IBM Db2 V11.5

Developing embedded SQL and XQuery
database applications
2020-08-19

.||I

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

© Copyright IBM Corp. 2016, 2020 i

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

ii Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices iii

iv IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Contents

NOBICES . cuuiiuiiiiiiieiiiitniieiiriiiiiairatretrestsesteestaesrasssessssssassrassrassssssssssssssasssssssssssnssans i
TrAAEMAIKS. c. vt iteerie ettt ettt et e st e et e e st e sbe e tee st e s beesseessbaesseesssaesseesase e seesaseenbaesaseenseessaessaensaeensaensaenns ii
Terms and conditions for product doCUMENtAtION.......ccciiieciiiieeeee e e e ii

FiBUN S cuiiuiiuiiiieiieiieiieiieiiniiniieitesiesiestestastestastsesaessessessessessassassasssssassassssssessassassans iX

= 1 o1 (= Xi

Chapter 1. Embedded SQL.......ccccieiiuiiiieiiienieniienteceetessocestocsscassosassessscasssssssassassnss 1
Embedding SQL statements in @ NOSt LaNGUAEE......cciciiiiciiiiiiecie ettt sre e eeree e s sre e ssree e sbee e ssreeessreeeenns 1

Embedded SQL statements in C and C++ appliCAtiONS.......ceceecciieeeeeciiiieeeeeciiee e e ccrree e eerree e eesnreeeeeeanns 2
Embedded SQL statements in FORTRAN appliCationsS......cc.ueiiieeciieeeeeciieee et eereee e eerree e e naeee e 3
Embedded SQL statements in COBOL appliCatioNS.......cceeccieeeeeeeiiiieeeeccieee e eerree e eecrreeeeesrreee e e nreeee e 4
Embedded SQL statements in REXX appliCationS........ueiieeciiieeieiiiiee e ceciieee e rree e e etae e e e e nraee e 5
Supported development software for embedded SQL applications........ccceeecvieeeeeciiieee e, 7
Setting up the embedded SQL development enVIFONMENT........cccvviiciiiiiiierieecee e 7

Chapter 2. DeSIiZNING....cccciiuiieiiniiniiniiniiiiieiiesiesiesiasiattatsssessessessessessessassssssssasssnsss 9
AULhOrIZation CONSIAEIATIONS.c...uiiieiiiicieieeiee ettt e st e et e e s e e s beessbeeesabaeesasaeessseeessseeeasseeesnsenann 9
Static and dynamic SQL statement execution in embedded SQL applications.........ccceeeeeccveeeeeccnveeenn. 10

Embedded SOL dynamic StatEmMENTS.......cccuiieieeciiiie ettt ceetree e e ecree e e e esrre e e s eearaee e seensaaeeeennns 10
Determining when to execute SQL statements statically or dynamically in embedded SQL
F=Y o7 o] 1 ToF=1 4o 1= R 11
e (o] 0 g =Y ol 13
IR o T =Yoo JCY R oY A YUY o] o ST 13
oY=y g Tod AT o TSR 14
Restrictions 0N USING C and CH...uuiiiiiiiiiieccieeeiee st ettt e s ae e e ae e s s ae e e sabeessaseessasaessaseessnnens 14
Restrictions 0N USING COBOL...ciiuiiiiiiiiiieeciiee ettt cite sttt siee et e e s ee e sbee e sbae e sbeeesbaessbeeesseessseeennns 15
Restrictions on USING FORTRAN. ...ttt ittt et et e st e ssite e s saee e ssaee e ssseeesaeeesseessseeessseessnseeesnsens 15
ReStrCtioNs ON USING REXX....iiiiiiiiieiieiiieeiciesesiee st s sttt e s see e s siee s ssaeesssaee s ssneesssneeesneessneessnseessnseessnnees 15
Recommendations for developing embedded SQL applications with XML and XQuery..........ccc....... 16
Concurrent transactions and multi-threaded database aCCeSS......cvuvvviiiicieiicien it 16
Recommendations for using Multiple threads.......cueieeeriiieieeeeeeee e 18
Code page and country or region code considerations for multi-threaded UNIX applications......... 19
Troubleshooting multi-threaded appliCatioNS.......coccuiiieiiiieieee e 19

Chapter 3. Programming......ccccciecieiiciecieniesiesiasiasissiscacsecsessessessessessasssssassssssssses 21
Yo UL Lol = 11 =PSRRI 21
FAY o] o] N Tor=N i o] o IR (=T 0 o] o1 E= L =N T o 1 OSSP RSPNt 22
Include files and defiNITIONS.....uiiiciiecciiecce e e e e s s e e s s e e e s bee e sbeeessbeeessseessnnens 24

Lo LN Ta Fo 1 EoY S oYl G- T o I 05 R 24
Lo LN e Fo 1 EoY S o Tl 60] 1 1 P 26
Include files FOr FORTRANcii ittt ettt ettt e seee s sree e sbee e s bee e st e e s be e e sbee e sabeeesaseeesaseassaseessnseesnnses 28
Declaring the SQLCA for €rror RandliNg........coecuuieiiiieeiieeeieeecie ettt see e s be e s sbe e e s e e e sareessans 30
Connecting t0 D2 databases.....cccciiiiciiiiieiciie ettt ea e e nareas 31
Data types that map 10 SOL data tyPeS...ccuiiiieiciiiie ettt et e e eecree e e eerrre e e s e breeeeeseaseeeeeensaeeeesnnes 32
Supported SQL data types in C and CH....uiiii et cecireee e eiree e rre e e e eenre e e s s raee e e e saaeeeeeannaeas 33
Supported SQL data types iN COBOL....uuuiiiiiiiiiecciiiee e ecteee e eectree e e eeireeeesesreeeesesraaeeeesssaeeessnsesessennns 41
Supported SQL data types in FORTRANuuiiii ittt e e ctrte e e eeerae e e e e ateee s s nraeesssnraseeeesnsseeeessnnns 45

vi

Supported SQL data types iN REXX .. . iiieeccciieeeeectireeeeettee e s eeite e e e s e reee e sesvaeeessessesessensansessnsenes 47

HOST VaAIADLES. . eieieeiee ettt e st e e st e s s ba e s s bee s s bee e s abeessabaessabaesssaeessaraeennreas 49
Declaring hoSt Variables. ittt e e s e e s e e e e e s bae e s naeens 50
Declaring host variables with the db2dclgn declaration generator.......ccccccvevieiriieinciennieenseeeeieenn 51
Column data types and hoSt Variables. ...t e e e ar e e e 52
Declaring XML NOST VAri@bles.cuiiiiiiiiiiiieieeceiee sttt ste e st e s te e s ste e s sateessseaessasaessasaesnn 52
Identifying XML values in @an SQLDA........couiiiriiieeieeeiit sttt siee e s siee e s see e ssate e ssseeessaeae s seaesssaesneas 53
Identifying null SQL values with null indicator variables.......ccoccvviiinviiiniieec e 54
Including SQLSTATE and SQLCODE hOSt Variables......c.uiiiieiiiieiiiiensieeesee st ssiee s see e 55
ReferenCing host Variables.ottt te e st e e s s aee e s seeesnee 56
Example: Referencing XML hoSt Variables.......ccuuiicieiiiieiiiieicies ettt st 56
HOSt variables i C and C. ittt ste e st e s ae e s be e s baessateesssseessaseessnsaesnnseens 57
HOSt variableS iN COBOL.. .ttt sttt ste e st e s iee e s eiee e s tee e sbee s sbee s sbee e ssbeeesabeessseessaseessnses 87
Host variables in FORTRAN.....oi ittt sttt ete st e st e st e st e s sbe e s sbe e e sabeessabeesssbaessasaessasaesnssens 97
HOSE Variables i REXX.....coi ittt stte e scite s ssite e stte e s bt e e sbeeesbaessbaeessaeesaseeessenesaseessnne 103

Considerations for USING bUffEred INSEITS......ciii it s 108
Buffered inserts in partitioned database enViroNMENTS.......cc.ueviiecciiieicccieee e 109
Restrictions on USING DUFfEred INSEITS. ..ot it bee e s 111

EXECULING XQUETY EXPIESSIONS. .cciivieirreeieiteeerirteesireessiteessiseesssseesssseesssaesssseessssesssssesssssessssssssssassssenssnnens 112

EXECULING SOL STatEMIENTS. .ttt st s s be e s te e s abe e ssabeessteesssbaesssaesnnseesas 113
(070] 1010 01=T 01 £ T PO S OO P PRSP OUPUPPPTUPUPPPRRRt 114
Executing static SQL STatemMENTS.....ii ittt e st e s 114
Retrieving host variable information from the SQLDA StruCtUre.......ccoecvievriieiriiereiieeeieeeeee e 115
Providing variable input to dynamically executed SQL statements by using parameter markers.. 124
CalliNg PrOCEAUIES. ... etiieiieeectieeecte ettt st s st eette e s saee e s bt e e sabeesbteesbtaesasteessteesanseesssaesassaesnnseenn 126
Reading and scrolling throUgh reSULES......cociiiiiiii it ssee e 128
ErrOr MESSAZE FEIMIEVAL .cuviiiiieicieeeite ettt e st e s s e e s s be e e s abeessabaesssbaessaseeesasaeas 131
B Tolo]] aT=Tox 4] = SRS 134
Embedded SQL/COBOL Support for MRI and MRF.......c.ciiiiiiiiiieiriieeciieceiee et svee e sveesseeessaeeeens 135

Chapter 4. BUilding......cccciiiuiiuiiniiniiniiiiiiiecieiieiiaiiaiiaiicscsessesrestsssassssssscsecsessess 139

Precompilation with the PRECOMPILE COMMANGuvviiiiiiiiiieecetieee ettt eecree e e sevte e e e eentaee e e e neneeeean 140
Precompilation of embedded SQL applications that access more than one database server........ 142
Embedded SQL application packages and acCess PlansS......c.uivcveeirieeriieennieensieessieessreessveesseeens 142
Package schema qualification using CURRENT PACKAGE PATH special register......cccocceevvvveennen. 142
Precompiler generated timMeStamPS. ... uiiiciie ittt srre e sbre e ssbee e ssbee e sbeeesbeeesseeesane 144
Errors and warnings from preComMpPilation........ccueiiiiieinieinieeee et see e s 145

Compilation and linkage of source files containing embedded SQL.......cccccvrevieiriiiiiciienniiieencieeseieenane 145

Binding embedded SQL packages to a database with the BIND command.........ccceccevvvieeinieeeinieennnnen. 146
Effect of DYNAMICRULES bind option on dynamically executed SOQL.......cceeeeciiiieeieciiieeecccrieeeeens 147
Using special registers to control the statement compilation environment........ccccovveeinieenrieennne. 148
Package recreation using the BIND command and an existing bind file.....c..ccccovveiinviiinieninieennee, 149
Rebinding existing packages with the REBIND COMMaNd......ccccceviiiiriiiieiniieniieeenieesieessiee s 149
2] TaTe loTo] a -] Te [=Y =\ Ao o 1< J TP 150
2] oTol (] =Reto] a 1] Lo [=1 =1 o] o = FO OO 150
Advantages of deferred BINAINGo st s e s s bee e 151
Performance improvements when using REOPT option of the BIND command.........cccccceevruveennen. 151

Binding applications and utilities (Db2 CONNECE SEIVEN)...cccuiiriereiierieeieecee et ete e e sre e eeeeeas 151

Package storage and MaiNtENANCE.cciiiiciieieie ettt se e sre e s sbee s s teessbeeesbaessseeesaseaenns 154
PaCKAZE VEISIONING. .. utiiiiiiiiiieeiciee st e st e st e st e sttt e s s steessstee s sbeesasteesasteesasseesanseesanseesanseesnsseesnnseenn 154
Resolution of unqualified table NAMES.......coo i e e 155

Building embedded SQL applications using the sample build SCrPt......coccviriieiriiiiniieeeieeeeeeeeeee 155
g ol ol aT=Tol 1(] o= UL 4] 1 (=PSRRI 157
Building embedded SQL applications in C and CH+...cueieeerceeneeiieeieecieeeesee e see e seeesae e 158
Building embedded SQL applications in COBOL.......ccviiiiiiiiiiiiieriiessieeseiee st e sseeessieessveessvees 167
Building and running embedded SQL applications written in REXX......cccccvvvieiniieiniieeenieeenieeeenee 178

Building embedded SQL applications from the command Lin€.........cccceviviiiiieiiniiiiniecceceee e 180

Building embedded SQL applications in C or C++ (WINAOWS)......ccceeueeeereeieeeereeeereereeeere e ereeveenens 180
Chapter 5. Deploying and rUNNING......ccccceviieiiniiniiniiniinectecresrecrestessasssssacsecsecsecses 183
Use of the db2dsdriver.cfg configuration file by embedded SQL applications......ccccccevvveeerieerneeennnnen. 183
Restrictions on LINKING 10 LIBAD2.S0....cciiiiiiiiiiiieteee ettt s e e s saeeas 185

Chapter 6. Compatibility features for migration.......cccccceccrecreirncieiiniinccnccncnecnen. 187

C and CH+ hoST Variable @ITayS....uuii i ciiiee ettt e e ertee e e e rtee e e s e erae e e e e snteeeseenteaessensaseeesnnseeaens 187
Call to a stored procedure with anONYMOUS BLOCK.......ccccccuiiiiiieciieee e ree e e e e 191
Call to a stored procedure with three-part NAME.........uueeii i e ree e 191
CONNECT statement syntax @NhanCEMENTS.cciiicciieeececieeecectrie e eeerre e e ecrre e e e eeree e e s sereaee e seensaeeeeennnes 191
Declaration of the VARCHAR data tyPe....uuii ettt e secctte e s e cttte e e e sevte e e s senteee s s ntaneeseenneneessnnnes 192
Include-file names with double quOtation MArKS.........coiiieiiiee e e 192
INAIiCAtOr VANADLE @rTayS....uuiiieiceciiiee ettt cttee e tee e e e cee e e e e ette e e e s atee e e sessteeeeesasbaeeeeenseeeeeennseneenaas 192
RELEASE option in ROLLBACK statements and COMMIT statements......ccccceeeccieeeeeeciieeeeeciieee e, 194
Strings for the GENERIC option on the BIND COMMANd.....cc.ciiiiiiiiiieiiiieniieennieessieessieessieeessnveessnneens 194
String literals with PREPARE State@mMENTS....ciiciii ittt ettt svee s siee s saee s s aee s sbee e savees 195
Y AU (o1 (8L ==V =1 T USUPPPRN 195
UNSAFENULL PRECOMPILE OPTION.c.tttiiiietiiieeiciessciteesiteesreessieeesseessseessseesssseessseesssseesssseessseesssees 197
WHENEVER <condition> DO <action> Statements......cccciiiriieiiiiiieiecciecete e see s ssee e s 197

L =) . § 1 |

vii

Figures

B 0 = D B 1 =Y = =T o TSR 72
2. The SQL Descriptor Area (SQLDA).....uui e e e eeee e ettt e eeteeeeetteeeetteeeeteeeseseeesesaeesasseesasaeesasseesasseesasseesasseennns 116
3. Preparing Programs Written in Compiled HOSt LANGUAEZES......ccccueieriieeeiieecieeecieeecteeeeree e e e e eeaeeeas 140

Tables

1. Comparing Static and DYNAamMIC SOL....ccuiiiiieiecieecte ettt etee e etee e e tee e e vee e e tae e sbaeesabeeesnbeeesnsaeennseas 11
2. SQL Data Types Mapped to C and C++ DeClarationsS.........ccuueeieeciiieeeeciieee e eecreee e cecrree e e cvree e e e nree e e e enneeas 33
3. SQL Data Types Mapped to C and C++ DEClarationS......c.cceccueeeeciieeciiee et eetee e te e e vee e eeee e 35
4. SQL Data Types Mapped to C and C++ DeClarations........ecccccuveeeiecciiieeeeciieeeececreee e eerree e eeeraeeeeeenreeeeeeanns 36
5. SQL Data Types Mapped to C and C++ DeClarationsS.......cccueeecieeecieeeiieeeciee et esve e e e esaveessavee s 37
6. SQL Data Types Mapped to C and C++ DeClarationsS.........ccueeeieeciieeeieeiieee e eccreee e eecrree e eecvree e e e snree e e e enneeas 39
7. SOQL Data Types Mapped to C and C++ DeClarations.........cccueeeiieeeiieeciieecciee e ecve et e et e e ve e e sae e e 41
8. SQL Data Types Mapped t0 COBOL DEClarations........cecccieeeeieeiieeeeeeiieeeeeecrreeeeecrree e e e streeeeeessnaeeeessnnneeee s 41
9. SQL Data Types Mapped t0 COBOL DECLArationS......ccueiccieeeeciieeeieeeeieeeereeeeteeesreeeeteeseteeessaesssaeesnsaeenns 43
10. SQL Data Types Mapped to FORTRAN DeClarationS......ccccueeeeeecreeeeeeiiieeeeecireeeeeeireeeeeessreeeeeesesseesssennsens 45
11. SQL Column Types Mapped to REXX DECLarationS.......ccueiccieeeiiiecciieeccieecctteescireesvreeeveeeecveeeesvaeesvneeenns a7
12. SQL Column Types Mapped to REXX DEClarations.........ccccueeeeieiiiieeeeerireeeeeecieeeeeeeieeeeesenreeessenseeeeennnns 48
13. Host Variable Declarations by HOSt LANGUAEE......cccuiieciiieeiiieeeiieeciieeetteeetee e etre e evee e steeesteeesvaeessaeeenns 51
14. Null-Indicator Variables by HOSt LaNGUAZE.ccuuiicieiicieiiciee it ccte s ste s siee s sree e siee e saee e s ree s svee e sbeeesaneas 55
15. Embedding SQL Statements in @ HOSt LANGUAZE......ccccviiieiieieiie ettt et eete e e ete e e ae e e enae e e 56
16. Host Variable References by HOSt LANGUAZE.cccuuiieuiiiiiiieeiieceiie et seeesee e ee s siee s saee e svee e ssaeeesneas 56
17. DD2 SOLDA SOL TYPES.utteutitertenteeteeitertestterteete st e te s bt eeesbt et e smeesbe st e s besaeesseeneesatensesaee st eneesbeeneesseensesneen 122
18. How DYNAMICRULES and the Runtime Environment Determine Dynamic SQL Statement Behavior.148
19. Definitions of Dynamic SQL Statement BENaVIOrs........cccuiieeiieiciiieeceeccee et et e 148
20. DD2 DUILA FIlES.eteueertieeieeteesee ettt sttt et s e st e st s b e e s ae e sase e st e sabeeneesabeesneesaseeseesaeenas 155
21. Build files by language and platform........ee et ee e e e ae e e e 156
22. Error-checking utility files by langUage......ciiciiiiiieiiiieicieecee st sree e s be e s s e e e 157
23. Settings to control workload balancing BEhaVIOr..........eecvii i 183

xi

xii

24, Settings to control automatic client reroute behavior........occueviiiiniiiic e

25. Supported client information keywords

Chapter 1. Introduction to embedded SQL

Embedded SQL applications connect to databases and execute embedded SQL statements. The
embedded SQL statements are contained in a package that must be bound to the target database server.

You can develop embedded SQL applications for the Db2° database in the following host programming
languages: C, C++, and COBOL.

Building embedded SQL applications involves two prerequisite steps before application compilation and
linking.

« Preparing the source files containing embedded SQL statements using the Db2 precompiler.

The PREP (PRECOMPILE) command is used to invoke the Db2 precompiler, which reads your source
code, parses and converts the embedded SQL statements to Db2 run-time services API calls, and finally
writes the output to a new modified source file. The precompiler produces access plans for the SQL
statements, which are stored together as a package within the database.

« Binding the statements in the application to the target database.

Binding is done by default during precompilation (the PREP command). If binding is to be deferred (for
example, running the BIND command later), then the BINDFILE option needs to be specified at PREP
time in order for a bind file to be generated.

Once you have precompiled and bound your embedded SQL application, it is ready to be compiled and
linked using the host language-specific development tools.

To aid in the development of embedded SQL applications, you can refer to the embedded SQL template in
C. Examples of working embedded SQL sample applications can also be found in the %DB2PATH%
\SQLLIB\samples directory.

Note: %DB2PATH% refers to the Db2 installation directory

Static and dynamic SQL
SQL statements can be executed in one of two ways: statically or dynamically.

Statically executed SQL statements
For statically executed SQL statements, the syntax is fully known at precompile time. The structure of
an SQL statement must be completely specified for a statement to be considered static. For example,
the names for the columns and tables referenced in a statement must be fully known at precompile
time. The only information that can be specified at run time are values for any host variables
referenced by the statement. However, host variable information, such as data types, must still be
precompiled. You precompile, bind, and compile statically executed SQL statements before you run
your application. Static SQL is best used on databases whose statistics do not change a great deal.

Dynamically executed SQL statements
Dynamically executed SQL statements are built and executed by an application at run-time. An
interactive application that prompts the end user for key parts of an SQL statement, such as the
names of the tables and columns to be searched, is a good example of a situation suited for dynamic
SQL.

Related information
Installing and configuring Optim Performance Manager Extended Insight

Embedding SQL statements in a host language

Structured Query Language (SQL) is a standardized language that you can use to manipulate database
objects and the data that they contain. Despite differences between host languages, embedded SQL
applications are made up of three main elements that are required to setup and issue an SQL statement.

© Copyright IBM Corp. 2016, 2020 1

https://www.ibm.com/support/knowledgecenter/SS9UM9_9.1.2/com.ibm.datatools.nav.doc/product_landing.html

The elements you must create when you write an embedded SQL application include:

1. ADECLARE SECTION for declaring host variables. The declaration of the SQLCA structure does not
need to be in the DECLARE section.

2. The main body of the application, which consists of the setup and execution of SQL statements.
3. Placements of logic that either commit or rollback the changes made by the SQL statements.

For each host language, there are differences between the general guidelines, which apply to all
languages, and rules that are specific to individual languages.

Embedded SQL statements in C and C++ applications

Before you can use the SQL statements, you must set up and enable your application to support
embedded SOL.

Embedded SQL C and C++ applications consist of three main elements to setup and issue an SQL
statement.

« A DECLARE SECTION for declaring host variables. The declaration of the SQLCA structure does not need
to be in the DECLARE section.

« The main body of the application, which consists of the setup and execution of SQL statements
- Placements of logic that either commit or rollback the changes made by the SQL statements

Correct C and C++ Element Syntax

Statement initializer
EXEC SQL

Statement string
Any valid SQL statement

Statement terminator
Semicolon (;)

For example, to issue an SQL statement statically within a C application, you need to include a EXEC SQL
statement within your application code:

EXEC SQL SELECT col INTO :hostvar FROM table;

The following example demonstrates how to issue an SQL statement dynamically using the host variable
stmtl:

strcpy(stmtl, "CREATE TABLE tablel(coll INTEGER)");
EXEC SQL EXECUTE IMMEDIATE :stmtil;

The following guidelines and rules apply to the execution of embedded SQL statements in C and C++
applications:

« You can begin the SQL statement string on the same line as the EXEC SQL statement initializer.
« Do not split the EXEC SQL between lines.

« You must use the SQL statement terminator. If you do not use it, the precompiler will continue to the
next terminator in the application. This can cause indeterminate errors.

« Cand C++ comments can be placed before the statement initializer or after the statement terminator.
« Multiple SQL statements and C or C++ statements may be placed on the same line. For example:

EXEC SQL OPEN c1; if (SQLCODE >= ©) EXEC SQL FETCH c1 INTO :hv;

- Carriage returns, line feeds, and TABs can be included within quoted strings. The SQL precompiler will
leave these as is.

« Do not use the #include statement to include files containing SQL statements. SQL statements are
precompiled before the module is compiled. The precompiler will ignore the #include statement.
Instead, use the SQL INCLUDE statement to import the include files.

2 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

« SQL comments are allowed on any line that is part of an embedded SQL statement, with the exception
of dynamically issued statements.

— The format for an SQL comment is a double dash (- -), followed by a string of zero or more
characters, and terminated by a line end.

— Do not place SQL comments after the SQL statement terminator. These SQL comments cause
compilation errors because compilers interpret them as C or C++ syntax.

— You can use SQL comments in a static statement string wherever blanks are allowed.

— The use of C and C++ comment delimiters /* %/ are allowed in both static and dynamic embedded
SQL statements.

— The use of //-style C++ comments are not permitted within static SQL statements

« SQL string literals and delimited identifiers can be continued over line breaks in C and C++ applications.
To do this, use a back slash (\) at the end of the line where the break is desired. For example, to select
data from the NAME column in the staff table where the NAME column equals 'Sanders' you could do
something similar to the following sample code:

EXEC SQL SELECT "NA\
ME" INTO :n FROM staff WHERE name='Sa\
nders';

Any new line characters (such as carriage return and line feed) are not included in the string that is
passed to the database manager as an SQL statement.

« Substitution of white space characters, such as end-of-line and TAB characters, occurs as follows:

— When they occur outside quotation marks (but inside SQL statements), end-of-lines and TABs are
substituted by a single space.

— When they occur inside quotation marks, the end-of-line characters disappear, provided the string is
continued properly for a C program. TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from platform to platform. For
example, UNIX and Linux® based systems use a line feed.

Embedded SQL statements in FORTRAN applications

You can include embedded SQL statements in FORTRAN applications. Before you can use the SQL
statements, you must setup and enable your application to support embedded SOL.

Embedded SQL statements in FORTRAN applications consist of the following three elements:

Correct FORTRAN Element Syntax

Statement initializer
EXEC SQL

Statement string
Any valid SQL statement with blanks as delimiters

Statement terminator
End of source line.

The end of the source line serves as the statement terminator. If the line is continued, the statement
terminator will then be the end of the last continued line.

For example:

EXEC SQL SELECT COL INTO :hostvar FROM TABLE

The following rules apply to embedded SQL statements in FORTRAN applications:

« Code SQL statements between columns 7 and 72 only.

« Use full-line FORTRAN comments, or SQL comments, but do not use the FORTRAN end-of-line
comment '!' character in SQL statements. This comment character may be used elsewhere, including
host variable declarations.

Chapter 1. Introduction to embedded SQL 3

 Use blanks as delimiters when coding embedded SQL statements, even though FORTRAN statements
do not require blanks as delimiters.

« Use only one SQL statement for each FORTRAN source line. Normal FORTRAN continuation rules apply
for statements that require more than one source line. Do not split the EXEC SQL statement initializer
between lines.

« SQL comments are allowed on any line that is part of an embedded SQL statement. These comments
are not allowed in dynamically executed statements. The format for an SQL comment is a double dash
(--), followed by a string of zero or more characters and terminated by a line end.

« FORTRAN comments are allowed almost anywhere within an embedded SQL statement. The exceptions
are:

— Comments are not allowed between EXEC and SOL.
— Comments are not allowed in dynamically executed statements.

— The extension of using ! to code a FORTRAN comment at the end of a line is not supported within an
embedded SQL statement.

- Use exponential notation when specifying a real constant in SQL statements. The database manager
interprets a string of digits with a decimal point in an SQL statement as a decimal constant, not a real
constant.

- Statement numbers are not valid on SQL statements that precede the first executable FORTRAN
statement. If an SQL statement has a statement number associated with it, the precompiler generates a
labeled CONTINUE statement that directly precedes the SQL statement.

« Use host variables exactly as declared when referencing host variables within an SQL statement.
« Substitution of white space characters, such as end-of-line and TAB characters, occurs as follows:

— When they occur outside quotation marks (but inside SQL statements), end-of-lines and TABs are
substituted by a single space.

— When they occur inside quotation marks, the end-of-line characters disappear, provided the string is
continued properly for a FORTRAN program. TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from platform to platform. For
example, Windows-based platforms use the Carriage Return/Line Feed for end-of-line, whereas UNIX
and Linux based platforms use just a Line Feed.

Embedded SQL statements in COBOL applications

You can include embedded SQL statements in COBOL applications. Before you can use the SQL
statements, you must set up and enable your application to support embedded SQL.

Embedded SQL statements in COBOL applications consist of the following three elements:

Correct COBOL Element Syntax

Statement initializer
EXEC SQL

Statement string
Any valid SQL statement

Statement terminator
END-EXEC.

For example:

EXEC SQL SELECT col INTO :hostvar FROM table END-EXEC.

The following rules apply to embedded SQL statements in COBOL applications:

« Executable SQL statements must be placed in the PROCEDURE DIVISION section. The SQL statements
can be preceded by a paragraph name, just as a COBOL statement.

4 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

« SQL statements can begin in either Area A (columns 8 through 11) or Area B (columns 12 through
72).

« Start each SQL statement with the statement initializer EXEC SQL and end it with the statement
terminator END-EXEC. The SQL precompiler includes each SQL statement as a comment in the modified
source file.

« You must use the SQL statement terminator. If you do not use it, the precompiler will continue to the
next terminator in the application. This may cause indeterminate errors.

* SQL comments are allowed on any line that is part of an embedded SQL statement. These comments
are not allowed in dynamically executed statements. The format for an SQL comment is a double dash
(- -), followed by a string of zero or more characters and terminated by a line end. Do not place SQL
comments after the SQL statement terminator as they will cause compilation errors because they seem
to be part of the COBOL language.

« COBOL comments are allowed in most places. The exceptions are:

— Comments are not allowed between EXEC and SQL.
— Comments are not allowed in dynamically executed statements.

« SQL statements follow the same line continuation rules as the COBOL language. However, do not split
the EXEC SQL statement initializer between lines.

« Do not use the COBOL COPY statement to include files containing SQL statements. SQL statements are
precompiled before the module is compiled. The precompiler will ignore the COBOL COPY statement.
Instead, use the SQL INCLUDE statement to import the include files.

- To continue a string constant to the next line, column 7 of the continuing line must contain a '-' and
column 12 or beyond must contain a string delimiter.

« SQL arithmetic operators must be delimited by blanks.
« Substitution of white space characters, such as end-of-line and TAB characters, occurs as follows:

— When they occur outside quotation marks (but inside SQL statements), end-of-lines and TABs are
substituted by a single space.

— When they occur inside quotation marks, the end-of-line characters disappear, provided the string is
continued properly for a COBOL program. TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from platform to platform. For
example, Windows-based platforms use Carriage Return/Line Feed for end-of-line, whereas UNIX and
Linux based systems use just a Line Feed.

Embedded SQL statements in REXX applications

REXX applications use APIs that enable them to use most of the features provided by database manager
APIs and SQL.

Unlike applications written in a compiled language, REXX applications are not precompiled. Instead, a
dynamic SQL handler processes all SQL statements. By combining REXX with these callable APIs, you
have access to most of the database manager capabilities. Although REXX does not directly support some
APIs using embedded SQL, they can be accessed using the Db2 command line processor from within the
REXX application.

As REXXis an interpreted language, you will find it is easier to develop and debug your application
prototypes in REXX, as compared to compiled host languages. Although database applications coded in
REXX do not provide the performance of database applications that use compiled languages, they do
provide the ability to create database applications without precompiling, compiling, linking, or using
additional software.

Use the SQLEXEC routine to process all SQL statements. The character string arguments for the SQLEXEC
routine are made up of the following elements:

« SQL keywords
« Pre-declared identifiers

Chapter 1. Introduction to embedded SQL 5

« Statement host variables

Make each request by passing a valid SQL statement to the SQLEXEC routine. Use the following syntax:

CALL SQLEXEC 'statement'

SQL statements can be continued onto more than one line. Each part of the statement should be enclosed
in single quotation marks, and a comma must delimit additional statement text as follows:

CALL SQLEXEC 'SQL text',
'additional text',

'finai text'

The following code is an example of embedding an SQL statement in REXX:

statement = "UPDATE STAFF SET JOB = 'Clerk' WHERE JOB = 'Mgr'"
CALL SQLEXEC 'EXECUTE IMMEDIATE :statement'
IF (SOLCA.SQLCODE < 0) THEN

SAY 'Update Error: SQLCODE = ' SQLCA.SQLCODE

In this example, the SQLCODE field of the SQLCA structure is checked to determine whether the update
was successful.

The following rules apply to embedded SQL statements: in REXX applications
« The following SQL statements can be passed directly to the SQLEXEC routine:

- CALL

- CLOSE

- COMMIT

— CONNECT

— CONNECTTO

— CONNECT RESET
— DECLARE

— DESCRIBE

— DISCONNECT

— EXECUTE

— EXECUTE IMMEDIATE
- FETCH

— FREE LOCATOR

- OPEN

— PREPARE

— RELEASE

— ROLLBACK

— SET CONNECTION

Other SQL statements must be processed dynamically using the EXECUTE IMMEDIATE, or PREPARE
and EXECUTE statements in conjunction with the SQLEXEC routine.

« You cannot use host variables in the CONNECT and SET CONNECTION statements in REXX.
« Cursor names and statement names are predefined as follows:

¢l to c100
Cursor names, which range from c1 to ¢50 for cursors declared without the WITH HOLD option, and
¢51 to c100 for cursors declared using the WITH HOLD option.

6 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

The cursor name identifier is used for DECLARE, OPEN, FETCH, and CLOSE statements. It identifies
the cursor used in the SQL request.

sl to s100
Statement names, which range from s1 to s100.

The statement name identifier is used with the DECLARE, DESCRIBE, PREPARE, and EXECUTE
statements.

The pre-declared identifiers must be used for cursor and statement names. Other names are not
allowed.

« When declaring cursors, the cursor name and the statement name should correspond in the DECLARE
statement. For example, if c1 is used as a cursor name, s1 must be used for the statement name.

« Do not use comments within an SQL statement.

Note: REXX does not support multi-threaded database access.

Supported development software for embedded SQL applications

Before you begin writing embedded SQL applications, you must determine if your development software
is supported. The operating system that you are developing for determines which compilers, interpreters,
and development software you must use.

Db2 database systems support compilers, interpreters, and related development software for embedded
SQL applications in the following operating systems:

« AIX®

« Linux

« Windows

32-bit and 64-bit embedded SQL applications can be built from embedded SQL source code.
The following host languages require specific compilers to develop embedded SQL applications:
- C

o C++

« COBOL

« Fortran

« REXX

Setting up the embedded SQL development environment

Before you can start building embedded SQL applications, install the supported compiler for the host
language you will be using to develop your applications and set up the embedded SQL environment.

Before you begin

« Db2 data server installed on a supported platform
« Db2 client installed

» Supported embedded SQL application development software installed - see "Supported embedded SQL
application development software installed" in Getting Started with Database Application Development

About this task

Assign the user the authority to issue the PREP command and BIND command.

Chapter 1. Introduction to embedded SQL 7

To verify that the embedded SQL application development environment is set up properly, try building
and running the embedded SQL application template found in the topic: Embedded SQL application
template in C.

8 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Chapter 2. Desighing embedded SQL applications

When designing embedded SQL applications you must use static or dynamic executed SQL statements.

There are two types of static SQL statements: statements that contain no host variables (used mainly for
initialization and simple SQL examples), and statements that make use of host variables. Dynamic SQL
statements also come in two flavors: they can either contain no parameter markers (typical of interfaces
such as CLP) or contain parameter markers, which allows for greater flexibility within applications.

The choice of whether to use statically or dynamically executed statements depend on a number of
factors, including: portability, performance and restrictions of embedded SQL applications.

Authorization Considerations for Embedded SQL

An authorization allows a user or group to perform a general task such as connecting to a database,
creating tables, or administering a system. A privilege gives a user or group the right to access one
specific database object in a specified way. Db2 uses a set of privileges to provide protection for the
information that you store in it.

Most SQL statements require some type of privilege on the database objects which the statement utilizes.
Most API calls usually do not require any privilege on the database objects which the call utilizes,
however, many APIs require that you possess the necessary authority to start them. You can use the Db2
APIs to perform the Db2 administrative functions from within your application program. For example, to
re-create a package stored in the database without the need for a bind file, you can use the sqlarbnd (or
REBIND) API.

Groups provide a convenient means of performing authorization for a collection of users without having to
grant or revoke privileges for each user individually. Group membership is considered for the execution of
dynamic SQL statements, but not for static SQL statements. PUBLIC privileges are, however, considered
for the execution of static SQL statements. For example, suppose you have an embedded SQL stored
procedure with statically bound SQL queries against a table called STAFF. If you try to build this
procedure with the CREATE PROCEDURE statement, and your account belongs to a group that has the
select privilege for the STAFF table, the CREATE statement will fail with a SQLO551N error. For the
CREATE statement to work, your account directly needs the select privilege on the STAFF table.

When you design your application, consider the privileges your users will need to run the application. The
privileges required by your users depend on:

« Whether your application uses dynamic SQL, including JDBC and CLI, or static SQL. For information
about the privileges required to issue a statement, see the description of that statement.

« Which APIs the application uses. For information about the privileges and authorities required for an
API call, see the description of that API.

Groups provide a convenient means of performing authorization for a collection of users without having to
grant or revoke privileges for each user individually. In general, group membership is considered for
dynamic SQL statements, but is not considered for static SQL statements. The exception to this general
case occurs when privileges are granted to PUBLIC: these are considered when static SQL statements are
processed.

Consider two users, PAYROLL and BUDGET, who need to perform queries against the STAFF table.
PAYROLL is responsible for paying the employees of the company, so it needs to issue a variety of SELECT
statements when issuing paychecks. PAYROLL needs to be able to access each employee's salary.
BUDGET is responsible for determining how much money is needed to pay the salaries. BUDGET should
not, however, be able to see any particular employee's salary.

Because PAYROLL issues many different SELECT statements, the application you design for PAYROLL
could probably make good use of dynamic SQL. The dynamic SQL would require that PAYROLL have

© Copyright IBM Corp. 2016, 2020 9

SELECT privilege on the STAFF table. This requirement is not a problem because PAYROLL requires full
access to the table.

However, BUDGET, should not have access to each employee's salary. This means that you should not
grant SELECT privilege on the STAFF table to BUDGET. Because BUDGET does need access to the total of
all the salaries in the STAFF table, you could build a static SQL application to execute a SELECT
SUM(SALARY) FROM STAFF, bind the application and grant the EXECUTE privilege on your application's
package to BUDGET. This enables BUDGET to obtain the required information, without exposing the
information that BUDGET should not see.

Static and dynamic SQL statement execution in embedded SQL applications

Both static and dynamic SQL statement execution is supported in embedded SQL applications. The
decision to execute SQL statements statically or dynamically requires an understanding of packages, how
SQL statements are issued at run time, host variables, parameter markers, and how these things are
related to application performance.

Static SQL in embedded SQL programs

An example of a statically issued statement in C is:

/* select values from table into host variables using STATIC SQL and print themx/
EXEC SQL SELECT id, name, dept, salary INTO :id, :name, :dept, :salary
FROM staff WHERE id = 310;

Dynamic SQL in embedded SQL programs

An example of a dynamically issued statement in Cis:

/* Update column in table using DYNAMIC SQL=x/

strcpy (hostVarStmtDyn, "UPDATE staff SET salary = salary + 1000 WHERE dept = ?");
EXEC SQL PREPARE StmtDyn FROM :hostVarStmtDyn;

EXEC SQL EXECUTE StmtDyn USING :dept;

Embedded SQL dynamic statements

Dynamic SQL statements accept a character-string host variable and a statement name as arguments.
The host variable contains the SQL statement text that is processed dynamically.

The statement text is not processed when an application is precompiled. In fact, the statement text does
not have to exist at the time the application is precompiled. Instead, the SQL statement is treated as a
host variable for precompilation purposes and the variable is referenced during application execution.

Dynamic SQL support statements are required to transform the host variable containing SQL text into an
executable form. Also, dynamic SQL support statements operate on the host variable by referencing the
statement name. These support statements are:

EXECUTE IMMEDIATE
Prepares and executes a statement that does not use any host variables. Use this statement as an
alternative to the PREPARE and EXECUTE statements.

For example consider the following statement in C:

strcpy (gstring,"INSERT INTO WORK_TABLE SELECT *
FROM EMP_ACT WHERE ACTNO >= 100");
EXEC SQL EXECUTE IMMEDIATE :gstring;

PREPARE
Turns the character string form of the SQL statement into an executable form of the statement,
assigns a statement name, and optionally places information about the statement in an SQLDA
structure.

10 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

EXECUTE
Executes a previously prepared SQL statement. The statement can be executed repeatedly within a
connection.

DESCRIBE
Places information about a prepared statement into an SQLDA.

For example consider the following statement in C;

strcpy (hostVarStmt, "DELETE FROM org WHERE deptnumb = 15");
EXEC SQL PREPARE Stmt FROM :hostVarStmt;

EXEC SQL DESCRIBE Stmt INTO :sqlda;

EXEC SQL EXECUTE Stmt;

Note: The content of dynamic SQL statements follows the same syntax as static SQL statements, with the
following exceptions:
« The statement cannot begin with EXEC SQL.

« The statement cannot end with the statement terminator. An exception to this is the CREATE TRIGGER
statement which can contain a semicolon (;).

Determining when to execute SQL statements statically or dynamically in embedded SQL
applications
There are several factors that you must consider before determining whether to issue a static or dynamic
SQL statement in an embedded SQL application.
The following table lists the considerations associated with use of static and dynamic SQL statements.

Note: These are general suggestions only. Your application requirement, its intended usage, and working
environment dictate the actual choice. When in doubt, prototyping your statements as static SQL, then as
dynamic SQL, and comparing the differences is the best approach.

Table 1. Comparing Static and Dynamic SQL

Consideration Likely Best Choice

Uniformity of data being queried or operated upon by the SQL statement

 Uniform data distribution - Static
« Slight non-uniformity Either
« Highly non-uniform distribution « Dynamic

Quantity of range predicates within the query

« Few « Static
« Some « Either
- Many « Dynamic

Likelihood of repeated SQL statement execution

» Runs many times (10 or more times) « Either
« Runs a few times (less than 10 times) Either
« Runsonce « Static

Nature of Query

« Random » Dynamic
« Permanent Either

Chapter 2. Designing embedded SQL applications 11

Table 1. Comparing Static and Dynamic SQL (continued)

Consideration Likely Best Choice
Types of SQL statements (DML/DDL/DCL)

« Transaction Processing (DML Only) « Either

 Mixed (DML and DDL - DDL affects packages) « Dynamic

» Mixed (DML and DDL - DDL does not affect packages) « Either

Frequency with which the RUNSTATS command is issued

« Infrequently « Static
 Regularly - Either

» Frequently Dynamic

SQL statements are always compiled before they are run.

The difference is that dynamic SQL statements are compiled at runtime, so the application might be
slower due to the increased resource use associated with compiling each of the dynamic statements at
application runtime versus during a single initial compilation stage as is the case with static SQL.

In a mixed environment, the choice between static and dynamic SQL must also factor in the frequency in
which packages are invalidated. If the DDL does invalidate packages, dynamic SQL is more efficient as
only those queries issued are recompiled when they are next used. Others are not recompiled. For static
SQL, the entire package is rebound once it has been invalidated.

There are times when it does not matter whether you use static SQL or dynamic SQL. For example it might
be the case within an application that contains mostly references to SQL statements to be issued
dynamically that there might be one statement that might more suitably be issued as static SQL. In such a
case, to be consistent in your coding, it might make sense to issue that one statement dynamically too.
Note that the considerations in the previous table are listed roughly in order of importance.

Do not assume that a static version of an SQL statement is always faster than the equivalent dynamic
statement. In some cases, static SQL is faster because of the resource use required to prepare the
dynamic statement. In other cases, the same statement prepared dynamically issues faster, because the
optimizer can make use of current database statistics, rather than the database statistics available at an
earlier bind time. Note that if your transaction takes less than a couple of seconds to complete, static SQL
will generally be faster. To choose which method to use, you should prototype both forms of binding.

Note: Static and dynamic SQL each come in two types, statements which make use of host variables and
ones which don't. These types are:

1. Static SQL statements containing no host variables
This is an unlikely situation which you may see only for:
- Initialization code
« Simple SQL statements

Simple SQL statements without host variables perform well from a performance perspective in that
there is no runtime performance increase, and the Db2 optimizer capabilities can be fully realized.

2. Static SQL containing host variables

Static SQL statements which make use of host variables are considered as the traditional style of Db2
applications. The static SQL statement avoids the runtime resource usage associated with the
PREPARE and catalog locks acquired during statement compilation. Unfortunately, the full power of
the optimizer cannot be used because the optimizer does not know the entire SQL statement. A
particular problem exists with highly non-uniform data distributions.

3. Dynamic SQL containing no parameter markers

12 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

This is typical of interfaces such as the CLP, which is often used for executing on-demand queries.
From the CLP, SQL statements can only be issued dynamically.

4. Dynamic SQL containing parameter markers

The key benefit of dynamic SQL statements is that the presence of parameter markers allows the cost
of the statement preparation to be amortized over the repeated executions of the statement, typically
a select, or insert. This amortization is true for all repetitive dynamic SQL applications. Unfortunately,
just like static SQL with host variables, parts of the Db2 optimizer will not work because complete
information is unavailable.

Performance of embedded SQL applications

Performance is an important factor to consider when developing database applications. Embedded SQL
applications can perform well because they support static SQL statement execution and a mix of static
and dynamic SQL statement execution.

Due to how static SQL statements are compiled, there are steps that a developer or database
administrator must take to ensure that embedded SQL applications continue to perform well over time.

The following factors can impact embedded SQL application performance:

« Changes in database schemas over time

« Changes in the cardinalities of tables (the number of rows in tables) over time
- Changes in the host variable values bound to SQL statements

Embedded SQL application performance is impacted by these factors because the package is created
once when a database might have a certain set of characteristics. These characteristics are factored into
the creation of the package run time access plans which define how the database manager will most
efficiently issue SQL statements. Over time a database schema and data might change rendering the run
time access plans sub-optimal. This can lead to degradation in application performance.

For this reason it is important to periodically refresh the information that is used to ensure that the
package runtime access plans are well-maintained.

The RUNSTATS command is used to collect current statistics on tables and indexes, especially if
significant update activity has occurred or new indexes have been created since the last time the
RUNSTATS command was issued. This provides the optimizer with the most accurate information with
which to determine the best access plan.

Performance of Embedded SQL applications can be improved in several ways:

« Run the RUNSTATS command to update database statistics.

 Rebind application packages to the database to regenerate the run time access plans (based on the
updated statistics) that the database will use to physically retrieve the data on disk.

« Using the REOPT bind option in your static and dynamic programs.

32-bit and 64-bit support for embedded SQL applications

You can build embedded SQL applications on both 32-bit and 64-bit operating systems. However, there
are separate building and running considerations. Build scripts contain a check to determine the bit width.
If the bit width detected is 64-bit, an extra set of switches is set to accommodate the necessary changes.

Db2 database systems are supported on 32-bit and 64-bit versions of operating systems listed later in
this section. There are differences for building embedded SQL applications in 32-bit and 64-bit
environments in most cases on these operating systems.

« AIX
e Linux
« Windows

Chapter 2. Designing embedded SQL applications 13

The only 32-bit instances that will be supported in Db2 Version 9 are:
 Linux on x86

« Windows on x86

« Windows on x64 (when using the Db2 for Windows on x86 install image)
The only 64-bit instances that will be supported in Db2 Version 9 are:
« AIX

e Sun

« HP IPF

 Linux on x64

« Linux on POWER®

« Linux on System z°

« Windows on x64 (when using the Windows for x64 install image)

- Windows on IPF

 Linux on IPF

Db2 database systems support running 32-bit applications and routines on all supported 64-bit operating
system environments except Linux IA64 and Linux System z.

For each of the host languages, the host variables used can be better in either 32-bit or 64-bit platform or
both. Check the various data types for each of the programming languages.

Restrictions on embedded SQL applications

Each supported host language has its own set of limitations and specifications.

C/C++ makes use of a sequence of three characters called trigraphs to overcome the limitations of
displaying certain special characters. COBOL has a set of rules to aid in the use of object oriented COBOL
applications. FORTRAN has areas of interest which can affect the precompiling processes whereas REXX
is confined in certain areas such as language support.

Restrictions on character sets using C and C++ to program embedded SQL applications

Some characters from the C or C++ character set are not available on all keyboards. You can enter these
characters into a C or C++ source program by using a sequence of three characters called a trigraph.
Trigraphs are not recognized in SQL statements.

The precompiler recognizes the following trigraphs within host variable declarations:
Trigraph
Definition
22(
Left bracket '['
??)
Right bracket ']’
?22<
Left brace '{'
22>
Right brace '}'
The following trigraphs listed might occur elsewhere in a C or C++ source program:

Trigraph
Definition

14 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

??=

Hash mark '#'
??/

Back slash '\'
2

Caret '
22!

Vertical Bar'|'
?2-

Tilde '~

Restrictions on using COBOL to program embedded SQL applications
The restrictions for API calls in COBOL applications.

Restrictions for API calls in COBOL applications include:

- Allinteger variables used as value parameters in API calls must be declared with a USAGE COMP-5
clause.

In an object-oriented COBOL program:

« SQL statements can only be used in the first program or class in a compile unit. This restriction exists
because the precompiler inserts temporary working data into the first Working-Storage Sectionit
sees.

- Every class containing SQL statements must have a class-level Working-Storage Section, evenifit
is empty. This section is used to store data definitions generated by the precompiler.

Restrictions on using FORTRAN to program embedded SQL applications

Embedded SQL support for FORTRAN are stabilized in Db2 Version 5, and no enhancements are planned
for the future.

For example, the FORTRAN precompiler cannot handle SQL object identifiers, such as table names, that
are longer than 18 bytes. To use features introduced to Db2 database systems afterDb2 Version 5, such
as table names from 19 to 128 bytes long, you must write your applications in a language other than
FORTRAN.

FORTRAN database application development is not supported with Db2 instances in Windows or Linux
environments.

FORTRAN does not support multi-threaded database access.

Some FORTRAN compilers treat lines with a 'D' or 'd"' in column 1 as conditional lines. These lines can
either be compiled for debugging or treated as comments. The precompiler will always treat lines with a
'D'or'd" in column 1 as comments.

Some API parameters require addresses rather than values in the call variables. The database manager
provides the GET ADDRESS, DEREFERENCE ADDRESS, and COPY MEMORY APIs, which simplify your
ability to provide these parameters.

The following items affect the precompiling process:

« The precompiler allows only digits, blanks, and tab characters within columns 1-5 on continuation lines.
« Hollerith constants are not supported in . sqf source files.

Restrictions on using REXX to program embedded SQL applications

Restrictions on embedded SQL applications created using REXX limit the type of SQL statement that you
can use, and some languages are not supported.

Following are the restrictions for embedded SQL in REXX applications:

Chapter 2. Designing embedded SQL applications 15

« Embedded SQL support for REXX stabilized in Db2 Version 5, and no enhancements are planned for the
future. For example, REXX cannot handle SQL object identifiers, such as table names, that are longer
than 18 bytes. To use features introduced to Db2 database systems after Version 5, such as table
names from 19 to 128 bytes long, you must write your applications in a language other than REXX.

« Compound SQL is not supported in REXX/SQL.
« REXX does not support static SQL.
« REXX applications are not supported under Japanese or Traditional Chinese EUC environments.

Recommendations for developing embedded SQL applications with XML and XQuery

If you are developing embedded SQL applications that use XML and XQuery data, you must consider if all
the required data is available, and what type of data it is.

The following recommendations and restrictions apply to using XML and XQuery within embedded SQL
applications.

« Applications must access all XML data in the serialized string format.

— You must represent all data, including numeric and date time data, in its serialized string format.
 Externalized XML data is limited to 2 GB.

« All cursors containing XML data are non-blocking (each fetch operation produces a database server
request).

« Whenever character host variables contain serialized XML data, the application code page is assumed to
be used as the encoding of the data and must match any internal encoding that exists in the data.

« You must specify a LOB data type as the base type for an XML host variable.
« The following recommendations and restrictions apply to static SQL:

— Character and binary host variables cannot be used to retrieve XML values from a SELECT INTO
operation.

— Where an XML data type is expected for input, the use of CHAR, VARCHAR, CLOB, and BLOB host
variables will be subject to an XMLPARSE operation with default whitespace handling characteristics
('"STRIP WHITESPACE'). Any other non-XML host variable type will be rejected.

— There is no support for static XQuery expressions; attempts to precompile an XQuery expression will
fail with an error. You can only issue XQuery expressions through the XMLQUERY function.

« An XQuery expression can be dynamically issued by pre-pending the expression with the string
"XQUERY".

Concurrent transactions and multi-threaded database access in embedded
SQL applications

One feature of some operating systems is the ability to run several threads of execution within a single
process. The multiple threads allow an application to handle asynchronous events, and makes it easier to
create event-driven applications, without resorting to polling schemes. The information that follows
describes how the Db2 database manager works with multiple threads, and lists some design guidelines
that you should keep in mind.

If you are not familiar with terms relating to the development of multi-threaded applications (such as
critical section and semaphore), consult the programming documentation for your operating system.

A Db2 embedded SQL application can execute SQL statements from multiple threads using contexts. A
context is the environment from which an application runs all SQL statements and API calls. All
connections, units of work, and other database resources are associated with a specific context. Each
context is associated with one or more threads within an application. Developing multi-threaded
embedded SQL applications with thread-safe code is only supported in C and C++. It is possible to write
your own precompiler, that along with features supplied by the language allows concurrent multithread
database access.

16 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

For each executable SQL statement in a context, the first run-time services call always tries to obtain a
latch. If it is successful, it continues processing. If not (because an SQL statement in another thread of
the same context already has the latch), the call is blocked on a signaling semaphore until that
semaphore is posted, at which point the call gets the latch and continues processing. The latch is held
until the SQL statement has completed processing, at which time it is released by the last run-time
services call that was generated for that particular SQL statement.

The net result is that each SQL statement within a context is executed as an atomic unit, even though
other threads may also be trying to execute SQL statements at the same time. This action ensures that
internal data structures are not altered by different threads at the same time. APIs also use the latch used
by run-time services; therefore, APIs have the same restrictions as run-time services routines within each
context.

Contexts may be exchanged between threads in a process, but not exchanged between processes. One
use of multiple contexts is to provide support for concurrent transactions.

In the default implementation of threaded applications against a Db2 database, serialization of access to
the database is enforced by the database APIs. If one thread performs a database call, calls made by
other threads will be blocked until the first call completes, even if the subsequent calls access database
objects that are unrelated to the first call. In addition, all threads within a process share a commit scope.
True concurrent access to a database can only be achieved through separate processes, or by using the
APIs that are described in this topic.

Db2 database systems provide APIs that can be used to allocate and manipulate separate environments
(contexts) for the use of database APIs and embedded SQL. Each context is a separate entity, and any
connection or attachment using one context is independent of all other contexts (and thus all other
connections or attachments within a process). In order for work to be done on a context, it must first be
associated with a thread. A thread must always have a context when making database API calls or when
using embedded SQL.

All Db2 database system applications are multithreaded by default, and are capable of using multiple
contexts. You can use the following Db2 APIs to use multiple contexts. Specifically, your application can
create a context for a thread, attach to or detach from a separate context for each thread, and pass
contexts between threads. If your application does not call any of these APIs, Db2 will automatically
manage the multiple contexts for your application:

« sqleAttachToCtx - Attach to context

« sqleBeginCtx - Create and attach to an application context
« sqleDetachFromCtx - Detach from context

» sqleEndCtx - Detach and destory application context

« sqleGetCurrentCtx - Get current context

e sqleInterruptCtx - Interrupt context

These APIs have no effect (that is, they are no-ops) on platforms that do not support application
threading.

Contexts need not be associated with a given thread for the duration of a connection or attachment. One
thread can attach to a context, connect to a database, detach from the context, and then a second thread
can attach to the context and continue doing work using the already existing database connection.
Contexts can be passed around among threads in a process, but not among processes.

Even if the new APIs are used, the following APIs continue to be serialized:
- sqlabndx - Bind

- sqlaprep - Precompile Program

« sqluexpr - Export

e db2Impoxrt and sqluimpzr - Import

Note:

Chapter 2. Designing embedded SQL applications 17

1. The CLI automatically uses multiple contexts to achieve thread-safe, concurrent database access on
platforms that support multi-threading. While not recommended, users can explicitly disable this
feature if required.

2. By default, AIX does not permit 32-bit applications to attach to more than 11 shared memory
segments per process, of which a maximum of 10 can be used for Db2 database connections.

When this limit is reached, Db2 database systems return SQLCODE -1224 on an SQL CONNECT. Db2
Connect also has the 10-connection limitation if local users are running two-phase commit with a TP
Monitor (TCP/IP).

The AIX environment variable EXTSHM can be used to increase the maximum number of shared
memory segments to which a process can attach.

To use EXTSHM with Db2 database systems, follow the listed steps:

In client sessions:

export EXTSHM=0N

When starting the Db2 server:

export EXTSHM=ON
db2set DB2ENVLIST=EXTSHM
db2start

On partitioned database environment, also add the following lines to your userprofile or
usercshzc files:

EXTSHM=0N
export EXTSHM

An alternative is to move the local database or Db2 Connect into another machine and to access it
remotely, or to access the local database or the Db2 Connect database with TCP/IP loop-back by
cataloging it as a remote node that has the TCP/IP address of the local machine.

Recommendations for using multiple threads

Multithreaded applications might be difficult to maintain and use if you do not carefully plan the
application in advance. When you are writing a multithreaded application, you must consider how you
handle data structures.

Follow these guidelines when accessing a database from multiple thread applications:

Serialize alteration of data structures.
Applications must ensure that user-defined data structures used by SQL statements and database
manager routines are not altered by one thread while an SQL statement or database manager routine
is being processed in another thread. For example, do not allow a thread to reallocate an SQLDA while
it is being used by an SQL statement in another thread.

Consider using separate data structures.
It may be easier to give each thread its own user-defined data structures to avoid having to serialize
their usage. This guideline is especially true for the SQLCA, which is used not only by every executable
SQL statement, but also by all of the database manager routines. There are three alternatives for
avoiding this problem with the SQLCA:

« Use EXEC SQL INCLUDE SQLCA, butadd struct sqlca sqlca atthe beginning of any routine
that is used by any thread other than the first thread.

« Place EXEC SQL INCLUDE SQLCA inside each routine that contains SQL, instead of in the global
scope.

« Replace EXEC SQL INCLUDE SQLCA with#include "sqglca.h",thenadd "struct sqlca
sqlca" at the beginning of any routine that uses SQL.

18 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Code page and country or region code considerations for multi-threaded UNIX
applications

Code page and country or region codes are specific to C and C++ embedded SQL applications. On AIX the
functions that are used for runtime querying of the code page and country or region code that you use for
a database connection are now thread safe.

However, these functions can create some lock contention (and resulting performance degradation) in a
multi-threaded application that uses a large number of concurrent database connections.

You can use the DB2_FORCE_NLS_CACHE environment variable to eliminate the chance of lock contention
in multi-threaded applications. When DB2_FORCE_NLS_CACHE is set to TRUE, the code page and country
or region code information is saved the first time a thread accesses it. From that point on, the cached
information will be used for any other thread that requests this information. By saving this information,
lock contention is eliminated, and in certain situations a performance benefit will be realized.

You should not set DB2_FORCE_NLS_CACHE to TRUE if the application changes locale settings between
connections. If this situation occurs, the original locale information will be returned even after the locale
settings have been changed. In general, multi-threaded applications will not change locale settings,
which, ensures that the application remains thread safe.

Troubleshooting multi-threaded embedded SQL applications

An application that uses multiple threads is more complex than a single-threaded application. This extra
complexity can potentially lead to some unexpected problems.

When writing a multi-threaded application, following context issues must be considered:

Database dependencies between two or more contexts.
Each context in an application has its own set of database resources, including locks on database
objects. This characteristic makes it possible for two contexts, if they are accessing the same
database object, to deadlock. When the database manager detect a deadlock, SQLCODE -911 is
returned to the application and its unit of work is rolled back.

Application dependencies between two or more contexts.
Be careful with any programming techniques that establish inter-context dependencies. Latches,
semaphores, and critical sections are examples of programming techniques that can establish such
dependencies. If an application has two contexts that have both application and database
dependencies between the contexts, it is possible for the application to become deadlocked. If some
of the dependencies are outside of the database manager, the deadlock is not detected, thus the
application gets suspended or hung.

Deadlock prevention for multiple contexts.
Because the database manager cannot detect deadlocks between threads, code your application in a
way that avoids deadlocks.

As an example of a deadlock that the database manager cannot detect, consider an application that
has two contexts, both of which access a common data structure. To avoid problems where both
contexts change the data structure simultaneously, the data structure is protected by a semaphore.
The sample contexts are shown in following pseudocode:

context 1

SELECT = FROM TAB1 FOR UPDATE....
UPDATE TAB1 SET....

get semaphore

access data structure

release semaphozre

COMMIT

context 2

get semaphore

access data structure
SELECT * FROM TAB1...
release semaphore
COMMIT

Chapter 2. Designing embedded SQL applications 19

Suppose the first context successfully executes the SELECT and the UPDATE statements, while the
second context gets the semaphore and accesses the data structure. The first context now tries to get
the semaphore, but it cannot because the second context is holding the semaphore. The second
context now attempts to read a row from table TAB1, but it stops on a database lock held by the first
context. The application is now in a state where context 1 cannot finish before context 2 is done and
context 2 is waiting for context 1 to finish. The application is deadlocked, but because the database
manager does not know that about the semaphore dependency neither context is rolled back. The
unresolved dependency leaves the application suspended.

You can avoid the deadlock that can occur for the previous example in several ways.
 Release all locks held before obtaining the semaphore.

