
IBM Db2 V11.5

Data Recovery and High Availability
2020-08-19

IBM

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2016, 2020 i

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

ii Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices iii

iv IBM Db2 V11.5: Data Recovery and High Availability

About this book

The Data Recovery and High Availability Guide and Reference describes how to keep your Db2® database
solutions highly available, and how to keep your data from being lost.

The Data Recovery and High Availability Guide and Reference is in two parts:

• Part 1, High availability, describes strategies and Db2 database features and functionality that help
keep your database solutions highly available.

• Part 2, Data recovery, describes how to use Db2 backup and restore functionality to keep your data
from being lost.

Note: This document in PDF form is provided as a courtesy to customers who have requested
documentation in this format. It is provided As-Is without warranty or maintenance commitment.

© Copyright IBM Corp. 2016, 2020 v

vi IBM Db2 V11.5: Data Recovery and High Availability

Contents

Notices...i
Trademarks...ii
Terms and conditions for product documentation..ii

About this book... v

Figures... xi

Tables.. xiii

Chapter 1. High availability..1
Outages.. 2

Signatures... 2
Cost... 3
Tolerance.. 3
Recovery and avoidance strategies... 4

High availability strategies...4
Redundancy.. 5
Failover..5
Clustering..6
Database logging.. 18

High availability with Db2 server...29
Automatic client reroute.. 29
Db2 fault monitor... 37
High availability disaster recovery (HADR)..40
Db2 High Availability Feature...43
Log shipping... 125
Log mirroring.. 126
Suspended I/O and online split mirror.. 126

Configuring for high availability...138
Configuring TCP/IP keepalive parameters.. 139
Initializing a standby database..140
Initializing HADR.. 141
Scheduling maintenance... 168
Configuring database logging.. 170
Configuring a clustered environment.. 183
Synchronizing clocks in a partitioned database environment.. 183

Administering and maintaining a highly available solution.. 185
Log file management..185
Performing maintenance... 195
Synchronizing the primary and standby databases.. 205
HADR delayed replay... 216
Db2 High availability disaster recovery (HADR) management... 219
HADR multiple standby databases ... 221
High availability disaster recovery (HADR) in Db2 pureScale environments................................... 251
HADR reads on standby feature.. 265
Detecting and responding to system outages...273

Chapter 2. Data recovery... 283

 vii

Developing a backup and recovery strategy...283
Deciding how often to back up.. 285
Storage considerations.. 287
Keeping related data together...289
Backup and restore operations between different operating systems and hardware platforms... 289
Log stream merging and log file management in a Db2 pureScale environment............................ 290
Log sequence numbers in Db2 pureScale environments... 294
Backup and restore monitoring with db2pd -barstats...294

Recovery history file.. 303
Recovery history file entry status.. 305
Viewing recovery history file entries..307
Pruning the recovery history file..308
Automating recovery history file pruning.. 308
Protecting recovery history file entries from being pruned.. 310

Managing recovery objects..311
Deleting database recovery objects.. 311
Automating database recovery object management..312
Protecting recovery objects from being deleted... 313
Managing snapshot backup objects.. 313
Backup image and log file upload to TSM... 314

Backup... 319
Backing up data..322
Backing up partitioned databases... 327
Enabling automatic backup... 329
Backup and restore operations in a Db2 pureScale environment..331
Monitoring backup operations...335
Optimizing backup performance... 335
Backup and restore statistics.. 336
Authorization required for backup...338
Compatibility of online backup and other utilities.. 338
Backup examples...340

Recover.. 341
Recovering data..341
Crash recovery..358
Disaster recovery... 371
Version recovery...371
Rollforward recovery..372
Incremental backup and recovery...375
Optimizing recovery performance... 379
Authorization required for recover.. 380

Restore...380
Restoring data.. 381
Performing a redirected restore operation..392
Rebuilding databases...399
Monitoring restore..417
Optimizing restore performance..418
Authorization required for restore...419
Database schema transporting..419
Restore from Db2 pureScale Feature to Db2 Enterprise Server Edition.. 425
Restore a Db2 Enterprise Server Edition to aDb2 pureScale instance. ...426

Rollforward.. 427
Rolling forward data...428
Database rollforward operations in a Db2 pureScale environment... 433
Monitoring rollforward... 436
Authorization required for rollforward.. 437
Rollforward examples.. 437

IBM Tivoli Storage Manager (TSM)..442
Configuring a TSM client.. 442

viii

Considerations for using TSM.. 444
Db2 Advanced Copy Services (ACS)..445

ACS best practices... 445
Restrictions for Flashcopy Limited Function for xLinux and AIX SDK 1.0..446
Enabling Db2 ACS...446
Manually installing Tivoli Storage FlashCopy Manager...450
Db2 ACS scripted interface..450
Db2 ACS API...462

Index.. 505

 ix

x

Figures

1. Example of a Failover Clustering configuration..13

2. Active-passive configuration...15

3. Mutual takeover configuration..15

4. Circular Logging...19

5. Active and archived database logs in rollforward recovery .. 20

6. Synchronization modes for high availability and disaster recovery (HADR) .. 161

7. Reusing log file names.. 186

8. States of the standby database.. 209

9. Database recovery files...284

10. Log files in a Db2 pureScale environment..293

11. Creating and updating the recovery history file... 304

12. Active Database Backups... 305

13. Inactive Database Backups.. 305

14. Expired Database Backups...306

15. Mixed Active, Inactive, and Expired Database Backups..307

16. Expired Log Sequence.. 307

17. Log files in a Db2 pureScale environment..333

18. Rolling back units of work (crash recovery)... 358

19. Version Recovery.. 372

20. Database Rollforward Recovery... 373

21. Table Space Rollforward Recovery.. 374

22. Database and table space-level backups of database SAMPLE... 404

23. Backup log chain for database SAMPLE2...406

 xi

24. Backup images available for database SAMPLE.. 407

25. Sets of table spaces and schemas... 419

26. ORIGINALDB database...422

27. TARGETDB database.. 423

28. TARGETDB database after transport... 424

29. Table space backup requirement...432

xii

Tables

1. If a firewall is set up on each host or in the network, the following ports should be opened:................... 8

2. Arguments for Creating Containers.. 9

3. If firewall is set up on each host or in the network, following ports should be opened:.......................... 12

4. Roadmap to automatic client reroute information...29

5. Supported HADR functionality for different deployments...42

6. Types of quorum device supported by db2haicu...48

7. The following table lists the advantages and disadvantages of each quorum type supported by
db2haicu...48

8. Valid values for the clusterManager attribute.. 58

9. Valid values for the quorumDeviceProtocol attribute.. 60

10. Valid values for the quorumDeviceName attribute..61

11. Valid values for the quorumDiskValue attribute.. 61

12. Valid values for the physicalNetworkProtocol attribute.. 63

13. The advantages and disadvantages of each quorum type...91

14. Example hosts information...101

15. How the address space used for HADR communication is determined... 152

16. User Exit Program Return Codes.. 190

17. Host name, port number, and instance name for databases.. 230

18. Configuration values for each HADR database ... 246

19. Configuration values for each HADR database after a role switch..247

20. Configuration values for each HADR database after a failover... 248

21. Configuration values for a reintegrated standby..248

22. Configuration values for each HADR database after a failover... 249

 xiii

23. Endianness of supported Linux and UNIX operating systems Db2 supports....................................... 290

24. Logging-related database configuration parameters.. 291

25. Effect of the state of other members in a Db2 pureScale instance on database backup and
restore operations..332

26. Transport considerations for specific database objects..420

27. Comparison of supported features with the FlashCopy Limited Function for xLinux and AIX SDK
1.0 that ships with Db2 with the full version of the IBM Tivoli Storage Manager (TSM) product..........446

28. Options written by the library for Db2 ACS.. 451

29. Return codes... 463

30. Return codes... 465

31. Return codes... 467

32. Return codes... 469

33. Return codes... 470

34. Return codes... 472

35. Return codes... 473

36. Return codes... 475

37. Return codes... 477

38. Return codes... 479

39. Return codes... 481

40. Return codes... 483

41. Return codes... 484

42. Return codes... 486

43. Db2 Advanced Copy Services (ACS) API return codes.. 500

44. Error codes for script-initiated snapshot operations...502

xiv

Chapter 1. High availability
The availability of a database solution is a measure of how successful user applications are at performing
their required database tasks. If user applications cannot connect to the database, or if their transactions
fail because of errors or time out because of load on the system, the database solution is not very
available. If user applications are successfully connecting to the database and performing their work, the
database solution is highly available.

Designing a highly available database solution, or increasing the availability of an existing solution
requires an understanding of the needs of the applications accessing the database. To get the greatest
benefit from the expense of additional storage space, faster processors, or more software licenses, focus
on making your database solution as available as required to the most important applications for your
business at the time when those applications need it most.

Unplanned outages

Unexpected system failures that could affect the availability of your database solution to users
include: power interruption; network outage; hardware failure; operating system or other software
errors; and complete system failure in the event of a disaster. If such a failure occurs at a time when
users expect to be able to do work with the database, a highly available database solution must do the
following:

• Shield user applications from the failure, so the user applications are not aware of the failure. For
example, Db2 Data Server can reroute database client connections to alternate database servers if a
database server fails.

• Respond to the failure to contain its effect. For example, if a failure occurs on one machine in a
cluster, the cluster manager can remove that machine from the cluster so that no further
transactions are routed to be processed on the failed machine.

• Recover from the failure to return the system to normal operations. For example, if standby
database takes over database operations for a failed primary database, the failed database might
restart, recover, and take over once again as the primary database.

These three tasks must be accomplished with a minimum effect on the availability of the solution to
user applications.

Planned outage

In a highly available database solution, the impact of maintenance activities on the availability of the
database to user applications must be minimized as well.

For example, if the database solution serves a traditional store front that is open for business between
the hours of 9am to 5pm, then maintenance activities can occur offline, outside of those business
hours without affecting the availability of the database for user applications. If the database solution
serves an online banking business that is expected to be available for customers to access through
the Internet 24 hours per day, then maintenance activities must be run online, or scheduled for off-
peak activity periods to have minimal impact on the availability of the database to the customers.

When you are making business decisions and design choices about the availability of your database
solution, you must weigh the following two factors:

• The cost to your business of the database being unavailable to customers
• The cost of implementing a certain degree of availability

For example, consider an Internet-based business that makes a certain amount of revenue, X, every hour
the database solution is serving customers. A high availability strategy that saves 10 hours of downtime
per year will earn the business 10X extra revenue per year. If the cost of implementing this high
availability strategy is less than the expected extra revenue, it would be worth implementing.

© Copyright IBM Corp. 2016, 2020 1

Outages
An outage is any disruption in the ability of the database solution to serve user applications. Outages can
be classified in two groups: unplanned outages and planned outages.

Unplanned outages

Examples of unplanned outages include:

• The failure of one component of the system, including hardware or software failure.
• Invalid administrative or user application actions such accidentally dropping a table that is needed for

business-critical transactions.
• Poor performance due to suboptimal configuration, or inadequate hardware or software.

Planned outages

Examples of planned outages include:

• Maintenance. Some maintenance activities require you to take a complete outage; other maintenance
activities can be performed without stopping the database, but can adversely affect performance. The
latter is the most common type of planned outage.

• Upgrade. Upgrading your software or hardware can sometimes require a partial or a full outage.

In discussions about availability, the focus is often on disaster scenarios or component failures. However,
to design a robust high availability solution, you need to address all of these types of outage.

Outage signatures
An outage signature is a collection of symptoms and behaviors which characterize an outage. The
signature of an outage may vary from temporary performance issues resulting in slow response time for
end users to complete site failure. Consider how these variations impact your business when devising
strategies for avoiding, minimizing, and recovering from outages.

Blackout

A blackout type of outage is experienced when a system is completely unavailable to its end users.
This type of outage may be caused by problems at the hardware, operating system, or database level.
When a blackout occurs, it is imperative that the scope of the outage is immediately identified. Is the
outage purely at the database level? Is the outage at the instance level? Or is it at the operating
system or hardware level?

Brownout

A brownout type of outage is experienced when system performance slows to a point where end
users cannot effectively get their work done. The system as a whole may be up and running, but
essentially, in the eyes of the end users it is not working as expected. This type of outage may occur
during system maintenance windows and peak usage periods. Typically, the CPU and memory are
near capacity during such outages. Poorly tuned or overutilized servers often contribute to brownouts.

Frequency and duration of outages

In conversations about database availability, the focus is often on the total amount or the percentage
of down time (or conversely the amount of time the database system is available) for a given time
period. However, the frequency and duration of planned or unplanned outages makes a significant
difference to the impact that those outages have on your business.

Consider a situation in which you have to make some upgrades to your database system that will take
seven hours to perform, and you can choose between taking the database system offline for an hour
every day during a period of low user activity or taking the database offline for seven hours during the
busiest part of your busiest day. Clearly, several small outages would be less costly and harmful to
your business activities than the single, seven-hour outage. Now consider a situation in which you

2 IBM Db2 V11.5: Data Recovery and High Availability

have intermittent network failures, possibly for a total of a few minutes every week, which cause a
small number of transactions to fail with regular frequency. Those very short outages might end up
costing you a great deal of revenue, and irreparably damage the confidence of your customers in your
business-resulting in even greater losses of future revenue.

Don't focus exclusively on the total outage (or available) time. Weigh the cost of fewer, longer outages
against the cost of multiple, smaller outages when making decisions about maintenance activities or
when responding to an unplanned outage. In the middle of an outage, it can be difficult to make such
judgments; so create a formula or method to calculate the cost to your business of these outage
signatures so that you can make the best choices.

Multiple and cascading failures

When you are designing your database solution to avoid, minimize, and recover from outages, keep in
mind the possibility for multiple components to fail at the same time, or even for the failure of one
component to cause another component to fail.

Outage cost
The cost of an outage varies from business to business. Each business, as a best practice, should analyze
the cost of an outage to their mission critical business processes. The results of this analysis are used to
formulate a restoration plan. This plan includes a priority ordering among restoration activities if more
than one process is identified.

Outage cost

You can estimate the cost to your business of your customer-facing database system being unavailable to
process customer transactions. For example, you can calculate an average cost in lost sales revenue for
every hour or minute during which that database system is unavailable. Calculating projected losses in
revenue as a result of reduced customer confidence is much more difficult, but you should consider this
cost when assessing your business's availability requirements.

Consider too the cost of internal database systems being unavailable to your business processes.
Something as simple as e-mail or calendar software being unavailable for an hour can cause your
business to grind a halt, because employees are unable to do their work.

Outage tolerance
The tolerance of an outage varies from business to business. Each business, as a best-practice, should
analyze the impact of an outage to their mission critical business processes. The results of this analysis
are used to formulate a restoration plan. This plan includes an order of priority to the restoration if more
than one process is identified.

Outage tolerance

A crucial factor in determining your availability needs is to ask how tolerant your business, or a specific
system in your business, is to the occurrence of an outage. For example, a restaurant that operates a Web
site primarily to publish menu information will not lose much revenue because of an occasional server
outage. On the other hand, any outage on a stock exchange server that records transactions would be
catastrophic. Thus, using a lot of resources to ensure the availability of the restaurant's server is 99.99%
would not be cost-effective, whereas it certainly would be for the stock exchange.

When discussing tolerance two concepts should be kept in mind: time to recovery, and point of recovery.

Time to recovery is the time required to bring a business process or system back online.

Point of recovery is the historical point at which the business process or system is restored. In database
terms, a plan would weigh the benefits of a quick restore that loses some transactions versus a complete
restore that loses no transactions but which takes longer to perform.

Chapter 1. High availability 3

Recovery and avoidance strategies
When considering purchase and system design choices about availability, it is tempting to dive into long
lists of high availability features and technologies. However, best practices with respect to making and
keeping your system highly available are just as much about making good design and configuration
choices, and designing and practicing sound administrative procedures and emergency plans, as they are
about buying technology.

You will get the most comprehensive availability for your investment by first identifying the high
availability strategies that best suit your business demands. Then you can implement your strategies,
choosing the most appropriate technology.

When designing or configuring your database solution for high availability, consider how outages may be
avoided, their impact minimized, and your system quickly recovered.

Avoid outages

Whenever possible, avoid outages. For example, remove single points of failure to avoid unplanned
outages, or investigate methods for performing maintenance activities online to avoid planned
outages. Monitor your database system to identify trends in system behavior that indicate problems,
and resolve the problems before they cause an outage.

Minimize the impact of outages

You can design and configure your database solution to minimize the impact of planned and
unplanned outages. For example, distribute your database solution so that components and
functionality are localized, allowing some user applications to continue processing transactions even
when one component is offline.

Recover quickly from unplanned outages

Make a recovery plan: create clear and well-documented procedures that administrators can follow
easily and quickly in the event of an unplanned outage; create clear architectural documents that
describe all components of the systems involved; have service agreements and contact information
well organized and close to hand. While recovering quickly is vitally important, also know what
diagnostic information to collect in order to identify the root cause of the outage and avoid it in the
future.

High availability strategies
It does not matter to a user why his or her database request failed. Whether a transaction timed out
because of bad performance, or a component of the solution failed, or an administrator has taken the
database offline to perform maintenance, the result is the same to the user. The database is unavailable
to process requests.

Strategies for improving the availability of your database solution include:

Redundancy
Having secondary copies of each component of your solution that can take over workload in the event
of failure.

System monitoring
Collecting statistics about the components of your solution to facilitate workload balancing or
detecting that components have failed.

Load balancing
Transferring some workload from an overloaded component of your solution to another component of
your solution that has a lighter load.

Failover
Transferring all workload from a failed component of your solution to a secondary component.

Maximizing performance
Reducing the chance that transactions take a very long time to complete or time out.

4 IBM Db2 V11.5: Data Recovery and High Availability

Minimizing the impact of maintenance
Scheduling automated maintenance activities and manual maintenance activities so as to impact user
applications as little as possible.

High availability through redundancy
An important strategy for maintaining high availability is having redundant components. If a component
fails, a secondary or backup copy of that component can take over, enabling the database to remain
available to user applications. If a component of the system is not redundant, that component could be a
single point of failure for the system.

Redundancy is common in system design:

• Uninterrupted or backup power supplies
• Multiple network fibers between each component
• Bonding or load balancing of network cards
• Multiple hard drives in a redundant array
• Clusters of CPUs

If any one of these components of the system is not redundant, that component could be a single point of
failure for the whole system.

You can create redundancy at the database level, by having two databases: a primary database that
normally processes all or most of the application workload; and a secondary database that can take over
the workload if the primary database fails. In a Db2 High Availability Disaster Recover (HADR)
environment, this secondary database is called the standby database.

For Db2 Connect clients, Sysplex workload balancing functionality on Db2 for z/OS® servers provides high
availability for client applications that connect directly to a data sharing group. Sysplex workload
balancing functionality provides workload balancing and seamless automatic client reroute capability.
This support is available for applications that use Java™ clients (JDBC, SQLJ, or pureQuery) or other
clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby, or embedded SQL).

High availability through failover
Failover is the transfer of workload from a primary system to a secondary system in the event of a failure
on the primary system. When workload has been transferred like this, the secondary system is said to
have taken over the workload of the failed primary system.
Example 1

In a clustered environment, if one machine in the cluster fails, cluster managing software can move
processes that were running on the machine that failed to another machine in the cluster.

Example 2

In a database solution with multiple IBM® Data Servers, if one database becomes unavailable, the
database manager can reroute database applications that were connected to the database server that
is no longer available to a secondary database server.

The two most common failover strategies on the market are known as idle standby and mutual takeover:

Idle Standby

In this configuration, a primary system processes all the workload while a secondary or standby
system is idle, or in standby mode, ready to take over the workload if there is a failure on the primary
system. In an high availability disaster recovery (HADR) setup, you can have up to three standbys and
you can configure each standby to allow read-only workloads.

Mutual Takeover

In this configuration, there are multiple systems, and each system is the designated secondary for
another system. When a system fails, the overall performance is negatively affected because the
secondary for the system that failed must continue to process its own workload as well as the
workload of the failed system.

Chapter 1. High availability 5

High availability through clustering
A cluster is a group of connected machines that work together as a single system. When one machine in a
cluster fails, cluster managing software transfers the workload of the failed machine onto other machines.
Heartbeat monitoring

To detect a failure on one machine in the cluster, failover software can use heartbeat monitoring or
keepalive packets between machines to confirm availability. Heartbeat monitoring involves system
services that maintain constant communication between all the machines in a cluster. If a heartbeat
is not detected, failover to a backup machine starts.

Virtual IP address takeover

When there is a failure on one machine in the cluster, cluster managers can transfer workload from
one machine to another by transferring the virtual IP address from one machine to another. This is
called virtual IP address takeover, or IP takeover. This workload transfer is transparent to the end-
client application, which continues to use the same IP address to connect to the database, unaware
that the physical machine's IP address maps has changed.

The Db2 High Availability Feature enables integration between IBM Db2 server and cluster managing
software.

Supported cluster management software
Cluster managing software enables the transfer of Db2 database operations from a failed primary
database on one node of the cluster to a secondary database on another node in the cluster.

Db2 database supports the following cluster managing software:

• Pacemaker

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an
automated failover to HADR standby is a Technical Preview. This means it should be restricted to
development, test, and proof of concept environments only. Any output and error messages from the
new db2cm utility may change in the final version of this feature.

For an overview of Pacemaker supported by Db2, see “Integrated solution using Pacemaker” on page
87. For details on how to configure Pacemaker with Db2 database products, see “Configuring a
clustered environment using the Db2 cluster manager (db2cm) utility” on page 97.

• IBM PowerHA® SystemMirror® for AIX® (formerly known as High Availability Cluster Multi-Processing for
AIX or HACMP)

For detailed information about how to configure PowerHA SystemMirror with Db2 database products,
see http://www.redbooks.ibm.com/abstracts/sg247363.html.

• Tivoli® System Automation for Multiplatforms.

For detailed information about how to configure Tivoli System Automation with Db2 database products,
see http://www.redbooks.ibm.com/abstracts/sg247363.html.

• VERITAS Cluster Server (VCS)

VCS is a component of the Veritas InfoScale product suite. For detailed information about VCS support
matrix, see https://sort.veritas.com/sclcentral/database.

• Microsoft Cluster Server, for Windows operating systems

For detailed information about how to configure Microsoft Cluster Server with Db2 database products,
see http://www.redbooks.ibm.com/abstracts/sg247363.html.

Pacemaker (Linux)
Pacemaker is an open source high-availability cluster resource manager software that runs on a set of
nodes. Together with Corosync, an open source group communication system that provides ordered
communication delivery, cluster membership, quorum enforcement, and other features among the nodes,
it helps detect component failures and orchestrate necessary failover procedures to minimize
interruptions to applications.

6 IBM Db2 V11.5: Data Recovery and High Availability

http://www.redbooks.ibm.com/abstracts/sg247363.html
http://www.redbooks.ibm.com/abstracts/sg247363.html
https://sort.veritas.com/sclcentral/database
http://www.redbooks.ibm.com/abstracts/sg247363.html

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Pacemaker provides a framework to manage the availability of resources. Resources are services on a
host that needs to be kept highly available. In Db2, the following are considered resources:

• Db2 member process (also known as a Db2 instance)
• HADR Database
• Ethernet network adapter
• Virtual IP address

Supported Linux distributions and levels

• RedHat Enterprise Linux (RHEL) 8.1
• SuSE Linux Enterprise Server (SLES) 15 SP1

Supported hardware platforms

• Intel and AMD processor-based System
• IBM Z

Prerequisites

For more information on prerequisites, refer to “Prerequisites for an integrated solution using
Pacemaker” on page 91.

Disk storage

There is no specific requirement. The Db2 database can use these resources for local data storage:

• Raw disk (for example, /dev/sda1)
• Logical volume that is managed by a Logical Volume Manager (LVM)
• File system (for example, ext4, jfs2, gpfs, etc.)

Db2 data can be stored either entirely on one or more raw disks, entirely on logical volumes, entirely on
file systems, or on a mixture of all three. Db2 binaries such as executables and shared libraries need to be
on a file system.

Db2 database requirements for the virtual IP address

The Db2 database has no special requirements for the virtual IP address. It is not necessary to define a
virtual IP address in order for the instance to be considered highly available. However, it is important to
remember that the virtual IP address is the user's access point to the data, and as such, this address
must be known by all database clients. In practice, it is recommended that this IP address be the one that
is used by the users in their CATALOG TCPIP NODE commands.

Note: While Db2 has no specific requirement for the virtual IP address, the system typically requires that
the local physical IP address used as the map for virtual IP address, on both hosts, in a HADR cluster be
on the same IP subnet. Failing to adhere to this requirement may cause issues during failover. Please
consult your network administrator during virtual IP setup.

Setting up Pacemaker with a Db2 environment

For detailed configuration information to help set up Pacemaker to work with a Db2 environment, refer to
“Configuring a clustered environment using the Db2 cluster manager (db2cm) utility” on page 97.

Note: The db2haicu utility is not supported for configuring and managing a highly available cluster using
Pacemaker.

Chapter 1. High availability 7

Pacemaker and Corosync port usage information

Table 1. If a firewall is set up on each host or in the network, the following ports should be opened:

Service name Port number Protocols

pcsd 22241 TCP

crmd 3121 TCP

corosync-qnetd 54032 TCP

corosync 5404 - 5405 UDP

Note:

1. This is only required if the user decides to use the RHEL-specific command pcsd to manage the
cluster. This is not recommended by Db2.

2. The default port is 5403. If the default value is changed with the corosync-qnetd -d command, the
new port value should be used instead.

IBM PowerHA SystemMirror for AIX (formerly known as High Availability Cluster Multi-Processing for
AIX or HACMP)
IBM PowerHA SystemMirror for AIX is cluster managing software. The nodes in PowerHA SystemMirror
clusters exchange messages called heartbeats, or keepalive packets. If a node stops sending these
messages, PowerHA SystemMirror invokes failover across the other nodes in the cluster; and when the
node that failed is repaired, PowerHA SystemMirror reintegrates it back into the cluster.

There are two types of events: standard events that are anticipated within the operations of PowerHA
SystemMirror, and user-defined events that are associated with the monitoring of parameters in hardware
and software components.

One of the standard events is the node_down event. This is when a node in the cluster has failed, and
PowerHA SystemMirror has initiated failover across the other nodes in the cluster. When planning what
should be done as part of the recovery process, PowerHA SystemMirror allows two failover options: hot
(or idle) standby, and mutual takeover.

Note: When using PowerHA SystemMirror, ensure that Db2 instances are not started at boot time by
using the db2iauto utility as follows:

 db2iauto -off InstName

where InstName is the login name of the instance.

Cluster configuration

In a hot standby configuration, the AIX processor node that is the takeover node is not running any other
workload. In a mutual takeover configuration, the AIX processor node that is the takeover node is running
other workloads.

Generally, in a partitioned database environment, Db2 database runs in mutual takeover mode with
database partitions on each node. One exception is a scenario in which the catalog partition is part of a
hot standby configuration.

One planning consideration is how to manage big clusters. It is easier to manage a small cluster than a big
one; however, it is also easier to manage one big cluster than many smaller ones. When planning,
consider how your applications will be used in your cluster environment. If there is a single, large,
homogeneous application running, for example, on 16 nodes, it is probably easier to manage the
configuration as a single cluster rather than as eight two-node clusters. If the same 16 nodes contain
many different applications with different networks, disks, and node relationships, it is probably better to
group the nodes into smaller clusters. Keep in mind that nodes integrate into an PowerHA SystemMirror
cluster one at a time; it will be faster to start a configuration of multiple clusters rather than one large

8 IBM Db2 V11.5: Data Recovery and High Availability

cluster. PowerHA SystemMirror supports both single and multiple clusters, as long as a node and its
backup are in the same cluster.

PowerHA SystemMirror failover recovery allows predefined (also known as cascading) assignment of a
resource group to a physical node. The failover recovery procedure also allows floating (or rotating)
assignment of a resource group to a physical node. IP addresses, and external disk volume groups, or file
systems, or NFS file systems, and application servers within each resource group specify either an
application or an application component, which can be manipulated by PowerHA SystemMirror between
physical nodes by failover and reintegration. Failover and reintegration behavior is specified by the type of
resource group created, and by the number of nodes placed in the resource group.

For example, consider a Db2 database partition (logical node). If its log and table space containers were
placed on external disks, and other nodes were linked to those disks, it would be possible for those other
nodes to access these disks and to restart the database partition (on a takeover node). It is this type of
operation that is automated by PowerHA SystemMirror. PowerHA SystemMirror can also be used to
recover NFS file systems used by Db2 instance main user directories.

Read the PowerHA SystemMirror documentation thoroughly as part of your planning for recovery with
Db2 database in a partitioned database environment. You should read the Concepts, Planning,
Installation, and Administration guides, then build the recovery architecture for your environment. For
each subsystem that you have identified for recovery, based on known points of failure, identify the
PowerHA SystemMirror clusters that you need, as well as the recovery nodes (either hot standby or
mutual takeover).

If you plan to use PowerHA SystemMirror on two or more computers that share the same home directory,
you must install the database manager in the same installation path. Using symbolic links to a similar
installation path might cause issues in this scenario. The installation paths must be the same physical
path.

It is strongly recommended that both disks and adapters be mirrored in your external disk configuration.
For Db2 physical nodes that are configured for PowerHA SystemMirror, care is required to ensure that
nodes on the volume group can vary from the shared external disks. In a mutual takeover configuration,
this arrangement requires some additional planning, so that the paired nodes can access each other's
volume groups without conflicts. In a partitioned database environment, this means that all container
names must be unique across all databases for all SMS or DMS table spaces. Automatic storage table
spaces manage this requirement for you.

One way to achieve uniqueness is to include the database partition number as part of the name. You can
specify a node expression for container string syntax when creating either SMS or DMS containers. When
you specify the expression, the node number can be part of the container name or, if you specify
additional arguments, the results of those arguments can be part of the container name. Use the
argument " $N" (blank]$N) to indicate the node expression. The argument must occur at the end of the
container string, and can only be used in one of the following forms:

Table 2. Arguments for Creating Containers. The node number is assumed to be five.

Syntax Example Value

blank]$N " $N" 5

blank]$N+ number] " $N+1011" 1016

blank]$N% number] " $N%3" 2

blank]$N+ number]% number] " $N+12%13" 4

blank]$N% number]+ number] " $N%3+20" 22

Note:

1. % is modulus.
2. In all cases, the operators are evaluated from left to right.

Following are some examples of how to create containers using this special argument:

Chapter 1. High availability 9

• Creating containers for use on a two-node system.

 CREATE TABLESPACE TS1 MANAGED BY DATABASE USING
 (device '/dev/rcont $N' 20000)

The following containers would be used:

 /dev/rcont0 - on Node 0
 /dev/rcont1 - on Node 1

• Creating containers for use on a four-node system.

 CREATE TABLESPACE TS2 MANAGED BY DATABASE USING
 (file '/DB2/containers/TS2/container $N+100' 10000)

The following containers would be used:

 /DB2/containers/TS2/container100 - on Node 0
 /DB2/containers/TS2/container101 - on Node 1
 /DB2/containers/TS2/container102 - on Node 2
 /DB2/containers/TS2/container103 - on Node 3

• Creating containers for use on a two-node system.

 CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING
 ('/TS3/cont $N%2, '/TS3/cont $N%2+2')

The following containers would be used:

 /TS3/cont0 - on Node 0
 /TS3/cont2 - on Node 0
 /TS3/cont1 - on Node 1
 /TS3/cont3 - on Node 1

Configuring Db2 database partitions for PowerHA SystemMirror

Once configured, each database partition in an instance is started by PowerHA SystemMirror, one
physical node at a time. Multiple clusters are recommended for starting parallel Db2 configurations that
are larger than four nodes. Note that in a 64-node parallel Db2 configuration, it is faster to start 32 two-
node PowerHA SystemMirror clusters in parallel, than four 16-node clusters.

A script file is packaged with Db2 Enterprise Server Edition to assist in configuring for PowerHA
SystemMirror failover or recovery in either hot standby or mutual takeover nodes. The script file is called
rc.db2pe.ee for a single node and rc.db2pe.eee for multiple nodes. They are located in the sqllib/
samples/hacmp/es directory. Copy the appropriate file to /usr/bin on each system in the PowerHA
SystemMirror cluster and rename it to rc.db2pe.

In addition, Db2 buffer pool sizes can be customized during failover in mutual takeover configurations
from within rc.db2pe. (Buffer pool sizes can be configured to ensure proper resource allocation when
two database partitions run on one physical node.)

PowerHA SystemMirror event monitoring and user-defined events

Initiating a failover operation if a process dies on a given node, is an example of a user-defined event.
Events must be configured manually as a user defined event as part of the cluster setup.

Related information
PowerHA SystemMirror Knowledge Center

10 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/support/knowledgecenter/en/SSPHQG_7.2/navigation/welcome.htm

IBM Tivoli System Automation for Multiplatforms (Linux and AIX)
IBM Tivoli System Automation for Multiplatforms (SA MP) is cluster managing software that facilitates
automatic switching of users, applications, and data from one database system to another in a cluster.
Tivoli SA MP automates control of IT resources such as processes, file systems, and IP addresses.

Tivoli SA MP provides a framework to automatically manage the availability of what are known as
resources. Here are some examples of resources:

• Any piece of software for which start, monitor, and stop scripts can be written to control
• Any network interface card (NIC) to which Tivoli SA MP was granted access. That is, Tivoli SA MP

manages the availability of any IP address that a user wants to use by floating that IP address among
NICs that it has access to. This is known as a floating or virtual IP address.

Db2 resources

In a single-partition Db2 environment, a single Db2 instance is running on a server. This Db2 instance has
local access to data (its own executable image as well as databases owned by the instance). If this Db2
instance is made accessible to remote clients, an unused IP address may be assigned as a floating IP
used to connect to the Db2 instance database(s).

The Db2 instance, the local data, and the IP address are all considered resources, which must be
automated by Tivoli SA MP. Since these resources are closely related (for example, they collectively run
on the same node at the same time), they are defined under a single resource group.

The entire resource group is collocated on one node in the cluster. In the case of a failover, the entire
resource group is started on another node.

The following dependencies exist between the resources in the resource group:

• The Db2 instance must be started after the local disk
• The Db2 instance must be stopped before the local disk
• The virtual IP address must be collocated with the Db2 instance

Disk storage

The Db2 database can use these resources for local data storage:

• Raw disk (for example, /dev/sda1)
• Logical volume that is managed by Logical Volume Manager (LVM)
• File system (for example, ext3, jfs)

Db2 data can be stored either entirely on one or more raw disks, entirely on logical volumes, entirely on
file systems, or on a mixture of all three. Any executables need to be on a file system of some sort.

Db2 database requirements for the virtual IP address

The Db2 database has no special requirements for the virtual IP address. It is not necessary to define a
virtual IP address in order for the instance to be considered highly available. However, it is important to
remember that the virtual IP address is the client's access point to the data, and as such, this address
must be known by all database clients. In practice, it is recommended that this IP address be the one that
is used by the clients in their CATALOG TCPIP NODE commands.

Setting up Tivoli SA MP with your Db2 environment

For detailed configuration information to help you set up SA MP to work with your Db2 environment, refer
to “Configuring a clustered environment using Db2 High Availability Instance Configuration Utility
(db2haicu)” on page 44.

Chapter 1. High availability 11

Tivoli SA MP Port usage information

Table 3. If firewall is set up on each host or in the network, following ports should be opened:

Service Name Port Number Protocols

cthats 12347 UDP

cthags 12348 UDP

rmc 657 UDP

rmc 657 TCP

NOTE:

The communication must be allowed for all communication groups. The RSCT lscomg command displays
the CommunicationGroups (CG) formed by RSCT. These CGs are used for heartbeating to see if peer node
is alive. If a communication ring fails then it is checked with other CGs if peer node is reachable.

You can see the member interfaces of a CG with

lscomg -i <CG1>

where <CG1> is the name of the communication group.

Microsoft Failover Clustering support (Windows)
Microsoft Failover Clustering supports clusters of servers on Windows operating systems. It automatically
detects and responds to server or application failure, and can balance server workloads.

Introduction

Microsoft Failover Clustering is a feature of Windows server operating systems. It is the software that
supports the connection of two servers (up to four servers in Datacenter Server) into a cluster for high
availability and easier management of data and applications. Failover Clustering can also automatically
detect and recover from server or application failures. It can be used to move server workloads to balance
machine utilization and to provide for planned maintenance without downtime.

The following Db2 database products have support for Microsoft Failover Clustering:

• Db2 Connect server products (Db2 Connect Enterprise Edition, Db2 Connect Application Server Edition,
Db2 Connect Unlimited Edition for System i® and Db2 Connect Unlimited Edition for System z®).

• Db2 Advanced Enterprise Server Edition
• Db2 Enterprise Server Edition
• Db2 Workgroup Server Edition

Db2 Failover Clustering components

A cluster is a configuration of two or more nodes, each of which is an independent computer system. The
cluster appears to network clients as a single server.

12 IBM Db2 V11.5: Data Recovery and High Availability

Figure 1. Example of a Failover Clustering configuration

The nodes in a Failover Clustering cluster are connected by one or more shared storage buses and one or
more physically independent networks. The network that connects only the servers but does not connect
the clients to the cluster is referred to as a private network. The network that supports client connections
is referred to as the public network. There are one or more local disks on each node. Each shared storage
bus attaches to one or more disks. Each disk on the shared bus is owned by only one node of the cluster
at a time. The Db2 software resides on the local disk. Db2 database files (for example tables, indexes, log
files) reside on the shared disks. Because Microsoft Failover Clustering does not support the use of raw
partitions in a cluster, it is not possible to configure Db2 to use raw devices in a Microsoft Failover
Clustering environment.

The Db2 resource

In a Microsoft Failover Clustering environment, a resource is an entity that is managed by the clustering
software. For example, a disk, an IP address, or a generic service can be managed as a resource. Db2
integrates with Microsoft Failover Clustering by creating its own resource type called Db2 Server. Each
Db2 Server resource manages a Db2 instance, and in a partitioned database environment, each Db2
Server resource manages a database partition. The name of the Db2 Server resource is the instance
name, although in the case of a partitioned database environment, the name of the Db2 Server resource
consists of both the instance name and the database partition (or node) number.

Pre-online and post-online scripts

You can run scripts both before and after a Db2 resource is brought online. These scripts are referred to
as pre-online and post-online scripts. Pre-online and post-online scripts are .BAT files that can run Db2
and system commands.

In a situation when multiple instances of Db2 might be running on the same machine, you can use the
pre-online and post-online scripts to adjust the configuration so that both instances can be started
successfully. In the event of a failover, you can use the post-online script to perform manual database
recovery. Post-online script can also be used to start any applications or services that depend on Db2.

The Db2 group

Related or dependent resources are organized into resource groups. All resources in a group move
between cluster nodes as a unit. For example, in a typical Db2 single partition cluster environment, there
is a Db2 group that contains the following resources:

Chapter 1. High availability 13

1. Db2 resource. The Db2 resource manages the Db2 instance (or node).
2. IP Address resource. The IP Address resource allows client applications to connect to the Db2 server.
3. Network Name resource. The Network Name resource allows client applications to connect to the Db2

server by using a name rather than using an IP address. The Network Name resource has a
dependency on the IP Address resource. The Network Name resource is optional. (Configuring a
Network Name resource can affect the failover performance.)

4. One or more Physical Disk resources. Each Physical Disk resource manages a shared disk in the
cluster.

Note: When you use MSCS, it is recommended that you use drive letters when you determine the path for
Db2 databases and table space containers. If you are unable to use drive letters, or if the db2mscs utility
is unable to obtain the drive letter of the disk resource, you must use INSTPROF_PATH in the
db2mscs.cfg file to specify a path on MSCS disks.

Note: The Db2 resource is configured to depend on all other resources in the same group so the Db2
server can be started only after all other resources are online.

Failover configurations

Two types of configuration are available:

• Active-passive
• Mutual takeover

In a partitioned database environment, the clusters do not all need to have the same type of
configuration. You can have some clusters that are set up to use active-passive, and others that are set up
for mutual takeover. For example, if your Db2 instance consists of five workstations, you can have two
machines set up to use a mutual takeover configuration, two to use a passive standby configuration, and
one machine that is not configured for failover support.

Active-passive configuration

In an active-passive configuration, one machine in the Microsoft Failover Clustering cluster provides
dedicated failover support, and the other machine participates in the database system. If the machine for
the database system fails, the database server on it is started on the failover machine. If, in a partitioned
database environment, you are running multiple logical nodes on a machine and it fails, the logical nodes
are started on the failover machine. Figure 2 on page 15 shows an example of an active-passive
configuration.

14 IBM Db2 V11.5: Data Recovery and High Availability

Figure 2. Active-passive configuration

Mutual takeover configuration

In a mutual takeover configuration, both workstations participate in the database system (that is, each
machine has at least one database server that is running on it). If one of the workstations in the Microsoft
Failover Clustering cluster fails, the database server on the failing machine is started to run on the other
machine. In a mutual takeover configuration, a database server on one machine can fail independently of
the database server on another machine. Any database server can be active on any machine at any given
point in time. Figure 3 on page 15 shows an example of a mutual takeover configuration.

Figure 3. Mutual takeover configuration

Windows Server 2008 Failover Clustering support

To configure partitioned Db2 database systems to run on Windows Server 20081 failover clusters:

1 The procedure that is described in this white paper is not materially different for Windows Server 2012

Chapter 1. High availability 15

1. Follow the same procedures as described in the white paper "Implementing IBMDb2 9.7 Enterprise
Server edition with Microsoft Failover Clustering",2 which is available on the developerWorks®

websitehere.
2. Due to changes in the Failover Clustering feature of Windows Server 2008, the following additional

setup might be required:

• In Windows Server 2008 failover clusters, the Windows cluster service is run under a special Local
System account, whereas in Windows Server 2003, the Windows cluster service is run under an
administrator's account. This affects the operations of the Db2 resource (db2server.dll), which is
run under the context of the cluster service account.

If the DB2_EXTSECURITY registry variable is set to YES on a Windows failover cluster, the
DB2ADMNS and DB2USERS groups must be domain groups.

When a multiple partition instance is running on a Windows failover cluster, the INSTPROF path
must be set to a network path (for example, \\NetName\DB2MSCS-DB2\DB2PROFS). This is done
automatically if you use the db2mscs command to cluster the Db2 database system.

When the Windows Server 2008 failover cluster is formed, a computer object that represents the
new cluster is created in the Active Directory. For example, if the name of the cluster is MYCLUSTER,
then a computer object MYCLUSTER is created in the Active Directory. If a user clusters a multiple
partition instance and the DB2_EXTSECURITY registry variable is set to YES (the default setting),
then this computer object must be added to the DB2ADMNS group. You must do this addition so that
the Db2 resource DLL can access the \\NetName\DB2MSCS-DB2\DB2PROFS path. For example, if
the Db2 Administrators group is MYDOMAIN\DB2ADMNS, the computer object MYCLUSTER must be
added to this group. Lastly, after you add the computer object to the DB2ADMNS group, you must
reboot both nodes in the cluster.

• In Windows Server 2008 Failover Clustering, the "cluster fileshare resource" is no longer supported.
The cluster file server is used instead. The file share (a regular file share) is based on the cluster file
server resource. Microsoft requires that the cluster file servers created in the cluster use Domain
Name System (DNS) for name resolution. When you are running multiple partition instances, a file
server resource is required to support the file share. The values of the NETNAME_NAME,
NETNAME_VALUE, and NETNAME_DEPENDENCY parameters that are specified in the db2mscs.cfg
file are used to create the file server and file share resources. The NetName is based on an IP
address, and this NetName must be in DNS. For example, if a db2mscs.cfg file contains the
following parameters, a file share \\MSCSV\DB2MSCS-DB2 is created:

...
NETNAME_NAME = MSCSN
NETNAME_VALUE = MSCSV
...

The name MSCSV must be registered in DNS. Otherwise, the FileServer or the file share that is
created for the Db2 cluster fails when DNS resolution is not successful.

VERITAS Cluster Server support
You can use VERITAS Cluster Server to manage the cluster running Db2 database solution on Linux and
AIX.VERITAS Cluster Server can manage a wide range of applications in heterogeneous environments;
and it supports both storage area network (SAN) and traditional client/server environments.
Failover

VERITAS Cluster Server is an availability clustering solution that manages the availability of
application services, such as Db2 database, by enabling application failover. The state of each
individual cluster node and its associated software services are regularly monitored. When a failure
occurs that disrupts the application service (in this case, the Db2 database service), either VERITAS
Cluster Server or the VCS HA-DB2 Agent, or both will detect the failure and automatically take steps
to restore the service. The steps take to restore the service can include restarting the Db2 database
system on the same node or moving Db2 database system to another node in the cluster and

2 The procedure that is described in this white paper is not materially different for Db2V11.5

16 IBM Db2 V11.5: Data Recovery and High Availability

http://www.ibm.com/developerworks/data/library/techarticle/0301nomani/0301nomani.html

restarting it on that node. If an application needs to be migrated to a new node, VERITAS Cluster
Server moves everything associated with the application (that is, network IP addresses, ownership of
underlying storage) to the new node so that users will not be aware that the service is actually running
on another node. They will still access the service using the same IP addresses, but those addresses
will now point to a different cluster node.

When a failover occurs with VERITAS Cluster Server, users might or might not see a disruption in
service. This will be based on the type of connection (stateful or stateless) that the client has with the
application service. In application environments with stateful connections (like Db2 database), users
might see a brief interruption in service and might need to reconnect after the failover has completed.
In application environments with stateless connections (like NFS), users might see a brief delay in
service but generally will not see a disruption and will not need to log back on.

By supporting an application as a service that can be automatically migrated between cluster nodes,
VERITAS Cluster Server can not only reduce unplanned downtime, but can also shorten the duration
of outages associated with planned downtime (for maintenance and upgrades). Failovers can also be
initiated manually. If a hardware or operating system upgrade must be performed on a particular
node, the Db2 database system can be migrated to another node in the cluster, the upgrade can be
performed, and then the Db2 database system can be migrated back to the original node.

Applications recommended for use in these types of clustering environments should be crash
tolerant. A crash tolerant application can recover from an unexpected crash while still maintaining the
integrity of committed data. Crash tolerant applications are sometimes referred to as cluster friendly
applications. Db2 database system is a crash tolerant application.

Shared storage

When used with the VCS HA-DB2 Agent, Veritas Cluster Server requires shared storage. Shared
storage is storage that has a physical connection to multiple nodes in the cluster. Disk devices
resident on shared storage can tolerate node failures since a physical path to the disk devices still
exists through one or more alternate cluster nodes.

Through the control of VERITAS Cluster Server, cluster nodes can access shared storage through a
logical construct called "disk groups". Disk groups represent a collection of logically defined storage
devices whose ownership can be atomically migrated between nodes in a cluster. A disk group can
only be imported to a single node at any given time. For example, if Disk Group A is imported to Node
1 and Node 1 fails, Disk Group A can be exported from the failed node and imported to a new node in
the cluster. VERITAS Cluster Server can simultaneously control multiple disk groups within a single
cluster.

In addition to allowing disk group definition, a volume manager can provide for redundant data
configurations, using mirroring or RAID 5, on shared storage. VERITAS Cluster Server supports
VERITAS Volume Manager and Solstice DiskSuite as logical volume managers. Combining shared
storage with disk mirroring and striping can protect against both node failure and individual disk or
controller failure.

Bundled and enterprise agents

An agent is a program that is designed to manage the availability of a particular resource or
application. When an agent is started, it obtains the necessary configuration information from VCS and
then periodically monitors the resource or application and updates VCS with the status. In general,
agents are used to bring resources online, take resources offline, or monitor resources and provide
four types of services: start, stop, monitor and clean. Start and stop are used to bring resources online
or offline, monitor is used to test a particular resource or application for its status, and clean is used in
the recovery process.

A variety of bundled agents are included as part of VERITAS Cluster Server and are installed when
VERITAS Cluster Server is installed. The bundled agents are VCS processes that manage predefined
resource types commonly found in cluster configurations (that is, IP, mount, process and share), and
they help to simplify cluster installation and configuration considerably. There are over 20 bundled
agents with VERITAS Cluster Server.

Chapter 1. High availability 17

Enterprise agents tend to focus on specific applications such as the Db2 database application. The
VCS HA-DB2 Agent can be considered an Enterprise Agent, and it interfaces with VCS through the VCS
Agent framework.

VCS resources, resource types, and resource groups

A resource type is an object definition used to define resources within a VCS cluster that will be
monitored. A resource type includes the resource type name and a set of properties associated with
that resource that are salient from a high availability point of view. A resource inherits the properties
and values of its resource type, and resource names must be unique on a cluster-wide basis.

There are two types of resources: persistent and standard (non-persistent). Persistent resources are
resources such as network interface controllers (NICs) that are monitored but are not brought online
or taken offline by VCS. Standard resources are those whose online and offline status is controlled by
VCS.

The lowest level object that is monitored is a resource, and there are various resource types (that is,
share, mount). Each resource must be configured into a resource group, and VCS will bring all
resources in a particular resource group online and offline together. To bring a resource group online
or offline, VCS will invoke the start or stop methods for each of the resources in the group. There are
two types of resource groups: failover and parallel. A highly available Db2 database configuration,
regardless of whether it is partitioned database environment or not, will use failover resource groups.

A "primary" or "master" node is a node that can potentially host a resource. A resource group attribute
called systemlist is used to specify which nodes within a cluster can be primaries for a particular
resource group. In a two node cluster, usually both nodes are included in the systemlist, but in
larger, multi-node clusters that might be hosting several highly available applications there might be a
requirement to ensure that certain application services (defined by their resources at the lowest level)
can never fail over to certain nodes.

Dependencies can be defined between resource groups, and VERITAS Cluster Server depends on this
resource group dependency hierarchy in assessing the impact of various resource failures and in
managing recovery. For example, if the resource group ClientApp1 can not be brought online unless
the resource group Db2 has already been successfully started, resource group ClientApp1 is
considered dependent on resource group Db2.

For more information in VERITAS Cluster Server configurations, consult the VERITAS Cluster Server
User's Guide.

Database logging
Database logging is an important part of your highly available database solution design because database
logs make it possible to recover from a failure, and they make it possible to synchronize primary and
secondary databases.All databases have logs associated with them. These logs keep records of database
changes. If a database needs to be restored to a point beyond the last full, offline backup, logs are
required to roll the data forward to the point of failure.

Two types of database logging are supported: circular and archive. Each provides a different level of
recovery capability:

• “Circular logging” on page 18
• “Archive logging” on page 19

The advantage of choosing archive logging is that rollforward recovery can use both archived logs and
active logs to restore a database either to the end of the logs, or to a specific point in time. The archived
log files can be used to recover changes made after the backup was taken. This is different from circular
logging where you can only recover to the time of the backup, and all changes made after that are lost.

Circular logging
Circular logging is the default behavior when a new database is created. (The logarchmeth1 and
logarchmeth2 database configuration parameters are set to OFF.) With this type of logging, only full,
offline backups of the database are allowed. The database must be offline (inaccessible to users) when a
full backup is taken.

18 IBM Db2 V11.5: Data Recovery and High Availability

As the name suggests, circular logging uses a ring of online logs to provide recovery from transaction
failures and system crashes. The logs are used and retained only to the point of ensuring the integrity of
current transactions. Circular logging does not allow you to roll a database forward through transactions
performed after the last full backup operation. All changes occurring since the last backup operation are
lost. Since this type of restore operation recovers your data to the specific point in time at which a full
backup was taken, it is called version recovery.

Figure 4. Circular Logging

Active logs are used during crash recovery to prevent a failure (system power or application error) from
leaving a database in an inconsistent state. Active logs are located in the database log path directory.

Archive logging
Archive logging is used specifically for rollforward recovery. Archived logs are log files that are copied
from the current log path or from the mirror log path to another location. You can use the logarchmeth1
database configuration parameter, the logarchmeth2 database configuration parameter, or both to
allow you or the database manager to manage the log archiving process.

Chapter 1. High availability 19

Figure 5. Active and archived database logs in rollforward recovery

Taking online backups is supported only if you configure the database for archive logging. During an
online backup operation, all activities against the database are logged. After an online backup is
complete, the database manager forces the currently active log to close, and as a result, it is archived.
This process ensures that your online backup has a complete set of archived logs available for recovery.
When an online backup image is restored, the logs must be rolled forward at least to the point in time at
which the backup operation completed. To facilitate this operation, archived logs must be made available
when the database is restored.

You can use the logarchmeth1 and logarchmeth2 database configuration parameters to specify
where archived logs are stored. You can use the logarchmeth1 parameter to archive log files from the
active log path that is set by the logpath configuration parameter. You can use the logarchmeth2
parameter to archive additional copies of log files from the active log path to a second location. If you do
not configure mirror logging, the additional copies are taken from the same log path that the
logarchmeth1 parameter uses. If you configure mirror logging, with the mirrorlogpath configuration
parameter, the logarchmeth2 configuration parameter archives log files from the mirror log path
instead, which can improve resilience during rollforward recovery. The newlogpath parameter affects
where active logs are stored.

In certain scenarios, you can compress archived log files to help reduce the storage cost that is
associated with these files. If the logarchmeth1 and logarchmeth2 configuration parameters are set
to DISK, TSM, or VENDOR, you can enable archived log file compression by setting the logarchcompr1
and logarchcompr2 configuration parameters to ON. If logarchcompr1 and logarchcompr2 are set
dynamically, any log files that are already archived are not compressed.

If you use the LOGRETAIN option to specify a value that you want to manage the active logs, the database
manager renames log files from the active log path after it archives these files and they are no longer
needed for crash recovery. If you enable infinite logging, additional space is required for more active log
files, so the database server renames the log files after it archives them. The database manager retains up
to 8 extra log files in the active log path for renaming purposes.

Advanced Log Space Management
Available starting from Db2 Version 11.5 Mod Pack 4, use Advanced Log Space Management (ALSM) to
reduce your likelihood of hitting transaction log full conditions. The feature can be enabled by setting the
DB2_ADVANCED_LOG_SPACE_MGMT registry variable to ON.

Overview

Advanced Log Space Management (ALSM) helps to minimize application failures caused by log full errors
(SQL0964N) as the result of a long running transaction holding back the active log space. This is
particularly useful if such a long running transaction does not generate much transaction log data in

20 IBM Db2 V11.5: Data Recovery and High Availability

comparison to other concurrently running transactions. Examples of long running transactions that can
cause log full conditions affecting other applications include:

• A LOAD operation, including ADMIN_MOVE_TABLE that makes use of LOAD.
• A CREATE INDEX operation.
• An indoubt transaction.
• An idle application which has not issued COMMIT or ROLLBACK after modifying the database.

With ALSM, the Db2 transaction manager identifies long running transactions that could be causing a log
full condition and extracts (by copying) their log data from the active log files into separate extraction log
files dedicated for the transaction. This allows the original log files to be removed to free up disk space, so
that new active log files can be created.

When enabled, ALSM will periodically check the log space usage and the active transactions to evaluate if
there is any benefit in extracting log data. There are cases when extraction provides limited or no benefit.
For example, if log archival is not working properly, all log files will remain in the active log path. In this
case extraction would provide no benefit because the extracted data would only duplicate the log data
already present in the corresponding log files, and it would not be possible to free up such log files.

Another example is insufficient disk space. ALSM is designed to never interfere with the disk space
needed by the configured primary and secondary log files. This evaluation process is called "throttling",
and the complete list of the throttle reasons is described in detail below. The throttling conditions are
also evaluated periodically during an active extraction process in order to determine whether it is still
beneficial to continue extracting. In summary, ALSM has been designed to prevent most log full
conditions, but not all.

In general, ALSM has a relatively low performance overhead, resulting in low intrusiveness to an ongoing
workload. If the current transactional workload requires a high amount of system resources, ALSM will
gradually yield to the ongoing workload so that the transactional processing can use the system resources
it needs. The success of a running workload is prioritized over extracting log data.

Apart from the small performance overhead, ALSM is designed to be tolerant of any database resiliency or
stability issues. If an extraction log file becomes unavailable, the original active log file will be used
instead. If this log file is in the archives, then it will be retrieved before being used.

Process model

All ALSM extraction logic is contained within a single-threaded engine dispatchable unit (EDU),
db2loggx. If configured to run, the log extraction EDU is started as a background agent during database
activation or during a user or utility connection such as crash recovery and database rollforward.

Once started, db2loggx takes periodical samples of the active log path and other relevant logging
parameters to determine if extraction should begin. Due to the sampling, the log extraction EDU
consumes a small amount of system resources even when there is no extraction running. However, the
impact of this overhead on performance is negligible.

When the conditions permit for extraction, db2loggx initiates a single log stream scan through all
relevant log files. Log records from the log stream scan are used to populate the log extraction files as
necessary. When the extraction is finished, the log stream scan is closed and the EDU returns back to the
default sampling state. The log extraction EDU continues to exist until the database is deactivated. When
db2loggx is terminated, the deactivation performs a full clean-up of memory resources and extraction
files that are not needed.

Extraction log files

Extraction log files are located in the active log path denoted by the logpath database configuration
parameter. An extraction file can be thought of as a contained log file, including data for only a single
transaction, one that has a potential to cause a transaction log full error. The parent active log file
typically contains many more log records, including log records for other transactions that have already
ended.

Chapter 1. High availability 21

Extraction log files use disk space available outside of the configured upper limit of the number of log
files, logprimary and logsecond. ALSM is designed not to interfere with the log space configured for
the database. Extraction log files do not get managed by log archiving. They will only be removed from the
active log path once the transaction contained in the particular extraction log file finishes.

There are three types of extraction log files:

1. X<log file number>_TID<tid>_<tidLogStreamId>.LOG

An extraction transaction ID (TID) file. This file contains extracted log records from the log file <log file
number> for a single transaction identified by <tid>_<tidLogStreamId>. If available, the TID file is used
for rollback, currently committed and all recovery purposes, including crash recovery and database
rollforward. There is one TID file per active log file per transaction ID.

2. X<log file number>.TMP

A temporary metadata file describing transactions and log records extracted from the log file <log file
number>. This file gets created while active extraction is in progress and has not yet completed.

3. X<log file number>.META

A permanent metadata file describing transactions and log records extracted from the log file <log file
number> . This file gets created by renaming the aforementioned TMP file after extraction has finished
processing the current log file.

Advanced throttling

ALSM needs to have a defined set of criteria to select qualifying log records and control when extraction
starts and finishes. This process is called throttling. The criteria are examined and applied to the log
extraction scan during the following events:

1. Extraction scan start

This event gets triggered continuously and periodically at predefined intervals. The lifetime of the
event is closely tied to the lifetime of the ALSM EDU, db2loggx. Normally, the event starts to occur
after the database activation and continues to get triggered until the database deactivation. In error
cases that disable the extraction scan, this event ceases to occur as soon as db2loggx is terminated.
The database may still be active at that point.

2. Extraction scan restart

This event gets triggered by the extraction scan every time the scanner has read a transaction log
record, occurring only on an active database with an ongoing extraction scan. After a new log record
has been read, the log record is examined to determine whether extraction should proceed.

3. New active log file

This event gets triggered by the extraction scan every time the scanner has transitioned to a new
active transaction log file, occurring only on an active database with an ongoing extraction scan.

Throttling ensures the extraction process does not impact other critical database operations. Special
consideration is given to the amount of disk space consumed by the extraction process. Extraction log
files must never occupy too much space in the active log path, to avoid contributing to a database
outage. Another goal for throttling is to prevent cases where extraction would provide limited or no
benefit.

If a transaction log full error still occurs and throttling is in effect, the throttle reason will be printed to
the Db2 diagnostics log at the point where the error occurred for problem determination. See Problem
determination section below.

For information regarding advanced throttling, see log_extraction_throttle_reason - Reason for
extraction throttling.

22 IBM Db2 V11.5: Data Recovery and High Availability

Interactions

Crash recovery

The feature has full support for crash recovery. If a database outage happens while extraction files
are present, the extraction files will be used during the redo and undo phase of the subsequent crash
recovery. This helps speed up the recovery process as previously archived log files do not need to be
retrieved back into the active log path. If the extraction files are unusable, for example due to a disk
error, previously archived log files will be retrieved as usual and crash recovery will use the retrieved
log files instead. Extraction during crash recovery is controlled by throttling rules similar to the
runtime rules. ALSM will make every effort not to fail due to a transaction log or disk full error during
crash recovery, therefore new extraction files may be produced during the redo and undo phase of
crash recovery.

Online traditional backup and restore

During a traditional online backup, extraction log files will not be included in the backup image. For
the INCLUDE LOGS parameter, if logs are needed in the backup image they will be retrieved from the
archive if not found locally. With extraction, this could increase the range of active log files that need
to be included in the backup image, resulting in larger backup image sizes.

Following a restore, if log files are needed for rollforward purposes and cannot be found locally, the
necessary log files will be retrieved from the archive as usual.

Online native snapshot backup and restore

If the INCLUDE LOGS parameter is specified with the BACKUP command, the active log paths
containing the extraction log files will be included in the target snapshot image.

Database rollforward

The feature has full support for database rollforward. If extraction files exist at the beginning of a
database rollforward operation, the extraction files will be used during the redo and undo phase of the
database rollforward operation. This helps speed up the recovery process as previously archived log
files do not need to be retrieved back into the active log path. If the extraction files are unusable, for
example due to a disk error, previously archived log files will be retrieved as usual and database
rollforward will use the retrieved log files instead. Extraction during database rollforward is controlled
by throttling rules similar to the runtime rules. ALSM will make every effort not to fail due to a
transaction log or disk full error during database rollforward, therefore new extraction files may be
produced during the redo and undo phase of database rollforward. The number of log and extraction
files present in the active log path during a database rollforward operation may be different from
runtime because rollforward log file retrieval requirements are different from the runtime ones.

Table space rollforward

ALSM provides no benefit to a table space rollfoward operation because the log records needed by a
table space rollforward operation are usually older than the log file containing the head of the log, for
example HeadExtentID. ALSM does not extract any data before this point. If an archived log file is
needed for a table space rollforward operation, the log file will be retrieved from the archive as usual.

Mirrored database (db2inidb)

The feature has full support for a mirrored database. If the db2inidb command is issued with the AS
SNAPSHOT option, the database will need to undergo a crash recovery. Before the crash recovery
begins, the on-disk extraction files are verified for completeness and correctness. The point is to
ensure that there is the correct number of extraction files, that they are readable, consistent, and
usable for crash recovery purposes. Likewise, if the db2inidb command is issued with the AS
STANDBY or AS MIRROR option which places the database in a rollforward pending state, the same
extraction file verification is performed.

Currently committed

ALSM has full support for the currently committed feature. If the committed version of the row is not
present in the log buffer, the row data must be retrieved from the corresponding log file. If there is an
extraction log file containing the data of interest, the data will be read from the extraction log file. In

Chapter 1. High availability 23

case of an error reading from the extraction log, for example due to a disk problem, the parent active
log file will not be retrieved. Instead, the behavior will revert to the default wait for the row or table
lock.

SET WRITE SUSPEND

If a SET WRITE SUSPEND command with the INCLUDE LOGS parameter is issued while log
extraction is running, the log extraction will be paused. While I/O writes are being suspended for the
database, existing extraction files will not be written to, new extraction files will not be created, and
none of the existing extraction files will be deleted. The extraction will be resumed after issuing the
SET WRITE RESUME command. Issuing the SET WRITE SUSPEND using the EXCLUDE LOGS
parameter has no impact to log extraction because both features can co-exist.

Databases configured with a MIRRORLOGPATH

Starting from Db2 Version 11.5 Mod Pack 5, Advanced Log Space Management has basic support for
databases configured with a MIRRORLOGPATH. For such databases, log extraction will take place as
long as log data can be read from the active log files found in either the primary or mirror log path and
the extracted log data can be written to the extraction log files found under the primary log path.

If the primary log path becomes inaccessible then the log extraction scan may become throttled due
to a SCAN_ERROR state and a transaction log full error could occur. The log extraction scan will
resume once the primary log path error is fixed and the log extraction zone moves up (see section
Previous extraction error). If a rollback, crash recovery or database rollforward needs to read from an
extraction log file found under the primary log path that is inaccessible then the parent log file will be
retrieved from the archives and used to read the log data. If a currently committed scanner needs to
read from an extraction log file found under the primary log path that is inaccessible then the parent
log file will not be retrieved. Instead, the behavior will revert to the default wait for the row or table
lock.

Infinite logging

ALSM has full support for databases configured with infinite logging (LOGSECOND = -1). Required log
data for inflight transactions will be found locally, thus ensuring fast and reliable rollback and crash
recovery that does not need to retrieve log files from the archives. This is an improvement of infinite
logging behavior prior to ALSM.

Infinite logging guarantees no transaction log full. In cases where the extraction scan is slow or being
idled due to a throttle reason, such as extraction ratio, an active log file may need to be reused for
new log data before it can be extracted from. This will happen when the configured number of log files
has been reached. In this case, required log data for inflight transactions may not be found locally and
so for rollback or crash recovery a log file may need to be retrieved from the archives. To avoid this
from happening set LOG_DISK_CAP to -1 or a large enough value so that additional active log files can
be created. for more details, see log_disk_cap - Active log space disk capacity configuration
parameter.

MAX_LOG

The MAX_LOG database configuration parameter specifies if there is a limit to the percentage of the
primary log space that a transaction can consume, and what that limit is. This parameter will continue
to work as before with ALSM on.

NUM_LOG_SPAN

The NUM_LOG_SPAN database configuration parameter specifies whether there is a limit to how many
log files one transaction can span, and what that limit is. This parameter should be revisited to ensure
it is not set to a value that would cause a transaction to be rolled back before extraction is able to take
place on this transaction.

db2ReadLog API

Extraction log files are not supported because the db2ReadLog API requires to read all log records
from the starting LRI provided.

24 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.config.doc/doc/r0070471.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.config.doc/doc/r0070471.html

Online index create

Extraction log files are not supported because the online index create (OLIC) operation requires to
read all log records.

db2flsn

The db2flsn tool supports using the extraction log files to map a LSN to a log file number. If an active
log file does not exist locally but an extraction log file does, it will use the information from the
extraction log file for the mapping.

db2fmtlog

The db2fmtlog tool has been updated to display contents from the extraction log files. See
db2fmtlog – Format and display log file information command.

Disk space

ALSM consumes additional disk space to store the extraction log files. ALSM works best when there is
more physical disk space than what is required by the configured active log space (LOGPRIMARY,
LOGSECOND, and LOGFILSIZ database configuration parameters). It is recommended to have at least
20% more disk space than the configured amount.

Limitations/Restrictions

ALSM does not support the following configurations:

• Databases configured with circular or log retention logging (at least one of logarchmeth1 or
logarchmeth2 database configuration parameters must be set to a value other than OFF or
LOGRETAIN).

• Databases configured with the High Availability and Disaster Recovery (HADR) feature.
• Databases in an IBM Db2 pureScale® environment.

In these situations, log extraction will not take place and transaction log full errors can still occur as
before.

Monitoring

All new monitoring elements are available through SQL and db2pd -logs. The following monitoring
interfaces have been updated and more details can be found at:

• MON_GET_TRANSACTION_LOG
• MON_GET_UNIT_OF_WORK
• MON_GET_UNIT_OF_WORK_DETAILS
• db2pd - logs

– Monitor the state of extraction through the two new fields:

- Extraction Status
- Current Log to Extract

Example 1: Is ALSM enabled?

To check if ALSM is enabled, run the following command:

db2pd -db sample -logs

Extraction Status Active
Current Log to Extract 1038

This illustrates that log extraction is enabled. The Extraction Status could also report Idle or Recovery.
The Db2 diagnostics log will also have a message indicating that log extraction has been enabled.

Chapter 1. High availability 25

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.cmd.doc/doc/r0070378.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0059253.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0053939.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0053946.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.cmd.doc/doc/r0011729.html

The following represents that ALSM is not enabled:

Extraction Status n/a
Current Log to Extract n/a

The Db2 diagnostic log will also have a message indicating why that log extraction is not enabled.

Example 2: Determining the extraction ratio

The extraction ratio determines whether the database workload fits the ideal model to benefit from ALSM.
This model consists of a few long running, low logging volume transactions with many short running
transactions. While extraction is enabled and functioning this can be determined based on the amount of
log data analyzed compared to the amount of log data extracted:

 SELECT log_extraction_written_bytes,
 log_extraction_processed_bytes
 FROM TABLE(MON_GET_TRANSACTION_LOG(-1)) as t

LOG_EXTRACTION_WRITTEN_BYTES LOG_EXTRACTION_PROCESSED_BYTES
---------------------------- ------------------------------
 16589 647632

This shows that about 3% of the active log data has been extracted, which fits the ideal model that would
show a benefit from using ALSM.

Example 3: Disk space consumption of extraction

In order to determine the current disk space consumption of extraction logs and the high water mark
since the last database activation:

 SELECT log_extraction_processed_bytes AS processed_bytes,
 log_extraction_written_bytes AS written_bytes,
 log_extraction_disk_space_used_total AS disk_space_used_total,
 log_extraction_disk_space_used_total_top AS disk_space_used_total_top
 FROM TABLE(MON_GET_TRANSACTION_LOG(-1)) as t

PROCESSED_BYTES WRITTEN_BYTES DISK_SPACE_USED_TOTAL DISK_SPACE_USED_TOTAL_TOP
--------------- ------------- --------------------- -------------------------
 266882 165 35165 54461

Problem determination

If there is an error reading from an extraction log file, Db2 will look to read from the corresponding active
log file, which may be found local or will be retrieved from the archives. On such an error the following
ADM message is written:

ADM1560W Unable to read from extraction log file "<log-file-name>".

Explanation:

 Not able to read transaction log data from this file, either
 because the file is missing, or its content is not correct.
 This may result in retrieving of active log file(s) from archive.

User response:

 Investigate the cause of the failure by reviewing the Db2 diagnostic (db2diag) log file.

Although using ALSM helps to reduce your likelihood of hitting transaction log full conditions, it is still
possible that under certain conditions if the extraction scan is throttled that a transaction log full error can
still occur.

If this occurs, the Db2 diagnostic log in conjunction with db2pd -logs can be used to help determine the
log extraction details. In most cases, the extraction scan will be throttled for a specific reason. Some
examples are the following:

26 IBM Db2 V11.5: Data Recovery and High Availability

Reason: Log archiving failure

At the point of the transaction log full error the Db2 diagnostic log will show:

Active log S0001038.LOG has not been archived yet.
Active log S0001038.LOG has not been extracted from yet.

Current log extraction information:
 loggxLastProcessedLsn = 0000000000072FEE
 loggxLastProcessedLso = 78454802
 logExtractionCurrentExtNum = 1038
 logExtractionState = IDLE
 logExtractionFlushLsn = 0000000000000000
 throttleReason = LOG_ARCHIVING

If you run the db2pd -logs command, it will show you that "Extraction Status" is set to "Active", but
log archive method 1 is in an error state on transaction log file 1038. Extraction is also currently trying
to extract from the same file.

Logs:
Current Log Number 1047
Pages Written 0
Cur Commit Disk Log Reads 0
Cur Commit Total Log Reads 0
Method 1 Archive Status Failure
Method 1 Next Log to Archive 1047
Method 1 First Failure 1038
Method 2 Archive Status n/a
Method 2 Next Log to Archive n/a
Method 2 First Failure n/a
Extraction Status Active
Current Log to Extract 1038
Log Chain ID 0
Current LSO 78605624
Current LSN 0x00000000000735A6

Searching backwards from the transaction log full error in the Db2 diagnostic log brings you to the
reason for the log archiving failure. Look into the archiving issue and resolve, at which point extraction
will resume.

Reason: Disk full

At the point of the transaction log full error the Db2 diagnostic log will show:

Active log S0001051.LOG has not been extracted from yet.

Current log extraction information:
 loggxLastProcessedLsn = 0000000000073801
 loggxLastProcessedLso = 78666799
 logExtractionCurrentExtNum = 1051
 logExtractionState = IDLE
 logExtractionFlushLsn = 0000000000000000
 throttleReason = DISK_FULL

If you run the db2pd -logs command, it will show you that "Extraction Status" is set to "Active", but
"Current Log to Extract" is equal to the first active log in the active log path, which usually indicates
that extraction is stalled.

Logs:
Current Log Number 1060
Method 1 Archive Status Success
Method 1 Next Log to Archive 1060
Method 1 First Failure n/a
Extraction Status Active
Current Log to Extract 1051
Current LSO 78818610
Current LSN 0x0000000000073E38

StartLSN StartLSO State Filename
0000000000073802 78666801 0x00000000 S0001051.LOG

Look into resolving the disk space issue, at which point extraction will resume.

Chapter 1. High availability 27

Reason: Scan error

At the point of the transaction log full error the Db2 diagnostic log will show:

Active log S0001079.LOG has not been extracted from yet.

Current log extraction information:
 loggxScanStartExtNum = 1079
 loggxScanStartLsn = 0000000000074AC5
 loggxMinLsnToStartOnError = 0000000000074AF3
 logExtractionCurrentExtNum = 1079
 logExtractionState = ERROR
 logExtractionFlushLsn = 0000000000000000
 throttleReason = SCAN_ERROR

Searching backwards from the transaction log full error in the Db2 diagnostic log brings you to the
reason for the scan error listed in the error return code.

MESSAGE :ZRC=0xFFFFFFFF=-1

Log extraction scan error.
 Function = sqlpshrScanNext
 File Array Element 0 = 1073
 Head Extent = 1050
 Group Head Extent = 1050
 loggxScanStartExtNum = 1079
 loggxScanStartLsn = 0000000000074AC5
 loggxMinLsnToStartOnError = 0000000000074AF3
 loggxLastProcessedExtNum = 1079
 loggxLastProcessedLsn = 0000000000074AF1
 loggxLastProcessedLso = 79139424
 loggxLastProcessedByte = 79139471
 logExtractionCurrentExtNum = 1079
logExtractionPendingReadLso = 79139471
 logExtractionReadLso = 79123332

Note that if the scan error is due to reading or writing from an active log path it may be required to
ensure that one or more active log paths are accessible and of adequate storage.

However, if this error is related to something that cannot be resolved and becomes problematic,
contact IBM Support. Once the scan error is resolved, the scan will resume.

Reason: Slow buffer pool flush

At the point of the transaction log full error the Db2 diagnostic log will show:

Active log S0001060.LOG has not been extracted from yet.

Current log extraction information:
 loggxLastProcessedLsn = 0000000000073801
 loggxLastProcessedLso = 78666799
 logExtractionCurrentExtNum = 1060
 logExtractionState = IDLE
 logExtractionFlushLsn = 0000000000074801
 throttleReason = SLOW_BP_FLUSH

If you run the db2pd -logs command, it will show you that "Extraction Status" is set to "Active", but
"Current Log to Extract" is equal to the first active log in the active log path, which usually indicates
that extraction is stalled.

Since the throttle reason indicates a slow buffer pool flushing condition, run the following to get the
LSN of the log record belonging to the oldest dirty page in the buffer pool.

db2pd -db sample -dirtypages | grep minbuflsn
minbuflsn : 0000000000073802

Supplying this LSN to db2flsn will determine what log file contains this log record.

db2flsn -db sample 0000000000073802
Given LSN is in log file S0001060.LOG

The log file returned matches the log file that still needs to be extracted from.

28 IBM Db2 V11.5: Data Recovery and High Availability

Slow buffer pool flushing can result from, for example, a database misconfiguration
(PAGE_AGE_TRGT_MCR and PAGE_AGE_TRGT_GCR database configuration parameters), or a
transaction which frequently accesses and updates the same page without giving the database a
breathing point to flush the page. In some cases, a manual FLUSH BUFFERPOOLS statement may
help.

Log control files
When a database restarts after a failure, the database manager applies transaction information stored in
log files to return the database to a consistent state. To determine which records from the log files need
to be applied to the database, the database manager uses information recorded in log control files.

Redundancy for database resilience

The database manager maintains two copies of the each member's log control file, SQLOGCTL.LFH.1
and SQLOGCTL.LFH.2, and two copies of the global log control file, SQLOGCTL.GLFH.1 and
SQLOGCTL.GLFH.2, so that if one copy is damaged, the database manager can still use the other copy.

Performance considerations

Applying the transaction information contained in the log control files contributes to the overhead of
restarting a database after a failure. You can configure the frequency at which the database manager
writes buffer pool pages to disk in order to reduce the number of log records that need to be processed
during crash recovery using the "page_age_trgt_mcr - Page age target member crash recovery
configuration parameter" in Database Administration Concepts and Configuration Reference.

High availability with Db2 server
IBM Db2 server contains functionality that supports many high availability strategies.

Automatic client reroute roadmap
Automatic client reroute is an IBM Db2 server feature that redirects client applications from a failed
server to an alternate server so the applications can continue their work with minimal interruption.
Automatic client reroute can be accomplished only if an alternate server has been specified prior to the
failure.

Table 4 on page 29 lists the relevant topics in each category.

Table 4. Roadmap to automatic client reroute information

Category Related topics

General information • “Automatic client reroute limitations” on page 33
• “Automatic client reroute description and setup” on page 30
• "Automatic client reroute description and setup (Db2 Connect)" in Installing

and Configuring Db2 Connect Servers

Configuration • “Identifying an alternate server for automatic client reroute” on page 33
• "Configuration of Db2 high availability support for Java clients" in

Developing Java Applications

Examples • “Automatic client reroute examples” on page 35

Interaction with other
Db2 features

• “Configuring automatic client reroute and high availability disaster recovery
(HADR)” on page 145

• "Configuration of Db2 high availability support for Java clients" in
Developing Java Applications

Chapter 1. High availability 29

Table 4. Roadmap to automatic client reroute information (continued)

Category Related topics

Troubleshooting • “Automatic client reroute configuration for client connection distributor
technology” on page 32

Note: Automatic client reroute for Db2 for z/OS Sysplex is also available in IBM data server clients and
non-Java IBM data server drivers. With this support, applications that access a Db2 for z/OS Sysplex can
use automatic client reroute capabilities provided by the client, and are not required to go through a Db2
Connect server. For more information about this feature, see the topic about automatic client reroute
(client-side) in the Db2 Knowledge Center.

Automatic client reroute description and setup
The main goal of the automatic client reroute feature is to enable an IBM Data Server Client application to
recover from a loss of communications so that the application can continue its work with minimal
interruption.As the name suggests, rerouting is central to the support of continuous operations, but
rerouting is only possible when there is an alternate location that is identified to the client connection.

The automatic client reroute feature could be used within the following configurable environments if the
server is Db2 :

1. Db2 Enterprise Server Edition with a partitioned database environment
2. Db2 Enterprise Server Edition with the IBM Db2 pureScale Feature
3. InfoSphere® Replication Server
4. IBM PowerHA SystemMirror for AIX
5. High availability disaster recovery (HADR)

Automatic client reroute works in conjunction with HADR and the Db2 pureScale Feature to allow a
client application to continue its work with minimal interruption after a failover of the database being
accessed.

The seamless automatic client reroute feature is required in the following configuration if the database
server is on System i or System z:

1. IBM data server client connects to a z/OS or i5/OS system through a Db2 Connect server which has an
alternate server. The automatic client reroute is used between the IBM Data Server Client and two Db2
Connect servers.

2. Db2 Connect clients or server products accessing a Db2 for z/OS Parallel Sysplex® data sharing
environment. Automatic client reroute is used between Db2 Connect and the z/OS Parallel Sysplex
system. The automatic client reroute feature supports seamless failover between a Db2 Connect-
licensed client and the Parallel Sysplex. For more information about seamless failover, see the related
links.

In the case of the Db2 Connect server and its alternate, because there is no requirement for the
synchronization of local databases, you only need to ensure that both the original and alternate Db2
Connect servers have the target host or System i database cataloged in such a way that it is accessible
using an identical database alias.

In order for the Db2 database system to have the ability to recover from a loss of communications, an
alternative server location must be specified before the loss of communication occurs. The UPDATE
ALTERNATE SERVER FOR DATABASE command is used to define the alternate server location on a
particular database.

After you have specified the alternate server location on a particular database at the server instance, the
alternate server location information is returned to the IBM data server client as part of the connection
process. In the case of using automatic client reroute between Db2 Connect clients or server products
and a host or System i database server, the remote server must provide one or more alternate addresses
for itself. In the case of Db2 for z/OS, multiple addresses are known if the database is a Sysplex data
sharing environment. Therefore an alternate server does not need to be cataloged on Db2 Connect. If

30 IBM Db2 V11.5: Data Recovery and High Availability

communication between the client and the server is lost for any reason, the IBM Data Server Client will
attempt to reestablish the connection by using the alternate server information. The IBM data server
client will attempt to reconnect with a database server which could be the original server, and alternate
server listed in the database directory file at the server, or an alternate server that is in the server list
returned by the z/OS Parallel Sysplex system. The timing of these attempts to reestablish a connection
varies from very rapid attempts initially to a gradual lengthening of the intervals between the attempts.

After a connection is successful, SQL30108N is returned to indicate that a database connection has been
reestablished following the communication failure. The hostname or IP address and service name or port
number are returned. The IBM data server client only returns the error for the original communications
failure to the application if the reestablishment of the client communications is not possible to either the
original or alternative server.

In V10.1 Fix Pack 2 and later fix packs, when connecting to the Db2 for z/OS data sharing group with the
workload balance (WLB) feature enabled, non-seamless ACR feature behavior has changed:

• The CLI driver does not immediately look for a new transport upon a connection failure. The CLI driver
allocates a transport if the application resubmits the SET statement (special registers) or the SQL
statement. When the non-seamless ACR feature is enabled and the WLB feature is disabled, however,
the CLI driver immediately looks for a new transport and reconnects to the next available member.

• SQL30108N returns twice to the application if the CLI driver fails to reconnect to members of the
primary group and must switch to the alternate group. The error is returned twice when the alternate
group is specified in the db2dsdriver.cfg file with the alternategroup parameter and the
enableAlternateGroupSeamlessAcr is set to FALSE. The first SQL30108N error with reason code
2 is returned when the existing connection to a member in the current group fails. The second
SQL30108N error with reason code 4 is returned when all the connection attempts to all members in
the existing primary group fail. The application can then resubmit the SET statement or the SQL
statement again for the second time if reconnecting to the alternate group is warranted. The CLI driver
tracks the failed member on a same connection handle when the ACR connection error (SQL30108N) is
returned to avoid resubmitting the statement to the failed member.

Note: SQL30108N is not returned twice in the following scenarios:

– When the Db2 Connect server is used as a gateway.
– When the ACR feature is explicitly enabled without enabling the WLB feature.

When connecting to the Db2 for z/OS data sharing group, the seamless ACR feature and the WLB feature
should not be disabled unless directed by IBM support.

Note the following considerations involving alternate server connectivity in a Db2 Connect server
environment:

• When using a Db2 Connect server for providing access to a host or System i database on behalf of both
remote and local clients, confusion can arise regarding alternate server connectivity information in a
system database directory entry. To minimize this confusion, consider cataloging two entries in the
system database directory to represent the same host or System i database. Catalog one entry for
remote clients and catalog another for local clients.

• Any Parallel Sysplex information that is returned from a target Db2 for z/OS server is kept only in cache
at the Db2 Connect server. Only one alternate server is written to disk. When multiple alternates or
multiple active servers exist, the information is only maintained in memory and is lost when the process
terminates.

Workload balancing and automatic client reroute require the client to have entries for each member in the
cluster present in the /etc/hosts file. For example:

10.10.10.1 hostname01.linux hostname01
10.10.10.2 hostname02.linux hostname02

In general, if an alternate server is specified, automatic client reroute is enabled when a communication
error is detected. In a high availability disaster recovery (HADR) environment, it is also enabled if
SQL1776N is returned back from the HADR standby server.

Chapter 1. High availability 31

HADR and Db2 pureScale considerations

When you establish a connection to one member in a Db2 pureScale instance, the server list that is
returned contains information not only about all of the members of that instance, but also a hostname
and port for the Db2 pureScale instance on the alternate server. If a client cannot connect to one member
in the Db2 pureScale instance (or if HADR is configured, to a member on the primary database), it tries
another. If it cannot connect to any member, it tries the Db2 pureScale instance at the specified alternate
server address (in an HADR environment, the standby database). For better availability, you can use a
connection distributor or multi-home DNS entry as alternate server address, but ensure that the
distributor or multi-home DNS entry are configured to include multiple members of the alternate server.

Although it is possible to list only one member for each alternate server, clients cannot access the cluster
if the listed member is offline, so it is strongly recommended that you define multiple members from the
cluster using alternate group method. See the "Related links" for information on how to do this.

Other reroute options include:
Client affinity

List the primary and standby members so that the client tries both. Client affinity and ACR cannot be
used together. The alternate server specifies by ACR is ignored when client affinity is enabled.
Alternate groups cannot be defined when client affinity is enabled. See the "Client affinities for Db2"
topic for information.

Virtual IP
Define a virtual IP address that always points to the current primary server.

Automatic client reroute configuration for client connection distributor technology
Distributor or dispatcher technologies such as WebSphere Edge Server Load Balancer distribute client
application reconnection requests to a defined set of systems if a primary database server fails. If you are
using distributor technology with Db2 automatic client reroute, you must identify the distributor itself as
the alternate server to Db2 automatic client reroute.

You might be using distributor technology in an environment similar to the following:

Client -> distributor technology -> (Db2 Connect server 1 or Db2 Connect server 2) ->Db2 for z/OS

where:

• The distributor technology component has a TCP/IP host name of DThostname
• The Db2 Connect server 1 has a TCP/IP host name of GWYhostname1
• The Db2 Connect server 2 has a TCP/IP host name of GWYhostname2
• The Db2 for z/OS server has a TCP/IP host name of zOShostname

The client is cataloged using DThostname in order to utilize the distributor technology to access either of
the Db2 Connect servers. The intervening distributor technology makes the decision to use
GWYhostname1 or GWYhostname2. Once the decision is made, the client has a direct socket
connection to one of these two Db2 Connect gateways. Once the socket connectivity is established to the
chosen Db2 Connect server, you have a typical client to Db2 Connect server to Db2 for z/OS connectivity.

For example, assume the distributor chooses GWYhostname2. This produces the following environment:

Client -> Db2 Connect server 2 -> Db2 for z/OS

The distributor does not retry any of the connections if there is any communication failure. If you want to
enable the automatic client reroute feature for a database in such an environment, the alternative server
for the associated database or databases in the Db2 Connect server (Db2 Connect server 1 or Db2
Connect server 2) should be set up to be the distributor (DThostname). Then, if Db2 Connect server 1
locks up for any reason, automatic client rerouting is triggered and a client connection is retried with the
distributor as both the primary and the alternate server. This option allows you to combine and maintain
the distributor capabilities with the Db2 automatic client reroute feature. Setting the alternate server to a
host other than the distributor host name still provides the clients with the automatic client reroute
feature. However, the clients will establish direct connections to the defined alternate server and bypass
the distributor technology, which eliminates the distributor and the value that it brings.

32 IBM Db2 V11.5: Data Recovery and High Availability

The automatic client reroute feature intercepts the following SQL codes:

• SQL20157N
• SQL1768N (reason code: 7)

Note: Client reroute might not be informed of socket failures in a timely fashion if the setting of the "TCP
Keepalive" operating system configurations parameter is too high. (Note that the name of this
configuration parameter varies by platform.)

Identifying an alternate server for automatic client reroute
Whenever a Db2 server or Db2 Connect server crashes, each client that is connected to that server
receives a communications error which terminates the connection resulting in an application error. In
cases where availability is important, implement either a redundant set-up or the ability to fail the server
over to a standby node. In either case, the Db2 client code attempts to re-establish the connection to the
original server which might be running on a failover node (the IP address fails over as well), or to a new
server.

Procedure

• To define a new or alternate server, use the UPDATE ALTERNATE SERVER FOR DATABASE or
UPDATE ALTERNATE SERVER FOR LDAP DATABASE command.

These commands update the alternate server information for a database alias in the system database
directory.

Automatic client reroute limitations
Consider Db2 database client reroute restrictions when designing your high availability Db2 database
solution.

Here is a list of limitations of the Db2 database automatic client reroute feature:

• You cannot use the ACR feature if you enable reads on standby.
• ACR is only supported when the communications protocol used for connecting to the Db2 database

server, or to the Db2 Connect Server, is TCP/IP. This means that if the connection is using a different
protocol other than TCP/IP, the automatic client reroute feature will not be enabled. Even if the Db2
database is set up for a loopback, TCP/IP communications protocol must be used in order to
accommodate the automatic client reroute feature.

• When using automatic reroute between the Db2 Connect clients or server products and a host or
System i database server, if you are in the following situations you will have the associated implications:

– When using a Db2 Connect Server for providing access to a host or System i database on behalf of
both remote and local clients, confusion can arise regarding alternate server connectivity information
in a system database directory entry. To minimize this confusion, consider cataloging two entries in
the system database directory to represent the same host or System i database. Catalog one entry
for remote clients and catalog another for local clients.

– Any SYSPLEX information that is returned from a target Db2 for z/OS server is kept only in cache at
the Db2 Connect Server. Only one alternate server is written to disk. When multiple alternates or
multiple active servers exist, the information is only maintained in memory and is lost when the
process terminates.

• If the connection is reestablished to the alternate server location, any new connection to the same
database alias will be connected to the alternate server location. If you want any new connection to be
established, to the original location in case the problem on the original location is fixed, there are a
couple of options from which to choose:

– You need to take the alternate server offline and allow the connections to fail back over to the original
server. (This assumes that the original server has been cataloged using the UPDATE ALTERNATE
SERVER command such that it is set to be the alternate location for the alternate server.)

– You could catalog a new database alias to be used by the new connections.
– You could uncatalog the database entry and re-catalog it again.

Chapter 1. High availability 33

• Db2 supports the automatic client reroute feature for both the client and the server if both the client
and server support this feature. Other Db2 database product families do not currently support this
feature.

• The behavior of the automatic client reroute feature and the behavior of the automatic client rerouting
in a Db2 for z/OS sysplex environment are somewhat different. Specifically:

– The automatic client reroute feature requires the primary server to designate a single alternative
server. This is done using the UPDATE ALTERNATE SERVER FOR DATABASE or UPDATE
ALTERNATE SERVER FOR LDAP DATABASE command issued at the primary server. This command
updates the local database directory with the alternate server information so that other applications
at the same client have access this information. By contrast, a data-sharing sysplex used for Db2 for
z/OS maintains, in memory, a list of one or more servers to which the client can connect. If a
communication failure happens, the client uses that list of servers to determine the location of the
appropriate alternative server.

– In the case of the automatic client reroute feature, the server informs the client of the most current
special register settings whenever a special register setting is changed. This allows the client, to the
best of its ability, to reestablish the runtime environment after a reroute has occurred. By contrast, a
Sysplex used for Db2 for z/OS returns the special register settings to the client on commit boundaries
therefore any special registers changed within the unit of work that has been rerouted need to be
replayed. All others will be replayed automatically.

Full automatic client reroute support is available only between a Linux, UNIX, or Windows client and a
Linux, UNIX, or Windows server. It is not available between a Linux, UNIX, or Windows client and a Db2
for z/OS Sysplex server (any supported version); only the reroute capability is supported.

• The Db2 database server installed in the alternate host server must be the same version (but could have
a higher fix pack) when compared to the Db2 database instance installed on the original host server.

• Regardless of whether you have authority to update the database directory at the client machine, the
alternate server information is always kept in memory. In other words, if you did not have authority to
update the database directory (or because it is a read-only database directory), other applications will
not be able to determine and use the alternate server, because the memory is not shared among
applications.

• The same authentication is applied to all alternate locations. This means that the client will be unable to
reestablish the database connection if the alternate location has a different authentication type than
the original location.

• When there is a communication failure, all session resources such as global temporary tables, identity,
sequences, cursors, server options (SET SERVER OPTION) for federated processing and special
registers are all lost. The application is responsible to reestablish the session resources in order to
continue processing the work. You do not have to run any of the special register statements after the
connection is reestablished, because the Db2 database will replay the special register statements that
were issued before the communication error. However, some of the special registers will not be
replayed. They are:

– SET ENCRYPTPW
– SET EVENT MONITOR STATE
– SET SESSION AUTHORIZATION
– SET TRANSFORM GROUP

When you have a problem with Db2 Connect, you should refer to the list of restricted special registers
specific to the Db2 Connect product on a data server.

• If, after the connection is reestablished following a communication failure and the client is using CLI,
JCC Type 2 or Type 4 drivers, then those SQL and XQuery statements that have been prepared against
the original server are implicitly re-prepared with the new server. However, embedded SQL routines (for
example, SQC or SQX applications), are not re-prepared with the new server.

• Do not run high availability disaster recovery (HADR) commands (START HADR, STOP HADR, or
TAKEOVER HADR) on client reroute-enabled database aliases. HADR commands are implemented to
identify the target database using database aliases. Consequently, if the target database has an

34 IBM Db2 V11.5: Data Recovery and High Availability

alternative database defined, it is difficult for HADR commands to determine the database on which the
command is actually operating. A client might need to connect using a client reroute-enabled alias, but
HADR commands must be applied on a specific database. To accommodate this, you can define aliases
specific to the primary and standby databases and only run HADR commands on those aliases.

• Because each database server can only have one alternate server defined, if you have a HADR multiple
standby setup, you need to select one standby database (likely the principal standby) as the alternate
server of the primary.

An alternate way to implement automatic client rerouting is to use the DNS entry to specify an alternate
IP address for a DNS entry. The idea is to specify a second IP address (an alternate server location) in the
DNS entry; the client would not know about an alternate server, but at connect time Db2 database system
would alternate between the IP addresses for the DNS entry.

Automatic client reroute examples
Automatic client reroute (ACR) can reroute client applications away from a failed database server to a
secondary database server previously identified and configured for this purpose. You can easily create
client applications that test and demonstrate this Db2 server functionality.

Here is an automatic client reroute example for a client application (shown using pseudo-code only):

 int checkpoint = 0;

 check_sqlca(unsigned char *str, struct sqlca *sqlca)
 {
 if (sqlca->sqlcode == -30081)
 {
 // as communication is lost, terminate the application right away
 exit(1);
 }
 else

 // print out the error
 printf(...);

 if (sqlca->sqlcode == -30108)
 {
 // connection is re-established, re-execute the failed transaction
 if (checkpoint == 0)
 {
 goto checkpt0;
 }
 else if (checkpoint == 1)
 {
 goto checkpt1;
 }
 else if (checkpoint == 2)
 {
 goto checkpt2;
 }

 exit;
 }
 }
 }

 main()
 {
 connect to mydb;
 check_sqlca("connect failed", &sqlca);

 checkpt0:
 EXEC SQL set current schema XXX;
 check_sqlca("set current schema XXX failed", &sqlca);

 EXEC SQL create table t1...;
 check_sqlca("create table t1 failed", &sqlca);

 EXEC SQL commit;
 check_sqlca("commit failed", &sqlca);

 if (sqlca.sqlcode == 0)
 {
 checkpoint = 1;
 }

Chapter 1. High availability 35

 checkpt1:
 EXEC SQL set current schema YYY;
 check_sqlca("set current schema YYY failed", &sqlca);

 EXEC SQL create table t2...;
 check_sqlca("create table t2 failed", &sqlca);

 EXEC SQL commit;
 check_sqlca("commit failed", &sqlca);

 if (sqlca.sqlcode == 0)
 {
 checkpoint = 2;
 }
 ...
 }

At the client machine, the database called "mydb" is cataloged which references a node "hornet" where
"hornet" is also cataloged in the node directory (hostname "hornet" with port number 456).

Example involving a non-HADR database

At the server "hornet" (hostname equals hornet with a port number), a database "mydb" is created.
Furthermore, the database "mydb" is also created at the alternate server (hostname "montero" with port
number 456). The alternate server for database "mydb" at server "hornet" needs to be updated as
follows:

 db2 update alternate server for database mydb using hostname montero port 456

In the sample application above, and without having the automatic client reroute feature set up, if there is
a communication error in the create table t1 statement, the application is terminated. With the
automatic client reroute feature set up, the Db2 database manager tries to establish the connection to
host "hornet" (with port 456) again. If it is still not working, the Db2 database manager tries the alternate
server location (host "montero" with port 456). Assuming there is no communication error on the
connection to the alternate server location, the application can then continue to run subsequent
statements (and to re-run the failed transaction).

Example involving an HADR database

At the server "hornet" (hostname equals hornet with a port number), primary database "mydb" is created.
A standby database is also created at host "montero" with port 456. Information on how to set up HADR
for both a primary and standby database is found in “Initializing high availability disaster recovery
(HADR)” on page 141. The alternate server for database "mydb" needs to be updated as follows:

 db2 update alternate server for database mydb using hostname montero port 456

In the sample application provided, and without having the automatic client reroute feature set up, if
there is a communication error in the create table t1 statement, the application is terminated. With
the automatic client reroute feature set up, the Db2 database system tries to establish the connection to
host "hornet" (with port 456) again. If it is still not working, the Db2 database system tries the alternate
server location (host "montero" with port 456). Assuming there is no communication error on the
connection to the alternate server location, the application can then continue to run subsequent
statements (and to re-run the failed transaction).

In a Db2 pureScale environment configured with HADR, the behavior is similar. The first time a client
connects to the primary database, the server returns the addresses of all members on the primary, plus
the alternate server address which specifies the hostname and port of a standby member. If a client
cannot connect to one member on the primary, it tries another. If it cannot connect to any member on the
primary, it tries the standby at the specified alternate server address.

Example involving SSL

You can also use client reroute while you are using SSL for your connections too. The setup is the similar
to that shown for the previous example for an HADR database.

36 IBM Db2 V11.5: Data Recovery and High Availability

At the client machine, a database alias "mydb_ssl" for the database "mydb" is cataloged that references a
node, "hornet_ssl". "hornet_ssl" is cataloged in the node directory (hostname is "hornet", SSL port
number is 45678, and the security parameter is set to SSL).

A database alias is also cataloged at the alternate server (hostname is "montero", SSL port number is
45678, and the security parameter is set to SSL). You also need to update the alternate server for alias
"mydb_ssl" at server "hornet" as shown:

db2 update alternate server for database mydb_ssl using hostname montero port 45678

In the sample application provided, change the connect statement to connect to mydb_ssl. Without
having the automatic client reroute feature set up, if there is a communication error in the create
table t1 statement, the application is terminated. With the automatic client reroute feature set up, the
Db2 database manager tries to establish the connection to host "hornet" (with port 45678) using SSL
again. If it is still does not work, the Db2 database manager tries the alternate server location (host
"montero" at port 45678) using SSL. Assuming there is no communication error on the connection to the
alternate server location, the application can then continue to run subsequent statements (and to re-run
the failed transaction).

Db2 fault monitor facilities for Linux and UNIX
Available on UNIX based systems only, Db2 fault monitor facilities keep IBM Db2 server databases up
and running by monitoring Db2 database manager instances, and restarting any instance that exits
prematurely.

The fault monitor coordinator (FMC) is the process of the fault monitor facility that is started at the UNIX
boot sequence. Theinit daemon starts the FMC and will restart it if it terminates abnormally. The FMC
starts one fault monitor for each Db2 instance. Each fault monitor runs as a daemon process and has the
same user privileges as the Db2 instance.

Once a fault monitor is started, it will be monitored to make sure it does not exit prematurely. If a fault
monitor fails, it will be restarted by the FMC. Each fault monitor will, in turn, be responsible for monitoring
one Db2 instance. If the Db2 instance exits prematurely, the fault monitor will restart it. The fault monitor
will only become inactive if the db2stop command is issued. If a Db2 instance is shut down in any other
way, the fault monitor will start it up again.

Db2 fault monitor restrictions

If you are using a high availability clustering product such as IBM Tivoli System Automation for
Multiplatforms (SA MP) or IBM PowerHA SystemMirror for AIX, the fault monitor facility must be turned
off since the instance startup and shut down is controlled by the clustering product.

Differences between the Db2 fault monitor and the Db2 health monitor

The health monitor and the fault monitor are tools that work on a single database instance. The health
monitor uses health indicators to evaluate the health of specific aspects of database manager
performance or database performance. A health indicator measures the health of some aspect of a
specific class of database objects, such as a table space. Health indicators can be evaluated against
specific criteria to determine the health of that class of database object. In addition, health indicators can
generate alerts to notify you when an indicator exceeds a threshold or indicates a database object is in a
non-normal state.

By comparison, the fault monitor is solely responsible for keeping the instance it is monitoring up and
running. If the Db2 instance it is monitoring terminates unexpectedly, the fault monitor restarts the
instance. The fault monitor is not available on Windows.

Chapter 1. High availability 37

Db2 fault monitor registry file
A fault monitor registry file is created for every Db2 database manager instance on each physical machine
when the fault monitor daemon is started. The keywords and values in this file specify the behavior of the
fault monitors.

The fault monitor registry file can be found in the /sqllib/ directory and is called
fm.machine_name.reg. This file can be altered using the db2fm command.

If the fault monitor registry file does not exist, the default values will be used.

Here is an example of the contents of the fault monitor registry file:

 FM_ON = no
 FM_ACTIVE = yes
 START_TIMEOUT = 600
 STOP_TIMEOUT = 600
 STATUS_TIMEOUT = 20
 STATUS_INTERVAL = 20
 RESTART_RETRIES = 3
 ACTION_RETRIES = 3
 NOTIFY_ADDRESS = instance_name@machine_name

Fault monitor registry file keywords
FM_ON

Specifies whether or not the fault monitor should be started. If the value is set to NO, the fault monitor
daemon will not be started, or will be turned off if it had already been started. The default value is NO.

FM_ACTIVE

Specifies whether or not the fault monitor is active. The fault monitor will only take action if both
FM_ON and FM_ACTIVE are set to YES. If FM_ON is set to YES and FM_ACTIVE is set to NO, the fault
monitor daemon will be started, but it will not be active. That means that is will not try to bring Db2
back online if it shuts down. The default value is YES.

START_TIMEOUT

Specifies the amount of time within which the fault monitor must start the service it is monitoring. The
default value is 600 seconds.

STOP_TIMEOUT

Specifies the amount of time within which the fault monitor must bring down the service it is
monitoring. The default value is 600 seconds.

STATUS_TIMEOUT

Specifies the amount of time within which the fault monitor must get the status of the service it is
monitoring. The default value is 20 seconds.

STATUS_INTERVAL

Specifies the minimum time between two consecutive calls to obtain the status of the service that is
being monitored. The default value is 20 seconds.

RESTART_RETRIES

Specifies the number of times the fault monitor will try to obtain the status of the service being
monitored after a failed attempt. Once this number is reached the fault monitor will take action to
bring the service back online. The default value is 3.

ACTION_RETRIES

Specifies the number of times the fault monitor will attempt to bring the service back online. The
default value is 3.

38 IBM Db2 V11.5: Data Recovery and High Availability

NOTIFY_ADDRESS

Specifies the e-mail address to which the fault monitor will send notification messages. The default is
instance_name@machine_name).

Configuring Db2 fault monitor using the db2fm command
You can alter the Db2 fault monitor registry file using the db2fm command.

Here are some examples of using the db2fm command to update the fault monitor registry file:

Example 1: Update START_TIMEOUT

To update the START_TIMEOUT value to 100 seconds for instance DB2INST1, type the following
command from a Db2 database command window:

 db2fm -i db2inst1 -T 100

Example 2: Update STOP_TIMEOUT

To update the STOP_TIMEOUT value to 200 seconds for instance DB2INST1, type the following
command:

 db2fm -i db2inst1 -T /200

Example 3: Update START_TIMEOUT and STOP_TIMEOUT

To update the START_TIMEOUT value to 100 seconds and the STOP_TIMEOUT value to 200 seconds
for instance DB2INST1, type the following command:

 db2fm -i db2inst1 -T 100/200

Example 4: Turn on fault monitoring

To turn on fault monitoring for instance DB2INST1, type the following command:

 db2fm -i db2inst1 -f yes

Example 5: Turn off fault monitoring

To turn off fault monitoring for instance DB2INST1, type the following command:

 db2fm -i db2inst1 -f no

To confirm that fault monitor is no longer running for DB2INST1, type the following command on
UNIX systems:

 ps -ef|grep -i fm

On Linux, type the following command:

 ps auxw|grep -i fm

An entry that shows db2fmd and DB2INST1 indicates that the fault monitor is still running on that
instance. To turn off the fault monitor, type the following command as the instance owner:

 db2fm -i db2inst1 -D

Configuring the Db2 fault monitor using db2fmcu and system commands
You can configure the Db2 fault monitor using the Db2 fault monitor controller command db2fmcu or
system commands.

The following technote details how to configure Db2 fault monitoring for an instance from start to finish:
How to automatically restart DB2 instances via the DB2 fault monitor.

Chapter 1. High availability 39

https://www-01.ibm.com/support/docview.wss?uid=swg21209001

Additionally, Here are some examples of using db2fmcu and system commands to configure the fault
monitor:

Example 1: Prevent FMC from being launched

You can prevent the fault monitor controller (FMC) from being launched by using the Db2 fault
monitor controller command. The db2fmcu command must be run as root because it accesses the
system's inittab file. To block the FMC from being run, type the following command as root:

 db2fmcu -d

Note: If you apply a Db2 Data Server fix pack this will be reset so that the inittab will again be
configured to include the FMC. To prevent the FMC from being launched after you have applied a fix
pack, you must reissue the command shown in this example.

Example 2: Include FMC to be launched

To reverse the db2fmcu -d command and reconfigure the inittab to include the FMC, type the
following command:

 db2fmcu -u -p fullpath

where fullpath is the complete path to the db2fmcd object, for example /opt/IBM/db2/bin/
db2fmcd.

Example 3: Automatically start the Db2 database manager instance

You can also enable FMC to automatically start the instance when the system is first booted. To
enable this feature for instance DB2INST1, type the following command:

 db2iauto -on db2inst1

Example 4: Disable automatically starting the instance

To turn off the autostart behavior, type the following command:

 db2iauto -off db2inst1

Example 5: Prevent fault monitor processes from being launched

You can also prevent fault monitor processes from being launched for a specific instances on the
system by changing a field in the global registry record for the instance. To change the global registry
field to disable fault monitors for instance DB2INST1, type the following command as root:

 db2greg -updinstrec instancename=db2inst1!startatboot=0

To reverse this command and re-enable fault monitors for instance DB2INST1, type the following
command as root:

 db2greg -updinstrec instancename=db2inst1!startatboot=1

High availability disaster recovery (HADR)
High availability disaster recovery (HADR) provides a high availability solution for both partial and
complete site failures. HADR protects against data loss by replicating data changes from a source
database, called the primary database, to the target databases, called the standby databases. HADR
supports up to three remote standby servers.

A partial site failure can be caused by a hardware, network, or software (Db2 database system or
operating system) failure. Without HADR, a partial site failure requires restarting the database
management system (DBMS) server that contains the database. The length of time that it takes to restart
the database and the server where it is located is unpredictable. It can take several minutes before the
database is brought back to a consistent state and made available. With HADR, a standby database can

40 IBM Db2 V11.5: Data Recovery and High Availability

take over in seconds. Further, you can redirect the clients that used the original primary database to the
new primary database by using automatic client reroute or retry logic in the application.

A complete site failure can occur when a disaster, such as a fire, causes the entire site to be destroyed.
However, because HADR uses TCP/IP for communication between the primary and standby databases,
they can be situated in different locations. For example, the primary database might be located at your
head office in one city, and a standby database might be located at your sales office in another city. If a
disaster occurs at the primary site, data availability is maintained by having the remote standby database
take over as the primary database with full Db2 functionality. After a takeover operation occurs, you can
bring the original primary database back up and return it to its primary database status; this is known as
failback. You can initiate a failback if you can make the old primary database consistent with the new
primary database. After you reintegrate the old primary database into the HADR setup as a standby
database, you can switch the roles of the databases to enable the original primary database to once again
be the primary database.

Note: In Db2 Version 11.5 Mod Pack 4 and later, during the automation setup step, you can now use
Pacemaker as a cluster manager with HADR. For more information refer to “Integrated solution using
Pacemaker” on page 87.

