHP applications
	PHP
	PHP downloads and related resources
	Setting up the PHP environment
	Setting up the PHP environment for IBM Data Server products on Windows
	Setting up the PHP environment for IBM Data Server products on Linux or UNIX

	Application development with ibm_db2
	Connecting to an IBM data server database
	Trusted contexts

	Executing SQL statements
	Executing a single SQL statement
	Preparing and executing SQL statements
	Inserting large objects

	Reading query result sets
	Fetching rows or columns from result sets
	Fetching large objects

	Calling stored procedures
	Retrieving multiple result sets from a stored procedure

	Commit modes
	Error handling functions
	Database metadata retrieval functions

	Application development with PDO
	Connecting to an IBM data server database
	Executing SQL statements
	Executing a single SQL statement
	Preparing and executing SQL statements
	Inserting large objects

	Reading query result sets
	Fetching rows or columns from result sets
	Fetching large objects

	Calling stored procedures
	Retrieving multiple result sets from a stored procedure

	Commit modes
	Handling DB2 errors and warning messages

	Chapter 4. Developing Python applications
	Python, SQLAlchemy, and Django Framework
	Python downloads and related resources
	Setting up the Python environment
	Verifying the Python driver, SQLAlchemy adapter, and Django adapter installation
	Application development with ibm_db
	Connecting to an IBM database server
	Executing SQL statements
	Preparing and executing a single SQL statement
	Preparing and executing SQL statements with variable input

	Fetching rows or columns from result sets
	Calling stored procedures
	Retrieving multiple result sets from a stored procedure
	Commit modes
	Error-handling functions
	Database metadata retrieval functions

	Chapter 5. Developing Ruby on Rails applications
	Ruby on Rails
	Getting started with Ruby on Rails
	Installing the IBM_DB Ruby driver and Rails adapter as a Ruby gem
	Verifying the IBM_DB Ruby driver installation with the interactive Ruby shell
	Verifying the IBM_DB Rails adapter installation

	Configuring Rails application connections to IBM data servers
	IBM Ruby driver and trusted contexts
	IBM_DB Rails adapter dependencies and consequences
	The IBM_DB Ruby driver and Rails adapter are not supported on JRuby
	Heap size considerations with Db2 on Rails

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	P
	R
	S
	T