Change the code for context 1 to perform a commit before it gets the semaphore.
» Do not code SQL statements inside a section protected by semaphores.

Change the code for context 2 to release the semaphore before doing the SELECT.
« Code all SQL statements within semaphores.

Change the code for context 1 to obtain the semaphore before running the SELECT statement. While
this technique will work, it is not highly recommended because the semaphores will serialize access
to the database manager, which potentially negates the benefits of using multiple threads.

- Set the locktimeout database configuration parameter to a value other than -1.

While a value other than -1 will not prevent the deadlock, it will allow execution to resume. Context
2 is eventually rolled back because it is unable to obtain the requested lock. When handling the
rollback error, context 2 should release the semaphore. Once the semaphore has been released,
context 1 can continue and context 2 is free to try again its work.

The techniques for avoiding deadlocks are described in terms of the example, but you can apply them
to all multi-threaded applications. In general, treat the database manager as you would treat any
protected resource and you should not run into problems with multi-threaded applications.

20 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Chapter 3. Programming embedded SQL applications

Programming embedded SQL applications involves the same steps required to assemble an application in
your host programming language.

Once you determine that embedded SQL is the appropriate API to meet your programming needs, and
after you design your embedded SQL application, you will be ready to program an embedded SQL
application.

Prerequisites:

« Choose whether to use static or dynamic SQL statements

« Design of an embedded SQL application

Programming embedded SQL applications consists of the following sub-tasks:
« Including the required header files

« Choosing a supported embedded SQL programming language

« Declaring host variables for representing values to be included in SQL statements
« Connecting to a data source

« Executing SQL statements

« Handling SQL errors and warnings related to SQL statement execution

- Disconnecting from the data source

Once you have a complete embedded SQL application you'll be ready to compile and run your application:
Building embedded SQL applications.

Embedded SQL source files

When you develop source code that includes embedded SQL, you must follow specific file naming
conventions for each of the supported host languages.

Input and output files for C and C++
By default, the source application can have the following extensions:

.sqc
For C files on all supported operating systems

.sqC
For C++ files on UNIX and Linux operating systems

.SgX
For C++ files on Windows operating systems
By default, the corresponding precompiler output files have the following extensions:

.c
For C files on all supported operating systems

.C
For C++ files on UNIX and Linux operating systems

.CXX
For C++ files on Windows operating systems

You can use the OUTPUT precompile option to override the name and path of the output modified source
file. If you use the TARGET C or TARGET CPLUSPLUS precompile option, the input file does not need a
particular extension.

© Copyright IBM Corp. 2016, 2020 21

Input and output files for COBOL
By default, the source application has an extension of:

.sqb
For COBOL files on all operating systems

However, if you use the TARGET precompile option (TARGET ANSI_COBOL, TARGET IBMCOB or TARGET
MFCOB), the input file can have any extension you prefer.

By default, the corresponding precompiler output files have the following extensions:

.chl
For COBOL files on all operating systems

However, you can use the OUTPUT precompile option to specify a new name and path for the output
modified source file.

Input and output files for FORTRAN
By default, the source application has an extension of:

.sqf
For FORTRAN files on all operating systems

However, if you use the TARGET precompile option with the FORTRAN option the input file can have any
extension you prefer.

By default, the corresponding precompiler output files have the following extensions:

f
For FORTRAN files on UNIX and Linux operating systems

for
For FORTRAN files on Windows operating systems

However, you can use the OUTPUT precompile option to specify a new name and path for the output
modified source file.

Embedded SQL application templateinC

You are provided with a sample embedded SQL application to test your embedded SQL development
environment and to help you learn about the basic structure of embedded SQL applications.

Embedded SQL applications require the following structure:

« Including the required header files

Host variable declarations for values to be included in SQL statements
A database connection

« The execution of SQL statements

The handling of SQL errors and warnings related to SQL statement execution
« Dropping the database connection

The following source code demonstrates the basic structure required for embedded SQL applications
written in C.

Sample program: template.sqc

#include <stdio.h> 1
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlutil.h>

EXEC SQL BEGIN DECLARE SECTION; 2
short id;
char name[10];
short dept;

22 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

double salary;
char hostVarStmtDyn[50];
EXEC SQL END DECLARE SECTION;

int main()

int rc = 0; 3
EXEC SQL INCLUDE SQLCA; 4

/* connect to the database */
printf("\n Connecting to database...");
EXEC SQL CONNECT TO "sample";

if (SQLCODE <0)

ool

printf("\nConnect Error: SQLCODE = %d. \n", SQLCODE);
goto connect_reset;

else

printf("\n Connected to database.\n");

/* execute an SQL statement (a query) using static SQL; copy the single row
of result values into host variablesx*/
EXEC SQL SELECT id, name, dept, salary 7
INTO :id, :name, :dept, :salary
FROM staff WHERE id = 310;
if (SQLCODE <0) 6

printf("Select Error: SQLCODE = %d. \n", SQLCODE);

else
1
/* print the host variable values to standard output =%/
printf("\n Executing a static SQL query statement, searching for
\n the id value equal to 310\n");

printf("\nID Name DEPT Salary\n");
printf(" % %s % %f\n",

id, name, dep, salary);

3

strcpy (hostVarStmtDyn, "UPDATE staff
SET salary = salary + 1000
WHERE dept = ?");
/* execute an SQL statement (an operation) using a host variable
and DYNAMIC SQLx/
EXEC SQL PREPARE StmtDyn FROM :hostVarStmtDyn;
if (SQLCODE <0) 6

printf("Prepare Error: SQLCODE = %d. \n", SQLCODE);

else
EXEC SQL EXECUTE StmtDyn USING :dept; 8
if (SQLCODE <0) 6

printf("Execute Error: SQLCODE = %d. \n", SQLCODE);

/* Read the updated row using STATIC SQL and CURSOR x/
EXEC SQL DECLARE posCurl CURSOR FOR
SELECT id, name, dept, salary
FROM staff WHERE id = 310;
if (SQLCODE <0) 6
i

printf("Declare Error: SQLCODE = %d. \n", SQLCODE);
EXEC SQL OPEN posCuril;
EXEC SQL FETCH posCurl INTO :id, :name, :dept, :salary ; 9
if (SQLCODE <0) 6
printf("Fetch Error: SQLCODE = %d. \n", SQLCODE);

else

printf(" Executing an dynamic SQL statement, updating the
\n salary value for the id equal to 310\n");

printf("\n ID Name DEPT Salary\n");
printf(" %d %s %d %f\n",
id, name, dep, salary); 1

EXEC SQL CLOSE posCurl;

/* Commit the transaction %/

printf("\n Commit the transaction.\n");

EXEC SQL COMMIT; 10
if (SQLCODE <0) 6
i

printf("Error: SQLCODE = %d. \n", SQLCODE);

/* Disconnect from the database */

Chapter 3. Programming embedded SQL applications 23

connect_reset :
EXEC SQL CONNECT RESET; 11
if (SQLCODE <0) 6
i
printf("Connection Error: SQLCODE = %d. \n", SQLCODE);

return 0;
t /x end main x/

Notes to Sample program: template.sqc:

Note Description
1 Include files: This directive includes a file into your source application.
2 Declaration section: Declaration of host variables that will be used to hold values

referenced in the SQL statements of the C application.

3 Local variable declaration: This block declares the local variables to be used in the
application. These are not host variables.

4 Including the SQLCA structure: The SQLCA structure is updated after the execution of each
SQL statement. This template application uses certain SQLCA fields for error handling.

5 Connection to a database: The initial step in working with the database is to establish a
connection to the database. Here, a connection is made by executing the CONNECT SQL
statement.

6 Error handling: Checks to see if an error occurred.

7 Executing a query: The execution of this SQL statement assigns data returned from a table

to host variables. The C code used after the SQL statement execution prints the values in
the host variables to standard output.

8 Executing an operation: The execution of this SQL statement updates a set of rows in a
table identified by their department number. Preparation (EXEC SQL PREPARE StmtDyn
FROM :hostVarStmtDyn;) is a step in which host variable values, such as the one
referenced in this statement, are bound to the SQL statement to be executed.

9 Executing an operation: In this line and the previous line, this application uses cursors in
static SQL to select information in a table and print the data. After the cursor is declared
and opened, the data is fetched, and finally the cursor is closed.

10 Commit the transaction: The COMMIT statement finalizes the database changes that were
made within a unit of work.

11 And finally, the database connection must be dropped.

Include files and definitions required for embedded SQL applications

Include files are required to provide functions and types that are used within the library. You must include
these files before the program can use library functions. By default, include files are installed in the
$HOME /sqllib/include folder.

Each host language has its own methods for including files, as well as using different file extensions.
Depending on the language specified certain precautions such as specifying file paths must be taken.

Include files for C and C++ embedded SQL applications
The host-language-specific include files for C and C++ have the file extension . h. The C and C++ include
files are also called header files.

There are two methods for including files: the EXEC SQL INCLUDE statement and the #include macro.
The precompiler will ignore the #include, and only process files included with the EXEC SQL INCLUDE
statement. To locate files included using EXEC SQL INCLUDE, the Db2 C precompiler searches the

24 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

current directory first, then the directories specified by the DB2INCLUDE environment variable. Consider
the following examples:

« EXEC SQL INCLUDE payzroll;

If the file specified in the INCLUDE statement is not enclosed in quotation marks, as shown previously,
the C precompiler searches for payroll.sqc, then payroll.h, in each directory in which it looks. On
UNIX and Linux operating systems, the C++ precompiler searches for payroll.sqC, then
payroll.sqgx, then payroll. hpp, then payroll.hin each directory it looks. On Windows-32 bit
operating systems, the C++ precompiler searches for payroll.sqx, then payroll. hpp, then
payroll.h ineach directory it looks.

« EXEC SQL INCLUDE 'pay/payroll.h’';
If the file name is enclosed in quotation marks, as shown previously, no extension is added to the name.

If the file name in quotation marks does not contain an absolute path, then the contents of
DB2INCLUDE are used to search for the file, prepended to whatever path is specified in the INCLUDE
file name. For example, on UNIX and Linux operating systems, if DB2INCLUDE is set to '/
disk2:myfiles/c', the C or C++ precompiler searches for'. /pay/payroll.h', then'/disk2/pay/
payroll.h',andfinally'. /myfiles/c/pay/payroll.h'. The path where the file is actually found is
displayed in the precompiler messages. On Windows operating systems, substitute back slashes (\) for
the forward slashes in the previous example.

Note that if the precompiler option COMPATIBILITY_MODE is set to ORA, you can use double quotation
marks to specify include file names, for example, EXEC SQL INCLUDE "abc.h";.The Db2 database
manager provides this feature to facilitate the migration of embedded SQL C applications from other
database systems.

Note: The setting of DB2INCLUDE is cached by the command line processor. To change the setting of
DB2INCLUDE after any CLP commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile.

To help relate compiler errors back to the original source, the precompiler generates #line macros in the
output file. This allows the compiler to report errors using the file name and line number of the source or
included source file, rather than the line number in the precompiled output source file.

However, if you specify the PREPROCESSOR option, all the #line macros generated by the precompiler
reference the preprocessed file from the external C preprocessor. Some debuggers and other tools that
relate source code to object code do not always work well with the #line macro. If the tool you want to
use behaves unexpectedly, use the NOLINEMACRO option (used with Db2 PREP) when precompiling. This
option prevents the #line macros from being generated.

The include files that are intended to be used in your applications are described in the following section.

SQLADEF (sqladef.h)
This file contains function prototypes used by precompiled C and C++ applications.

SQLCA (sqlca.h)
This file defines the SQL Communication Area (SQLCA) structure. The SQLCA contains variables that
are used by the database manager to provide an application with error information about the
execution of SQL statements and API calls.

SQLCODES (sqlcodes.h)
This file defines constants for the SQLCODE field of the SQLCA structure.

SQLDA (sqlda.h)
This file defines the SQL Descriptor Area (SQLDA) structure. The SQLDA is used to pass data between
an application and the database manager.

SQLEXT (sqlext.h)
This file contains the function prototypes and constants of those ODBC Level 1 and Level 2 APIs that
are not part of the X/Open Call Level Interface specification and is therefore used with the permission
of Microsoft Corporation.

Chapter 3. Programming embedded SQL applications 25

SQLE819A (sqle819a.h)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This file
is used by the CREATE DATABASE API.

SQLE819B (sqle819b.h)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLES850A (sqle850a.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This file
is used by the CREATE DATABASE API.

SQLE850B (sqle850h.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLE932A (sqle932a.h)
If the code page of the database is 932 (ASCII Japanese), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 5035 (EBCDIC Japanese) binary collation. This
file is used by the CREATE DATABASE API.

SQLE932B (sqle932b.h)
If the code page of the database is 932 (ASCII Japanese), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 5026 (EBCDIC Japanese) binary collation. This
file is used by the CREATE DATABASE API.

SQLJACB (sqljach.h)
This file defines constants, structures, and control blocks for the Db2 Connect interface.

SQLSTATE (sqlstate.h)
This file defines constants for the SQLSTATE field of the SQLCA structure.

SQLSYSTM (sqlsystm.h)
This file contains the platform-specific definitions used by the database manager APIs and data
structures.

SQLUDF (sqludf.h)
This file defines constants and interface structures for writing user-defined functions (UDFs).
SQLUV (sqluv.h)
This file defines structures, constants, and prototypes for the asynchronous Read Log API, and APIs
used by the table load and unload vendors.

Include files for COBOL embedded SQL applications

The host-language-specific include files for COBOL have the file extension . cbl. If you use the
"System/390° host data type support" feature of the IBM® COBOL compiler, the Db2 include files for your
applications are in the $HOME /sqllib/include/cobol_i directory.

If you build the Db2 sample programs with the supplied script files, you must change the include file path
specified in the script files to the cobol_1i directory and not the cobol_a directory.

If you do not use the "System/390 host data type support" feature of the IBM COBOL compiler, or you
use an earlier version of this compiler, the Db2 include files for your applications are in the following
directory:

$HOME/sqllib/include/cobol_a

To locate INCLUDE files, the Db2 COBOL precompiler searches the current directory first, then the
directories specified by the DB2INCLUDE environment variable. Consider the following examples:

« EXEC SQL INCLUDE payroll END-EXEC.

26 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

If the file specified in the INCLUDE statement is not enclosed in quotation marks, as shown previously,
the precompiler searches for payroll.sqgb, then payroll.cpy, then payroll.cbl, in each directory
in which it looks.

« EXEC SQL INCLUDE 'pay/payroll.cbl' END-EXEC.
If the file name is enclosed in quotation marks, as shown previously, no extension is added to the name.

If the file name in quotation marks does not contain an absolute path, the contents of DB2INCLUDE are
used to search for the file, prepended to whatever path is specified in the INCLUDE file name. For
example, with Db2 database systems for AIX, if DB2INCLUDE is set to '/disk2:myfiles/cobol’, the
precompiler searches for'. /pay/payroll.cbl’, then'/disk2/pay/payroll.chl’, and finally'. /
myfiles/cobol/pay/payroll.cbl'. The path where the file is actually found is displayed in the
precompiler messages. On Windows platforms, substitute back slashes (\) for the forward slashes in the
previously shown example.

Note: The setting of DB2INCLUDE is cached by the Db2 command line processor. To change the setting of
DB2INCLUDE after any CLP commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile.

The include files that are intended to be used in your applications are described here:

SQLCA (sqlca.chl)
This file defines the SQL Communication Area (SQLCA) structure. The SQLCA contains variables that
are used by the database manager to provide an application with error information about the
execution of SQL statements and API calls.

SQLCA_92 (sqlca_92.chl)
This file contains a FIPS SQL92 Entry Level compliant version of the SQL Communications Area
(SQLCA) structure. This file should be included in place of the sqlca.cbl file when writing Db2
applications that conform to the FIPS SQL92 Entry Level standard. The sqlca_92.cbl file is
automatically included by the Db2 precompiler when the LANGLEVEL precompiler option is set to
SQL92E.

SQLCODES (sqlcodes.chl)
This file defines constants for the SQLCODE field of the SQLCA structure.

SQLDA (sqlda.chl)
This file defines the SQL Descriptor Area (SQLDA) structure. The SQLDA is used to pass data between
an application and the database manager.

SQLEAU (sqleau.chl)
This file contains constant and structure definitions required for the Db2 security audit APIs. If you
use these APIs, you need to include this file in your program. This file also contains constant and
keyword value definitions for fields in the audit trail record. These definitions can be used by external
or vendor audit trail extract programs.

SQLETSD (sqletsd.chl)
This file defines the Table Space Descriptor structure, SQLETSDESC, which is passed to the Create
Database API, sqglgcrea.

SQLE819A (sqle819a.chl)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This file
is used by the CREATE DATABASE API.

SQLE819B (sqle819b.chl)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLES850A (sqle850a.chl)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This file
is used by the CREATE DATABASE API.

Chapter 3. Programming embedded SQL applications 27

SQLE850B (sqle850b.chl)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLE932A (sqle932a.chl)
If the code page of the database is 932 (ASCII Japanese), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 5035 (EBCDIC Japanese) binary collation. This file
is used by the CREATE DATABASE API.

SQLE932B (sqle932h.chl)
If the code page of the database is 932 (ASCII Japanese), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 5026 (EBCDIC Japanese) binary collation. This file
is used by the CREATE DATABASE API.

SQL1252A (sql1252a.chl)
If the code page of the database is 1252 (Windows Latin-1), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This
file is used by the CREATE DATABASE API.

SQL1252B (sql1252b.chl)
If the code page of the database is 1252 (Windows Latin-1), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file
is used by the CREATE DATABASE API.

SQLSTATE (sqlstate.chl)
This file defines constants for the SQLSTATE field of the SQLCA structure.

SQLUDF (sqludf.chl)
This file defines constants and interface structures for writing user-defined functions (UDFs).

SQLUTBCQ (sqlutbcq.cbl)
This file defines the Table Space Container Query data structure, SQLB-TBSCONTQRY-DATA, which is
used with the table space container query APIs, sqlgstsc, sqlgftcq, and sqlgtcq.

SQLUTBSQ (sqlutbhsq.cbl)
This file defines the Table Space Query data structure, SQLB-TBSQRY-DATA, which is used with the
table space query APIs, sqlgstsq, sqlgftsq, and sqlgtsq.

Include files for FORTRAN embedded SQL applications

The host-language-specific include files for FORTRAN have the file extension . £ on UNIX and Linux
operating systems, and . for on Windows operating systems. There are two methods for including files:
the EXEC SQL INCLUDE statement and the FORTRAN INCLUDE statement.The precompiler ignores
FORTRAN INCLUDE statements, and only process files included with the EXEC SQL statement. To locate
the INCLUDE file, the Db2 FORTRAN precompiler searches the current directory first, and then the
directories specified by the DB2INCLUDE environment variable.

Consider the following examples:
« EXEC SQL INCLUDE payroll

If the file specified in the INCLUDE statement is not enclosed in quotation marks, as shown previously,
the precompiler searches for payroll.sqf, then payroll. f (payroll.foxr on Windows operating
systems) in each directory in which it looks.

« EXEC SQL INCLUDE 'pay/payroll.f'

If the file name is enclosed in quotation marks, as shown previously, no extension is added to the name.
(For Windows operating systems, the file would be specified as 'pay\payroll.for'.)

If the file name in quotation marks does not contain an absolute path, then the contents of
DB2INCLUDE are used to search for the file, prepended to whatever path is specified in the INCLUDE
file name. For example, with Db2 for UNIX and Linux operating systems, if DB2INCLUDE is setto '/
disk2:myfiles/fortran', the precompiler searches for'. /pay/payroll.f', then'/disk2/pay/
payroll.f' andfinally'./myfiles/cobol/pay/payroll. f'. The path where the file is actually
found is displayed in the precompiler messages. On Windows operating systems, substitute back

28 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

slashes (\) for the forward slashes, and substitute ' for' forthe 'f' extension in the previously shown
example.

Note: The setting of DB2INCLUDE is cached by the Db2 command line processor. To change the setting of
DB2INCLUDE after any CLP commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile.

32-bit FORTRAN header files required for Db2 database application development, previously found in
$INSTHOME/sqllib/include are now found in $INSTHOME /sqllib/include32.

In Version 8.1, these files were found in the $INSTDIR/sqllib/include directory which was a
symbolic link to one of the following directories: $DB2DIR/include or $DB2DIR/includeb4 depending
on whether or not it was a 32-bit instance or a 64-bit instance.

In Version 9.1, $DB2DIR/include will contain all the include files (32-bit and 64-bit), and $DB2DIR/
include32 will contain 32-bit FORTRAN files only and a README file to indicate that 32-bit include files
are the same as the 64-bit ones with the exception of FORTRAN.

The $DB2DIR/include32 directory will only exist on AIX, HP-PA, and HP-IPF.
You can use the following FORTRAN include files in your applications.

SQLCA (sqlca_cn.f, sqlca_cs.f)
This file defines the SQL Communication Area (SQLCA) structure. The SQLCA contains variables that
are used by the database manager to provide an application with error information about the
execution of SQL statements and API calls.

Two SQLCA files are provided for FORTRAN applications. The default, sqlca_cs. £, defines the
SQLCA structure in an IBM SQL compatible format. The sqlca_cn. £ file, precompiled with the
SQLCA NONE option, defines the SQLCA structure for better performance.

SQLCA_92 (sqlca_92.f)
This file contains a FIPS SQL92 Entry Level compliant version of the SQL Communications Area
(SQLCA) structure. This file should be included in place of either the sqlca_cn.forthe sqlca_cs.f
files when writing Db2 applications that conform to the FIPS SQL92 Entry Level standard. The
sqlca_92.f file is automatically included by the Db2 precompiler when the LANGLEVEL precompiler
option is set to SQL92E.

SQLCODES (sqlcodes.f)
This file defines constants for the SQLCODE field of the SQLCA structure.

SQLDA (sqldact.f)
This file defines the SQL Descriptor Area (SQLDA) structure. The SQLDA is used to pass data between
an application and the database manager.

SQLEAU (sqleau.f)
This file contains constant and structure definitions required for the Db2 security audit APIs. If you
use these APIs, you need to include this file in your program. This file also contains constant and
keyword value definitions for fields in the audit trail record. These definitions can be used by external
or vendor audit trail extract programs.

SQLE819A (sqle819a.f)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This file
is used by the CREATE DATABASE API.

SQLE819B (sqle819hb.f)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLES850A (sqle850a.f)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This file
is used by the CREATE DATABASE API.

Chapter 3. Programming embedded SQL applications 29

SQLE850B (sqle850h.f)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts character strings that are
not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLE932A (sqle932a.f)
If the code page of the database is 932 (ASCII Japanese), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 5035 (EBCDIC Japanese) binary collation. This file
is used by the CREATE DATABASE API.

SQLE932B (sqle932bh.f)
If the code page of the database is 932 (ASCII Japanese), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 5026 (EBCDIC Japanese) binary collation. This file
is used by the CREATE DATABASE API.

SQL1252A (sql1252a.f)
If the code page of the database is 1252 (Windows Latin-1), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 500 (EBCDIC International) binary collation. This
file is used by the CREATE DATABASE API.

SQL1252B (sql1252b.f)
If the code page of the database is 1252 (Windows Latin-1), this sequence sorts character strings that
are not FOR BIT DATA according to the host CCSID 037 (EBCDIC US English) binary collation. This file
is used by the CREATE DATABASE API.

SQLSTATE (sqlstate.f)
This file defines constants for the SQLSTATE field of the SQLCA structure.

SQLUDF (sqludf.f)
This file defines constants and interface structures for writing user-defined functions (UDFs).

Declaring the SQLCA for Error Handling

You can declare the SQLCA in your application program so that the database manager can return
information to your application.

About this task

When you preprocess your program, the database manager inserts host language variable declarations in
place of the INCLUDE SQLCA statement. The system communicates with your program using the
variables for warning flags, error codes, and diagnostic information.

After executing each SQL statement, the system returns a return code in both SQLCODE and SQLSTATE.
SQLCODE is an integer value that summarizes the execution of the statement, and SQLSTATE is a
character field that provides common error codes across IBM's relational database products. SQLSTATE
also conforms to the ISO/ANS SQL92 and FIPS 127-2 standard.

Note: FIPS 127-2 refers to Federal Information Processing Standards Publication 127-2 for Database
Language SQL. ISO/ANS SQL92 refers to American National Standard Database Language SQL
X3.135-1992 and International Standard ISO/IEC 9075:1992, Database Language SQL.

Note that if SQLCODE is less than 0, it means an error has occurred and the statement has not been
processed. If the SQLCODE is greater than 0O, it means a warning has been issued, but the statement is
still processed.

For a Db2 application written in C or C++, if the application is made up of multiple source files, only one of
the files include the EXEC SQL INCLUDE SQLCA statement to avoid multiple definitions of the SQLCA. The
remaining source files must use the following lines:

#include "sqglca.h"
extern struct sqlca sqlca;

30 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Procedure
To declare the SQLCA, code the INCLUDE SQLCA statement in your program:
« For C or C++ applications use:

EXEC SQL INCLUDE SQLCA;

« For Java™ applications, you do not explicitly use the SQLCA. Instead, use the SQLException instance
methods to get the SQLSTATE and SQLCODE values.

« For COBOL applications use:
EXEC SQL INCLUDE SQLCA END-EXEC.
« For FORTRAN applications use:

EXEC SQL INCLUDE SQLCA

What to do next

If your application must be compliant with the ISO/ANS SQL92 or FIPS 127-2 standard, do not use the
statements previously shown or the INCLUDE SQLCA statement.

Connecting to Db2 databases in embedded SQL applications

Before working with a database, you must establish a connection to that database. Embedded SQL
provides multiple ways in which to include code for establishing database connections. Depending on
which host programming language you use, there might be one or more way to establish a database
connection.

Database connections can be established implicitly or explicitly. An implicit connection is a connection
where the user ID is presumed to be the current user ID. This type of connection is not recommended for
database applications. Explicit database connections, which require that a user ID and password be
specified, are strongly recommended.

Connecting to Db2 databases in C and C++ Embedded SQL applications

When working with C and C++ applications, a database connection can be established by executing the
following statement.

EXEC SQL CONNECT TO sample;
If you want to use a specific user id (herrick) and password (mypasswozxrd), use the following
statement:

EXEC SQL CONNECT TO sample USER herrick USING mypassword;

Note that if the precompiler option COMPATIBILITY_MODE is set to ORA, the following additional syntax
for the CONNECT statement is supported. The Db2 database manager provides this feature to facilitate
the migration of embedded SQL C applications from other database systems.

EXEC SQL CONNECT [username IDENTIFIED BY password][USING dbname] ;

The parameters are described in the following table:

Parameter Description

username Either a host variable or a string specifying the
database user name

Chapter 3. Programming embedded SQL applications 31

Parameter Description

password Either a host variable or a string specifying the
password
dbname Either a host variable or a string specifying the

database name

Connecting to Db2 databases in COBOL Embedded SQL applications

When working with COBOL applications, a database connection is established by executing the following
statement. This statement creates a connection to the sample database using the default user name.

EXEC SQL CONNECT TO sample END-EXEC.
If you want to use a specific user id (hexrick) and password (mypasswozxd), use the following
statement:

EXEC SQL CONNECT TO sample USER herrick USING mypassword END-EXEC.

Connecting to Db2 databases in FORTRAN Embedded SQL applications

When working with FORTRAN applications, a database connection is established by executing the
following statement. This statement creates a connection to the sample database using the default user
name.

EXEC SQL CONNECT TO sample
If you want to use a specific user id (herrick) and password (mypasswozxd), use the following
statement:

EXEC SQL CONNECT TO sample USER herrick USING mypassword

Connecting to Db2 databases in REXX Embedded SQL applications

When working with REXX applications, a database connection is established by executing the following
statement. This statement creates a connection to the sample database using the default user name.

CALL SQLEXEC 'CONNECT TO sample’
If you want to use a specific user id (herrick) and password (mypasswozxd), use the following
statement:

CALL SQLEXEC 'CONNECT TO sample USER herrick USING mypassword'

Data types that map to SQL data types in embedded SQL applications

To exchange data between an application and database, you must use the correct data type mappings for
the variables used.

When the precompiler finds a host variable declaration, it determines the appropriate SQL type value.
With each host language there are special mapping rules which must be adhered to, unique only to that
specific language.

32 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Supported SQL data types in C and C++ embedded SQL applications

Certain predefined C and C++ data types correspond to Db2 database column types. You can declare only
these C and C++ data types as host variables.

The following tables show the C and C++ equivalent of each column type. When the precompiler finds a
host variable declaration, it determines the appropriate SQL type value. The database manager uses this
value to convert the data exchanged between the application and itself.

Table 2. SQL Data Types Mapped to C and C++ Declarations

SQL Column Type“l”onpage38 C and C++ Data Type SQL Column Type Description
SMALLINT short 16-bit signed integer
(500 or 501) short int
sqlintlé
INTEGER int 32-bit signed integer
(496 or 497) long
long int

sqlint3272" on page 38

64-hit signed integer

BIGINT long long
(492 or 493) long
__int64

sqlint64-3" on page 38

REAL"5” on page 38 float Single-precision floating point

(480 or 481)

DOUBLE"6” on page 38 double Double-precision floating point

(480 or 481)

DECIMAL(p,s) No exact equivalent; use double Packed decimal

(484 or 485) (Consider using the CHAR and DECIMAL

functions to manipulate packed decimal
fields as character data.)

CHAR(1) char Single character

(452 or 453)

CHAR(n) No exact equivalent; use char[n Fixed-length character string
(452 or 453) +1] where n is large enough to

hold the data
1<=n<=255

Chapter 3. Programming embedded SQL applications 33

Table 2. SQL Data Types Mapped to C and C++ Declarations (continued)

SQL Column Type“1” on page 38

C and C++ Data Type

SQL Column Type Description

Non null-terminated varying character

VARCHAR truct t . . . -
(448 or 44(33 s srﬁgrt ?ri{ string with 2-byte string length indicator.
char[n] Note: A host variable structure of the
} following form is always treated as a
VARCHAR host variable and cannot be
1<=n<=32 672 declared:
struct tag 1
short int;
char[n]
Alternatively, use char[n+1] Null-terminated variable-length character
where n is large enough to hold string
the data .
Note: Assigned an SQL type of 460/461.
1<=n<=32 672
LONG VARCHAR® struct tag { Non null-terminated varying character
(456 or 457) short int: string with 2-byte string length indicator
char[n]
¥
32 673<=n<=32 700
. Non null-terminated varying character
CLOB Lt . X . -
(408 57)409) s?:loyl/)pz,el;s string with 4-byte string length indicator

1<=n<=2147 483 647

Identifies CLOB entities residing on the

CLOB locator variable®7"onpage gql type is
38 clob_locator server
(964 or 965)
CLOB file reference variable’”" sqltype is Descriptor for file containing CLOB data
on page 38 clob_file
(920 0r 921)
. Non null-terminated varying binary string
BLOB(n) sql typeis) . .o,
(404 or 405) blob(n) with 4-byte string length indicator

1<=n<=2 147 483 647

BLOB locator variable™7” on page.
38

(960 or 961)

sql typeis
blob_locator

Identifies BLOB entities on the server

BLOB file reference variable“”"
on page 38

(916 or 917)

sqltypeis
blob_file

Descriptor for the file containing BLOB data

34 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Table 2. SQL Data Types Mapped to C and C++ Declarations (continued)

SQL Column Type“1” on page 38

C and C++ Data Type SQL Column Type Description

Null-terminated character form Allow at least 11 characters to

DATE date th -t inat

(384 or 385) accommodate the null-terminator
VARCHAR structured form Allow at least 10 characters

TIME Null-terminated character form Allow at least 9 characters to

(388 or 389) accommodate the null-terminator
VARCHAR structured form Allow at least 8 characters

TIMESTAMP(p) Null-terminated character form Allow 20- 33 characters to accommodate

4" on page 38(392 or 393)

for the null-terminator

VARCHAR structured form Allow 19-32 characters.

XML"8” on page 38 struct { XML value
(988 or 989) sqgluint32 length;
char dataln];
}
1<=n<=2 147 483 647
SQLUDF_CLOB
BINARY unsigned char myBinField[n]; ~ Binary data
1<=n<=255
VARBINARY struct Varbinary data

myVarBinField_t
{sqluint16 length;char data[n];}
myVarBinField;

1<=n<=32 672

The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE NOCONVERT option.

Table 3. SQL Data Types Mapped to C and C++ Declarations

SQL Column Type“1”onpage38 C and C++ Data Type SQL Column Type Description
GRAPHIC(1) sqldbchar Single double-byte character

(468 or 469)

GRAPHIC(n) No exact equivalent; use Fixed-length double-byte character string
(468 or 469) sqgldbchar[n+1] where n is large

enough to hold the data
1<=n<=127

Chapter 3. Programming embedded SQL applications 35

Table 3. SQL Data Types Mapped to C and C++ Declarations (continued)

SQL Column Type“1” on page 38

C and C++ Data Type

SQL Column Type Description

Non null-terminated varying double-byte

VARGRAPHIC truct t . ; .
(464 or 465) ") ° srﬁgrt ?r%[{ character string with 2-byte string length
sqldbchar(n] indicator
ki
1<=n<=16 336
Alternatively use sqgldbchar[n Null-terminated variable-length double-
+1] where niis large enough to byte character string
hold the data Note: Assigned an SQL type of 400/401.
1<=n<=16 336
LONG VARGRAPHICS struct tag { Non null-terminated varying double-byte
(472 or 473) short int: character string with 2-byte string length
sqldbchar(n] indicator
1

16 337<=n<=16 350

The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE CONVERT option.

Table 4. SQL Data Types Mapped to C and C++ Declarations

SQL Column Type“1” on page 38

C and C++ Data Type

SQL Column Type Description

GRAPHIC(1) wchar_t - Single wide character (for C-type)
(468 or 469) « Single double-byte character (for column
type)
GRAPHIC(n) No exact equivalent; use Fixed-length double-byte character string
(468 or 469) wchar_t [n+1] where n is large
enough to hold the data
1<=n<=127
VARGRAPHIC(n) struct tag { Non null-terminated varying double-byte
(464 or 465) short int: character string with 2-byte string length
wehar t,[n] indicator
1
1<=n<=16 336

Alternately use char[n+1] where
nis large enough to hold the
data

1<=n<=16 336

Null-terminated variable-length double-
byte character string

Note: Assigned an SQL type of 400/401.

36 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Table 4. SQL Data Types Mapped to C and C++ Declarations (continued)

SQL Column Type“1”onpage38 C and C++ Data Type SQL Column Type Description
LONG VARGRAPHICS struct tag { Non null-terminated varying double-byte
(472 or 473) short int: character string with 2-byte string length
wehar t,[n] indicator
} _

16 337<=n<=16 350

The following data types are only available in the DBCS or EUC environment.

Table 5. SQOL Data Types Mapped to C and C++ Declarations

SQL Column Type“1“onpage38 C and C++ Data Type SQL Column Type Description
. Non null-terminated varying double-byte
DBCLOB(n) sqgl type is .) .

1<=n<=1073 741 823

DBCLOB locator variable“7”on sql type is Identifies DBCLOB entities residing on the

page 38 dbclob_locator server

(968 or 969)

DBCLOB file reference sqltype is Descriptor for file containing DBCLOB data
variable”7” on page 38 dbclob_file

(924 or 925)

Chapter 3. Programming embedded SQL applications 37

Table 5. SQL Data Types Mapped to C and C++ Declarations (continued)

SQL Column Type 1”onpage38 C and C++ Data Type SQL Column Type Description
Note:
1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the

second number indicates that an indicator variable is provided. An indicator variable is needed to indicate
NULL values, or to hold the length of a truncated string. These are the values that will be displayed in the
SQLTYPE field of the SQLDA for these data types.

. For platform compatibility, use sqlint32. On 64-bit UNIX and Linux operating systems, "long" is a 64 bit

integer. On 64-bit Windows operating systems and 32-bit UNIX and Linux operating systems "long" is a 32
bit integer.

. For platform compatibility, use sqlint64. The Db2 database system sqlsystm.h header file has a type

definition for sqlinté4 as "__int64" on the supported Windows operating systems when using the Microsoft
compiler, "long long" on 32-bit UNIX and Linux operating systems, and "long" on 64 bit UNIX and Linux
operating systems.

. The character string can be from 19 - 32 bytes in length without a null terminator depending on the number

of fractional seconds specified. The fractional seconds of the TIMESTAMP data type can be optionally
specified with 0-12 digits of timestamp precision.

When a timestamp value is assigned to a timestamp variable with a different number of fractional seconds,
the value is either truncated or padded with 0's to match the format of the timestamp variable.

. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA

is the length value (4 or 8).

. The following SQL types are synonyms for DOUBLE:

 FLOAT
« FLOAT(n) where 24 < n < 54 is a synonym for DOUBLE
« DOUBLE PRECISION

. This is not a column type but a host variable type.
. The SQL_TYP_XML/SQL_TYP_NXML value is returned by DESCRIBE requests only. It cannot be used directly

by the application to bind application resources to XML values.

. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated and might be removed in a future

release. Choose the CLOB or DBCLOB data type instead.

The following items are additional rules for supported C and C++ data types:

« The data type char can be declared as char or unsigned char.
« The database manager processes null-terminated variable-length character string data type char[n]
(data type 460), as VARCHAR(m).
— If LANGLEVEL is SAA1, the host variable length m equals the character string length n in char[n] or
the number of bytes preceding the first null-terminator (\@), whichever is smaller.

— If LANGLEVEL is MIA, the host variable length m equals the number of bytes preceding the first null-
terminator (\0).

« The database manager processes null-terminated, variable-length graphic string data type,
wchar_t[n] or sqldbchar[n] (data type 400°), as VARGRAPHIC(m).

— If LANGLEVEL is SAA1, the host variable length m equals the character string length n in
wchar_t[n] or sqldbchaxr[n], or the number of characters preceding the first graphic null-
terminator, whichever is smaller.

— If LANGLEVEL is MIA, the host variable length m equals the number of characters preceding the first
graphic null-terminator.

« Unsigned numeric data types are not supported.

38 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

« The C and C++ data type int is not allowed because its internal representation is machine dependent.

Data types for procedures, functions, and methods in C and C++ embedded SQL applications
There is a mapping between C and C++ and Db2 data types. When you are writing your embedded SQL
application, you must be aware of this mapping to ensure that you do not have unexpected data type
conversions or data truncation.

The following table lists the supported mappings between SQL data types and C and C++ data types for
procedures, UDFs, and methods.

Table 6. SQL Data Types Mapped to C and C++ Declarations

SQL Column Type“1”onpage 41l

C and C++ Data Type

SQL Column Type Description

SMALLINT short 16-bit signed integer

(500 or 501)

INTEGER sqlint32 32-bit signed integer

(496 or 497)

BIGINT sqlint64 64-bit signed integer

(492 or 493)

REAL float Single-precision floating point
(480 or 481)

DOUBLE double Double-precision floating point
(480 or 481)

DECIMAL(p,s)
(484 or 485)

Not supported

To pass a decimal value, define the
parameter to be of a data type castable
from DECIMAL (for example CHAR or
DOUBLE) and explicitly cast the argument
to this type.

CHAR(n)
(452 or 453)

char[n+1] where n is large
enough to hold the data

1<=n<=254

Fixed-length, null-terminated character
string

CHAR(n) FOR BIT DATA

char[n+1] where nis large
enough to hold the data

Fixed-length character string

(452 or 453)

1<=n<=254
VARCHAR(n) char[n+1] where niis large Null-terminated varying length string
(448 or 449) (460 or 461) enough to hold the data

1<=n<=32 672
VARCHAR(n) FOR BIT DATA struct { Not null-terminated varying length
(448 or 449) sqluint16 length; character string

char[n]
1
1<=n<=32 672

Chapter 3. Programming embedded SQL applications 39

Table 6. SQL Data Types Mapped to C and C++ Declarations (continued)

SQL Column Type“1” on page 41

C and C++ Data Type

SQL Column Type Description

Not null-terminated varying length

LONG VARCHAR? struct { h .
(456 or 457) sqluint16 length; character string
char[n]
1
32 673<=n<=32 700
CLOB(n) struct { Not null-terminated varying length
(408 or 409) sqluint32 length; character string with 4-byte string length
char data[n]: indicator
1
1<=n<=2 147 483 647
BINARY(n) char[n+1] where nis large Fixed-length binary string
(912 or 913) enough to hold the data
1<=n<=254
VARBINARY(n) struct { Not null-terminated varying length binary
(908 or 909) sqluint16 length; string
char[n]
1
1<=n<=32 672
BLOB(n) struct { Not null-terminated varying binary string
(404 or 405) sqluint32 length; with 4-byte string length indicator
char dataln];
1
1<=n<=2 147 483 647
DATE char[11] Null-terminated character form
(384 or 385)
TIME char[9] Null-terminated character form
(388 0r 389)
TIMESTAMP(p) char[p+21] where pis large Null-terminated character form
(392 or 393) enough to hold the data
O<=p<=12
This descriptor type value (988/989) will
XML Not ted . .
(988/989) Ot supporte be defined to be used in the SQLDA for

describe, and to indicate XML Data (in its
serialized form). Existing character and
binary types (including LOBs and LOB file
reference types) can also be used to fetch
and insert the data (dynamic SQL only)

40 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Note: The following data types are only available in the DBCS or EUC environment when precompiled with

the WCHARTYPE NOCONVERT option.

Table 7. SQL Data Types Mapped to C and C++ Declarations

SQL Column Type“1”onpagedl C and C++ Data Type

SQL Column Type Description

GRAPHIC(n) sqgldbchar[n+1] where nis large Fixed-length, null-terminated double-byte
(468 or 469) enough to hold the data character string

1<=n<=127
VARGRAPHIC(n) sqgldbchar[n+1] where nis large Not null-terminated, variable-length
(400 or 401) enough to hold the data double-byte character string

1<=n<=16 336
LONG VARGRAPHIC2 struct { Not null-terminated, variable-length
(472 or 473) Sqlumt16 length; double'byte character St”ng

sqgldbchar[n]
1

16 337<=n<=16 350

DBCLOB(n) struct {
(412 or 413) sqluint32 length;
sqgldbchar data[n];
!

1<=n<=1073 741 823

Not null-terminated varying length
character string with 4-byte string length
indicator

Note:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the
second number indicates that an indicator variable is provided. An indicator variable is needed to indicate
NULL values, or to hold the length of a truncated string. These are the values that will be displayed in the

SQLTYPE field of the SQLDA for these data types.

2. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated and might be removed in a future

release. Choose the CLOB or DBCLOB data type instead.

Supported SQL data types in COBOL embedded SQL applications
Certain predefined COBOL data types correspond to Db2 database column types. You can use only these

COBOL data types as host variables.

The following table shows the COBOL equivalent of each column type. When the precompiler finds a host
variable declaration, it determines the appropriate SQL type value. The database manager uses this value
to convert the data exchanged between the application and itself.

Not every possible data description for host variables is recognized. COBOL data items must be consistent
with the ones described in the following table. If you use other data items, an error can result.

Table 8. SOL Data Types Mapped to COBOL Declarations

SQL Column Type“1”onpage | COBOL Data Type
44

SQL Column Type
Description

SMALLINT 01 name PIC S9(4) COMP-5.

(500 or 501)

16-bit signed integer

Chapter 3. Programming embedded SQL applications 41

Table 8. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type“l“onpage | COBOL Data Type SQL Column Type
44 Description
INTEGER 01 name PIC S9(9) COMP-5. 32-bit signed integer
(496 or 497)

BIGINT 01 name PIC S9(18) COMP-5. 64-hit signed integer
(492 or 493)

DECIMAL(p,s) 01 name PIC S9(m)V9(n) COMP-3. Packed decimal
(484 or 485)

REAL“z" on page 44
(480 or 481)

01 name USAGE IS COMP-1.

Single-precision floating
point

DOUBLE" 3" on page 44

01 name USAGE IS COMP-2.

Double-precision
floating point

(480 0r 481)
CHAR(n) 01 name PIC X(n). Fixed-length character
(452 or 453) string
VARCHAR(n) 01 name. Vﬁriable-leng_th
(448 or 449) 49 length PIC S9(4) COMP-5. character string

49 name PIC X(n).

1<=n<=32 672
LONG VARCHAR® 01 name. Long variablg-length
(456 or 457) 49 length PIC S9(4) COMP-5. character string

49 data PIC X(n).

32 673<=n<=32700
CLOB(n) 01 MY-CLOB USAGE IS SQL TYPE IS CLOB(n). Large object variable-
(408 or 409) length character string

1<=n<=2 147 483 647

CLOB locator variableZ4”on.
page 44

(964 or 965)

01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS
CLOB-LOCATOR.

Identifies CLOB entities
residing on the server

CLOB file reference
variable4” on page 44

01 MY-CLOB-FILE USAGE IS SQL TYPE IS CLOB-
FILE.

Descriptor for file
containing CLOB data

(920 0r 921)
BLOB(n) 01 MY-BLOB USAGE IS SQL TYPE IS BLOB(n). Large object variable-
(404 or 405) length binary string

1<=n<=2 147 483 647

42 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Table 8. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type“1”on page
ﬂ

COBOL Data Type

SQL Column Type
Description

BLOB locator variable 4" on
page 44

(960 or 961)

01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS
BLOB-LOCATOR.

Identifies BLOB entities
residing on the server

BLOB file reference
variable4” on page 44

01 MY-BLOB-FILE USAGE IS SQL TYPE IS BLOB-
FILE.

Descriptor for file
containing BLOB data

(916 0r917)

DATE 01 identifier PIC X(10). 10-byte character string
(384 or 385)

TIME 01 identifier PIC X(8). 8-byte character string
(388 0r389)

TIMESTAMP(p) 01 identifier PIC X(p+20). 19t0 32 byte character
(392 or 393) string

O<=p<=12

A 19 byte character
string can be used, when
pis 0.

XML"S" on page 44 01 name USAGE IS SQL TYPE IS XML XML value
(988 or 989) AS CLOB (size).
The following data types are only available in the DBCS environment.

Table 9. SQL Data Types Mapped to COBOL Declarations
SQL Column Type“1”on page COBOL Data Type SQL Column Type
44 Description
GRAPHIC(n) 01 name PIC G(n) DISPLAY-1. Fixed-length double-byte
(468 or 469) character string
VARGRAPHIC(n) 01 name. Variable length double-
(464 or 465) 49 length PIC S9(4) COMP-5, byte character string

49 name PIC G(n) DISPLAY-1. with 2-byte string length

indicator

1<=n<=16 336
LONG VARGRAPHIC® 01 name. variable length double-
(472 or 473) 49 length PIC S9(4) COMP-5. byte character string

49 name PIC G(n) DISPLAY-1.

16 337<=n<=16 350

with 2-byte string length
indicator

Chapter 3. Programming embedded SQL applications 43

Table 9. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type“1”onpage44 cOBOL Data Type SQL Column Type
Description

DBCLOB(n) 01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(n). Large object variable-

(412 or 413) length double-byte

character string with 4-

1<=n<=1073 741 823 byte string length

indicator
e 01 MY-DBCLOB-LOCATOR USAGE ISSQL TYPEIS Identifies DBCLOB
DBCLOB locat ble“4”on . .
page 44 ocatorvariabie DBCLOB-LOCATOR. entities residing on the
(968 or 969) server
- 01 MY-DBCLOB-FILE USAGE IS SQLTYPE IS Descriptor for file
DBCLOB file ref e
Variablod" onpage 44 DBCLOB-FILE. containing DBCLOB data
(924 or 925)
Note:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the
second number indicates that an indicator variable is provided. An indicator variable is needed to indicate
NULL values, or to hold the length of a truncated string. These are the values that will be displayed in the
SQLTYPE field of the SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA
is the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:

« FLOAT
» FLOAT(n) where 24 < n < 54 is a synonym for DOUBLE.
» DOUBLE PRECISION

4. This is not a column type but a host variable type.

5. The SQL_TYP_XML/SQL_TYP_NXML value is returned by DESCRIBE requests only. It cannot be used directly
by the application to bind application resources to XML values.

6. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated and might be removed in a future
release. Choose the CLOB or DBCLOB data type instead.

The list of rules for supported COBOL data types are:

« PIC S9 and COMP-3/COMP-5 are required where shown.

« You can use level number 77 instead of 01 for all column types except VARCHAR, LONG VARCHAR,
VARGRAPHIC, LONG VARGRAPHIC and all LOB variable types.

« Use the following rules when declaring host variables for DECIMAL(p,s) column types. See the following
sample:

01 identifier PIC S9(m)V9(n) COMP-3

Use V to denote the decimal point.

Values for n and m must be greater than or equal to 1.

The value for n + m cannot exceed 31.

The value for s equals the value for n.

The value for p equals the value for n + m.

44 1BM Db2 V11.5: Developing embedded SQL and XQuery database applications

— The repetition factors (n) and (m) are optional. The following examples are all valid:

01 identifier PIC S9(3)V COMP-3
01 identifier PIC SV9(3) COMP-3
01 identifier PIC S9V COMP-3
01 identifier PIC SV9 COMP-3
— PACKED-DECIMAL can be used instead of COMP-3.

« Arrays are not supported by the COBOL precompiler.

Supported SQL data types in FORTRAN embedded SQL applications

Certain predefined FORTRAN data types correspond to Db2 database column types. You can declare only
these FORTRAN data types as host variables.

The following table shows the FORTRAN equivalent of each column type. When the precompiler finds a
host variable declaration, it determines the appropriate SQL type value. The database manager uses this

value to convert the data exchanged between the application and itself.

Table 10. SQL Data Types Mapped to FORTRAN Declarations

SQL Column Type“1” on page 46

FORTRAN Data Type

SQL Column Type Description

SMALLINT INTEGER*2 16-bit, signed integer

(500 or 501)

INTEGER INTEGER*4 32-bit, signed integer

(496 or 497)

REAL"2" on page 46 REAL*4 Single precision floating point
(480 or 481)

DOUBLE"3" on page 46 REAL*8 Double precision floating point

(480 or 481)

DECIMAL(p,s)

No exact equivalent; use
REAL*8

Packed decimal

(484 or 485)
CHAR(n) CHARACTER*n Fixed-length character string of length n
(452 or 453) where nis from 1 to 254

SQL TYPE IS VARCHAR(n) Variable-length character string
VARCHAR .
(448 or 44(33 where nis from 1 to 32 672
LONG VARCHARS SQL TYPE IS VARCHAR(n) Long variable-length character string
(456 or 457) where nis from 32 673 to 32

700
CLOB(n) SQLTYPE IS CLOB (n) wheren Large object variable-length character
(408 or 409) is from 1 to 2 147 483 647 string

CLOB locator variable“4” on page

%
(964 or 965)

SQLTYPE IS CLOB_LOCATOR

Identifies CLOB entities residing on the
server

Chapter 3. Programming embedded SQL applications 45

Table 10. SQL Data Types Mapped to FORTRAN Declarations (continued)

SQL Column Type“1” on page 46

FORTRAN Data Type

SQL Column Type Description

CLOB file reference variable“4”
on page 46

(920 or 921)

SQL TYPE IS CLOB_FILE

Descriptor for file containing CLOB data

BLOB(n)
(404 or 405)

SQL TYPE IS BLOB(n) where niis
from 1to 2 147 483 647

Large object variable-length binary string

BLOB locator variable 4" on page

%
(960 or 961)

SQL TYPE IS BLOB_LOCATOR

Identifies BLOB entities on the server

BLOB file reference variable™”
on page 46

SQL TYPE IS BLOB_FILE

Descriptor for the file containing BLOB data

(916 or 917)

DATE CHARACTER*10 10-byte character string

(384 or 385)

TIME CHARACTER*8 8-byte character string

(388 or 389)

TIMESTAMP(p) gnﬁgﬁgﬁgzgz to 19 to 32 byte character string

(392 0r 393)

XML SOL_TYP_XML Therg is'no XML support for FORTRAN;

(988 or 989) applications are able to get the describe
type back but will not be able to make use
of it.

Note:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the
second number indicates that an indicator variable is provided. An indicator variable is needed to indicate
NULL values, or to hold the length of a truncated string. These are the values that will be displayed in the
SQLTYPE field of the SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA

is the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:

» FLOAT

» FLOAT(n) where 24 < n < 54 is a synonym for DOUBLE.

« DOUBLE PRECISION

4. This is not a column type but a host variable type.

5. The LONG VARCHAR data type is deprecated, not recommended, and might be removed in a future release.
Choose the CLOB data type instead.

The rule for supported FORTRAN data types is:

 You can define dynamic SQL statements longer than 254 characters by using VARCHAR, or CLOB host

variables.

46 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Supported SQL data types in REXX embedded SQL applications

Certain predefined REXX data types correspond to Db2 database column types. You can declare only
these REXX data types as host variables.

The following table shows how SQLEXEC and SQLDBS interpret REXX variables in order to convert their
contents to Db2 data types.

Table 11. SQL Column Types Mapped to REXX Declarations

SQL Column Type“1”on
page 49

REXX Data Type

SQL Column Type Description

A number without a decimal point

16-bit signed integer

SMALLINT .

(500 or 501) ranging from -32 768 to 32 767

INTEGER A number without a decimal point 32-bit signed integer
(496 or 497) ranging from -2 147 483 648 to 2 147

483 647

REAL“Z" on page 49
(480 or 481)

A number in scientific notation ranging
from -3.40282346 x 1038 to
3.40282346 x 1038

Single-precision floating point

DOUBLE“3" on page 49
(480 or 481)

A number in scientific notation ranging
from -1.79769313 x 10398 to
1.79769313 x 10308

Double-precision floating point

DECIMAL(p,s)

A number with a decimal point

Packed decimal

(484 or 485)
CHAR(n) A string with a leading and trailing Fixed-length character string of length n
(452 or 453) quotation mark ('), which has length n where nis from 1 to 254

after removing the two quotation marks

A string of length n with any non-

numeric characters, other than leading

and trailing blanks or the E in scientific

notation

Equivalent to CHAR(n) Variable-length character string of
VARCHAR
(448 or 44(33 length n, where n ranges from 1 to 4000
LONG VARCHARS Equivalent to CHAR(n) Variable-length character string of

length n, where n ranges from 1 to

4 457
(456 or 457) 32700
CLOB(n) Equivalent to CHAR(n) Large object variable-length character
(408 or 409) string of length n, where n ranges from 1

to 2147 483 647

CLOB locator variable“4”
on page 49

(964 or 965)

DECLARE :var_name LANGUAGE TYPE
CLOB LOCATOR

Identifies CLOB entities residing on the
server

CLOB file reference
variable“4” on page 49

(920 or 921)

DECLARE :var_name LANGUAGE TYPE
CLOB FILE

Descriptor for file containing CLOB data

Chapter 3. Programming embedded SQL applications 47

Table 11. SQL Column Types Mapped to REXX Declarations (continued)

SQL Column Type“1”on

page 49

REXX Data Type

SQL Column Type Description

BLOB(n)
(404 or 405)

A string with a leading and trailing
apostrophe, preceded by BIN,
containing n characters after removing
the preceding BIN and the two
apostrophes.

Large object variable-length binary
string of length n, where n ranges from 1
to 2147 483 647

BLOB locator variable 4"

on page 49
(960 0r 961)

DECLARE :var_name LANGUAGE TYPE
BLOB LOCATOR

Identifies BLOB entities on the server

BLOB file reference
variable4” on page 49

DECLARE :var_name LANGUAGE TYPE
BLOB FILE

Descriptor for the file containing BLOB
data

(916 0r917)

DATE Equivalent to CHAR(10) 10-byte character string

(384 or 385)

TIME Equivalent to CHAR(8) 8-byte character string

(388 0r 389)

TIMESTAMP Equivalent to CHAR(26) 26-byte character string

(392 0r 393)

XML SOL_TYP_XML There is no XML support for REXX;

(988 or 989) - - applications are able to get the describe

type back but will not be able to make
use of it.

The following data types are only available in the DBCS environment.

Table 12. SQL Column Types Mapped to REXX Declarations

SQL Column Type“1” on page 49

REXX Data Type

SQL Column Type Description

A string with a leading and trailing

Fixed-length graphic string of

GRAPHIC .
(468 or 46(;'))) apostrophe preceded by a G or N, length n, where nis from 1 to 127
containing n DBCS characters after
removing the preceding character
and the two apostrophes
VARGRAPHIC(n) Equivalent to GRAPHIC(n) Variable-length graphic string of
(464 or 465) length n, where n ranges from 1 to
2000
LONG VARGRAPHICS Equivalent to GRAPHIC(n) Long variable-length graphic string
(472 or 473) of length n, where n ranges from 1
to 16 350
DBCLOB(n) Equivalent to GRAPHIC(n) Large object variable-length graphic
(412 or 413) string of length n, where n ranges

from1to 1073 741 823

48 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Table 12. SQL Column Types Mapped to REXX Declarations (continued)

SQL Column Type“1” on page 49 REXX Data Type SQL Column Type Description
‘ gy DECLARE :var_name LANGUAGE Identifies DBCLOB entities residing

DBCLOB locat ble 4" on page =
s ocatorvariable TYPE DBCLOB LOCATOR on the server
(968 or 969)

. DECLARE :var_name LANGUAGE Descriptor for file containing
DBCLOB file ref -
Varicab?ew o oaen 45 TYPE DBCLOB FILE DBCLOB data
(924 or 925)
Note:

1. The first number under Column Type indicates that an indicator variable is not provided, and the second
number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL
values, or to hold the length of a truncated string.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA
is the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
« FLOAT
« FLOAT(n) where 24 < n < 54 is a synonym for DOUBLE.
« DOUBLE PRECISION

4, This is not a column type but a host variable type.

5. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated, not recommended, and might be
removed in a future release. Use the CLOB or DBCLOB data type instead.

Host Variables in embedded SQL applications

Host variables are variables that are referenced by embedded SQL statements. Host variables are used to
exchange data values between the database server and the embedded SQL application.

Embedded SQL applications can also include host variable declarations for relational SQL queries.
Furthermore, a host variable can be used to contain an XQuery expression to be executed. There is,
however, no mechanism for passing values to parameters in XQuery expressions.

Host variables are declared using the host language specific variable declaration syntax in a declaration
section.

A declaration section is the portion of an embedded SQL application found near the top of an embedded
SQL source code file, and is bounded by two non-executable SQL statements:

- BEGIN DECLARE SECTION
« END DECLARE SECTION

These statements enable the precompiler to find the variable declarations. Each host variable declaration
must be used in between these two statements, otherwise the variables are considered to be only regular
variables.

The following rules apply to host variable declaration sections:

« All host variables must be declared in the source file within a well formed declaration section before
they are referenced, except for host variables referring to SQLDA structures.

 Multiple declare sections can be used in one source file.

Chapter 3. Programming embedded SQL applications 49

« Host variable names must be unique within a source file. This is because the Db2 precompiler does not
account for host language-specific variable scoping rules. As such, there is only one scope for host
variables.

Note: This does not mean that the Db2 precompiler changes the scope of host variables to global so
that they can be accessed outside the scope in which they are defined.

Consider the following example:
fool()$

BEGIN SQL DECLARE SECTION;
int x;

END SQL DECLARE SECTION;
x=10;

foo2()$
9=X?

-
Depending on the language, this example will either fail to compile because variable x is not declared in

function £002 (), or the value of x is not set to 10 in £002 (). To avoid this problem, you must either
declare x as a global variable, or pass x as a parameter to function foo2 () as follows:

fool()$

BEGIN SQL DECLARE SECTION;
int x;

END SQL DECLARE SECTION;
x=10;

foo2(x);

foo2(int x)%

y=x;

Declaring host variables in embedded SQL applications

To transmit data between the database server and the application, declare host variables in your
application source code for things such as relational SQL queries and host variable declarations for
XQuery expressions.

About this task

The following table provides examples of host variable declarations for embedded SQL host languages.

50 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Table 13. Host Variable Declarations by Host Language

Language Example Source Code

Cand C++ EXEC SQL BEGIN DECLARE SECTION;
short dept=38, age=26;
double salary;
char CH;
char namel[9], NAME2[9];

short nul_ind;
EXEC SQL END DECLARE SECTION;

COBOL

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 age PIC S9(4) COMP-5 VALUE 26.
01 DEPT PIC S9(9) COMP-5 VALUE 38.
01 salary PIC S9(6)V9(3) COMP-3.
01 CH PIC X(1).
01 namel PIC X(8).
01 NAME2 PIC X(8).
01 nul-ind PIC S9(4) COMP-5.

EXEC SQL END DECLARE SECTION END-EXEC.

FORTRAN

EXEC SQL BEGIN DECLARE SECTION

integer*2 age /26/
integerx4 dept /38/
real%8 salary
character ch
character*8 namel, NAME2
integerx2 nul_ind

EXEC SQL END DECLARE SECTION

Declaring Host Variables with the db2dclgn Declaration Generator

You can use the Declaration Generator to generate declarations for a given table in a database. It creates
embedded SQL declaration source files which you can easily insert into your applications. db2dclgn
supports the C/C++, Java, COBOL, and FORTRAN languages.

About this task

To generate declaration files, enter the db2dc1lgn command in the following format:

db2dclgn -d database-name -t table-name [options]

For example, to generate the declarations for the STAFF table in the SAMPLE database in C in the output
file staff.h, issue the following command:

db2dclgn -d sample -t staff

=1l ©

The resulting staff.h file contains:

struct

short id;
struct

short length;
char data[9];
% name;
short dept;
char job[6];
short years;
double salary;
double comm;
t staff;

Chapter 3. Programming embedded SQL applications 51

Column data types and host variables in embedded SQL applications

Supported embedded SQL host languages have data types that correspond to the majority of the
database manager data types. You can use only these host language data types in host variable
declarations.