With HADR, you base the level of protection from potential loss of data on your configuration and topology
choices. Some of the key choices that you must make are as follows:
What level of synchronization will you use?

Standby databases are synchronized with the primary database through log data that is generated on
the primary and shipped to the standbys. The standbys constantly roll forward through the logs. You
can choose from four different synchronization modes. In order of most to least protection, these are
SYNC, NEARSYNC, ASYNC, and SUPERASYNC.

Will you use a peer window?
The peer window feature specifies that the primary and standby databases are to behave as though
they are still in peer state for a configured amount of time if the primary loses the HADR connection in
peer state. If primary fails in peer or this "disconnected peer" state, the failover to standby occurs
with zero data loss. This feature provides the greatest protection.

How many standbys will you deploy?
With HADR, you can use up to three standby databases. With multiple standbys, you can achieve both
your high availability and disaster recovery objectives with a single technology. For more information,
see “HADR multiple standby databases ” on page 221.

Do you want to combine HADR with Db2 pureScale

The Db2 pureScale feature offers outstanding availability and scalability and can now be combined
with HADR to meet both your high availability and disaster recovery needs. For more information, see
“High availability disaster recovery (HADR) in Db2 pureScale environments” on page 251.

There are a number of ways that you can use your HADR standby or standbys beyond their HA or DR
purpose:
Reads on standby

You can use the reads on standby feature to direct read-only workload to one or more standby
databases without affecting the HA or DR responsibility of the standby. This feature can help reduce
the workload on the primary without affecting the main responsibility of the standby.

Unless you have reads on standby enabled, applications can access the current primary database
only. If you have reads on standby enabled, read-only applications can be redirected to the standby.
Applications connecting to the standby database do not affect the availability of the standby in the
case of a failover.

Delayed replay
You can use delayed replay to specify that a standby database is to remain at an earlier point in time
than the primary, in terms of log replay. If data is lost or corrupted on the primary, you can recovery
this data on the time delayed standby.

Chapter 1. High availability 41

Rolling updates and upgrades
Using an HADR setup, you can make various types of upgrades and Db2 fix pack updates to your
databases without an outage. If you are using multiple standby databases, you can perform an
upgrade while at the same time keeping the protection provided by HADR. For more information, see
“Performing rolling updates in a Db2 high availability disaster recovery (HADR) environment” on page
198.

Table 5 on page 42 contains an overview of what HADR functionality is supported by each type of HADR
setup.

Table 5. Supported HADR functionality for different deployments

Functionality or feature Principal standby Auxiliary standby

Principal standby in a
Db2 pureScale
environment

Synchronization mode All modes are supported SUPERASYNC mode
only

All modes are supported

Reads on standby Supported Supported Not supported

Delayed replay Supported Supported Supported

Log spooling Supported Supported Supported

Tivoli SA MP as cluster
manager for automated
failover to HADR
standby

Supported Not supported Not supported

Pacemaker as cluster
manager for automated
failover to HADR
standby

Supported Not supported Not supported

Peer window Supported Not supported Not supported

Network address
translation (NAT)

Supported Supported Not supported

Automatic client reroute
(ACR)

Supported Supported Supported

N/A N/A Supported

HADR might be your best option if most or all data in your database requires protection or if you perform
DDL operations that must be automatically replicated on a standby database. However, HADR is only one
of several replication solutions that are offered in the Db2 product family. The InfoSphere Federation
Server software and the Db2 database system include SQL replication and Q replication solutions that you
can also use, in some configurations, to provide high availability. These solutions maintain logically
consistent copies of database tables at multiple locations. In addition, they provide flexibility and
complex functionality such as support for column and row filtering, data transformation, and updates to
any copy of a table. You can also use these solutions in partitioned database environments.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for setting up HADR. Task
assistants can guide you through the process of setting options, reviewing the automatically generated
commands to perform the task, and running these commands. For more details, see Administering
databases with task assistants.

Related information
Best practices: High Availability Disaster Recovery

42 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://ibm.biz/Bdx2Ga

Db2 High Availability Feature
The Db2 High Availability Feature enables integration between IBM Db2 server and cluster managing
software.

When you stop a database manager instance in a clustered environment, you must make your cluster
manager aware that the instance is stopped. If the cluster manager is not aware that the instance is
stopped, the cluster manager might attempt an operation such as failover on the stopped instance. The
Db2 High Availability Feature provides infrastructure for enabling the database manager to communicate
with your cluster manager when instance configuration changes, such as stopping a database manager
instance, require cluster changes.

If the database manager communicates with the cluster manager whenever instance changes require
cluster changes, then you are freed from having to perform separate cluster operations after performing
instance configuration changes.

The Db2 High Availability Feature is composed of the following elements:

• IBM Tivoli System Automation for Multiplatforms (SA MP) is bundled with Db2 server on AIX and Linux
as part of the Db2 High Availability Feature, and integrated with the Db2 installer. You can install,
upgrade, or uninstall SA MP using either the Db2 installer or the installSAM and uninstallSAM
scripts that are included in the Db2 server install media.

• In a clustered environment, some database manager instance configuration and administration
operations require related cluster configuration changes. The Db2 High Availability Feature (HA) Feature
enables the database manager to automatically request cluster manager configuration changes
whenever you perform certain database manager instance configuration and administration operations.
See: “Configuring a cluster automatically with the Db2 High Availability (HA) Feature” on page 43

• Db2 high availability instance configuration utility (db2haicu) is a text-based utility that you can use to
configure and administer your highly available databases in a clustered environment. See: “Db2 high
availability instance configuration utility (db2haicu)” on page 52

Configuring a cluster automatically with the Db2 High Availability (HA) Feature
In a clustered environment, some database manager instance configuration and administration
operations require related cluster configuration changes. The Db2 High Availability Feature (HA) Feature
enables the database manager to automatically request cluster manager configuration changes whenever
you perform certain database manager instance configuration and administration operations.

Before you begin

To enable the database manager to perform required cluster configuration for database administration
tasks, you must configure the instance for high availability by using one of the following utilities:
db2haicu

This creates a cluster domain for the instance managed by IBM Tivoli System Automation for
Multiplatforms (SA MP) (TSA). For more information, see “Configuring a clustered environment using
Db2 High Availability Instance Configuration Utility (db2haicu)” on page 44.

db2cm
This creates a cluster domain for the instance managed by Pacemaker. For more information, see
“Configuring a clustered environment using the Db2 cluster manager (db2cm) utility” on page 97.

Procedure

When you perform the following database manager instance configuration and administration operations,
the database manager automatically performs related cluster manager configuration for you:
• Starting a database using START DATABASE or db2start.
• Stopping a database using STOP DATABASE or db2stop.
• Creating a database using CREATE DATABASE.
• Adding storage using CREATE TABLESPACE.
• Removing storage using ALTER TABLESPACE DROP or DROP TABLESPACE.

Chapter 1. High availability 43

• Adding or removing storage paths using ALTER DATABASE.
• Dropping a database using DROP TABLESPACE.
• Restoring a database using the RESTORE DATABASE or db2Restore.
• Specifying the table space containers for redirected restore using SET TABLESPACE CONTAINERS.
• Rolling a database forward using ROLLFORWARD DATABASE or db2Rollforward.
• Recovering a database using RECOVER DATABASE or db2Recover.
• Creating event monitors using CREATE EVENT MONITOR.
• Dropping event monitors using DROP EVENT MONITOR.
• Creating and altering external routines using:

– CREATE PROCEDURE
– CREATE FUNCTION
– CREATE FUNCTION
– CREATE METHOD
– ALTER PROCEDURE
– ALTER FUNCTION
– ALTER METHOD

• Dropping external routines using:

– DROP PROCEDURE
– DROP FUNCTION
– DROP METHOD

• Start Db2 High Availability Disaster Recovery (HADR) operations for a database using START HADR.
• Stop HADR operations for a database using STOP HADR.
• Cause an HADR standby database to take over as an HADR primary database using TAKEOVER HADR.
• Setting the database manager configuration parameter diagpath or spm_log_path.
• Setting the database configuration parameter newlogpath, overflowlogpath, mirrorlogpath, or

failarchpath.
• Dropping a database manager instance using db2idrop.

Results

When the database manager coordinates the cluster configuration changes for database administration
tasks listed, you do not have to perform separate cluster manager operations.

Integrated solution using IBM Tivoli System Automation for Multiplatforms (SA MP)
IBM Tivoli System Automation for Multiplatforms (SA MP) provides high availability and disaster recovery
capabilities for AIX and Linux.

SA MP is integrated with Db2 Advanced Edition and Db2 Standard Edition on AIX and Linux.

You can use this copy of SA MP to manage the high availability of your Db2 database system. You cannot
use this copy to manage database systems other than Db2 database systems without buying an upgrade
for the SA MP license.

SA MP is the default cluster manager in an IBM Db2 server clustered environment on AIX and Linux.

Configuring a clustered environment using Db2 High Availability Instance Configuration Utility
(db2haicu)
You can configure and administer your databases in a clustered environment using Db2 high availability
instance configuration utility (db2haicu). When you specify database manager instance configuration

44 IBM Db2 V11.5: Data Recovery and High Availability

details to db2haicu, db2haicu communicates the required cluster configuration details to your cluster
managing software.

Before you begin

• There is a set of tasks you must perform before using Db2 high availability instance configuration utility
(db2haicu). For more information, see: “Db2 High Availability Instance Configuration Utility (db2haicu)
prerequisites” on page 82.

About this task

You can run db2haicu interactively, or using an XML input file:
Interactive mode

When you invoke Db2 high availability instance configuration utility (db2haicu) by running the
db2haicu command without specifying an XML input file with the -f parameter, the utility runs in
interactive mode. In interactive mode, db2haicu displays information and queries you for
information in a text-based format. For more information, see: “Running Db2 High Availability
Instance Configuration Utility (db2haicu) in interactive mode” on page 54

Batch mode with an XML input file
You can use the -f input-file-name parameter with the db2haicu command to run Db2 high
availability instance configuration utility (db2haicu) with an XML input file specifying your
configuration details. Running db2haicu with an XML input file is useful when you must perform
configuration tasks multiple times, such as when you have multiple database partitions to be
configured for high availability. For more information, see: “Running Db2 High Availability Instance
Configuration Utility (db2haicu) with an XML input file” on page 55

For a detailed scenario that uses db2haicu with both methods to set up an HADR pair, see the
Automating HADR on Db2 10.1 for Linux, UNIX and Windows Failover Solution Using Tivoli System
Automation for Multiplatforms white paper, which is also applicable to higher versions of Db2.

Db2 instances that are configured in Version 9.1 for high availability by using the regdb2salin script are
not supported on Versions 9.5 and later. Use the db2haicu utility to configure these instances for high
availability.

Restrictions

There are some restrictions for using the Db2 high availability instance configuration utility (db2haicu).
For more information, see: “Db2 high availability instance configuration utility (db2haicu) restrictions” on
page 85.

Procedure

Perform the following steps for each database manager instance:
1. Create a new cluster domain.

When you run Db2 high availability instance configuration utility (db2haicu) for the first time for a
database manager instance, db2haicu creates a model of your cluster, called a cluster domain. For
more information, see: “Creating a cluster domain using Db2 High Availability Instance Configuration
Utility (db2haicu)” on page 83.

2. Continue to refine the cluster domain configuration, and administer and maintain the cluster domain

When you are modifying the cluster domain model of your clustered environment using db2haicu, the
database manager propagates the related changes to your database manager instance and cluster
configuration. For more information, see: “Maintaining a cluster domain using Db2 High Availability
Instance Configuration Utility (db2haicu)” on page 84.

What to do next

Db2 high availability instance configuration utility (db2haicu) does not have a separate diagnostic log.
You can investigate and diagnose db2haicu errors using the database manager diagnostic log, db2diag

Chapter 1. High availability 45

http://public.dhe.ibm.com/software/dw/im/dm-0907hadrdb2haicu/db2-10-hadr-tsa.pdf
http://public.dhe.ibm.com/software/dw/im/dm-0907hadrdb2haicu/db2-10-hadr-tsa.pdf

log file, and the db2pd tool. For more information, see: “Troubleshooting Db2 High Availability Instance
Configuration Utility (db2haicu)” on page 85

In addition, the cluster manager that is used by the db2haicu utility is IBM Tivoli System Automation for
Multiplatforms (SA MP). When troubleshooting cluster manager related issues, it is often necessary to
collect trace diagnostic information for SA MP. For this reason, it is highly recommended that you
configure trace spooling for SA MP. For more information about configuring trace spooling for SA MP, see
http://www-01.ibm.com/support/docview.wss?uid=swg21375626. The IBM Tivoli System Automation for
Multiplatforms (SA MP) data collection guide also has an appendix that describes trace spooling with
different stanzas for the various subcomponents that make up the Reliable Scalable Cluster Technology
(RSCT) and SA MP.

Cluster domain
A cluster domain is a model that contains information about your cluster elements such databases,
mount points, and failover policies. You create a cluster domain using Db2 high availability instance
configuration utility (db2haicu). db2haicu uses the information in the cluster domain to enable
configuration and maintenance cluster administration tasks. Also, as part of the Db2 High Availability (HA)
Feature, the database manager uses the information in the cluster domain to perform automated cluster
administration tasks.

If you add a cluster element to the cluster domain, then that element will be included in any subsequent
db2haicu configuration operations, or any automated cluster administration operations that are
performed by the database manager as part of the Db2 HA Feature. If you remove a cluster element from
the cluster domain, then that element will no longer be included in db2haicu operations or database
manager automated cluster administration operations. db2haicu and the database manager can only
coordinate with your cluster manager for cluster elements that are in the cluster domain that you create
using db2haicu.

You can use db2haicu to create and configure the following cluster domain elements:

• Computers or machines (in a cluster domain context, these are referred to as cluster domain nodes)
• Network interface cards or NICs (referred to in db2haicu as network interfaces, interfaces, network

adaptors, or adaptors)
• IP addresses
• Databases, including High Availability Disaster Recovery (HADR) primary and standby database pairs
• Database partitions
• Mount points and paths, including those paths that are not critical to failover in the event of a failure
• Failover policies
• Quorum devices

Cluster management software
Cluster management software maximizes the work that a cluster of computers can perform. A cluster
manager balances workload to reduce bottlenecks, monitors the health of the elements of the cluster,
and manages failover when an element fails. A cluster manager can also help a system administrator to
perform administration tasks on elements in the cluster (by rerouting workload off of a computer that
needs to be serviced, for example.)

Elements of a cluster

To function properly, the cluster manager must be aware of many details related to the elements of the
cluster, and the cluster manager must be aware of the relationships between the elements of the cluster.

Here are some examples of cluster elements of which the cluster manager must be aware:

• Physical or virtual computers, machines, or devices in the cluster (in a cluster context, these are
referred to as cluster nodes)

• Networks that connect the cluster nodes
• Network interfaces cards that connect the cluster nodes to the networks

46 IBM Db2 V11.5: Data Recovery and High Availability

http://www-01.ibm.com/support/docview.wss?uid=swg21375626

• IP addresses of cluster nodes
• Virtual or services IP addresses

Here are some examples of relationships of which the cluster manager must be aware:

• Pairs of cluster nodes that have the same software installed and can failover for one another
• Networks that have the same properties and can be used to failover for one another
• The cluster node to which a virtual IP address is currently associated

Adding or modifying elements of your cluster

To make the cluster manager aware of the elements of your cluster and the relationships between those
elements, a system administrator must register the elements with the cluster manager. If a system
administrator makes a change to the elements of the cluster, the administrator must communicate that
change to the cluster manager. Cluster managers have interfaces to help with these tasks.

Cluster administration is challenging because there is an enormous variety of possible cluster elements.
An administrator must be an expert in the hardware and operating systems of the cluster nodes,
networking protocols and configuration, and the software installed on the cluster nodes such as database
software. Registering the elements of the cluster with the cluster management software, or updating the
cluster manager after a system change, can be complex and time consuming.

Using db2haicu to add or modify elements of your cluster

In a Db2 database solution, you can use the Db2 high availability instance configuration utility
(db2haicu) to register the elements of your cluster with the cluster manager, and to update the cluster
manager after making an administrative change to your cluster. Using db2haicu simplifies these tasks
because once you know the model that db2haicu uses to encapsulate the elements of your cluster and
the relationships between those elements, you do not need to be an expert in the idiosyncrasies of your
hardware, operating systems, and cluster manager interface to perform the tasks.

Resources and resource groups
A resource is any cluster element such a cluster node, database, mount point, or network interface card
that has been registered with a cluster manager. If an element is not registered with the cluster manager,
then the cluster manager will not be aware of that element and the cluster manager will not include that
element in cluster managing operations. A resource group is a logical collection of resources. The
resource group is a very powerful construct because relationships and constraints can be defined on
resource groups that simplify performing complex administration tasks on the resources in those groups.

When a cluster manager collects resources into groups, the cluster manager can operate on all those
resources collectively. For example, if two databases called database-1 and database-2 belong to the
resource group called resource-group-A, then if the cluster manager performs a start operation on
resource-group-A then both database-1 and database-2 would be started by that one cluster
manager operation.

Restrictions

• A resource group cannot contain an equivalency and an equivalency cannot contain a resource group
(An equivalency is a set of resources that provide the same functionality as each other and can fail over
for each other.)

• A resource can only be in one resource group
• A resource cannot be in a resource group and in an equivalency
• A resource group can contain other resource groups, but the maximum nesting level is 50
• The maximum number or resources that you can collect in a resource group is 100

Quorum devices
A quorum device helps a cluster manager make cluster management decisions when the cluster
manager's normal decision process does not produce a clear choice. When a cluster manager has to

Chapter 1. High availability 47

choose between multiple potential actions, the cluster manager counts how many cluster domain nodes
support each of the potential actions; and then cluster manager chooses the action that is supported by
the majority of cluster domain nodes. If exactly the same number of cluster domain nodes supports more
than one choice, then the cluster manager refers to a quorum device to make the choice.

db2haicu supports the quorum devices listed in the following table.

Table 6. Types of quorum device supported by db2haicu

Quorum device Description

network A network quorum device is an IP address to which
every cluster domain node can connect at all times.

majority Cluster must have an odd number of hosts. In the
event of an outage, quorum is preserved as long as a
majority of nodes in the cluster survives.

disk A disk that is shared by all nodes in the peer domain.
In case of an outage, any node that cannot acquire this
lock is assumed to be out of quorum.

Table 7. The following table lists the advantages and disadvantages of each quorum type supported by
db2haicu

Quorum Type Pros Cons

Network IP Tiebreaker • Simple setup, easy to find a
network IP accessible by all
nodes in the cluster.

• Dependency on all network
components (switch, cable,
adapters). A failure in these
components or a prolonged
network blip can lead to total
cluster down.

• It is also possible for both sides
to make the tiebreaker
reservation if the cluster nodes
lose communication with each
other, which leads to a cluster
split-brain situation.

Disk Tiebreaker • Generally seen as more reliable
than Network IP Tiebreaker.

• No dependency on IP network.

• Requires a tie-breaking capable
shared disk device to be
accessible by all hosts.

Majority Node Set • The most desirable/reliable
quorum device.

• No disk or network
dependency.

• Requires an extra node in the
cluster.

• Works best if all nodes are all
located on either the same site,
or all different sites.

Networks in a cluster domain
To configure elements of your cluster domain that are related to networks, you can use Db2 high
availability instance configuration utility (db2haicu) to add a physical network to your cluster domain. A
physical network is composed of: network interface cards, IP addresses, and subnetwork masks.

Network interface cards

A network interface card (NIC) is hardware that connects a computer (also called a cluster node) to a
network. A NIC is sometimes referred to as an interface, a network adaptor, or an adaptor. When you use

48 IBM Db2 V11.5: Data Recovery and High Availability

db2haicu to add a physical network to your cluster domain, you specify at least one NIC including: the
host name of the computer to which the NIC belongs; the name of the NIC on that host computer; and the
IP address of the NIC.

IP addresses

An Internet Protocol address (IP address) is a unique address on a network. In IP version 4, an IP address
is 32 bits large, and is normally expressed in dot-decimal notation like this: 129.30.180.16. An IP
address is composed of a network portion and a host computer portion.

Subnetwork masks

A network can be partitioned into multiple logical subnetworks using subnetwork masks. A subnetwork
mask is a mechanism for moving some bits of the host portion of an IP address to the network portion of
the IP address. When you use db2haicu to add an IP address to your cluster domain, you will sometimes
need to specify the subnetwork mask for the IP address. For example, when you use db2haicu to add a
NIC, you must specify the subnetwork mask for the IP address of the NIC.

Network equivalencies

An equivalency is a set of resources that provide the same functionality as each other and can fail over for
each other. When you create a network using db2haicu, the NICs in that network can fail over for each
other. Such a network is also referred to an a network equivalency.

Network protocols

When you use db2haicu to add a network to your cluster domain, you must specify the type of network
protocol being used. Currently, only the TCP/IP network protocol is supported.

Usage note

Configuring a network resource via db2haicu is only required if configuring a virtual IP (VIP) address or if
there are Db2 resources whose availability is dependent on the availability of the network in question.
Network adapters that are in different subnets (or equivalently, in different virtual local area networks)
cannot be added to the same network. A VIP address cannot failover between different subnets or virtual
local area networks.

Failover policies in a cluster domain
A failover policy specifies how a cluster manager should respond when a cluster element such as a
network interface card or a database server fails. In general, a cluster manager will transfer workload
away from a failed element to an alternative element that had been previously identified to the cluster
manager as an appropriate replacement for the element that failed. This transfer of workload from a
failed element to a secondary element is called failover.

Round robin failover policy
When you are using a round robin failover policy, if a failure occurs with one computer in the cluster
domain (also called cluster domain nodes or nodes); the database manager restarts the work from the
failed cluster domain node on any other node that is in the cluster domain. The round robin failover policy
is available for both single and multiple database partition configurations.

Mutual failover policy
To configure a mutual failover policy, you associate a pair of computers in the cluster domain (also called
cluster domain nodes or simply nodes) as a system pair. If there is a failure on one of the nodes in this
pair, then the database partitions on the failed node will failover to the other node in the pair. Mutual
failover is only available when you have multiple database partitions.

Chapter 1. High availability 49

N Plus M failover policy
When you are using a N Plus M failover policy, then if there is a failure associated with one computer in the
cluster domain (also called cluster domain nodes or simply nodes) then the database partitions on the
failed node will failover to any other node that is in the cluster domain.If roving HA failover is enabled, the
last failed node become the standby node once that failed node is brought online again. The roving HA
failover for N plus M failover policy is only supported for the case where M=1. N Plus M failover is only
available when you have multiple database partitions.

Local restart failover policy
When you use the local restart failover policy and a failure on one of the computers in the cluster domain
(also called cluster domain nodes ornodes) occurs, the database manager restarts the database in place
(or locally) on the same node that failed. The local restart failover policy is available for both single and
multiple database partition configurations.

HADR failover policy
When you configure a HADR failover policy, you are enabling the Db2 High Availability Disaster Recovery
(HADR) feature to manage failover. If an HADR primary database fails, the database manager will move
the workload from the failed database to an HADR standby database.

Custom failover policy
When you configure a custom failover policy, you create a list of computers in the cluster domain (also
called cluster domain nodes or nodes) onto which the database manager can failover. If a node in the
cluster domain fails, the database manager moves the workload from the failed node to one of the nodes
in the list that you specified. The custom failover policy is available for both single and multiple database
partition configurations.

Using roving high availability (HA) failover in partitioned database environments
When you are using a N Plus M failover policy with 'N' active nodes and one standby node, you can enable
roving HA failover.

Before you begin

Each node in the cluster must have the roving HA failover support enabled or disabled.

In partitioned database environments where roving HA failover is not enabled, the designated standby
node is usually the only node with access to all the disks and volume groups, including the file systems on
these volume groups. In those environments, ensure that the external storage LUN mappings and the
SAN zones in the cluster can see all the disks in the database instance. In addition, verify that all the
volume groups controlled by the cluster are imported on all the cluster nodes. After importing the volume
groups, disable the auto-varyon attribute of volume groups and the auto-mount attribute of the file
systems on all the active cluster nodes.

If you want to use roving HA failover, you must enable it again using these steps after applying a new fix
pack.

About this task

When you are using a N Plus M failover policy with 'N' active nodes and exactly one standby node, a
failover operation occurs when one of the active nodes fail. As part of failover, the standby node begins
hosting the resources of the failed node. When the failed node comes back online, you would usually have
to take a momentary outage in order to move the resources back over to their original active node.
Instead of this, you can configure roving HA failover to have the last failed node in the cluster become the
standby node for all other partitions in the cluster without requiring any additional fail back operations.

Note: This is only applicable in an environment where all Db2 partitions are defined to run on exactly two
hosts and the passive host is the same for every Db2 partition in the cluster.

For example, 4 host environments with 3 active database partitions running on hosts A, B and C:

50 IBM Db2 V11.5: Data Recovery and High Availability

Online IBM.ResourceGroup:db2_db2inst1_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_0-rs
 |- Online IBM.Application:db2_db2inst1_0-rs:hostA
 '- Offline IBM.Application:db2_db2inst1_0-rs:hostD
Online IBM.ResourceGroup:db2_db2inst1_1-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_1-rs
 |- Online IBM.Application:db2_db2inst1_1-rs:hostB
 '- Offline IBM.Application:db2_db2inst1_1-rs:hostD
Online IBM.ResourceGroup:db2_db2inst1_1-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_2-rs
 |- Online IBM.Application:db2_db2inst1_2-rs:hostC
 '- Offline IBM.Application:db2_db2inst1_2-rs:hostD

In the aftermath of a failure to hostB, the resource model would then look as follows (without the roving
HA failover feature):

Online IBM.ResourceGroup:db2_db2inst1_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_0-rs
 |- Online IBM.Application:db2_db2inst1_0-rs:hostA
 '- Offline IBM.Application:db2_db2inst1_0-rs:hostD
Online IBM.ResourceGroup:db2_db2inst1_1-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_1-rs
 |- Offline IBM.Application:db2_db2inst1_1-rs:hostB
 '- Online IBM.Application:db2_db2inst1_1-rs:hostD
Online IBM.ResourceGroup:db2_db2inst1_1-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_2-rs
 |- Online IBM.Application:db2_db2inst1_2-rs:hostC
 '- Offline IBM.Application:db2_db2inst1_2-rs:hostD

With the roving HA failover feature enabled, the resource model would instead look as follows after a
failure to hostB:

Online IBM.ResourceGroup:db2_db2inst1_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_0-rs
 |- Online IBM.Application:db2_db2inst1_0-rs:hostA
 '- Offline IBM.Application:db2_db2inst1_0-rs:hostB
Online IBM.ResourceGroup:db2_db2inst1_1-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_1-rs
 |- Offline IBM.Application:db2_db2inst1_1-rs:hostB
 '- Online IBM.Application:db2_db2inst1_1-rs:hostD
Online IBM.ResourceGroup:db2_db2inst1_1-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_2-rs
 |- Online IBM.Application:db2_db2inst1_2-rs:hostC
 '- Offline IBM.Application:db2_db2inst1_2-rs:hostB

In the above resource model, we see that after the failure to hostB, hostB is now the standby host
location for all active partitions on hosts A, C and D.

Procedure

To enable the roving HA failover feature, perform the following steps on each host in the cluster:
1. Ensure that there is no failover operation in progress.
2. Make a backup copy of the db2V115_start.ksh script located in the /usr/sbin/rsct/
sapolicies/db2/ directory.

3. Edit the db2V115_start.ksh script. Find the following line:

ROVING_STANDBY_ENABLED=false

and make the following change to set the ROVING_STANDBY_ENABLED variable to true:

ROVING_STANDBY_ENABLED=true

4. Save your changes.

Results
The change will take effect at the next failover operation.

Chapter 1. High availability 51

What to do next

If you want to disable the roving HA failover feature, perform the following steps on each host in the
cluster:

1. Ensure that there is no failover operation in progress.
2. Make a backup copy of the db2V115_start.ksh script located in the /usr/sbin/rsct/
sapolicies/db2/ directory.

3. Edit the db2V115_start.ksh script. Find the following line:

ROVING_STANDBY_ENABLED=true

and make the following change to set the ROVING_STANDBY_ENABLED variable to false:

ROVING_STANDBY_ENABLED=false

4. Save your changes.

Mount points in a cluster domain
After mounting a file system, you can use Db2 high availability instance configuration utility (db2haicu)
to add that mount point to your cluster domain.

Mount points

On UNIX, Linux, and AIX operating systems, to mount a file system means to make that file system
available to the operating system. During the mount operation, the operating system performs tasks such
as reading index or navigation data structures, and associates a directory path with that mounted file
system. That associated directory path that you can use to access the mounted file system is called a
mount point.

Non-critical mount points or paths

There might be mount points or paths in your cluster that do not need to be failed over in the event of a
failure. You can use db2haicu to add a list of those non-critical mount points or paths to your cluster
domain. Your cluster manager will not include the mount points or paths in that non-critical list in failover
operations.

For example, consider the case where you have a hard drive mounted at /mnt/driveA on a computer
called node1 in your cluster. If you decide that it is critical for /mnt/driveA to be available, your cluster
manager will fail over to keep /mnt/driveA available if node1 fails. However, if you decide that it is
acceptable for /mnt/driveA to be unavailable if node1 fails, then you can indicate to your cluster
manager that /mnt/driveA is not critical for failover by adding /mnt/driveA to the list of non-critical
paths. If /mnt/driveA is identified as non-critical for failover, then that drive might be unavailable if
node1 fails.

Db2 high availability instance configuration utility (db2haicu)
Db2 high availability instance configuration utility (db2haicu) is a text-based utility that you can use to
configure and administer your highly available databases in a clustered environment. db2haicu collects
information about your database instance, your cluster environment, and your cluster manager by
querying your system. You supply more information through parameters to the db2haicu call, an input
file, or at run time by providing information at db2haicu prompts.

Syntax

db2haicu [-f XML-input-file-name]
 [-o XML-output-file-name]
 [-disable]
 [-delete [dbpartitionnum db-partition-list |
 hadrdb database-name]]

52 IBM Db2 V11.5: Data Recovery and High Availability

Parameters

The parameters that you pass to the db2haicu command are case-sensitive, and must be in lower case.

-f XML-input-file-name
You can use the -f parameter to specify your cluster domain details in an XML input file, XML-input-
file-name. For more information, see: “Running Db2 High Availability Instance Configuration Utility
(db2haicu) with an XML input file” on page 55.

-o XML-output-file-name
You can use the -o option to export the current TSAMP configuration to an XML output file. This is
supported in all db2haicu deployed HA environments. In a HADR environment, the export can be
performed on the primary and standby hosts. If the export is run on a single host (either primary or
standby) and the same XML file is used to import the configuration later via the -f option, the
localHost and remoteHost parameters of HADRDB element will need to be modified depending on
the host where the import is being performed. In a DPF/Single partition (non-DPF) environment, the
user can export and/or import the XML configuration file from any host in the cluster. This option can
be run with the instance offline or online.

-disable
A database manager instance is considered configured for high availability after you use db2haicu to
create a cluster domain for that instance. When a database manager instance is configured for high
availability, then whenever you perform certain database manager administrative operations that
require related cluster configuration changes, the database manager communicates those cluster
configuration changes to the cluster manager. When the database manager coordinates these cluster
management tasks with the cluster manager for you, you do not have to perform a separate cluster
manager operation for those administrative tasks. This integration between the database manager
and the cluster manager is a function of the Db2 High Availability Feature.

You can use the -disable parameter to cause a database manager instance to cease to be
configured for high availability. If the database manager instance is no longer configured for high
availability, then the database manager does not coordinate with the cluster manager if you perform
any database manager administrative operations that require related cluster configuration changes.

To reconfigure a database manager instance for high availability, you can run db2haicu again.

In an automated HADR environment, by running the db2haicu -disable command the database
manager instance ceases to be configured for high availability on both the HADR primary and standby
hosts. Subsequently by running db2haicu, high availability is re-enabled on both the HADR primary
and standby hosts.

-delete
You can use the -delete parameter to delete resource groups for the current database manager
instance.

If you do not use either the dbpartitionnum parameter or the hadrdb parameter, then db2haicu
removes all the resource groups that are associated with the current database manager instance.

dbpartitionnum db-partition-list
You can use the dbpartitionnum parameter to delete resource groups that are associated with
the database partitions listed in db-partition-list. db-partition-list is a comma-separated list of
numbers that identify the database partitions.

hadrdb database-name
You can use the hadrdb parameter to delete resource groups that are associated with the high
availability disaster recovery (HADR) database named database-name.

If there are no resource groups that are left in the cluster domain after db2haicu removes the
resource groups, then db2haicu will also remove the cluster domain.

Running db2haicu with the -delete parameter causes the current database manager instance to
cease to be configured for high availability. If the database manager instance is no longer configured
for high availability, then the database manager does not coordinate with the cluster manager if you
perform any database manager administrative operations that require related cluster configuration
changes.

Chapter 1. High availability 53

To reconfigure a database manager instance for high availability, you can run db2haicu again.

Db2 High Availability Instance Configuration Utility (db2haicu) startup mode
The first time that you run Db2 high availability instance configuration utility (db2haicu) for a given
database manager instance, db2haicu operates in startup mode.

When you run db2haicu, db2haicu examines your database manager instance and your system
configuration, and searches for an existing cluster domain. A cluster domain is a model that contains
information about your cluster elements such databases, mount points, and failover policies. You create a
cluster domain using Db2 high availability instance configuration utility (db2haicu).

When you run db2haicu for a given database manager instance, and there is no cluster domain that is
already created and configured for that instance, db2haicu will immediately begin the process of
creating and configuring a new cluster domain. db2haicu creates a new cluster domain by prompting
you for information such as a name for the new cluster domain and the hostname of the current machine.

If you create a cluster domain, but do not complete the task of configuring the cluster domain, then the
next time you run db2haicu, db2haicu will resume the task of configuring the cluster domain.

After you create and configure a cluster domain for a database manager instance, db2haicu will run in
maintenance mode.

Db2 High Availability Instance Configuration Utility (db2haicu) maintenance mode
When you run Db2 high availability instance configuration utility (db2haicu) and there is already a cluster
domain created for the current database manager instance, db2haicu operates in maintenance mode.

When db2haicu is running in maintenance mode, db2haicu presents you with a list of configuration and
administration tasks that you can perform.

db2haicu maintenance tasks include adding cluster elements such as databases or cluster nodes to the
cluster domain, and removing elements from the cluster domain. db2haicu maintenance tasks also
include modifying the details of cluster domain elements such as the failover policy for the database
manager instance.

When you run db2haicu in maintenance mode, db2haicu presents you with a list of operations you can
perform on the cluster domain:

• Add or remove cluster nodes (machine identified by hostname)
• Add or remove a network interface (network interface card)
• Add or remove database partitions (partitioned database environment only)
• Add or remove a Db2 High Availability Disaster Recovery (HADR) database
• Add or remove a highly available database
• Add or remove a mount point
• Add or remove an IP address
• Add or remove a non-critical path
• Move database partitions and HADR databases for scheduled maintenance
• Change failover policy for the current instance
• Create a new quorum device for the cluster domain
• Destroy the cluster domain

Running Db2 High Availability Instance Configuration Utility (db2haicu) in interactive mode
When you invoke Db2 high availability instance configuration utility (db2haicu) by running the db2haicu
command without specifying an XML input file with the -f parameter, the utility runs in interactive mode.

54 IBM Db2 V11.5: Data Recovery and High Availability

In interactive mode, db2haicu displays information and queries you for information in a text-based
format.

Before you begin

• There is a set of tasks you must perform before using Db2 high availability instance configuration utility
(db2haicu). For more information, see: “Db2 High Availability Instance Configuration Utility (db2haicu)
prerequisites” on page 82.

About this task

When you run db2haicu in interactive mode, you see information and questions presented to you in text
format on your screen. You can enter the information requested by db2haicu at the on-screen prompt.

Procedure

• To run db2haicu in interactive mode, call the db2haicu command without the -f input-file-
name.

What to do next

Db2 high availability instance configuration utility (db2haicu) does not have a separate diagnostic log.
You can investigate and diagnose db2haicu errors using the database manager diagnostic log, db2diag
log file, and the db2pd tool. For more information, see: “Troubleshooting Db2 High Availability Instance
Configuration Utility (db2haicu)” on page 85

Running Db2 High Availability Instance Configuration Utility (db2haicu) with an XML input file
You can use the -f input-file-name parameter with the db2haicu command to run Db2 high
availability instance configuration utility (db2haicu) with an XML input file specifying your configuration
details. Running db2haicu with an XML input file is useful when you must perform configuration tasks
multiple times, such as when you have multiple database partitions to be configured for high availability.

Before you begin

• There is a set of tasks you must perform before using Db2 high availability instance configuration utility
(db2haicu). For more information, see: “Db2 High Availability Instance Configuration Utility (db2haicu)
prerequisites” on page 82.

About this task

There is a set of sample XML input files located in the samples subdirectory of the sqllib directory that
you can modify and use with db2haicu to configure your clustered environment. For more information,
see: “Sample XML input files for Db2 High Availability Instance Configuration Utility (db2haicu)” on page
74

For a detailed scenario that uses db2haicu with a sample XML input file to set up an HADR pair, see
"Automated Cluster Controlled HADR (High Availability Disaster Recovery) Configuration Setup using the
IBM Db2 High Availability Instance Configuration Utility (db2haicu)".

Procedure

1. Create an XML input file using the sample XML files as a guideline. In an HADR setup, an XML file will
need to be created for both the primary and standby instance.

2. Call db2haicu with the -f input-file-name.
In an HADR setup,

a. Log on to the standby instance and issue the command.
b. After db2haicu exits, log on to the primary instance and issue the command.

Chapter 1. High availability 55

http://public.dhe.ibm.com/software/dw/im/dm-0907hadrdb2haicu/db2-10-hadr-tsa.pdf
http://public.dhe.ibm.com/software/dw/im/dm-0907hadrdb2haicu/db2-10-hadr-tsa.pdf

What to do next

Db2 high availability instance configuration utility (db2haicu) does not have a separate diagnostic log.
You can investigate and diagnose db2haicu errors using the database manager diagnostic log, db2diag
log file, and the db2pd tool. For more information, see: “Troubleshooting Db2 High Availability Instance
Configuration Utility (db2haicu)” on page 85

Db2 High Availability Instance Configuration Utility (db2haicu) input file XML schema definition
The Db2 high availability instance configuration utility (db2haicu) input file XML schema definition (XSD)
defines the cluster domain objects that you can specify in a db2haicu XML input file. This db2haicu XSD
is located in the file called db2ha.xsd in the sqllib/samples/ha/xml directory.

DB2ClusterType

The root element of the db2haicu XML schema definition (XSD) is DB2Cluster, which is of type
DB2ClusterType. A db2haicu XML input file must begin with a DB2Cluster element.

“XML schema definition” on page 56
“Subelements” on page 56
“Attributes” on page 57
“Usage notes” on page 58

XML schema definition

<xs:complexType name='DB2ClusterType'>
 <xs:sequence>
 <xs:element name='DB2ClusterTemplate'
 type='DB2ClusterTemplateType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='ClusterDomain'
 type='ClusterDomainType'
 maxOccurs='unbounded'/>
 <xs:element name='FailoverPolicy'
 type='FailoverPolicyType'
 minOccurs='0'/>
 <xs:element name='DB2PartitionSet'
 type='DB2PartitionSetType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='HADRDBSet'
 type='HADRDBType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='HADBSet'
 type='HADBType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xs:sequence>
 <xs:attribute name='clusterManagerName' type='xs:string' use='optional'/>
</xs:complexType>

Subelements
DB2ClusterTemplate

Type:
DB2ClusterTemplateType

Usage notes:
Do not include a DB2ClusterTemplateType element in your db2haicu XML input file. The
DB2ClusterTemplateType element is currently reserved for future use.

ClusterDomain
Type:

ClusterDomainType

56 IBM Db2 V11.5: Data Recovery and High Availability

A ClusterDomainType element contains specifications about: the machines or computers in the
cluster domain (also called cluster domain nodes); the network equivalencies (groups of networks
that can fail over for one another); and the quorum device (tie-breaking mechanism).

Occurrence rules:
You must include one or more ClusterDomain element in your DB2ClusterType element.

FailoverPolicy
Type:

FailoverPolicyType

A FailoverPolicyType element specifies the failover policy that the cluster manager should
use with the cluster domain.

Occurrence rules:
You can include zero or one FailoverPolicy element in your DB2ClusterType element.

DB2PartitionSet
Type:

DB2PartitionSetType

A DB2PartitionSetType element contains information about database partitions. The
DB2PartitionSetType element is only applicable in a partitioned database environment.

Occurrence rules:
You can include zero or more DB2PartitionSet elements in your DB2ClusterType element,
according to the db2haicu db2haicu XML schema definition.

HADRDBSet
Type:

HADRDBType

A HADRDBType element contains a list of High Availability Disaster Recovery (HADR) primary and
standby database pairs.

Occurrence rules:
You can include zero or more HADRDBSet elements in your DB2ClusterType element, according
to the db2haicu db2haicu XML schema definition.

Usage notes:

• You must not include HADRDBSet in a partitioned database environment.
• If you include HADRDBSet, then you must specify a failover policy of HADRFailover in the
FailoverPolicy element.

HADBSet
Type:

HADBType

A HADBType element contains a list of databases to include in the cluster domain, and to make
highly available.

Occurrence rules:
You can include zero or more HADBSet elements in your DB2ClusterType element, according to
the db2haicu db2haicu XML schema definition.

Attributes
clusterManagerName (optional)

The clusterManagerName attribute specifies the cluster manager.

Valid values for this attribute are specified in the following table:

Chapter 1. High availability 57

Table 8. Valid values for the clusterManager attribute

clusterManagerName value Cluster manager product

TSA IBM Tivoli System Automation for Multiplatforms (SA
MP)

Usage notes

In a single partition database environment, you will usually only create a single cluster domain for each
database manager instance.

One possible configuration for a multi-partition database environment is:

• Set the FailoverPolicy element to Mutual
• In the DB2Partition subelement of DB2PartitionSet, use the MutualPair element to specify two

cluster domain nodes that are in a single cluster domain

ClusterDomainType XML schema definition for Db2 High Availability Instance Configuration Utility
(db2haicu) input files
A ClusterDomainType element contains specifications about: the machines or computers in the cluster
domain (also called cluster domain nodes); the network equivalencies (groups of networks that can fail
over for one another); and the quorum device (tie-breaking mechanism).

“Superelements” on page 58
“XML schema definition” on page 58
“Subelements” on page 58
“Attributes” on page 59

Superelements

The following types of elements contain ClusterDomainType subelements:

• DB2ClusterType

XML schema definition

<xs:complexType name='ClusterDomainType'>
 <xs:sequence>
 <xs:element name='Quorum'
 type='QuorumType'
 minOccurs='0'/>
 <xs:element name='PhysicalNetwork'
 type='PhysicalNetworkType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='ClusterNode'
 type='ClusterNodeType'
 maxOccurs='unbounded'/>
 </xs:sequence>
 <xs:attribute name='domainName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
Quorum

Type:
QuorumType

A QuorumType element specifies the quorum device for the cluster domain.

Occurrence rules:
You can include zero or one Quorum element in your ClusterDomainType element.

58 IBM Db2 V11.5: Data Recovery and High Availability

PhysicalNetwork
Type:

PhysicalNetworkType

A PhysicalNetworkType element contains network interface cards that can fail over for each
other. This kind of network is also called a network equivalency.

Occurrence rules:
You can include zero or more PhysicalNetwork elements in your ClusterDomainType
element.

ClusterNode
Type:

ClusterNodeType

A ClusterNodeType element contains information about a particular computer or machine (also
called a cluster domain node) in the cluster.

Occurrence rules:
You must specify at least one ClusterNode element in your ClusterDomainType element.

Usage notes
IBM Tivoli System Automation for Multiplatforms (SA MP) supports a maximum of 32 cluster
domain nodes. If your cluster manager is SA MP, then you can include a maximum of 32
ClusterNode elements in your ClusterDomainType element.

Attributes
domainName (required)

You must specify a unique name for your ClusterDomainType element.

If you are using Reliable Scalable Cluster Technology (RSCT) to manage your cluster, the following
restrictions apply to domainName:

• domainName can only contain the characters A to Z, a to z, digits 0 to 9, period (.), and underscore
(_)

• domainName cannot be "IW"

The following example is of a ClusterDomainType element:

<ClusterDomain domainName="hadr_linux_domain">
 <Quorum quorumDeviceProtocol="network" quorumDeviceName="9.26.4.5"/>
 <PhysicalNetwork physicalNetworkName="db2_public_network_0"
 physicalNetworkProtocol="ip">
 <Interface interfaceName="eth0" clusterNodeName="linux01">
 <IPAddress baseAddress="9.26.124.30" subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>
 <Interface interfaceName="eth0" clusterNodeName="linux02">
 <IPAddress baseAddress="9.26.124.31" subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>
 </PhysicalNetwork>
 <ClusterNode clusterNodeName="linux01"/>
 <ClusterNode clusterNodeName="linux02"/>
</ClusterDomain>

QuorumType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
A QuorumType element specifies the quorum device for the cluster domain.

“Superelements” on page 60
“XML schema definition” on page 60

Chapter 1. High availability 59

“Subelements” on page 60
“Attributes” on page 60

Superelements

The following types of elements contain QuorumType subelements:

• ClusterDomainType

XML schema definition

<xs:complexType name='QuorumType'>
 <xs:attribute name='quorumDeviceProtocol'
 type='QuorumDeviceProtocolType'
 use='required'/>
 <xs:attribute name='quorumDeviceName'
 type='xs:string'
 use='required'/>
</xs:complexType>

Subelements

None.

Attributes
quorumDeviceProtocol (required)

quorumDeviceProtocol specifies the type of quorum to use.

A quorum device helps a cluster manager make cluster management decisions when the cluster
manager's normal decision process does not produce a clear choice.

The type of the quorumDeviceProtocol attribute is QuorumDeviceProtocolType.

Here is the XML schema definition for the QuorumDeviceProtocolType:

<xs:simpleType name='QuorumDeviceProtocolType'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value='disk'/>
 <xs:enumeration value='scsi'/>
 <xs:enumeration value='network'/>
 <xs:enumeration value='eckd'/>
 <xs:enumeration value='mns'/>
 </xs:restriction>
</xs:simpleType>

Currently supported values for this attribute are specified in the following table:

Table 9. Valid values for the quorumDeviceProtocol attribute

quorumDeviceProtocol value Meaning

network A network quorum device is an IP address to which
every cluster domain node can connect at all times.

MNS Cluster must have an odd number of hosts. In the
event of an outage, quorum is preserved as long as a
majority of nodes in the cluster survives.

disk A disk that is shared by one or more nodes in the peer
domain. In case of an outage, any node that cannot
acquire this lock is assumed to be out of quorum.

60 IBM Db2 V11.5: Data Recovery and High Availability

quorumDeviceName
The value of the quorumDeviceName depends on the type of quorum device specified in
quorumDeviceProtocol.

Valid values for this attribute are specified in the following table:

Table 10. Valid values for the quorumDeviceName attribute

Value of quorumDeviceProtocol Valid value for quorumDeviceName

network A string containing a properly formatted IP address.
For example:

12.126.4.5

For the IP address that you specify to be valid as a
network quorum device, every cluster domain node
must be able to access this IP addressed (using the
ping utility, for example.)

quorumDiskValue

The value of the quorumDiskValue depends on the type of quorum device specified in
quorumDeviceProtocol.

Valid values for this attribute are specified in the following table:

Table 11. Valid values for the quorumDiskValue attribute

Value of quorumDeviceProtocol Valid value for quorumDeviceName

disk A valid identifier for the shared disk. It can be in
the following format:
AIX

• device path
• PVID=<pvid>

Linux

• device path
• WWID=<wwid>
• WWN=<wwn>

PhysicalNetworkType XML schema definition for Db2 High Availability Instance Configuration Utility
(db2haicu) input files
A PhysicalNetworkType element contains network interface cards that can fail over for each other.
This kind of network is also called a network equivalency.

“Superelements” on page 61
“XML schema definition” on page 62
“Subelements” on page 62
“Attributes” on page 62

Superelements

The following types of elements contain PhysicalNetworkType subelements:

• ClusterDomainType

Chapter 1. High availability 61

XML schema definition

<xs:complexType name='PhysicalNetworkType'>
 <xs:sequence>
 <xs:element name='Interface'
 type='InterfaceType'
 minOccurs='1'
 maxOccurs='unbounded'/>
 <xs:element name='LogicalSubnet'
 type='IPAddressType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xs:sequence>
 <xs:attribute name='physicalNetworkName'
 type='xs:string'
 use='required'/>
 <xs:attribute name='physicalNetworkProtocol'
 type='PhysicalNetworkProtocolType'
 use='required'/>
</xs:complexType>

Subelements
Interface

Type:
InterfaceType

The InterfaceType element consists of an IP address, the name of a computer or machine in
the network (also called a cluster domain node), and the name of a network interface card (NIC) on
that cluster domain node.

Occurrence rules:
You must specify one or more Interface elements in your PhysicalNetworkType element.

LogicalSubnet
Type:

IPAddressType

A IPAddressType element contains all the details of an IP address such as: the base address,
the subnet mask, and the name of the network to which the IP address belongs.

Occurrence rules:
You can include zero or more LogicalSubnet elements in your PhysicalNetworkType
element.

Attributes
physicalNetworkName (required)

You must specify a unique physicalNetworkName for each PhysicalNetworkType element.
physicalNetworkProtocol (required)

The type of the physicalNetworkProtocol attribute is PhysicalNetworkProtocolType.

Here is the XML schema definition for the PhysicalNetworkProtocolType element:

<xs:simpleType name='PhysicalNetworkProtocolType'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value='ip'/>
 <xs:enumeration value='rs232'/>
 <xs:enumeration value='scsi'/>
 <xs:enumeration value='ssa'/>
 <xs:enumeration value='disk'/>
 </xs:restriction>
</xs:simpleType>

Currently supported values for this attribute are specified in the following table:

62 IBM Db2 V11.5: Data Recovery and High Availability

Table 12. Valid values for the physicalNetworkProtocol attribute

physicalNetworkProtocol value Meaning

ip TCP/IP protocol

InterfaceType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
The InterfaceType element consists of an IP address, the name of a computer or machine in the
network (also called a cluster domain node), and the name of a network interface card (NIC) on that
cluster domain node.

“Superelements” on page 63
“XML schema definition” on page 63
“Subelements” on page 63
“Attributes” on page 63

Superelements

The following types of elements have InterfaceType subelements:

• PhysicalNetworkType

XML schema definition

<xs:complexType name='InterfaceType'>
 <xs:sequence>
 <xs:element name='IPAddress' type='IPAddressType'/>
 </xs:sequence>
 <xs:attribute name='interfaceName' type='xs:string' use='required'/>
 <xs:attribute name='clusterNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
IPAddress

Type:
IPAddressType

A IPAddressType element contains all the details of an IP address such as: the base address,
the subnet mask, and the name of the network to which the IP address belongs.

Occurrence rules:
You must specify exactly one IPAddress in your InterfaceType element.

Attributes
interfaceName (required)

You must specify the name of a NIC in the interfaceName attribute. The NIC that you specify in the
interfaceName must exist on the cluster domain node that you specify in the clusterNodeName
attribute.

clusterNodeName (required)
You must specify the name of the cluster domain node that is located at the IP address that you
specify in the IPAddress element.

Chapter 1. High availability 63

IPAddressType XML schema element for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
A IPAddressType element contains all the details of an IP address such as: the base address, the
subnet mask, and the name of the network to which the IP address belongs.

“Superelements” on page 64
“XML schema definition” on page 64
“Subelements” on page 64
“Attributes” on page 64

Superelements

The following types of elements have IPAddressType subelements:

• PhysicalNetworkType
• InterfaceType
• DB2PartitionType

XML schema definition

<xs:complexType name='IPAddressType'>
 <xs:attribute name='baseAddress' type='xs:string' use='required'/>
 <xs:attribute name='subnetMask' type='xs:string' use='required'/>
 <xs:attribute name='networkName' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
baseAddress (required)

You must specify the base IP address using a string with a valid IP address format: four sets of
numbers ranging from 0 to 255, separated by a period. For example:

162.148.31.101

subnetMask (required)
You must specify the base IP address using a string with a valid IP address format.

networkName (required)
You must specify the same value for networkName here as you specified for the
physicalNetworkName attribute of the PhysicalNetworkType element that contains this
IPAddress element.

ClusterNodeType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
A ClusterNodeType element contains information about a particular computer or machine (also called
a cluster domain node) in the cluster.

“Superelements” on page 65
“XML schema definition” on page 65
“Subelements” on page 65
“Attributes” on page 65

64 IBM Db2 V11.5: Data Recovery and High Availability

Superelements

The following types of elements have ClusterNodeType elements:

• ClusterDomainType

XML schema definition

<xs:complexType name='ClusterNodeType'>
 <xs:attribute name='clusterNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
clusterNodeName (required)

You must specify the name of the cluster domain node.

FailoverPolicyType XML schema definition for Db2 High Availability Instance Configuration Utility
(db2haicu) input files
A FailoverPolicyType element specifies the failover policy that the cluster manager should use with
the cluster domain.

“Superelements” on page 65
“XML schema definition” on page 65
“Subelements” on page 66
“Possible values” on page 66

Superelements

The following types of elements contain InterfaceType subelements:

• DB2ClusterType

XML schema definition

<xs:complexType name='FailoverPolicyType'>
 <xs:choice>
 <xs:element name='RoundRobin'
 type='xs:string'
 minOccurs='0' />
 <xs:element name='Mutual'
 type='xs:string'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='NPlusM'
 type='xs:string'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='LocalRestart'
 type='xs:string'
 fixed=''/>
 <xs:element name='HADRFailover'
 type='xs:string'
 fixed=''/>
 <xs:element name='Custom'
 type='xs:string'
 minOccurs='0' />
 </xs:choice>
</xs:complexType>

Chapter 1. High availability 65

Subelements

None.

Possible values

Select one of the following choices to specify to the cluster manager what type of failover policy to use if
there is a failure anywhere in the cluster domain.

A failover policy specifies how a cluster manager should respond when a cluster element such as a
network interface card or a database server fails. In general, a cluster manager will transfer workload
away from a failed element to an alternative element that had been previously identified to the cluster
manager as an appropriate replacement for the element that failed. This transfer of workload from a
failed element to a secondary element is called failover.

RoundRobin
When you are using a round robin failover policy, if a failure occurs with one computer in the cluster
domain (also called cluster domain nodes or nodes); the database manager restarts the work from the
failed cluster domain node on any other node that is in the cluster domain. The round robin failover
policy is available for both single and multiple database partition configurations.

Mutual
To configure a mutual failover policy, you associate a pair of computers in the cluster domain (also
called cluster domain nodes or simply nodes) as a system pair. If there is a failure on one of the nodes
in this pair, then the database partitions on the failed node will failover to the other node in the pair.
Mutual failover is only available when you have multiple database partitions.

NPlusM
When you are using a N Plus M failover policy, then if there is a failure associated with one computer in
the cluster domain (also called cluster domain nodes or simply nodes) then the database partitions on
the failed node will failover to any other node that is in the cluster domain.If roving HA failover is
enabled, the last failed node become the standby node once that failed node is brought online again.
The roving HA failover for N plus M failover policy is only supported for the case where M=1. N Plus M
failover is only available when you have multiple database partitions.

LocalRestart
When you use the local restart failover policy and a failure on one of the computers in the cluster
domain (also called cluster domain nodes ornodes) occurs, the database manager restarts the
database in place (or locally) on the same node that failed. The local restart failover policy is available
for both single and multiple database partition configurations.

HADRFailover
When you configure a HADR failover policy, you are enabling the Db2 High Availability Disaster
Recovery (HADR) feature to manage failover. If an HADR primary database fails, the database
manager will move the workload from the failed database to an HADR standby database.

Custom
When you configure a custom failover policy, you create a list of computers in the cluster domain (also
called cluster domain nodes or nodes) onto which the database manager can failover. If a node in the
cluster domain fails, the database manager moves the workload from the failed node to one of the
nodes in the list that you specified. The custom failover policy is available for both single and multiple
database partition configurations.

DB2PartitionSetType XML schema definition for Db2 High Availability Instance Configuration Utility
(db2haicu) input files
A DB2PartitionSetType element contains information about database partitions. The
DB2PartitionSetType element is only applicable in a partitioned database environment.

“Superelements” on page 67
“XML schema definition” on page 67
“Subelements” on page 67
“Attributes” on page 67

66 IBM Db2 V11.5: Data Recovery and High Availability

Superelements

InterfaceType is a subelement of:

• PhysicalNetworkType

XML schema definition

<xs:complexType name='DB2PartitionSetType'>
 <xs:sequence>
 <xs:element name='DB2Partition'
 type='DB2PartitionType'
 maxOccurs='unbounded'/>
 </xs:sequence>
</xs:complexType>

Subelements
DB2Partition

Type:
DB2PartitionType

A DB2PartitionType element specifies a database partition including the Db2 database
manager instance to which the database partition belongs and the database partition number.

Occurrence rules:
You must specify one or more DB2Partition elements in your DB2PartitionSetType
element.

Attributes

None.

DB2PartitionType XML schema element for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
A DB2PartitionType element specifies a database partition including the Db2 database manager
instance to which the database partition belongs and the database partition number.

“Superelements” on page 67
“XML schema definition” on page 67
“Subelements” on page 68
“Attributes” on page 69

Superelements

InterfaceType is a subelement of:

• DB2PartitionSetType

XML schema definition

<xs:complexType name='DB2PartitionType'>
 <xs:sequence>
 <xs:element name='VirtualIPAddress'
 type='IPAddressType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='Mount'
 type='MountType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='HADRDB'
 type='HADRDBType'
 minOccurs='0'

Chapter 1. High availability 67

 maxOccurs='unbounded'/>
 <xs:element name='MutualPair'
 type='MutualPolicyType'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:element name='NPlusMNode'
 type='NPlusMPolicyType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element name='CustomNode'
 type='CustomPolicyType'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xs:sequence>
 <xs:attribute name='instanceName' type='xs:string' use='required'/>
 <xs:attribute name='dbpartitionnum' type='xs:integer' use='required'/>
</xs:complexType>

Subelements
VirtualIPAddress

Type: IPAddressType

A IPAddressType element contains all the details of an IP address such as: the base address, the
subnet mask, and the name of the network to which the IP address belongs.

You can omit including VirtualIPAddress; or you can include an unbounded number of
VirtualIPAddress elements in your DB2PartitionType element.

Mount
Type: MountType

A MountType element contains information about a mount point such as the file path that identifies
the location of the mounted files.

You can omit including Mount; or you can include an unbounded number of Mount elements in your
DB2PartitionType element.

There is no XML element to specify non-critical mount points in DPF/single-partition setup. If the user
intends to set up non-critical mount points, they would need to specify all critical mount points using
the MountType element. Any element not included in this list will be considered non-critical. If this
element is not specified, then no mount points will be considered as non-critical.

HADRDB
Type: HADRDBType

A HADRDBType element contains a list of High Availability Disaster Recovery (HADR) primary and
standby database pairs.

You can omit including HADRDB; or you can include an unbounded number of HADRDB elements in
your DB2PartitionType element.

MutualPair
Type: MutualPolicyType

A MutualPolicyType element contains information about a pair of cluster domain nodes that can
failover for each other.

You can omit including MutualPair; or you can include exactly one MutualPair elements in your
DB2PartitionType element.

NPlusMNode
Type: NPlusMPolicyType

You can omit including NPlusMNode; or you can include an unbounded number of NPlusMNode
elements in your DB2PartitionType element.

68 IBM Db2 V11.5: Data Recovery and High Availability

CustomNode
Type: CustomPolicyType

You can omit including CustomNode; or you can include an unbounded number of CustomNode
elements in your DB2PartitionType element.

Attributes
instanceName (required)

In the instanceName attribute you must specify the Db2 database manager instance with which this
DB2PartitionType element is associated.

dbpartitionnum (required)
In the dbpartitionnum attribute you must specify the database partition number that uniquely
identifies the database partition (the dbpartitionnum number specified in the db2nodes.cfg file,
for example.)

MountType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu) input
files
A MountType element contains information about a mount point such as the file path that identifies the
location of the mounted files.

“Superelements” on page 69
“XML schema definition” on page 69
“Subelements” on page 69
“Attributes” on page 69

Superelements

The following types of elements contain MountType subelements:

• DB2PartitionType

XML schema definition

<xs:complexType name='MountType'>
 <xs:attribute name='filesystemPath' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
filesystemPath (required)

Specify the path that was associated with the mount point when the file system was mounted.

MutualPolicyType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
A MutualPolicyType element contains information about a pair of cluster domain nodes that can
failover for each other.

“Superelement” on page 70
“XML schema definition” on page 70
“Subelements” on page 70
“Attributes” on page 70

Chapter 1. High availability 69

Superelement

The following types of elements contain MutualPolicyType subelements:

• DB2PartitionType

XML schema definition

<xs:complexType name='MutualPolicyType'>
 <xs:attribute name='systemPairNode1' type='xs:string' use='required'/>
 <xs:attribute name='systemPairNode2' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
systemPairNode1 (required)

In systemPairNode1 you must specify the name of a cluster domain node that can fail over for the
cluster domain node that you specify in systemPairNode2.

systemPairNode2 (required)
In systemPairNode2 you must specify the name of a cluster domain node that can fail over for the
cluster domain node that you specify in systemPairNode1.

NPlusMPolicyType XML schema definition for Db2 High Availability Instance Configuration Utility
(db2haicu) input files
An NPlusMPolicy states that if a computer in a cluster domain experiences a failure, then the database
partitions on the failed node fails over to any other available node in the same cluster domain. An XML
schema defines the configurations associated with this HADR policy.

“Superelements” on page 70
“XML schema definition” on page 70
“Subelements” on page 70
“Attributes” on page 70

Superelements

The following types of elements contain NPlusMPolicyType subelements:

• DB2PartitionType

XML schema definition

<xs:complexType name='NPlusMPolicyType'>
 <xs:attribute name='standbyNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
standbyNodeName (required)

In the standbyNodeName element, you must specify the name of a cluster domain node to which the
partition that contains this NPlusMPolicyType element can fail over.

70 IBM Db2 V11.5: Data Recovery and High Availability

CustomPolicyType XML schema definition for Db2 High Availability Instance Configuration Utility
(db2haicu) input files
A CustomPolicyType XML schema defines configuration settings for a Custom HADR policy. You can
define the nodes that a failover defaults to in this schema.

“Superelements” on page 71
“XML schema definition” on page 71
“Subelements” on page 71
“Attributes” on page 71

Superelements

The following types of elements contain CustomPolicyType subelements:

• DB2PartitionType

XML schema definition

<xs:complexType name='CustomNode'>
 <xs:attribute name='customNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
customNodeName (required)

In the customNodeName element, you must specify the name of a cluster domain node to which the
partition that contains this CustomPolicyType element can fail over.

HADRDBType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
A HADRDBType element contains a list of High Availability Disaster Recovery (HADR) primary and standby
database pairs.

“Superelements” on page 71
“XML schema definition” on page 71
“Subelements” on page 72
“Attributes” on page 72
“Usage notes” on page 72
“Restrictions” on page 72

Superelements

The following types of elements contain HADRDBType subelements:

• DB2ClusterType
• DB2PartitionType

XML schema definition

<xs:complexType name='HADRDBType'>
 <xs:sequence>
 <xs:element name='HADRDB' type='HADRDBDefn' minOccurs='1' maxOccurs='1'/>
 <xs:element name='VirtualIPAddress' type='IPAddressType' minOccurs='0'
maxOccurs='1'/>

Chapter 1. High availability 71

 </xs:sequence>
</xs:complexType>

Subelements
VirtualIPAddress

Type:
IPAddressType

A IPAddressType element contains all the details of an IP address such as: the base address,
the subnet mask, and the name of the network to which the IP address belongs.

Occurrence rules:
You can including zero or more VirtualIPAddress elements in your HADRDBType element.

HADRDB
Type:

HADRDBDefn

A HADRDBDefn element contains information about a High Availability Disaster Recovery (HADR)
primary and standby database pair.

Occurrence rules:
You can include one or more VirtualIPAddress elements in your HADRDBType element.

Attributes

None.

Usage notes

If you include a HADRDBType element in the specification for a given cluster domain, then you must also
include a FailoverPolicy element specifying HADRFailover in the same cluster domain
specification.

Restrictions

You cannot use the HADRDBType element in a partitioned database environment.

The following example is of an HADRDBType element:

<HADRDBSet>
 <HADRDB databaseName="HADRDB" localInstance="db2inst1"
 remoteInstance="db2inst1" localHost="linux01" remoteHost="linux02" />
 <VirtualIPAddress baseAddress="9.26.124.22" subnetMask="255.255.245.0"
 networkName="db2_public_network_0"/>
</HADRDBSet>

HADRDBDefn XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu)
input files
A HADRDBDefn element contains information about a High Availability Disaster Recovery (HADR) primary
and standby database pair.

“Superelements” on page 72
“XML schema definition” on page 73
“Subelements” on page 73
“Attributes” on page 73

Superelements

The following types of elements contain HADRDBDefn subelements:

72 IBM Db2 V11.5: Data Recovery and High Availability

• HADRDBType

XML schema definition

<xs:complexType name='HADRDBDefn'>
 <xs:attribute name='databaseName' type='xs:string' use='required'/>
 <xs:attribute name='localInstance' type='xs:string' use='required'/>
 <xs:attribute name='remoteInstance' type='xs:string' use='required'/>
 <xs:attribute name='localHost' type='xs:string' use='required'/>
 <xs:attribute name='remoteHost' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
databaseName (required)

Enter the name of the HADR database.
localInstance (required)

The localInstance is the database manager instance of the HADR primary database.
remoteInstance (required)

The remoteInstance is the database manager instance of the HADR standby database.
localHost (required)

The localHost is the hostname of the cluster domain node where the HADR primary database is
located.

remoteHost (required)
The remoteHost is the hostname of the cluster domain node where the HADR standby database is
located.

HADBType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu) input
files
A HADBType element contains a list of databases to include in the cluster domain, and to make highly
available.

“Superelements” on page 73
“XML schema definition” on page 73
“Subelements” on page 74
“Attributes” on page 74

Superelements

The following types of elements contain HADBType subelements:

• DB2ClusterType

XML schema definition

<xs:complexType name='HADBType'>
 <xs:sequence>
 <xs:element name='HADB' type='HADBDefn' maxOccurs='unbounded'/>
 </xs:sequence>
 <xs:attribute name='instanceName' type='xs:string' use='required'/>
</xs:complexType>

Chapter 1. High availability 73

Subelements
HADB

Type:
HADBDefn

A HADBDefn element describes a database to be included in the cluster domain and made highly
available.

Occurrence rules:
You must include one or more HADB elements in your HADBType element.

Attributes
instanceName (required)

In the instanceName attribute, you must specify the Db2 database manager instance to which the
databases specified in the HADB elements belong.

HADBDefn XML schema element for Db2 High Availability Instance Configuration Utility (db2haicu) input
files
A HADBDefn element describes a database to be included in the cluster domain and made highly
available.

“Superelements” on page 74
“XML schema definition” on page 74
“Subelements” on page 74
“Attributes” on page 74

Superelements

HADBDefn is a subelement of:

• HADRDBType

XML schema definition

<xs:complexType name='HADBDefn'>
 <xs:attribute name='databaseName' type='xs:string' use='required'/>
</xs:complexType>

Subelements

None.

Attributes
databaseName (required)

You must specify exactly one database name in the databaseName attribute.

Sample XML input files for Db2 High Availability Instance Configuration Utility (db2haicu)
There is a set of sample XML input files located in the samples subdirectory of the sqllib directory that
you can modify and use with db2haicu to configure your clustered environment.

db2ha_sample_sharedstorage_mutual.xml
The sample file db2ha_sample_sharedstorage_mutual.xml is an example of an XML input file that
you pass to Db2 high availability instance configuration utility (db2haicu) to specify a new cluster

74 IBM Db2 V11.5: Data Recovery and High Availability

domain. db2ha_sample_sharedstorage_mutual.xml is located in the sqllib/samples/ha/xml
directory.

Features

The db2ha_sample_sharedstorage_mutual.xml sample demonstrates how to use db2haicu with
an XML input file to define a cluster domain with the following details:

• quorum device: network
• computers in the cluster (cluster domain nodes): two
• failover policy: mutual
• database partitions: one
• virtual (service) IP addresses: one
• shared mount points for failover: one

XML source

<!-- === -->
<!-- = Use the Db2 High Availability Instance Configuration Utility = -->
<!-- = (db2haicu) XML schema definition, db2ha.xsd, and specify = -->
<!-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<!-- = Base Component as the cluster manager. = -->
<!-- === -->
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="db2ha.xsd"
 clusterManagerName="TSA"
 version="1.0">

 <!-- === -->
 <!-- = Create a cluster domain named db2HAdomain. = -->
 <!-- === -->
 <ClusterDomain domainName="db2HAdomain">

 <!-- === -->
 <!-- = Specify a network quorum device (IP address: 19.126.4.5). = -->
 <!-- = The IP must be pingable at all times by each of the cluster = -->
 <!-- = domain nodes. = -->
 <!-- === -->
 <Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>

 <!-- === -->
 <!-- = Create a network named db2_public_network_0 with an IP = -->
 <!-- = network protocol. = -->
 <!-- = This network contains two computers: hasys01 and hasys02. = -->
 <!-- = Each computer has one network interface card (NIC) called = -->
 <!-- = eth0. = -->
 <!-- = The IP address of the NIC on hasys01 is 19.126.52.139 = -->
 <!-- = The IP address of the NIC on hasys02 is 19.126.52.140 = -->
 <!-- === -->
 <PhysicalNetwork physicalNetworkName="db2_public_network_0"
 physicalNetworkProtocol="ip">

 <Interface interfaceName="eth0" clusterNodeName="hasys01">
 <IPAddress baseAddress="19.126.52.139"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 <Interface interfaceName="eth0" clusterNodeName="hasys02">
 <IPAddress baseAddress="19.126.52.140"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 </PhysicalNetwork>

 <!-- === -->
 <!-- = List the computers (cluster nodes) in the cluster domain. = -->
 <!-- === -->
 <ClusterNode clusterNodeName="hasys01"/>
 <ClusterNode clusterNodeName="hasys02"/>

Chapter 1. High availability 75

 </ClusterDomain>

 <!-- === -->
 <!-- = The failover policy specifies the order in which the cluster = -->
 <!-- = domain nodes should fail over. = -->
 <!-- === -->
 <FailoverPolicy>
 <Mutual />
 </FailoverPolicy>

 <!-- === -->
 <!-- = Specify all the details of the database partition = -->
 <!-- === -->
 <DB2PartitionSet>

 <DB2Partition dbpartitionnum="0" instanceName="db2inst1">
 <VirtualIPAddress baseAddress="19.126.52.222"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 <Mount filesystemPath="/home/db2inst1"/>
 <MutualPair systemPairNode1="hasys01" systemPairNode2="hasys02" />
 </DB2Partition>

 </DB2PartitionSet>

</DB2Cluster>

db2ha_sample_DPF_mutual.xml
The sample file db2ha_sample_DPF_mutual.xml is an example of an XML input file that you pass to
Db2 high availability instance configuration utility (db2haicu) to specify a new cluster domain.
db2ha_sample_DPF_mutual.xml is located in the sqllib/samples/ha/xml directory.

Features

The db2ha_sample_DPF_mutual.xml sample demonstrates how to use db2haicu with an XML input
file to define a cluster domain with the following details:

• quorum device: network
• computers in the cluster (cluster domain nodes): four
• failover policy: mutual
• database partitions: two
• virtual (service) IP addresses: one
• shared mount points for failover: two
• databases configured for high availability: two

XML source

<!-- === -->
<!-- = Use the Db2 High Availability Instance Configuration Utility = -->
<!-- = (db2haicu) XML schema definition, db2ha.xsd, and specify = -->
<!-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<!-- = Base Component as the cluster manager. = -->
<!-- === -->
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="db2ha.xsd"
 clusterManagerName="TSA"
 version="1.0">

 <!-- === -->
 <!-- = Create a cluster domain named db2HAdomain. = -->
 <!-- === -->
 <ClusterDomain domainName="db2HAdomain">

 <!-- === -->
 <!-- = Specify a network quorum device (IP address: 19.126.4.5). = -->
 <!-- = The IP must be pingable at all times by each of the cluster = -->
 <!-- = domain nodes. = -->

76 IBM Db2 V11.5: Data Recovery and High Availability

 <!-- === -->
 <Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>

 <!-- === -->
 <!-- = Create a network named db2_public_network_0 with an IP = -->
 <!-- = network protocol. = -->
 <!-- = This network contains four computers: hasys01, hasys02, = -->
 <!-- = hasys03, and hasys04. = -->
 <!-- = Each computer has a network interface card called eth0. = -->
 <!-- = The IP address of eth0 on hasys01 is 19.126.124.30 = -->
 <!-- = The IP address of eth0 on hasys02 is 19.126.124.31 = -->
 <!-- = The IP address of eth0 on hasys03 is 19.126.124.32 = -->
 <!-- = The IP address of eth0 on hasys04 is 19.126.124.33 = -->
 <!-- === -->
 <PhysicalNetwork physicalNetworkName="db2_public_network_0"
 physicalNetworkProtocol="ip">

 <Interface interfaceName="eth0" clusterNodeName="hasys01">
 <IPAddress baseAddress="19.126.124.30"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 <Interface interfaceName="eth0" clusterNodeName="hasys02">
 <IPAddress baseAddress="19.126.124.31"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 <Interface interfaceName="eth0" clusterNodeName="hasys03">
 <IPAddress baseAddress="19.126.124.32"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 <Interface interfaceName="eth0" clusterNodeName="hasys04">
 <IPAddress baseAddress="19.126.124.33"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 </PhysicalNetwork>

 <!-- === -->
 <!-- = Create a network named db2_private_network_0 with an IP = -->
 <!-- = network protocol. = -->
 <!-- = This network contains four computers: hasys01, hasys02, = -->
 <!-- = hasys03, and hasys04 (same as db2_public_network_0.) = -->
 <!-- = In addition to eth0, each computer has a network interface = -->
 <!-- = card called eth1. = -->
 <!-- = The IP address of eth1 on hasys01 is 192.168.23.101 = -->
 <!-- = The IP address of eth1 on hasys02 is 192.168.23.102 = -->
 <!-- = The IP address of eth1 on hasys03 is 192.168.23.103 = -->
 <!-- = The IP address of eth1 on hasys04 is 192.168.23.104 = -->
 <!-- === -->
 <PhysicalNetwork physicalNetworkName="db2_private_network_0"
 physicalNetworkProtocol="ip">

 <Interface interfaceName="eth1" clusterNodeName="hasys01">
 <IPAddress baseAddress="192.168.23.101"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

 <Interface interfaceName="eth1" clusterNodeName="hasys02">
 <IPAddress baseAddress="192.168.23.102"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

 <Interface interfaceName="eth1" clusterNodeName="hasys03">
 <IPAddress baseAddress="192.168.23.103"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

 <Interface interfaceName="eth1" clusterNodeName="hasys04">
 <IPAddress baseAddress="192.168.23.104"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

Chapter 1. High availability 77

 </PhysicalNetwork>

 <!-- === -->
 <!-- = List the computers (cluster nodes) in the cluster domain. = -->
 <!-- === -->
 <ClusterNode clusterNodeName="hasys01"/>
 <ClusterNode clusterNodeName="hasys02"/>
 <ClusterNode clusterNodeName="hasys03"/>
 <ClusterNode clusterNodeName="hasys04"/>

 </ClusterDomain>

 <!-- === -->
 <!-- = The failover policy specifies the order in which the cluster = -->
 <!-- = domain nodes should fail over. = -->
 <!-- === -->
 <FailoverPolicy>
 <Mutual />
 </FailoverPolicy>

 <!-- === -->
 <!-- = Specify all the details of the database partitions. = -->
 <!-- === -->
 <DB2PartitionSet>

 <DB2Partition dbpartitionnum="0" instanceName="db2inst1">
 <VirtualIPAddress baseAddress="19.126.124.251"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 <Mount filesystemPath="/hafs/db2inst1/NODE0000"/>
 <MutualPair systemPairNode1="hasys01" systemPairNode2="hasys02" />
 </DB2Partition>

 <DB2Partition dbpartitionnum="1" instanceName="db2inst1">
 <Mount filesystemPath="/hafs/db2inst1/NODE0001"/>
 <MutualPair systemPairNode1="hasys02" systemPairNode2="hasys01" />
 </DB2Partition>

 <DB2Partition dbpartitionnum="2" instanceName="db2inst1">
 <Mount filesystemPath="/hafs/db2inst1/NODE0002"/>
 <MutualPair systemPairNode1="hasys03" systemPairNode2="hasys04" />
 </DB2Partition>

 <DB2Partition dbpartitionnum="3" instanceName="db2inst1">
 <Mount filesystemPath="/hafs/db2inst1/NODE0003"/>
 <MutualPair systemPairNode1="hasys04" systemPairNode2="hasys03" />
 </DB2Partition>

 </DB2PartitionSet>

 <!-- === -->
 <!-- = List of databases to be configured for High Availability = -->
 <!-- === -->
 <HADBSet instanceName="db2inst1">
 <HADB databaseName = "SAMPLE" />
 <HADB databaseName = "MYDB" />
 </HADBSet>

</DB2Cluster>

db2ha_sample_DPF_NPlusM.xml
The sample file db2ha_sample_DPF_NPlusM.xml is an example of an XML input file that you pass to
Db2 high availability instance configuration utility (db2haicu) to specify a new cluster domain.
db2ha_sample_DPF_NPlusM.xml is located in the sqllib/samples/ha/xml directory.

Features

The db2ha_sample_DPF_NPlusM.xml sample demonstrates how to use db2haicu with an XML input
file to define a cluster domain with the following details:

• quorum device: network
• computers in the cluster (cluster domain nodes): four

78 IBM Db2 V11.5: Data Recovery and High Availability

• failover policy: N Plus M
• database partitions: two
• virtual (service) IP addresses: one
• shared mount points for failover: four

XML source

<!-- === -->
<!-- = Use the Db2 High Availability Instance Configuration Utility = -->
<!-- = (db2haicu) XML schema definition, db2ha.xsd, and specify = -->
<!-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<!-- = Base Component as the cluster manager. = -->
<!-- === -->
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="db2ha.xsd"
 clusterManagerName="TSA"
 version="1.0">

 <!-- === -->
 <!-- = Create a cluster domain named db2HAdomain. = -->
 <!-- === -->
 <ClusterDomain domainName="db2HAdomain">

 <!-- === -->
 <!-- = Specify a network quorum device (IP address: 19.126.4.5). = -->
 <!-- = The IP must be pingable at all times by each of the cluster = -->
 <!-- = domain nodes. = -->
 <!-- === -->
 <Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>

 <!-- === -->
 <!-- = Create a network named db2_public_network_0 with an IP = -->
 <!-- = network protocol. = -->
 <!-- = This network contains four computers: hasys01, hasys02, = -->
 <!-- = hasys03, and hasys04. = -->
 <!-- = Each computer has a network interface card called eth0. = -->
 <!-- = The IP address of eth0 on hasys01 is 19.126.124.30 = -->
 <!-- = The IP address of eth0 on hasys02 is 19.126.124.31 = -->
 <!-- = The IP address of eth0 on hasys03 is 19.126.124.32 = -->
 <!-- = The IP address of eth0 on hasys04 is 19.126.124.33 = -->
 <!-- === -->
 <PhysicalNetwork physicalNetworkName="db2_public_network_0"
 physicalNetworkProtocol="ip">

 <Interface interfaceName="eth0" clusterNodeName="hasys01">
 <IPAddress baseAddress="19.126.124.30"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 <Interface interfaceName="eth0" clusterNodeName="hasys02">
 <IPAddress baseAddress="19.126.124.31"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 <Interface interfaceName="eth0" clusterNodeName="hasys03">
 <IPAddress baseAddress="19.126.124.32"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 <Interface interfaceName="eth0" clusterNodeName="hasys04">
 <IPAddress baseAddress="19.126.124.33"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 </Interface>

 </PhysicalNetwork>

 <!-- === -->
 <!-- = Create a network named db2_private_network_0 with an IP = -->
 <!-- = network protocol. = -->
 <!-- = This network contains four computers: hasys01, hasys02, = -->
 <!-- = hasys03, and hasys04 (same as db2_public_network_0.) = -->
 <!-- = In addition to eth0, each computer has a network interface = -->

Chapter 1. High availability 79

 <!-- = card called eth1. = -->
 <!-- = The IP address of eth1 on hasys01 is 192.168.23.101 = -->
 <!-- = The IP address of eth1 on hasys02 is 192.168.23.102 = -->
 <!-- = The IP address of eth1 on hasys03 is 192.168.23.103 = -->
 <!-- = The IP address of eth1 on hasys04 is 192.168.23.104 = -->
 <!-- === -->
 <PhysicalNetwork physicalNetworkName="db2_private_network_0"
 physicalNetworkProtocol="ip">

 <Interface interfaceName="eth1" clusterNodeName="hasys01">
 <IPAddress baseAddress="192.168.23.101"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

 <Interface interfaceName="eth1" clusterNodeName="hasys02">
 <IPAddress baseAddress="192.168.23.102"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

 <Interface interfaceName="eth1" clusterNodeName="hasys03">
 <IPAddress baseAddress="192.168.23.103"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

 <Interface interfaceName="eth1" clusterNodeName="hasys04">
 <IPAddress baseAddress="192.168.23.104"
 subnetMask="255.255.255.0"
 networkName="db2_private_network_0"/>
 </Interface>

 </PhysicalNetwork>

 <!-- === -->
 <!-- = List the computers (cluster nodes) in the cluster domain. = -->
 <!-- === -->
 <ClusterNode clusterNodeName="hasys01"/>
 <ClusterNode clusterNodeName="hasys02"/>
 <ClusterNode clusterNodeName="hasys03"/>
 <ClusterNode clusterNodeName="hasys04"/>

 </ClusterDomain>

 <!-- === -->
 <!-- = The failover policy specifies the order in which the cluster = -->
 <!-- = domain nodes should fail over. = -->
 <!-- === -->
 <FailoverPolicy>
 <NPlusM />
 </FailoverPolicy>

 <!-- === -->
 <!-- = Specify all the details of the database partitions = -->
 <!-- === -->
 <DB2PartitionSet>

 <DB2Partition dbpartitionnum="0" instanceName="db2inst1">
 <VirtualIPAddress baseAddress="19.126.124.250"
 subnetMask="255.255.255.0"
 networkName="db2_public_network_0"/>
 <Mount filesystemPath="/ha_dpf1/db2inst1/NODE0000"/>
 <Mount filesystemPath="/hafs/NODE0000"/>
 <NPlusMNode standbyNodeName="hasys03" />
 </DB2Partition>

 <DB2Partition dbpartitionnum="1" instanceName="db2inst1">
 <Mount filesystemPath="/ha_dpf1/db2inst1/NODE0001"/>
 <Mount filesystemPath="/hafs/NODE0001"/>
 <NPlusMNode standbyNodeName="hasys04" />
 </DB2Partition>

 </DB2PartitionSet>

</DB2Cluster>

80 IBM Db2 V11.5: Data Recovery and High Availability

db2ha_sample_HADR.xml
The sample file db2ha_sample_DPF_HADR.xml is an example of an XML input file that you pass to Db2
high availability instance configuration utility (db2haicu) to specify a new cluster domain.
db2ha_sample_HADR.xml is located in the sqllib/samples/ha/xml directory.

Features

The db2ha_sample_HADR.xml sample demonstrates how to use db2haicu with an XML input file to
define a cluster domain with the following details:

• quorum device: network
• computers in the cluster (cluster domain nodes): two
• failover policy: HADR
• database partitions: one
• virtual (service) IP addresses: none
• shared mount points for failover: none

XML source

<!-- === -->
<!-- = Db2 High Availability configuration schema = -->
<!-- = Schema describes the elements of Db2 High Availability = -->
<!-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<!-- = that are used in the configuration of a HA cluster = -->
<!-- === -->
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="db2ha.xsd" cluster ManagerName="TSA" version="1.0">

<!-- === -->
 <!-- = ClusterDomain element = -->
 <!-- = This element encapsulates the cluster configuration = -->
 <!-- = specification = -->
 <!-- = Creating cluster domain of name db2HAdomain = -->
 <!-- = Creating an IP quorum device (IP 19.126.4.5) = -->
 <!-- = The IP must be pingable at all times by each of the nodes in = -->
 <!-- = the cluster domain = -->
<!-- === -->
 <ClusterDomain domainName="db2HAdomain">
 <Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>

<!-- === -->
 <!-- = Physical network element = -->
 <!-- = The physical network specifies the network type, protocol = -->
 <!-- = IP address, subnet mask, and NIC name = -->
 <!-- = Define two logical groupings of NICs = -->
 <!-- = Define two logical groupings of NICs = -->
<!-- === -->
 <PhysicalNetwork physicalNetworkName="db2_public_network_0"
 physicalNetworkProtocol="ip">
 <Interface interfaceName="eth0" clusterNodeName="hasys01">
 <IPAddress baseAddress="19.126.52.139"
 subnetMask="255.255.255.0" networkName="db2_public_network_0"/>
 </Interface>
 <Interface interfaceName="eth0" clusterNodeName="hasys02">
 <IPAddress baseAddress="19.126.52.140"
 subnetMask="255.255.255.0" networkName="db2_public_network_0"/>
 </Interface>
 </PhysicalNetwork>

 <PhysicalNetwork physicalNetworkName="db2_private_network_0"
 physicalNetworkProtocol="ip">
 <Interface interfaceName="eth1" clusterNodeName="hasys01">
 <IPAddress baseAddress="192.168.23.101"
 subnetMask="255.255.255.0" networkName="db2_private_network_0"/>
 </Interface>
 <Interface interfaceName="eth1" clusterNodeName="hasys02">
 <IPAddress baseAddress="192.168.23.102"
 subnetMask="255.255.255.0" networkName="db2_private_network_0"/>
 </Interface>
 </PhysicalNetwork>

Chapter 1. High availability 81

<!-- === -->
 <!-- = ClusterNodeName element = -->
 <!-- = The set of nodes in the cluster domain = -->
 <!-- = Here the defined set of nodes in the domain is = -->
 <!-- = hasys01, hasys02 = -->
<!-- === -->
 <ClusterNode clusterNodeName="hasys01"/>
 <ClusterNode clusterNodeName="hasys02"/>
 </ClusterDomain>

<!-- === -->
 <!-- = Failover policy element = -->
 <!-- = The failover policy specifies the failover order of the = -->
 <!-- = cluster nodes = -->
 <!-- = In the current sample the failover policy is to restart = -->
 <!-- = instance in place (LocalRestart) = -->
<!-- === -->
 <FailoverPolicy>
 <HADRFailover></HADRFailover>
 </FailoverPolicy>

<!-- === -->
 <!-- = Db2 Partition element = -->
 <!-- = The Db2 partition type specifies a Db2 Instance Name, = -->
 <!-- = partition number = -->
<!-- === -->
 <DB2PartitionSet>
 <DB2Partition dbpartitionnum="0" instanceName="db2inst1">
 </DB2Partition>
 </DB2PartitionSet>

<!-- === -->
 <!-- = HADRDBSet = -->
 <!-- = Set of HADR Databases for this instance = -->
 <!-- = Specify the databaseName, the name of the local instance on = -->
 <!-- = this machine controlling the HADR database, the name of the = -->
 <!-- = remote instance in this HADR pair, the name of the local = -->
 <!-- = hostname and the remote hostname for the remote instance = -->
<!-- === -->
 <HADRDBSet>
 <HADRDB databaseName="HADRDB" localInstance="db2inst1"
 remoteInstance="db2inst1" localHost="hasys01" remoteHost="hasys02"/>
 </HADRDBSet>
</DB2Cluster>

Db2 High Availability Instance Configuration Utility (db2haicu) prerequisites
There is a set of tasks you must perform before using Db2 high availability instance configuration utility
(db2haicu).

General

Before a database manager instance owner can run db2haicu, a user with root authority must run the
preprpnode command. preprpnode is part of the Reliable Scalable Cluster Technology (RSCT) fileset
for AIX and the RSCT package for Linux. preprpnode handles initializing the nodes for intracluster
communication. The preprpnode command is run as a part of setting up the cluster. For more
information about preprpnode , see: preprpnode Command. For more information about RSCT, see
RSCT Administration Guide - What is RSCT?

Also, a user with root authority must disable the iTCO_wdt and iTCO_vendor_support modules.

• On SUSE, add the following lines to the /etc/modprobe.d/blacklist file:

alias iTCO_wdt off
alias iTCO_vendor_support off

• On RHEL 5.x, add the following lines to the /etc/modprobe.conf file:

blacklist iTCO_wdt
blacklist iTCO_vendor_support

82 IBM Db2 V11.5: Data Recovery and High Availability

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds4/preprpnode.htm
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html

• On RHEL 6 and later releases, create the /etc/modprobe.d/iTCO_wdt.conf and /etc/
modprobe.d/iTCO_vendor_support.conf files as follows:

[root@host1]# cat /etc/modprobe.d/iTCO_wdt.conf
blacklist iTCO_wdt
[root@host1]# cat /etc/modprobe.d/iTCO_vendor_support.conf
blacklist iTCO_vendor_support

You can verify that the modules are disabled by using the lsmod command.

Before running db2haicu, a database manager instance owner must perform the following tasks:

• Synchronize services files on all machines that are being added to the cluster.
• Run the db2profile script for the database manager instance that is being used to create the cluster

domain.
• Start the database manager using the db2start command.

For Linux, the GNU C library (glibc) version must be 2.4-31.109.1 or higher.

Db2 high availability disaster recovery (HADR)

If you will be using HADR functionality, perform the following tasks:

•
• Ensure that both HADR databases exist on different systems.
• Ensure all HADR databases are started in their respective primary and standby database roles, and that

all HADR primary-standby database pairs are in peer state.
• Ensure that you are using one of the following HADR synchronization modes: SYNC or NEARSYNC.
• Configure hadr_peer_window for all HADR databases to a value of at least 120 seconds.
• Disable the Db2 fault monitor.

Partitioned database environment

If you have multiple database partitions to configure for high availability, perform the following steps:

• Configure the DB2_NUM_FAILOVER_NODES registry variable on all machines that are being added to the
cluster domain.

• (Optional) Activate the database before running db2haicu.

Creating a cluster domain using Db2 High Availability Instance Configuration Utility (db2haicu)
When you run Db2 high availability instance configuration utility (db2haicu) for the first time for a
database manager instance, db2haicu creates a model of your cluster, called a cluster domain.

Database paths detected automatically by Db2 High Availability Instance Configuration Utility (db2haicu)
When you run Db2 high availability instance configuration utility (db2haicu) for the first time, db2haicu
will search your database system for database configuration information that is related to cluster
configuration.

Single database partition environment

In a single database partition environment, db2haicu automatically detects the paths:

• Instance home directory path
• Audit log path
• Audit archive log path
• Sync point manager (SPM) log path
• Db2 diagnostic log (db2diag log file) path
• Database related paths:

Chapter 1. High availability 83

– Database log path
– Database table space container path
– Database table space directory path
– Local database directory

Note: If any of the database related directories are symbolic links, the db2haicu utility prints an error
message and exits.

Multiple database partition environment

In a multiple database partition environment, db2haicu automatically detects the following paths:

• Database log path
• Database table space container path
• Database table space directory path
• Local database directory

Automated HADR environment

In an automated HADR environment, db2haicu will prompt you to configure mount point monitoring for
your HADR databases:

Do you want to configure mount point monitoring for the HADR database 'HADRDB'? [2]
1. Yes
2. No

If option 1, "Yes", is selected then db2haicu will automatically detect the following paths for your
database and make them highly available by creating corresponding mount resources for them if eligible:

• Database log path
• Database table space container path
• Database table space directory path
• Local database directory

Note: A database path is eligible for high availability if the file system it resides on is of type JFS2, EXT3,
EXT4, or XFS. Furthermore, in HADR environments, the data paths on the standby and primary database
must be the same in order to be eligible.

Maintaining a cluster domain using Db2 High Availability Instance Configuration Utility (db2haicu)
When you are modifying the cluster domain model of your clustered environment using db2haicu, the
database manager propagates the related changes to your database manager instance and cluster
configuration.

Before you begin

Before you can configure your clustered environment using db2haicu, you must create and configure a
cluster domain. For more information, see “Creating a cluster domain using Db2 High Availability Instance
Configuration Utility (db2haicu)” on page 83

About this task

db2haicu maintenance tasks include adding cluster elements such as databases or cluster nodes to the
cluster domain, and removing elements from the cluster domain. db2haicu maintenance tasks also
include modifying the details of cluster domain elements such as the failover policy for the database
manager instance.

84 IBM Db2 V11.5: Data Recovery and High Availability

Procedure

1. Run db2haicu

When you run db2haicu in maintenance mode, db2haicu presents you with a list of operations you
can perform on the cluster domain:

• Add or remove cluster nodes (machine identified by hostname)
• Add or remove a network interface (network interface card)
• Add or remove database partitions (partitioned database environment only)
• Add or remove a Db2 High Availability Disaster Recovery (HADR) database
• Add or remove a highly available database
• Add or remove a mount point
• Add or remove an IP address
• Add or remove a non-critical path
• Move database partitions and HADR databases for scheduled maintenance
• Change failover policy for the current instance
• Create a new quorum device for the cluster domain
• Destroy the cluster domain

2. Select a task to perform, and answer subsequent questions that db2haicu presents.

Results

The database manager uses the information in the cluster domain to coordinate with your cluster
manager. When you configure your database and cluster elements using db2haicu then those elements
are included in integrated and automated cluster configuration and administration provided by the Db2
High Availability (HA) Feature. When you use db2haicu to make a database manager instance
configuration change, the database manager makes the required cluster manager configuration change
for you so that you do not have to make a subsequent call to your cluster manager.

What to do next

Db2 high availability instance configuration utility (db2haicu) does not have a separate diagnostic log.
You can investigate and diagnose db2haicu errors using the database manager diagnostic log, db2diag
log file, and the db2pd tool. For more information, see: “Troubleshooting Db2 High Availability Instance
Configuration Utility (db2haicu)” on page 85

Troubleshooting Db2 High Availability Instance Configuration Utility (db2haicu)
Db2 high availability instance configuration utility (db2haicu) does not have a separate diagnostic log.
You can investigate and diagnose db2haicu errors using the database manager diagnostic log, db2diag
log file, and the db2pd tool.

Db2 high availability instance configuration utility (db2haicu) restrictions
There are some restrictions for using the Db2 high availability instance configuration utility (db2haicu).

• “Software and hardware” on page 85
• “Configuration tasks” on page 86
• “Usage notes” on page 86
• “Recommendations” on page 87

Software and hardware

• db2haicu does not support the configuration of mount resources which are based off of Logical
Volume Manager (LVM) on any platform other than AIX.

Chapter 1. High availability 85

Configuration tasks

You cannot perform the following tasks using db2haicu:

• You cannot configure automatic client reroute using db2haicu.
• When upgrading from one majorDb2 Version 10.5 version to another, e.g. Db2 V10.5 to Db2 V11.5, you

cannot use db2haicu to migrate your cluster configuration. To migrate a cluster configuration, you
must perform the following steps:

1. Delete the existing cluster domain via the db2haicu -delete command
2. Upgrade the database server
3. Re-create a new cluster domain using db2haicu

Usage notes

db2haicu is not supported in a Db2 pureScale environment. Use the db2cluster command instead to
configure clustered environments.

Important: For an HADR configuration, db2haicu only creates Db2 resource dependencies against
network equivalencies that are defined by db2_public_network_*.

Consider the following db2haicu usage notes when planning your cluster configuration and
administration activities:

• Even though db2haicu performs some administration tasks that normally require root authority,
db2haicu runs with the privileges of the database manager instance owner. db2haicu initialization,
which is performed by a root user, enables db2haicu to carry out the required configuration changes
despite having only instance owner privileges.

• When you create a new cluster domain, db2haicu does not verify that the name you specify for the
new cluster domain is valid. For example, db2haicu does not confirm that the name is a valid length, or
contains valid characters, or that is not the same name as an existing cluster domain.

• db2haicu does not verify wor validate information that a user specifies and that is passed to a cluster
manager. Because db2haicu cannot be aware of all cluster manager restrictions with respect to
cluster object names, for example, db2haicu passes text to the cluster manager without validating it
for things like valid characters, or length.

• If an error happens and db2haicu fails while you are creating and configuring a new cluster domain,
you must perform the following steps:

1. Remove the resource groups of the partially created cluster domain by running db2haicu using the
-delete parameter

2. Re-create the new cluster domain by calling db2haicu again.
• When you run db2haicu with the -delete parameter, db2haicu deletes the resource groups that are

associated with the current database manager instance immediately, without confirming whether those
resource groups are locked.

• To remove resource groups that are associated with the database manager instances of a Db2 high
availability disaster recovery (HADR) database pair, perform the following steps:

1. Run db2haicu with the -delete parameter against the database manager instance of the HADR
standby database first.

2. Run db2haicu with the -delete parameter against the database manager instance of the HADR
primary database.

• To remove a virtual IP from an HADR resource group using db2haicu, you must remove it from the
instance on which it was created.

• The ASYNC and SUPERASYNC HADR synchronization modes are not supported by db2haicu.
• If a cluster operation you attempt to perform using db2haicu times out, db2haicu does not return an

error to you. When a cluster operation times out, you do not know that the operation timed out unless
you review diagnostic logs after you make the db2haicu call; or unless a subsequent cluster action

86 IBM Db2 V11.5: Data Recovery and High Availability

fails, and while you are investigating that subsequent failure, you determine that the original cluster
operation timed out.

• If you attempt to change the failover policy for a given database instance to active-passive, there is one
condition under which that configuration operation fails, but for which db2haicu does not return an
error to you. If you specify a machine that is currently offline to be the active machine, db2haicu does
not make that machine the active machine, but db2haicu does not return an error that indicates that
the change did not succeed.

• For a shared disk configuration, db2haicu does not support a nested mount configuration because Db2
does not enforce the disk mount order.

• For a shared disk configuration, file systems based on Concurrent Enhanced-Capable volume groups
are not supported by db2haicu.

Recommendations

The following is a list of recommendations for configuration your cluster, and your database manager
instances when you are using db2haicu.

• When you add new mount points for the cluster by adding entries to /etc/fstab, use the noauto
option to prevent the mount points from being automatically mounted on more than one machine in the
cluster. For example:

dev/vpatha1 /db/svtpdb/NODE0010 ext3 noauto 0 0

Integrated solution using Pacemaker
Pacemaker is an open-source, high availability cluster manager software integrated with Db2 Advanced
Edition and Db2 Standard Edition on Linux.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

It provides high availability and disaster recovery capabilities for on-premises deployments and non-
container cloud environments, such as Amazon Web Service (AWS).

Pacemaker base component
In the integrated high availability (HA) solution with Pacemaker, the cluster software stack is composed
of various components which are all needed to run Pacemaker effectively.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Resources

A set of Db2 defined entities where states are to be monitored, started, or stopped. This includes the Db2
member process, HADR capable databases, Ethernet network adapters, and virtual IP addresses.

Constraints

These are rules setup during cluster creation to augment the behavior of processes:

• Location constraint - where resources can run.
• Ordering constraint - the order of certain resource actions must occur in.
• Co-location constraint - the dependency of the location of one resource on another.

The following are examples of how these constraints function:

Chapter 1. High availability 87

• The following location constraint specifies that the instance resource db2_draping1_gerry_0 prefers
to run on the draping1 host.

location prefer-db2_draping1_gerry_0 db2_draping1_gerry_0 100: draping1

• Location constraints can also be conditional, the following location constraint specifies that the
database resource will only run if the Ethernet network adapter eth1 is healthy.

location loc-rule-db2_gerry_gerry_SAMPLE-eth1-talkers1 db2_gerry_gerry_SAMPLE-clone \
 rule -inf: db2ethmon-eth1 eq 0

• Ordering constraints ensure that the resources start in the correct order. The following ordering
constraint ensures that the database resource starts before the primary VIP resource does.

order order-rule-db2_gerry_gerry_SAMPLE-then-primary-VIP Mandatory: db2_gerry_gerry_SAMPLE-
clone:start db2_gerry_gerry_SAMPLE-primary-VIP:start

• Co-location constraints ensure that resources that need to be on the same host are currently active on
the same host. The following co-location constraint ensures that the primary VIP is running on the same
host as the primary HADR database.

colocation db2_gerry_gerry_SAMPLE-primary-VIP-colocation inf: db2_gerry_gerry_SAMPLE-primary-
VIP:Started db2_gerry_gerry_SAMPLE-clone:Master

Resource set

A group of resources under the effect of a specific constraint.

Resource model

A Pacemaker resource model for Db2 refers to the pre-defined relationship and constraints of all
resources. The resource model is created as part of the cluster setup using the db2cm utility with the -
create option. Any deviation or alteration of the model without approval from Db2 will render the model
unsupported.

Resource agents

Resource agents in Pacemaker are the Db2 user exits which are a set of shell scripts developed and
supported by Db2 to perform actions on the resources defined in the resource model.

A total of three resource agents are provided:

• db2ethmon

– The resource agent to monitor the defined Ethernet network adapter. This is at host level.
• db2inst

– The resource agent to monitor, start, and stop the Db2 member process. This is at the Db2 instance
level.

• db2hadr

– The resource agent to monitor, start, and stop individual HADR-enabled databases. This is at the Db2
database level.

Cluster topology and communication layer

All HA cluster manager software must have the capability to ensure each node has the same view of the
cluster topology (or membership). Pacemaker utilizes the Corosync Cluster Engine, an open source group
communication system software, to provide a consistent view of cluster topology, ensure reliable
messaging infrastructure so that events are executed in the same order in each node, and to apply
quorum constraints.

88 IBM Db2 V11.5: Data Recovery and High Availability

Cluster domain leader

One of the nodes in the cluster will be elected as the Domain Leader (also known as the Designated
Controller (DC) in Pacemaker terms) where the Pacemaker controller daemon residing on the DC will
assume the role to make all cluster decisions. A new domain leader will be elected if the current domain
leader's host fails.

For more information on Pacemaker internal components and their interactions, refer to the Pacemaker
architecture.

Networks in a Pacemaker cluster
To configure elements of your Pacemaker cluster domain that are related to networks, you can use Db2
cluster manager (db2cm) utility to add a physical network to your cluster domain. A physical network is
composed of: network interface cards, IP addresses, and subnet masks.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Network interface cards

A network interface card (NIC) is hardware that connects a computer (also called a cluster node) to a
network. A NIC is sometimes referred to as an interface, a network adaptor, or an adaptor. When you use
db2cm to add a physical network to your cluster domain, you specify the name of the NIC as well as the
host name of the computer to which the NIC belongs to.

IP addresses

An Internet Protocol address (IP address) is a unique address on a network. In IP version 4, an IP address
is 32 bits large, and is normally expressed in dot-decimal notation, for example: 129.30.180.16. An IP
address is composed of a network portion and a host computer portion.

Subnet masks

A network can be partitioned into multiple logical subnets using subnet masks. A subnet mask is a
mechanism for moving some bits of the host portion of an IP address to the network portion of the IP
address. When you use db2cm to add an IP address to your cluster domain, you have an option to specify
the subnet mask for the IP address, else it would be automatically detected.

Virtual IP address (VIP)

Configuring a VIP resource via db2cm is supported for both primary and standby. The latter is for read-on
standby usage. Network adapters that are in different subnets (or equivalently, in different virtual local
area networks) cannot be added to the same network. A VIP address cannot failover between different
subnets or virtual local area networks.

Quorum devices support on Pacemaker
A quorum device helps a cluster manager make cluster management decisions when the cluster
manager's normal decision process does not produce a clear choice.

When a cluster manager has to choose between multiple potential actions, the cluster manager counts
how many cluster domain nodes support each of the potential actions, then it chooses the action that is
supported by the majority of cluster domain nodes. If exactly the same number of cluster domain nodes
supports more than one choice, then the cluster manager refers to a quorum device to make the choice.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

The Pacemaker cluster stack supports the following quorum devices:

Chapter 1. High availability 89

https://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/2.0/html/Pacemaker_Explained/_pacemaker_architecture.html
https://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/2.0/html/Pacemaker_Explained/_pacemaker_architecture.html

Two-node quorum

This is the default mechanism. There is no tie-breaker mechanism and is therefore prone to split-brain
scenario. It is not recommended for production environments.

QDevice Quorum

QDevice is similar to a Network IP tiebreaker in the sense that it requires an external resource accessible
by all hosts in the current Pacemaker cluster. But they differ immensely in terms of reliability. QDevice is
much more reliable because the quorum decision logic is more robust than a simple TCP/IP ping to the
external IP address. It does require the resource to be located on a separate host similar to a majority
quorum requirement. However, it is considerably simpler in terms of setup as the host with the QDevice
does not need to be part of the Pacemaker quorum. In short, the QDevice is the best blended quorum
solution that combines reliability and simplicity.

The following diagram shows an overview of the key components in a cluster using a QDevice quorum:

Facts about QDevices:

• A quorum device acts as the third-party arbitration device for the cluster. Its primary use is to allow a
cluster to sustain more node failures than standard quorum rules allow.

90 IBM Db2 V11.5: Data Recovery and High Availability

• As seen in the image above, it is a Corosync daemon process -- QDevice daemon (corosync-qdevice)
running on each node in the cluster. It provides a configured number of votes to the quorum subsystem
based on a third-party arbitrator's decision. This third-party arbitrator is a separate Corosync QNet
daemon (corosync-qnetd) running on a separate host (not part of the cluster) and contributes to the
deciding vote of the corosync-qdevice logic that ultimately decides the surviving side in a split-brain
scenario.

• Both QDevice daemon and QNet daemon are provided with different software packages and must be
installed separately. The former must be installed on each host in the cluster (Host1 and Host2 in the
image above), while the latter is only required on a separate host not part of the cluster (Host3 in the
image above).

• The QNet daemon can be used as the arbitrator for another cluster (in the above image, two clusters
sharing the same host with qnetd process) given that all clusters have a unique name.

• For information on the requirements of the third arbitrator host, refer to “Prerequisites for an integrated
solution using Pacemaker” on page 91.

Majority Quorum

The Majority Quorum avoids split-brain scenarios by adding a third node to the cluster for arbitration. In a
split-brain scenario, whichever side successfully acquires the third node is the surviving side. The
difference between QDevice and Majority Quorum is that the third node is fully integrated into the cluster.

Table 13. The advantages and disadvantages of each quorum type

Quorum
type

Advantages Disadvantages

Two Node • Simplest setup
• No additional hardware or software configuration

• Potential split-brain scenario
leading to dual primary
phenomenon

QDevice • More reliable than Two-Node quorum
• No need to include the third host as part of the

cluster
• No need to include the full Pacemaker cluster

software stack on the third host. Only one Corosync
RPM is needed

• Requires a TCP/IP accessible
host from the primary and
standby hosts.

Majority • More reliable than Two-Node quorum • Need to include the full
Pacemaker cluster stack
installed and configured on the
third host

Based on the advantages and disadvantages shown, the QDevice quorum is the recommended quorum
mechanism for Db2.

Note: Due to Pacemaker being a Technical Preview in Db2, the majority quorum mechanism is not
supported.