Each table column is given an SQL data type when the column is created. For information about how these
types are assigned to columns, see the CREATE TABLE statement.

Note:

1. Every supported data type can have the NOT NULL attribute. This is treated as another type.

2. Data types can be extended by defining user-defined distinct types (UDT). UDTs are separate data
types that use the representation of one of the built-in SQL types.

Supported embedded SQL host languages have data types that correspond to the majority of the
database manager data types. Only these host language data types can be used in host variable
declarations. When the precompiler finds a host variable declaration, it determines the appropriate SQL
data type value. The database manager uses this value to convert the data exchanged between itself and
the application.

As the application programmer, it is important for you to understand how the database manager handles
comparisons and assignments between different data types. Simply put, data types must be compatible
with each other during assignment and comparison operations, whether the database manager is working
with two SQL column data types, two host-language data types, or one of each.

The general rule for data type compatibility is that all supported host-language numeric data types are
comparable and assignable with all database manager numeric data types, and all host-language
character types are compatible with all database manager character types; numeric types are
incompatible with character types. However, there are also some exceptions to this general rule,
depending on host language idiosyncrasies and limitations imposed when working with large objects.

Within SQL statements, Db2 provides conversions between compatible data types. For example, in the
following SELECT statement, SALARY and BONUS are DECIMAL columns; however, each employee's total
compensation is returned as DOUBLE data:

SELECT EMPNO, DOUBLE(SALARY+BONUS) FROM EMPLOYEE

Note that the execution of this statement includes conversion between DECIMAL and DOUBLE data types.

To make the query results more readable on your screen, you could use the following SELECT statement:
SELECT EMPNO, CHAR(SALARY+BONUS) FROM EMPLOYEE

The CAST function used in the preceding example returns a character-string representation of a number.

To convert data within your application, contact your compiler vendor for additional routines, classes,
built-in types, or APIs that support this conversion.

If your application code page is not the same as your database code page, character data types can also
be subject to character conversion.

Declaring XML host variables in embedded SQL applications

To exchange XML data between the database server and an embedded SQL application, you need to
declare host variables in your application source code.

About this task

DB2° V9.1 introduces an XML data type that stores XML data in a structured set of nodes in a tree format.
Columns with this XML data type are described as an SQL_TYP_XML column SQLTYPE, and applications
can bind various language-specific data types for input to and output from these columns or parameters.
XML columns can be accessed directly using SQL, the SQL/XML extensions, or XQuery. The XML data type
applies to more than just columns. Functions can have XML value arguments and produce XML values as

52 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

well. Similarly, stored procedures can take XML values as both input and output parameters. Finally,
XQuery expressions produce XML values regardless of whether they access XML columns.

XML data is character in nature and has an encoding that specifies the character set used. The encoding
of XML data can be determined externally, derived from the base application type containing the
serialized string representation of the XML document. It can also be determined internally, which requires
interpretation of the data. For Unicode encoded documents, a byte order mark (BOM), consisting of a
Unicode character code at the beginning of a data stream is recommended. The BOM is used as a
signature that defines the byte order and Unicode encoding form.

Existing character and binary types, which include CHAR, VARCHAR, CLOB, and BLOB may be used in
addition to XML host variables for fetching and inserting data. However, they will not be subject to implicit
XML parsing, as XML host variables would. Instead, an explicit XMLPARSE function with default white
space stripping is injected and applied.

XML and XQuery restrictions on developing embedded SQL applications
To declare XML host variables in embedded SQL applications:

In the declaration section of the application, declare the XML host variables as LOB data types:
e SQL TYPE IS XML AS CLOB(n) <hostvar_name>

where <hostvar_name> is a CLOB host variable that contains XML data encoded in the mixed code page
of the application.

e SQL TYPE IS XML AS DBCLOB(n) <hostvar_name>

where <hostvar_name> is a DBCLOB host variable that contains XML data encoded in the application
graphic code page.

e SQL TYPE IS XML AS BLOB(n) <hostvar_name>

where <hostvar_name> is a BLOB host variable that contains XML data internally encoded 1" on page 53,

e SQL TYPE IS XML AS CLOB_FILE <hostvar_name>
where <hostvar_name> is a CLOB file that contains XML data encoded in the application mixed code
page.

e SQL TYPE IS XML AS DBCLOB_FILE <hostvar_name>

where <hostvar_name> is a DBCLOB file that contains XML data encoded in the application graphic
code page.

e SQL TYPE IS XML AS BLOB_FILE <hostvar_name>

where <hostvar_name> is a BLOB file that contains XML data internally encoded”1” on page 53,
Note:
1. Refer to the algorithm for determining encoding with XML 1.0 specifications (http://
www.w3.0xrg/TR/REC-xml/#sec-guessing-no-ext-info).

Identifying XML values in an SQLDA

To indicate that a base type holds XML data, you must update the sglname field in the associated SQLDA
structure. If you do not indicate that a base type holds XML data, your embedded SQL application might
not return the expected results.

To indicate that a base type holds XML data, the sglname field of the SQLVAR must be updated as follows:

e sqlname.length must be 8
« The first two bytes of sqlname.data must be X' 0000
« The third and fourth bytes of sqlname.data must be X' 0000

Chapter 3. Programming embedded SQL applications 53

« The fifth byte of sqlname.data must be X' 01" (referred to as the XML subtype indicator only when
the first two conditions are met)

« The remaining bytes must be X' 000000

If the XML subtype indicator is set in an SQLVAR whose SQLTYPE is non-LOB, an SQL0804 error (rc=115)
will be returned at runtime.

Note: SQL_TYP_XML can only be returned from the DESCRIBE statement. This type cannot be used for
any other requests. The application must modify the SQLDA to contain a valid character or binary type,
and set the sqlname field appropriately to indicate that the data is XML.

Identifying null SQL values with null indicator variables

You must prepare embedded SQL applications for receiving null values by associating a null-indicator
variable with any host variable that can receive a null value. A null-indicator variable is shared by both the
database manager and the host application. Therefore, you must declare this variable in the application
as a host variable, which corresponds to the SQL data type SMALLINT.

About this task

A null-indicator variable is placed in an SQL statement immediately after the host variable, and is prefixed
with a colon. A space can separate the null-indicator variable from the host variable, but is not required.
However, do not put a comma between the host variable and the null-indicator variable. You can also
specify a null-indicator variable by using the optional INDICATOR keyword, which you place between the
host variable and its null indicator.

The null-indicator variable is examined for a negative value. If the value is not negative, the application
can use the returned value of the host variable. If the value is negative, the fetched value is null and the
host variable should not be used. The database manager does not change the value of the host variable in
this case.

Note: If the database configuration parameter dft_sqlmathwarn is set to 'YES', the null-indicator variable
value may be -2. This value indicates a null that was either caused by evaluating an expression with an
arithmetic error, or by an overflow while attempting to convert the numeric result value to the host
variable.

If the data type can handle nulls, the application must provide a null indicator. Otherwise, an error may
occur. If a null indicator is not used, an SQLCODE -305 (SQLSTATE 22002) is returned.

If the SQLCA structure indicates a truncation warning, the null-indicator variables can be examined for
truncation. If a null-indicator variable has a positive value, a truncation occurred.

- If the seconds' portion of a TIME data type is truncated, the null-indicator value contains the seconds
portion of the truncated data.

« For all other string data types, except large objects (LOB), the null-indicator value represents the actual
length of the data returned. User-defined distinct types (UDT) are handled in the same way as their base

type.

When processing INSERT or UPDATE statements, the database manager checks the null-indicator
variable, if one exists. If the indicator variable is negative, the database manager sets the target column
value to null, if nulls are allowed.

If the null-indicator variable is zero or positive, the database manager uses the value of the associated
host variable.

The unspecified indicator variable error is returned when applications fetch a result-set that contains
NULL values but fail to specify a null indicator. You can avoid the unspecified indicator variable error, even
when null indicator is not specified, when you use the precompile options UNSAFENULL YES and
COMPATIBILITY_MODE ORA.

Application can check the sqlca.sqlerrd[2] field to get the number of rows that are successfully fetched
with the same cursor.

54 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

The SQLWARN1 field in the SQLCA structure might contain an X or W if the value of a string column is
truncated when it is assigned to a host variable. The field contains an N if a null terminator is truncated.

A value of X is returned by the database manager only if all of the following conditions are met:

- A mixed code page connection exists where conversion of character string data from the database code
page to the application code page involves a change in the length of the data.

« Acursor is blocked.
« A null-indicator variable is provided by your application.

The value returned in the null-indicator variable will be the length of the resultant character string in the
application's code page.

In all other cases involving data truncation (as opposed to null terminator truncation), the database
manager returns a W. In this case, the database manager returns a value in the null-indicator variable to
the application that is the length of the resultant character string in the code page of the select list item
(either the application code page, the database code page, or nothing).

Before you can use null-indicator variables in the host language, declare the null-indicator variables. In
the following example, suitable for C and C++ programs, the null-indicator variable cmind can be declared
as:

EXEC SQL BEGIN DECLARE SECTION;
char cm[3];
short cmind;

EXEC SQL END DECLARE SECTION;

The following table provides examples for the supported host languages:

Table 14. Null-Indicator Variables by Host Language

Language Example Source Code

Cand C++

EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind;
if (cmind < 0)
printf("Commission is NULL\n");

COBOL EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind END-EXEC

IF cmind LESS THAN O
DISPLAY 'Commission is NULL'

FORTRAN EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind

IF (cmind .LT. ©) THEN
WRITE(*,*) 'Commission is NULL'
ENDIF

REXX CALL SQLEXEC 'FETCH C1 INTO :cm INDICATOR :cmind'

IF (cmind < 0)
SAY 'Commission is NULL'

Including SQLSTATE and SQLCODE host variables in embedded SQL applications

You can review error information that is returned in the SQLCODE and SQLSTATE fields of the SQLCA
structure. The SQLCA structure is updated after every executable SQL statement and most database
manager API calls.

Before you begin

If your application is compliant with the FIPS 127-2 standard, you can declare host variables named
SQLSTATE and SQLCODE instead of explicitly declaring the SQLCA structure in embedded SQL
applications.

« The PREP option LANGLEVEL SQL92E needs to be specified

Chapter 3. Programming embedded SQL applications 55

About this task

In the following example, the application checks the SQLCODE field of the SQLCA structure to determine
whether the update was successful.

Table 15. Embedding SQL Statements in a Host Language

Language Sample Source Code

Cand C++

EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr';
if (SQLCODE < 0)
printf("Update Error: SQLCODE =

COBOL EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr' END_EXEC.
IF SQLCODE LESS THAN ©
DISPLAY 'UPDATE ERROR: SQLCODE = ', SQLCODE.
FORTRAN

EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job
if (sqlcode .1t. ©) THEN
write(x,*) 'Update error: sqglcode = ', sqglcode

‘Mgr'

Referencing host variables in embedded SQL applications

After you have declared a host variable in your embedded SQL application code, you can reference it later
in the application.

About this task

When you use a host variable in an SQL statement, prefix its name with a colon (). If you use a host
variable in host language programming syntax, omit the colon.

Reference the host variables using the syntax for the host language that you are using. The following table
provides examples.

Table 16. Host Variable References by Host Language

Language Example Source Code

++
CorC EXEC SQL FETCH C1 INTO :cm;

printf("Commission = %f\n", cm);

CoBOL EXEC SQL FETCH C1 INTO :cm END-EXEC
DISPLAY 'Commission = ' cm
FORTRAN EXEC SQL FETCH C1 INTO :cm
WRITE(*,*) 'Commission = ', cm
REXX

CALL SQLEXEC 'FETCH C1 INTO :cm'
SAY 'Commission = ' cm

Example: Referencing XML host variables in embedded SQL applications

You can create XML host variables in embedded SQL applications so that you can read and process XML
data.

The following sample applications demonstrate how to reference XML host variables in C and COBOL.

Example: Embedded SQL C application:

The following code example has been formatted for clarity:
EXEC SQL BEGIN DECLARE;

56 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS XML AS BLOB(10K) xmlblob;
SQL TYPE IS CLOB(10K) clobBuf;

EXEC SQL END DECLARE SECTION;

// as XML AS CLOB
// The XML value written to xmlBuf will be prefixed by an XML declaration
// similar to: <?xml version = "1.0" encoding = "IS0-8859-1" ?>
// Note: The encoding name will depend upon the application codepage
EXEC SQL SELECT xmlCol INTO :xmlBuf
FROM myTable
WHERE id = '001';
EXEC SQL UPDATE myTable
SET xmlCol = :xmlBuf
WHERE id = '001';

// as XML AS BLOB
// The XML value written to xmlblob will be prefixed by an XML declaration
// similar to: <?xml version = "1.0" encoding = "UTF-8"?>
EXEC SQL SELECT xmlCol INTO :xmlblob
FROM myTable
WHERE id = '001';
EXEC SQL UPDATE myTable
SET xmlCol = :xmlblob
WHERE id = '001';

// as CLOB
// The output will be encoded in the application character codepage,
// but will not contain an XML declaration
EXEC SQL SELECT XMLSERIALIZE (xmlCol AS CLOB(10K)) INTO :clobBuf
FROM myTable
WHERE id = '001';
EXEC SQL UPDATE myTable
SET xmlCol = XMLPARSE (:clobBuf PRESERVE WHITESPACE)
WHERE id = '001';

Example: Embedded SQL COBOL application:

The following code example has been formatted for clarity:
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 xmlBuf USAGE IS SQL TYPE IS XML as CLOB(5K).

01 clobBuf USAGE IS SQL TYPE IS CLOB(5K).

01 xmlblob USAGE IS SQL TYPE IS BLOB(5K).
EXEC SQL END DECLARE SECTION END-EXEC.

* as XML
EXEC SQL SELECT xmlCol INTO :xmlBuf
FROM myTable
WHERE id = 'GO01' END-EXEC.
EXEC SQL UPDATE myTable
SET xmlCol = :xmlBuf
WHERE id = '0O01' END-EXEC.

* as BLOB
EXEC SQL SELECT xmlCol INTO :xmlblob
FROM myTable
WHERE id = '001' END-EXEC.
EXEC SQL UPDATE myTable
SET xmlCol = :xmlblob
WHERE id = '001' END-EXEC.

* as CLOB
EXEC SQL SELECT XMLSERIALIZE(xmlCol AS CLOB(10K)) INTO :clobBuf
FROM myTable
WHERE id= '001' END-EXEC.
EXEC SQL UPDATE myTable
SET xmlCol = XMLPARSE(:clobBuf) PRESERVE WHITESPACE
WHERE id = '001' END-EXEC.

Host variables in C and C++ embedded SQL applications
Host variables are C or C++ language variables that are referenced within SQL statements. Host variables
allow an application to exchange data with the database manager.

After the application is precompiled, host variables are used by the compiler as any other C or C++
variable. Follow the rules described in the following sections when naming, declaring, and using host
variables.

Chapter 3. Programming embedded SQL applications 57

Long variable considerations

In applications that manually construct the SQLDA, long variables cannot be used when

sglvar: :sqltype==SQL_TYP_INTEGER. Instead, sqlint32 types must be used. This problem is
identical to using long variables in host variable declarations, except that with a manually constructed
SQLDA, the precompiler will not uncover this error and run time errors will occur.

Any long and unsigned long casts that are used to access sqlvar::sqldata information must be changed to
sglint32 and sqluint32. Val members for the sqloptions and sqla_option structures are
declared as sqluintptz. Therefore, assignment of pointer members into sqla_option::val or
sqloptions: :val members should use sqluintptz casts rather than unsigned long casts. This
change will not cause runtime problems in 64-bit UNIX and Linux operating systems, but should be made
in preparation for 64-bit Windows applications, where the long type is only 32-bit.

Multi-byte encoding considerations

Some character encoding schemes, particularly those from east-Asian regions, require multiple bytes to
represent a character. This external representation of data is called the multi-byte character code
representation of a character, and includes double-byte characters (characters represented by two
bytes). Host variables will be chosen accordingly since graphic data in Db2 consists of double-byte
characters.

To manipulate character strings with double-byte characters, it may be convenient for an application to
use an internal representation of data. This internal representation is called the wide-character code
representation of the double-byte characters, and is the format customarily used in the wchar_t C or C+
+ data type. Subroutines that conform to ANSI C and X/OPEN Portability Guide 4 (XPG4) are available to
process wide-character data, and to convert data in wide-character format to and from multi-byte format.

Note that although an application can process character data in either multi-byte format or wide-
character format, interaction with the database manager is done with DBCS (multi-byte) character codes
only. That is, data is stored in and retrieved from GRAPHIC columns in DBCS format. The WCHARTYPE
precompiler option is provided to allow application data in wide-character format to be converted to/from
multi-byte format when it is exchanged with the database engine.

Declare section for host variables in C and C++ embedded SQL applications
You must use an SQL declare section to identify host variable declarations. SQL declare sections alert the
precompiler to any host variables that can be referenced in subsequent SQL statements.

For example:

EXEC SQL BEGIN DECLARE SECTION;
char varsql; /* allowed x/
EXEC SQL END DECLARE SECTION;

The C or C++ precompiler only recognizes a subset of valid C or C++ declarations as valid host variable
declarations. These declarations define either numeric or character variables. Host variables can be
grouped into a single host structure. You can declare C++ class data members as host variables.

A numeric host variable can be used as an input or output variable for any numeric SQL input or output
value. A character host variable can be used as an input or output variable for any character, date, time, or
timestamp SQL input or output value. The application must ensure that output variables are long enough
to contain the values that they receive.

You can define, name, and use a host variable within the SQL declare section. In the following example, a
struct type called staff_record is first defined. Then the variable named staff_detail is declared as being of
type staff_record:

EXEC SQL BEGIN DECLARE SECTION ;

typedef struct §
short id;
VARCHAR name[10+1];
short years;
double salary;
t staff_record;

58 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

staff_record staff_detail;

EXEC SQL END DECLARE SECTION ;

ééLECT id, name, years, salary
FROM staff

INTO :staff_detail
WHERE id = 10;

Host variable names in C and C++ embedded SQL applications
The SQL precompiler identifies host variables by their declared name.

The following rules apply when declaring host variable names:

 Host variable names must be no longer than 255 characters in length.

« Host variable names must not use the prefix SQL, sql, DB2, and db2, which are reserved for system
use. For example:

EXEC SQL BEGIN DECLARE SECTION;

char varsql; /* allowed %/
char sqlvar; /* not allowed x/
char SQL_VAR; /* not allowed =%/

EXEC SQL END DECLARE SECTION;

« The precompiler supports the same scope rules as the C and C++ programming languages. Therefore,
you can use the same name for two different variables each existing within their own scope. In the
following example, both declarations of the variable called empno are allowed; the second declaration
does not cause an error:

file: main.sqc

void scopel()
EXEC SQL BEGIN DECLARE SECTION ;
short empno;

EXEC SQL END DECLARE SECTION ;

¥
void scope2()
; EXEC SQL BEGIN DECLARE SECTION ;
char[15 + 1] empno; /* this declaration is allowed x/

EXEC SQL END DECLARE SECTION ;

Example: SQL declare section template for C and C++ embedded SQL applications
When you are creating an embedded SQL application in C or C++, there is a template that you can use to
declare your host variables and data structures.

The following example is a sample SQL declare section with host variables declared for supported SQL
data types:

EXEC SQL BEGIN DECLARE SECTION;

short age = 26; /* SQL type 500 %/
short year; /* SQL type 500 %/
sqlint32 salary; /> SQL type 496 */
sqlint32 deptno; /* SQL type 496 %/
float bonus; /* SQL type 480 %/
double wage; /* SQL type 480 %/
char mi; /* SQL type 452 %/

Chapter 3. Programming embedded SQL applications 59

char name[6]; /* SQL type 460 %/

struct)

short len;

char data[24];

t address; /* SQL type 448 x/
struct)

short len;

char data[32695];

% voice; /* SQL type 456 %/
sql type is clob(1m)

chapter; /* SQL type 408 x/
sql type is clob_locator

chapter_locator; /* SQL type 964 x/
sql type is clob_file

chapter_file_ref; /* SQL type 920 %/
sql type is blob(1m)

video; /* SQL type 404 %/
sql type is blob_locator

video_locator; /* SQL type 960 x/
sql type is blob_file

video_file_ref; /* SQL type 916 %/
sql type is dbclob(1m)

tokyo_phone_dir; /* SQL type 412 %/

sql type is dbclob_locator

tokyo_phone_dir_lctr; /* SQL type 968 x/
sql type is dbclob_file

tokyo_phone_dir_flref; /* SQL type 924 x/
sql type is varbinary(12)

myVarBinField; /* SQL type 908 x/
sql type is binary(4)

myBinField; /* SQL type 912 x/
struct)

short len;

sqldbchar data[100];

% vargraphicl; /* SQL type 464 %/

/* Precompiled with
WCHARTYPE NOCONVERT option %/

struct)
short len;
wchar_t data[100];
% vargraphic2; /* SQL type 464 %/
/* Precompiled with
WCHARTYPE CONVERT option %/
struct)
short len;
sqldbchar data[10000];
% long_vargraphicl; /> SQL type 472 x/
/* Precompiled with
WCHARTYPE NOCONVERT option %/
struct 3
short len;
wchar_t data[10000];
%t long_vargraphic2; /* SQL type 472 x/

/* Precompiled with

WCHARTYPE CONVERT option %/
sgldbchar graphic1[100]; /* SQL type 468 %/

/* Precompiled with

WCHARTYPE NOCONVERT option %/
wchar_t graphic2[100]; /* SQL type 468 %/

/* Precompiled with

WCHARTYPE CONVERT option %/

char date[11]; /* SQL type 384 %/
char time[9]; /* SQL type 388 %/
char timestamp[27]; /* SQL type 392 %/
short wage_ind; /* Null indicator =*/

EXEC SQL END DECLARE SECTION;

SQLSTATE and SQLCODE variables in C and C++ embedded SQL application
Your embedded SQL application can declare the SQLCODE and SQLSTATE variables to handle errors or
help you debug your embedded SQL application.

When using the LANGLEVEL precompile option with a value of SQL92E, the following two declarations can
be included as host variables:

60 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6]
sqlint32 SQLCODE;

EXEC SQL END DECLARE SECTION;
The SQLCODE declaration is assumed during the precompile step. Note that when using this option, the
INCLUDE SQLCA statement must not be specified.

In an application that is made up of multiple source files, the SQLCODE and SQLSTATE variables can be
defined in the first source file as in the previous example. Subsequent source files should modify the
definitions as follows:

extern sqlint32 SQLCODE;
extern char SQLSTATE[6];

Declaration of numeric host variables in C and C++ embedded SQL applications

Numeric host variables that you declare in your embedded C or C++ application are treated as if they
were declared in a C or C++ program. You can use host variables to exchange data between the
embedded application and the database manager.

Following is the syntax for declaring numeric host variables in C or C++.

1
float ————— >«
—— auto — k const ﬂ double 2)
M— extern — volatile 3
M short 1
M static — L int _J
in

— register —

-
e

— INTEGER (SQLTYPE 496) | —
| BIGINT (SQLTYPE 492) [

INTEGER (SQLTYPE 496)

> >d
> L)

M sqlint32 ———

4
— long J
L int J

BIGINT (SQLTYPE 492)

> »d
> L)

M sqlinte4 ———

— inted ———

R N
int
~—— long >
L int —J

Chapter 3. Programming embedded SQL applications 61

{)]
varname ;>

U v J

¥

A

C.J ﬂ)

volatile
Notes:

1 REAL (SQLTYPE 480), length 4

2 DOUBLE (SQLTYPE 480), length 8

3 SMALLINT (SQLTYPE 500)

4 For maximum application portability, use sqlint32 for INTEGER host variables and sqlint64 for
BIGINT host variables. By default, the use of long host variables results in the precompiler error
SQL0402 on platforms where long is a 64 bit quantity, such as 64 BIT UNIX. Use the PREP option
LONGERROR NO to force Db2 to accept long variables as acceptable host variable types and treat
them as BIGINT variables.

5 For maximum application portability, use sqlint32 and sqlinté4 for INTEGER and BIGINT host
variables. To use the BIGINT data type, your platform must support 64 bit integer values. By default,
the use of long host variables results in the precompiler error SQL0O402 on platforms where long is a
64 bit quantity, such as 64 BIT UNIX. Use the PREP option LONGERROR NO to force Db2 to accept
long variables as acceptable host variable types and treat them as BIGINT variables.

Declaration of fixed-length, null-terminated and variable-length character host variables in C and C+
+ embedded SQL applications

There are two forms of C and C++ variables that you can declare in an embedded SQL application. Form 1
variables are fixed length and null-terminated character host variables and form 2 are variable-length
character host variables.

Form 1: Syntax for fixed and null-terminated character host variables in C or C++ embedded SQL

applications

»- char —»
M auto — M— const — L unsigned —J
M extern — — volatile —/

M static —

— register —

A

CHAR] >

L=—value —J

CHAR
1
»»- varname —p<
L & J const ﬂ
volatile
C String

62 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

» L varname _J [— length —]iN
(varname —)

A

*]
L & J const ﬂ
volatile
i |
Notes:

1 CHAR (SQLTYPE 452), length 1
2 Null-terminated C string (SQLTYPE 460); length can be any valid constant expression

Form 2: Syntax for variable-length character host variables in C and C++ embedded SQL applications

struct L J { — short ﬁ’
M auto — k const ﬂ tag int
\

M— extern —

[
-

olatile

M static —

— register —

1
— varl —; L _J char —var2 — [— length —]—;—1}—>
unsigned

. { varname
(.)
L & J const ﬂ

A

volatile
Values
L = —{ —value-1 — ,— value-2 —} J
»— ; Pq
Notes:

11n form 2, length can be any valid constant expression. Its value after evaluation determines if the
host variable is VARCHAR (SQLTYPE 448) or LONG VARCHAR (SQLTYPE 456).

Variable-Length Character Host Variable Considerations:

1. Although the database manager converts character data to either form 1 or form 2 whenever possible,
form 1 corresponds to column types CHAR or VARCHAR, whereas form 2 corresponds to column types
VARCHAR and LONG VARCHAR.

2. If form 1 is used with a length specifier [n], the value for the length specifier after evaluation must be
no greater than 32 672, and the string contained by the variable should be null-terminated.

3. If form 2 is used, the value for the length specifier after evaluation must be no greater than 32 700.

4. In form 2, varl and var2 must be simple variable references (no operators), and cannot be used as
host variables (varname is the host variable).

Chapter 3. Programming embedded SQL applications 63

5. varname can be a simple variable name, or it can include operators such as *varname. See the
description of pointer data types in C and C++ for more information.

6. The precompiler determines the SQLTYPE and SQLLEN of all host variables. If a host variable appears
in an SQL statement with an indicator variable, the SQLTYPE is assigned to be the base SQLTYPE plus
one for the duration of that statement.

7. The precompiler permits some declarations which are not syntactically valid in C or C++. Refer to your
compiler documentation if in doubt about a particular declaration syntax.

Declaration of graphic host variables in C and C++ embedded SQL applications
To handle graphic data in C or C++ applications, you must use host variables based on either the wchar_t
C or C++ data type or the sqldbchaxr data type.

You can assign graphic data host variables to columns of a table that are GRAPHIC, VARGRAPHIC, or
DBCLOB. For example, you can update or select DBCS data from GRAPHIC or VARGRAPHIC columns of a
table.

There are three valid forms for a graphic host variable:
« Single-graphic form

Single-graphic host variables have an SQLTYPE of 468/469 that is equivalent to the GRAPHIC(1) SQL
data type.

 Null-terminated graphic form

Null-terminated refers to the situation where all the bytes of the last character of the graphic string
contain binary zeros ('\0's). They have an SQLTYPE of 400/401.

« VARGRAPHIC structured form

VARGRAPHIC structured host variables have an SQLTYPE of 464/465 if their length is between 1 and 16
336 bytes. They have an SQLTYPE of 472/473 if their length is between 2 000 and 16 350 bytes.

The wchar_t and sqldbchar data types for graphic data in C and C++ embedded SQL applications
The size and encoding of Db2 graphic data is constant from one operating system to another for a
particular code page. However, the size and internal format of the ANSI C or C++ wchax_t data type
depend on which compiler and operating system you use.

The sqldbchar data type is defined by Db2 to be 2 bytes in size, and is intended to be a portable way of
manipulating DBCS and UCS-2 data in the same format in which it is stored in the database.

You can define all Db2 C graphic host variable types with either the wchar_t or sqldbchar data type.
You must use the wchar_t data type if you build your application with the WCHARTYPE CONVERT
precompile option.

If you build your application with the WCHARTYPE NOCONVERT precompile option, you can use the
sqldbchar data type for maximum portability between different Db2 client and server environments.
You can use the wchar_t data type with the WCHARTYPE NOCONVERT option, but only on environments
where the wchar_t data type is defined as 2 bytes in length.

If you incorrectly use either awchar_t or sqldbchaxr data type in host variable declarations, an error
can be returned during the precompile process.

WCHARTYPE precompiler option for graphic data in C and C++ embedded SQL applications
You can use the WCHARTYPE precompiler option to specify whether you want to use multibyte format or
wide-character format for your graphic data.

There are two possible values for the WCHARTYPE option:

CONVERT
If you select the WCHARTYPE CONVERT option in Linux or UNIX operating systems, character codes
are converted between the graphic host variable and the database manager. For graphic input host
variables, the character code is converted from wide-character format to multibyte DBCS character
format with the ANSI C function wcstombs () before the data is sent to the database manager. For
graphic output host variables, the character code is converted from multibyte DBCS character format

64 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

to wide-character format with the ANSI C function mbstowcs () before the data received from the
database manager is stored in the host variable.

For Windows operating systems, if a conversion failure is encountered for graphic host variables, user
can set the SkipLocalCPConversionFoxlWicharConvert keyword to ON in the IBM data server
driver configuration file (db2dsdriver.cfg) to avoid the failure.

The advantage to using the WCHARTYPE CONVERT option is that it allows your application to use the
ANSI C mechanisms for dealing with wide-character strings (L-literals, 'wc' string functions, and
others) without having to explicitly convert the data to multibyte format before data is sent to the
database manager. The disadvantage is that the implicit conversion can have an impact on the
performance of your application at run time, and it can increase memory requirements.

If you select the WCHARTYPE CONVERT option, declare all graphic host variables withwchar_t
instead of sqldbchar.

If you want the WCHARTYPE CONVERT option behavior, but your application does not need to be
precompiled (for example, a CLI application), then define the C preprocessor macro
SQL_WCHART_CONVERT at compile time. This ensures that certain definitions in the Db2 header files
use the data type wchar_t instead of sqldbchar.

NOCONVERT (default)
If you choose the WCHARTYPE NOCONVERT option, or do not specify any WCHARTYPE option, no
implicit character code conversion occurs between the application and the database manager. Data in
a graphic host variable is sent to and received from the database manager as unaltered DBCS
characters. This has the advantage of improved performance, but the disadvantage that your
application must either refrain from using wide-character data in wchaxr_t host variables, or must
explicitly call the wcstombs () and mbstowcs () functions to convert the data to and from multibyte
format when interfacing with the database manager.

If you select the WCHARTYPE NOCONVERT option, declare all graphic host variables with the
sqldbchar type for maximum portability to other Db2 client/server environments.

You must consider the guidelines include in the following list:

» Because wchar_t or sqldbchar support is used to handle DBCS data, its use requires DBCS or EUC
capable hardware and software. This support is only available in the DBCS environment of Db2, or for
dealing with GRAPHIC data in any application (including single-byte applications) connected to a UCS-2
database.

« Avoid use of non-DBCS (non-double byte characters) characters, and wide-characters that can be
converted to non-DBCS characters, in graphic strings. Graphic strings are not validated to ensure that
their values contain only double-byte character code points. Graphic host variables must contain only
DBCS data, or, if the WCHARTYPE CONVERT setting is in effect, wide-character data that converts to
DBCS data. Use character host variables to store mixed double-byte and single-byte data. Mixed data
host variables are unaffected by the setting of the WCHARTYPE option.

« In applications where the WCHARTYPE NOCONVERT precompile option is used, avoid use of L-literals
with graphic host variables as L-literals are in wide-character format. An L-literal is a C wide-character
string literal that is prefixed by the letter L, which has the data type "array of wchar_t". For
example, L"dbcs-string" is an L-literal.

« In applications where the WCHARTYPE CONVERT precompile option is used, L-literals can be used to
initialize wchar_t host variables, but cannot be used in SQL statements. Instead of using L-literals, use
graphic string constants, which are independent of the WCHARTYPE setting in SQL statements.

 The setting of the WCHARTYPE option affects graphic data that is passed to and from the database
manager using the SQLDA structure and host variables. If the WCHARTYPE CONVERT setting is in effect,
graphic data that is received from the application through an SQLDA is presumed to be in wide-
character format, and is converted to DBCS format by implicit call to the wcstombs () function.
Similarly, graphic output data that is received by an application was converted to wide-character format
before the data was placed in application storage.

« Not-fenced stored procedures must be precompiled with the WCHARTYPE NOCONVERT option. Ordinary
fenced stored procedures can be precompiled with either the CONVERT or NOCONVERT options, which

Chapter 3. Programming embedded SQL applications 65

affects the format of graphic data that is manipulated by SQL statements that are contained in the
stored procedure. In either case, however, any graphic data that is passed into the stored procedure
through the SQLDA is in DBCS format. Likewise, data passed out of the stored procedure through the
SQLDA must be in DBCS format.

« If an application calls a stored procedure through the Database Application Remote Interface (DARI)
interface (the sqleproc () API), any graphic data in the input SQLDA must be in DBCS format, or in
UCS-2 if connected to a UCS-2 database, regardless of the state of the calling application's
WCHARTYPE setting. Likewise, any graphic data in the output SQLDA is returned in DBCS format, orin
UCS-2 if connected to a UCS-2 database, regardless of the WCHARTYPE setting.

« If an application calls a stored procedure through the SQL CALL statement, graphic data conversion
occurs on the SQLDA, depending on the calling application's WCHARTYPE setting.

« Graphic data that is passed to user-defined functions (UDFs) is always in DBCS format. Likewise, any
graphic data that is returned from a UDF is assumed to be in DBCS format for DBCS databases, and
UCS-2 format for EUC and UCS-2 databases.

« Data that is stored in DBCLOB files by using DBCLOB file reference variables is stored in either DBCS
format, or, in the case of UCS-2 databases, in UCS-2 format. Likewise, input data from DBCLOB files is
retrieved either in DBCS format, or, in the case of UCS-2 databases, in UCS-2 format.

Note:

1. For Db2 for Windows operating systems, the WCHARTYPE CONVERT option is supported for
applications that are compiled with the Microsoft Visual C++ compiler. However, do not use the
CONVERT option with this compiler if your application inserts data into a Db2 database in a code page
that is different from the database code page. Db2 server normally converts the code page in this
situation; however, the Microsoft C runtime environment does not handle substitution characters for
certain double byte character and it can result in run time conversion errors.

2. If you precompile C applications with the WCHARTYPE CONVERT option, Db2 validates the
applications' graphic data on both input and output as the data is passed through the conversion
functions. If you do not use the CONVERT option, no conversion of graphic data, and hence no
validation occurs. In an environment with mixed CONVERT and NOCONVERT applications, you can
encounter errors if invalid graphic data is inserted by a NOCONVERT application and then fetched by a
CONVERT application.

Declaration of VARGRAPHIC type host variables in the structured form in C or C++ embedded SQL
applications

VARGRAPHIC type host variables that you declare in your embedded C or C++ application are treated as if
they were declared in a C or C++ program. You can use host variables to exchange data between the
embedded application and the database manager.

The following is the syntax for declaring a graphic host variable using the VARGRAPHIC structured form.

66 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

¥

struct L J { — short ﬁ’
M auto — k const ﬂ tag int
'

M—— extern — olatile

M static —

— register —

1 2
—var-l —; var-2 —[— length —] —;—1}—
sqldbchar f
wchar_t
{ Variable I— ;ln
* j
L & J const ﬂ

volatile

A 4

A

Variable

>d
>4

»— variable-name L _J
= —{ —value-1 — ,— value-2 —}

Notes:

1 To determine which of the two graphic types to be used, see the description of the wchar_t and
sqldbchar data typesin C and C++.

2 length can be any valid constant expression. Its value after evaluation determines if the host variable
is VARGRAPHIC (SQLTYPE 464) or LONG VARGRAPHIC (SQLTYPE 472). The value of length must be
greater than or equal to 1, and not greater than the maximum length of LONG VARGRAPHIC which is
16 350.

Graphic declaration (VARGRAPHIC structured form) Considerations:

1. var-1 and var-2 must be simple variable references (no operators) and cannot be used as host
variables.

2. value-1 and value-2 are initializers for var-1 and var-2. value-1 must be an integer and value-2 must
be a wide-character string literal (L-literal) if the WCHARTYPE CONVERT precompiler option is used.

3. The struct tag can be used to define other data areas, but itself cannot be used as a host variable.

Declaration of GRAPHIC type host variables in single-graphic and null-terminated graphic forms in C
and C++ embedded SQL applications

Single and null-terminated GRAPHIC type host variables that you declare in your embedded C or C++
application are treated as if they were declared in a C or C++ program. You can use host variables to
exchange data between the embedded application and the database manager.

Following is the syntax for declaring a graphic host variable using the single-graphic form and the null-
terminated graphic form.

Chapter 3. Programming embedded SQL applications 67

1

—— auto — t const tsqldbchar j_>
Vi wchar_t

M extern — olatile

¥

M static —

— register —

CHAR]

L=—value J

CHAR

2
» varname —p»<4
{ *]
L & J M const —

— volatile —

C string
» L varname J [— length —]3—><
(varname —)
L & J const ﬂ
volatile
»— ; Pq
Notes:

1 To determine which of the two graphic types to be used, see the description of the wchar_t and
sqldbchar data typesin C and C++.

2 GRAPHIC (SQLTYPE 468), length 1

3 Null-terminated graphic string (SQLTYPE 400)

Graphic host variable considerations:
1. The single-graphic form declares a fixed-length graphic string host variable of length 1 with SQLTYPE
of 468 or 469.

2. value is an initializer. A wide-character string literal (L-literal) must be used if the WCHARTYPE
CONVERT precompiler option is used.

3. length can be any valid constant expression, and its value after evaluation must be greater than or
equal to 1, and not greater than the maximum length of VARGRAPHIC, which is 16 336.

4. Null-terminated graphic strings are handled differently, depending on the value of the standards level
precompile option setting.

Declaration of large object type host variables in C and C++ embedded SQL applications

Large object (LOB) type host variables that you declare in your embedded C or C++ application are treated
as if they were declared in a C or C++ program. You can use host variables to exchange data between the
embedded application and the database manager.

The syntax for declaring large object (LOB) host variables in C or C++ is:

68 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

¥

SQLTYPEIS ? BLOB (—
M auto — k const ﬂ L XML AS _J % CLOB ﬂ
M extern — volatile DBCLOB

M static —

— register —

1
»— length ——) —»

> { variable-name
L & J const ﬂ

A

volatile
LOB data
Mm—=—{ — init-len — ,— "— init-data — "—}
M— =SQL_BLOB_INIT — (— "— init-data — " —)
M =SQL_CLOB_INIT — (— "— init-data — "—)
— =SQL_DBCLOB_INIT — (— "— init-data — "—)
»— ; Pq
Notes:

1 length can be any valid constant expression, in which the constant K, M, or G can be used. The value
of length after evaluation for BLOB and CLOB must be 1 <= length <=2 147 483 647. The value of
length after evaluation for DBCLOB must be 1 <= length <=1 073 741 823.

LOB host variable considerations:

1. The SQL TYPE IS clause is needed to distinguish the three LOB-types from each other so that type
checking and function resolution can be carried out for LOB-type host variables that are passed to
functions.

2. SQLTYPEIS, BLOB, CLOB, DBCLOB, K, M, G can be in mixed case.

3. The maximum length allowed for the initialization string “init-data" is 32 702 bytes, including string
delimiters (the same as the existing limit on C and C++ strings within the precompiler).

4. The initialization length, init-len, must be a numeric constant (for example, it cannot include K, M, or
G).

5. A length for the LOB must be specified; that is, the following declaration is not permitted:
SQL TYPE IS BLOB my_blob;

6. If the LOB is not initialized within the declaration, no initialization will be done within the precompiler-
generated code.

7. 1f a DBCLOB is initialized, it is the user's responsibility to prefix the string with an 'L' (indicating a wide-
character string).

Note: Wide-character literals, for example, L"Hello", should only be used in a precompiled program
if the WCHARTYPE CONVERT precompile option is selected.

8. The precompiler generates a structure tag which can be used to cast to the host variable's type.

Chapter 3. Programming embedded SQL applications 69

BLOB example:

Declaration:
static Sql Type is Blob(2M) my_blob=SQL_BLOB_INIT("mydata");

Results in the generation of the following structure:

static struct my_blob_t §

sqluint32 length;

char data[2097152];
t my_blob=SQL_BLOB_INIT("mydata");

CLOB example:

Declaration:

volatile sql type is clob(125m) *varl, var2 = §10, "databdata5"%;

Results in the generation of the following structure:

volatile struct varl_t {

sqluint32 length;

char data[131072000];
t % varl, var2 = {10, "data5data5"%;

DBCLOB example:

Declaration:

SQL TYPE IS DBCLOB(30000) my_dbclobl;

Precompiled with the WCHARTYPE NOCONVERT option, results in the generation of the following
structure:

struct my_dbclobl_t §
sqluint32 length;
sgldbchar data[30000];
t my_dbclobl;

Declaration:

SQL TYPE IS DBCLOB(30000) my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

Precompiled with the WCHARTYPE CONVERT option, results in the generation of the following structure:

struct my_dbclob2_t §
sqluint32 length;
wchar_t data[30000] ;
t my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

Declaration of large object locator type host variables in C and C++ embedded SQL applications
Large object (LOB) locator host variables that you declare in your embedded C or C++ application are
treated as if they were declared in a C or C++ program. You can use host variables to exchange data
between the embedded application and the database manager.

The syntax for declaring large object (LOB) locator host variables in C or C++ is:

70 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

¥

SQLTYPE IS BLOB_LOCATOR
—— auto — j const i CLOB_LOCATOR
M— extern — volatile DBCLOB LOCATOR

M static —

— register —

Variable

> »d
> L)

*] variable-name
L & J const ﬂ L = init-value —J

volatile
»— ; >q

LOB locator host variable considerations:

1. SQLTYPE IS, BLOB_LOCATOR, CLOB_LOCATOR, DBCLOB_LOCATOR can be in mixed case.

2. init-value permits the initialization of pointer and reference locator variables. Other types of
initialization will have no meaning.

CLOB locator example (other LOB locator type declarations are similar):

Declaration:

SQL TYPE IS CLOB_LOCATOR my_locator;

Results in the generation of the following declaration:

sqluint32 my_locator;

Declaration of file reference type host variables in C and C++ embedded SQL applications

File reference type host variables that you declare in your embedded C or C++ application are treated as if
they were declared in a C or C++ program. You can use host variables to exchange data between the
embedded application and the database manager.

The syntax for declaring file reference host variables in C or C++ is:

Chapter 3. Programming embedded SQL applications 71

Syntax for file reference host variables in C or C++

SQLTYPEIS 1—_ ? __I BLOB_FILE
M auto — k const ﬂ XML AS CLOB_FILE
Vi

M— extern —

>
>

olatile DBCLOB_FILE

M static —

— register —

Variable

> »d
> L)

*] variable-name
L & J const ﬂ L = init-value —J

volatile
»— ;>
Figure 1. Syntax Diagram

Note: SQL TYPE IS, BLOB_FILE, CLOB_FILE, DBCLOB_FILE can be in mixed case.
CLOB file reference example (other LOB file reference type declarations are similar):

Declaration:

static volatile SQL TYPE IS BLOB_FILE my_file;

Results in the generation of the following structure:

static volatile struct §

sqluint32 name_length;
sqluint32 data_length;
sqluint32 file_options;

char name[255] ;
t my_file;

Note: This structure is equivalent to the sqlfile structure located in the sql.h header. See Figure 1 on page
72 to refer to the syntax diagram.

Declaration of host variables as pointers in C and C++ embedded SQL applications
You can declare host variables as pointers to specific data types. However, there are some formatting
guidelines that you should be aware of.

Before you can declare a host variable pointer, you must consider the following restrictions:

« If a host variable is declared as a pointer, no other host variable can be declared with that same name
within the same source file. The following example is not allowed:

char mystring[20];
char (*mystring)[20];

« Use parentheses when declaring a pointer to a null-terminated character array. In all other cases,
parentheses are not allowed. For example:

EXEC SQL BEGIN DECLARE SECTION;
char (%arr)[10]; /% correct */
char =*(arr); /* incorrect =/

72 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

char <arr[10]; /* incorrect %/
EXEC SQL END DECLARE SECTION;

The first declaration is a pointer to a 10-byte character array. This is a valid host variable. The second is
not a valid declaration. The parentheses are not allowed in a pointer to a character. The third
declaration is an array of pointers. This is not a supported data type.

The host variable declaration:
char *ptr;

is accepted, but it does not mean null-terminated character string of undetermined length. Instead, it
means a pointer to a fixed-length, single-character host variable. This might not be what is intended. To
define a pointer host variable that can indicate different character strings, use the first declaration form
shown previously in this topic.

« When pointer host variables are used in SQL statements, they should be prefixed by the same number
of asterisks as they were declared with, as in the following example:

EXEC SQL BEGIN DECLARE SECTION;
char (*mychar)[20]; /* Pointer to character array of 20 bytes x/
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT column INTO :%mychar FROM table; /* Correct %/

Only the asterisk can be used as an operator over a host variable name.

« The maximum length of a host variable name is not affected by the number of asterisks specified,
because asterisks are not considered part of the name.

Whenever using a pointer variable in an SQL statement, you should leave the optimization level
precompile option (OPTLEVEL) at the default setting of O (no optimization). This means that no SQLDA
optimization will be done by the database manager.

Declaration of class data members as host variables in C++ embedded SQL applications
You can declare class data members as host variables, but you cannot decalre classes or objects as host
variables.

The following example illustrates the method to use:

class STAFF
1

private:

EXEC SQL BEGIN DECLARE SECTION;
char staff_name[20];
short int staff_id;
double staff_salary;

EXEC SQL END DECLARE SECTION;

short staff_in_db;

53

Data members are only directly accessible in SQL statements through the implicit this pointer provided by
the C++ compiler in class member functions. You cannot explicitly qualify an object instance (such as
SELECT name INTO :my_obj.staff_name ...)inan SQL statement.

If you directly refer to class data members in SQL statements, the database manager resolves the
reference using the this pointer. For this reason, you should leave the optimization level precompile
option (OPTLEVEL) at the default setting of O (no optimization).

The following example shows how you might directly use class data members which you have declared as
host variables in an SQL statement.

class STAFF

public:

Chapter 3. Programming embedded SQL applications 73

short int hire(void)

EXEC SQL INSERT INTO staff (name,id,salary)
VALUES (:staff_name, :staff_id, :staff salary);

staff_in_db = (sqlca.sqlcode == 0);

return sqlca.sqglcode;

55

In this example, class data members staff_name, staff id, and staff_salary are used directly in
the INSERT statement. Because they have been declared as host variables (see the first example in this
section), they are implicitly qualified to the current object with the this pointer. In SQL statements, you
can also refer to data members that are not accessible through the this pointer. You do this by referring to
them indirectly using pointer or reference host variables.

The following example shows a new method, asWellPaidAs that takes a second object, otherGuy. This
method references its members indirectly through a local pointer or reference host variable, as you
cannot reference its members directly within the SQL statement.

short int STAFF::asWellPaidAs(STAFF otherGuy)

EXEC SQL BEGIN DECLARE SECTION;
short &otherID = otherGuy.staff_id
double otherSalary;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT SALARY INTO :otherSalary
FROM STAFF WHERE id = :otherID;
if(sqlca.sqlcode == 0)
return staff_salary >= otherSalary;
else
return 0;

Declaration of binary type host variables in C, C++ embedded SQL applications

Binary host variables that you declare in your embedded C and C++ applications are treated as if they
were declared in a C or C++ program. You can use host variables to exchange data between the
embedded application and the database manager.

The syntax for binary and varbinary locator host variables in C, C++ is:

&
<

»— SQL TYPE IS BINARY length <
VARBINARY

Example

Declaring:

SQL TYPE IS BINARY(4) myBinField;
Results in the generation of the following C code:

unsigned char myBinField[4];
where length N (1<= N <=255)

Declaring:
SQL TYPE IS VARBINARY(12) myVarBinField;

Results in the generation of the following C code:

74 1IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

struct myVarBinField_t { sqluintl6 length;
char data[12];
t myVarBinField;

Where length is N (1<= N <=32704)

Embedded SQL application support of BINARY and VARBINARY

Embedded SQL application can copy BINARY data of predetermined length after you declare the BINARY
data type variable in the declare section. The VARBINARY data type variable can be declared in the
declare section of the embedded SQL application with set length to copy the VARBINARY data.

The following example shows you how to use the BINARY and VARBINARY data types in an embedded
application:

EXEC SQL BEGIN DECLARE SECTION;

sql type is binary(50) binaryl ;

sql type is varbinary(100) binary2 ;
EXEC SQL END DECLARE SECTION;

char strngl[50];

char strng2[50];

memset(binaryl, Ox00, sizeof(binaryl));

memset(binary2.data, 0x00, sizeof(binary2.data));

strcpy(strngl, "AAAAAAZZZZZMMMMMMMMMJJJJ3J3JJJ333333");

strcpy(strng2, "BBBBBBBBBBBBBBBCCCCCCCCCCCDDDDDDDDEEEEEEEEEEEK");
memcpy (binaryl, strngl, strlen(strngl));

memcpy (binary2.data, strng2, strlen(strng2));

binary2.length = strlen(binary2.data);

EXEC SQL INSERT INTO testl VALUES (:binaryl, :binary2);
On retrieval from the database, the length of the data is set properly in the corresponding structure.

Scope resolution and class member operators in C and C++ embedded SQL applications
You cannot use the C++ scope resolution operator '::', nor the C and C++ member operators '.' or '->'in
embedded SQL statements.

You can easily accomplish the same thing through use of local pointer or reference variables, which are
set outside the SQL statement, to point to the required scoped variable, then used inside the SQL
statement to refer to it. The following example shows the correct method to use:

EXEC SQL BEGIN DECLARE SECTION;
char (& localName)[20] = ::name;

EXEC SQL END DECLARE SECTION;

EXEC SQL
SELECT name INTO :localName FROM STAFF
WHERE name = 'Sandezrs';

Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C and C++ embedded SQL
applications

If your application code page is Japanese or Traditional Chinese EUC, or if your application connects to a
UCS-2 database, you can access GRAPHIC columns at a database server by using either the CONVERT or
the NOCONVERT option with wchax_t or sqldbchar graphic host variables or input/output SQLDAs.

In this section, DBCS format refers to the UCS-2 encoding scheme for EUC data. Consider listed cases:
« CONVERT option used

The Db2 client converts graphic data from the wide character format to your application code page,
then to UCS-2 before sending the input SQLDA to the database server. Any graphic data is sent to the
database server tagged with the UCS-2 code page identifier. Mixed character data is tagged with the
application code page identifier. When graphic data is retrieved from a database by a client, it is tagged
with the UCS-2 code page identifier. The Db2 client converts the data from UCS-2 to the client
application code page, then to the wide character format. If an input SQLDA is used instead of a host
variable, you are required to ensure that graphic data is encoded using the wide character format. This

Chapter 3. Programming embedded SQL applications 75

data will be converted to UCS-2, then sent to the database server. These conversions will impact
performance.

« NOCONVERT option used

The graphic data is assumed by Db2 to be encoded using UCS-2 and is tagged with the UCS-2 code
page, and no conversions are done. Db2 assumes that the graphic host variable is being used as a
bucket. When the NOCONVERT option is chosen, graphic data retrieved from the database server is
passed to the application encoded using UCS-2. Any conversions from the application code page to
UCS-2 and from UCS-2 to the application code page are your responsibility. Data tagged as UCS-2 is
sent to the database server without any conversions or alterations.

To minimize conversions you can either use the NOCONVERT option and handle the conversions in your
application, or not use GRAPHIC columns. For the client environments where wchaxr_t encoding is in
two-byte Unicode, for example Windows 2000 or AIX version 5.1 and higher, you can use the
NOCONVERT option and work directly with UCS-2. In such cases, your application might handle the
difference between big-endian and little-endian architectures. With the NOCONVERT option, Db2
database systems use sqldbchar, which is always two-byte big-endian.

Do not assign IBM eucJP/IBM eucTW CSO (7-bit ASCII) and IBM eucJP CS2 (Katakana) data to graphic
host variables either after conversion to UCS-2 (if NOCONVERT is specified) or by conversion to the wide
character format (if CONVERT is specified). The reason is that characters in both of these EUC code sets
become single-byte when converted from UCS-2 to PC DBCS.

In general, although eucJP and eucTW store GRAPHIC data as UCS-2, the GRAPHIC data in these
databases is still non-ASCII eucJP or eucTW data. Specifically, any space padded to such GRAPHIC data
is DBCS space (also known as ideographic space in UCS-2, U+3000). For a UCS-2 database, however,
GRAPHIC data can contain any UCS-2 character, and space padding is done with UCS-2 space, U+0020.
Keep this difference in mind when you code applications to retrieve UCS-2 data from a UCS-2 database
versus UCS-2 data from eucJP and eucTW databases.

Binary storage of variable values using the FOR BIT DATA clause in C and C++ embedded SQL
applications

You can declare certain database columns by using the FOR BIT DATA clause. These columns, which
generally contain characters, are used to hold binary information.

You cannot use the standard C or C++ string type 460 for columns designated FOR BIT DATA. The
database manager truncates this data type when a null character is encountered. Use either the
VARCHAR (SQL type 448) or CLOB (SQL type 408) structures.

Initialization of host variables in C and C++ embedded SQL applications
In C and C++ declare sections, you can declare and initialize multiple variables on a single line. However,
you must initialize variables using the "=" symbol, not parentheses.

The following example shows the correct and incorrect methods of initialization in a declare section:

EXEC SQL BEGIN DECLARE SECTION;
short my_short 2 = 5; /* correct */
short my_short_1(5); /* incorrect %/
EXEC SQL END DECLARE SECTION;

Macro expansion and the DECLARE SECTION of C and C++ embedded SQL applications

The C or C++ precompiler cannot directly process any C macro that is used in a declaration within a
declare section. You must first preprocess the source file with an external C preprocessor by specifying
the exact command for invoking a C preprocessor to the precompiler through the PREPROCESSOR option.

When you specify the PREPROCESSOR option, the precompiler first processes all the SQL INCLUDE
statements by incorporating the contents of all the files referred to in the SQL INCLUDE statement into
the source file. The precompiler then invokes the external C preprocessor using the command you specify
with the modified source file as input. The preprocessed file, which the precompiler always expects to
have an extension of . i, is used as the new source file for the rest of the precompiling process.

76 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Any #line macro generated by the precompiler no longer references the original source file, but instead
references the preprocessed file. To relate any compiler errors back to the original source file, retain
comments in the preprocessed file. This helps you to locate various sections of the original source files,
including the header files. The option to retain comments is commonly available in C preprocessors, and
you can include the option in the command you specify through the PREPROCESSOR option. You must not
have the C preprocessor output any #line macros itself, as they can be incorrectly mixed with ones
generated by the precompiler.

Notes on using macro expansion:

1. The command you specify through the PREPROCESSOR option must include all the required options,
but not the name of the input file. For example, for IBM C on AIX you can use the option:

x1C -P -DMYMACRO=1

2. The precompiler expects the command to generate a preprocessed file with a . i extension. However,
you cannot use redirection to generate the preprocessed file. For example, you cannot use the
following option to generate a preprocessed file:

x1C -E > x.1i

3. Any errors the external C preprocessor encounters are reported in a file with a name corresponding to
the original source file, but with a . erx extension.

For example, you can use macro expansion in your source code as follows:

#tdefine SIZE 3

EXEC SQL BEGIN DECLARE SECTION;
char a[SIZE+1];
char b[(SIZE+1)%3];
struct
1
short length;
char data[SIZEx*6];
Fom;
SQL TYPE IS BLOB(SIZE+1) x;
SQL TYPE IS CLOB((SIZE+2)%3) vy;
SQL TYPE IS DBCLOB(SIZE*2K) z;
EXEC SQL END DECLARE SECTION;

The previous declarations resolve to the following example after you use the PREPROCESSOR option:

EXEC SQL BEGIN DECLARE SECTION;
char a[4];
char b[12];
struct

short length;
char data[18];
Fom;

SQL TYPE IS BLOB(4) x;

SQL TYPE IS CLOB(15) vy;

SQL TYPE IS DBCLOB(6144) z;
EXEC SQL END DECLARE SECTION;

Host structure support in the declare section of C and C++ embedded SQL applications

A host structure contains a list of host variables that can be referred to by embedded SQL statements.
With host structure support, the C or C++ precompiler allows host variables to be grouped into a single
host structure.

Host structure support provides a shorthand for referencing that same set of host variables in an SQL
statement.

For example, the following host structure can be used to access some of the columns in the STAFF table
of the SAMPLE database:

struct tag
1

Chapter 3. Programming embedded SQL applications 77

short id;
struct

short length;
char data[10];
% name;
struct

short years;
double salary;
t info;
t staff_record;

The fields of a host structure can be any of the valid host variable types. Valid types include all numeric,
character, and large object types. Nested host structures are also supported up to 25 levels. In the
example shown previously, the field info is a sub-structure, whereas the field name is not, as it
represents a VARCHAR field. The same principle applies to LONG VARCHAR, VARGRAPHIC and LONG
VARGRAPHIC. Pointer to host structure is only supported when it is not nested within another structure.

There are two ways to reference the host variables grouped in a host structure in an SQL statement:

« The host structure name can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary
INTO :staff record
FROM staff
WHERE id = 10;

The precompiler converts the reference to staff_recoxrd into a list, separated by commas, of all the
fields declared within the host structure. Each field is qualified with the host structure names of all
levels to prevent naming conflicts with other host variables or fields. This is equivalent to the following
method.

« Fully qualified host variable names can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary
INTO :staff_record.id, :staff_record.name,
:staff record.info.years, :staff record.info.salary
FROM staff
WHERE id = 10;

References to field names must be fully qualified, even if there are no other host variables with the
same name. Qualified sub-structures can also be referenced. In the preceding

example, :staff_record.info can be used to

replace :staff_record.info.years, :staff_record.info.salary.

Because a reference to a host structure (first example) is equivalent to a comma-separated list of its
fields, there are instances where this type of reference might lead to an error. For example:

EXEC SQL DELETE FROM :staff record;

Here, the DELETE statement expects a single character-based host variable. By giving a host structure
instead, the statement results in a precompile-time error:

SQLOO87N Host variable "staff_record" is a structure used where structure
references are not permitted.

Other uses of host structures, which can cause an SQLO087N error to occur, include PREPARE, EXECUTE
IMMEDIATE, CALL, indicator variables and SQLDA references. Host structures with exactly one field are
permitted in such situations, as are references to individual fields (second example).

Null or truncation indicator variables and indicator tables in C and C++ embedded SQL applications
For each host variable that can receive null values, you must declare indicator variables as a short data
type.

78 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

An indicator table is a collection of indicator variables to be used with a host structure. An indicator table
must be declared as an array of short integers. For example:

short ind_tab[10];

The preceding example declares an indicator table with 10 elements. It can be used in an SQL statement
as follows:

EXEC SQL SELECT id, name, years, salary
INTO :staff record INDICATOR :ind_tab
FROM staff
WHERE id = 10;

The following lists each host structure field with its corresponding indicator variable in the table:

staff_record.id
ind_tab[0]

staff_record.name
ind_tab[1]

staff_record.info.years
ind_tab[2]

staff_record.info.salary
ind_tabl[3]

Note: An indicator table element, for example ind_tab[1], cannot be referenced individually in an SQL
statement. The keyword INDICATOR is optional. The number of structure fields and indicators do not
have to match; any extra indicators are unused, as are extra fields that do not have indicators assigned to
them.

A scalar indicator variable can also be used in the place of an indicator table to provide an indicator for the
first field of the host structure. This is equivalent to having an indicator table with only one element. For
example:

short scalar_ind;

EXEC SQL SELECT id, name, years, salary
INTO :staff record INDICATOR :scalar_ind
FROM staff
WHERE id = 10;

If an indicator table is specified along with a host variable instead of a host structure, only the first
element of the indicator table, for example ind_tab[0], will be used:

EXEC SQL SELECT id
INTO :staff_record.id INDICATOR :ind_tab
FROM staff
WHERE id = 10;

If an array of short integers is declared within a host structure:

struct tag

short i[2];
1t test_record;

The array will be expanded into its elements when test_recoxd is referenced in an SQL statement
making :test_recoxrd equivalentto :test_record.i[0], :test_record.i[1].

Null terminated strings in C and C++ embedded SQL applications
C and C++ null-terminated strings have their own SQLTYPE (460/461 for character and 468/469 for
graphic).

C and C++ null-terminated strings are handled differently, depending on the value of the LANGLEVEL
precompiler option. If a host variable of one of these SQLTYPE values and declared length n is specified

Chapter 3. Programming embedded SQL applications 79

within an SQL statement, and the number of bytes (for character types) or double-byte characters (for
graphic types) of data is k, then:

« If the LANGLEVEL option on the PREP command is SAA1 (the default):
For Output:

If...
Then...

k>n
n characters are moved to the target host variable, SQLWARNL1 is set to 'W', and SQLCODE 0
(SQLSTATE 01004). No null-terminator is placed in the string. If an indicator variable was
specified with the host variable, the value of the indicator variable is set to k.

k=n
k characters are moved to the target host variable, SQLWARN1 is set to 'N', and SQLCODE 0
(SQLSTATE 01004). No null-terminator is placed in the string. If an indicator variable was
specified with the host variable, the value of the indicator variable is set to 0.

k<n
k characters are moved to the target host variable and a null character is placed in character k +
1. If an indicator variable was specified with the host variable, the value of the indicator variable
is set to O.

For input:
When the database manager encounters an input host variable of one of these SQLTYPE values that
does not end with a null-terminator, it will assume that character n+1 will contain the null-
terminator character.

« If the LANGLEVEL option on the PREP command is MIA:
For output:

If...
Then...

k>=n
n - 1 characters are moved to the target host variable, SQLWARN1 is set to 'W', and SQLCODE 0
(SOLSTATE 01501). The nth character is set to the null-terminator. If an indicator variable was
specified with the host variable, the value of the indicator variable is set to k.

k+1=n
k characters are moved to the target host variable, and the null-terminator is placed in character

n. If an indicator variable was specified with the host variable, the value of the indicator variable
is setto 0.

k+1<n
k characters are moved to the target host variable, n - k -1 blanks are appended on the right
starting at character k + 1, then the null-terminator is placed in character n. If an indicator
variable was specified with the host variable, the value of the indicator variable is set to 0.

For input:
When the database manager encounters an input host variable of one of these SQLTYPE values that
does not end with a null character, SQLCODE -302 (SQLSTATE 22501) is returned.

As previously defined, when specified in any other SQL context, a host variable of SQLTYPE 460 with
length n is treated as a VARCHAR data type with length n and a host variable of SQLTYPE 468 with length
nis treated as a VARGRAPHIC data type with length n.

C and C++ host variable arrays
You can use C and C++ host variable arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements
that are non-dynamic, when you set the precompiler option COMPATIBILITY_MODE to ORA.

For a host variable array that is declared for an INSERT, UPDATE, or DELETE statement, you must ensure
that entire array elements are initialized with a value. Otherwise, unexpected data can get introduced or
removed from the table.

80 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

When you specify multiple host variable arrays for one database object in an INSERT, UPDATE, or DELETE
statement, you must declare the same cardinality for those arrays. Otherwise, the smallest cardinality
that is declared among the arrays is used.

The total number of rows that are successfully processed is stored in the sqlca.sqlerrd[3] field.
However, the sqlca.sqlerrd[3] field does not represent the number of rows that are committed
successfully in the case of INSERT, UPDATE, or DELETE operations.

The total number of rows that are affected by the INSERT, UPDATE, or DELETE operation is stored in the
sgqlca.sqlerrd[2] field.

In the following example, host variable arrays arr_in1 and arr_in2 demonstrate the use of the
sglca.sqlerrd[2] and sqlca.sqglerrd[3] fields:

// Declaring host variables with cardinality of 5.
EXEC SQL BEGIN DECLARE SECTION;

sqlint32 arr_ini[5];

char arr_in2[5][11];
EXEC SQL END DECLARE SECTION;

)).Populating the arrays.

for (i =0; i < 5; i++)

i
arr_inl[i] = i + 1;
sprintf(arr_in2[i], "hello%d", i + 1);

// A duplicate value is introduced for arr_inl array.
// arr_inl[0]==arr_ini[4]
arr_inl[4] = 1;

// The C1 column in the table tbll requires an unique key
// and doesn’t allow duplicate values.

EXEC SQL INSERT into tbll values (:arr_inl, :arr_in2);
printf(“sqlca.sqlcode = %d\n", sqlca.sqlcode); // -803

// Since arr_ina[0] and arr_inl[4] have identicle values,

// the INSERT operation fails when arr_inl[4] element is

// processed for the INSERT operation (which is 5th row

// insert attempt).

// The INSERT operation successfully processed 4 rows (not committed).
printf(“sqlca.sqlerrd[3] = %d\n", sqlca.sqlerrd[3]); //Prints 4

// The INSERT operation failed and O rows are impacted.
printf(“sqlca.sqlerrd[2] = %d\n", sqlca.sqlerrd[2]); //Prints ©

// No rows are present in tbll as the INSERT operation failed.
// C1 c2

//
// O record(s) selected.

Use of C or C++ host variable arrays in FETCH INTO statements

You can declare a cursor and do a bulk fetch into a variable array until the end of the row is reached. Host
variable arrays that are used in the same FETCH INTO statement must have same cardinality. Otherwise,
the smallest declared cardinality is used for the array.

In one FETCH INTO statement, the maximum number of records that can be retrieved is the cardinality of
the array that is declared. If more rows are available after the first fetch, you can repeat the FETCH INTO
statement to obtain the next set of rows.

In the following example, two host variable arrays are declared; empno and lastname. Each can hold up to
100 elements. Because there is only one FETCH INTO statement, this example retrieves 100 rows, or
less.

// Declaring host variables
EXEC SQL BEGIN DECLARE SECTION;
char empno[100][8];
char lastname[100] [15];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE empcr CURSOR FOR

Chapter 3. Programming embedded SQL applications 81

SELECT empno, lastname FROM employee;
EXEC SQL OPEN empcz;
EXEC SQL WHENEVER NOT FOUND GOTO end_fetch;

while (1)
EXEC SQL FETCH empcr INTO :empno :lastname; /% bulk fetch */
A /* 100 or less rows */
3
end_fetch:

EXEC SQL CLOSE empcr;

Use of C or C++ host variable arrays in INSERT statements
In the following example, host variable arrays arr_in1 and arr_in2 are used for an INSERT statement:

// Declaring host variables.
EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];
char arr_in2[3][11];
EXEC SQL END DECLARE SECTION;

))'Populating the arrays.
for (i =0; 1< 3; i++)
i
arr_ind[i] = 100 + 1i;
sprintf(arr_in2[i], "hello%d", arr_inl[i]);

// The 'arr_inl’' & ‘'arr_in2' are host variable arrays.
EXEC SQL INSERT into tbll values (:arr_inl, :arr_in2);
printf(“sqlca.sqlcode = %d\n”, sqlca.sqlcode); // ©

// The INSERT operation inserted 3 rows without encounting an error.
printf(“sqlca.sqlerrd[3] = %d\n"”, sqlca.sqlerxd[3]); // 3

// The INSERT operation was successful and 3 rows has been stored in database.
printf(“sqlca.sqlerrd[2] = %d\n", sqlca.sqlerxd[2]); // 3

// The tb11 table now contains the following rows:

//C

[l{|e===ceccc00 coocooocooo
// 100 hellol

// 101 hello2

// 102 hello3

Use of C or C++ host variable arrays in UPDATE statements
In the following example, host variable arrays arr_in1 and arr_in2 are used for an UPDATE statement:

// Declaring host variables
EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];
sqlint32 arr_in2[2];
EXEC SQL END DECLARE SECTION;

))-Populating the arrays.
for (i =0; i< 3; it++)

arr_in1[i] = 100 + 1i;

arr_in2[0] = 1000;

arr_in2[1] = 1001;

// Table tbl2 consists of following rows before an update statement is issued.
//C1 c2

[l|==eeemescms coosamosane

//

//

//

// The 'arr_inl’ array is declared with cardinality of 3 for use in the
// SET clause of an UPDATE statement.

// The 'arr_in2' array is declared with cardinality of 2 for use in the
// WHERE clause of an UPDATE statement.

/ The tbl2 table contains 3 rows.

// The following UPDATE statement will affect only 2 rows as per arr_in2
// for column c2 and remaining need to be untouched.

// The 'arr_inl’' array in the following update statement is treated as

82 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

// having cardinality of 2.
EXEC SQL UPDATE tbl2 SET c¢2 = :arr_in2 + c2 where cl = :arr_inl;
printf(“sqglca.sqlcode = %d\n"”, sqlca.sqlcode); // ©

// As there is no error in update statement, sqlca.sqlerrd[3]
// contains rows which are updated successfully.
printf(“sqlca.sqlerrd[3] = %d\n", sqlca.sqlerxd[3]); // 2

// update successful and 2 rows has been updated in database.
printf(“sqlca.sqlerrd[2] = 9%d\n", sqlca.sqlerxd[2]); // 2

// The tbl2 table now contains the following rows:
c1 Cc2

/1
R Tl
// 100 1500
// 101 1502
// 102 503

Use of C or C++ host variable arrays in DELETE statements
In the following example, host variable arrays arr_in1 and arr_in2 are used for a DELETE statement:

// Declaring host variables

EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];

EXEC SQL END DECLARE SECTION;

))-Populating the arrays.
for (i =0; i< 3; i++)

arr_inl[i] = 101 + 1i;

// Initial data in the tbhl2 table:
// C1 c2

//
//
// 104 504

// using array host while executing delete statement in where clause
// The'arr_inl' host variable array is used in the WHERE clause of
// an DELETE statement.

EXEC SQL DELETE FROM tbl2 where cl = :arr_inl;
printf(“sqglca.sqlcode = %d\n”, sqlca.sqlcode); // ©

// delete successful attempted rows are 3
printf(“sqlca.sqlerrd[3] = 9%d\n", sqlca.sqlerrd[3]); // 3

// delete successful and 3 rows has been deleted in database.
printf(“sqlca.sqlerrd[2] = %d\n"”, sqlca.sqlerrd[2]); // 3

// The tbl12 table now contains the following rows:

// C1 c2

[] =mememmenn eeeioaes
// 100 500
// 104 504

Restrictions with C or C++ host variable array support

The use of a C or C++ host variable array in embedded SQL applications is subject to the following
restrictions:

« Host variables arrays are supported by C or C++ embedded SQL applications that connect to Db2
servers.

« Host variable arrays must be declared in the DECLARE SECTION with exact size of the array elements
(cardinality).

« Specific array element cannot be specified in a SQL statement.

« The INSERT, UPDATE, or DELETE operation with host variable arrays is run as an atomic operation on
the database server. If any array element causes an SQL_ERROR, current transaction is rolled back.

« Use of host variable arrays are not supported by dynamically prepared INSERT, UPDATE, or DELETE
statements.

« Maximum size of array element (cardinality) is 32672.
« The following C and C++ data types are not supported for use with host variable arrays:

Chapter 3. Programming embedded SQL applications 83

— Another host variable array (nesting)
- BLOB

— BLOB file reference

— BLOB locator variable

- CLOB

— CLOB file reference

— CLOB locator variable

— User-defined data type

- XML

« FOR N ROWS clause can be used to specify the cardinality for INSERT and MERGE statement, where N
can be an integer or a host variable of type int or short. If array host variables are used, it will take the
minimum cardinality value among all the host variables that are used in the SQL.

« Host variable array support is not provided for Db2 for z/OS® and Db2 for i servers.

Structure arrays
You can use structure arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements that are non-
dynamic, when you set the precompiler option COMPATIBILITY_MODE to ORA.

You can use structure arrays to store multiple column data in a structure form.

For a structure array that is declared for an INSERT, UPDATE, or DELETE statement, you must ensure that
all array elements are initialized with a value. Otherwise, unexpected data can get introduced or removed
from the table.

The total number of rows that are successfully processed is stored in the sqlca.sqlerrd[3] field.
However, the sqlca.sqlerrd[3] field does not represent the number of rows that are committed
successfully in the case of INSERT, UPDATE, or DELETE operations.

The total number of rows that are impacted by the INSERT, UPDATE, or DELETE operation is stored in the
sqlca.sqlerrd[2] field.

In one FETCH INTO statement, the maximum number of records that can be retrieved is the cardinality of
the array that is declared. If more rows are available after the first fetch, you can repeat the FETCH INTO
statement to obtain the next set of rows.

A structure array can be used to store multiple column data in a structure form when a FETCH INTO
statement is run. In the following example, a structure array is used for a FETCH INTO statement:

// Declare structure array with cardinality of 3.
EXEC SQL BEGIN DECLARE SECTION;
struct MyStruct

int c1;
char c2[11];
t MyStructVar[3];
EXEC SQL DECLARE cur CURSOR FOR
SELECT empno, lastname FROM employee;
EXEC SQL END DECLARE SECTION;

)).MyStrutVar is a structure array for host variables
EXEC SQL FETCH cur INTO :MyStructVar;

You can use a structure array to store multiple rows for an INSERT statement. In the following example, a
structure array is used for an INSERT statement:

// Declare structure array with cardinality of 3.
EXEC SQL BEGIN DECLARE SECTION;
typedef struct _st_type {
int id;
char name[21];
t st_type;

st_type st[3];
EXEC SQL END DECLARE SECTION;

84 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

// Populating the array.
for(i=0; i<3; i++)

memset(&st[i], Ox00, sizeof(st_type));

if(i==0) § st[i].id 100; strcpy(st[i].name, "hellol");}
if(i==1) § st[i].id 101; strcpy(st[i].name, "hello2");}%
if(i==2) { st[i].id = 102; strcpy(st[i].name, "hello3");}

// The structure elements must be in
// the same order as that of the table elements.

//

EXEC SQL INSERT INTO tbl values (:st);

// Check for SQLCODE.

printf(“sglca.sqlcode = %d\n”, sqglca.sqlcode); // ©

// The INSERT operation inserted 3 rows without encounting an error
printf(“sqlca.sqlerrd[3] = %d\n"”, sqlca.sqlerxd[3]); // 3

// The INSERT operation was successful and 3 rows has been stored in database.
printf(“sqlca.sqlerrd[2] = %d\n", sqlca.sqlerrd[2]); // 3

// The tb11 table now contains the following rows:
c2

// Cl

[] =mememmmnas oo
// 100 hellol

// 101 hello2

// 102 hello3

Restrictions with the structure array support
The use of the structure array in embedded SQL applications is subject to the following restrictions:

« Structure arrays are supported by C or C++ embedded SQL applications that connect to Db2 servers.

« Structure arrays must be declared in the DECLARE SECTION with exact size of the array elements
(cardinality).

« Specific array element cannot be specified in a SQL statement.

« The INSERT, UPDATE, or DELETE operation with structure arrays is run as an atomic operation on the
database server. If any array element causes an SQL_ERROR, current transaction is rolled back.

« Use of structure arrays are not supported by dynamically prepared INSERT, UPDATE, or DELETE
statements.

« When structure array is specified, only one structure array can be declared in an embedded SQL
application.

= You cannot create a structure array within another structure array (for example, nested structure
arrays).

« Maximum size of array element (cardinality) is 32672.
« The following C and C++ data types are not supported for use with structure arrays:

- BLOB

— BLOB file reference

— BLOB locator variable
- CLOB

— CLOB file reference

— CLOB locator variable
— User-defined data type
- XML

Indicator variable arrays
You can use indicator arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements that are non-
dynamic, when you set the precompiler option COMPATIBILITY_MODE to ORA.

An indicator variable array is a short data type variable that is associated with a specific host variable
array or a structure array. Each indicator variable element in the indicator variable array can contain 0 or
-1 value that indicates whether an associated host variable or structure contains a null value. If an
indicator variable value is less than zero, it identifies the corresponding array value as NULL.

Chapter 3. Programming embedded SQL applications 85

In FETCH INTO statements, you can use indicator variable arrays to determine whether any elements of
array variables are null.

You can use the keyword INDICATOR to identify an indicator variable, as shown in the example.

In the following example, the indicator variable array that is called bonus_ind is declared. The bonus_ind
indicator variable array can have up to 100 elements, the same cardinality as the bonus array variable.
When the data is being fetched, if the value of bonus is NULL, the value in bonus_ind is negative.

EXEC SQL BEGIN DECLARE SECTION;
char empno[100][8];
char lastname[100] [15];
short edlevel[100];
double bonus[100];
short bonus_ind[1600];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE empcr CURSOR FOR
SELECT empno, lastname, edlevel, bonus
FROM employee
WHERE workdept = 'D21';

EXEC SQL OPEN empcr;
EXEC SQL WHENEVER NOT FOUND GOTO end_fetch;

while (1)
EXEC SQL FETCH empcr INTO :empno :lastname :edlevel,
:bonus INDICATOR :bonus_ind

3
end_fetch:
EXEC SQL CLOSE empcr;

Instead of being identified by the INDICATOR keyword, an indicator variable can immediately follow its
corresponding host variable, as shown in the following example:

EXEC SQL FETCH empcr INTO :empno :lastname :edlevel, :bonus:bonus_ind

In the following example, the indicator variable arrays ind_in1 and ind_in2 are declared. It can have up to
three elements, the same cardinality as the arr_in1 and arr_in2 array variables. If the value of ind_in1 or
ind_in2 is negative, the NULL value is inserted for the corresponding arr_in1 or arr_in2 value.

// Declare host & indicator variablesof array size 3
EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];
char arr_in2[3][11];
short ind_in1[3]; // indicator array size is same as host
// variable's array size
short ind_in2[3]; // note here indicator array size is greater
/ than host variable’'s array size
EXEC SQL END DECLARE SECTION;

]].Populating the arrays.
for (i =0; i < 3; i++)

arr_in1[i] = i + 1;
sprintf(arr_in2[i], "hello%d", arr_inl[i]);

ind_inl[0] = 0;
ind_in1[1] = SQL_NULL_DATA; // Mark it as a NULL data
ind_inl[2] = 0;
ind_in2[0] = 0;
ind_in2[1] = 0;
ind_in2[2] = SQL_NULL_DATA; // Mark it as a NULL data

// ‘arr_inl’ & ‘arr_in2' are host variable arrays
// ‘ind_inl’ & ‘ind_in2’' are indicator variable arrays
EXEC SQL INSERT into tbll values (:arr_inl :ind_inl, :arr_in2 :ind_in2);

// The tbll table now contains the following rows:
c1

1 hellol
hello2 // cl is set to NULL as indicator is set
3 // c2 is set to NULL as indicator is set

If the cardinality of indicator variable array does not match the cardinality of the corresponding host
variable array, an error is returned.

86 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

In the following example, the indicator structure array MyStructiInd is declared.

// declaring indicator structure array of size 3
EXEC SQL BEGIN DECLARE SECTION;

struct MyStructInd
1

short ci1_ind;
short c2_ind;
t MyStructVarInd[3];
EXEC SQL END DECLARE SECTION;

// using structure array host variables & indicators structure type
// array while executing FETCH statement

// '‘MyStructVar’ is structure array for host variables

// '‘MyStructVarInd’' is structure array for indicators

EXEC SQL FETCH cur INTO :MyStructVar :MyStructVarInd;

Important: The following conditions must be met when the indicator structure array is used.

The cardinality of the indicator structure array must be equal to or greater than the cardinality of the
structure array.

All members in the indicator structure array must use the short data type.

The number of members in the indicator structure array must match the number of members in the
corresponding structure array.

For INSERT, UPDATE and DELETE operations, application must ensure that all indicator variables are
initialized with either 0 or SQL_NULL_DATA (-1).

The total number of rows that are successfully processed is stored in the sqlca.sqlerrd[3] field.
However, the sqlca.sqlerrd[3] field does not represent successfully committed number of rows in
the case of INSERT, UPDATE, or DELETE operations. The total number of rows that are impacted by the
INSERT, UPDATE, or DELETE operation is stored in the sqlca.sqlerrd[2] field.

Host variables in COBOL

Host variables are COBOL language variables that are referenced within SQL statements. Host variables
allow an application to exchange data with the database manager.

After the application is precompiled, host variables are used by the compiler as any other COBOL variable.
Follow the rules described in the following sections when naming, declaring, and using host variables.

Host variable names in COBOL
The SQL precompiler identifies host variables by their declared name.

You must comply with the following rules when declaring host variable names:

Specify variable names up to 255 characters in length.

Begin host variable names with prefixes other than SQL, sql, DB2, or db2, which are reserved for
system use.

FILLER items using the declaration syntaxes are permitted in group host variable declarations, and will
be ignored by the precompiler. However, if you use FILLER more than once within an SQL DECLARE
section, the precompiler fails. You can not include FILLER items in VARCHAR, LONG VARCHAR,
VARGRAPHIC or LONG VARGRAPHIC declarations.

You can use hyphens in host variable names.

SQL interprets a hyphen enclosed by spaces as a subtraction operator. Use hyphens without spaces in
host variable names.

The REDEFINES clause is permitted in host variable declarations.
Level-88 declarations are permitted in the host variable declare section, but are ignored.

Chapter 3. Programming embedded SQL applications 87

Declare section for host variables in COBOL embedded SQL applications

You must use an SQL declare section must be used to identify host variable declarations. The SQL declare
section alerts the precompiler to any host variables that can be referenced in subsequent SQL
statements.

For example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

77 dept pic s9(4) comp-5.
01 userid pic x(8).
01 passwd.

EXEC SQL END DECLARE SECTION END-EXEC.
The COBOL precompiler only recognizes a subset of valid COBOL declarations.

Example: SQL declare section template for COBOL embedded SQL applications
When you are creating an embedded SQL application in COBOL, there is a template that you can use to
declare your host variables and data structures.

The following code is a sample SQL declare section with a host variable declared for each supported SQL
data type.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
*

01 age PIC S9(4) COMP-5. /% SQL type 500 */
01 divis PIC S9(9) COMP-5. /* SQL type 496 %/
01 salary PIC S9(6)V9(3) COMP-3. /* SQL type 484 %/
01 bonus USAGE IS COMP-1. /* SQL type 480 %/
01 wage USAGE IS COMP-2. /* SOL type 480 x/
01 nm PIC X(5). /* SQL type 452 %/
01 varchar.

49 leng PIC S9(4) COMP-5. /* SQL type 448 x/

49 strg PIC X(14). /* SQL type 448 x/
01 longvchar.

49 len PIC S9(4) COMP-5. /* SQL type 456 %/

49 str PIC X(6027). /* SQL type 456 %/
01 MY-CLOB USAGE IS SQL TYPE IS CLOB(1M). /* SQL type 408 x/
01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS CLOB-LOCATOR. /* SQL type 964 x/
01 MY-CLOB-FILE USAGE IS SQL TYPE IS CLOB-FILE. /* SQL type 920 %/
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(1M). /* SQL type 404 %/
01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS BLOB-LOCATOR. /* SQL type 960 %/
01 MY-BLOB-FILE USAGE IS SQL TYPE IS BLOB-FILE. /* SQL type 916 %/
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(1M). /* SQL type 412 %/
01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS DBCLOB-LOCATOR. /% SQL type 968 %/
01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS DBCLOB-FILE. /* SQL type 924 %/
01 MY-PICTURE PIC G(16000) USAGE IS DISPLAY-1. /* SQL type 464 %/
01 dt PIC X(10). /* SQL type 384 x/
01 tm PIC X(8). /* SQL type 388 %/
01 tmstmp PIC X(26). /* SQL type 392 %/
01 wage-ind PIC S9(4) COMP-5. /* SQL type 464 %/

*
EXEC SQL END DECLARE SECTION END-EXEC.

BINARY/COMP-4 data types in COBOL embedded SQL applications

The Db2 COBOL precompiler supports the use of BINARY, COMP, and COMP-4 data types wherever
integer host variables and indicators are permitted. If you use these data types, you must ensure that the
target COBOL compiler views, or can be made to view, the BINARY, COMP, or COMP-4 data types as
equivalent to the COMP-5 data type.

In the examples provided, such host variables and indicators are shown with the type COMP-5. Target
compilers supported by Db2 that treat COMP, COMP-4, BINARY COMP and COMP-5 as equivalent are:

« IBM COBOL Set for AIX
« Micro Focus COBOL for AIX

SQLSTATE and SQLCODE Variables in COBOL embedded SQL application

To handle errors or debug your embedded SQL application, you should test the values of the SQLCODE or
SQLSTATE variable. You can return these values as output parameters or as part of a diagnostic message
string, or you can insert these values into a table to provide basic tracing support.

88 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

When using the LANGLEVEL precompile option with a value of SQL92E, the following two declarations can
be included as host variables:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 SQLSTATE PIC X(5).
01 SQLCODE PIC S9(9) USAGE COMP.

I.EXEC SQL END DECLARE SECTION END-EXEC.

If neither of these is specified, the SQLCODE declaration is assumed during the precompile step. The
SQLCODE and SQLSTATE variables can be declared using level 01 (as shown in the previous example) or
level 77. Note that when using this option, the INCLUDE SQLCA statement should not be specified.

For applications made up of multiple source files, the SQLCODE and SQLSTATE declarations can be
included in each source file as shown previously.

Declaration of numeric host variables in COBOL embedded SQL applications

Numeric host variables that you declare in your embedded COBOL application are treated as if they were
declared in a COBOL program. You can use host variables to exchange data between the embedded
application and the database manager.

The syntax for numeric host variables is:

/S
»t 01 j— variable-name tPICTURE picture-string —»
77 PIC —J

»
»

| 1
COMP-3 ——
L C Isj — COMPUTATIONAL-3 —
USAGE

M——-— COMP-5 ———

“— COMPUTATIONAL-5 —/

.

A 4

L [P
VALUE value

Notes:
1 An alternative for COMP-3 is PACKED-DECIMAL.

Floating point

»t 01 j— variable-name >
" L Q_J
USAGE

COMPUTATIONAL-1

COMP-1 J

COMPUTATIONAL-2

.

1
L e
2 VALUE value

COMP-2

Notes:

1 REAL (SQLTYPE 480), Length 4
2 DOUBLE (SQLTYPE 480), Length 8

Numeric host variable considerations:

Chapter 3. Programming embedded SQL applications 89

1. Picture-string must have one of the following forms:

« S9(M)V9(n)

« S9(M)V

« S9(m)
2. Nines can be expanded (for example., "S999" instead of S9(3)")
3. mand n must be positive integers.

Declaration of fixed length and variable length character host variables in COBOL embedded SQL
applications

Fixed-length and variable-length character host variables that you declare in your embedded COBOL
application are treated as if they were declared in a COBOL program. You can use host variables to
exchange data between the embedded application and the database manager.

The syntax for character host variables is:

Fixed Length

IS
r T picture-string —»

»t 01 j— variable-name tPICTURE
77 PIC —J

.

L "
VALUE value

Variable length

»w— 01 — variable-name — .-»«

IS
»w— 49 — identifier-1 ﬂCTURE r j S94) —»
PIC —j

»
»

A 4

1 L COMP-5 j—j
L E IS] COMPUTATIONAL-5
USAGE

.

A 4

L P
VALUE value

"
»— 49 — identifier-2 tPICTURE picture-string —»
PIC —j

L P
VALUE value

Character host variable consideration:

90 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

1. Picture-string must have the form X(m). Alternatively, X's can be expanded (for example, "XXX" instead

of "X(3)").
2. mis from 1 to 254 for fixed-length strings.
3. mis from 1 to 32 700 for variable-length strings.

4. If mis greater than 32 672, the host variable will be treated as a LONG VARCHAR string, and its use
might be restricted.

5. Use X and 9 as the picture characters in any PICTURE clause. Other characters are not allowed.

6. Variable-length strings consist of a length item and a value item. You can use acceptable COBOL
names for the length item and the string item. However, refer to the variable-length string by the
collective name in SQL statements.

7. In a CONNECT statement, such as the following example, COBOL character string host variables
dbname and userid will have any trailing blanks removed before processing:

EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

However, because blanks can be significant in passwords, the p-woxd host variable should be
declared as a VARCHAR data item, so that your application can explicitly indicate the significant
password length for the CONNECT statement as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 dbname PIC X(8).
01 userid PIC X(8).
01 p-woxd.

49 L PIC S9(4) COMP-5.

49 D PIC X(18).
EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

MOVE "sample" TO dbname.

MOVE "userid" TO userid.

MOVE "password" TO D OF p-word.

MOVE 8 TO L of p-wozxd.
EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

Declaration of fixed length and variable length graphic host variables in COBOL embedded SQL
applications

Fixed-length and variable-length graphic host variables that you declare in your embedded COBOL
application are treated as if they were declared in a COBOL program. You can use host variables to
exchange data between the embedded application and the database manager.

Following is the syntax for graphic host variables.

Fixed Length

IS
r j picture-string — USAGE —»

»t 01 j— variable-name tPICTURE
77 PIC —J

IS
>—g DISPLAY-1 .
L i
VALUE —g value

Variable Length

»w— 01 — variable-name — .-»«

Chapter 3. Programming embedded SQL applications 91

IS
»— 49 — identifier-1 tPICTURE I_ T S9(4) —»
PIC —J

»
»

A 4

1 L COMP-5 ﬁ—j
L C IS j COMPUTATIONAL-5
USAGE

.

A 4

L A

VALUE value

r IST IS
picture-string — USAGE —u>

»w— 49 — [dentifier-2 tPICTURE
PIC —J

»— DISPLAY-1

L P
VALUE value

Graphic Host Variable Considerations:

1. Picture-string must have the form G(m). Alternatively, G's can be expanded (for example, "GGG"
instead of "G(3)").

2. mis from 1 to 127 for fixed-length strings.

3. mis from 1 to 16 350 for variable-length strings.

4. If mis greater than 16 336, the host variable will be treated as a LONG VARGRAPHIC string, and its
use might be restricted.

Declaration of large object type host variables in COBOL embedded SQL applications

Large object (LOB) type host variables that you declare in your embedded COBOL application are treated
as if they were declared in a COBOL program. You can use host variables to exchange data between the
embedded application and the database manager.

The syntax for declaring large object (LOB) host variables in COBOL is:

»— 01 — variable-name SQLTYPE IS BLOB (—
L USAGE M— CLOB —
Is pBCLOB —/
»— length)— . >«
M

LOB host variable considerations:

1. For BLOB and CLOB 1 <= lob-length <=2 147 483 647.

2. For DBCLOB 1 <= lob-length <=1 073 741 823.

3. SQLTYPE IS, BLOB, CLOB, DBCLOB, K, M, G can be in either uppercase, lowercase, or mixed.
4. Initialization within the LOB declaration is not permitted.

92 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

5. The host variable name prefixes LENGTH and DATA in the precompiler generated code.
BLOB example:

Declaring:

01 MY-BLOB USAGE IS SQL TYPE IS BLOB(2M).

Results in the generation of the following structure:

01 MY-BLOB.
49 MY-BLOB-LENGTH PIC S9(9) COMP-5.
49 MY-BLOB-DATA PIC X(2097152).

CLOB example:
Declaring:

01 MY-CLOB USAGE IS SQL TYPE IS CLOB(125M).

Results in the generation of the following structure:

01 MY-CLOB.
49 MY-CLOB-LENGTH PIC S9(9) COMP-5.
49 MY-CLOB-DATA PIC X(131072000).

DBCLOB example:

Declaring:

01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(30000) .

Results in the generation of the following structure:

01 MY-DBCLOB.
49 MY-DBCLOB-LENGTH PIC S9(9) COMP-5.
49 MY-DBCLOB-DATA PIC G(30000) DISPLAY-1.

Declaration of large object locator type host variables in COBOL embedded SQL applications

Large object (LOB) locator type host variables that you declare in your embedded COBOL application are
treated as if they were declared in a COBOL program. You can use host variables to exchange data
between the embedded application and the database manager.

The syntax for declaring large object (LOB) locator host variables in COBOL is:

»w— 01 — variable-name L SQLTYPEIS —»
USAGE

BLOB-LOCATOR . >
CLOB-LOCATOR ?
DBCLOB-LOCATOR
LOB locator host variable considerations:

1. SQL TYPE IS, BLOB-LOCATOR, CLOB-LOCATOR, DBCLOB-LOCATOR can be either uppercase,
lowercase, or mixed.

IS

2. Initialization of locators is not permitted.
BLOB locator example (other LOB locator types are similar):

Declaring:

01 MY-LOCATOR USAGE SQL TYPE IS BLOB-LOCATOR.

Chapter 3. Programming embedded SQL applications 93

Results in the generation of the following declaration:

01 MY-LOCATOR PIC S9(9) COMP-5.

Declaration of file reference type host variables in COBOL embedded SQL applications

File reference type host variables that you declare in your embedded COBOL application are treated as if
they were declared in a COBOL program. You can use host variables to exchange data between the
embedded application and the database manager.

The syntax for declaring file reference host variables in COBOL is:

»— 01 — variable-name L SQLTYPE IS BLOB-FILE
USAGE F CLOB-FILE g_’
IS DBCLOB-FILE

— . >«

« SQLTYPE IS, BLOB-FILE, CLOB-FILE, DBCLOB-FILE can be either uppercase, lowercase, or mixed.
BLOB file reference example (other LOB types are similar):

Declaring:

01 MY-FILE USAGE IS SQL TYPE IS BLOB-FILE.

Results in the generation of the following declaration:

01 MY-FILE.
49 MY-FILE-NAME-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-FILE-OPTIONS PIC S9(9) COMP-5.
49 MY-FILE-NAME PIC X(255).

Grouping data items using REDEFINES in COBOL embedded SQL applications

You can use the REDEFINES clause when declaring host variables. If you declare a member of a group
data item with the REDEFINES clause, and that group data item is referred to as a whole in an SQL
statement, any subordinate items containing the REDEFINES clause are not expanded.

For example:

01 fool.

10 a pic s9(4) comp-5.

10 al redefines a pic x(2).
10 b pic x(10).

Referring to fool in an SQL statement as follows:
. INTO :fool ...

This statement is equivalent to:
. INTO :fool.a, :fool.b ...

That is, the subordinate item al that is declared with the REDEFINES clause, is not automatically
expanded out in such situations. If al is unambiguous, you can explicitly refer to a subordinate with a
REDEFINES clause in an SQL statement, as follows:

. INTO :fool.al ...

or

. INTO :al ...

94 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Japanese or Traditional Chinese EUC, and UCS-2 considerations for COBOL embedded SQL
applications

Any graphic data that is sent from your application running under an eucJp or eucTW code set, or
connected to a UCS-2 database, is tagged with the UCS-2 code page identifier. Your application must
convert a graphic-character string to UCS-2 before sending it to the database server.

Likewise, graphic data retrieved from a UCS-2 database by any application, or from any database by an
application running under an EUC eucJP or eucTW code page, is encoded using UCS-2. This requires your
application to convert from UCS-2 to your application code page internally, unless the user is to be
presented with UCS-2 data.

Your application is responsible for converting to and from UCS-2 because this conversion must be
conducted before the data is copied to, and after it is copied from, the SQLDA. Db2 does not supply any
conversion routines that are accessible to your application. Instead, you must use the system calls
available from your operating system. In the case of a UCS-2 database, you might also consider using the
VARCHAR and VARGRAPHIC scalar functions.

Binary storage of variable values using the FOR BIT DATA clause in COBOL embedded SQL
applications

You can declare certain database columns using the FOR BIT DATA clause. These columns, which
generally contain characters, are used to hold binary information.

The CHAR(n), VARCHAR, LONG VARCHAR, and BLOB data types are the COBOL host variable types that
can contain binary data. You must use these data types when working with columns with the FOR BIT
DATA attribute.

Note: The LONG VARCHAR data type is deprecated and might be removed in a future release.

Host structure support in the declare section of COBOL embedded SQL applications

In an application program, a host structure contains a list of host variables that can be referred to by
embedded SQL statements. The COBOL precompiler supports declarations of group data items in the
host variable declare section.

Host structure support provides a shorthand for referring to a set of elementary data items in an SQL
statement. For example, the following group data item can be used to access some of the columns in the
STAFF table of the SAMPLE database:

01 staff-recorxd.

05 staff-id pic s9(4) comp-5.
05 staff-name.
49 1 pic s9(4) comp-5.
49 d pic x(9).

05 staff-info.
10 staff-dept pic s9(4) comp-5.
10 staff-job pic x(5).

Group data items in the declare section can have any of the valid host variable types described previously
as subordinate data items. This includes all numeric and character types, as well as all large object types.
You can nest group data items up to 10 levels. Note that you must declare VARCHAR character types with
the subordinate items at level 49, as in the example shown previously. If they are not at level 49, the
VARCHAR is treated as a group data item with two subordinates, and is subject to the rules of declaring
and using group data items. In the previous example, staff-infois a group data item, whereas staff-
name is a VARCHAR. The same principle applies to LONG VARCHAR, VARGRAPHIC, and LONG
VARGRAPHIC. You may declare group data items at any level between 02 and 49.

You can use group data items and their subordinates in four ways:
Method 1.

The entire group may be referenced as a single host variable in an SQL statement:

EXEC SQL SELECT id, name, dept, job
INTO :staff-record
FROM staff WHERE id = 10 END-EXEC.

Chapter 3. Programming embedded SQL applications 95

The precompiler converts the reference to staff-record into a list, separated by commas, of all the
subordinate items declared within staff-recozxd. Each elementary item is qualified with the group
names of all levels to prevent naming conflicts with other items. This is equivalent to the following
method.

Method 2.

The second way of using group data items:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-record.staff-id,
:staff-record.staff-name,
:staff-record.staff-info.staff-dept,
:staff-record.staff-info.staff-job
FROM staff WHERE id = 10 END-EXEC.

Note: The reference to staff-id is qualified with its group name using the prefix staff-record., and
not staff-id of staff-recoxrdasin pure COBOL.

Assuming there are no other host variables with the same names as the subordinates of staff-recozrd,
the preceding statement can also be coded as in method 3, eliminating the explicit group qualification.

Method 3.

Here, subordinate items are referenced in a typical COBOL fashion, without being qualified to their
particular group item:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-id,
:staff-name,
:staff-dept,
:staff-job
FROM staff WHERE id = 10 END-EXEC.

As in pure COBOL, this method is acceptable to the precompiler as long as a given subordinate item can
be uniquely identified. If, for example, staff-job occurs in more than one group, the precompiler issues
an error indicating an ambiguous reference:

SQLOO88N Host variable "staff-job" is ambiguous.

Method 4.

To resolve the ambiguous reference, you can use partial qualification of the subordinate item, for
example:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-id,
:staff-name,
:staff-info.staff-dept,
:staff-info.staff-job
FROM staff WHERE id = 10 END-EXEC.

Because a reference to a group item alone, as in method 1, is equivalent to a comma-separated list of its
subordinates, there are instances where this type of reference leads to an error. For example:

EXEC SQL CONNECT TO :staff-record END-EXEC.

Here, the CONNECT statement expects a single character-based host variable. By giving the staff-
record group data item instead, the host variable results in the following precompile-time error:

SQLOO87N Host variable "staff-record" is a structure used where
structure references are not permitted.

96 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Other uses of group items that cause an SQLO087N to occur include PREPARE, EXECUTE IMMEDIATE,
CALL, indicator variables, and SQLDA references. Groups with only one subordinate are permitted in such
situations, as are references to individual subordinates, as in methods 2, 3, and 4 shown previously.

Null-indicator variables and null or truncation indicator variable tables in COBOL embedded SQL
applications

To receive null values in embedded SQL applications, you must associate null-indicator variables with
declared host variables in your embedded SQL applications. A null-indicator variable is shared by both the
database manager and the host application.

Null-indicator variables in COBOL must be declared asa PIC S9(4) COMP-5 data type. The COBOL
precompiler supports the declaration of null-indicator variable tables (known as indicator tables), which
are convenient to use with group data items. They are declared as follows:

01 <indicator-table-name>.
05 <indicator-name> pic s9(4) comp-5
occurs <table-size> times.

For example:

01 staff-indicator-table.
05 staff-indicator pic s9(4) comp-5
occurs 7 times.

This indicator table can be used effectively with the first format of group item reference shown previously:

EXEC SQL SELECT id, name, dept, job
INTO :staff-record :staff-indicator
FROM staff WHERE id = 10 END-EXEC.

Here, the precompiler detects that staff-indicator was declared as an indicator table, and expands it
into individual indicator references when it processes the SQL statement. staff-indicatoxr(l) is
associated with staff-id of staff-record, staff-indicator(2) is associated with staff-name of
staff-record, and soon.

Note: If there are k more indicator entries in the indicator table than there are subordinates in the data
item (for example, if staff-indicator has 10 entries, making k=6), the k extra entries at the end of the
indicator table are ignored. Likewise, if there are k fewer indicator entries than subordinates, the last k
subordinates in the group item do not have indicators associated with them. Note that you can refer to
individual elements in an indicator table in an SQL statement.

Host variables in FORTRAN
Host variables are FORTRAN language variables that are referenced within SQL statements. Host
variables allow an application to exchange data with the database manager.

After the application is precompiled, host variables are used by the compiler as any other FORTRAN
variable. Follow the rules described in the following sections when naming, declaring, and using host
variables.

Host variable names in FORTRAN embedded SQL applications

The SQL precompiler identifies host variables by their declared name.

When you declare a host variable name, you must consider the following restrictions:

« Specify variable names up to 255 characters in length.

« Begin host variable names with prefixes other than SQL, sql, DB2, or db2, which are reserved for
system use.

Declare section for host variables in FORTRAN embedded SQL applications

You must use an SQL declare section must be used to identify host variable declarations. The declare
section alerts the precompiler to any host variables that can be referenced in subsequent SQL
statements.

Chapter 3. Programming embedded SQL applications 97

The FORTRAN precompiler only recognizes a subset of valid FORTRAN declarations as valid host variable
declarations. These declarations define either numeric or character variables. A numeric host variable can
be used as an input or output variable for any numeric SQL input or output value. A character host variable
can be used as an input or output variable for any character, date, time or timestamp SQL input or output
value. The programmer must ensure that output variables are long enough to contain the values that they
will receive.

Example: SQL declare section template for FORTRAN embedded SQL applications
When you are creating an embedded SQL application in FORTRAN, there is a template that you can use to
declare your host variables and data structures.

The following example is a sample SQL declare section with a host variable declared for each supported

data type:
EXEC SQL BEGIN DECLARE SECTION
INTEGER*2 AGE /26/ /* SQL type 500 %/
INTEGER*4 DEPT /* SQL type 496 x/
REAL*4 BONUS /* SQL type 480 %/
REAL*8 SALARY /* SQL type 480 %/
CHARACTER MI /* SQL type 452 x/
CHARACTER%112 ADDRESS /* SQL type 452 %/
SQL TYPE IS VARCHAR (512) DESCRIPTION /* SQL type 448 %/
SQL TYPE IS VARCHAR (32000) COMMENTS /* SQL type 448 x/
SQL TYPE IS CLOB (1M) CHAPTER /* SQL type 408 %/
SQL TYPE IS CLOB_LOCATOR CHAPLOC /* SQL type 964 %/
SQL TYPE IS CLOB_FILE CHAPFL /* SQL type 920 x/
SQL TYPE IS BLOB (1M) VIDEO /* SQL type 404 %/
SQL TYPE IS BLOB_LOCATOR VIDLOC /* SQL type 960 %/
SQL TYPE IS BLOB_FILE VIDFL /* SQL type 916 x/
CHARACTER%10 DATE /* SQL type 384 %/
CHARACTER*8 TIME /* SQL type 388 %/
CHARACTER*26 TIMESTAMP /* SQL type 392 %/
INTEGER*2 WAGE_IND /* SQL type 500 %/

EXEC SQL END DECLARE SECTION

SQLSTATE and SQLCODE variables in FORTRAN embedded SQL application

To handle errors or debug your embedded SQL application, you should test the values of the SQLCODE or
SQLSTATE variable. You can return these values as output parameters or as part of a diagnostic message
string, or you can insert these values into a table to provide basic tracing support.

When using the LANGLEVEL precompile option with a value of SQL92E, the following two declarations can
be included as host variables:

EXEC SQL BEGIN DECLARE SECTION;
CHARACTER*5 SQLSTATE
INTEGER SQLCOD

EXEC SQL END DECLARE SECTION
The SQLCOD declaration is assumed during the precompile step. The variable named SQLSTATE can also
be SQLSTA. Note that when using this option, the INCLUDE SQLCA statement should not be specified.

For applications that contain multiple source files, the declarations of SQLCOD and SQLSTATE can be
included in each source file, as shown previously.

Declaration of numeric host variables in FORTRAN embedded SQL applications

Numeric host variables that you declare in your embedded FORTRAN application are treated as if they
were declared in a FORTRAN program. Host variables allow you to exchange data between the embedded
application and the database manager.

The following illustrates the syntax for numeric host variables in FORTRAN.

98 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

INTEGER*2 ,L varname] >«

M——INTEGER*4 —— L / initial-value / J

M———>REAL*4 ——

M REAL*8 ———

“— DOUBLE PRECISION —/

Numeric host variable considerations:

1. REAL*8 and DOUBLE PRECISION are equivalent.
2. Use an E rather than a D as the exponent indicator for REAL*8 constants.

Declaration of fixed-length and variable length character host variables in FORTRAN embedded SQL
applications

You must declare character host variables when you program an embedded SQL application in FORTRAN.
Host variables are treated like FORTRAN variables, and allow for the exchange of data between the
embedded application and the database manager.

The syntax for fixed-length character host variables is:

Fixed length
Syntax for character host variables in FORTRAN: fixed length

»— CHARACTER varname] >«

L *n J L / initial-value / —J

Following is the syntax for variable-length character host variables.

Variable length

»— SQLTYPEISVARCHAR — (length) g!a;ejk

Character host variable considerations:

1. *n has a maximum value of 254.
2. When length is between 1 and 32 672 inclusive, the host variable has type VARCHAR(SQLTYPE 448).

3. When length is between 32 673 and 32 700 inclusive, the host variable has type LONG
VARCHAR(SQLTYPE 456).

4. Initialization of VARCHAR and LONG VARCHAR host variables is not permitted within the declaration.

VARCHAR example:

Declaring:

sql type is varchar(1000) my_varchar

Results in the generation of the following structure:

character my_varchar(1000+2)
integerx2 my_varchar_length
character my_varchar_data(1000)
equivalence(my_varchar(1),
+ my_varchar_length)

Chapter 3. Programming embedded SQL applications 99

equivalence(my_varchar(3),
+ my_varchar_data)

The application can manipulate both my_varchar_length and my_varchar_data; for example, to set
or examine the contents of the host variable. The base name (in this case, my_vaxrchax), is used in SQL
statements to refer to the VARCHAR as a whole.

LONG VARCHAR example:

Declaring:

sql type is varchar(10000) my_lvarchar

Results in the generation of the following structure:

character my_lvarchar(10000+2)
integer*2 my_lvarchar_length
character my_lvarchar_data(10000)
equivalence(my_lvarchar(1),

+ my_lvarchar_length)
equivalence(my_lvarchar(3),
+ my_lvarchar_data)

The application can manipulate both my_lvarchar_length and my_lvarchaxr_data; for example, to
set or examine the contents of the host variable. The base name (in this case, my_lvarchar), is used in
SQL statements to refer to the LONG VARCHAR as a whole.

Note: In a CONNECT statement, such as in the following example, the FORTRAN character string host
variables dbname and userid will have any trailing blanks removed before processing.

EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

However, because blanks can be significant in passwords, you should declare host variables for
passwords as VARCHAR, and have the length field set to reflect the actual password length:

EXEC SQL BEGIN DECLARE SECTION
character*8 dbname, userid
sql type is varchar(18) passwd
EXEC SQL END DECLARE SECTION
characterx18 passwd_string
equivalence(passwd_data,passwd_string)
dbname = 'sample'
userid = 'userid'
passwd_length= 8
passwd_string = 'password'
EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

Declaration of large object type host variables in FORTRAN embedded SQL applications

Large object (LOB) host variables that you declare in your embedded FORTRAN application are treated as
if they were declared in a FORTRAN program. Host variables allow you to exchange data between the
embedded application and the database manager.

The syntax for declaring large object (LOB) host variables in FORTRAN is:

»— SQLTYPEIS BLOB (— length) { variable-name ln
K

L CLOB J

LOB host variable considerations:

1. GRAPHIC types are not supported in FORTRAN.
2. SQLTYPE IS, BLOB, CLOB, K, M, G can be in either uppercase, lowercase, or mixed.

100 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

3. For BLOB and CLOB 1 <= lob-length <=2 147 483 647.
4. The initialization of a LOB within a LOB declaration is not permitted.
5. The host variable name prefixes 'length' and 'data’ in the precompiler generated code.

BLOB example:

Declaring:

sql type is blob(2m) my_blob

Results in the generation of the following structure:

character my_blob(2097152+4)
integerx4 my_blob_length
character my_blob_data(2097152)
equivalence(my_blob(1),

+ my_blob_length)
equivalence(my_blob(5),
+ my_blob_data)
CLOB example:
Declaring:

sql type is clob(125m) my_clob

Results in the generation of the following structure:

character my_clob(131072000+4)
integerx4 my_clob_length
character my_clob_data(131072000)
equivalence(my_clob(1),

+ my_clob_length)
equivalence(my_clob(5),
+ my_clob_data)

Declaration of large object locator type host variables in FORTRAN embedded SQL applications
Large Object (LOB) locator type host variables that you declare in your embedded FORTRAN application
are treated as if they were declared in a FORTRAN program. Host variables allow you to exchange data
between the embedded application and the database manager.

The syntax for declaring large object (LOB) locator host variables in FORTRAN is:

»— SQL TYPE IS T BLOB_LOCATOR variable-name lu

CLOB_LOCATOR

LOB locator host variable considerations:

1. GRAPHIC types are not supported in FORTRAN.
2. SQLTYPE IS, BLOB_LOCATOR, CLOB_LOCATOR can be either uppercase, lowercase, or mixed.
3. Initialization of locators is not permitted.

CLOB locator example (BLOB locator is similar):

Declaring:

SQL TYPE IS CLOB_LOCATOR my_locator

Results in the generation of the following declaration:

integer*4 my_locator

Chapter 3. Programming embedded SQL applications 101

Declaration of file reference type host variables in FORTRAN embedded SQL applications

File reference type host variables that you declare in your embedded FORTRAN application are treated as
if they were declared in a FORTRAN program. Host variables allow you to exchange data between the
embedded application and the database manager.

The syntax for declaring file reference host variables in FORTRAN is:

»— SQL TYPE IS T BLOB_FILE variable-name ln

CLOB_FILE

File reference host variable considerations:

1. Graphic types are not supported in FORTRAN.
2. SQL TYPE IS, BLOB_FILE, CLOB_FILE can be either uppercase, lowercase, or mixed.

Example of a BLOB file reference variable (CLOB file reference variable is similar):

SQL TYPE IS BLOB_FILE my_file

Results in the generation of the following declaration:

character my_file(267)

integerx4 my_file_name_length
integerx4 my_file_data_length
integerx4 my_file_file_options

character*255 my_file_name
equivalence(my_file(1),

+ my_file_name_length)
equivalence(my_file(5),

+ my_file_data_length)
equivalence(my_file(9),

+ my_file_file_options)
equivalence(my_file(13),

+ my_file_name)

Considerations for graphic (multi-byte) character sets in FORTRAN embedded SQL applications
Graphic (multi-byte) host variable data types are not supported in FORTRAN. Only mixed-character host
variables are supported through the character data type. However, it is possible to create a user SQL
descriptor area (SQLDA) that contains graphic data.

Japanese or Traditional Chinese EUC, and UCS-2 considerations for FORTRAN embedded SQL
applications

Any graphic data sent from your application running under an eucJp or eucTW code set, or connected to a
UCS-2 database, is tagged with the UCS-2 code page identifier. Your application must convert a graphic-
character string to UCS-2 before sending it to a the database server.Likewise, graphic data retrieved from
a UCS-2 database by any application, or from any database by an application running under an EUC eucJP
or eucTW code page, is encoded using UCS-2. This requires your application to convert from UCS-2 to
your application code page internally, unless the user is to be presented with UCS-2 data.

Your application is responsible for converting to and from UCS-2 because this conversion must be
conducted before the data is copied to, and after it is copied from, the SQLDA. Db2 database systems do
not supply any conversion routines that are accessible to your application. Instead, you must use the
system calls available from your operating system. In the case of a UCS-2 database, you can also
consider using the VARCHAR and VARGRAPHIC scalar functions.

Null or truncation indicator variables in FORTRAN embedded SQL applications
You must declare indicator variables as INTEGER*2 data types.

102 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Host variables in REXX

Host variables are REXX language variables that are referenced within SQL statements. Host variables
allow an application to exchange data with the database manager. After an application is precompiled,
host variables are used by the compiler as any other REXX variable.

Follow the rules described in the following sections when naming, declaring, and using host variables.
Host variable names in REXX embedded SQL applications
You can use any properly named REXX variable as a host variable. A variable name can be up to 64

characters long and cannot end with a period. A host variable name can consist of numbers, alphabetic
characters, and the characters @, _, !, ., 2, and $.

Host variable references in REXX embedded SQL applications
The REXX interpreter examines every string without quotation marks in a procedure. If the string
represents a variable in the current REXX variable pool, REXX replaces the string with the current value.

The following example is how you can reference a host variable in REXX:

CALL SQLEXEC 'FETCH C1 INTO :cm'

SAY 'Commission = cm

To ensure that a character string is not converted to a numeric data type, enclose the string with single
qguotation marks as in the following example:

VAR = '100'

REXX sets the variable VAR to the 3 byte character string 100. If single quotation marks are to be included
as part of the string, follow this example:

VAR = "'100'"

When inserting numeric data into a CHARACTER field, the REXX interpreter treats numeric data as integer
data, thus you must concatenate numeric strings explicitly and surround them with single quotation
marks.

Predefined REXX Variables
The SQLEXEC function and the SQLDBS and SQLDB2 routines set predefined REXX variables as a result of
certain operations.

Predefined REXX variables include:

RESULT
Each operation sets this return code. Possible values are:

n
Where n is a positive value indicating the number of bytes in a formatted message. The GET
ERROR MESSAGE API alone returns this value.

The API was executed. The REXX variable SQLCA contains the completion status of the API. If
SQLCA.SQLCODE is not zero, SQLMSG contains the text message associated with that value.

There is not enough memory available to complete the API. The requested message was not
returned.

SQLCA.SQLCODE is set to 0. No message was returned.
SQLCA.SQLCODE contained an invalid SQLCODE. No message was returned.

The SQLCA REXX variable could not be built. This indicates that there was not enough memory
available or the REXX variable pool was unavailable for some reason.

Chapter 3. Programming embedded SQL applications 103

The SQLMSG REXX variable could not be built. This indicates that there was not enough memory
available or the REXX variable pool was unavailable for some reason.

The SQLCA.SQLCODE REXX variable could not be fetched from the REXX variable pool.

The SQLCA.SQLCODE REXX variable was truncated during the fetch. The maximum length for this
variable is 5 bytes.
-10
The SQLCA.SQLCODE REXX variable could not be converted from ASCII to a valid long integer.
-11
The SQLCA.SQLERRML REXX variable could not be fetched from the REXX variable pool.
-12
The SQLCA.SQLERRML REXX variable was truncated during the fetch. The maximum length for
this variable is 2 bytes.
-13
The SQLCA.SQLERRML REXX variable could not be converted from ASCII to a valid short integer.
-14
The SQLCA.SQLERRMC REXX variable could not be fetched from the REXX variable pool.
-15
The SQLCA.SQLERRMC REXX variable was truncated during the fetch. The maximum length for
this variable is 70 bytes.
-16
The REXX variable specified for the error text could not be set.
-17
The SQLCA.SQLSTATE REXX variable could not be fetched from the REXX variable pool.
-18
The SQLCA.SQLSTATE REXX variable was truncated during the fetch. The maximum length for this
variable is 2 bytes.

Note: The values -8 through -18 are returned only by the GET ERROR MESSAGE API.

SQLMSG
If SQLCA.SQLCODE is not 0, this variable contains the text message associated with the error code.

SQLISL
The isolation level. Possible values are:

RR
Repeatable read.

RS
Read stability.

Ccs
Cursor stability. This is the default.

UR
Uncommitted read.

NC
No commit. (NC is only supported by some host or System i® servers.)
SQLCA
The SQLCA structure updated after SQL statements are processed and Db2 APIs are called.
SQLRODA
The input/output SQLDA structure for stored procedures invoked using the CALL statement. It is also

the output SQLDA structure for stored procedures invoked using the Database Application Remote
Interface (DARI) API.

104 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

SQLRIDA
The input SQLDA structure for stored procedures invoked using the Database Application Remote
Interface (DARI) API.

SQLRDAT
An SQLCHAR structure for server procedures invoked using the Database Application Remote
Interface (DARI) API.

Considerations while programming REXX embedded SQL applications

REXX is an interpreted language, which means that no precompiler, compiler, or linker is used. Instead,
three Db2 APIs are used to create Db2 applications in REXX. You can use these APIs to access different
Db2 elements.

About this task

The three APIs that are available for creating embedded SQL applications in REXX are:

SQLEXEC
Supports the SQL language.

SQLDBS
Supports command-like versions of Db2 APIs.

SQLDB2
Supports a REXX specific interface to the command-Lline processor. See the description of the API
syntax for REXX for details and restrictions on how this interface can be used.

Before using any of the Db2 APIs or issuing SQL statements in an application, you must register the
SQLDBS, SQLDB2 and SQLEXEC routines. This notifies the REXX interpreter of the REXX/SQL entry points.
The method you use for registering varies slightly between Windows-based and AIX platforms.

Use the following examples for correct syntax for registering each routine:

Sample registration on Windows operating systems

[H —-m-mmmm---- Register SQLDBS with REXX -------------"-"-"-"-"""------ */
If Rxfuncquery('SQLDBS') <> 0 then
rcy = Rxfuncadd('SQLDBS', 'DB2AR', 'SQLDBS")
If rcy \= 0 then
do
say 'SQLDBS was not successfully added to the REXX environment'
signal rxx_exit
end

[H —---mmmm---- Register SQLDB2 with REXX -------------"-"-"-"-"-""----- */
If Rxfuncquery('SQLDB2') <> O then
rcy = Rxfuncadd('SQLDB2', 'DB2AR', 'SQLDB2")
If rcy \= 0 then
do
say 'SQLDB2 was not successfully added to the REXX environment'
signal rxx_exit
end

[mmmmmmm e Register SQLEXEC with REXX -------------------" */
If Rxfuncquery('SQLEXEC') <> O then
rcy = Rxfuncadd('SQLEXEC', 'DB2AR', 'SQLEXEC')
If rcy \= 0 then
do
say 'SQLEXEC was not successfully added to the REXX environment'
signal rxx_exit
end

Sample registration on AIX

[is ==cecscsscos Register SQLDBS, SQLDB2 and SQLEXEC with REXX -------- */
rcy = SysAddFuncPkg("db2rexx")
If rcy \= 0 then
do
say 'db2rexx was not successfully added to the REXX environment'
signal rxx_exit
end

Chapter 3. Programming embedded SQL applications 105

On Windows-based platforms, the RxFuncAdd commands need to be executed only once for all sessions.
On AIX, the SysAddFuncPkg should be executed in every REXX/SQL application.

Details on the Rxfuncadd and SysAddFuncPkg APIs are available in the REXX documentation for
Windows-based platforms and AIX.

It is possible that tokens within statements or commands that are passed to the SQLEXEC, SQLDBS, and
SQLDB2 routines could correspond to REXX variables. In this case, the REXX interpreter substitutes the
variable's value before calling SQLEXEC, SQLDBS, or SQLDB2.

To avoid this situation, enclose statement strings in quotation marks (' ' or " "). If you do not use quotation
marks, any conflicting variable names are resolved by the REXX interpreter, instead of being passed to the
SQLEXEC, SQLDBS or SQLDB2 routines.

Declaration of large object type host variables in REXX embedded SQL applications
When you fetch a LOB column into a REXX host variable, it is stored as a string. LOB columns are handled
in the same manner as other character-based SQL types such as CHAR, VARCHAR, GRAPHIC, and LONG.

On input, if the size of the contents of your host variable is larger than 32K, or if it meets other criteria that
are listed in the following table, it is assigned the appropriate LOB type.

In REXX SQL, LOB types are determined from the string content of your host variable as follows:

Host variable string content Resulting LOB type
:hvl='ordinary quoted string longer than 32K ... CLOB
:hv2="'string with embedded delimiting quotation marks ", CLOB
"longer than 32K..."
:hv3="G'DBCS string with embedded delimiting single ", DBCLOB
"quotation marks, beginning with G, longer than 32K..."
BLOB

:hv4="BIN'string with embedded delimiting single ",
"quotation marks, beginning with BIN, any length...""

Declaration of large object locator type host variables in REXX embedded SQL applications

You must declare LOB locator host variables in your application. When a REXX embedded SQL application
encounters these declarations the host variables are treated as locators for the remainder of the program.
Locator values are stored in REXX variables in an internal format.

The syntax for declaring LOB locator host variables in REXX is:

»»— DECLARE L :— variable-name l LANGUAGE TYPE BLOB LOCATOR -»«
DBCLOB

CALL SQLEXEC 'DECLARE :hvl1, :hv2 LANGUAGE TYPE CLOB LOCATOR'

Example:

Data represented by LOB locators returned from the engine can be freed in REXX/SQL using the FREE
LOCATOR statement which has the following format:

106 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Syntax for FREE LOCATOR statement

»— FREE — LOCATOR L :— variable-name ln

Example:

CALL SQLEXEC 'FREE LOCATOR :hvl, :hv2'

Declaration of file reference type host variables in REXX embedded SQL applications

You must declare LOB file reference host variables in your application. When REXX embedded SQL
encounters these declarations, it treats the declared host variables as LOB file references for the
remainder of the program.