Prerequisites for an integrated solution using Pacemaker
The prerequisite software and environments needed before users can integrate Pacemaker into their
systems.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Chapter 1. High availability 91

Hardware support and Linux distribution

The integrated Pacemaker high availability (HA) solution is available on the following Linux distributions:

• Red Hat Enterprise Linux 8.1 (Intel Linux and Linux on IBM Z)
• SuSE Linux Enterprise Server 15 SP1 (Intel Linux and Linux on IBM Z)

Host file setup

The /etc/hosts file is setup according to the format:

IP_Address fully_qualified_domain_name alias

User and group ID

If the Db2 setup wizard is not used, users must ensure that the instance owner, fenced user, other users
and their associated groups are created according to the information in Creating group and user IDs for a
database installation (Linux and UNIX).

Passwordless secure shell (SSH) for root and instance user IDs

• Passwordless SSH for both root and instance user must be configured between the HADR nodes
• The instance user and root ID must be able to use SSH between the two hosts using both Fully Qualified

Domain Name and hostname aliases

Local storage

Ensure the following local storage, for example /tmp, on each node for all cluster related software
(excluding space required for Db2 server, database, log files and so on):

• 50 MB for cluster storage RPMs and extracted files
• 200 MB for full installation of cluster related software
• At least 1GB in /var to store cluster software log files

KornShell

In addition to packages reported by the db2prereqcheck -l command, KornShell (ksh) is required for
the Db2 resource agents for Pacemaker.

On RHEL systems, use yum to install:

yum install ksh

On SLES systems, use zypper to install:

zypper install ksh

Cluster software

While Pacemaker and its dependent software stack are open source and publicly available for download
from various sites, Db2 only validates and supports specific versions of the software stack based on the
Db2 release, hardware architecture, and platform. Other Pacemaker versions are not supported by Db2.

The Pacemaker version supported by Db2 must be downloaded from this public IBM website: Db2
Automated HADR with Pacemaker. There are specific tarballs available for each Linux distribution and
architecture.

92 IBM Db2 V11.5: Data Recovery and High Availability

https://www-01.ibm.com/marketing/iwm/platform/mrs/assets?source=mrs-db2pcmk
https://www-01.ibm.com/marketing/iwm/platform/mrs/assets?source=mrs-db2pcmk

QDevice quorum mechanism

This is the recommended quorum mechanism for a production system. This requires a third host to install
the corosync-qnetd software (available in the public IBM site) to act as the arbitrator. The host itself is not
required to be part of the cluster and does not require the Db2 server to be installed.

Disk space required on HADR nodes: 10MB (in addition to corosync)

Disk space required on the QNetd server: 10MB and 2MB for every additional cluster where the host is
being used as a QNetd server.

Other requirements:

• The host used must be accessible via TCP/IP to the other two hosts in the cluster.
• The IP address specified in the setup of the QNetd server must be the same one that the Pacemaker/

Corosync used to communicate.
• All clusters using the QNetd server must have unique cluster names.

Db2 high availability disaster recovery (HADR)

If users are using the HADR functionality, perform the following tasks:

• Ensure that both HADR databases exist on different systems.
• Ensure all HADR databases are started in their respective primary and standby database roles, and that

all HADR primary-standby database pairs are in peer state.
• Ensure that users are using one of the following HADR synchronization modes: SYNC or NEARSYNC.
• Configure hadr_peer_window for all HADR databases to a value of at least 120 seconds.
• Disable the Db2 fault monitor.

Partitioned database environment

Note: High availability for multiple database partitions is not supported in this Technical Preview release.

db2cm - Db2 cluster manager utility
Db2 cluster manager utility (db2cm) is a utility that you can use to configure and administer your highly
available databases in a clustered environment with Pacemaker.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Chapter 1. High availability 93

Command syntax
db2cm

-create -cluster

-instance instance-name -host host-name

-publicEthernet public-Ethernet-device-name -host host-name

-db database-name -instance local-instance-name

-primaryVIP ipv4-address

-netmask subnet-mask

-db database-name -instance local-instance-name

-standbyVIP ipv4-address

-netmask subnet-mask

-db database-name -instance local-instance-name

-qdevice quorum-device-host-name

-delete -cluster

-instance instance-name -host host-name

-publicEthernet public-Ethernet-device-name -host host-name

-db database-name -instance local-instance-name

-primaryVIP -db database-name -instance local-instance-name

-standbyVIP -db database-name -instance local-instance-name

-qdevice quorum-device-host-name

-disable -enable -list -dump

cluster
-domain domain-name

-host host-name-of-public-Ethernet-device-name1

-publicEthernet public-Ethernet-device-name1

-host host-name-of-public-Ethernet-device-name2

-publicEthernet public-Ethernet-device-name2

Command parameters

-create
-cluster

Creates a new Pacemaker cluster domain with two hosts and the public Ethernet resource from
scratch. The following parameters are mandatory:

-domain domain-name
Specifies the name of the Pacemaker domain

-host host-name
Specifies the name of the host. This is also used as a host in the HADR cluster. The hostname
provided must be the short host name.

-publicEthernet public-Ethernet-device-name
Specifies the name of the public network adapter on the host specified in the previous
argument. Different device names can be used on the hosts.

For example:

./db2cm -create -cluster -domain MyPCSDomain
 -host host1 -publicEthernet eth0
 -host host2 -publicEthernet eth2

-instance instance-name -host host-name-of-the-instance
Creates the instance resource and its resource model for the specified host.

For example:

94 IBM Db2 V11.5: Data Recovery and High Availability

./db2cm -create -instance db2inst1 -host host1

-public Ethernet public-Ethernet-device-name -host host-name
Add a public Ethernet resource to the resource model with the name of the public network
adapter on a host specified. Different device name can be used on different hosts. Each host can
only have one public Ethernet resource.

For example:

./db2cm -create -publicEthernet eth0 -host host1

-db database-name -instance local-instance-name
Add HADR database resource of the specified instance on the local host to the resource model.

For example:

./db2cm -create -db employeeDB -instance db2inst1

-primaryVIP ipv4-address [-netmask subnet-mask] -db database-name -instance local-instance-
name

Associate the virtual IP address with the primary role of the database and instance specified. The
default netmask will be auto-detected. The criteria of the VIP is for it to be on the same IP subnet
as the associated local IPs on both hosts. The optional netmask parameter can be used to
override the auto-detection. The IP address must be in IPv4 format. .The optional netmask input
can be in either the CIDR or the 32 bit format

For example:

./db2cm -create -primaryVIP 170.120.1.1 -netmask 21 -db employeeDB -instance db2inst1

./db2cm -create -primaryVIP 170.120.1.1 -netmask 255.255.248.0 -db employeeDB -instance
db2inst1

-standbyVIP ipv4-address [-netmask subnet-mask] -db database-name -instance local-instance-
name

Associate the virtual IP address with the standby role of the database to facilitate read on standby
feature. The default netmask will be auto-detected. The criteria of the VIP is for it to be on the
same IP subnet as the associated local IPs on both hosts. The optional netmask parameter can be
used to override the auto-detection. The IP address must be in IPv4 format. The optional netmask
input can be in either the CIDR or the 32 bit format.

For example:

./db2cm -create -standbyVIP 170.120.1.1 -netmask 21 -db employeeDB -instance db2inst1

./db2cm -create -standbyVIP 170.120.1.2 -netmask 255.255.248.0 -db employeeDB -instance
db2inst1

-qdevice quorum_device_host_name
Creates the quorum device for the corosync cluster.

For example:

./db2cm -create -qdevice hostQDevice

-delete
-cluster

Removes the resource model, deletes the cluster. Upon completion of this command, there
should be no left-over Pacemaker process or resources on the current host.

For example:

./db2cm -delete -cluster

Chapter 1. High availability 95

-publicEthernet public-Ethernet-device-name -host host-name
Deletes the public Ethernet resource and its associated resources.

For example:

./db2cm -delete -publicEthernet eth1 -host host1

-instance instance_name -host host-name-of-the-instance
Deletes the instance resource and its resource model. All the resources associated with the
instance will also be deleted.

For example:

./db2cm -delete -instance db2inst1 -host host1

-db database-name -instance local-instance-name
Deletes all resources in the resource model associated with the database name of the local
instance name specified.

For example:

./db2cm -delete -db employee_db -instance db2inst1

-primaryVIP -db database-name -instance local-instance-name
Deletes the virtual IP address with the primary role of the database name and local instance name
specified.

For example:

./db2cm -delete -primaryVIP -db employee_db -instance db2inst1

-standbyVIP -db database-name -instance local-instance-name
Deletes the virtual IP address with the standby role of the database name and local instance
name specified.

For example:

./db2cm -delete -standbyVIP -db employee_db -instance db2inst1

-qdevice
Removes the qdevice from the corosync cluster.

For example:

./db2cm -delete -qdevice

-disable
Disable automation for all Pacemaker resources in the Pacemaker domain.

For example:

./db2cm -disable

-enable
Enable automation for all Pacemaker resources in the Pacemaker domain. Refer to the -disable option
for details. This is used to undo that operation.

For example:

./db2cm -enable

-list
Display the cluster configuration and status information.

For example:

96 IBM Db2 V11.5: Data Recovery and High Availability

./db2cm -list

-dump
Export cluster information pertaining to the local host to a compressed file in the local directory. Use
this for problem determination to collect data before contacting Db2 support. A db2cm.zip file will
be created under the directory where the tool is run.

For example:

 ./db2cm -dump

-copy_resources resourceAgentsPath -host host-name
Copies resource agent scripts from the specified path to the resources path on the specified host.

For example:

./db2cm -copy_resources /tmp/20191231_Db2HADR_Pacemaker_Beta1/Db2AgentScripts/ -host host1

-help
Print usage information for db2cm.

For example:

./db2cm -help

Configuring a clustered environment using the Db2 cluster manager (db2cm) utility
You can configure and administer your databases in a clustered environment managed by Pacemaker
using the Db2 cluster manager (db2cm) utility.

Before you begin

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

The Pacemaker cluster software stack must be installed on all hosts in the cluster. For more information,
refer to “Installing the Pacemaker cluster software stack” on page 100.

About this task

Note: The example host names and user IDs referenced in the procedure are a continuation of the sample
from “Installing the Pacemaker cluster software stack” on page 100.

Procedure

1. The following steps are only required to run once on any one of the hosts by root. There is no need to
run them in both hosts. Choose one of the hosts to perform all actions on the same host.

2. Create the Pacemaker cluster and the public network resources by running the following command.
This is only required to be run once.

Note: For this example, hadom was chosen as the domain name and eth0 was chosen as the device
name on each host. The short hostname is used in the -host option.

INSTANCE-HOME/sqllib/adm/db2cm -create -cluster -domain hadom
-host ip-172-31-15-79 -publicEthernet eth0
-host ip-172-31-10-145 -publicEthernet eth0

Sample output after running the command:

[root@ip-172-31-15-79 Db2]# /home/db2inst1/sqllib/adm/db2cm -create -cluster -domain hadom -
publicEthernet eth0 -host ip-172-31-15-79 -publicEthernet eth0 -host ip-172-31-10-145
Created db2_ip-172-31-15-79_eth0 resource.

Chapter 1. High availability 97

Created db2_ip-172-31-10-145_eth0 resource.
Cluster created successfully.

3. Create the instance resource model by running the following commands:

INSTANCE-HOME/sqllib/adm/db2cm -create -instance db2inst1 –host ip-172-31-15-79

INSTANCE-HOME/sqllib/adm/db2cm -create -instance db2inst1 –host ip-172-31-10-145

Sample output:

[root@ip-172-31-15-79 ~]# /home/db2inst1/sqllib/adm/db2cm -create -instance db2inst1 –host
ip-172-31-15-79
Created db2_ip-172-31-15-79_db2inst1_0 resource.
Instance resource for db2inst1 on ip-172-31-15-79 created successfully.

[root@ip-172-31-15-79 ~]# /home/db2inst1/sqllib/adm/db2cm -create -instance db2inst1 –host
ip-172-31-10-145
Created db2_ip-172-31-10-145_db2inst1_0 resource.
Instance resource for db2inst1 on ip-172-31-10-145 created successfully.

4. Verify the cluster by using the crm status command.

Sample output:

[root@ip-172-31-10-145 Db2agents]# crm status
Stack: corosync
Current DC: ip-172-31-10-145 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Dec 24 21:49:57 2019
Last change: Tue Dec 24 21:39:45 2019 by root via cibadmin on ip-172-31-15-79

2 nodes configured
4 resources configured

Online: [ip-172-31-10-145 ip-172-31-15-79]

Full list of resources:

db2_ip-172-31-15-79_eth0 (ocf::heartbeat:db2ethmon): Started ip-172-31-15-79
db2_ip-172-31-10-145_eth0 (ocf::heartbeat:db2ethmon): Started ip-172-31-10-145
db2_ip-172-31-15-79_db2inst1_0 (ocf::heartbeat:db2inst): Started ip-172-31-15-79
db2_ip-172-31-10-145_db2inst1_0 (ocf::heartbeat:db2inst): Started
ip-172-31-10-145

Note:

• The Online parameter needs to include both hosts.
• db2_<hostname>_eth0 is the public Ethernet resource in the resource model.

5. Create a new database. For example, a database called SAMPLE. Then configure HADR on that new
database. For more information on configuring HADR, refer to “Initializing high availability disaster
recovery (HADR)” on page 141.

6. Create the HADR database resources. Sample output:

[root@ip-172-31-15-79 db2inst1]# /home/db2inst1/sqllib/adm/db2cm -create -db SAMPLE -
instance db2inst1
Database resource for SAMPLE created successfully

7. (Optional) Create the VIP resources for the newly created database.

INSTANCE-HOME/sqllib/adm/db2cm -create -primaryVIP <IP address> -db SAMPLE –instance db2inst1

Sample output:

[root@ip-172-31-15-79 db2inst1]# /home/db2inst1/sqllib/adm/db2cm -create -primaryVIP
172.31.15.78 -db SAMPLE -instance db2inst1
Primary VIP resource created successfully.

8. Verify the cluster again using crm status.

Sample output:

98 IBM Db2 V11.5: Data Recovery and High Availability

[root@ip-172-31-10-145 db2inst1]# crm status
Stack: corosync
Current DC: ip-172-31-10-145 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Dec 24 23:09:53 2019
Last change: Tue Dec 24 23:04:19 2019 by root via cibadmin on ip-172-31-10-145

2 nodes configured
7 resources configured

Online: [ip-172-31-10-145 ip-172-31-15-79]

Full list of resources:

db2_ip-172-31-15-79_eth0 (ocf::heartbeat:db2ethmon): Started ip-172-31-15-79
db2_ip-172-31-10-145_eth0 (ocf::heartbeat:db2ethmon): Started ip-172-31-10-145
db2_ip-172-31-15-79_db2inst1_0 (ocf::heartbeat:db2inst): Started ip-172-31-15-79
db2_ip-172-31-10-145_db2inst1_0 (ocf::heartbeat:db2inst): Started
ip-172-31-10-145
Clone Set: db2_db2inst1_db2inst2_SAMPLE-clone [db2_db2inst1_db2inst2_SAMPLE] (promotable)
 Masters: [ip-172-31-10-145]
 Slaves: [ip-172-31-15-79]
db2_db2inst1_db2inst1_SAMPLE-primary-VIP (ocf::heartbeat:IPaddr2): Started
ip-172-31-10-145

Note:

• The Online parameter needs to include both hosts.
• db2_<hostname>_eth0 is the public Ethernet resource in the resource model. There should be one

on each host, and both should be labeled with the Started state
• db2_<instance_name>_<host_name>_0 is the instance resource. There should be one for every

instance.
• The database resource has Master and Slaves started on the respective host.

9. Verify that the associated constraints have been created by running the crm config show
command.

This ensures that the Virtual IP associated with the database will be started on the same host as the
primary database. It also dictates the order in which Pacemaker will start the resources. This means to
start the database after the instance is up and only if the public network is online on the host, then to
start the VIP on the host where the primary database resides.

Sample output:

[root@ip-172-31-10-145 ~]# crm config show
node 1: ip-172-31-15-79
node 2: ip-172-31-10-145
primitive db2_db2inst1_db2inst1_SAMPLE db2hadr \
 params instance="db2inst1,db2inst1" dbname=SAMPLE \
 op demote interval=0s timeout=120s \
 op monitor interval=20s timeout=60s \
 op monitor interval=22s role=Master timeout=60s \
 op monitor interval=24s role=Slave timeout=60s \
 op promote interval=0s timeout=120s \
 op start interval=0s timeout=120s \
 op stop interval=0s timeout=120s \
 meta resource-stickiness=5000 migration-threshold=0
primitive db2_db2inst1_db2inst1_SAMPLE-primary-VIP IPaddr2 \
 params ip=9.28.232.70 cidr_netmask=21 \
 op monitor interval=30s \
 op start interval=0s timeout=20s \
 op stop interval=0s timeout=20s \
 meta is-managed=true
primitive db2_ip-172-31-15-79_db2inst1_0 db2inst \
 params instance=db2inst1 hostname=ip-172-31-15-79 \
 op monitor timeout=120s interval=10s on-fail=restart \
 op start interval=0s timeout=120s \
 op stop interval=0s timeout=120s \
 meta migration-threshold=0 is-managed=true
primitive db2_ip-172-31-15-79_eth0 db2ethmon \
 params interface=eth0 hostname=ip-172-31-15-79 repeat_count=4 repeat_interval=4 \
 op monitor timeout=30s interval=4 \
 op start timeout=60s interval=0s \
 op stop interval=0s timeout=20s \
 meta is-managed=true

Chapter 1. High availability 99

primitive db2_ip-172-31-10-145_db2inst1_0 db2inst \
 params instance=db2inst1 hostname=ip-172-31-10-145 \
 op monitor timeout=120s interval=10s on-fail=restart \
 op start interval=0s timeout=120s \
 op stop interval=0s timeout=120s \
 meta migration-threshold=0 is-managed=true
primitive db2_ip-172-31-10-145_eth0 db2ethmon \
 params interface=eth0 hostname=ip-172-31-10-145 repeat_count=4 repeat_interval=4 \
 op monitor timeout=30s interval=4 \
 op start timeout=60s interval=0s \
 op stop interval=0s timeout=20s \
 meta is-managed=true
ms db2_db2inst1_db2inst1_SAMPLE-clone db2_db2inst1_db2inst1_SAMPLE \
 meta resource-stickiness=5000 migration-threshold=0 ordered=true promotable=true is-
managed=true
colocation db2_db2inst1_db2inst1_SAMPLE-primary-VIP-colocation inf:
db2_db2inst1_db2inst1_SAMPLE-primary-VIP:Started db2_db2inst1_db2inst1_SAMPLE-clone:Master
location loc-rule-db2_db2inst1_db2inst1_SAMPLE-eth0-ip-172-31-15-79
db2_db2inst1_db2inst1_SAMPLE-clone \
 rule -inf: db2ethmon-eth0 eq 0
location loc-rule-db2_db2inst1_db2inst1_SAMPLE-eth0-ip-172-31-10-145
db2_db2inst1_db2inst1_SAMPLE-clone \
 rule -inf: db2ethmon-eth0 eq 0
location loc-rule-db2_db2inst1_db2inst1_SAMPLE-node-ip-172-31-15-79
db2_db2inst1_db2inst1_SAMPLE-clone \
 rule -inf: db2inst-db2inst1 eq 0
location loc-rule-db2_db2inst1_db2inst1_SAMPLE-node-ip-172-31-10-145
db2_db2inst1_db2inst1_SAMPLE-clone \
 rule -inf: db2inst-db2inst1 eq 0
order order-rule-db2_db2inst1_db2inst1_SAMPLE-then-primary-VIP Mandatory:
db2_db2inst1_db2inst1_SAMPLE-clone:start db2_db2inst1_db2inst1_SAMPLE-primary-VIP:start
location prefer-db2_ip-172-31-15-79_db2inst1_0 db2_ip-172-31-15-79_db2inst1_0 100:
ip-172-31-15-79
location prefer-db2_ip-172-31-15-79_eth0 db2_ip-172-31-15-79_eth0 100: ip-172-31-15-79
location prefer-db2_ip-172-31-10-145_db2inst1_0 db2_ip-172-31-10-145_db2inst1_0 100:
ip-172-31-10-145
location prefer-db2_ip-172-31-10-145_eth0 db2_ip-172-31-10-145_eth0 100: ip-172-31-10-145
location prefer-db2inst1-ip-172-31-15-79-SAMPLE-primary-VIP db2_db2inst1_db2inst1_SAMPLE-
primary-VIP 100: ip-172-31-15-79
location prefer-db2inst1-ip-172-31-10-145-SAMPLE-primary-VIP db2_db2inst1_db2inst1_SAMPLE-
primary-VIP 100: ip-172-31-10-145
location prefer-ip-172-31-15-79-db2inst1-db2_db2inst1_db2inst1_SAMPLE-clone
db2_db2inst1_db2inst1_SAMPLE-clone 100: ip-172-31-15-79
location prefer-ip-172-31-10-145-db2inst1-db2_db2inst1_db2inst1_SAMPLE-clone
db2_db2inst1_db2inst1_SAMPLE-clone 100: ip-172-31-10-145
property cib-bootstrap-options: \
 have-watchdog=false \
 dc-version=2.0.2-1.el8-744a30d655 \
 cluster-infrastructure=corosync \
 cluster-name=hadom \
 stonith-enabled=false \
 no-quorum-policy=ignore \
 stop-all-resources=false \
 cluster-recheck-interval=60 \
 symmetric-cluster=false \
 last-lrm-refresh=1583509412
rsc_defaults rsc-options: \
 failure-timeout=60
rsc_defaults rsc_defaults-options: \
 is-managed=false

Installing the Pacemaker cluster software stack
Pacemaker is an open-source, high availability cluster manager software. To ensure a proper installation,
follow the procedures provided.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Before you begin

Download your Pacemaker cluster software package from the following IBM website: Db2 Automated
HADR with Pacemaker. This is to ensure that your version of Pacemaker is supported by Db2. Before
proceeding to the next section, verify that all prerequisites and necessary criteria have been met. For

100 IBM Db2 V11.5: Data Recovery and High Availability

https://www-01.ibm.com/marketing/iwm/platform/mrs/assets?source=mrs-db2pcmk
https://www-01.ibm.com/marketing/iwm/platform/mrs/assets?source=mrs-db2pcmk

more information on these prerequisites, refer to Prerequisites for an integrated solution using
Pacemaker.

Pre-setup checklist

• Instance user ID and group ID are setup
• /etc/hosts are setup with both hosts in it following the format listed in the prerequisite section
• Both hosts have TCP/IP connectivity between their Ethernet network interfaces
• Both root and instance user ID can use ssh between the two hosts, using both long and short host

names.
• The Pacemaker cluster software has been downloaded to both hosts.

The following is an example of how the pre-setup checklist works. An AWS environment is used for this
example:

1. Hosts information

Table 14. Example hosts information

Hostname IP address of the eth0 device

Short: ip-172-31-15-79

Long: ip-172-31-15-79.us-
east-2.compute.internal

172.31.15.79

Short: ip-172-31-10-145

Long: ip-72-31-10-145.us-
east-2.compute.internal

172.31.10.145

2. /etc/hosts are setup in both hosts as below:

127.0.0.1 localhost localhost.localdomain
localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain
localhost6 localhost6.localdomain6

172.31.15.79 ip-172-31-15-79.us-east-2.compute.internal ip-172-31-15-79
172.31.10.145 ip-172-31-10-145.us-east-2.compute.internal ip-172-31-10-145

127.0.0.1 localhost localhost.localdomain
localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain
localhost6 localhost6.localdomain6

172.31.15.79 ip-172-31-15-79.us-east-2.compute.internal ip-172-31-15-79
172.31.10.145 ip-172-31-10-145.us-east-2.compute.internal ip-172-31-10-145

3. TCP/IP ping can be performed between the two hosts:

• On ip-172-31-15-79, ping -I 172.31.15.79 172.31.10.145 works.
• On ip-172-31-10-145, ping -I 172.31.10.145 172.31.15.79 works.

4. Instance user ID / group ID: db2inst1 / db2iadm1

The following command can be used to generate them:

groupadd db2iadm1
useradd -g db2iadm1 -m -d /home/db2inst1 db2inst1

Verify that they have been created. To do that, try logging in with the user and password provided:

[root@ip-172-31-15-79 server]# grep db2iadm1 /etc/group
db2iadm1:x:1001:

Chapter 1. High availability 101

[root@ip-172-31-15-79 ec2-user]# grep db2inst1 /etc/passwd
db2inst1:x:1001:1001::/home/db2inst1:/bin/bash

5. SSH access works with both long and short host names between the two hosts using the root and
instance user ID.

As root user on ip-172-31-15-79, the following commands can run successfully:

ssh ip-172-31-15-79 -l root ls
ssh ip-172-31-15-79.us-east-2.compute.internal -l root ls
ssh ip-172-31-10-145 -l root ls
ssh ip-172-31-10-145.us-east-2.compute.internal -l root ls

As root user on ip-172-31-10-145, the following commands can run successfully:

ssh ip-172-31-15-79 -l root ls
ssh ip-172-31-15-79.us-east-2.compute.internal -l root ls
ssh ip-172-31-10-145 -l root ls
ssh ip-172-31-10-145.us-east-2.compute.internal -l root ls

6. Location of the Db2 software: directory /root/db2Image exists on both hosts.
7. The Pacemaker cluster software package tar file exists in /tmp on both hosts.

Each tarball follows the naming convention:

• Db2 version
• Pacemaker
• Date in YYYYMMDD format
• Linux Distribution
• Linux architecture

For example: Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64.tar.gz

[root@ip-172-31-15-79 tmp]# ls -al *.gz
-rw-r--r--. 1 ec2-user ec2-user 10710023 Dec 24 21:32
Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64.tar.gz

[root@ip-172-31-10-145 tmp]# ls -al *.gz
-rw-r--r--. 1 ec2-user ec2-user 10710023 Dec 24 21:32
Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64.tar.gz

About this task

Follow the procedure to install the Pacemaker cluster software stack.

Procedure

1. As root on the first host, ip-172-31-15-79, extract the tar file in the /tmp folder.

• cd /tmp
• tar -zxf Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64.tar.gz
• The above will create the directory Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64

Which will contain the following directory tree:

Db2/
Db2agents/
RPMS/
RPMS/<architecture>
RPMS/noarch
SRPMS/

Note: The <architecture> variable will be different based on your hardware. On Intel/AMD it will
be x86_64. On POWER LE it will be ppcle. For z-systems it will be s390x.

2. For RHEL 8.1, install the epel-release, followed by the RPMs in the untarred Pacemaker directory:

102 IBM Db2 V11.5: Data Recovery and High Availability

a. cd /tmp/Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64/RPMS
b. dnf install https://dl.fedoraproject.org/pub/epel/epel-release-
latest-8.noarch.rpm

c. dnf install */*.rpm

A sample output:

[root@ip-172-31-10-145 RPMS]# dnf install https://dl.fedoraproject.org/pub/epel/epel-release-
latest-8.noarch.rpm
Red Hat Update Infrastructure 3 Client Configuration 2.0 kB/s | 2.1 kB 00:01
Red Hat Enterprise Linux 8 for x86_64 - AppStream fr 30 kB/s | 2.8 kB 00:00
Red Hat Enterprise Linux 8 for x86_64 - BaseOS from 26 kB/s | 2.4 kB 00:00
epel-release-latest-8.noarch.rpm 16 kB/s | 21 kB 00:01
Dependencies resolved.
===
 Package Arch Version Repository Size
===
Installing:
 epel-release noarch 8-7.el8 @commandline 21 k

Transaction Summary
===
Install 1 Package

Total size: 21 k
Installed size: 30 k
Is this ok [y/N]: y
Downloading Packages:
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing : 1/1
 Installing : epel-release-8-7.el8.noarch 1/1
 Running scriptlet: epel-release-8-7.el8.noarch 1/1
 Verifying : epel-release-8-7.el8.noarch 1/1

Installed:
 epel-release-8-7.el8.noarch

Complete!

[root@ip-172-31-10-145 RPMS]# dnf install */*.rpm
Extra Packages for Ente [===] --- B/s | 0 B --:-- ETA
Extra Packages for Ente [===] --- B/s | 0 B --:-- ETA
Extra Packages for Ente [===] --- B/s | 0 B --:-- ETA
Extra Packages for Ente 74% [================] 11 MB/s | 3.2 MB 00:00 ETA
Extra Packages for Enterprise Linux 8 - x86_64 1.8 MB/s | 4.3 MB 00:02

Last metadata expiration check: 0:00:01 ago on Tue 24 Dec 2019 08:43:32 PM UTC.
Dependencies resolved.
===
 Package Arch Version Repository Size
===
Installing:
 crmsh noarch 4.1.0-0 @commandline 717 k
 mcrmsh-scripts noarch 4.1.0-0 @commandline 30 k
 pacemaker-cts noarch 2.0.2-1.el8 @commandline 2.0 M

.

.

.

Installed:
 crmsh-4.1.0-0.noarch
 crmsh-scripts-4.1.0-0.noarch
 pacemaker-cts-2.0.2-1.el8.noarch
 pacemaker-doc-2.0.2-1.el8.noarch
 pacemaker-nagios-plugins-metadata-2.0.2-1.el8.noarch
 pacemaker-schemas-2.0.2-1.el8.noarch
 python3-parallax-1.0.5-1.el8.noarch
 corosync-3.0.3-1.el8.x86_64
 corosync-debuginfo-3.0.3-1.el8.x86_64
 corosync-debugsource-3.0.3-1.el8.x86_64
 corosynclib-3.0.3-1.el8.x86_64
 corosynclib-debuginfo-3.0.3-1.el8.x86_64
 corosynclib-devel-3.0.3-1.el8.x86_64

Chapter 1. High availability 103

 corosync-vqsim-3.0.3-1.el8.x86_64
 corosync-vqsim-debuginfo-3.0.3-1.el8.x86_64
 kronosnet-debugsource-1.13-1.el8.x86_64
 ldirectord-4.4.0-1.el8.x86_64
 libknet1-1.13-1.el8.x86_64
 .
 .
 .
 libaio-0.3.112-1.el8.x86_64
 gssproxy-0.8.0-14.el8.x86_64
 libqb-1.0.3-10.el8.x86_64
 device-mapper-persistent-data-0.8.5-2.el8.x86_64
 libqb-devel-1.0.3-10.el8.x86_64
 rpcbind-1.2.5-4.el8.x86_64

Complete!

For SLES 15 SP1, add the backports repository, followed by the RPMs in the untarred Pacemaker
directory:

a. cd /tmp/Db2_v11.5.4.0_Pacemaker_20200418_SLES15SP1_x86_641/RPMS
b. zypper addrepo -fc http://download.opensuse.org/repositories/openSUSE:/Backports:/SLE-15-

SP1/standard/openSUSE:Backports:SLE-15-SP1.repo
c. zypper install --allow-unsigned-rpm {noarch,x86_64}/*.rpm

3. Verify that the following packages are installed. The output may vary slightly for different architectures
and Linux distributions. All packages should include the db2pcmk text in the output. For example:

[root@ip-172-31-15-79 RPMS]# rpm -q corosync
corosync-3.0.3-1.db2pcmk.el8.x86_64
[root@ip-172-31-15-79 RPMS]# rpm -q pacemaker
pacemaker-2.0.2-1.db2pcmk.el8.x86_64
[root@ip-172-31-15-79 RPMS]# rpm -q crmsh
crmsh-4.1.0-0.db2pcmk.el8.noarch

4. Copy the db2cm utility from the cluster software directory into the instance sqllib/adm directory:

cp /tmp/Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64/Db2/db2cm /home/db2inst1/sqllib/adm
chmod 755 /home/db2inst1/sqllib/adm/db2cm

5. Copy the resource agent scripts (db2hadr, db2inst, db2ethmon) from /tmp/Db2agents
into /usr/lib/ocf/resource.d/heartbeat/ on both hosts:

/home/db2inst1/sqllib/adm/db2cm -copy_resources /tmp/
Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64/Db2agents -host ip-172-31-10-145
/home/db2inst1/sqllib/adm/db2cm -copy_resources /tmp/
Db2_v11.5.4.0_Pacemaker_20200418_RHEL8.1_x86_64/Db2agents -host ip-172-31-15-79

6. Repeat Steps 1 to 4 on the second host.

What to do next

Proceed to Configuring a clustered environment using the Db2 cluster manager (db2cm) utility to create
the Pacemaker cluster and resources.

Install and configure a QDevice quorum
Follow the procedure to install and configure the QDevice quorum for your Pacemaker cluster in Db2.

Before you begin

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

The QDevice quorum requires a third host accessible via a TCP/IP network by the other hosts in the
cluster. However, the third host itself does not need to be configured as a part of the cluster. There is no

104 IBM Db2 V11.5: Data Recovery and High Availability

http://download.opensuse.org/repositories/openSUSE:/Backports:/SLE-15-SP1/standard/openSUSE:Backports:SLE-15-SP1.repo
http://download.opensuse.org/repositories/openSUSE:/Backports:/SLE-15-SP1/standard/openSUSE:Backports:SLE-15-SP1.repo

need to have the Db2 or Pacemaker software installed. The only requirement is to install a corosync-
qnetd RPM on it. For more information refer to “Quorum devices support on Pacemaker” on page 89.

Note: The corosync-qnetd RPM must be the version validated by Db2 and downloaded from the IBM
site.

About this task

Having a reliable quorum mechanism setup is essential to a highly available cluster. A QDevice quorum is
the best practice recommended for Db2.

Procedure

1. On the primary and standby hosts, ensure the corosync-qdevice package is installed with the
following command:

rpm -qa | grep corosync-qdevice

If it is not installed, install it using the following command on RHEL systems:

dnf install /<path_to_RPMS_provided>/corosync-qdevice*

For SLES systems, use the following command:

zypper install --allow-unsigned-rpm /<path_to_RPMS_provided>/corosync-qdevice*

2. On the third host, install the Corosync QNet software with the following command on RHEL systems:

dnf install /<path_to_RPMS_provided>/corosync-qnetd*

For SLES systems, use the following command:

zypper install --allow-unsigned-rpm /<path_to_RPMS_provided>/corosync-qnetd*

3. As a root user, run the following db2cm command to setup the QDevice from one of the cluster nodes.

Note: The db2cm command requires a passwordless SSH to be configured between the node that it is
going to run on and the node that will host the QDevice.

./db2cm -create -qdevice <hostname>

4. Run the following corosync command on the primary and standby hosts to verify that the quorum was
setup correctly.

corosync-qdevice-tool -s

A sample output of the command:

[root@cuisses1 ~]# corosync-qdevice-tool -s
Qdevice information

Model: Net
Node ID: 1
Configured node list:
 0 Node ID = 1
 1 Node ID = 2
Membership node list: 1, 2

Qdevice-net information

Cluster name: hadom
QNetd host: frizzly1:5403
Algorithm: LMS
Tie-breaker: Node with lowest node ID
State: Connected

5. Run the following corosync command on the QDevice host to verify that the quorum device is running
correctly.

Chapter 1. High availability 105

corosync-qnetd-tool -l

A sample output of the command:

[root@frizzly1 ~]# corosync-qnetd-tool -l
Cluster "hadom":
 Algorithm: LMS
 Tie-breaker: Node with lowest node ID
 Node ID 2:
 Client address: ::ffff:9.21.110.42:55568
 Configured node list: 1, 2
 Membership node list: 1, 2
 Vote: ACK (ACK)
 Node ID 1:
 Client address: ::ffff:9.21.110.22:51400
 Configured node list: 1, 2
 Membership node list: 1, 2

Removing a cluster domain
Follow the procedure to remove a cluster domain regardless of its current state.

Before you begin

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

The cleanup process involves creating temporary files for logging in /tmp, therefore it is important to
have at least 2GB of space in /tmp before proceeding.

About this task

For example purposes, the procedure uses sample outputs that use the same cluster setup as seen in
“Installing the Pacemaker cluster software stack” on page 100 (which is an AWS cluster). Specifically, the
sample output shown is a cluster in bad shape with multiple resources in a failed state.

Procedure

1. Pacemaker resource and cluster cleanup.

a. As the root user on any one of the hosts, run the following command to verify that there are
resources in the cluster. If there are no resources, skip to Step 2.

crm status

A sample output from a cluster in an unhealthy state:

 [root@ip-172-31-15-79 ec2-user]# crm status

 Stack: corosync
 Current DC: ip-172-31-15-79 (version 2.0.2-1.el8-744a30d655) - partition with quorum
 Last updated: Sat Jan 11 16:09:39 2020
 Last change: Tue Dec 24 23:04:19 2019 by root via cibadmin on ip-172-31-10-145

 2 nodes configured
 7 resources configured

 Online: [ip-172-31-10-145 ip-172-31-15-79]

 Full list of resources:

 eth0-mon_ip-172-31-15-79 (ocf::heartbeat:db2ethmon): FAILED (blocked)
[ip-172-31-10-145 ip-172-31-15-79]
 eth0-mon_ip-172-31-10-145 (ocf::heartbeat:db2ethmon): FAILED
ip-172-31-10-145 (blocked)
 Clone Set: db2inst1-clone [db2inst1]
 db2inst1 (ocf::heartbeat:db2inst): FAILED ip-172-31-10-145 (blocked)

106 IBM Db2 V11.5: Data Recovery and High Availability

 Started: [ip-172-31-15-79]
 Clone Set: hadr-db2inst1-SAMPLE-rs-clone [hadr-db2inst1-SAMPLE-rs] (promotable)
 hadr-db2inst1-SAMPLE-rs (ocf::heartbeat:db2hadr): FAILED
ip-172-31-10-145 (Monitoring, blocked)
 Slaves: [ip-172-31-15-79]
 db2inst1-SAMPLE-db-vip (ocf::heartbeat:IPaddr2): FAILED ip-172-31-10-145
(blocked)

 Failed Resource Actions:
 * eth0-mon_ip-172-31-15-79_stop_0 on ip-172-31-10-145 'unknown error' (1):
call=554256, status=Timed Out, exitreason='',
 last-rc-change='Sat Jan 4 00:14:44 2020', queued=89ms, exec=21216ms
 * hadr-db2inst1-SAMPLE-rs_stop_0 on ip-172-31-10-145 'unknown error' (1):
call=763612, status=Timed Out, exitreason='',
 last-rc-change='Sat Jan 11 15:33:23 2020', queued=0ms, exec=179961ms
 * db2inst1-SAMPLE-db-vip_stop_0 on ip-172-31-10-145 'unknown error' (1): call=554271,
status=Timed Out, exitreason='',
 last-rc-change='Sat Jan 4 00:18:04 2020', queued=0ms, exec=20959ms
 * db2inst1_stop_0 on ip-172-31-10-145 'unknown error' (1): call=554276, status=Timed
Out, exitreason='',
 last-rc-change='Sat Jan 4 00:30:44 2020', queued=69ms, exec=122565ms
 * eth0-mon_ip-172-31-10-145_stop_0 on ip-172-31-10-145 'unknown error' (1):
call=554268, status=Timed Out, exitreason='',
 last-rc-change='Sat Jan 4 00:16:40 2020', queued=0ms, exec=20573ms
 * hadr-db2inst1-SAMPLE-rs_promote_0 on ip-172-31-15-79 'unknown error' (1):
call=618317, status=complete, exitreason='',
 last-rc-change='Fri Jan 10 12:10:12 2020', queued=0ms, exec=379ms

b. As a root user on any one of the hosts, run the following command to remove all resources and
remove the cluster:

<Db2 INSTANCE directory>/sqllib/adm/db2cm -delete -cluster

A sample output of the command:

[root@ip-172-31-15-79 ec2-user]# cd /home/db2inst1/sqllib/adm
[root@ip-172-31-15-79 adm]# ./db2cm -delete -cluster

Cluster deleted successfully.

c. Repeat Step 1a to verify all resources and the cluster have been cleaned up.

[root@ip-172-31-15-79 adm]# crm status
ERROR: status: crm_mon (rc=102): Error: cluster is not available on this node

Note: After this step, there is no need to repeat these steps on other hosts.
2. Remove the Db2 instance and installation. If the intention is to remove the cluster resources and

cluster software, but leave the Db2 instances and databases on the system, skip to Step 3. Otherwise
continue to Step 2a.

Note: All sub-steps in Step 2 must be run on each host. Without a loss of generality, host
ip0-172-31-15-79 is chosen to be acted on first.

a. As an instance user, login to ip-172-31-15-79 and deactivate all HADR databases one at a time
by running the following command. In this example, there is only one database - SAMPLE:

db2 deactivate db SAMPLE

A sample output:

[db2inst1@ip-172-31-15-79 ~]$ db2 deactivate db SAMPLE
DB20000I The DEACTIVATE DATABASE command completed successfully.

b. As an instance user, stop the HADR with the following command:

db2 stop hadr on db SAMPLE

A sample output:

Chapter 1. High availability 107

[db2inst1@ip-172-31-15-79 ~]$ db2 stop hadr on db SAMPLE
DB20000I The STOP HADR ON DATABASE command completed successfully.

c. As an instance owner, verify that the HADR has stopped by running the following command:

[db2inst1@ip-172-31-15-79 ~]$ db2pd -hadr -db SAMPLE

Database SAMPLE not activated on database member 0 or this database name cannot be found
in the local database directory.

Option -hadr requires -db or -alldbs option and active database.

d. As an instance owner, drop the database with the following command:

db2 drop db SAMPLE

A sample output:

[db2inst1@ip-172-31-15-79 ~]$ db2 drop db SAMPLE
DB20000I The DROP DATABASE command completed successfully.

e. Repeat Step 2d for all databases. Then run the following command, as an instance user, to verify
that all databases have been dropped:

[db2inst1@ip-172-31-15-79 ~]$ db2 list db directory
SQL1057W The system database directory is empty. SQLSTATE=01606

f. As an instance user, stop the Db2 instance:

[db2inst1@ip-172-31-15-79 ~]$ db2stop
01/11/2020 16:27:44 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.

g. As a root user, remove the Db2 instance on the current host:

cd /opt/ibm/db2/V11.5/instance
./db2idrop

A sample output:

 [root@ip-172-31-15-79 instance]# ./db2idrop db2inst1
 DBI1446I The db2idrop command is running.

 DB2 installation is being initialized.

 Total number of tasks to be performed: 2
 Total estimated time for all tasks to be performed: 305 second(s)

 Task #1 start
 Description: Initializing instance list
 Estimated time 5 second(s)
 Task #1 end

 Task #2 start
 Description: Configuring DB2 instances
 Estimated time 300 second(s)
 Task #2 end

 The execution completed successfully.

 For more information see the DB2 installation log at "/tmp/db2idrop.log.1013".
 DBI1070I Program db2idrop completed successfully.

h. As a root user, uninstall the Db2 server from the current host:

cd /opt/ibm/db2/V11.5/install
./db2_deinstall -a

A sample output:

108 IBM Db2 V11.5: Data Recovery and High Availability

 [root@ip-172-31-15-79 install]# pwd
 /opt/ibm/db2/V11.5/install
 [root@ip-172-31-15-79 install]# ./db2_deinstall -a
 DBI1016I Program db2_deinstall is performing uninstallation. Please wait.

 The execution completed with warnings.

 For more information see the DB2 uninstallation log at "/tmp/db2_deinstall.log.7782".

i. (Optional) As a root user, remove all Db2-related users and groups that have been created:

userdel db2inst1
groupdel db2iadm1

j. Repeat Step 2a to Step 2i on the other hosts.
3. Uninstalling Pacemaker.

a. As a root user on one of the hosts, run the following command to remove all packages:

cd /tmp/20191231_Db2HADR_Pacemaker_Beta1/RPMS
rpm -qa 'crm*' | xargs rpm -e
rpm -qa 'pacemaker*' | xargs rpm -e
rpm -qa 'corosync*' | xargs rpm -e
rpm -qa 'kronosnet*' | xargs rpm -e

b. Verify that all packages have been removed by running the following commands:

rpm -qa 'crm*'
rpm -qa 'pacemaker*'
rpm -qa 'corosync*'
rpm -qa 'kronosnet*'

c. Repeat Step 3a and Step 3b on the other hosts.

Maintaining a Pacemaker cluster domain
Refer to the following topics on how to maintain your Pacemaker cluster domain.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

User initiated takeover
Follow the procedure to initiate a user takeover.

Procedure

1. An example of the initial state of the cluster:

[root@jesting1 ~]# crm status
Stack: corosync
Current DC: jesting1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 13:37:52 2020
Last change: Mon Mar 9 09:58:45 2020 by root via cibadmin on inwards1

2 nodes configured
7 resources configured

Online: [inwards1 jesting1]

Full list of resources:

db2_inwards1_eth1 (ocf::heartbeat:db2ethmon): Started inwards1
db2_jesting1_eth1 (ocf::heartbeat:db2ethmon): Started jesting1
db2_inwards1_db2inst1_0 (ocf::heartbeat:db2inst): Started inwards1
db2_jesting1_db2inst1_0 (ocf::heartbeat:db2inst): Started jesting1
Clone Set: db2_db2inst1_db2inst1_SAMPLE-clone [db2_db2inst1_db2inst1_SAMPLE] (promotable)
 Masters: [inwards1]
 Slaves: [jesting1]
db2_db2inst1_db2inst1_SAMPLE-primary-VIP (ocf::heartbeat:IPaddr2): Started

Chapter 1. High availability 109

inwards1
db2_db2inst1_db2inst1_SAMPLE-standby-VIP (ocf::heartbeat:IPaddr2): Started
jesting1

2. Run a user-initiated takeover from the standby host as the instance owner:

[db2inst1@jesting1 ~]$ db2 takeover hadr on db sample
DB20000I The TAKEOVER HADR ON DATABASE command completed successfully.

3. Validate that the primary role fails over in the crm output. Also, the reads on the standby VIP and
primary VIP have switched hosts as expected.

[root@jesting1 ~]# crm status
Stack: corosync
Current DC: jesting1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 13:37:52 2020
Last change: Mon Mar 9 09:58:45 2020 by root via cibadmin on inwards1

2 nodes configured
7 resources configured

Online: [inwards1 jesting1]

Full list of resources:

db2_inwards1_eth1 (ocf::heartbeat:db2ethmon): Started inwards1
db2_jesting1_eth1 (ocf::heartbeat:db2ethmon): Started jesting1
db2_inwards1_db2inst1_0 (ocf::heartbeat:db2inst): Started inwards1
db2_jesting1_db2inst1_0 (ocf::heartbeat:db2inst): Started jesting1
Clone Set: db2_db2inst1_db2inst1_SAMPLE-clone [db2_db2inst1_db2inst1_SAMPLE] (promotable)
 Masters: [jesting1]
 Slaves: [inwards1]
db2_db2inst1_db2inst1_SAMPLE-primary-VIP (ocf::heartbeat:IPaddr2): Started
jesting1
db2_db2inst1_db2inst1_SAMPLE-standby-VIP (ocf::heartbeat:IPaddr2): Started
inwards1

4. Validate the states of the database using the db2pd command on both hosts:

New primary:

[db2inst1@jesting1 ~]$ db2pd -db TESTDB -hadr | grep ROLE
 HADR_ROLE = PRIMARY

New standby:

[db2inst1@inwards1 ~]$ db2pd -db TESTDB -hadr | grep ROLE
 HADR_ROLE = STANDBY

User initiated takeover by force
Follow the procedure to initiate a user takeover by force. Expect the Pacemaker cluster to reintegrate the
old primary as the new standby.

Procedure

1. An example of the initial state of the cluster:

Stack: corosync
Current DC: jesting1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 13:37:52 2020
Last change: Mon Mar 9 09:58:45 2020 by root via cibadmin on inwards1

2 nodes configured
8 resources configured

Online: [inwards1 jesting1]

Full list of resources:

db2_inwards1_eth1 (ocf::heartbeat:db2ethmon): Started inwards1
db2_jesting1_eth1 (ocf::heartbeat:db2ethmon): Started jesting1
db2_inwards1_db2inst1_0 (ocf::heartbeat:db2inst): Started inwards1
db2_jesting1_db2inst1_0 (ocf::heartbeat:db2inst): Started jesting1

110 IBM Db2 V11.5: Data Recovery and High Availability

Clone Set: db2_db2inst1_db2inst1_SAMPLE-clone [db2_db2inst1_db2inst1_SAMPLE] (promotable)
 Masters: [jesting1]
 Slaves: [inwards1]
db2_db2inst1_db2inst1_SAMPLE-primary-VIP (ocf::heartbeat:IPaddr2): Started
jesting1
db2_db2inst1_db2inst1_SAMPLE-standby-VIP (ocf::heartbeat:IPaddr2): Started
inwards1

2. Run a user-initiated takeover from the standby host as the instance owner:

[db2inst1@inwards1 ~]$ db2 takeover hadr on db testdb by force
DB20000I The TAKEOVER HADR ON DATABASE command completed successfully.

3. Validate that the primary role fails over in the crm output. Also the Reads on the standby VIP and
primary VIP have switched hosts as expected.

[root@jesting1 ~]# crm status
Stack: corosync
Current DC: jesting1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 13:37:52 2020
Last change: Mon Mar 9 09:58:45 2020 by root via cibadmin on inwards1

2 nodes configured
7 resources configured

Online: [inwards1 jesting1]

Full list of resources:

 db2_inwards1_eth1 (ocf::heartbeat:db2ethmon): Started inwards1
 db2_jesting1_eth1 (ocf::heartbeat:db2ethmon): Started jesting1
 db2_inwards1_db2inst1_0 (ocf::heartbeat:db2inst): Started inwards1
 db2_jesting1_db2inst1_0 (ocf::heartbeat:db2inst): Started jesting1
 Clone Set: db2_db2inst1_db2inst1_SAMPLE-clone [db2_db2inst1_db2inst1_SAMPLE] (promotable)
 Masters: [inwards1]
 Slaves: [jesting1]
 db2_db2inst1_db2inst1_SAMPLE-primary-VIP (ocf::heartbeat:IPaddr2): Started
inwards1
 db2_db2inst1_db2inst1_SAMPLE-standby-VIP (ocf::heartbeat:IPaddr2): Started
jesting1

4. Validate the states of the database using the db2pd command on both hosts:

New primary:

[db2inst1@inwards1 ~]$ db2pd -db TESTDB -hadr | grep ROLE
 HADR_ROLE = PRIMARY

New standby:

[db2inst1@jesting1 ~]$ db2pd -db TESTDB -hadr | grep ROLE
 HADR_ROLE = STANDBY

Add a HADR database resource to the resource model
Perform the following procedure to create a new database resource to an existing database in the
instance.

Before you begin

The following prerequisites must be met before proceeding with the rest of the procedure:

• The target database must exist in the current instance.
• The HADR_PEER_WINDOW value must be set.

Procedure

1. As a root user, run the db2cm command with the -create -db option.

[root@ignited1 ~]# ./db2cm -create -db SAMPLE -instance db2inst1
Database resource for SAMPLE created successfully

Chapter 1. High availability 111

2. Verify that the resource is created successfully with the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 14:07:35 2020
Last change: Tue Mar 3 11:50:52 2020 by db2inst2 via cibadmin on cuisses1

2 nodes configured
6 resources configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1
db2_ignited1_eth0 (ocf::heartbeat:db2ethmon): Started ignited1
db2_cuisses1_db2inst1_0 (ocf::heartbeat:db2inst): Started cuisses1
db2_ignited1_db2inst2_0 (ocf::heartbeat:db2inst): Started ignited1
Clone Set: db2_db2inst1_db2inst2_SAMPLE-clone [db2_db2inst1_db2inst2_SAMPLE] (promotable)
 Masters: [cuisses1]
 Slaves: [ignited1]

The db2_db2inst1_db2inst2_SAMPLE-clone is the new database resource created for the
SAMPLE database in the resource model.

Delete an existing HADR database resource from the resource model
This procedure is mandatory when dropping an HADR enabled database from the instance. Perform this
procedure only after the database is dropped.

Procedure

1. As a root user, run the db2cm command with the -delete -db option.

[root@ignited1 ~]# ./db2cm -delete -db SAMPLE -instance db2inst1
Deleted resource for HADRDB on db2inst1 successfully.

2. Verify that the resource has been deleted successfully using the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 14:10:23 2020
Last change: Tue Mar 10 14:10:23 2020 by db2inst2 via cibadmin on cuisses1

2 nodes configured
4 resources configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1
db2_ignited1_eth0 (ocf::heartbeat:db2ethmon): Started ignited1
db2_cuisses1_db2inst1_0 (ocf::heartbeat:db2inst): Started cuisses1
db2_ignited1_db2inst2_0 (ocf::heartbeat:db2inst): Started ignited1

Associate a primary VIP with an existing HADR database of an instance
Follow the procedure to associate a primary VIP with an existing HADR database of an instance.

Before you begin

The following prerequisites must be met before proceeding with the rest of the procedure:

• The target HADR-enabled database must have an associated HADR resource in the resource model
• An unused IP address on the same IP subnet of the public Ethernet adapter used on both hosts.

112 IBM Db2 V11.5: Data Recovery and High Availability

Procedure

1. As a root user, run the db2cm with the -create -primaryVIP option.

[root@ignited1 ~]# ./db2cm -create -primaryVIP 9.21.107.154 -db SAMPLE -instance db2inst1
Primary VIP resource created successfully.

2. Verify that the resource is created successfully with the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 14:17:23 2020
Last change: Tue Mar 10 14:17:23 2020 by db2inst2 via cibadmin on cuisses1

2 nodes configured
7 resources configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1
db2_ignited1_eth0 (ocf::heartbeat:db2ethmon): Started ignited1
db2_cuisses1_db2inst1_0 (ocf::heartbeat:db2inst): Started cuisses1
db2_ignited1_db2inst2_0 (ocf::heartbeat:db2inst): Started ignited1
Clone Set: db2_db2inst1_db2inst2_SAMPLE-clone [db2_db2inst1_db2inst2_SAMPLE] (promotable)
 Masters: [cuisses1]
 Slaves: [ignited1]
db2_db2inst1_db2inst1_SAMPLE-primary-VIP (ocf::heartbeat:IPaddr2): Started
cuisses1

The db2_db2inst1_db2inst1_SAMPLE-primary-VIP is the new VIP resource created for the
SAMPLE database in the resource model.

Disassociate a primary VIP with an existing HADR database of an instance
Follow the procedure to disassociate a primary VIP with an existing HADR database of an instance.

Procedure

1. As a root user, run the db2cm command with the -delete -primaryVIP option.

[root@ignited1 ~]# ./db2cm -delete -primaryVIP -db SAMPLE -instance db2inst1
Primary VIP resource deleted successfully.

2. Verify that the resource has been deleted successfully using the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 14:17:56 2020
Last change: Tue Mar 10 14:17:56 2020 by db2inst2 via cibadmin on cuisses1

2 nodes configured
6 resources configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1
db2_ignited1_eth0 (ocf::heartbeat:db2ethmon): Started ignited1
db2_cuisses1_db2inst1_0 (ocf::heartbeat:db2inst): Started cuisses1
db2_ignited1_db2inst2_0 (ocf::heartbeat:db2inst): Started ignited1
Clone Set: db2_db2inst1_db2inst2_SAMPLE-clone [db2_db2inst1_db2inst2_SAMPLE] (promotable)
 Masters: [cuisses1]
 Slaves: [ignited1]

Chapter 1. High availability 113

Associate a standby VIP with an existing HADR database of an instance for read-on-standby
Follow the procedure to associate a standby VIP with an existing HADR database of an instance for read-
on-standby.

Procedure

1. As a root user, run the db2cm command with the -create -standbyVIP option.

[root@ignited1 ~]# ./db2cm -create -standbyVIP 9.28.232.70 -instance db2inst1 -db SAMPLE
Standby VIP resource created successfully.

2. Verify that the resource has been created successfully using the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 14:17:23 2020
Last change: Tue Mar 10 14:17:23 2020 by db2inst2 via cibadmin on cuisses1

2 nodes configured
7 resources configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1
db2_ignited1_eth0 (ocf::heartbeat:db2ethmon): Started ignited1
db2_cuisses1_db2inst1_0 (ocf::heartbeat:db2inst): Started cuisses1
db2_ignited1_db2inst2_0 (ocf::heartbeat:db2inst): Started ignited1
Clone Set: db2_db2inst1_db2inst2_SAMPLE-clone [db2_db2inst1_db2inst2_SAMPLE] (promotable)
 Masters: [cuisses1]
 Slaves: [ignited1]
db2_db2inst1_db2inst1_SAMPLE-standby-VIP (ocf::heartbeat:IPaddr2): Started
ignited1

Disassociate a standby VIP with an existing HADR database of an instance
Follow the procedure to disassociate a standby VIP with an existing HADR database of an instance.

Procedure

1. As a root user, run the db2cm command with the -delete -standbyVIP option.

[root@ignited1 ~]# ./db2cm -delete -standbyVIP -db SAMPLE -instance db2inst1
Standby VIP resource deleted successfully.

2. Verify that the resource has been deleted successfully using the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 14:17:56 2020
Last change: Tue Mar 10 14:17:56 2020 by db2inst2 via cibadmin on cuisses1

2 nodes configured
6 resources configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1
db2_ignited1_eth0 (ocf::heartbeat:db2ethmon): Started ignited1
db2_cuisses1_db2inst1_0 (ocf::heartbeat:db2inst): Started cuisses1
db2_ignited1_db2inst2_0 (ocf::heartbeat:db2inst): Started ignited1
Clone Set: db2_db2inst1_db2inst2_SAMPLE-clone [db2_db2inst1_db2inst2_SAMPLE] (promotable)
 Masters: [cuisses1]
 Slaves: [ignited1]

114 IBM Db2 V11.5: Data Recovery and High Availability

Remove all resources related to the public Ethernet adapter device on a host in the resource model
Follow the procedure to remove all resources related to the public Ethernet adapter device on a host in
the resource model.

Procedure

1. As a root user, run the db2cm command with the -delete -publicEthernet option.

[root@ignited1 ~]# ./db2cm -delete -publicEthernet eth1 -host ignited1
Public Ethernet resource deleted successfully.

2. Verify that the resource has been deleted successfully using the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.1-4.el8-0eb7991564) - partition with quorum
Last updated: Mon Dec 30 11:18:07 2019
Last change: Mon Dec 30 11:18:03 2019 by root via cibadmin on ignited1

2 nodes configured
1 resource configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1

Remove all resources related to an instance in the resource model
Follow this procedure to keep the cluster intact but have all resources (instance, database, Ethernet)
along with all constraints removed.

Procedure

1. As a root user, run the db2cm command with the -delete -instance option.

[root@ignited1 ~]# ./db2cm -delete -instance db2inst1
Deleted resource for HADRDB on db2inst1 successfully.
Deleted primary VIP resource for SAMPLE on db2inst1 successfully.
Deleted standby VIP resource for SAMPLE on db2inst1 successfully.
Deleted resource for SAMPLE on db2inst1 successfully.
Instance resource db2inst1 deleted successfully.

2. Verify that the resources have been deleted successfully using the crm status command.

[root@ignited1 ~]# crm status
Stack: corosync
Current DC: ignited1 (version 2.0.2-1.el8-744a30d655) - partition with quorum
Last updated: Tue Mar 10 14:37:55 2020
Last change: Tue Mar 10 14:37:55 2020 by db2inst2 via cibadmin on cuisses1

2 nodes configured
2 resources configured

Online: [cuisses1 ignited1]

Full list of resources:

db2_cuisses1_eth0 (ocf::heartbeat:db2ethmon): Started cuisses1
db2_ignited1_eth0 (ocf::heartbeat:db2ethmon): Started ignited1

Remove an automated HADR cluster with Pacemaker
Follow the procedure to remove an automated HADR cluster with Pacemaker.

Procedure

1. As a root user, run db2cm command with the -delete option.

[root@ignited1 ~]# ./db2cm -delete -cluster
Cluster deleted successfully.

Chapter 1. High availability 115

2. Verify that the resources and cluster have been deleted successfully using the crm status
command.

[root@ignited1 ~]# crm status
ERROR: status: crm_mon (rc=102): Error: cluster is not available on this node

Troubleshooting
Follow the commands to help troubleshoot the HADR cluster with Pacemaker.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Procedure

1. As a root user on any host in the cluster, run the following command:

db2cm -list

If there is a cluster with a database resource, the output should look similar to the following:

[root@db2tea1 ~]# db2cm -list
 Cluster Status

Domain information:
Domain name = hadom
Pacemaker version = 2.0.2-1.db2pcmk.el8
Corosync version = 3.0.3
Current domain leader = db2tea1
Number of nodes = 2
Number of resources = 6

Node information:
Name name State
---------------- --------
db2tea1 Online
kedge1 Online

Resource Information:

Resource Name = db2_db2inst1_db2inst1_SAMPLE
 Resource Type = HADR
 DB Name = SAMPLE
 Managed = true
 HADR Primary Instance = db2inst1
 HADR Primary Node = db2tea1
 HADR Primary State = Online
 HADR Standby Instance = db2inst1
 HADR Standby Node = kedge1
 HADR Standby State = Online

Resource Name = db2_db2tea1_db2inst1_0
 State = Online
 Managed = true
 Resource Type = Instance
 Node = db2tea1
 Instance Name = db2inst1

Resource Name = db2_db2tea1_eth1
 State = Online
 Managed = true
 Resource Type = Network Interface
 Node = db2tea1
 Interface Name = eth1

Resource Name = db2_kedge1_db2inst1_0
 State = Online
 Managed = true
 Resource Type = Instance
 Node = kedge1
 Instance Name = db2inst1

Resource Name = db2_kedge1_eth1
 State = Online

116 IBM Db2 V11.5: Data Recovery and High Availability

 Managed = true
 Resource Type = Network Interface
 Node = kedge1
 Interface Name = eth1

Fencing Information:
 Not Configured
Quorum Information:
 Two-node quorum

There are five key components that users should look for in the output: Domain, Node, Resource,
Fencing information, and Quorum information.
Domain

Domain information shows installed RPM versions and domain configurations.
Node

Node information shows all the configured nodes in the domain and their active states.
Resource

Resource information lists all the resources in the domain and their states and configurations. The
State shows the active state of the resource, and Managed shows that the resource is either
disabled or enabled.

Fencing information
Fencing information describes the fencing method used in the domain.

Quorum information
Quorum information should be Two-node quorum, Qdevice, or None based on the quorum type
configured
If the Quorum information lists a QDevice setup, the output would be different compared to the
above output. It would look similar to the following:

[root@db2tea1 ~]# db2cm -list
 Cluster Status

Domain information:
Domain name = hadom
Pacemaker version = 2.0.2-1.db2pcmk.el8
Corosync version = 3.0.3
Current domain leader = db2tea1
Number of nodes = 2
Number of resources = 6

Node information:
Name name State
---------------- --------
db2tea1 Online
kedge1 Online

Resource Information:

Resource Name = db2_db2inst1_db2inst1_SAMPLE
 Resource Type = HADR
 HADR DB Name = SAMPLE
 HADR Primary Instance = db2inst1
 HADR Primary Node = db2tea1
 HADR Primary State = Online
 HADR Priamry Managed = true

 HADR Standby Instance = db2inst1
 HADR Standby Node = kedge1
 HADR Standby State = Online
 HADR Standby Managed = true

Resource Name = db2_db2tea1_db2inst1_0
 State = Online
 Managed = true
 Resource Type = Instance
 Node = db2tea1
 Instance Name = db2inst1

Resource Name = db2_db2tea1_eth1
 State = Online
 Managed = true
 Resource Type = Network Interface

Chapter 1. High availability 117

 Node = db2tea1
 Interface Name = eth1

Resource Name = db2_kedge1_db2inst1_0
 State = Online
 Managed = true
 Resource Type = Instance
 Node = kedge1
 Instance Name = db2inst1

Resource Name = db2_kedge1_eth1
 State = Online
 Managed = true
 Resource Type = Network Interface
 Node = kedge1
 Interface Name = eth1

Fencing Information:
 Not Configured
Quorum Information:
 Qdevice

Qdevice information

Model: Net
Node ID: 1
Configured node list:
 0 Node ID = 1
 1 Node ID = 2
Membership node list: 1, 2

Qdevice-net information

Cluster name: hadom
QNetd host: tierce1:5403
Algorithm: LMS
Tie-breaker: Node with lowest node ID
State: Connected

See the following for further troubleshooting of specific issues:

Db2 instance fails to restart automatically after a failure
After a failure, the Db2 instance may have failed to restart automatically. This topic will show you how to
identify and resolve the failure.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only.

Identification of the problem

The following log entries from pacemaker-execd and pacemaker-controld indicate that the db2inst
resource agent failed to start the instance after reaching the 900 second timeout.

In /var/log/pacemaker/pacemaker.log

219 May 19 13:16:08 db2inst(db2_db2tea1_db2inst1_0)[29069]: INFO: start: 290: db2inst1:
db2inst_start() entry.
220 May 19 13:16:08 db2inst(db2_db2tea1_db2inst1_0)[29069]: WARNING: start: 487: psdid not
list any process for db2sysc on node 0 after 5 retries. db2inst_monitor() exit with rc=1.
<...>
234 May 19 13:16:08 db2inst(db2_db2tea1_db2inst1_0)[29069]: INFO: start: 184: db2inst1:
Attempting to start partition(0) via db2gcf...
<...>
846 May 19 13:31:13 db2tea1.fyre.ibm.com pacemaker-based[12628] (cib_process_ping) info:
Reporting our current digest to kedge1: 329366e809df79e8eee7385e29f376d6 for 61.5713.41
(0x556f3945d0c0 0)
847 May 19 13:31:08 db2tea1.fyre.ibm.com pacemaker-execd[12630] (child_timeout_callback)
warning: db2_db2tea1_db2inst1_0_start_0 process (PID 29069) timed out
848 May 19 13:31:08 db2tea1.fyre.ibm.com pacemaker-execd[12630] (operation_finished) warning:
db2_db2tea1_db2inst1_0_start_0:29069 -timed out after 900000ms
849 May 19 13:31:08 db2tea1.fyre.ibm.com pacemaker-execd[12630] (log_finished) info:
finished -rsc:db2_db2tea1_db2inst1_0 action:startcall_id:54 pid:29069 exit-code:1 exec-
time:900003ms queue-time:0ms
850 May 19 13:31:08 db2tea1.fyre.ibm.com pacemaker-controld[16247] (process_lrm_event)

118 IBM Db2 V11.5: Data Recovery and High Availability

error: Result of start operation for db2_db2tea1_db2inst1_0 on db2tea1: Timed Out | call=54
key=db2_db2tea1_db2inst1_0_start_0 timeout=900000ms

Lines 219 & 220 are typical entries logged while the instance is stopped. They may repeat until the
instance is started and do not indicate a problem. The log entry on line 234 indicates that Pacemaker is
attempting to start the instance.

Lines 847-850, logged approximately 15 minutes later, indicate that Pacemaker timed-out waiting for the
instance resource to start.

Resolution

The above logs typically indicate that an issue occurred during db2start. Use the following steps to further
debug and resolve the problem.

1. Note the timestamp of the instance start attempt (May 19 13:16:08 in the above on Line 234).
2. Locate the db2diag.log of the current host.
3. Search forward from the timestamp noted in step #1 for errors from "db2start", "db2star2", or

"db2sysc" process.
4. One of the entries should indicate the SQLCODE, or there can be other errors earlier that will provide a

clue to the failure.
5. Resolve the error, run ipclean -a as the instance owner.
6. Restart the instance manually.

Db2 HADR database pair both assume primary role
This topic will show you how to identify and resolve a case where both databases in an HADR pair assume
the primary HADR database role due to compounding issues.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only.

Identification of the problem

Confirm both databases have "HADR database role" set to PRIMARY. Run db2 get db cfg for |
grep "HADR database role on each host as the instance user.

[rohant@svlxtorcpacemaker]# db2 get db cfg for gtdb| grep "HADR database role"
HADR database role = PRIMARY

[rohant@svlxtordpacemaker]# db2 get db cfg for gtdb| grep "HADR database role"
HADR database role = PRIMARY

Additionally, running crm status as root will show the database on one host in the failed state.

[root@svlxtorcpacemaker]# crm status
...
Clone Set: db2_rohant_rohant_GTDB-clone [db2_ rohant_rohant_GTDB] (promotable)
 db2_rohant_rohant_GTDB (ocf::heartbeat:db2hadr): FAILED
 Masters: [svltord]

The above output from crm status could be a transient state. Run the command a couple of times to
confirm that the failure is persistent.

Resolution

Search for the promotion of the standby database in the pacemaker.log or db2diag.log.

Example: pacemaker.log

Jun 19 14:10:52 svltordpacemaker-controld[1765] (abort_transition_graph) notice: Transition
8608 aborted by nodes-1-db2hadr-rohant_rohant_GTDB_reint doing modify db2hadr-
rohant_rohant_GTDB_reint=1: Configuration change | cib=18.14477.0 source=te_update_diff_v2:465
path=/

Chapter 1. High availability 119

db2hadr(db2_rohant_rohant_GTDB)[31427]: 2020/06/19_14:10:52 INFO: promote: 959: svtdbm: 0:
CORAL: Debug data: "DB20000I The TAKEOVER HADR ON DATABASE command completed successfully.".
db2hadr_promote() exit with rc=0.

Example: db2diag.log

2020-06-19-14.10.50.093150-420 I133204209A456 LEVEL: Info
PID : 16226 TID : 4395462813968 PROC : db2sysc 0
INSTANCE: rohant NODE : 000 DB : GTDB
HOSTNAME: svltord
EDUID : 80 EDUNAME: db2hadrs.0.0 (CORAL) 0
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrStbyTkHandleInitialRequest,
probe:46000
MESSAGE : Standby has initiated a takeover by force peer window only.....

2020-06-19-14.10.52.593838-420 I133268013A437 LEVEL: Info
PID : 16226 TID : 4395462813968 PROC : db2sysc 0
INSTANCE: rohantNODE : 000 DB : GTDB
HOSTNAME: svltord
EDUID : 80 EDUNAME: db2hadrp.0.1 (CORAL) 0
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrStbyTkHandleDoneDrain, probe:46840
MESSAGE : Standby has completed takeover (now primary).

As shown in the examples above, svltord was promoted to become the primary, meaning the other host
svlxtorc should be reintegrated as standby.

Reintegrate the database as standby on the host that was not promoted to primary by running db2
start hadr on db as standby.

Run db2support to collect Db2 and Pacemaker diagnostics for analysis of original conditions leading to a
double primary state.

Database resource shows both HADR databases as standby
In this scenario, running the db2pd -hadr command on each host should still show the databases in the
expected state, with on as the primary and one as the standby. HADR_STATE and
HADR_CONNECT_STATUS should be PEER and CONNECTED respectively. However, running the crm
status command on either host lists both databases as 'Slaves'.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Identifying of the problem

<...>
Clone Set: db2_rohant_rohant_GTDB-clone [db2_rohant_rohant_GTDB] (promotable)
 Slaves: [svlxtorc, svlxtord]

This is typically caused by an issue at the Pacemaker layer. If the HADR cluster suffers from compounding
issues, then the double 'Slaves' state may be encountered.

Here is an example of the problem:

• The primary gets demoted to standby due to an issue on the primary host (Reboot, Takeover by force,
and others)

• Ensuing promotion on corresponding standby host fails due to an issue on the standby (Takeover fails)
• After the primary database recovers, running the crm status command still shows both databases in

'Slaves' state

In this scenario the database resource should be recovered by recreating the database resource. This
should result in Pacemaker following the normal logic to get the resource back into the desired state.

Resolving the problem

Correct this state with the following steps:

120 IBM Db2 V11.5: Data Recovery and High Availability

1. On both hosts run db2support to collect diagnostics for future analysis.
2. Run the delete database resource command on one of the hosts, this will remove the database

resource from the cluster:

db2cm -delete -db <database name> -instance <instance name>

3. Confirm that the database has the correct roles of primary and standby on the two hosts and has value
PEER and CONNECTED for HADR_STATE and HADR_CONNECT_STATUS respectively in the db2pd -
hadr output.

4. Run the create database resource command on one of the hosts:

db2cm -create -db <database name> -instance <instance name>

5. Check the crm status command output to confirm the database resource is in 'Masters' and
'Slaves' state on each host as expected:

[root@svlxtorcpacemaker]# crm status
...
Clone Set: db2_rohant_rohant_GTDB-clone [db2_rohant_rohant_GTDB] (promotable)
 Masters: [svlxtorc]
 Slaves: [svlxtord]

Database resource stuck in stopped state
The database does not get activated after the instance recovers.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Identifying the problem

Running the crm status command shows the database resource is stopped and unmanaged:

[root@svlxtordpacemaker]# crm status
Stack: corosync
Current DC: svlxtord(version 2.0.2-1.db2pcmk.el8-744a30d655) -partition with quorum
Last updated: Fri May 29 11:54:25 2020
2 nodes configured
18 resources configured
Online: [svlxtorc svlxtord]
Full list of resources:

db2_svlxtord_enc420c (ocf::heartbeat:db2ethmon): Started svlxtord
db2_svlxtorc_enc4209 (ocf::heartbeat:db2ethmon): Started svlxtorc
db2_svlxtorc_rohant_0 (ocf::heartbeat:db2inst): Started svlxtorc
db2_svlxtord_rohant_0 (ocf::heartbeat:db2inst): Started svlxtord
Clone Set: db2_rohant_rohant_GTDB-clone [db2_rohant_rohant_GTDB] (promotable) (unmanaged)
 db2_rohant_rohant_GTDB (ocf::heartbeat:db2hadr): Slave svlxtorc(unmanaged)
 Stopped: [svlxtord]

The previous output shows the state of the hosts, instances, and database.

Here is a breakdown of each of those states:

The hosts are online in the Pacemaker cluster:

Online: [svlxtorc svlxtord]

The instance resources are started:

db2_svlxtorc_rohant_0 (ocf::\heartbeat:db2inst): Started svlxtorc
db2_svlxtord_rohant_0 (ocf::\heartbeat:db2inst): Started svlxtord

However, the database resource shows that one database is in a stopped state, and that the resource is
unmanaged:

Chapter 1. High availability 121

Clone Set: db2_rohant_rohant_GTDB-clone [db2_rohant_rohant_GTDB] (promotable) (unmanaged)
db2_rohant_rohant_GTDB (ocf::\heartbeat:db2hadr): Slave svlxtorc(unmanaged)
Stopped: [svlxtord]

The output from running the db2pd -hadr -db <dbname> command shows that the database is not
activated:

db2pd -hadr -db HADRDB

Database HADRDB not activated on database member 0 or this database name cannot be found in the
local database directory.

Option -hadr requires -db <database> or -alldbs option and active database.

Resolving the problem

Correct this state with the following steps:

1. On both hosts run db2support to collect diagnostics for future analysis.
2. Run the following command on the problematic host:

db2stop force

3. Then run this on that same host:

db2start

4. Activate the database using:

db2 activate db <dbname>

5. Repeat step 2 to step 4 on each of the problematic hosts.

Restrictions

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

As Pacemaker is a Technical Preview as of Version 11.5 Mod Pack 4, there are certain restrictions to using
Pacemaker.

Platforms supported

• RHEL 8.1, SLES 15 SP1 on Intel Linux and Linux on IBM Z

Software version

The version of Pacemaker and all dependent software supported must match the version referenced in
“Prerequisites for an integrated solution using Pacemaker” on page 91.

The following are not supported in this Technical Preview:

• Mount point monitoring
• DPF HA setup (not HADR)
• Majority quorum
• Cluster configuration export and import

122 IBM Db2 V11.5: Data Recovery and High Availability

Converting an existing Tivoli SA MP cluster to a Pacemaker cluster
Follow the procedure to convert an existing IBM Tivoli System Automation for Multiplatforms (SA MP)
cluster to a Pacemaker cluster.

About this task

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

This operation incurs an outage from a client connectivity perspective if the original cluster is configured
to use a VIP. The Db2 HADR instances on the primary and disaster recovery (DR) hosts will remain online
throughout the operation but the automated failover to the HADR standby will be disabled during the
conversion. No takeover is required.

Note: The following procedure assumes an "in-version" conversion, which means that there is no change
in the Db2 version.

Procedure

1. As an instance owner, backup the existing Tivoli SA MP cluster configuration by exporting it to an xml
file using the following command:

db2haicu -o exportedFile.xml

2. As an instance owner, delete the Tivoli SA MP resource model on both the primary and standby hosts
using the following command:

db2haicu -delete

3. As an instance owner, validate that the HADR databases pairs are in PEER state. For each database,
run:

db2pd -db dbname -hadr | grep HADR_STATE

4. Install Pacemaker and all its dependent software packages as documented. For more information on
installing Pacemaker, refer to “Installing the Pacemaker cluster software stack” on page 100 and
“Configuring a clustered environment using the Db2 cluster manager (db2cm) utility” on page 97.

5. Ensure that the db2hadr, db2inst and db2ethmon agent scripts have been copied
to /usr/lib/ocf/resource.d/heartbeat on all hosts in the cluster.

6. As a root user, run the db2cm command to create the cluster. For example:

INSTANCE_HOME/sqllib/adm/db2cm -create -cluster -domain hadom
 -host ip-172-31-15-79 -publicEthernet eth1
 -host ip-172-31-10-145 -publicEthernet eth1

7. As a root user, run the db2cm command to create the instance resources for the two HADR hosts. For
example:

INSTANCE_HOME/sqllib/adm/db2cm -create -instance <instance name> -host <hostname in primary
site>
INSTANCE_HOME/sqllib/adm/db2cm -create -instance <instance name> -host <hostname in DR site>

8. As a root user, run the db2cm command for each HADR database pair to create the HADR database
resources. For example:

INSTANCE_HOME/sqllib/adm/db2cm -create -db <database name> -instance <instance name>

9. As a root user, run the db2cm command to create the primary VIP resource for the specified
database. For example:

INSTANCE_HOME/sqllib/adm/db2cm -create -primaryVIP <IPv4 Address> -db <database name> -
instance <instance name>

Chapter 1. High availability 123

10. Validate that the resource model contains an instance resource, a resource for the public network
equivalency, and one for each HADR database. For example, it could look like this:

[root@talkers1~]# crm status
Stack: corosync
Current DC: talkers1 (version 2.0.1-4.el8-0eb7991564) - partition with quorum
Last updated: Mon Dec 23 19:40:31 2019
Last change: Mon Dec 23 19:39:24 2019 by root via cibadmin on talkers1

2 nodes configured
7 resources configured

Online: [draping1 talkers1]

Full list of resources:

 Clone Set: db2_gerry-clone [db2_gerry]
 Started: [draping1 talkers1]
 Clone Set: db2_public_network-clone [db2_public_network]
 Started: [draping1 talkers1]
 Clone Set: db2_gerry_gerry_SAMPLE-clone [db2_gerry_gerry_SAMPLE] (promotable)
 Masters: [talkers1]
 Slaves: [draping1]
 db2ip_9_28_232_70 (ocf::heartbeat:IPaddr2): Started talkers1

Converting an existing Pacemaker cluster to a Tivoli SA MP cluster
Follow the procedure to convert an existing Pacemaker cluster to a IBM Tivoli System Automation for
Multiplatforms (SA MP) cluster.

About this task

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

This operation incurs an outage from client connectivity perspective if the original cluster is configured to
use a VIP. The Db2 HADR instances on the primary and disaster recovery (DR) hosts will remain online
throughout the operation but the automated failover to the HADR standby will be disabled during the
conversion. No takeover is required.

Note: The following procedure assumes an "in-version" conversion, which means that there is no change
in the Db2 version.

Procedure

1. Backup the current Pacemaker resource model in case it is required to restore at a later time. As a root
user, run the following:

 cp /var/lib/pacemaker/cib/cib.xml $HOME/cib_backup.xml

2. Delete the current Pacemaker resources and cluster. Run the following command:

INSTANCE_HOME/sqllib/adm/db2cm -delete -cluster

3. Create the Tivoli SA MP resource model.

• If a backup of a previous Tivoli SA MP configuration is to be restored using a db2haicu XML file, run
the following command first on the standby instance and then on the primary instance:

db2haicu -f exportedFile.xml

• To create the resource model from scratch, run the db2haicu on the standby instance and follow
the on-screen instructions.

124 IBM Db2 V11.5: Data Recovery and High Availability

High availability through log shipping
Log shipping is the process of copying whole log files to a standby machine either from an archive device,
or through a user exit program that is running against the primary database. A scheduled job on the
standby issues the ROLLFORWARD DATABASE command at a specified interval to keep the standby
current in terms of log replay.

To set up log shipping, you configure the database with user exit programs and log archiving enabled,
initialize the standby, modify one of the sample user exit files (you can find more information about them
in "Log management user exit samples") to either archive the logs to a shared device or send the log files
to the standby's log path, and schedule a job so that the standby processes the log files. For a detailed
overview of setting up log shipping, see the following article: article.

After your log shipping solution is configured, the standby database is continuously rolling forward
through the log files that are produced by the production machine. When the production machine fails, a
failover occurs (you either initiate the failover manually or create a script to do this) and the following
takes place:

• The remaining logs are transferred over to the standby machine.
• The standby database rolls forward to the end of the logs and stops.
• The clients reconnect to the standby database, which is now the new primary, and resume operations.

The standby machine has its own resources (for example, disks), but must have the same physical and
logical definitions as the production database. When using this approach, create the initial standby
database by using restore utility (from a backup of the primary database) or by using the split mirror
function if that is available.

To ensure that you are able to recover your database in a disaster recovery situation, consider the
following recommendations:

• Ensure that the archive location is geographically separate from the primary site.
• Remotely mirror the logs at the standby database site.
• Use a synchronous mirror for no-loss support. You can do this using modern disk subsystems such as

ESS and EMC, or another remote mirroring technology. NVRAM cache (both local and remote) is also
recommended to minimize the performance impact of a disaster recovery situation.

If you want to control which log files are to be rolled forward on the standby machine, you can disable the
retrieval of archived logs by using the NORETRIEVE option with the ROLLFORWARD DATABASE command.
The benefits of this option are as follows:

• By controlling the log files to be rolled forward, you can ensure that the standby machine is X hours
behind the production machine, which avoids affecting both the systems.

• If the standby system does not have access to archive (for example, if Tivoli Storage Manager is the
archive, it allows only the original machine to retrieve the files).

• It might also be possible that while the production system is archiving a file, the standby system is
retrieving the same file, and it might then get an incomplete log file. The NORETRIEVE option solves this
problem.

Note:

1. When the standby database processes a log record which indicates that an index rebuild took place on
the primary database, the indexes on the standby server are not automatically rebuilt. The index is
rebuilt on the standby server either at the first connection to the database, or at the first attempt to
access the index after the standby server is taken out of the rollforward pending state. It is
recommended that the standby server be resynchronized with the primary server if any indexes on the
primary server are rebuilt. You can enable indexes to be rebuilt during rollforward operations if you set
the logindexbuild database configuration parameter.

2. If the load utility is run on the primary database with the COPY YES option specified, the standby
database must have access to the copy image.

Chapter 1. High availability 125

http://www.ibm.com/developerworks/data/library/techarticle/0304mcinnis/0304mcinnis.html

3. If the load utility is run on the primary database with the COPY NO option specified, the standby
database must be resynchronized or the table space is placed in restore pending state.

4. There are two ways to initialize a standby machine:

a. By restoring to it from a backup image.
b. By creating a split mirror of the production system and issuing the db2inidb command with the
STANDBY option.

Only after the standby machine is initialized can you issue the ROLLFORWARD DATABASE command on
the standby system.

5. Operations that are not logged are not replayed on the standby database. As a result, it is
recommended that you resynchronize the standby database after such operations. For more
information, see Initializing high availability disaster recovery (HADR).

Log mirroring
IBM Db2 server supports log mirroring at the database level. Mirroring log files helps protect a database
from accidental deletion of an active log and data corruption caused by hardware failure.

If you are concerned that your active logs might be damaged (as a result of a disk crash), consider using
the mirrorlogpath configuration parameter to specify a secondary path for the database to manage
copies of the active log, mirroring the volumes on which the logs are stored.

The mirrorlogpath configuration parameter allows the database to write an identical second copy of
log files to a different path. It is recommended that you place the secondary log path on a physically
separate disk (preferably one that is also on a different disk controller). That way, the disk controller
cannot be a single point of failure.

When you first give a value to the mirrorlogpath configuration parameter, Db2 will not use it until the
next database startup. This behavior is similar to the newlogpath configuration parameter.

If there is an error writing to either the active log path or the mirror log path, the database marks the
failing path as "bad", writes a message to the administration notification log, and writes subsequent log
records only to the remaining "good" log path. Db2 does not attempt to use the "bad" path again until the
current log file is either full or truncated. When Db2 needs to open the next log file, it verifies that this
path is valid, and if so, begins to use it. If not, Db2 does not attempt to use the path again until the next
log file is accessed for the first time. There is no attempt to synchronize the log paths, but Db2 keeps
information about access errors that occur, so that the correct paths are used when log files are archived.
If a failure occurs while writing to the remaining "good" path, the database shuts down.

Consider enabling the DB2_USE_ASYNC_FOR_MIRRORLOG performance registry variable to achieve the
potential performance benefit of asynchronously writing log data to both the active log path and the
mirrored log path in parallel.

High availability through suspended I/O and online split mirror support
IBM Db2 server suspended I/O support enables you to split mirrored copies of your primary database
without taking the database offline. You can use this to very quickly create a standby database to take
over if the primary database fails.

Disk mirroring is the process of writing data to two separate hard disks at the same time. One copy of the
data is called a mirror of the other. Splitting a mirror is the process of separating the two copies.

You can use disk mirroring to maintain a secondary copy of your primary database. You can use Db2
server suspended I/O functionality to split the primary and secondary mirrored copies of the database
without taking the database offline. Once the primary and secondary databases copies are split, the
secondary database can take over operations if the primary database fails.

If you would rather not back up a large database using the Db2 server backup utility, you can make copies
from a mirrored image by using suspended I/O and the split mirror function. This approach also:

• Eliminates backup operation overhead from the production machine
• Represents a fast way to clone systems

126 IBM Db2 V11.5: Data Recovery and High Availability

• Represents a fast implementation of idle standby failover. There is no initial restore operation, and if a
rollforward operation proves to be too slow, or encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:

• As a clone database
• As a standby database
• As a backup image

This command can only be issued against a split mirror, and it must be run before the split mirror can be
used.

In a partitioned database environment, you do not have to suspend I/O writes on all database partitions
simultaneously. You can suspend a subset of one or more database partitions to create split mirrors for
performing offline backups. If the catalog partition is included in the subset, it must be the last database
partition to be suspended.

In a partitioned database environment, the db2inidb command must be run on every database partition
before the split image from any of the database partitions can be used. The tool can be run on all
database partitions simultaneously using the db2_all command. If; however, you are using the
RELOCATE USING option, you cannot use the db2_all command to run db2inidb on all of the
database partitions simultaneously. A separate configuration file must be supplied for each database
partition, that includes the NODENUM value of the database partition being changed. For example, if the
name of a database is being changed, every database partition will be affected and the db2relocatedb
command must be run with a separate configuration file on each database partition. If containers
belonging to a single database partition are being moved, the db2relocatedb command only needs to
be run once on that database partition.

Note: Ensure that the split mirror contains all containers and directories which comprise the database,
including the volume directory. To gather this information, refer to the DBPATHS administrative view,
which shows all the files and directories of the database that need to be split.

Using a split mirror as a standby database
Use the following procedure to create a split mirror of a database for use as a standby database outside of
a Db2 pureScale environment. If a failure occurs on the primary database and it becomes inaccessible,
you can use the standby database to take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will share the same log
archiving configuration. If the log archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it during rollforward operations. However, once the
database is brought out of the rollforward pending state, the standby database will attempt to archive log
files to the same location used by the primary database. While the standby database will initially use a
different log chain from the primary database, the primary database could eventually use the same log
chain value as the standby database. This could cause the primary database to archive log files on top of
the log files archived by the standby database, or vice versa , and can affect the recoverability of both
databases. You should change the log archiving destination for the standby database to be different from
that of the primary database to avoid recoverability issues.

Procedure

• To use a split mirror as a standby database:

1. Connect to the primary database using the following command:

db2 connect to db_name

2. Suspend the I/O write operations on the primary database using the following command:

 db2 set write suspend for database

Chapter 1. High availability 127

Note: While the database is in suspended state, you should not be running other utilities or tools.
You should only be making a copy of the database. You can optionally use the FLUSH
BUFFERPOOLS ALL statement before issuing SET WRITE SUSPEND to minimize the recovery time
of the standby database.

3. Create one or multiple split mirrors from the primary database using appropriate operating
system-level and storage-level commands.

Note:

– Ensure that you copy the entire database directory, including the volume directory. You must
also copy the log directory and any container directories that exist outside the database
directory. To gather this information, refer to the DBPATHS administrative view, which shows all
the files and directories of the database that need to be split.

– If you specified the EXCLUDE LOGS with the SET WRITE command, do not include the log files
in the copy.

4. Resume the I/O write operations on the primary database using the following command:

 db2 set write resume for database

5. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the primary database.
It must be located on a secondary system that has the same directory structure and uses the
same instance name as the primary database. If the mirrored database must exist on the same
system as the primary database, you can use the db2relocatedb utility or the RELOCATE
USING option of the db2inidb command to accomplish this.

6. Start the database instance on the secondary system using the following command:

 db2start

7. Initialize the mirrored database on the secondary system by placing it in rollforward pending state
using the following command:

 db2inidb <database_alias> as standby

If required, specify the RELOCATE USING option of the db2inidb command to relocate the
standby database:

 db2inidb <database_alias> as standby relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate the database.

Note: You can take a full database backup using the split mirror if you have DMS table spaces
(database managed space) or automatic storage table spaces. Taking a backup using the split
mirror reduces the overhead of taking a backup on the production database. Such backups are
considered to be online backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must rollforward to at least
the end of the backup before you can issue a ROLLFORWARD command with the STOP option.
Because the backup will not contain any log files, the log files from the primary database that
were in use at the time the SET WRITE SUSPEND command was issued must be available or the
rollforward operation will not be able to reach the end of the backup.

8. Make the archived log files from the primary database available to the standby database either by
configuring the log archiving parameters on the standby database or by shipping logs to the
standby database.

9. Rollforward the database to the end of the logs or to a point-in-time.
10. Continue retrieving log files and rollforwarding the database through the logs until you reach the

end of the logs or the point-in-time required for the standby database.
11. Bring the standby database online by issuing the ROLLFORWARD command with the STOP option

specified.

128 IBM Db2 V11.5: Data Recovery and High Availability

Note:

– The logs from the primary database cannot be applied to the mirrored database after it has
been taken out of rollforward pending state.

– If the primary database was configured for log archiving, the standby database will share the
same log archiving configuration. If the log archiving destination is accessible to the standby
database, the standby database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward pending state, the
standby database will attempt to archive log files to the same location used by the primary
database. Although the standby database will initially use a different log chain from the primary
database, there is nothing to prevent the primary database from eventually using the same log
chain value as the standby database. This may cause the primary database to archive log files
on top of the log files archived by the standby database, or vice versa. This could affect the
recoverability of both databases. You should change the log archiving destination for the
standby database to be different from that of the primary database to avoid these issues.

Using a split mirror as a standby database in a Db2 pureScale environment
Use the following procedure to create a split mirror of a database for use as a standby database in a Db2
pureScale environment. If a failure occurs on the primary database and it becomes inaccessible, you can
use the standby database to take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will share the same log
archiving configuration. If the log archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it during rollforward operations. However, once the
database is brought out of the rollforward pending state, the standby database will attempt to archive log
files to the same location used by the primary database. While the standby database will initially use a
different log chain from the primary database, the primary database could eventually use the same log
chain value as the standby database. This could cause the primary database to archive log files on top of
the log files archived by the standby database, or vice versa , and can affect the recoverability of both
databases. You should change the log archiving destination for the standby database to be different from
that of the primary database to avoid recoverability issues.

Procedure

• To use a split mirror as a standby database:

1. Connect to the primary database using the following command:

db2 connect to <db_name>

2. Configure the General Parallel File System (GPFS) on the secondary cluster by extracting and
importing the primary cluster's settings. On the primary cluster, run the following GPFS command:

mmfsctl <filesystem> syncFSconfig -n <remotenodefile>

where <remotenodefile> is the list of hosts in the secondary cluster.
3. List the cluster manager domain using the following command:

db2cluster -cm -list -domain

4. Stop the cluster manager on each host in the cluster using the following command:

db2cluster -cm -stop -host <host> -force

Note: The last host which you shut down must be the host from which you are issuing this
command.

Chapter 1. High availability 129

5. Stop the GPFS cluster on the secondary system using the following command:

db2cluster -cfs -stop -all

6. Suspend the I/O write operations on the primary database using the following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running other utilities or tools.
You should only be making a copy of the database. You can optionally flush all buffer pools before
issuing SET WRITE SUSPEND to minimize the recovery window. This can be achieved using the
FLUSH BUFFERPOOLS ALL statement.

7. Determine which file systems must be suspended and copied using the following command:

db2cluster -cfs -list -filesystem

8. Suspend each GPFS file system that contains data or log data using the following command:

/usr/lpp/mmfs/bin/mmfsctl <filesystem> suspend

where <filesystem> represents a file system that contains data or log data.

Note: While the GPFS file systems are suspended, both read and write operations are blocked.
You should only be performing the split mirror operations during this period to minimize the
amount of time that read operations are blocked.

9. Create one or multiple split mirrors from the primary database using appropriate operating
system-level and storage-level commands.

Note:

– Ensure that you copy the entire database directory, including the volume directory. You must
also copy the log directory and any container directories that exist outside the database
directory. To gather this information, refer to the DBPATHS administrative view, which shows all
the files and directories of the database that need to be split.

– If you specified the EXCLUDE LOGS with the SET WRITE command, do not include the log files
in the copy.

10. Resume the GPFS file systems that were suspended using the following command for each
suspended file system:

/usr/lpp/mmfs/bin/mmfsctl <filesystem> resume

where filesystem represents a suspended file system that contains data or log data.
11. Resume the I/O write operations on the primary database using the following command:

db2 set write resume for database

12. Start the GPFS cluster on the secondary system using the following command:

 db2cluster -cfs -start -all

13. Start the cluster manager using the following command

db2cluster -cm -start -domain <domain>

14. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the primary database.
It must be located on a secondary system that has the same directory structure and uses the
same instance name as the primary database. If the mirrored database must exist on the same
system as the primary database, you can use the db2relocatedb utility or the RELOCATE
USING option of the db2inidb command to accomplish this.

15. Start the database instance on the secondary system using the following command:

130 IBM Db2 V11.5: Data Recovery and High Availability

db2start

16. Initialize the database on the secondary system by placing it in rollforward pending state:

db2inidb <database_alias> as standby

If required, specify the RELOCATE USING option of the db2inidb command to relocate the
database:

db2inidb <database_alias> as standby relocate using relocatedbcfg.txt

where relocatedbcfg.txt contains the information required to relocate the database.

Note: You can take a full database backup using the split mirror if you have DMS table spaces
(database managed space) or automatic storage table spaces. Taking a backup using the split
mirror reduces the overhead of taking a backup on the production database. Such backups are
considered to be online backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must rollforward to at least
the end of the backup before you can issue a ROLLFORWARD STOP command. Because the backup
will not contain any log files, the log files from the primary database that were in use at the time
the SET WRITE SUSPEND command was issued must be available or the rollforward operation
will not be able to reach the end of the backup.

17. Make the archived log files from the primary database available to the standby database either by
configuring the log archiving parameters on the standby database or by shipping logs to the
standby database.

18. Rollforward the database to the end of the logs or to a point-in-time using the following command:

db2 rollforward database <database_alias> to end of logs

or

db2 rollforward database <database_alias> to 2019-03-18.12.00.00 using utc time

Note: When executing rollforward operations, you might encounter SQL1273 errors. These errors
are expected if some of the log files were not copied from the primary system when the database
was split or if one member generates log files faster than other members. SQL1273 is generated
in some cases when the rollforward operation must stop to preserve data consistency because
the contents of the log files depends on the contents of unavailable log files from other members.
If the standby database is configured to retrieve log files archived by the primary database, you
can either wait for the primary system to archive the necessary log file or you can use the
ARCHIVE LOG command on the primary system to force the log file to be archived. Otherwise,
you must ship the required log files to the standby database. After the necessary log file is
available on the standby database, the rollforward operation can read further ahead in the logs,
although SQL1273 might be encountered again if some members are still generating log files
faster than other members. For more information, see the "Disaster recovery and high availability
through log shipping in a Db2 pureScale environment" section of the "Backup and restore
operations in a Db2 pureScale environment" Information Center topic.

19. Continue the rollforward operation through the logs until you reach the end of the logs or the
point-in-time required for the standby database, shipping new log files to the standby database if
required.

20. Bring the standby database online by issuing the ROLLFORWARD DATABASE command with the
STOP option specified:

db2 rollforward database <database_alias> stop

Note:

– The logs from the primary database cannot be applied to the mirrored database once it has
been taken out of rollforward pending state.

Chapter 1. High availability 131

– If the primary database was configured for log archiving, the standby database will share the
same log archiving configuration. If the log archiving destination is accessible to the standby
database, the standby database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward pending state, the
standby database will attempt to archive log files to the same location used by the primary
database. Although the standby database will initially use a different log chain from the primary
database, there is nothing to prevent the primary database from eventually using the same log
chain value as the standby database. This may cause the primary database to archive log files
on top of the log files archived by the standby database, or vice versa. This could affect the
recoverability of both databases. You should change the log archiving destination for the
standby database to be different from that of the primary database to avoid these issues.

Using a split mirror to clone a database
Use the following procedure to create a clone database in an environment outside of a Db2 pureScale
environment. Although you can write to clone databases, they are generally used for read-only activities
such as running reports.

About this task

If the primary database was configured for log archiving, the cloned database will share the same log
archiving configuration. If the archive log location is accessible to the cloned database, this could cause
the cloned database to archive log files to the same location as the primary database and can affect the
recoverability of both databases. While the cloned database will initially use a different log chain from the
primary database, the primary database could eventually use the same log chain value as the cloned
database. You should change the log archiving destination for the cloned database to be different from
that of the primary database before running the db2inidb command to avoid recoverability issues.

You cannot back up a cloned database, restore the backup image on the original system, or roll forward
through log files produced on the original system. The cloned database provides an instantaneous copy of
the database only at that time when the I/O is suspended; any other outstanding uncommitted work will
be rolled back after the db2inidb command is executed on the clone.

Procedure

• To clone a database:

1. Connect to the primary database using the following command:

db2 connect to db_name

2. Suspend the I/O write operations on the primary database using the following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running other utilities or tools.
You should only be making a copy of the database. You can optionally flush all buffer pools before
issuing SET WRITE SUSPEND to minimize the recovery window. This can be achieved using the
FLUSH BUFFERPOOLS ALL statement.

3. Create one or multiple split mirrors from the primary database using the appropriate operating
system-level and storage-level commands.

Note:

– Ensure that you copy the entire database directory, including the volume directory. You must
also copy the log directory and any container directories that exist outside the database
directory. To gather this information, refer to the DBPATHS administrative view, which shows all
the files and directories of the database that need to be split.

– If you specified the EXCLUDE LOGS with the SET WRITE command, do not include the log files
in the copy.

4. Resume the I/O write operations on the primary database using the following command:

132 IBM Db2 V11.5: Data Recovery and High Availability

db2 set write resume for database

5. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the primary database. It
must be located on a secondary system that has the same directory structure and uses the same
instance name as the primary database. If the mirrored database must exist on the same system as
the primary database, you can use the db2relocatedb utility or the RELOCATE USING option of
the db2inidb command to accomplish this.

6. Start the database instance on the secondary system using the following command:

db2start

7. Initialize the mirrored database on the secondary system:

db2inidb database_alias as snapshot

If required, specify the RELOCATE USING option of the db2inidb command to relocate the clone
database:

 db2inidb database_alias as snapshot relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate the database.

Note:

– This command rolls back transactions that are in flight when the split occurs, and starts a new
log chain sequence so that any logs from the primary database cannot be replayed on the cloned
database.

– If the primary database was configured for log archiving, the cloned database will share the
same log archiving configuration. This means that the cloned database attempts to archive log
files to the same location used by the primary database if that location is accessible to the
cloned database. Although the cloned database initially uses a different log chain from the
primary database, there is nothing to prevent the primary database from eventually using the
same log chain value as the cloned database. This might cause the primary database to archive
log files on top of the log files archived by the clone database, or vice versa. This might affect the
recoverability of both databases. You should change the log archiving destination for the cloned
database to be different from that of the primary database to avoid these issues.

Using a split mirror to clone a database in a Db2 pureScale environment
Use the following procedure to create a clone database in a Db2 pureScale environment. Although you
can write to clone databases, they are generally used for read-only activities such as running reports.

About this task

If the primary database was configured for log archiving, the cloned database will share the same log
archiving configuration. If the archive log location is accessible to the cloned database, this could cause
the cloned database to archive log files to the same location as the primary database and can affect the
recoverability of both databases. While the cloned database will initially use a different log chain from the
primary database, the primary database could eventually use the same log chain value as the cloned
database. You should change the log archiving destination for the cloned database to be different from
that of the primary database before running the db2inidb command to avoid recoverability issues.

You cannot back up a cloned database, restore the backup image on the original system, or roll forward
through log files produced on the original system. The cloned database provides an instantaneous copy of
the database only at that time when the I/O is suspended; any other outstanding uncommitted work will
be rolled back after the db2inidb command is executed on the clone.

Procedure

• To clone a database:

Chapter 1. High availability 133

1. Connect to the primary database using the following command:

db2 connect to <db_namd>

2. Configure the General Parallel File System (GPFS) on the secondary cluster by extracting and
importing the settings of the primary cluster. On the primary cluster, run the following GPFS
command:

mmfsctl filesystem syncFSconfig -n remotenodefile

where remotenodefile is the list of hosts in the secondary cluster.
3. List the cluster manager domain using the following command:

db2cluster -cm -list -domain

4. Stop the cluster manager on each host in the cluster using the following command:

db2cluster -cm -stop -host host -force

Note: The last host which you shut down must be the host from which you are issuing this
command.

5. Stop the GPFS cluster on the secondary system using the following command:

db2cluster -cfs -stop -all

6. Suspend the I/O write operations on the primary database using the following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running other utilities or tools.
You should only be making a copy of the database. You can optionally flush all buffer pools before
issuing SET WRITE SUSPEND to minimize the recovery window. This can be achieved using the
FLUSH BUFFERPOOLS ALL statement.

7. Determine which file systems must be suspended and copied using the following command:

db2cluster -cfs -list -filesystem

8. Suspend each GPFS file system that contains data or log data using the following command:

/usr/lpp/mmfs/bin/mmfsctl filesystem suspend-write

where filesystem represents a file system that contains data or log data.

Note: When the GPFS file systems are suspended, only write operations are blocked.
9. Create one or multiple split mirrors from the primary database using appropriate operating

system-level and storage-level commands.

Note:

– Ensure that you copy the entire database directory, including the volume directory. You must
also copy the log directory and any container directories that exist outside the database
directory. To gather this information, refer to the DBPATHS administrative view, which shows all
the files and directories of the database that need to be split.

– If you specified the EXCLUDE LOGS with the SET WRITE command, do not include the log files
in the copy.

10. Resume the GPFS file systems that were suspended using the following command for each
suspended file system:

/usr/lpp/mmfs/bin/mmfsctl filesystem resume

where filesystem represents a suspended file system that contains data or log data.

134 IBM Db2 V11.5: Data Recovery and High Availability

11. Resume the I/O write operations on the primary database:

db2 set write resume for database

12. Start the GPFS cluster on the secondary system using the following command:

db2cluster -cfs -start -all

13. Start the cluster manager using the following command

db2cluster -cm -start -domain domain

14. Catalog the mirrored database on the secondary system:

Note: By default, a mirrored database cannot exist on the same system as the primary database.
It must be located on a secondary system that has the same directory structure and uses the
same instance name as the primary database. If the mirrored database must exist on the same
system as the primary database, you can use the db2relocatedb utility or the RELOCATE
USING option of the db2inidb command to accomplish this.

15. Start the database instance on the secondary system using the following command:

db2start

16. Initialize the mirrored database on the secondary system using the following command:

db2inidb database_alias as snapshot

If required, specify the RELOCATE USING option of the db2inidb command to relocate the clone
database:

 db2inidb database_alias as snapshot relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate the database.

Note:

– This command rolls back transactions that are in flight when the split occurs, and starts a new
log chain sequence so that any logs from the primary database cannot be replayed on the
cloned database.

– If the primary database was configured for log archiving, the clone database shares the same
log archiving configuration. If the log archiving destination is accessible to the cloned database,
the standby database automatically retrieves log files from it while rollforward is being
performed. However, once the database is brought out of rollforward pending state, the clone
database attempts to archive log files to the same location used by the primary database.
Although the standby database initially uses a different log chain from the primary database,
there is nothing to prevent the primary database from eventually using the same log chain value
as the cloned database. This might cause the primary database to archive log files on top of the
log files archived by the cloned database, or vice versa. This might affect the recoverability of
both databases. You should change the log archiving destination for the cloned database to be
different from that of the primary database to avoid these issues.

Using a split mirror as a backup image
Use the following procedure to create a split mirror of a database in a different location on the same
system for use as a backup image outside of a Db2 pureScale environment. This procedure can be used
instead of performing backup database operations on the database.

Procedure

• To use a split mirror as a backup image:

1. Connect to the primary database using the following command:

Chapter 1. High availability 135

db2 connect to <db_name>

2. Suspend the I/O write operations for the primary database using the following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running other utilities or tools.
You should only be making a copy of the database. You can optionally flush all buffer pools before
issuing SET WRITE SUSPEND to minimize the recovery window. This can be achieved using the
FLUSH BUFFERPOOLS ALL statement.

3. Create one or multiple split mirrors from the primary database using appropriate operating system-
level and storage-level commands.

Note:

– Ensure that you copy the entire database directory including the volume directory. You must also
copy the log directory and any container directories that exist outside the database directory. If
you are using multiple storage groups, you must copy all paths, including files and subdirectories
of those paths. To gather this information, refer to the DBPATHS administrative view, which
shows all the files and directories of the database that need to be split.

– If you specified the EXCLUDE LOGS with the SET WRITE command, do not include the log files
in the copy.

4. Resume the I/O write operations on the primary database using the following command:

db2 set write resume for database

Assuming that a failure would occur on the system, perform the following steps to restore the
database using the split-mirror database as the backup:

1. Stop the database instance using the following command:

db2stop

2. Copy the split-off data using operating system-level commands.

Important: Do not copy the split-off log files, because the original logs are needed for rollforward
recovery.

3. Start the database instance using the following command:

db2start

4. Initialize the primary database:

db2inidb database_alias as mirror

where database_alias represents the database alias.
5. Rollforward the database to the end of the logs, or to a point-in-time, and stop.

Using a split mirror as a backup image in a Db2 pureScale environment
Use the following procedure to create a split mirror of a database in a different location on the same
system for use as a backup image in a Db2 pureScale environment. This procedure can be used instead of
performing backup database operations on the database.

Procedure

• To use a split mirror as a backup image:

1. Connect to the primary database using the following command:

db2 connect to <db_name>

136 IBM Db2 V11.5: Data Recovery and High Availability

2. Configure the General Parallel File System (GPFS) on the secondary cluster by extracting and
importing the settings from the primary cluster. On the primary cluster, run the following GPFS
command:

mmfsctl filesystem syncFSconfig -n remotenodefile

where remotenodefile is the list of hosts in the secondary cluster.
3. Suspend the I/O write operations for the primary database using the following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running other utilities or tools.
You should only be making a copy of the database. You can optionally flush all buffer pools before
issuing SET WRITE SUSPEND to minimize the recovery window. This can be achieved using the
FLUSH BUFFERPOOLS ALL statement.

4. Determine which file systems must be suspended and copied using the following command:

db2cluster -cfs -list -filesystem

5. Suspend each GPFS file system that contains container data or log data using the following
command:

/usr/lpp/mmfs/bin/mmfsctl filesystem suspend-write

where filesystem represents a file system that contains data or log data.

Note: While the GPFS file systems are suspended, write operations are blocked. You should only be
performing the split mirror operations during this period to minimize the amount of time that
operations are blocked.