The syntax for declaring LOB file reference host variables in REXX is:

»— DECLARE L :— variable-name l LANGUAGE TYPE BLOB FILE >«
DBCLOB

CALL SQLEXEC 'DECLARE :hv3, :hv4 LANGUAGE TYPE CLOB FILE'

Example:

File reference variables in REXX contain three fields. For the preceding example they are:

hv3.FILE_OPTIONS.
Set by the application to indicate how the file will be used.

hv3.DATA_LENGTH.
Set by Db2 to indicate the size of the file.

hv3.NAME.
Set by the application to the name of the LOB file.

For FILE_OPTIONS, the application sets the following keywords:

Keyword (integer value)
Meaning

READ (2)
File is to be used for input. This is a regular file that can be opened, read and closed. The length of the
data in the file (in bytes) is computed (by the application requester code) upon opening the file.

CREATE (8)
On output, create a new file. If the file already exists, it is an error. The length (in bytes) of the file is
returned in the DATA_LENGTH field of the file reference variable structure.

OVERWRITE (16)
On output, the existing file is overwritten if it exists, otherwise a new file is created. The length (in
bytes) of the file is returned in the DATA_LENGTH field of the file reference variable structure.

APPEND (32)
The output is appended to the file if it exists, otherwise a new file is created. The length (in bytes) of
the data that was added to the file (not the total file length) is returned in the DATA_LENGTH field of
the file reference variable structure.

Note: A file reference host variable is a compound variable in REXX, thus you must set values for the
NAME, NAME_LENGTH and FILE_OPTIONS fields in addition to declaring them.

Chapter 3. Programming embedded SQL applications 107

LOB Host Variable Clearing in REXX embedded SQL applications

On Windows operating systems, it might be necessary to explicitly clear REXX SQL LOB locator and file
reference host variable declarations as they remain in effect after your application program ends. This
occurs because the application process does not exit until the session in which it is run is closed.If REXX
SQL LOB declarations are not cleared, they can interfere with other applications that are running in the
same session after a LOB application has been executed.

The syntax to clear the declaration is:

CALL SQLEXEC "CLEAR SQL VARIABLE DECLARATIONS"

You should include this statement at the end of LOB applications. Note that you can include it anywhere
as a precautionary measure to clear declarations which might have been left by previous applications,
such as at the beginning of a REXX SQL application.

Null or truncation indicator variables in REXX embedded SQL applications
An indicator variable data type in REXX is a number without a decimal point.

The following is an example of an indicator variable in REXX using the INDICATOR keyword.

CALL SQLEXEC 'FETCH C1 INTO :cm INDICATOR :cmind'
IF (cmind < 0)
SAY 'Commission is NULL'

In the previous example, cmind is examined for a negative value. If it is not negative, the application can
use the returned value of cm. If it is negative, the fetched value is NULL and cm must not be used. The
database manager does not change the value of the host variable in this case.

Considerations for using buffered inserts

Buffered inserts exhibit behaviors that can affect an application program. This behavior is caused by the
asynchronous nature of the buffered inserts. Based on the values of the row's distribution key, each
inserted row is placed in a buffer destined for the correct partition. These buffers are sent to their
destination partitions as they become full, or an event causes them to be flushed. You must be aware of
the following, and account for them when designing and coding the application:

« Certain error conditions for inserted rows are not reported when the INSERT statement is executed.
They are reported later, when the first statement other than the INSERT (or INSERT to a different table)
is executed, such as DELETE, UPDATE, COMMIT, or ROLLBACK. Any statement or API that closes the
buffered insert statement can see the error report. Also, any invocation of the insert itself may see an
error of a previously inserted row. Moreover, if a buffered insert error is reported by another statement,
such as UPDATE or COMMIT, Db2 will not attempt to execute that statement.

« An error detected during the insertion of a group of rows causes all the rows of that group to be backed
out. A group of rows is defined as all the rows inserted through executions of a buffered insert
statement:

— From the beginning of the unit of work,
— Since the statement was prepared (if it is dynamic), or

— Since the previous execution of another updating statement. For a list of statements that close (or
flush) a buffered insert, see the description of buffered inserts in partitioned database environments.

An inserted row may not be immediately visible to SELECT statements issued after the INSERT by the
same application program, if the SELECT is executed using a cursor.

A buffered INSERT statement is either open or closed. The first invocation of the statement opens the
buffered INSERT, the row is added to the appropriate buffer, and control is returned to the application.
Subsequent invocations add rows to the buffer, leaving the statement open. While the statement is open,
buffers may be sent to their destination partitions, where the rows are inserted into the target table's
partition. If any statement or API that closes a buffered insert is invoked while a buffered INSERT
statement is open (including invocation of a different buffered INSERT statement), or if a PREPARE

108 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

statement is issued against an open buffered INSERT statement, the open statement is closed before the
new request is processed. If the buffered INSERT statement is closed, the remaining buffers are flushed.
The rows are then sent to the target partitions and inserted. Only after all the buffers are sent and all the

rows are inserted does the new request begin processing.

If errors are detected during the closing of the INSERT statement, the SQLCA for the new request will be
filled in describing the error, and the new request is not done. Also, the entire group of rows that were
inserted through the buffered INSERT statement since it was opened are removed from the database. The
state of the application will be as defined for the particular error detected. For example:

« If the erroris a deadlock, the transaction is rolled back (including any changes made before the
buffered insert section was opened).

- If the erroris a unique key violation, the state of the database is the same as before the statement was
opened. The transaction remains active, and any changes made before the statement was opened are
not affected.

For example, consider the following application that is bound with the buffered insert option:

EXEC SQL UPDATE t1 SET COMMENT='about to start inserts';
DO UNTIL EOF OR SQLCODE < 0;
READ VALUE OF hvl FROM A FILE;
EXEC SQL INSERT INTO t2 VALUES (:hvil);
IF 1000 INSERTS DONE, THEN DO
EXEC SQL INSERT INTO t3 VALUES ('another 1000 done');
RESET COUNTER;
END;
END;
EXEC SQL COMMIT;

Suppose the file contains 8 000 values, but value 3 258 is not legal (for example, a unique key violation).
Each 1 000 inserts results in the execution of another SQL statement, which then closes the INSERT
INTO t2 statement. During the fourth group of 1 000 inserts, the error for value 3 258 will be detected.
It may be detected after the insertion of more values (not necessarily the next one). In this situation, an
error code is returned for the INSERT INTO t2 statement.

The error may also be detected when an insertion is attempted on table t3, which closes the INSERT
INTO t2 statement. In this situation, the error code is returned for the INSERT INTO t3 statement,
even though the error applies to table t2.

Suppose, instead, that you have 3 900 rows to insert. Before being told of the error on row number 3 258,
the application may exit the loop and attempt to issue a COMMIT. The unique-key-violation return code
will be issued for the COMMIT statement, and the COMMIT will not be performed. If the application wants
to COMMIT the 3 000 rows that are in the database thus far (the last execution of EXEC SQL INSERT
INTO t3 ... ends the savepoint for those 3 000 rows), the COMMIT has to be reissued. Similar
considerations apply to ROLLBACK as well.

Note: When using buffered inserts, you should carefully monitor the SQLCODES returned to avoid having
the table in an indeterminate state. For example, if you remove the SQLCODE < O clause from the THEN
DO statement in the above example, the table could end up containing an indeterminate number of rows.

Buffered inserts in partitioned database environments

A buffered insert is an insert statement that takes advantage of table queues to buffer the rows being
inserted, thereby gaining a significant performance improvement. To use a buffered insert, an application
must be prepared or bound with the INSERT BUF option.

Buffered inserts can result in substantial performance improvement in applications that perform inserts.
Typically, you can use a buffered insert in applications where a single insert statement (and no other
database modification statement) is used within a loop to insert many rows and where the source of the
datais a VALUES clause in the INSERT statement. Typically the INSERT statement is referencing one or
more host variables that change their values during successive executions of the loop. The VALUES clause
can specify a single row or multiple rows.

Chapter 3. Programming embedded SQL applications 109

Typical decision support applications require the loading and periodic insertion of new data. This data
could be hundreds of thousands of rows. You can prepare and bind applications to use buffered inserts
when loading tables.

To cause an application to use buffered inserts, use the PREP command to process the application
program source file, or use the BIND command on the resulting bind file. In both situations, you must
specify the INSERT BUF option.

Note: Buffered inserts cause the following steps to occur:

1. The database manager opens one 4 KB buffer for each database partition on which the table resides.

2. The INSERT statement with the VALUES clause issued by the application causes the row (or rows) to
be placed into the appropriate buffer (or buffers).

3. The database manager returns control to the application.

4. The rows in the buffer are sent to the partition when the buffer becomes full, or an event occurs that
causes the rows in a partially filled buffer to be sent. A partially filled buffer is flushed when one of the
following occurs:

« The application issues a COMMIT (either explicitly, or implicitly through application termination) or
ROLLBACK.

- The application issues another statement that causes a savepoint to be taken. OPEN, FETCH, and
CLOSE cursor statements do not cause a savepoint to be taken, nor do they close an open buffered
insert.

The following SQL statements will close an open buffered insert:

— BEGIN COMPOUND SQL

- COMMIT

- DDL

— DELETE

— END COMPOUND SQL

— EXECUTE IMMEDIATE

— GRANT

— INSERT to a different table

— OPEN CURSOR for a full-select of a data change statement
— PREPARE of the same dynamic statement (by name) doing buffered inserts
— REDISTRIBUTE DATABASE PARTITION GROUP

— RELEASE SAVEPOINT

— REORG

— REVOKE

— ROLLBACK

— ROLLBACK TO SAVEPOINT

— RUNSTATS

— SAVEPOINT

— SELECT INTO

— UPDATE

— Execution of any other statement, but not another (looping) execution of the buffered INSERT
— End of application

The following APIs will close an open buffered insert:

— BIND (API)
— REBIND (API)

110 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

— RUNSTATS (API)
— REORG (API)
— REDISTRIBUTE (API)

In any of these situations where another statement closes the buffered insert, the coordinator
partition waits until every database partition receives the buffers and the rows are inserted. It then
executes the other statement (the one closing the buffered insert), provided all the rows were
successfully inserted.

The standard interface in a partitioned database environment, (without a buffered insert) loads one row at
a time doing the following steps (assuming that the application is running locally on one of the database
partitions):

1. The coordinator partition passes the row to the database manager that is on the same partition.

2. The database manager uses indirect hashing to determine the database partition where the row
should be placed:

« The target partition receives the row.

 The target partition inserts the row locally.

« The target partition sends a response to the coordinator partition.
3. The coordinator partition receives the response from the target partition.
4. The coordinator partition gives the response to the application.

The insertion is not committed until the application issues a COMMIT.

5. Any INSERT statement containing the VALUES clause is a candidate for buffered insert, regardless of
the number of rows or the type of elements in the rows. That is, the elements can be constants,
special registers, host variables, expressions, functions and so on.

For a given INSERT statement with the VALUES clause, the Db2 SQL compiler might not buffer the insert
based on semantic, performance, or implementation considerations. If you prepare or bind your
application with the INSERT BUF option, ensure that it is not dependent on a buffered insert. This means:

« Errors can be reported asynchronously for buffered inserts, or synchronously for regular inserts. If
reported asynchronously, an insert error might be reported on a subsequent insert within the buffer, or
on the other statement that closes the buffer. The statement that reports the error is not executed. For
example, consider using a COMMIT statement to close a buffered insert loop. The commit reports an
SQLCODE -803 (SQLSTATE 23505) due to a duplicate key from an earlier insert. In this scenario, the
commit is not executed. If you want your application to really commit, for example, some updates that
are performed before it enters the buffered insert loop, you must reissue the COMMIT statement.

« Rows inserted can be immediately visible through a SELECT statement using a cursor without a
buffered insert. With a buffered insert, the rows will not be immediately visible. Do not write your
application to depend on these cursor-selected rows if you precompile or bind it with the INSERT BUF
option.

Buffered inserts result in the following performance advantages:

- Only one message is sent from the target partition to the coordinator partition for each buffer received
by the target partition.

« A buffer can contain a large number of rows, especially if the rows are small.

- Parallel processing occurs as insertions are being done across partitions while the coordinator partition
is receiving new rows.

An application that is bound with INSERT BUF should be written so that the same INSERT statement with
VALUES clause is iterated repeatedly before any statement or API that closes a buffered insert is issued.

Note: You should do periodic commits to prevent the buffered inserts from filling the transaction log.

Restrictions on using buffered inserts

The following restrictions apply to buffered inserts:

Chapter 3. Programming embedded SQL applications 111

- For an application to take advantage of the buffered inserts, one of the following must be true:

— The application must either be prepared through PREP or bound with the BIND command and the
INSERT BUF option is specified.

— The application must be bound using the BIND or the PREP API with the SQL_INSERT_BUF option.

- If the INSERT statement with VALUES clause includes long fields or LOBS in the explicit or implicit
column list, the INSERT BUF option is ignored for that statement and a normal insert section is done,
not a buffered insert. This is not an error condition, and no error or warning message is issued.

« INSERT with fullselect is not affected by INSERT BUF. A buffered insert does not improve the
performance of this type of INSERT.

« Buffered inserts can be used only in applications, and not through CLP-issued inserts, as these are done
through the EXECUTE IMMEDIATE statement.

The application can then be run from any supported client platform.

Executing XQuery expressions in embedded SQL applications

You can store XML data in your tables and use embedded SQL applications to access the XML columns by
using XQuery expressions.

Before you begin

To access XML data, use XML host variables instead of casting the data to character or binary data types.
If you do not make use of XML host variables, the best alternative for accessing XML data is with FOR BIT
DATA or BLOB data types to avoid code page conversion.

« Declare XML host variables within your embedded SQL applications.

About this task

« An XML type must be used to retrieve XML values in a static SQL SELECT INTO statement.

« If a CHAR, VARCHAR, CLOB, or BLOB host variable is used for input where an XML value is expected, the
value will be subject to an XMLPARSE function operation with default white space (STRIP) handling.
Otherwise, an XML host variable is required.

To issue XQuery expressions in embedded SQL application directly, prepend the expression with the
"XQUERY" keyword. For static SQL use the XMLQUERY function. When the XMLQUERY function is called,
the XQuery expression is not prefixed by "XQUERY".

These examples return data from the XML documents in table CUSTOMER from the sample database.

Example 1: Executing XQuery expressions directly in C and C++ dynamic SQL by prepending the
"XQUERY" keyword

In C and C++ applications, XQuery expressions can be issued in the following way:

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

char stmt[16384];

SQL TYPE IS XML AS BLOB(10K) xmlblob;
EXEC SQL END DECLARE SECTION;

sprintf(stmt, "XQUERY (for $a in db2-fn:xmlcolumn("CUSTOMER.INFO")
/*:customerinfo[*:addr/*:city = "Toronto"]/@Cid return data($a))");

EXEC SQL PREPARE sl1 FROM :stmt;
EXEC SQL DECLARE cl1 CURSOR FOR si1;
EXEC SQL OPEN c1;

while(sqglca.sqlcode == SQL_RC_OK)

EXEC SQL FETCH c1 INTO :xmlblob;
/* Display results =/

112 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

EXEC SQL CLOSE c1;
EXEC SQL COMMIT;

Example 2: Executing XQuery expressions in static SQL using the XMLQUERY function and
XMLEXISTS predicate

SQL statements containing the XMLQUERY function can be prepared statically, as follows:

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS XML AS BLOB(10K) xmlblob;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE C1 CURSOR FOR SELECT XMLQUERY (data($INFO/*:customerinfo/@Cid)"')
FROM customer
WHERE XMLEXISTS('$INFO/*:customerinfo[*:addr/*:city = "Toronto"]');

EXEC SQL OPEN c1;
while(sqglca.sqglcode == SQL_RC_OK)

EXEC SQL FETCH c1 INTO :xmlblob;
/* Display results x/

EXEC SQL CLOSE c1;
EXEC SQL COMMIT;

Example 3: Executing XQuery expressions in COBOL embedded SQL applications

In COBOL applications, XQuery expressions can be issued in the following way:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 stmt pic x(80).

01 xmlBuff USAGE IS SQL TYPE IS XML AS BLOB (10K).
EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "XQUERY (for $a in db2-fn:xmlcolumn("CUSTOMER.INFO0")/x:customerinfo
[*:addr/*:city = "Toronto"]/@Cid return data($a)))" TO stmt.

EXEC SQL PREPARE s1 FROM :stmt END-EXEC.

EXEC SQL DECLARE cl1 CURSOR FOR s1 END-EXEC.

EXEC SQL OPEN cl1 USING :host-var END-EXEC.

*Call the FETCH and UPDATE loop.
Perform Fetch-Loop through End-Fetch-Loop
until SQLCODE does not equal 0.

EXEC SQL CLOSE cl1 END-EXEC.
EXEC SQL COMMIT END-EXEC.

Fetch-Loop Section.
EXEC SQL FETCH c1 INTO :xmlBuff END-EXEC.
if SQLCODE not equal O
go to End-Fetch-Loop.
* Display results
End-Fetch-Loop. exit.

Executing SQL statements in embedded SQL applications

The way you execute SQL statements in embedded SQL applications depends on if the statement is
statically or dynamically executed. However, you must use the EXEC SQL command regardless of the
type of statement that you use.

Static statements are hard-coded into the source code of an embedded SQL application. Dynamic
statements are different from static in that they are compiled at run time and can be prepared with input
parameters. Information that is read can be stored in a medium called a cursor, which then allows for
users to freely scroll through the data and make suitable updates. Error information from the SQLCODE,
SQLSTATE, and SQLWARN are a useful tool toward assisting in troubleshooting an application.

Chapter 3. Programming embedded SQL applications 113

Comments in embedded SQL applications
The comments in any application are important for making the application code understandable.

Comments in C and C++ embedded SQL applications

When working with C and C++ applications, SQL comments can be inserted within the EXEC SQL block.
For example:

/* Only C or C++ comments allowed here %/
EXEC SQL

-- SQL comments ox

/* C comments or %/

// C++ comments allowed here

DECLARE C1 CURSOR FOR sname;
/* Only C or C++ comments allowed here x*/

Comments in COBOL embedded SQL applications

When working with COBOL applications, SQL comments can be inserted within the EXEC SQL block. For
example:

* See COBOL documentation for comment rules
* Only COBOL comments are allowed here
EXEC SQL
-- SQL comments or
* full-line COBOL comments are allowed here
DECLARE C1 CURSOR FOR sname END-EXEC.
* Only COBOL comments are allowed here

Comments in FORTRAN embedded SQL applications

When working with FORTRAN applications, SQL comments can be inserted within the EXEC SQL block.
For example:

© Only FORTRAN comments are allowed here
EXEC SQL
+ -- SQL comments, and

C full-line FORTRAN comment are allowed here

+ DECLARE C1 CURSOR FOR sname
I=7 ! End of line FORTRAN comments allowed here
© Only FORTRAN comments are allowed here

Comments in REXX embedded SQL applications

SQL comments are not supported in REXX applications.

Executing static SQL statements in embedded SQL applications

You cannot modify static SQL statements at run time. You can use static SQL statements for tasks such as
initialization and cleanup.

SQL statements can be executed statically in a host language using the following approach:
e Cor C++ (tbmod.sqc/tbmod.sqC)

The following three examples are from the tbmod sample. See this sample for a complete program that
shows how to modify table data in C or C++.

The following example shows how to insert table data:

EXEC SQL INSERT INTO staff(id, name, dept, job, salary)
VALUES (380, 'Pearce', 38, 'Clerk', 13217.50),
(390, 'Hachey', 38, 'Mgr',6 21270.00),
(400, 'Wagland', 38, 'Clerk', 14575.00);

114 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

The following example shows how to update table data:

EXEC SQL UPDATE staff
SET salary = salary + 10000
WHERE id >= 310 AND dept = 84;

The following example shows how to delete from a table:

EXEC SQL DELETE
FROM staff
WHERE id >= 310 AND salary > 20000 AND job != 'Sales';

« COBOL (updat.sqb)

The following three examples are from the updat sample. See this sample for a complete program that
shows how to modify table data in COBOL.

The following example shows how to insert table data:

EXEC SQL INSERT INTO staff
VALUES (999, 'Testing', 99, :job-update, 0, 0, 0)
END-EXEC.

The following example shows how to update table data where job-update is a reference to a host
variable declared in the declaration section of the source code:

EXEC SQL UPDATE staff
SET job=:job-update
WHERE job='Mgr"
END-EXEC.

The following example shows how to delete from a table:

EXEC SQL DELETE
FROM staff
WHERE job=:job-update
END-EXEC.

Retrieving host variable information from the SQLDA structure in embedded SQL
applications
With static SQL, host variables used in embedded SQL statements are known at application compile time.
With dynamic SQL, the embedded SQL statements and consequently the host variables are not known

until application run time. Therefore, for dynamic SQL applications, you must preprocess the list of host
variables that are used in your application.

You can use the DESCRIBE statement to obtain host variable information for any SELECT statement that
has been prepared (using PREPARE), and store that information into the SQL descriptor area (SQLDA).

When the DESCRIBE statement gets executed in your application, the database manager defines your
host variables in an SQLDA. Once the host variables are defined in the SQLDA, you can use the FETCH
statement to assign values to the host variables, using a cursor.

Declaring the SQLDA structure in a dynamically executed SQL program

An SQLDA contains a variable number of occurrences of SQLVAR entries, each of which contains a set of
fields that describe one column in a row of data. There are two types of SQLVAR entries: base SQLVAR
entries and secondary SQLVAR entries.

About this task

The following diagram describes the structure of the SQLDA.

Chapter 3. Programming embedded SQL applications 115

sgldaid CHAR sqldabe INTEGER

sqin SMALLINT sqld SMALLINT

sqitype SMALLINT sgllen SMALLINT

SQLVAR ,
sqldata POINTER sglind POINTER

sqlname VARCHAR (30)

Other SQLVAR Entries

Figure 2. The SQL Descriptor Area (SQLDA)

Because the number of SQLVAR entries required depends on the number of columns in the result table,
an application must be able to allocate an appropriate number of SQLVAR elements when needed. Use
one of the following methods:

Procedure

« Provide the largest SQLDA (that is, the one with the greatest number of SQLVAR entries) that is
needed. The maximum number of columns that can be returned in a result table is 255. If any of the
columns being returned is either a LOB type or a distinct type, the value in SQLN is doubled, and the
number of SQLVAR entries needed to hold the information is doubled to 510. However, as most
SELECT statements do not even retrieve 255 columns, most of the allocated space is unused.

* Provide a smaller SQLDA with fewer SQLVAR entries. In this case, if there are more columns in the
result than SQLVAR entries allowed for in the SQLDA, no descriptions are returned. Instead, the
database manager returns the number of select list items detected in the SELECT statement. The
application allocates an SQLDA with the required number of SQLVAR entries, then uses the DESCRIBE
statement to acquire the column descriptions.

« When any of the columns returned has a LOB or user defined type, provide an SQLDA with the exact
number of SQLVAR entries.

What to do next

For all three methods, the question arises as to how many initial SQLVAR entries you should allocate.
Each SQLVAR element uses up 44 bytes of storage (not counting storage allocated for the SQLDATA and
SQLIND fields). If memory is plentiful, the first method of providing an SQLDA of maximum size is easier
to implement.

The second method of allocating a smaller SQLDA is only applicable to programming languages such as C
and C++ that support the dynamic allocation of memory. For languages such as COBOL and FORTRAN
that do not support the dynamic allocation of memory, use the first method.

Preparing a dynamically executed SQL statement using the minimum SQLDA structure

Use the information provided here as an example of how to allocate the minimum SQLDA structure for a
statement.

About this task

You can only allocate a smaller SQLDA structure with programming languages, such as C and C++, that
support the dynamic allocation of memory.

116 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Suppose an application declares an SQLDA structure named minsqglda that contains no SQLVAR entries.
The SQLN field of the SOLDA describes the number of SQLVAR entries that are allocated. In this case,
SQLN must be set to 0. Next, to prepare a statement from the character string dstring and to enter its
description into minsqlda, issue the following SQL statement (assuming C syntax, and assuming that
minsqglda is declared as a pointer to an SQLDA structure):

EXEC SOL
PREPARE STMT INTO :%minsglda FROM :dstring;

Suppose that the statement contained in dstring is a SELECT statement that returns 20 columns in
each row. After the PREPARE statement (or a DESCRIBE statement), the SOLD field of the SQLDA contains
the number of columns of the result table for the prepared SELECT statement.

The SQLVAR entries in the SQLDA are set in the following cases:
« SQLN >=SQLD and no column is either a LOB or a distinct type.
The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
« SQLN >=2*SQLD and at least one column is a LOB or a distinct type.
2* SQLD SQLVAR entries are set and SQLDOUBLED is set to 2.
« SQLD <= SQLN < 2*SQLD and at least one column is a distinct type, but there are no LOB columns.

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN bind option is
YES, a warning SQLCODE +237 (SQLSTATE 01594) is issued.

The SQLVAR entries in the SQLDA are not set (requiring allocation of additional space and another
DESCRIBE) in the following cases:

* SQLN < SQLD and no column is either a LOB or distinct type.

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN bind option is YES, a
warning SQLCODE +236 (SQLSTATE 01005) is issued.

Allocate SQLD SQLVAR entries for a successful DESCRIBE.
« SQLN < SQLD and at least one column is a distinct type, but there are no LOB columns.

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN bind option is YES, a
warning SQLCODE +239 (SQLSTATE 01005) is issued.

Allocate 2*SQLD SQLVAR entries for a successful DESCRIBE, including the names of the distinct types.
« SQLN < 2*SQLD and at least one column is a LOB.

No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning SQLCODE +238 (SQLSTATE
01005) is issued (regardless of the setting of the SQLWARN bind option).

Allocate 2*SQLD SQLVAR entries for a successful DESCRIBE.

The SQLWARN option of the BIND command cannot control whether the DESCRIBE (or PREPARE...INTO)
will return the following warnings:

« SQLCODE +236 (SQLSTATE 01005)
« SQLCODE +237 (SQLSTATE 01594)
« SQLCODE +239 (SQLSTATE 01005).

It is recommended that your application code always consider that these SQLCODE values could be
returned. The warning SQLCODE +238 (SQLSTATE 01005) is always returned when there are LOB
columns in the select list and there are insufficient SQLVAR entries in the SQLDA. This is the only way the
application can know that the number of SQLVAR entries must be doubled because of a LOB column in
the result set.

Chapter 3. Programming embedded SQL applications 117

Allocating an SQLDA structure with sufficient SQLVAR entries for dynamically executed SQL
statements

After you determine the number of columns in the result table, you must allocate storage for a second
full-size SQLDA. The first SQLDA is used for input parameters and the second full-size SQLDA is used for
output parameters.

About this task

Assume that the result table contains 20 columns (none of which are LOB columns). In this situation, you
must allocate a second SQLDA structure, fulsqlda with at least 20 SQLVAR elements (or 40 elements if
the result table contains any LOBs or distinct types). For the rest of this example, assume that no LOBs or
distinct types are in the result table.

When you calculate the storage requirements for SQLDA structures, include the following items:

Procedure

- Afixed-length header, 16 bytes in length, containing fields such as SQLN and SQLD

« Avariable-length array of SQLVAR entries, of which each element is 44 bytes in length on 32-bit
platforms, and 56 bytes in length on 64-bit platforms.

What to do next

The number of SQLVAR entries needed for fulsqlda is specified in the SQLD field of minsglda. Assume
this value is 20. Therefore, the storage allocation required for fulsqgldais:

16 + (20 * sizeof(struct sqlvar))
This value represents the size of the header plus 20 times the size of each SQLVAR entry, giving a total of
896 bytes.
You can use the SQLDASIZE macro to avoid doing your own calculations and to avoid any version-specific
dependencies.

Describing a SELECT statement in a dynamically executed SQL program
After you allocate sufficient space for the second SQLDA (in this example, called fulsqlda), you must
code the application to describe the SELECT statement.

Procedure

Code your application to perform the following steps:

1. Store the value 20 in the SQLN field of fulsqglda (the assumption in this example is that the result
table contains 20 columns, and none of these columns are LOB columns).

2. Obtain information about the SELECT statement using the second SQLDA structure, fulsqlda. Two
methods are available:

« Use another PREPARE statement, specifying fulsqlda instead of minsqlda.
« Use the DESCRIBE statement specifying fulsqlda.

What to do next

Using the DESCRIBE statement is preferred because the costs of preparing the statement a second time
are avoided. The DESCRIBE statement reuses information previously obtained during the prepare
operation to fill in the new SQLDA structure. The following statement can be issued:

EXEC SQL DESCRIBE STMT INTO :fulsqglda

After this statement is executed, each SQLVAR element contains a description of one column of the result
table.

118 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Acquiring storage to hold a row
Before the application can fetch a row of the result table using an SQLDA structure, the application must
first allocate storage for the row.

Procedure

Code your application to do the following tasks:

1. Analyze each SQLVAR description to determine how much space is required for the value of that
column.

Note that for LOB values, when the SELECT is described, the data type given in the SQLVAR is
SQL_TYP_xLOB. This data type corresponds to a plain LOB host variable, that is, the whole LOB will be
stored in memory at one time. This will work for small LOBs (up to a few MB), but you cannot use this
data type for large LOBs (say 1 GB) because the stack is unable to allocate enough memory. It will be
necessary for your application to change its column definition in the SQLVAR to be either
SQL_TYP_xLOB_LOCATOR or SQL_TYPE_xLOB_FILE. (Note that changing the SQLTYPE field of the
SQLVAR also necessitates changing the SQLLEN field.) After changing the column definition in the
SQLVAR, your application can then allocate the correct amount of storage for the new type.

2. Allocate storage for the value of that column.
3. Store the address of the allocated storage in the SQLDATA field of the SQLDA structure.

What to do next

These steps are accomplished by analyzing the description of each column and replacing the content of
each SQLDATA field with the address of a storage area large enough to hold any values from that column.
The length attribute is determined from the SQLLEN field of each SQLVAR entry for data items that are not
of a LOB type. For items with a type of BLOB, CLOB, or DBCLOB, the length attribute is determined from
the SQLLONGLEN field of the secondary SQLVAR entry.

In addition, if the specified column allows nulls, the application must replace the content of the SQLIND
field with the address of an indicator variable for the column.

Processing the cursor in a dynamically executed SQL program
After you allocate the SQLDA structure, you can open the cursor associated with the SELECT statement
and fetch rows.

About this task

To process the cursor that is associated with a SELECT statement, first open the cursor, then fetch rows
by specifying the USING DESCRIPTOR clause of the FETCH statement. For example, a C application can
have following lines:

EXEC SQL OPEN pcurs

EMB_SQL_CHECK("OPEN") ;

EXEC SQL FETCH pcurs USING DESCRIPTOR :*sqldaPointer
EMB_SQL_CHECK("FETCH") ;

For a successful FETCH, you could write the application to obtain the data from the SQLDA and display
the column headings. For example:

display_col_titles(sgldaPointer) ;

After the data is displayed, you should close the cursor and release any dynamically allocated memory.
For example:

EXEC SQL CLOSE pcuzrs ;
EMB_SQL_CHECK("CLOSE CURSOR") ;

Chapter 3. Programming embedded SQL applications 119

Allocating an SQLDA structure for a dynamically executed SQL program
Allocate an SQLDA structure for your application so that you can use it to pass data to and from your
application.

About this task

To create an SQLDA structure with C, either embed the INCLUDE SQLDA statement in the host language
or include the SQLDA include file to get the structure definition. Then, because the size of an SQLDA is not
fixed, the application must declare a pointer to an SQLDA structure and allocate storage for it. The actual
size of the SQLDA structure depends on the number of distinct data items being passed using the SQLDA.

In the C and C++ programming language, a macro is provided to facilitate SQLDA allocation. This macro
has the following format:

#define SQLDASIZE(n) (offsetof(struct sqlda, sqlvar) \
+ (n) x sizeof(struct sqlvar))

The effect of this macro is to calculate the required storage for an SQLDA with n SQLVAR elements.

To create an SQLDA structure with COBOL, you can either embed an INCLUDE SQLDA statement or use
the COPY statement. Use the COPY statement when you want to control the maximum number of SQLVAR
entries and hence the amount of storage that the SQLDA uses. For example, to change the default number
of SQLVAR entries from 1489 to 1, use the following COPY statement:

COPY "sqglda.cbl"
replacing --1489--
by --1--.

The FORTRAN language does not directly support self-defining data structures or dynamic allocation. No
SQLDA include file is provided for FORTRAN, because it is not possible to support the SQLDA as a data
structure in FORTRAN. The precompiler will ignore the INCLUDE SQLDA statement in a FORTRAN
program.

However, you can create something similar to a static SQLDA structure in a FORTRAN program, and use
this structure wherever an SQLDA can be used. The file sqldact. f contains constants that help in
declaring an SQLDA structure in FORTRAN.

Execute calls to SQLGADDR to assign pointer values to the SQLDA elements that require them.

The following table shows the declaration and use of an SQLDA structure with one SQLVAR element.

Language Example Source Code

Cand C++

#include
struct sqlda *outda = (struct sqlda *)malloc(SQLDASIZE(1));

/* DECLARE LOCAL VARIABLES FOR HOLDING ACTUAL DATA x/
double sal = 0;
short salind = 0;

/* INITIALIZE ONE ELEMENT OF SQLDA x/

memcpy (outda->sqgldaid, "SQLDA ", sizeof(outda->sqgldaid));
outda->sgqln = outda->sqld = 1;

outda->sqlvar[0].sqltype = SQL_TYP_NFLOAT;
outda->sqlvar[0].sqgllen sizeof(double);.
outda->sqlvar[0].sqgldata (unsigned char *)&sal;
outda->sqlvar[0].sqlind (short x)&salind;

120 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Language Example Source Code

coeoL WORKING-STORAGE SECTION.

77 SALARY PIC S99999V99 COMP-3.
77 SAL-IND PIC S9(4) COMP-5.

EXEC SQL INCLUDE SQLDA END-EXEC

*

Or code a useful way to save unused SQLVAR entries.
COPY "sglda.chbl" REPLACING --1489-- BY --1--.

*

01 decimal-sqllen pic s9(4) comp-5.

01 decimal-parts redefines decimal-sqllen.
05 precision pic x.
05 scale pic x.

*

Initialize one element of output SQLDA
MOVE 1 TO SQLN
MOVE 1 TO SQLD
MOVE SQL-TYP-NDECIMAL TO SQLTYPE(1)

* Length = 7 digits precision and 2 digits scale

MOVE x"07" TO PRECISION.

MOVE x"02" TO SCALE.

MOVE DECIMAL-SQLLEN TO 0-SQLLEN(1).

SET SQLDATA(1) TO ADDRESS OF SALARY

SET SQLIND(1) TO ADDRESS OF SAL-IND

FORTRAN include 'sqldact.f'

integerx2 sqlvarl
parameter (sqlvarl = sgqlda_header_sz + Oxsqlvar_struct_sz)

C Declare an Output SQLDA -- 1 Variable
character out_sqlda(sqlda_header_sz + 1xsqlvar_struct_sz)
characterx8 out_sqldaid ! Header
integerx4 out_sqgldabc
integerx2 out_sqgln

integerx2 out_sqld

integerx2 out_sqgltypel ! First Variable
integerx2 out_sqllenl

integerx4 out_sqgldatal

integerx4 out_sqglindl

integerx2 out_sqlnamell

character*30 out_sglnamecl

equivalence(out_sqlda(sqlda_sqldaid_ofs), out_sqldaid)
equivalence(out_sqlda(sqlda_sqldabc_ofs), out_sqldabc)
equivalence(out_sqglda(sglda_sqgln_ofs), out_sqgln)
equivalence(out_sqglda(sqlda_sqld_ofs), out_sqld)
equivalence(out_sqlda(sqlvarl+sqlvar_type_ofs), out_sqltypel)
equivalence(out_sqglda(sqglvarl+sqglvar_len_ofs), out_sqgllenl)
equivalence(out_sqlda(sqlvaril+sqlvar_data_ofs), out_sqldatal)
equivalence(out_sqglda(sqglvarl+sqglvar_ind_ofs), out_sqglindl)
equivalence(out_sqglda(sqlvarl+sglvar_name_length_ofs),

+ out_sqglnamell)
equivalence(out_sqlda(sqlvarl+sqlvar_name_data_ofs),

+ out_sglnamecl)

C Declare Local Variables for Holding Returned Data.
realx8 salary
integerx2 sal_ind

C Initialize the Output SQLDA (Header)
out_sqldaid 'OUT_SQLDA'
out_sqgldabc sqlda_header_sz + 1xsqlvar_struct_sz
out_sqgln 1
out_sqld 1
C Initialize VAR1
out_sqltypel = SQL_TYP_NFLOAT
out_sqllenl 8
rc sqlgaddr(%ref(salary), %ref(out_sqldatal))
rc = sqlgaddr(%ref(sal_ind), %ref(out_sqglindl))

o znaunn

Chapter 3. Programming embedded SQL applications 121

Note: This example was written for 32-bit FORTRAN.

In languages not supporting dynamic memory allocation, an SQLDA with the required number of SQLVAR
elements must be explicitly declared in the host language. Be sure to declare enough SQLVAR elements
as determined by the needs of the application.

Transferring data in a dynamically executed SQL program using an SQLDA structure

You have greater flexibility when you transfer data using an SQLDA instead of using lists of host variables.
For example, you can use an SQLDA to transfer data that has no native host language equivalent, such as
DECIMAL data in the C language.

About this task

Use the following table as a cross-reference listing that shows how the numeric values and symbolic
names are related.

Table 17. Db2 SQLDA SQL Types

SQL Column Type SQLTYPE numeric SQLTYPE symbolic name™1” on page 123
value
DATE 384/385 SQL_TYP_DATE / SQL_TYP_NDATE
TIME 388/389 SQL_TYP_TIME / SQL_TYP_NTIME
TIMESTAMP 392/393 SQL_TYP_STAMP / SQL_TYP_NSTAMP
n/a’2’onpage123 400/401 SQL_TYP_CGSTR / SQL_TYP_NCGSTR
BLOB 404/405 SQL_TYP_BLOB / SQL_TYP_NBLOB
CLOB 408/409 SQL_TYP_CLOB / SQL_TYP_NCLOB
DBCLOB 412/413 SQL_TYP_DBCLOB / SQL_TYP_NDBCLOB
VARCHAR 448/449 SQL_TYP_VARCHAR / SQL_TYP_NVARCHAR
CHAR 452/453 SQL_TYP_CHAR / SQL_TYP_NCHAR
LONG VARCHAR 456/457 SQL_TYP_LONG / SQL_TYP_NLONG
n/a’3"onpage123 460/461 SQL_TYP_CSTR / SQL_TYP_NCSTR
VARGRAPHIC 464/465 SQL_TYP_VARGRAPH / SQL_TYP_NVARGRAPH
GRAPHIC 468/469 SQL_TYP_GRAPHIC / SQL_TYP_NGRAPHIC
LONG VARGRAPHIC 472/473 SQL_TYP_LONGRAPH / SQL_TYP_NLONGRAPH
FLOAT 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT
REAL”4"on page 123 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT
DECIMAL5"onpage123 484/485 SQL_TYP_DECIMAL / SQL_TYP_DECIMAL
INTEGER 496/497 SQL_TYP_INTEGER / SQL_TYP_NINTEGER
SMALLINT 500/501 SQL_TYP_SMALL / SQL_TYP_NSMALL
n/a 804/805 SQL_TYP_BLOB_FILE / SQL_TYPE_NBLOB_FILE
n/a 808/809 SQL_TYP_CLOB_FILE / SQL_TYPE_NCLOB_FILE
n/a 812/813 SQL_TYP_DBCLOB_FILE / SQL_TYPE_NDBCLOB_FILE
n/a 960/961 SQL_TYP_BLOB_LOCATOR / SQL_TYP_NBLOB_LOCATOR
n/a 964/965 SQL_TYP_CLOB_LOCATOR / SQL_TYP_NCLOB_LOCATOR

122 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Table 17. Db2 SQLDA SQL Types (continued)

SQL Column Type SQLTYPE numeric SQLTYPE symbolic name™1” on page 123
value
n/a 968/969 SQL_TYP_DBCLOB_LOCATOR /
SQL_TYP_NDBCLOB_LOCATOR
XML 988/989 SOL_TYP_XML / SQL_TYP_XML

Note: These defined types can be found in the sql. h include file located in the include sub-directory of the
sqllib directory. (For example, sqllib/include/sql.h for the C programming language.)

1. For the COBOL programming language, the SQLTYPE name does not use underscore (_) but uses a hyphen
(-) instead.

2. This is a null-terminated graphic string.

3. This is a null-terminated character string.

4. The difference between REAL and DOUBLE in the SQLDA is the length value (4 or 8).
5. Precision is in the first byte. Scale is in the second byte.

Processing interactive SQL statements in dynamically executed SQL programs

You can write an application using dynamic SQL to process arbitrary SQL statements. For example, if an
application accepts SQL statements from a user, the application must be able to issue the statements
without any prior knowledge of the statements.

About this task

Values that are not known until execution time can be represented by parameter marks, which are
denoted by question marks. Parameter marks allow for the interaction between the user and the
application and is similar to host variables for static SQL statements.

Use the PREPARE and DESCRIBE statements with an SQLDA structure so that the application can
determine the type of SQL statement being issued, and act accordingly.

Determination of statement type in dynamically executed SQL programs

When an SQL statement is prepared, you can determine information concerning the type of statement by
examining the SQLDA structure. This information is placed in the SQLDA structure either at statement
preparation time with the INTO clause, or by issuing a DESCRIBE statement against a previously prepared
statement.

In either case, the database manager places a value in the SQLD field of the SQLDA structure, indicating
the number of columns in the result table generated by the SQL statement. If the SQLD field contains a
zero (0), the statement is not a SELECT statement. Since the statement is already prepared, it can
immediately be executed using the EXECUTE statement.

If the statement contains parameter markers, the USING clause must be specified. The USING clause can
specify either a list of host variables or an SQLDA structure.

If the SQLD field is greater than zero, the statement is a SELECT statement and must be processed as
described in the following sections.

Processing variable-list SELECT statements in dynamically executed SQL programs

A varying-list SELECT statement is one in which the number and types of columns that are to be returned
are not known at precompilation time. In this case, the application does not know in advance the exact
host variables that need to be declared to hold a row of the result table.

Procedure

To process a variable-list SELECT statement, code your application to do the following steps:
1. Declare an SQLDA.

Chapter 3. Programming embedded SQL applications 123

An SQLDA structure must be used to process varying-list SELECT statements.
2. PREPARE the statement using the INTO clause.

The application then determines whether the SQLDA structure declared has enough SQLVAR
elements. If it does not, the application allocates another SQLDA structure with the required number
of SQLVAR elements, and issues an additional DESCRIBE statement using the new SQLDA.

3. Allocate the SQLVAR elements.

Allocate storage for the host variables and indicators needed for each SQLVAR. This step involves
placing the allocated addresses for the data and indicator variables in each SQLVAR element.

4. Process the SELECT statement.

A cursor is associated with the prepared statement, opened, and rows are fetched using the properly
allocated SQLDA structure.

Saving SQL requests from end users
If the users of your application can issue SQL requests from the application, you might want to save these
requests.

About this task

If your application allows users to save arbitrary SQL statements, you can save them in a table with a
column having a data type of VARCHAR, CLOB, VARGRAPHIC or DBCLOB. Note that the VARGRAPHIC and
DBCLOB data types are only available in double-byte character set (DBCS) and Extended UNIX Code
(EUC) environments.

You must save the source SQL statements, not the prepared versions. This means that you must retrieve
and then prepare each statement before executing the version stored in the table. In essence, your
application prepares an SQL statement from a character string and executes this statement dynamically.

Providing variable input to dynamically executed SQL statements by using parameter
markers

In a dynamic SQL statement, parameter markers that are indicated by a question mark (?) or a colon
followed by a name (:name) are substituting host variables.

About this task

A dynamic SQL statement cannot contain host variables because host variable information (data type and
length) is available only during application precompilation; during execution, host variable information is
unavailable. In a dynamic SQL statement, parameter markers are used instead of host variables. A
parameter marker is indicated by a question mark (?) or a colon followed by a name (:name) and indicates
where to substitute a host variable inside an SQL statement.

For example, assume that you want to use a dynamic SQL statement to delete data from a table called
TEMPL based on the value of an employee number. You might specify the DELETE statement as follows,
using a parameter marker:

DELETE FROM TEMPL WHERE EMPNO = ?

To execute this statement, specify a host variable or an SQLDA structure for the USING clause of the
EXECUTE statement. The contents of the host variable is used to specify the value of EMPNO.

The data type and length of the parameter marker depend on the context of the parameter marker inside
the SQL statement. If the data type of a parameter marker is not obvious from the context of the
statement in which it is used, use a CAST specification to specify the data type. A parameter marker for
which you use a CAST specification is a typed parameter marker. A typed parameter marker is treated like
a host variable of the data type used in the CAST specification. For example, the statement SELECT ?
FROM SYSCAT.TABLES is invalid because the data type of the result column is unknown. However, the
statement SELECT CAST(? AS INTEGER) FROM SYSCAT.TABLES is valid because the CAST

124 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

specification indicates that the parameter marker represents an INTEGER value; the data type of the
result column is known.

If the SQL statement contains more than one parameter marker, the USING clause of the EXECUTE
statement must specify one of the following types of information:

« Alist of host variables, one variable for each parameter marker

« An SQLDA that has one SQLVAR entry for each parameter marker for non-LOB data types or two
SQLVAR entries per parameter marker for LOB data types

The host variable list or SQLVAR entries are matched according to the order of the parameter markers in
the statement, and the data types must be compatible.

Note: Using a parameter marker in a dynamic SQL statement is like using a host variable in a static SQL
statement in that the optimizer does not use distribution statistics and might not choose the best access
plan.

The rules that apply to parameter markers are described in the PREPARE statement topic.

Example of parameter markers in a dynamically executed SQL program

In the statement string of a dynamic SQL statement, a parameter marker represents a value that will be
provided by the application program. The value of a parameter marker is provided on the EXECUTE or
OPEN statement that is associated with the dynamic SQL statement.

The following examples show how to use parameter markers in a dynamic SQL program:
« Cand C++ (dbuse.sqc/dbuse.sqC)

The function DynamicStmtWithMarkersEXECUTEusingHostVars () in the C-language sample
dbuse.sqc shows how to perform a delete using a parameter marker with a host variable:

EXEC SQL BEGIN DECLARE SECTION;
char hostVarStmti[50];
short hostVarDeptnumb;

EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker x/

strcpy (hostVarStmtl, "DELETE FROM org WHERE deptnumb = ?");
EXEC SQL PREPARE Stmtl FROM :hostVarStmtl;

/* execute the statement for hostVarDeptnumb = 15 x/

hostVarDeptnumb = 15;
EXEC SQL EXECUTE Stmtl USING :hostVarDeptnumb;

« COBOL (varinp.sqb)

The following example is from the COBOL sample varinp.sgb, and shows how to use a parameter
marker in search and update conditions:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 pname pic x(10).

01 dept pic s9(4) comp-5.
01 st pic x(127).

01 parm-var pic x(5).

EXEC SQL END DECLARE SECTION END-EXEC.

move "SELECT name, dept FROM staff
- " WHERE job = ? FOR UPDATE OF job" to st.
EXEC SQL PREPARE s1 FROM :st END-EXEC.

EXEC SQL DECLARE c1 CURSOR FOR s1 END-EXEC.

move "Mgr" to parm-var.
EXEC SQL OPEN c1 USING :parm-var END-EXEC

move "Clerk" to parm-var.
move "UPDATE staff SET job = ? WHERE CURRENT OF c1" to st.
EXEC SQL PREPARE s2 from :st END-EXEC.

* call the FETCH and UPDATE loop.

perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

Chapter 3. Programming embedded SQL applications 125

EXEC SQL CLOSE c1 END-EXEC.

Calling procedures in embedded SQL applications

You can call procedures from embedded SQL applications by formulating and executing the CALL
statement with an appropriate procedure reference and parameters. You can issue the CALL statement
either statically or dynamically within embedded SQL applications.

However, for each programming language there are different methods to issue this command. No matter
which host language, each host variable used in the procedure must be declared to match the data type
which is required.

Client applications and the calling of routines exchange information with procedures through parameters
and result sets. The parameters for procedures are defined by the direction the data is traveling (the
parameter mode).

There are three types of parameters for procedures:

« IN parameters: data passed to the procedure.
« OUT parameters: data returned by the procedure.

« INOUT parameters: data passed to the procedure that is, during procedure execution, replaced by data
to be returned from the procedure.

The mode of parameters and their data types are defined when a procedure is registered with the CREATE
PROCEDURE statement.

Calling stored procedures in C and C++ embedded SQL applications
You can use the anonymous blocks or the EXEC SQL CALL statements to call stored procedures in C and
C++ embedded SQL applications.

Calling stored procedures by using the EXEC SQL CALL statement

Db2 supports the use of input, output, and input and output parameters in SQL procedures. The IN, OUT,
and INOUT keywords in the CREATE PROCEDURE statement indicate the mode or intended use of the
parameter. IN and OUT parameters are passed by value, and INOUT parameters are passed by reference.

When working with C and C++ applications, you can call an INOUT_PARAM stored procedure by using the
following statement:

EXEC SQL CALL INOUT_PARAM(:inout_median:medianind, :out_sqlcode:codeind,
cout_buffer:bufferind);

In the previous statement inout_median, out_sqlcode, and out_buffer are host variables and medianind,
codeind, and bufferind are null indicator variables.

Note: You can also call stored procedures dynamically by preparing a CALL statement.

Calling stored procedures by using the anonymous block

C and C++ embedded SQL applications can call stored procedures by using an anonymous block when the
PRECOMPILE option COMPATIBILITY_MODE is set to ORA.

»— EXECUTE BEGIN — procedure-name

\4

(—fagment |2

»— END; END-EXEC; —»«

argument

126 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

» L J expression
parameter-name =~ — = DEFAULT

NULL

Parameter description

procedure-name
A name of the procedure, which is described in the catalog, that you want to call.

argument description

parameter-name
The name of the parameter that the argument is assigned to. When you assign an argument to
a paramater by name, all the arguments that follow the (parameter) must be assigned by
name.

You can only specify a named argument once (implicitly or explicitly).
Named arguments are not supported on a call to an uncataloged procedure.

expression or DEFAULT or NULL
Each specification of expression, the DEFAULT keyword, or the NULL keyword is an argument
of the CALL. The nth unnamed argument of the CALL statement corresponds to the nth
parameter that is defined in the CREATE PROCEDURE statement for the procedure.

Named arguments correspond to the same named parameter, regardless of the order in which
arguments are specified.

The DEFAULT keyword is used in the CREATE PROCEDURE statement if you have specified it;
otherwise the null value is used as the default.

If the NULL keyword is specified, the null value is passed as the parameter value.

Each argument of the CALL statement must be compatible with the corresponding parameter
in the procedure definition as follows:

« IN parameter

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the storage assignment rules.
e OUT parameter

— The argument must be a single variable or parameter marker.

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the retrieval assignment rules.
« INOUT parameter

— The argument must be a single variable or parameter marker.

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the storage assignment rules on invocation and

the retrieval assignment rules on return.

Calling stored procedures from REXX
You can write stored procedures in any language that is supported on a server, except for REXX on AIX
operating systems.

Client applications can be written in REXX on AIX operating systems, but as with other languages, client
applications cannot call a stored procedure written in REXX on AIX.

Chapter 3. Programming embedded SQL applications 127

Reading and scrolling through result sets in embedded SQL applications

One of the most common tasks of an embedded SQL application program is to retrieve data. You can
retrieve data by using the select-statement, which is a form of query that searches for rows of tables in the
database that meet specified search conditions. If such rows exist, the data is retrieved and put into
specified variables in the host program, where it can be used for whatever it was designed to do.

Note: Embedded SQL applications can call stored procedures with any of the supported stored procedure
implementations and can retrieve output and input-output parameter values, however embedded SQL
applications cannot read and scroll through result sets returned by stored procedures.

After you have written a select-statement, you code the SQL statements that define how information will
be passed to your application.

You can think of the result of a select-statement as being a table having rows and columns, much like a
table in the database. If only one row is returned, you can deliver the results directly into host variables
specified by the SELECT INTO statement.

If more than one row is returned, you must use a cursor to fetch them one at a time. A cursor is a named
control structure used by an application program to point to a specific row within an ordered set of rows.

Scrolling through previously retrieved data in embedded SQL applications

When an application retrieves data from the database, the FETCH statement allows you to scroll forward
through the data. There is no equivalent SQL statement that you can use to scroll backwards through the
result set. You can use the CLI and the Db2 JDBC Driver to run a backward FETCH through read-only
scrollable cursors.

Procedure

For embedded SQL applications, you can use the following techniques to scroll through data that has
been retrieved:

- Keep a copy of the data that has been fetched in the application memory and scroll through it by some
programming technique.

« Use SQL to retrieve the data again, typically by using a second SELECT statement.

Keeping a copy of fetched data in embedded SQL applications
In some situations, it might be useful to maintain a copy of data that is fetched by the application.

Procedure

To keep a copy of the data, your application can do the one of the following tasks:
« Save the fetched data in virtual storage.

« Write the data to a temporary file (if the data does not fit in virtual storage). One effect of this approach
is that a user, scrolling backward, always sees exactly the same data that was fetched, even if the data
in the database was changed in the interim by a transaction.

- Using an isolation level of repeatable read, the data you retrieve from a transaction can be retrieved
again by closing and opening a cursor. Other applications are prevented from updating the data in your
result set. Isolation levels and locking can affect how users update data.

Retrieving fetched data a second time in embedded SQL applications
The technique that you use to retrieve data a second time depends on the order in which you want to see
the data again.

Procedure

You can retrieve data a second time by using any of the following methods:
« Retrieve data from the beginning

To retrieve the data again from the beginning of the result table, close the active cursor and reopen it.
This action positions the cursor at the beginning of the result table. But, unless the application holds

128 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

locks on the table, others may have changed it, so what had been the first row of the result table may
no longer be.

« Retrieve data from the middle

To retrieve data a second time from somewhere in the middle of the result table, issue a second
SELECT statement and declare a second cursor on the statement. For example, suppose the first
SELECT statement was:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO

Now, suppose that you want to return to the rows that start with DEPTNO = 'M95' and fetch
sequentially from that point. Code the following statement:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
AND DEPTNO >= 'M95'
ORDER BY DEPTNO

This statement positions the cursor where you want it.
« Retrieve data in reverse order

Ascending ordering of rows is the default. If there is only one row for each value of DEPTNO, then the
following statement specifies a unique ascending ordering of rows:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO

To retrieve the same rows in reverse order, specify that the order is descending, as in the following
statement:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO DESC

A cursor on the second statement retrieves rows in exactly the opposite order from a cursor on the
first statement. Order of retrieval is guaranteed only if the first statement specifies a unique ordering
sequence.

For retrieving rows in reverse order, it can be useful to have two indexes on the DEPTNO column, one in
ascending order, and the other in descending order.

Row order differences in result tables

The rows of multiple result tables for the same SELECT statement might not be displayed in the same
order. The database manager does not consider the order of rows as significant unless the SELECT
statement uses ORDER BY. Thus, if there are several rows with the same DEPTNO value, the second
SELECT statement can retrieve them in a different order from the first. The only guarantee is that they will
all be in order by department number, as demanded by the clause ORDER BY DEPTNO.

The difference in ordering can occur even if you were to issue the same SQL statement, with the same
host variables, a second time. For example, the statistics in the catalog can be updated between
executions, or indexes can be created or dropped. You can then issue the SELECT statement again.

The ordering is more likely to change if the second SELECT has a predicate that the first did not have; the
database manager can choose to use an index on the new predicate. For example, it can choose an index
on LOCATION for the first statement in the example, and an index on DEPTNO for the second. Because
rows are fetched in order by the index key, the second order need not be the same as the first.

Again, executing two similar SELECT statements can produce a different ordering of rows, even if no
statistics change and no indexes are created or dropped. In the example, if there are many different
values of LOCATION, the database manager can choose an index on LOCATION for both statements. Yet

Chapter 3. Programming embedded SQL applications 129

changing the value of DEPTNO in the second statement to the following example can cause the database
manager to choose an index on DEPTNO:

SELECT * FROM DEPARTMENT
WHERE LOCATION = ‘CALIFORNIA'
AND DEPTNO >= 'Z98'
ORDER BY DEPTNO

Because of the subtle relationships between the form of an SQL statement and the values in this
statement, never assume that two different SQL statements will return rows in the same order unless the
order is uniquely determined by an ORDER BY clause.

Updating previously retrieved data in embedded SQL applications
To scroll backward and update data that was retrieved previously, you can use a combination of the
techniques that are used to scroll through previously retrieved data and to update retrieved data.

Procedure

To update previously retrieved data, you can do one of two things:

« If you have a second cursor on the data to be updated and the SELECT statement uses none of the
restricted elements, you can use a cursor-controlled UPDATE statement. Name the second cursor in
the WHERE CURRENT OF clause.

« Inothercases, use UPDATE with a WHERE clause that names all the values in the row or specifies the
primary key of the table. You can issue one statement many times with different values of the
variables.

Selecting multiple rows using a cursor in embedded SQL applications
To allow an application to retrieve a set of rows, SQL uses a mechanism called a cursor.

About this task

To help understand the concept of a cursor, assume that the database manager builds a result table to
hold all the rows retrieved by executing a SELECT statement. A cursor makes rows from the result table
available to an application by identifying or pointing to a current row of this table. When a cursor is used,
an application can retrieve each row sequentially from the result table until an end of data condition, that
is, the NOT FOUND condition, SQLCODE +100 (SQLSTATE 02000) is reached. The set of rows obtained as
a result of executing the SELECT statement can consist of zero, one, or more rows, depending on the
number of rows that satisfy the search condition.

Procedure

To process a cursor:

1. Specify the cursor using a DECLARE CURSOR statement.

2. Perform the query and build the result table using the OPEN statement.
3. Retrieve rows one at a time using the FETCH statement.

4. Process rows with the DELETE or UPDATE statements (if required).

5. Terminate the cursor using the CLOSE statement.

What to do next

An application can use several cursors concurrently. Each cursor requires its own set of DECLARE
CURSOR, OPEN, CLOSE, and FETCH statements.

Updating and deleting retrieved data in statically executed SQL applications
It is possible to update and delete the row referenced by a cursor. For a row to be updatable, the query
corresponding to the cursor must not be read-only.

130 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

About this task

To update with a cursor, use the WHERE CURRENT OF clause in an UPDATE statement. Use the FOR
UPDATE clause to tell the system that you want to update some columns of the result table. You can
specify a column in the FOR UPDATE without it being in the fullselect; therefore, you can update columns
that are not explicitly retrieved by the cursor. If the FOR UPDATE clause is specified without column
names, all columns of the table or view identified in the first FROM clause of the outer fullselect are
considered to be updatable. Do not name more columns than you need in the FOR UPDATE clause. In
some cases, naming extra columns in the FOR UPDATE clause can cause Db2 to be less efficient in
accessing the data.

Deletion with a cursor is done using the WHERE CURRENT OF clause in a DELETE statement. In general,
the FOR UPDATE clause is not required for deletion of the current row of a cursor. The only exception
occurs when using dynamic SQL for either the SELECT statement or the DELETE statement in an
application that has been precompiled with LANGLEVEL set to SAAL and bound with BLOCKING ALL. In
this case, a FOR UPDATE clause is necessary in the SELECT statement.

The DELETE statement causes the row being referenced by the cursor to be deleted. The deletion leaves
the cursor positioned before the next row, and a FETCH statement must be issued before additional
WHERE CURRENT OF operations can be performed against the cursor.

Example of a fetch in a statically executed SQL program
A fetch is an SQL action that positions a cursor on the next row of its result table and assigns the values of
that row to host variables.

The following sample selects from a table using a cursor, opens the cursor, and fetches rows from the
table. For each row fetched, the program decides, based on simple criteria, whether the row must be
deleted or updated.

The REXX language does not support static SQL, so a sample is not provided.
« Cand C++ (tbmod.sqc/tbmod.sqC)

The following example selects from a table using a cursor, opens the cursor, fetches, updates, or delete
rows from the table, then closes the cursor.

EXEC SQL DECLARE c1 CURSOR FOR SELECT * FROM staff WHERE id >= 310;
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO :id, :name, :dept, :job:jobInd, :years:yearsInd, :salary,
:comm: commInd;

The sample shows almost all possible cases of table data modification.
« COBOL (openftch.sqgb)

The following example is from the sample openftch. This example selects from a table using a cursor,
opens the cursor, and fetches rows from the table.

EXEC SQL DECLARE c1 CURSOR FOR
SELECT name, dept FROM staff
WHERE job='Mgr'

FOR UPDATE OF job END-EXEC.

EXEC SQL OPEN c1 END-EXEC
* call the FETCH and UPDATE/DELETE loop.
perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

EXEC SQL CLOSE c1 END-EXEC.

Error message retrieval in embedded SQL applications

The method that you use to retrieve error information depends on the language that you used to write the
application.

Chapter 3. Programming embedded SQL applications 131

e C, C++, and COBOL applications can use the GET ERROR MESSAGE API to obtain the corresponding
information related to the SQLCA passed in.