6. Create one or multiple split mirrors from the primary database using appropriate operating system-
level and storage-level commands.

Note:

– Ensure that you copy the entire database directory including the volume directory. You must also
copy the log directory and any container directories that exist outside the database directory. If
you are using multiple storage groups, you must copy all paths, including files and subdirectories
of those paths. To gather this information, refer to the DBPATHS administrative view, which
shows all the files and directories of the database that need to be split.

– If you specified the EXCLUDE LOGS with the SET WRITE command, do not include the log files
in the copy.

7. Resume the GPFS file systems that were suspended using the following command for each
suspended file system:

/usr/lpp/mmfs/bin/mmfsctl filesystem resume

where filesystem represents a suspended file system that contains data or log data.
8. Resume the I/O write operations for the primary database using the following command:

db2 set write resume for database

Assuming that a situation requires you to restore the database using the split mirror as the backup
image, perform the following steps:

1. Stop the primary database instance using the following command:

db2stop

2. List the cluster manager domain using the following command:

db2cluster -cm -list -domain

Chapter 1. High availability 137

3. Stop the cluster manager on each host in the cluster using the following command:

db2cluster -cm -stop -host host -force

Note: The last host which you shut down must be the host from which you are issuing this
command.

4. Stop the GPFS cluster on the primary database instance using the following command:

db2cluster -cfs -stop -all

5. Copy the split-off data off the primary database using appropriate operating system-level
commands.

Important: Do not copy the split-off log files, because the original logs are needed for rollforward
recovery.

6. Start the GPFS cluster on the primary database instance using the following command:

db2cluster -cfs -start -all

7. Start the cluster manager using the following command

db2cluster -cm -start -domain domain

8. Start the database instance using the following command:

db2start

9. Initialize the primary database using the following command:

db2inidb database_alias as mirror

10. Rollforward the primary database to the end of the logs, or to a point-in-time, and stop.

Configuring for high availability
To configure your Db2 database solution for high availability, you must: schedule database maintenance
activities; configure the primary and standby database servers to know about each other and their
respective roles in the event of a failure; and configure any cluster managing software to transfer
workload from a failed cluster node.

Before you begin

Before configuring your database solution:

• Assemble and install the underlying hardware and software components that make up the solution.
These underlying components might include: power supply; network connectivity; network cards; disks
or other storage devices; operating systems; and cluster managing software.

• Test these underlying components without any database workload to make sure they are functioning
properly before attempting to use them in database load balancing, failover, or recovery operations.

About this task
Redundancy is an important part of a high availability solution. However, if you do not schedule
maintenance wisely, if you run out of storage space for needed recovery logs, or if your cluster managing
software is not configured correctly, your solution might not be available when your users need to do
crucial work with the database.

Procedure

• Configuring automatic client reroute (ACR)

138 IBM Db2 V11.5: Data Recovery and High Availability

ACR seamlessly redirects client applications from a failed server to an alternate server so that the
applications can continue their work with minimal interruption.

• Configuring fault monitor
Db2 fault monitor keeps Db2 instances up and running by monitoring them and restarting them in the
even of unexpected failures.

• Configuring Db2 high availability disaster recovery (HADR)
HADR protects you against data loss and downtime from site failures by replicating data changes from
a primary database to a standby database.

• Scheduling maintenance activities
Through careful planning, automating, and scheduling your maintenance operations, you can help
maximize your database's availability.

• Configuring cluster managing software
Cluster managing software can help automate the transfer of database operations from a failed
primary database to a secondary or standby database.

• Configuring database logging options
Use database logging configuration parameters to specify data logging options for your database, such
as the type of logging to use, the size of the log files, and the location where log files should be stored.

Configuring TCP/IP keepalive parameters
Db2 connections between clients and servers use the TCP/IP protocol to communicate. In order to
prevent potential failover issues caused by timeouts within the TCP/IP layer, it is necessary to adjust the
TCP/IP keepalive parameters on the client. Decreasing the keepalive values on the client improves timely
detection of server failures.

Configuring operating system TCP/IP keepalive parameters for high availability clients

About this task
For client systems that do not support the keepAliveTimeout parameter because of an operating
system, platform or Java Development Kit (JDK) limitation, the TCP/IP keepalive settings can be set at the
operating system level by adjusting certain parameters.

For client systems that do support the keepAliveTimeout parameter adjusting operating system
parameters can also allow for early detection of a non-responsive socket and for faster client reroute.

The values provided in these commands are suggested values, but you should fine-tune these settings
based on your specific network and server capabilities.

Note: By altering these settings at an operating system level, this will affect all TCP/IP communications
on the client.

Procedure

• Configuring operating system TCP/IP parameters for clients that support the keepAliveTimeout
parameter

If the client is waiting on a receive response from the server, the keepAliveTimeout parameter is
enabled when the maximum number of retransmissions have finished. To specify the maximum
number of retransmissions you can modify the following operating system parameters:

– On Linux: The tcp_retries2 parameter
– On Windows: The TcpMaxDataRetransmissions parameter

What to do next
For other client platforms, refer to your operating system documentation on how to set TCP/IP keepalive
values.

Chapter 1. High availability 139

Configuring TCP/IP keepalive parameters for high availability clients
The recommended method of setting the keepalive parameters on the client is to use the
keepAliveTimeout parameter in the db2dsdriver.cfg configuration file.

About this task
The values provided in these commands are suggested values, but you should fine-tune these settings
based on your specific network and server capabilities.

Procedure

There are two methods to update the TCP/IP keepalive parameters:
• Modify the db2dsdriver.cfg file.

To set this parameter, edit the db2dsdriver.cfg file and place the keepAliveTimeout line outside
of the <acr> section, but still within the <databases> parent section. For example:

<configuration>
 <dsncollection>
 <dsn alias="D3D" name="D3D" host="DB2PS-member0" port="5912" />
 </dsncollection>
 <databases>
 <database name="D3D" host="DB2PS-member0" port="5912">
 <parameter name="keepAliveTimeout" value="20"/>
 <acr>
 <parameter name="enableAcr" value="true"/>
 <parameter name="enableSeamlessAcr" value="true"/>
 <parameter name="affinityFailbackInterval" value="15"/>
 </acr>
</database>

</databases>
...
</configuration>

This method is recommended because it can be used for both instance-based clients and drivers
without an instance. In addition, by utilizing the db2dsdriver.cfg file, each individual database can
have a different keepAliveTimeout setting.

• Modify the DB2TCP_CLIENT_KEEPALIVE_TIMEOUT parameter

The second method for updating the keepalive parameters is to set the
DB2TCP_CLIENT_KEEPALIVE_TIMEOUT parameter to detect failures in the TCP/IP communication
layer.

To update this parameter, from a command window or terminal on the client, issue this command:

db2set DB2TCP_CLIENT_KEEPALIVE_TIMEOUT=20

This value is specified in seconds.

Note: While TCP/IP timeout keepalive is also supported for instance attachments, it can only be set
using this second method of specifying a value for the DB2TCP_CLIENT_KEEPALIVE_TIMEOUT
parameter. Note that automatic client reroute (acr) does not apply in the case of instance
attachments.

Setting the operating system level parameters can help with early detection of a non-responsive
socket at the remote end. For faster client reroute, configure the TCP/IP keepalive parameter settings
at the operating system level.

Initializing a standby database
One strategy for making a database solution highly available is maintaining a primary database to respond
to user application requests, and a secondary or standby database that can take over database
operations for the primary database if the primary database fails. Initializing the standby database entails
copying the primary database to the standby database.

140 IBM Db2 V11.5: Data Recovery and High Availability

Procedure

There are several ways to initialize the standby database. For example:
• Use disk mirroring to copy the primary database, and use Db2 database suspended I/O support to split

the mirror to create the second database.
• Create a backup image of the primary database and recovery that image to the standby database.
• Use SQL replication to capture data from the primary database and apply that data to the standby

database.

What to do next
After initializing the standby database, you must configure your database solution to synchronize the
primary database and standby database so the standby database can take over for the primary database
if the primary database fails.

Initializing high availability disaster recovery (HADR)
Use this procedure to set up and initialize Db2 high availability disaster recovery (HADR). Whether you are
using a single standby, multiple standbys, or the Db2 pureScale feature, the procedure is similar.

Before you begin

If you are setting up HADR in a Db2 pureScale environment or if you want to use multiple standby
databases, you need to set the hadr_target_list configuration parameter on all participating
databases. This parameter lists the standbys in the scenario when the database becomes a primary. It is
required even on a standby. Mutual inclusion is required (that is, if A has B in its target list, B must have A
in its target list). This ensures that after a takeover from any standby, the new primary can always keep
the old primary as its standby.

If you are configuring multiple standbys, the first standby that you specify in the target list is designated
as the principal HADR standby database. Additional standbys are auxiliary HADR standby databases. The
target list need not always include all participants. As well, there is no requirement for symmetry or
reciprocity if there is more than one standby; even if you designate that database A has database B as its
principal standby, database B does not have to designate A as its principal standby. Each standby
specified in the target list of database A, must also have database A in its target list. Working out the
target list for each database is an important step.

If you are configuring HADR in a Db2 pureScale environment, you specify a remote cluster with
hadr_target_list. You do not need to list every member in that remote cluster, but you should always
include the preferred replay member. For smaller clusters, it is recommended that you include all
members, whereas in larger clusters, it is sufficient to include a subset of members as long as the
members that are listed are the ones that are most likely to be online.

If you are recovering from a tablespace error or tablespace unavailability on the standby database, refer
to “Recovering table space errors on an HADR standby database” on page 213.

About this task

HADR is only supported on a database that is configured with “Archive logging” on page 19. If your
database is currently configured with “Circular logging” on page 18, you must first change the
logarchmeth1 and/or the logarchmeth2 database configuration parameters. An offline backup of the
database is required before the database is changed to use archive logging.

HADR can be initialized through the command line processor (CLP), or by calling the db2HADRStart API.
The general procedure is to take a backup of the primary, restore it to the standby, set various HADR
configuration parameters, and then issue the START HADR command. The backup of the primary can be
an online backup. As of Db2 Version 11.1.2.2, the backup of the primary can alternatively be a series of
table space backup images that are restored using the “Database rebuild” on page 399 feature.

Note: This is a generic HADR setup; for more advanced configuration options and settings, see the related
links.

Chapter 1. High availability 141

Procedure

To use the CLP to initialize HADR on your system for the first time:
1. Determine the host name, host IP address, and the service name or port number for each of the HADR

databases.

If a host has multiple network interfaces, ensure that the HADR host name or IP address maps to the
intended one. You need to allocate separate HADR ports in /etc/services for each protected
database. These cannot be the same as the ports allocated to the instance. The host name can only
map to one IP address.

To determine the host name, see the LIST DATABASE DIRECTORY command. To determine the host
IP address, the service name, and port number, see the LIST NODE DIRECTORY command.

Note: The instance names for the primary and standby databases do not have to be the same.
2. Set any configuration parameters recommended or required for HADR environments on the primary so

that those settings will exist on any standby you create in the next step.
For example, enable the recommended logging and index re-creation behavior by issuing the following
command:

"UPDATE DB CFG FOR dbname USING
 LOGINDEXBUILD ON
 LOGARCHMETH1 method"

3. Create the standby database by restoring a backup image or by initializing a split mirror, based on the
existing database that is to be the primary.
Option Description

Backup
and
Restore
Method

In the following example, the BACKUP DATABASE and RESTORE DATABASE commands
are used to initialize a standby database. In this case, a shared file system is accessible
at both sites.

a. On the primary, issue the following command while online:

BACKUP DB dbname

b. If the database already exists on a standby instance, drop it first for a clean start.
Files from the existing database can interfere with HADR operation. For example, left
over log files can lead the standby onto a log chain not compatible with the primary.
Issue the following command to drop the database:

DROP DB dbname

c. If the database already exists on a standby instance, there may be log files in the
archive, remove them on standby first if log archive is not shared between primary
and standby databases.

d. On each standby instance, issue the following command :

RESTORE DB dbname

The following RESTORE DATABASE command options should be avoided when setting
up the standby database: TABLESPACE, INTO, REDIRECT, and WITHOUT ROLLING
FORWARD.

Note: if the primary database is defined over multiple storage paths, the RESTORE
command can use the ON path-list option to specify these storage paths. It is
important that these paths are listed in the same order as the primary database (the
order can be found via db2pd -db dbname -storagepaths command).

Online
Split

The following example illustrates how to use the db2inidb utility to initialize the
standby database using a split mirror of the primary database. This procedure is an
alternative to the backup and restore procedure illustrated previously.

142 IBM Db2 V11.5: Data Recovery and High Availability

Option Description

Mirror
Method

Issue the following command at the standby database:

DB2INIDB dbname AS STANDBY

Do not use the SNAPSHOT or MIRROR options of db2inidb utility. You can specify the
RELOCATE USING option to change one or more of the following configuration
attributes: instance name, log path, and database path. However, you must not change
the database name or the table space container paths.

Offline
Split
Mirror
Method

The following example illustrates how to use the db2rfpen utility to initialize the
standby database using an offline split mirror of the primary database. This procedure is
an alternative to the backup and restore procedure, or online split mirror procedure,
illustrated previously.

a. The split mirror backup must be done after a clean database shutdown. A clean
database shutdown means that the database is not in a crash recovery pending
state.

b. On the standby instance, restore the offline split mirror backup.
c. On the standby instance, issue db2rfpen command:

db2rfpen on dbname

Note: The database names for the primary and standby databases must be the same.
4. Set the HADR-specific configuration parameters. For Db2 pureScale environments, follow these steps.

• Environments other than Db2 pureScale:

a. On the primary and standby databases, set the hadr_local_host, hadr_local_svc, and
hadr_syncmode configuration parameters:

"UPDATE DB CFG FOR dbname USING
 HADR_LOCAL_HOST hostname
 HADR_LOCAL_SVC servicename
 HADR_SYNCMODE syncmode"

Note: When hadr_target_list is set, the hadr_syncmode is the mode that the principal
standby uses when this database becomes a primary. Auxiliary standbys always use
SUPERANSYNC for their effective synchronization mode.

b. On the primary and standby databases, set the hadr_target_list configuration parameter:

UPDATE DB CFG FOR dbname USING
 HADR_TARGET_LIST principalhostname:principalservicename|
 auxhostnameN:auxservicenameN3

If you do not set the hadr_target_list parameter, you are limited to one standby. This
method of configuring HADR is deprecated starting in Version 10.5.

If you are setting up multiple standby databases, the first database that you list is designated as
the principal standby.

c. On the primary and standby databases, set the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters.

On the primary, set the parameters to the corresponding values on the standby (principal
standby if you configure multiple standbys) by issuing the following command:

3 You would only specify more than one database in the target list if you are
setting up multiple standbys.

Chapter 1. High availability 143

"UPDATE DB CFG FOR dbname USING
 HADR_REMOTE_HOST principalhostname
 HADR_REMOTE_SVC principalservicename
 HADR_REMOTE_INST principalinstname"

On the standby, set the parameters to the corresponding values on the primary by issuing the
following command:

"UPDATE DB CFG FOR dbname USING
 HADR_REMOTE_HOST primaryhostname
 HADR_REMOTE_SVC primaryservicename
 HADR_REMOTE_INST primaryinstname"

If you have configured hadr_target_list, these values are automatically corrected if
necessary; however, explicitly setting them to the correct values makes correct values available
immediately. These values are used by the IBM Tivoli System Automation for Multiplatforms (SA
MP) software to construct the resource names. Thus if you are using SA MP, you must correctly
set them before enabling SA MP.

• Db2 pureScale environments:

a. On the primary and standby databases, set these cluster-level configuration parameters:
hadr_target_list and hadr_syncmode:

"UPDATE DB CFG FOR dbname USING
 HADR_TARGET_LIST {memhostname1:memservicename1|
 memhostnameN:memservicenameN}
 HADR_SYNCMODE syncmode"

The following example shows the command:

db2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST {s0:4000|s1:4000|s2:4000|s3:4000}
 HADR_SYNCMODE async"

The hadr_target_list parameter lists members of the remote cluster. The members of a
cluster must be enclosed in braces {}. Only a subset of remote cluster's member addresses are
required.

The hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters are automatically configured in Db2 pureScale environments, so they can be left as
blank (logically NULL). For more information on automatic configuration, see this section.

b. On each of the members on the primary and standby databases, set these member-level
configuration parameters: hadr_local_host and hadr_local_svc:

"UPDATE DB CFG FOR dbname MEMBER mname USING
 HADR_LOCAL_HOST memhostname
 HADR_LOCAL_SVC memservicename"

The following examples shows the command:

– For member 0:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 0 USING
 HADR_LOCAL_HOST p0
 HADR_LOCAL_SVC 4000"

– For member 1:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 1 USING
 HADR_LOCAL_HOST p1
 HADR_LOCAL_SVC 4000"

– For member 2:

144 IBM Db2 V11.5: Data Recovery and High Availability

db2 "UPDATE DB CFG FOR hadr_db MEMBER 2 USING
 HADR_LOCAL_HOST p2
 HADR_LOCAL_SVC 4000"

– For member 3:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 3 USING
 HADR_LOCAL_HOST p3
 HADR_LOCAL_SVC 4000"

5. Connect to the standby instance and start HADR on the standby database. In a Db2 pureScale
environment, make sure that you are starting HADR from the member that you want to designate as
the preferred replay member.

START HADR ON DB dbname AS STANDBY

Note: Usually, the standby database is started first. If you start the primary database first, this startup
procedure will fail if the standby database is not started within the time period specified by the
hadr_timeout database configuration parameter.

After the standby starts, it enters local catchup state in which locally available log files are read and
replayed. After it has replayed all local logs, it enters remote catchup pending state.

6. Connect to the primary instance and start HADR on the primary database. In a Db2 pureScale
environment, make sure you are starting HADR from the member that you want to designate as the
preferred replay member.

START HADR ON DB dbname AS PRIMARY

After the primary starts, the standby enters remote catchup state in which receives log pages from the
primary and replays them. After it has replayed all log files that are on the disk of the primary database
machine, both databases enter peer state (unless SUPERASYNC is the synchronization mode).

What to do next

Ensure that HADR is up and running by using the MON_GET_HADR table function (on the primary or read-
enabled standby) or the db2pd command with the -hadr option.

For more information and examples, see the user scenario Deploying HADR in a Db2 pureScale
environment.

Configuring automatic client reroute and high availability disaster recovery (HADR)
You can use automatic client reroute (ACR) with high availability disaster recovery (HADR) to transfer
client application requests from a failed database server to a standby database server.

Restrictions

• Rerouting is only possible when an alternate database location has been specified at the server.
• Automatic client reroute is only supported with TCP/IP protocol.
• You cannot use ACR if you have client affinity enabled.

Configuration details

• Use the UPDATE ALTERNATE SERVER FOR DATABASE command to enable automatic client reroute.
• Automatic client reroute does not use the hadr_remote_host and hadr_remote_svc database
configuration parameters.

• You can only specify one standby database for automatic client reroute.
• The alternate host location is stored in the system database directory file at the server.
• If automatic client reroute is not enabled, client applications receive error message SQL30081N, and no

further attempts are made to establish a connection with the server.

Chapter 1. High availability 145

Setting up automatic client reroute with HADR

The system is set up as follows:

• There is a client where database MUSIC is cataloged as being located at host HORNET with port number
456, which is assigned by the svcename configuration parameter.

• Database MUSIC is the primary database and its corresponding standby database, also MUSIC, resides
on host MONTERO with port number 456, which is assigned by the svcename configuration parameter.

To enable automatic client reroute, update the alternate server for database MUSIC on host HORNET:

 DB2 UPDATE ALTERNATE SERVER FOR DATABASE music USING HOSTNAME montero PORT 456

After this command is issued, the client must successfully connect to host HORNET to obtain the
alternate server information. Then, if a communication error occurs between the client and database
MUSIC at host HORNET, the client first attempts to reconnect to database MUSIC at host HORNET. If this
fails, the client then attempts to establish a connection with the standby database MUSIC on host
MONTERO.

To ensure that ACR can still be used in the event of a role switch, configure the primary database as the
alternate server for the standby by issuing the following command on the standby:

DB2 UPDATE ALTERNATE SERVER FOR DATABASE music USING HOSTNAME hornet PORT 456

Setting up automatic client reroute with HADR in a Db2 pureScale environment

A user wants to set up ACR for a three-member Db2 pureScale instance that is configured with HADR. The
system is set up as follows:

• Database name: hadr_db
• Instance owner on all hosts: db2inst
• TCP port that is used for HADR primary-standby communication: 4000
• TCP port that is used for SQL client/server communication: 8000
• Hosts for cluster caching facilities (with IDs 128 and 129) and members (with IDs 0, 1, 2, and 3) on the

primary cluster: cfp0, cfp1, p0, p1, p2, and p3
• Hosts for cluster caching facilities and members on the standby cluster: cfs0, cfs1, s0, s1, s2, and s3

The user issues the following command from member 0 on the primary:

 DB2 UPDATE ALTERNATE SERVER FOR DATABASE hadr_db USING HOSTNAME s0 PORT 8000

The first time a client connects to the primary, the server returns the addresses of all members in the
primary cluster and the alternate server address (s0:8000), which is member 0 of the standby cluster. If a
client cannot connect to one member on the primary cluster, it tries to connect to another member on the
primary. If the client cannot connect to any member on the primary, it tries to connect to member 0 on
the standby. The user could further improve availability by using a connection distributor or multi-home
DNS entry, which includes multiple members on the standby, as the alternate server address.

To ensure that ACR can still be used in the event of a role switch, the user also configures the primary
cluster as the alternate server for the standby by issuing the following command from member 0 on the
standby:

 DB2 UPDATE ALTERNATE SERVER FOR DATABASE hadr_db USING HOSTNAME p0 PORT 8000

146 IBM Db2 V11.5: Data Recovery and High Availability

Index logging and high availability disaster recovery (HADR)
You should consider setting the database configuration parameters logindexbuild and indexrec for
high availability disaster recovery (HADR) databases.

Using the logindexbuild database configuration parameter

Recommendation: For HADR databases, set the logindexbuild database configuration parameter to
ON to ensure that complete information is logged for index creation, re-creation, and reorganization.
Although this means that index builds might take longer on the primary system and that more log space is
required, the indexes will be rebuilt on the standby system during HADR log replay and will be available
when a failover takes place. Otherwise, when replaying an index build or rebuild event, the standby marks
the index invalid, because the log records do not contain enough information to populate the new index. If
index builds on the primary system are not logged and a failover occurs, any invalid indexes that remain
after the failover is complete have to be rebuilt before they can be accessed. While the indexes are being
re-created, they cannot be accessed by any applications.

Note: If the LOG INDEX BUILD table attribute is set to its default value of NULL, Db2 uses the value
specified for the logindexbuild database configuration parameter. If the LOG INDEX BUILD table
attribute is set to ON or OFF, the value specified for the logindexbuild database configuration
parameter is ignored.

You might choose to set the LOG INDEX BUILD table attribute to OFF on one or more tables for either of
the following reasons:

• You do not have enough active log space to support logging of the index builds.
• The index data is very large and the table is not accessed often; therefore, it is acceptable for the

indexes to be re-created at the end of the takeover operation. In this case, set the indexrec
configuration parameter to RESTART. Because the table is not frequently accessed, this setting causes
the system to re-create the indexes at the end of the takeover operation instead of waiting for the first
time the table is accessed after the takeover operation.

If the LOG INDEX BUILD table attribute is set to OFF on one or more tables, any index build operation on
those tables might cause the indexes to be re-created any time a takeover operation occurs. Similarly, if
the LOG INDEX BUILD table attribute is set to its default value of NULL, and the logindexbuild
database configuration parameter is set to OFF, any index build operation on a table might cause the
indexes on that table to be re-created any time a takeover operation occurs. You can prevent the indexes
from being re-created by taking one of the following actions:

• After all invalid indexes are re-created on the new primary database, take a backup of the database and
apply it to the standby database. As a result of doing this, the standby database does not have to apply
the logs used for re-creating invalid indexes on the primary database, which would mark those indexes
as rebuild required on the standby database.

• Set the LOG INDEX BUILD table attribute to ON, or set the LOG INDEX BUILD table attribute to NULL
and the logindexbuild configuration parameter to ON on the standby database to ensure that the
index re-creation will be logged.

Using the indexrec database configuration parameter

Recommendation: Set the indexrec database configuration parameter to RESTART (the default) on
both the primary and standby databases. This causes invalid indexes to be rebuilt after a takeover
operation is complete. If any index builds have not been logged, this setting allows Db2 to check for
invalid indexes and to rebuild them. This process takes place in the background, and the database is
accessible after the takeover operation has completed successfully.

If a transaction accesses a table that has invalid indexes before the indexes have been rebuilt by the
background re-create index process, the invalid indexes are rebuilt by the first transaction that accesses
it.

Chapter 1. High availability 147

Database configuration for high availability disaster recovery (HADR)
You can use database configuration parameters to help achieve optimal performance with Db2 HADR.

In most cases, use the same database configuration parameter settings and database manager
configuration parameter settings on the systems where the primary and standby databases are located. If
the settings for the configuration parameters on the standby database are different from the settings on
the primary, the following problems might occur:

• Error messages might be returned for the standby database while the log files that were shipped from
the primary database are being replayed.

• After a takeover operation, the new primary database might be unable to handle the workload, resulting
in performance problems or in applications receiving error messages that they did not receive when
they were connected to the original primary database.

Changes to the configuration parameters on the primary database are not automatically propagated to
the standby database. You must manually make changes on the standby database. For dynamic
configuration parameters, changes take effect without having to shut down and restart the database
management system (DBMS) or the database. For non-dynamic configuration parameters, changes take
effect after the standby database is restarted.

Following are sections on specific configuration topics for HADR:

• “Size of log files configuration parameter on the standby database” on page 148
• “Database configuration parameter autorestart” on page 148
• “Log receive buffer size on a standby database” on page 149
• “Load operations and HADR” on page 149
• “DB2_HADR_PEER_WAIT_LIMIT registry variable” on page 150
• “DB2_FAIL_RECOVERY_ON_TABLESPACE_ERROR registry variable” on page 151
• “HADR configuration parameters” on page 151

Size of log files configuration parameter on the standby database

One exception to the configuration parameter behavior that is described in the previous paragraph is the
behavior of the logfilsiz database configuration parameter. Although the value of this parameter is not
replicated to the standby database, to help ensure that there are identical log files on both databases, the
setting for the logfilsiz configuration parameter on the standby is ignored. Instead, the database
creates local log files whose sizes match the size of the log files on the primary database.

After a takeover, the original standby (new primary) uses the logfilsiz parameter value that you set on
the original primary until you restart the database. At that point, the new primary reverts to using the
value that you set locally. In addition, the current log file is truncated and any pre-created log files are
resized on the new primary.

If the databases keep switching roles as a result of a non-forced takeover and neither database is
deactivated, the log file size that is used is always the one from the original primary database. However, if
there is a deactivation and then a restart on the original standby (new primary), the new primary uses the
log file size that you configured locally. This log file size continues to be used if the original primary takes
over again. Only after a deactivation and restart on the original primary would the log file size revert to the
settings on the original primary.

Database configuration parameter autorestart

The recommended configuration for the autorestart parameter on HADR systems is ON. If the
autorestart parameter is set to OFF, and the server fails, your response depends on whether you want
to restart or fail over to the standby:

• If you want to restart, run the RESTART DATABASE command manually. If the restart fails, perform
failover.

• If you want to fail over, perform the following steps:

148 IBM Db2 V11.5: Data Recovery and High Availability

1. Shut down the old primary to prevent a "split brain". Do this by either stopping the Db2 instance or
powering off the host machine. If the server is not accessible for administration, fence it off from
clients by disabling the client/server network.

Note: Deactivating the database is not sufficient because client connections can bring it back online.
If it failed in a consistent state, then even if the autorestart parameter is set to OFF, client
connections can bring it back online.

2. After you shut down old primary, issue the TAKEOVER HADR command with the BY FORCE option on
the standby.

Log receive buffer size on a standby database

By default, the log receive buffer size on a standby database is two times the value that you specify for
the logbufsz configuration parameter on the primary database. This size might not be sufficient. For
example, consider what might happen when the HADR synchronization mode is set to ASYNC and the
primary and standby databases are in peer state. If the primary database is also experiencing a high
transaction load, the log receive buffer on the standby database might fill to capacity, and the log shipping
operation from the primary database might stall. To manage these temporary peaks, you can make either
of the following configuration changes:

• Increase the size of the log receive buffer on the standby database by modifying the value of the
DB2_HADR_BUF_SIZE registry variable.

• Enable log spooling on a standby database by setting the hadr_spool_limit configuration
parameter.

Load operations and HADR

If you issue the LOAD command on the primary database with the COPY YES parameter, the command
executes on the primary database, and the data is replicated to the standby database if the load copy can
be accessed through the path or device that is specified by the command. If load copy data cannot be
accessed from the standby database, the table space in which the table is stored is marked invalid on the
standby database. Any future log records that pertain to this table space are skipped. To ensure that the
load operation can access the load copy on the standby database, use a shared location for the output file
from the COPY YES parameter. Alternatively, you can deactivate the standby database while performing
the load on the primary, place a copy of the output file in the standby path, and then activate the standby
database.

If you issue the LOAD command with the NONRECOVERABLE parameter on the primary database, the
command executes on the primary database, and the table on the standby database is marked invalid.
Any future log records that pertain to this table are skipped. You can issue the LOAD command with the
COPY YES and REPLACE parameters to bring the table back, or you can drop the table to recover the
space.

Note: You cannot bring a table back using the LOAD command with the COPY YES and REPLACE options
if the table has one of the following characteristics:

• The table was created with the NOT LOGGED INITIALLY attribute.
• The table is a multidimensional clustered (MDC) table.
• The table has compression dictionaries.
• The table has XML columns.

Because a load operation with the COPY NO parameter is not supported with HADR, the operation is
automatically converted to a load operation with the NONRECOVERABLE parameter. To enable a load
operation with the COPY NO parameter to be converted to a load operation with the COPY YES
parameter, set the DB2_LOAD_COPY_NO_OVERRIDE registry variable on the primary database. This
registry variable is ignored on the standby database. Ensure that the device or directory that you specify
for the primary database can be accessed by the standby database by using the same path, device, or
load library.

Chapter 1. High availability 149

If you are using the Tivoli Storage Manager (TSM) software to perform a load operation with the COPY
YES parameter, you might have to set the vendoropt configuration parameter on the primary and
standby databases. Depending on how you configured TSM, the values on the primary and standby
databases might not be the same. Also, when using TSM to perform a load operation with the COPY YES
parameter, you must issue the db2adutl command with the GRANT parameter to give the standby
database read access to the files that are loaded.

If table data is replicated by a load operation with the COPY YES parameter, the indexes are replicated as
follows:

• If you specify the REBUILD indexing mode option with the LOAD command and the LOG INDEX BUILD
table attribute is set to ON (using the ALTER TABLE statement), or if it is set to NULL and the
logindexbuild database configuration parameter is set to ON, the primary database includes the
rebuilt index object (that is, all of the indexes defined on the table) in the copy file to enable the standby
database to replicate the index object. If the index object on the standby database is marked invalid
before the load operation, it becomes usable again after the load operation as a result of the index
rebuild.

• If you specify the INCREMENTAL indexing mode option with the LOAD command and the LOG INDEX
BUILD table attribute is set to ON (using the ALTER TABLE statement), or if it is set to NULL and the
logindexbuild database configuration parameter on the primary database is set to ON, the index
object on the standby database is updated only if it is not marked invalid before the load operation.
Otherwise, the index is marked invalid on the standby database.

DB2_HADR_PEER_WAIT_LIMIT registry variable

Restriction: None of this section applies to auxiliary standbys because they are in SUPERASYNC
synchronization mode, so they do not ever enter peer state.

If you set the DB2_HADR_PEER_WAIT_LIMIT registry variable, the HADR primary database breaks out of
peer state if logging on the primary database has been blocked for the specified number of seconds
because of log replication to the standby. When this limit is reached, the primary database breaks the
connection to the standby database. If you disable the peer window by setting the hadr_peer_window
configuration parameter to 0, the primary enters the disconnected state, and logging resumes. If you
enable the peer window, the primary database enters disconnected peer state, in which logging continues
to be blocked. The primary leaves disconnected peer state upon reconnection or peer window expiration.
Logging resumes after the primary leaves disconnected peer state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to avoid triggering false
alarms.

Honoring peer window transition when a database breaks out of peer state ensures peer window
semantics for safe takeover in all cases. If the primary fails during the transition, normal peer window
protection still applies: safe takeover from the standby if it is still in disconnected peer state.

On the standby side, after disconnection, the database continues replaying already received logs. After
the received logs have been replayed, the standby reconnects to the primary. After replaying the received
logs, the standby reconnects to the primary. Upon reconnection, normal state transition follows: first
remote catchup state, then peer state.

Relationship to hadr_timeout database configuration parameter

The hadr_timeout database configuration parameter does not break the primary out of peer state if
the primary keeps receiving heartbeat messages from the standby while blocked. The
hadr_timeout database configuration parameter specifies a timeout value for the HADR network
layer. An HADR database breaks the connection to its partner database if it has not received any
message from its partner for the period that is specified by the hadr_timeout configuration
parameter. The timeout does not control timeout for higher-layer operations such as log shipping and
ack (acknowledgement) signals. If log replay on the standby database is stuck on a large operation
such as load or reorganization, the HADR component still sends heartbeat messages to the primary
database on the normal schedule. In such a scenario, the primary is blocked as long as the standby
replay is blocked unless you set the DB2_HADR_PEER_WAIT_LIMIT registry variable.

150 IBM Db2 V11.5: Data Recovery and High Availability

The DB2_HADR_PEER_WAIT_LIMIT registry variable unblocks primary logging regardless of
connection status. Even if you do not set the DB2_HADR_PEER_WAIT_LIMIT registry variable, the
primary always breaks out of peer state when a network error is detected or the connection is closed,
possibly as result of the hadr_timeout configuration parameter.

DB2_FAIL_RECOVERY_ON_TABLESPACE_ERROR registry variable

Note: This registry variable is available in Db2Version 11.5 Mod Pack 4 and later.

In an HADR environment, by default, when a standby database has a table space in an invalid or error
state, the replay of transactions on this table space stops. On other valid table spaces, the replay of
transactions will continue. This default behavior is preferable when the affected table space is only a
small portion of the database and most applications can function with the valid table spaces.

You can specify a different behavior, by setting the DB2_FAIL_RECOVERY_ON_TABLESPACE_ERROR
registry variable to ROLLFORWARD. With this setting, the standby database will shut down when
encountering a table space which is invalid or in error. The standby database can be restarted after the
error is fixed. However, if the error cannot be fixed, you can recover the affected table space by referring
to “Recovering table space errors on an HADR standby database” on page 213 for more information.

HADR configuration parameters

Some HADR configuration parameters are static, such as hadr_local_host and hadr_remote_host.
Static parameters are loaded on database startup, and changes are ignored during run time. HADR
parameters are also loaded when the START HADR command completes. On the primary database, HADR
can be started and stopped dynamically, with the database remaining online. Thus, one way to refresh the
effective value of an HADR configuration parameter without shutting down the database is to stop and
restart HADR. In contrast, the STOP HADR brings down the database on the standby, so the standby's
parameters cannot be refreshed with the database online.

Host name parameters and service and port name parameters
There are six interrelated configuration parameters that you need to set for HADR:

• hadr_target_list
• hadr_local_host
• hadr_remote_host
• hadr_local_svc
• hadr_remote_svc (except in a Db2 pureScale environment, which does not make use of this

parameter)
• hadr_remote_inst

The target list specifies a set of host:port pairs that act as standbys (for the primary) or the standby
hosts to be used if the standby takes over as the new HADR primary database. For a detailed
description of its usage, see the hadr_target_list topic in the Related links.

TCP connections are used for communication between the primary and standby databases. The
"local" parameters specify the local address and the "remote" parameters specify the remote
address. A primary database or primary database member listens on its local address for new
connections. A standby database that is not connected to a primary database retries connection to its
remote address.

The standby database also listens on its local address. In some scenarios, another HADR database
can contact the standby database on this address and send it messages.

Unless the HADR_NO_IP_CHECK registry variable is set, HADR does the following cross-checks of the
primary and principal standbys' local and remote addresses on connection:

 my local address = your remote address

and

Chapter 1. High availability 151

my remote address = your local address

The check is done using the IP address and port number, rather than the literal string in the
configuration parameters. You need to set the HADR_NO_IP_CHECK registry variable in NAT (Network
Address Translation) environment to bypass the check.

You can configure an HADR database to use either IPv4 or IPv6 to locate its partner database. If the
host server does not support IPv6, you must use IPv4. If the server supports IPv6, whether the
database uses IPv4 or IPv6 depends upon the format of the address that you specify for the
hadr_local_host and hadr_remote_host configuration parameters. The database attempts to
resolve the two parameters to the same IP format and use IPv6 when possible. Table 15 on page 152
shows how the IP mode is determined for IPv6-enabled servers:

Table 15. How the address space used for HADR communication is determined

IP mode used for
hadr_local_host parameter

IP mode used for
hadr_remote_host
parameter

IP mode used for HADR
communications

IPv4 address IPv4 address IPv4

IPv4 address IPv6 address Error

IPv4 address host name, maps to IPv4 only IPv4

IPv4 address host name, maps to IPv6 only Error

IPv4 address host name, maps to IPv4 and v6 IPv4

IPv6 address IPv4 address Error

IPv6 address IPv6 address IPv6

IPv6 address host name, maps to IPv4 only Error

IPv6 address host name, maps to IPv6 only IPv6

IPv6 address host name, maps to IPv4 and
IPv6

IPv6

hostname, maps to IPv4 only IPv4 address IPv4

hostname, maps to IPv4 only IPv6 address Error

hostname, maps to IPv4 only hostname, maps to IPv4 only IPv4

hostname, maps to IPv4 only hostname, maps to IPv6 only Error

hostname, maps to IPv4 only hostname, maps to IPv4 and
IPv6

IPv4

hostname, maps to IPv6 only IPv4 address Error

hostname, maps to IPv6 only IPv6 address IPv6

hostname, maps to IPv6 only hostname, maps to IPv4 only Error

hostname, maps to IPv6 only hostname, maps to IPv6 only IPv6

hostname, maps to IPv6 only hostname, maps to IPv4 and
IPv6

IPv6

hostname, maps to IPv4 and
IPv6

IPv4 address IPv4

hostname, maps to IPv4 and
IPv6

IPv6 address IPv6

152 IBM Db2 V11.5: Data Recovery and High Availability

Table 15. How the address space used for HADR communication is determined (continued)

IP mode used for
hadr_local_host parameter

IP mode used for
hadr_remote_host
parameter

IP mode used for HADR
communications

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv4 only IPv4

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv6 only IPv6

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv4 and
IPv6

IPv6

The primary and standby databases can make HADR connections only if they use the same IPv4 or
IPv6 format. If one server is IPv6 enabled (but also supports IPv4) and the other server supports IPv4
only, at least one of the hhadr_local_host and hadr_remote_host parameters on the IPv6
server must specify an IPv4 address to force database on this server to use IPv4.

You can set the HADR local service and remote service parameters (hadr_local_svc and
hadr_remote_svc) to either a port number or a service name. The values that you specify must map
to ports that are not being used by any other service, including other Db2 components or other HADR
databases. In particular, you cannot set either parameter value to the TCP/IP port that is used by the
server to await communications from remote clients (the value of the svcename database manager
configuration parameter) or the next port (the value of the svcename parameter + 1).

If the primary and standby databases are on different servers, they can use the same port number or
service name; otherwise, they must have different values.

Automatic reconfiguration

The hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration parameters
are automatically reset when HADR starts if you did not correctly set them. Even though this
automatic reconfiguration occurs, always try to set the correct initial values because that
reconfiguration might not take effect until a connection is made between a standby and its primary. In
some HADR deployments, those initial values might be needed. For example, if you are using the IBM
Tivoli System Automation for Multiplatforms software, the value for the hadr_remote_inst
configuration parameter is needed to construct a resource name.

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the hadr_remote_host and
hadr_remote_svc are not automatically updated.

Reconfiguration is predicated on the values of the hadr_target_list configuration parameter
being correct; if anything is wrong in a target list entry, you must correct it manually.

On the primary, the reconfiguration occurs in the following manner:

• If the values for the hadr_remote_host and hadr_remote_svc configuration parameters do not
match the host:port pair that is the first entry of the hadr_target_list configuration parameter
(namely, the principal standby), the hadr_remote_host and hadr_remote_svc configuration
parameters are updated with the values from the target list.

• If the value for the hadr_remote_inst configuration parameter does not match the instance
name of the principal standby, the correct instance name is copied to the hadr_remote_inst
configuration parameter for the primary after the principal standby connects to it.

On a standby database, the reconfiguration occurs in the following manner:

• When a standby starts, it attempts to connect to the database that you specified for its
hadr_remote_host, hadr_remote_inst, and hadr_remote_svc configuration parameters.

• If the standby cannot connect to the primary, it waits for the primary to connect to it.
• The primary attempts to connect to its standbys using addresses listed in its hadr_target_list

parameter. After the primary connects to a standby, the hadr_remote_host,

Chapter 1. High availability 153

hadr_remote_inst, and hadr_remote_svc configuration parameters for the standby are
updated with the correct values for the primary.

In a non-forced takeover, the values for the hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters on the new primary are automatically updated to its
principal standby, and these parameters on the standbys listed in the new primary's
hadr_target_list are automatically updated to point to the new primary. Any database that is not
listed in the new primary's hadr_target_list is not updated. Those databases continue to attempt
to connect to the old primary and get rejected because the old primary is now a standby. The old
primary is guaranteed to be in the new primary's target list because of the requirement of mutual
inclusion in the target list.

In a forced takeover, automatic update on the new primary and its standbys (excluding the old
primary) work the same way as non-forced takeover. However, automatic update on the old primary
does not happen until it is shut down and restarted as a standby for reintegration.

Any database that is not online during the takeover will be automatically reconfigured after it starts.
Automatic reconfiguration might not take effect immediately on startup, because it relies on the new
primary to periodically contact the standby. On startup, a standby might attempt to connect to the old
primary and follow the log stream of the old primary, causing it to diverge from the new primary's log
stream and, making that standby unable to pair with the new primary. As a result, you must shut down
the old primary before takeover to avoid that kind of split brain scenario.

Synchronization mode

The setting for the hadr_syncmode configuration parameter does not have to be the same on the
primary and standby databases. Whatever setting you specify for the hadr_syncmode configuration
parameter on a standby is considered its configured synchronization mode; this setting has relevance
only if the standby becomes a primary. The standby is assigned an effective synchronization mode. For
any auxiliary standby, the effective synchronization mode is always SUPERASYNC. For the principal
standby, the effective synchronization mode is the setting for the hadr_syncmode configuration
parameter for the primary. For a standby, the monitoring interfaces display the effective
synchronization mode as the synchronization mode.

Note: If you have set up HADR without using the hadr_target_list configuration parameter (a
method that is deprecated starting in V10.5), the hadr_syncmode configuration parameter must be
identical on the primary and standby databases.

For more detailed information, see "Db2 high availability disaster recovery (HADR) synchronization
mode".

HADR timeout and peer window

The timeout period, which you specify with the hadr_timeout configuration parameter, must be
identical on the primary and standby databases. The consistency of the values of these configuration
parameters is checked when an HADR pair establishes a connection.

With one exception, when the primary database starts, it waits for the longer of the two following
periods for a standby to connect:

• For a minimum of 30 seconds
• For the number of seconds that is specified by the hadr_timeout database configuration

parameter.

If the principal standby does not connect in the specified time, the startup fails; a connection to an
auxiliary standby is optional. The one exception to this behavior is when you issue the START HADR
command with the BY FORCE parameter. In this case, the primary database starts without waiting for
the standby database to connect to it.

After an HADR pair establishes a connection, they exchange heartbeat messages. The heartbeat
interval is computed from factors like the hadr_timeout and hadr_peer_window configuration
parameters. It is reported by the HEARTBEAT_INTERVAL field in the MON_GET_HADR table function
and the db2pd command. If one database does not receive any message from the other database
within the number of seconds that is specified by the hadr_timeout configuration parameter, it

154 IBM Db2 V11.5: Data Recovery and High Availability

initiates a disconnect. This behavior means that at most, it takes the number of seconds that is
specified by the hadr_timeout configuration parameter for an HADR database to detect the failure
of either its partner database or the intervening network. If you set the hadr_timeout configuration
parameter too low, you might receive false alarms and frequent disconnections.

The setting for the hadr_peer_window configuration parameter does not have to be the same on the
primary and standby databases; the principal standby uses the peer window setting of the primary.
The exception to this is if you set up HADR without using the hadr_target_list configuration
parameter (a method that is deprecated starting in V10.5), in which case, the hadr_peer_window
configuration parameter must be identical on the primary and standby databases.

Peer window cannot be enabled (that is, it must be set to 0) in the following situations:

• If you are using the Db2 pureScale feature
• If the hadr_syncmode parameter is set to ASYNC or SUPERASYNC
• If you are configuring an auxiliary standby

If you have the hadr_peer_window configuration parameter set to a nonzero value and the primary
loses connection to the standby in peer state, the primary database does not commit transactions
until the connection with the standby database is restored or the time value of the
hadr_peer_window configuration parameter elapses, whichever happens first.

For maximal availability, the default value for the hadr_peer_window database configuration
parameter is 0. When this parameter is set to 0, as soon as the connection between the primary and
the standby is closed, the primary drops out of peer state to avoid blocking transactions. The
connection can close because the standby closed the connection, a network error is detected, or
timeout is reached. For increased data consistency, but reduced availability, you can set the
hadr_peer_window database configuration parameter to a nonzero value.

For more information, see "Setting the hadr_timeout and hadr_peer_window database
configuration parameters".

The following sample configuration is for the primary and standby databases:

Primary database:

 HADR_TARGET_LIST host2.ibm.com:hadr_service
 HADR_LOCAL_HOST host1.ibm.com
 HADR_LOCAL_SVC hadr_service
 HADR_REMOTE_HOST host2.ibm.com
 HADR_REMOTE_SVC hadr_service
 HADR_REMOTE_INST dbinst2
 HADR_TIMEOUT 120
 HADR_SYNCMODE NEARSYNC
 HADR_PEER_WINDOW 120

Standby database:

 HADR_TARGET_LIST host1.ibm.com:hadr_service
 HADR_LOCAL_HOST host2.ibm.com
 HADR_LOCAL_SVC hadr_service
 HADR_REMOTE_HOST host1.ibm.com
 HADR_REMOTE_SVC hadr_service
 HADR_REMOTE_INST dbinst1
 HADR_TIMEOUT 120
 HADR_SYNCMODE NEARSYNC
 HADR_PEER_WINDOW 120

Setting the hadr_timeout and hadr_peer_window database configuration parameters
You can configure the hadr_timeout and hadr_peer_window database configuration parameters for
optimal response to a connection failure.
hadr_timeout database configuration parameter

If an HADR database does not receive any communication from its partner database for longer than
the length of time that is specified by the hadr_timeout database configuration parameter, then the
database concludes that the connection with the partner database is lost. If the database is in peer
state when the connection is lost, then it moves into disconnected peer state if the

Chapter 1. High availability 155

hadr_peer_window database configuration parameter is greater than zero, or into remote catchup
pending state if hadr_peer_window is not greater than zero. The state change applies to both
primary and standby databases.

hadr_peer_window database configuration parameter
The hadr_peer_window configuration parameter does not replace the hadr_timeout configuration
parameter. The hadr_timeout configuration parameter determines how long an HADR database
waits before it considers that its connection with the partner database as failed. The
hadr_peer_window configuration parameter determines whether the database goes into
disconnected peer state after the connection is lost, and how long the database remains in that state.
HADR breaks the connection as soon as a network error is detected during send, receive, or poll on
the TCP socket. HADR polls the socket every 100 milliseconds. This frequency allows it to respond
quickly to network errors detected by the OS. Only in the worst case does HADR wait until the timeout
to break a bad connection. In this case, a database application that is running at the time of failure
can be blocked for the time equal to the sum of the hadr_timeout and hadr_peer_window
database configuration parameters.

Note: The HADR peer window is not supported in a Db2 pureScale environment. Attempts to update it
to a nonzero value fail with a warning, and the START HADR command fails if hadr_peer_window is
not set to 0.

Setting the hadr_timeout and hadr_peer_window database configuration parameters
It is desirable to keep the waiting time that a database application experiences to a minimum. Setting
the hadr_timeout and hadr_peer_window configuration parameters to small values would reduce
the time that a database application must wait if an HADR standby database loses its connection with
the primary database. However, you should also consider the following details when you are choosing
values to assign to the hadr_timeout and hadr_peer_window configuration parameters:

• Set the hadr_timeout database configuration parameter to a value that is long enough to avoid
false alarms on the HADR connection that are caused by short, temporary network interruptions.
For example, the default value of hadr_timeout is 120 seconds, which is a reasonable value on
many networks.

• Set the hadr_peer_window database configuration parameter to a value that is long enough to
allow the system to perform automated failure responses. If the HA system, for example a cluster
manager, detects primary database failure before disconnected peer state ends, a failover to the
standby database takes place. Data is not lost in the failover as all data from old primary is
replicated to the new primary. If the peer window is too short, the HA system might not have
enough time to detect the failure and respond.

Note: The principal standby uses the primary's setting for hadr_peer_window (the effective peer
window). The setting for hadr_peer_window on any auxiliary standby is meaningless because that
type of standby always runs in SUPERASYNC mode.

HADR log spooling
The high availability disaster recovery (HADR) log spooling feature allows transactions on primary to make
progress without having to wait for the log replay on the standby. When this feature is enabled, log data
sent by the primary is spooled, or written, to disk on the standby, and that log data is later read by log
replay.

Log spooling, which is enabled by setting the hadr_spool_limit database configuration parameter, is
an improvement to the HADR feature. When replay is slow, it is possible that new transactions on the
primary can be blocked because it is not able to send log data to the standby system if there is no room in
the buffer to receive the data. The log spooling feature means that the standby is not limited by the size of
its buffer. When there is an increase in data received that cannot be contained in the buffer, the log replay
reads the data from disk. This allows the system to better tolerate either a spike in transaction volume on
the primary, or a slow down of log replay (due to the replay of particular type of log records) on the
standby.

This feature could potentially lead to a larger gap between the log position of received logs on the standby
and the log replay position on the standby, which can lead to longer takeover time. Use the db2pd
command with the -hadr option or the MON_GET_HADR table function to monitor this gap by comparing

156 IBM Db2 V11.5: Data Recovery and High Availability

the STANDBY_LOG_POS field, which shows receive position, and the STANDBY_REPLAY_LOG_POS field.
You should consider your spool limit setting carefully because the old standby cannot start up as the new
primary and receive transactions until the replay of the spooled logs has finished.

Log archiving configuration for Db2 high availability disaster recovery (HADR)
To use log archiving with Db2 high availability disaster recovery (HADR), configure both the primary
database and the standby database for automatic log retrieval capability from all log archive locations.
For multiple standby systems, configure archiving on primary and all standby databases.

Only the current primary database can perform log archiving. If the primary and standby databases are
set up with separate archiving locations, logs are archived only to the primary database's archiving
location. In the event of a takeover, the standby database becomes the new primary database and any
logs archived from that point on are saved to the original standby database's archiving location. In such a
configuration, logs are archived to one location or the other, but not both; with the exception that
following a takeover, the new primary database might archive a few logs that the original primary
database had already archived. In a multiple standby system, the archived log files can be scattered
among all databases' (primary and standbys) archive devices. A shared archive is preferred because all
files are stored in a single location.

Many operations need to retrieve archived log files. These operations include: database roll forward, the
HADR primary database retrieving log files to send to the standby database in remote catch up, and
replication programs (such as Q Replication) reading logs. As a result, a shared archive for an HADR
system is preferred, otherwise, the needed files can be distributed on multiple archive devices, and user
intervention is needed to locate the needed files and copy them to the requesting database. The
recommended copy destination is an archive device. If copying into an archive is not feasible, copy the
logs into the overflow log path. As a last resort, copy them into the log path (but you should be aware that
there is a risk of damaging the active log files). Db2 does not auto delete user copied files in the overflow
and active log path, so you should manually remove the files when they are no longer needed by any
HADR standby or any application.

A specific scenario is a takeover with multiple HADR standbys. After the takeover, the new primary might
not have all log files needed by other standbys (because a standby is at an older log position). If the
primary cannot find a requested log file, it notifies the standby, which closes the connection and then
reconnects in a few seconds to retry. The retry duration is limited to a few minutes. When retry time is
exhausted, the standby shuts down. In this case, you should copy the files to the primary to ensure it has
files from the first missing file to its current log file. After the files are copied, restart the standby if
needed.

The standby database automatically manages log files in its log path. The standby database does not
delete a log file from its local log path until it has been notified by the primary database that the primary
database has archived it. This behavior provides added protection against the loss of log files. If the
primary database fails and its log disk becomes corrupted before a particular log file is archived on the
primary database, the standby database does not delete that log file from its own disk because it has not
received notification that the primary database successfully archived the log file. If the standby database
then takes over as the new primary database, it archives that log file before recycling it. If both the
logarchmeth1 and logarchmeth2 configuration parameters are in use, the standby database does not
recycle a log file until the primary database has archived it using both methods.

In addition to the benefits previously listed, a shared log archive device improves the catchup process by
allowing the standby database to directly retrieve older log files from the archive in local catchup state,
instead of retrieving those files indirectly through the primary in remote catchup state. However, it is
recommended that you not use a serial archive device such as a tape drive for HADR databases. With
serial devices, you might experience performance degradation on both the primary and standby
databases because of mixed read and write operations. The primary writes to the device when it archives
log files and the standby reads from the device to replay logs. This performance impact can occur even if
the device is not configured as shared.

Chapter 1. High availability 157

Shared log archives on Tivoli Storage Manager

Using a shared log archive with IBM Tivoli Storage Manager (TSM) allows one or more nodes to appear as
a single node to the TSM server, which is especially useful in an HADR environment where either machine
can be the primary at any one time.

To set up a shared log archive, you need to use proxy nodes which allow the TSM client nodes to perform
data protection operations against a centralized name space on the TSM server. The target client node
owns the data and agent nodes act on behalf of the target nodes to manage the backup data. The proxy
node target is the node name defined on the TSM server to which backup versions of distributed data are
associated. The data is managed in a single namespace on the TSM server as if it is entirely the data for
this node. The proxy node target name can be a real node (for example, one of the application hosts) or a
virtual node name (that is, with no corresponding physical node). To create a virtual proxy node name, use
the following commands on the TSM server:

 Grant proxynode target=virtual-node-name agent=HADR-primary-name
 Grant proxynode target=virtual-node-name agent=HADR-standby-name

Next, you need to set these database configuration parameters on the primary and standby databases to
the virtual-node-name:

• vendoropt
• logarchopt

In a multiple standby setup, you need to grade proxynode access to all machines on the TSM server and
configure the vendoropt and logarchopt configuration parameters on all of the standbys.

High availability disaster recovery (HADR) performance
Configuring different aspects of your database system, including network bandwidth, CPU power, and
buffer size, can improve the performance of your Db2 high availability disaster recovery (HADR)
databases.

The network is the key part of your HADR setup because network connectivity is required to replicate
database changes from the primary to the standby, keeping the two databases in sync.

Recommendations for maximizing network performance:

• Ensure that network bandwidth is greater than the database log generation rate.
• Consider network delays when you choose the HADR synchronization mode. Network delays affect

the primary only in SYNC and NEARSYNC modes.

The slowdown in system performance as a result of using SYNC mode can be significantly larger
than that of the other synchronization modes. In SYNC mode, the primary database sends log pages
to the standby database only after the log pages are successfully written to the primary database
log disk. To protect the integrity of the system, the primary database waits for an acknowledgment
from the standby before it notifies an application that a transaction was prepared or committed. The
standby database sends the acknowledgment only after it writes the received log pages to the
standby database disk. The performance overhead equals the time that is needed for writing the log
pages on the standby database plus the time that is needed for sending the messages back to the
primary.

In NEARSYNC mode, the primary database writes and sends log pages in parallel. The primary then
waits for an acknowledgment from the standby. The standby database acknowledges as soon as the
log pages are received into its memory. On a fast network, the overhead to the primary database is
minimal. The acknowledgment might have already arrived by the time the primary database finishes
local log write.

For ASYNC mode, the log write and send are also in parallel; however, in this mode the primary
database does not wait for an acknowledgment from the standby. Therefore, network delay is not
an issue. Performance overhead is even smaller with ASYNC mode than with NEARSYNC mode.

For SUPERASYNC mode, transactions are never blocked or experience elongated response times
because of network interruptions or congestion. New transactions can be processed as soon as

158 IBM Db2 V11.5: Data Recovery and High Availability

previously submitted transactions are written to the primary database. Therefore, network delay is
not an issue. The elapsed time for the completion of non-forced takeover operations might be
longer than in other modes because the log gap between the primary and the standby databases
might be relatively larger.

• Consider tuning the DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF registry variables.

HADR log shipping workload, network bandwidth, and transmission delay are important factors to
consider when you are tuning the TCP socket buffer sizes. Two registry variables,
DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF allow tuning of the TCP socket send and receive
buffer size for HADR connections only. These two variables have the value range of 1024 to
4294967295 and default to the socket buffer size of the operating system, which varies depending
on the operating system. It is strongly recommended that you use a minimum value of 16384 (16 K)
for your DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF settings. Some operating systems
automatically round or silently cap the user specified value.

You can use the HADR simulator (a command-line tool that generates a simulated HADR workload) to
measure network performance and to experiment with various network tuning options. You can
download the simulator at https://ibm.github.io/db2-hadr-wiki/hadrSimulator.html.

Network congestion

For each log write on the primary, the same log pages are also sent to the standby. Each write operation is
called a flush. The size of the flush is limited to the log buffer size on the primary database (which is
controlled by the database configuration parameter logbufsz). The exact size of each flush is
nondeterministic. A larger log buffer does not necessarily lead to a larger flush size.

If the standby database is too slow replaying log pages, its log-receiving buffer might fill up, thereby
preventing the buffer from receiving more log pages. In SYNC and NEARSYNC modes, if the primary
database flushes its log buffer one more time, the data is likely to be buffered in the network pipeline
consisting of the primary machine, the network, and the standby database. Because the standby
database does not have free buffer to receive the data, it cannot acknowledge, so the primary database
becomes blocked while it is waiting for the standby database's acknowledgment.

In ASYNC mode, the primary database continues to send log pages until the pipeline fills up and it cannot
send additional log pages. This condition is called congestion. Congestion is reported by the
hadr_connect_status monitor element. For SYNC and NEARSYNC modes, the pipeline can usually
absorb a single flush and congestion does not occur. However, the primary database remains blocked
waiting for an acknowledgment from the standby database on the flush operation.

Congestion can also occur if the standby database is replaying log records that take a long time to replay,
such as database or table reorganization log records.

In SUPERASYNC mode, since the transaction commit operations on the primary database are not affected
by the relative slowness of the HADR network or the standby HADR server, the log gap between the
primary database and the standby database might continue to increase. It is important to monitor the log
gap as it is an indirect measure of the potential number of transactions that might be lost if a true disaster
occurs on the primary system. In disaster recovery scenarios, any transactions that are committed during
the log gap would not be available to the standby database. Therefore, monitor the log gap by checking
the HADR_LOG_GAP field in the output of the MON_GET_HADR table function or the db2pd command
with the -hadr option; if the size of the log gap is not acceptable, investigate the network interruptions or
the relative speed of the standby HADR server and take corrective measures to reduce the log gap.

Recommendations for minimizing network congestion:

• Use a standby database that is powerful enough to replay the logged operations of the database as
fast as they are generated on the primary. Identical primary and standby hardware is
recommended.

• Consider tuning the size of the standby database log-receiving buffer by using the
DB2_HADR_BUF_SIZE registry variable.

A larger buffer can help to reduce congestion, although it might not remove all of the causes of
congestion. By default, the size of the standby database log-receiving buffer is two times the size of

Chapter 1. High availability 159

https://ibm.github.io/db2-hadr-wiki/hadrSimulator.html

the primary database log-writing buffer. The database configuration parameter logbufsz specifies
the size of the primary database log-writing buffer.

You can determine if the standbys log-receiving buffer is inadequate by using the db2pd command
with the -hadr option or the MON_GET_HADR table function. If the value for the
STANDBY_RECV_BUF_PERCENT field, which indicates the percentage of standby log receiving
buffer that is being used, is close to 100, increase the DB2_HADR_BUF_SIZE setting.

• Consider setting the DB2_HADR_PEER_WAIT_LIMIT registry variable, which allows you to prevent
primary database logging from blocking because of a slow or blocked standby database.

When the DB2_HADR_PEER_WAIT_LIMIT registry variable is set, the HADR primary database
breaks out of the peer state if logging on the primary database is blocked for the specified number
of seconds because of log replication to the standby. When this limit is reached, the primary
database breaks the connection to the standby database. If the peer window is disabled, the
primary enters disconnected state and logging resumes. If the peer window is enabled, the primary
database enters disconnected peer state, in which logging continues to be blocked. The primary
database leaves disconnected peer state upon reconnecting or peer window expiration. Logging
resumes after the primary database leaves disconnected peer state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to avoid triggering
false alarms.

Honoring peer window transition when breaking out of peer state ensures peer window semantics
for safe takeover in all cases. If the primary fails during the transition, normal peer window
protection still applies (safe takeover from standby as long as it is still in disconnected-peer state).

• In most systems, the logging capability is not driven to its limit. Even in SYNC mode, there might not
be an observable slow down on the primary database. For example, if the limit of logging is 40 MB
per second with HADR enabled, but the system was just running at 30 MB per second before HADR
is enabled, then you might not notice any difference in overall system performance.

• To speed up the catchup process, you can use a shared log archive device. However, if the shared
device is a serial device such as a tape drive, you might experience performance degradation on
both the primary and standby databases because of mixed read and write operations.

• If you are going to use the reads on standby feature, the standby must have the resources to
accommodate this additional work.

• If you are going to use the reads on standby feature, configure your buffer pools on the primary, and
that information is shipped to the standby through logs.

• If you are going to use the reads on standby feature, tune the pckcachesz, catalogcache_sz,
applheapsz, and sortheap configuration parameters on the standby.

Cluster managers and high availability disaster recovery (HADR)
You can implement Db2 high availability disaster recovery (HADR) databases on nodes of a cluster, and
use a cluster manager to improve the availability of your database solution. You can have both the
primary database and the standby database managed by the same cluster manager, or you can have the
primary database and the standby database managed by different cluster managers.

Set up an HADR pair where the primary and standby databases are serviced by the same cluster
manager

This configuration is best suited to environments where the primary and standby databases are located at
the same site and where the fastest possible failover is required. These environments would benefit from
using HADR to maintain DBMS availability, rather using crash recovery or another recovery method.

You can use the cluster manager to quickly detect a problem and to initiate a takeover operation. Because
HADR requires separate storage for the DBMS, the cluster manager should be configured with separate
volume control. This configuration prevents the cluster manager from waiting for failover to occur on the
volume before using the DBMS on the standby system. You can use the automatic client reroute feature
to redirect client applications to the new primary database.

160 IBM Db2 V11.5: Data Recovery and High Availability

Set up an HADR pair where the primary and standby databases are not serviced by the same cluster
manager

This configuration is best suited to environments where the primary and standby databases are located at
different sites and where high availability is required for disaster recovery in the event of a complete site
failure. There are several ways you can implement this configuration. When an HADR primary or standby
database is part of a cluster, there are two possible failover scenarios.

• If a partial site failure occurs and a node to which the DBMS can fail over remains available, you can
choose to perform a cluster failover. In this case, the IP address and volume failover is performed using
the cluster manager; HADR is not affected.

• If a complete site failure occurs where the primary database is located, you can use HADR to maintain
DBMS availability by initiating a takeover operation. If a complete site failure occurs where the standby
database is located, you can repair the site or move the standby database to another site.

Note: For HADR deployments in Db2 pureScale environments, IBM Tivoli System Automation for
Multiplatforms cannot be used to automate HADR; SA MP only manages high availability for the local
cluster.

High availability disaster recovery (HADR) synchronization mode
The HADR synchronization mode determines the degree of protection your Db2 high availability disaster
recovery (HADR) database solution has against transaction loss. The synchronization mode determines
when the primary database server considers a transaction complete, based on the state of the logging on
the standby database.The more strict the synchronization mode configuration parameter value, the more
protection your database solution has against transaction data loss, but the slower your transaction
processing performance. You must balance the need for protection against transaction loss with the need
for performance.

Figure 6 on page 161 shows the Db2 HADR synchronization modes that are available and also when
transactions are considered committed based on the synchronization mode chosen:

Figure 6. Synchronization modes for high availability and disaster recovery (HADR)

Although you set hadr_syncmode on the primary and the standby databases, the effective
synchronization mode is determined by the primary or by the standby's role. That is, auxiliary standbys
(any standby that is not listed as the first entry in the primary's target list) automatically have their
synchronization modes set to SUPERASYNC, and the principal standby (the standby that is listed as the
first entry in the primary's target list) uses the synchronization mode set on the primary. A standby's
effective synchronization mode is the value that is displayed by any monitoring interface. The only
exception to this is when you have not configured the hadr_target_list parameter. In that case, the
primary and standby must have the same setting for hadr_syncmode.

Chapter 1. High availability 161

Use the hadr_syncmode database configuration parameter to set the synchronization mode. The
following values are valid:

SYNC (synchronous)
This mode provides the greatest protection against transaction loss, and using it results in the longest
transaction response time among the four modes.

In this mode, log writes are considered successful only when logs have been written to log files on the
primary database and when the primary database has received acknowledgement from the standby
database that the logs have also been written to log files on the standby database. The log data is
guaranteed to be stored at both sites.

If the standby database crashes before it can replay the log records, the next time it starts it can
retrieve and replay them from its local log files. If the primary database fails, a failover to the standby
database guarantees that any transaction that has been committed on the primary database has also
been committed on the standby database. After the failover operation, when the client reconnects to
the new primary database, there can be transactions committed on the new primary database that
were never reported as committed to the application on the original primary. This occurs when the
primary database fails before it processes an acknowledgement message from the standby database.
Client applications should consider querying the database to determine whether any such
transactions exist.

If the primary database loses its connection to the standby database, what happens next depends on
the configuration of the hadr_peer_window database configuration parameter. If
hadr_peer_window is set to a non-zero time value, then upon losing connection with the standby
database the primary database will move into disconnected peer state and continue to wait for
acknowledgement from the standby database before committing transactions. If the
hadr_peer_window database configuration parameter is set to zero, the primary and standby
databases are no longer considered to be in peer state and transactions will not be held back waiting
for acknowledgement from the standby database. If the failover operation is performed when the
databases are not in peer or disconnected peer state, there is no guarantee that all of the transactions
committed on the primary database will appear on the standby database.

If the primary database fails when the databases are in peer or disconnected peer state, it can rejoin
the HADR pair as a standby database after a failover operation. Because a transaction is not
considered to be committed until the primary database receives acknowledgement from the standby
database that the logs have also been written to log files on the standby database, the log sequence
on the primary will be the same as the log sequence on the standby database. The original primary
database (now a standby database) just needs to catch up by replaying the new log records generated
on the new primary database since the failover operation.

If the primary database is not in peer state when it fails, its log sequence might be different from the
log sequence on the standby database. If a failover operation has to be performed, the log sequence
on the primary and standby databases might be different because the standby database starts its own
log sequence after the failover. Because some operations cannot be undone (for example, dropping a
table), it is not possible to revert the primary database to the point in time when the new log sequence
was created. If the log sequences are different and you issue the START HADR command with the AS
STANDBY parameter on the original primary, you will receive a message that the command was
successful. However, this message is issued before reintegration is attempted. If reintegration fails,
pair validation messages will be issued to the administration log and the diagnostics log on both the
primary and the standby. The reintegrated standby will remain the standby, but the primary will reject
the standby during pair validation causing the standby database to shut down. If the original primary
database successfully rejoins the HADR pair, you can achieve failback of the database by issuing the
TAKEOVER HADR command without specifying the BY FORCE parameter. If the original primary
database cannot rejoin the HADR pair, you can reinitialize it as a standby database by restoring a
backup image of the new primary database.

NEARSYNC (near synchronous)
While this mode has a shorter transaction response time than synchronous mode, it also provides
slightly less protection against transaction loss.

162 IBM Db2 V11.5: Data Recovery and High Availability

In this mode, log writes are considered successful only when the log records have been written to the
log files on the primary database and when the primary database has received acknowledgement
from the standby system that the logs have also been written to main memory on the standby system.
Loss of data occurs only if both sites fail simultaneously and if the target site has not transferred to
nonvolatile storage all of the log data that it has received.

If the standby database crashes before it can copy the log records from memory to disk, the log
records will be lost on the standby database. Usually, the standby database can get the missing log
records from the primary database when the standby database restarts. However, if a failure on the
primary database or the network makes retrieval impossible and a failover is required, the log records
will never appear on the standby database, and transactions associated with these log records will
never appear on the standby database.

If transactions are lost, the new primary database is not identical to the original primary database
after a failover operation. Client applications should consider resubmitting these transactions to bring
the application state up to date.

If the primary database fails when the primary and standby databases are in peer state, it is possible
that the original primary database cannot to rejoin the HADR pair as a standby database without being
reinitialized using a full restore operation. If the failover involves lost log records (because both the
primary and standby databases have failed), the log sequences on the primary and standby databases
will be different and attempts to restart the original primary database as a standby database without
first performing a restore operation will fail. If the original primary database successfully rejoins the
HADR pair, you can achieve failback of the database by issuing the TAKEOVER HADR command
without specifying the BY FORCE parameter. If the original primary database cannot rejoin the HADR
pair, you can reinitialize it as a standby database by restoring a backup image of the new primary
database.

ASYNC (asynchronous)
Compared with the SYNC and NEARSYNC modes, the ASYNC mode results in shorter transaction
response times but might cause greater transaction losses if the primary database fails

In ASYNC mode, log writes are considered successful only when the log records have been written to
the log files on the primary database and have been delivered to the TCP layer of the primary system's
host machine. Because the primary system does not wait for acknowledgement from the standby
system, transactions might be considered committed when they are still on their way to the standby
database.

A failure on the primary database host machine, on the network, or on the standby database can
cause log records in transit to be lost. If the primary database is available, the missing log records can
be resent to the standby database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records will never reach the
standby database, causing the associated transactions to be lost in the failover.

If transactions are lost, the new primary database is not exactly the same as the original primary
database after a failover operation. Client applications should consider resubmitting these
transactions to bring the application state up to date.

If the primary database fails when the primary and standby databases are in peer state, it is possible
that the original primary database will not be able to rejoin the HADR pair as a standby database
without being reinitialized using a full restore operation. If the failover involves lost log records, the
log sequences on the primary and standby databases will be different, and attempts to restart the
original primary database as a standby database will fail. Because there is a greater possibility of log
records being lost if a failover occurs in asynchronous mode, there is also a greater possibility that the
primary database will not be able to rejoin the HADR pair. If the original primary database
successfully rejoins the HADR pair, you can achieve failback of the database by issuing the TAKEOVER
HADR command without specifying the BY FORCE parameters. If the original primary database cannot
rejoin the HADR pair, you can reinitialize it as a standby database by restoring a backup image of the
new primary database.

Note: You cannot set the hadr_syncmode parameter to ASYNC if you are using peer window
functionality (this is, if hadr_peer_window is set to a nonzero value).

Chapter 1. High availability 163

SUPERASYNC (super asynchronous)
This mode has the shortest transaction response time but has also the highest probability of
transaction losses if the primary system fails. This mode is useful when you do not want transactions
to be blocked or experience elongated response times due to network interruptions or congestion.

In this mode, the HADR pair can never be in peer state or disconnected peer state. The log writes are
considered successful as soon as the log records have been written to the log files on the primary
database. Because the primary database does not wait for acknowledgement from the standby
database, transactions are considered committed irrespective of the state of the replication of that
transaction.

A failure on the primary database host machine, on the network, or on the standby database can
cause log records in transit to be lost. If the primary database is available, the missing log records can
be resent to the standby database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records will never reach the
standby database, causing the associated transactions to be lost in the failover.

If transactions are lost, the new primary database is not exactly the same as the original primary
database after a failover operation. Client applications should consider resubmitting these
transactions to bring the application state up to date.

Because the transaction commit operations on the primary database are not affected by the relative
slowness of the HADR network or the standby HADR server, the log gap between the primary
database and the standby database might continue to increase. It is important to monitor the log gap
as it is an indirect measure of the potential number of transactions that might be lost should a true
disaster occur on the primary system. In disaster recovery scenarios, any transactions committed
during the log gap would not be available to the standby database. Therefore, monitor the log gap by
checking the hadr_log_gap field of the db2pd command with the -hadr option or the
MON_GET_HADR table function; if the size of the log gap is not acceptable, investigate the network
interruptions or the relative speed of the standby database node and take corrective measures to
reduce the log gap.

If the primary database fails, it is possible that the original primary database will not be able to rejoin
the HADR pair as a standby database without being reinitialized using a full restore operation. If the
failover involves lost log records, the log sequences on the primary and standby databases will be
different, and attempts to restart the original primary database as a standby database will fail.
Because there is a greater probability of log records being lost if a failover occurs in super
asynchronous mode, there is also a greater probability that the primary database will not be able to
rejoin the HADR pair. If the original primary database successfully rejoins the HADR pair, you can
achieve failback of the database by issuing the TAKEOVER HADR command without specifying the BY
FORCE parameter. If the original primary database cannot rejoin the HADR pair, you can reinitialize it
as a standby database by restoring a backup image of the new primary database.

Note: You cannot set the hadr_syncmode parameter to SUPERASYNC if you are using peer window
functionality (this is, if hadr_peer_window is set to a nonzero value).

High availability disaster recovery (HADR) support
To get the most out of the Db2 database High Availability Disaster Recovery (HADR) feature, consider
system requirements and feature limitations when designing your high availability database solution.

System requirements for Db2 high availability disaster recovery (HADR)
To achieve optimal performance with high availability disaster recovery (HADR), ensure that your system
meets the following requirements for hardware, operating systems, and for the Db2 database system.

Recommendation: For better performance, use the same hardware and software for the system where
the primary database resides and for the system where the standby database resides. If the system
where the standby database resides has fewer resources than the system where the primary database
resides, it is possible that the standby database will be unable to keep up with the transaction load
generated by the primary database. This can cause the standby database to fall behind or the
performance of the primary database to degrade. In a failover situation, the new primary database should
have the resources to service the client applications adequately.

164 IBM Db2 V11.5: Data Recovery and High Availability

If you enable reads on standby and use the standby database to run some of your read-only workload,
ensure that the standby has sufficient resources. An active standby requires additional memory and
temporary table space usage to support transactions, sessions, and new threads as well as queries that
involve sort and join operations.

Hardware and operating system requirements

Recommendation: Use identical host computers for the HADR primary and standby databases. That is,
they should be from the same vendor and have the same architecture.

The operating system on the primary and standby databases should be the same version, including
patches. When the rolling update procedure is used to upgrade the operating system, the operating
system versions can be different on the primary and standby during the procedure. To minimize risks,
plan ahead to have the procedure completed in a short time and try it out first in a test environment

A TCP/IP interface must be available between the HADR host machines, and a high-speed, high-capacity
network is recommended.

Db2 database requirements

The versions of the database systems for the primary and standby databases must be identical; for
example, both must be either V10.1 or V10.5. During rolling updates, the modification level (for example,
the fix pack level) of the database system for the standby database can be later than that of the primary
database for a short while to test the new level. However, you should not keep this configuration for an
extended period of time. The primary and standby databases will not connect to each other if the
modification level of the database system for the primary database is later than that of the standby
database. In order to use the reads on standby feature, both the primary and the standby databases need
to be Version 9.7 Fix Pack 1.

The Db2 database software for both the primary and standby databases must have the same bit size (32
or 64 bit). Table spaces and their containers must be identical on the primary and standby databases.
Properties that must be identical include the table space type (DMS or SMS), table space size, container
path, container size, and container file type (raw device or file system). The amount of space allocated for
log files should also be the same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE TABLESPACE, ALTER
TABLESPACE, or DROP TABLESPACE, it is replayed on the standby database. You must ensure that the
devices involved are set up on both of the databases before you issue the table space statement on the
primary database.

The primary and standby databases do not require the same database path. If relative container paths are
used, the same relative path might map to different absolute container paths on the primary and standby
databases.

Storage groups are fully supported by HADR, including replication of the CREATE STOGROUP, ALTER
STOGROUP and DROP STOGROUP statements. Similar to table space containers, the storage paths must
exist on both primary and standby.

The primary and standby databases must have the same database name. This means that they must be in
different instances.

Redirected restore is not supported. That is, HADR does not support redirecting table space containers.
However, database directory and log directory changes are supported. Table space containers created by
relative paths will be restored to paths relative to the new database directory.

Buffer pool requirements

Since buffer pool operations are also replayed on the standby database, it is important that the primary
and standby databases have the same amount of memory. If you are using reads on standby, you will
need to configure the buffer pool on the primary so that the active standby can accommodate log replay
and read applications.

Chapter 1. High availability 165

Installation and storage requirements for high availability disaster recovery (HADR)
To achieve optimal performance with high availability disaster recovery (HADR), ensure that your system
meets the following installation and storage requirements.

Installation requirements

For HADR, instance paths should be the same on the primary and the standby databases. Using different
instance paths can cause problems in some situations, such as if an SQL stored procedure invokes a user-
defined function (UDF) and the path to the UDF object code is expected to be on the same directory for
both the primary and standby server.

Storage requirements

Storage groups are fully supported by HADR, including replication of the CREATE STOGROUP, ALTER
STOGROUP and DROP STOGROUP statements. Similar to table space containers, the storage path must
exist on both primary and standby. Symbolic links can be used to create identical paths. The primary and
standby databases can be on the same computer. Even though their database storage starts at the same
path, they do not conflict because the actual directories used have instance names embedded in them
(since the primary and standby databases must have the same database name, they must be in different
instances). The storage path is formulated as storage_path_name/inst_name/dbpart_name/
db_name/tbsp_name/container_name.

Table spaces and their containers must be identical on the primary and standby databases. Properties
that must be identical include: the table space type (DMS or SMS), table space size, container path,
container size, and container file type (raw device or file system). Storage groups and their storage paths
must be identical. This includes the path names and the amount of space on each that is devoted to each
storage group. The amount of space allocated for log files should also be the same on both the primary
and standby databases.

When you issue a table space statement on the primary database, such as CREATE TABLESPACE, ALTER
TABLESPACE, or DROP TABLESPACE, it is replayed on the standby database. You must ensure that the
devices involved are set up on both of the databases before you issue the table space statement on the
primary database.

If the table space setup is not identical on the primary and standby databases, log replay on the standby
database might encounter errors such as OUT OF SPACE or TABLE SPACE CONTAINER NOT FOUND.
Similarly, if the storage groups's storage path setup is not identical on the primary and standby
databases, log records associated with the CREATE STOGROUP or ALTER STOGROUP are not be replayed.
As a result, the existing storage paths might prematurely run out of space on the standby system and
automatic storage table spaces are not be able to increase in size. If any of these situations occurs, the
affected table space is put in rollforward pending state and is ignored in subsequent log replay. If a
takeover operation occurs, the table space is not available to applications.

If the problem is noticed on the standby system prior to a takeover then the resolution is to re-establish
the standby database while addressing the storage issues. The steps to do this include:

• Deactivating the standby database.
• Dropping the standby database.
• Ensuring the necessary file systems exist with enough free space for the subsequent restore and

rollforward.
• Restoring the database at the standby system using a recent backup of the primary database (or,

reinitialize using split mirror or flash copy with the db2inidb command). Storage group storage paths
should not be redefined during the restore. Also, table space containers should not be redirected as
part of the restore.

• Restarting HADR on the standby system.

However, if the problem is noticed with the standby database after a takeover has occurred (or if a choice
was made to not address the storage issues until this time) then the resolution is based on the type of
problem that was encountered.

166 IBM Db2 V11.5: Data Recovery and High Availability

If the database is enabled for automatic storage and space is not available on the storage paths
associated with the standby database then follow these steps:

1. Make space available on the storage paths by extending the file systems, or by removing unnecessary
non-Db2 files on them.

2. Perform a table space rollforward to the end of logs.

In the case where the addition or extension of containers as part of log replay could not occur, if the
necessary backup images and log file archives are available, you might be able to recover the table space
by first issuing the SET TABLESPACE CONTAINERS statement with the IGNORE ROLLFORWARD
CONTAINER OPERATIONS option and then issuing the ROLLFORWARD command.

The primary and standby databases do not require the same database path. If relative container paths are
used, the same relative path might map to different absolute container paths on the primary and standby
databases. Consequently, if the primary and standby databases are placed on the same computer, all
table space containers must be defined with relative paths so that they map to different paths for primary
and standby.

HADR and network address translation (NAT) support
Network address translation (NAT) is usually used for firewall and security because it hides the server's
real address. NAT is supported in HADR environments unless you are also using the Db2 pureScale
Feature.

In an HADR setup, the local and remote host configurations on the primary and standby nodes are cross-
checked to ensure that they are correct. In a NAT environment, a host is known to itself by a particular IP
address but is known to the other hosts by a different IP address. This behavior causes the HADR host
cross-check to fail unless you set the DB2_HADR_NO_IP_CHECK registry variable to ON. Using this setting
causes the host cross-check to be bypassed, enabling the primary and standby to connect in a NAT
environment.

If you are not running in a NAT environment, use the default setting of OFF for the
DB2_HADR_NO_IP_CHECK registry variable. Disabling the cross-check weakens the HADR validation of
your configuration.

Multiple HADR standby databases

Normally, with multiple standby databases, on startup, a standby checks that its settings for the
hadr_remote_host and hadr_remote_svc configuration parameters are also used for its
hadr_target_list parameter. This check is done to ensure that on role switch, the old primary can
become a new standby. In NAT scenarios, that check fails unless you set the DB2_HADR_NO_IP_CHECK
registry variable to ON. Because this check is bypassed when DB2_HADR_NO_IP_CHECK is set to ON, the
standby waits until it connects to the primary to check that the values of the primary's
hadr_local_host and hadr_local_svc configuration parameters are used for the standby's
hadr_target_list configuration parameter. The check still ensures that role switch can succeed for
the standby and primary pair.

Important: If you set the DB2_HADR_NO_IP_CHECK registry variable to ON, the values of the
hadr_remote_host and hadr_remote_svc configuration parameters are not automatically updated.

In a multiple standby setup, you should set the DB2_HADR_NO_IP_CHECK registry variable for all
databases that might connect to another database across a NAT boundary. If a database will never cross
a NAT boundary to connect to another database (that is, if no such link is configured), you should not set
this registry variable for that database. If you set the DB2_HADR_NO_IP_CHECK registry variable, it
prevents a standby from automatically discovering the new primary after a takeover has occurred, and
you must manually reconfigure the standby to have it connect to the new primary.

Restrictions for high availability disaster recovery (HADR)
To help achieve optimal performance with high availability disaster recovery (HADR), consider HADR
restrictions when designing your high availability Db2 database solution.

HADR restrictions are as follows:

Chapter 1. High availability 167

• HADR is not supported in a partitioned database environment.
• The primary and standby databases must be on the same operating system version and must use the

same level of the Db2 database system, except for a short time during a rolling upgrade.
• The Db2 software that you use for the primary database and the Db2 software that you use for the

standby databases must be the same bit size (32 or 64 bit).
• Clients cannot connect to the standby database unless you enable the reads on standby feature. This

feature enables clients to connect to the active standby database and issue read-only queries.
• Only read clients can connect to an active standby database; however, operations on the standby

database that write a log record are not permitted, nor are the following operations that modify
database contents:

– any asynchronous threads such as real-time statistics collection
– automatic index rebuilds and utilities that modify database objects

• Log files are archived only by the primary database.
• You can run the self-tuning memory manager (STMM) only on the current primary database. After you

start the primary database or convert the standby database to a primary database by takeover, the
STMM EDU might not start until the first client connection is made.

• Backup operations are not supported on the standby database.
• The SET WRITE command cannot be issued on the standby database.
• Non-logged operations, such as changes to database configuration parameters, the recovery history
file, and LOB table columns for which you specified the NOT LOGGED parameter, are not replicated to
the standby database.

• Load operations for which you specify the COPY NO parameter are not supported.
• HADR does not support the use of raw I/O (direct disk access) for database log files. If you start HADR

by using the START HADR command or the database is activated or restarted with HADR configured and
raw logs are detected, the associated command fails.

• Federated servers do not fully support HADR in federated two-phase commit (F2PC) scenarios. If you
configure an HADR database as a federated database, it supports F2PC only with type-1 inbound
connections.

• HADR does not support infinite logging.
• Ensure that the system clock of the HADR primary database is synchronized with the system clock of

the HADR standby database.

Scheduling maintenance for high availability
Your Db2 database solution will require regular maintenance. You will have to perform maintenance such
as: software or hardware upgrades; database performance tuning; database backups; statistics collection
and monitoring for business purposes. You must minimize the impact of these maintenance activities on
the availability of your database solution.

Before you begin

Before you can schedule maintenance activities, you must identify those maintenance activities that you
will have to perform on your database solution.

Procedure

To schedule maintenance, perform the following steps:
1. Identify periods of low database activity.

It is best to schedule maintenance activities for low-usage times (those periods of time when the
fewest user applications are making requests of the database system). Depending on the type of
business applications you are creating, there might even be periods of time when no user applications
are accessing the database system.

168 IBM Db2 V11.5: Data Recovery and High Availability

2. Categorize the maintenance activities you must perform according to the following:

• The maintenance can be automated
• You must bring the database solution offline while you perform the maintenance
• You can perform the maintenance while the database solution is online

3. For those maintenance activities that can be automated, configure automated maintenance using one
of the following methods:

• Use the auto_maint configuration parameter
• Use one of the system stored procedure called AUTOMAINT_SET_POLICY and

AUTOMAINT_SET_POLICYFILE
4. If any of the maintenance activities you must perform require the database server to be offline,

schedule those offline maintenance activities for those low-usage times.
5. For those maintenance activities that can be performed while the database server is online:

• Identify the availability impact of running those online maintenance activities.
• Schedule those online maintenance activities so as to minimize the impact of running those

maintenance activities on the availability of the database system.

For example: schedule online maintenance activities for low-usage times; and use throttling
mechanisms to balance the amount of system resources the maintenance activities use.

Configuring an automated maintenance policy using SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE
You can use the system stored procedures AUTOMAINT_SET_POLICY and
AUTOMAINT_SET_POLICYFILE to configure the automated maintenance policy for a database.

Procedure

To configure the automated maintenance policy for a database, perform the following steps:
1. Connect to the database
2. Call AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE

• The parameters required for AUTOMAINT_SET_POLICY are:

a. Maintenance type, specifying the type of automated maintenance activity to configure.
b. Pointer to a BLOB that specifies the automated maintenance policy in XML format.

• The parameters required for AUTOMAINT_SET_POLICYFILE are:

a. Maintenance type, specifying the type of automated maintenance activity to configure.
b. The name of an XML file that specifies the automated maintenance policy.

Valid maintenance type values are:

• AUTO_BACKUP - automatic backup
• AUTO_REORG - automatic table and index reorganization
• AUTO_RUNSTATS - automatic table RUNSTATS operations
• MAINTENANCE_WINDOW - maintenance window

What to do next
You can use the system stored procedures AUTOMAINT_GET_POLICY and
AUTOMAINT_GET_POLICYFILE to retrieve the automated maintenance policy configured for a database.

Sample automated maintenance policy specification XML for AUTOMAINT_SET_POLICY or
AUTOMAINT_SET_POLICYFILE
Whether you are using AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE to specify your
automated maintenance policy, you must specify the policy using XML. There are sample files that
demonstrate how to specify your automated maintenance policy in XML. In Linux and UNIX operating

Chapter 1. High availability 169

systems, you can find the sample files in the SQLLIB/samples/automaintcfg directory. In Windows
operating systems, you can find the sample files in the SQLLIB\samples\automaintcfg directory.

The second parameter you pass to the system stored procedure AUTOMAINT_SET_POLICY is a BLOB
containing XML, specifying your desired automated maintenance policy. The second parameter you pass
to the system stored procedure AUTOMAINT_SET_POLICYFILE is the name of an XML file that specifies
your desired automated maintenance policy. The XML elements that are valid in the BLOB you pass to
AUTOMAINT_SET_POLICY are the same elements that are valid in the XML file you pass to
AUTOMAINT_SET_POLICYFILE.

In the samples directory (SQLLIB/samples/automaintcfg in Linux and UNIX environments and
SQLLIB\samples\automaintcfg in Windows environments) there are four XML files that contain
example automated maintenance policy specification:

DB2MaintenanceWindowPolicySample.xml

Demonstrates specifying a maintenance window during which time the database manager should
schedule automated maintenance.

DB2AutoBackupPolicySample.xml

Demonstrates specifying how the database manager should perform automatic backup.

DB2AutoReorgPolicySample.xml

Demonstrates specifying how the database manager should perform automatic table and index
reorganization.

DB2DefaultAutoRunstatsPolicySample.xml

Demonstrates specifying how the database manager should perform automatic table runstats
operations.

You can create your own automated maintenance policy specification XML by copying the XML from these
files and modifying that XML according to the requirements of your system.

Configuring database logging options
Use database logging configuration parameters to specify data logging options for your database, such as
the type of logging to use, the size of the log files, and the location where log files should be stored.

Before you begin

To configure database logging options, you must have SYSADM, SYSCTRL, or SYSMAINT authority.

About this task

You can configure database logging options by using the UPDATE DATABASE CONFIGURATION
command on the command line processor (CLP), or by calling the db2CfgSet API.

Procedure

• To configure database logging options by using the UPDATE DATABASE CONFIGURATION command
on the command line processor:
a) Specify whether you want to use circular logging or archive logging. If you want to use circular

logging, the logarchmeth1 and logarchmeth2 database configuration parameters must be set
to OFF. This setting is the default. To use archive logging, you must set at least one of these
database configuration parameters to a value other than OFF. For example, if you want to use
archive logging and you want to save the archived logs to disk, issue the following command:

 db2 update db configuration for mydb using logarchmeth1
 disk:/u/dbuser/archived_logs

The archived logs are placed in a directory called /u/dbuser/archived_logs.

170 IBM Db2 V11.5: Data Recovery and High Availability

b) Specify values for other database logging configuration parameters, as required. The following
additional configuration parameters apply to database logging:

– archretrydelay
– blk_log_dsk_ful
– failarchpath
– logarchcompr1
– logarchcompr2
– logarchmeth1
– logarchmeth2
– logarchopt1
– logarchopt2
– logbufsz
– logfilsiz
– logprimary
– logsecond
– max_log
– mirrorlogpath
– newlogpath
– numarchretry
– num_log_span
– overflowlogpath

For more information about these database logging configuration parameters, see “Configuration
parameters for database logging” on page 171.

• To configure database logging options by using IBM Data Studio, use the task assistant for the UPDATE
DATABASE CONFIGURATION command.

Configuration parameters for database logging
A key element of any high availability strategy is database logging. You can use database logs to record
transaction information, synchronize primary and secondary (standby) databases, and roll forward a
secondary database that has taken over for a failed primary database. To configure these database
logging activities, you must set a variety of database configuration parameters.

Archive retry delay (archretrydelay)
Specifies the amount of time (in seconds) to wait between attempts to archive log files after the
previous attempt fails. The default value is 20.

Block on log disk full (blk_log_dsk_ful)

This configuration parameter can be set to prevent disk full errors from being generated when the Db2
database manager cannot create a new log file in the active log path. Instead, the Db2 database
manager will attempt to create the log file every five minutes until it succeeds. After each attempt, the
Db2 database manager will write a message to the administration notification log. The only way to
confirm that your application is hanging because of a log disk full condition is to monitor the
administration notification log. Until the log file is successfully created, any user application that
attempts to update table data will not be able to commit transactions. Read-only queries might not be
directly affected; however, if a query needs to access data that is locked by an update request or a
data page that is fixed in the buffer pool by the updating application, read-only queries will also be
blocked.

Setting blk_log_dsk_ful to YES causes applications to hang when the Db2 database manager
encounters a log disk full error. You are then able to resolve the error and the application can
continue. A disk full situation can be resolved by moving old log files to another file system, by

Chapter 1. High availability 171

increasing the size of the file system so that hanging applications can complete, or by investigating
and resolving any log archiving failures.

If blk_log_dsk_ful is set to NO, a transaction that receives a log disk full error will fail and be rolled
back.

Failover archive path (failarchpath)
Specifies an alternate directory for the archive log files if there is a problem with the normal archive
path (for example, if it is not accessible or full). This directory is a temporary storage area for the log
files until the log archive method that failed becomes available again, at which time the log files will
be moved from this directory to the path specified in the original log archiving. Moving the log files to
this temporary location, helps you avoid log directory full situations. This parameter must be a fully
qualified existing directory.

Primary log archive compression (logarchcompr1), secondary log archive compression
(logarchcompr2)

In certain circumstances, these parameters control whether the database manager compresses
archive log files. You can reduce the cost associated with storing log archive files if you use
compression on the files.

Valid values for these parameters are as follows:
OFF

This value specifies that log archive files are not compressed. The default value is OFF.
ON

This value specifies that log archive files are compressed. If set dynamically, log files already
archived are not compressed.

Note:

1. If you set the logarchmeth1 configuration parameter to a value other than DISK, TSM, or
VENDOR, log archive compression has no effect regardless of the logarchcompr1 configuration
parameter setting.

2. If you set the logarchmeth2 configuration parameter to a value other than DISK, TSM, or
VENDOR, log archive compression has no effect regardless of the logarchcompr2 configuration
parameter setting.

Log archive method 1 (logarchmeth1), log archive method 2 (logarchmeth2)
These parameters cause the database manager to archive log files to a location that is not the active
log path. If you specify both of these parameters, each log file from the active log path that is set by
the logpath configuration parameter is archived twice. This means that you will have two identical
copies of archived log files from the log path in two different destinations. If you specify mirror logging
by using the mirrorlogpath configuration parameter, the logarchmeth2 configuration parameter
archives log files from the mirror log path instead of archiving additional copies of the log files in the
active log path. This means that you have two separate copies of the log files archived in two different
destinations: one copy from the log path and one copy from the mirror log path.

Valid values for these parameters are as follows:
OFF

This value specifies that the log archiving method is not used. If you set both the logarchmeth1
and logarchmeth2 configuration parameters to OFF, the database is considered to be using
circular logging and is not rollforward recoverable. The default value is OFF.

LOGRETAIN
Specifies that active log files are retained and become online archive log files for use in rollforward
recovery.

USEREXIT
Specifies that log retention logging is performed and that a user exit program should be used to
archive and retrieve the log files. Log files are archived when they are full. They are retrieved when
the rollforward utility must use them to restore a database.

172 IBM Db2 V11.5: Data Recovery and High Availability

DISK
You must follow this value with a colon (:) and then a fully qualified existing path name where the
log files will be archived. For example, if you set the logarchmeth1 configuration parameter to
DISK:/u/dbuser/archived_logs, the archive log files are placed under or in the /u/dbuser/
archived_logs/INSTANCE_NAME/DBNAME/NODExxxx/LOGSTREAMxxxx/Cxxxxxxx
directory.

Note: If you are archiving to tape, you can use the db2tapemgr utility to store and retrieve log
files.

TSM
If specified without any additional configuration parameters, this value indicates that log files
should be archived on the local Tivoli Storage Manager (TSM) server using the default
management class. If followed by a colon(:) and a TSM management class, the log files will be
archived using the specified management class.
In addition, see the Log archive options 1 (logarchopt1), log archive options 2 (logarchopt2)
section below for configurable options that control Db2 and TSM log archive behavior.

VENDOR
Specifies that a vendor library will be used to archive the log files. This value must be followed by
a colon(:) and the name of the library. The APIs provided in the library must use the backup and
restore APIs for vendor products.

In addition, see the Log archive options 1 (logarchopt1), log archive options 2 (logarchopt2)
section below for configurable options that control Db2 and vendor log archive behavior.

Note:

1. If either logarchmeth1 or logarchmeth2 is set to a value other than OFF, the database is
configured for rollforward recovery.

Log archive options 1 (logarchopt1), log archive options 2 (logarchopt2)
Specifies a string of options which control log archiving behavior when a log archive method
(logarchmeth1, logarchmeth2, or both) is configured. Multiple options can be specified in the
string and must be separated by white space.

There are two classes of options, options that are recognized by Db2 and influence the database
manager's log archiving behavior, and options that are not recognized by Db2 and passed directly into
the TSM or vendor APIs to influence vendor or storage manager behavior.

Options that are recognized by Db2 and influence database manager log archiving behavior:

The following options influence Db2 log archiving database behavior. These options must be
preceded by 2 hyphen or dash characters "--", and must be the first entry or entries in the string.

"--DBNAME"
For TSM and VENDOR log archive methods, use this parameter to enable the database to retrieve
log files that were generated using a different database name. This is useful when a database
backup image is restored into a new database name (by using the restore REDIRECT option) and a
subsequent database rollforward operation must retrieve log files from the archive using the
original database name. For more details, see Technote #1687492 DB2 fails to retrieve archived
log after Redirected Restore into a new database name. An example is illustrated below:

 "--dbname=<original database name>"

"--VENDOR_ARCHIVE_TIMEOUT" (Unix platforms only)

For TSM and VENDOR log archive methods, use this parameter to enforce a timeout (in seconds)
when the database manager attempts to archive a log file. If the transmission of log data between
Db2 and the TSM or vendor API is unresponsive for the specified timeout period, then Db2 will
interrupt the archive log attempt and follow normal log archive failure protocol (if a failover log
archive path (FAILARCHPATH) is configured then Db2 will attempt to archive the log file to this
path, otherwise Db2 will retry the archive log attempt).

Chapter 1. High availability 173

http://www-01.ibm.com/support/docview.wss?uid=swg21687492
http://www-01.ibm.com/support/docview.wss?uid=swg21687492

This option is supported on UNIX platforms only.

Values in the range 1 - 2,147,483,674 are permitted.

An example is illustrated below:

 "--vendor_archive_timeout=<number of seconds>"

When the logarchopt1 or logarchopt2 database configuration parameter is updated to
include this option, a database instance restart is not required, however the timeout will be
enforced at the start of the next archive log attempt.

Monitoring of log archiving to TSM or Vendor methods can be accomplished by using the db2pd -
fvp command. For examples, of db2pd -fvp with log archive requests see: db2pd - Monitor and
troubleshoot DB2 database command.

Options that are passed directly on to the TSM or vendor APIs:

Any remaining options in the string will not be recognized by Db2, and the string (excluding any
options that were recognized by Db2 as described above) is passed directly to the TSM or vendor
APIs.

For TSM environments, some commonly used TSM options for Db2 database environments include:

TSM requires that options are preceded by one hyphen/dash character "-". Specifies a string of
options that control log archiving behavior when a log archive method (logarchmeth1,
logarchmeth2 or both) is configured. Multiple options can be specified in the string and must be
separated by white space.

To enable the database to retrieve logs that were generated on a different TSM node, by a different
TSM user, or in TSM environments that use proxy nodes such as in Db2 pureScale environments, you
must provide the string in one of the following formats:

• For retrieving logs generated on a different TSM node when the TSM server is not configured to
support proxy node clients:

 "-fromnode=nodename"

• For retrieving logs generated by a different TSM user when the TSM server is not configured to
support proxy node clients:

 "-fromowner=ownername"

• For retrieving logs generated on a different TSM node and by a different TSM user when the TSM
server is not configured to support proxy node clients:

 "-fromnode=nodename -fromowner=ownername"

• For retrieving logs generated in client proxy nodes configurations, such as in Db2 pureScale
environments where there are multiples members working on the same data:

 "-asnodename=proxynode"

nodename is the name of the TSM node that originally archived the log files, ownername is the name
of the TSM user that originally archived the log files, and proxynode is the name of the shared TSM
target proxy node. Each log archive options field corresponds to one of the log archive methods:
logarchopt1 is used with logarchmeth1, and logarchopt2 is used with logarchmeth2.

Restrictions:

– When the -asnodename TSM option is used, data is not stored using the name of the node
(nodename) of each member. The data is stored instead using the name of the shared TSM target
node used by all the members within a Db2 pureScale instance.

– The -fromnode option and the -fromowner option are not compatible with the -asnodename
option and cannot be used together. Use the -asnodename option for TSM configurations using

174 IBM Db2 V11.5: Data Recovery and High Availability

proxy nodes and the other two options for other types of TSM configurations. For more
information, see “Configuring a Tivoli Storage Manager client” on page 442.

Log buffer (logbufsz)
This parameter allows you to specify the amount of memory to use as a buffer for log records before
writing these records to disk. The log records are written to disk when any one of the following events
occurs:

• A transaction commits
• The log buffer becomes full
• Some other internal database manager event occurs.

Increasing the log buffer size can result in more efficient input/output (I/O) activity associated with
logging, because the log records are written to disk less frequently, and more records are written each
time. However, recovery can take longer with a larger log buffer size value. As well, you may be able to
use a higher logbufsz setting to reduce number of reads from the log disk. (To determine if your
system would benefit from this, use the log_reads monitor element to check if reading from log disk
is significant.

Active log space disk capacity (log_disk_cap)
Active log space disk capacity configuration parameter

Note: This parameter has limited support starting from Db2Version 11.5 Mod Pack 4. It is only utilized
when infinite logging is enabled (LOGSECOND = -1). In all other configurations setting
log_disk_cap to a non-zero value has no effect.

The log_disk_cap parameter allows you to specify the maximum disk capacity for storing
transaction log records in the active log path. In addition to the logging consumption by inflight
transactions, the log_disk_cap parameter also covers all usages of space in the active log path,
such as:

• Inactive log files that have not been archived yet (and not moved to failarchpath).
• Retrieve log files (if overflowlogpath parameter is not set).

If log_disk_cap is configured, the logprimary and logsecond configuration parameters will be
used as guidance on the consumption for inflight transactions. However, the number of files created
on disk for logging of inflight transactions might be adjusted based on other consumption. The
logfilsiz configuration parameter is still used to specify the size of the active log files.

You must have sufficient disk space available in the active log path to support the amount set by this
configuration. If mirrorlogpath configuration parameter is set, you will also need sufficient disk
space available in the mirror log path to support the amount set by this configuration.

In pureScale environment, a single file system is used for the active log paths of all members. The
log_disk_cap configuration limits the disk usage by a single member. Therefore, it is expected that
sufficient disk space is available in the file system to support the usage by all members.

In DPF environment, it is recommended that a separate file system is used for the logging of each
partition. If the database is configured to use a single file system for the logging of multiple partitions,
you must have sufficient disk space is available in the file system to support the usage by all
partitions.

Log file size (logfilsiz)
This parameter specifies the size of each configured log, in number of 4-KB pages.

When circular logging is configured, there is a 16384 GB logical limit on the total active log space per
log stream that you can configure. This limit is the result of the upper limit for each log file, which is 64
GB, and the maximum combined number of primary and secondary log files, which is 256. When
archive logging is configured, this limit is 524288 GB since the maximum combined number of
primary and secondary log files is 8192.

The size of the log file has a direct bearing on performance. There is a performance cost for switching
from one log to another. So, from a pure performance perspective, the larger the log file size the
better. This parameter also indicates the log file size for archiving. In this case, a larger log file is size

Chapter 1. High availability 175

it not necessarily better, since a larger log file size can increase the chance of failure or cause a delay
in log shipping scenarios. When considering active log space, it might be better to have a larger
number of smaller log files. For example, if there are two very large log files and a transaction starts
close to the end of one log file, only half of the log space remains available.

Every time a database is deactivated (all connections to the database are terminated), the log file that
is currently being written is truncated. So, if a database is frequently being deactivated, it is better not
to choose a large log file size because the Db2 database manager will create a large file only to have it
truncated. You can use the ACTIVATE DATABASE command to avoid this cost because it prevents
automatic database deactivation when the last client disconnects from the database.

Assuming that you have an application that keeps the database open to minimize processing time
when opening the database, the log file size should be determined by the amount of time it takes to
make offline archived log copies.

Minimizing log file loss is also an important consideration when setting the log size. Archiving operates
on one entire log file at a time. If you configure larger log files, you increase the time between
archiving. If the medium containing the log fails, some transaction information will probably be lost.
Decreasing the log file size increases the frequency of archiving but can reduce the amount of
information loss in case of a media failure because on average less log data is not yet archived at any
given point in time.

Maximum log per transaction (max_log)
This parameter indicates the percentage of primary log space that can be consumed by one
transaction. The value is a percentage of the value specified for the logprimary configuration
parameter.

If the value is set to 0, there is no limit to the percentage of total primary log space that a transaction
can consume. If an application violates the max_log configuration, the application will be forced to
disconnect from the database, the transaction will be rolled back.

You can override this behavior by setting the DB2_FORCE_APP_ON_MAX_LOG registry variable to
FALSE. This will cause transactions that violate the max_log configuration to fail. The application can
still commit the work completed by previous statements in the unit of work, or it can roll back the
completed work to undo the unit of work.

This parameter, along with the num_log_span configuration parameter, can be useful when infinite
active log space is enabled. If infinite logging is on (that is, if logsecond is -1) then transactions are
not restricted to the upper limit of the number of log files (logprimary + logsecond). When the
value of logprimary is reached, the Db2 database manager starts to archive the active logs, rather
than failing the transaction. This can cause problems if, for instance, there is a long running
transaction that has been left uncommitted (perhaps caused by an application with a logic error). If
this occurs, the active log space keeps growing, which might lead to poor crash recovery performance.
To prevent this, you can specify values for either one or both of the max_log and num_log_span
configuration parameters.

Note: The following Db2 commands are excluded from the limitation imposed by the max_log
configuration parameter: ARCHIVE LOG, BACKUP DATABASE, LOAD, REORG, RESTORE DATABASE,
and ROLLFORWARD DATABASE.

Mirror log path (mirrorlogpath)
To protect the logs on the primary log path from disk failure or accidental deletion, you can specify
that an identical set of logs be maintained on a secondary (mirror) log path. To do this, change the
value of this configuration parameter to point to a different directory. Active logs that are currently
stored in the mirrored log path directory are not moved to the new location if the database is
configured for rollforward recovery.

The mirrorlogpath parameter also has an effect on log archiving behavior, which you can use to
further improve resilience during rollforward recovery: When both mirrorlogpath and
logarchmeth2 are set, logarchmeth2 archives log files from the mirror log path instead of
archiving additional copies of the log files in the active log path. You can use this log archiving
behavior to improve resilience, because a usable, archived log file from the mirror log path might still

176 IBM Db2 V11.5: Data Recovery and High Availability

be available to continue a database recovery operation, even if a primary log file became corrupted
due to a disk failure before archiving.

Because you can change the log path location, the logs needed for rollforward recovery might exist in
different directories. You can change the value of this configuration parameter during a rollforward
operation to allow you to access log files from a different mirror log path.

You must keep track of the location of the logs.

Changes are not applied until the database is in a consistent state. The configuration parameter
database_consistent returns the status of the database.

To turn this configuration parameter off, set its value to DEFAULT.

Note:

1. This configuration parameter is not supported if the primary log path is a raw device.
2. The value specified for this parameter cannot be a raw device.
3. In a Db2 pureScale environment, the first member connecting to or activating the database

processes configuration changes to this log path parameter. The Db2 database manager verifies
that the path exists and that it has both read and write access to that path. It also creates
member-specific subdirectories for the log files. If any one of these operations fails, the Db2
database manager rejects the specified path and brings the database online using the old path. If
the specified path is accepted, the new value is propagated to each member. If a member fails
while trying to switch to the new path, subsequent attempts to activate it or to connect to it will fail
(SQL5099N). All members must use the same log path.

New log path (newlogpath)
The database logs are initially created in the following directory: db_path/instance_name/dbname/
NODE0000/LOGSTREAM0000. You can change the location in which active log files are placed (and
future log files will be placed) by changing the value of this configuration parameter to point to a
different directory or to a device. Active logs that are currently stored in the database log path
directory are not moved to the new location if the database is configured for rollforward recovery.

Because you can change the log path location, the logs needed for rollforward recovery might exist in
different directories or on different devices. You can change the value of this configuration parameter
during a rollforward operation to allow you to access logs in multiple locations.

You must keep track of the location of the logs.

Changes are not applied until the database is in a consistent state. The configuration parameter
database_consistent returns the status of the database.

Note: In a Db2 pureScale environment, the first member connecting to or activating the database
processes configuration changes to this log path parameter. The Db2 database manager verifies that
the path exists and that it has both read and write access to that path. It also creates member-
specific subdirectories for the log files. If any one of these operations fails, the Db2 database manager
rejects the specified path and brings the database online using the old path. If the specified path is
accepted, the new value is propagated to each member. If a member fails while trying to switch to the
new path, subsequent attempts to activate it or to connect to it will fail (SQL5099N). All members
must use the same log path.

Number of archive retries on error (numarchretry)
Specifies the number of attempts that will be made to archive log files using a configured log archive
method before they are archived to the path specified by the failarchpath configuration
parameter. This parameter can only be used if the failarchpath configuration parameter is set. The
default value is 5.

Number of active logs a transaction can span (num_log_span)
This parameter indicates the number of active log files that an active transaction can span. If the
value is set to 0, there is no limit to how many log files one single transaction can span.

If an application violates the num_log_span setting, the application will be forced to disconnect from
the database.

Chapter 1. High availability 177

This parameter, along with the max_log configuration parameter, can be useful when infinite active
log space is enabled. If infinite logging is on (that is, if logsecond is -1) then transactions are not
restricted to the upper limit of the number of log files (logprimary + logsecond). When the value of
logprimary is reached, the Db2 database manager starts to archive the active logs, rather than
failing the transaction. This can cause problems if, for instance, there is a long running transaction
that has been left uncommitted (perhaps caused by an application with a logic error). If this occurs,
the active log space keeps growing, which might lead to poor crash recovery performance. To prevent
this, you can specify values for either one or both of the max_log and num_log_span configuration
parameters.

Note: The following Db2 commands are excluded from the limitation imposed by the num_log_span
configuration parameter: ARCHIVE LOG, BACKUP DATABASE, LOAD, REORG, RESTORE DATABASE,
and ROLLFORWARD DATABASE.

Overflow log path (overflowlogpath)
This parameter can be used for several functions, depending on your logging requirements. You can
specify a location for the Db2 database manager to find log files that are needed for a rollforward
operation. It is similar to the OVERFLOW LOG PATH option of the ROLLFORWARD command; however,
instead of specifying the OVERFLOW LOG PATH option for every ROLLFORWARD command issued,
you can set this configuration parameter once. If both are used, the OVERFLOW LOG PATH option will
overwrite the overflowlogpath configuration parameter for that rollforward operation.

If logsecond is set to -1, you can specify a directory for the Db2 database manager to store active
log files retrieved from the archive. (Active log files must be retrieved for rollback operations if they
are no longer in the active log path).

If overflowlogpath is not specified, the Db2 database manager will retrieve the log files into the
active log path. By specifying this parameter you can provide an additional storage resource where
the Db2 database manager can place the retrieved log files. The benefit includes spreading the I/O
cost to different disks, and allowing more log files to be stored in the active log path.

For example, if you are using the db2ReadLog API for replication, you can use overflowlogpath to
specify a location for the Db2 database manager to search for log files that are needed for this API. If
the log file is not found (in either the active log path or the overflow log path) and the database is
configured for log archiving, the Db2 database manager will retrieve the log file. You can also use this
parameter to specify a directory for the Db2 database manager to store the retrieved log files. The
benefit comes from reducing the I/O cost on the active log path and allowing more log files to be
stored in the active log path.

Setting overflowlogpath is useful when infinite logging is configured (i.e., when logsecond is set
to -1). The Db2 database manager can store active log files retrieved from the archive in this path.
(With infinite logging, active log files may need to be retrieved from archive, for rollback or crash
recovery operations, if they are no longer in the active log path.)

If you have configured a raw device for the active log path, overflowlogpath must be configured if
you want to set logsecond to -1, or if you want to use the db2ReadLog API.

To set overflowlogpath, specify a string of up to 242 bytes. The string must point to a path name,
and it must be a fully qualified path name, not a relative path name. The path name must be a
directory, not a raw device.

Note: In a partitioned database environment, the database partition number is automatically
appended to the path. This is done to maintain the uniqueness of the path in multiple logical node
configurations.

Primary log files (logprimary)
This parameter specifies the number of primary logs of size logfilsiz that will be created.

A primary log file, whether empty or full, requires the same amount of disk space. Thus, if you
configure more logs than you need, you use disk space unnecessarily. If you configure too few logs,
you can encounter a log-full condition. As you select the number of logs to configure, you must
consider the size you make each log and whether your application can handle a log-full condition. The

178 IBM Db2 V11.5: Data Recovery and High Availability

total log file size limit on active log space is 16384 GB when circular logging is configured, and
524288 GB when archive logging is configured.

If you are enabling an existing database for rollforward recovery, change the number of primary logs
to the sum of the number of primary and secondary logs, plus one.

Secondary logs (logsecond)
This parameter specifies the number of secondary log files that are created and used for recovery, if
needed.

If the primary log files become full, secondary log files (of size logfilsiz) are allocated, one at a
time as needed, up to the maximum number specified by this parameter. If this parameter is set to -1,
the database is configured with infinite active log space. There is no limit on the size or number of in-
flight transactions running on the database. Infinite active logging is useful in environments that must
accommodate large jobs requiring more log space than you would normally allocate to the primary
logs.

Note:

1. Log archiving must be enabled in order to set logsecond to -1.
2. If this parameter is set to -1, crash recovery time might be increased since the Db2 database

manager might need to retrieve archived log files.
3. By default, infinite logging requires log archiving to be healthy in order to function. When log

archiving is not healthy (either very slow, and or malfunctioning without a functioning
failarchpath), infinite logging may cause applications to hang as it waits for log archiving to
catch up. This behavior can be altered by setting a non-default log_disk_cap value (for
example, -1) in which case infinite logging will not wait for log archiving as long as there is space in
the active log directory.

Reducing logging with the NOT LOGGED INITIALLY parameter
If your application creates and populates work tables from master tables, you can create the work tables
and specify the NOT LOGGED INITIALLY parameter on the CREATE TABLE statement. This option is
useful if you are not concerned about the recoverability of these work tables because they can be easily
re-created from the master tables. Specifying the NOT LOGGED INITIALLY parameter reduces logging
and improves performance.

The advantage of using the NOT LOGGED INITIALLY parameter is that any changes made on a table
(including insert, delete, update, or create index operations) in the same unit of work that creates the
table will not be logged. This not only reduces the logging that is done, but can also increase the
performance of your application. You can achieve the same result for existing tables by using the ALTER
TABLE statement with the NOT LOGGED INITIALLY parameter.

Note:

1. You can create more than one table with the NOT LOGGED INITIALLY parameter in the same unit of
work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the following when deciding to use the
NOT LOGGED INITIALLY table attribute:

• All changes to the table will be flushed out to disk at commit time. This means that the commit might
take longer.

• If the NOT LOGGED INITIALLY attribute is activated and an activity occurs that is not logged, the entire
unit of work will be rolled back if a statement fails or a ROLLBACK TO SAVEPOINT is executed
(SQL1476N).

• If you are using high availability disaster recovery (HADR) you should not use the NOT LOGGED
INITIALLY table attribute. Tables created on the primary database with the NOT LOGGED INITIALLY
option specified are not replicated to the standby database. Attempts to access such tables on an active
standby database or after the standby becomes the primary as a result of a takeover operation will
result in an error (SQL1477N).

Chapter 1. High availability 179

• You cannot recover these tables when rolling forward. If the rollforward operation encounters a table
that was created or altered with the NOT LOGGED INITIALLY option, the table is marked as unavailable.
After the database is recovered, any attempt to access the table returns SQL1477N.

Note: When a table is created, row locks are held on the catalog tables until a COMMIT is done. To take
advantage of the no logging behavior, you must populate the table in the same unit of work in which it is
created. This has implications for concurrency.

Reducing logging with declared temporary tables

If you plan to use declared temporary tables as work tables, note the following:

• Declared temporary tables are not created in the catalogs; therefore locks are not held.
• Logging is not performed against declared temporary tables, even after the first COMMIT.
• Use the ON COMMIT PRESERVE option to keep the rows in the table after a COMMIT; otherwise, all

rows will be deleted.
• Only the application that creates the declared temporary table can access that instance of the table.
• The table is implicitly dropped when the application connection to the database is dropped.
• Created temporary tables (CGTTs) and declared temporary tables (DGTTs) cannot be created or

accessed on an active standby.
• Errors in operation during a unit of work using a declared temporary table do not cause the unit of work

to be completely rolled back. However, an error in operation in a statement changing the contents of a
declared temporary table will delete all the rows in that table. A rollback of the unit of work (or a
savepoint) will delete all rows in declared temporary tables that were modified in that unit of work (or
savepoint).

Reduced logging for column-organized tables

Reduced logging is enabled by default for large insert transactions into column-organized tables. Such
transactions are, for example, INSERT from subselect through CREATE EXTERNAL TABLE, CREATE TABLE
AS, UPDATE, INGEST, or MERGE statements.

Note:

• Reduced logging is not supported for row-organized tables and indexes.
• Enforced primary key or unique constraints, as well as indexes over column organized tables increase

the amount of logging, even if the reduced logging optimization is in effect.
• For reduced logging, the INSERT INTO SELECT statement needs to be the first DML statement in

transaction for reduced logging.

Blocking transactions when the log directory is full
When the Db2 database manager cannot create a log file in the active log path because there is not
enough room for the new file, you get errors indicating the disk is full. If you set the blk_log_dsk_ful
database configuration parameter, the Db2 database manager repeatedly attempts to create the log file
until the file is successfully created instead of returning "disk full" errors.

If you set the blk_log_dsk_ful database configuration parameter, the Db2 database manager
attempts to create the log file every 5 minutes until it succeeds. If a log archiving method is specified, the
Db2 database manager also checks for the completion of log file archiving. If an archived log file is
archived successfully, the Db2 database manager can rename the inactive log file to the new log file name
and continue. After each attempt, the Db2 database manager writes a message to the administration
notification log. The only way that you can confirm that your application is hanging because of a log disk
full condition is to monitor the administration notification log.

Until the log file is successfully created, any user application that attempts to update table data is not
able to commit transactions. Read-only queries might not be directly affected; however, if a query needs
to access data that is locked by an update request, or a data page that is fixed in the buffer pool by the
updating application, read-only queries also appear to hang.

180 IBM Db2 V11.5: Data Recovery and High Availability

Log file management through log archiving
Db2 server log file archiving is complicated by various operating-system file handling and scheduling
problems. For example, if a disk fails as the Db2 database manager is archiving a queue of log files, those
log files and the transaction data that they contain might be lost. Correctly configuring database logging
can prevent these kinds of problems from undermining your availability and recovery strategy.

The following general considerations apply to all methods of log archiving:

• The logarchcompr1 database configuration parameter specifies whether the database manager
compresses log files that are contained in the location specified by logarchmeth1. If the
logarchmeth1 configuration parameter to a value other than DISK, TSM, or VENDOR, log archive
compression has no effect regardless of the logarchcompr1 configuration parameter setting.

• The logarchcompr2 database configuration parameter specifies whether the database manager
compresses log files that are contained in the location specified by logarchmeth2. If the
logarchmeth2 configuration parameter to a value other than DISK, TSM, or VENDOR, log archive
compression has no effect regardless of the logarchcompr2 configuration parameter setting.

• The logarchmeth1 database configuration parameter causes the database manager to archive log
files or to retrieve log files during rollforward recovery of databases by using the method that you
specify. A request to retrieve a log file is made when the rollforward utility needs a log file that is not
found in the log path directory. Log files are archived from the path that is specified by the logpath
configuration parameter.

The logarchmeth2 database configuration parameter causes the database manager to archive
additional copies of log files. If you configure mirror logging, the log files that are archived to the path
that is specified by the logarchmeth2 parameter are taken from the mirror log path. If you do not
configure mirror logging, the log files that are archived to the path that is specified by the
logarchmeth2 parameter are taken from the current log path.

• You should not use locally attached tape drives to store log files if you are using any of the following
features:

– Infinite logging
– Online recovery at the table space level
– Replication
– db2ReadLog API
– High availability disaster recovery (HADR)

Any of these features can cause a log file to be retrieved, which can conflict with log archiving
operations. Also, you cannot use locally attached tape drives in a Db2 pureScale environment because
the member that is performing the log merge operation must retrieve logs for the other members.

• If you are using log archiving, the log manager attempts to archive active logs as they are filled. In some
cases, if a database is deactivated before the log manager can record the archive as successful, the log
manager might try to archive the log again when the database is activated. Thus, a log file can be
archived more than once.

• If you use archiving, a log file is passed to the log manager when it is full, even if the log file is still active
and is needed for normal processing. This process allows copies of the data to be moved away from
volatile media as quickly as possible. The log file that is passed to the log manager is retained in the log
path directory until it is no longer needed for normal processing. At this point, the disk space is reused.

• If a log file is archived and contains no open transactions, the Db2 database manager does not delete
the file but renames it as the next log file when such a file is needed. This process improves
performance because creating a new log file instead of renaming the file would require all pages to be
written out to guarantee that the necessary disk space or other storage space is available. The database
manager retains up to 8 extra log files in the active log path for renaming purposes.

• During crash recovery, during member crash recovery (in a Db2 pureScale environment), or during
runtime rollback, the Db2 database manager does not retrieve log files unless you set the logsecond
database configuration parameter to -1 (that is, if you enable infinite logging). In a Db2 pureScale

Chapter 1. High availability 181

environment, the database manager might have to retrieve archived logs during a group crash recovery
even if you do not enable infinite logging.

• Configuring log archiving does not guarantee rollforward recovery to the point of failure but only
attempts to make the failure window smaller. As log files are filled, the log manager asynchronously
archives the logs. If the disk that contains the log fails before a log file is filled, the data in that log file is
lost. Also, because the files are queued for archiving, the disk can fail before all the files are copied,
causing any log files in the queue to be lost.

To help prevent the case where a failure of the disk or device on which the log path is located causes log
files to be permanently lost, you can use the mirrorlogpath database configuration parameter to
ensure that the logs are written to a secondary path. If the secondary path does not fail along with the
primary disk or device, the log files are available for recovery.

When you set both the mirrorlogpath and logarchmeth2 configuration parameters, the
logarchmeth2 configuration parameter archives log files from the mirror log path instead of archiving
additional copies of the log files in the current log path. You can use this log archiving behavior to
improve resilience during rollforward recovery. The reason is that a usable archived log file from the
mirror log path might still be available to continue a database recovery operation, even if a primary log
file from the current log path became corrupted because of a disk failure before archiving.

• The configured size of each log file has a direct bearing on log archiving. If each log file is very large, a
large amount of data can be lost if a disk fails. If you configure your database to use small log files, the
log manager archives the logs more frequently.

However, if you are moving the data to a slower device such as tape, you might want to have larger log
files to prevent the queue from building up. Using larger log files is also recommended if archiving each
file requires substantial overhead, such as rewinding the tape device or establishing a connection to the
archive media.

• If you use log archiving, the log manager attempts to archive primary logs as they are filled. In some
cases, the log manager archives a log before it is full. This occurs if the log file is truncated because the
database is deactivated, you issue the ARCHIVE LOG command, the end of an online backup is
reached, or you issue the SET WRITE SUSPEND command.

Note: To free unused log space, a log file is truncated before it is archived.
• If you are archiving logs and backup images to a tape drive, you must ensure that the same tape drive is

not the destination for both the backup images and the archived logs. Because some log archiving can
take place while a backup operation is in progress, an error can occur when the two processes are
trying to write to the same tape drive at the same time.

The following considerations apply to calling a user exit program or a vendor program for archiving and
retrieving log files:

• The Db2 database manager opens a log file in read mode when it starts a user exit program to archive
the file. On some operating systems, this prevents the user exit program from being able to delete the
log file. Other operating systems, such as the AIX operating system, allow processes, including the user
exit program, to delete log files. A user exit program should never delete a log file after it is archived,
because the file might still be active and needed for crash recovery. The Db2 database manager
manages disk space reuse when it archives the log files.

• A user exit or vendor program might receive a request to archive a file that does not exist, because there
were multiple requests to archive and the file was deleted after the first successful archiving operation.
A user exit or vendor program might also receive a request to retrieve a file that does not exist, because
it is located in another directory or the end of the logs was reached. In both cases, the user exit or
vendor program should ignore this request and pass a successful return code.

• On Windows operating systems, you cannot use a REXX user exit to archive logs.
• The user exit or vendor program should allow for the existence of different log files with the same name

after a point-in-time recovery. The user exit or vendor program should be written to preserve both log
files and to associate those log files with the correct recovery path.

• If you enable a user exit or vendor program for two or more databases that are using the same tape
device to archive log files and a rollforward operation is taking place on one of the databases, no other

182 IBM Db2 V11.5: Data Recovery and High Availability

database should be active. If another database tries to archive a log file while the rollforward operation
is in progress, one of the following situations might occur:

– The logs that are required for the rollforward operation might not be found.
– The new log file that is archived to the tape device might overwrite the log files that were previously

stored on that tape device.

To prevent either situation from occurring, you can take one of the following steps:

– You can ensure that no other databases on the database partition that calls the user exit program are
open during the rollforward operation.

– You can write a user exit program to handle this situation.

Configuring a clustered environment for high availability
Creating a cluster of machines, and using cluster managing software to balance work load on those
machines is one strategy for designing a highly available solution. If you install IBM Db2 server on one or
several of the machines in a cluster, you must configure the cluster manager to properly react to failures
that affect the database or databases. Also, you must configure the database manager instances to work
properly in the clustered environment.

About this task

Configuring and administering the database instances and the cluster manager manually is complex, time
consuming, and prone to error. The Db2 High Availability Feature provides infrastructure for enabling the
database manager to communicate with your cluster manager when instance configuration changes, such
as stopping a database manager instance, require cluster changes.

Note: If you are using an AIX system, consider enabling the system error log (syslog) to capture relevant
messages from Tivoli SA MP and RSCT subsystems and from the Db2 automation scripts. For more
information, see the "Related links."

Procedure

1. Install cluster managing software.

Note: Starting in Db2 Version 11.5 Mod Pack 4, a Technical Preview of Pacemaker as an alternate
cluster manager is available for automated failover to HADR standby on Linux for on-premise and non-
containerized cloud deployments. For details, see “Integrated solution using Pacemaker” on page 87.

SA MP is integrated with Db2 Enterprise Server Edition, Db2 Advanced Enterprise Server Edition, Db2
Workgroup Server Edition, Db2 Connect Enterprise Edition, and Db2 Connect Application Server
Edition on AIX and Linux operating systems. On Windows operating systems, SA MP is bundled with all
of these Db2 database products and features, but it is not integrated with the Db2 installer.

2. Configure Db2 database manager instances for your cluster manager, and configure your cluster
manager for Db2 server.

Db2 high availability instance configuration utility (db2haicu) is a text-based utility that you can use
to configure and administer your highly available databases in a clustered environment.

3. Over time, as your database needs change and you need to modify your database configuration within
the clustered environment, continue to keep the database manager instance configuration and the
cluster manager configuration synchronized.

Synchronizing clocks in a partitioned database environment
You should maintain relatively synchronized system clocks across the database partition servers to
ensure smooth database operations and unlimited forward recoverability. Time differences among the
database partition servers, plus any potential operational and communications delays for a transaction
should be less than the value specified for the max_time_diff (maximum time difference among nodes)
database manager configuration parameter.

Chapter 1. High availability 183

To ensure that the log record time stamps reflect the sequence of transactions in a partitioned database
environment, Db2 uses the system clock and the virtual timestamp stored in the SQLOGCTL.LFH file on
each machine as the basis for the time stamps in the log records. If, however, the system clock is set
ahead, the log clock is automatically set ahead with it. Although the system clock can be set back, the
clock for the logs cannot, and remains at the same advanced time until the system clock matches this
time. The clocks are then in synchrony. The implication of this is that a short term system clock error on a
database node can have a long lasting effect on the time stamps of database logs.

For example, assume that the system clock on database partition server A is mistakenly set to November
7, 2005 when the year is 2003, and assume that the mistake is corrected after an update transaction is
committed in the database partition at that database partition server. If the database is in continual use,
and is regularly updated over time, any point between November 7, 2003 and November 7, 2005 is
virtually unreachable through rollforward recovery. When the COMMIT on database partition server A
completes, the time stamp in the database log is set to 2005, and the log clock remains at November 7,
2005 until the system clock matches this time. If you attempt to roll forward to a point in time within this
time frame, the operation will stop at the first time stamp that is beyond the specified stop point, which is
November 7, 2003.

Although Db2 cannot control updates to the system clock, the max_time_diff database manager
configuration parameter reduces the chances of this type of problem occurring:

• The configurable values for this parameter range from 1 minute to 24 hours.
• When the first connection request is made to a non-catalog partition, the database partition server

sends its time to the catalog partition for the database. The catalog partition then checks that the time
on the database partition requesting the connection, and its own time are within the range specified by
the max_time_diff parameter. If this range is exceeded, the connection is refused.

• An update transaction that involves more than two database partition servers in the database must
verify that the clocks on the participating database partition servers are in synchrony before the update
can be committed. If two or more database partition servers have a time difference that exceeds the
limit allowed by max_time_diff, the transaction is rolled back to prevent the incorrect time from being
propagated to other database partition servers.

Client/server timestamp conversion
Timestamp conversion helps you maintain accurate records of activities on the database. It allows you to
view activities in local time recorded in GMT time zone format, even if the database server is in a remote
location with a different time zone.

Timestamps are essential for auditing purposes. It is important that the integrity of timestamps is
maintained across all data partitions in a partitioned database environment.

This section explains the generation of timestamps in a client/server environment:

• If you specify a local time for a rollforward operation, all messages returned will also be in local time.

Note: All times are converted on the server and (in partitioned database environments) on the catalog
database partition.

• The timestamp string is converted to GMT on the server, so the time represents the server's time zone,
not the client's. If the client is in a different time zone from the server, the server's local time should be
used.

• If the timestamp string is close to the time change due to daylight savings time, it is important to know
whether the stop time is before or after the time change so that it is specified correctly.

184 IBM Db2 V11.5: Data Recovery and High Availability

Administering and maintaining a highly available solution
Once you have created, configured, and started your Db2 database high availability solution running,
there are ongoing activities you will have to perform. You need to monitor, maintain, and repair your
database solution to keep it available to client applications.

Procedure

As your database system runs, you need to monitor and respond to the following kinds of things:
1. Manage log files.

Log files grow larger, require archiving; and some log files require copying or moving to be available for
a restore operation.

2. Perform maintenance activities:

• Installing software
• Upgrading hardware
• Reorganizing database tables
• Database performance tuning
• Database backup

3. Synchronize primary and secondary or standby databases so that failover works smoothly.
4. Identify and respond to unexpected failures in hardware or software.

Log file management
The Db2 database manager uses a number scheme to name log files. This naming strategy has
implications for log file reuse and log sequences. Also, a Db2 database that has no client application
connection uses a new log file when the next client application connects to that database server. These
two aspects of Db2 database logging behavior affect the log file management choices you make.

Consider the following when managing database logs:

• The numbering scheme for archived logs starts with S0000000.LOG, and continues through
S9999999.LOG, accommodating a potential maximum of 10 million log files. The database manager
resets to S0000000.LOG if:

– A database configuration file is changed to enable rollforward recovery
– A database configuration file is changed to disable rollforward recovery
– S9999999.LOG has been used.

The Db2 database manager reuses log file names after restoring a database (with or without rollforward
recovery). The database manager ensures that an incorrect log is not applied during rollforward
recovery. If the Db2 database manager reuses a log file name after a restore operation, the new log files
are archived to separate directories so that multiple log files with the same name can be archived. The
location of the log files is recorded in the recovery history file so that they can be applied during
rollforward recovery. You must ensure that the correct logs are available for rollforward recovery.

When a rollforward operation completes successfully, the last log that was used is truncated, and
logging begins with the next sequential log. Any log in the log path directory with a sequence number
greater than the last log used for rollforward recovery is reused. Any entries in the truncated log
following the truncation point are overwritten with zeros. Ensure that you make a copy of the logs
before invoking the rollforward utility. (You can invoke a user exit program to copy the logs to another
location.)

• If a database has not been activated (by way of the ACTIVATE DATABASE command), the Db2
database manager truncates the current log file when all applications have disconnected from the
database. The next time an application connects to the database, the Db2 database manager starts
logging to a new log file. If many small log files are being produced on your system, you might want to
consider using the ACTIVATE DATABASE command. This not only saves the overhead of having to

Chapter 1. High availability 185

initialize the database when applications connect, it also saves the overhead of having to allocate a
large log file, truncate it, and then allocate a new large log file.

• An archived log can be associated with two or more different log sequences for a database, because log
file names are reused (see Figure 7 on page 186). For example, if you want to recover Backup 2, there
are two possible log sequences that could be used. If, during full database recovery, you roll forward to
a point in time and stop before reaching the end of the logs, you have created a new log sequence. The
two log sequences cannot be combined. If you have an online backup image that spans the first log
sequence, you must use this log sequence to complete rollforward recovery.

If you have created a new log sequence after recovery, any table space backup images on the old log
sequence are invalid. This is usually recognized at restore time, but the restore utility fails to recognize
a table space backup image on an old log sequence if a database restore operation is immediately
followed by the table space restore operation. Until the database is actually rolled forward, the log
sequence that is to be used is unknown. If the table space is on an old log sequence, it must be
"caught" by the table space rollforward operation. A restore operation using an invalid backup image
might complete successfully, but the table space rollforward operation for that table space will fail, and
the table space will be left in restore pending state.

For example, suppose that a table space-level backup operation, Backup 3, completes between
S0000013.LOG and S0000014.LOG in top log sequence (see Figure 7 on page 186). If you want to
restore and roll forward using the database-level backup image, Backup 2, you need to roll forward
through S0000012.LOG. After this, you could continue to roll forward through either the log sequence
from which you took Backup 3 or the newer log sequence. If you roll forward through the newer log
sequence, you cannot use the table space-level backup image, Backup 3, to perform table space
restore and rollforward recovery.

To complete a table space rollforward operation to the end of the logs using the table space-level
backup image, Backup 3, you have to restore the database-level backup image, Backup 2, and then roll
forward using the top log sequence. After the table space-level backup image, Backup 3, has been
restored, you can initiate a rollforward operation to the end of the logs.

Figure 7. Reusing log file names

On demand log archive
IBM Db2 server supports the closing (and, if enabled, the archiving) of the active log for a recoverable
database at any time. This allows you to collect a complete set of log files up to a known point, and then
to use these log files to update a standby database.

You can initiate on demand log archiving by invoking the ARCHIVE LOG command, or by calling the
db2ArchiveLog API.

186 IBM Db2 V11.5: Data Recovery and High Availability

Log archiving using db2tapemgr
You can use the db2tapemgr utility to store archived log files to tape devices. The db2tapemgr utility
copies log files from disk to the specified tape device, and updates the recovery history file with the new
location of the copied log files.

Configuration

Set the database configuration parameter logarchmeth1 to the location on disk of the log files you want
to copy to tape. The db2tapemgr utility reads this logarchmeth1 value to find the log files to copy. In a
partitioned database environment, the logarchmeth1 configuration parameter must be set on each
database partition that contains log files to be copied.

The db2tapemgr utility does not use the logarchmeth2 database configuration parameter.

STORE and DOUBLE STORE parameters

Issue the db2tapemgr command with either the STORE or DOUBLE STORE parameter to transfer
archived logs from disk to tape.

• The STORE parameter stores a range or all log files from the log archive directory to a specified tape
device and deletes the files from disk.

• The DOUBLE STORE parameter scans the history file to see whether logs were stored to tape
previously.

– If a log has never been stored before, db2tapemgr stores the log file to tape and but does not delete
it from disk.

– If a log has been stored before, db2tapemgr stores the log file to tape and deletes it from disk.

Use DOUBLE STORE if you want to keep duplicate copies of your archived logs on tape and on disk, or if
you want to store the same logs on two different tapes.

When you issue the db2tapemgr command with either the STORE or DOUBLE STORE parameter, the
db2tapemgr utility first scans the history file for entries where the logarchmeth1 configuration
parameter is set to disk. If it finds that any files that are supposed to be on disk, are not on disk, it issues a
warning. If the db2tapemgr utility finds no log files to store, it stops the operation and issues a message
to inform you that there is nothing to do.

RETRIEVE parameters

Issue the db2tapemgr command with the RETRIEVE parameter to transfer files from tape to disk.

• Use the RETRIEVE ALL LOGS or LOGS n TO n parameter to retrieve all archived logs that meet your
specified criteria and copy them to disk.

• Use the RETRIEVE FOR ROLLFORWARD TO POINT-IN-TIME parameter to retrieve all archived logs
required to perform a rollforward operation and copy them to disk.

• Use the RETRIEVE HISTORY FILE parameter to retrieve the history file from tape and copy it to disk.

Behavior

• If the db2tapemgr utility finds log files on disk, it then reads the tape header to make sure that it can
write the log files to the tape. It also updates the history for those files that are currently on tape. If the
update fails, the operation stops and an error message is displayed.

• If the tape is writeable, the db2tapemgr utility copies the logs to tape. After the files are copied, the log
files are deleted from disk. Finally, the db2tapemgr utility copies the history file to tape and deletes it
from disk.

• The db2tapemgr utility does not append log files to a tape. If a store operation does not fill the entire
tape, then the unused space is wasted.

• The db2tapemgr utility stores log files only once to any given tape. This restriction exists to avoid any
problems inherent to writing to tape media, such as stretching of the tape.

Chapter 1. High availability 187

• In a partitioned database environment, the db2tapemgr utility only executes against one database
partition at a time. You must run the appropriate command for each database partition, specifying the
database partition number using the ON DBPARTITIONNUM parameter of the db2tapemgr command.
You must also ensure that each database partition has access to a tape device.

• The db2tapemgr utility is not supported in Db2 pureScale environments.

Examples

The following example shows how to use the db2tapemgr command to store all log files from the
primary archive log path for database sample on database partition number 0 to a tape device and
remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum 0 store on /dev/rmt0.1 all logs

The following example shows how to store the first 10 log files from the primary archive log path to a tape
device and remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum store on /dev/rmt0.1 10 logs

The following example shows how to store the first 10 log files from the primary archive log path to a tape
device and then store the same log files to a second tape and remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum double store on /dev/rmt0.1 10 logs
db2tapemgr db sample on dbpartitionnum double store on /dev/rmt1.1 10 logs

The following example shows how to retrieve all log files from a tape to a directory:

db2tapemgr db sample on dbpartitionnum retrieve all logs from /dev/rmt1.1
 to /home/dbuser/archived_logs

Automating log file archiving and retrieval with user exit programs
You can automate log file archiving and retrieval by creating a user exit program that the Db2 database
manager calls to carry out the archiving or retrieval operation.

When the Db2 database manager invokes your user exit program, the following happens:

• The database manager passes control to the user exit program;
• The database manager passes parameters to the user exit program; and
• On completion, the use exit program passes a return code back to the database manager.

Configuration

Before invoking a user exit program for log file archiving or retrieval, ensure that the logarchmeth1
database configuration parameter is set to USEREXIT. This also enables your database for rollforward
recovery.

User exit program requirements

• The executable file for your user exit program must be called db2uext2.
• User exit programs must copy log files from the active log path to the archive log path, they must not

move them. Do not remove log files from the active log path. If you remove log files from the active log
path, your Db2 database might not be able to successfully recover in the event of a failure.

Db2 database requires the log files to be in the active log path during recovery. The Db2 database
server removes archived log files from the active log path when these log files are no longer needed for
recovery.

• User exit programs must handle error conditions. Your user exit program must handle errors because
the Db2 database manager can handle only a limited set of return conditions.

See “User exit error handling” on page 190.

188 IBM Db2 V11.5: Data Recovery and High Availability

• Each Db2 database manager instance can invoke only one user exit program. Because the database
manager instance can invoke only one user exit program, you must design your user exit program with a
section for each operation it might have to perform.

Sample user exit programs
Sample user exit programs are provided for all supported platforms. You can modify these programs to
suit your particular requirements. The sample programs are well commented with information that will
help you to use them most effectively.

You should be aware that user exit programs must copy log files from the active log path to the archive log
path. Do not remove log files from the active log path. (This could cause problems during database
recovery.) Db2 removes archived log files from the active log path when these log files are no longer
needed for recovery.

Following is a description of the sample user exit programs that are shipped with Db2 Data Server.

• UNIX operating systems

The user exit sample programs for Db2 Data Server for UNIX operating systems are found in the
sqllib/samples/c subdirectory. Although the samples provided are coded in C, your user exit
program can be written in a different programming language.

Your user exit program must be an executable file whose name is db2uext2.

There are four sample user exit programs for UNIX operating systems:

– db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log files.
– db2uext2.ctape

This sample uses tape media to archive and retrieve database log files .
– db2uext2.cdisk

This sample uses the operating system COPY command and disk media to archive and retrieve
database log files.

– db2uxt2.cxbsa

This sample works with the XBSA Draft 0.8 published by the X/Open group. It can be used to archive
and retrieve database log files. This sample is only supported on AIX.

• Windows operating systems

The user exit sample programs for Db2 Data Server for Windows operating systems are found in the
sqllib\samples\c subdirectory. Although the samples provided are coded in C, your user exit
program can be written in a different programming language.

Your user exit program must be an executable file whose name is db2uext2.

There are two sample user exit programs for Windows operating systems:

– db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log files.
– db2uext2.cdisk

This sample uses the operating system COPY command and disk media to archive and retrieve
database log files.

Chapter 1. High availability 189

User exit program calling format
When the Db2 database manager calls a user exit program, it passes a set of parameters (of data type
CHAR) to the program.

Command syntax

 db2uext2 -OS<os> -RL<db2rel> -RQ<request> -DB<dbname>
 -NN<nodenum> -LP<logpath> -LN<logname> -AP<tsmpasswd>
 -SP<startpage> -LS<logsize>

os
Specifies the platform on which the instance is running. Valid values are: AIX, SCO, Linux, and NT.

db2rel
Specifies the Db2 release level. For example, SQL07020.

request
Specifies a request type. Valid values are: ARCHIVE and RETRIEVE.

dbname
Specifies a database name.

nodenum
Specifies the local node number, such as 5, for example.

logpath
Specifies the fully qualified path to the log files. The path must contain the trailing path separator. For
example, /u/database/log/path/, or d:\logpath\.

logname
Specifies the name of the log file that is to be archived or retrieved, such as S0000123.LOG, for
example.

tsmpasswd
Specifies the TSM password. (If a value for the database configuration parameter tsm_password has
previously been specified, that value is passed to the user exit program.)

startpage
Specifies the number of 4-KB offset pages of the device at which the log extent starts.

logsize
Specifies the size of the log extent, in 4-KB pages. This parameter is no longer used.

User exit error handling
If you create a user exit program to automate log file archiving and retrieval, your user exit program
passes return codes to the Db2 database manager that invoked the user exit program. The Db2 database
manager can only handle a limited list of specific error codes. However, your user exit program might
encounter many different kinds of error conditions, such as operating system errors. Your user exit
program must map the error conditions it encounters to error codes that the database manager can
handle.

Table 16 on page 190 shows the codes that can be returned by a user exit program, and describes how
these codes are interpreted by the database manager. If a return code is not listed in the table, it is
treated as if its value were 32.

Table 16. User Exit Program Return Codes

Return Code Explanation

0 Successful.

4 Temporary resource error encountered.a

8 Operator intervention is required.a

12 Hardware error.b

190 IBM Db2 V11.5: Data Recovery and High Availability

Table 16. User Exit Program Return Codes (continued)

Return Code Explanation

16 Error with the user exit program or a software function used by the program.b

20 Error with one or more of the parameters passed to the user exit program. Verify that
the user exit program is correctly processing the specified parameters.b

24 The user exit program was not found. b

28 Error caused by an input/output (I/O) failure, or by the operating system.b

32 The user exit program was terminated by the user.b

255 Error caused by the user exit program not being able to load the library file for the
executable.c

a For archiving or retrieval requests, a return code of 4 or 8 causes a retry in five minutes. If the user exit
program continues to return 4 or 8 on retrieve requests for the same log file, Db2 will continue to retry
until successful. (This applies to rollforward operations, or calls to the db2ReadLog API, which is used
by the replication utility.)
b User exit requests are suspended for five minutes. During this time, all requests are ignored, including
the request that caused the error condition. Following this five-minute suspension, the next request is
processed. If this request is processed without error, processing of new user exit requests continues,
and Db2 reissues the archive request that failed or was suspended previously. If a return code greater
than 8 is generated during the retry, requests are suspended for an additional five minutes. The five-
minute suspensions continue until the problem is corrected, or the database is stopped and restarted.
Once all applications have disconnected from the database, Db2 issues an archive request for any log
file that might not have been successfully archived previously. If the user exit program fails to archive
log files, your disk might become filled with log files, and performance might be degraded. Once the disk
becomes full, the database manager will not accept further application requests for database updates.
If the user exit program was called to retrieve log files, rollforward recovery is suspended, but not
stopped, unless the ROLLFORWARD STOP option was specified. If the STOP option was not specified,
you can correct the problem and resume recovery.
c If the user exit program returns error code 255, it is likely that the program cannot load the library file
for the executable. To verify this, manually invoke the user exit program. More information is displayed.

Note: During archiving and retrieval operations, an alert message is issued for all return codes except 0,
and 4. The alert message contains the return code from the user exit program, and a copy of the input
parameters that were provided to the user exit program.

Log file allocation and removal
A log file which is required for crash recovery is called an active log. Unless infinite logging is enabled, log
files in the active log path are never removed if they might be required for crash recovery.

If infinite logging is enabled and space needs to be made available for more active log files, the database
manager archives an active log file and renames it to create a new active log file. If crash recovery is
needed when infinite logging is used, log files might need to be retrieved from the archive log path to
complete crash recovery. When you enable infinite logging, if the database manager is able to archive files
successfully, then there is no limit to the number of active log files that can be created. However, if the
database manager is not able to archive files successfully, then there is a limit to the number of
unarchived active logs. This limit is based on the upper limit of logprimary. If this limit is reached, the
database manager will allocate additional log files as long as there is disk space available in the file
system.

When the logarchmeth1 database configuration parameter is not set to OFF, a full log file becomes a
candidate for removal only after it is no longer required for crash recovery, unless infinite logging is
enabled, in which case the log files might be moved to the archive log path instead.

Chapter 1. High availability 191

When logarchmeth1 or logarchmeth2 is set to a value other than OFF, LOGRETAIN, or USEREXIT,
archived log file compression can be enabled to help reduce the amount of disk space required for
archived log files.

The process of allocating new log files and removing old log files is dependent on the settings of the
logarchmeth1 and logarchmeth2 database configuration parameters:

logarchmeth1 and logarchmeth2 are set to OFF
Circular logging is used. Roll-forward recovery is not supported with circular logging, while crash
recovery is.

During circular logging, new log files, other than secondary logs, are not generated and old log files are
not deleted. Log files are handled in a circular fashion. That is, when the last log file is full, the
database manager begins writing to the first log file.

A log full situation can occur if all of the log files are active and the circular logging process cannot
wrap to the first log file. Secondary log files are created when all the primary log files are active and
full. Secondary log files are deleted when the database is deactivated or when the space they are
using is required for the active log files.

logarchmeth1 or logarchmeth2 is set to LOGRETAIN
Archive logging is used. The database is a recoverable database. Both roll-forward recovery and crash
recovery are enabled. The database manager does not manage the log files. After you archive the log
files, you must delete them from the active log path so that the disk space can be reused for new log
files. To determine which log files are archived logs, check the value of the loghead database
configuration parameter. This parameter indicates the lowest numbered log that is active. Those logs
with sequence numbers less than the loghead value are not active and can be archived and
removed.

logarchmeth1 or logarchmeth2 is set to a value other than OFF or LOGRETAIN
Archive logging is used. The database is a recoverable database. Both roll-forward recovery and crash
recovery are enabled. When a log file becomes full, it is automatically archived by the database
manager.

Log files are not deleted. Instead, when a new log file is required and one is not available, an archived
log file is renamed and used again. An archived log file, is not deleted or renamed once it is closed and
copied to the archived log file directory. The database manager renames the oldest archived log when
it is no longer needed for crash recovery. A log file that is moved to the database directory during
recovery is removed during the recovery process when it is no longer needed.

If an error occurs when log files are being archived, archiving is suspended for the amount of time
specified by the archretrydelay database configuration parameter. You can also use the
numarchretry database configuration parameter to specify the number of times that the database
manager is to try archiving a log file to the primary or secondary archive directory before it tries to
archive log files to the failover directory (specified by the failarchpath database configuration
parameter). Numarchretry is only used if the failarchpath database configuration parameter is
set. If numarchretry is set to 0, the database manager continuously tries archiving from the primary
or the secondary log path.

The easiest way to remove old log files is to restart the database. Once the database is restarted, only
new log files and log files that the database manager failed to archive are found in the database
directory.

When a database is restarted, the minimum number of logs in the database log directory equals the
number of primary logs which can be configured using the logprimary database configuration
parameter. It is possible for more than the number of primary logs to be found in the log directory.
This condition occurs if the number of empty logs in the log directory at the time the database was
shut down, is greater than the value of the logprimary configuration parameter at the time the
database is restarted. This happens if the value of the logprimary configuration parameter is
changed between the database being shut down and restarted, or if secondary logs are allocated and
never used.

192 IBM Db2 V11.5: Data Recovery and High Availability

When a database is restarted, if the number of empty logs is less than the number of primary logs
specified by the logprimary configuration parameter, additional log files are allocated to make up
the difference. If there are more empty logs than primary logs available in the database directory, the
database can be restarted with as many available empty logs as are found in the database directory.
After database shutdown, secondary log files that are created remain in the active log path when the
database is restarted.

Using an overflow log path
Configuring an overflow log path can help with the management of recovery log files when the retrieval of
archived log files is required to facilitate a ROLLFORWARD recovery operation, or a db2ReadLog API
request (used by replication products such as Q Replication or Change Data Capture), and other use
cases. The basic behavior of the overflow log path is outlined in .

The overflow log path can be configured by using the OVERFLOWLOGPATH configuration parameter, or the
OVERFLOW LOG PATH option of the ROLLFORWARD command.

If an overflow log path is configured, then log files that are retrieved from an archive log location are
placed into the overflow log path. Otherwise, they are placed into the primary log path. This is referred to
as the log retrieve location.

Consider some of the benefits and behaviors of using an overflow log path:

Using an overflow log path can help isolate and secure the primary (active) log path:

By using an overflow log path, log files that are retrieved from the archive are placed into the overflow log
path instead of the primary log path. This method can help to isolate the primary log path from intrusion
or accidental manipulation of live active log data. It can also prevent the primary log path from
unexpected disk/storage full conditions.

In high-performance environments, primary log paths are often configured with the fastest (first-tier)
storage/disk. By using an overflow log path in these environments, a database administrator can use
second-tier storage if desired.

Using an overflow log path can assist with the preparation of a ROLLFORWARD:

When it is known beforehand that a ROLLFORWARD operation requires log files from an archive log path, a
database administrator can manually retrieve these log files from the archive log path either before a
ROLLFORWARD operation is started, or while it is running (if the ROLLFORWARD does not reach the replay
log position contained in these log files). This method alleviates the need for ROLLFORWARD to retrieve log
files from the archive log path in real time, and eliminates the possibility for failure during the
ROLLFORWARD due to a transient retrieve log error or transient network issue.

Using an overflow log path can avoid the retrieval of archived log files:

If the archive log paths (LOGARCHMETH1, LOGARCHMETH2, or both) are configured to use DISK method,
then the overflow log path can be configured to point to the exact location of the archive log path. In this
configuration, ROLLFORWARD avoids copying log files from the archive log path to the retrieve location.
When the overflow log path is configured in this way, Db2 reads the log files directly from the overflow log
path (which is the archive log path), and saves the cost of unnecessary I/O copy operations. When you
configure the overflow log path in this way (to point to the archive log path), it is configured to point to the
chain subdir subpath of the archive log path. For example, if the archive log path (LOGARCHMETH1 or
LOGARCHMETH2) is configured as DISK:/some_logarch_path/, then the overflow log path would be
configured as /some_logarch_path/<instance name>/<db name>/.

Note: The benefit that is described is negated when native archive log file compression is enabled
because the compressed log files must be decompressed and rewritten into the retrieve path. Thus, this
technique is not to be used when native archive log file compression is enabled.

Chapter 1. High availability 193

Including log files with a backup image
When performing an online backup operation, you can specify that the log files required to restore and
recover a database are included in the backup image. This means that if you need to ship backup images
to a disaster recovery site, you do not have to send the log files separately or package them together
yourself. Further, you do not have to decide which log files are required to guarantee the consistency of
an online backup. This provides some protection against the deletion of log files required for successful
recovery.

To use this feature, specify the INCLUDE LOGS option of the BACKUP DATABASE command. When you
specify this option, the backup utility truncates the currently active log file and copies the necessary set
of log extents into the backup image.

To restore the log files from a backup image, use the LOGTARGET option of the RESTORE DATABASE
command and specify a fully qualified path that exists on the Db2 server. The restore database utility then
writes the log files from the image to the target path. If a log file with the same name exists in the target
path, the restore operation fails and an error is returned. If the LOGTARGET option is not specified, no log
files are restored from the backup image.

If the LOGTARGET option is specified and the backup image does not include any log files, an error is
returned before an attempt is made to restore any table space data. The restore operation also fails if an
invalid or read-only path is specified. During a database or table space restore where the LOGTARGET
option is specified, if one or more log files cannot be extracted, the restore operation fails and an error is
returned.

You can also choose to restore only the log files saved in the backup image. To do this, specify the LOGS
option with the LOGTARGET option of the RESTORE DATABASE command. If the restore operation
encounters any problems when restoring log files in this mode, the restore operation fails and an error is
returned.

During an automatic incremental restore operation, only the logs included in the target image of the
restore operation are retrieved from the backup image. Any logs that are included in intermediate images
referenced during the incremental restore process are not extracted from those backup images. During a
manual incremental restore, if you specify a log target directory when restoring a backup image that
includes log files, the log files in that backup image are restored.

If you roll a database forward that was restored from an online backup image that includes log files, you
might encounter error SQL1268N, which indicates roll-forward recovery stopped due to an error received
when retrieving a log. This error is generated when the target system to which you are attempting to
restore the backup image does not have access to the facility used by the source system to archive its
transaction logs.

If you specify the INCLUDE LOGS option of the BACKUP DATABASE command when you back up a
database, then perform a restore operation and a roll-forward operation that use that back up image, Db2
still searches for additional transaction logs when rolling the database forward, even though the backup
image includes logs. It is standard rollforward behavior to continue to search for additional transaction
logs until no more logs are found. It is possible to have more than 1 log file with the same timestamp.
Consequently, Db2 does not stop as soon as it finds the first timestamp that matches the point-in-time to
which you are rolling forward the database as there might be other log files that also have that timestamp.
Instead, Db2 continues to look at the transaction log until it finds a timestamp greater than the point-in-
time specified.

When no additional logs can be found, the rollforward operation ends successfully. However, if there is an
error while searching for additional transaction log files, error SQL1268N is returned. Error SQL1268N can
occur because during the initial restore, certain database configuration parameters were reset or
overwritten. Three of these database configuration parameters are the TSM parameters, tsm_nodename,
tsm_owner, and tsm_password. They are all reset to NULL. To rollforward to the end of logs, you need
to reset these database configuration parameters to correspond to the source system before the
rollforward operation. Alternatively, you can specify the NORETRIEVE option when you issue the
ROLLFORWARD DATABASE command. This prevents the Db2 database system from trying to obtain
potentially missing transaction logs elsewhere.

Note:

194 IBM Db2 V11.5: Data Recovery and High Availability

1. This feature is not supported for offline backups.
2. When logs are included in an online backup image, the resulting image cannot be restored on releases

of Db2 database before Version 8.2.

Preventing the accidental loss of log files
In situations where you need to drop a database or perform a point-in-time rollforward recovery, it is
possible to lose log files that might be required for future recovery operations. In these cases, it is
important to make copies of all the logs in the current database log path directory.

Consider the following scenarios:

• If you plan to drop a database before a restore operation, you need to save the log files in the active log
path before issuing the DROP DATABASE command. After the database is restored, these log files might
be required for rollforward recovery because some of them might not have been archived before the
database was dropped. Normally, you are not required to drop a database before issuing the RESTORE
command. However, you might have to drop the database (or drop the database on one database
partition by specifying the AT DBPARTITIONNUM parameter of the DROP DATABASE command),
because it was damaged to the extent that the RESTORE command fails. You might also decide to drop
a database before the restore operation to give yourself a fresh start.

• If you are rolling a database forward to a specific point in time, log data after the time stamp you specify
is overwritten. If, after you complete the point-in-time rollforward operation and reconnect to the
database, you determine that you actually need to roll the database forward to a later point in time, you
are not able to because the logs are already overwritten. It is possible that the original set of log files
might have been archived; however, Db2 might be calling a user exit program to automatically archive
the newly generated log files. Depending on how the user exit program is written, this might cause the
original set of log files in the archive log directory to be overwritten. Even if both the original and new set
of log files exist in the archive log directory (as different versions of the same files), you might have to
determine which set of logs should be used for future recovery operations.

Minimizing the impact of maintenance on availability
You will have to perform maintenance on your Db2 database solution such as: software or hardware
upgrades; database performance tuning; database backups; statistics collection; and monitoring for
business purposes. Minimizing the impact that performing that maintenance has on the availability of your
solution involves careful scheduling of offline maintenance, and using Db2 features and functionality that
reduce the availability impact of online maintenance.

Before you begin

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Before you can use the following steps to minimize the impact of maintenance on the availability of your
Db2 database solution, you must:

• configure automatic maintenance; and
• install the High Availability Disaster Recovery (HADR) feature.

Procedure

1. Allow automatic maintenance to do your maintenance for you.

Db2 database can automate many database maintenance activities. Once the automatic maintenance
has been configured, the maintenance will happen without you taking any additional steps to perform
that maintenance.

2. Use a Db2 High Availability Disaster Recovery (HADR) rolling upgrade to minimize the impact of other
maintenance activities.

Chapter 1. High availability 195

If you are upgrading software or hardware, or if you are modifying some database manager
configuration parameters, the HADR feature enables you to accomplish those changes with minimal
interruption of availability. This seamless change enabled by HADR is called a rolling upgrade.

Some maintenance activities require you to shut down a database before performing the maintenance,
even in the HADR environment. Under some conditions, the procedure for shutting down an HADR
database is a little different than the procedure for shutting down a standard database: if an HADR
database is started by a client application connecting to it, you must use the DEACTIVATE DATABASE
command.

Stopping Db2 High Availability Disaster Recovery (HADR)
If you are using the Db2 High Availability Disaster Recovery (HADR) feature, stopping HADR operations to
perform maintenance on the primary or standby databases might be necessary. Stop HADR operations
only on the database that you are performing maintenance. To stop using HADR completely, stop HADR
on both databases.

About this task

Warning: If you want to stop the specified database but you still want it to maintain its role as either an
HADR primary or standby database, do not issue the STOP HADR command. If you issue the STOP HADR
command the database will become a standard database and might require reinitialization in order to
resume operations as an HADR database. Instead, issue the DEACTIVATE DATABASE command.

During upgrade to Db2 Version 11.1, the STOP HADR command can be issued on a Db2 Version 10.5 Fix
Pack 7 or later database to change the database role to standard and to complete the upgrade process as
a non-HADR database. To learn more, see Dealing with failures while upgrading Db2 servers in HADR
environments (Version 10.5 Fix Pack 7 or later).

If for some reason the standby database is no longer required or there is an issue with the primary
database the STOP HADR command can be issued on the standby database.

For an active standby database, an error message is returned. For a deactivated standby database, the
HADR role is changed to STANDARD and the database is placed into rollforward pending. Issue the
ROLLFOWARD DATABASE command with the STOP option to get the database out of rollforward pending
state and then issue the UPGRADE DATABASE command to complete the upgrade process.

Note: If there is an issue with the standby database the STOP HADR command can be issued on the
primary database. This changes the role to STANDARD and the UPGRADE DATABASE command can be
issued to complete the upgrade process as a non-HADR database.

If you issue the STOP HADR command against a standard database, an error will be returned.

Procedure

To stop HADR operations on the primary or standby database:
• From the CLP, issue the STOP HADR command on the database where you want to stop HADR

operations.

In the following example, HADR operations are stopped on database SOCKS:

STOP HADR ON DATABASE SOCKS

If you issue this command against an inactive primary database, the database switches to a standard
database and remains offline.

If you issue this command against an inactive standby database the database switches to a standard
database, is placed in rollforward pending state, and remains offline.

If you issue this command on an active primary database, logs stop being shipped to the standby
database and all HADR engine dispatchable units (EDUs) are shut down on the primary database. The
database switches to a standard database and remains online. Transaction processing can continue.
You can issue the START HADR command with the AS PRIMARY option to switch the role of the
database back to primary database.

196 IBM Db2 V11.5: Data Recovery and High Availability

If you issue this command on an active standby database, an error message is returned, indicating that
you must deactivate the standby database before attempting to convert it to a standard database.

• From an application, call the db2HADRStop application programming interface (API).
• From IBM Data Studio, open the task assistant for the STOP HADR command.

Database activation and deactivation in a high availability disaster recovery (HADR) environment
If a standard database is started by a client connection, the database is shut down when the last client
disconnects. If an HADR primary database is started by a client connection, it is equivalent to starting the
database by using the ACTIVATE DATABASE command. To shut down an HADR primary database that
was started by a client connection, you need to explicitly issue the DEACTIVATE DATABASE command.

On a standard database in rollforward pending state, the ACTIVATE DATABASE and DEACTIVATE
DATABASE commands are not applicable. You can only continue rollforward, stop rollforward, or use the
START HADR command to start the database as an HADR standby database. Once a database is started
as an HADR standby, you can use the ACTIVATE DATABASE and DEACTIVATE DATABASE commands to
start and stop the database.

Activate a primary database using the following methods:

• client connection
• ACTIVATE DATABASE command
• Task assistant for the ACTIVATE DATABASE command in IBM Data Studio
• START HADR command with the AS PRIMARY option

Deactivate a primary database using the following methods:

• DEACTIVATE DATABASE command

Note: If you deactivate an HADR primary database that is in disconnected peer state using the
DEACTIVATE DATABASE command or the sqle_deactivate_db API, the database will be in an
inconsistent state. The database will require crash recovery upon restart and no offline backups can be
taken of this database until it is restarted.

• Task assistant for the DEACTIVATE DATABASE command in IBM Data Studio
• db2stop command with the FORCE parameter

Activate a standby database using the following methods:

• ACTIVATE DATABASE command
• Task assistant for the ACTIVATE DATABASE command in IBM Data Studio
• START HADR command with the AS STANDBY option

Deactivate a standby database using the following methods:

• DEACTIVATE DATABASE command
• Task assistant for the DEACTIVATE DATABASE command in IBM Data Studio
• db2stop command with the FORCE parameter

Recommended order for shutting down an HADR pair

Warning: Although the STOP HADR command can be used to stop HADR on the primary or the standby,
or both, it should be used with caution. If you want to stop the specified database but still want it to
maintain its role as either an HADR primary or a standby database, do not issue the STOP HADR
command. If you issue the STOP HADR command, the database becomes a standard database and might
require reinitialization in order to resume operations as an HADR database. Instead, issue the
DEACTIVATE DATABASE command.

If you only want to shut down the HADR operation, this is the recommended way of shutting down the
HADR pair:

1. Deactivate the primary database

Chapter 1. High availability 197

2. Stop Db2 on the primary database
3. Deactivate the standby database
4. Stop Db2 on the standby database

Table space rebalance considerations in a Db2 High Availability Disaster Recovery (HADR)
environment
You can use the ALTER TABLESPACE REBALANCE or ALTER TABLESPACE USING STOGROUP statement
to start a rebalance operation on a primary database. The statement is replayed on the standby database,
and a corresponding rebalance operation is started.

During the rebalance operation, you can specify the ALTER TABLESPACE statement with the REBALANCE
SUSPEND clause to suspend the rebalance operation on the primary database. To resume the suspended
rebalance operation, specify the ALTER TABLESPACE statement with the REBALANCE RESUME clause.

The standby database remains in active state when it replays an ALTER TABLESPACE REBALANCE
SUSPEND statement. Because the rebalance is suspended on the primary database, when the standby
takes over as the new primary database the rebalance operation on the new primary database is
suspended and the rebalance operation on the new standby database is implicitly resumed.

When you restore a database using a split mirror as a clone database or as a standby database, any
suspended rebalance operations for table spaces are automatically resumed at database startup.

Performing rolling updates in a Db2 high availability disaster recovery (HADR) environment
Use this procedure in a high availability disaster recovery (HADR) environment when you upgrade the
operating system or hardware, other software packages, update a fixpack for your Db2 database product
software, or change database configuration parameters.
This procedure keeps database service available throughout the rolling update process, with only a
momentary service interruption when processing is switched from one database to the other. With
multiple standbys, you can provide continued HA and DR protection throughout the rolling update
process.

Note: This procedure cannot be used when upgrading your Db2 database product software to a new
major release. The procedure to upgrade your Db2 database product software to a new major release is
described in Upgrade Db2 High Availability Disaster Recovery (HADR) environments.

Before you begin

Note: This procedure is distinct from the HADR rolling update procedure for Db2 pureScale environments,
which is described in the following task: Installing online fix pack updates to a higher code level in a HADR
environment. Note that the following update procedures are also not for an automated HADR
environment. If you would like to proceed on performing rolling updates on an automated HADR
environment, follow the procedures depending on the cluster manager being used. For TSA automated
HADR, see Performing rolling updates in a TSA automated Db2 high availability disaster recovery (HADR)
environment. For Pacemaker automated HADR, see Performing rolling updates in a Pacemaker
automated Db2 high availability disaster recovery (HADR) environment.

Review the system requirements for HADR. See “System requirements for Db2 high availability disaster
recovery (HADR) ” on page 164.

If the hadr_syncmode database configuration parameter is set to SYNC, NEARSYNC or ASYNC, the
HADR pair must be in a peer state before you start the rolling update. If the hadr_syncmode database
configuration parameter is set to SUPERASYNC, ensure that the standby database is not too far behind
the primary database before you start the rolling update.

If you have two HADR databases (databaseA and database B) set up the following way, perform a role
switch on one database so that both primaries are on the same system during the fix pack update:

• The primary for databaseA runs on system1, and the standby runs on system2
• The primary for databaseB runs on system2, and the standby runs on system1

The overall capacity of the databases might be reduced, but it keeps both database online during the
procedure.

198 IBM Db2 V11.5: Data Recovery and High Availability

Note: All Db2 fix pack updates, hardware upgrades, and software upgrades should be implemented in a
test environment before being applied to your production system.

About this task

Use this procedure to perform a rolling update on your Db2 database system, to perform maintenance on
your Db2 pureScale cluster, and to update the Db2 database product software from one modification
level to another. For example, applying a fix pack to a Db2 database product software. During rolling
updates, the modification level or fix pack level of the standby database can be later than that of the
primary database while testing the new level. However, you should not keep this configuration for an
extended period to reduce the risk of using features that might be incompatible between the levels. The
primary and standby databases will not connect to each other if the modification level of the Db2
database product software for the primary database is later than that of the standby database.

A rolling update cannot be used to upgrade from an earlier version to a later version of a Db2 database
product software. For example, you cannot use this procedure to upgrade a Db2 database product from
Version 10.5 to Db2 Version 11.5. To upgrade a Db2 server in HADR environment see, Upgrade Db2 High
Availability Disaster Recovery (HADR) environments.

Procedure

To perform a rolling update in an HADR environment:
1. Update the standby database by issuing the following steps:

a) Use the DEACTIVATE DATABASE command to shut down the standby database.
b) If necessary, shut down the instance on the standby database.
c) Change one or more of the following: the software, the hardware, or the Db2 configuration

parameters.

Note: You cannot change any HADR configuration parameters when performing a rolling update.
d) If necessary, restart the instance on the standby database.
e) Use the ACTIVATE DATABASE command to restart the standby database.
f) Ensure that HADR enters peer state. Use the MON_GET_HADR table function (on the primary or a

read-enabled standby) or the db2pd command with the -hadr option to check this.
2. Switch the roles of the primary and standby databases:

a) Issue the TAKEOVER HADR command on the standby database.
b) Direct clients to the new primary database. This can be done using automatic client reroute.

Note: When performing a rolling update for applying a new Db2 fix pack, after the old standby
database takes over as the new primary database, it would be running at a higher version of Db2
than the old primary (new standby) database. The new primary will not accept connections from a
standby running an older version of Db2, because the older version of the product might not
understand the new log records generated by the new primary. In order for the new standby
database to reconnect with the new primary database (that is, for the HADR pair to reform), the
new Db2 fix pack must also be applied to the new standby database.

3. Update the original primary database (which is now the standby database) using the same procedure
as in step “1” on page 199. When you have done this, both databases are updated and connected to
each other in HADR peer state. The HADR system provides full database service and full high
availability protection.

4. To enable the HADR reads on standby feature during the rolling update perform the following steps to
ensure the consistency of the internal Db2 packages on the standby database before read operations
are introduced. The binding of internal Db2 packages occurs at first connection time, and can
complete successfully only on the primary database.
a) Enable the HADR reads on standby feature on the standby database as follows:

1) Set the DB2_HADR_ROS registry variable to ON on the standby database.
2) Use the DEACTIVATE DATABASE command to shut down the standby database.

Chapter 1. High availability 199

3) Restart the instance on the standby database.
4) Use the ACTIVATE DATABASE command to restart the standby database.
5) Ensure that HADR enters peer state. Use the MON_GET_HADR table function (on the primary or

a read-enabled standby) or the db2pd command with the -hadr option to check this.
b) Switch the roles of the primary and standby database as follows:

1) Issue the TAKEOVER HADR command on the standby database.
2) Direct clients to the new primary database.

c) Repeat the same procedure in substep a to enable the HADR reads on standby feature on the new
standby database.

5. Optional: If did not perform step “4” on page 199 and you want to return to your original configuration,
switch the roles of the primary and standby database as you did in step “2” on page 199.

6. Optional: In an HADR environment, run db2updv115 only on the primary database.
After running the db2updv115 command, you might have to restart the database for changes from
db2updv115 command to take effect. To perform a restart:

Attention: db2updv115 might deactivate packages and a REBIND must be run. After the
REBIND is complete, all packages are valid and the instances do not need to be recycled.

a) Restart the standby database by deactivating and reactivating it.
The standby database is restarted to prevent the disruption of primary database service.

1) Run the following command on the standby database:

DEACTIVATE
db dbname

where dbname is the name of the standby database.
2) Run the following command on the standby database:

ACTIVATE
db dbname

where dbname is the name of the standby database.
b) Switch the roles of the primary and standby databases:

1) Run the following command on the standby database:

TAKEOVER
hadr on db dbname

where dbname is the name of the standby database.
2) Direct clients to the new primary database.

Note: The databases have switched roles. The primary database was previously the standby
database and the standby database was previously the primary database.

c) Restart the standby database (formerly the primary database), using the same method as in Step 1.
d) Switch the roles of the primary and standby databases to return the database to their original roles.

Switch the roles using the same method as in step 2.

Performing rolling updates in a TSA automated Db2 high availability disaster recovery (HADR)
environment
When you use the integrated High Availability (HA) feature with IBM Tivoli System Automation for
Multiplatforms SA MP to automate HADR, extra steps are required to update operating system or Db2
database system software, upgrade hardware, or change database configuration parameters. Use this
procedure to perform a rolling upgrade in an automated HADR environment.

200 IBM Db2 V11.5: Data Recovery and High Availability

Before you begin

Note: The following update procedures are for a TSA automated HADR environment. If you want to
perform rolling updates on an HADR environment that is not automated, see “Performing rolling updates
in a Db2 high availability disaster recovery (HADR) environment” on page 198.

You must have the following prerequisites ready to perform the steps that are described in the
procedures section:

• Two Db2 instances.
• Two Db2 servers.
• The instances are originally running at Version 11.1.1.1 or a later version. If the instances are running

on Version 11.5 GA, refer to this IBM technote.
• The instances are configured with IBM Tivoli System Automation for Multiplatforms (SA MP) controlling

HADR failover.

Note: All Db2 fix pack updates, hardware upgrades, and software upgrades must be implemented in a
test environment prior to applying them to your production system.

The HADR pair must be in PEER state prior to starting the rolling update.

Restrictions

Use this procedure to perform a rolling update on your Db2 database system and update the Db2
database product software to a new fix pack level in an automated HADR environment. For example,
applying a fix pack to a Db2 database product software.

• The Db2 instances must be currently running at Version 11.1.1.1 or a later version. If the instances are
running on Version 11.5 GA, refer to this IBM technote.

A rolling update cannot be used to upgrade a Db2 database system from an earlier version to a later
version. For example, you cannot use this procedure to upgrade from Db2 Version 10.5 to Db2 Version
11.5. To upgrade a Db2 server in an automated HADR environment, see Upgrading Db2 servers in an
automated HADR environment .

You cannot use this procedure to update the Db2 HADR configuration parameters. Updates to the HADR
configuration parameters must be made separately. Because HADR requires the parameters on the
primary and standby to be the same, both the primary and standby databases might need to be
deactivated and updated at the same time.

Procedure

1. On the standby node, stop all Db2 processes:

• deactivate db <database-name>. This command stops HADR, but retains the role.
• db2stop force.

2. Run the stoprpnode -f <standby node> command as root.

3. Apply Fix Pack.
4. On the primary node, run the startrpnode <standby node> command as root.

5. On the standby node, start all Db2 processes:

• db2start.
• activate db <database-name>. This command resumes HADR but retains the role.
• Verify that the HADR pair has established PEER state via the db2pd -hadr db <database-
name> command.

6. Perform a role-switch:

• On the standby node, issue the db2 takeover hadr on db <database-name> command.
• Old primary disconnects because new primary is on a higher fix pack level.

7. On the old primary node, repeat steps 1-5 to apply the fix pack.

Chapter 1. High availability 201

http://www.ibm.com/support/docview.wss?uid=swg21995136
http://www.ibm.com/support/docview.wss?uid=swg21995136

8. Perform a failback to locate the HADR roles back to their original state.

• On the standby (old primary) node issue the db2 takeover hadr on db <database-name>
command.

• Prior to starting the fix pack installation process, verify that the original primary node is the
PRIMARY and verify that the HADR pair is still in PEER state via the db2pd -hadr db
<database-name> command.

9. If required, migrate the TSA domain.

• TSA domain migration is only required if the new Db2 fix pack includes a new TSA version. It is not
always the case that the new Db2 fix pack includes a new TSA version.

• TSA domain migration is required if the active version number (AVN) does not match the installed
version number (IVN). These values can be listed by running the lssrc -ls IBM.RecoveryRM |
grep VN command.

• To migrate TSA domain, issue the following command as root:

export CT_MANAGEMENT_SCOPE=2
runact -c IBM.PeerDomain CompleteMigration Options=0
samctrl -m # Type 'Y' to confirm migration

• Verify that the AVN and IVN values match via the lssrc ls IBM.RecoveryRM |grep VN
command.

10. Verify that MixedVersions is set to No for the cluster manager by running the lsrpdomain
command.

Performing rolling updates in a Pacemaker automated Db2 high availability disaster recovery (HADR)
environment
When you use the integrated High Availability (HA) feature with Pacemaker to automate HADR, extra
steps are required to update operating system or Db2 database system software, upgrade hardware, or
change database configuration parameters. Use this procedure to perform a rolling update in a
Pacemaker automated HADR environment.

Before you begin

Note: The following update procedures are for a Pacemaker automated HADR environment. If you want
to perform rolling updates on an HADR environment that is not automated, see Performing rolling updates
in a Db2 high availability disaster recovery (HADR) environment.

You must have the following prerequisites ready to perform the steps that are described in the
procedures sections:

• Two Db2 instances
• Two Db2 servers
• The instances are originally running at Version 11.5 Mod Pack 4 or later
• The instances are configured with Pacemaker controlling HADR failover

Note: All Db2 fix pack updates, hardware upgrades, and software upgrades must be implemented in a
test environment prior to applying them to your production system.

The HADR pair must be in PEER state prior to starting the rolling update.

Restrictions

Use this procedure to perform a rolling update on your Db2 database system and update the Db2
database product software to a new fix pack level in a Pacemaker automated HADR environment. For
example, applying a fix pack to a Db2 database product software.

• The Db2 instances must be currently running at Version 11.5 Mod Pack 4 or later

A rolling update cannot be used to upgrade a Db2 database system from an earlier version to a later
version. For example, you cannot use this procedure to upgrade from Db2 Version 10.5 to Db2 Version

202 IBM Db2 V11.5: Data Recovery and High Availability

11.5. To upgrade a Db2 server in an automated HADR environment, see Upgrading Db2 servers in a TSA
automated HADR environment.

You cannot use this procedure to update the Db2 HADR configuration parameters. Updates to the HADR
configuration parameters must be made separately. Because HADR requires the parameters on the
primary and standby to be the same, both the primary and standby databases might need to be
deactivated and updated at the same time.

Procedure

1. Make sure all databases have their HADR_ROLE set as STANDBY in the standby node via the db2 -
hadr db <database-name> command.

• If not, run db2 takeover hadr on db <database-name> command for all databases that do
not have the correct role, from the primary node.

2. Make sure cluster manager is not disabled by running crm status as root user.

• If it is disabled, the below message will appear in the output:

 *** Resource management is DISABLED ***
 The cluster will not attempt to start, stop or recover services

• If the cluster manager is disabled, run db2cm -enable as root to enable it
3. As root user, Copy the new db2cm utility from /tarFilePath/Db2/db2cm to /home/
<inst_user>/sqllib/adm.

• cp tarFile/Db2/db2cm /home/db2inst1/sqllib/adm
• chmod 755 /home/db2inst1/sqllib/adm/db2cm

4. As root user, disable automation via db2cm -disable with the new db2cm utility copied in the
previous step.

5. Deactivate all databases on the standby node.

• db2 deactivate db <database-name>. This command stops HADR, but retains the role.
6. Stop all Db2 processes on the standby node.

• db2stop force
7. Apply the fix pack using the instructions located here.
8. Start all Db2 processes on the standby node.

• db2start
9. Activate all databases on the standby node.

• db2 activate db <database-name>. This command resumes HADR but retains the role.
10. Perform a role switch.

• On the standby node, issue the db2 takeover hadr on db <database-name> command for
all databases.

• Old primary disconnects because new primary is on a higher fix pack level.
11. On the old primary node, repeat steps 3-7 to apply the fix pack.
12. Perform a failback to locate the HADR roles back to their original state.

• On the standby (old primary) node, issue the db2 takeover hadr on db <database-name>
command for all databases.

13. Verify that all databases are in PEER state via the db2pd -hadr db <database-name> command.
14. As root on both nodes, stop Pacemaker and Corosync processes.

• systemctl stop pacemaker
• systemctl stop corosync
• systemctl stop corosync-qdevice if qdevice is configured.

Chapter 1. High availability 203

15. As root on both nodes, delete existing Pacemaker and Corosync packages provided by IBM.

• For RHEL: rpm -qa | grep db2pcmk | xargs dnf remove -y
• For SLES: rpm -qa | grep db2pcmk | xargs zypper remove -y

16. If qdevice is configured, delete the existing corosync-qnetd package provided by IBM on the qdevice
host as root.

• For RHEL: rpm -qa | grep qnetd | grep db2pcmk | xargs dnf remove -y
• For SLES: rpm -qa | grep qnetd | grep db2pcmk | xargs zypper remove -y

17. If qdevice is configured, install the new corosync-qnetd package provided by IBM on the qdevice
host as root.

• dnf install /tarfile/RPMS/<architecture>/corosync-qnetd*
• zypper install --allow-unsigned-rpm /tarfile/RPMS/<architecture>/corosync-
qnetd*

18. On both nodes as root, install the new Pacemaker and Corosync packages provided by IBM.

• cd /tarfile/RPMS/
• For RHEL: dnf install noarch/*rpm <architecture>/*rpm
• For SLES: zypper install --allow-unsigned-rpm noarch/*rpm <architecture>/
*rpm

19. As root user, copy the new db2cm utility from /tarFilePath/Db2/db2cm to /home/
<inst_user>/sqllib/adm.

• cp tarFile/Db2/db2cm /home/db2inst1/sqllib/adm
• chmod 755 /home/db2inst1/sqllib/adm/db2cm

20. As root user, copy the resource agent scripts (db2hadr, db2inst, db2ethmon) from /tarFilePath/
Db2agents into /usr/lib/ocf/resource.d/heartbeat/ on both hosts:

• /home/db2inst1/sqllib/adm/db2cm -copy_resources /tarFilePath/Db2agents -
host host1

• /home/db2inst1/sqllib/adm/db2cm -copy_resources /tarFilePath/Db2agents -
host host2

21. If qdevice is configured, start qnetd process on the qdevice host by running the following command
as root user.

• systemct1 start corosync-qnetd
22. On both nodes, start Pacemaker and Corosync processes by running the following commands as root

user.

• systemctl start corosync
• systemctl start corosync-qdevice if qdevice is configured.
• systemctl start pacemaker

23. As root user, enable automation via db2cm -enable on either host.

Scenario: Changing the system clock
When adjusting or changing the system clock, there is no reason to stop the Db2 database manager. Db2
successfully handles daylight saving time changes twice a year all over the world without issue.
Configurations which use NTP to synchronize clocks across systems are also fully supported.

About this task

There are some best practices that you must be aware of when changing the system time.

Restrictions

When changing the system clock in the vast majority of scenarios there is absolutely no impact.

204 IBM Db2 V11.5: Data Recovery and High Availability

When major time shifts occur, you must be aware of two situations.

• If you execute point-in-time recovery you need to be aware of any significant time shifts.
• Function definitions include the time and date they were created in the form of a timestamp. At function

invocation, Db2 attempts to resolve the function definition. As part of the function resolution, the
timestamp value logged in the function definition at create time is checked. If you move the system
clock back to a time before the functions were created, Db2 does not resolve references to those
functions.

Procedure

Best practices to avoid these two situations:
1. If you are moving time forward, proceed to step 3.
2. If you are moving time backward by X minutes:

a. Choose a time to execute the change when no new functions were created in the past X minutes,
and no update transactions occur in X minutes.

b. If you are unable to find a time as outlined in step a, you can still move the system clock backwards
by X minutes with Db2 online. However, you must accept the following implications:

• You might not be able to use point-in-time recovery to recover to a point within those X minutes.
That is, you might not be able to recover a subset of the update transactions that executed within
those X minutes.

• Functions created within X minutes before the change might not be resolved for X minutes after
the change.

3. Change the system clock.

Results

By following the best practices as outlined, you avoid any potential point-in-time recovery or function
resolution issue when changing the system clock.

Synchronizing the primary and standby databases
One high availability strategy is to have a primary database and a secondary or standby database to take
over operations if the primary database fails. If the standby database must take over database operations
for a failed primary database, it must contain exactly the same data, know about all inflight transactions,
and otherwise continue database processing exactly the same way as the primary database server would,
if it had not failed. The ongoing process of updating the standby database so that it is a copy of the
primary database is called synchronization.

Before you begin

Before you can synchronize the primary and standby databases you must:

• Create and configure the primary and standby databases.
• Configure communications between the primary and standby databases.
• Choose a synchronization strategy (for example, log shipping, log mirroring, suspended I/O and disk

mirroring, or HADR.)

There are several strategies for keeping the primary database server and the standby database server
synchronized:

– shipping logs from the primary database to the standby database and rolling them forward on the
standby database;

– writing database logs to both the primary and standby databases at the same time, known as log
mirroring;

– using suspended I/O support with disk mirroring to periodically taking a copy of the primary
database, splitting th mirror and initializing the copy as a new standby database server; and

Chapter 1. High availability 205

– using a availability feature such as the Db2 High Availability Disaster Recovery (HADR) feature to
keep the primary and standby database synchronized.

Procedure

1. If you are using logs to synchronize the primary database and the secondary or standby database,
configure Db2 database to perform the required log management for you.
For example, if you want Db2 database to mirror the logs, set the mirrorlogpath configuration
parameter to the location where you want the second copy of the logs to be saved.

2. If you are using Db2 database suspended I/O functionality to split a disk mirror of the primary
database, you must do the following:
a) Initialize the disk mirroring for the primary database.
b) When you need to split the mirror of the primary database, follow the instructions in the topic

"Using a split mirror as a standby database."
3. If you are using the HADR feature to manage synchronizing the primary and standby databases,

configure Db2 database for HADR, and allow Db2 database to synchronize the primary and standby
databases for you.

Resolving log replay error when creating table space
If you create a table space on the primary database and log replay fails on the standby database because
the containers are not available, the primary database does not receive an error message stating that the
log replay failed.If a takeover operation occurs, the new table space that you created is not available on
the new primary database. To recover from this situation, restore the table space on the new primary
database from a backup image.

To check for log replay errors, you must monitor the db2diag.log file and the administration notification
log file on the standby database when you are creating new table spaces.

In the following example, table space MY_TABLESPACE is restored on database MY_DATABASE before it
is used as the new primary database:

1. Connect to the database MY_DATABASE:

DB2 CONNECT TO my_database

2. Obtain the list of unavailable table spaces that need to be restored:

DB2 LIST TABLESPACES SHOW DETAIL

You specify the relevant tablespace ID in step 5 of this procedure.
3. Stop HADR on the primary database:

DB2 STOP HADR ON DATABASE my_database

4. Perform an online redirected restore of the tablespace:

DB2 RESTORE my_database TABLESPACE (my_tablespace) ONLINE REDIRECT

5. Define the new table space containers:

DB2 SET TABLESPACE CONTAINERS FOR my_tablespace_ID IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (PATH '/new_container_path/')

6. Complete the restore operation:

DB2 RESTORE my_database CONTINUE

7. Roll forward the database to the end of logs:

DB2 ROLLFORWARD DATABASE my_database TO END OF LOGS AND STOP TABLESPACE (my_tablespace)

8. Start HADR on the primary database:

206 IBM Db2 V11.5: Data Recovery and High Availability

DB2 START HADR ON DATABASE my_database AS PRIMARY

Db2 High Availability Disaster Recovery (HADR) replicated operations
Db2 High Availability Disaster Recovery (HADR) uses database logs to replicate data from the primary
database to the standby database. Some activities can cause the standby database to fall behind the
primary database as logs are replayed on the standby database. Some activities are so heavily logged that
the large amount of log files they generate can cause storage problems. Although replicating data to the
standby database using logs is the core of availability strategies, logging itself can potentially have a
negative impact on the availability of your solution. Design you maintenance strategy wisely, configure
your system to minimize the negative impact of logging, and allow logging to protect your transaction
data.

In high availability disaster recovery (HADR), the following operations are replicated from the primary to
the standby database:

• Data definition language (DDL)
• Data manipulation language (DML)
• Buffer pool operations
• Table space operations
• Online reorganization
• Offline reorganization
• Metadata for stored procedures and user defined functions (UDF) (but not the related object or library
files)

During an online reorganization, all operations are logged in detail. As a result, HADR can replicate the
operation without the standby database falling further behind than it would for more typical database
updates. However, this behavior can potentially have a large impact on the system because of the large
number of log records generated.

While offline reorganizations are not logged as extensively as online reorganizations, operations are
typically logged per hundreds or thousands of affected rows. This means that the standby database could
fall behind because it waits for each log record and then replays many updates at once. If the offline
reorganization is non-clustered, a single log record is generated after the entire reorganization operation.
This mode has the greatest impact on the ability of the standby database to keep up with the primary
database. The standby database will perform the entire reorganization after it receives the log record
from the primary database.

HADR does not replicate stored procedure and UDF object and library files. You must create the files on
identical paths on both the primary and standby databases. If the standby database cannot find the
referenced object or library file, the stored procedure or UDF invocation will fail on the standby database.

Db2 High Availability Disaster Recovery (HADR) non-replicated operations
Db2 High Availability Disaster Recovery (HADR) uses database logs to replicate data from the primary
database to the standby database. Non-logged operations are allowed on the primary database, but not
replicated to the standby database. If you want non-logged operations, such as updates to the history file,
to be reflected in the standby database, you must take extra steps to cause this to happen.

The following are examples of cases in which operations on the primary database are not replicated to the
standby database:

• Tables created with the NOT LOGGED INITIALLY option specified are not replicated. Attempts to access
such tables after an HADR standby database takes over as the primary database result in an error.

• All logged LOB columns are replicated. Non-logged LOB columns are not replicated. However, the space
for them is allocated on the standby database using binary zeros as the value for the column.

• Updates to database configuration using the UPDATE DATABASE CONFIGURATION and UPDATE
DATABASE MANAGER CONFIGURATION commands are not replicated.

• Database configuration and database manager configuration parameters are not replicated.

Chapter 1. High availability 207

• For user-defined functions (UDFs), changes to objects external to the database (such as related objects
and library files) are not replicated. They need to be set up on the standby via other means.

• The recovery history file (db2rhist.asc), and changes to it, are not automatically shipped from the
primary database to the standby database.

You can place an initial copy of the history file (obtained from the backup image of the primary) on the
standby database by issuing the RESTORE DATABASE command with the REPLACE HISTORY FILE
parameter:

 RESTORE DB KELLY REPLACE HISTORY FILE

After HADR is initialized and subsequent backup activities take place on the primary database, the
history file on the standby database becomes out of date. However, a copy of the history file is stored in
each backup image. Alternatively, you can create a no table space backup image that contains a more
recent copy of the history file by using the following command:

 BACKUP DB KELLY NO TABLESPACE

You can update the history file on the standby by extracting the history file from a backup image by
using the following command:

 RESTORE DB KELLY HISTORY FILE

Do not use regular operating system commands to copy the history file in the database directory from
the primary database to the standby database. The history file can become corrupted if the primary is
updating the files when the copy is made.

If a takeover operation occurs and the standby database has an up-to-date history file, backup and
restore operations on the new primary generate new records in the history file and blend seamlessly
with the records generated on the original primary. If the history file is out of date or has missing
entries, an automatic incremental restore might not be possible; instead, a manual incremental restore
operation is required.

Db2 high availability disaster recovery (HADR) database states
At any time, a high availability disaster recovery (HADR) standby database is in one of five states: local
catchup, remote catchup pending, remote catchup, peer, or disconnected peer. The states are defined by
the log shipping status. Regardless of the state, log replay of all available logs occurs.

If a standby is connected to the primary, its is reported in the HADR_STATE field of the MON_GET_HADR
table function and the db2pd command output. (If it is not connected, it reports DISCONNECTED.)

Figure 8 on page 209 shows the progression through the different standby database states.

208 IBM Db2 V11.5: Data Recovery and High Availability

Figure 8. States of the standby database

Local catchup state

With the HADR feature, when a database is started as a standby, it enters local catchup state, and the log
files in its local log path are read to determine what logs are available locally. In this state, logs are not
retrieved from the archive even if you configured a log archiving method. Also, in this state, a connection
to the primary database is not required; however, if a connection does not exist, the standby database
tries to connect to the primary database. When the end of local log files is reached, the standby database
enters remote catchup pending state.

Remote catchup pending state

When the standby enters remote catchup pending state, if a connection to the primary has not been
established, the standby waits for a connection. After a connection is established, the standby obtains the
primary's current log chain information. This enables the standby, if you configured a log archive, to
retrieve log files from the archive and verify that the log files are valid.

In remote catchup state and peer state, if the standby loses its connection to the primary, it goes back to
remote catchup pending state. When the connection is reestablished, the standby tries to retrieve the
logs from the archive. Thus, if you configure a shared archive device, the standby might be able to find
more logs than would be available if it is using a separate archiving device. As a result, using an archive
can have less impact on the primary than shipping from the primary through the HADR connection.

Chapter 1. High availability 209

Remote catchup state

In remote catchup state, the primary database reads log data from its log path or by way of a log archiving
method, and the log data is sent to the standby database. The primary and standby databases enter peer
state when the standby database receives all the on-disk log data of the primary database. If you are
using the SUPERASYNC synchronization mode, the primary and standby never enter peer state. They
permanently stay in remote catchup state, which prevents the possibility of blocking primary log writing in
peer state.

If the connection between the primary and standby databases is lost when the databases are in remote
catchup state, the standby database enters remote catchup pending state.

Assisted remote catchup

Assisted remote catchup state is specific to HADR in Db2 pureScale environments.

A standby replay member might not be able to directly connect to a member on the primary because
of network problems or the member on the primary being inactive. In this case, the standby replay
member gets the unreachable member's logs through the assistance of another member on the
primary that can connect to the standby. This assisting member uses a dedicated TCP connection for
each member that it is assisting. Log streams that are in assisted remote catchup state can never
enter peer state because indirect connections are used for them. Assisted remote catchup is
automatically terminated when the standby replay member can directly connect to the member on
the primary.

You can determine whether a member's log stream is in assisted remote catchup state by using the
MON_GET_HADR table function or the db2pd command. For a member on the primary, its log stream
is shown as being in REMOTE_CATCHUP state, and the HADR_FLAGS field contains the
ASSISTED_REMOTE_CATCHUP flag.

Peer state

In peer state, log data is shipped directly from the primary's log write buffer to the standby whenever the
primary flushes its log pages to disk. The HADR synchronization mode specifies whether the primary
waits for the standby to send an acknowledgement message that log data was received. The log pages
are always written to the local log files on the standby database. This behavior guards against a crash and
allows a file to be archived on the new primary in case of takeover, if it was not archived on the old
primary. After being written to the local disk, the received log pages can then be replayed on the standby
database. If log spooling is disabled, which is the default, log replay reads logs only from the log receive
buffer.

If log replay is slow, the receive buffer can fill up, and the standby stops receiving new logs. If this
happens, primary log writing is blocked. If you enable log spooling, a part of the log buffer is released
even if it was not replayed yet, so primary log writing can continue. Log replay reads the log data from disk
later. If the spooling device fills up or the configured spool limit is reached, the standby still stops
receiving, and the primary is blocked again.

If the connection between the primary and standby databases is lost when the databases are in peer
state and the hadr_peer_window database configuration parameter is set to 0, which is the default, the
standby database enters remote catchup pending state. However, if the connection between the primary
and standby databases is lost during peer state and you set the hadr_peer_window parameter to a
nonzero value (meaning that you configured a peer window), the standby database enters disconnected
peer state.

Disconnected peer state

If you configured a peer window and the primary database loses its connection with the standby database
while in peer state, the primary database continues to behave as though the primary and standby
databases were in peer state. This behavior lasts until the peer window expires or until the standby
reconnects, whichever occurs first. When the primary database and standby database are disconnected
but behave as though in they were in peer state, this state is called disconnected peer.

210 IBM Db2 V11.5: Data Recovery and High Availability

The advantage of configuring a peer window is that it lowers the risk of transaction loss during multiple or
cascading failures. Without the peer window, when the primary database loses its connection with the
standby database, the primary database moves out of peer state immediately and continues transaction
processing. These transactions are not replicated to the standby. If the primary server fails shortly after it
loses its connection to the standby, the risk of transaction loss is high in a failover. With the peer window
enabled, the primary database blocks transaction processing for a certain amount of time after losing its
connection to the standby in peer state, guarding against cascading failures. Furthermore, the standby
can take over within the peer window time with no risk of data loss.

The disadvantage of configuring a peer window is that transactions on the primary database take longer
or even time out while the primary database is in the peer window waiting for the connection with the
standby database to be restored or for the peer window to expire. As well, intermittent network failures
can cause a severe impact on primary transaction processing.

You can determine the peer window size, which is the value of the hadr_peer_window database
configuration parameter, by using the MON_GET_HADR table function or the db2pd command with the -
hadr parameter.

Manually copying log files from the primary database to the standby database

One way to synchronize the primary and standby databases is to manually copy the primary database log
files into the standby database log path or overflow log path, if configured. Manually copying files can be
especially helpful if there is a large log gap between the primary and standby, for example, because the
standby database was down for a long time. Manually copying files can reduce the delay of the standby
having to retrieve the logs from the archive, or it can reduce the impact on the primary of having to ship
these log files, which the primary would likely have to retrieve from the archive.

It is important to do this step before activating the standby database. After you deactivate the standby
database,it proceeds with searching local log files, attempting to retrieve from the archive, and engaging
the primary for log shipping, as described previously. If you copy the log files to the standby after you
have activated it can interfere with the standby's normal operation.

Determining the HADR standby database state
The state of a Db2 high availability disaster recovery (HADR) standby database determines what
operations it can perform.

Procedure

• To determine the state of an HADR standby database in a primary-standby HADR database pair:

• From the primary database or a standby database, issue the db2pd command with the -hadr
parameter and check the HADR_STATE field:

- If you issue the command from the primary database, the command returns a set of data for each
standby in your HADR setup.

- If you issue the command from a standby database, the command returns only a single set of
data because the standby cannot obtain information about other standbys.

• Issue a query that uses the MON_GET_HADR table function to determine the HADR_STATE field on
the primary database or a read-enabled standby database:

- If you issue the query on the primary database, the table function returns a row of data for each
standby in your HADR setup.

- If you issue the query on the standby database, the table function returns only a single row of
data because a standby cannot obtain information about other standbys.

In a Db2 pureScale environment, you can use this table function on the primary only. You can
specify any single member, the current member, or all members. The returned rows represent log
streams that are being processed by the member.

Chapter 1. High availability 211

Example
Example with one HADR standby

A DBA with an HADR setup with a single standby issues the MON_GET_HADR table function from the
primary to query the state of the HADR databases:

select HADR_STATE from table (mon_get_hadr(NULL))

The following information is returned, showing that the HADR pair is in peer state:

HADR_STATE

PEER

 1 record(s) selected.

Example with one HADR standby in a Db2 pureScale environment

A DBA with an HADR setup with three-member clusters (members 0, 1, and 2) issues the
MON_GET_HADR table function from the primary to query the state of the HADR databases on all
members:

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE, HADR_FLAGS
from table (mon_get_hadr(-2))

The following information is returned:

LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE HADR_FLAGS
------------- -------------- -------------- -------------- -----------------------
0 0 0 PEER
1 0 0 REMOTE_CATCHUP ASSISTED_REMOTE_CATCHUP
2 2 0 PEER

 3 record(s) selected.

This output indicates that member 1 is in assisted remote catchup state and that member 0 is the
assisting member. If the DBA issues the table function with a member argument of member 1, the
result is as follows:

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE, HADR_FLAGS
from table (mon_get_hadr(1))

LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE HADR_FLAGS
------------- -------------- -------------- -------------- ----------
1 1 0 DISCONNECTED

Example with multiple HADR standbys

A DBA with an HADR setup with multiple standbys issues the MON_GET_HADR table function from
the primary to query the state of the HADR databases:

select STANDBY_ID, HADR_STATE from table (mon_get_hadr(NULL))

The following information is returned:

STANDBY_ID HADR_STATE
---------- --------------
1 PEER
2 REMOTE_CATCHUP
3 REMOTE_CATCHUP

 3 record(s) selected.

The principal standby, which always has a STANDBY_ID value of 1, is in peer state. The auxiliary
standbys, which have STANDBY_ID values of 2 and 3, can never be in peer state.

212 IBM Db2 V11.5: Data Recovery and High Availability

Recovering table space errors on an HADR standby database
In an HADR environment, when a standby database has a table space in an invalid or error state, the
replay of transactions on this table space stops. However, the replay of transactions on other valid table
spaces will continue. The primary database is not affected, and the condition of this table space on the
standby can go unnoticed.

If this table space condition exists on the standby database, then sometime later when a TAKEOVER
operation is performed on the standby database, applications can be impacted by the unavailability of
this table space. The erroneous table spaces can be recovered on the standby database by either
reinitializing the affected table spaces, or reinitializing the entire database.

Monitoring and identifying erroneous table spaces on the standby

Techniques for monitoring this condition and identifying the erroneous table spaces are described in the
technote, Monitoring and Identifying table spaces in invalid or error state on the HADR Standby database.

Identifying and rectifying the cause of the erroneous table spaces

After the erroneous table spaces are identified, the cause of the error condition must be determined.
Common causes include insufficient filesystem space, a filesystem that is not mounted, a filesystem
error, or a load copy-yes image cannot be found. A severe log replay error can also be a cause.

The administration notification log (<instance_name>.nfy) and db2diag.log must be examined.

Depending on the type of error, the administration notification log (<instance name>.nfy) can contain
warning messages similar to these messages:

2016-03-15-22.51.15.490605 Instance:rsiinp16 Node:000
 PID:10551302(db2redow (MYDB1) 0) TID:19277 Appid:*LOCAL.DB2.160221104421
 buffer pool services sqlbIncPoolState Probe:3604 Database:MYDB1
 ADM12512W Log replay on the HADR standby has stopped on table space "MYTBSPACE3"
 (ID "7") because it has been put into "ROLLFORWARD PENDING" state.

2016-03-15-22.51.15.565961 Instance:rsiinp16 Node:000
 PID:10551302(db2redow (MYDB1) 0) TID:19277 Appid:*LOCAL.DB2.160221104421
 data management sqldHandleBadPool Probe:40 Database:MYDB1
 ADM5550C The table space "MYTBSPACE3" (ID "7") is being removed from the
 rollforward set. The SQLCODE is "-980".

Likewise, the db2diag.log can contain error messages with more clues, such as the disk write error in
this example:

2016-03-15-22.51.15.189467-240 E763181A1307 LEVEL: Error (OS)
 PID : 10551302 TID : 19277 PROC : db2sysc 0
 INSTANCE: myinst1 NODE : 000 DB : MYDB1APPHDL : 0-8
 APPID: *LOCAL.DB2.160221104421
 HOSTNAME: somehost.ibm.com
 EDUID : 19277 EDUNAME: db2redow (MYDB1) 0
 FUNCTION: Db2 UDB, oper system services, sqloseekwrite64, probe:40
 MESSAGE : ZRC=0x860F0003=-2045837309=SQLO_DERR "disk error occurred (DOS)"
 DIA8402C A disk error has occurred.
 CALLED : OS, -, pwrite
 OSERR : EIO (5) "I/O error"

If the cause of the error condition is determined to be a localized issue, such as insufficient filesystem
space, a filesystem problem, or similar, the issue must be rectified before you proceed to reinitialize the
tablespace on the standby.

If the cause of the error condition is determined to be a severe replay error or an internal db2 error, with
no observable localized cause, retain all diagnostic information before you open a PMR.

Reinitializing the erroneous table spaces on the standby database

Depending on your Db2 version, refer to the respective links to reinitialize the erroneous tablespaces on
the standby database.

For pureScale and non-pureScale environments, on Version 10.5 Fix Pack 8 and previous Fix Packs:

Chapter 1. High availability 213

http://www-01.ibm.com/support/docview.wss?uid=swg21993013

• A full reinitialization of the standby database is the only supported method.
• Refer to Initializing high availability disaster recovery (HADR).

For pureScale environments, on Version 10.5 Fix Pack 9 and newer Fix Packs, or Versions 11.1.0.0 or
11.1.1.1:

• A full reinitialization of the standby database is the only supported method.
• Refer to Initializing high availability disaster recovery (HADR).

For non-pureScale environments, on Version 10.5 Fix Pack 9 and newer Fix Packs, or Versions
11.1.0.0 or 11.1.1.1:

• Refer to Instructions to reinitialize the erroneous table spaces on the standby database.

For pureScale and non-pureScale environments, on Version 11.1.2.2 and newer Mod Packs:

• Refer to Instructions to reinitialize the erroneous table spaces on the standby database.

Instructions to reinitialize the erroneous table spaces on the standby database

1. On the standby host, deactivate the standby database:

[Standby]$db2 "deactivate db MYDB1"

2. On the primary host, perform a FLUSH BUFFERPOOL operation before the backup operation to reduce
dependency for log records outside the range of log files included within the backup. (Note: Databases
with heavy workloads can experience a short performance blip due to aggressive I/O during the FLUSH
BUFFERPOOL operation.)

[Primary]$db2"flush bufferpools all"

3. On the primary host, perform a backup of the erroneous table spaces. (Note: An 'online' backup allows
the primary database to remain available during the backup operation).

[Primary]$db2 "backup db MYDB1 tablespace MYTBSPC3 online to /bkp_image_path_pri/ "

For Versions 11.1.0.0 or 11.1.1.1 only, on the standby host, perform a STOP HADR operation:

[Standby]$db2 "stop hadr on db MYDB1"

4. Copy or FTP the backup image from the primary host path (/bkp_image_path_pri/ in this example)
to the standby host path (/bkp_image_path_stdby/ in this example). On the standby host, perform
an offline restore of the tablespace from the backup image:

[Standby]$db2 "restore db MYDB1 tablespace (MYTBSPC3) from /bkp_image_path_stdby/"

For Versions 11.1.0.0 or 11.1.1.1 only, on the standby host, perform a START HADR AS STANDBY
operation:

[Standby]$db2 start hadr on db MYDB1 as standby

5. On the standby host, reactivate the database (for Versions 11.1.0.0 or 11.1.1.1, this step is not
required because of the start hadr operation above):

[Standby]$db2 "activate db MYDB1"

Monitor the table space(s) state on the Standby as described at the top of this document. Note that the
recovered table space(s) will remain in benign ROLLFORWARD_IN_PROGRESS (x40) state until the next
takeover operation.

214 IBM Db2 V11.5: Data Recovery and High Availability

If a TAKEOVER operation was performed before realizing that table space(s) were invalid on the
Standby:

If you already performed a TAKEOVER operation, and then realized that one or more table spaces were
invalid on the new-Primary, then an SQL0290N error may be returned when those table spaces are
accessed by a query or operation.

SQL0290N Table space access is not allowed SQLSTATE=55039

Additionally, the db2diag.log on the new-Primary may contain a message similar to this:

 yyyy-mm-dd-hh.mm.ss... I32132788A530 LEVEL: Warning
 PID : ... TID : ... PROC : db2sysc 0
 INSTANCE: ... NODE : ... DB : ...
 APPHDL : ... APPID: ...
 EDUID : ... EDUNAME: db2agent (...) 0
 FUNCTION: Db2 UDB, recovery manager, sqlpGetTablespacesForFilter,probe:1570
 DATA #1 : preformatted
 Tablespace 6 is in rollforward pending state. Another rollforward will
 be needed to bring this tablespace online.

To confirm which table spaces are in rollforward-pending state, the db2pd -tablespaces command
can be used as described in the following technote (#1993013): Monitoring and Identifying table spaces
in invalid or error state on the HADR Standby database.

There are three methods to resolve this situation:

If the old-Primary database is still online: then a TAKEOVER operation can be performed on the old-
Primary database to make it the Primary database again, and the invalid table spaces on the Standby
database can be re-initialized using the instructions above. This method is preferred since it reduces the
duration of time that applications are unable to access the table space data.

If the old-Primary database is not online or is inaccessible: then a rollforward operation must be
performed on the new-Primary database to return the table spaces to normal state. First all the required
recovery log files must be made available on the new-Primary starting from the time period when the
table space(s) became invalid (you may need to search far back through the db2diag.logs to determine
this time period). The log files can either be copied into the active log path, or stored in a separate path
and the 'overflow log path' option used in the subsequent roll-foward operation below. (Reminder to
never delete or overwrite/replace any log files, always retain a copy when performing these types of log
file manipulation procedures). Next, the new-Primary database must be changed into a standard (non-
HADR) database. (Otherwise attempting to perform the subsequent Rollforward operation on an HADR
database will fail with an "SQL1774N Table space restore or rollforward cannot be issued on an HADR
primary or HADR standby database".)

 db2 deactivate db sample
 db2 stop hadr on db sample

Perform the rollforward operation:

 db2 rollforward db dbname to end of logs

Upon completion of the rollforward, table spaces should be in normal state, and the HADR Standby
database will need to be re-initialized.

Considerations after HADR role switch
In a high availability disaster recovery (HADR) environment, users must consider what happens in the
event of an HADR role switch.

Quiesced table spaces

In an HADR environment, a table space quiesce is not preserved during a role switch.

Chapter 1. High availability 215

http://www-01.ibm.com/support/docview.wss?uid=swg21993013
http://www-01.ibm.com/support/docview.wss?uid=swg21993013

When a table space is quiesced on the primary database, no log records are generated, so there is no
effect on the standby database. If the standby has to take over as the primary before the quiesce has
been released, that table space will be fully available on the new primary. You should be aware that if you
continue the job that required the table space to be quiesced on the original primary, then on the new
primary, the job is no longer protected by the quiesce

If there was a role switch (that is, if the old primary is now the new standby), changes to the table space
on the new primary are replayed on the new standby. However, if the primary role is failed back to the old
primary, the quiesce state will still be in effect for that table space.

Event monitor state

In an HADR environment, the event monitor state is not preserved during a role switch, but an autostart
event monitor will be started automatically on the new primary database after a role switch.

When a non-autostart event monitor is manually started on the primary database, no log records are
generated, so there is no effect on the standby database. If the standby database has to take over as the
primary, the non-autostart event monitor will not be started on the new primary database. When an
autostart event monitor is manually stopped on the primary database, it also has no effect on the standby
database. If the standby takes over as the primary, the autostart event monitor will be started on the new
primary database.

Users should be aware that if the state of an event monitor on the primary database is changed, the state
may not be the same on the new primary database after a role switch. It would be a best practice to use
the autostart event monitor to ensure no loss of event monitor data.

HADR delayed replay
HADR delayed replay helps prevent data loss due to errant transactions. To implement HADR delayed
replay, set the hadr_replay_delay database configuration parameter on the HADR standby database.

Delayed replay intentionally keeps the standby database at a point in time that is earlier than that of the
primary database by delaying replay of logs on that standby. If an errant transaction is executed on the
primary, you have until the configured time delay has elapsed to take action to prevent the errant
transaction from being replayed on the standby. To recover the lost data, you can either copy this data
back to the primary, or you can have the standby take over as the new primary database.

Delayed replay works by comparing timestamps in the log stream, which is generated on the primary, and
the current time of the standby. As a result, it is important to synchronize the clocks of the primary and
standby databases. Transaction commit is replayed on the standby according to the following equation:

(current time on the standby - value of the hadr_replay_delay configuration
parameter) >=
 timestamp of the committed log record

You should set the hadr_replay_delay database configuration parameter to a large enough value to
allow time to detect and react to errant transactions on the primary.

You can use this feature with one standby, multiple standbys, and in a Db2 pureScale environment. With
multiple standbys, typically one or more standbys stays current with the primary for high availability or
disaster recovery purposes, and one standby is configured with delayed replay for protection against
errant transactions. If you use this feature with one standby, you should not enable IBM Tivoli System
Automation for Multiplatforms because the takeover will fail.

There are several important restrictions for delayed replay:

• You can set the hadr_replay_delay configuration parameter only on a standby database.
• A TAKEOVER command on a standby with replay delay enabled fails. You must first set the
hadr_replay_delay configuration parameter to 0 and then deactivate and reactivate the standby to
pick up the new value, and then issue the TAKEOVER command.

216 IBM Db2 V11.5: Data Recovery and High Availability

• The delayed replay feature is supported only in SUPERASYNC mode. Because log replay is delayed,
numerous non-replayed log data might accumulate on the standby, filling up receive buffer and spool (if
configured). In other synchronization modes, this would cause the primary to be blocked.

The objective of this feature is to protect against application error. If you want to use this feature and
ensure that there is no data loss in the event of a primary failure, consider a multiple standby setup with
a more synchronous setting on the principal standby.

• When you upgrade HADR databases, an important verification step for upgrade is to ensure that the
primary's log shipping position matches the standby's log replay position. Naturally, a standby with
replay delay configured can interfere with this verification step and cause it to fail. To avoid any failures,
you must first set the hadr_replay_delay configuration parameter to 0, deactivate and reactivate the
standby database to pick up the new value, and then start the upgrade procedure.

Recommendations
Delayed replay and disaster recovery

Consider using a small delay if you are using the standby database for disaster recovery purposes and
errant transaction protection.

Delayed replay and the HADR reads on standby feature
Consider using a small delay if you are using the standby database for reads on standby purposes, so
that reader sessions can see more up-to-date data. Additionally, because reads on standby runs in
"uncommitted read" isolation level, it can see applied, but not yet committed changes that are
technically still delayed from replay. These uncommitted transactions can be rolled back in errant
transaction recovery procedure when you roll forward the standby to the PIT that you want and then
stop.

Delayed replay and log spooling
If you enable delayed replay, it is recommended that you also enable log spooling by setting the
hadr_spool_limit database configuration parameter. Because of the intentional delay, the replay
position can be far behind the log receive position on the standby. Without spooling, log receive can
only go beyond replay by the amount of the receive buffer. With spooling, the standby can receive
many more logs beyond the replay position, providing more protection against data loss in case of
primary failure. Note that in either case, because of the mandatory SUPERASYNC mode, the primary
will not be blocked by the delayed replay.

Recovering data by using HADR delayed replay
Using the HADR time-delayed replay feature, you can recover data that was lost because of an errant
transaction on the primary database by stopping HADR on a standby before that transaction is replayed.

Before you begin

Delayed replay must have already been enabled for your standby database.

If log replay on the standby, indicated by STANDBY_REPLAY_LOG_TIME, has passed the commit time for
the errant transaction on the standby, you cannot recover the data using the following procedure. You can
determine the STANDBY_REPLAY_LOG_TIME by using the db2pd command with the -hadr parameter or
the MON_GET_HADR table function.

Restriction: A standby database for which you set the hadr_replay_delay configuration parameter
cannot take over as a primary; you must first disable delayed replay on that standby.

Procedure

To recover from an errant transaction, perform the following steps on the standby on which you enabled
delayed replay:
1. Verify the timing:

a. Ensure that standby has not yet replayed the transaction. The STANDBY_REPLAY_LOG_TIME value
must not have reached the errant transaction commit time.

Chapter 1. High availability 217

b. Ensure that the standby has received the relevant logs. The STANDBY_LOG_TIME value, which
indicates logs received, must have reached a PIT before the errant transaction commit time, but
close to the errant transaction commit time. This will be the rollforward PIT used in step 3. If the
standby has not yet received enough log files, you can wait until more logs are shipped over, but
you run the risk of the replay time reaching the errant transaction time. For example, if the delay is
1 hour, you should stop HADR no later than 50 minutes after the errant transaction time (allowing a
10-minute safety margin), even if log shipping has yet not reached the PIT that you want.

Alternatively, if a shared log archive is available and the logs are already archived, then there is no
need to wait. If the logs are not archived yet, the logs can be archived using the ARCHIVE LOG
command. Otherwise, the user can manually copy complete log files from the primary to the time-
delayed standby (the overflow log path is preferred, otherwise, use the log path). For these
alternate methods, deactivate the standby first to avoid interference with standby log shipping and
replay.

You can determine these times by issuing db2pd -db dbname -hadr or by enabling the reads on
standby feature on the standby and then issuing the following query, which uses the MON_GET_HADR
table function:

DB2 "select HADR_ROLE, STANDBY_ID, STANDBY_LOG_TIME, STANDBY_REPLAY_LOG_TIME,
varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST
from table (mon_get_hadr(NULL))"

2. Stop HADR on the standby database:

 DB2 STOP HADR ON DATABASE dbname

3. Roll forward the standby to the PIT that you want and then stop:

DB2 ROLLFORWARD DB dbname to time-stamp and STOP

4. Use one of the following approaches:

• Restore the lost data on the primary:

a. Copy the affected data from the standby and send it back to the primary.