C Example: The SqlInfoPrint procedure from UTILAPI.C
[Fekk ke ek ek o e ek kok ok ok e ke ok keok ok ok ek ke kok ok ok e ko kok ok ok ok ok ok ok ke ok ok ok ok e ke ok ok ok o ek ok keok ok o ok ok ok ok o sk ok ok ok ok ok
*% 1.1 - SqlInfoPrint - prints diagnostic information to the screen.
*%
Sk ek ek ok ok e ek keok ok ok e ek keok ok ok e ke ok keok ok o e ke kok ok o ok ok ok ok o ek ok ok ok ke ok ok ok ok o ok keok ok o ok ok ok ok o ok ok ok kok ok ok ok /
int SqlInfoPrint(char * appMsg,
struct sqlca * pSqlca,
int line,
char « file)
$ int rc = 0;
char sqlInfo[1024];
char sqlInfoToken[1024];
char sqlstateMsg[1024];
char errorMsg[1024];
if (pSqlca->sqlcode != 0 && pSqlca->sqglcode != 100)
i strcpy(sqlInfo, "");
if(pSqlca->sqglcode < 0)
) sprintf(sqlInfoToken, "\n---- error report ----\n");
strcat(sqlInfo, sqlInfoToken);

else

$ sprintf(sqlInfoToken, "\n---- warning report ----\n");
strcat(sqlInfo, sqlInfoToken);

t /% endif %/

sprintf(sqlInfoToken, " app. message = %s\n", appMsg);

strcat(sqlInfo, sqlInfoToken);

sprintf(sqlInfoToken, " 1line = %d\n", line);
strcat(sqlInfo, sqlInfoToken);

sprintf(sqlInfoToken, " file = %s\n", file);
strcat(sqlInfo, sqlInfoToken);

sprintf(sqlInfoToken, " SQLCODE = %1d\n",

pSqlca->sqlcode) ;
strcat(sqlInfo, sqlInfoToken);

/* get error message *x/
rc = sqlaintp(errorMsg, 1024, 80, pSqlca);
/* return code is the length of the errorMsg string =/
if(rc > 0)
i sprintf(sqlInfoToken, "%s\n", errorMsg);
strcat(sqlInfo, sqlInfoToken);

/* get SQLSTATE message x/
rc = sqlogstt(sqlstateMsg, 1024, 80, pSqglca->sqglstate);
if (xc == 0)
{ sprintf(sqlInfoToken, "%s\n", sqglstateMsg);
strcat(sqlInfo, sqlInfoToken);
¥

if(pSqlca->sqlcode < 0)
{ sprintf(sqlInfoToken, "--- end error report ---\n");
strcat(sqlInfo, sqlInfoToken);

printf("%s", sqlInfo);
return 1;

L

else

i sprintf(sqlInfoToken, "--- end warning report ---\n");
strcat(sqlInfo, sqlInfoToken);

printf("%s", sqlInfo);
return 0O;
¥ /* endif */
t /* endif x/
return 0O;

%
C developers can also use an equivalent function, sqlglm(), which has the signature:

sqlglm(char *message_buffer_ptr, int xbuffer_size_ptr, int *msg_size_ptr)

COBOL Example: From CHECKERR.CBL
*kkhkkkkkhkkkkhkkhkkhkkhhkhkkhhkhkkhkkhhkhkkhkhkkhkikkkk

* GET ERROR MESSAGE API called *

132 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

*kkhkkkkhkkhkkkkhkkkhkhhkhkkhhkhkkhkhhkhkkhhhkkkihkkkk
call "sqlgintp" using
by value buffer-size
by value line-width
by reference sqlca
by reference error-buffer
returning error-rc.
Kkkok ke kok ke k ok ok ok ok kok Kk ok ok k
* GET SQLSTATE MESSAGE *
*kkhkkkkkhkkkkhkkkkhkkhkhkkkhkhhkkkhhkk
call "sqlggstt" using
by value buffer-size
by value line-width
by reference sqlstate
by reference state-buffer
returning state-rc.
if error-rc is greater than 0
display error-buffer.

if state-rc is greater than 0
display state-buffer.

if state-rc is less than 0
display "return code from GET SQLSTATE =" state-rc.

if SQLCODE is less than 0
display "--- end error report ---
go to End-Prog.

display "--- end error report ---
display "CONTINUING PROGRAM WITH WARNINGS!".

« REXX applications use the CHECKERR procedure.

[F*xrKKkk CHECKERR - Check SQLCODE *%%%%/
CHECKERR:
arg errloc

if (SQLCA.SQLCODE = 0) then
return O

else do
say '--- error report ---'
say 'ERROR occurred :' errloc
say 'SQLCODE :' SQLCA.SQLCODE

[*xkhkrhkkhhkkhhkkhhkxkkx\

* GET ERROR MESSAGE =*

*xkkkkkhkkhkkkhkkkkxkkx /

call SQLDBS 'GET MESSAGE INTO :errmsg LINEWIDTH 80'
say errmsg

say '--- end error report ---'

if (SQLCA.SQLCODE < 0) then
exit

else do
say 'WARNING - CONTINUING PROGRAM WITH ERRORS'
return 0O

end

end
return 0O

Error information in the SQLCODE, SQLSTATE, and SQLWARN fields

Error information is returned in the SQLCODE and SQLSTATE fields of the SQLCA structure, which is
updated after every executable SQL statement and most database manager API calls. The SQLWARN field
contains an array of warning indicators, even if SQLCODE is zero.

A source file containing executable SQL statements can provide at least one SQLCA structure with the
name sqlca. The SQLCA structure is defined in the SQLCA include file. Source files without embedded
SQL statements, but calling database manager APIs, can also provide one or more SQLCA structures, but
their names are arbitrary.

If your application is compliant with the FIPS 127-2 standard, you can declare the SQLSTATE and
SQLCODE as host variables for C, C++, COBOL, and FORTRAN applications, instead of using the SQLCA
structure.

Chapter 3. Programming embedded SQL applications 133

An SQLCODE value of 0 means successful execution (with possible SQLWARN warning conditions). A
positive value means that the statement was successfully executed but with a warning, as with truncation
of a host variable. A negative value means that an error condition occurred.

An additional field, SQLSTATE, contains a standardized error code consistent across other IBM database
products and across SQL92-conformant database managers. Practically speaking, you should use
SQLSTATE values when you are concerned about portability since SQLSTATE values are common across
many database managers.

The first element of the SQLWARN array, SQLWARNO, contains a blank if all other elements are blank.
SQLWARNO contains a W if at least one other element contains a warning character.

Note: If you want to develop applications that access various IBM RDBMS servers you should:

« Where possible, have your applications check the SQLSTATE rather than the SQLCODE.

« If your applications will use Db2 Connect, consider using the mapping facility provided by Db2 Connect
to map SQLCODE conversions between unlike databases.

Note: The occurrence of an error with an accompanying SQLSTATE value of class code 40 indicates that
the error has resulted in the rollback of the transaction and the release of any locks held by the
transaction. Errors occurring with other SQLSTATE class code values will not result in a rollback of the
transaction nor the release of locks held by the transaction. See SQLSTATE Messages.

Exit list routine considerations
You must not use SQL or Db2 API calls in exit list routines.

Note: You cannot disconnect from a database in an exit routine.

Exception, signal, and interrupt handler considerations
An exception, signal, or interrupt handler is a routine that gains control when an exception, signal, or
interrupt occurs. The type of handler used is determined by your operating environment.

Windows operating systems
Pressing Ctrl-C or Ctrl-Break generates an interrupt.

UNIX operating systems
Usually, pressing Ctrl-C generates the SIGINT interrupt signal. Note that keyboards can easily be
redefined so that SIGINT can be generated by a different key sequence on your machine.

Do not put SQL statements in exception, signal, and interrupt handlers. With these kinds of error
conditions, you normally want to do a ROLLBACK to avoid the risk of inconsistent data. Before issuing a
ROLLBACK, call the INTERRUPT API (sqleintxr/sqlgintx). This API interrupts the current SQL query (if
the application is executing one) and lets the ROLLBACK begin immediately.

Refer to your platform documentation for specific details on the various handler considerations.

How to disconnect from embedded SQL applications
The disconnect statement is the final step you must take when you are working with a database.

Disconnecting from Db2 databases in C and C++ Embedded SQL applications

When working with C and C++ applications, a database connection is closed by issuing the following
statement:

EXEC SQL CONNECT RESET;

Applications that are precompiled with the COMPATIBILITY_MODE ORA option can issue one of the
following statements to achieve the ROLLBACK operation along with the disconnect operation in a single
statement:

« EXEC SQL ROLLBACK RELEASE;
« EXEC SQL ROLLBACK WORK RELEASE;

134 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.messages.doc/doc/rdb2stt.html

Applications that are precompiled with the COMPATIBILITY_MODE ORA option can issue one of the
following statements to achieve the COMMIT operation along with the disconnect operation in a single
statement:

« EXEC SQL COMMIT RELEASE;
« EXEC SQL COMMIT WORK RELEASE;

Disconnecting from Db2 databases in COBOL Embedded SQL applications

When working with COBOL applications, a database connection is closed by issuing the following
statement:

EXEC SQL CONNECT RESET END-EXEC.

Disconnecting from Db2 databases in REXX Embedded SQL applications

When working with REXX applications, a database connection is closed by issuing the following
statement:

CALL SQLEXEC 'CONNECT RESET'

When working with FORTRAN applications, a database connection is closed by issuing the following
statement:

EXEC SQL CONNECT RESET

Embedded SQL/COBOL Support for MRI and MRF

Db2 Precompiler supports the SQL array in INSERT, UPDATE, and DELETE. It allows the application to
insert/update/delete the rows in the target database from the COBOL application. Also, it supports the
FETCH statement to fetch the multiple rows from the specified cursor from the server.

Supporting Array INSERT/UPDATE/DELETE

The Db2 ESQL enables arrays to be passed as a host variable, while ESQL calls the INSERT, UPDATE,
and DELETE statements as their input arguments from the COBOL application. Also, Db2 embedded
runtime supports the bulk insert against Db2 except LOB columns.

To pass a cardinality for the array insert, the Db2 supports the “For n ROWS” clause in INSERT,
UPDATE, and DELETE SQL’s. The variable "n" within the "For n ROWS" clause can be an integer in the
range 2 - 32767, a host variable declared as integer, or short data type.

If the “For n ROWS” clause is not specified, the Db2 precompiler for COBOL takes the cardinality of
the array size based on the declared size of host variables that are used in the SQL. If the host
variables used are of different sizes, the minimum size of all the host variables are used as the
cardinality of the bulk/array INSERT.

Users can check sqlca.sqlerrd(2) when an error occurs during an array operation. Processing stops at
the row that caused the error. Thus, sqlerrd[2] gives the row number on which error occurred. Users
can check sqlca.sqlerrd(3), which indicates the number of impacted records as a result of the array
INSERT/UDPATE/DELETE operation.

The following example demonstrates the array INSERT through COBOL.

Identification Division.
Program-ID. "arrayfetch".

Data Division.
Working-Storage Section.

copy "sqlca.cbl".

Chapter 3. Programming embedded SQL applications 135

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 cnt pic s9(4) comp-5.
01 insert-rec.
03 cl1 pic x(18) OCCURS 5 TIMES.
03 c2 pic s9(9) comp-5 OCCURS 5 TIMES.

EXEC SQL END DECLARE SECTION END-EXEC.
77 errloc pic x(80).

Procedure Division.
Main Section.
display "Sample COBOL program: ARRAY INSERT".

EXEC SQL CONNECT TO sample END-EXEC

MOVE 5 to cnt.

MOVE "Rowl" to ci1(1).

MOVE "Row2" to c1(2).

MOVE "Row3" to c1(3).

MOVE "Row4" to cl1(4).

MOVE "Row5" to c1(5).

MOVE 1 to c2(1).

move 10 to c2(2).

MOVE 50 to c2(3).

MOVE 160 to c2(4).

MOVE 500 to c2(5).

EXEC SQL INSERT INTO test VALUES (:c2, :ci
) FOR :cnt ROWS END-EXEC.

EXEC SQL CONNECT RESET END-EXEC.

move "CONNECT RESET" to errloc.

call "checkerr" using SQLCA errloc.
End-Main.

go to End-Prog.

End-Prog.
stop run.

Support of Multirow Fetch

Db2 Precompiler and embedded Runtime support the fetch of multiple rows by using a single FETCH
statement. Db2 ESQL enables arrays to be passed as a host variable (and as their indicators) while
ESQL calls the FETCH statements as their output arguments (bind-outs) from the COBOL application.

To pass the cardinality for the array FETCH statement, the Db2 Precompiler supports the “For n
ROWS” clause in FETCH statement. The variable "n" in the "For n ROWS" clause can be an integer in
the range 2 - 32767, a host variable declared as integer, or a short data type.

If the “For n ROWS” clause is not specified, the Db2 precompiler for COBOL takes the cardinality of
the array size based on the declared size of host variables that are used in the SQL. If the host
variables used are of different sizes, the minimum size of all the host variables are used as the
cardinality of the bulk/array.

Users can check sqlca.sqlerrd(3), which indicates the number of records fetched so far on this cursor.

The following example demonstrates the array FETCH through COBOL.

Identification Division.
Program-ID. "openftch".

Data Division.
Working-Storage Section.

copy "sqlca.cbl".
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 dept-rec.
03 pname pic x(10) OCCURS 5 TIMES.
03 dept pic s9(9) comp-5 OCCURS 5 TIMES.
03 cnt pic s9(9) comp-5.
01 userid pic x(8).
01 passwd.
49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

136 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Procedure Division.
Main Section.
display "Sample COBOL program: OPENFTCH".

EXEC SQL CONNECT TO sample END-EXEC

MOVE 5 TO cnt.

EXEC SQL DECLARE c1 CURSOR FOR SELECT name, dept 1
FROM staff
WHERE job='Mgr' END-EXEC.

EXEC SQL OPEN cl1 END-EXEC. 2
move "OPEN" to errloc.
call "checkerr" using SQLCA errloc.

*call the FETCH and UPDATE/DELETE loop.
perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

EXEC SQL CLOSE cl1 END-EXEC. 5
move "CLOSE" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL ROLLBACK END-EXEC.

move "ROLLBACK" to errloc.

call "checkerr" using SQLCA errloc.

display "On second thought -- changes rolled back.".

EXEC SQL CONNECT RESET END-EXEC.

move "CONNECT RESET" to errloc.

call "checkerr" using SQLCA errloc.
End-Main.

go to End-Prog.

Fetch-Loop Section.
EXEC SQL FETCH c1 FOR :cnt ROWS
INTO :pname,
:dept END-EXEC.

display pname(1), " in dept", dept(1), "will be fetched".
display pname(2), " in dept", dept(2), "will be fetched".
display pname(3), " in dept", dept(3), "will be fetched".
display pname(4), " in dept", dept(4), "will be fetched".
display pname(5), " in dept", dept(5), "will be fetched".
display "blank line...............iiiiin.... Crr e

End-Fetch-Loop. exit.

End-Prog.
stop run.

Array declaration by using the OCCURS clause
COBOL supports the declaration of array's by using the OCCURS clause. Multirow INSERT and FETCH
is supported for array when it is declared as the following

01 Monthly-sales-rec.
03 Monthly-sales pic s9(9) comp-5 OCCURS 12 TIMES.

The previous declartion specifices 12 fields, all of which have the same PIC. The individual fields are
referenced by using subscripts such as MONTHLY-SALES(2).
Restrictions

e The Multi-row fetch and array INSERT do not support the LOB array's. The Db2 precompiler throws
SQL1727N error, if the application uses the LOB array’s in INSERT/UPDATE/DELETE/FETCH
statements.

« The Multi-row fetch and array insert do not support table of records (array of structure).

« The Db2 precompiler throws SQLO104N error if the application uses the NON-ATOMIC keyword in
the INSERT statement because the Db2 server does not support this keyword.

« The Db2 embedded SQL supports running the array insert/update/delete operations in atomic mode
only.

« The Db2 Precompiler does not consider the declaration of array of structure/record.

Chapter 3. Programming embedded SQL applications 137

« The Db2 server and client does not support ROWSET cursors. Hence the Db2 precompiler strips off
the WITH ROWSET POSITIONING keyword from the DECLARE CURSOR statement, and the NEXT
ROWSET keyword from the FETCH statement.

138 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Chapter 4. Building embedded SQL applications

After you have created the source code for your embedded SQL application, you must follow additional
steps to build the application. You should consider building 64-bit executable files when developing new
embedded SQL database applications. Along with compiling and linking your program, you must
precompile and bind it.

The precompilation process converts embedded SQL statements into Db2 runtime API calls that a host
language compiler can process. By default, a package is created at precompile time. Optionally, a bind file
can be created at precompile time. The bind file contains information about the SQL statements in the
application program. The bind file can be used later with the BIND command to create a package for the
application.

Binding is the process of creating a package from a bind file and storing it in a database. The bind file
must be bound to each database that needs to be accessed by the application. If your application
accesses more than one database, you must create a package for each database.

To run applications written in compiled host languages, you must create the packages needed by the
database manager at execution time. The following figure shows the order of these steps, along with the
various modules of a typical compiled Db2 application.:

1. Create source files that contain programs with embedded SQL statements.

2. Connect to a database, then precompile each source file to convert embedded SQL source statements
into a form the database manager can use.

Since the SQL statements placed in an application are not specific to the host language, the database
manager provides a way to convert the SQL syntax for processing by the host language. For C, C++,
COBOL, or FORTRAN languages, this conversion is handled by the Db2 precompiler that is invoked
using the PRECOMPILE (or PREP) command. The precompiler converts embedded SQL statements
directly into Db2 run-time services API calls. When the precompiler processes a source file, it
specifically looks for SQL statements and avoids the non-SQL host language.

3. Compile the modified source files (and other files without SQL statements) using the host language
compiler.

4. Link the object files with the Db2 and host language libraries to produce an executable program.
Compiling and linking (steps 3 and 4) create the required object modules

5. Bind the bind file to create the package if this was not already done at precompile time, or if a different
database is going to be accessed. Binding creates the package to be used by the database manager
when the program is run.

6. Run the application. The application accesses the database using the access plans.

© Copyright IBM Corp. 2016, 2020 139

Source Files
wWith S0L
Staterments

hJ

Precompiler Pér%ﬁGaE BGIPEEE]LIFLLEILE
{db2 PREP) Packace Bind File
Source Files ifi
: Modified
Without 50L Source Files
Statements

! .

Host Language Compiler

Object
Files

H Host Language Linker
l ¥

Executable Bind
Program File

'

1

:

: Binder

1

X (b2 BIMNDY
1

|

e —
¥ L 4

Libraries

Database Manager Package {Package)

Figure 3. Preparing Programs Written in Compiled Host Languages

Precompilation of embedded SQL applications with the PRECOMPILE
command

After you create the source files for an embedded SQL application, you must precompile each host
language file containing SQL statements with the PREP command, using the options specific to the host
language. The precompiler converts SQL statements contained in the source file to comments, and
generates the Db2 runtime API calls for those statements.

You must always precompile a source file against a specific database, even if eventually you do not use
the database with the application. In practice, you can use a test database for development, and after you
fully test the application, you can bind its bind file to one or more production databases. This practice is
known as deferred binding.

Restriction: Running an embedded application on an older client version than the client where
precompilation occurred is not supported, regardless of where the application was compiled. For

140 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

example, it is not supported to precompile an embedded application on a Db2 V9.5 client and then
attempt to run the application on a Db2 V9.1 client.

If your application uses a code page that is not the same as your database code page, you need to
consider which code page to use when precompiling.

If your application uses user-defined functions (UDFs) or user-defined distinct types (UDTs), you might
need to use the FUNCPATH parameter when you precompile your application. This parameter specifies
the function path that is used to resolve UDFs and UDTs for applications containing static SQL. If
FUNCPATH is not specified, the default function path is SYSIBM, SYSFUN, USER, where USER refers to
the current user ID.

Before precompiling an application you must connect to a server, either implicitly or explicitly. Although
you precompile application programs at the client workstation and the precompiler generates modified
source and messages on the client, the precompiler uses the server connection to perform some of the
validation.

The precompiler also creates the information the database manager needs to process the SQL
statements against a database. This information is stored in a package, in a bind file, or in both,
depending on the precompiler options selected.

A typical example of using the precompiler follows. To precompile a C embedded SQL source file called
filename. sqc, you can issue the following command to create a C source file with the default name
filename.c and a bind file with the default name £ilename. bnd:

DB2 PREP filename.sqc BINDFILE

Restriction: The byte order mark (BOM) with UTF-8 for a C embedded SQL source file is not supported.

The precompiler generates up to four types of output:

Modified Source
This file is the new version of the original source file after the precompiler converts the SQL
statements into Db2 runtime API calls. It is given the appropriate host language extension.

Package
If you use the PACKAGE parameter (the default), or do not specify any of the BINDFILE, SYNTAX, or
SQLFLAG parameters, the package is stored in the connected database. The package contains all the
information required to issue the static SQL statements of a particular source file against this
database only. Unless you specify a different name with the PACKAGE USING parameter, the
precompiler forms the package name from the first 8 characters of the source file name.

If you use the PACKAGE parameter without SQLERROR CONTINUE, the database used during the
precompile process must contain all of the database objects referenced by the static SQL statements
in the source file. For example, you cannot precompile a SELECT statement unless the table it
references exists in the database.

With the VERSION parameter, the bind file (if the BINDFILE parameter is used) and the package
(either if bound at PREP time or if bound separately) is designated with a particular version identifier.
Many versions of packages with the same name and creator can exist at once.

Bind File
If you use the BINDFILE parameter, the precompiler creates a bind file (with extension . bnd) that
contains the data required to create a package. This file can be used later with the BIND command to
bind the application to one or more databases. If you specify BINDFILE and do not specify the
PACKAGE parameter, binding is deferred until you invoke the BIND command. Note that for the
command line processor (CLP), the default for PREP does not specify the BINDFILE parameter. Thus,
if you are using the CLP and want the binding to be deferred, you need to specify the BINDFILE
parameter.

Specifying SQLERROR CONTINUE creates a package, even if errors occur when binding SQL
statements. Those statements that fail to bind for authorization or existence reasons can be
incrementally bound at execution time if VALIDATE RUN is also specified. Any attempt to issue them
at run time generates an error.

Chapter 4. Building embedded SQL applications 141

Message File
If you use the MESSAGES parameter, the precompiler redirects messages to the indicated file. These
messages include warning and error messages that describe problems encountered during
precompilation. If the source file does not precompile successfully, use the warning and error
messages to determine the problem, correct the source file, and then attempt to precompile the
source file again. If you do not use the MESSAGES parameter, precompilation messages are written to
the standard output.

Precompilation of embedded SQL applications that access more than one database
server

You must write your embedded SQL applications such that the application is able to distinguish which
database server receives each SQL statement.

To precompile an application program that accesses more than one server, you can do one of the
following tasks:

« Split the SQL statements for each database into separate source files. Do not mix SQL statements for
different databases in the same file. Each source file can be precompiled against the appropriate
database. This is the recommended method.

« Code your application using dynamic SQL statements only, and bind against each database your
program will access.

- If all the databases look the same, that is, they have the same definition, you can group the SQL
statements together into one source file.

The same procedures apply if your application will access a host application server through Db2 Connect.
Precompile it against the server to which it will be connecting, using the PREP options available for that
server.

Embedded SQL application packages and access plans

The precompiler produces a package in the database. The package contains access plans selected by the
Db2 optimizer for the static SQL statements in your application. You can optionally specify if you also
want a bind file generated.

The access plans contain the information required by the database manager to issue the static SQL
statements in the most efficient manner as determined by the optimizer. For dynamic SQL statements,
the optimizer creates access plans when you run your application.

Packages stored in the database include information needed to issue specific SQL statements in a single
source file. A database application uses one package for every precompiled source file used to build the
application. Each package is a separate entity, and has no relationship to any other packages used by the
same or other applications. Packages are created by running the precompiler against a source file with
binding enabled, or by running the binder at a later time with one or more bind files.

The bind file contains the SQL statements and other data required to create a package. You can use the
bind file to re-bind your application later without having to precompile it first. The re-binding creates
packages that are optimized for current database conditions. You need to re-bind your application if it will
access a different database from the one against which it was precompiled.

Package schema qualification using CURRENT PACKAGE PATH special register

Package schemas provide a method for logically grouping packages. Different approaches exist for
grouping packages into schemas.

Some implementations use one schema per environment (for example, a production and a test schema).
Other implementations use one schema per business area (for example, stocktrd and onlinebnk
schemas), or one schema per application (for example, stocktrdAddUser and onlinebnkAddUser).
You can also group packages for general administration purposes, or to provide variations in the packages
(for example, maintaining backup variations of applications, or testing new variations of applications).

When multiple schemas are used for packages, the database manager must determine in which schema
to look for a package. To accomplish this task, the database manager uses the value of the CURRENT

142 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

PACKAGESET special register. You can set this special register to a single schema name to indicate that
any package to be invoked belongs to that schema. If an application uses packages in different schemas,
a SET CURRENT PACKAGESET statement might have to be issued before each package is invoked if the
schema for the package is different from that of the previous package.

Note: Only Db2 for z/OS Version 9.1 has a CURRENT PACKAGESET special register, which allows you to
explicitly set the value (a single schema name) with the corresponding SET CURRENT PACKAGESET
statement. Although Db2 has a SET CURRENT PACKAGESET statement, it does not have a CURRENT
PACKAGESET special register. This means that CURRENT PACKAGESET cannot be referenced in other
contexts (such as in a SELECT statement) with Db2. Db2 for IBM i does not provide support for CURRENT
PACKAGESET.

The Db2 database server has more flexibility when it can consider a list of schemas during package
resolution. The list of schemas is similar to the SQL path that is provided by the CURRENT PATH special
register. The schema list is used for user-defined functions, procedures, methods, and distinct types.

Note: The SQL path is a list of schema names that Db2 should consider when trying to determine the
schema for an unqualified function, procedure, method, or distinct type name.

If you need to associate multiple variations of a package (that is, multiple sets of BIND options for a
package) with a single compiled program, consider isolating the path of schemas that are used for SQL
objects from the path of schemas that are used for packages.

The CURRENT PACKAGE PATH special register allows you to specify a list of package schemas. Other Db2
family products provide similar capability with special registers such as CURRENT PATH and CURRENT
PACKAGESET, which are pushed and popped for nested procedures and user-defined functions without
corrupting the runtime environment of the invoking application. The CURRENT PACKAGE PATH special
register provides this capability for package schema resolution.

Many installations use more than one schema for packages. If you do not specify a list of package
schemas, you must issue the SET CURRENT PACKAGESET statement (which can contain at most one
schema name) each time you require a package from a different schema. If, however, you issue a SET
CURRENT PACKAGE PATH statement at the beginning of the application to specify a list of schema
names, you do not need to issue a SET CURRENT PACKAGESET statement each time a package in a
different schema is needed.

For example, assume that the following packages exist, and, using the following list, that you want to
invoke the first one that exists on the server: SCHEMA1.PKG1, SCHEMA2.PKG2, SCHEMA3.PKG3,
SCHEMA.PKG, and SCHEMA5.PKG5. Assuming the current support for a SET CURRENT PACKAGESET
statement in Db2 (that is, accepting a single schema name), a SET CURRENT PACKAGESET statement
have to be issued before trying to invoke each package to specify the specific schema. For this example,
five SET CURRENT PACKAGESET statements need to be issued. However, using the CURRENT PACKAGE
PATH special register, a single SET statement is sufficient. For example:

SET CURRENT PACKAGE PATH = SCHEMA1, SCHEMA2, SCHEMA3, SCHEMA, SCHEMA5;

Note: In Db2, you can set the CURRENT PACKAGE PATH special register in the db2cli.ini file, by using the
SQLSetConnectAttr API, in the SQLE-CLIENT-INFO structure, and by including the SET CURRENT
PACKAGE PATH statement in embedded SQL programs. Only Db2 for z/OS, Version 8 or later, supports
the SET CURRENT PACKAGE PATH statement. If you issue this statement against a Db2 server or against
Db2 for IBM i, -30005 is returned.

You can use multiple schemas to maintain several variations of a package. These variations can be a very
useful in helping to control changes made in production environments. You can also use different
variations of a package to keep a backup version of a package, or a test version of a package (for example,
to evaluate the impact of a new index). A previous version of a package is used in the same way as a
backup application (load module or executable), specifically, to provide the ability to revert to a previous
version.

For example, assume the PROD schema includes the current packages used by the production
applications, and the BACKUP schema stores a backup copy of those packages. A new version of the
application (and thus the packages) are promoted to production by binding them using the PROD schema.

Chapter 4. Building embedded SQL applications 143

The backup copies of the packages are created by binding the current version of the applications using
the backup schema (BACKUP). Then, at runtime, you can use the SET CURRENT PACKAGE PATH
statement to specify the order in which the schemas should be checked for the packages. Assume that a
backup copy of the application MYAPPL has been bound using the BACKUP schema, and the version of
the application currently in production has been bound to the PROD schema creating a package
PROD.MYAPPL. To specify that the variation of the package in the PROD schema should be used if it is
available (otherwise the variation in the BACKUP schema is used), issue the following SET statement for
the special register:

SET CURRENT PACKAGE PATH = PROD, BACKUP;

If you need to revert to the previous version of the package, the production version of the application can
be dropped with the DROP PACKAGE statement, which causes the old version of the application (load
module or executable) that was bound using the BACKUP schema to be invoked instead (application path
techniques could be used here, specific to each operating system platform).

Note: This example assumes that the only difference between the versions of the package are in the
BIND options that were used to create the packages (that is, there are no differences in the executable
code).

The application does not use the SET CURRENT PACKAGESET statement to select the schema it wants.
Instead, it allows Db2 to pick up the package by checking for it in the schemas listed in the CURRENT
PACKAGE PATH special register.

Note: The Db2 for z/OS precompile process stores a consistency token in the DBRM (which can be set
using the LEVEL option), and during package resolution a check is made to ensure that the consistency
token in the program matches the package. Similarly, the Db2 bind process stores a timestamp in the
bind file. Db2 also supports a LEVEL option.

Another reason for creating several versions of a package in different schemas could be to cause different
BIND options to be in affect. For example, you can use different qualifiers for unqualified name references
in the package.

Applications are often written with unqualified table names. This supports multiple tables that have
identical table names and structures, but different qualifiers to distinguish different instances. For
example, a test system and a production system might have the same objects created in each, but they
might have different qualifiers (for example, PROD and TEST). Another example is an application that
distributes data into tables across different Db2 systems, with each table having a different qualifier (for
example, EAST, WEST, NORTH, SOUTH; COMPANYA, COMPANYB; Y1999, Y2000, Y2001). With Db2 for
z/0S, you specify the table qualifier using the QUALIFIER option of the BIND command. When you use the
QUALIFIER option, users do not have to maintain multiple programs, each of which specifies the fully
qualified names that are required to access unqualified tables. Instead, the correct package can be
accessed at runtime by issuing the SET CURRENT PACKAGESET statement from the application, and
specifying a single schema name. However, if you use SET CURRENT PACKAGESET, multiple applications
will still need to be kept and modified: each one with its own SET CURRENT PACKAGESET statement to
access the required package. If you issue a SET CURRENT PACKAGE PATH statement instead, all of the
schemas could be listed. At execution time, Db2 could choose the correct package.

Note: Db2 also supports a QUALIFIER bind option. However, the QUALIFIER bind option only affects
static SQL or packages that use the DYNAMICRULES option of the BIND command.

Precompiler generated timestamps

When an application is precompiled with binding enabled, the package and modified source file are
generated with matching timestamps. These timestamps are individually known as a consistency token.

If multiple versions of a package exist (by using the PRECOMPILE VERSION option), each version will have
an associated timestamp. When the application is run, the package name, creator and timestamp are sent
to the database manager, which checks for a package whose name, creator and timestamp match that
sent by the application. If such a match does not exist, one of the two following SQL error codes is
returned to the application:

144 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

« SQLO818N (timestamp conflict). This error is returned if a single package is found that matches the
name and creator (but not the consistency token), and the package has a version of "" (an empty string)

« SQLOBO5N (package not found). This error is returned in all other situations.

Remember that when you bind an application to a database, the first eight characters of the application
name are used as the package name unless you override the default by using the PACKAGE USING
parameter on the PREP command. As well, the version ID will be "" (an empty string) unless it is specified
by the VERSION parameter of the PREP command. This means that if you precompile and bind two
programs using the same name without changing the version ID, the second package will replace the
package of the first. When you run the first program, you will get a timestamp or a package not found
error because the timestamp for the modified source file no longer matches that of the package in the
database. The package not found error can also result from the use of the ACTION REPLACE REPLVER
precompile or bind option as in the following example:

1. Precompile and bind the package SCHEMA1 . PKG specifying VERSION VERZ1. Then generate the
associated application Al.

2. Precompile and bind the package SCHEMAL . PKG, specifying VERSION VER2 ACTION REPLACE
REPLVER VERZ1. Then generate the associated application A2.

The second precompile and bind generates a package SCHEMAL . PKG that has a VERSION of VER2, and
the specification of ACTION REPLACE REPLVER VER1 removes the SCHEMAL.PKG package that had a
VERSION of VER1.

An attempt to run the first application will result in a package mismatch and will fail.
A similar symptom will occur in the following example:

1. Precompile and bind the package SCHEMAL. PKG, specifying VERSION VER1. Then generate the
associated application A1

2. Precompile and bind the package SCHEMAL . PKG, specifying VERSION VER2. Then generate the
associated application A2

At this point it is possible to run both applications A1 and A2, which will be executed from packages
SCHEMA1. PKG versions VER1 and VER?2. If, for example, the first package is dropped (using the DROP
PACKAGE SCHEMA1.PKG VERSION VER1 SQL statement), an attempt to run the application A1 will fail
with a package not found error.

When a source file is precompiled but a package is not created, a bind file and modified source file are
generated with matching timestamps. To run the application, the bind file is bound in a separate BIND
step to create a package and the modified source file is compiled and linked. For an application that
requires multiple source modules, the binding process must be done for each bind file.

In this deferred binding scenario, the application and package timestamps match because the bind file
contains the same timestamp as the one that was stored in the modified source file during
precompilation.

Errors and warnings from precompilation of embedded SQL applications

Embedded SQL errors at precompile time are detected by the embedded SQL precompiler. The
embedded SQL precompiler detects syntax errors such as missing semicolons and undeclared host
variables in SQL statements. For each of these errors, an appropriate error message is generated.

Compiling and linking source files containing embedded SQL

You can precompile embedded SQL programs using the PRECOMPILE command. You must then compile
and link the resultant modified source files with the appropriate host language compiler.

About this task

When precompiling embedded SQL source files, the PRECOMPILE command generates modified source
files with a file extension applicable to the programming language.

Chapter 4. Building embedded SQL applications 145

Compile the modified source files (and any additional source files that do not contain SQL statements)
using the appropriate host language compiler. The language compiler converts each modified source file
into an object module.

Refer to the programming documentation for your operating platform for any exceptions to the default
compiler options. Refer to your compiler's documentation for a complete description of available compiler
options.

The host language linker creates an executable application. For example:

« On Windows operating systems, the application can be an executable file or a dynamic link library (DLL).

« On UNIX and Linux based operating systems, the application can be an executable load module or a
shared library.

Note: Although applications can be DLLs on Windows operating systems, the DLLs are loaded directly by
the application and not by the Db2 database manager. On Windows operating systems, the database
manager loads embedded SQL stored procedures and user-defined functions as DLLs.

To create the executable file, link the following objects:

« User object modules, generated by the language compiler from the modified source files and other files
not containing SQL statements.

« Host language library APIs, supplied with the language compiler.

- The database manager library containing the database manager APIs for your operating environment.
Refer to the appropriate programming documentation for your operating platform for the specific name
of the database manager library you need for your database manager APIs.

Binding embedded SQL packages to a database

Binding is the process of creating a package from a bind file and storing it in a database.

Application, bind file, and package relationships

Database applications use packages for some of the same reasons that applications are compiled:
improved performance and compactness. By precompiling an SQL statement, the statement is compiled
into the package when the application is built, instead of at run time. Each statement is parsed, and a
more efficiently interpreted operand string is stored in the package. At run time, the code generated by
the precompiler calls run-time services database manager APIs with any variable information required for
input or output data, and the information stored in the package is executed.

The advantages of precompilation apply only to static SQL statements. SQL statements that are executed
dynamically (using PREPARE and EXECUTE or EXECUTE IMMEDIATE) are not precompiled; therefore, they
must go through the entire set of processing steps at run time.

With the Db2 bind file description (db2b£d) utility, you can easily display the contents of a bind file to
examine and verify the SQL statements within it. You can also display the precompile options used to
create the bind file using the Db2 bind file description (db2bf£d) utility. This can be useful in problem

determination related to the bind file for your application.

You can set the STATICASDYNAMIC string on the GENERIC parameter of the BIND command to "yes" to
instruct the Db2 database manager to store all statements in the catalogs and mark them as incremental
bind. At run time, when the package is first loaded, the database manager uses the current session
environment (rather than the package) to set up the section entries and other entities (text is populated
and the package cache is accessed). Thereafter, the statements in the bound file behave the same as they
would if you were using dynamic SQL. For example, sections will be implicitly recompiled for Database
Definition Language invalidations, special register updates, and so on. The Db2 database manager
provides this feature to facilitate the migration of embedded SQL C applications from other database
systems.

146 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Effect of DYNAMICRULES bind option on dynamic SQL

The PRECOMPILE command and BIND command parameter DYNAMICRULES determines which rules
apply to dynamic SQL at run time.

In particular, the DYNAMICRULES parameter determines what values apply at run time for the following
dynamic SQL attributes:

« The authorization ID that is used during authorization checking.
« The qualifier that is used for qualification of unqualified objects.

« Whether the package can be used to dynamically prepare the following statements: GRANT, REVOKE,
ALTER, CREATE, DROP, COMMENT ON, RENAME, SET INTEGRITY, and SET EVENT MONITOR STATE
statements.

In addition to the DYNAMICRULES value, the runtime environment of a package controls how dynamic
SQL statements behave at run time. The two possible runtime environments are:

« The package runs as part of a stand-alone program
- The package runs within a routine context

The combination of the DYNAMICRULES value and the runtime environment determine the values for the
dynamic SQL attributes. That set of attribute values is called the dynamic SQL statement behavior. The
four behaviors are:

Run behavior
Db2 uses the authorization ID of the user (the ID that initially connected to the Db2 database)
executing the package as the value to be used for authorization checking of dynamic SQL statements
and for the initial value used for implicit qualification of unqualified object references within dynamic
SQL statements.

Bind behavior
At run time, Db2 uses all the rules that apply to static SQL for authorization and qualification. That is,
take the authorization ID of the package owner as the value to be used for authorization checking of
dynamic SQL statements and the package default qualifier for implicit qualification of unqualified
object references within dynamic SQL statements.

Define behavior
Define behavior applies only if the dynamic SQL statement is in a package that is run within a routine
context, and the package was bound with DYNAMICRULES DEFINEBIND or DYNAMICRULES
DEFINERUN. Db2 uses the authorization ID of the routine definer (not the routine's package binder) as
the value to be used for authorization checking of dynamic SQL statements and for implicit
qualification of unqualified object references within dynamic SQL statements within that routine.

Invoke behavior
Invoke behavior applies only if the dynamic SQL statement is in a package that is run within a routine
context, and the package was bound with DYNAMICRULES INVOKEBIND or DYNAMICRULES
INVOKERUN. Db2 uses the current statement authorization ID in effect when the routine is invoked as
the value to be used for authorization checking of dynamic SQL and for implicit qualification of
unqualified object references within dynamic SQL statements within that routine. This is summarized
by the following table:

Invoking Environment ID Used

Any static SQL Implicit or explicit value of the OWNER of the
package the SQL invoking the routine came from.

Used in definition of view or trigger Definer of the view or trigger.

Dynamic SQL from a run behavior package ID used to make the initial connection to the Db2
database.

Dynamic SQL from a define behavior package Definer of the routine that uses the package that

the SQL invoking the routine came from.

Chapter 4. Building embedded SQL applications 147

Invoking Environment

ID Used

Dynamic SQL from an invoke behavior package

Current authorization ID invoking the routine.

The following table shows the combination of the DYNAMICRULES value and the runtime environment
that yields each dynamic SQL behavior.

Table 18. How DYNAMICRULES and the Runtime Environment Determine Dynamic SQL Statement Behavior

DYNAMICRULES Value Behavior of Dynamic SQL Behavior of Dynamic SQL Statements
Statements in a Standalone in a Routine Environment
Program Environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of dynamic SQL behavior.

Table 19. Definitions of Dynamic SQL Statement Behaviors

explicit value of the
BIND OWNER
command
parameter

Executing Package

the routine's package
owner)

Dynamic SQL Setting for Setting for Setting for Dynamic | Setting for Dynamic SQL
Attribute Dynamic SQL Dynamic SQL SQL Attributes: Attributes: Invoke
Attributes: Bind Attributes: Run Define Behavior Behavior
Behavior Behavior
Authorization ID | The implicit or ID of User Routine definer (not [Current statement

authorization ID when
routine is invoked.

Default qualifier
for unqualified

The implicit or
explicit value of the

CURRENT SCHEMA
Special Register

Routine definer (not
the routine's package

Current statement
authorization ID when

GRANT,
REVOKE, ALTER,
CREATE, DROP,
COMMENT ON,
RENAME, SET
INTEGRITY, and
SET EVENT
MONITOR
STATE

objects BIND QUALIFIER owner) routine is invoked.
command
parameter

Can execute No Yes No No

Using special registers to control the statement compilation environment

For dynamically prepared statements, the special registers can be specified to define the statement
compilation environment.

Following special registers controls the statement compilation environment:

148 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

« The CURRENT QUERY OPTIMIZATION special register determines which optimization class is used.
« The CURRENT PATH special register determines the function path used for UDF and UDT resolution.

« The CURRENT EXPLAIN SNAPSHOT register determines whether explain snapshot information is
captured.

« The CURRENT EXPLAIN MODE register determines whether explain table information is captured for
any eligible dynamic SQL statement. The default values for these special registers are the same defaults
used for the related bind options.

Package recreation using the BIND command and an existing bind file

Binding is the process that creates the package the database manager needs to access the database
when the application is executed.

By default the PRECOMPILE command creates a package. Binding is done implicitly at precompile time
unless the BINDFILE command parameter is specified. The PACKAGE command parameter allows you to
specify a package name for the package created at precompile time.

A typical example of using the BIND command follows. To bind a bind file named £ilename. bnd to the
database, you can issue the following command:

BIND filename.bnd

One package is created for each separately precompiled source code module. If an application has five
source files, of which three require precompilation, three packages or bind files are created. By default,
each package is given a name that is the same as the name of the source module from which the . bnd file
originated, but truncated to 8 characters. To explicitly specify a different package name, you must use the
PACKAGE USING parameter on the PREP command. The version of a package is given by the VERSION
precompile parameter and defaults to the empty string. If the name and schema of this newly created
package is the same as a package that currently exists in the target database, but the version identifier
differs, a new package is created and the previous package still remains. However if a package exists that
matches the name, schema and the version of the package being bound, then that package is dropped
and replaced with the new package being bound (specifying ACTION ADD on the bind would prevent that
and an error (SQL0719) would be returned instead).

Rebinding existing packages with the REBIND command

Rebinding is the process of recreating a package for an application program that was previously bound.
You must rebind packages if they were marked invalid or inoperative or if the database statistics changed
since the last binding. In some situations, however, you might want to rebind packages that are valid. For
example, you might want to take advantage of a newly created index, or use updated statistics after
executing the RUNSTATS command.

Packages can be dependent on certain types of database objects such as tables, views, aliases, indexes,
triggers, referential constraints, and table check constraints. If a package is dependent on a database
object (such as a table, view, trigger, and so on), and that object is dropped, the package is placed into an
invalid state. If the object that is dropped is a UDF, the package is placed into an inoperative state.

When the package is marked inoperative, the next use of a statement in this package causes an implicit
rebind of the package using non-conservative binding semantics in order to be able to resolve to SQL
objects considering the latest changes in the database schema that caused that package to become
inoperative.

For static DML in packages, the packages can rebind implicitly, or by explicitly issuing the REBIND
command (or corresponding API), or the BIND command (or corresponding API). The implicit rebind is
performed with conservative binding semantics if the package is marked invalid, but uses non-
conservative binding semantics when the package is marked inoperative.

You must use the BIND command to rebind a package for a program which was modified to include more,
fewer, or changed SQL statements. You must also use the BIND command if you need to change any bind
options from the values with which the package was originally bound. The REBIND command provides the
option to resolve with conservative binding semantics (RESOLVE CONSERVATIVE) or to resolve by

Chapter 4. Building embedded SQL applications 149

considering new routines, data types, or global variables (RESOLVE ANY, which is the default option). The
RESOLVE CONSERVATIVE option can be used only if the package was not marked inoperative by the
database manager (SQLSTATE 51028). You should use REBIND whenever your situation does not
specifically require the use of BIND, as the performance of REBIND is significantly better than that of
BIND.

When multiple versions of the same package name coexist in the catalog, only one version can be
rebound at a time.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for rebinding packages. Task
assistants can guide you through the process of setting options, reviewing the automatically generated
commands to perform the task, and running these commands. For more details, see Administering
databases with task assistants.

Bind considerations

If your application uses a code page that differs from the database code page, you must ensure that the
code page used by the application is compatible with the database code page during the bind process.

If your application issues calls to any of the database manager utility APIs, such as IMPORT or EXPORT,
you must bind the supplied utility bind files to the database.

You can use bind options to control certain operations that occur during binding, as in the following
examples:

« The QUERYOPT bind parameter takes advantage of a specific optimization class when binding.

« The EXPLSNAP bind parameter stores Explain Snapshot information for eligible SQL statements in the
Explain tables.

« The FUNCPATH bind parameter properly resolves user-defined distinct types and user-defined functions
in static SOL.

If the bind process starts but never returns, it might be that other applications connected to the database
hold locks that you require. In this case, ensure that no applications are connected to the database. If
they are, disconnect all applications on the server and the bind process will continue.

If your application will access a server using Db2 Connect, you can use the BIND command parameters
available for that server.

Bind files are not compatible with earlier versions of Db2. In mixed-level environments, Db2 can only use
the functions available to the lowest level of the database environment. For example, if a version 8 client
connects to a version 7.2 server, the client will only be able to use version 7.2 functions. As bind files
express the functionality of the database, they are subject to the mixed-level restriction.

If you need to rebind higher-level bind files on lower-level systems, you can:
« Use a lower level IBM data server client to connect to the higher-level server and create bind files which
can be shipped and bound to the lower-level Db2 environment.

« Use a higher-level IBM data server client in the lower-level production environment to bind the higher-
level bind files that were created in the test environment. The higher-level client passes only the
options that apply to the lower-level server.

Blocking considerations
When you want to turn blocking off for an embedded SQL application and the source code is not available,
the application must be rebound using the BIND command and setting the BLOCKING NO clause.

Existing embedded SQL applications must be rebound using the BIND command and setting the
BLOCKING ALL or BLOCKING UNAMBIGUOUS clauses to request blocking (if they are not already bound
in this fashion). Embedded applications will retrieve the LOB values from the server a row at a time, when
a block of rows have been retrieved from the server

150 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Advantages of deferred binding

Precompiling with binding enabled allows an application to access only the database used during the
precompile process. Precompiling with binding deferred, however, allows an application to access many
databases, because you can bind the BIND file against each database.This method of application
development is inherently more flexible in that applications are precompiled only once, but the
application can be bound to a database at any time.

Using the BIND API during execution allows an application to bind itself, perhaps as part of an installation
procedure or before an associated module is executed. For example, an application can perform several
tasks, only one of which requires the use of SQL statements. You can design the application to bind itself
to a database only when the application calls the task requiring SQL statements, and only if an associated
package does not already exist.

Another advantage of the deferred binding method is that it lets you create packages without providing
source code to end users. You can ship the associated bind files with the application.

Performance improvements when using REOPT option of the BIND command
The bind option REOPT can significantly improve the embedded SQL application performance.

Effects of REOPT on static SQL

The bind option REOPT can make static SQL statements containing host variables, global variables, or
special registers behave like incremental-bind statements. This means that these statements get
compiled at the time of EXECUTE or OPEN instead of at bind time. During this compilation, the access
plan is chosen, based on the real values of these variables.

With REOPT ONCE, the access plan is cached after the first OPEN or EXECUTE request and is used for
subsequent execution of this statement. With REOPT ALWAYS, the access plan is regenerated for every
OPEN and EXECUTE request, and the current set of host variable, parameter marker, global variable, and
special register values is used to create this plan.

Effects of REOPT on dynamic SQL

When you specify the option REOPT ALWAYS, the database manager postpones preparing any statement
containing host variables, parameter markers, global variables, or special registers until it encounters an
OPEN or EXECUTE statement; that is, when the values for these variables become known. At this time,
the access plan is generated using these values. Subsequent OPEN or EXECUTE requests for the same
statement will recompile the statement, reoptimize the query plan using the current set of values for the
variables, and execute the newly generated query plan. When REOPT ALWAYS is specified, statement
concentrator is disabled.

The option REOPT ONCE has a similar effect, with the exception that the plan is only optimized once using
the values of the host variables, parameter markers, global variables, and special registers. This plan is
cached and will be used by subsequent requests.

Binding applications and utilities (Db2 Connect Server)

Application programs developed using embedded SQL must be bound to each database with which they
will operate. For information about the binding requirements for the IBM data server package, see the
topic about Db2 CLI bind files and package names.

Binding should be performed once per application, for each database. During the bind process, database
access plans are stored for each SQL statement that will be executed. These access plans are supplied by
application developers and are contained in bind files which are created during precompilation. Binding is
a process of processing these bind files by an IBM mainframe database server.

Because several of the utilities supplied with Db2 Connect are developed using embedded SQL, they must
be bound to an IBM mainframe database server before they can be used with that system. If you do not

Chapter 4. Building embedded SQL applications 151

use the Db2 Connect utilities and interfaces, you do not have to bind them to each of your IBM mainframe
database servers. The lists of bind files required by these utilities are contained in the following files:

« ddcsmvs.1lst for System z
ddcsvse.lst for VSE

ddcsvm.1lst for VM

ddcs400.1st for IBM Power Systems

Binding one of these lists of files to a database will bind each individual utility to that database.

If a Db2 Connect Server product is installed, the Db2 Connect utilities must be bound to each IBM
mainframe database server before they can be used with that system. Assuming the clients are at the
same fix pack level, you need to bind the utilities only once, regardless of the number of client platforms
involved.

For example, if you have 10 Windows clients, and 10 AIX clients connecting to Db2 for z/OS via Db2
Connect Enterprise Edition on a Windows server, perform one of the following steps:

 Bind ddcsmvs.1st from one of the Windows clients.

« Bind ddcsmvs.1st from one of the AIX clients.

« Bind ddcsmvs.1st from the Db2 Connect server.

This example assumes that:

« All the clients are at the same service level. If they are not then, in addition, you might need to bind
from each client of a particular service level

« The server is at the same service level as the clients. If it is not, then you need to bind from the server as
well.

In addition to Db2 Connect utilities, any other applications that use embedded SQL must also be bound to
each database that you want them to work with. An application that is not bound will usually produce an
SQLO8O5N error message when executed. You might want to create an additional bind list file for all of
your applications that need to be bound.

For each IBM mainframe database server that you are binding to, perform the following steps:

1. Make sure that you have sufficient authority for your IBM mainframe database server management
system:

System z
The authorizations required are:

« SYSADM or

« SYSCTRL or

« BINDADD and CREATE IN COLLECTION NULLID

Note: The BINDADD and the CREATE IN COLLECTION NULLID privileges provide sufficient

authority only when the packages do not already exist. For example, if you are creating them for
the first time.

If the packages already exist, and you are binding them again, then the authority required to
complete the task(s) depends on who did the original bind.

A) If you did the original bind and you are doing the bind again, then having any of the previously
listed authorities will allow you to complete the bind.

B) If your original bind was done by someone else and you are doing the second bind, then you will
require either the SYSADM or the SYSCTRL authorities to complete the bind. Having just the
BINDADD and the CREATE IN COLLECTION NULLID authorities will not allow you to complete the
bind. It is still possible to create a package if you do not have either SYSADM or SYSCTRL
privileges. In this situation you would need the BIND privilege on each of the existing packages
that you intend to replace.

152 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

VSE or VM
The authorization required is DBA authority. If you want to use the GRANT option on the bind
command (to avoid granting access to each Db2 Connect package individually), the NULLID user
ID must have the authority to grant authority to other users on the following tables:

- system.syscatalog

« system.syscolumns
« system.sysindexes

« system.systabauth
 system.syskeycols
 system.syssynonyms
« system.syskeys

« system.syscolauth

« system.sysuserauth

On the VSE or VM system, you can issue:

grant select on table to nullid with grant option

IBM Power Systems
*CHANGE authority or higher on the NULLID collection.

. Issue commands similar to the following commands:

db2 connect to DBALIAS user USERID using PASSWORD
db2 bind path@ddcsmvs.lst blocking all

sqlerror continue messages ddcsmvs.msg grant public
db2 connect reset

Where DBALIAS, USERID, and PASSWORD apply to the IBM mainframe database server, ddcsmvs.1st
is the bind list file for z/OS, and path represents the location of the bind list file.

For example drive:\sqllib\bnd\ applies to all Windows operating systems, and INSTHOME /
sqllib/bnd/ applies to all Linux and UNIX operating systems, where drive represents the logical
drive where Db2 Connect was installed and INSTHOME represents the home directory of the Db2
Connect instance.

You can use the grant option of the bind command to grant EXECUTE privilege to PUBLIC or to a
specified user name or group ID. If you do not use the grant option of the bind command, you must
GRANT EXECUTE (RUN) individually.

To find out the package names for the bind files, enter the following command:
ddcspkgn @bindfile.lst
For example:
ddcspkgn @ddcsmvs.lst

might yield the following output:

Bind File Package Name

f:\sqllib\bnd\db2ajgrt.bnd SQLAB6D3

To determine these values for Db2 Connect execute the ddcspkgn utility, for example:

ddcspkgn @ddcsmvs.lst

Optionally, this utility can be used to determine the package name of individual bind files, for example:

Chapter 4. Building embedded SQL applications 153

ddcspkgn bindfile.bnd

Note:

a. Using the bind option sqlexrrox continue is required; however, this option is automatically
specified for you when you bind applications using the Db2 tools or the Command Line Processor
(CLP). Specifying this option turns bind errors into warnings, so that binding a file containing errors
can still result in the creation of a package. In turn, this allows one bind file to be used against
multiple servers even when a particular server implementation might flag the SQL syntax of another
to be invalid. For this reason, binding any of the list files ddcsxxx.1st against any particular IBM
mainframe database server should be expected to produce some warnings.

b. If you are connecting to a Db2 database through Db2 Connect, use the bind list db2ubind.1lst
and do not specify sqlexrror continue, which is only valid when connecting to a IBM mainframe
database server. Also, to connect to a Db2 database, it is recommended that you use the Db2
clients provided and not Db2 Connect.

3. Use similar statements to bind each application or list of applications.

4. If you have remote clients from a previous release of Db2, you might need to bind the utilities on these
clients to Db2 Connect.

Package storage and maintenance

You can create packages by precompiling and binding an application program. The package contains an
optimized access plan that oversees the execution of all of the SQL statements found within the
application.

The three types of privileges that deal with packages are the CONTROL, EXECUTE, and BIND privilege and
they are used to filter the level of access acceptable. Multiple versions of the same package can be
created by specifying the VERSION option at compile time. This option helps prevent the mismatched
timestamp error and allows for multiple versions of the application to run simultaneously.

Package versioning

If you need to create multiple versions of an application, you can use the VERSION parameter in the
PRECOMPILE command. This option allows multiple versions of the same package name (that is, the
package name and creator name) to coexist.

For example, assume that you have an application called fool, which is compiled from fool.sqc. You
would precompile and bind the package foo1l to the database and deliver the application to the users.
The users could then run the application. To make subsequent changes to the application, you would
update fool. sqc, then repeat the process of recompiling, binding, and sending the application to the
users. If the VERSION parameter was not specified for either the first or second precompilation of
fool. sqc, the first package is replaced by the second package. Any user who attempts to run the old
version of the application will receive the SQLCODE -818, indicating a mismatched timestamp error.

To avoid the mismatched timestamp error and in order to allow both versions of the application to run at
the same time, use package versioning. As an example, when you build the first version of foo1,
precompile it using the VERSION parameter, as follows:

DB2 PREP F001.SQC VERSION V1.1

This first version of the program may now be run. When you build the new version of fool, precompile it
with the command:

DB2 PREP F001.SQC VERSION V1.2

At this point this new version of the application will also run, even if there still are instances of the first
application still executing. Because the package version for the first package is V1.1 and the package
version for the second is V1.2, no naming conflict exists: both packages will exist in the database and
both versions of the application can be used.

154 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

You can use the ACTION parameter of the PRECOMPILE or BIND commands with the VERSION parameter
of the PRECOMPILE command. You use the ACTION parameter to control the way in which different
versions of packages can be added or replaced.

Package privileges do not have granularity at the version level. That is, a GRANT or a REVOKE of a package
privilege applies to all versions of a package that share the name and creator. So, if package privileges on
package fool were granted to a user or a group after version V1.1 was created, when version V1.2 is
distributed the user or group has the same privileges on version V1.2. This behavior is usually required
because typically the same users and groups have the same privileges on all versions of a package. If you
do not want the same package privileges to apply to all versions of an application, you should not use the
PRECOMPILE VERSION parameter to accomplish package versioning. Instead, you should use different
package names (either by renaming the updated source file, or by using the PACKAGE USING parameter
to explicitly rename the package).

Resolution of unqualified table names

You can handle unqualified table names in your application by binding user packages with COLLECTION
parameters, or by creating views or aliases.

Use one of the following methods to handle unqualified table names:

« Each user can bind their package with different COLLECTION parameters using different authorization
identifiers by using the following commands:

CONNECT TO db_name USER user_name
BIND file_name COLLECTION schema_name

In this example, db_name is the name of the database, user_name is the name of the user, and
file_name is the name of the application that will be bound. Note that user_name and schema_name are
typically the same value. Then use the SET CURRENT PACKAGESET statement to specify which package
to use, and therefore, which qualifiers will be used. If COLLECTION is not specified, then the default
qualifier is the authorization identifier that is used when binding the package. If COLLECTION is
specified, then the schema_name specified is the qualifier that will be used for unqualified objects.

Create a public alias to point to the required table.

« Create views for each user with the same name as the table so the unqualified table names resolve
correctly.

Create an alias for each user to point to the required table.

Building embedded SQL applications using the sample build script

The files used to demonstrate building sample programs are called script files on UNIX and Linux
operating systems, and batch files on Windows operating systems. These files are collectively called build
files and contain the recommended compile and link commands for supported platform compilers.

Build files are provided by Db2 for host languages pertaining to supported platforms. The build files are
available in the same directory to where the samples for that language are contained. The following table
lists the different types of build files for building different types of programs. These build files, unless
otherwise indicated, are for supported languages on all supported platforms. The build files have

the . bat (batch) extension on Windows, which is not included in the table. There is no extension for UNIX
platforms.

Table 20. Db2 build files

Build file Types of programs built

bldapp Application programs

bldrtn Routines (stored procedures and UDFs)
bldmc C/C++ multi-connection applications

Chapter 4. Building embedded SQL applications 155

Table 20. Db2 build files (continued)

Build file Types of programs built

bldmt C/C++ multi-threaded applications

bldcli CLI client applications for SQL procedures in the sqglpl samples sub-directory.

Note: By default the bldapp sample scripts for building executables from source code will build 64-bit
executables.

The following table lists the build files by platform and programming language, and the directories where
they are located. In the online documentation, the build file names are hot-linked to the source files in
HTML. The user can also access the text files in the appropriate samples directories.

Table 21. Build files by language and platform

Platform —> AIX Linux Windows
Language
C bldapp bldapp bldapp.bat
samples/c bldrtn bldrtn bldrtn.bat
bldmt bldmt bldmt.bat
bldmc bldmc bldmc.bat
C++ bldapp bldapp bldapp.bat
samples/cpp bldrtn bldrtn bldrtn.bat
bldmt bldmt bldmt.bat
bldmc bldmc bldmc.bat
IBM COBOL bldapp n/a bldapp.bat
samples/cobol bldrtn bldrtn.bat
Micro Focus COBOL bldapp bldapp bldapp.bat
samples/cobol_mf bldrtn bldrtn bldrtn.bat

The build files are used in the documentation for building applications and routines because they
demonstrate very clearly the compile and link options that Db2 recommends for the supported compilers.
There are generally many other compile and link options available, and users are free to experiment with
them. See your compiler documentation for all the compile and link options provided. Besides building
the sample programs, developers can also build their own programs with the build files. The sample
programs can be used as templates that can be modified by users to assist in their application
development.

Conveniently, the build files are designed to build a source file with any file name allowed by the compiler.
This is unlike the makefiles, where the program names are hardcoded into the file. The makefiles access
the build files for compiling and linking the programs they make. The build files use the $1 variable on
UNIX and Linux and the %1 variable on Windows operating systems to substitute internally for the
program name. Incremented numbers for these variable names substitute for other arguments that might
be required.

The build files allow for quick and easy experimentation, as each one is suited to a specific kind of
program-building, such as stand-alone applications, routines (stored procedures and UDFs) or more
specialized program types such as multi-connection or multi-threaded programs. Each type of build file is
provided wherever the specific kind of program it is designed for is supported by the compiler.