If the errant transaction dropped a table, you could export it on the standby and import it to the
primary. If the errant transaction deleted rows from a table, you could export the table on the
standby and use an import replace operation on the primary.

b. Reinitialize the delayed-replay standby because its log stream has diverged from the primary's.
No action is needed on any other standbys because they continue to follow the primary and any
data repair on the primary is also replicated to them.

c. Restore the database using a backup image taken on the primary. The image can be one taken
at any time.

d. Remove all log files in standby log path. This step is important. The ROLLFORWARD... STOP
command in step 3 made the database log stream diverge from the primary. If the files are left
alone, the newly restored database would follow that log stream and also diverge from the
primary. Alternatively, you can drop the database before the restore for a clean start, but then
you will also lose the current configuration including HADR configuration.

e. Issue the START HADR command with the AS STANDBY option on the database. The database
should then activate and connect to the primary.

• Have the standby with the intact data become the primary:

a. Shut down the old primary to avoid split brain
b. On the delayed-replay database, set the hadr_replay_delay configuration parameter to 0.

Reconfigure the other parameters like hadr_target_list if needed. Then run START HADR
command with the AS PRIMARY BY FORCE options on the database to convert it to the new
primary. Use the BY FORCE option because there is no guarantee that the configured principal
standby (which could be the old primary) will be able to connect.

218 IBM Db2 V11.5: Data Recovery and High Availability

c. Redirect clients to the new primary.
d. The other standbys will be automatically redirected to the new primary. However, if a standby

received logs from the old primary beyond the point where old and new primary diverge (the PIT
used in step 3), it will be rejected by the new primary. If this happens, reinitialize this standby
using the same procedure as reinitializing the old primary.

e. Reinitialize the old primary because its log stream has diverged from the new primary's.
f. Restore database using a backup image taken on the new primary, or taken on the old primary

before the PIT used in step 3.
g. Remove all log files in the log path. If you do not do this, the newly restored database will follow

the old primary's log stream and diverge from the new primary. Alternatively, you can drop the
database before the restore for a clean start, but then you also lose the current configuration
including HADR configuration.

h. Issue the START HADR command with the AS STANDBY option on the database. The database
should then activate and connect to the primary.

Db2 High availability disaster recovery (HADR) management
Db2 High availability disaster recovery (HADR) management involves configuring and maintaining the
status of your HADR system.

Managing HADR includes such tasks as:

• Cataloging an HADR database.
• “Initializing high availability disaster recovery (HADR)” on page 141
• Checking or altering database configuration parameters related to HADR.
• “Switching database roles in high availability disaster recovery (HADR)” on page 280
• “Performing an HADR failover operation” on page 278
• “ High availability disaster recovery (HADR) monitoring” on page 275
• “Recovering table space errors on an HADR standby database” on page 213
• “Stopping Db2 High Availability Disaster Recovery (HADR)” on page 196

You can manage HADR using the following methods:

• Command line processor
• Db2 administrative API
• Task assistants for managing HADR in IBM Data Studio Version 3.1 or later.

Related information
Administering databases with task assistants

Db2 High Availability Disaster Recovery (HADR) commands
The Db2 High Availability Disaster Recovery (HADR) feature provides complex logging, failover, and
recovery functionality for Db2 high availability database solutions. Despite the complexity of the
functionality HADR provides, there are only a few actions you need to directly command HADR to
perform: starting HADR; stopping HADR; and causing the standby database to take over as the primary
database.

There are three high availability disaster recover (HADR) commands used to manage HADR:

• START HADR
• STOP HADR
• TAKEOVER HADR

To invoke these commands, use the command line processor or the administrative API.

Chapter 1. High availability 219

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Issuing the START HADR command with either the AS PRIMARY or AS STANDBY option changes the
database role to the one specified if the database is not already in that role. This command also activates
the database, if it is not already activated.

The STOP HADR command changes an HADR database (either primary or standby) into a standard
database. Any database configuration parameters related to HADR remain unchanged so that the
database can easily be reactivated as an HADR database.

The TAKEOVER HADR command, which you can issue on the standby database only, changes the standby
database to a primary database. When you do not specify the BY FORCE option, the primary and standby
databases switch roles. When you do specify the BY FORCE option, the standby database unilaterally
switches to become the primary database. In this case, the standby database attempts to stop
transaction processing on the old primary database. However, there is no guarantee that transaction
processing will stop. Use the BY FORCE option to force a takeover operation for failover conditions only.
To whatever extent possible, ensure that the current primary has definitely failed, or shut it down
yourself, prior to issuing the TAKEOVER HADR command with the BY FORCE option.

HADR database role switching

A database can be switched between primary and standard roles dynamically and repeatedly. When the
database is either online or offline, you can issue both the START HADR command with the AS PRIMARY
option and the STOP HADR command.

You can switch a database between standby and standard roles statically. You can do so repeatedly only
if the database remains in rollforward pending state. You can issue the START HADR command with the
AS STANDBY option to change a standard database to standby while the database is offline and in
rollforward pending state. Use the STOP HADR command to change a standby database to a standard
database while the database is offline. The database remains in rollforward pending state after you issue
the STOP HADR command. Issuing a subsequent START HADR command with the AS STANDBY option
returns the database to standby. If you issue the ROLLFORWARD DATABASE command with the STOP
option after stopping HADR on a standby database, you cannot bring it back to standby. Because the
database is out of rollforward pending state, you can use it as a standard database. This is referred to as
taking a snapshot of the standby database. After changing an existing standby database into a standard
database, consider creating a new standby database for high availability purposes.

To switch the role of the primary and standby databases, perform a takeover operation without using the
BY FORCE option.

To change the standby to primary unilaterally (without changing the primary to standby), use forced
takeover. Subsequently, you might be able to reintegrate the old primary as a new standby.

HADR role is persistent. Once an HADR role is established, it remains with the database, even through
repeated stopping and restarting of the Db2 instance or deactivation and activation of the Db2 database.

Starting the standby is asynchronous

When you issue the START HADR command with the AS STANDBY option, the command returns as soon
as the relevant engine dispatchable units (EDUs) are successfully started. The command does not wait for
the standby to connect to the primary database. In contrast, the primary database is not considered
started until it connects to a standby database (with the exception of when the START HADR command is
issued on the primary with the BY FORCE option). If the standby database encounters an error, such as
the connection being rejected by the primary database, the START HADR command with the AS
STANDBY option might have already returned successfully. As a result, there is no user prompt to which
HADR can return an error indication. The HADR standby will write a message to the Db2 diagnostic log
and shut itself down. You should monitor the status of the HADR standby to ensure that it successfully
connects with the HADR primary.

Replay errors, which are errors that the standby encounters while replaying log records, can also bring
down the standby database. These errors might occur, for example, when there is not enough memory to
create a buffer pool, or if the path is not found while creating a table space. You should continuously
monitor the status of the standby database.

220 IBM Db2 V11.5: Data Recovery and High Availability

Do not run HADR commands from a client using a database alias enabled for client reroute

When automatic client reroute is set up, the database server has a predefined alternate server so that
client applications can switch between working with either the original database server or the alternative
server with only minimal interruption of the work. In such an environment, when a client connects to the
database via TCP, the actual connection can go to either the original database or to the alternate
database. HADR commands are implemented to identify the target database through regular client
connection logic. Consequently, if the target database has an alternative database defined, it is difficult to
determine the database on which the command is actually operating. Although an SQL client does not
need to know which database it is connecting to, HADR commands must be applied on a specific
database. To accommodate this limitation, HADR commands should be issued locally on the server
machine so that client reroute is bypassed (client reroute affects only TCP/IP connections).

HADR multiple standby databases
High availability disaster recovery (HADR) supports multiple standby databases. Using multiple standbys,
you can have your data in more than two sites, which provides improved data protection with a single
technology.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

HADR allows you to have up to three standby databases in your setup. You designate one of these
databases as the principal HADR standby database; any other standby database is an auxiliary HADR
standby database. Both types of HADR standbys are synchronized with the HADR primary database
through a direct TCP/IP connection, both types support reads on standby, and you can configure both
types for time-delayed log replay. In addition, you can issue a forced or non-forced takeover on any
standby. There are a couple of important distinctions between the principal and auxiliary standbys,
however:

• IBM Tivoli System Automation for Multiplatforms (SA MP) Pacemaker automated failover is supported
only for the principal standby. You must issue a takeover manually on one of the auxiliary standbys to
make one of them the primary.

• All of the HADR synchronization modes are supported on the principal standby, but the auxiliary
standbys can only be in SUPERASYNC mode.

There are a number of benefits to using a multiple HADR standby setup. Instead of employing the HADR
feature to achieve your high availability objectives and another technology to achieve your disaster
recovery objectives, you can use HADR for both. You can deploy your principal standby in the same
location as the primary. If there is an outage on the primary, the principal standby can take over the
primary role within your recovery time objectives. You can also deploy auxiliary standbys in a distant
location, which provides protection against a widespread disaster that affects both the primary and the
principal standby. The distance, and the potential for network delays between the primary and the
auxiliaries, has no effect on activity on the primary because the auxiliaries use SUPERASYNC mode. If a
disaster affects the primary and principal standby, you can issue a takeover on either of the auxiliaries.
You can configure the other auxiliary standby database to become the new principal standby using the
hadr_target_list database configuration parameter. However, an auxiliary standby can take over as
the primary even if that auxiliary does not have an available standby. For example, if there is an outage on
the primary and principal standby, one auxiliary can take over as the primary even if it does not have a
corresponding standby. However, if you stop that database after it becomes the new primary, it cannot
start again as an HADR primary unless its principal standby is started.

Restrictions for multiple standby databases
There are a number of restrictions that you should be aware of if you are planning to deploy multiple
HADR standby databases.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,

Chapter 1. High availability 221

and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

The restrictions are as follows:

• You can have a maximum of three standby databases: one principal standby and up to two auxiliary
standbys. The exception is for Db2 pureScale environments, in which you can only have one standby
(the principal standby).

• Only the principal standby supports all the HADR synchronization modes; all auxiliary standbys will be
in SUPERASYNC mode.

• IBM Tivoli System Automation for Multiplatforms (SA MP) and Pacemaker support apply only between
the primary HADR database and its principal standby. The exception is for Db2 pureScale environments,
in which SA MP only manages the local cluster and does not automate failover to the standby cluster.
Pacemaker automation with pureScale HADR is not supported.

• The hadr_target_list database configuration parameter must be set on all the databases in the
multiple standby setup. Each standby must include the primary in its hadr_target_list setting.

Modifications to a multiple standby database setup
After your multiple HADR standby setup is up and running, you might want to make additional changes,
such as adding or removing auxiliary standby databases or changing the principal standby database
designation. You can make these kinds of modifications without causing an outage on your primary
database.

Adding auxiliary standbys

There are a few reasons why you might want to add an auxiliary standby:

• To deploy an additional standby for processing read-only workloads
• To deploy an additional standby for time-delayed replay
• To deploy an additional standby for disaster recovery purposes
• To add a standby that was a part of a previously active HADR deployment but was orphaned because

the hadr_target_list configuration parameter for the new primary does not specify that standby

You can add an auxiliary standby only if thehadr_target_list configuration parameter is already set
on the primary and at least one standby.

To add an auxiliary standby to your HADR deployment, update the target list of the primary with the host
and port information from the standby. This information corresponds to the settings for the
hadr_local_host and hadr_local_svc parameters on the standby. You must also add the host and
port information for the primary to the target list of the new standby.

Tip: Although it is not required, a best practice is to also add the host and port information for the new
standby to the target lists of the other standbys in the deployment. You should also specify the host and
port information for those standbys in the target list of the new standby. If you do not make these
additional updates and one of the other standbys takes over as the new primary, the new standby is
rejected as a standby target and is shut down.

Removing auxiliary standbys

The only standbys that you can remove dynamically are auxiliary standbys. If you dynamically remove an
auxiliary standby from your multiple standby deployment, there is no effect on normal HADR operations
on the primary and the principal standby. To remove an auxiliary standby, issue the STOP HADR
command on the standby; afterward, you can remove it from the target lists of the primary and any other
standby.

Changing the principal standby

You can change the principal standby only if you first stop HADR on the primary database; this does not
cause an outage, because you do not have to deactivate the primary.

222 IBM Db2 V11.5: Data Recovery and High Availability

To change the principal standby, you must stop HADR on the primary database. Then, update the target
list of the primary database to list the new principal standby first. If the new principal standby is not
already a standby, add the primary database's address to its target list, configure the other HADR
parameters, and activate the standby. If it is already a standby, no action is needed.

Tip: Although it is not required, it is a best practice to also add the host and port information for the new
principal standby to the target list of the other standby in the deployment. You should also specify the
host and port information for that standby in the target list of the new principal standby. If you do not
make these additional updates and either one of the standbys takes over as the new primary, the other
standby is rejected as a standby target and is shut down.

Database configuration for multiple HADR standby databases
There are a number of considerations for database configuration in a multiple HADR standby setup.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Automatic reconfiguration of HADR parameters
Reconfiguration after HADR starts

The configuration parameters that identify the primary database for the standbys and identify the
principal standby for the primary are automatically reset when HADR starts if you did not correctly set
them. This behavior applies to the following configuration parameters:

• hadr_remote_host
• hadr_remote_inst
• hadr_remote_svc

Tip: Even though this automatic reconfiguration occurs, you should always try to set the correct initial
values because that reconfiguration might not take effect until a connection is made between a
standby and its primary. In some HADR deployments, those initial values might be needed. For
example, if you are using the IBM Tivoli System Automation for Multiplatforms software or the
Pacemaker software, the value for the hadr_remote_inst configuration parameter is needed to
construct a resource name.

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the hadr_remote_host and
hadr_remote_svc are not automatically updated.

Reconfiguration is predicated on the values of the hadr_target_list configuration parameter
being correct; if anything is wrong in a target list entry, you must correct it manually.

On the primary, the reconfiguration occurs in the following manner:

• If the values for the hadr_remote_host and hadr_remote_svc configuration parameters do not
match the host:port pair that is the first entry of the hadr_target_list configuration parameter
(namely, the principal standby), the hadr_remote_host and hadr_remote_svc configuration
parameters are updated with the values from the target list.

• If the value for the hadr_remote_inst configuration parameter does not match the instance
name of the principal standby, the correct instance name is copied to the hadr_remote_inst
configuration parameter for the primary after the principal standby connects to it.

On a standby database, the reconfiguration occurs in the following manner:

• When a standby starts, it attempts to connect to the database that you specified for its
hadr_remote_host, hadr_remote_inst, and hadr_remote_svc configuration parameters.

• If the standby cannot connect to the primary, it waits for the primary to connect to it.
• The primary attempts to connect to its standbys using addresses listed in its hadr_target_list

parameter. After the primary connects to a standby, the hadr_remote_host,

Chapter 1. High availability 223

hadr_remote_inst, and hadr_remote_svc configuration parameters for the standby are
updated with the correct values for the primary.

Reconfiguration during and after a takeover

In a non-forced takeover, the values for the hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters on the new primary are automatically updated to its
principal standby, and these parameters on the standbys listed in the new primary's
hadr_target_list are automatically updated to point to the new primary. Any database that is not
listed in the new primary's hadr_target_list is not updated. Those databases continue to attempt
to connect to the old primary and get rejected because the old primary is now a standby. The old
primary is guaranteed to be in the new primary's target list because of the requirement of mutual
inclusion in the target list.

In a forced takeover, automatic update on the new primary and its standbys (excluding the old
primary) work the same way as non-forced takeover. However, automatic update on the old primary
does not happen until it is shut down and restarted as a standby for reintegration.

Any database that is not online during the takeover will be automatically reconfigured after it starts.
Automatic reconfiguration might not take effect immediately on startup, because it relies on the new
primary to periodically contact the standby. On startup, a standby might attempt to connect to the old
primary and follow the log stream of the old primary, causing it to diverge from the new primary's log
stream and, making that standby unable to pair with the new primary. As a result, you must shut down
the old primary before takeover to avoid that kind of split brain scenario.

Lack of standby control of the synchronization mode and peer window

With multiple standbys, only the settings of the hadr_syncmode and hadr_peer_window configuration
parameters of the current primary are relevant. The standby databases either have the settings for those
parameters defined by the primary, in the case of the principal standby, or by their role as an auxiliary
standby.
Synchronization mode

The setting for the hadr_syncmode configuration parameter does not have to be the same on the
primary and standby databases. Whatever setting you specify for the hadr_syncmode configuration
parameter on a standby is considered its configured synchronization mode; this setting has relevance
only if the standby becomes a primary. The standby is assigned an effective synchronization mode. For
any auxiliary standby, the effective synchronization mode is always SUPERASYNC. For the principal
standby, the effective synchronization mode is the setting for the hadr_syncmode configuration
parameter for the primary. For a standby, the monitoring interfaces display the effective
synchronization mode as the synchronization mode.

Peer window
The setting for the hadr_peer_window configuration parameter does not have to be the same on the
primary and standby databases. In fact, any setting for the hadr_peer_window configuration
parameter on the auxiliary standbys is ignored because peer window functionality is incompatible
with SUPERASYNC mode. The principal standby uses the peer window setting of the primary, which is
applicable only if the value of the hadr_syncmode configuration parameter for the standby is SYNC
or NEARSYNC.

Rolling updates with multiple HADR standby databases
Use this procedure in a high availability disaster recovery (HADR) environment with multiple standbys
when you upgrade the operating system or hardware, other software packages, update a fix pack for your
Db2 database product software, or change database configuration parameters.
This procedure keeps database service available throughout the rolling update process, with only a
momentary service interruption when processing is switched from one database to the other. With this
procedure, you can provide continued HA and DR protection throughout the rolling update process.

Note: This procedure cannot be used when upgrading your Db2 database product software to a new
major release. The procedure to upgrade your Db2 database product software to a new major release is
described in Upgrade Db2 High Availability Disaster Recovery (HADR) environments.

224 IBM Db2 V11.5: Data Recovery and High Availability

Multiple HADR standbys allow you to use the rolling update procedure while maintaining HADR protection
by keeping a primary and a standby active.

There is always a primary to provide database service and this primary always has at least one standby
providing HA and DR protection.

You should perform the update or upgrade on all of the standbys before doing so on the primary. This is
particularly important if you are updating the fixpack level because HADR does not allow the primary to
be at a higher fixpack level than the standby.

The procedure is essentially the same as with one standby, except you should perform the upgrade on
one database at a time and starting with an auxiliary standby. For example, consider the following HADR
setup:

• host1 is the primary
• host2 is the principal standby
• host 3 is the auxiliary standby

Procedure
For this setup, perform the rolling update according to the following sequence:

1. Update the auxiliary standby database on host3 by issuing the following steps:

a. Use the DEACTIVATE DATABASE command to shut down the auxiliary standby database.
b. If necessary, shut down the instance on the auxiliary standby database.
c. Change one or more of the following: the software, the hardware, or the Db2 configuration

parameters.

Note: You cannot change any HADR configuration parameters when performing a rolling update.
d. If necessary, restart the instance on the auxiliary standby database.
e. Use the ACTIVATE DATABASE command to restart the auxiliary standby database.
f. Ensure that the auxiliary standby has caught up with the primary. Use the MON_GET_HADR table

function (on the primary or a read-enabled auxiliary standby) or the db2pd command with the -
hadr option to check this.

2. Update the principal standby database on host2 by issuing the following steps:

a. Use the DEACTIVATE DATABASE command to shut down the principal standby database.
b. If necessary, shut down the instance on the principal standby database.
c. Change at least one of the following: the software, the hardware, or the Db2 configuration

parameters.

Note: You cannot change any HADR configuration parameters when performing a rolling update.
d. If necessary, restart the instance on the principal standby database.
e. Use the ACTIVATE DATABASE command to restart the auxiliary standby database.
f. Ensure that HADR enters peer state. Use the MON_GET_HADR table function (on the primary or a

read-enabled principal standby) or the db2pd command with the -hadr option to check this.
3. Switch the roles of the primary and principal standby databases:

a. Issue the TAKEOVER HADR command on the principal standby database on host2.
b. Direct clients to the new primary database by using automatic client reroute.

Note: When performing a rolling update for applying a new Db2 fix pack, after the old standby
database takes over as the new primary database, it would be running at a higher version of Db2
than the old primary (new standby) database. The new primary will not accept connections from a
standby running an older version of Db2, because the older version of the product might not
understand the new log records generated by the new primary. In order for the new standby
database to reconnect with the new primary database (that is, for the HADR pair to reform), the
new Db2 fix pack must also be applied to the new standby database.

Chapter 1. High availability 225

4. Update the original primary database (which is now the standby database) on host1 using the same
procedure as in Step 1. When you have done this, both databases are updated and connected to each
other in HADR peer state. The HADR system provides full database service and full high availability
protection.

High availability disaster recovery (HADR) monitoring for multiple standby databases
When monitoring multiple HADR standby databases, you should only use the db2pd command and the
MON_GET_HADR table function because other monitoring interfaces do not give a complete view of all of
the standbys.

The information returned by the monitoring interface depends on where it is issued. Monitoring on a
standby returns information about that standby and the primary only; no information is provided about
any other standbys. Monitoring on the primary returns information about all of the standbys if you are
using the db2pd command or the MON_GET_HADR table function. Even standbys that are not connected,
but are configured in the primary's hadr_target_list configuration parameter are displayed. Other
interfaces like the GET SNAPSHOT FOR DATABASE command, the SNAPHADR administrative view, and
the SNAP_GET_HADR table function, report the primary and the principal standby only; these interfaces
have been deprecated and might be removed in a future release.

The db2pd command and the MON_GET_HADR table function return essentially the same information,
but the db2pd command does not require reads on standby to be enabled (for reporting from a standby).
As well, the db2pd command is preferred during takeover because there could be a time window where
neither the primary nor the standby allows client connections.

db2pd command

In the following example, the DBA issues the db2pd command on a primary database with three
standbys. Three sets of data are returned, with each representing a primary-standby log shipping
channel. The HADR_ROLE field represents the role of the database to which db2pd is issued, so it is listed
as PRIMARY in all sets. The HADR_STATE for the two auxiliary standbys (hostS2 and hostS3) is
REMOTE_CATCHUP because they automatically run in SUPERASYNC mode (which is also reflected in the
db2pd output) regardless of their configured setting for hadr_syncmode. The STANDBY_ID
differentiates the standbys. It is system generated and the ID-to-standby mapping can change from
query to query; however, the ID "1" is always assigned to the principal standby.

Note: Fields not relevant to current status might be omitted in the output. For example, in the following
output, information about the replay-only window (like start time and transaction count) is not included
because the replay-only window is not active.

db2pd -db hadr_db -hadr

 Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = hostP.ibm.com
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = hostS1.ibm.com
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 3
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298

226 IBM Db2 V11.5: Data Recovery and High Availability

 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 2
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 PRIMARY_MEMBER_HOST = hostP.ibm.com
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = hostS2.ibm.com
 STANDBY_INSTANCE = db2ins3t
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 16
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_SPOOL_LIMIT(pages) = 0
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 3
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 PRIMARY_MEMBER_HOST = hostP.ibm.com
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = hostS3.ibm.com
 STANDBY_INSTANCE = db2inst3
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED

Chapter 1. High availability 227

 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:46:51.561873 (1307566011)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 6
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

MON_GET_HADR table function

In the following example, the DBA calls the MON_GET_HADR table function on the primary database with
three standbys. Three rows are returned. Each row represents a primary-standby log shipping channel.
The HADR_ROLE column represents the role of the database to which the query is issued. Therefore it is
PRIMARY on all rows. The HADR_STATE for the two auxiliary standbys (hostS2 and hostS3) is
REMOTE_CATCHUP because they automatically run in SUPERASYNC mode regardless of their configured
setting for hadr_syncmode.

db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE, varchar(PRIMARY_MEMBER_HOST,20)
 as PRIMARY_MEMBER_HOST, varchar(STANDBY_MEMBER_HOST,20)
 as STANDBY_MEMBER_HOST from table (mon_get_hadr(NULL))"

 HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
 --------- ---------- -------------- ------------------- --------------------
 PRIMARY 1 PEER hostP.ibm.com hostS1.ibm.com
 PRIMARY 2 REMOTE_CATCHUP hostP.ibm.com hostS2.ibm.com
 PRIMARY 3 REMOTE_CATCHUP hostP.ibm.com hostS3.ibm.com

 3 record(s) selected.

HADR takeover operations with multiple standbys
When an HADR standby database takes over as the primary database in a multiple standby setup, there
are a number of important differences from when there is a single standby.

With HADR, there are two types of takeover: role switch and failover. Role switch, sometimes called
graceful takeover or non-forced takeover, can be performed only when the primary is available and it
switches the role of primary and standby. Failover, or forced takeover, can be performed when the
primary is not available. It is commonly used in primary failure cases to make the standby the new
primary. The old primary remains in the primary role in a forced takeover, but the standby sends it a
message to disable it. Both types of takeover are supported with multiple standby databases, and any of
the standby databases can take over as the primary. A crucial thing to remember, though, is that if a
standby is not included in the new primary's target list, it is considered to be orphaned and cannot
connect to the new primary.

In a takeover, a number of configuration changes are automatically made for you so that the standbys
listed in new primary's target list can connect to the new primary. The hadr_remote_host,
hadr_remote_svc, and hadr_remote_inst configuration parameters are updated on the new primary
and listed standbys in the following way:

228 IBM Db2 V11.5: Data Recovery and High Availability

• On the new primary: They refer to the principal standby (the first database listed in the new primary's
target list).

• On the standbys: They refer to the new primary. When an old primary is reintegrated to become
standby, the START HADR AS STANDBY command first converts it to a standby. Thus it can also be
automatically redirected to the new primary if it is listed in the target list of the new primary.

Note: Orphaned standbys are not automatically updated in this way. If you want them to join as
standbys, you need to ensure they are in the new primary's target list and that they include the new
primary in their target lists.

Role switch

Just as in single standby mode, role switch in multiple standby mode guarantees no data is lost between
the old primary and new primary. Other standbys configured in the new primary's hadr_target_list
configuration parameter are automatically redirected to the new primary and continue receiving logs.

Failover

Just as with one standby, if a failover results in any data loss with multiple standbys (meaning that the
new primary does not have all of the data of the old primary), the old and new primary's log streams
diverge and the old primary has to be reinitialized. For the other standbys, if a standby received logs from
the old primary beyond the diverge point, it has to be reinitialized. Otherwise, it can connect to the new
primary and continue log shipping and replay. As a result, it is very important that you check the log
positions of all of the standbys and choose the standby with the most data as the failover target. You can
query this information using the db2pd command or the MON_GET_HADR table function.

Note: Successful automatic reconfiguration of a standby's hadr_remote_host, hadr_remote_svc,
and hadr_remote_inst configuration parameters to point to the new primary does not mean the
standby will be accepted to pair with the new primary. It only allows the standby to make a TCP
connection to the primary. Upon connection, if Db2 determines that the two databases have diverging log
streams, the pairing request will be rejected and the connection closed.

Scenario: Deploying an HADR multiple standby database setup
This scenario describes the planning, configuring, and deploying of an HADR setup for a bank called
ExampleBANK. The setup has three standby databases: one principal standby and two auxiliary standbys.

Background

Because banking is a 24x7 business, high availability is crucial to ExampleBANK's technology strategy. In
addition, ExampleBANK experienced a close call with a hurricane hitting City A, where its head office is
located, so the bank also requires a disaster recovery strategy. High availability disaster recovery (HADR)
offers a solution that can help the bank achieve both of these goals with a single technology: HADR
multiple standby databases.

ExampleBANK considers the following requirements essential for its HADR solution:
An aggressive recovery time objective

As a bank that offers 24-hour online service, ExampleBANK wants to minimize the time that
applications cannot connect to their database.

An aggressive recovery point objective
ExampleBANK cannot tolerate data loss, so the RPO should be as close to 0 as possible.

Near-zero planned downtime
ExampleBANK's database should be available as much as possible, even through planned activities
such as upgrades and maintenance.

Data protection through geographic dispersion
As part of its compliance standards, ExampleBANK wants the capability to recover operations at a
remote location.

Chapter 1. High availability 229

Easy deployment and management
ExampleBANK's overburdened IT department wants a solution that is relatively simple to configure
and that has automation capabilities.

As the following scenarios illustrate, using the HADR feature with multiple standby databases helps
ExampleBANK meet all these requirements.

Planning for a multiple standby setup

ExampleBANK wants to have both high availability and disaster recovery protection from its HADR setup,
so the bank decides to use the maximum number of standbys: three. To achieve the RTO, the bank must
have a standby that is in close synchronization with the primary (a standby that uses SYNC or NEARSYNC
mode) and is collocated with the primary. It makes the most sense to have this standby be the principal
standby because only that standby supports all synchronization modes. Both the primary and the
principal standby are located in ExampleBANK's head office in City A and are connected by a LAN.

In addition, to protect the bank's data from being lost because of a disaster, the ExampleBANK DBA
chooses to set up two standbys in the bank's regional office in City B. The regional office is connected to
the head office in City A by a WAN. The distance between the two cities will not affect the primary
because the standbys are auxiliary standbys, which automatically run in SUPERASYNC mode. The DBA
can provide additional justification for the costs of these additional databases by setting up one of them
to use the reads on standby feature and the other to use the time-delayed replay feature. Also, these
standbys can help maintain database availability through a rolling update or maintenance scenario,
preventing the loss of HADR protection.

Configuring a multiple standby setup

The ExampleBANK DBA takes a backup of the intended primary database, HADR_DB:

DB2 BACKUP DB hadr_db TO backup_dir

The DBA then restores the backup onto each of the intended standby hosts by issuing the following
command:

DB2 RESTORE DB hadr_db FROM backup_dir

Tip: For more information about options for creating a standby, see “Initializing a standby database” on
page 140.

For the initial setup, the ExampleBANK DBA decides that most of the default configuration settings are
sufficient. However, as in a regular HADR setup, the following database configuration parameters must be
explicitly set:

• hadr_local_host
• hadr_local_svc
• hadr_remote_host
• hadr_remote_inst
• hadr_remote_svc

To obtain the correct values for those configuration parameters, the DBA determines the host name, port
number, and instance name of the four databases that will be in the HADR setup:

Table 17. Host name, port number, and instance name for databases

Intended
role

Host name Port
number

Instance
name

Primary host1 10 dbinst1

Principal
standby

host2 40 dbinst2

230 IBM Db2 V11.5: Data Recovery and High Availability

Table 17. Host name, port number, and instance name for databases (continued)

Intended
role

Host name Port
number

Instance
name

Auxiliary
standby

host3 41 dbinst3

Auxiliary
standby

host4.ibm.com 42 dbinst4

On the primary, the settings for the hadr_remote_host, hadr_remote_inst, and hadr_remote_svc
configuration parameters correspond to the host name, instance name, and port number of the principal
standby. On the standbys, the values of these configuration parameters correspond to the host name,
port number, and instance name of the primary. In addition, the DBA uses the host name and port values
to set the hadr_target_list configuration parameter on all the databases. Also, although it is not
required, the DBA adds the information about all the standbys in the setup to the target list of each of the
other standbys. For more information about this topic, see “Database configuration for high availability
disaster recovery (HADR)” on page 148.

As mentioned earlier, the bank wants the closest possible synchronization between the primary and
principal standby, so the DBA sets the hadr_syncmode parameter on the primary to SYNC. Although the
principal standby will automatically have its effective synchronization mode set to SYNC after it connects
to the primary, the DBA still sets the hadr_syncmode parameter to SYNC on the principal standby. The
reason is that if the principal standby switches role with the primary, the synchronization mode for the
new primary and principal standby pair will also be SYNC.

The DBA decides to specify host2, which is in a different city from the auxiliary standbys, as the principal
standbys for the auxiliary standbys. If one of the auxiliaries becomes the primary, SUPERASYNC would be
a good synchronization mode between the primary and the remotely located host2. Thus DBA sets the
hadr_syncmode parameter on the auxiliary standbys to SUPERASYNC, although the auxiliary standbys
will automatically have their effective synchronization modes set to SUPERASYNC after they connect to
the primary. For more information about this topic, see “High availability disaster recovery (HADR)
synchronization mode” on page 161.

Finally, the DBA has read about the new HADR delayed replay feature, which can be used to intentionally
keep a standby database at a point in time that is earlier than the primary by delaying replay of logs. The
DBA decides that enabling this feature would improve ExampleBANK's data protection against errant
transactions on the primary. The DBA chooses host4, an auxiliary standby, for this feature, and makes a
note that this feature must be disabled before host4 can take over as the primary database. For more
information about this topic, see “HADR delayed replay” on page 216.

The DBA issues the following commands to update the configuration parameters on each of the
databases:

• On host1 (the primary):

DB2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST host2:40|host3:41|host4:42
 HADR_REMOTE_HOST host2
 HADR_REMOTE_SVC 40
 HADR_LOCAL_HOST host1
 HADR_LOCAL_SVC 10
 HADR_SYNCMODE sync
 HADR_REMOTE_INST db2inst2"

• On host2 (the principal standby):

DB2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST host1:10|host3:41|host4:42
 HADR_REMOTE_HOST host1
 HADR_REMOTE_SVC 10
 HADR_LOCAL_HOST host2
 HADR_LOCAL_SVC 40

Chapter 1. High availability 231

 HADR_SYNCMODE sync
 HADR_REMOTE_INST db2inst1"

• On host3 (an auxiliary standby):

DB2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST host2:40|host1:10|host4:42
 HADR_REMOTE_HOST host1
 HADR_REMOTE_SVC 10
 HADR_LOCAL_HOST host3
 HADR_LOCAL_SVC 41
 HADR_SYNCMODE superasync
 HADR_REMOTE_INST db2inst1"

• On host4 (an auxiliary standby):

DB2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST host2:40|host1:10|host3:41
 HADR_REMOTE_HOST host1
 HADR_REMOTE_SVC 10
 HADR_LOCAL_HOST host4
 HADR_LOCAL_SVC 42
 HADR_SYNCMODE superasync
 HADR_REMOTE_INST db2inst1
 HADR_REPLAY_DELAY 86400"

Finally, the ExampleBANK DBA wants to enable the HADR reads on standby feature for the following
reasons:

• To make online changes to some of the HADR configuration parameters on the standbys
• To call the MON_GET_HADR table function on the standbys
• To divert some of the read-only workload from the primary

The DBA updates the registry variables on the standby databases by issuing the following commands on
each of host2, host3, and host4:

DB2SET DB2_HADR_ROS=ON
DB2SET DB2_STANDBY_ISO=UR

Starting the HADR databases

The DBA starts the standby databases first, by issuing the following command on each of host2, host3,
and host 4:

DB2 START HADR ON DB hadr_db AS STANDBY

Next, the DBA starts HADR on the primary database, on host1:

DB2 START HADR ON DB hadr_db AS PRIMARY

To verify that HADR is up and running, the DBA queries the status of the databases from the primary on
host1 by issuing the db2pd command, which returns information about all of the standbys:

db2pd -db hadr_db -hadr

 Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = host1
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = host2

232 IBM Db2 V11.5: Data Recovery and High Availability

 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 3
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 2
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = host1
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = host3
 STANDBY_INSTANCE = db2inst3
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 16
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 HADR_ROLE = PRIMARY

Chapter 1. High availability 233

 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 3
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = host1
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = host4
 STANDBY_INSTANCE = db2inst4
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:46:51.561873 (1307566011)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 6
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

Scenario: Deploying a two-sites multiple standby support with same-site failover automation
This scenario describes the planning, configuring and deploying a Pacemaker HADR cluster with multiple
standby databases as well as details of the takeover from one of the auxiliary standbys. This setup has
three standby databases: one principal standby and two auxiliary standbys.

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

Plan a multiple standby setup

This scenario introduces the two-site multiple standby Pacemaker HADR setup. This includes an
automated failover to standby enabled in each, but not across the two sites where the primary HADR
database and principle standby reside within the same domain in the primary site. Additionally, two
auxiliary standbys reside within another domain in the disaster recovery (DR) site. This configuration
allows the disaster recovery site to completely replace primary site with automation enabled by default
when a manual takeover is issued on any of the auxiliary standbys.

The following diagram, figure 1, depicts a two-site three standby dual automated database setup. The
primary virtual IP on the primary site can be used to access the database, and each query will always be
directed to the primary database automatically. Pacemaker automation is supported between the two
hosts in each site, which means when hosts fail on either primary site or the disaster recovery site,
Pacemaker will always try to recover.

234 IBM Db2 V11.5: Data Recovery and High Availability

With multiple standbys configured in this topology, recovery will be automated by Pacemaker with the
following behavior depending on the scenario:

• Primary database failure

– The primary database fails on Host_A, then the principle standby database on Host_B will takeover
automatically as the primary. When the old primary database comes back online, it will reintegrate as
the principle standby.

• Principal standby failure

– The principle standby database fails on Host_B, then Pacemaker will try to bring it back as the
principle standby, while all other databases remain in the same role.

• Auxiliary standby failure

– An auxiliary standby database fails on Host_C or Host_D. Pacemaker will try to bring it back as the
auxiliary standby. Other database roles remain unchanged.

• Takeover by force on an auxiliary database located in the disaster recovery site

– If a manual takeover by force is issued on Host_C or Host_D. The databases on Host_A and
Host_B will both become auxiliary standbys, while databases on Host_C and Host_D become the
primary and principle standby. After the role switch, the above three failure scenarios are still
applicable.

Configuring a multiple standby setup

Take a backup of the intended primary HADR database using the following command:

DB2 BACKUP DB hadrdb TO backup_dir

Copy the backup image to the other hosts and restore the backup onto each of the intended standby
hosts by issuing the following command:

DB2 RESTORE DB hadrdb FROM backup_dir

Once the databases are restored on all standby hosts, as in a regular HADR setup, the following database
configuration parameters must be explicitly set:

Chapter 1. High availability 235

• hadr_local_host
• hadr_local_svc
• hadr_remote_host
• hadr_remote_inst
• hadr_remote_svc

However, before setting these parameters, users need to determine the host name, port number, and
instance name of the four databases that will be in the HADR setup:

Intended role Host name Port number Instance name

Primary Host_A 10 db2inst1

Principle standby Host_B 20 db2inst2

Auxiliary standby Host_C 30 db2inst3

Auxiliary standby Host_D 40 db2inst4

On the primary, the settings for the hadr_remote_host, hadr_remote_inst, and hadr_remote_svc
configuration parameters correspond to the host name, instance name, and port number of the principal
standby. On the standbys, the values of these configuration parameters correspond to the host name,
port number, and instance name of the primary.

In addition, host names and port numbers are used to set the hadr_target_list configuration
parameter on all the databases. In the following example, hadr_target_list would be configured as
follows for each host:

Host name Intended role hadr_target_list

Host_A Primary Host_B:20|Host_C:30|Host_D:40

Host_B Principle standby Host_A:10|Host_C:30|Host_D:40

Host_C Auxiliary standby Host_D:40|Host_A:10|Host_B:20

Host_D Auxiliary standby Host_C:30|Host_A:10|Host_B:20

In addition to the hadr_target_list configuration settings, users always want the closest possible
synchronization between the primary and the principle standby. Since automated failover is configured
within each site, databases in the disaster recovery site can become the primary and principle standby
when a takeover is issued. Therefore, all databases should have the hadr_syncmode parameter set to
SYNC. The hadr_syncmode parameter can also be set to SYNC for the auxiliary standbys because the
synchronization mode set in hadr_syncmode can only be effective when the database becomes the
primary or principle standby, otherwise the auxiliary databases always have an effective synchronization
mode of SUPERASYNC.

The following commands should be issued to update the configuration parameters on each of the
databases:

• On Host_A (Primary):

DB2 "UPDATE DB CFG FOR hadrdb USING
HADR_TARGET_LIST Host_B:20|Host_C:30|Host_D:40
HADR_REMOTE_HOST Host_B
HADR_REMOTE_SVC 20
HADR_LOCAL_HOST Host_A
HADR_LOCAL_SVC 10
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst2"

• On Host_B (Principle Standby):

DB2 "UPDATE DB CFG FOR hadrdb USING
HADR_TARGET_LIST Host_A:10|Host_C:30|Host_D:40

236 IBM Db2 V11.5: Data Recovery and High Availability

HADR_REMOTE_HOST Host_A
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST Host_B
HADR_LOCAL_SVC 20
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst1"

• On Host_C (Auxiliary Standby):

DB2 "UPDATE DB CFG FOR hadrdb USING
HADR_TARGET_LIST Host_D:40|Host_A:10|Host_B:20
HADR_REMOTE_HOST Host_A
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST Host_C
HADR_LOCAL_SVC 30
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst1"

• On Host_D (Auxiliary Standby):

DB2 "UPDATE DB CFG FOR hadrdb USING
HADR_TARGET_LIST Host_C:30|Host_A:10|Host_B:20
HADR_REMOTE_HOST Host_A
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST Host_D
HADR_LOCAL_SVC 40
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst1"

After configuring, the configuration for each database is shown below:

Configuration
parameter

Host_A Host_B Host_C Host_D

hadr_target_li
st

Host_B:20|
Host_C:30|
Host_D:40

Host_A:10|
Host_C:30|
Host_D:40

Host_D:40|
Host_A:10|
Host_B:20

Host_C:30|
Host_A:10|
Host_B:20

hadr_remote_ho
st

Host_B Host_A Host_A Host_A

hadr_remote_sv
c

20 10 10 10

hadr_remote_in
st

db2inst2 db2inst1 db2inst1 db2inst1

hadr_local_hos
t

Host_A Host_B Host_C Host_D

hadr_local_svc 10 20 30 40

Configured
hadr_syncmode

SYNC SYNC SYNC SYNC

Effective
hadr_syncmode

N/A SYNC SUPERASYNC SUPERASYNC

Note: The effective hadr_syncmode parameter can be viewed by running the db2pd -db hadrdb -
hadr command on each host.

Starting the HADR databases

Start HADR on the standby databases first, by issuing the following commands on Host_B, Host_C and
Host_D:

DB2 START HADR ON DB hadrdb AS STANDBY

Chapter 1. High availability 237

Then, start HADR on the primary database, in this example, on Host_A:

DB2 START HADR ON DB hadrdb AS PRIMARY

To verify that HADR is up and running, query the status of the databases from the primary on Host_A by
running the db2pd -db hadrdb -hadr command, which returns information about all of the standbys.
For example:

db2pd -db hadrdb -hadr

Database Member 0 -- Database hadrdb -- Active -- Up 0 days 00:00:13 -- Date
2020-07-14-08.52.30.018629

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS = TCP_PROTOCOL
 PRIMARY_MEMBER_HOST = Host_A
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = Host_B
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 2020-07-14 08.52.19.818272 (1594741939)
 HEARTBEAT_INTERVAL(seconds) = 30
 HEARTBEAT_MISSED = 0
 HEARTBEAT_EXPECTED = 0
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 8
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.007153
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.021
 LOG_HADR_WAIT_COUNT = 3
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 87040
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 369280
 PRIMARY_LOG_FILE,PAGE,POS = S0000000.LOG, 14, 44893780
 STANDBY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 44836001
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 44836001
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 2020-07-14 08.52.21.000000 (1594741941)
 STANDBY_LOG_TIME = 2020-07-14 08.49.57.000000 (1594741797)
 STANDBY_REPLAY_LOG_TIME = 2020-07-14 08.49.57.000000 (1594741797)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 13000
 STANDBY_SPOOL_PERCENT = 0
 STANDBY_ERROR_TIME = NULL
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 2020-07-14 08.54.20.000000 (1594742060)
 READS_ON_STANDBY_ENABLED = N
 HADR_LAST_TAKEOVER_TIME = NULL

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 2
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 HADR_FLAGS = TCP_PROTOCOL
 PRIMARY_MEMBER_HOST = Host_A
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = Host_C
 STANDBY_INSTANCE = db2inst3
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 2020-07-14 08.52.20.189945 (1594741940)
 HEARTBEAT_INTERVAL(seconds) = 30
 HEARTBEAT_MISSED = 0
 HEARTBEAT_EXPECTED = 0
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 10
 PEER_WAIT_LIMIT(seconds) = 0

238 IBM Db2 V11.5: Data Recovery and High Availability

 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.007153
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.021
 LOG_HADR_WAIT_COUNT = 3
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 87040
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 369280
 PRIMARY_LOG_FILE,PAGE,POS = S0000000.LOG, 14, 44893780
 STANDBY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 44836001
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 44836001
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 2020-07-14 08.52.21.000000 (1594741941)
 STANDBY_LOG_TIME = 2020-07-14 08.49.57.000000 (1594741797)
 STANDBY_REPLAY_LOG_TIME = 2020-07-14 08.49.57.000000 (1594741797)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 13000
 STANDBY_SPOOL_PERCENT = 0
 STANDBY_ERROR_TIME = NULL
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N
 HADR_LAST_TAKEOVER_TIME = NULL

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 3
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 HADR_FLAGS = TCP_PROTOCOL
 PRIMARY_MEMBER_HOST = Host_A
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = Host_D
 STANDBY_INSTANCE = db2inst4
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 2020-07-14 08.52.19.403210 (1594741939)
 HEARTBEAT_INTERVAL(seconds) = 30
 HEARTBEAT_MISSED = 0
 HEARTBEAT_EXPECTED = 0
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 11
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.007153
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.021
 LOG_HADR_WAIT_COUNT = 3
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 87040
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 369280
 PRIMARY_LOG_FILE,PAGE,POS = S0000000.LOG, 14, 44893780
 STANDBY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 44836001
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 44836001
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 2020-07-14 08.52.21.000000 (1594741941)
 STANDBY_LOG_TIME = 2020-07-14 08.49.57.000000 (1594741797)
 STANDBY_REPLAY_LOG_TIME = 2020-07-14 08.49.57.000000 (1594741797)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 13000
 STANDBY_SPOOL_PERCENT = 0
 STANDBY_ERROR_TIME = NULL
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N
 HADR_LAST_TAKEOVER_TIME = NULL

Once HADR is running, Pacemaker resources need to be created for all hosts, on both sites, for cluster
management. Since Pacemaker resources can only be created on the active site (primary site), users
must first create Pacemaker resources on the primary site with the following steps as a root user:

1. Create the cluster and Ethernet resource by running:

db2cm -create -cluster -domain db2ha1 -host Host_A -publicEthernet eth1 -host Host_B -
publicEthernet eth1

2. Create the instance resources by running:

Chapter 1. High availability 239

db2cm -create -instance db2inst1 -host Host_A

and

db2cm -create -instance db2inst2 -host Host_B

3. On Host_A, create the database resource by running:

db2cm -create -db hadrdb -instance <local instance>

4. On Host_A, create the primary virtual IP (IP address should be within the same subnet with the hosts)
by running:

db2cm -create -primaryVIP x.x.x.x -db hadrdb -instance db2inst1

5. On Host_A, create the standby virtual IP (IP address should be within the same subnet with the hosts)
by running:

db2cm -create -standbyVIP x.x.x.x -db hadrdb -instance db2inst1

Once the previous steps are completed successfully, the Pacemaker resources can be verified by running
the crm status command:

Online: [Host_A Host_B]

Full list of resources:
db2_Host_A_eth1 (ocf::heartbeat:db2ethmon): Started Host_A
db2_Host_B_eth1 (ocf::heartbeat:db2ethmon): Started Host_B
db2_Host_B_db2inst2_0 (ocf::heartbeat:db2inst): Started Host_B
db2_Host_A_db2inst1_0 (ocf::heartbeat:db2inst): Started Host_A
Clone Set: db2_db2inst1_db2inst2_hadrdb-clone [db2_db2inst1_db2inst2_hadrdb] (promotable)
Masters: [Host_A]
Slaves: [Host_B]
db2_db2inst1_db2inst2_hadrdb-primary-VIP (ocf::heartbeat:IPaddr2): Started Host_A
db2_db2inst1_db2inst2_hadrdb-standby-VIP (ocf::heartbeat:IPaddr2): Started Host_B

Next, create Pacemaker resources on the disaster recovery site. This is needed to manually issue a
takeover command on Host_C so that site 2 becomes the primary site and Host_C now holds the
primary database. Repeat the previous steps to create the host resources on Host_C while replacing host
names and instance names with the names for Host_C and Host_D. Then verify the status of the
resources by running the crm status command again. After the Pacemaker resources are online,
manually issue a takeover on Host_A to fail over all databases back to the original primary site. Now the
crm status output of the disaster recovery site should look like:

Online: [Host_C Host_D]

Full list of resources:
db2_Host_C_eth1 (ocf::heartbeat:db2ethmon): Started Host_C
db2_Host_D_eth1 (ocf::heartbeat:db2ethmon): Started Host_D
db2_Host_D_db2inst4_0 (ocf::heartbeat:db2inst): Started Host_D
db2_Host_C_db2inst3_0 (ocf::heartbeat:db2inst): Started Host_C
Clone Set: db2_db2inst3_db2inst4_hadrdb-clone [db2_db2inst3_db2inst4_hadrdb] (promotable)
(unmanaged)
db2_db2inst3_db2inst4_hadrdb (ocf::heartbeat:db2hadr): Masters Host_C (unmanaged)
db2_db2inst3_db2inst4_hadrdb (ocf::heartbeat:db2hadr): Slaves Host_D (unmanaged)
db2_db2inst3_db2inst4_hadrdb-primary-VIP (ocf::heartbeat:IPaddr2): Started Host_C
db2_db2inst3_db2inst4_hadrdb-standby-VIP (ocf::heartbeat:IPaddr2): Started Host_D

Failover between primary and principle standby

When the primary database on Host_A fails, Pacemaker will have the principle standby database on
Host_B takeover as the primary automatically, then try to bring the old primary back as the principle
standby as shown in following diagram:

240 IBM Db2 V11.5: Data Recovery and High Availability

In this case the configuration parameters hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst will be changed on Host_C and Host_D, and they will be updated to point to the
new primary on Host_B.

Configuration
parameter

Host_A Host_B Host_C Host_D

hadr_target_li
st

Host_B:20|
Host_C:30|
Host_D:40

Host_A:10|
Host_C:30|
Host_D:40

Host_D:40|
Host_A:10|
Host_B:20

Host_C:30|
Host_A:10|
Host_B:20

hadr_remote_ho
st

Host_B Host_A Host_B Host_B

hadr_remote_sv
c

20 10 20 20

hadr_remote_in
st

db2inst2 db2inst1 db2inst2 db2inst2

hadr_local_hos
t

Host_A Host_B Host_C Host_D

hadr_local_svc 10 20 30 40

Configured
hadr_syncmode

SYNC SYNC SYNC SYNC

Effective
hadr_syncmode

SYNC N/A SUPERASYNC SUPERASYNC

Takeover between sites in a multiple standby Pacemaker HADR setup

In the situation that the entire primary site is going to undergo maintenance or planned outage, the
disaster recovery site can takeover as the primary site to ensure that the database always remains
available by issuing a manual takeover. Before issuing the takeover, users need to query the two auxiliary
standbys to determine which one has the most log data by running the following command:

Chapter 1. High availability 241

db2pd -hadr -db hadrdb | grep STANDBY_LOG_FILE,PAGE,POS

Here is a sample output of the command:

STANDBY_LOG_FILE,PAGE,POS = S0000001.LOG, 142, 72318245

To check if a standby is the most up to date, first check if it has the largest log sequence in its log file
name, then check if it has the largest page number, and finally check if it has the largest position value. If
all three values are the same, you can pick any auxiliary standby.

In the example, Host_C is determined as the most up to date, so it should be picked as the new primary:

DB2 TAKEOVER HADR ON DB hadrdb

After the takeover successfully completes, the database on Host_C now becomes the new primary and
the database of Host_D becomes the new principle standby since it is first on the hadr_target_list of
the database on Host_C. The primary VIP on the new primary site can now be used to access the
database.

The setup would look like the following diagram:

The values for hadr_remote_host, hadr_remote_svc, and hadr_remote_inst on Host_C are
reconfigured to point to Host_D. Meanwhile, these parameters on Host_D are reconfigured to point to
Host_C. Configuration values on Host_A and Host_B are not changed since they are still offline and
unavailable. The configuration values of each database are shown:

Configuration
parameter

Host_A Host_B Host_C Host_D

hadr_target_li
st

Host_B:20|
Host_C:30|
Host_D:40

Host_A:10|
Host_C:30|
Host_D:40

Host_D:40|
Host_A:10|
Host_B:20

Host_C:30|
Host_A:10|
Host_B:20

hadr_remote_ho
st

Host_C Host_C Host_D Host_C

242 IBM Db2 V11.5: Data Recovery and High Availability

Configuration
parameter

Host_A Host_B Host_C Host_D

hadr_remote_sv
c

30 30 40 30

hadr_remote_in
st

db2inst3 db2inst3 db2inst4 db2inst3

hadr_local_hos
t

Host_A Host_B Host_C Host_D

hadr_local_svc 10 20 30 40

Configured
hadr_syncmode

SYNC SYNC SYNC SYNC

Effective
hadr_syncmode

SUPERASYNC SUPERASYNC N/A SYNC

Failover between sites in a multiple standby Pacemaker HADR setup

In the case that the entire primary site including both Host_A and Host_B goes down, the disaster
recovery site to will need to takeover as the primary site and accept client traffic. Before issuing the
takeover, users need to query the two auxiliary standbys to determine which one has the most log data by
running the following command:

db2pd -hadr -db hadrdb | grep STANDBY_LOG_FILE,PAGE,POS

In this example, Host_C is determined as the most up to date, so it should be picked as the new primary
using the following command:

DB2 TAKEOVER HADR ON DB hadrdb BY FORCE

After the takeover completes successfully, the database on Host_C becomes the new primary and the
database on Host_D becomes the new principle standby since it is the first on the hadr_target_list
of the database on Host_C. The primary VIP on the new primary site can now be used to access the
database on Host_C.

The values for hadr_remote_host, hadr_remote_svc, and hadr_remote_inst on Host_C are
reconfigured to point to Host_D. In the meantime, these parameters on Host_D are reconfigured to point
to Host_C. Configuration values on Host_A and Host_B are not changed since they are still offline and
unavailable. The configuration values of each database are shown:

Configuration
parameter

Host_A
(unavailable)

Host_B
(unavailable)

Host_C Host_D

hadr_target_li
st

Host_B:20|
Host_C:30|
Host_D:40

Host_A:10|
Host_C:30|
Host_D:40

Host_D:40|
Host_A:10|
Host_B:20

Host_C:30|
Host_A:10|
Host_B:20

hadr_remote_ho
st

Host_B Host_A Host_D Host_C

hadr_remote_sv
c

20 10 40 30

hadr_remote_in
st

db2inst2 db2inst1 db2inst4 db2inst3

hadr_local_hos
t

Host_A Host_B Host_C Host_D

hadr_local_svc 10 20 30 40

Chapter 1. High availability 243

Configuration
parameter

Host_A
(unavailable)

Host_B
(unavailable)

Host_C Host_D

Configured
hadr_syncmode

SYNC SYNC SYNC SYNC

Effective
hadr_syncmode

N/A N/A N/A SYNC

After a certain period of time, the old primary site comes back online, which means Host_A and Host_B
become available again. Once the original primary site recovers, and Host_A and Host_B become
available, the databases will fail to start as not all of their logs were propagated to Host_C. They must be
manually reintegrated using the following steps:

1. Deactivate the database on Host_A and Host_B by issuing the following command on both hosts:

DB2 DEACTIVATE DB hadrdb

2. Stop HADR on Host_A and Host_B to disable automation between them by running:

DB2 STOP HADR ON DB hadrdb

3. Drop databases on Host_A and Host_B by running:

DB2 DROP DB hadrdb

4. Backup the new primary database on Host_C online by running:

DB2 BACKUP DB hadrdb online

5. Copy the backup image to both Host_A and Host_B using the scp command.
6. Restore the hadrdb database using the backup image on Host_A and Host_B by running:

DB2 RESTORE DB hadrdb

7. Reconfigure the restored database on Host_A and Host_B by running the command on each host:

On Host_A:

DB2 "UPDATE DB CFG FOR hadrdb USING
HADR_TARGET_LIST Host_B:20|Host_C:30|Host_D:40
HADR_REMOTE_HOST Host_C
HADR_REMOTE_SVC 30
HADR_LOCAL_HOST Host_A
HADR_LOCAL_SVC 10
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst3"

On Host_B:

DB2 "UPDATE DB CFG FOR hadrdb USING
HADR_TARGET_LIST Host_A:10|Host_C:30|Host_D:40
HADR_REMOTE_HOST Host_C
HADR_REMOTE_SVC 30
HADR_LOCAL_HOST Host_B
HADR_LOCAL_SVC 20
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst3"

8. Start HADR on Host_A and Host_B to reintegrate them as auxiliary standbys by running:

DB2 START HADR ON DB hadrdb AS STANDBY

After running the previous commands successfully, Host_A and Host_B should successfully become
auxiliary standbys. The following diagram illustrates the new setup:

244 IBM Db2 V11.5: Data Recovery and High Availability

The values for hadr_remote_host, hadr_remote_svc, and hadr_remote_inst on both databases
should be reconfigured to point to the new primary, and the effective hadr_syncmode for both
databases should now become SUPERASYNC. The configuration for each database is shown:

Configuration
parameter

Host_A Host_B Host_C Host_D

hadr_target_li
st

Host_B:20|
Host_C:30|
Host_D:40

Host_A:10|
Host_C:30|
Host_D:40

Host_D:40|
Host_A:10|
Host_B:20

Host_C:30|
Host_A:10|
Host_B:20

hadr_remote_ho
st

Host_C Host_C Host_D Host_C

hadr_remote_sv
c

30 30 40 30

hadr_remote_in
st

db2inst3 db2inst3 db2inst4 db2inst3

hadr_local_hos
t

Host_A Host_B Host_C Host_D

hadr_local_svc 10 20 30 40

Configured
hadr_syncmode

SYNC SYNC SYNC SYNC

Effective
hadr_syncmode

SUPERASYNC SUPERASYNC N/A SYNC

Examples: Takeover in a multiple HADR standby setup
This set of examples of takeovers (both forced and unforced) with multiple HADR standbys is based on a
three-standby setup. The purpose of these examples is to show how the automatic reconfiguration works
in a takeover situation.

Chapter 1. High availability 245

Important: In Version 11.5 Mod Pack 4 and later, using Pacemaker as a cluster manager in an automated
failover to HADR standby is a Technical Preview. This means it should be restricted to development, test,
and proof of concept environments only. Any output and error messages from the new db2cm utility may
change in the final version of this feature.

• “A principal standby takes over gracefully (role switch)” on page 246
• “An auxiliary standby takes over by force (failover)” on page 247
• “An auxiliary standby takes over by force (failover) in a SA MP or Pacemaker environment” on page 249

The initial setup for each of the examples is as follows:

• a primary database (host1)
• a principal standby (host2)
• two auxiliary standbys (host3 and host4)

All of the databases are called hadr_db. The primary and principal standby have their synchronization
mode set to SYNC and the standbys have theirs set to SUPERASYNC.

The configuration for each database is shown in Table 18 on page 246.

Table 18. Configuration values for each HADR database

Configuration
parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host1 host1 host1

hadr_remote_svc 40 10 10 10

hadr_remote_inst dbinst2 dbinst1 dbinst1 dbinst1

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode
(Refers to the explicitly
set synchronization
mode, which is used if
the database becomes
a primary)

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode
(Refers to the
synchronization mode
that is used if the
database is currently a
standby)

n/a SYNC SUPERASYNC SUPERASYNC

A principal standby takes over gracefully (role switch)

The DBA performs a takeover on the principal standby by issuing the following command on host2:

 DB2 TAKEOVER HADR ON DB hadr_db

After the takeover is completed successfully, host2 becomes the new primary and host1, which is the first
entry in the hadr_target_list of host2 (as shown in Table 18 on page 246), becomes its principal

246 IBM Db2 V11.5: Data Recovery and High Availability

standby. Their sync mode is SYNC mode because host2 is configured with an hadr_syncmode of SYNC.
The auxiliary standby targets, host3 and host4, have their hadr_remote_host and hadr_remote_svc
pointing at the old primary, host1, but are automatically redirected to the new primary, host2. In this
redirection, host3 and host4 update (persistently) their hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters. They reconnect to host2 as auxiliary standbys, and are
told by host2 to use an effective synchronization mode of SUPERASYNC (regardless of what they have
locally configured for hadr_syncmode). They do not update their settings for hadr_syncmode
persistently. The configuration for each database is shown in Table 19 on page 247.

Table 19. Configuration values for each HADR database after a role switch. Rows 3 to 5 in columns 4 and
5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host1 host2 host2

hadr_remote_svc 40 10 40 40

hadr_remote_inst dbinst2 dbinst1 dbinst2 dbinst2

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

SYNC n/a SUPERASYNC SUPERASYNC

Note: A number of values are not updated for the following reasons

• Because host2 already has its hadr_remote_host and hadr_remote_svc configuration parameters
pointing at its principal standby, host1, these values are not updated on host2.

• Because host1 already has its hadr_remote_host and hadr_remote_svc configuration parameters
pointing at the new primary, these values are not updated on host1.

• Because host1's operational synchronization mode is SYNC and host3 and host4's operational
synchronization modes are SUPERASYNC, there is no change for the effective synchronization mode.

An auxiliary standby takes over by force (failover)

A widespread power outage in City A results in the primary (host1) becoming unavailable. Normally, the
principal standby (host2) which is in SYNC mode would be the best candidate for taking over and
becoming the new primary, but the power outage means that host2 is momentarily unavailable as well.
The DBA queries the two auxiliary standbys to determine which one has the most log data:

db2pd -hadr -db hadr_db | grep STANDBY_LOG_FILE,PAGE,POS

The DBA determines that host3 is the most up to date (although it is still a little behind in log replay) and
picks that host as the new primary:

 DB2 TAKEOVER HADR ON DB hadr_db BY FORCE

After the takeover is completed successfully, host3 becomes the new primary. Meanwhile, host2
becomes available again. host3 informs host2 and host4 that it is now the primary. On host3, the values
for hadr_remote_host, hadr_remote_svc, and hadr_remote_inst are reconfigured to point to
host2, which is the principal standby because it is the first entry in the hadr_target_list on host3. On

Chapter 1. High availability 247

host2, the synchronization mode is reconfigured to SUPERASYNC because that is the setting for
hadr_syncmode on host3; in addition, the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst are updated (persistently). host4 is automatically redirected to the new primary,
host3. In this redirection, host4 updates (persistently) its hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters. There is no automatic reconfiguration on host1 until it
becomes available again. The configuration for each database is shown in Table 20 on page 248.

Table 20. Configuration values for each HADR database after a failover. Rows 3 to 5 in columns 3 to 5
have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable)

Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host3 host2 host3

hadr_remote_svc 40 41 40 41

hadr_remote_inst dbinst2 dbinst3 dbinst2 dbinst3

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

n/a SUPERASYNC n/a SUPERASYNC

After a short period of time, host1 becomes available. The DBA tries to start host1 as a standby, but
because host1 has more logs than were propagated to host3, host1 is rejected as part of the initial
handshake with the new primary. The DBA takes a backup of the new primary, restores it to host1, and
starts HADR on that host:

DB2 BACKUP DB hadr_db

DB2 RESTORE DB hadr_db

DB2 START HADR ON DB hadr_db AS STANDBY

As is shown in Table 21 on page 248, host1 is reconfigured.

Table 21. Configuration values for a reintegrated standby. Various rows in column 2 have been bolded to
show that they have been auto-reconfigured

Configuration
parameter

Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host3 host3 host2 host3

hadr_remote_svc 41 41 40 41

hadr_remote_inst dbinst3 dbinst3 dbinst2 dbinst3

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

248 IBM Db2 V11.5: Data Recovery and High Availability

Table 21. Configuration values for a reintegrated standby. Various rows in column 2 have been bolded to
show that they have been auto-reconfigured (continued)

Configuration
parameter

Host1 Host2 Host3 Host4

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

SUPERASYNC SUPERASYNC n/a SUPERASYNC

If the DBA wants to make host1 the primary again, then all that is required is a failback, which will restore
the original configuration shown in Table 18 on page 246.

An auxiliary standby takes over by force (failover) in a SA MP or Pacemaker environment

This example is similar to the previous one, but HADR has been deployed with IBM Tivoli System
Automation for Multiplatforms (SA MP) to automate failover.

A power failure in City A results in the principal standby (host2) becoming unavailable. Following that,
there is an outage on the primary (host1). Normally, the cluster manager, would automatically fail over to
the principal standby (host2), but the power outage means that one of the auxiliary standbys needs to be
the takeover target. Failover cannot be automated to auxiliary standbys, so the DBA must do it manually
while keeping host1 offline to eliminate the possibility that the old primary will restart if a client connects
to it.

The DBA queries the two auxiliary standbys to determine which one has the most log data:

db2pd -hadr -db hadr_db | grep 'STANDBY_LOG_FILE,PAGE,POS'

The DBA determines that host3 is the most up to date and picks that host as the new primary.

Then, the DBA issues the force takeover on host3:

 DB2 TAKEOVER HADR ON DB hadr_db BY FORCE

After the takeover is completed successfully, host3 becomes the new primary. Meanwhile, host2
becomes available again. host3 informs host2 and host4 that it is now the primary. On host3, the values
for hadr_remote_host, hadr_remote_svc, and hadr_remote_inst are reconfigured to point to
host2, which is the principal standby because it is the first entry in the hadr_target_list on host3. On
host2, the synchronization mode is reconfigured to SUPERASYNC because that is the setting for
hadr_syncmode on host3; in addition, the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst are updated (persistently). host4 is automatically redirected to the new primary,
host3. In this redirection, host4 updates (persistently) its hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters. There is no automatic reconfiguration on host1. The
configuration for each database is shown in Table 22 on page 249.

Table 22. Configuration values for each HADR database after a failover. Rows 3 to 5 in columns 3 to 5
have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable)

Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host3 host2 host3

hadr_remote_svc 40 41 40 41

hadr_remote_inst dbinst2 dbinst3 dbinst2 dbinst3

Chapter 1. High availability 249

Table 22. Configuration values for each HADR database after a failover. Rows 3 to 5 in columns 3 to 5
have been bolded to show that they have been auto-reconfigured (continued)

Configuration
parameter

Host1
(unavailable)

Host2 Host3 Host4

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

n/a SUPERASYNC n/a SUPERASYNC

After a certain period of time, the old primary site comes back online, then host1 and host2 become
available again. Once the original primary site recovers and host1 and host2 become available, the
databases will fail to start as not all of their logs were propagated to host3. They must be manually
reintegrated using the following steps:

1. Disable SA MP on host1 and host2 (for SA MP only) by running:

db2haicu -disable

2. Deactivate the database on host1 and host2 by issuing the following command on both hosts:

DB2 DEACTIVATE DB hadrdb

3. Stop HADR on host1 and host2 to disable automation between them by running:

DB2 STOP HADR ON DB hadr_db

4. Drop the databases on host1 and host2 by running:

DB2 DROP DB hadr_db

5. Backup the new primary database on host3 online by running:

DB2 BACKUP DB hadr_db online

6. Copy the backup image to both host1 and host2 using the scp command.
7. Restore the hadr_db database using the backup image on host1 and host2 by running:

DB2 RESTORE DB hadr_db

8. Reconfigure the restored database on each host by running the following command:

On host1:

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR_TARGET_LIST host2:40|host3:41|host4:42
HADR_REMOTE_HOST host3
HADR_REMOTE_SVC 30
HADR_LOCAL_HOST host1
HADR_LOCAL_SVC 10
HADR_SYNCMODE sync
HADR_REMOTE_INST dbinst3"

On host2:

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR_TARGET_LIST host1:10|host3:41|host4:42
HADR_REMOTE_HOST host3
HADR_REMOTE_SVC 41
HADR_LOCAL_HOST host2
HADR_LOCAL_SVC 40

250 IBM Db2 V11.5: Data Recovery and High Availability

HADR_SYNCMODE sync
HADR_REMOTE_INST dbinst3"

9. Start HADR on host1 and host2 to reintegrate them as standbys by running:

DB2 START HADR ON DB hadr_db AS STANDBY

After running these commands successfully, host1 will become an auxiliary standby and host2 will
remain as principle standby. But in this case, no automation is supported between the new primary on
host3 and the principle standby on host2. To enable automation, issue the takeover command on host1
manually to make the database primary again by running:

DB2 TAKEOVER HADR ON DB hadr_db

High availability disaster recovery (HADR) in Db2 pureScale environments
Db2 high availability disaster recovery (HADR) is supported in a Db2 pureScale environment that provides
excellent continuous availability. With HADR, you also have DR (disaster recovery) protection. With a
second copy of data on the standby site, you are protected from total failure at the primary site.

Configuring and managing HADR in a Db2 pureScale environment is very similar to configuring and
managing HADR in other environments. You create a standby database by restoring using a backup image
or split mirror from the primary database, set various HADR configuration parameters, and start HADR on
the standby and then the primary. The standby can quickly take over as the primary in the event of a role
switch. All the administration commands are the same as what you are used to with HADR in other
environments, but you can use only the db2pd command and the MON_GET_HADR table function to
monitor HADR. Other monitor interfaces such as snapshot do not report HADR information in Db2
pureScale environments.

There are, however, some important differences for HADR in Db2 pureScale environments. An HADR pair
is made up of a primary cluster and a standby cluster. Each cluster is made up of multiple members and
at least one cluster caching facility; the member topology must be the same in the two clusters. The
member from which you issue the START HADR command, on both the primary and the standby, is
designated as the preferred replay member. When the database operates as a standby, only one member
(the replay member) is activated. The database selects the preferred replay member as the replay
member if the Db2 instance is online on the member, otherwise, another member is selected. That replay
member replays all of the logs, and the other members are not activated. An HADR TCP connection is
established between each member on the primary and the current replay member on the standby. Each
member on the primary ships its logs to the standby replay member through the TCP connection. The
HADR standby merges and replays the log streams. If the standby cannot connect to a particular
member, A, on the primary (because of network problems or because the member is inactive) another
member, B, on the primary that can connect to the standby sends the logs for member A to the standby.
This process is known as assisted remote catchup.

Restrictions for HADR in Db2 pureScale environments
There are a number of restrictions that you should be aware of if you are planning to deploy HADR in a
Db2 pureScale environment.

The restrictions are as follows:

• A peer window is not supported. The hadr_peer_window configuration parameter must be set to 0.
• You cannot have more than one HADR standby database associated with a primary database.
• The topology of the primary and the standby must be synchronized. If you add a member on the

primary, that operation is replayed on the standby. If you drop a member on the primary, you must
reinitialize the standby by using a backup or a split mirror from the primary's new topology.

• The reads on standby feature is not supported.
• You cannot use the integrated cluster manager, IBM Tivoli System Automation for Multiplatforms (SA

MP), to manage automated failover; it manages high availability within the local cluster only.
• Network address translation (NAT) between the primary and standby sites is not supported.

Chapter 1. High availability 251

HADR setup in a Db2 pureScale environment
There are a few considerations for setting up an HADR database pair in a Db2 pureScale environment.

Asymmetric standby members

Because only one member on the standby replays logs, consider configuring a standby member with
more CPU power and memory to serve as the preferred replay member. Similarly, consider which
member on the primary cluster has the most CPU and memory, so that you can select it to be the
preferred replay member if the current primary become the standby after a role switch. In both cases, you
designate the preferred replay member by issuing the START HADR command from that member, with
either AS PRIMARYor AS STANDBYoption. The preferred replay member designation is persistent. It
remains in place until changed by the next START HADR command.

Because the member topologies on the primary and standby must be the same, if you add members on
the primary, you must also add members on the standby. If you have resource constraints, such as
hardware constraints, you can configure the new standby members as logical members that share hosts.
If the standby takes over the primary role, this new primary will not be as powerful as the old primary.

Standby cluster caching facilities

The cluster caching facility (CF) does not have to be the same on the primary and standby clusters. The
standby makes minimal use of the CF because only one member performs the replay, so it is possible to
have only one CF on the standby cluster. If, however, the standby takes over as the new primary, you
should add a CF to help ensure that your Db2 pureScale environment is highly available. Refer to the
"Topology changes (add or drop CFs)" page for instructions on how to add the secondary CF.

Member subsetting

You can use member subsetting to specify a subset of members to use for a database. The subset is
stored internally as a list of member numbers. The database then maps the members to host names for
the client to connect to. If this database uses HADR, you can only specify the subset list on the primary
database. The subset member list is replicated to the standby.

High availability disaster recovery (HADR) monitoring in a Db2 pureScale environment
You must use the db2pd command or the MON_GET_HADR table function to monitor your HADR
databases in a Db2 pureScale environment.Other interfaces, such as the GET SNAPSHOT FOR
DATABASE command, the SNAPHADR administrative view, and the SNAP_GET_HADR table function, do
not return any HADR information, so it will appear as if HADR is not configured.

The db2pd command and the MON_GET_HADR table function return essentially the same information,
but because reads on standby is not supported in a Db2 pureScale environment, you can only use the
db2pd command to monitor from a standby. As well, the db2pd command is preferred during takeover
because there could be a time window during which neither the primary nor the standby allows client
connections.

db2pd command

In a Db2 pureScale environment, the db2pd command returns a section in its output for each log stream
being processed by the member on which the command is issued. On the primary, any assisted remote
catchup streams are reported by their owner (that is, the assisted member) and the assisting member. On
the standby, all of the streams are returned if the command is issued on the replay member; if you issue
db2pd on a non-replay member, no data is returned.

If you want to see all of the log streams from the primary, use the -allmembers and -hadr options with
the db2pd command. If you use the -allmembers option on the standby, for each non replay member,
the output indicates that database is not active on the member; for the replay member, all streams are
returned. As a result, this command option is only useful on the standby if you want to find out which
member is the current replay member (alternatively, you can check the STANDBY_MEMBER field in the
db2pd output from the primary).

252 IBM Db2 V11.5: Data Recovery and High Availability

The following example is for an HADR setup using three-member clusters: members 0, 1, and 2. Member
1 is active but it is in assisted remote catchup state and is being assisted by member 0; the standby
replay member is member 0. The DBA issues the db2pd command for member 0 on the primary. Notice
that two sets of data are returned: one for each log stream member 0 is processing:

Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 --
 Date 06/08/2011 13:57:23

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = ASYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = hostP.ibm.com
 PRIMARY_INSTANCE = db2inst
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = hostS.ibm.com
 STANDBY_INSTANCE = db2inst
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
 HEARTBEAT_INTERVAL(seconds) = 25
 HADR_TIMEOUT(seconds) = 100
 TIME_SINCE_LAST_RECV(seconds) = 3
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 13000
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = ASYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 1
 HADR_STATE = REMOTE_CATCHUP
 HADR_FLAGS = ASSISTED_REMOTE_CATCHUP ASSISTED_MEMBER_ACTIVE
 PRIMARY_MEMBER_HOST = hostP.ibm.com
 PRIMARY_INSTANCE = db2inst
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = hostS.ibm.com
 STANDBY_INSTANCE = db2inst
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)
 HEARTBEAT_INTERVAL(seconds) = 25
 HADR_TIMEOUT(seconds) = 100
 TIME_SINCE_LAST_RECV(seconds) = 16
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.005631
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.837
 LOG_HADR_WAIT_COUNT = 124

Chapter 1. High availability 253

 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000012.LOG, 1, 56541576
 STANDBY_LOG_FILE,PAGE,POS = S0000012.LOG, 1, 56541576
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000012.LOG, 1, 56541576
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:25.000000 (1307566165)
 STANDBY_LOG_TIME = 06/08/2011 13:49:25.000000 (1307566165)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:25.000000 (1307566165)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 13000
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N

MON_GET_HADR table function

In a Db2 pureScale environment, the MON_GET_HADR table function returns a row for each log stream.
The table function cannot be issued on the standby because reads on standby is not supported in a Db2
pureScale environment. Use the LOG_STREAM_ID field in the table function output to identify the log
stream and the PRIMARY_MEMBER and STANDBY_MEMBER fields to identify the members processing
the stream on the primary and standby sides.

The table function takes a member argument and returns the stream that the specified member owns and
all remote catchup streams that it is assisting. If the argument is an assisting member, the assisted
remote catchup streams have their HADR_STATE field reported as being in REMOTE_CATCHUP with the
ASSISTED_REMOTE_CATCHUP flag set in the HADR_FLAGS field. If the argument is an assisted member,
the assisted remote catchup stream has its HADR_STATE field reported as DISCONNECTED.

If you specify -1 or NULL as the argument, the results for the current database member (that is, the
member processing the query) are returned. If you specify -2 as the argument, the results for all
members on the primary are returned. Any assisted remote catchup streams are reported on the assisting
member only. If a member is inactive and assisted remote catchup has not yet been established for that
member's log stream, that log stream does not appear in the output. The table function request is passed
to all active members and the results are merged, so inactive members are not represented.

In the following examples, the DBA calls the MON_GET_HADR table function for monitoring an HADR setup
using three-member clusters: members 0, 1, and 2. Member 1 is active but it is in assisted remote
catchup state and is being assisted by member 0; the standby replay member is member 0. The DBA calls
the table function with argument 0, 1, 2 and -2 (for all members). Notice that two rows are returned when
the argument is 0: one for each log stream that member 0 is processing:

Example for member 0

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE, HADR_FLAGS
 from table (mon_get_hadr(0))

LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE HADR_FLAGS
------------- -------------- -------------- -------------- -----------------------
0 0 0 PEER
1 0 0 REMOTE_CATCHUP ASSISTED_REMOTE_CATCHUP

Example for member 1

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE, HADR_FLAGS
 from table (mon_get_hadr(1))

LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE HADR_FLAGS
------------- -------------- -------------- -------------- ----------------------
1 1 0 DISCONNECTED

254 IBM Db2 V11.5: Data Recovery and High Availability

Example for member 2

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE, HADR_FLAGS
 from table (mon_get_hadr(2))

LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE HADR_FLAGS
------------- -------------- -------------- -------------- -----------------------
2 2 0 PEER

Example for all members

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE, HADR_FLAGS
 from table (mon_get_hadr(-2))

LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE HADR_FLAGS
------------- -------------- -------------- -------------- -----------------------
0 0 0 PEER
1 0 0 REMOTE_CATCHUP ASSISTED_REMOTE_CATCHUP
2 2 0 PEER

HADR standby replay in a Db2 pureScale environment
In a Db2 pureScale environment, only one member of the HADR standby cluster replays logs, and other
members remain inactive. Members in the HADR primary cluster ship their logs to the replay member
directly by using a TCP connection or indirectly through assisted remote catchup.

When a standby database is started, standby replay service is activated on the member that is designated
as the preferred replay member if the Db2 instance is online on the member. Otherwise, replay is
activated on another member. There is no way to control the selection among non preferred members;
however, any member that is running in restart light mode (that is, a member that is not active on its
home host) is given the lowest priority. Even though the preferred replay member designation is
persistent, if replay is active on another member because the preferred replay member was not available,
replay does not automatically revert to the preferred member when that member becomes available. The
only way to force replay onto the preferred replay member is to deactivate and reactivate HADR on the
standby.

Because the replay member on the standby replays logs that are generated by all members on the
primary, there is a possibility that it can become a bottleneck. To avoid a potential impact, you should
select the member with more resources, such as CPU and memory, as the preferred replay member. You
implicitly designate the preferred replay member by issuing the START HADR command on it. The
member from which you issue the START HADR AS STANDBY command is the preferred replay member
on the standby cluster; the member from which you issue the START HADR AS PRIMARY command is
the preferred replay member on the primary cluster. The status of preferred replay member on the
primary takes effect only when the primary becomes a standby

If the current replay member goes down abnormally (for example, as a result of a software or hardware
failure) or normally (for example, as a result of a user command to deactivate the particular member),
replay is automatically migrated to another member. If the current replay member goes down
abnormally, member crash recovery occurs, and a member is selected to resume replay, with preference
to the preferred replay member during the selection (the old replay member might or might not be
reselected). As long as there is one online member in the standby cluster, replay continues. To stop
replay, deactivate the whole standby database.

You can find out which member is the current replay member from the primary or the standby. On the
primary, use the db2pd command with the -hadr parameter or the MON_GET_HADR table function. The
replay member is indicated in the STANDBY_MEMBER field. If you want to determine the current replay
member from the standby, you can use only the db2pd command because the table function cannot be
called from a standby in a Db2 pureScale environment. Because you do not know which replay member is
active, you must issue the following command:

db2pd -hadr -db DB_name -allmembers

In the output, only the current replay member has HADR information; all non-replay members show
Database DB_name not activated on database member X.

Chapter 1. High availability 255

Changing the preferred replay member
You designate a preferred replay member by issuing the START HADR command on that member. If you
want to change that designation, you have to reissue the command.Note that if a database is already
active and in the desired role, the START HADR command will be a nop (no operation performed) that
returns an error, and the preferred replay member is not updated. Use the following procedure to
designate or redesignate the preferred replay member.

About this task

The preferred replay member is the member that is preferred for replaying logs on an HADR standby
database in a Db2 pureScale environment. On a standby, it still might not be the member doing the actual
replay. On the primary, it is the first member that the standby replay service attempts to start on if that
primary becomes the standby. The preferred replay member designation is persistent and can only be
changed by starting and stopping HADR.

Procedure

• On the standby:

a. Issue the DEACTIVATE DATABASE command from any member in the standby cluster.
b. Issue the START HADR command with the AS STANDBY option on the member that you want to

designate as the preferred replay member.
• On the primary:

a. Issue the STOP HADR command from any member in the primary cluster.

Note: The primary remains active during this procedure.
b. Issue the START HADR command with the AS PRIMARY option on the member that you want to

designate as the preferred replay member.

Note: This designation only takes effect if the primary database switches to the standby role.

Results

If the START HADR command completes successfully, the preferred replay member is updated. If the
START HADR command fails, the preferred member might or might not have been updated, depending on
how far the command execution went. To ensure that the designation applies to the correct member,
rerun the procedure described in this task.

Db2 pureScale topology changes and high availability disaster recovery (HADR)
In a Db2 pureScale environment, making changes to the HADR primary cluster and HADR standby cluster
can require an outage.

In general, the primary and standby clusters must have the same member topology; that is, each instance
must have the same number of members with the same member IDs. The only exception is when you add
members to the standby. You can add members when the database is either offline or online. If you drop
a member from the primary cluster (dropping a member is not allowed on the standby), you must stop
HADR, deactivate the primary, and reinitialize the standby.

Adding members to a high availability disaster recovery (HADR) setup
You can scale out your Db2 pureScale instance by adding members without impacting your HADR setup.
You can add members online or offline.

Procedure

To add a member to an HADR setup in a Db2 pureScale instance:
1. Add the new member to the standby cluster. From a standby host that is part of the Db2 pureScale

instance, issue the following command:

256 IBM Db2 V11.5: Data Recovery and High Availability

db2iupdt -add -m memberHostName-mnet MemberNetName -mid MemberID InstName

This command adds the member to the member topology but not to the database topology.
2. Update the member-specific configuration parameters for the new member on the standby:

UPDATE DATABASE CONFIGURATION FOR db_name MEMBER member_ID
 USING hadr_local_host standby_member_host

UPDATE DATABASE CONFIGURATION FOR db_name MEMBER member_ID
 USING hadr_local_svc standby_member_port

3. Add the new member to the primary cluster. From a primary host that is part of the Db2 pureScale
instance, issue the following command:

db2iupdt -add -m memberHostName-mnet MemberNetName -mid MemberID InstName

You must use the same member ID that you specified when adding the member to the standby
cluster.
This command adds the member to the member topology but not to the database topology.

4. Update the member-specific configuration parameters for the new member on the primary:

UPDATE DATABASE CONFIGURATION FOR db_name MEMBER member_ID
 USING hadr_local_host primary_member_host

UPDATE DATABASE CONFIGURATION FOR db_name MEMBER member_ID
 USING hadr_local_svc primary_member_port

On the primary this member is not listed because it is not currently activated. On the standby this
member is not listed because it does not yet exist in the database topology.

5. Activate the new member on the primary by doing one of the following steps:

• Connect to the database on the new member.
• Issue the ACTIVATE DATABASE command.

If you have not added the member to the standby cluster by the time that it receives the add member
log record that results from the member activation on the primary, the standby database will be shut
down.

What to do next

Add the new member to the target list on the primary and the standby.

Removing members from a high availability disaster recovery (HADR) setup
Removing a member from your Db2 pureScale instance requires you to reinitialize the standby based on
the primary's updated topology.

About this task

To drop a member, you need to stop HADR and the Db2 pureScale instance. You cannot drop the last
member in the instance using this procedure.

Procedure

To remove a member from an HADR setup in a Db2 pureScale instance:
1. Remove the member from the primary cluster. You must do this from a host that will still belong to the

instance after the member is dropped.
a) Stop HADR on the primary database using the STOP HADR command.
b) Stop the Db2 pureScale instance using the db2stop command.
c) Drop the member by running the following command:

Chapter 1. High availability 257

db2iupdt -drop -m member_ID instance_name

Note: You cannot directly drop a member from an HADR standby database.
2. Remove the member from the standby cluster. You must do this from a host that will still belong to the

instance after the member is dropped.
a) Deactivate the database on the standby database using the DEACTIVATE DATABASE command.

DEACTIVATE DATABASE db_name

b) Drop the database using the following command:

DROP DATABASE db_name

c) Drop the member by running the following command:

db2iupdt -drop -m member_ID instance_name

You must use the same member ID that you specified when removing the member from the
primary cluster.

3. Create the standby database by restoring a backup image or by initializing a split mirror, based on the
primary's updated topology after step 1.
a) On the primary, issue the following command:

BACKUP DB dbname

b) Restore the standby by issuing the following command:

RESTORE DB dbname

4. Update the HADR-specific database configuration parameters on the standby cluster.
5. Start HADR on the primary:

START HADR AS PRIMARY

6. Start HADR on the standby:

START HADR AS STANDBY

HADR takeover operations in a Db2 pureScale environment
When an HADR standby database takes over as the primary database in a Db2 pureScale environment,
there are a number of important differences from HADR in other environments.

With HADR, there are two types of takeover: role switch and failover. Role switch, sometimes called
graceful takeover or non-forced takeover, can be performed only when the primary is available and it
switches the role of primary and standby. Failover, or forced takeover, can be performed when the
primary is not available. It is commonly used in primary failure cases to make the standby the new
primary. The old primary remains in the primary role in a forced takeover, but the standby sends it a
message to disable it. Both types of takeover are supported in a Db2 pureScale environment, and both
can be issued from any of the standby database members and not just the current replay member.
However, after the standby completes the transition to the primary role, the database is only started on
the member that served as the replay member before the takeover. The database can be started on the
other members by issuing an ACTIVATE DATABASE command or implicitly through a client connection.

Role switch

After a role switch, which is initiated by issuing the TAKEOVER HADR command from any standby
member, the standby cluster becomes the primary cluster and vice versa. Role switch helps ensure that
no data is lost between the old primary and new primary. You can initiate a role switch in the following
circumstances only:

258 IBM Db2 V11.5: Data Recovery and High Availability

• Crash recovery is not occurring on the primary cluster, including member crash recovery that is pending
or in progress.

• All the log streams are in peer or assisted remote catchup state.
• All the log streams are in remote catchup state or in assisted remote catchup state, and the

synchronization mode is SUPERASYNC.

Before you initiate a role switch in remote catchup or assisted remote catchup state, check the log gap
between the primary and standby log streams. A large gap can result in a long takeover time because all
of the logs in that gap must be shipped and replayed first.

During a role switch, the following steps occur on the primary:

1. New connections are rejected on all members, any open transactions are rolled back, and all
remaining logs are shipped to the standby.

2. The primary cluster's database role changes to standby.
3. A member that has a direct connection to the standby is chosen as the replay member, with

preference given to the preferred replay member (that is, the member that HADR was started from).
4. Log receiving and replay starts on the replay member.
5. The database is shut down on the other non-replay members of the cluster.

And the following steps occur on the standby:

1. Log receiving is stopped on the replay member after the end of logs is reached on each log stream,
helping ensure no data loss.

2. The replay member finishes replaying all received logs.
3. After it is confirmed that the primary cluster is now in the standby role, the replay member changes

the standby cluster's role to primary.
4. The database is opened for client connections, but it is only activated on the member that was

previously the standby replay member.

Failover

After a failover, which is initiated by issuing the TAKEOVER HADR command with the BY FORCE option
from any standby member, the standby cluster becomes the primary cluster. The old primary cluster is
sent a disabling message, but its role is not changed. Any member on the primary that receives this
message disables the whole primary cluster. By initiating a failover, you are accepting the trade-off
between potential data loss and having a working database. You cannot initiate a failover if the databases
are in local catchup state.

Note: Unlike in previous releases, you can now initiate a failover even if log archive retrieval is in progress.

During a failover, the following steps occur on the primary (assuming it is online and connected to the
standby):

1. After it receives the disabling message, the database is shut down and log writing is stopped.

And the following steps occur on the standby, all of which are carried out from the replay member:

1. A disabling message is sent to the primary, if it is connected.
2. Log shipping and log retrieval is stopped, which entails a risk of data loss.
3. The replay member finishes replaying all received logs (that is, the logs that are stored in the log path).
4. Any open transactions are rolled back.
5. The replay member changes the standby cluster's role to primary.
6. The database is opened for client connections, but it is only activated on the member that was

previously the standby replay member.

You can reintegrate the old primary as a new standby only if its log streams did not diverge from the new
primary's log streams. Before you can start HADR, the database must be offline on all of the old primary's

Chapter 1. High availability 259

members; the cluster caching facilities, however, can stay online. If any members are online, kill them
instead of issuing the DEACTIVATE DATABASE command on them.

Scenario: Deploying HADR in a Db2 pureScale environment
This scenario describes the planning, configuring, and deploying of a high availability disaster recovery
(HADR) setup for an online travel service called ExampleFlightsExpress (EFE), which is currently using the
Db2 pureScale Feature. All these steps can be done without any downtime.

Background

EFE chose to use the Db2 pureScale Feature for two reasons:

• Continuous availability. Downtime is fatal in the online retailing business, where customers are literally
accessing services 24x7.

• Scalability. Because customer demand ebbs and flows depending on the time of year, EFE must be able
to add capacity easily and without taking an outage.

EFE is already configured with “Archive logging” on page 19. EFE’s setup is resilient unless there is a
widespread outage that brings down the whole Db2 pureScale cluster. To address this shortcoming, EFE
is going to use HADR, which is supported by the Db2 pureScale Feature. In a Db2 pureScale environment,
HADR has a few limitations, such as no support for reads on standby, but those limitations are acceptable
because EFE wants HADR only for disaster recovery.

Planning

EFE is going to use the company's head office (site A) as the location for the HADR primary cluster and a
regional office (site B), which is 500 miles (800 km) away as the location for the standby cluster. The two
sites are connected by a WAN. Other details about the environment are as follows:

• Database name: hadr_db
• Instance owner on all hosts: db2inst
• TCP port that is used for HADR primary-standby communication: 4000
• TCP port that is used for SQL client/server communication: 8000
• Hosts for cluster caching facilities (with IDs 128 and 129) and members (with IDs 0, 1, 2, and 3) on the

primary cluster: cfp0, cfp1, p0, p1, p2, and p3
• Hosts for cluster caching facilities and members on the standby cluster: cfs0, cfs1, s0, s1, s2, and s3

Preferred replay members
Only one member on the standby performs all the replay for the logs that are generated on all the
members on the primary. Therefore, EFE's DBA determines which member hosts in the primary and
standby clusters have the most memory and CPU resources and designates those members as the
preferred replay members. It is necessary to do this planning even for the primary because that
designated member performs all the replay if the primary database fails and is reintegrated as the
standby. On the primary, this is p0 and on the standby, it is s0; in both cases, member 0 is the
resident member on those hosts.

Synchronization mode
EFE's DBA must choose between ASYNC (the default), SYNC, NEARSYNC, and SUPERASYNC for the
synchronization mode. To do this, the DBA analyzes the WAN and determines that network
throughput is 300 Mbit/second and that the round-trip time is 80 ms. Next, the DBA measures the
logging rate, which is 20 MB/second at the cluster level. The network throughput is sufficient to
support the logging rate and allow peak logging to reach 37 MB/second, so ASYNC is a suitable mode.
If the throughput were closer to the logging rate, SUPERASYNC would be a better choice because it
would allow the primary to get far ahead of the standby during peak transaction time.

Scaling considerations
Because EFE tends to add temporary members during peak times of the year, EFE must decide how to
scale out the standby, because the member topology must be the same across the HADR pair. When
EFE decides to grow the primary cluster by adding a new member on a new host, EFE avoids
additional costs on the standby cluster by adding the new member on an existing host. This would

260 IBM Db2 V11.5: Data Recovery and High Availability

likely result in a less powerful database if the standby must take over as the new primary, but the
savings are worth this potential drawback.

Configuring HADR

The DBA performs the following steps:

1. The DBA takes an online backup of the intended primary database, hadr_db:

db2 BACKUP DB hadr_db online TO backup_dir

2. The DBA restores the backup onto the intended standby cluster by issuing the following command:

db2 RESTORE DB hadr_db FROM backup_dir

3. On the primary, the DBA sets the cluster-level HADR parameters that specify the standby cluster and
the synchronization mode. Particularly important is the hadr_target_list parameter, which lists
the remote members. Only one remote member is required to be listed in the hadr_target_list.
Db2 retrieves the other members' addresses after the initial contact with the listed member. However,
providing multiple addresses prevents a single point of failure, that is, the clusters cannot connect to
each other if the one and only listed member is down. The DBA issues the following command:

db2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST {s0:4000|s1:4000|s2:4000|s3:4000}
 HADR_REMOTE_HOST {s0:4000|s1:4000|s2:4000|s3:4000}
 HADR_REMOTE_INST db2inst
 HADR_SYNCMODE async"

Because there is only one standby, the hadr_remote_host parameter specifies the same group of
addresses as the hadr_target_list parameter.

4. The DBA sets the member-level HADR parameters on the primary, which identify the address and port
for each member:

• For member 0:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 0 USING
 HADR_LOCAL_HOST p0
 HADR_LOCAL_SVC 4000"

• For member 1:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 1 USING
 HADR_LOCAL_HOST p1
 HADR_LOCAL_SVC 4000"

• For member 2:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 2 USING
 HADR_LOCAL_HOST p2
 HADR_LOCAL_SVC 4000"

• For member 3:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 3 USING
 HADR_LOCAL_HOST p3
 HADR_LOCAL_SVC 4000"

5. On the standby, the DBA sets the cluster-level HADR parameters that specify the primary cluster and
the synchronization mode:

db2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST {p0:4000|p1:4000|p2:4000|p3:4000}
 HADR_REMOTE_HOST {p0:4000|p1:4000|p2:4000|p3:4000}
 HADR_REMOTE_INST db2inst
 HADR_SYNCMODE async"

6. The DBA sets the member-level HADR parameters on the standby, which identify the address and port
for each member:

Chapter 1. High availability 261

• For member 0:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 0 USING
 HADR_LOCAL_HOST s0
 HADR_LOCAL_SVC 4000"

• For member 1:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 1 USING
 HADR_LOCAL_HOST s1
 HADR_LOCAL_SVC 4000"

• For member 2:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 2 USING
 HADR_LOCAL_HOST s2
 HADR_LOCAL_SVC 4000"

• For member 3:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 3 USING
 HADR_LOCAL_HOST s3
 HADR_LOCAL_SVC 4000"

Starting HADR

As with other HADR environments, the standby database must be started first. Because the member that
the START HADR command is issued from is designated the preferred replay member, the DBA issues the
following commands:

• From member 0 on the standby:

db2 START HADR ON DB hadr_db AS STANDBY

• From member 0 on the primary:

db2 START HADR ON DB hadr_db AS PRIMARY

To determine that HADR is up and running, the DBA calls the MON_GET_HADR table function from the
primary:

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE
from table (mon_get_hadr(-2))

 LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE
 ------------- -------------- -------------- -----------------------
 0 0 0 PEER
 1 1 0 PEER
 2 2 0 PEER
 3 3 0 PEER

The DBA confirms that standby member 0, the preferred replay member, is indeed the current replay
member by looking at the STANDBY_MEMBER field. Every log stream reports the same member on the
standby because all the members on the primary are connected to that standby member.

Role switch

The DBA has to perform a role switch; that is, the current standby will take over the primary role, and the
current primary will take over the standby role. This will allow some maintenance which requires a
shutdown of the cluster to be performed at site A. This procedure takes place during a time of low usage
in order to minimize impact on applications currently connected to the database.

1. The DBA ensures that none of the members on the primary are in an abnormal state:

SELECT ID,
 varchar(STATE,21) AS STATE,
 varchar(HOME_HOST,10) AS HOME_HOST,
 varchar(CURRENT_HOST,10) AS CUR_HOST,

262 IBM Db2 V11.5: Data Recovery and High Availability

 ALERT
FROM SYSIBMADM.DB2_MEMBER

ID STATE HOME_HOST CUR_HOST ALERT
------ --------------------- ---------- ---------- --------
0 STARTED p0 p0 NO
1 STARTED p1 p1 NO
2 STARTED p2 p2 NO
3 STARTED p3 p3 NO

 4 record(s) selected.

2. The DBA ensures that all of the log streams are in PEER state:

select LOG_STREAM_ID, PRIMARY_MEMBER, STANDBY_MEMBER, HADR_STATE
from table (mon_get_hadr(-2))

 LOG_STREAM_ID PRIMARY_MEMBER STANDBY_MEMBER HADR_STATE
 ------------- -------------- -------------- -----------------------
 0 0 0 PEER
 1 1 0 PEER
 2 2 0 PEER
 3 3 0 PEER

3. At site B, the DBA issues the TAKEOVER HADR command on member 0:

TAKEOVER HADR ON DB hadr_db

After the command completes, member 0 on the new standby (the preferred replay member) is
chosen as the replay member and the database is shut down on the other members on the standby
cluster. On the new primary, the database is only activated on member 0; other members are activated
with a client connection or if the DBA explicitly issues the ACTIVATE DATABASE command on each of
them. Automatic client reroute sends any new clients to site B.

4. At site A, the DBA deactivates the database on the standby (this keeps the database in its role as an
HADR standby):

DEACTIVATE DATABASE hadr_db

5. At site A, the DBA stops Db2 on the standby:

db2stop

6. At site A, the DBA performs the required maintenance.
7. At site A, the DBA starts Db2 on the standby:

db2start

8. At site A, the DBA activates the database on the standby:

ACTIVATE DATABASE hadr_db

The database is activated as an HADR primary with one replay member.
9. To revert to the original setup, the DBA issues the TAKEOVER HADR command on member 0 at site A:

TAKEOVER HADR ON DB hadr_db

Failover

The DBA has to perform a failover; that is, an unexpected outage at site A requires that the standby at site
B take over the primary role. An important difference for HADR in a Db2 pureScale environment is that
there is no support for using IBM Tivoli System Automation for Multiplatforms (SA MP) to automate the
failover (it's already being used to ensure high availability in the Db2 pureScale cluster). At any rate, in
this scenario the DBA wants to have manual control over this kind of response to an outage.

1. The DBA performs a forced takeover from the standby database at site B.

Chapter 1. High availability 263

TAKEOVER HADR ON DB hadr_db BY FORCE

The standby sends a disabling message to shut down the primary. After stopping log shipping and
retrieval, the standby completes the replay of any logs in its log path. Finally, the standby becomes the
new primary.

2. The DBA issues the db2pd command on the new primary to ensure that it has taken over the primary
role.

db2pd -hadr -db hadr_db

3. After addressing the cause of the outage and getting site A up and running again, the DBA attempts to
reintegrate the old primary as a standby.

START HADR ON DB hadr_db AS STANDBY

4. The DBA verifies that the site A is now the standby by checking the HADR_CONNECT_STATUS and
HADR_STATE fields to ensure that the show the database is connected and in either peer or remote
catchup state.

db2pd -hadr -db hadr_db

Unfortunately, the log streams of the databases at the two sites have diverged, so the database is
showing as disconnected. The DBA looks at the diag.log file of one of the members on the old
primary and sees a message indicating that the database on site A cannot be made consistent with the
new primary database.

5. The DBA has to drop the database and reinitialize it as an HADR standby at site A.

a. Drop the database:

DROP DATABASE DB hadr_db

b. Take a backup of the database at site B.

BACKUP DATABASE DB hadr_db ONLINE TO backup_dir

c. Restore the backup image to site A.

db2 RESTORE DB hadr_db FROM backup_dir

d. Set the cluster-level and member-level configuration parameters on the database at site A.

db2 "UPDATE DB CFG FOR hadr_db USING
 HADR_TARGET_LIST {s0:4000|s1:4000|s2:4000|s3:4000}
 HADR_REMOTE_HOST {s0:4000|s1:4000|s2:4000|s3:4000}
 HADR_REMOTE_INST db2inst
 HADR_SYNCMODE async"

• For member 0:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 0 USING
 HADR_LOCAL_HOST p0
 HADR_LOCAL_SVC 4000"

• For member 1:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 1 USING
 HADR_LOCAL_HOST p1
 HADR_LOCAL_SVC 4000"

• For member 2:

db2 "UPDATE DB CFG FOR hadr_db MEMBER 2 USING
 HADR_LOCAL_HOST p2
 HADR_LOCAL_SVC 4000"

• For member 3:

264 IBM Db2 V11.5: Data Recovery and High Availability

db2 "UPDATE DB CFG FOR hadr_db MEMBER 3 USING
 HADR_LOCAL_HOST p3
 HADR_LOCAL_SVC 4000"

6. The DBA wants to designate member 0 as the preferred replay member and issues the START HADR
command from member 0 on the site A:

db2 START HADR ON DB hadr_db AS STANDBY

7. The DBA verifies that the site A is now the standby by checking the HADR_CONNECT_STATUS and
HADR_STATE fields to ensure that the show the database is connected and is catching up to the
primary.

db2pd -hadr -db hadr_db

8. To revert to the original setup, the DBA can perform a role switch as described in the previous section.

HADR reads on standby feature
You can use the reads on standby capability to run read-only operations on the standby database in your
High Availability and Disaster Recovery (HADR) solution. Read operations running on a standby do not
affect the standby's main role of replaying logs shipped from the primary database.

The reads on standby feature reduces the total cost of ownership of your HADR setup. This expanded role
of the standby database allows you to utilize the standby in new ways, such as running some of the
workload that would otherwise be running on your primary database. This, in turn frees up the primary for
additional workloads.

Read and write clients continue to connect to the primary database; however read clients can also
connect to the read-enabled standby, or active standby, as long as it is not in the local catchup state or
the replay-only window. An active standby's main role is still to replay logs shipped from the primary. As a
result, the data on the standby should be virtually identical to the data on the primary. In the event of a
failover, any user connections to the standby will be terminated while the standby takes over as the new
primary database.

All types of read queries, including scrollable and non-scrollable cursors, are supported on the standby.
Read capability is supported in all four HADR synchronization modes (SYNC, NEARSYNC, ASYNC, and
SUPERASYNC) and in all HADR states except local catchup.

Enabling reads on standby
You can enable the reads on standby feature on your High Availability and Disaster Recovery (HADR)
standby database using the DB2_HADR_ROS registry variable.

Before you begin

It is recommended that database configuration parameter logindexbuild be set to ON. This will
prevent a performance impact from query access plans avoiding any invalid indexes.

It is also recommended that you use a virtual IP when you have reads on standby enabled. Client reroute
does not differentiate between writable databases (primary and standard databases) and read-only
databases (standby databases). Configuring client reroute between the primary and standby might route
applications to the database on which they are not intended to be run.

About this task
You cannot use automatic client reroute (ACR) if you enable reads on standby.

Procedure

1. Set the DB2_HADR_ROS registry variable to ON.
2. Set up and initialize the primary and standby databases for HADR.

Refer to “Initializing high availability disaster recovery (HADR)” on page 141.

Chapter 1. High availability 265

Results

Your standby database is now considered an active standby, meaning that it will accept read-only
workloads.

What to do next

You can now utilize your standby database as you see fit, such as configuring some of your read-only
workload to run on it.

To enable your applications to maintain access to your standby database, follow the steps described in
the "Continuous access to Read on Standby databases using Virtual IP addresses" white paper.

Data concurrency on the active standby database
Changes on the HADR primary database may not necessarily be reflected on the HADR active standby
database. Uncommitted changes on the primary may not replicate to the standby until the primary
flushes, or sends, its logs to disk.

Logs are only guaranteed to be flushed to disk-and, therefore sent to the standby-after they have been
committed. Log flushes can also be triggered by undeterministic conditions such as a log buffer full
situation. As a result, it is possible for uncommitted changes on the primary to remain in the primary's log
buffer for a long time. Because the logger avoids flushing partial pages, this situation may particularly
affect small uncommitted changes on the primary.

If your workload running on the standby requires the data to be virtually identical to the data on the
primary, you should consider committing your transactions more frequently.

Isolation level on the active standby database
The only isolation level that is supported on an active standby database (an HADR standby database that
is read enabled) is Uncommitted Read (UR). If the isolation level requested by an application, statement,
or sub-statement is higher than UR, an error will be returned (SQL1773N Reason Code 1).

If you require an isolation level other than UR, consider using the HADR primary instead of the standby for
this application. If you simply want to avoid receiving this message, set the DB2_STANDBY_ISO registry
variable to UR. When DB2_STANDBY_ISO is set to UR, the isolation level will be silently coerced to UR.
This setting takes precedence over all other isolation settings such as statement isolation and package
isolation.

Replay-only window (and replay-only window avoidance) on the active standby database
When an HADR active standby database is replaying DDL log records or maintenance operations, new or
existing application connections to the standby database may be effected.

In earlier versions of Db2, or when the DB2_HADR_ROS_AVOID_REPLAY_ONLY_WINDOW registry
variable is set to OFF, the standby enters the "replay-only window" – all existing connections to the
standby are terminated and new connections to the standby are blocked (SQL1224N). New connections
are allowed on the standby after the replay of all active DDL or maintenance operations has completed.
The only user connections that can remain active on a standby in the replay-only window are connections
that are executing DEACTIVATE DATABASE or TAKEOVER commands. When applications are forced off at
the outset of the replay-only window, an error is returned (SQL1224N). Depending on the number of
readers connected to the active standby, there may be a slight delay before the DDL log records or
maintenance operations are replayed on the standby.

In Version 11.5, when the DB2_HADR_ROS_AVOID_REPLAY_ONLY_WINDOW registry variable is set to
ON, the standby database does not enter the replay-only window, we call this "replay-only window
avoidance" – only existing connections on the standby database which hold locks on tables, indexes or
other objects that conflict with the DDL or maintenance operation to be replayed will be forced off. Other
connections, including new connections, are permitted to continue.

There are a number of DDL statements and maintenance operations that, when run on the HADR primary,
will either trigger the replay-only window on the standby (when the replay-only window is enable), or will
force off the application connections which hold a lock conflicting with the DDL statement or maintenance

266 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/support/docview.wss?uid=swg27020912

operation being replayed (when replay-only window avoidance is enabled). The following lists are not
exhaustive.

DDL statements

(* statements denoted with an asterisk will result in a replay-only window even when replay-only
window avoidance is enabled).

• CREATE, ALTER, or DROP TABLE (except DROP TABLE for DGTT)
• CREATE GLOBAL TEMP TABLE
• TRUNCATE TABLE
• RENAME TABLE
• RENAME TABLESPACE
• CREATE, DROP, or ALTER INDEX
• CREATE or DROP VIEW
• CREATE, ALTER, or DROP TABLESPACE
• CREATE, ALTER, or DROP BUFFER POOL
• CREATE, ALTER, or DROP FUNCTION
• CREATE, ALTER, or DROP PROCEDURE
• CREATE or DROP TRIGGER
• CREATE, ALTER, or DROP TYPE
• CREATE, ALTER, or DROP ALIAS
• CREATE or DROP SCHEMA
• CREATE, ALTER, or DROP METHOD
• CREATE, ALTER, or DROP MODULE
• CREATE, ALTER, or DROP NICKNAME
• CREATE, ALTER, or DROP SEQUENCE
• CREATE, ALTER, or DROP WRAPPER
• CREATE, ALTER, or DROP FUNCTION MAPPING
• CREATE or DROP INDEX EXTENSION
• CREATE or DROP INDEX FOR TEXT
• CREATE or DROP EVENT MONITOR
• CREATE, ALTER, or DROP SECURITY LABEL
• CREATE, ALTER, or DROP SECURITY LABEL COMPONENT
• CREATE, ALTER, or DROP SECURITY POLICY
• CREATE or DROP TRANSFORM
• CREATE, ALTER, or DROP TYPE MAPPING
• CREATE, ALTER, or DROP USER MAPPING
• CREATE or DROP VARIABLE
• CREATE, ALTER, or DROP WORKLOAD *
• GRANT *
• REVOKE *
• CREATE, ALTER, or DROP SERVICE CLASS *
• CREATE, ALTER, or DROP WORK CLASS SET *
• CREATE, ALTER, or DROP WORK ACTION SET *
• CREATE, ALTER, or DROP THRESHOLD *

Chapter 1. High availability 267

• CREATE, ALTER, or DROP HISTOGRAM TEMPLATE *
• AUDIT *
• CREATE, ALTER, or DROP AUDIT POLICY *
• CREATE or DROP ROLE
• CREATE, ALTER, or DROP TRUSTED CONTEXT *
• REFRESH TABLE
• SET INTEGRITY

Maintenance operations

• Classic, or offline, reorg
• Inplace, or online, reorg
• Index reorg (indexes all, individual index)
• MDC and ITC reclaim reorg
• Load
• Bind or rebind
• db2rbind
• Runstats
• Table move
• Auto statistics
• Auto reorg
• Real Time Statistics

Other operations or actions

• Automatic Dictionary Creation for tables with COMPRESS YES attribute
• Asynchronous Index Cleanup on detached table partition
• Implicit rebind
• Implicit index rebuild
• Manual update of statistics.
• Deferred MDC rollout
• Asynchronous Index cleanup after MDC rollout
• Reuse of a deleted MDC or ITC block on insert into MDC or ITC table
• Asynchronous background processes updating catalog tables SYSJOBS and SYSTASKS for inserting,

updating, and deleting tasks

Diagnostic log messages during replay-only window

When a replay-only window is active, the db2diag.log will contain several diagnostic messages, which
indicate the start and end of the replay-only window. When the registry variable
DB2_HADR_REPLAY_ONLY_WINDOW_DIAGLEVEL is enabled for it, additional details about the DDL
operation or utility invocation which caused the replay-only window are also displayed. Note that the
LOG_DDL_STMTS database configuration parameter should be set to YES on the Primary database for
DDL statement text to be transmitted to the Standby so that it can be displayed.

For example:

2017-11-22-15.48.36.321657-300 I522432E731 LEVEL: Info
PID : 25476 TID : 140255646705408 KTID : 26687<
PROC : db2sysc
INSTANCE: db2inst1 NODE : 000 DB : TESTDB
APPHDL : 0-8 APPID: *LOCAL.DB2.171122204107
HOSTNAME: myhost1
EDUID : 87

268 IBM Db2 V11.5: Data Recovery and High Availability

EDUNAME: db2redom (TESTDB)
FUNCTION: DB2 UDB, recovery manager,
SQLP_REPLAY_ONLY_WINDOW_STAT::sqlpStartHadrReplayOnlyWindow, probe:9140
MESSAGE : Replay only window is triggered by this log record: LogStreamId / TID<
 / LSO / action
DATA #1 : SQLP_TID, PD_TYPE_SQLP_TID, 6 bytes
000000000FFA
DATA #2 : unsigned integer, 8 bytes
47025987
DATA #3 : db2LogStreamIDType, PD_TYPE_DB2_LOG_STREAM_ID, 2 bytes
0
DATA #4 : String, 3 bytes
DDL

2017-11-22-15.48.36.326071-300 E523164E517 LEVEL: Warning
PID : 25476 TID : 140255646705408 KTID : 26687<
PROC : db2sysc
INSTANCE: db2inst1 NODE : 000 DB : TESTDB
APPHDL : 0-8 APPID: *LOCAL.DB2.171122204107
HOSTNAME: myhost1
EDUID : 87 EDUNAME: db2redom (TESTDB)
FUNCTION: DB2 UDB, base sys utilities, sqeLocalDatabase::HdrForceAppsInReplayOnlyWindow,
probe:100
DATA #1 : String, 28 bytes
Replay only window is active

2017-11-22-15.48.36.334268-300 I524198E504 LEVEL: Info
PID : 25476 TID : 140255646705408 KTID : 26687<
PROC : db2sysc
INSTANCE: db2inst1 NODE : 000 DB : TESTDB
APPHDL : 0-8 APPID: *LOCAL.DB2.171122204107
HOSTNAME: myhost1
EDUID : 87 EDUNAME: db2redom (TESTDB)
FUNCTION: DB2 UDB, recovery manager,
SQLP_REPLAY_ONLY_WINDOW_STAT::sqlpSetDDLStmtForHadrReplayOnlyWindow, probe:9150
MESSAGE : DDL statement text
DATA #1 : String, 23 bytes
drop table test_script1

2017-11-22-15.49.28.915844-300 E546560E554 LEVEL: Warning
PID : 25476 TID : 140255646705408 KTID : 26687<
PROC : db2sysc
INSTANCE: db2inst1 NODE : 000 DB : TESTDB
APPHDL : 0-8 APPID: *LOCAL.DB2.171122204107
HOSTNAME: myhost1
EDUID : 87 EDUNAME: db2redom (TESTDB)
FUNCTION: DB2 UDB, base sys utilities, sqeLocalDatabase::HdrEndRep
layOnlyWindow, probe:210
DATA #1 : String, 73 bytes
Replay only window is inactive, connections to Active Standby are allowed

Monitoring the replay-only window

You can monitor the replay-only window using the db2pd command with the -hadr option (on either the
standby or the primary) or the MON_GET_HADR table function (from the primary). The standby's status,
including information about the replay-only window, is sent to the primary on every heartbeat.

There are three pertinent elements to monitor:

• STANDBY_REPLAY_ONLY_WINDOW_ACTIVE, which indicates whether DDL or maintenance-
operation replay is in progress on the standby. Normally, the value is N, but when the replay-only
window is active, the value is Y.

• STANDBY_REPLAY_ONLY_WINDOW_START, which indicates the time at which the current replay-
only window (if there is one) became active.

• STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT, which indicates the total number of existing
uncommitted DDL or maintenance transactions executed so far in the current replay-only window (if
there is one).

To use the table function, issue something similar to the following query on the primary:

Chapter 1. High availability 269

select STANDBY_ID, STANDBY_REPLAY_ONLY_WINDOW_ACTIVE, STANDBY_REPLAY_ONLY_WINDOW_START,
 STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT from table (mon_get_hadr(NULL))

Here is an example using the db2pd command on a standby that is currently in a replay-only window:

Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 -- Date 06/08/2011 13:57:23

 HADR_ROLE = STANDBY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = NEARSYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = hostP.ibm.com
 PRIMARY_INSTANCE = db2inst
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = hostS1.ibm.com
 STANDBY_INSTANCE = db2inst
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
 HEARTBEAT_INTERVAL(seconds) = 25
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 3
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = Y
 STANDBY_REPLAY_ONLY_WINDOW_START = 06/08/2011 13:50:23
 STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT = 5

Recommendations for minimizing the impact of the replay-only window

Because replay operations on an HADR standby take priority over readers, frequent read-only windows
can be disruptive to readers connected to or attempting to connect to the standby. To avoid or minimize
this impact, consider the following recommendations:

• Run DDL and maintenance operations during a scheduled maintenance window, preferably at off-peak
hours.

• Run DDL operations collectively rather than in multiple groups.
• Run REORG or RUNSTATS only on the required tables instead of all tables.
• Terminate applications on the active standby using the FORCE APPLICATION command with the ALL

option before running the DDL or maintenance operations on the primary. Monitor the replay-only
window to determine when it is inactive, and redeploy the applications on the standby.

Monitoring lock conflicts when replay-only window avoidance is enabled

When replay-only window avoidance is enabled, application connections on the standby database which
hold locks on tables, indexes or other objects that conflict with the DDL or maintenance operation to be
replayed will be forced off (returning an SQL1224N error) and the standby database will proceed to replay
the DDL or maintenance operation. New or existing application connections on the standby database

270 IBM Db2 V11.5: Data Recovery and High Availability

which then attempt to access the table, index, or objects which are locked by the replay agent may
experience a lock wait condition for the duration of time that the replay agent is replaying the DDL or
maintenance operation and holding the desired lock. Monitoring and resolving lock wait conditions is
described well in Diagnosing and resolving locking problems.

When diagnosing a lock wait condition, it is possible to determine if a lock is held by a replay agent, by
examining the transaction Tflag value of the lock holder for the existence of the 0x00000010 bit (other
bits are inconsequential).

For example, consider this db2pd -locks output, showing TranHdl 34 in Wait (‘W’) state for table lock
‘0007000F000000000000000054’ in intent-share (‘IS’) mode, and TranHdl 9 holds this table lock in
Granted (‘G’) state in super-exclusive (‘Z’) mode.

$ db2pd -db MYDB1 -locks

Locks:
Address TranHdl Lockname Type Mode Sts Owner …
0x… 9 0007000F000000000000000054 TableLock ..Z G 9 …
0x… 34 0007000F000000000000000054 TableLock .IN W 34 …
0x… 34 0000000E0000000100014060D6 VarLock ..S G 34 …
0x… 34 0000002C000000000000000054 TableLock .IN G 34 …
…etc…

db2pd -transactions shows the lock holder TranHdl 9 in WRITE state, with a 0x00000010 bit set in the
Tflags:

$ db2pd -db MYDB1 -transactions

Transactions:
Address AppHandl ... TranHdl ... State Tflag
 0x... 0 ... 4 ... READ 0x00000000 ...
 0x... 0 ... 5 ... READ 0x00000000 ...
 0x... 7 ... 9 ... WRITE 0x00000010 ...
 …etc…
 0x... 22 ... 34 ... READ 0x00000000 ...

Temporarily terminating read applications on an active standby database
Although an HADR active standby database can be used to run read-only workloads, its main role is to
replay log records in order to stay synchronized with the HADR primary in case it has to take over the
primary's role. In cases where the read-only workload is causing the standby to fall behind in its log
replay, you might want to temporarily terminate all of the connections to the standby to allow it to catch
up.

About this task

Use the following procedure to temporarily make an active standby inaccessible to readers.

Procedure

1. Issue the FORCE APPLICATION command. This terminates existing connections to the standby.
2. Change the virtual IP configuration. This prevents new connections to the standby.

What to do next

After the standby has caught up with the primary through log replay, you need to revert the virtual IP
configuration to its original setting to allow the connections to the active standby to resume.

Chapter 1. High availability 271

Reads on standby restrictions
You can use the reads on standby feature of high availability disaster recovery (HADR) to run read-only
workloads on an HADR active standby database. In addition to the read-only restriction, this feature has
other limitations that you should be aware of.

• If the replay-only window is enabled (DB2_HADR_ROS_AVOID_REPLAY_ONLY_WINDOW is set to OFF),
then the standby database is inaccessible to all application connections during the replay of DDL log
records or maintenance operations (during the replay-only window). If the replay-only window is
disabled (DB2_HADR_ROS_AVOID_REPLAY_ONLY_WINDOW is set to ON), then only the tables,
indexes or other objects that conflict with the DDL or maintenance operation are inaccessible to
application connections. For more details, see Replay-only window (and replay-only window avoidance)
on the active standby database.

• The standby is inaccessible to user connections when it is in the local catchup state.
• The reads on standby feature is not supported in Db2 pureScale environments.
• Only the uncommitted read (UR) isolation level is supported on the standby. Applications, statements,

or sub-statements that request a higher isolation level receive an error.
• The instance-level audit configuration is not replicated to the standby. You must ensure that the

instance-level auditing settings are the same on the primary and the standby by using the db2audit
tool.

• You cannot configure the standby as a federation server.
• The standby is inaccessible to user connections while it is actively replaying upgrade log records and is

considered in an upgrade in progress state.

Data and table types

• Declared global temporary tables (DGTTs) are not supported on the standby.
• Created global temporary tables (CGTTs) can be created only on the primary database. Their
definitions are replicated to the standby. However, access to CGTTs is not supported on the
standby.

• The creation of CGTTs on the primary triggers the replay-only window on the standby.
• Tables with the NOT LOGGED INITIALLY (NLI) attribute cannot be accessed on the standby.
• Column-organized tables cannot be accessed on the standby.
• XML and large object (LOB) data must be inline to be successfully queried.
• You cannot query the following data: long field (LF), a distinct type based on LF data types,

structured type columns, and varying-length string data (that is, data that resides in extended rows).

Operations

• Write operations, namely operations that modify permanent database objects such as catalogs,
tables, and indexes, are not permitted on the standby. In particular, you cannot perform any
operation that generates log records on the standby.

• Explain tools (the db2exfmt and db2expln commands) and the db2batch command are not
supported on the standby. If you want to analyze performance of the read-only workload, run these
tools on the primary, make the necessary optimizations to the workload on the primary, and then
move the optimized workload to the standby.

• Explicit binding of packages, explicit rebinding of packages, and implicit rebinding of packages are
not supported on the standby. Attempts to run static packages that refer to invalidated
objectsresult in an error. Instead, bind the package on the primary and run the package on the
standby after replicating the change to the standby.

• The self-tuning memory manager (STMM) is not supported on the standby. If you want to tune the
standby, either to suit running the read-only workload or to help the standby to perform well after
takeover, you must do so manually.

• Workload manager (WLM) DDL statements on the primary are replayed on the standby, but they are
not effective on the standby. However, any definitions in the database backup that you used to set
up the standby are active on a read-enabled standby.

272 IBM Db2 V11.5: Data Recovery and High Availability

• Creation and alteration of sequences is not supported on the standby. As well, you cannot use the
NEXT VALUE expression to generate the next value in a sequence.

• Runtime revalidation of invalid objects is not supported on the standby.
• Backup and archive operations are not supported on the standby.
• Quiesce operations are not supported on the standby.
• The db2ReadLog API cannot be called on the standby.
• You cannot use the automatic client reroute (ACR) if you enable the reads on standby feature.

Detecting and responding to system outages in a high availability solution
Implementing a high availability solution does not prevent hardware or software failures. However, having
redundant systems and a failover mechanism enables your solution to detect and respond to failures, and
reroute workload so that user applications are still able to do work.

Procedure

When a failure occurs, your database solution must do the following:
1. Detect the failure.

Failover software can use heartbeat monitoring to confirm the availability of system components. A
heartbeat monitor listens for regular communication from all the components of the system. If the
heartbeat monitor stops hearing from a component, the heartbeat monitor signals to the system that
the component has failed.

2. Respond to the failure: failover.
a) Identify, bring online, and initialize a secondary component to take over operations for the failed

component.
b) Reroute workload to the secondary component.
c) Remove the failed component from the system.

3. Recover from the failure.

If a primary database server fails, the first priority is to redirect clients to an alternate server or to
failover to a standby database so that client applications can do their work with as little interruption as
possible. Once that failover succeeds, you must repair whatever went wrong on the failed database
server so that is can be reintegrate it back into the solution. Repairing the failed database server may
just mean restarting it.

4. Return to normal operations.

Once the failed database system is repaired, you must integrate it back into the database solution. You
could reintegrate a failed primary database as the standby database for the database that took over as
the primary database when the failure occurred. You could also force the repaired database server to
take over as the primary database server again.

What to do next

Db2 database can perform some of these steps for you. For example:

• The Db2 High Availability Disaster Recovery (HADR) heartbeat monitor element, hadr_heartbeat, can
detect when a primary database has failed.

• Db2 client reroute can transfer workload from a failed database server to a secondary one.
• The Db2 fault monitor can restart a database instance that terminates unexpectedly.

Chapter 1. High availability 273

Administration notification log
The administration notification log (instance_name.nfy) is the repository from which information about
numerous database administration and maintenance activities can be obtained. A database administrator
can use this information to diagnose problems, tune the database, or simply monitor the database.

The Db2 database manager writes the following kinds of information to the administration notification log
on UNIX and Linux operating system platforms (on Windows operating system platforms, the event log is
used to record administration notification events):

• Status of Db2 utilities such REORG and BACKUP
• Client application errors
• Service class changes
• Licensing activity
• File paths
• Storage problems
• Monitoring activities
• Indexing activities
• Table space problems

Administration notification log messages are also logged to the db2diag log files using a standardized
message format.

Notification messages provide additional information to supplement the SQLCODE that is provided.

The administration notification log file can exist in two different forms:
Single administration notification log file

One active administration notification log file, named instance_name.nfy, that grows in size
indefinitely. This is the default form and it exists whenever the diagsize database manager
configuration parameter has the value of 0 (the default value for this parameter is 0).

Rotating administration notification log files
A single active log file (named instance_name.N.nfy, where N is the file name index that is a
continuously growing number starting from 0), although a series of administration notification log files
can be found in the location defined by the diagpath configuration parameter, each growing until
reaching a limited size, at which time the log file is closed and a new one is created and opened for
logging with an incremented file name index (instance_name.N+1.nfy). It exists whenever the
diagsize database manager configuration parameter has a nonzero value.

Note: Neither single nor rotating administration notification log files are available on the Windows
operating system platform.

You can choose which of these two forms exist on your system by appropriately setting the diagsize
database manager configuration parameter.

Configuration

The administration notification log files can be configured in size, location, and the types of events and
level of detail recorded, by setting the following database manager configuration parameters:
diagsize

The value of diagsize decides what form of administration notification log file will be adopted. If the
value is 0, a single administration notification log file will be adopted. If the value is not 0, rotating
administration notification log files will be adopted, and this nonzero value also specifies the total size
of all rotating diagnostic log files and all rotating administration notification log files. The instance
must be restarted for the new value of the diagsize parameter to take effect. See the "diagsize -
Diagnostic log file size configuration parameter" topic for complete details.

274 IBM Db2 V11.5: Data Recovery and High Availability

diagpath
Diagnostic information can be specified to be written to administration notification log files in the
location defined by the diagpath configuration parameter. See the "diagpath - Diagnostic data
directory path configuration parameter" topic for complete details.

notifylevel
The types of events and the level of detail written to the administration notification log files can be
specified with the notifylevel configuration parameter. See the "notifylevel - Notify level
configuration parameter" topic for complete details.

Note: If the diagsize configuration parameter is set to a non-zero value, that value specifies the total
size of the combination of all rotating administration notification log files and all rotating diagnostic log
files contained within the diagnostic data directory. For example, if a system with 4 database partitions
has diagsize set to 1 GB, the maximum total size of the combined notification and diagnostic logs can
reach is 4 GB (4 x 1 GB).

Detecting an unplanned outage
Before you can respond to the failure of a component, you must detect that the component failed. Db2
Data Server has several tools for monitoring the health of a database, or otherwise detecting that a
database has failed. You can configure these tools to notify you or take predefined actions when they
detect a failure.

Procedure

You can use the following tools to detect when a failure has occurred in some part of your Db2 database
solution:
Db2 fault monitor facility

The Db2 fault monitor facility keeps Db2 database instances up and running. When the Db2 database
instance to which a Db2 fault monitor is attached terminates unexpectedly, the Db2 fault monitor
restarts the instance. If your database solution is implemented in a cluster, you should configure the
cluster managing software to restart failed database instances instead of the Db2 fault monitor.

Heartbeat monitoring in clustered environments

Cluster managing software uses heartbeat messages between the nodes of a cluster to monitor the
health of the nodes. The cluster manager detects that a node has failed when the node stops
responding or sending any messages.

Monitoring Db2 High Availability Disaster Recovery (HADR) databases

The HADR feature has its own heartbeat monitor. The primary database and the standby database
each expect heartbeat messages from the other at regular intervals.

High availability disaster recovery (HADR) monitoring
Monitoring is an integral part of setting up and maintaining your HADR setup. The Db2 monitoring
interfaces provide a detailed picture of the configuration and health of your environment.

You can use a number of methods to monitor the status of your HADR databases. There are two preferred
ways of monitoring HADR:

• The db2pd command
• The MON_GET_HADR table function

In a Db2 pureScale environment, only these two interfaces return information about the HADR setup.

Alternatively, you can also use the following methods:

• The GET SNAPSHOT FOR DATABASE command
• The db2GetSnapshot API
• Other supported snapshot administrative views and table functions. There are some views and

functions that are deprecated or discontinued.

Chapter 1. High availability 275

db2pd command

This command retrieves information from the Db2 memory sets. You can issue this command from
either a primary database or a standby database. If you are using multiple standby databases and you
issue this command from a standby, it does not return any information about the other standbys. If
you issue this command from the primary, it returns information on all standbys

To view information about high availability disaster recovery for database HADRDB, you could issue
the following command:

 db2pd -db HADRDB -hadr

Assuming you issued that command from the primary, you would receive something like the following
sample output:

 Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = hostP.ibm.com
 PRIMARY_INSTANCE = db2inst
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = hostS1.ibm.com
 STANDBY_INSTANCE = db2inst
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
 HEARTBEAT_INTERVAL(seconds) = 25
 HADR_TIMEOUT(seconds) = 100
 TIME_SINCE_LAST_RECV(seconds) = 3
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

MON_GET_HADR table function

If you issue this query on the primary, it will return information on all standbys. If you want to issue
the MON_GET_HADR function against a standby database, be aware of the following points:

• You must enable reads on standby on the standby.
• If your HADR setup has multiple standby databases, the table function does not return any

information about any other standbys.
• HADR in a Db2 pureScale environment does not support reads on standby, so the table function

cannot be used on a standby.

276 IBM Db2 V11.5: Data Recovery and High Availability

For example, you could issue the following query on the primary database:

db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE,
 varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
 varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST
 from table (mon_get_hadr(NULL))"

Sample output is as follows:

HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
--------- ---------- ---------- ------------------- -------------------
PRIMARY 1 PEER hostP.ibm.com hostS1.ibm.com

1 record(s) selected.

GET SNAPSHOT FOR DATABASE command

This command collects status information and formats the output. The information that is returned is
a snapshot of the database manager operational status at the time that you issued the command.
HADR information is displayed in the output under the heading HADR status.

db2GetSnapshot API

This API collects database manager monitor information and writes it to a user-allocated data buffer.
The information that is returned is a snapshot of the database manager operational status at the time
that the API was called.

Other snapshot administrative views and table functions
You can use the following snapshot administrative views and table functions, which are not HADR
specific and return a wider set of information, to query a subsection of the HADR information:

• ADMIN_GET_STORAGE_PATHS
• MON_GET_TRANSACTION_LOG
• MON_GET_DATABASE
• MON_GET_MEMORY_POOL
• MON_GET_MEMORY_SET
• MON_GET_TRANSACTION_LOG

Responding to an unplanned outage
If your database management software or cluster management software detects that a database server
has failed, your database solution must respond to that failure as quickly and as smoothly as possible.
Your database solution must attempt to shield user applications from the failure by rerouting workload, if
possible, and failover to a secondary or standby database, if one is available.

Procedure

If your database or cluster management software detects that a database server has failed, you or your
database or cluster management software must do the following:
1. Identify, bring online, and initialize a secondary database server to take over operations for the failed

database server.

If you are using Db2 High Availability Disaster Recover (HADR) to manage primary and standby
database servers, HADR will manage keeping the standby database synchronized with the primary
database; and HADR will manage the takeover of the primary database by the standby database.

2. Reroute user application workload to the secondary database server.

Db2 client reroute can automatically reroute client application away from a failed database server to a
secondary database server previously identified and configured for this purpose.

3. Remove the failed database server from the system to repair it.

Once the user applications have been rerouted to a secondary or standby database server, the failed
database server can not handle any client application requests until it has been restarted or otherwise

Chapter 1. High availability 277

repaired. For example, if the cause of the failure on the primary database was that a database instance
terminated unexpectedly, the Db2 fault monitor facility will automatically restart it.

Performing an HADR failover operation
When you want the current standby database to become the new primary database because the current
primary database is not available, you can perform a forced takeover, or failover.

Before you begin

A takeover operation can only take place if the standby is in peer state, disconnected peer state, remote
catchup pending state, or remote catchup state. If the standby database is in any other state, an error will
be returned.

Note: You can make a standby database that is in local catchup state available for normal use by
converting it to a standard database. To do this, shut the database down by issuing the DEACTIVATE
DATABASE command, and then issue the STOP HADR command. Once HADR has been stopped, you must
complete a rollforward operation on the former standby database before it can be used. A database
cannot rejoin an HADR pair after it has been converted from a standby database to a standard database.
To restart HADR on the two servers, follow the procedure for initializing HADR.

If you have configured a peer window, shut down the primary before the window expires to avoid
potential transaction loss in any related failover.

About this task

The TAKEOVER HADR command with the BY FORCE can only be issued on the standby database. In Db2
pureScale environments, you can issue the command from any member in the standby cluster, including
non-replay members.

During a failover, the following steps occur:

1. A disabling message is sent to the primary, if it is connected.
2. After it receives the disabling message, the primary database is shut down and log writing is stopped.
3. Log shipping and log retrieval is stopped on the standby, which entails a risk of data loss.
4. All received logs (that is, the logs that are stored in the log path) are replayed on the standby.
5. Any open transactions are rolled back on the standby.
6. The standby's role changes to primary and the new primary database is opened for client connections.

Warning:

This procedure might cause a loss of data. Review the following information before performing this
emergency procedure:

• Ensure that the primary database is no longer processing database transactions. If the primary
database is still running, but cannot communicate with the standby database, executing a forced
takeover operation (issuing the TAKEOVER HADR command with the BY FORCE option) could result in
two primary databases. When there are two primary databases, each database will have different data,
and the two databases can no longer be automatically synchronized.

– Deactivate the primary database or stop its instance, if possible. (This might not be possible if the
primary system has hung, crashed, or is otherwise inaccessible.) After a failover operation is
performed, if the failed database is later restarted, it will not automatically assume the role of
primary database.

• The likelihood and extent of transaction loss depends on your specific configuration and circumstances:

– If the primary database fails while in peer state or disconnected peer state and the synchronization
mode is synchronous (SYNC), the standby database does not lose transactions that were reported
committed to an application before the primary database failed.

278 IBM Db2 V11.5: Data Recovery and High Availability

– If the primary database fails while in peer state or disconnected peer state and the synchronization
mode is near synchronous (NEARSYNC), the standby database can only lose transactions committed
by the primary database if both the primary and the standby databases fail at the same time.

– If the primary database fails while in peer state or disconnected peer state and the synchronization
mode is asynchronous (ASYNC), the standby database can lose transactions committed by the
primary database if the standby database did not receive all of the log records for the transactions
before the takeover operation was performed. The standby database can also lose transactions
committed by the primary database if the standby database crashes before it was able to write all the
received logs to disk.

Note: Peer window is not allowed in ASYNC mode, therefore the primary database can never enter
disconnected peer state in that mode.

– If the primary database fails while in remote catchup state and the synchronization mode is super
asynchronous (SUPERASYNC), the standby database can lose transactions committed by the primary
database if the standby database did not receive all of the log records for the transactions before the
takeover operation was performed. The standby database can also lose transactions committed by
the primary database if the standby database crashes before it was able to write all the received logs
to disk.

Note: Databases can never be in peer or disconnected peer state in SUPERASYNC mode.
– If the primary database fails while in remote catchup pending state, transactions that have not been

received and processed by the standby database are lost.

Note: Any log gap shown in the database snapshot represents the gap at the last time the primary
and standby databases were communicating with each other; the primary database might have
processed a very large number of transactions since that time.

• Ensure that any application that connects to the new primary (or that is rerouted to the new primary by
client reroute), is prepared to handle the following:

– There is data loss during failover. The new primary does not have all of the transactions committed
on the old primary. This can happen even when the hadr_syncmode configuration parameter is set
to SYNC. Because an HADR standby applies logs sequentially, you can assume that if a transaction in
an SQL session is committed on the new primary, all previous transactions in the same session have
also been committed on the new primary. The commit sequence of transactions across multiple
sessions can be determined only with detailed analysis of the log stream.

– It is possible that a transaction can be issued to the original primary, committed on the original
primary and replicated to the new primary (original standby), but not be reported as committed
because the original primary crashed before it could report to the client that the transaction was
committed. Any application you write should be able to handle that transactions issued to the original
primary, but not reported as committed on the original primary, are committed on the new primary
(original standby).

– Some operations are not replicated, such as changes to database configuration and to external UDF
objects.

• HADR does not interface with the Db2 fault monitor (db2fm) which can be used to automatically restart
a failed database. If the fault monitor is enabled, you should be aware of possible fault monitor action
on a presumably failed primary database.

Procedure

To fail over the primary role to the standby:
• Use the CLP to initiate a failover operation on the standby database.

a) Completely disable the failed primary database. When a database encounters internal errors,
normal shutdown commands might not completely shut it down. You might need to use operating
system commands to remove resources such as processes, shared memory, or network
connections.

b) Issue the TAKEOVER HADR command with the BY FORCE option on the standby database.

Chapter 1. High availability 279

In the following example the failover takes place on database LEAFS:

TAKEOVER HADR ON DB LEAFS BY FORCE

The BY FORCE option is required because the primary is expected to be offline.

If the primary database is not completely disabled, the standby database still has a connection to
the primary and sends a disabling message to the primary database forcing it to shut down. The
standby database still switches to the role of primary database whether or not it receives
confirmation from that the primary database has been shutdown.

• Call the db2HADRTakeover application programming interface (API) from an application.
• Open the task assistant for the TAKEOVER HADR command in IBM Data Studio.

Results

If, at the time of the failover, the standby has a connection to the primary (or any member on the primary
in a Db2 pureScale environment), it sends a disabling message to the old primary to prevent a split brain
scenario with dual primaries. You can clear the disabling message by doing one of the following:

• starting the failed primary as a standby (that is, reintegrating it)
• starting the failed primary as a primary using the BY FORCE option
• stopping HADR on the failed primary
• dropping the failed primary database
• restoring the database

What to do next

If you want to reintegrate the old primary as the new standby, the old primary's log streams cannot have
diverged from the new primary's. For more information on this procedure, see the Related links.

Switching database roles in high availability disaster recovery (HADR)
You can initiate a takeover operation on a high availability disaster recovery (HADR) standby to switch the
roles of the primary and standby databases.

Before you begin

You can only perform a role switch between the primary and standby databases if the databases are in
one of the following states (for Db2 pureScale environments, if every stream meets one of these
conditions):

• peer state
• remote catchup state, when the synchronization mode is SUPERASYNC
• assisted remote catchup state (Db2 pureScale environments only)

If the standby database is in any other state, an error message is returned. If member or group crash
recovery is in progress on the primary, the takeover operation fails.

About this task

The TAKEOVER HADR command can only be issued on the standby database. If the primary database is
not connected to the standby database when the command is issued, the takeover operation fails. In Db2
pureScale environments, you can issue the command from any member in the standby cluster, including
non-replay members.

During a role switch, the following occurs on the primary:

1. New connections are rejected, open transactions are rolled back, and all remaining logs are shipped to
the standby.

2. The primary changes to the standby role, and log receiving and replay is started.

280 IBM Db2 V11.5: Data Recovery and High Availability

And the following occurs on the standby:

1. After it has been confirmed that the old primary is now in the standby role, the standby changes its
role to primary.

2. Log receiving is stopped after the end of logs. This ensures no data loss.
3. All received logs are replayed.
4. The new primary database is opened for client connections.

Procedure

To switch the HADR database roles:
• Use the CLP to initiate a takeover operation on the standby database by issuing the TAKEOVER HADR

command without the BY FORCE option on the standby database.
• Call the db2HADRTakeover application programming interface (API) from an application.
• Open the task assistant for the TAKEOVER HADR command in IBM Data Studio.

Example

In the following example, the takeover operation takes place on the standby database LEAFS:

TAKEOVER HADR ON DB LEAFS

A log full error is slightly more likely to occur immediately following a takeover operation. To limit the
possibility of such an error, an asynchronous buffer pool flush is automatically started at the end of each
takeover. The likelihood of a log full error decreases as the asynchronous buffer pool flush progresses.
Additionally, if your configuration provides a sufficient amount of active log space, a log full error is even
more unlikely. If a log full error does occur, the current transaction is aborted and rolled back.

Note: Issuing the TAKEOVER HADR command without the BY FORCE option causes any applications
currently connected to the HADR primary database to be forced off. This action is designed to work in
coordination with automatic client reroute to assist in rerouting clients to the new HADR primary
database after a role switch. However, if the forcing off of applications from the primary would be
disruptive in your environment, you might want to implement your own procedure to shut down such
applications prior to performing a role switch, and then restart them with the new HADR primary database
as their target after the role switch is completed.

Reintegrating a database after a takeover operation
If you issued a takeover operation in a high availability disaster recovery (HADR) environment because
the primary database failed, you can bring the failed database back online and use it as a standby
database or return it to its status as primary database.

Before you begin

Reintegration succeeds only if the old primary's log streams did not diverge from the new primary's; in a
Db2 pureScale environment, if any log stream diverges, reintegration fails. In particular, HADR requires
that the original primary database did not apply any logged operation that was never reflected on the
original standby database before it took over as the new primary database. If this divergence did occur,
you can restart the original primary database as a standby database by restoring a backup image of the
new primary database or by initializing a split mirror.

Normally, failover is performed only when the old primary is offline. But in some scenarios, it might be still
online (in a Db2 pureScale environment, it might be online on some members). For example, it might have
become inaccessible to clients, making a failover necessary. Do not run the DEACTIVATE DATABASE
command on the old primary before reintegration because deactivation modifies the log stream, making
the old primary's log stream incompatible to the new primary's. Instead, kill any remaining members on
the old primary.

Because it might be necessary to kill an old primary database, it is recommended that only one HADR
database be created in a Db2 instance, so that the kill does not impact other databases.

Chapter 1. High availability 281

In a Db2 pureScale environment, the database must be offline on all of the old primary's members. The
CF does not need to be shut down and restarted; any leftover CF data structure for this database is
cleaned upon reintegration.

About this task

Successful return of the START HADR command does not indicate that reintegration succeeded; it means
only that the database started. Reintegration is still in progress. If reintegration subsequently fails, the
database shuts itself down. You should monitor standby states by using the db2pd command or the
MON_GET_HADR table function to make sure that the standby database stays online and proceeds with
the normal state transition. If necessary, you can check the administration notification log file and the
db2diag log file to find out the status of the database.

Procedure

To reintegrate the failed primary database into the HADR pair as the new standby database:
1. Repair the system where the original primary database is located. This could involve repairing failed

hardware or rebooting the crashed operating system.
2. Restart the failed primary database as a standby database.

In the following example, database LEAFS is started as a standby database:

 START HADR ON DB LEAFS AS STANDBY

Note: In a Db2 pureScale environment, make sure that you issue the command from the member that
you want to designate as the preferred replay member

What to do next

After the original primary database rejoins the HADR pair as the standby database, you can choose to
initiate a failback operation to switch the roles of the databases and return the original primary database
to its initial role. To perform this failback operation, issue the following command on the standby
database:

TAKEOVER HADR ON DB LEAFS

Note:

1. If the HADR databases are not in peer state or the pair is not connected, this command fails.
2. Open sessions on the primary database are forced closed and inflight transactions are rolled back.
3. When you are switching the roles of the primary and standby databases, you cannot specify the BY
FORCE option of the TAKEOVER HADR command.

282 IBM Db2 V11.5: Data Recovery and High Availability

Chapter 2. Data recovery
Recovery is the rebuilding of a database or table space after a problem such as media or storage failure,
power interruption, or application failure. If you have backed up your database, or individual table spaces,
you can rebuild them should they become damaged or corrupted in some way.

There are four types of recovery:

• Crash recovery protects a database from being left in an inconsistent, or unusable, state when
transactions (also called units of work) are interrupted unexpectedly.

• Disaster recovery consist of the process to restore a database in the event of a fire, earthquake,
vandalism, or other catastrophic events.

• Version recovery is the restoration of a previous version of the database, using an image that was
created during a backup operation.

• Rollforward recovery can be used to reapply changes that were made by transactions that were
committed after a backup was made.

The Db2 database manager starts crash recovery automatically to attempt to recover a database after a
power interruption. You can use version recovery or rollforward recovery to recover a damaged database.

Developing a backup and recovery strategy
A database can become unusable because of hardware or software failure, or both. You might, at one
time or another, encounter storage problems, power interruptions, or application failures, and each
failure scenario requires a different recovery action. Protect your data against the possibility of loss by
having a well rehearsed recovery strategy in place.

Some of the questions that you should answer when developing your recovery strategy are:

• Will the database be recoverable?
• How much time can be spent recovering the database?
• How much time will pass between backup operations?
• How much storage space can be allocated for backup copies and archived logs?
• Will table space level backups be sufficient, or will full database backups be necessary?
• Should I configure a standby system, either manually or through high availability disaster recovery

(HADR)?

A database recovery strategy should ensure that all information is available when it is required for
database recovery. It should include a regular schedule for taking database backups and, in the case of
partitioned database environments, include backups when the system is scaled (when database partition
servers or nodes are added or dropped). Your overall strategy should also include procedures for
recovering command scripts, applications, user-defined functions (UDFs), stored procedure code in
operating system libraries, and load copies.

Different recovery methods are discussed in the sections that follow, and you will discover which recovery
method is best suited to your business environment.

The concept of a database backup is the same as any other data backup: taking a copy of the data and
then storing it on a different medium in case of failure or damage to the original. The simplest case of a
backup involves shutting down the database to ensure that no further transactions occur, and then simply
backing it up. You can then recreate the database if it becomes damaged or corrupted in some way.

The recreation of the database is called recovery. Version recovery is the restoration of a previous version
of the database, using an image that was created during a backup operation. Rollforward recovery is the
reapplication of transactions recorded in the database log files after a database or a table space backup
image has been restored.

© Copyright IBM Corp. 2016, 2020 283

Crash recovery is the automatic recovery of the database if a failure occurs before all of the changes that
are part of one or more units of work (transactions) are completed and committed. This is done by rolling
back incomplete transactions and completing committed transactions that were still in memory when the
crash occurred.

Recovery log files and the recovery history file are created automatically when a database is created
(Figure 9 on page 284). These log files are important if you need to recover data that is lost or damaged.

Each database includes recovery logs, which are used to recover from application or system errors. In
combination with the database backups, they are used to recover the consistency of the database right up
to the point in time when the error occurred.

The recovery history file contains a summary of the backup information that can be used to determine
recovery options, if all or part of the database must be recovered to a given point in time. It is used to
track recovery-related events such as backup and restore operations, among others. This file is located in
the database directory.

The table space change history file, which is also located in the database directory, contains information
that can be used to determine which log files are required for the recovery of a particular table space.

You cannot directly modify the recovery history file or the table space change history file; however, you
can delete entries from the files using the PRUNE HISTORY command. You can also use the
rec_his_retentn database configuration parameter to specify the number of days that these history
files will be retained.

Figure 9. Database recovery files

Data that is easily re-created can be stored in a non-recoverable database. This includes data from an
outside source that is used for read-only applications, and tables that are not often updated, for which the
small amount of logging does not justify the added complexity of managing log files and rolling forward
after a restore operation. If both the logarchmeth1 and logarchmeth2 database configuration
parameters are set to OFF then the database is Non-recoverable. This means that the only logs that are
kept are those required for crash recovery. These logs are known as active logs, and they contain current
transaction data. Version recovery using offline backups is the primary means of recovery for a non-
recoverable database. (An offline backup means that no other application can use the database when the
backup operation is in progress.) Such a database can only be restored offline. It is restored to the state it
was in when the backup image was taken and rollforward recovery is not supported.

Data that cannot be easily recreated should be stored in a recoverable database. This includes data
whose source is destroyed after the data is loaded, data that is manually entered into tables, and data
that is modified by application programs or users after it is loaded into the database. Recoverable
databases have the logarchmeth1 or logarchmeth2 database configuration parameters set to a value
other than OFF. Active logs are still available for crash recovery, but you also have the archived logs,

284 IBM Db2 V11.5: Data Recovery and High Availability

which contain committed transaction data. Such a database can only be restored offline. It is restored to
the state it was in when the backup image was taken. However, with rollforward recovery, you can roll the
database forward (that is, past the time when the backup image was taken) by using the active and
archived logs to either a specific point in time, or to the end of the active logs.

Recoverable database backup operations can be performed either offline or online (online meaning that
other applications can connect to the database during the backup operation). Online table space restore
and rollforward operations are supported only if the database is recoverable. If the database is non-
recoverable, database restore and rollforward operations must be performed offline. During an online
backup operation, rollforward recovery ensures that all table changes are captured and reapplied if that
backup is restored.

If you have a recoverable database, you can back up, restore, and roll individual table spaces forward,
rather than the entire database. When you back up a table space online, it is still available for use, and
simultaneous updates are recorded in the logs. When you perform an online restore or rollforward
operation on a table space, the table space itself is not available for use until the operation completes,
but users are not prevented from accessing tables in other table spaces.

Automated backup operations

Since it can be time-consuming to determine whether and when to run maintenance activities such as
backup operations, you can use automatic maintenance. With automatic maintenance, you specify your
maintenance objectives, including when automatic maintenance can run. Db2 then uses these objectives
to determine if the maintenance activities need to be done and then runs only the required maintenance
activities during the next available maintenance window (a user-defined time period for the running of
automatic maintenance activities).

Note: You can still perform manual backup operations when automatic maintenance is configured. Db2
will only perform automatic backup operations if they are required.

Deciding how often to back up
Your recovery plan should allow for regularly scheduled backup operations, because backing up a
database requires time and system resources. Your plan might include a combination of full database
backups and incremental backup operations. Also, the frequency and types of backups you make affect
your database recovery time.

Take full database backups regularly, even if you archive the logs to allow for rollforward recovery. To
recover a database, you can use either a full database backup image that contains all of the table space
backup images, or you can rebuild the database by using selected table space images. Table space
backup images are also useful for recovering from an isolated disk failure or an application error. In
partitioned database environments, you need to restore only the table spaces that reside on database
partitions that failed. You do not need to restore all of the table spaces or all of the database partitions.

Although full database backups are no longer required for database recovery because you can rebuild a
database from table space images, it is still good practice to occasionally take a full backup of your
database.

You should also consider not overwriting backup images and logs, saving at least two full database
backup images and their associated logs as an extra precaution.

If the amount of time needed to apply archived logs when recovering and rolling an active database
forward is a major concern, consider the cost of backing up the database more frequently. More frequent
backups reduce the number of archived logs you need to apply when rolling forward.

Online and offline backup considerations

You can initiate a backup operation while the database is either online or offline. If it is online, other
applications or processes can connect to the database, as well as read and modify data while the backup
operation is running. If the backup operation is running offline, other applications cannot connect to the
database.

Chapter 2. Data recovery 285

To reduce the amount of time that the database is not available, consider using online backup operations.
Online backup operations are supported only if rollforward recovery is enabled. If rollforward recovery is
enabled and you have a complete set of recovery logs, you can restore the database, should the need
arise. You can use an online backup image for recovery only if you have the logs that span the time during
which the backup operation was running.

Offline backup operations are faster than online backup operations, since there is no contention for the
data files.

Selective table space backup considerations

You can use the backup utility to back up only selected table spaces. If you use DMS table spaces, you
can store different types of data in their own table spaces to reduce the time required for backup
operations. You can keep table data in one table space, long field and LOB data in another table space,
and indexes in yet another table space. If you separate your data into different table spaces and a disk
failure occurs, the disk failure is likely to affect only one of the table spaces. Restoring or rolling forward
one of these table spaces takes less time than it would take to restore a single table space that contains
all of the data.

You can also save time by taking backups of different table spaces at different times, as long as the
changes to them are not the same. So, if long field or LOB data is not changed as frequently as the other
data, you can back up these table spaces less frequently. If long field and LOB data are not required for
recovery, you can also consider not backing up the table space that contains that data. If the LOB data
can be reproduced from a separate source, choose the NOT LOGGED option when creating or altering a
table to include LOB columns.

If you keep your long field data, LOB data, and indexes in separate table spaces, but do not back them up
together, consider the following point: If you back up a table space that does not contain all of the table
data, you cannot perform point-in-time rollforward recovery on that table space. All the table spaces that
contain any type of data for a table must be rolled forward simultaneously to the same point in time.

Table reorganization considerations

If you reorganize a table, you should back up the affected table spaces after the operation completes. If
you have to restore the table spaces, you will not have to roll forward through the data reorganization.

Table space modification status considerations

You can also make more informed decisions about whether to back up a table space by checking its
modification status. The db2pd -tablespaces trackmodstate command and the
tbsp_trackmode_state monitor element displays the status of the table space with respect to the last
or next backup. You can use this information to determine whether the table space was modified or if the
table space needs to be backed up.

Database recovery time considerations

The time required to recover a database is made up of two parts:

• The time required to complete the restoration of the backup.
• If the database is enabled for forward recovery, the time required to apply the logs during the

rollforward operation

When formulating a recovery plan, take these recovery costs and their impact on your business
operations into account. Testing your overall recovery plan assists you in determining whether the time
required to recover the database is reasonable, given your business requirements. Following each test,
you might want to increase the frequency with which you take a backup. If rollforward recovery is part of
your strategy, this increased backup frequency reduces the number of logs that are archived between
backups and, as a result, reduces the time required to roll the database forward after a restore operation.

286 IBM Db2 V11.5: Data Recovery and High Availability

Storage considerations for recovery
When deciding which recovery method to use, consider the storage space required. Backup and archived
log file compression can help reduce the storage cost in your database environment.

The version recovery method requires space to hold the backup copy of the database and the restored
database. The roll-forward recovery method requires space to hold the backup copy of the database or
table spaces, the restored database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you might consider placing this data into a
separate table space. This action affects your storage space considerations, as well as affect your plan for
recovery. With a separate table space for long field and LOB data, and knowing the time required to back
up long field and LOB data, you might decide to use a recovery plan that only occasionally saves a backup
of this table space. You can also choose, when creating or altering a table to include LOB columns, not to
log changes to those columns. This action reduces the size of the required log space and the
corresponding archived log file space.

To prevent media failure from destroying a database and your ability to restore it, keep the database
backup, the database logs, and the database itself on different devices. For this reason, it is highly
recommended that you use the newlogpath configuration parameter to put database logs on a separate
device once the database is created.

The database logs can use up a large amount of storage. If you plan to use the roll-forward recovery
method, you must decide how to manage and compress the archived logs. Your choices are:

• Specify an archived log file method using the LOGARCHMETH1 or LOGARCHMETH2 configuration
parameters.

• Enable archived log file compression with the LOGARCHCOMPR1 and LOGARCHCOMPR2 configuration
parameters.

• Manually copy the logs to a storage device or directory other than the database log path directory after
they are no longer in the active set of logs.

• Use a user exit program to copy these logs to another storage device in your environment.

Backup compression
In addition to the storage savings you can achieve through row compression in your active database, you
can also use backup compression to reduce the size of your database backups.

Whereas row compression works on a table-by-table basis, when you use compression for your backups,
all of the data in the backup image is compressed, including catalog tables, index objects, LOB objects,
auxiliary database files and database meta-data.

You can use backup compression with tables that use row compression. Keep in mind, however, that
backup compression requires additional CPU resources and extra time. It may be sufficient to use table
compression alone to achieve a reduction in your backup storage requirements. If you are using row
compression, consider using backup compression only if storage optimization is of higher priority than the
extra time it takes to perform the backup.

Tip: Consider using backup compression only on table spaces that do not contain compressed data if the
following conditions apply:

• Data and index objects are separate from LOB and long field data, and
• You use row and index compression on the majority of your data tables and indexes, respectively

To use compression for your backups, use the COMPRESS option on the BACKUP DATABASE command.

Archived log file compression
As of Db2 V10.1, you can compress archived log files. This capability, in addition to data and index
compression, along with backup compression, reduces the amount of disk space required for your
database environment.

Archived log files are the third major space consumer for roll-forward recoverable databases. Archived log
files contain a significant amount of data and these archives can grow quickly. If modified data is already

Chapter 2. Data recovery 287

in compressed tables, logging is reduced by virtue of including compressed record images in log records.
Compression of archived log files further increases storage savings, even in these environments.

To use compression for your archived log files, you can use the UPDATE DB CFG command to set the
logarchcompr1 and logarchcompr2 configuration parameters to ON.

Restrictions

• Archived log file compression does not take effect under the following conditions.

– The corresponding archived log file method is not set to DISK, TSM, or VENDOR. When the
corresponding archived log file method is set as described, the log files are physically moved out of
the active log path, or the mirror log path.

– Whenever archived log file compression is enabled, but the corresponding log archiving method is set
to OFF, LOGRETAIN or USEREXIT, archived log file compression has no effect. Any update to the
logarchmeth1 and logarchmeth2 or the logarchcompr1 and logarchcompr2 database
configuration parameters which results in such a scenario returns a warning, SQL1663W.

Note: When the database is activated, SQL1663W is not returned when setting or changing archived
log file compression database configuration parameters. Instead, SQL1363W is returned, which is a
higher priority message. If the database is not activated, the SQL1663W warning message is
returned.

• Manual archiving and retrieval with db2adutl.

– The db2adutl utility does not perform compression or decompression during UPLOAD or EXTRACT
operations. Movement of compressed log files to and from the archive location is fully supported by
db2adutl.

– If logs are uploaded to Tivoli Storage Manager with db2adutl, and you want to compress archived
log files, archived log file compression must be enabled when the logs are archived to the disk
location, before db2adutl picks them up. If compressed logs are retrieved manually with
db2adutl, they are decompressed on first access.

• Archived log file compression is not supported when raw devices are used for database logging.

– Archived log file compression is not supported when either the logpath or the newlogpath
database configuration parameters point to a raw device. Any database configuration update that
results in archived log file compression being enabled while logpath or newlogpath database
configuration parameters point to raw devices fails, SQL1665N.

• When enabling archived log file compression using the logarchcompr1 and logarchcompr2
database configuration parameters, logs already stored in a backup image are not affected.

Hardware accelerated backup and log file compression
By using the nest accelerator NX842 of POWER 7+ and POWER 8 processors, you can achieve hardware
compression for backup images and log archive files on AIX .

Prerequisites

• This solution is only supported on AIX. Minimum AIX levels are AIX V7 TL3 SP3 and AIX V6 TL9 SP3.
• Active Memory Expansion (AME) has to be licensed but must not be enabled. This is a temporary

restriction and not a technical limitation. In addition, Active Memory Sharing (AMS) has to be
deactivated on the logical partition (LPAR).

• The CPU has to be a POWER 7+ or later.
• The following minimum firmware levels are recommended for POWER 8: FW820.50, FW830.30 or

FW840.40.

Remember: Provided that the kernel requirements are met, it is possible to recover using the backup
images and log files that were compressed with NX842 on previous POWER® versions.

Advantages of using this solution

288 IBM Db2 V11.5: Data Recovery and High Availability

• A very fast compression can be achieved through the special hardware compression unit NX842 on
POWER CPUs. The general CPU resources are not used for this compression.

• The NX842 compression units are typically not used for AME on database servers since deep row
compression, adaptive compression and index compression can make memory compression inefficient.

• The compression algorithm in hardware provides faster compression than the common Db2
compression.

How to use this as backup

To start a backup using the hardware compression, it is necessary to specify the library: backup
database databasename compress comprlib libdb2nx842.a

The backups can be compressed by default with NX842. To achieve this the registry variable
DB2_BCKP_COMPRESSION has to be set to NX842. Afterwards, issue the command: backup database
databasename compress. The image will then be compressed using the NX842 hardware compression.

Using the solution for log archive compression

The NX842 hardware compression can also be used for log archive compression. To activate this, change
the database configuration parameter LOGARCHCOMPR1 or LOGARCHCOMPR2 to NX842 using this
command: update database configuration for databasename using LOGARCHCOMPR1
NX842

Notice: These two parameters can still take different values. For example, the common Db2 compression
can be used for LOGARCHCOMPR1 and NX842 compression for LOGARCHCOMPR2:

update database configuration for databasename using LOGARCHCOMPR1 ON
update database configuration for databasename using LOGARCHCOMPR2 NX842

Keeping related data together
You should group related data together to aid in data recovery.

In the process of designing your database, you will develop an understanding of the relationships that
exist between tables. These relationships can be expressed:

• At the application level, when transactions update more than one table
• At the database level, where referential integrity exists between tables, or where triggers on one table

affect another table.

You should consider these relationships when developing a recovery plan. You will want to back up
related sets of data together. Such sets can be established at either the table space or the database level.
By keeping related sets of data together, you can recover to a point where all of the data is consistent.
This is especially important if you want to be able to perform point-in-time rollforward recovery on table
spaces.

Backup and restore operations between different operating systems and hardware
platforms

Db2 database systems support some backup, restore, and rollforward operations between different
operating systems and hardware platforms.

The supported platforms for Db2 backup, restore, and rollforward operations can be grouped into one of
three families:

• Big-endian Linux and UNIX
• Little-endian Linux and UNIX
• Windows

A database backup from one platform family can only be restored and rolled forward on any system
within the same platform family.

The following table shows each of the Linux and UNIX platforms Db2 supports and indicates whether the
platforms are big endian or little endian:

Chapter 2. Data recovery 289

Table 23. Endianness of supported Linux and UNIX operating systems Db2 supports

Platforms Support Restrictions Endianness

AIX Big endian

HP on IA64 Only supported for Db2 Version
10.5 images or lower

Big endian

Linux on zSeries Big endian

Linux on IBM Power Systems Only supported for Db2 Version
10.5 images or lower

Big endian

Linux on IBM Power Systems for
Little Endian

Little endian

Linux on IA-64 Little endian

Linux on AMD64 and Intel EM64T Little endian

32-bit Linux on x86 Only supported for Db2 Version
10.5 images or lower

Little endian

Note: A backup from a newer version of Db2 cannot be restored into an earlier version of Db2. A backup
from an earlier version of Db2 can be restored into a later version of Db2 (an UPGRADE operation will be
triggered automatically at the end of the restore operation to update the database to the current version).
For example, you cannot restore a Db2 Version 10.5 backup into a Db2 Version 10.1 database system.
However, you can restore a Db2 Version 10.1 backup into a Db2 Version 10.5 database system (please
see Planning to upgrade Db2 servers for pre-requisites and tasks required to achieve successful
upgrades). A Rollforward operation through recovery log files that were generated on an earlier version of
Db2 is not supported. Please see Recovering Through a Database Upgrade for more details on recovering
through database upgrade operations. Please see Compatibility between DB2 for LUW Version 11.1 Mod-
Packs and Fix-Packs for details of backup, restore, and rollforward support through modification packs.

Note: You can restore a database from a backup image that was taken on a 32-bit level into a 64-bit level,
but not reversibly. The Db2 backup and restore utilities should be used to back up and restore your
databases. Moving a file set from one machine to another is not recommended as this can compromise
the integrity of the database.

In situations where certain backup and restore combinations are not allowed, you can move tables
between Db2 databases using other methods:

• The db2move command
• The export command followed by the import or the load command

Note: Database configuration parameters are set to their defaults if the values in the backup are outside
of the allowable range for the environment in which the database is being restored.

Log stream merging and log file management in a Db2 pureScale environment
In a Db2 pureScale environment, each member maintains its own set of transaction log files (that is, a log
stream) on the shared disk, each set in a separate log path. The log files for a member contain a history of
all data changes that occurred on that member.

Multiple applications, each accessing a different member simultaneously, might generate dependent
transactions during run time. A dependency between two transactions can occur if, for example, both
transactions change the same row. To effectively interpret the log records, the Db2 data server must
examine the records from all log streams and order the records so that they reflect the order of the
updates that occurred at run time. This ordering is known as a log stream merge operation. Several
operation types in a Db2 pureScale environment require log stream merges; these include (among others)
group crash recovery, database roll-forward operations, and table space roll-forward operations.

290 IBM Db2 V11.5: Data Recovery and High Availability

http://www-01.ibm.com/support/docview.wss?uid=swg22003131
http://www-01.ibm.com/support/docview.wss?uid=swg22003131

Logging configuration parameters in a Db2 pureScale environment

Table 24 on page 291 shows which logging-related database configuration parameters are global in
scope and which parameters are dynamically updatable.

Table 24. Logging-related database configuration parameters

Parameter Global? Dynamically updatable?

archretrydelay Yes Yes

blk_log_dsk_ful No Yes

failarchpath Yes Yes

logarchcompr1 Yes Yes

logarchcompr2 Yes Yes

logarchmeth1 Yes Yes

logarchmeth2 Yes Yes

logarchopt1 Yes Yes

logarchopt2 Yes Yes

logbufsz No Yes

logfilsiz Yes No

logprimary Yes No

logsecond Yes Yes

max_log No Yes

mirrorlogpath 1 Yes No

newlogpath 1 Yes No

num_log_span No Yes

numarchretry Yes Yes

overflowlogpath Yes Yes

page_age_trgt_grc Yes No

page_age_trgt_mrc Yes No

softmax2 Yes No

vendoropt Yes Yes
1 The first member that connects to or activates the database processes the changes to this log path
parameter. The Db2 database manager verifies that the path exists and that it has both read and write
access to that path. It also creates member-specific subdirectories for the log files. If any one of these
operations fails, the Db2 database manager rejects the specified path and brings the database online
using the old path. If the database manager accepts the specified path, the new value is propagated to
each member. If a member fails while trying to switch to the new path, subsequent attempts to activate
the database or to connect to it fails, and SQL5099N is returned. All members must use the same log
path.
2

Important: The softmax database configuration parameter is deprecated and might be removed in a
future release. For more information, see Some database configuration parameters are deprecated in
What's New for Db2 Version 10.5.

Chapter 2. Data recovery 291

Retrieving logs for a log stream merge operation in a Db2 pureScale environment

A subdirectory is created in the path for retrieved log files. The subdirectory has the following format:
log_path/LOGSTREAMxxxx, where log_path represents the log path, overflow log path, or mirror log path,
and xxxx is a 4-digit log stream identifier. (The log stream identifier is not necessarily equivalent to the
associated member ID.) Within this subdirectory, if a member requires log retrieval, the Db2 database
manager creates another level of subdirectories for retrieved logs from each member. For example, if you
specify an overflow log path of /home/dbuser/overflow/ on a 3-member system, and an application
on member 0 must retrieve logs that are owned by other members, the path for member 0 is /home/
dbuser/overflow/NODE0000/LOGSTREAM0000, and subdirectories under this path contain retrieved
logs that are owned by other members, as shown in the following example:

Member 0 retrieves its own logs here:
 /home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0000
Member 0 retrieves logs that belong to member 1 here:
 /home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0001
Member 0 retrieves logs that belong to member 2 here:
 /home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0002

Note: Do not manually insert log files in to these retrieve subdirectories. If you want to manually retrieve
log files, use the overflow log path instead.

When reading archived log files that are owned by other members, a member might need to retrieve log
files in to its own log path or overflow log path. In this case, the log stream merge operation creates a
db2logmgr engine dispatchable unit (EDU) for each log stream, as needed.

As mentioned earlier, there are three paths that can be used to store log files that are owned by other
members, as shown in the following list:

1. If you set the overflowlogpath database configuration parameter, the overflow log path is used.

Tip: You can use ROLLFORWARD DATABASE and RECOVER DATABASE command options to specify an
alternative overflow log path; the values of these options override the database configuration for
purposes of the single recovery operation.

2. The primary log path
3. If you set the mirrorlogpath database configuration parameter, the mirror log path is used.

If the Db2 database manager is unable to store a log file in the first path, it attempts to use the next path
in the list. If none of these paths is available, the utility that invoked the log stream merge operation
returns an error that is specific to that utility.

Output from the GET DATABASE CONFIGURATION command in a Db2 pureScale environment identifies
each log path followed by the name of the member. For example, if the mirror log path was set to /home/
dbuser/mirrorpath/, for member 2, the output displays /home/dbuser/mirrorpath/NODE0000/
LOGSTREAM0002.

If you must manually retrieve log files that are owned by other members, ensure that the database
manager can access the log files by using the same directory structure that is automatically created. For
example, to make logs from member 2 available in the overflow log path of member 1, place the logs in
the /home/dbuser/overflow/NODE0000/LOGSTREAM0001/LOGSTREAM0002 directory.

Retrieved log files are automatically deleted when they are no longer needed. Subdirectories that were
created during a log stream merge operation are retained for future use.

Detection of missing logs during a log stream merge operation

If you accidentally deleted, moved, or archived and lost a log file that is required for a recovery operation,
you can roll-forward recover the database to the last consistent point before the missing log file.

If, during a log stream merge operation, the Db2 database manager determines that there is a missing log
file in one of the log streams, an error is returned. The roll-forward utility returns SQL1273N; the
db2ReadLog API returns SQL2657N.

292 IBM Db2 V11.5: Data Recovery and High Availability

Figure 10 on page 293 shows an example of how two members could write log records to the log files in
their active log stream. Each log file is represented by a box.

Figure 10. Log files in a Db2 pureScale environment

Consider a scenario where only log file 4 from log stream 1 is missing, a roll-forward operation to time A
succeeds while roll-forward operations to time B, time C, or to the END OF LOGS fail. The ROLLFORWARD
command returns SQL1273N because log file 4 is not available. Furthermore, since the log records in files
2 and 3 on log stream 0 were written during the same time period as the beginning of log file 4 on log
stream 1, the roll-forward operation cannot process log files 2 and 3 until log file 4 from log stream 1 is
available. The result is that the roll-forward operation stops at time A, and any subsequent roll-forward
operations cannot proceed beyond time A until log 4 from stream 1 becomes available.

Consider another scenario where only log file 4 from log stream 0 is missing during a roll-forward
operation. If you issue a ROLLFORWARD command with the END OF LOGS option (or anytime after time
B), the operation will stop at time B and will return SQL1273N because log file 4 on stream 0 is missing. A
roll-forward operation can replay log records from files 2 and 3 on log stream 0 and some logs from file 4
on stream 1 up to time B. The roll-forward operation must stop at time B even though additional logs from
stream 1 are available because the log merge process requires that all the logs from all the streams be
available.

If you can find the missing log file, make it available and reissue the ROLLFORWARD DATABASE
command. If you cannot find the missing log file, issue the ROLLFORWARD DATABASE...STOP command
to complete the roll-forward operation at the last consistent point just before the missing log file.

Although missing log detection ensures that database corruption does not occur as a result of missing log
files, the presence of missing log files prevents some transactions from being replayed and, as a result,
data loss could occur if the missing log files are not located.

Required resources

Log stream merge operations require additional EDUs. During database activation, one db2lfr EDU is
created on each member. When a log read operation that requires a log stream merge is initiated, one
db2shred EDU and one db2lfr EDU is created for each log stream. Although each db2lfr-db2shred
group allocates its own set of log page and log record buffers, this is not a significant amount of additional
memory or system resources; approximately 400 KB is allocated for each member that is involved in the
log stream merge.

During a log stream merge operation, a member retrieves log files that are owned by other members into
its overflow log path, primary log path, or mirror log path. In a Db2 pureScale environment, ensure that
there is adequate free disk space in the retrieval path before starting a roll-forward operation. This allows
the operation to retrieve the larger number of files from the archive, as required in a Db2 pureScale
environment, without affecting performance. Use the following rule-of-thumb to calculate how much
space you need to retrieve the active log files for all members: (logprimary + logsecond) * number of
members.

Chapter 2. Data recovery 293

Examples

• Update the newlogpath global database configuration parameter:

db2 update db cfg for db mydb using newlogpath /home/dbuser/logdir

• Update the max_log per-member database configuration parameter on a single member:

db2 update db cfg for db mydb member 1 using max_log 5

• Update the primary log path:

db2 connect to mydb
db2 update db cfg for mydb using newlogpath /home/dbuser/newlogpath
db2 get db cfg for mydb
...
Changed path to log files (NEWLOGPATH) = /home/dbuser/newlogpath/NODE0000/
LOGSTREAM0000/
Path to log files = /home/dbuser/dbuser/NODE0000/
LOGSTREAM0000/
...

The change does not take effect because the member is still active.

db2 terminate
db2 deactivate db mydb
db2 connect to mydb
db2 get db cfg for mydb
...
Changed path to log files (NEWLOGPATH) =
Path to log files = /home/dbuser/newlogpath/NODE0000/
LOGSTREAM0000/
...

Each member uses the /home/dbuser/newlogpath/NODE0000/LOGSTREAMxxxx log path, where
xxxx is the log stream ID of the log stream that uses the path.

• Set a new primary log path while restoring a backup image:

db2 restore db mydb newlogpath '/home/dbuser/newlogpath' without prompting

Log sequence numbers in Db2 pureScale environments
Db2 databases use the log sequence number (LSN), a 64-bit identifier, to determine the order of the
operations that generated the log records.

The LSN is an ever-increasing value. Each member writes to its own set of log files (a log stream), and the
LSN within a single log stream is a unique number.

Because LSNs are generated independently on each member and there are multiple log streams, it is
possible to have duplicate LSN values across different log streams. A log record identifier (LRI) is used to
identify log records across log streams; each log record in any log stream in the database is assigned a
unique LRI. Use the db2pd command to determine which LRI is being processed by a recovery operation.

Monitoring backup and restore performance with db2pd -barstats
The db2pd command can be used with the -barstats parameter to retrieve monitoring information
about the performance of backup and restore operations.

About this task

This task is broken into two general steps:

• Finding the Agent Engine Dispatchable Unit (EDU) ID of a running backup or restore operation.
• Running the db2pd command with the -barstats option to retrieve the performance monitoring

information.

294 IBM Db2 V11.5: Data Recovery and High Availability

Procedure

1. From the command line tool, run the db2pd command with the -apinfo option to find the AppHandl
value with an application status of either PerformingBackup or RestoringDatabase.
For example, the following code shows an AppHandl value of 83:

$ db2pd -db dpf111 -alldbpartitionnums -apinfo | grep -B20 "PerformingBackup" | grep
"AppHandl"

AppHandl [nod-index] : 83 [000-00083]

2. Run the db2pd command again, this time with the -agents option, to identify the Agent EDU ID value
for the backup or restore operation.
In the following example, the AppHandl value of 83 is used to identify the Agent EDU ID value of 669:

$ db2pd -db dpf111 -alldbpartitionnums -agents | grep " 83 " | grep SubAgent | awk '{print
$4}'

 669

Note: In Data Partitioning Feature (DPF) environments, one entry per database partition is displayed.
3. Run the db2pd command again, this time with the -barstats option, along with the Agent EDU ID

value that you retrieved, to display the wanted performance monitoring information.
In the following example, the Agent EDU ID value of 669 is used to identify the backup or restore
operation:

$ db2pd -db DBNAME1 -barstats 669

Note: In DPF environments, use the -dbpartitionnum N option to specify the database partition.

Results

While the result sets differ depending on the type of operation (backup or restore), they display similar
information:

• The EDU or thread identifiers
• Table spaces impacted by the operation
• Performance statistics

See Example output for backup performance monitoring and Example output for restore performance
monitoring for a detailed breakdown of the fields and values that are displayed in the monitoring
information for each operation.

Example output for backup performance monitoring
This topic presents an example of the output that is displayed from running the db2pd command with the
-barstats option, for a running backup operation.

Each example section is followed by a table that provides detailed descriptions of the fields that appear in
the results.

Examples

First, the agent or EDU identifiers for the backup operation are displayed:

$ db2pd -db DBNAME1 -barstats 669

Printing out Backup Runtime Statistics at 2018-07-17-20.02.36.207705:

Backup Related EDUs:

 Backup agent ID: 669
 BM 0 (EDU ID): db2bm.669.0 (75)
 BM 1 (EDU ID): db2bm.669.1 (74)

Chapter 2. Data recovery 295

 BM 2 (EDU ID): db2bm.669.2 (73)
 BM 3 (EDU ID): db2bm.669.3 (72)
 MC 0 (EDU ID): db2med.669.0 (76)

Field Description

Backup agent ID Represents the EDU ID for the main backup agent, which coordinates the
various backup EDUs.

BM N (EDU ID):
db2bm.M.N

Represent the backup Buffer Manipulator EDU identifiers. These EDUs read
data from the table space container files. In this example, there are four
Buffer Manipulator EDUs, so the backup operation is running with a
parallelism of four.

MC N (EDU ID):
db2bm.M.N

Represent the backup Media Controller EDU identifiers. These EDUs write
data to one or more backup image files. In this example, since only one
backup image path is specified, the backup operation is using one media
controller EDU.

Next, information about each table space that is processed by the backup is displayed:

Table Spaces to be Backed Up (appTblSpace):

 numEntry: 2

 Table Spaces:

 tblSpaceName: SYSCATSPACE
 tblSpaceID: 0
 tblSpaceType: 2
 tblSpaceDataType: 0
 tblSpaceSize: 15568 (in 4K pages)
 nContainers: 1
backupInProgressTurnedOn: T
 backupActiveIsSet: T
 autoResizeLockAcquired: F
 tblSpaceTotalPages: 16380
 pageSize: 8192
 extSize: 4
 actualSize: 127533056
 scanPages: T
 backupLSN: 00000000000401DA

 tblSpaceName: USERSPACE1
 tblSpaceID: 2
 tblSpaceType: 2
 tblSpaceDataType: 32
 tblSpaceSize: 1824 (in 4K pages)
 nContainers: 1
backupInProgressTurnedOn: T
 backupActiveIsSet: T
 autoResizeLockAcquired: F
 tblSpaceTotalPages: 4064
 pageSize: 8192
 extSize: 32
 actualSize: 14942208
 scanPages: T
 backupLSN: 0000000000000000

Field Description

tblSpaceName The name of the table space. (See tablespace_name).

tblSpaceID The table space ID. (See tablespace_id).

tblSpaceType The table space type. (See tablespace_type).

tblSpaceDataType The table space content type. (See tablespace_content_type).

tblSpaceSize The table space usable size (number of 4 KB pages). (See
tablespace_usable_pages).

296 IBM Db2 V11.5: Data Recovery and High Availability

Field Description

nContainers The number of table space containers. (See tablespace_num_containers).

backupInProgressTurn
edOn

A flag that indicates whether a backup of this table space is in progress.

backupActiveIsSet A flag that indicates whether a backup is active for this table space.

autoResizeLockAcquir
ed

A flag that indicates whether the table space auto-resize lock is acquired. The
lock prevents a table space auto resize operation from occurring while the
online backup is running.

tblSpaceTotalPages The total size of the table space, including unusable meta pages (number of 4
KB pages). (See tablespace_total_pages).

pageSize The size of a page for the table space (in bytes). (See tablespace_page_size).

extSize The number of pages that constitute an extent for the table space (in pages).
(See tablespace_extent_size).

actualSize The table space total size (in bytes).

scanPages A flag that indicates the need for table space page scanning for an incremental
backup operation.

backupLSN The Log Sequence Number for the backup operation on the table space.

Next, an ordered list of table space processing states is displayed:

 Table Space Queue:

[0]
 tblSpaceName: TBSP
 tblSpaceID: 3
 backupStatus: in progress
 Being backed up by: db2bm.18.0
 Object being backed up: DMS.TABLESPACE.DATA
 Number of pages already backed up: 524288
Total number of pages in table space: 3702752

[1]
 tblSpaceName: SYSCATSPACE
 tblSpaceID: 0
 backupStatus: complete

[2]
 tblSpaceName: USERSPACE1
 tblSpaceID: 2
 backupStatus: pending

 The next table space to be backed up:

[2]
 tblSpaceName: USERSPACE1
 tblSpaceID: 2
 backupStatus: pending

Field Description

backupStatus The status of processing for the table space. Possible values are:

• pending: the table space has not yet been processed
• in progress: the table space is being processed
• complete: processing of the table space is complete

Being backed up by The Buffer Manipulator EDU that is assigned to read the contents of
this table space.

Object being backed up The type of data currently being processed.

Chapter 2. Data recovery 297

Field Description

Number of pages already
backed up

The number of pages in the table space already processed.

Total number of pages in table
space

The total number of pages in the table space.

Next, backup performance statistical information is displayed. The displayed values are aggregated up to
the time of collection. Final information is displayed in the Db2 diagnostic log, db2diag.log, upon
completion of the backup operation. Interpretation of this statistical information can be aided by existing
resources, such as Backup and Restore Statistics or Understanding and Tuning DB2/LUW Backup and
Restore Performance.

 Performance statistics:

Parallelism = 4
Number of buffers = 4
Buffer size = 6557696 (1601 4kB pages)

BM# Total I/O MsgQ WaitQ Buffers Bytes
--- -------- -------- -------- -------- -------- --------
000 116.11 0.00 0.00 34.18 1 98304
001 116.11 0.00 0.00 40.62 0 0
002 116.10 0.00 0.00 40.63 0 0
003 116.09 0.00 0.00 40.69 0 0
--- -------- -------- -------- -------- -------- --------
TOT 464.42 0.00 0.00 156.14 1 98304

MC# Total I/O MsgQ WaitQ Buffers Bytes
--- -------- -------- -------- -------- -------- --------
000 116.11 0.01 28.38 32.12 2 6561792
--- -------- -------- -------- -------- -------- --------
TOT 116.11 0.01 28.38 32.12 2 6561792

Field Description

BM# The Buffer Manipulator EDU identifier.

MC# The Media Controller EDU identifier.

Total The total elapsed time that this EDU has been in backup processing, in
seconds.

I/O The amount of time that this EDU spent either reading or writing data,
in seconds.

MsgQ The amount of time that the EDU spent waiting to get a buffer, in
seconds. For backup operations, the Buffer Manipulator EDUs wait for
an empty buffer to fill with data from the table space. The Media
Controller EDUs wait for a full buffer and then write the buffer out to
the backup image file.

WaitQ Time spent waiting for a state machine control message, in seconds.
When a Buffer Manipulator EDU has no more table spaces to process,
the WaitQ value increases, while other Buffer Manipulators continue
to process their table spaces.

Buffers The total number of I/O buffers that were processed by this EDU.

Bytes The quantity of data that was processed by this EDU. The column
header can also be displayed as KBytes or MBytes depending on the
quantity of data processed.

Next, size estimate information is displayed:

298 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/developerworks/community/blogs/DB2LUWAvailability/entry/backup_and_restore_statistics?lang=en
http://thinkingdb2.blogspot.com/2015/03/understanding-and-tuning-db2luw-backup.html
http://thinkingdb2.blogspot.com/2015/03/understanding-and-tuning-db2luw-backup.html

Size estimates:

 Total size estimate (bytes): 173981696
Pre-adjusted total size estimate (bytes): 173981696
 Init data estimate (bytes): 1492516
 User data estimate (bytes): 159252480
 End data estimate (bytes): 25624
 Size estimate for MC1 (bytes): 173981696
 Size estimate for remaining MCs (bytes): 172408832

Field Description

Total size estimate (bytes) An estimate of the total amount of data to process during the backup
operation.

Pre-adjusted total size estimate
(bytes)

An estimate of the total amount of data to process during the backup
operation.

Init data estimate (bytes) An estimate of the size of database meta information to be included at
the beginning of the backup image.

User data estimate (bytes) An estimate of the size of table space container data to be included in
the backup image.

End data estimate (bytes) An estimate of the size of database meta information to be included at
the end of the backup image.

Size estimate for MC1 (bytes) An estimate of the amount of data processed by Media Controller 1,
which includes the database meta information.

Size estimate for remaining MCs
(bytes)

An estimate of the amount of data processed by all other Media
Controllers.

Next, current work progress information is displayed:

Progress Monitor:

 Phase #: 1 of 1
 Total work units (bytes): 160774322
Completed work units (bytes): 1496218

Next, the time that is required to flush (persist) changed pages from one or more buffer pools into stable
storage are displayed.

Note: Database and table space flushing semantics are beyond the scope of this document.

Also, the time that is required to update the database history file and table space change history meta
information is displayed, along with log file processing information (when the online backup INCLUDE
LOGS option was specified).

Other Backup Statistics:

 Database bufferpool flushing time: 0.18 seconds
Table space bufferpool flushing time 1: 0.02 seconds
Table space bufferpool flushing time 2: 0.72 seconds
Table space bufferpool flushing time 3: Not Recorded

Database recovery history file (db2rhist.asc) elapsed processing time: 0.27 seconds
Table space change history file (db2tschg.his) elapsed processing time: 0.08 seconds

Processed 9 of 100 database recovery logs.
Database recovery logs elapsed processing time: 3.10 seconds

And lastly, when the automatic pruning of recovery objects is enabled (that is, AUTO_DEL_REC_OBJ
database configuration parameter is enabled), additional information is displayed about pruning.

Database Recovery History File Pruning Statistics:

 Auto deletion of recovery objects (AUTO_DEL_REC_OBJ): ON
Number of database backups to retain (NUM_DB_BACKUPS): 1

Chapter 2. Data recovery 299

 Recovery history retention (days) (REC_HIS_RETENTN): 0

 Status: In progress
 Elapsed processing time: 27.60 seconds
 Number of entries pruned: 1
 Number of objects deleted: 408
 Current state: Deleting
 Object Details:
 Objpart: 20180720150330001
 Operation: B
 Location: adsm/libtsm.a
 Vendor State Info:
 startTime: 20180720164749
 function: sqluvdel

Field Description

Status The status of the recovery object pruning, if enabled. Possible values
are:

• Pending start: the pruning operation has not started
• In progress: the pruning operation is in progress
• Complete: the pruning operation is complete

Processing time The time spent pruning expired recovery objects.

Number of entries pruned The current number of recovery history file entries pruned.

Number of objects deleted The current number of expired recovery objects (backup images, log
files) that have been deleted.

Current state The current state of object deletion or pruning: Possible values are:

• Deleting: expired recovery objects are currently being deleted
• Pruning: the history file is being pruned of entries that are

associated with the recently deleted objects

Object details Various (internal) details about the recovery object currently being
processed.

Example output for restore performance monitoring
This topic presents an example of the output that is displayed from running the db2pd command with the
-barstats option, for a running restore operation.

Where applicable, example sections are followed by a table that provides detailed descriptions of the
fields that appear in the results.

Examples

First, the agent and EDU (thread) identifiers for this restore operation are displayed.

$ db2pd -db dbname1 -barstats 391

Printing out Restore Runtime Statistics at 2018-07-18-00.27.28.028659:

Restore Related EDUs:

 Restore agent ID: 391
 BM 0 (EDU ID): db2bm.391.0 (488)
 BM 1 (EDU ID): db2bm.391.1 (489)
 MC 0 (EDU ID): db2med.391.0 (490)

Field Description

Restore agent ID Represents the EDU ID for the main restore agent, which coordinates
the various backup EDUs.

300 IBM Db2 V11.5: Data Recovery and High Availability

Field Description

BM N (EDU ID): db2bm.M.N Represent the restore Buffer Manipulator EDU identifiers. These EDUs
write data to table space container files.

MC N (EDU ID): db2bm.M.N Represent the restore Media Controller EDU identifiers. These EDUs
read data from one or more backup image files.

Next, information about each table space to be restored is displayed. If an explicit list of table spaces was
specified in the restore command, then only those table spaces are restored and listed here.

Table Spaces to be Restored (appTblSpace):

 numEntry: 1

 Table Spaces:

 tblSpaceName: SYSCATSPACE
 tblSpaceID: 0
 tblSpaceType: 2
 tblSpaceDataType: 0
 tblSpaceSize: 15568 (in 4 KB pages)
 nContainers: 1
 isInImage: T
 doNotRestoreUserData: F
 isPartOfRestore: T
 isComplete: F
 isLocked: F
 tbspUseablePagesInImg: 16380
 hwm: 0
 hwmOverflow: F

 tblSpaceName: USERSPACE1
 tblSpaceID: 2
 tblSpaceType: 2
 tblSpaceDataType: 32
 tblSpaceSize: 1824 (in 4 KB pages)
 nContainers: 1
 isInImage: T
 doNotRestoreUserData: F
 isPartOfRestore: T
 isComplete: F
 isLocked: F
 tbspUseablePagesInImg: 4064
 hwm: 0
 hwmOverflow: F

Field Description

tblSpaceName The name of the table space. (See tablespace_name).

tblSpaceID The table space ID. (See tablespace_id).

tblSpaceType The table space type. (See tablespace_type).

tblSpaceDataType The table space content type. (See tablespace_content_type).

tblSpaceSize The table space size (number of 4 KB pages). (See
tablespace_usable_pages).

nContainers The number of table space containers. (See
tablespace_num_containers).

isInImage A flag that indicates table space inclusion in the backup image.

doNotRestoreUserData A flag that indicates whether data within the table space (aside from
table space structural information) will be restored.

isPartOfRestore A flag that indicates whether the table space is part of the restore set.

isComplete A flag that indicates whether the restore operation is completed for
the table space.

Chapter 2. Data recovery 301

Field Description

isLocked A flag that indicates whether the table space is locked in preparation
for the restore operation.

tbspUseablePagesInImg The table space usable size (number of 4 KB pages).

hwm The high water mark page of the table space.

hwmOverflow A flag that indicates whether container size limit was exceeded while
restoring the table space.

Next, a list of table spaces that are excluded from the restore set is displayed. For example, if a restore
rebuild command runs as part of the operation, and an EXCLUDE table space list is specified, then those
table spaces are listed here:

Table Spaces Excluded from Restore (exceptionTbspList):

No table spaces.

Next, a list of all the table spaces that are included within the backup image is displayed:

Table Spaces Available in the Backup Image (imgTbspList):

 numEntry: 2

 Table Spaces:

 tblSpaceName: SYSCATSPACE
 tblSpaceID: 0
 tblSpaceType: 2

...etc...

Next, the restore performance statistical information is displayed.

Performance statistics:

Parallelism = 2
Number of buffers = 2
Buffer size = 11022336 (2691 4 KB pages)

BM# Total I/O MsgQ WaitQ Buffers Bytes
--- -------- -------- -------- -------- -------- --------
000 42.67 1.20 0.03 32.87 8 88178688
001 42.67 1.11 0.04 32.95 9 88207360
--- -------- -------- -------- -------- -------- --------
TOT 85.35 2.31 0.07 65.83 17 176386048

MC# Total I/O MsgQ WaitQ Buffers Bytes
--- -------- -------- -------- -------- -------- --------
000 42.67 0.07 16.17 17.85 18 176390144
--- -------- -------- -------- -------- -------- --------
TOT 42.67 0.07 16.17 17.85 18 176390144

Field Description

BM# The Buffer Manipulator EDU identifier.

MC# The Media Controller EDU identifier.

Total The total elapsed time that this EDU has been in restore processing, in
seconds.

I/O The amount of time that this EDU spent either reading or writing data,
in seconds.

302 IBM Db2 V11.5: Data Recovery and High Availability

Field Description

MsgQ The amount of time that the EDU spent waiting to get a buffer, in
seconds. For restore operations, the Media Controller EDUs wait for an
empty buffer to fill with data from the backup image file. The Buffer
Manipulator EDUs wait for a full buffer to write to the table space
containers.

WaitQ Time spent waiting for a state machine control message, in seconds.
When a Buffer Manipulator EDU has no more table spaces to process,
the WaitQ value increases, while other Buffer Manipulators continue
to process their table spaces.

Buffers The total number of I/O buffers that were processed by this EDU.

Bytes The quantity of data that was processed by this EDU. The column
header can also be displayed as KBytes or MBytes depending on the
quantity of data processed.

Next, if the restore operation is using the INCREMENTAL AUTOMATIC options, information about the
incremental backup images to be restored is displayed.

Incremental Automatic Restore:

 currentImage: 20180716112613
 currImgIndex: 2
 numBckpImages: 6
numImagesRestored: 1

Field Description

currentImage The current backup image that is being processed.

currImgIndex The zero-based index number of the current backup images that are
being processed.

numBckpImages The number of backup images to be restored to complete the
incremental automatic restore to the TAKEN AT time that is specified
in the restore command.

numImagesRestored The number of backup image restore operations completed.

Lastly, current work progress information is displayed:

Progress Monitor:

 Phase #: 2 of 3
 Total work units (bytes): 18446744073709551615
Completed work units (bytes): 0

Recovery history file
A recovery history file is created with each database and is automatically updated during various
operations.

The following operations cause the recovery history file to be updated:

• A database or table spaces are backed up
• A database or table spaces are restored
• A database or table spaces are rolled forward
• A database is automatically rebuilt and more than one image is restored

Chapter 2. Data recovery 303

• A table space is created
• A table space is altered
• A table space is quiesced
• A table space is renamed
• A table space is dropped
• A table is loaded
• A table is dropped (when dropped table recovery is enabled and you are using recoverable logging)
• A table is reorganized
• On-demand log archiving is invoked
• A new log file is written to (when using recoverable logging)
• A log file is archived (when using recoverable logging)
• A database is recovered
• A failed restore database or table space operation

Figure 11. Creating and updating the recovery history file

You can use the summarized backup information in this file to recover all or part of a database to a given
point in time. The information in the file includes:

• An identification (ID) field to uniquely identify each entry
• The part of the database that was copied and how
• The time the copy was made
• The location of the copy (stating both the device information and the logical way to access the copy)
• The last time a restore operation was done
• The time at which a table space was renamed, showing the previous and the current name of the table

space
• The status of a backup operation: active, inactive, expired, or deleted
• The last log sequence number saved by the database backup or processed during a rollforward recovery

operation.

To see the entries in the recovery history file, use the LIST HISTORY command.

Every backup operation (database, table space, or incremental) includes a copy of the recovery history
file. The recovery history file is associated with the database. Dropping a database deletes the recovery
history file. Restoring a database to a new location restores the recovery history file. Restoring does not
overwrite the existing recovery history file unless the file that exists on disk has no entries. If that is the
case, the database history is restored from the backup image.

If the current database is unusable or not available, and the associated recovery history file is damaged or
deleted, an option on the RESTORE command allows only the recovery history file to be restored. The
recovery history file can then be reviewed to provide information about which backup to use to restore the
database.

304 IBM Db2 V11.5: Data Recovery and High Availability

The size of the file is controlled by the rec_his_retentn configuration parameter that specifies a
retention period (in days) for the entries in the file. Even if the number for this parameter is set to zero (0),
the most recent full database backup (plus its restore set) is kept. (The only way to remove this copy is to
use the PRUNE HISTORY with FORCE option.) The retention period has a default value of 366 days. The
period can be set to an indefinite number of days by using -1. In this case, explicit pruning of the file is
required.

Recovery history file entry status
The database manager creates entries in the recovery history file for events such as a backup operation, a
restore operation, table space creation, and others. Each entry in the recovery history file has an
associated status: active, inactive, expired, pending delete, deleted, or do_not_delete.

The database manager uses the status of a recovery history file entry to determine whether the physical
files associated with that entry would be needed to recover the database. As part of automated pruning,
the database manager updates the status of recovery history file entries.

Active database backup

An active database backup is one that can be restored and rolled forward using the current logs to recover
the current state of the database.

Figure 12. Active Database Backups

Inactive database backup

An inactive database backup is one that, if restored, moves the database back to a previous state.

Figure 13. Inactive Database Backups

Chapter 2. Data recovery 305

Expired database backups

An expired database backup image is one that is no longer needed, because more recent backup images
are available.

Figure 14. Expired Database Backups

Entries marked do_not_delete

You can remove (prune) recovery history file entries using the PRUNE HISTORY command or the
db2Prune API. The database manager also prunes the recovery history file entries as part of automated
pruning.

There are only three ways to prune entries marked do_not_delete:

• Invoke the PRUNE HISTORY command with the WITH FORCE option
• Call the ADMIN_CMD procedure with PRUNE HISTORY and WITH FORCE option
• Call the db2Prune API with the DB2_PRUNE_OPTION_FORCE option

Those entries that are marked do_not_delete will never be pruned from the recovery history file unless
you perform one of these three actions.

The database manager does not set the status of recovery history file entries to do_not_delete. You can
set the status of a recovery history file entry to do_not_delete using the UPDATE HISTORY command.

Entries marked delete_pending

An entry marked pending_delete is in the process of being removed. It may remain if a prune operation
was terminated part way through. In this case, the file associated with the entry may or may not still exist,
and is treated as if it did not exist (as with deleted entries).

Here are more examples of the status of different recovery history file entries:

306 IBM Db2 V11.5: Data Recovery and High Availability

Figure 15. Mixed Active, Inactive, and Expired Database Backups

Figure 16. Expired Log Sequence

Viewing recovery history file entries using the DB_HISTORY administrative view
You can use the DB_HISTORY() administrative view to access the contents of the database history file.
This method is an alternative to using the LIST HISTORY CLP command or the C history APIs.

Before you begin

A database connection is required to use this function.

About this task

Deletes and updates to the database history file can be done only through the PRUNE HISTORY or
UPDATE HISTORY commands.

Procedure

Use the DB_HISTORY() administrative view within an SQL SELECT statement to access the database
history file for the database you are connected to, or on the database partition specified by the DB2NODE
environment variable.
For example, to see the contents of the history file use:

 SELECT * FROM TABLE(DB_HISTORY()) AS LIST_HISTORY

Chapter 2. Data recovery 307

Examples

To hide the syntax of the administrative view, you can create a view as follows:

 CREATE VIEW LIST_HISTORY AS
 SELECT * FROM TABLE(DB_HISTORY()) AS LIST_HISTORY

After creating this view, you can run queries against the view. For example:

 SELECT * FROM LIST_HISTORY

or

 SELECT dbpartitionnum FROM LIST_HISTORY

or

 SELECT dbpartitionnum, start_time, seqnum, tabname, sqlstate
 FROM LIST_HISTORY

For a list of columns and column data types returned by the DB_HISTORY administrative view, see
DB_HISTORY administrative view.

Pruning the recovery history file
The database manager creates entries in the recovery history file for events such as a backup operation, a
restore operation, table space creation, and others. When an entry in the recovery history file is no longer
relevant, because the associated recovery objects would no longer be needed to recover the database,
you might want to remove, or prune, those entries from the recovery history file.

Procedure

You can prune the entries in the recovery history file using the following methods:
• Invoke the PRUNE HISTORY command
• Call the db2Prune API
• Call the ADMIN_CMD procedure with the PRUNE_HISTORY parameter

What to do next

When you use one of these methods to prune the recovery history file, the database manager removes
(prunes) entries from the recovery history file that are older than a timestamp you specify.

If a recovery history file entry matches the criteria you specify for pruning, but that entry would still be
needed for a recovery of the database, the database manager will not prune the entry unless you use the
WITH FORCE parameter or the DB2PRUNE_OPTION_FORCE flag.

If you use the AND DELETE parameter or the DB2PRUNE_OPTION_DELETE flag, then log files associated
with pruned entries will be deleted as well.

If you set the AUTO_DEL_REC_OBJ database configuration parameter to ON, and you use the AND
DELETE parameter or the DB2PRUNE_OPTION_DELETE flag, then log files, backup images, and load copy
images associated with pruned entries will be deleted.

Automating recovery history file pruning
You can configure the database manager to automatically prune and update the status of recovery history
file entries.

You can manually update the status of entries in the recovery history file using the UPDATE HISTORY
command, the db2HistoryUpdate API, or the ADMIN_CMD procedure with the "UPDATE_HISTORY"
parameter. You can use the PRUNE HISTORY command, the db2Prune API, or the ADMIN_CMD
procedure with the "PRUNE_HISTORY" parameter to manually remove, or prune, entries from the

308 IBM Db2 V11.5: Data Recovery and High Availability

recovery history file. However, it is recommended that you configure the database manager to manage
the recovery history file instead of updating and pruning the recovery history file manually.

The database manager automatically updates and prunes recovery history file entries at the following
times:

• After a full database backup operation or full table space backup operation completes successfully
• After a database restore operation, where a rollforward operation is not required, completes

successfully
• After a database rollforward operation completes successfully

During automated pruning, the database manager performs two operations:

1. Updates the status of the recovery history file entries
2. Prunes expired recovery history file entries

The database manager updates the recovery history file entries in the following way:

• All active database backup images that are no longer needed are marked as expired.
• All database backup images that are marked as inactive and that were taken before the point at which

an expired database backup was taken are also marked as expired. All associated inactive table space
backup images and load backup copies are also marked as expired.

• If an active database backup image is restored, but it is not the most recent database backup recorded
in the history file, any subsequent database backup images belonging to the same log sequence are
marked as inactive.

• If an inactive database backup image is restored, any inactive database backups belonging to the
current log sequence are marked as active again. All active database backup images that are no longer
in the current log sequence are marked as inactive.

• Any database or table space backup image that does not correspond to the current log sequence, also
called the current log chain, is marked inactive.

The current log sequence is determined by the database backup image that has been restored, and the
log files that have been processed. Once a database backup image is restored, all subsequent database
backup images become inactive, because the restored image begins a new log chain. (This is true if the
backup image was restored without rolling forward. If a rollforward operation has occurred, all
database backups that were taken after the break in the log chain are marked as inactive. It is
conceivable that an older database backup image will have to be restored because the rollforward
utility has gone through the log sequence containing a damaged current backup image.)

• A table space-level backup image becomes inactive if, after it is restored, the current state of the
database cannot be reached by applying the current log sequence.

• Any entries that have a status of do_not_delete are not pruned, and their associated log files, backup
images, and load copy images are not deleted.

• When a database is upgraded, all online database backup entries and all online or offline table space
backup entries in the history file are marked as expired, so that these entries are not selected by
automatic rebuild as images required for rebuilding. Load copy images and log archive entries are also
marked as expired, since these types of entries cannot be used for recovery purposes

The following database configuration parameters control which entries the database manager prunes:
num_db_backups

Specifies the number of database backups to retain for a database.
rec_his_retentn

Specifies the number of days that historical information about backups is retained.
auto_del_rec_obj

Specifies whether the database manager deletes log files, backup images, and load copy images that
are associated with recovery history file entries that are pruned.

To configure the database manager to automatically manage the recovery history file, set the following
configuration parameters:

Chapter 2. Data recovery 309

• num_db_backups
• rec_his_retentn
• auto_del_rec_obj

When auto_del_rec_obj is set to ON, and whenever there are more successful database backup
entries than the num_db_backups configuration parameter, then the database manager automatically
prunes recovery history file entries that are older than rec_his_retentn and delete objects, such as log
files, backup images, and load copy images, that are associated with these recovery history file entries.

When auto_del_rec_obj is set to OFF, the database manager will prune recovery history file entries
based on what values num_db_backups and rec_his_retentn are set to, respectively, but will not
delete objects, such as log files, backup images, and load copy images, that are associated with recovery
history file entries that are pruned.

Protecting recovery history file entries from being pruned
You can prevent key recovery history file entries from being pruned, and associated recovery objects from
being deleted by setting the status of the recovery history files entries to do_not_delete.

About this task

You can remove (prune) recovery history file entries using the PRUNE HISTORY command, the
ADMIN_CMD procedure with PRUNE_HISTORY, or the db2Prune API. If you use the AND DELETE
parameter with PRUNE HISTORY, or the DB2PRUNE_OPTION_DELETE flag with db2Prune, and the
auto_del_rec_obj database configuration parameter is set to ON, then the associated recovery objects
will also be physically deleted.

The database manager also prunes the recovery history file entries as part of automated pruning. If the
auto_del_rec_obj database configuration parameter is set to ON, the database manager will delete
the recovery objects associated with any entries that are pruned.

Procedure

To protect key recovery history file entries and associated recovery objects:
• Use the UPDATE HISTORY command, the db2HistoryUpdate API, or the ADMIN_CMD procedure

with "UPDATE_HISTORY" to set the status for key recovery file entries to do_no_delete.

There are three ways to prune entries marked do_not_delete:

– Invoke the PRUNE HISTORY command with the WITH FORCE option
– Call the ADMIN_CMD procedure with PRUNE HISTORY and WITH FORCE option
– Call the db2Prune API with the DB2_PRUNE_OPTION_FORCE iOption.

Those entries that are marked do_not_delete will never be pruned from the recovery history file unless
you perform one of these three procedures.

Restrictions:

– You can set the status of only backup images, load copy images, and log files to do_not_delete.
– The status of a backup entry is not propagated to load copy images, non-incremental backups, or

log files related to that backup operation. If you want to save a particular database backup entry
and its related log file entries, you must set the status for the database backup entry and the entry
for each related log file.

310 IBM Db2 V11.5: Data Recovery and High Availability

Managing recovery objects
As you regularly backup your database, you might accumulate very large database backup images, and
many database logs and load copy images. The IBM Data Server database manager can simplify
managing these recovery objects.

About this task

Storing recovery objects can consume great amounts of storage space. Once subsequent backup
operations are run, you can delete the older recovery objects because they are no longer needed to
restore the database. However, removing the older recovery objects can be time consuming. Also, while
you are deleting the older recovery objects, you might accidentally damage recovery objects that are still
needed.

Procedure

There are two ways to use the database manager to delete recovery objects that are no longer required to
restore the database:
• You can invoke the PRUNE HISTORY command with the AND DELETE parameter, or call the

db2Prune API with the DB2PRUNE_OPTION_DELETE flag.
• You can configure the database manager to automatically delete unneeded recovery objects.

Deleting database recovery objects using the PRUNE HISTORY command or the
db2Prune API

You can use the auto_del_rec_obj database configuration parameter and the PRUNE HISTORY
command or the db2Prune API to delete recovery objects.

About this task

When you invoke the PRUNE HISTORY command, or call the db2Prune API, the IBM Data Server
database manager does the following:

• Prunes entries from the recovery history file that do not have the status
DB2HISTORY_STATUS_DO_NOT_DEL

When you invoke the PRUNE HISTORY command with the AND DELETE parameter, or when you call the
db2Prune API with the DB2PRUNE_OPTION_DELETE flag, the database manager does the following:

• Prunes entries from the recovery history file that are older than a timestamp you specify and that do not
have the status DB2HISTORY_STATUS_DO_NOT_DEL

• Deletes the physical log files associated with the pruned entries

If you set the auto_del_rec_obj database configuration parameter to ON, then when you invoke the
PRUNE HISTORY command with the AND DELETE parameter, or when you call the db2Prune API with
the DB2PRUNE_OPTION_DELETE flag, the database manager does the following:

• Prunes entries from the recovery history file that do not have the status
DB2HISTORY_STATUS_DO_NOT_DEL

• Deletes the physical log files associated with the pruned entries
• Deletes the backup images associated with the pruned entries
• Deletes the load copy images associated with the pruned entries

Procedure

To delete unneeded recovery objects:
1. Set the auto_del_rec_obj database configuration parameter to ON.

Chapter 2. Data recovery 311

2. Invoke the PRUNE HISTORY command with the AND DELETE parameter, or call the db2Prune API
with the DB2PRUNE_OPTION_DELETE flag.

Automating database recovery object management
You can use the auto_del_rec_obj database configuration parameter and automated recovery history
file pruning to configure the IBM Data Server database manager to automatically delete unneeded
recovery objects after every full database backup operation.

About this task

After every successful full database backup operation or full table space backup operation, the database
manager prunes the recovery history file according to the settings of the num_db_backup and
rec_his_retentn configuration parameters when all of the following conditions are true:

• There are more database backup entries in the recovery history file than the value of the
num_db_backups configuration parameter.

• The database backup entries do not have their status set to do_not_delete.
• The database backup entries from the recovery history file are older than the value specified by the
rec_his_retentn configuration parameter.

Note: If the rec_his_retentn configuration parameter is set to 0, then the automatic pruning is
based on the setting for the num_db_backups parameter.

If you set the auto_del_rec_obj database configuration parameter to ON, then the database manager
will do the following in addition to pruning entries from the recovery history file:

• Delete the physical log files associated with the pruned entries
• Delete the backup images associated with the pruned entries
• Delete the load copy images associated with the pruned entries

If there are no full database backup images available for consideration in the current recovery history
(perhaps none were ever taken), then images older than the range of time specified by
rec_his_retentn will be deleted.

If the database manager is unable to delete a file because the file is no longer at the location listed in the
recovery history file, then the database manager will prune the history entry.

If the database manager is unable to delete a file because of a communication error between the
database manager and the storage manager or device, then the database manager will not prune the
history file entry. When the error is resolved, the file can be deleted during the next automated prune.

Procedure

To configure the database manager to automatically delete unneeded recovery objects:
1. Set the auto_del_rec_obj database configuration parameter to ON.
2. Set the rec_his_retentn and num_db_backups configuration parameters to enable automated

recovery history file pruning.

Example

Consider the following scenario, which shows how the settings for automatic deletion interact. User1's
backup plan specifies a weekly full database backup, with two incremental backups during the week.
User1 has the following configuration:

• auto_del_rec_obj=ON
• rec_his_retentn=0
• num_db_backups=3

In this scenario, User1 keeps three weeks of history, three full backups, and all of the incremental
backups and logs in between those backups. With this configuration, if User1 changes to daily backups,

312 IBM Db2 V11.5: Data Recovery and High Availability

User1 keeps three days of history, three full backups, and all of the incremental backups and logs in
between those backups.

If User1 changes to the following configuration:

• auto_del_rec_obj=ON
• rec_his_retentn=15
• num_db_backups=3

User1 still keeps three weeks of history, three full backups, and all of the incremental backups and logs in
between those backups. However, if User1 changes to daily backups, User1 keeps 15 days of history, 15
full backups, and all of the incremental backups and logs in between those backups.

Protecting recovery objects from being deleted
Automated recovery object management saves administration time and storage space. However, you
might want to prevent certain recovery objects from being automatically deleted. You can prevent key
recovery objects from being deleted by setting the status of the associated recovery history files entries
to do_not_delete.

About this task

If you set the auto_del_rec_obj database configuration parameter to ON, then recovery objects get
deleted when their associated recovery history file entries get pruned. Recovery history file entries get
pruned when one of the following happens:

• You invoke the PRUNE HISTORY command with the AND DELETE parameter
• You call the db2Prune API with the DB2PRUNE_OPTION_DELETE flag
• The database manager automatically prunes the recovery history file, which happens after every

successful table space or database full backup.

Whether you invoke the PRUNE HISTORY command, call the db2Prune API, or configure the database
manager to automatically prune the entries in the recovery history file, entries that are marked
do_not_delete are not pruned, and the associated recovery objects are not deleted.

Restrictions

• You can set the status of only backup images, load copy images, and log files to do_not_delete.
• The status of a backup entry is not propagated to log files, load copy images, or non-incremental

backups related to that backup operation. If you want to save a particular database backup entry and its
related log file entries, you must set the status for the database backup entry and the entry for each
related log file.

Procedure

• Use the UPDATE HISTORY command to set the status for associated recovery file entries to
do_no_delete.

Managing snapshot backup objects
You must use the db2acsutil command to manage snapshot backup objects. Do not move or delete
snapshot backup objects using file system utilities.

Before you begin

To perform snapshot backup and restore operations, you need one of two things:

• A Db2 ACS API driver for your storage device. For a list of supported storage hardware for the integrated
driver, refer to this tech note.

• For storage devices that are not supported, implement a custom script that allows your storage device
to perform snapshot operations.

Chapter 2. Data recovery 313

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

Restrictions

The db2acsutil command is currently only supported on AIX and Linux.

Procedure

• To list available snapshot backup objects, use the QUERY parameter.

For example, to list available snapshot backup objects for a specific database manager instance, use
the following syntax:

db2acsutil query instance inst-name

• To check the progress of a snapshot backup operation, use the STATUS parameter. For more verbose
progress information, use the SHOW DETAILS parameter as well.

For example, to see the progress of snapshot backup operations that might be currently running on a
specific database, use the following syntax:

db2acsutil query status db db-name

• To delete a particular snapshot backup object, use the DELETE parameter.

For example, to delete all snapshot backup objects for a given database older than a specific period of
time, use the following syntax:

db2acsutil delete older than number days ago db db-name

Note: For each of these tasks, you can also query or delete a specific set of snapshot objects by their
origin by using one of the following options:

– The LOAD and OPTION parameter to specify the shared library that contains the vendor fast copying
technology used for snapshot backup, as in this example:

db2acsutil load path-to-library
 options 'option1 optionN'
 ...

– The SCRIPT parameter to specify the snapshot backup objects created by a custom script, as in this
example:

db2acsutil script "path-to-script" ...

–

Backup image and log file upload to IBM Tivoli Storage Manager (TSM)
You can choose to back up to disk first in a relatively shorter time and later upload the backup image and
log files to Tivoli Storage Manager (TSM) while maintaining the recovery history information so it appears
as if they were backed up directly to TSM. This strategy might be appropriate in situations where you are
producing backup images faster than TSM can write them.

Example 1: Adoption strategy

As a part of your recovery plan, you decide to keep a specific set of images and logs on disk to facilitate
recovery, and at a predetermined interval–in this case, weekly–you upload the oldest images and logs to
TSM. (Note that this scenario favors a fast recovery window and might not match everyone's
requirements; some users, for example, would upload their backups to TSM immediately.) The procedure
would be to query the recovery history file for the oldest backup image, and then to upload that image
and its logs to TSM.

1. Query the history file for available logs and images using the following command:

db2 list history all for db sample

314 IBM Db2 V11.5: Data Recovery and High Availability

The following information is returned:

List History File for sample

Number of matching file entries = 100

...

...

...

Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
-- --- ------------------ ---- --- ------------ ----------- ----------
X D 20110403134938 1 D S0000003.LOG C0000000
--
Comment:
Start Time: 20110403134938
End Time: 20110403135204
Status: A

EID: 5 Location: /home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000003.LOG

...

...

...

Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
-- --- ------------------ ---- --- ------------ ----------- ----------
B D 20110404135750001 F D S0000000.LOG S0000007.LOG
--
Contains 2 tablespace(s):

00001 SYSCATSPACE
00002 USERSPACE1
--
Comment: DB2 BACKUP SAMPLE OFFLINE
Start Time: 20110404135750
End Time: 20110404135755
Status: A
--
EID: 10 Location: /home/backupdir

...

...

...

2. You choose the oldest log file to upload using the following command:

db2adutl upload logs between s3 and s3 db sample

The following information is returned:

==
| Upload Summary: |
==

1 / 1 logs were successfully uploaded

Logs successfully uploaded:
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000003.LOG

3. You upload the oldest image and its logs using the following command:

db2adutl upload images taken at 20110404135750 with logs db sample

The following information is returned:

Match found, but S0000003.LOG is already on TSM

===
| Upload Summary: |

Chapter 2. Data recovery 315

===

1 / 1 backup images were successfully uploaded
4 / 4 logs were successfully uploaded

Backup Images successfully uploaded:
/home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110404135750.001

Logs successfully uploaded:
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000001/S0000004.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000001/S0000005.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000002/S0000006.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000002/S0000007.LOG

4. You verify the results:

a. by querying the history file using the following command:

db2 connect to sample

The following information is returned:

Database server = DB2/LINUXX8664 9.7.5
SQL authorization ID = DIWU
Local database alias = SAMPLE

db2 select OPERATION, OBJECTTYPE, START_TIME, SEQNUM, FIRSTLOG, LASTLOG, LOCATION,
 DEVICETYPE from table(DB_HISTORY()) as T

The following information is returned:

OPERATION OBJECTTYPE START_TIME SEQNUM FIRSTLOG LASTLOG LOCATION DEVICETYPE
--------- ---------- ----------------- ------ ------------ -------- ------------- ----------
X D 20110403134938 - S0000003.LOG C0000000 adsm/libtsm.a A
...
B D 20110404135750 1 S0000000.LOG S0000007 adsm/libtsm.a A

b. by querying TSM using the following command:

db2adutl query db sample

The following information is returned:

Query for database SAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20110404135750 Oldest log: S0000007.LOG DB Partition Number: 0 Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for SAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for SAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for SAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for SAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for SAMPLE

316 IBM Db2 V11.5: Data Recovery and High Availability

Retrieving LOAD COPY information.
No LOAD COPY images found for SAMPLE

Retrieving LOG ARCHIVE information.
Log file: S0000003.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.28
Log file: S0000004.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.29
Log file: S0000005.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.30
Log file: S0000006.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.30
Log file: S0000007.LOG, Chain Num: 1, DB Partition Number: 0, Taken at: 2011-04-04-21.38.31

5. The next week, you upload the oldest backup image using the following command:

db2adutl upload images taken at 20110409155645 with logs db sample

The following information is returned:

===
| Upload Summary: |
===

1 / 1 backup images were successfully uploaded
2 / 2 logs were successfully uploaded

Backup Images successfully uploaded:
/home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110409155645.001

Logs successfully uploaded:
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000008.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000009.LOG

6. You verify the results by querying TSM using the following command:

db2adutl query db sample

The following information is returned:

Query for database SAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20110404135750 Oldest log: S0000007.LOG DB Partition Number: 0 Sessions: 1
2 Time: 20110409155645 Oldest log: S0000009.LOG DB Partition Number: 0 Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for SAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for SAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for SAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for SAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for SAMPLE

Retrieving LOAD COPY information.
No LOAD COPY images found for SAMPLE

Retrieving LOG ARCHIVE information.
Log file: S0000003.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.28
Log file: S0000004.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.29

Chapter 2. Data recovery 317

Log file: S0000005.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.30
Log file: S0000006.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.30
Log file: S0000007.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-04-21.38.31
Log file: S0000008.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-09-20.21.50
Log file: S0000009.LOG, Chain Num: 0, DB Partition Number: 0, Taken at: 2011-04-09-20.21.51

Example 2: Uploading and removing a local backup image

1. You take a backup of your database as follows:

db2 backup db sample to /home/backupdir

The following information is returned:

Backup successful. The timestamp for this backup image is: 20110401135620

2. At a later time, you decide to upload that backup image and erase it from disk, using the following
command:

db2adutl upload and remove images taken at 20110401135620 db sample

The following information is returned:

File /home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110401135620.001 is uploaded
successfully.
Would you really like to remove the original file (Y/N)

3. You enter Y.

Note: If you wanted to perform the upload without being prompted before removing the backup image
from disk you would use the following command:

db2adutl upload and remove images taken at 20110401135620 db sample without
prompting

The following information is returned:

/home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110401135620.001 is successfully
removed.