The object and executable files produced by a build file are automatically overwritten each time a
program is built, even if the source file is not modified. This is not the case when using a makefile. It

156 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

means a developer can rebuild an existing program without having to delete previous object and
executable files, or modifying the source.

The build files contain a default setting for the sample database. If the user is accessing another
database, they can simply supply another parameter to override the default. If they are using the other
database consistently, they could hardcode this database name, replacing sample, within the build file
itself.

For embedded SQL programs, except when using the IBM COBOL precompiler on Windows, the build files
call another file, embpzxep, that contains the precompile and bind steps for embedded SQL programs.
These steps might require the optional parameters for user ID and password, depending on where the
embedded SQL program is being built.

Finally, the build files can be modified by the developer for his or her convenience. Besides changing the
database name in the build file (explained previously) the developer can easily hardcode other
parameters within the file, change compile and link options, or change the default Db2 instance path. The
simple, straightforward, and specific nature of the build files makes tailoring them to your needs an easy
task.

Error-checking utilities

The Db2 Client provides several utility files. The utility files contain functions that you can use for error
checking and printing out error information. Utility files are provided for each language in the samples
directory.

When used with an application program, the error-checking utility files provide helpful error information,
and make debugging a Db2 program much easier. Most of the error-checking utilities use the Db2 APIs
GET SQLSTATE MESSAGE (sqlogstt) and GETERROR MESSAGE (sqlaintp) to obtain pertinent SQLSTATE
and SQLCA information related to problems encountered in program execution. The CLI utility file,
utilcli.c, does not use these Db2 APIs; instead it uses equivalent CLI statements. With all the error-
checking utilities, descriptive error messages are printed out to allow the developer to quickly understand
the problem. Some Db2 programs, such as routines (stored procedures and user-defined functions), do
not need to use the utilities.

Here are the error-checking utility files used by Db2 supported compilers for the different programming
languages:

Table 22. Error-checking utility files by language

Language Non-embedded | Non-embedded | Embedded SQL | Embedded SQL
SQL source file |SQL header file |source file header file

C utilapi.c utilapi.h utilemb.sqc utilemb.h

samples/c

Cit utilapi.cC utilapi.h utilemb.sqC utilemb.h

samples/cpp

IBM COBOL checkerr.cbl |n/a n/a n/a

samples/cobol

Micro Focus COBOL checkerr.cbl [n/a n/a n/a

samples/cobol_mf

In order to use the utility functions, the utility file must first be compiled, and then its object file linked in
during the creation of the target program's executable file. Both the makefile and build files in the
samples directories do this for the programs that require the error-checking utilities.

Chapter 4. Building embedded SQL applications 157

The example demonstrates how the error-checking utilities are used in Db2 programs. The utilemb.h
header file defines the EMB_SQL _CHECK macro for the functions SqlInfoPrint () and
TransRollback():

/* macro for embedded SQL checking x/

#tdefine EMB_SQL_CHECK(MSG_STR)
SqlInfoPrint(MSG_STR, &sqlca, __LINE__, __FILE__);
if (sqlca.sqlcode < 0)

TransRollback();
return 1;

—

SqlInfoPrint () checks the SQLCODE and prints out any available information related to the specific
error encountered. It also points to where the error occurred in the source code. TransRollback()
allows the utility file to safely rollback a transaction where an error has occurred. It uses the embedded
SQL statement EXEC SQL ROLLBACK. The example demonstrates how the C program dbuse calls the
utility functions by using the macro, supplying the value "Delete with host variables --
Execute" for the MSG_STR parameter of the SqlInfoPrint () function:

EXEC SQL DELETE FROM ozrg
WHERE deptnumb = :hostVarl AND
division = :hostVar2;
EMB_SQL_CHECK("Delete with host variables -- Execute");

The EMB_SQL_CHECK macro ensures that if the DELETE statement fails, the transaction will be safely
rolled back, and an appropriate error message printed out.

Developers are encouraged to use and expand upon these error-checking utilities when creating their
own Db2 programs.

Building applications and routines written in C and C++

You are provided with build scripts for various operating systems with your Db2 product. You can build
embedded SQL applications in C and C++ with these files. Aside from build scripts that you can use to
build applications, there is a specific bldrtn script provided that you can use to build routines, such as
stored procedures and user defined functions.

For applications and routines written in VisualAge®, configuration files are used to build the applications.
The C application samples provided vary from tutorials to client level or instance level examples, they can
be found in the sqllib/samples/c directory for UNIX and sqllib\samples\c directory for Windows.

Compile and link options for C and C++

AIX C embedded SQL and Db2 API applications compile and link options
The compile and link options for building C embedded SQL and Db2 API applications with the IBM C for
AIX compiler are available in the bldapp build script.

Compile and link options for bldapp
Compile Options:

xlc
The IBM XL C/C++ compiler.

$EXTRA_CFLAG
Contains "-g64" for an instance where 64-bit support is enabled; otherwise, it contains no value.

-I$DB2PATH/include
Specify the location of the Db2 include files. For example: $HOME/sqllib/include.

-c
Perform compile only; no link. Compile and link are separate steps.

Link Options:

158 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

xlc
Use the compiler as a front end for the linker.

$EXTRA_CFLAG

Contains "-g64" for an instance where 64-bit support is enabled; otherwise, it contains no value.
-0 $1

Specify the executable program.
$1.0

Specify the program object file.
utilemb.o

If an embedded SQL program, include the embedded SQL utility object file for error checking.
utilapi.o

If not an embedded SQL program, include the Db2 API utility object file for error checking.
-1db2

Link to the Db2 library.

-L$DB2PATH/$LIB
Specify the location of the Db2 runtime shared libraries. For example: $HOME /sqllib/$LIB. If you
do not specify the -L option, the compiler assumes the following path: /usr/1ib:/1ib.

Refer to your compiler documentation for additional compiler options.

AIX C++ embedded SQL and Db2 administrative API applications compile and link options
The compile and link options for building C++ embedded SQL and Db2 administrative API applications
with the IBM XL C/C++ for AIX compiler are available in the b1dapp build script.

Compile and link options for bldapp
Compile options:
x1C
The IBM XL C/C++ compiler.
EXTRA_CFLAG
Contains "-q64" for an instance where 64-bit support is enabled; otherwise, it contains no value.
-I$DB2PATH/include
Specify the location of the Db2 include files. For example: $HOME/sqllib/include.
-C
Perform compile only; no link. Compile and link are separate steps.
Link options:

x1C
Use the compiler as a front end for the linker.

EXTRA_CFLAG
Contains "-q64" for an instance where 64-bit support is enabled; otherwise, it contains no value.
-0 $1
Specify the executable program.
$1.0
Specify the program object file.
utilapi.o
Include the API utility object file for non-embedded SQL programs.
utilemb.o
Include the embedded SQL utility object file for embedded SQL programs.

-1db2
Link with the Db2 library.

Chapter 4. Building embedded SQL applications 159

-L$DB2PATH/$LIB
Specify the location of the Db2 runtime shared libraries. For example: $HOME /sqllib/$LIB. If you
do not specify the -L option, the compiler assumes the following path /usxr/1ib:/1ib.

Refer to your compiler documentation for additional compiler options.

Linux C application compile and link options
The compile and link options for building C embedded SQL and Db2 API applications with the Linux C
compiler are available in the bldapp build script.

Compile and link options for bldapp
Compile options:

$cc
The gcc or xlc_r compiler.

$EXTRA_C_FLAGS
Contains one of the following flags:

« -m31 on Linux for zSeries only, to build a 32-bit library;

« -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;

« -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or

» No value on Linux for IA64, to build a 64-bit library.
-I$DB2PATH/include

Specify the location of the Db2 include files.
-c

Perform compile only; no link. This script file has separate compile and link steps.
Link options:

$ccC
The gcc or xlc_r compiler; use the compiler as a front end for the linker.

$EXTRA_C_FLAGS
Contains one of the following flags:
« -m31 on Linux for zSeries only, to build a 32-bit library;
« -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;
« -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or
« No value on Linux for IA64, to build a 64-bit library.
-0 $1
Specify the executable.

$1.0

Specify the object file.
utilemb.o

If an embedded SQL program, include the embedded SQL utility object file for error checking.
utilapi.o

If a non-embedded SQL program, include the Db2 API utility object file for error checking.
$EXTRA_LFLAG

For 32-bit it contains the value "-Wl,-rpath,$DB2PATH/lib32", and for 64-bit it contains the value "-
WL,-rpath,$DB2PATH/lib64".

-L$DB2PATH/$LIB
Specify the location of the Db2 static and shared libraries at link-time. For example, for 32-bit:
$HOME/sqllib/1ib32, and for 64-bit: $HOME/sqllib/1ib64.

-1db2
Link with the Db2 library.

160 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Refer to your compiler documentation for additional compiler options.

Linux C++ application compile and link options
The compile and link options for building C++ embedded SQL and Db2 API applications with the Linux C+
+ compiler are available in the b1dapp build script.

Compile and link options for bldapp
Compile options:

g++
The GNU/Linux C++ compiler.

$EXTRA_C_FLAGS
Contains one of the following flags:

« -m31 on Linux for zSeries only, to build a 32-bit library;

« -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;

« -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or
» No value on Linux for IA64, to build a 64-bit library.

-I$DB2PATH/include
Specify the location of the Db2 include files.

-c
Perform compile only; no link. This script file has separate compile and link steps.
Link options:

++

& Use the compiler as a front end for the linker.

$EXTRA_C_FLAGS
Contains one of the following flags:
« -m31 on Linux for zSeries only, to build a 32-bit library;
« -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;
« -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or
« No value on Linux for IA64, to build a 64-bit library.

-0 $1
Specify the executable.

$1.0
Include the program obiject file.

utilemb.o

If an embedded SQL program, include the embedded SQL utility object file for error checking.
utilapi.o

If a non-embedded SQL program, include the Db2 API utility object file for error checking.
$EXTRA_LFLAG

For 32-bit it contains the value "-Wl,-rpath,$DB2PATH/lib32", and for 64-bit it contains the value "-
WL,-rpath,$DB2PATH/lib64".

-L$DB2PATH/$LIB
Specify the location of the Db2 static and shared libraries at link-time. For example, for 32-bit:
$HOME/sqllib/1ib32, and for 64-bit: $HOME/sqllib/1ib64.

-1db2
Link with the Db2 library.

Refer to your compiler documentation for additional compiler options.

Chapter 4. Building embedded SQL applications 161

Windows C and C++ application compile and link options
The compile and link options for building C and C++ embedded SQL and Db2 API applications on
Windows with the Microsoft Visual C++ compiler are available in the bldapp.bat batch file.

Compile and link options for bldapp
Compile options:

%BLDCOMP?
Variable for the compiler. The default is c1, the Microsoft Visual C++ compiler. It can be also set to
icl, the Intel C++ Compiler for 32-bit and 64-bit applications, or ecl, the Intel C++ Compiler for
Itanium 64-bit applications.

-Zi
Enable debugging information
-0d
Disable optimizations. It is easier to use a debugger with optimization off.
-c
Perform compile only; no link. The batch file has separate compile and link steps.
-2
Output warning, error, and severe and unrecoverable error messages.
-DWIN32
Compiler option necessary for Windows operating systems.
Link options:
link
Use the linker to link.
-debug
Include debugging information.
-out:%1.exe
Specify a filename
%1.0bj
Include the object file
utilemb.obj
If an embedded SQL program, include the embedded SQL utility object file for error checking.
utilapi.obj
If not an embedded SQL program, include the Db2 API utility object file for error checking.
db2api.lib

Link with the Db2 library.

Building applications in C or C++ using the sample build script (UNIX)

You are provided with build scripts for compiling and linking embedded SQL and Db2 administrative API
programs in C or C++. The scripts are in the sqllib/samples/c directory for C applications and the
sqllib/samples/cpp directory for C++ applications. The directories include sample programs that you
can build with these files.

About this task
The build file, bldapp, contains the commands to build a Db2 application program.

The first parameter, $1, specifies the name of your source file. This is the only required parameter, and
the only one needed for Db2 administrative API programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three optional parameters are also
provided: the second parameter, $2, specifies the name of the database to which you want to connect;
the third parameter, $3, specifies the user ID for the database, and $4 specifies the password.

162 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

For an embedded SQL program, bldapp passes the parameters to the precompile and bind script,
embpzrep. If no database name is supplied, the default sample database is used. The user ID and
password parameters are only needed if the instance where the program is built is different from the
instance where the database is located.

The following examples show you how to build and run Db2 administrative API and embedded SQL
applications.

Building and running Db2 administrative API applications

To build the Db2 administrative API sample program, c1i_info, from the source file c1i_info.c
forCand cli_info.C for C++, enter:

bldapp cli_info

The result is an executable file, c1i_info.

To run the executable file, enter the executable name:
cli_info

Building and running embedded SQL applications

» There are three ways to build the embedded SQL application, tbmod, from the source file
tbmod. sqc for C and tbmod. sqC for C++,:

1. If connecting to the sample database on the same instance, enter:
bldapp tbmod

2. If connecting to another database on the same instance, also enter the database name:
bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and password of the
database instance:

bldapp tbmod database userid password

The result is an executable file,tbmod
« There are three ways to run this embedded SQL application:

1. If accessing the sample database on the same instance, enter the executable name:
tbmod

2. If accessing another database on the same instance, enter the executable name and the
database name:

tbmod database

3. If accessing a database on another instance, enter the executable name, database name, and
user ID and password of the database instance:

tbmod database userid password
Building C/C++ applications on Windows
Db2 provides build scripts for compiling and linking Db2 API and embedded SQL C/C++ programs. These

are located in the sqllib\samples\c and sqllib\samples\cpp directories, along with sample
programs that can be built with these files.

About this task

The batch file, bldapp. bat, contains the commands to build Db2 API and embedded SQL programs. It
takes up to four parameters, represented inside the batch file by the variables %1, %2, %3, and %4.

Chapter 4. Building embedded SQL applications 163

The first parameter, %1, specifies the name of your source file. This is the only required parameter for
programs that do not contain embedded SQL. Building embedded SQL programs requires a connection to
the database so three additional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3, specifies the user ID for the
database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the precompile and bind file,
embprep.bat. If no database name is supplied, the default sample database is used. The user ID and
password parameters are only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure
- Building and running embedded SQL applications

There are three ways to build the embedded SQL application, tbmod, from the C source file
tbmod.sqcin sqllib\samples\c, or from the C++ source file thmod.sqx in sqllib\samples
\cpp:

— If connecting to the sample database on the same instance, enter:
bldapp tbmod

— If connecting to another database on the same instance, also enter the database name:
bldapp tbmod database

— If connecting to a database on another instance, also enter the user ID and password of the
database instance:

bldapp tbmod database userid password

The result is an executable file tbmod. exe.
There are three ways to run this embedded SQL application:

— If accessing the sample database on the same instance, enter the executable name:

tbmod

— If accessing another database on the same instance, enter the executable name and the database
name:

tbmod database

— If accessing a database on another instance, enter the executable name, database name, and user
ID and password of the database instance:

tbmod database userid password

« Building and running multi-threaded applications

C/C++ multi-threaded applications on Windows need to be compiled with either the -MT or -MD
options. The -MT option will link using the static library LIBCMT.LIB, and -MD will link using the
dynamic library MSVCRT . LIB. The bhinary linked with -MD will be smaller but dependent on
MSVCRT.DLL, while the binary linked with -MT will be larger but will be self-contained with respect to
the runtime.

The batch file bldmt. bat uses the -MT option to build a multi-threaded program. All other compile
and link options are the same as those used by the batch file bldapp.bat to build regular stand-alone
applications.

164 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

To build the multi-threaded sample program, dbthxds, from either the samples\c\dbthzxds.sqc or
samples\cpp\dbthrds. sqgx source file, enter:

bldmt dbthrds

The result is an executable file, dbthrds. exe.
There are three ways to run this multi-threaded application:

— If accessing the sample database on the same instance, simply enter the executable name (without
the extension):

dbthxds

— If accessing another database on the same instance, enter the executable name and the database
name:

dbthrds database

— If accessing a database on another instance, enter the executable name, database name, and user
ID and password of the database instance:

dbthrds database userid password

Example
The following examples show you how to build and run Db2 API and embedded SQL applications.

To build the Db2 API non-embedded SQL sample program, c1i_info, from either the source file
cli_info.c,insqgllib\samples\c, or from the source file c1i_info.cxx, in sqllib\samples
\cpp, enter:

bldapp cli_info

The result is an executable file, c1i_info.exe. You can run the executable file by entering the
executable name (without the extension) on the command line:

cli_info

Building C/C++ multi-connection applications on Windows

You can use the provided build scripts to compile and link C and C++ embedded SQL and Db2 API
programs. The scripts are in the sqllib\samples\c and sqllib\samples\cpp directories. The
directories also contain sample programs that you can build with these files.

You can find the commands to build a Db2 multi-connection program in the bldmc . bat batch file. The
commands require two databases. The compile and link options are the same as those used in the
bldapp.bat file.

About this task

The first parameter, %1, specifies the name of your source file. The second parameter, %2, specifies the
name of the first database to which you want to connect. The third parameter, %3, specifies the second
database to which you want to connect. These are all required parameters.

Note: The build script hardcodes default values of "sample" and "sample2" for the database names (%2
and %3) so if you are using the build script, and accept these defaults, you only have to specify the
program name (the %1 parameter). If you are using the bldmc . bat script, you must specify all three
parameters.

Optional parameters are not required for a local connection, but are required for connecting to a server
from a remote client. These are: %4 and %5 to specify the user ID and password, for the first database;
and %6 and %7 to specify the user ID and password, for the second database.

Chapter 4. Building embedded SQL applications 165

For the multi-connection sample program, dbmcon. exe, you require two databases. If the sample
database is not yet created, you can create it by entering db2sampl on the command line of a Db2
command window. The second database, here called sample2, can be created with one of the following
commands:

If creating the database locally:

db2 create db sample2

If creating the database remotely:

db2 attach to node_name

db2 create db sample2

db2 detach

db2 catalog db sample2 as sample2 at node node_name

where node_name is the node where the database resides.

Multi-connection also requires that the TCP/IP listener is running.

Procedure

To ensure that the TCP/IP listener is running:
1. Set the environment variable DB2COMM to TCP/IP as follows:

db2set DB2COMM=TCPIP

2. Update the database manager configuration file with the TCP/IP service name as specified in the
services file:

db2 update dbm cfg using SVCENAME TCPIP_service_name

Each instance has a TCP/IP service name listed in the services file. Ask your system administrator if
you cannot locate it or do not have the file permission to change the services file.

3. Stop and restart the database manager in order for these changes to take effect:

db2stop
db2start

Results

The dbmcon. exe program is created from five files in either the samples\c or samples\cpp
directories:

dbmcon. sqc or dbmcon. sqx
Main source file for connecting to both databases.

dbmconl. sqc or dbmconl. sgx
Source file for creating a package bound to the first database.

dbmconl.h
Header file for dbmconl. sqc or dbmconl. sqgx included in the main source file, dbmcon. sqc or
dbmcon. sqgx, for accessing the SQL statements for creating and dropping a table bound to the first
database.

dbmcon2. sqc or dbmcon2. sqx
Source file for creating a package bound to the second database.

dbmcon2.h
Header file for dbmcon2. sqc or dbmcon2. sgx included in the main source file, dbmcon. sqc or
dbmcon. sqgx, for accessing the SQL statements for creating and dropping a table bound to the
second database.

166 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

To build the multi-connection sample program, dbmcon . exe, enter:

bldmc dbmcon sample sample2

The result is an executable file, dbmcon.exe.

To run the executable file, enter the executable name, without the extension:

dbmcon

The program demonstrates a one-phase commit to two databases.

Building applications and routines written in COBOL
You are provided with build scripts for various operating systems for your Db2 product. You can build
embedded SQL applications written in COBOL with these files.Aside from build scripts that you can use to
build applications there is a specific bldrtn script so that you can build routines, such as stored
procedures and user defined functions.

When working with applications written in the Micro Focus COBOL language on Linux, be sure to configure
the compiler to be able to access certain COBOL shared libraries. IBM COBOL samples are provided and
can be found in the sql1ib/samples/cobol directory for UNIX and sqllib\samples\cobol
directory for Windows, for the Micro Focus COBOL samples directories replace the 'cobol' at the end of
the path with ‘cobol_mf'.

Compile and link options for COBOL

IBM COBOL for AIX application compile and link options
The compile and link options for building COBOL embedded SQL and Db2 API applications with the IBM
COBOL for AIX compiler are available in the bldapp build script.

Compile and link options for bldapp
Compile options:

cob2
The IBM COBOL for AIX compiler.

-gpgmname\ (mixed\)
Instructs the compiler to permit CALLs to library entry points with mixed-case names.
-qlib
Instructs the compiler to process COPY statements.
-I$DB2PATH/include/cobol_a
Specify the location of the Db2 include files. For example: $HOME/sqllib/include/cobol_a.

-c

Perform compile only; no link. Compile and link are separate steps.
Link options:
cobh2

Use the compiler as a front end for the linker.
-0 $1

Specify the executable program.
$1.0

Specify the program object file.
checkerr.o

Include the utility object file for error-checking.
-L$DB2PATH/$LIB

Specify the location of the Db2 runtime shared libraries. For example: $HOME/sqllib/1ib32.

Chapter 4. Building embedded SQL applications 167

-1db2
Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

AIX Micro Focus COBOL application compile and link options

The compile and link options for building COBOL embedded SQL and Db2 API application with the Micro
Focus COBOL for AIX compiler are available in the b1ldapp build script.Note that the Db2 Micro Focus
COBOL include files are found by setting up the COBCPY environment variable, so no -1 flag is required in
the compile step. Refer to the bldapp script for an example.

Compile and link options for bldapp
Compile options:
cob

The MicroFocus COBOL compiler.
-C

Perform compile only; no link.

$EXTRA_COBOL_FLAG="-C MFSYNC"
Enables 64-bit support.

-X
When used with -c, produces an object file.
Link Options:
cob
Use the compiler as a front end for the linker.
-X
Produces an executable program.
-0 $1
Specify the executable program.
$1.0
Specify the program object file.
-L$DB2PATH/$LIB
Specify the location of the Db2 runtime shared libraries. For example: $HOME/sqllib/1ib32.
-1db2
Link to the Db2 library.
-1db2gmf

Link to the Db2 exception-handler library for Micro Focus COBOL.
Refer to your compiler documentation for additional compiler options.
Linux Micro Focus COBOL application compile and link options

These compile and link options are available for building COBOL embedded SQL and Db2 API applications
with the Micro Focus COBOL compiler on Linux, as demonstrated in the bldapp build script.

Compile and link options for bldapp
Compile options:

cob
The Micro Focus COBOL compiler.

-cX
Compile to object module.

$EXTRA_COBOL_FLAG
For 64-bit support, contains the value "-C MFSYNC"; otherwise it contains no value.

168 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Link options:
cob

Use the compiler as a front end for the linker.
=X

Specify an executable program.

-0 $1
Include the executable.

$1.0
Include the program object file.

checkerr.o
Include the utility object file for error checking.

-L$DB2PATH/$LIB
Specify the location of the Db2 runtime shared libraries.

-1db2
Link to the Db2 library.

-1db2gmf
Link to the Db2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Windows IBM COBOL application compile and link options
The compile and link options for building COBOL embedded SQL and Db2 API applications on Windows
operating systems with the IBM VisualAge COBOL compiler are available in the bldapp.bat batch file.

Compile and link options for bldapp
Compile options:
cob2

The IBM VisualAge COBOL compiler.

-gpgmname (mixed)
Instructs the compiler to permit CALLs to library entry points with mixed-case names.
-c
Perform compile only; no link. Compile and link are separate steps.
-qlib
Instructs the compiler to process COPY statements.
-Ipath
Specify the location of the Db2 include files. For example: -1"%DB2PATH%\include\cobol_a".
%EXTRA_COMPFLAG%
If "set IBMCOB_PRECOMP=true" is uncommented, the IBM COBOL precompiler is used to

precompile the embedded SQL. It is invoked with one of the following formulations, depending on the
input parameters:

-q"SQL('database sample CALL_RESOLUTION DEFERRED')"
precompile using the default sample database, and defer call resolution.

-q"SQL('database %2 CALL_RESOLUTION DEFERRED')"
precompile using a database specified by the user, and defer call resolution.

-q"SQL('database %2 user %3 using %4 CALL_RESOLUTION DEFERRED')"
precompile using a database, user ID, and password specified by the user, and defer call
resolution. This is the format for remote client access.

Link options:

cob2
Use the compiler as a front-end for the linker

Chapter 4. Building embedded SQL applications 169

%1.0bj
Include the program object file.

checkerr.obj
Include the error-checking utility object file.

db2api.lib
Link with the Db2 library.

Refer to your compiler documentation for additional compiler options.

Windows Micro Focus COBOL application compile and link options
The compile and link options for building COBOL embedded SQL and Db2 API applications on Windows
operating systems with the Micro Focus COBOL compiler are available in the bldapp.bat batch file.

Compile and link options for bldapp
Compile option:

cobol
The Micro Focus COBOL compiler.

Link options:

cbhllink
Use the linker to link edit.

-1
Link with the lcobol library.

checkerr.obj
Link with the error-checking utility object file.

db2api.lib
Link with the Db2 API library.

Refer to your compiler documentation for additional compiler options.
COBOL compiler configurations

Configuring the IBM COBOL compiler on AIX
Before you develop IBM COBOL applications that contain embedded SQL and Db2 API calls on AIX
operating systems, you must configure the IBM COBOL compiler.

About this task

Required steps if you develop applications that contain embedded SQL and Db2 API calls, and you are
using the IBM COBOL Set for AIX compiler.

Procedure

« When you precompile your application using the PRECOMPILE command, use the target ibmcob
option.

« Do not use tab characters in your source files.
« You can use the PROCESS and CBL keywords in the first line of your source files to set compile options.

- If your application contains only embedded SQL, but no Db2 API calls, you do not need to use the
pgmname (mixed) compile option. If you use Db2 API calls, you must use the pgmname (mixed)
compile option.

- Ifyou are using the "System z host data type support" feature of the IBM COBOL Set for AIX compiler,
the Db2 include files for your applications are in the following directory:

$HOME/sqllib/include/cobol_i

170 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

If you are building Db2 sample programs using the script files provided, the include file path specified
in the script files must be changed to point to the cobol_i directory and not the cobol_a directory.

If you are NOT using the "System z host data type support"” feature of the IBM COBOL Set for AIX
compiler, or you are using an earlier version of this compiler, then the Db2 include files for your
applications are in the following directory:

$HOME/sqllib/include/cobol_a
Specify COPY file names to include the . cbl extension as follows:

COPY "sqgl.chl".

Configuring the IBM COBOL compiler on Windows
When you develop an embedded SQL application with the IBM VisualAge COBOL compiler on Windows
operating system, following db2 prep option and compiler options must be set.

Procedure

When you precompile your application with the Db2 precompiler, and use the command line processor
command db2 pzrep, use the target ibmcob option.

Do not use tab characters in your source files.

Use the PROCESS and CBL keywords in your source files to set compile options. Place the keywords in
columns 8 to 72 only.

If your application contains only embedded SQL, but no Db2 API calls, you do not need to use the
pgmname (mixed) compile option. If you use Db2 API calls, you must use the pgmname (mixed)
compile option.

If you are using the "System/390 host data type support" feature of the IBM VisualAge COBOL
compiler, the Db2 include files for your applications are in the following directory:

%DB2PATH%\include\cobol_i

If you are building Db2 sample programs using the batch files provided, the include file path specified
in the batch files must be changed to point to the cobol_1i directory and not the cobol_a directory.

If you are NOT using the "System/390 host data type support" feature of the IBM VisualAge COBOL
compiler, or you are using an earlier version of this compiler, then the Db2 include files for your
applications are in the following directory:

%DB2PATH%\include\cobol_a

The cobol_a directory is the default.
Specify COPY file names to include the . cbl extension as follows:

COPY "sqgl.cbhl".

Configuring the Micro Focus COBOL compiler on Windows
When you develop an embedded SQL application with the Micro Focus COBOL compiler on Windows
operating system, following db2 prep option and environment settings must be set.

Procedure

When you precompile your application using the PRECOMPILE command, use the target mfcob
option.

Ensure that the LIB environment variable points to %DB2PATH9%\11ib by using the following command:

set LIB="9%DB2PATH%\1lib;%LIB%"

Chapter 4. Building embedded SQL applications 171

« The Db2 COPY files for Micro Focus COBOL reside in $DB2PATH%\include\cobol_mf. Set the
COBCPY environment variable to include the directory as follows:

set COBCPY="%DB2PATH%\include\cobol_mf;%COBCPY%"

You must ensure that the previously mentioned environment variables are permanently set in the
System settings. This can be checked by going through the following steps:

a) Open the Control Panel

b) Select System

c¢) Select the Advanced tab

d) Click Environment Variables

e) Check the System variables list for the required environment variables. If not present, add them to
the System variables list

Setting them in either the User settings, at a command prompt, or in a script is insufficient.

What to do next

You must make calls to all Db2 application programming interfaces using calling convention 74. The Db2
COBOL precompiler automatically inserts a CALL-CONVENTION clause in a SPECIAL-NAMES paragraph.
If the SPECIAL-NAMES paragraph does not exist, the Db2 COBOL precompiler creates it, as follows:

Identification Division
Program-ID. "static".
special-names.

call-convention 74 is DB2API.

Also, the precompiler automatically places the symbol DB2API, which is used to identify the calling
convention, after the "call" keyword whenever a Db2 API is called. This occurs, for example, whenever
the precompiler generates a Db2 API runtime call from an embedded SQL statement.

If calls to Db2 APIs are made in an application which is not precompiled, you should manually create a
SPECIAL-NAMES paragraph in the application, similar to that given previously. If you are calling a Db2 API
directly, then you will need to manually add the DB2API symbol after the "call" keyword.

Configuring the Micro Focus COBOL compiler on Linux
To run Micro Focus COBOL routines, you must ensure that the Linux runtime linker and Db2 processes can
access the dependent COBOL libraries in the /usr/1ib directory.

About this task

Create symbolic links to /usr/11ib for the COBOL shared libraries as root. The simplest way to create
symbolic links to /usxr/1ibis to link all COBOL library files from $COBDIR/1ib to /usx/1lib:

1n -s $COBDIR/1lib/libcobx /usr/lib

where $COBDIR is where Micro Focus COBOL is installed, usually /opt/1ib/mfcobol.

Here are the commands to link each individual file (assuming Micro Focus COBOL is installed
in /opt/lib/mfcobol):

1n -s /opt/lib/mfcobol/lib/libcobrts.so /usr/lib

In -s /opt/lib/mfcobol/lib/libcobrts_t.so /usr/lib

In -s /opt/lib/mfcobol/1lib/1libcobrts.so0.2 /usr/lib

In -s /opt/lib/mfcobol/lib/libcobrts_t.so0.2 /usr/lib
In -s /opt/lib/mfcobol/lib/libcobcrtn.so /usr/lib

In -s /opt/lib/mfcobol/1lib/1libcobcrtn.so.2 /usr/lib
In -s /opt/lib/mfcobol/lib/libcobmisc.so /usr/lib

In -s /opt/lib/mfcobol/lib/libcobmisc_t.so /usr/lib
In -s /opt/lib/mfcobol/1lib/libcobmisc.s0.2 /usr/lib
In -s /opt/lib/mfcobol/1lib/libcobmisc_t.so0.2 /usr/lib
In -s /opt/lib/mfcobol/lib/libcobscreen.so /usr/lib
In -s /opt/lib/mfcobol/1lib/libcobscreen.so.2 /usr/lib
1n -s /opt/lib/mfcobol/lib/libcobtrace.so /usr/lib

172 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

In -s /opt/lib/mfcobol/1lib/libcobtrace_t.so /usr/lib
1n -s /opt/lib/mfcobol/lib/libcobtrace.so0.2 /usr/lib
In -s /opt/lib/mfcobol/lib/libcobtrace_t.so0.2 /usr/lib

The following procedures need to be done on each Db2 instance:

Procedure

= When you precompile your application using the PRECOMPILE command, use the target mfcob
option.

« You must include the Db2 COBOL COPY file directory in the Micro Focus COBOL environment variable
COBCPY. The COBCPY environment variable specifies the location of the COPY files. The Db2 COPY
files for Micro Focus COBOL reside in sqllib/include/cobol_mf under the database instance
directory.

To include the directory, enter:
— On bash or Korn shell:
export COBCPY=$HOME/sqllib/include/cobol_mf:$COBDIR/cpylib
- On Cshell:
setenv COBCPY $HOME/sqllib/include/cobol_mf:$COBDIR/cpylib

« Update the environment variable:

— On bash or Korn shell:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/sqllib/1ib:$COBDIR/1ib
— On Cshell:
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:$HOME/sqllib/1ib:$COBDIR/1ib
e Set the Db2 Environment List:

db2set DB2ENVLIST="COBDIR LD_LIBRARY_PATH"

Results

Note: You might want to set COBCPY, COBDIR, and LD_LIBRARY_PATH in the .bashzc, .kshzrc
(depending on shell being used), .bash_profile, .profile (depending on shell being used), orin
the .login..

Configuring the Micro Focus COBOL compiler on AIX
Before you develop Micro Focus COBOL applications that contain embedded SQL and Db2 API calls on
AIX operating systems, you must configure the Micro Focus COBOL compiler.

About this task

Follow the listed steps if you develop applications that contain embedded SQL and Db2 API calls with the
Micro Focus COBOL compiler.

Procedure

« When you precompile your application using the PRECOMPILE command, use the target mfcob
option.

e You must include the Db2 COBOL COPY file directory in the Micro Focus COBOL environment variable
COBCPY. The COBCPY environment variable specifies the location of the COPY files. The Db2 COPY
files for Micro Focus COBOL are in sqllib/include/cobol_mf under the database instance
directory.

Chapter 4. Building embedded SQL applications 173

To include the directory, enter:

— On bash or Korn shell:
export COBCPY=$COBCPY:$HOME/sqllib/include/cobol_mf
— On Cshell:

setenv COBCPY $COBCPY:$HOME/sqllib/include/cobol_mf
Note: You might want to set COBCPY in the .profile or .login file.

Building IBM COBOL applications on AIX

You can use the provided build scripts for compiling and linking IBM COBOL embedded SQL and Db2
administrative API programs. The scripts are in the sqllib/samples/cobol directory. The directories
also contain sample programs that you can build with these files. You can find commands to build a Db2
application program in the bldapp build script.

About this task

The first parameter, $1, specifies the name of your source file. This is the only required parameter for
programs that do not contain embedded SQL. Building embedded SQL programs requires a connection to
the database so three optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3, specifies the user ID for the
database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the precompile and bind script,
embpzrep. If no database name is supplied, the default sample database is used. The user ID and
password parameters are only needed if the instance where the program is built is different from the
instance where the database is located.

To build the non-embedded SQL sample program client from the source file client.cbl, enter:
bldapp client

The result is an executable file client. You can run the executable file against the sample database by
entering:

client

Procedure

« There are three ways to build the embedded SQL application, updat, from the source file updat. sqb:
a) If connecting to the sample database on the same instance, enter:

bldapp updat
b) If connecting to another database on the same instance, also enter the database name:
bldapp updat database

¢) If connecting to a database on another instance, also enter the user ID and password of the
database instance:

bldapp updat database userid password

The result is an executable file, updat.
« There are three ways to run this embedded SQL application:
a) If accessing the sample database on the same instance, enter the executable name:

updat

174 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

b) If accessing another database on the same instance, enter the executable name and the database
name:

updat database

¢) If accessing a database on another instance, enter the executable name, database name, and user
ID and password of the database instance:

updat database userid password

Building UNIX Micro Focus COBOL applications

You are provided with build scripts for compiling and linking Micro Focus COBOL embedded SQL and Db2
administrative API programs. You can find the scripts in the sql1lib/samples/cobol_mf directory. The
directory also contains sample programs that you can build with these files. You can find the commands
to build a Db2 application program in the bldapp build file.

About this task

The first parameter, $1, specifies the name of your source file. This is the only required parameter for
programs that do not contain embedded SQL. Building embedded SQL programs requires a connection to
the database so three optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3, specifies the user ID for the
database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the precompile and bind script,
embpzrep. If no database name is supplied, the default sample database is used. The user ID and
password parameters are only needed if the instance where the program is built is different from the
instance where the database is located.

To build the non-embedded SQL sample program, client, from the source file client.chl, enter:

bldapp client

The result is an executable file client. You can run the executable file against the sample database by
entering:

client

Procedure

« There are three ways to build the embedded SQL application, updat, from the source file updat. sqgb:
a) If connecting to the sample database on the same instance, enter:

bldapp updat
b) If connecting to another database on the same instance, also enter the database name:
bldapp updat database

¢) If connecting to a database on another instance, also enter the user ID and password of the
database instance:

bldapp updat database userid password

The result is an executable file, updat.
« There are three ways to run this embedded SQL application:
a) If accessing the sample database on the same instance, enter the executable name:

updat

Chapter 4. Building embedded SQL applications 175

b) If accessing another database on the same instance, enter the executable name and the database
name:

updat database

¢) If accessing a database on another instance, enter the executable name, database name, and user
ID and password of the database instance:

updat database userid password

Building IBM COBOL applications on Windows

You can use the provided build scripts to compile and link Db2 API and embedded SQL programs. The
scripts are in the sqllib\samples\cobol directory. The directory also contains sample programs that
you can build with these files.

About this task

Db2 supports two precompilers for building IBM COBOL applications on Windows, the Db2 precompiler
and the IBM COBOL precompiler. The default is the Db2 precompiler. The IBM COBOL precompiler can be
selected by uncommenting the appropriate line in the batch file you are using. Precompilation with IBM
COBOL is done by the compiler itself, using specific precompile options.

The batch file, bldapp. bat, contains the commands to build a Db2 application program. It takes up to
four parameters, represented inside the batch file by the variables %1, %2, %3, and %4.

The first parameter, %1, specifies the name of your source file. This is the only required parameter for
programs that do not contain embedded SQL. Building embedded SQL programs requires a connection to
the database so three optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3, specifies the user ID for the
database, and %4 specifies the password.

For an embedded SQL program using the default Db2 precompiler, bldapp.bat passes the parameters
to the precompile and bind file, embprep.bat.

For an embedded SQL program using the IBM COBOL precompiler, bldapp.bat copies the . sqb source
file toa . cbl source file. The compiler performs the precompile on the . cbl source file with specific
precompile options.

For either precompiler, if no database name is supplied, the default sample database is used. The user ID
and password parameters are only needed if the instance where the program is built is different from the
instance where the database is located.

The following examples show you how to build and run Db2 API and embedded SQL applications.

To build the non-embedded SQL sample program client from the source file client.cbl, enter:
bldapp client

The result is an executable file client.exe. You can run the executable file against the sample
database by entering the executable name (without the extension):

client

Procedure

« There are three ways to build the embedded SQL application, updat, from the source file updat.sqgb:
a) If connecting to the sample database on the same instance, enter:

bldapp updat
b) If connecting to another database on the same instance, also enter the database name:

bldapp updat database

176 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

¢) If connecting to a database on another instance, also enter the user ID and password of the
database instance:

bldapp updat database userid password

The result is an executable file, updat.
« There are three ways to run this embedded SQL application:
a) If accessing the sample database on the same instance, enter the executable name:

updat

b) If accessing another database on the same instance, enter the executable name and the database
name:

updat database

c¢) If accessing a database on another instance, enter the executable name, database name, and user
ID and password of the database instance:

updat database userid password

Building Micro Focus COBOL applications on Windows

You can use build scripts provided with IBM data server client for compiling and linking Db2 API and
embedded SQL programs.Build scripts are in the sqllib\samples\cobol_mf directory, along with
sample programs that can be built with these build script files.

About this task

The batch file bldapp. bat contains the commands to build a Db2 application program. It takes up to
four parameters, represented inside the batch file by the variables %1, %2, %3, and %4.

The first parameter, %1, specifies the name of your source file. This is the only required parameter for
programs that do not contain embedded SQL. Building embedded SQL programs requires a connection to
the database so three optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3, specifies the user ID for the
database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the precompile and bind batch file,
embprep.bat. If no database name is supplied, the default sample database is used. The user ID and
password parameters are only needed if the instance where the program is built is different from the
instance where the database is located.

The following examples show you how to build and run Db2 API and embedded SQL applications.

To build the non-embedded SQL sample program, client, from the source file client.chl, enter:

bldapp client

The result is an executable file client.exe. You can run the executable file against the sample
database by entering the executable name (without the extension):

client

Procedure

« There are three ways to build the embedded SQL application, updat, from the source file updat. sqgb:
a) If connecting to the sample database on the same instance, enter:

bldapp updat

b) If connecting to another database on the same instance, also enter the database name:

Chapter 4. Building embedded SQL applications 177

bldapp updat database

¢) If connecting to a database on another instance, also enter the user ID and password of the
database instance:

bldapp updat database userid password

The result is an executable file, updat.exe.
« There are three ways to run this embedded SQL application:

a) If accessing the sample database on the same instance, enter the executable name (without the
extension):

updat

b) If accessing another database on the same instance, enter the executable name and the database
name:

updat database

c¢) If accessing a database on another instance, enter the executable name, database name, and user
ID and password of the database instance:

updat database userid password

Building and running embedded SQL applications written in REXX

REXX applications are not precompiled, compiled, or linked. You can build and run REXX applications on
Windows operating systems, and on the AIX operating system.

About this task

On Windows operating systems, your application file must have a .CMD extension. After creation, you can
run your application directly from the operating system command prompt. On AIX, your application file
can have any extension.

Procedure

To build and run your REXX applications:

- On Windows operating systems, your application file can have any name. After creation, you can run
your application from the operating system command prompt by invoking the REXX interpreter as
follows:

REXX file_name

< On AIX, you can run your application using either of the following two methods:

— At the shell command prompt, type rexx name where name is the name of your REXX program.

— If the first line of your REXX program contains a "magic number" (#!) and identifies the directory
where the REXX/6000 interpreter resides, you can run your REXX program by typing its name at the
shell command prompt. For example, if the REXX/6000 interpreter file is in the /usr/bin directory,
include the following line as the very first line of your REXX program:

#! Jusr/bin/rexx

Then, make the program executable by typing the following command at the shell command
prompt:

chmod +x name

Run your REXX program by typing its file name at the shell command prompt.

178 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Note: On AIX, you should set the LIBPATH environment variable to include the directory where the
REXX SQL library, db2rexx is located. For example:

export LIBPATH=/1ib:/usr/lib:/$DB2PATH/1ib

Bind files for REXX

Five bind files are provided to support REXX applications. The names of these files are included in the
DB2UBIND.LST file. Each bind file is precompiled using a different isolation level; therefore, there are five
different packages stored in the database.

The five bind files are:

DB2ARXCS.BND
Supports the cursor stability isolation level.

DB2ARXRR.BND
Supports the repeatable read isolation level.

DB2ARXUR.BND
Supports the uncommitted read isolation level.

DB2ARXRS.BND
Supports the read stability isolation level.

DB2ARXNC.BND
Supports the no commit isolation level. This isolation level is used when working with some host or
System i database servers. On other databases, it behaves such as the uncommitted read isolation
level.

Note: In some cases, it can be necessary to explicitly bind these files to the database.

When you use the SQLEXEC routine, the package created with cursor stability is used as a default. If you
require one of the other isolation levels, you can change isolation levels with the SQLDBS CHANGE SQL
ISOLATION LEVEL API, before connecting to the database. This will cause subsequent calls to the
SQLEXEC routine to be associated with the specified isolation level.

Windows-based REXX applications cannot assume that the default isolation level is in effect unless they
know that no other REXX programs in the session have changed the setting. Before connecting to a
database, a REXX application should explicitly set the isolation level.

Building Object REXX applications on Windows
Object REXX is an object-oriented version of the REXX language. Object-oriented extensions have been
added to classic REXX, but its existing functions and instructions have not changed.

About this task
The Object REXX interpreter is an enhanced version of its predecessor, with additional support for:

« Classes, objects, and methods
« Messaging and polymorphism
- Single and multiple inheritance

Object REXX is fully compatible with classic REXX. In this section, whenever REXX is used, all versions of
REXX are inferred, including Object REXX.

You do not precompile or bind REXX programs.

On Windows, REXX programs are not required to start with a comment. However, for portability reasons
you are recommended to start each REXX program with a comment that begins in the first column of the
first line. This will allow the program to be distinguished from a batch command on other platforms:

/* Any comment will do. */

REXX sample programs can be found in the directory sqllib\samples\rexx.

Chapter 4. Building embedded SQL applications 179

To run the sample REXX program updat, enter:

rexx updat.cmd

Building embedded SQL applications from the command line

There are different methods that you can use to build embedded SQL applications, such as by using build
scripts or the command line. You can use the command line if you want to test build options before
writing a script to automate the process.

Building embedded SQL applications from the command line involves the following steps:

1. Precompile the application by issuing the PRECOMPILE command

2. If you created a bind file, bind this file to a database to create an application package by issuing the
BIND command.

3. Compile the modified application source and the source files that do not contain embedded SQL to
create an application object file (a .obj file).

4. Link the application object files with the Db2 and host language libraries to create an executable
program using the link command.

Building embedded SQL applications written in C or C++ (Windows)
After you have written the source file, you have to build your embedded SQL application.

About this task

Some steps in the build process depend on the compiler that you use. The examples provided with each
step of the procedure show how to build an application called myapp with a Microsoft Visual Studio 6.0
compiler, which is a C compiler. You can run each step in the procedure individually or run the steps
together within a batch file from a Db2 Command Window prompt. For an example of a batch file that can
be used to build the embedded SQL sample applications in the ¥DB2PATHX\SQLLIB\samples\c\
directory, refer to the %$DB2PATH%\SQLLIB\samples\c\bldapp.bat file. This batch file calls another
batch file, %¥DB2PATH%\SQLLIB\samples\c\embprep.bat, to precompile the application and bind the
application to a database.

« An active database connection

« An application source code file with the extension .sqc in C or .sgx in C++ and containing embedded SQL
« A supported C or C++ compiler
« The authorities or privileges required to run the PRECOMPILE command and BIND command

Procedure

1. Precompile the application by issuing the PRECOMPILE command.
For example:

C application: db2 PRECOMPILE myapp.sqc BINDFILE
C++ application: db2 PRECOMPILE myapp.sqgx BINDFILE

The PRECOMPILE command generates a .c or .C file, that contains a modified form of the source code
in a.sqc or.sqC file, and an application package. If you use the BINDFILE option, the PRECOMPILE
command generates a bind file. In the preceding example, the bind file would be called myapp . bnd.

2. If you created a bind file, bind this file to a database to create an application package by issuing the
BIND command. For example:

db2 bind myapp.bnd

The BIND command associates the application package with and stores the package within the
database.

180 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

3. Compile the modified application source and the source files that do not contain embedded SQL to
create an application object file (a .obj file).
For example:

C application: cl -Zi -0d -c -W2 -DWIN32 myapp.c
C++ application: cl -Zi -0d -c -W2 -DWIN32 myapp.Cxx

4. Link the application object files with the Db2 and host language libraries to create an executable
program using the link command.
For example:

link -debug -out:myapp.exe myapp.obj

Chapter 4. Building embedded SQL applications 181

182 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Chapter 5. Deploying and running embedded SQL

applications

Embedded SQL applications are portable and can be placed in remote database components. You can
compile the application in one location and run the package on a different component.

Use of the db2dsdriver.cfg configuration file by embedded SQL applications

Embedded SQL applications support use of the IBM data server driver configuration file
(db2dsdriver. cfg) for high availability solutions with supported servers.

You can use the IBM data server driver configuration file (db2dsdriver. cfg) for work load balancing
(WLB) and automatic client reroute (ACR) with supported servers. The WLB and ACR associated keywords
are available for use with the embedded applications.

Table 23. Settings to control workload balancing behavior

Element in the db2dsdriver. cfg configuration
file Section

Value

connectionLevelloadBalancing <database>

Must be set to true if you want to use transaction-level workload
balancing. The value is true by default. However, the default is false if the
server accessed is Db2 for z/OS .

enableliLB <wlb>

Specifies whether transaction-level workload balancing is in effect. The
value is false by default.

maxTransportIdleTime <wlb>

Specifies the maximum elapsed time in number of seconds before an idle
transport is dropped. The default is 60 seconds. The minimum supported
value is 0.

maxTransportWaitTime <wlb>

Specifies the number of seconds that the client waits for a transport to
become available. The default is 1 second. The minimum supported value
is 0 and -1 is used to specify unlimited value.

maxTransports <wlb>

Specifies the maximum number of physical connections that can be made
for each application process that connects to the Db2 pureScale®
instance. The default is -1 (unlimited). However, the default is 2000 if the
server accessed is Db2 for z/OS.

maxRefreshInterval <wlb>

Specifies the maximum elapsed time in number of seconds before the
server list is refreshed. The default is 10 seconds. The minimum
supported value is 0.

Table 24. Settings to control automatic client reroute behavior

Element in the <acr> section of the db2dsdriver configuration file

Value

enableAcr

Specifies whether automatic client reroute is in effect. The default is
true. If the server accessed is Db2 for z/OS, the enableAcx parameter
should be enabled only when the enablelWLB parameter is in effect.

acrRetryInterval

The number of seconds to wait between consecutive connection retries.
The registry variable DB2_CONNRETRIES_INTERVAL overrides this value.
The valid range is 0 to MAX_INT. The default is no wait (0), if
DB2_CONNRETRIES_INTERVAL is not set. When enabling automatic
client reroute to the Db2 for z/OS data sharing group, the default value of
no wait is recommended.

maxAcrRetries

The maximum number of connection retries for automatic client reroute.
The registry variable DB2_MAX_CLIENT_CONNRETRIES overrides this
value. If DB2_MAX_CLIENT_CONNRETRIES is not set, the default is that
the connection is tried again for 10 minutes. A value of 0 means that one
attempt at reconnection is made. If the server accessed isDb2 for z/0S,
the maxAcxRetries is recommended to be set to no higher than 5.

© Copyright IBM Corp. 2016, 2020

183

Table 24. Settings to control automatic client reroute behavior (continued)

Element in the <acr> section of the db2dsdriver configuration file Value

enableAlternateSexrverListFirstConnect Specifies whether there is an alternate server list that is used only if a
failure occurs on the first connection to the data server. The default is
false. When the value of
enableAlternateServerListFirstConnect is true, automatic client
reroute with seamless failover is implicitly enabled, regardless of the
other settings that are specified for automatic client reroute in the
db2dsdriver configuration file. To use this feature, you also require an
<alternateserverlist> element in the db2dsdriver configuration file.
This parameter is not supported against Db2 for z/OS.

alternateserverlist Specifies a set of server names and port numbers that identify alternate
servers to which a connection is attempted if a failure occurs on the first
connection to the database. The alternate server list is not used after the
first connection. In a Db2 pureScale environment, the entries in the list
can be members of a Db2 pureScale instance. In a non-Db2 pureScale
environment, there is an entry for the primary server and an entry for the
high availability disaster recovery (HADR) standby server. The alternate
server list is not used after the first connection.

affinityFailbackInterval The number of seconds to wait after the first transaction boundary to fail
back to the primary server. Set this value if you want to fail back to the
primary server. The default is 0, which means that no attempt is made to
fail back to the primary server.

affinitylist <list> elements with serverorder attributes. The serverorder attribute
value specifies a list of servers, in the order that they should be tried
during automatic client reroute with client affinities. The servers in <list>
elements must also be defined in <server> elements in the
<alternateserverlist>. You can specify multiple <list> elements, each of
which has different server orders. The presence of the <affinitylist>
element does not activate automatic client reroute.

clientaffinitydefined <client> elements that define the server order for automatic client
reroute for each client. Each <client> element contains a listname
attribute that associates a client with a <list> element from the
<affinitylist> element.

clientaffinityroundrobin <client> elements whose order in the <clientaffinityroundrobin> element
defines the first server that is chosen for automatic client reroute. Each
<client> element has an index. The first <client> element in the
<clientaffinityroundrobin> element has index 0, the second <client>
element has index 1, and so on. Suppose that the number of servers in
the <alternateserverlist> element is n and the index in the
<clientaffinityroundrobin> element of a <client> element is i. The first
server to be tried is the server whose index in the <alternateserverlist>
element is i mod n. The next server to be tried is the server whose index
in the <alternateserverlist> element is (i +1) mod n), and so on.

You can use the IBM data server driver configuration file (db2dsdriver.cfg) to set the client
information registers. You can set the client information register keywords in the <dsn>, <database>, or
<parameters> section of the IBM data server driver configuration file. The list of supported IBM data
server driver keywords for client information are listed in Table 3.

Table 25. Supported client information keywords

Keywords Header

ClientAccountingString Sets the client accounting string that is sent to a database.
ClientApplicationName Sets the client application name that is sent to a database.
ClientCorrelationTokenl Sets the client correlation token that is sent to a Db2 for z/OS Version 11

server in new function mode (NFM).

ClientUserID Sets the client user ID (accounting user ID) that is sent to a database.
The ClientUserID keyword is for identification purposes only and is
not used for any authentication.

ClientWorkstationName Sets the client workstation name that is sent to a database server.

enableDefaultClientInfol Specifies whether the default client information register values, which
are set on the Db2 for z/OS server, are returned to the application.

1You can set the specified keyword only when you are connecting to the Db2 for z/OS server.

184 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

The embedded SQL application cannot perform seamless failover. Also, the ability to resolve the data
source name (DSN) with <dsncollection> section entry in the db2dsdriver. cfg file is only supported
with IBM Data Server Driver Package.

IBM data server clients supports the use of the <dsncollection> section entry in the db2dsdriver.cfg
file to resolve DSN entry.

The following steps outline the process involved with database alias resolution:

1.
2.

The embedded SQL application requests to CONNECT to the database alias.

The embedded SQL application looks up the catalog database directory to see if the specified
database alias name exists.

« Ifinformation is found, the embedded application uses the database name, host name, and port
number information from the catalog. Proceed to step 4.

« Ifinformation is not found, the <dsncollection> sections in the db2dsdriver.cfg file is used to
resolve the database alias name to the database name, host name, and port number information.

. The application looks for database alias information in the db2dsdriver. cfg file:

« If database alias information is not found, a database connection error is returned to the embedded
SQL application.

- If database alias information is found, the database name, host name, port number, and data server
driver parameters that are specified in the <dsn> section are used.

. Using the database name, host name, and port number, the <databases> section for matching entry is

searched.

. If a matching entry for the database name, host name, and port number is found in the <databases>

section, the parameters specified under the matching <database> section is applied to the connection.

. The database connection is attempted with information that is specified in the catalog and

db2dsdriver.cfgfile.

In Db2 Version 9.7 Fix Pack 6 and later fix packs, the embedded SQL application can use following
timeout values and connection parameters in the db2dsdriver.cfg file:

MembexrConnectTimeout
ReceiveTimeout
TcpipConnectTimeout
keepAliveTimeOut
ConnectionTimeout
CommProtocol
Authentication
SSLClientLabel
TargetPrincipal
SecurityTransportMode
SSLclientkeystoredb
SSLclientkeystash
SSLClientKeystoredbPasswoxd

Any unrecognized data server keywords are ignored silently by the embedded SQL application.

Restrictions on linking to libdb2.so

On some Linux distributions, the libc development rpm comes with the /usr/1ib/1ibdb2.so or /usx/
1ib64/1ibdb2.so library. These libraries are used for Sleepycat Software's Berkeley DB
implementation and is not associated with IBM Db2 database systems.

Chapter 5. Deploying and running embedded SQL applications 185

If you do not plan to use Berkeley DB, you can rename or delete these library files permanently on your
systems.

If you do want to use Berkeley DB, you can rename the folder containing these library files and modify the
environment variable to point to the new folder.

186 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Chapter 6. Compatibility features for migration

The Db2 database manager provides features that facilitate the migration of embedded SQL C
applications from other database systems.

You can enable these compatibility features by setting the precompiler option COMPATIBILITY_MODE to
ORA. For example, the following command enables the compatibility features when you compile the file
named thsel.sqc:

$ db2 PRECOMPILE tbsel.sqc BINDFILE COMPATIBILITY_MODE ORA

The following features are supported when the COMPATIBILITY_MODE ORA precompile option is
specified:

« Ability to specify the RELEASE option with EXEC SQL ROLLBACK and EXEC SQL COMMIT statements.
« Enhanced CONNECT statement syntax.

« Simple type definition for the VARCHAR type.

« Suppression of unspecified indicator variable error when the required NULL indicator is not specified
and the UNSAFENULL YES option of the PRECOMPILE command is not set.

« Use of anonymous block to call a stored procedure.

« Use of C and C++ host variable arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements that
are non-dynamic.

« Use of double quotation marks to specify file names with the INCLUDE statement.

« Use of INDICATOR variable arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements that are
non-dynamic.

« Use of structure type, structure arrays, and structure indicator arrays.

Additionally, the following features are supported for C or C++ embedded SQL applications even if you do
not issue the PRECOMPILE command with the COMPATIBILITY_MODE ORA option:

« Use of the STATICASDYNAMIC string for the GENERIC parameter of the BIND command to provide true
dynamic SQL behavior for the package that is bound in a session.

 Use of a string literal with the PREPARE statement.
 Use of three-part name to call a stored procedure.
« Use of WHENEVER condition DO action statement.

C and C++ host variable arrays

You can use C and C++ host variable arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements
that are non-dynamic, when you set the precompiler option COMPATIBILITY_MODE to ORA.

For a host variable array that is declared for an INSERT, UPDATE, or DELETE statement, you must ensure
that entire array elements are initialized with a value. Otherwise, unexpected data can get introduced or
removed from the table.

When you specify multiple host variable arrays for one database object in an INSERT, UPDATE, or DELETE
statement, you must declare the same cardinality for those arrays. Otherwise, the smallest cardinality
that is declared among the arrays is used.

The total number of rows that are successfully processed is stored in the sqlca.sqlerrd[3] field.
However, the sqlca.sqlerrd[3] field does not represent the number of rows that are committed
successfully in the case of INSERT, UPDATE, or DELETE operations.

The total number of rows that are affected by the INSERT, UPDATE, or DELETE operation is stored in the
sqlca.sqlerrd[2] field.

© Copyright IBM Corp. 2016, 2020 187

In the following example, host variable arrays arr_in1 and arr_in2 demonstrate the use of the
sglca.sqlerrd[2] and sqlca.sqglerrd[3] fields:

// Declaring host variables with cardinality of 5.
EXEC SQL BEGIN DECLARE SECTION;

sqlint32 arr_ini[5];

char arr_in2[5][11];
EXEC SQL END DECLARE SECTION;

)).Populating the arrays.
for (i =0; i< 5; i++)

arr_inl[i] = i + 1;
sprintf(arr_in2[i], "hello%d", i + 1);

// A duplicate value is introduced for arr_inl array.
// arr_inl[0]==arr_inl[4]
arr_inl[4] = 1;

// The C1 column in the table tbll requires an unique key
// and doesn’t allow duplicate values.

EXEC SQL INSERT into tbll values (:arr_inl, :arr_in2);
printf(“sqlca.sqlcode = %d\n", sqlca.sqlcode); // -803

// Since arr_ind[0] and arr_inl1[4] have identicle values,

// the INSERT operation fails when arr_inl1[4] element is

// processed for the INSERT operation (which is 5th row

// insert attempt).

// The INSERT operation successfully processed 4 rows (not committed).
printf(“sqlca.sqlerrd[3] = %d\n", sqlca.sqlerrd[3]); //Prints 4

// The INSERT operation failed and O rows are impacted.
printf(“sqlca.sqlerrd[2] = %d\n", sqlca.sqlerxd[2]); //Prints ©

// No rows are present in tbll as the INSERT operation failed.
// C1 c2

[== =z e

// O record(s) selected.

Use of C or C++ host variable arrays in FETCH INTO statements

You can declare a cursor and do a bulk fetch into a variable array until the end of the row is reached. Host
variable arrays that are used in the same FETCH INTO statement must have same cardinality. Otherwise,
the smallest declared cardinality is used for the array.

In one FETCH INTO statement, the maximum number of records that can be retrieved is the cardinality of
the array that is declared. If more rows are available after the first fetch, you can repeat the FETCH INTO
statement to obtain the next set of rows.

In the following example, two host variable arrays are declared; empno and lastname. Each can hold up to
100 elements. Because there is only one FETCH INTO statement, this example retrieves 100 rows, or
less.

// Declaring host variables
EXEC SQL BEGIN DECLARE SECTION;
char empno[100][8];
char lastname[100][15];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE empcr CURSOR FOR
SELECT empno, lastname FROM employee;

EXEC SQL OPEN empcz;
EXEC SQL WHENEVER NOT FOUND GOTO end_gfetch;

while (1) {
EXEC SQL FETCH empcr INTO :empno :lastname; /% bulk fetch */
.. /* 100 or less rows */
&
end_fetch:

EXEC SQL CLOSE empcr;

188 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Use of C or C++ host variable arrays in INSERT statements
In the following example, host variable arrays arr_in1 and arr_in2 are used for an INSERT statement:

// Declaring host variables.
EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];
char arr_in2[3][11];
EXEC SQL END DECLARE SECTION;

)]'Populating the arrays.
for (i =0; i < 3; i++)
arr_ini[i] = 100 + 1i;

sprintf(arr_in2[i], "hello%d", arr_inl[i]);

// The 'arr_inl’' & 'arr_in2' are host variable arrays.
EXEC SQL INSERT into tbl1l values (:arr_inl, :arr_in2);
printf(“sqglca.sqlcode = %d\n”, sqlca.sqlcode); // 0O

// The INSERT operation inserted 3 rows without encounting an error.
printf(“sqlca.sqlerrd[3] = %d\n"”, sqlca.sqlerxd[3]); // 3

// The INSERT operation was successful and 3 rows has been stored in database.
printf(“sqlca.sqlerrd[2] = %d\n", sqlca.sqlerxd[2]); // 3

// The tbl1l table now contains the following rows:

//C1 c2
Jf-mcmmmomane scmacoaos
// 100 hellol

// 101 hello2

// 102 hello3

Use of C or C++ host variable arrays in UPDATE statements
In the following example, host variable arrays arr_in1 and arr_in2 are used for an UPDATE statement:

// Declaring host variables
EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];
sqlint32 arr_in2[2];
EXEC SQL END DECLARE SECTION;

}).Populating the arrays.
for (i =0; i< 3; it++)

arr_inl[i] = 100 + i;

arr_in2[0] = 1000;

arr_in2[1] = 1001;

// Table tbl2 consists of following rows before an update statement is issued.
//C1

[f/===eemoscms coosomosams

// 100 500

// 101 501

// 102 502

// The ‘arr_inl’ array is declared with cardinality of 3 for use in the
// SET clause of an UPDATE statement.

// The 'arr_in2' array is declared with cardinality of 2 for use in the
// WHERE clause of an UPDATE statement.

// The tbl2 table contains 3 rows.

// The following UPDATE statement will affect only 2 rows as per arr_in2
// for column c2 and remaining need to be untouched.

// The 'arr_inl’' array in the following update statement is treated as
// having cardinality of 2.

EXEC SQL UPDATE tbl2 SET c2 = :arr_in2 + c2 where cl = :arr_inl;
printf(“sqglca.sqlcode = %d\n”, sqlca.sqlcode); // 0O

// As there is no error in update statement, sqlca.sqlerrd[3]
// contains rows which are updated successfully.
printf(“sqlca.sqlerrd[3] = %d\n"”, sqlca.sqlerxd[3]); // 2

// update successful and 2 rows has been updated in database.
printf(“sqlca.sqlerrd[2] = 9%d\n", sqlca.sqlerxd[2]); // 2

// The tb12 table now contains the following rows:

//C1 c2

[]<=mmmnns oo
// 100 1500
// 101 1502
// 102 503

Chapter 6. Compatibility features for migration 189

Use of C or C++ host variable arrays in DELETE statements
In the following example, host variable arrays arr_in1 and arr_in2 are used for a DELETE statement:

// Declaring host variables

EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];

EXEC SQL END DECLARE SECTION;

)).Populating the arrays.
for (i =0; i < 3; i++)

arr_inl[i] = 101 + 1i;

// Initial data in the tbl2 table:

// C1 c2

Jf -e-emeeemoe meecneeo-e-

// 100 500

// 101 501

// 102 502

// 103 503

// 104 504

// using array host while executing delete statement in where clause
// The'arr_inl' host variable array is used in the WHERE clause of
// an DELETE statement.

EXEC SQL DELETE FROM tbl2 where cl = :arr_inl;
printf(“sqglca.sqlcode = %d\n"”, sqlca.sqlcode); // ©

// delete successful attempted rows are 3
printf(“sqlca.sqlerrd[3] = %d\n", sqlca.sqlerxd[3]); // 3

// delete successful and 3 rows has been deleted in database.
printf(“sqlca.sqlerxd[2] = %d\n"”, sqlca.sqlerrd[2]); // 3

// The tbl12 table now contains the following rows:
Cc2

// C1

[] =mememmenn eeeioees
// 100 500
// 104 504

Restrictions with C or C++ host variable array support

The use of a C or C++ host variable array in embedded SQL applications is subject to the following
restrictions:

« Host variables arrays are supported by C or C++ embedded SQL applications that connect to Db2
servers.

« Host variable arrays must be declared in the DECLARE SECTION with exact size of the array elements

(cardinality).
 Specific array element cannot be specified in a SQL statement.

« The INSERT, UPDATE, or DELETE operation with host variable arrays is run as an atomic operation on
the database server. If any array element causes an SQL_ERROR, current transaction is rolled back.

« Use of host variable arrays are not supported by dynamically prepared INSERT, UPDATE, or DELETE

statements.
« Maximum size of array element (cardinality) is 32672.
« The following C and C++ data types are not supported for use with host variable arrays:

— Another host variable array (nesting)
- BLOB

— BLOB file reference

— BLOB locator variable

- CLOB

— CLOB file reference

— CLOB locator variable

— User-defined data type

- XML

190 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

« FOR N ROWS clause can be used to specify the cardinality for INSERT and MERGE statement, where N
can be an integer or a host variable of type int or short. If array host variables are used, it will take the
minimum cardinality value among all the host variables that are used in the SQL.

« Host variable array support is not provided for Db2 for z/OS and Db2 for i servers.

Call to a stored procedure with anonymous block

C and C++ embedded SQL applications can call a stored procedure with use of the anonymous block
when the PRECOMPILE option COMPATIBILITY_MODE is set to ORA.

The following example calls a stored procedure, INOUT_PARAM, with use of the anonymous block:

EXEC SQL EXECUTE BEGIN INOUT_PARAM(:inout_median:medianind,
:out_sqlcode:codeind, :out_buffer:bufferind); END; END-EXEC;

The inout_median, out_sqlcode, and out_buffer are host variables and medianind, codeind, and bufferind
are null indicator variables.

Remember: The embedded SQL applications do not support returning the values from a stored
procedure.

Call to a stored procedure with a three-part name

C and C++ embedded SQL applications can call a stored procedure with a three-part name when the
connected database server supports use of three-part names.

A three-part name consists of schema_name .module_name.procedure_name, or

schema_name . package_name.procedure_name. The Db2 Version 9.7 and later server supports use
of three-part names, containing a package name, only if the DB2_COMPATIBILITY_VECTOR registry
variable is set to ORA.

EXEC SQL CALL schema_name.module_name.procedure_name (:parm);
EXEC SQL CALL schema_name.package_name.procedure_name (:parm);

CONNECT statement syntax enhancements

You can specify additional CONNECT statement syntax, when you set the precompiler option
COMPATIBILITY_MODE to ORA.

In your C and C++ embedded SQL applications, a database connection can be established with one of the
following CONNECT statements:

e EXEC SQL CONNECT TO dbname;
* EXEC SQL CONNECT TO dbname USER username USING password;

When you set the precompiler option COMPATIBILITY_MODE to ORA, you can also specify the following
CONNECT statement syntax:

EXEC SQL CONNECT [username IDENTIFIED BY password][USING dbname] ;

The parameters are described in the following table:

Parameter Description

username Either a host variable or a string that specifies the
database user name

Chapter 6. Compatibility features for migration 191

Parameter Description

passwoxd Either a host variable or a string that specifies the
password
dbname Either a host variable or a string that specifies the

database name

Declaration of the VARCHAR data type

You can declare host variables with VARCHAR data type, when you set the precompiler option
COMPATIBILITY_MODE to ORA.

The following declaration of the VARCHAR data type is supported. The precompiler expands the
VARCHAR data type into the equivalent C struct type:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR var_name [n+1];
EXEC SQL END DECLARE SECTION;

Include-file names with double quotation marks

You can use double quotation marks to specify include-file names in the INCLUDE directives, when you
set the precompiler option COMPATIBILITY_MODE to ORA.

In the following example, an INCLUDE directive was used with double quotation marks:

EXEC SQL INCLUDE "abc.h";

You can use only single quotation marks without setting the precompiler option COMPATIBILITY_MODE
to ORA.

Indicator variable arrays

You can use indicator arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements that are non-
dynamic, when you set the precompiler option COMPATIBILITY_MODE to ORA.

An indicator variable array is a short data type variable that is associated with a specific host variable
array or a structure array. Each indicator variable element in the indicator variable array can contain 0 or
-1 value that indicates whether an associated host variable or structure contains a null value. If an
indicator variable value is less than zero, it identifies the corresponding array value as NULL.

In FETCH INTO statements, you can use indicator variable arrays to determine whether any elements of
array variables are null.

You can use the keyword INDICATOR to identify an indicator variable, as shown in the example.

In the following example, the indicator variable array that is called bonus_ind is declared. The bonus_ind
indicator variable array can have up to 100 elements, the same cardinality as the bonus array variable.
When the data is being fetched, if the value of bonus is NULL, the value in bonus_ind is negative.

EXEC SQL BEGIN DECLARE SECTION;
char empno[100][8];
char lastname[100] [15];
short edlevel[100];
double bonus[100];
short bonus_ind[100];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE empcr CURSOR FOR
SELECT empno, lastname, edlevel, bonus
FROM employee
WHERE workdept = 'D21';

192 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

EXEC SQL OPEN empcr;
EXEC SQL WHENEVER NOT FOUND GOTO end_fetch;

while (1)
EXEC SQL FETCH empcr INTO :empno :lastname :edlevel,
:bonus INDICATOR :bonus_ind

3
end_fetch:
EXEC SQL CLOSE empcr;

Instead of being identified by the INDICATOR keyword, an indicator variable can immediately follow its
corresponding host variable, as shown in the following example:

EXEC SQL FETCH empcr INTO :empno :lastname :edlevel, :bonus:bonus_ind

In the following example, the indicator variable arrays ind_in1 and ind_in2 are declared. It can have up to
three elements, the same cardinality as the arr_in1 and arr_in2 array variables. If the value of ind_in1 or
ind_in2 is negative, the NULL value is inserted for the corresponding arr_in1 or arr_in2 value.

// Declare host & indicator variablesof array size 3
EXEC SQL BEGIN DECLARE SECTION;
sqlint32 arr_inl[3];
char arr_in2[3][11];
short ind_in1[3]; // indicator array size is same as host
// variable's array size
short ind_in2[3]; // note here indicator array size is greater
/ than host variable’'s array size
EXEC SQL END DECLARE SECTION;

]].Populating the arrays.
for (i =0; i < 3; i++)

arr_in1[i] = i + 1;
sprintf(arr_in2[i], "hello%d", arr_inl[i]);

ind_inl[0] = 0;
ind_in1[1] = SQL_NULL_DATA; // Mark it as a NULL data
ind_inl[2] = 0;
ind_in2[0] = 0;
ind_in2[1] = 0;
ind_in2[2] = SQL_NULL_DATA; // Mark it as a NULL data

// ‘arr_inl’ & ‘arr_in2' are host variable arrays
// ‘ind_inl’ & ‘ind_in2’' are indicator variable arrays
EXEC SQL INSERT into tbll values (:arr_inl :ind_inl, :arr_in2 :ind_in2);

// The tbll table now contains the following rows:
c1

1 hellol
hello2 // cl is set to NULL as indicator is set
3 // c2 is set to NULL as indicator is set

If the cardinality of indicator variable array does not match the cardinality of the corresponding host
variable array, an error is returned.

In the following example, the indicator structure array MyStructInd is declared.

// declaring indicator structure array of size 3
EXEC SQL BEGIN DECLARE SECTION;

struct MyStructInd
1

short c1_ind;
short c2_ind;
% MyStructVarInd[3];
EXEC SQL END DECLARE SECTION;

// using structure array host variables & indicators structure type
// array while executing FETCH statement

// '‘MyStructVar’' is structure array for host variables

// '‘MyStructVarInd’ is structure array for indicators

EXEC SQL FETCH cur INTO :MyStructVar :MyStructVarInd;

Chapter 6. Compatibility features for migration 193

Important: The following conditions must be met when the indicator structure array is used.

« The cardinality of the indicator structure array must be equal to or greater than the cardinality of the
structure array.

« All members in the indicator structure array must use the short data type.

« The number of members in the indicator structure array must match the number of members in the
corresponding structure array.

« For INSERT, UPDATE and DELETE operations, application must ensure that all indicator variables are
initialized with either 0 or SQL_NULL_DATA (-1).

The total number of rows that are successfully processed is stored in the sqlca.sqlerrd[3] field.
However, the sqlca.sqlerrd[3] field does not represent successfully committed number of rows in
the case of INSERT, UPDATE, or DELETE operations. The total number of rows that are impacted by the
INSERT, UPDATE, or DELETE operation is stored in the sqlca.sqlerrd[2] field.

RELEASE option in ROLLBACK statements and COMMIT statements

You can specify the ROLLBACK or COMMIT operation with the connection reset operation in a single
statement, when you set the precompiler option COMPATIBILITY_MODE to ORA.

Whenever a new RELEASE option is used, an application must reestablish the connection before any
statement is issued on the same connection.

The following example resets connection for ROLLBACK option:

EXEC SQL ROLLBACK RELEASE;
EXEC SQL ROLLBACK WORK RELEASE;

The following example resets connection for COMMIT option:

EXEC SQL COMMIT RELEASE;
EXEC SQL COMMIT WORK RELEASE;

Remember: The PRECOMPILE command returns the SQL1696N error if you use the new syntax without
setting the COMPATIBILITY_MODE parameter to ORA.

Strings for the GENERIC option on the BIND command

Description

The command line process command BIND contains the GENERIC parameter. The GENERIC parameter
specifies a string that contains any option-value pairs. Each option and value must be separated by one or
more blank spaces. The syntax for this string is displayed as follows:

GENERC 'optionl valuel option2 value2 '

The option-values available for the Linux, Unix, and Windows (LUW) platforms are the following strings:

« HV_EXPANSION_FACTOR <1|2|3|4>
- STATICASDYNAMIC [YESINO]

HV_EXPANSION_FACTOR <1|2|3]|4>

This option applies a multiplier to CHAR and VARCHAR host variables. It is also expand character host
variable lengths within database server to accomdate code page conversion expansion in unequal
codepage environment.

You should use this string in order to resolve -302 errors occurring in static SQL applications running in
unequal codepage environments even after table definitions increased to accommodate expansion. This

194 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

is because static SQL by default uses the defined length of the host variable provided by the client during
BIND to size the equivalent database server memory location for the variable.

Assume there's a 819 codepage application with string "nifio". This requires a 4 byte character string
variable in the application. However in unicode UTF-8 the string requires 5 bytes as i takes 2 bytes to
represent. So if you had an application running codepage 819 connecting to a unicode (utf-8) database,
issue

bind myapp GENERIC HV_EXPANSION_FACTOR 2

To force the database to allocate 2 times the defined application length for the server representation of
the variable. So in this example the 4 byte variable becomes 8 bytes in the database server. This enables
the string nifo on expansion to 5 bytes in UTF-8, so it still fits in the memory available to the variable

STATICASDYNAMIC [YES|INO]

You can set the Db2 database manager to store all statements in the catalogs and marks them as
incremental bind. To achieve this setting, the STATICASDYNAMIC YES string must be set for the
GENERIC BIND command option.

At run time, when the package is first loaded, the database manager uses the current session
environment (rather than the package) to set up the section entries and other entities (text is populated
and the package cache is accessed).

Thereafter, the statements in the bound file behave the same as they would if you were using dynamic
SQL. For example, sections are implicitly recompiled for database definition language invalidations,
special register updates. The new syntax is defined as follows:

DB2 BIND filename GENERIC 'STATICASDYNAMIC [YES|NO]'

String literals with PREPARE statements

Embedded SQL applications use the PREPARE statement to dynamically prepare an SQL statement for
execution. The PREPARE statement creates an executable SQL statement from a character string form of
the statement, called a statement string.

C and C++ embedded SQL applications can prepare a statement from a host variable or a literal string
(statement string) that is enclosed in a single quotation mark.

For example: EXEC SQL PREPARE stmt_name FROM 'select empid from employee' ;

Structure arrays

You can use structure arrays for FETCH INTO, INSERT, UPDATE, and DELETE statements that are non-
dynamic, when you set the precompiler option COMPATIBILITY_MODE to ORA.

You can use structure arrays to store multiple column data in a structure form.

For a structure array that is declared for an INSERT, UPDATE, or DELETE statement, you must ensure that
all array elements are initialized with a value. Otherwise, unexpected data can get introduced or removed
from the table.

The total number of rows that are successfully processed is stored in the sqlca.sqlerrd[3] field.
However, the sqlca.sqlerrd[3] field does not represent the number of rows that are committed
successfully in the case of INSERT, UPDATE, or DELETE operations.

The total number of rows that are impacted by the INSERT, UPDATE, or DELETE operation is stored in the
sqlca.sqlerrd[2] field.

Chapter 6. Compatibility features for migration 195

In one FETCH INTO statement, the maximum number of records that can be retrieved is the cardinality of
the array that is declared. If more rows are available after the first fetch, you can repeat the FETCH INTO
statement to obtain the next set of rows.

A structure array can be used to store multiple column data in a structure form when a FETCH INTO
statement is run. In the following example, a structure array is used for a FETCH INTO statement:

// Declare structure array with cardinality of 3.
EXEC SQL BEGIN DECLARE SECTION;

struct MyStruct

1

int ci;
char c2[11];
$+ MyStructVar[3];
EXEC SQL DECLARE cur CURSOR FOR
SELECT empno, lastname FROM employee;
EXEC SQL END DECLARE SECTION;

)).MystrutVar is a structure array for host variables
EXEC SQL FETCH cur INTO :MyStructVar;

You can use a structure array to store multiple rows for an INSERT statement. In the following example, a
structure array is used for an INSERT statement:

// Declare structure array with cardinality of 3.
EXEC SQL BEGIN DECLARE SECTION;
typedef struct _st_type {
int id;
char name[21];
¥ st_type;

st_type st[3];
EXEC SQL END DECLARE SECTION;

// Populating the array.

for(i=0; i<3; i++)

i
memset (&st[i], Ox00, sizeof(st_type));
if(i==0) § st[i].id 100; strcpy(st[i].name, "hellol");}
if(i==1) { st[i].id = 101; strcpy(st[i].name, "hello2");}
if(i==2) { st[i].did 102; strcpy(st[i].name, "hello3");?}

// The structure elements must be in
// the same order as that of the table elements.

//

EXEC SQL INSERT INTO tbl values (:st);

// Check for SQLCODE.

printf(“sglca.sqlcode = %d\n”, sqglca.sqlcode); // ©

// The INSERT operation inserted 3 rows without encounting an error
printf(“sqlca.sqlerrd[3] = %d\n", sqlca.sqlerxd[3]); // 3

// The INSERT operation was successful and 3 rows has been stored in database.
printf(“sqlca.sqlerrd[2] = 9%d\n", sqlca.sqlerrd[2]); // 3

// The tb11 table now contains the following rows:
c2

// Cl

[] =mememmmns oo
// 100 hellol

// 101 hello2

// 102 hello3

Restrictions with the structure array support
The use of the structure array in embedded SQL applications is subject to the following restrictions:

« Structure arrays are supported by C or C++ embedded SQL applications that connect to Db2 servers.

Structure arrays must be declared in the DECLARE SECTION with exact size of the array elements
(cardinality).

« Specific array element cannot be specified in a SQL statement.

The INSERT, UPDATE, or DELETE operation with structure arrays is run as an atomic operation on the
database server. If any array element causes an SQL_ERROR, current transaction is rolled back.

Use of structure arrays are not supported by dynamically prepared INSERT, UPDATE, or DELETE
statements.

196 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

« When structure array is specified, only one structure array can be declared in an embedded SQL
application.

« You cannot create a structure array within another structure array (for example, nested structure
arrays).

« Maximum size of array element (cardinality) is 32672.
« The following C and C++ data types are not supported for use with structure arrays:
- BLOB
— BLOB file reference
— BLOB locator variable
- CLOB
— CLOB file reference
— CLOB locator variable
— User-defined data type
- XML

UNSAFENULL PRECOMPILE option

You can suppress the unspecified indicator variable error by setting the UNSAFENULL YES option in the
PRECOMPILE command, when you set the precompiler option COMPATIBILITY_MODE to ORA.

The unspecified indicator variable error is generated when the NULL value exists but the embedded SQL
application failed to specify the NULL indicator.

Suppress SQLO305N error.
db2 prep test.sqc COMPATIBILITY_MODE ORA UNSAFENULL YES

Default behavior if null value is retrieved, SQLO305N error
db2 prep test.sqc COMPATIBILITY_MODE ORA UNSAFENULL NO

db2 prep test.sqc COMPATIBILITY_MODE ORA

db2 prep test.sqc

i# Below both PRECOMPILE option give error as COMPATIBILITY_MODE ORA is not set.
db2 prep test.sqc UNSAFENULL YES
db2 prep test.sqc UNSAFENULL NO

Remember: Even if you do not set the COMPATIBILITY_MODE parameter to ORA while precompiling, an
application can check the sqlca.sqlerxrd[2] structure to get the cumulative sum of the number of
rows that were successfully populated until the last fetch in non-array host variables.

WHENEVER <condition> DO <action> statements

C and C++ embedded SQL applications can use the WHENEVER condition DO action statement to
take a specified action when an exception condition occurs.

The WHENEVER statement specifies the action to be taken when a specified exception condition occurs.
The following syntax diagram shows the WHENEVER condition DO action statement syntax:

»— EXEC SQL WHENEVER SQLERROR DO BREAK >
E SQLWARNING j \—— CONTINUE ——
NOT FOUND “— function-name() —
The WHENEVER statement handles the following conditions:

SQLERROR
Identifies any condition where SQLCODE < 0.

Chapter 6. Compatibility features for migration 197

SQLWARNING
Identifies any condition where SQLWARN(0) = W or SQLCODE > 0 but is not equal to 100.

NOT FOUND
Identifies any condition where SQLCODE = 100.

In each WHENEVER statement conditions, the following DO action can take place:

DO
Causes additional action in the form of a function call, break statement, or continue statement to
take place.

BREAK
Specifies the C break statement. The C break statement exits the do, for, switch, orwhile
statement block.

CONTINUE
Specifies the C continue statement. The C continue statement passes control to the next
iteration of the do, for, switch, orwhile statement block.

function-name()
Specifies the C function that is to be called. The function must have a void return value and cannot
accept any arguments. The function name must end with a set of parentheses "(" and ")". The
name of the function is limited to 255 bytes.

The function name resolution takes place during the compilation of a C and C++ embedded SQL
application. The Db2 precompiler does not resolve the function name.

The following C example uses the WHENEVER condition DO action statement:

void sqlError(void)
switch (sqglca.sqlcode)
i
case -999: // some SQLCODE code
printf ("Error related to -999 occurred\n");
break;
case -888: // some SQLCODE code
printf ("Error related to -888 occurred\n");
break;
default:
printf ("Unknown error occurred\n");
break;

%
exit(-3);
int func1() // DO function-name

EXEC SQL WHENEVER NOT FOUND DO sqlError();
Wﬁile(sqlca.sqlcode == SQL_RC_OK)
i

// some application logic

int func2() // DO BREAK
1

EXEC SQL WHENEVER SQLWARNING DO BREAK;
while(...)
// some application logic
// Causes the next sequential instruction of the source program

// to be executed. Basically voids effect of previous WHENEVER.
EXEC SQL WHENEVER SQLWARNING CONTINUE;

int func3() // DO CONTINUE

EXEC SQL WHENEVER NOT FOUND DO CONTINUE:
while(...)
1

// some application logic

198 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Chapter 6. Compatibility features for migration 199

200 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Index

Special Characters

.NET
batch files 155

Numerics

32-bit platforms 13
64-bit platforms 13

A

AIX
C applications
compiler and link options 158
C++ applications
compiler and link options 159
IBM COBOL applications
building 174
compiler and link options 167
Micro Focus COBOL applications
compiler and link options 168
anonymous block statement
Embedded SQL 191
application design
COBOL
include files 26
Japanese and traditional Chinese EUC
considerations 95
data passing 122
declaring sufficient SQLVAR entities 115
describing SELECT statement 118
executing statements without variables 10
NULL values 54
package versions with same name 154
parameter markers 124
retrieving data a second time 128
REXX 105
saving user requests 124
scrolling through previously retrieved data 128
SQLDA structure guidelines 120
variable-list SELECT statement processing 123
application development
COBOL example 88
embedded SQL overview 1
exit list routines 134
applications
binding 151
building embedded SQL 13, 180
embedded SQL 13, 180
arrays
host variables 80, 84, 187, 195
indicator variable 85, 192
asynchronous
buffered insert 108
asynchronous events 16
authorities

authorities (continued)
binding 151

batch files
building embedded SQL applications 155
BIGINT data type
COBOL 41
conversion to C/C++ 33
FORTRAN 45
BINARY data type
COBOL 88
embedded SQL 75
binary host variables 74
binary large objects (BLOBS)
COBOL 41
FORTRAN 45
REXX 47
bind API
deferred binding 151
BIND command
embedded SQL applications 180
HV_EXPANSION_FACTOR option 194
INSERT BUF option 109
package re-creation
re-creating 149
STATICASDYNAMIC option 194
bind files
backward compatibility 150
embedded SQL applications 139, 142
REXX 179
bind list
Db2 Connect 151
bind options
overview 149, 150
BINDADD authority
Db2 Connect 151
binding
applications 151
authority 151
bind file description utility (db2bfd) 146
deferring 151
dynamic statements 148
DYNAMICRULES bind option 147
embedded SQL packages 150
overview 149
packages
Db2 Connect 151
embedded SQL 139
utilities
Db2 Connect 151
BLOB data type
COBOL 41
conversion to C/C++ 33
FORTRAN 45
REXX 47

Index 201

blob_file C/C++ type 33
BLOB_FILE FORTRAN data type 45
blob_locator C/C++ type 33
BLOB_LOCATOR FORTRAN data type 45
BLOB-FILE COBOL type 41
BLOB-LOCATOR COBOL type 41
blocking
cursors 150
buffered inserts
advantages 109
asynchronous 108
buffer size 109
closed state 108
considerations 108
deadlock errors 108
error detection 108
error reporting 108
group of rows 108
INSERT BUF bind option 109
long field restriction 111
not supported in CLP 111
open state 108
overview 109
partially filled 109
restrictions 111
savepoint consideration 109
SELECT buffered insert 108
statements that close 109
transaction logs 109
unique key violation 108
buffers
size for buffered insert 109
build scripts
C and C++ applications and routines 158
COBOL applications and routines 167
embedded SQL applications 155

c

C language

application template 22

applications
building (UNIX) 162
building (Windows) 163
compiler options (AIX) 158
compiler options (Linux) 160
compiler options (Windows) 162

batch files 180

build files 155

development environment 22

error-checking utility files 157

multiconnection applications
building on Windows 165

multithreaded applications
Windows 163

C/C++ language

applications
building (Windows) 163
compiler options (AIX) 159
compiler options (Linux) 161
compiler options (Windows) 162
executing static SQL statements 114
input files 21
multiple thread database access 16

C/C++ language (continued)
applications (continued)
output files 21
build files 155

Chinese (Traditional) EUC considerations 75

class data members 73
comments 114
connecting to databases 31
data types
functions 39
methods 39
overview 33
stored procedures 39
supported 33
declaring graphic host variables 64
disconnecting from databases 134
embedded SQL statements 2
error-checking utility files 157
file reference declarations 71
FOR BIT DATA 76
graphic host variables 64, 66, 67
host structure support 77
host variables
declaring 58
initializing 76
naming 59
purpose 57
include files 24
indicator tables 78
Japanese EUC considerations 75
LOB data declarations 68
LOB locator declarations 70
member operator restrictions 75
multiconnection applications
building (Windows) 165
multithreaded applications
Windows 163
null-terminated strings 79
numeric host variables 61
pointers to data types 72
programming considerations 14
qualification operator restrictions 75
restrictions
#ifdefs 76
SQLCODE variables 60
sqldbchar data type 64
SQLSTATE variables 60
stored procedures 126
wchar_t data type 64
WCHARTYPE precompiler option 64
C# .NET
batch files 155
CALL procedure
anonymous block 191
three-part name 191
char C/C++ data type 33
CHAR data type
coBOL 41
conversion to C/C++ 33
FORTRAN 45
REXX 47
character host variables
C/C++ fixed and null-terminated 62
FORTRAN 99

202 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

character sets
multibyte in FORTRAN 102
CHARACTER*n FORTRAN data type 45
Chinese (Traditional) code sets
C/C++ 75
COBOL 95
FORTRAN 102
class data members 73
CLOB data type
C/C++ 33,76
coBoOL 41
FORTRAN 45
REXX 47
clob_file C/C++ data type 33
CLOB_FILE FORTRAN data type 45
clob_locator C/C++ data type 33
CLOB_LOCATOR FORTRAN data type 45
CLOB-FILE COBOL type 41
CLOB-LOCATOR COBOL type 41
closed state
buffered inserts 108
closing buffered insert 109
COBOL language
AIX
IBM compiler 170
Micro Focus compiler 173
applications
host variables 87
input files 21
output files 21
static SQL statements 114
build files 155
Chinese (Traditional) EUC 95
comments 114
connecting to databases 31
data types
BINARY 88
COMP 88
COMP-4 88
supported SQL data types in COBOL embedded SQL
applications 41
disconnecting from databases 134
embedded SQL statements 4
error-checking utility files 157
FOR BIT DATA 95
host structures 95
host variables
declaring 88
declaring file reference 94
declaring fixed-length character 90
declaring graphic 91
declaring numeric 89
naming 87
IBM COBOL applications
building (AIX) 174
building (Windows) 176
compiler options (AIX) 167
compiler options (Windows) 169
IBM COBOL compiler
Windows 171
include files 26
indicator tables 97
Japanese EUC 95
LOB data declarations 92

COBOL language (continued)
LOB locator declarations 93
Micro Focus applications
building (UNIX) 175
building (Windows) 177
compiler options (AIX) 168
compiler options (Linux) 168
compiler options (Windows) 170
Micro Focus compiler
Linux 172
Windows 171
REDEFINES 94
restrictions 15
SQLCODE variables 88
SQLSTATE variables 88
code pages
binding 150
collating sequences
include files
C/C++ 24
COBOL 26
FORTRAN 28
COLLECTION parameters 155
columns
data types
creating (C/C++) 33
creating (COBOL) 41
creating (FORTRAN) 45
SQL 52
null values
null-indicator variables 54
comments
SQL
C and C++ applications 2
COBOL applications 4
FORTRAN applications 3
REXX applications 5
COMMIT statement
embedded SQL application
RELEASE option 194
COMP data types 88
COMP-1 data types 41
COMP-3 data types 41
COMP-4 data types 88
COMP-5 data types 41
compilers
build files 155
embedded SQL applications 7
IBM COBOL
AIX 170
Windows 171
Micro Focus COBOL
AIX 173
Windows 171
compiling
embedded SQL applications 145
completion codes
SQL statements 30
configuration files
VisualAge 158
CONNECT statement
embedded SQL 191
consistency
tokens 144

Index 203

contexts
application dependencies between 19
database dependencies between 19
setting between threads 16
setting in multithreaded Db2 applications
details 16
coordinator partition
without buffered insert 109
CREATE IN COLLECTION NULLID authority 151
CREATE PROCEDURE statement
embedded SQL applications 126
critical sections
multithreaded embedded SQL applications 19
CURRENT EXPLAIN MODE special register
dynamic SQL statements 148
CURRENT PATH special register
bound dynamic SQL 148
CURRENT QUERY OPTIMIZATION special register
bound dynamic SQL 148
cursors
embedded SQL applications 128, 130
multiple in application 130
names
REXX 5
processing
SQLDA structure 119
summary 130
rows
deleting 130
retrieving 130
updating 130
sample program 131

data
deleting
statically executed SQL applications 130
fetched 128
retrieving
second time 128, 129
scrolling through previously retrieved 128
updating
previously retrieved data 130
statically executed SQL applications 130
Data Manipulation Language (DML)
dynamic SQL performance 11
data retrieval
static SQL 128
data structures
user-defined with multiple threads 18
data types
BINARY 88
C
embedded SQL applications 33, 73, 76
C++
embedded SQL applications 33, 73, 76
class data members in C/C++ 73
CLOB 76
COBOL 41
compatibility issues 52
conversion
C/C++33
COBOL 41

data types (continued)
conversion (continued)
FORTRAN 45
REXX 47
DECIMAL
FORTRAN 45
embedded SQL applications
C/C++33,73,76
mappings 52
FOR BIT DATA
C/C++ 76
COBOL 95
FORTRAN 45
graphic types 64
host variables 52, 73
mappings
embedded SQL applications 32, 52
pointers in C/C++ 72
VARCHAR
C/C++ 76
databases
accessing
multiple threads 16
contexts 16
DATE data type
C/C++33
CoBOL 41
FORTRAN 45
REXX 47
DB2ARXCS.BND REXX bind file 179
db2bfd command
overview 146
db2dclgn command
declaring host variables 51
DBCLOB data type
CcoBOL 41
REXX 47
dbclob_file C/C++ data type 33
dbclob_locator C/C++ data type 33
DBCLOB-FILE COBOL data type 41
DBCLOB-LOCATOR COBOL data type 41
ddcs400.lst file 151
ddcsmuvs.Ist file 151
ddcsvm.lst file 151
ddcsvse.lst file 151
DDL
statements
dynamic SQL performance 11
deadlocks
error in buffered insert 108
multithreaded applications 19
DECIMAL data type
conversion
C/C++33
CoBOL 41
FORTRAN 45
REXX 47
declare sections
C and C++ embedded SQL applications 58
COBOL embedded SQL applications 88
FORTRAN embedded SQL applications 97
DECLARE statements
C/C++ declare section 58, 59
COBOL declare section 88

204 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

DECLARE statements (continued)
FORTRAN declare section 97, 98
statement rules 49

DESCRIBE statement
processing arbitrary statements 123

DOUBLE data type
C/C++ programs 33

dynamic SQL
arbitrary statements

determining type 123
processing 123
binding 148
cursors
processing 119
deleting rows 130
DESCRIBE statement
overview 10, 115
DYNAMICRULES effects 147
embedded SQL comparison 11
EXECUTE IMMEDIATE statement
overview 10
EXECUTE statement
overview 10
limitations 10
overview 10
parameter markers 124
performance
static SQL comparison 11
PREPARE statement
overview 10
SQLDA
declaring 115
static SQL comparison 11
support statements 10

DYNAMICRULES precompile/bind option

effects on dynamic SQL 147

E
Embedded
SQL/COBOL
Support
MRI

MRF 135
embedded SQL applications
access plans 151
authorization 9
BIND options 194
C/C++
BREAK action 197
include file syntax 192
include files 24
PREPARE statements 195
RELEASE option 194
restrictions 14
statements 2
WHENEVER statement 197
CoBOL
include files 26
statements 4
compiling 7, 183
CONNECT statement 191
db2dsdriver.cfg file 183
declare section 1

embedded SQL applications (continued)

deploying 183
designing 21
development environment 7
double quotation marks 192
dynamic statement execution 10, 113
errors 145
FORTRAN
include files 28
restrictions 15
statements 3
host variables
overview 49
referencing 56
include files
C/C++ 24
COBOL 26
FORTRAN 28
overview 24
indicator variable 197
operating systems supported 7
overview 1
packages 154
performance
BIND command REOPT option 151
overview 13
precompiling
applications accessing multiple servers 142
errors 145
warnings 145
programming 21
restrictions
C/C++14
FORTRAN 15
overview 14
REXX 15
REXX
restrictions 15
statements 5
SQLCA structure 1
statements
C/C++2
CcoBOL 4
FORTRAN 3
REXX 5
static statement execution 10, 113
VARCHAR 192
warnings 145
XML values 53

error messages

handling 30

SQLCA structure 133
SQLCODE field 133
SQLSTATE field 133
SQLWARN field 133
warning condition flag 133

errors

checking using utility files 157

detecting in buffered insert 108

embedded SQL applications
C/C++ include files 24
COBOL include files 26
FORTRAN include files 28
SQLCA structure fields 55

Index 205

errors (continued)
SQLCA structures 30
examples
class data members in SQL statements 73
parameter markers in dynamic SQL program 125
REXX program 105
SQL declare section template 59
exception handlers
overview 134
EXEC SQL INCLUDE SQLCA statement 18
EXECUTE IMMEDIATE statement
overview 10
EXECUTE statement
overview 10
exit list routines 134
explain snapshots
binding 150
Extended UNIX Code (EUC)
Chinese (Traditional)
C/C++ applications 75
COBOL applications 95
FORTRAN applications 102
Japanese
C/C++ applications 75
COBOL applications 95
FORTRAN applications 102

F

FETCH statement
host variables 115
repeated data access 128
SQLDA structure 119
file reference declarations in REXX 107
files
reference declarations in C/C++ 71
FIPS 127-2 standard
declaring SQLSTATE and SQLCODE as host variables
133
flagger utility for precompiling 140
FLOAT data type
C/C++ conversion 33
COBOL 41
FORTRAN 45
REXX 47
flushed buffered inserts 109
FOR BIT DATA data type 76
FOR UPDATE clause
details 130
FORTRAN language
applications
host variables 97
input files 21
output files 21
Chinese (Traditional) code set 102
comments 114
connecting to databases 31
data types 45
embedding SQL statements 3
file reference declarations 102
host variables
declaring 97
naming 97
referencing 3

FORTRAN language (continued)
include files 28
indicator variables 102
Japanese code set 102
LOB data declarations 100
LOB locator declarations 101
multibyte character sets 102
numeric host variables 98
programming 15
restrictions 97
SQL declare section example 98
SQLCODE variables 98
SQLSTATE variables 98
fullselect
buffered insert consideration 111

G

get error message API
error message retrieval 131
predefined REXX variables 103
graphic data
host variables
C/C++ embedded SQL applications 67
COBOL embedded SQL applications 91
VARGRAPHIC 66
GRAPHIC data type
C/C++33
CcoBOL 41
FORTRAN 45
REXX 47
selecting 64

H

host structure support
C/C++ 77
COBOL 95
host variables
C/C++ applications 57
character data declarations
COBOL 90
FORTRAN 99
class data members 73
COBOL applications 41
declaring
C/C++ 58
COBOL 88
db2dclgn declaration generator 51
embedded SQL application overview 50
FORTRAN 97
variable list statement 123
dynamic SQL 10
embedded SQL applications
C/C++ 68
COBOL 92
FORTRAN 100
overview 49
REXX 106
enabling compatibility features 187, 192
file reference declarations
C/C++ 71

206 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

host variables (continued)

file reference declarations (continued)

COBOL 94

FORTRAN 102

REXX 107

REXX (clearing) 108
FORTRAN applications 3
graphic data

C/C++ 64

COBOL 91

FORTRAN 102
host language statements 49
initializing in C/C++ 76
LOB data declarations

C/C++ 68

COBOL 92

FORTRAN 100

REXX 106
LOB file reference declarations 108
LOB locator declarations

C/C++ 70

COBOL 93

FORTRAN 101

REXX 106

REXX (clearing) 108
naming

C/C++59

COBOL 87

FORTRAN 97

REXX 103
null-terminated strings 79
pointers in C/C++ 72
referencing from SQL 56
REXX applications 103
SOQL statements 49
static SQL 49
truncation 54
WCHARTYPE precompiler option 64

I

include files
C/C++ embedded SQL applications 24
COBOL embedded SQL applications 26
FORTRAN embedded SQL applications 28
locating in COBOL applications 4
overview 24
INCLUDE SQLCA statement
declaring SQLCA structure 30
INCLUDE SQLDA statement
creating SQLDA structure 120
INCLUDE statement
BIND command
STATICASDYNAMIC option 187
CONNECT statement 187
double quotation marks 187
indicator tables
C/C++ 78
COBOL 97
indicator variables
C 80,187
compatibility features 187
FORTRAN 102
identifying null SQL values 54

indicator variables (continued)
REXX 108
INSERT BUF bind option
buffered inserts 109
INSERT statement
not supported in CLP 111
VALUES clause 109
inserting data
without buffered insert 109
INTEGER data type
C/C++33
CoBOL 41
FORTRAN 45
REXX 47
INTEGER*2 FORTRAN data type 45
INTEGER*4 FORTRAN data type 45
interrupt handlers
overview 134
isolation levels
repeatable read (RR) 128

J

Japanese Extended UNIX Code (EUC) code page
C/C++ embedded SQL applications 75
COBOL embedded SQL applications 95
FORTRAN embedded SQL applications 102

L

LANGLEVEL precompile option
MIA 33
SAA1 33

SQL92E 60, 88, 98
large objects (LOBs)
C/C++ declarations 68
locators
declarations in C/C++ 70
latches 16
libdb2.so libraries
restrictions 185
linking
details 145
Linux
C
applications 160
C++ o
applications 161
libraries
libaio.so.2 185
Micro Focus COBOL
applications 168
configuring compilers 172
LOB data type
data declarations in C/C++ 68
locks
buffered insert error 108
long C/C++ data type 33
long fields
buffered inserts, restriction 111
long int C/C++ data type 33
long long C/C++ data type 33
long long int C/C++ data type 33

Index 207

LONG VARCHAR data type
C/C++33
CcoBOL 41
FORTRAN 45
REXX 47
LONG VARGRAPHIC data type
C/C++33
CoBOL 41
FORTRAN 45
REXX 47

M

macro expansion
C/C++ language 76
member operators
C/C++ restriction 75
MIA LANGLEVEL precompile option 33
multi-threaded applications
building
C++ (Windows) 163
files 155
multibyte code pages
Chinese (Traditional) code sets
C/C++ 75
COBOL 95
FORTRAN 102
Japanese code sets
C/C++ 75
COBOL 95
FORTRAN 102
multiconnection applications
build files 155
building Windows C/C++ 165

N

NULL

SQL value

indicator variables 54

null-terminated character form 33
null-terminator 33
NULLID 151
NUMERIC data type

C/C++33

coBoL 41

FORTRAN 45

REXX 47
numeric host variables

C/C++ 61

COBOL 89

FORTRAN 98

o

Object REXX for Windows applications
building 179
open state
buffered inserts 108
optimizer
dynamic SQL 11
static SQL 11

P

packages
creating
BIND command and existing bind file 149
embedded SQL applications 142
host database servers 151
inoperative 149
invalid state 149
privileges
overview 154
REXX application support 179
schemas 142
System i database servers 151
time stamp errors 144
versions
privileges 154
same name 154
parameter markers
dynamic SQL
determining statement type 123
example 125
variable input 124
examples 125
typed 124
partitioned database environments
buffered inserts
considerations 108
purpose 109
restrictions 111
performance
buffered inserts 109
dynamic SQL 11
FOR UPDATE clause 130
PICTURE (PIC) clause in COBOL types 41
precompilation

accessing host application servers through Db2 Connect

140
accessing multiple servers 140
C/C++ 75
consistency tokens 144
dynamic SQL statements 10
embedded SQL applications 140
flagger utility 140
FORTRAN 15
time stamps 144
PRECOMPILE command
embedded SQL applications
accessing multiple database servers 142
building from command line 180
C/C++180
overview 139
UNSAFENULL options 197
PREPARE statement
arbitrary statement processing 123
embedded
Dynamic preparation and execution 195
overview 10
preprocessor functions
SQL precompiler 76
procedures
CALL statement 126
parameters
types 126

208 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

Q

qualification operator in C/C++ 75
queryopt precompile/bind option
code page considerations 150

R

REAL SQL data type
C/C++33
CcoBOL 41
FORTRAN 45
REXX 47
REAL*2 FORTRAN SQL data type 45
REAL*4 FORTRAN SQL data type 45
REAL*8 FORTRAN SQL data type 45
REBIND command
rebinding 149
rebinding
process 149
REBIND command 149
REDEFINES clause
COBOL 94
repeatable read (RR)
re-retrieving data 128
restrictions
buffered inserts 111
result codes 30
RESULT REXX predefined variable 103
return codes
declaring SQLCA 30
REXX language
APIs
SQLDB2 15
SQLDBS 15
SQLEXEC 15
applications
embedded SQL (building) 178
embedded SQL (running) 178
host variables 103
bind files 179
comments 114
connecting to databases 31
cursor identifiers 5
data types 47
disconnecting from databases 134
embedded SQL statements 5, 114, 178
host variables
naming 103
referencing 103
indicator variables 108
initializing variables 127
LOB file reference declarations 107
LOB host variables 106, 108
LOB locator declarations 106
predefined variables 103
registering routines 105
restrictions 15,103
running applications 178
SQLDB2 API 105
SQLDBS API 105
SQLEXEC API 105
stored procedures
overview 127

REXX language (continued)
Windows applications 179
ROLLBACK statement
embedded SQL application
RELEASE option 194
routines
build files 155
rows
grouping in buffered insert 108
retrieving
multiple 130
using SQLDA 119
second retrieval
methods 128
row order 129
RUNSTATS command
statistics collection 13
runtime services
multiple threads effect on latches 16

S

SAA1 LANGLEVEL precompile option 33
samples
IBM COBOL 167
savepoints
buffered inserts 109
SELECT statement
buffered inserts 108
declaring SQLDA 115
describing after allocating SQLDA 118
EXECUTE statement 10
retrieving
data a second time 128
multiple rows 130
updating retrieved data 130
variable-list 123
semaphores 19
serialization
data structures 18
SQL statement execution 16
SET CURRENT PACKAGESET statement 142, 155
short data type
C/C++33
short int data type 33
signal handlers
overview 134
SMALLINT data type
C/C++33
COBOL 41
FORTRAN 45
REXX 47
special registers
CURRENT EXPLAIN MODE 148
CURRENT EXPLAIN SNAPSHOT 148
CURRENT PATH 148
CURRENT QUERY OPTIMIZATION 148
SOL
authorization for embedded SQL 9
include files
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
SQL data types

Index 209

SQL data types (continued)
embedded SQL applications
C/C++33
COBOL 41
FORTRAN 45
overview 52
REXX 47
SQL statements
C/C++ syntax 2
COBOL syntax 4
dynamic1, 9
embedded 1, 9
exception handlers 134
FORTRAN syntax 3
INCLUDE 30
interrupt handlers 134
preparing using minimum SQLDA structure 116
REXX syntax 5
saving end user requests 124
serializing execution 16
signal handlers 134
static1, 9
SQL_WCHART_CONVERT preprocessor macro 64
SQL1252A include file
COBOL applications 26
FORTRAN applications 28
SQL1252B include file
COBOL applications 26
FORTRAN applications 28
SQLADEF include file 24
SQLAPREP include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
SQLCA (SQL communication area)
error reporting in buffered insert 108
incomplete insert when error occurs 108
SQLCA structure
declaring 30
include files
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
multithreading 18
overview 133
predefined variable 103
SQLCODE field 133
SQLSTATE field 133
SQLWARNL1 field 54
warnings 54
SQLCA_92 include file
COBOL applications 26
FORTRAN applications 28
SQLCA_CN include file 28
SQLCA_CS include file 28
SQLCHAR structure
passing data with 122
SQLCLI include file 24
SQLCLIZ include file 24
SQLCODE
overview 30, 133
SQLCODES include file
C/C++ applications 24
COBOL applications 26

SQLCODES include file (continued)
FORTRAN applications 28
SQLDA
creating 120
declaring 115
declaring sufficient SQLVAR entities 118
determining statement type 123
include files
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
multithreading 18
passing data 122
prepared statements 10
preparing statements using minimum structure 116
SQLDACT include file 28
SQLDB2 API
registering for REXX 105
sqgldbchar data type
C/C++ embedded SQL applications 64
equivalent column type 33
SQLDBS API 105
SQLE819A include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
SQLE819B include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
SQLE850A include file
COBOL applications 26
FORTRAN applications 28
SQLE850B include file
COBOL applications 26
FORTRAN applications 28
SQLE859A include file 24
SQLE859B include file 24
SQLE932A include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
SQLE932B include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
sqgleAttachToCtx API
multiple contexts 16
SQLEAU include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28
sqleBeginCtx API
multiple contexts 16
sqleDetachFromCtx API
multiple contexts 16
sqleEndCtx API
multiple contexts 16
sqleGetCurrentCtx API
multiple contexts 16
sqgleInterruptCtx API
multiple contexts 16
SQLENV include file
C/C++ applications 24

210 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

SQLENV include file (continued)
COBOL applications 26
FORTRAN applications 28

SQLETSD include file 26

SQLException
embedded SQL applications 131

SQLEXEC REXX API
processing SOL statements 5
registering 105
restrictions 15

SQLEXT include file 24

sqlint64 C/C++ data type 33

SQLISL predefined variable 103

SQLJACB include file 24

SQLMON include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28

SQLMONCT include file 26

SQLMSG predefined variable 103

SQLRDAT predefined variable 103

SQLRIDA predefined variable 103

SQLRODA predefined variable 103

SQLSTATE
include files

C/C++ applications 24

COBOL applications 26

FORTRAN applications 28
overview 133

SQLSYSTM include file 24

SQLUDF include file
C/C++ applications 24

SQLUTBCQ include file 26

SQLUTBSQ include file 26

SQLUTIL include file
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28

SQLUV include file 24

SQLUVEND include file 24

SQLVAR entities
declaring sufficient number 115, 118

SQLWARN
overview 133

SQLXA include file 24

static SQL
comparison to dynamic SQL 11
host variables 49, 50
retrieving data 128

storage
allocating to hold rows 119
declaring sufficient SQLVAR entities 115

stored procedures
REXX applications 127

structure arrays
C84,85,192,195

success codes 30

symbols
C/C++ language restrictions 76

T

tables
fetching rows 131

tables (continued)
names
resolving unqualified 155
resolving unqualified names 155
target partitions
behavior without buffered insert 109
threads
multiple
embedded SQL applications 16, 19
recommendations 18
UNIX applications 19
TIME data types
C/C++33
CoBOL 41
FORTRAN 45
REXX 47
time stamps
precompiler-generated 144
TIMESTAMP data type
C/C++33
CcoBOL 41
FORTRAN 45
REXX 47
transaction logs
buffered inserts 109
truncation
host variables 54
indicator variables 54
typed parameter markers 124

U

unique keys
unique key violation, buffered inserts 108
UNIX
C applications
building 162
Micro Focus COBOL applications 175
USAGE clause in COBOL types 41
utilities
binding 151
ddcspkgn 151
utility APIs
include files
C/C++ applications 24
COBOL applications 26
FORTRAN applications 28

V

VARBINARY data type
embedded SQL applications 75
host variables 74
VARCHAR data type
C/C++
details 33
FOR BIT DATA substitute 76
CcoBOL 41
conversion to C/C++ 33
embedded SQL 192
FORTRAN 45
REXX 47
VARGRAPHIC data type

Index 211

VARGRAPHIC data type (continued)
C/C++ conversion 33
CcoBOL 41
FORTRAN 45
REXX 47

variables
REXX 103
SQLCODE 60, 88, 98
SQLSTATE 60, 88, 98

Visual Basic .NET
batch files 155

w

warnings
truncation 54
wchar_t data type
C/C++ embedded SQL applications 64
WCHARTYPE precompiler option
data types available with NOCONVERT and CONVERT
options 33
details 64
Windows
C/C++ applications
building 163
compiler options 162
link options 162
COBOL applications
building 176
compiler options 169
link options 169
Micro Focus COBOL applications
building 177
compiler options 170
link options 170

XML
C/C++ applications
executing XQuery expressions 112
COBOL applications 112
declarations
embedded SQL applications 52
XMLQUERY function 16
XQuery expressions 16, 112
XML data retrieval
C applications 56
COBOL applications 56
XML data type
host variables in embedded SQL applications 52
identifying in SQLDA 53
XML encoding
overview 52
XQuery statements
declaring host variables in embedded SQL applications
52

212 IBM Db2 V11.5: Developing embedded SQL and XQuery database applications

	Contents
	Notices
	Trademarks
	Terms and conditions for product documentation

	Figures
	Tables
	Chapter 1. Embedded SQL
	Embedding SQL statements in a host language
	Embedded SQL statements in C and C++ applications
	Embedded SQL statements in FORTRAN applications
	Embedded SQL statements in COBOL applications
	Embedded SQL statements in REXX applications

	Supported development software for embedded SQL applications
	Setting up the embedded SQL development environment

	Chapter 2. Designing
	Authorization considerations
	Static and dynamic SQL statement execution in embedded SQL applications
	Embedded SQL dynamic statements
	Determining when to execute SQL statements statically or dynamically in embedded SQL applications

	Performance
	32-bit and 64-bit support
	Restrictions
	Restrictions on using C and C++
	Restrictions on using COBOL
	Restrictions on using FORTRAN
	Restrictions on using REXX
	Recommendations for developing embedded SQL applications with XML and XQuery

	Concurrent transactions and multi-threaded database access
	Recommendations for using multiple threads
	Code page and country or region code considerations for multi-threaded UNIX applications
	Troubleshooting multi-threaded applications

	Chapter 3. Programming
	Source files
	Application template in C
	Include files and definitions
	Include files for C and C++
	Include files for COBOL
	Include files for FORTRAN

	Declaring the SQLCA for error handling
	Connecting to Db2 databases
	Data types that map to SQL data types
	Supported SQL data types in C and C++
	Data types for procedures, functions, and methods in C and C++

	Supported SQL data types in COBOL
	Supported SQL data types in FORTRAN
	Supported SQL data types in REXX

	Host variables
	Declaring host variables
	Declaring host variables with the db2dclgn declaration generator
	Column data types and host variables
	Declaring XML host variables
	Identifying XML values in an SQLDA
	Identifying null SQL values with null indicator variables
	Including SQLSTATE and SQLCODE host variables
	Referencing host variables
	Example: Referencing XML host variables
	Host variables in C and C++
	Declare section for host variables in C and C++
	Host variable names in C and C++

	Example: SQL declare section template for C and C++
	SQLSTATE and SQLCODE variables in C and C++
	Declaration of numeric host variables in C and C++
	Declaration of fixed-length, null-terminated and variable-length character host variables in C and C++
	Declaration of graphic host variables in C and C++
	The wchar_t and sqldbchar data types for graphic data in C and C++
	WCHARTYPE precompiler option for graphic data in C and C++
	Declaration of VARGRAPHIC type host variables in the structured form in C and C++
	Declaration of GRAPHIC type host variables in single-graphic and null-terminated graphic forms in C and C++
	Declaration of large object type host variables in C and C++
	Declaration of large object locator type host variables in C and C++
	Declaration of file reference type host variables in C and C++
	Declaration of host variables as pointers in C and C++
	Declaration of class data members as host variables in C and C++
	Declaration of binary type host variables in C, C++ embedded SQL applications
	Embedded SQL application support of BINARY and VARBINARY
	Scope resolution and class member operators in C and C++
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C and C++
	Binary storage of variable values using the FOR BIT DATA clause in C and C++
	Initialization of host variables in C and C++
	Macro expansion and the DECLARE SECTION of C and C++
	Host structure support in the declare section of C and C++
	Null or truncation indicator variables and indicator tables in C and C++
	Null terminated strings in C and C++
	C and C++ host variable arrays
	Structure arrays
	Indicator variable arrays

	Host variables in COBOL
	Host variable names in COBOL
	Declare section for host variables in COBOL
	Example: SQL declare section template for COBOL
	BINARY/COMP-4 data types in COBOL
	SQLSTATE and SQLCODE Variables in COBOL
	Declaration of numeric host variables in COBOL
	Declaration of fixed length and variable length character host variables in COBOL
	Declaration of fixed length and variable length graphic host variables in COBOL
	Declaration of large object type host variables in COBOL
	Declaration of large object locator type host variables in COBOL
	Declaration of file reference type host variables in COBOL
	Grouping data items using REDEFINES in COBOL
	Japanese or Traditional Chinese EUC, and UCS-2 considerations for COBOL
	Binary storage of variable values using the FOR BIT DATA clause in COBOL
	Host structure support in the declare section of COBOL
	Null-indicator variables and null or truncation indicator variable tables in COBOL

	Host variables in FORTRAN
	Host variable names in FORTRAN
	Declare section for host variables in FORTRAN
	Example: SQL declare section template for FORTRAN
	SQLSTATE and SQLCODE variables in FORTRAN
	Declaration of numeric host variables FORTRAN
	Declaration of fixed-length and variable length character host variables in FORTRAN
	Declaration of large object type host variables in FORTRAN
	Declaration of large object locator type host variables in FORTRAN
	Declaration of file reference type host variable in FORTRAN
	Considerations for graphic (multi-byte) character sets in FORTRAN
	Japanese or Traditional Chinese EUC, and UCS-2 considerations for FORTRAN
	Null or truncation indicator variable tables in FORTRAN

	Host variables in REXX
	Host variable names in REXX
	Host variable references in REXX
	Predefined REXX variables
	Considerations while programming REXX
	Declaration of large object type host variables in REXX
	Declaration of large object locator type host variables in REXX
	Declaration of file reference type host variables in REXX
	LOB host variable clearing in REXX
	Null or truncation indicator variable tables in REXX

	Considerations for using buffered inserts
	Buffered inserts in partitioned database environments
	Restrictions on using buffered inserts

	Executing XQuery expressions
	Executing SQL statements
	Comments
	Executing static SQL statements
	Retrieving host variable information from the SQLDA structure
	Declaring the SQLDA structure in a dynamically executed SQL program
	Preparing a dynamically executed SQL statement using the minimum SQLDA structure
	Allocating an SQLDA structure with sufficient SQLVAR entries for a dynamically executed SQL program
	Describing a SELECT statement in a dynamically executed SQL program
	Acquiring storage to hold a row
	Processing the cursor in a dynamically executed SQL program
	Allocating an SQLDA structure for a dynamically executed SQL program
	Transferring data in a dynamically executed SQL program using an SQLDA structure
	Processing interactive SQL statements in dynamically executed SQL programs
	Determination of statement type in dynamically executed SQL programs
	Processing variable-list SELECT statements in dynamically executed SQL programs
	Saving SQL requests from end users

	Providing variable input to dynamically executed SQL statements by using parameter markers
	Example of a parameter markers in a dynamically executed SQL program

	Calling procedures
	Calling stored procedures in C and C++
	Calling stored procedures from REXX

	Reading and scrolling through results
	Scrolling through previously retrieved data
	Keeping a copy of the data
	Retrieving data a second time
	Row order differences between the first and second result table
	Updating previously retrieved data
	Selecting multiple rows using a cursor
	Updating and deleting retrieved data in statically executed SQL Programs
	Example of a fetch in a statically executed SQL program

	Error message retrieval
	Error information in the SQLCODE, SQLSTATE, and SQLWARN
	Exit list routine considerations
	Exception, signal, and interrupt handler considerations

	Disconnecting
	Embedded SQL/COBOL Support for MRI and MRF

	Chapter 4. Building
	Precompilation with the PRECOMPILE command
	Precompilation of embedded SQL applications that access more than one database server
	Embedded SQL application packages and access plans
	Package schema qualification using CURRENT PACKAGE PATH special register
	Precompiler generated timestamps
	Errors and warnings from precompilation

	Compilation and linkage of source files containing embedded SQL
	Binding embedded SQL packages to a database with the BIND command
	Effect of DYNAMICRULES bind option on dynamically executed SQL
	Using special registers to control the statement compilation environment
	Package recreation using the BIND command and an existing bind file
	Rebinding existing packages with the REBIND command
	Bind considerations
	Blocking considerations
	Advantages of deferred binding
	Performance improvements when using REOPT option of the BIND command

	Binding applications and utilities (Db2 Connect Server)
	Package storage and maintenance
	Package versioning
	Resolution of unqualified table names

	Building embedded SQL applications using the sample build script
	Error-checking utilities
	Building embedded SQL applications in C and C++
	Compile and link options for C and C++
	AIX C application compile and link options
	AIX C++ embedded SQL and Db2 API applications compile and link option
	Linux C application compile and link options
	Linux C++ application compile and link options
	Windows C and C++ application compile and link options

	Building UNIX C applications
	Building C or C++ applications on Windows
	Building C and C++ multi-connection applications on Windows

	Building embedded SQL applications in COBOL
	Compile and link options for COBOL
	IBM COBOL for AIX application compile and link options
	AIX Micro Focus COBOL application compile and link options
	Linux Micro Focus COBOL application compile and link options
	Windows IBM COBOL application compile and link options
	Windows Micro Focus COBOL application compile and link options

	COBOL compiler configurations
	Configuring the IBM COBOL compiler on AIX
	Configuring the IBM COBOL compiler on Windows
	Configuring the Micro Focus COBOL compiler on Windows
	Configuring the Micro Focus COBOL compiler on Linux
	Configuring the Micro Focus COBOL compiler on AIX

	Building IBM COBOL applications on AIX
	Building UNIX Micro Focus COBOL applications
	Building IBM COBOL applications on Windows
	Building Micro Focus COBOL applications on Windows

	Building and running embedded SQL applications written in REXX
	Bind files for REXX
	Building Object REXX applications on Windows

	Building embedded SQL applications from the command line
	Building embedded SQL applications in C or C++ (Windows)

	Chapter 5. Deploying and running
	Use of the db2dsdriver.cfg configuration file by embedded SQL applications
	Restrictions on linking to libdb2.so

	Chapter 6. Compatibility features for migration
	C and C++ host variable arrays
	Call to a stored procedure with anonymous block
	Call to a stored procedure with three-part name
	CONNECT statement syntax enhancements
	Declaration of the VARCHAR data type
	Include-file names with double quotation marks
	Indicator variable arrays
	RELEASE option in ROLLBACK statements and COMMIT statements
	Strings for the GENERIC option on the BIND command
	String literals with PREPARE statements
	Structure arrays
	UNSAFENULL PRECOMPILE option
	WHENEVER <condition> DO <action> statements

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