==
| Upload Summary: |
==

1 / 1 backup images were successfully uploaded

Backup Images successfully uploaded:
/home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110401135620.001

Example 3: Uploading an image with no timestamp

1. You upload a backup image without specifying a timestamp or file name using the following command:

db2adutl upload images db sample

2. You are prompted about whether or not you want to upload the most recent image:

Upload the most recent backup image?

3. You enter Y.

The following information is returned:

===
| Upload Summary: |
===
1 / 1 backup images were successfully uploaded

318 IBM Db2 V11.5: Data Recovery and High Availability

Backup Images successfully uploaded:
/home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110401160128.001

If the most recent backup image already exists on TSM, the following information would be returned:

The most recent image is already on TSM.

Example 4: Uploading a logs and a specific image

You want to upload a specific backup image and to include its logs, so you issue the following command:

db2adutl upload images taken at 20110401155645 with logs db sample

The following information is returned:

===
| Upload Summary: |
===

1 / 1 backup images were successfully uploaded
5 / 5 logs were successfully uploaded

Backup Images successfully uploaded:
/home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110401155645.001

Logs successfully uploaded:
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000000.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000001.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000002.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000003.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000001/S0000004.LOG

If you wanted a specific set of logs to be uploaded with that image, you would specify the range of
sequence numbers, as in the following command:

db2adutl upload images taken at 20110401155645 logs between s3 and s7 db sample

The following information is returned:

===
| Upload Summary: |
===

1 / 1 backup images were successfully uploaded
5 / 5 logs were successfully uploaded

Backup Images successfully uploaded:
/home/backupdir/SAMPLE.0.diwu.NODE0000.CATN0000.20110401155645.001

Logs successfully uploaded:
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000000/S0000003.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000001/S0000004.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000001/S0000005.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000002/S0000006.LOG
/home/logdir/log1/diwu/SAMPLE/NODE0000/C0000002/S0000007.LOG

Backup overview
Create a backup of your Db2 database and related stored data to prevent data loss in the event of a
database service outage. There are several tools that you can use to complete the backup process.

The simplest form of the Db2 BACKUP DATABASE command requires only that you specify the alias name
of the database that you want to back up. For example:

db2 backup db sample

Chapter 2. Data recovery 319

In IBM Data Studio Version 3.1 or later, you can use the task assistant for backing up databases. Task
assistants can guide you through the process of setting options, reviewing the automatically generated
commands to perform the task, and running these commands. For more details, see Administering
databases with task assistants.

If the command completes successfully, you will have acquired a new backup image that is located in the
path or the directory from which the command was issued. It is located in this directory because the
command in this example does not explicitly specify a target location for the backup image. Backup
images created by Db2 Version 9.5 and later are generated with file mode 600, meaning that on UNIX
only the instance owner has read and write privileges and on Windows only members of the DB2ADMNS
(and Administrators) group have access to the backup images.

Note: If the Db2 client and server are not located on the same system, Db2 database systems will
determine which directory is the current working directory on the client machine and use that as the
backup target directory on the server. For this reason, it is recommended that you specify a target
directory for the backup image.

Backup images are created at the target location specified when you invoke the backup utility. This
location can be:

• A directory (for backups to disk or diskette)
• A device (for backups to tape)
• A Tivoli Storage Manager (TSM) server
• Another vendor's server

The recovery history file is updated automatically with summary information whenever you invoke a
database backup operation. This file is created in the same directory as the database configuration file.

If you want to delete old backup images that are no longer required, you can remove the files if the
backups are stored as files. If you subsequently run a LIST HISTORY command with the BACKUP option,
information about the deleted backup images will also be returned. You must use the PRUNE command to
remove those entries from the recovery history file.

If your recovery objects were saved using Tivoli Storage Manager (TSM), you can use the db2adutl utility
to query, extract, verify, and delete the recovery objects. On Linux and UNIX, this utility is located in the
sqllib/adsm directory, and on Windows operating systems, it is located in sqllib\bin. For snapshots,
use the db2acsutil utility located in sqllib/bin.

On all operating systems, file names for backup images created on disk consist of a concatenation of
several elements, separated by periods:

DB_alias.Type.Inst_name.DBPARTnnn.timestamp.Seq_num

For example:

STAFF.0.DB201.DBPART000.19950922120112.001

Database alias
A 1- to 8-character database alias name that was specified when the backup utility was invoked.

Type
Type of backup operation, where: 0 represents a full database-level backup, 3 represents a table
space-level backup, and 4 represents a backup image generated by the LOAD COPY TO command.

Instance name
A 1- to 8-character name of the current instance that is taken from the DB2INSTANCE environment
variable.

Database partition number
In single partition database environments, this is always DBPART000. In partitioned database
environments, it is DBPARTxxx, where xxx is the number assigned to the database partition in the
db2nodes.cfg file.

320 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Time stamp
A 14-character representation of the date and time at which the backup operation was performed.
The time stamp is in the form yyyymmddhhnnss, where:

• yyyy represents the year (1995 to 9999)
• mm represents the month (01 to 12)
• dd represents the day of the month (01 to 31)
• hh represents the hour (00 to 23)
• nn represents the minutes (00 to 59)
• ss represents the seconds (00 to 59)

Sequence number
A 3-digit number used as a file extension.

When a backup image is written to tape:

• File names are not created, but the information described previously is stored in the backup header for
verification purposes.

• A tape device must be available through the standard operating system interface. In a large partitioned
database environment, however, it might not be practical to have a tape device dedicated to each
database partition server. You can connect the tape devices to one or more TSM servers, so that access
to these tape devices is provided to each database partition server.

• In a partitioned database environment, you can also use products that provide virtual tape device
functions, such as REELlibrarian 4.2 or CLIO/S. You can use these products to access the tape device
connected to other nodes (database partition servers) through a pseudo tape device. Access to the
remote tape device is provided transparently, and the pseudo tape device can be accessed through the
standard operating system interface.

You cannot back up a database that is not in a normal or backup-pending state. A table space that is in a
normal or backup-pending state can be backed up. If the table space is not in a normal or backup-
pending state, a backup may or may not be permitted.

Concurrent backup operations on the same table space are not permitted. Once a backup operation has
been initiated on a table space, any subsequent attempts will fail (SQL2048N).

If a database or a table space is in a partially restored state because a system crash occurred during the
restore operation, you must successfully restore the database or the table space before you can back it
up.

A backup operation will fail if a list of the table spaces to be backed up contains the name of a temporary
table space.

The backup utility provides concurrency control for multiple processes that are making backup copies of
different databases. This concurrency control keeps the backup target devices open until all the backup
operations have ended. If an error occurs during a backup operation, and an open container cannot be
closed, other backup operations targeting the same drive might receive access errors. To correct such
access errors, you must terminate the backup operation that caused the error and disconnect from the
target device. If you are using the backup utility for concurrent backup operations to tape, ensure that the
processes do not target the same tape.

Displaying backup information

You can use db2ckbkp to display information about existing backup images. This utility allows you to:

• Test the integrity of a backup image and determine whether or not it can be restored.
• Display information that is stored in the backup header.
• Display information about the objects and the log file header in the backup image.

Chapter 2. Data recovery 321

Backing up data
Use the BACKUP DATABASE command to take a copy of the database data and store it on a different
medium. This backup data can then be used in the case of a failure or damage to the original data. You
can back up an entire database, database partition, or only selected table spaces.

Before you begin

You do not need to be connected to the database that is to be backed up: the backup database utility
automatically establishes a connection to the specified database, and this connection is terminated at the
completion of the backup operation. If you are connected to a database that is to be backed up, you will
be disconnected when the BACKUP DATABASE command is issued and the backup operation will
proceed.

The database can be local or remote. The backup image remains on the database server, unless you are
using a storage management product such as Tivoli Storage Manager (TSM) or Db2 Advanced Copy
Services (ACS).

If you are performing an offline backup and if you have activated the database by using the ACTIVATE
DATABASE command, you must deactivate the database before you run the offline backup. If there are
active connections to the database, in order to deactivate the database successfully, a user with SYSADM
authority must connect to the database, and issue the following commands:

CONNECT TO database-alias
QUIESCE DATABASE IMMEDIATE FORCE CONNECTIONS;
UNQUIESCE DATABASE;
TERMINATE;
DEACTIVATE DATABASE database-alias

In a partitioned database environment, you can use the BACKUP DATABASE command to back up
database partitions individually, use the ON DBPARTITIONNUM command parameter to back up several
of the database partitions at once, or use the ALL DBPARTITIONNUMS parameter to back up all of the
database partitions simultaneously. You can use the LIST DBPARTITIONNUMS command to identify the
database partitions that have user tables on them that you might want to back up.

Unless you are using a single system view (SSV) backup, if you are performing an offline backup in a
partitioned database environment, you should back up the catalog partition separately from all other
database partitions. For example, you can back up the catalog partition first, then back up the other
database partitions. This action is necessary because the backup operation might require an exclusive
database connection on the catalog partition, during which the other database partitions cannot connect.
If you are performing an online backup, all database partitions (including the catalog partition) can be
backed up simultaneously or in any order.

On a distributed request system, backup operations apply to the distributed request database and the
metadata stored in the database catalog (wrappers, servers, nicknames, and so on). Data source objects
(tables and views) are not backed up, unless they are stored in the distributed request database

If a database was created with a previous release of the database manager, and the database has not
been upgraded, you must upgrade the database before you can back it up.

Restrictions

The following restrictions apply to the backup utility:

• A table space backup operation and a table space restore operation cannot be run at the same time,
even if different table spaces are involved.

• If you want to be able to do rollforward recovery in a partitioned database environment, you must
regularly back up the database on the list of nodes. You must also have at least one backup image of
the rest of the nodes in the system (even those nodes that do not contain user data for that database).
Two situations require the backed-up image of a database partition at a database partition server that
does not contain user data for the database:

– You added a database partition server to the database system after taking the last backup, and you
need to do forward recovery on this database partition server.

322 IBM Db2 V11.5: Data Recovery and High Availability

– Point-in-time recovery is used, which requires that all database partitions in the system are in
rollforward pending state.

• Online backup operations for DMS table spaces are incompatible with the following operations:

– load
– reorganization (online and offline)
– drop table space
– table truncation
– index creation
– not logged initially (used with the CREATE TABLE and ALTER TABLE statements)

• If you attempt to perform an offline backup of a database that is currently active, you will receive an
error. Before you run an offline backup, you can make sure that the database is not active by issuing the
DEACTIVATE DATABASE command.

Procedure

To invoke the backup utility:
• Issue the BACKUP DATABASE command in the command line processor (CLP).
• Run the ADMIN_CMD procedure with the BACKUP DATABASE parameter.
• Use the db2Backup application programming interface (API).
• Open the task assistant in IBM Data Studio for the BACKUP DATABASE command.

Example

Following is an example of the BACKUP DATABASE command issued through the CLP:

db2 backup database sample to c:\DB2Backups

What to do next

If you performed an offline backup, after the backup completes, you must reactivate the database:

ACTIVATE DATABASE sample

Performing a snapshot backup
A snapshot backup operation uses the fast copying technology of a storage device to perform the data
copying portion of the backup.

Before you begin

To perform snapshot backup and restore operations, you need one of two things:

• A Db2 ACS API driver for your storage device. For a list of supported storage hardware for the integrated
driver, refer to this tech note.

• For storage devices that are not supported, implement a custom script that allows your storage device
to perform snapshot operations.

Before you can perform a snapshot backup, you must enable Db2 Advanced Copy Services (ACS). See:
“Enabling Db2 Advanced Copy Services (ACS)” on page 446.

Restrictions

You cannot recover individual table spaces by using snapshot backups.

If you use integrated snapshot backups, you cannot perform a redirected restore. A FlashCopy® restore
reverts the complete set of volume groups containing all database paths to a prior point in time.

Chapter 2. Data recovery 323

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

Procedure

To perform a snapshot backup, use one of the following approaches:

• Issue the BACKUP DATABASE command with the USE SNAPSHOT parameter, as shown in the
following example:

db2 backup db sample use snapshot

• Call the ADMIN_CMD procedure with BACKUP DB and USE SNAPSHOT parameters, as shown in the
following example:

CALL SYSPROC.ADMIN_CMD
 ('backup db sample use snapshot')

• Issue the db2Backup API with the SQLU_SNAPSHOT_MEDIA media type, as shown in the following
example:

int sampleBackupFunction(char dbAlias[],
 char user[],
 char pswd[],
 char workingPath[])
{
 db2MediaListStruct mediaListStruct = { 0 };

 mediaListStruct.locations = &workingPath;
 mediaListStruct.numLocations = 1;
 mediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

 db2BackupStruct backupStruct = { 0 };

 backupStruct.piDBAlias = dbAlias;
 backupStruct.piUsername = user;
 backupStruct.piPassword = pswd;
 backupStruct.piVendorOptions = NULL;
 backupStruct.piMediaList = &mediaListStruct;

 db2Backup(db2Version950, &backupStruct, &sqlca);

 return 0;
}

Performing a snapshot backup with a script
Using a custom script allows you to perform snapshot backup operations to storage devices that are not
supported by Db2 ACS

Before you begin

You must have one of the following authorities: SYSADM, SYSCTRL, or SYSMAINT.

About this task

Snapshot backups allow you to use the functionality of your underlying storage system to instantly create
a copy of all database data and transaction logs without any interruptions. With a custom script, you can
specify various options for the snapshot backup operation as well as utilize a wide range of storage
devices that do not provide a vendor library.

During online snapshot backups, the database manager temporarily suspends all write operations to disk
before creating the snapshot. This ensures that no changes occur to the data during the few seconds
when the snapshot is taken.

Procedure

To perform a snapshot backup:
1. Create a script that implements the Db2 ACS API.

324 IBM Db2 V11.5: Data Recovery and High Availability

The script must be executable. For information on custom scripts, see “Db2 Advanced Copy Services
(ACS) user scripts” on page 461.

2. Optional: Create a protocol file repository.
This directory will contain the protocol files for the snapshot. Ensure that the directory is readable and
writable.

If you do not create the repository, the protocol files will be written to the directory that contains your
script.

3. Initiate® the backup operation using either the BACKUP DATABASE command, the ADMIN_CMD
procedure with BACKUP DB option, or the db2Backup API.
BACKUP DATABASE command

BACKUP DATABASE dbname ONLINE
 USE SNAPSHOT SCRIPT path-to-script
 OPTIONS 'path-to-repository additional options'

ADMIN_CMD procedure

CALL SYSPROC.ADMIN_CMD
 (backup database dbname online
 use snapshot script path-to-script
 options 'path-to-repository additional options')

db2Backup API

int sampleBackupFunction(char dbAlias[],
 char user[],
 char pswd[],
 char workingPath[])
{
 db2MediaListStruct mediaListStruct = { 0 };

 mediaListStruct.locations = &workingPath;
 mediaListStruct.numLocations = 1;
 mediaListStruct.locationType = SQLU_SNAPSHOT_SCRIPT_MEDIA;

 db2BackupStruct backupStruct = { 0 };

 backupStruct.piDBAlias = dbAlias;
 backupStruct.piUsername = user;
 backupStruct.piPassword = pswd;
 backupStruct.piVendorOptions = NULL;
 backupStruct.piMediaList = &mediaListStruct;
 db2Backup(db2Version1050, &backupStruct, &sqlca);

 return 0;
}

Results

The snapshot operation generates a snapshot backup image and a protocol file. Ensure that you keep the
protocol file so it can be used for subsequent restore, query, delete operations.

Backing up to tape
When you back up your database or table space, you must correctly set your block size and your buffer
size. This is particularly true if you are using a variable block size (on AIX, for example, if the block size
has been set to zero).

There is a restriction on the number of fixed block sizes that can be used when backing up. This restriction
exists because Db2 database systems write out the backup image header as a 4-KB block. The only fixed
block sizes Db2 database systems support are 512, 1024, 2048, and 4096 bytes. If you are using a fixed
block size, you can specify any backup buffer size. However, you might find that your backup operation
will not complete successfully if the fixed block size is not one of the sizes that Db2 database systems
support.

If your database is large, using a fixed block size means that your backup operations might take more
time than expected to complete. To improve performance, you can use a variable block size.

Chapter 2. Data recovery 325

Note: When using a variable block size, ensure that you have well tested procedures in place that enable
you to recover successfully, including explicitly specified buffer sizes for the BACKUP and RESTORE
commands, with backup images that are created using a variable block size.

When using a variable block size, you must specify a backup buffer size that is less than or equal to the
maximum limit for the tape devices that you are using. For optimal performance, the buffer size must be
equal to the maximum block size limit of the device being used.

Before a tape device can be used on a Windows operating system, the following command must be
issued:

db2 initialize tape on device using blksize

Where:
device

is a valid tape device name. The default on Windows operating systems is \\.\TAPE0.
blksize

is the blocking factor for the tape. It must be a factor or multiple of 4096. The default value is the
default block size for the device.

Restoring from a backup image with variable block size might return an error. If this happens, you might
need to rewrite the image using an appropriate block size. Following is an example on AIX:

 tctl -b 0 -Bn -f /dev/rmt0 read > backup_filename.file
 dd if=backup_filename.file of=/dev/rmt0 obs=4096 conv=sync

The backup image is dumped to a file called backup_filename.file. The dd command dumps the
image back onto tape, using a block size of 4096.

There is a problem with this approach if the image is too large to dump to a file. One possible solution is to
use the dd command to dump the image from one tape device to another. This will work as long as the
image does not span more than one tape. When using two tape devices, the dd command is:

 dd if=/dev/rmt1 of=/dev/rmt0 obs=4096

If using two tape devices is not possible, you might be able to dump the image to a raw device using the
dd command, and then to dump the image from the raw device to tape. The problem with this approach is
that the dd command must keep track of the number of blocks dumped to the raw device. This number
must be specified when the image is moved back to tape. If the dd command is used to dump the image
from the raw device to tape, the command dumps the entire contents of the raw device to tape. The dd
utility cannot determine how much of the raw device is used to hold the image.

When using the backup utility, you will need to know the maximum block size limit for your tape devices.
Here are some examples:

Device Attachment Block Size Limit Db2 Buffer Size Limit
(in 4-KB pages)

8 mm scsi 131,072 32

3420 s370 65,536 16

3480 s370 61 440 15

3490 s370 61 440 15

3490E s370 65,536 16

7332 (4 mm)1 scsi 262,144 64

3490e scsi 262,144 64

35902 scsi 2,097,152 512

326 IBM Db2 V11.5: Data Recovery and High Availability

Device Attachment Block Size Limit Db2 Buffer Size Limit
(in 4-KB pages)

3570 (magstar MP) 262,144 64

Note:

1. The 7332 does not implement a block size limit. 256 KB is simply a suggested value. Block size limit is
imposed by the parent adapter.

2. While the 3590 does support a 2-MB block size, you could experiment with lower values (like 256 KB),
provided the performance is adequate for your needs.

3. For information about your device limit, check your device documentation or consult with the device
vendor.

Verifying the compatibility of your tape device

On UNIX, Linux, and AIX operating systems only, to determine whether your tape device is supported for
backing up your Db2 databases, perform the following procedure:

As the database manager instance owner, run the operating system command dd to read from or write to
your tape device. If the dd command succeeds, then you can back up your Db2 databases using your tape
device.

Backing up to named pipes
Support is now available for database backup to (and database restore from) local named pipes on UNIX
operating systems.

Before you begin

Both the writer and the reader of the named pipe must be on the same machine. The pipe must exist on a
local file system. Because the named pipe is treated as a local device, there is no need to specify that the
target is a named pipe.

Procedure

1. Create a named pipe.
The following is an AIX example:

 mkfifo /u/dmcinnis/mypipe

2. If this backup image is going to be used by the restore utility, the restore operation must be invoked
before the backup operation, so that it does not miss any data:

 db2 restore db sample from /u/dmcinnis/mypipe into mynewdb

3. Use this pipe as the target for a database backup operation:

 db2 backup db sample to /u/dmcinnis/mypipe

Backing up partitioned databases
Backing up a database in a partitioned database environment can pose difficulties such as tracking the
success of the backup of each database partition, managing the multiple log files and backup images, and
ensuring the log files and backup images for all the database partitions span the minimum recovery time
that is required to restore the database. Using a single system view (SSV) backup is the easiest way to
back up a partitioned database.

About this task

There are four ways to back up a database in a partitioned database environment:

Chapter 2. Data recovery 327

• Back up each database partition one at a time by using the BACKUP DATABASE command, the BACKUP
DATABASE command with the ADMIN_CMD procedure, or the db2Backup API.

• Use the db2_all command with the BACKUP DATABASE command to first back up the catalog
partition and then to back up a specified list of database partitions.

• Run a single system view (SSV) backup to back up some or all of the database partitions
simultaneously, including the catalog partition.

• Use a task assistant in IBM Data Studio to guide you through the process of backing up the database.

Backing up each database partition one at a time is time-consuming and error-prone. Backing up all the
partitions by using the db2_all command is easier than backing up each database partition individually
because you generally only must make one command call. However, when you use db2_all to back up a
partitioned database, you sometimes still must make multiple calls to db2_all because the database
partition that contains the catalog cannot be backed up simultaneously with non-catalog database
partitions. Whether you back up each database partition one at a time or use db2_all, managing backup
images that were created using either of these methods is difficult because the time stamp for each
database partition's backup image is different, and coordinating the minimum recovery time across the
database partitions' backup images is difficult as well.

For the previously mentioned reasons, the recommended way to back up a database in a partitioned
database environment is to use an SSV backup because you can decide to back up all database partitions
simultaneously, including the catalog partition, and get the same time stamp for each database partition
backup. Alternatively, you can split your backup, specifying some database partitions for which you get
the same time stamp, and later take additional backups on the other database partitions to complete the
database backup. The catalog partition can be backed up at any time with any other database partitions.

Note: For restore operations, you still must restore the catalog partition before you restore some or all of
the other database partitions.

Procedure

To back up some or all of the database partitions of a partitioned database simultaneously by using an
SSV backup:
1. Optional: Allow the database to remain online, or take the database offline.

You can back up a partitioned database while the database is online or offline. If the database is
online, the backup utility acquires shared connections to the other database partitions, so user
applications are able to connect to database partitions while they are being backed up.

2. On the database partition that contains the database catalog, perform the backup with appropriate
parameters for partitioned databases, using one of the following methods:

• Run the BACKUP DATABASE command with the ON DBPARTITIONNUMS parameter.
• Run the BACKUP DATABASE command with the ON DBPARTITIONNUMS parameter by using the

ADMIN_CMD procedure.
• Call the db2Backup API with the iAllNodeFlag parameter.
• Open the task assistant for the BACKUP DATABASE command in IBM Data Studio.

For example, to backup the sample database in a PDF environment perform the following command:

db2 backup database sample on all dbpartitionnums to /db2home/db2inst1/backup/ without
prompting

3. Optional: Include the log files that are required for recovery with the backup images.

By default, log files are included with backup images if you are performing an SSV backup (that is, if
you specify the ON DBPARTITIONNUM parameter). If you do not want log files to be included with the
backup images, use the EXCLUDE LOGS command parameter when you run the backup. Log files are
excluded from the backup image by default for non-SSV backups.

For more information, see “Including log files with a backup image” on page 194.
4. Optional: Delete previous backup images.

328 IBM Db2 V11.5: Data Recovery and High Availability

The method that you use to delete old backup images depends on how you store the backup images.
For example, if you store the backup images to disk, you can delete the files; if you store the backup
images using IBM Tivoli Storage Manager, you can use the db2adutl utility to delete the backup
images. If you are using Db2 Advanced Copy Services (ACS), you can use the db2acsutil command
to delete snapshot backup objects.

Example
Following the procedure to backup the Db2 sample database will result in failures that mention the
database is in circular logging mode, this is not recoverable. To backup the Db2 sample database:

1. Check if the database is in circular logging mode

db2 get db cfg for sample | grep LOGARCH
 First log archive method (LOGARCHMETH1) = OFF
 Archive compression for logarchmeth1 (LOGARCHCOMPR1) = OFF
 Options for logarchmeth1 (LOGARCHOPT1) =
 Second log archive method (LOGARCHMETH2) = OFF
 Archive compression for logarchmeth2 (LOGARCHCOMPR2) = OFF
 Options for logarchmeth2 (LOGARCHOPT2) =

Note: logarchmeth1 and logarchmeth2 in off mode indicates the current database is in circular
logging mode

2. Make the database recoverable

db2 update db cfg for sample using LOGARCHMETH1 "DISK:/db2home/db2inst1/backup/ArchiveDest"
 db2 activate db sample

3. Run backup command

 db2 backup database sample on all dbpartitionnums to /db2home/db2inst1/backup/ without
prompting

Backing up partitioned tables using IBM Tivoli Space Manager Hierarchical Storage Management
The Tivoli Space Manager Hierarchical Storage Manager (HSM) client program automatically migrates
eligible files to secondary storage to maintain specific levels of free space on local file systems.

With table partitioning, table data is divided across multiple storage objects called data partitions. HSM
supports the backup of individual data partitions to secondary storage.

When using SMS table spaces, each data partition range is represented as a file in the corresponding
directory. Therefore, it is very easy to migrate individual ranges of data (data partitions) to secondary
storage.

When using DMS table spaces, each container is represented as a file. In this case, infrequently accessed
ranges should be stored in their own table space. When you issue a CREATE TABLE statement using the
EVERY clause, use the NO CYCLE clause to ensure that the number of table spaces listed in the table level
IN clause match the number of data partitions being created. This is demonstrated in the following
example:

Example 1

CREATE TABLE t1 (c INT) IN tbsp1, tbsp2, tbsp3 NO CYCLE
 PARTITION BY RANGE(c)
 (STARTING FROM 2 ENDING AT 6 EVERY 2);

Enabling automatic backup
A database can become unusable due to a wide variety of hardware or software failures. Ensuring that
you have a recent, full backup of your database is an integral part of planning and implementing a disaster
recovery strategy for your system. Use automatic database backup as part of your disaster recovery
strategy to enable Db2 to back up your database both properly and regularly.

Chapter 2. Data recovery 329

About this task
You can configure automatic backup using the command line interface, or the AUTOMAINT_SET_POLICY
system stored procedure. You also need to enable the health indicator db.db_backup_req, which by
default is enabled. Note that only an active database is considered for the evaluation.

Procedure

• To configure automatic backup using the command line interface, set each of the following database
configuration parameters to ON:

– AUTO_MAINT
– AUTO_DB_BACKUP

• To configure automatic backup usingIBM Data Studio, right-click the database and select the task
assistant to configure automatic backup.

• To configure automatic backup using the AUTOMAINT_SET_POLICY system stored procedure:
a) Create configuration XML input specifying details like backup media, whether the backup should be

online or offline, and frequency of the backup.

You can copy the contents of the sample file called DB2DefaultAutoBackupPolicy.xml in the
SQLLIB/samples/automaintcfg directory and modify the XML to satisfy your configuration
requirements.

b) Optional: Create an XML input file containing your configuration XML input.
c) Call AUTOMAINT_SET_POLICY with the following parameters:

– maintenance type: AutoBackup
– configuration XML input: either a BLOB containing your configuration XML input text; or the name

of the file containing your configuration XML input.

See the topic “Configuring an automated maintenance policy using
SYSPROC.AUTOMAINT_SET_POLICY or SYSPROC.AUTOMAINT_SET_POLICYFILE” on page 169 for
more information about using the AUTOMAINT_SET_POLICY system stored procedure.

Automatic database backup
A database might become unusable due to a variety of hardware or software failures. Automatic database
backup simplifies database backup management tasks for the DBA by always ensuring that a recent full
backup of the database is performed as needed.

It determines the need to perform a backup operation based on one or more of the following measures:

• You have never completed a full database backup
• The time elapsed since the last full backup is more than a specified number of hours
• The transaction log space consumed since the last backup is more than a specified number of 4 KB

pages (in archive logging mode only).

Protect your data by planning and implementing a disaster recovery strategy for your system. If suitable
to your needs, you may incorporate the automatic database backup feature as part of your backup and
recovery strategy.

If the database is enabled for roll-forward recovery (archive logging), then automatic database backup
can be enabled for either online or offline backup. Otherwise, only offline backup is available. Automatic
database backup supports disk, tape, Tivoli Storage Manager (TSM), and vendor DLL media types.

If backup to disk is selected, the automatic backup feature will regularly delete backup images from the
directory specified in the automatic database backup configuration. Only the most recent backup image
will be available at any given time, regardless of the number of full backups that are specified in the
automatic backup policy file. It is recommended that this directory be kept exclusively for the automatic
backup feature and not be used to store other backup images.

The automatic database backup feature can be enabled or disabled by using the auto_db_backup and
auto_maint database configuration parameters. In a partitioned database environment, the automatic

330 IBM Db2 V11.5: Data Recovery and High Availability

database backup runs on each database partition if the database configuration parameters are enabled
on that database partition.

You can also configure automatic backup using one of the system stored procedures called
AUTOMAINT_SET_POLICY and AUTOMAINT_SET_POLICYFILE.

Backup and restore operations in a Db2 pureScale environment
In a Db2 pureScale environment, issuing a single BACKUP DATABASE or RESTORE DATABASE command
on any member initiates a backup or restore operation on behalf of all members.

A backup operation generates a single backup image that includes data from the specified table spaces
and any required metadata and configuration information for all currently defined members. You do not
have to perform additional backup operations on any other member in the Db2 pureScale instance.
Moreover, you require only a single RESTORE DATABASE command to restore the database and the
member-specific metadata for all members. You do not have to perform additional restore operations on
any other member to restore the cluster.

The time stamps of consecutive backup images are unique, increasing values, regardless of which
member produced them.

You do not have to perform the restore operation on the same member that was used to generate the
backup image, provided the backup image is accessible by the member performing the restore.

Note: If IBM Tivoli Storage Manager (TSM) is the target location on the BACKUP DATABASE command, it
is recommended to configure the TSM client to use proxy node. This allows all members of the Db2
pureScale instance to access the backup image stored on the TSM server. See “Configuring a Tivoli
Storage Manager client” on page 442 for details.

All members must be consistent before an offline backup operation can be attempted. Only one offline
backup operation can run at one time, because the backup utility acquires super-exclusive access to the
database across all members. Although concurrent online backup operations are supported, different
backup operations cannot copy the same table spaces simultaneously, and must wait their turn.

All of the reading of data and metadata from the database and all of the writing to a backup image takes
place on a single member. Interactions between the backup or restore operation and other members are
limited to copying or updating database metadata (such as table space definitions, the log file header, and
the database configuration).

Note: Before taking a backup, you need to ensure that the log archiving path is set to a shared directory
so that all the members are able to access the logs for subsequent rollforward operations. If the archive
path is not accessible from the member on which the rollforward is being executed, SQL1273N is
returned. The following command is an example of how to set the log path to the shared directory:

db2 update db cfg using logarchmeth1
 DISK:/db2fs/gpfs1/svtdbm5/svtdbm5/ArchiveLOGS

(where gpfs1 is the shared directory for the members and ArchiveLOGS is the actual directory that
archives the logs.

Online backup operations can proceed successfully if another member is offline, goes offline, or comes
back online while the operation is executing (Table 25 on page 332). Although database restore
operations are not affected by the state of other members, backup operations might have to wait for a
short duration while member crash recovery is completed on an offline and inconsistent member.

Chapter 2. Data recovery 331

Table 25. Effect of the state of other members in a Db2 pureScale instance on database backup and
restore operations

Operation

State of other members

Offline and consistent Offline and inconsistent

Online backup The backup operation succeeds.
The other member cannot
become active while the backup
utility is accessing the log file
header (LFH) near the beginning
of the backup operation or while
the backup utility is accessing the
log stream near the end of the
backup operation.

The backup operation succeeds,
but it must wait for member
crash recovery to be completed
and for the other member to
become either active or
consistent. The other member
cannot become active while the
backup utility is accessing the
LFH near the beginning of the
backup operation or while the
backup utility is accessing the log
stream near the end of the
backup operation.

Restore The restore operation is
completed normally.

The restore operation is
completed normally.

Image and archive naming

File names for backup images that you create on disk consist of a concatenation of several elements,
separated by periods:

 DB_alias.Type.Inst_name.DBPARTnnn.Timestamp.Seq_num

DB_alias
The database alias name that you specified when you invoked the backup utility.

Type
The type of backup operation, where 0 represents a full database backup, 3 represents a table space
backup, and 4 represents a backup image generated by the LOAD command with the COPY NO option.

Inst_name
The name of the current instance, which is the value of the DB2INSTANCE environment variable.

nnn
The database partition number. In a Db2 pureScale environment, the number is always 000.

Timestamp
A 14-character representation of the date and time when you performed the backup operation. The
time stamp is in the form yyyymmddhhnnss, where:

• yyyy represents the year.
• mm represents the month (01 to 12).
• dd represents the day of the month (01 to 31).
• hh represents the hour (00 to 23).
• nn represents the minutes (00 to 59).
• ss represents the seconds (00 to 59).

Seq_num
A 3-digit number used as a file extension.

For example:

 SAMPLE.0.krodger.DBPART000.200802241234.001

332 IBM Db2 V11.5: Data Recovery and High Availability

Online backup with INCLUDE LOGS

An online backup operation with the INCLUDE LOGS option (the default) produces a backup image that
includes the range of log files required to restore and roll the database forward to its minimum recovery
time. If this backup image is then used to restore to a new database (perhaps during disaster recovery),
and only the logs from the backup image are available during a subsequent rollforward operation, a
ROLLFORWARD DATABASE command with the TO END OF LOGS parameter often returns an error
message about a missing log file (SQL1273N). This is expected in some situations, because the database
manager might have detected that additional logs were written after the backup operation, but that those
logs are not available for the current rollforward operation. It might also be the case that one or more of
the logs that are necessary to roll the database forward to a consistent point in time are missing. In either
case, verify that the end point of the rollforward operation is acceptable and then issue a ROLLFORWARD
DATABASE with the AND STOP parameter. If the rollforward operation has reached its minimum recovery
time despite the missing log file, the ROLLFORWARD DATABASE with the AND STOP parameter should
complete successfully; otherwise, it returns SQL1276N (the rollforward operation did not reach its
minimum recovery time using this backup image).

Disaster recovery and high availability through log shipping in a Db2 pureScale environment

Log shipping is the process of copying whole log files to a standby machine, either from an archive device,
or through a user exit program running against the primary database. You can choose to keep a standby
database up-to-date by applying the logs to it as they are archived, or you can keep the database or table
space backup images and log archives on the standby site, and perform restore and rollforward
operations only after a disaster has occurred. In either case, the rollforward operation on the standby site
might detect that one or more log files are missing and return SQL1273N. Verify that the rollforward
operation reached an acceptable time stamp, or take appropriate action to correct the problem.

If, during a log stream merge operation, the Db2 database manager determines that there is a missing log
file in one of the log streams, an error is returned. The rollforward utility returns SQL1273N; the
db2ReadLog API returns SQL2657N. If you choose to keep a standby database up-to-date by applying
logs to it as they are archived, rollforward operations might frequently detect that some logs are missing.

Figure 17 on page 333 shows an example of how two members could write log records to the log files in
their active log stream. Each log file is represented by a box. Consider a scenario where both a primary
and standby site have been set up for high availability. A ROLLFORWARD DATABASE command with the
END OF LOGS option is attempted on the standby site at time points A, B and C. For any particular point
in time, any log files that have been closed before that time have been archived and are accessible on the
standby. Otherwise, the log file is still active on the primary and is not available to the standby yet (as
shown for log file 4 on log stream 1 at time B).

Figure 17. Log files in a Db2 pureScale environment

At time A, the ROLLFORWARD DATABASE command will complete successfully as log file 1 from log
stream 0 was closed and archived at the same time as log file 3 from log stream 1. At time B however, the
ROLLFORWARD DATABASE command will return v. This happens because at the time that the command is
issued on the standby site, the standby site has access to log files 2 and 3 from log stream 0, but not to
log file 4 from log stream 1 because the log file is still open and active on the primary site. Furthermore,

Chapter 2. Data recovery 333

since the log records in files 2 and 3 on log stream 0 were written during the same time period as the
beginning of log file 4 on log stream 1, the rollforward operation cannot process log files 2 and 3 until log
file 4 from log stream 1 is made available. At time C, when log file 4 is finally closed and archived on log
stream 1, a ROLLFORWARD DATABASE command will complete successfully. It is possible to force the
truncation and archiving of files across all the log streams using the ARCHIVE LOG command, or by
deactivating the database across all members. In the case of the ARCHIVE LOG command, the current
log file on each log stream is truncated independently and there is no guarantee that it will happen at the
exact same point in time across all members. Therefore, even if the ARCHIVE LOG command is issued, it
is still possible to get an SQL1273N error when executing the ROLLFORWARD DATABASE command.

While missing log conditions are common and expected when using log shipping in a Db2 pureScale
environment, in most cases, each rollforward operation on the standby will make additional progress over
the last ROLLFORWARD DATABASE command (even when SQL1273N is returned) and therefore the error
itself should often be expected. It is possible, however, for the primary site to have trouble archiving a file
for one log stream while successfully archiving logs for the other log streams. This could be the result of a
temporary problem accessing the archive storage for one log stream. Such problems can cause the log
merge and replay on the standby to be held up, increasing the number of transactions that could be lost in
the event of a disaster. To ensure that your standby system is up-to-date, issue a ROLLFORWARD
DATABASE command with the QUERY STATUS parameter after each rollforward operation that returns
SQL1273N and verify that progress is being made over time. If a rollforward operation on the standby is
not making progress over an extended period of time, determine why the log file reported as missing is
not available on the standby system and correct the problem. The ARCHIVE LOG command can be used
to truncate the log files that are currently being updated on each member, making them eligible for
archiving and subsequent replay on the standby system.

In the event of a disaster (for example, fire, earthquake, vandalism, or other catastrophic events) your
plan for recovery might be to execute a rollforward operation through all remaining logs, or a restore and
rollforward operation through all available logs. As mentioned previously, the rollforward operation might
detect that one or more log file is missing, because log files were written on the primary but not yet
archived at the time of the disaster (SQL1273N). It is also possible that a log that was archived cannot be
found by the rollforward utility for some unexpected reason; this can also cause the rollforward utility to
return SQL1273N. It is important to validate the end point of a rollforward operation by using the
ROLLFORWARD DATABASE command with the QUERY STATUS parameter, and to decide whether or not
the missing log condition is expected. If the missing log condition is expected, or the end point is
acceptable, you can issue a ROLLFORWARD DATABASE command with the STOP parameter to complete
the rollforward recovery process.

Restrictions

After you drop a member, you cannot perform rollforward recovery operations through the point where
the operation occurred. If you drop a member, the database is placed in backup pending state. You must
perform either an incremental, or a full database backup operation before a connection to the database
can be made. To recover, restore this backup image and roll forward to the end of the logs. If you must
restore a backup image from before the topology change, you can roll forward only to the point at which
the topology change occurred. This step can be accomplished by issuing a ROLLFORWARD DATABASE
command with the TO END OF LOGS parameter (which returns SQL1546N) followed by a ROLLFORWARD
DATABASE command with the STOP parameter. This operation will not recover any transactions that
changed the database after the topology change.

In a Db2 pureScale environment, the ON ALL DBPARTITIONNUMS parameter and the ON DBPARTITION
(0) parameter of the BACKUP DATABASE command are valid. If you specify a database partition number
other than 0, however, an error (SQL0270N) is returned because no other database partitions exist.

Examples

• Back up a four-member database named SAMPLE from any member:

BACKUP DB SAMPLE

• Restore a one-member database named SAMPLE:

334 IBM Db2 V11.5: Data Recovery and High Availability

RESTORE DB SAMPLE

• Use the RECOVER DATABASE command to restore and roll forward a database named SAMPLE from
any member:

RECOVER DB SAMPLE TO END OF LOGS

If the database does not exist, use the RESTORE DATABASE and ROLLFORWARD DATABASE commands
instead of the RECOVER DATABASE command because an existing database with a complete database
history is required for the successful completion of the RECOVER DATABASE command.

Monitoring backup operations
Monitoring of backup operations can be achieved using the LIST UTILITIES command, or the db2pd -
barstats command.

About this task

Using the LIST UTILITIES command:

Procedure

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter:

 list utilities show detail

Results

For backup operations, an initial estimate of the number of bytes to be processed will be specified. As the
backup operation progresses the number of bytes to be processed will be updated. The bytes shown does
not correspond to the size of the image and should not be used as an estimate for backup image size. The
actual image might be much smaller depending on whether it is an incremental or compressed backup.

Example

The following is an example of the output for monitoring the performance of an offline database backup
operation:

ID = 3
Type = BACKUP
Database Name = SAMPLE
Partition Number = 0
Description = offline db
Start Time = 08/04/2011 12:16:23.248367
State = Executing
Invocation Type = User
Throttling:
 Priority = Unthrottled
Progress Monitoring:
 Extimated Percentage Complete = 31
 Total Work = 123147277 bytes
 Completed Work = 37857269 bytes
 Start Time = 08/04/2011 12:16:23.248377

Using the db2pd -barstats command:

The db2pd -barstats command can be used to provide backup and restore monitoring and performance
information. See “Monitoring backup and restore performance with db2pd -barstats” on page 294.

Optimizing backup performance
When you perform a backup operation, the Db2 database manager automatically chooses an optimal
value for the number of buffers, the buffer size, and the parallelism settings. The values are based on the
amount of utility heap memory available, the number of processors available, and the database

Chapter 2. Data recovery 335

configuration. Therefore, depending on the amount of storage available on your system, consider
allocating more memory by increasing the util_heap_sz configuration parameter.

The objective is to minimize the time it takes to complete a backup operation. Unless you explicitly enter
a value for the following BACKUP DATABASE command parameters, the Db2 database manager selects
one for them:

• WITH num-buffers BUFFERS
• PARALLELISM n
• BUFFER buffer-size

If the number of buffers and the buffer size are not specified, resulting in the Db2 database manager
setting the values, it should have minimal effect on large databases. However, for small databases, it can
cause a large percentage increase in backup image size. Even if the last data buffer written to disk
contains little data, the full buffer is written to the image anyway. In a small database, this means that a
considerable percentage of the image size might be empty.

You can also choose to do any of the following to reduce the amount of time required to complete a
backup operation:

• Specify table space backup.

You can back up (and subsequently recover) part of a database by using the TABLESPACE option on the
BACKUP DATABASE command. This facilitates the management of table data, indexes, and long field or
large object (LOB) data in separate table spaces.

• Increase the value of the PARALLELISM parameter on the BACKUP DATABASE command so that it
reflects the number of table spaces being backed up.

The PARALLELISM parameter defines the number of processes or threads that are started to read data
from the database and to compress data during a compressed backup operation. Each process or
thread is assigned to a specific table space, so there is no benefit to specifying a value for the
PARALLELISM parameter that is larger than the number of table spaces being backed up. When it
finishes backing up this table space, it requests another. Note, however, that each process or thread
requires both memory and CPU overhead.

• Increase the backup buffer size.

The ideal backup buffer size is a multiple of the table space extent size plus one page. If you have
multiple table spaces with different extent sizes, specify a value that is a common multiple of the extent
sizes plus one page.

• Increase the number of buffers.

Use at least twice as many buffers as backup targets (or sessions) to ensure that the backup target
devices do not have to wait for data.

• Use multiple target devices.
• Consider enabling the DB2_REDUCE_FLUSHING_DURING_BACKUP performance registry variable to

reduce the flushing of changed pages within the bufferpools for online backup operations.

Backup and restore statistics
Each successful backup and restore operation generates a single record in the db2diag.log file, which
provides information on the performance of that operation. The log record is informational and is dumped
at diaglevel 3 (the default) and 4.

Examples

The log records for backup and restore statistics consist of a row for each backup and restore buffer
manipulator (db2bm) EDU and a row for each backup and restore media controller (db2med) EDU:

2012-07-30-15.41.30.012922-240 E15775E1464 LEVEL: Info
PID : 15882 TID : 46913126656320 KTID : 16001
PROC : db2sysc
INSTANCE: krodger NODE : 000 DB : SAMPLE

336 IBM Db2 V11.5: Data Recovery and High Availability

APPHDL : 0-18 APPID: *LOCAL.krodger.120730194119
AUTHID : KRODGER HOSTNAME: hotel74
EDUID : 49 EDUNAME: db2agent (SAMPLE)
FUNCTION: Db2 UDB, database utilities, sqluxLogDataStats, probe:377
MESSAGE : Performance statistics
DATA #1 : String, 951 bytes

Number of buffers = 4
Buffer size = 16781312 (4097 4kB pages)

BM# Total I/O MsgQ WaitQ Buffers kBytes
--- -------- -------- -------- -------- -------- --------
000 6.30 0.02 0.00 6.18 4 640
001 5.88 4.48 0.00 1.33 9 139536
--- -------- -------- -------- -------- -------- --------
TOT 12.18 4.51 0.00 7.51 13 140176

MC# Total I/O MsgQ WaitQ Buffers kBytes
--- -------- -------- -------- -------- -------- --------
000 6.36 0.34 5.94 0.00 9 114748
001 6.29 0.18 5.60 0.10 6 81944
--- -------- -------- -------- -------- -------- --------
TOT 12.66 0.53 11.55 0.10 15 196692

The meanings of the various columns are as follows:
BM

The db2bm EDU ID
Total

Length of time that each EDU existed
I/O

Time that was spent performing read or write I/O, to or from stable storage
MsgQ

Time that was spent waiting for an I/O buffer
WaitQ

Time that was spent waiting for a state machine control message.
Buffers

Number of I/O buffers that were processed
KBytes

Quantity of data that was processed
MC

the db2med EDU ID

Examples

For compressed backups, the log record contains two additional columns for performance information
about the compression operation:

2012-07-30-15.41.47.228766-240 E38419E1913 LEVEL: Info
PID : 15882 TID : 46913126656320 KTID : 16081
PROC : db2sysc
INSTANCE: krodger NODE : 000 DB : SAMPLE
APPHDL : 0-29 APPID: *LOCAL.krodger.120730194132
AUTHID : KRODGER HOSTNAME: hotel74
EDUID : 80 EDUNAME: db2agent (SAMPLE)
FUNCTION: Db2 UDB, database utilities, sqluxLogDataStats, probe:377
MESSAGE : Performance statistics
DATA #1 : String, 1399 bytes

Number of buffers = 4
Buffer size = 16781312 (4097 4K pages)
 Compr
BM# Total I/O Compr MsgQ WaitQ Buffers kBytes kBytes
--- ------- ------ ------ ------- -------- -------- -------- --------
000 12.08 4.36 7.18 0.00 0.37 5 139536 144941
001 11.87 0.01 0.01 0.00 11.79 1 640 640
--- ------- ------ ------ ------- -------- -------- -------- --------
TOT 23.96 4.38 7.19 0.00 12.17 6 140176 145581

Chapter 2. Data recovery 337

MC# Total I/O MsgQ WaitQ Buffers kBytes
--- ------- ------ ------ ------- -------- -------- -------- --------
000 12.07 0.11 11.76 0.00 4 49168
001 12.10 0.07 11.84 0.15 4 32808
--- ------- ------ ------- -------- -------- --------
TOT 24.18 0.19 23.61 0.15 8 81976

Compr
Time that was spent performing the compression operation

Compr Bytes
Quantity of uncompressed data that was compressed

Privileges, authorities, and authorization required to use backup
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the backup utility.

Privileges enable users to create or access database resources. Authority levels provide a method of
grouping privileges and higher-level database manager maintenance and utility operations. Together,
these act to control access to the database manager and its database objects.

Users can access only those objects for which they have the appropriate authorization; that is, the
required privilege or authority.

Compatibility of online backup and other utilities
Some utilities can be run at the same time as an online backup, but others cannot.

The following utilities are compatible with online backup:

• EXPORT
• INSPECT

The following SQL statements and utilities are compatible with online backup only under certain
circumstances:

• CREATE INDEX

In SMS mode, online index create and online backup do not run concurrently due to the ALTER TABLE
lock. Online index create acquires it in exclusive mode while online backup acquires it in share.

In DMS mode, online index create and online backup can run concurrently in most cases. There is a
possibility if you have a large number of tables in the same tablespace as the one in which you are
creating the index, that the online index create will internally acquire an online backup lock that will
conflict with any concurrent online backup.

• REORG INDEX with the ONLINE option

As with online index create, in SMS mode, online index reorganization do not run concurrently with
online backup due to the ALTER TABLE lock. Online index reorganization acquires it in exclusive mode
while online backup acquires it in share. In addition, an online index reorganization operation, quiesces
the table before the switch phase and acquires a Z lock, which prevents an online backup. However, the
ALTER TABLE lock should prevent an online backup from running concurrently before the Z table lock is
acquired.

In DMS mode, online index reorganization and online backup can run concurrently.

In addition, online index reorganization quiesces the table before the switch phase and gets a Z lock,
which prevents an online backup.

• IMPORT

The import utility is compatible with online backup except when the IMPORT command is issued with
the REPLACE parameter, in which case, import gets a Z lock on the table and prevents an online backup
from running concurrently.

• TRUNCATE TABLE

338 IBM Db2 V11.5: Data Recovery and High Availability

For SMS (System Managed Space), the TRUNCATE statement is not compatible with online backup
because it gets a Z lock on the table and prevents an online backup from running concurrently.

TRUNCATE will not progress if an online backup is active, as the online backup utility will hold an online
back up (OLB) lock which is not compatible with TRUNCATE. In this case, the TRUNCATE will not
timeout, regardless of the system defined timeout value. TRUNCATE will wait until the online backup is
completed and before starting.

• LOAD

Load operations that specify the ALLOW READ ACCESS parameter are not compatible with online
backups when the LOAD command is issued with the COPY NO parameter. In this mode the utilities
both modify the table space state, causing one of the utilities to report an error. Load operations that
specify the ALLOW READ ACCESS parameter do not lead to an error if they also specify the COPY YES
option. although there might still be some compatibility issues. In SMS mode, the utilities can execute
concurrently, but they hold incompatible table lock modes and consequently might be subject to table
lock waits. In DMS mode, the utilities both hold incompatible "online backup" (OLB) lock modes and
might be subject to waits on that lock. If the utilities execute on the same table space concurrently, the
load utility might be forced to wait for the backup utility to complete processing of the table space
before the load utility can proceed.

• REORG TABLE with the ONLINE option

The cleanup phase of online table reorganization cannot start while an online backup is running. You
can pause the table reorganization, if required, to allow the online backup to finish before resuming the
online table reorganization.

You can start an online backup of a DMS table space when a table within the same table space is being
reorganized online. There might be lock waits associated with the reorganization operation during the
truncate phase.

You cannot start an online backup of an SMS table space when a table within the same table space is
being reorganized online. Both operations require an exclusive lock.

• DDLs that require a Z lock (such as ALTER TABLE, DROP TABLE, and DROP INDEX)

Online DMS table space backup is compatible with DDLs that require a Z lock.

Online SMS table space backup must wait for the Z lock to be released.
• Storage group DDLs

If you are modifying the database storage groups by issuing one of the following statements, you should
take care to coordinate this operation with your online backup schedule:

– CREATE STOGROUP
– ALTER STOGROUP
– DROP STOGROUP
– RENAME STOGROUP
– ALTER DATABASE

If there is an online backup in progress, the storage group DDL waits behind that operation until it can
obtain the appropriate lock, which can potentially take a long time. Similarly, an online backup waits
behind any in-progress storage group DDL, until that DDL is committed or rolled back.

• RUNSTATS with the ALLOW WRITE or ALLOW READ option

The RUNSTATS command is compatible with online backup except when the system catalog table space
is an SMS table space. If the system catalog resides in an SMS table space, then the RUNSTATS
command and the online backup hold incompatible table locks on the table causing lock waits.

• ALTER TABLESPACE

Operations that enable or disable autoresize, or alter autoresize containers, are not permitted during an
online backup of a table space.

• ALTER TABLESPACE with the REBALANCE option

Chapter 2. Data recovery 339

When online backup and rebalancer are running concurrently, online backup pauses the rebalancer and
does not wait for it to complete.

The following utilities are not compatible with online backup:

• REORG TABLE
• RESTORE DATABASE
• ROLLFORWARD DATABASE
• LOAD with the ALLOW NO ACCESS option
• SET WRITE
• BACKUP DATABASE with the ONLINE option
• ALTER TABLE ACTIVATE NOT LOGGED INITIALLY WITH EMPTY TABLE
• REORG INDEX with the ALLOW NO ACCESS option

This applies to database-level online backups and table-space-level online backups (if they involve the
same table space or table spaces).

Backup examples
This topic contains some examples of different backup strategies.

Backup to TSM

In the following example database SAMPLE is backed up to a TSM server using 2 concurrent TSM client
sessions. The backup utility will compute the optimal number of buffers. The optimal size of the buffers,
in 4 KB pages, is automatically calculated based on the amount of memory and the number of target
devices that are available. The parallelism setting is also automatically calculated and is based on the
number or processors available and the number of table spaces to be backed up.

 db2 backup database sample use tsm open 2 sessions with 4 buffers

 db2 backup database payroll tablespace (syscatspace, userspace1) to
 /dev/rmt0, /dev/rmt1 with 8 buffers without prompting

Incremental backup

Following is a sample weekly incremental backup strategy for a recoverable database. It includes a
weekly full database backup operation, a daily non-cumulative (delta) backup operation, and a mid-week
cumulative (incremental) backup operation:

 (Sun) db2 backup db kdr use tsm
 (Mon) db2 backup db kdr online incremental delta use tsm
 (Tue) db2 backup db kdr online incremental delta use tsm
 (Wed) db2 backup db kdr online incremental use tsm
 (Thu) db2 backup db kdr online incremental delta use tsm
 (Fri) db2 backup db kdr online incremental delta use tsm
 (Sat) db2 backup db kdr online incremental use tsm

Backup to tape

To initiate a backup operation to a tape device in a Windows environment, issue:

 db2 backup database sample to \\.\tape0

340 IBM Db2 V11.5: Data Recovery and High Availability

Recover overview
The recover utility performs the necessary restore and rollforward operations to recover a database to a
specified time, based on information found in the recovery history file.

When you use this utility, you specify that the database be recovered to a point-in-time or to the end of
the log files. The utility will then select the best suitable backup image and perform the recovery
operations.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for recovering databases. Task
assistants can guide you through the process of setting options, reviewing the automatically generated
commands to perform the task, and running these commands. For more details, see Administering
databases with task assistants.

The recover utility does not support the following RESTORE DATABASE command options:

• TABLESPACE tablespace-name. Table space restore operations are not supported.
• INCREMENTAL. Incremental restore operations are not supported.
• OPEN num-sessions SESSIONS. You cannot indicate the number of I/O sessions that are to be used with

TSM or another vendor product.
• BUFFER buffer-size. You cannot set the size of the buffer used for the restore operation.
• DLREPORT filename. You cannot specify a file name for reporting files that become unlinked.
• WITHOUT ROLLING FORWARD. You cannot specify that the database is not to be placed in rollforward

pending state after a successful restore operation.
• PARALLELISM n. You cannot indicate the degree of parallelism for the restore operation.
• WITHOUT PROMPTING. You cannot specify that a restore operation is to run unattended

In addition, the recover utility does not allow you to specify any of the REBUILD options. However, the
recovery utility will automatically use the appropriate REBUILD option if it cannot locate any database
backup images based on the information in the recovery history file.

For the RECOVER DATABASE command, you cannot use the TABLESPACE option or the INCREMENTAL
option from the RESTORE DATABASE command.

For the RECOVER DATABASE command, restore option is automated. Same applies for the REBUILD
option in the RESTORE command.

Recovering data
The RECOVER DATABASE command recovers a database and all storage groups to a specified time, by
using information found in the recovery history file.

Before you begin

If you issue the RECOVER DATABASE command following an incomplete recover operation that ended
during the rollforward phase, the recover utility attempts to continue the previous recover operation,
without redoing the restore phase. If you want to force the recover utility to redo the restore phase, issue
the RECOVER DATABASE command with the RESTART option to force the recover utility to ignore any
prior recover operation that failed to complete. If you are using the application programming interface
(API), specify the caller action DB2RECOVER_RESTART for the iRecoverAction field to force the
recover utility to redo the restore phase.

If the RECOVER DATABASE command is interrupted during the restore phase, it cannot be continued. You
must reissue the RECOVER DATABASE command.

You should not be connected to the database that is to be recovered: the recover database utility
automatically establishes a connection to the specified database, and this connection is terminated at the
completion of the recover operation.

Chapter 2. Data recovery 341

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

About this task

The database can be local or remote.

Note: In a partitioned database environment, the recover utility must be invoked from the catalog
partition of the database.

Procedure

To invoke the recover utility, use the:

• RECOVER DATABASE command, or
• db2Recover application programming interface (API).

Examples

The following example shows how to use the RECOVER DATABASE command through the CLP:

 db2 recover db sample

Recovering data using db2adutl
You can perform cross-node recovery using the db2adutl command, logarchopt1 and vendoropt
database configuration parameters. This recovery is demonstrated in examples from a few different Tivoli
Storage Manager (TSM) environments.

Note: Tivoli Storage Manager (TSM) Version 7.1.8+ and Version 8.1.2+ introduce significant
enhancements for improved security between client and server communication. Starting with 7.1.8 and
8.1.2 the trusted communications agent (TCA) is no longer available, and users must configure each Db2
instance as an authorized user with access to the node password. The examples provided below assume
that a legacy TCA authentication method is in use, which require that the ‘-fromowner=<owner>’ option is
specified in the LOGARCHOPT1 and VENDOROPT database configuration options, or the TSM OPTIONS
restore option, in order to perform cross-node recovery. When the authorized user method is used, the ‘-
fromowner=<owner>’ option should be omitted. For more details about using a cross-node recovery
technique in the authorized user access model, see Configuration changes needed for IBM Spectrum
Protect (formerly Tivoli Storage Manager) client versions starting with 7.1.8 and 8.1.2.

For the following examples, computer 1 is called bar and is running the AIX operating system. The user
on this machine is roecken. The database on bar is called zample. Computer 2 is called dps. This
computer is also running the AIX operating system, and the user is regress9.

Example 1: TSM server manages passwords automatically (PASSWORDACCESS option set to
GENERATE)

This cross-node recovery example shows how to set up two computers so that you can recover data from
one computer to another when log archives and backups are stored on a TSM server and where
passwords are managed using the PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline backup of the
database.

1. To enable the database for log archiving for the bar computer to the TSM server, update the
database configuration parameter logarchmeth1 for the zample database using the following
command:

 bar:/home/roecken> db2 update db cfg for zample using LOGARCHMETH1 tsm

The following information is returned:

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

2. Disconnect all users and applications from the database using the following command:

342 IBM Db2 V11.5: Data Recovery and High Availability

https://www-01.ibm.com/support/docview.wss?uid=ibm10715763
https://www-01.ibm.com/support/docview.wss?uid=ibm10715763

 db2 force applications all

3. Verify that there are no applications connected to the database using the following command:

 db2 list applications

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on all database partitions.
4. Create a backup of the database on the TSM server using the following command:

 db2 backup db zample use tsm

Information similar to the following is returned:

 Backup successful. The timestamp for this backup imagge is : 20090216151025

Note: In a partitioned database environment, you must perform this step on all database partitions.
The order in which you perform this step on the database partitions differs depending on whether you
are performing an online backup or an offline backup. For more information, see “Backing up data”
on page 322.

5. Connect to the zample database using the following command:

 db2 connect to zample

6. Generate new transaction logs for the database by creating a table and loading data into the TSM
server using the following command:

 bar:/home/roecken> db2 load from mr of del modified by noheader replace
 into employee copy yes use tsm

where in this example, the table is called employee, and the data is being loaded from a delimited
ASCII file called mr. The COPY YES option is specified to make a copy of the data that is loaded, and
the USE TSM option specifies that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for roll-forward recovery;
that is, the logarchmeth1 database configuration parameter must be set to USEREXIT,
LOGRETAIN, DISK, or TSM.

To indicate its progress, the load utility returns a series of messages:

 SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

 SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
 15:12:13.392633".

 SQL3519W Begin Load Consistency Point. Input record count = "0".

 SQL3520W Load Consistency Point was successful.

 SQL3110N The utility has completed processing. "1" rows were read from the
 input file.

 SQL3519W Begin Load Consistency Point. Input record count = "1".

 SQL3520W Load Consistency Point was successful.

 SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
 15:12:13.445718".

 Number of rows read = 1
 Number of rows skipped = 0
 Number of rows loaded = 1
 Number of rows rejected = 0

Chapter 2. Data recovery 343

 Number of rows deleted = 0
 Number of rows committed = 1

7. After the data has been loaded into the table, confirm that there is one backup image, one load copy
image, and one log file on the TSM server by running the following query on the zample database:

 bar:/home/roecken/sqllib/adsm> db2adutl query db zample

The following information is returned:

 Retrieving FULL DATABASE BACKUP information.
 1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.
 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.
 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.
 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.
 1 Time: 20090216151213

 Retrieving LOG ARCHIVE information.
 Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
 Taken at: 2009-02-16-15.10.38

8. To enable cross-node recovery, you must give access to the objects associated with the bar
computer to another computer and account. In this example, give access to the computer dps and
the user regress9 using the following command:

 bar:/home/roecken/sqllib/adsm> db2adutl grant user regress9
 on nodename dps for db zample

The following information is returned:

 Successfully added permissions for regress9 to access ZAMPLE on node dps.

Note: You can confirm the results of the db2adutl grant operation by issuing the following
command to retrieve the current access list for the current node:

 bar:/home/roecken/sqllib/adsm> db2adutl queryaccess

The following information is returned:

 Node Username Database Name Type
 --
 DPS regress9 ZAMPLE A
 --
 Access Types: B - backup images L - logs A - both

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of the zample database.
Verify that there is no data associated with this user and computer on the TSM server using the
following command:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample

344 IBM Db2 V11.5: Data Recovery and High Availability

The following information is returned:

 --- Database directory is empty ---
 Warning: There are no file spaces created by Db2 on the ADSM server
 Warning: No Db2 backup images found in ADSM for any alias.

10. Query the TSM server for a list of objects for the zample database associated with user roecken and
computer bar using the following command:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename
 bar owner roecken

The following information is returned:

 --- Database directory is empty ---

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.
 1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.
 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.
 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.
 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.
 1 Time: 20090216151213

 Retrieving LOG ARCHIVE information.
 Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
 Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously and confirms that you
can restore this image onto the dps computer.

11. Restore the zample database from the TSM server to the dps computer using the following
command:

 dps:/home/regress9> db2 restore db zample use tsm options
 "'-fromnode=bar -fromowner=roecken'" without prompting

The following information is returned:

 DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter would be omitted,
and the database configuration parameter vendoropt would be used. This configuration parameter
overrides the OPTIONS parameter for a backup or restore operation.

12. Perform a roll-forward operation to apply the transactions recorded in the zample database log file
when a new table was created and new data loaded. In this example, the following attempt for the
roll-forward operation will fail because the roll-forward utility cannot find the log files because the
user and computer information is not specified:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

Chapter 2. Data recovery 345

The command returns the following error:

 SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
 specified stop point (end-of-log or point-in-time) because of missing log
 file(s) on node(s) "0".

Force the roll-forward utility to look for log files associated with another computer using the proper
logarchopt value. In this example, use the following command to set the logarchopt1 database
configuration parameter and search for log files associated with user roecken and computer bar:

 dps:/home/regress9> db2 update db cfg for zample using logarchopt1
 "'-fromnode=bar -fromowner=roecken'"

13. Enable the roll-forward utility to use the backup and load copy images by setting the vendoropt
database configuration parameter using the following command:

 dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
 "'-fromnode=bar -fromowner=roecken'"

14. You can finish the cross-node data recovery by applying the transactions recorded in the zample
database log file using the following command:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

 Rollforward Status

 Input database alias = zample
 Number of members have returned status = 1

 Member number Rollforward Next log to Log files processed Last committed
transaction
 status be read
 ------------- ----------- ----------- -------------------------

 0 not pending S0000000.LOG-S0000000.LOG
2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to the same point
as the database on computerbar under user roecken.

Example 2: Passwords are user-managed (PASSWORDACCESS option set to PROMPT)

This cross-node recovery example shows how to set up two computers so that you can recover data from
one computer to another when log archives and backups are stored on a TSM server and where
passwords are managed by the users. In these environments, extra information is required, specifically
the TSM nodename and password of the computer where the objects were created.

1. Update the client dsm.sys file by adding the following line because computer bar is the name of the
source computer

NODENAME bar

Note: On Windows operating systems, this file is called the dsm.opt file. When you update this file,
you must reboot your system for the changes to take effect.

2. Query the TSM server for the list of objects associated with user roecken and computer bar using the
following command:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename bar
 owner roecken password *******

346 IBM Db2 V11.5: Data Recovery and High Availability

The following information is returned:

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.
 1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.
 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.
 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.
 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.
 1 Time: 20090216151213

 Retrieving LOG ARCHIVE information.
 Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
 Taken at: 2009-02-16-15.10.38

3. If the zample database does not exist on computer dps, perform the following steps:

a. Create an empty zample database using the following command:

 dps:/home/regress9> db2 create db zample

b. Update the database configuration parameter tsm_nodename using the following command:

 dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

c. Update the database configuration parameter tsm_password using the following command:

 dps:/home/regress9> db2 update db cfg for zample using
 tsm_password ********

4. Attempt to restore the zample database using the following command:

 dps:/home/regress9> db2 restore db zample use tsm options
 "'-fromnode=bar -fromowner=roecken'" without prompting

The restore operation completes successfully, but a warning is issued:

 SQL2540W Restore is successful, however a warning "2523" was
 encountered during Database Restore while processing in No
 Interrupt mode.

5. Perform a roll-forward operation using the following command:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

In this example, because the restore operation replaced the database configuration file, the roll-
forward utility cannot find the correct log files and the following error message is returned:

 SQL1268N Roll-forward recovery stopped due to error "-2112880618"
 while retrieving log file "S0000000.LOG" for database "ZAMPLE" on node "0".

Reset the following TSM database configuration values to the correct values:

Chapter 2. Data recovery 347

a. Set the tsm_nodename configuration parameter using the following command:

 dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

b. Set the tsm_password database configuration parameter using the following command:

 dps:/home/regress9> db2 update db cfg for zample using tsm_password *******

c. Set the logarchopt1 database configuration parameter so that the roll-forward utility can find the
correct log files using the following command:

 dps:/home/regress9> db2 update db cfg for zample using logarchopt1
 "'-fromnode=bar -fromowner=roecken'"

d. Set the vendoropt database configuration parameter so that the load recovery file can also be
used during the roll-forward operation using the following command:

 dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
 "'-fromnode=bar -fromowner=roecken'"

6. You can finish the cross-node recovery by performing the roll-forward operation using the following
command:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

 Rollforward Status

 Input database alias = zample
 Number of members have returned status = 1

 Member number Rollforward Next log to Log files processed Last committed
transaction
 status be read
 ------------- ----------- ----------- -------------------------

 0 not pending S0000000.LOG-S0000000.LOG
2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to the same point as
the database on computerbar under user roecken

Example 3: TSM server is configured to use client proxy nodes

This cross-node recovery example shows how to set up two computers as proxy nodes so that you can
recover data from one computer to another when log archives and backups are stored on a TSM server
and where passwords are managed using the PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline backup of the
database.

In this example, the computers bar and dps are registered under the proxy name of clusternode. The
computers are already setup as proxy nodes.

1. Register the computers bar and dps on the TSM server as proxy nodes using the following
commands:

REGISTER NODE clusternode mypassword
GRANT PROXYNODE TARGET=clusternode AGENT=bar,dps

348 IBM Db2 V11.5: Data Recovery and High Availability

2. To enable the database for log archiving to the TSM server, update the database configuration
parameter logarchmeth1 for the zample database using the following command:

 bar:/home/roecken> db2 update db cfg for zample using
 LOGARCHMETH1 tsm logarchopt1 "'-asnodename=clusternode'"

The following information is returned:

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

3. Disconnect all users and applications from the database using the following command:

 db2 force applications all

4. Verify that there are no applications connected to the database using the following command:

 db2 list applications

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on all database partitions.
5. Create a backup of the database on the TSM server using the following command:

 db2 backup db zample use tsm options "'-asnodename=clusternode'"

Information similar to the following is returned:

 Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the -asnodename option on the BACKUP DATABASE command, you can update
the vendoropt database configuration parameter instead.

Note: In a partitioned database environment, you must perform this step on all database partitions.
The order in which you perform this step on the database partitions differs depending on whether you
are performing an online backup or an offline backup. For more information, see “Backing up data”
on page 322.

6. Connect to the zample database using the following command:

 db2 connect to zample

7. Generate new transaction logs for the database by creating a table and loading data into the TSM
server using the following command:

bar:/home/roecken> db2 load from mr of del modified by noheader
 replace into employee copy yes use tsm

where in this example, the table is called employee, and the data is being loaded from a delimited
ASCII file called mr. The COPY YES option is specified to make a copy of the data that is loaded, and
the USE TSM option specifies that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for roll-forward recovery;
that is, the logarchmeth1 database configuration parameter must be set to USEREXIT,
LOGRETAIN, DISK, or TSM.

To indicate its progress, the load utility returns a series of messages:

 SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

 SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
 15:12:13.392633".

 SQL3519W Begin Load Consistency Point. Input record count = "0".

 SQL3520W Load Consistency Point was successful.

Chapter 2. Data recovery 349

 SQL3110N The utility has completed processing. "1" rows were read from the
 input file.

 SQL3519W Begin Load Consistency Point. Input record count = "1".

 SQL3520W Load Consistency Point was successful.

 SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
 15:12:13.445718".

 Number of rows read = 1
 Number of rows skipped = 0
 Number of rows loaded = 1
 Number of rows rejected = 0
 Number of rows deleted = 0
 Number of rows committed = 1

8. After the data has been loaded into the table, confirm that there is one backup image, one load copy
image, and one log file on the TSM server by running the following query on the zample database:

 bar:/home/roecken/sqllib/adsm> db2adutl query db zample
 options "-asnodename=clusternode"

The following information is returned:

 Retrieving FULL DATABASE BACKUP information.
 1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.
 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.
 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.
 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.
 1 Time: 20090216151213

 Retrieving LOG ARCHIVE information.
 Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
 Taken at: 2009-02-16-15.10.38

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of the zample database.
Verify that there is no data associated with this user and computer using the following command:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample

The following information is returned:

 --- Database directory is empty ---
 Warning: There are no file spaces created by Db2 on the ADSM server
 Warning: No Db2 backup images found in ADSM for any alias.

350 IBM Db2 V11.5: Data Recovery and High Availability

10. Query the TSM server for a list of objects for the zample database associated with the proxy node
clusternode using the following command:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample
 options="-asnodename=clusternode"

The following information is returned:

 --- Database directory is empty ---

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.
 1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.
 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.
 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.
 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.
 1 Time: 20090216151213

 Retrieving LOG ARCHIVE information.
 Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
 Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously and confirms that you
can restore this image onto the dps computer.

11. Restore the zample database from the TSM server to the dps computer using the following
command:

 dps:/home/regress9> db2 restore db zample use tsm options
 "'-asnodename=clusternode'" without prompting

The following information is returned:

 DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter would be omitted,
and the database configuration parameter vendoropt would be used. This configuration parameter
overrides the OPTIONS parameter for a backup or restore operation.

12. Perform a roll-forward operation to apply the transactions recorded in the zample database log file
when a new table was created and new data loaded. In this example, the following attempt for the
roll-forward operation will fail because the roll-forward utility cannot find the log files because the
user and computer information is not specified:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The command returns the following error:

 SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
 specified stop point (end-of-log or point-in-time) because of missing log
 file(s) on node(s) "0".

Chapter 2. Data recovery 351

Force the roll-forward utility to look for log files on another computer using the proper logarchopt
value. In this example, use the following command to set the logarchopt1 database configuration
parameter and search for log files associated with user roecken and computer bar:

 dps:/home/regress9> db2 update db cfg for zample using logarchopt1
 "'-asnodename=clusternode'"

13. Enable the roll-forward utility to use the backup and load copy images by setting the vendoropt
database configuration parameter using the following command:

 dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
 "'-asnodename=clusternode'"

14. You can finish the cross-node data recovery by applying the transactions recorded in the zample
database log file using the following command:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

 Rollforward Status

 Input database alias = zample
 Number of members have returned status = 1

 Member number Rollforward Next log to Log files processed Last committed
transaction
 status be read
 ------------- ----------- ----------- -------------------------

 0 not pending S0000000.LOG-S0000000.LOG
2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to the same point
as the database on computer bar under user roecken.

Example 4: TSM server is configured to use client proxy nodes in a Db2 pureScale environment

This example shows how to set up two members as proxy nodes so that you can recover data from one
member to the other when log archives and backups are stored on a TSM server and where passwords are
managed using the PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline backup of the
database.

In this example, the members member1 and member2 are registered under the proxy name of
clusternode. In Db2 pureScale environments, you can perform backup or data recovery operations
from any member. In this example, data will be recovered from member2

1. Register the members member1 and member2 on the TSM server as proxy nodes using the following
commands:

REGISTER NODE clusternode mypassword
GRANT PROXYNODE TARGET=clusternode AGENT=member1,member2

2. To enable the database for log archiving to the TSM server, update the database configuration
parameter logarchmeth1 for the zample database using the following command:

 member1:/home/roecken> db2 update db cfg for zample using
 LOGARCHMETH1 tsm logarchopt1 "'-asnodename=clusternode'"

Note: In Db2 pureScale environments, you can set the global logarchmeth1 database configuration
parameters once from any member.

352 IBM Db2 V11.5: Data Recovery and High Availability

The following information is returned:

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

3. Disconnect all users and applications from the database using the following command:

 db2 force applications all

4. Verify that there are no applications connected to the database using the following command:

 db2 list applications global

You should receive a message that says that no data was returned.
5. Create a backup of the database on the TSM server using the following command:

 db2 backup db zample use tsm options '-asnodename=clusternode'

Information similar to the following is returned:

 Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the -asnodename option on the BACKUP DATABASE command, you can update
the vendoropt database configuration parameter instead.

Note: In Db2 pureScale environments, you can run this command from any member to back up all
data for the database.

6. Connect to the zample database using the following command:

 db2 connect to zample

7. Generate new transaction logs for the database by creating a table and loading data into the TSM
server using the following command:

member1:/home/roecken> db2 load from mr of del modified by noheader replace
 into employee copy yes use tsmwhere

where in this example, the table is called employee, and the data is being loaded from a delimited
ASCII file called mr. The COPY YES option is specified to make a copy of the data that is loaded, and
the USE TSM option specifies that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for roll-forward recovery;
that is, the logarchmeth1 database configuration parameter must be set to USEREXIT,
LOGRETAIN, DISK, or TSM.

To indicate its progress, the load utility returns a series of messages:

 SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

 SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
 15:12:13.392633".

 SQL3519W Begin Load Consistency Point. Input record count = "0".

 SQL3520W Load Consistency Point was successful.

 SQL3110N The utility has completed processing. "1" rows were read from the
 input file.

 SQL3519W Begin Load Consistency Point. Input record count = "1".

 SQL3520W Load Consistency Point was successful.

 SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
 15:12:13.445718".

Chapter 2. Data recovery 353

 Number of rows read = 1
 Number of rows skipped = 0
 Number of rows loaded = 1
 Number of rows rejected = 0
 Number of rows deleted = 0
 Number of rows committed = 1

8. After the data has been loaded into the table, confirm that there is one backup image, one load copy
image, and one log file on the TSM server by running the following query on the zample database:

 member1:/home/roecken/sqllib/adsm> db2adutl query db zample
 options "-asnodename=clusternode"

The following information is returned:

 Retrieving FULL DATABASE BACKUP information.
 1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.
 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.
 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.
 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.
 1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.01.10

 Log file: S0000000.LOG, Chain Num: 1, Log stream: 0, Taken at:
2009-02-16-13.01.11

 Log file: S0000000.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.01.19

 Log file: S0000001.LOG, Chain Num: 1, Log stream: 0, Taken at:
2009-02-16-13.02.49

 Log file: S0000001.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.02.49

 Log file: S0000001.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.02.49

 Log file: S0000002.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.03.15

 Log file: S0000002.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.03.15

 Log file: S0000002.LOG, Chain Num: 1, Log stream: 0, Taken at:
2009-02-16-13.03.16

354 IBM Db2 V11.5: Data Recovery and High Availability

9. Query the TSM server for a list of objects for the zample database associated with the proxy node
clusternode using the following command:

 member2:/home/regress9/sqllib/adsm> db2adutl query db zample
 options="-asnodename=clusternode"

The following information is returned:

 --- Database directory is empty ---

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.
 1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.
 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.
 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.
 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.
 1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.01.10

 Log file: S0000000.LOG, Chain Num: 1, Log stream: 0, Taken at:
2009-02-16-13.01.11

 Log file: S0000000.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.01.19

 Log file: S0000001.LOG, Chain Num: 1, Log stream: 0, Taken at:
2009-02-16-13.02.49

 Log file: S0000001.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.02.49

 Log file: S0000001.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.02.49

 Log file: S0000002.LOG, Chain Num: 1, Log stream: 1, Taken at:
2009-02-16-13.03.15

 Log file: S0000002.LOG, Chain Num: 1, Log stream: 2, Taken at:
2009-02-16-13.03.15

 Log file: S0000002.LOG, Chain Num: 1, Log stream: 0, Taken at:
2009-02-16-13.03.16

This information matches the TSM information that was generated previously and confirms that you
can restore this image onto the member2 member.

Chapter 2. Data recovery 355

10. Restore the zample database on the TSM server from the member2 member using the following
command:

 member2:/home/regress9> db2 restore db zample use tsm options
 '-asnodename=clusternode' without prompting

The following information is returned:

 DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on member2, the OPTIONS parameter would be
omitted, and the database configuration parameter vendoropt would be used. This configuration
parameter overrides the OPTIONS parameter for a backup or restore operation.

11. Enable the roll-forward utility to use the backup and load copy images by setting the vendoropt
database configuration parameter using the following command:

 member2:/home/regress9> db2 update db cfg for zample using VENDOROPT
 "'-asnodename=clusternode'"

Note: In Db2 pureScale environments, you can set the global vendoropt database configuration
parameters once from any member.

12. You can finish the cross-member data recovery by applying the transactions recorded in the zample
database log file using the following command:

 member2:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

 Rollforward Status

 Input database alias = zample
 Number of members have returned status = 3

 Member number Rollforward Next log to Log files processed Last committed
transaction
 status be read
 ------------- ----------- ----------- -------------------------

 0 not pending S0000001.LOG-S0000012.LOG
2009-05-06-15.28.11.000000 UTC
 1 not pending S0000001.LOG-S0000012.LOG
2009-05-06-15.28.11.000000 UTC
 2 not pending S0000001.LOG-S0000012.LOG
2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on member member2 under user regress9 has been recovered to the same
point as the database on member member1 under user roecken.

Recovering a dropped table
You might occasionally drop a table that contains data you still need. If so, you should consider making
your critical tables recoverable following a drop table operation. You could recover the table data by
invoking a database restore operation, followed by a database rollforward operation to a point in time
before the table was dropped. The restore and rollforward operations can be time-consuming if the
database is large, and your data is unavailable during the recovery. The dropped table recovery feature
lets you recover your dropped table data by using table space-level restore and rollforward operations.
This table space-level recovery is faster than database-level recovery, and your database remains
available to users.

356 IBM Db2 V11.5: Data Recovery and High Availability

Before you begin

For a dropped table to be recoverable, the table space in which the table resides must have the DROPPED
TABLE RECOVERY option turned on. This option can be enabled during table space creation, or by
invoking the ALTER TABLESPACE statement. The DROPPED TABLE RECOVERY option is table space-
specific and limited to regular table spaces. To determine if a table space is enabled for dropped table
recovery, you can query the DROP_RECOVERY column in the SYSCAT.TABLESPACES catalog table.

The dropped table recovery option is on by default when you create a table space. If you do not want to
enable a table space for dropped table recovery, you can either explicitly set the DROPPED TABLE
RECOVERY option to OFF when you issue the CREATE TABLESPACE statement, or you can use the ALTER
TABLESPACE statement to disable dropped table recovery for an existing table space. If there are many
drop table operations to recover, or if the history file is large, the dropped table recovery feature might
have a performance impact on forward recovery.

When a DROP TABLE statement is run against a table whose table space is enabled for dropped table
recovery, an additional entry (identifying the dropped table) is made in the log files. An entry is also made
in the recovery history file, containing information that can be used to re-create the table.

For partitioned tables, dropped table recovery is always on even if the dropped table recovery is turned
off for non-partitioned tables in one or more table spaces. Only one dropped table log record is written for
a partitioned table. This log record is sufficient to recover all the data partitions of the table.

About this task

If the table was in reorg pending state when it was dropped, the CREATE TABLE DDL in the history file
does not match exactly that of the import file. The import file is in the format of the table before the first
REORG-recommended ALTER was performed, but the CREATE TABLE statement in the history file
matches the state of the table including the results of any ALTER TABLE statements.

File type modifiers to use with LOAD or IMPORT
To recover the table by loading or importing, specify the following file type modifiers:

• The file type modifier usegraphiccodepage should be used in the IMPORT or LOAD command if
the data being recovered is of the GRAPHIC or VARGRAPHIC data type. The reason is that it might
include more than one code page.

• The file type modifier delprioritychar should be used in the IMPORT or LOAD commands. It
allows LOAD and IMPORT to parse rows which contains newline characters within character or
graphic column data.

Restrictions

Only one dropped table can be recovered at a time.

There are some restrictions on the type of data that is recoverable from a dropped table. It is not possible
to recover:

• The DROPPED TABLE RECOVERY option cannot be used for temporary table.
• The metadata associated with row types. (The data is recovered, but not the metadata.) The data in the

hierarchy table of the typed table is recovered. This data might contain more information than appeared
in the typed table that was dropped.

• XML data and Column organized tables. If you attempt to recover a dropped table that contains XML
data or column organized data, the corresponding column data is empty.

• Large object (LOB) or long field data.

Procedure

You can recover a dropped table by doing the following:
1. Identify the dropped table by invoking the LIST HISTORY DROPPED TABLE command.

The dropped table ID is listed in the Backup ID column.
2. Restore a database- or table space-level backup image taken before the table was dropped.

Chapter 2. Data recovery 357

3. Create an export directory to which files containing the table data are to be written.
This directory must either be accessible to all database partitions, or exist on each database partition.
Subdirectories under this export directory are created automatically by each database partition. These
subdirectories are named NODEnnnn, where nnnn represents the database partition or node number.
Data files containing the dropped table data as it existed on each database partition are exported to a
lower subdirectory called data.
For example:

\export_directory\NODE0000\data.

4. Roll forward to a point in time after the table was dropped, by using the RECOVER DROPPED TABLE
parameter on the ROLLFORWARD DATABASE command. Alternatively, roll forward to the end of the
logs, so that updates to other tables in the table space or database are not lost.

5. Re-create the table by using the CREATE TABLE statement from the recovery history file.
6. Import the table data that was exported during the rollforward operation into the table.

If the table was in reorg pending state when the drop took place, the contents of the CREATE TABLE
DDL might need to be changed to match the contents of the data file.

Crash recovery
Transactions (or units of work) against a database can be interrupted unexpectedly. If a failure occurs
before all of the changes that are part of the unit of work are completed, committed, and written to disk,
the database is left in an inconsistent and unusable state. Crash recovery is the process by which the
database is moved back to a consistent and usable state. This is done by rolling back incomplete
transactions and completing committed transactions that were still in memory when the crash occurred
(Figure 18 on page 358).

Figure 18. Rolling back units of work (crash recovery)

If the database or the database manager fails, the database can be left in an inconsistent state. The
contents of the database might include changes made by transactions that were incomplete at the time of
failure. The database might also be missing changes that were made by transactions that completed
before the failure but which were not yet flushed to disk. A crash recovery operation must be performed
in order to roll back the partially completed transactions and to write to disk the changes of completed
transactions that were previously made only in memory.

Conditions that can necessitate a crash recovery include:

358 IBM Db2 V11.5: Data Recovery and High Availability

• A power failure on the machine, causing the database manager and the database partitions on it to go
down.

• A hardware failure such as memory, disk, CPU, or network failure.
• A serious operating system error that causes the Db2 instance to end abnormally.

If you want crash recovery to be performed automatically by the database manager, enable the automatic
restart (autorestart) database configuration parameter by setting it to ON. (This is the default value.) If
you do not want automatic restart behavior, set the autorestart database configuration parameter to
OFF. As a result, you must issue the RESTART DATABASE command when a database failure occurs. If
the database I/O was suspended before the crash occurred, you must specify the WRITE RESUME option
of the RESTART DATABASE command in order for the crash recovery to continue.

If you are using the IBM Db2 pureScale Feature, there are two specific types of crash recovery to be
aware of: member crash recovery and group crash recovery. Member crash recovery is the process of
recovering a portion of a database using the log stream of a single member after a member failure.
Member crash recovery, which is usually initiated automatically as a part of a member restart, is an online
operation-meaning that other members can still access the database. Multiple members can be
undergoing member crash recovery at the same time. Group crash recovery is the process of recovering a
database using multiple members' log streams after a failure that causes no viable cluster caching facility
to remain in the cluster. Group crash recovery is also usually initiated automatically (as a part of a group
restart) and the database is inaccessible while it is in progress, as with Db2 crash recovery operations
outside of a Db2 pureScale environment.

If crash recovery occurs on a database that is enabled for rollforward recovery (that is, the
logarchmeth1 configuration parameter is not set to OFF), and an error occurs during crash recovery that
is attributable to an individual table space, that table space is taken offline, and cannot be accessed until
it is repaired. Crash recovery continues on other table spaces. At the completion of crash recovery, the
other table spaces in the database are accessible, and connections to the database can be established.
However, if the table space that is taken offline is the table space that contains the system catalogs, it
must be repaired before any connections are permitted. This behavior does not apply to Db2 pureScale
environments. If an error occurs during member crash recovery or group crash recovery, the crash
recovery operation fails.

If the database is configured for connectivity during crash recovery, the database might become
connectable while crash recovery is in progress. Tables, indexes or objects that are still undergoing
rollback will be locked in exclusive mode or super exclusive mode. For more information, see Database
accessibility during backward phase of crash recovery or HADR takeover.

Recovering damaged table spaces
A damaged table space has one or more containers that cannot be accessed. This is often caused by
media problems that are either permanent (for example, a bad disk), or temporary (for example, an offline
disk, or an unmounted file system).

If the damaged table space is the system catalog table space, the database cannot be restarted. If the
container problems cannot be fixed leaving the original data intact, the only available options are:

• To restore the database
• To restore the catalog table space.

Note:

1. Table space restore is only valid for recoverable databases, because the database must be rolled
forward.

2. If you restore the catalog table space, you must perform a rollforward operation to the end of logs.

If the damaged table space is not the system catalog table space, Db2 attempts to make as much of the
database available as possible.

If the damaged table space is the only temporary table space, you should create a new temporary table
space as soon as a connection to the database can be made. Once created, the new temporary table
space can be used, and normal database operations requiring a temporary table space can resume. You

Chapter 2. Data recovery 359

can, if you want, drop the offline temporary table space. There are special considerations for table
reorganization using a system temporary table space:

• If the database or the database manager configuration parameter indexrec is set to RESTART, all
invalid indexes must be rebuilt during database activation; this includes indexes from a reorganization
that crashed during the build phase.

• If there are incomplete reorganization requests in a damaged temporary table space, you might have to
set the indexrec configuration parameter to ACCESS to avoid restart failures.

Recovering table spaces in recoverable databases
When crash recovery is necessary, the damaged table space is taken offline and is not accessible. It is
placed in roll-forward pending state. If there are no additional problems, a restart operation succeeds in
bringing the database online even with the damaged table space. Once online, the damaged table space
is unusable, but the rest of the database is usable. To fix the damaged table space and make it usable,
use the following procedure.

Procedure

To make the damaged table space usable, use one of the procedures that follow:
• Method 1

a) Fix the damaged containers without losing the original data.
b) Complete a table space rollforward operation to the end of the logs.

Note: The rollforward operation first attempts to bring the table space from offline to normal state.
• Method 2

a) Fix the damaged containers with or without losing the original data.
b) Perform a table space restore operation.
c) Complete a table space rollforward operation to the end of the logs or to a point-in-time.

Recovering table spaces in non-recoverable databases
When crash recovery is needed, but there are damaged table spaces, you can only successfully restart
the database if the damaged table spaces are dropped. In a non-recoverable database, the logs
necessary to recover the damaged table spaces are not retained. Therefore, the only valid action against
such table spaces is to drop them.

Procedure

To restart a database with damaged table spaces:
1. Invoke an unqualified restart database operation.

The operation succeeds if there are no damaged table spaces. If it fails (SQL0290N), look in the
administration notification log file for a complete list of table spaces that are currently damaged.

2. If you are willing to drop all of the damaged table spaces, initiate another restart database operation,
listing all of the damaged table spaces under the DROP PENDING TABLESPACES option. If a damaged
table space is included in the DROP PENDING TABLESPACES list, the table space is put into drop
pending state, and you must drop the table space after the recovery operation is complete.

The restart operation continues without recovering the specified table spaces. If a damaged table
space is not included in the DROP PENDING TABLESPACES list, the restart database operation fails
with SQL0290N.

Note: Including a table space name in the DROP PENDING TABLESPACES list does not mean that the
table space will be in drop pending state. A table space is placed in this state only if it is found to be
damaged during the restart operation.

3. If the restart database operation is successful, invoke the LIST TABLESPACES command to find out
which table spaces are in drop pending state.

4. Issue DROP TABLESPACE statements to drop each of the table spaces that are in drop pending state.

360 IBM Db2 V11.5: Data Recovery and High Availability

After you drop the damaged table spaces, you can reclaim the space that they were using or re-create
the table spaces.

5. If you are unwilling to drop and lose the data in the damaged table spaces, you can:

• Fix the damaged containers (without losing the original data).
• Reissue the RESTART DATABASE command.
• Perform a database restore operation.

Reducing the impact of media failure
Media failure is an error caused by defects on the read and write interfaces of storage devices, such as
hard disk drives. This type of failure might be hard to detect and prevent, so you must take measures to
reduce the impact of the failure if it occurs.

To reduce the probability of media failure, and to simplify recovery from this type of failure:

• Mirror or duplicate the disks that hold the data and logs for important databases.
• Use a Redundant Array of Independent Disks (RAID) configuration, such as RAID Level 5.
• In a partitioned database environment, set up a rigorous procedure for handling the data and the logs

on the catalog partition. Because this database partition is critical for maintaining the database:

– Ensure that it resides on a reliable disk
– Duplicate it
– Make frequent backups
– Do not put user data on it.

Protecting against disk failure

If you are concerned about the possibility of damaged data or logs due to a disk crash, consider the use of
some form of disk fault tolerance. Generally, this is accomplished through the use of a disk array, which is
a set of disks.

A disk array is sometimes referred to simply as a RAID (Redundant Array of Independent Disks). Disk
arrays can also be provided through software at the operating system or application level. The point of
distinction between hardware and software disk arrays is how CPU processing of input/output (I/O)
requests is handled. For hardware disk arrays, I/O activity is managed by disk controllers; for software
disk arrays, this is done by the operating system or an application.

Hardware disk arrays

In a hardware disk array, multiple disks are used and managed by a disk controller, complete with its own
CPU. All of the logic required to manage the disks forming this array is contained on the disk controller;
therefore, this implementation is operating system-independent.

There are several types of RAID architecture, differing in function and performance, but only RAID level 1
and level 5 are commonly used today.

RAID level 1 is also known as disk mirroring or duplexing. Disk mirroring copies data (a complete file) from
one disk to a second disk, using a single disk controller. Disk duplexing is similar to disk mirroring, except
that disks are attached to a second disk controller (like two SCSI adapters). Data protection is good:
Either disk can fail, and data is still accessible from the other disk. With disk duplexing, a disk controller
can also fail without compromising data protection. Performance is good, but this implementation
requires twice the usual number of disks.

RAID level 5 involves data and parity striping by sectors, across all disks. Parity is interleaved with data,
rather than being stored on a dedicated drive. Data protection is good: If any disk fails, the data can still
be accessed by using information from the other disks, along with the striped parity information. Read
performance is good, but write performance is not. A RAID level 5 configuration requires a minimum of
three identical disks. The amount of disk space required for overhead varies with the number of disks in
the array. In the case of a RAID level 5 configuration with 5 disks, the space overhead is 20 percent.

Chapter 2. Data recovery 361

RAID level 1+0 (10) involves mirroring and striping the data across at least two disks. Mirroring writes the
data to two or more disks at the same time which gives you the same fault tolerance as RAID level 1.
Striping breaks the data into blocks and each block is written down to a separate disk drive. This achieves
high I/O performance by spreading the I/O load across many channels and drives but RAID level 1+0
reduces the effective disk space in half as it mirrors all the data. RAID Level 10 requires a minimum of 4
drives to implement.

RAID level 0+1 is implemented as a mirrored array whose segments are RAID 0 arrays and has the same
fault tolerance as RAID level 5. This gives high I/O rates by spreading the I/O load across many channels
and drives. RAID level 0+1, however, is not to be confused with RAID level 1+0. A single drive failure will
cause the whole array to become, in essence, a RAID level 0 array.

When using a RAID (but not a RAID level 0) disk array, a failed disk will not prevent you from accessing
data on the array. When hot-pluggable or hot-swappable disks are used in the array, a replacement disk
can be swapped with the failed disk while the array is in use. With RAID level 5, if two disks fail at the
same time, all data is lost (but the probability of simultaneous disk failures is very small).

You might consider using a RAID level 1 hardware disk array or a software disk array for your logs,
because this provides recoverability to the point of failure, and offers good write performance, which is
important for logs. To do this, use the mirrorlogpath configuration parameter to specify a mirror log path
on a RAID level 1 file system. In cases where reliability is critical (because time cannot be lost recovering
data following a disk failure), and write performance is not so critical, consider using a RAID level 5
hardware disk array. Alternatively, if write performance is critical, and the cost of additional disk space is
not significant, consider a RAID level 1 hardware disk array for your data, as well as for your logs.

For detailed information about the available RAID levels, visit the following web site: http://
www.acnc.com/04_01_00.html

Software disk arrays

A software disk array accomplishes much the same as does a hardware disk array, but disk traffic is
managed by either the operating system, or by an application program running on the server. Like other
programs, the software array must compete for CPU and system resources. This is not a good option for a
CPU-constrained system, and it should be remembered that overall disk array performance is dependent
on the server's CPU load and capacity.

A typical software disk array provides disk mirroring. Although redundant disks are required, a software
disk array is comparatively inexpensive to implement, because costly disk controllers are not required.

CAUTION: Having the operating system boot drive in the disk array prevents your system from
starting if that drive fails. If the drive fails before the disk array is running, the disk array cannot
allow access to the drive. A boot drive should be separate from the disk array.

Related information
Best practices: Database storage

Reducing the impact of transaction failure
Transaction failure is the premature termination of transaction processing before transactions can be
committed to the database, which might result in data loss or corruption.

To reduce the impact of a transaction failure, try to ensure:

• An uninterrupted power supply for each Db2 server
• Adequate disk space for database logs on all database partitions
• Reliable communication links among the database partition servers in a partitioned database

environment
• Synchronization of the system clocks in a partitioned database environment.

362 IBM Db2 V11.5: Data Recovery and High Availability

http://www.acnc.com/04_01_00.html
http://www.acnc.com/04_01_00.html
https://ibm.biz/Bdx2My

Recovering from transaction failures in a partitioned database environment
If a transaction failure occurs in a partitioned database environment, database recovery is usually
necessary on both the failed database partition server and any other database partition server that was
participating in the transaction.

There are two types of database recovery:

• Crash recovery occurs on the failed database partition server after the failure condition is corrected.
• Database partition failure recovery on the other (still active) database partition servers occurs

immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which a transaction is submitted
is the coordinator partition, and the first agent that processes the transaction is the coordinator agent.
The coordinator agent is responsible for distributing work to other database partition servers, and it keeps
track of which ones are involved in the transaction. When the application issues a COMMIT statement for
a transaction, the coordinator agent commits the transaction by using the two-phase commit protocol.
During the first phase, the coordinator partition distributes a PREPARE request to all the other database
partition servers that are participating in the transaction. These servers then respond with one of the
following:
READ-ONLY

No data change occurred at this server
YES

Data change occurred at this server
NO

Because of an error, the server is not prepared to commit

If one of the servers responds with a NO, the transaction is rolled back. Otherwise, the coordinator
partition begins the second phase.

During the second phase, the coordinator partition writes a COMMIT log record, then distributes a
COMMIT request to all the servers that responded with a YES. After all the other database partition
servers have committed, they send an acknowledgement of the COMMIT to the coordinator partition. The
transaction is complete when the coordinator agent has received all COMMIT acknowledgments from all
the participating servers. At this point, the coordinator agent writes a FORGET log record.

Transaction failure recovery on an active database partition server

If any database partition server detects that another server is down, all work that is associated with the
failed database partition server is stopped:

• If the still active database partition server is the coordinator partition for an application, and the
application was running on the failed database partition server (and not ready to COMMIT), the
coordinator agent is interrupted to do failure recovery. If the coordinator agent is in the second phase of
COMMIT processing, SQL0279N is returned to the application, which in turn loses its database
connection. Otherwise, the coordinator agent distributes a ROLLBACK request to all other servers
participating in the transaction, and SQL1229N is returned to the application.

• If the failed database partition server was the coordinator partition for the application, then agents that
are still working for the application on the active servers are interrupted to do failure recovery. The
transaction is rolled back locally on each database partition where the transaction is not in prepared
state. On those database partitions where the transaction is in a prepared state, the transaction
becomes an indoubt transaction. The coordinator database partition is not aware that the transaction is
indoubt on some database partitions because the coordinator database partition is not available.

• If the application connected to the failed database partition server (before it failed), but neither the
local database partition server nor the failed database partition server is the coordinator partition,
agents working for this application are interrupted. The coordinator partition will either send a
ROLLBACK or a DISCONNECT message to the other database partition servers. The transaction will only
be indoubt on database partition servers that are still active if the coordinator partition returns
SQL0279.

Chapter 2. Data recovery 363

Any process (such as an agent or deadlock detector) that attempts to send a request to the failed server
is informed that it cannot send the request.

Transaction failure recovery on the failed database partition server

If the transaction failure causes the database manager to end abnormally, you can issue the db2start
command with the RESTART option to restart the database manager once the database partition has
been restarted. If you cannot restart the database partition, you can issue db2start to restart the
database manager on a different database partition.

If the database manager ends abnormally, database partitions on the server can be left in an inconsistent
state. To make them usable, crash recovery can be triggered on a database partition server:

• Explicitly, through the RESTART DATABASE command
• Implicitly, through a CONNECT request when the autorestart database configuration parameter has

been set to ON

Crash recovery reapplies the log records in the active log files to ensure that the effects of all complete
transactions are in the database. After the changes have been reapplied, all uncommitted transactions
are rolled back locally, except for indoubt transactions. There are two types of indoubt transaction in a
partitioned database environment:

• On a database partition server that is not the coordinator partition, a transaction is indoubt if it is
prepared but not yet committed.

• On the coordinator partition, a transaction is indoubt if it is committed but not yet logged as complete
(that is, the FORGET record is not yet written). This situation occurs when the coordinator agent has not
received all the COMMIT acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the following. The action
that is taken depends on whether the database partition server was the coordinator partition for an
application:

• If the server that restarted is not the coordinator partition for the application, it sends a query message
to the coordinator agent to discover the outcome of the transaction.

• If the server that restarted is the coordinator partition for the application, it sends a message to all the
other agents (subordinate agents) that the coordinator agent is still waiting for COMMIT
acknowledgments.

It is possible that crash recovery might not be able to resolve all the indoubt transactions as part of crash
recovery. For example, some of the database partition servers might not be available. If the coordinator
partition completes crash recovery before other database partitions involved in the transaction, crash
recovery will not be able to resolve the indoubt transaction. This is expected because crash recovery is
performed by each database partition independently. In Db2 V11.5.3 and later versions, and when
DB2_DPF_ASYNC_INDOUBT_RESOLUTION is enabled, the coordinator partition will continue to attempt
to resolve the indoubt transactions with the other database partitions until the indoubt is finally resolved.
Prior to Db2 V11.5.3, or when DB2_DPF_ASYNC_INDOUBT_RESOLUTION is OFF, the coordinator partition
will only make one attempt to resolve the indoubt transaction and if the indoubt transaction cannot be
resolved the SQL warning message SQL1061W is returned. Because indoubt transactions hold resources,
such as locks and active log space, it is possible to get to a point where no changes can be made to the
database because the active log space is being held up by indoubt transactions. For this reason, you
should determine whether indoubt transactions remain after crash recovery, and recover all database
partition servers that are required to resolve the indoubt transactions as quickly as possible.

Note: In a partitioned database server environment, the RESTART database command is run on a per-
node basis. In order to ensure that the database is restarted on all nodes, use the following
recommended command:

db2_all "db2 restart database <database_name>"

If one or more servers that are required to resolve an indoubt transaction cannot be recovered in time,
and access is required to database partitions on other servers, you can manually resolve the indoubt

364 IBM Db2 V11.5: Data Recovery and High Availability

transaction by making an heuristic decision. You can use the LIST INDOUBT TRANSACTIONS command
to query, commit, and roll back the indoubt transaction on the server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a distributed transaction
environment. To distinguish between the two types of indoubt transactions, the originator field in the
output that is returned by the LIST INDOUBT TRANSACTIONS command displays one of the following:

• Db2 Enterprise Server Edition, which indicates that the transaction originated in a partitioned database
environment.

• XA, which indicates that the transaction originated in a distributed environment.

Identifying the failed database partition server

When a database partition server fails, the application will typically receive one of the following
SQLCODEs. The method for detecting which database manager failed depends on the SQLCODE received:

SQL0279N
This SQLCODE is received when a database partition server involved in a transaction is terminated
during COMMIT processing.

SQL1224N
This SQLCODE is received when the database partition server that failed is the coordinator partition
for the transaction.

SQL1229N
This SQLCODE is received when the database partition server that failed is not the coordinator
partition for the transaction.

Determining which database partition server failed is a two-step process.

1. Find the partition server that detected the failure by examining the SQLCA. The SQLCA associated with
SQLCODE SQL1229N contains the node number of the server that detected the error in the sixth array
position of the sqlerrd field. (The node number that is written for the server corresponds to the node
number in the db2nodes.cfg file.)

2. Examine the administration notification log on the server found in step one for the node number of the
failed server.

Note: If multiple logical nodes are being used on a processor, the failure of one logical node can cause
other logical nodes on the same processor to fail.

Recovering from the failure of a database partition server
You can recover from a failed database partition server by identifying and correcting the issue that caused
the failure.

Procedure

To recover from the failure of a database partition server, perform the following steps.
1. Correct the problem that caused the failure.
2. Restart the database manager by issuing the db2start command from any database partition server.
3. Restart the database by issuing the RESTART DATABASE command on the failed database partition

server or servers.

Chapter 2. Data recovery 365

Recovering indoubt transactions on mainframe or midrange servers

Recovering indoubt transactions on the host when Db2 Connect has the Db2 Syncpoint Manager
configured
If your application has accessed a host or System i database server during a transaction, there are some
differences in how indoubt transactions are recovered. To access host or System i database servers, Db2
Connect is used. The recovery steps differ if Db2 Connect has the Db2 Syncpoint Manager configured.

About this task
The recovery of indoubt transactions at host or System i servers is normally performed automatically by
the Transaction Manager (TM) and the Db2 Syncpoint Manager (SPM). An indoubt transaction at a host or
System i server does not hold any resources at the local Db2 location, but does hold resources at the host
or System i server as long as the transaction is indoubt at that location. If the administrator of the host or
System i server determines that a heuristic decision must be made, then the administrator might contact
the local Db2 database administrator (for example via telephone) to determine whether to commit or roll
back the transaction at the host or System i server. If this occurs, the LIST DRDA INDOUBT
TRANSACTIONS command can be used to determine the state of the transaction at the Db2 Connect
instance.

Procedure

The following steps can be used as a guideline for most situations involving an SNA communications
environment:
1. Connect to the SPM.

For example:

db2 => connect to db2spm

Database Connection Information

Database product = SPM0500
SQL authorization ID = CRUS
Local database alias = DB2SPM

2. Issue the LIST DRDA INDOUBT TRANSACTIONS command to display the indoubt transactions
known to the SPM.

The following example shows one indoubt transaction known to the SPM. The db_name is the local
alias for the host or System i server. The partner_lu is the fully qualified luname of the host or
System i server. This provides the best identification of the host or System i server, and should be
provided by the caller from the host or System i server. The luwid provides a unique identifier for a
transaction and is available at all hosts and System i servers. If the transaction in question is
displayed, then the uow_status field can be used to determine the outcome of the transaction if the
value is C (commit) or R (rollback). If you issue the LIST DRDA INDOUBT TRANSACTIONS command
with the WITH PROMPTING parameter, you can commit, roll back, or forget the transaction
interactively.

db2 => list drda indoubt transactions
DRDA Indoubt Transactions:
1.db_name: DBAS3 db_alias: DBAS3 role: AR
 uow_status: C partner_status: I partner_lu: USIBMSY.SY12DQA
corr_tok: USIBMST.STB3327L
luwid: USIBMST.STB3327.305DFDA5DC00.0001
xid: 53514C2000000017 00000000544D4442 0000000000305DFD A63055E962000000
 00035F

3. If an indoubt transaction for the partner_lu and for the luwid is not displayed, or if the LIST DRDA
INDOUBT TRANSACTIONS command returns as follows, then the transaction was rolled back.

db2 => list drda indoubt transactions
SQL1251W No data returned for heuristic query.

366 IBM Db2 V11.5: Data Recovery and High Availability

What to do next
There is another unlikely but possible situation that can occur. If an indoubt transaction with the proper
luwid for the partner_lu is displayed, but the uow_status is "I", the SPM does not know whether the
transaction is to be committed or rolled back. In this situation, you should use the WITH PROMPTING
parameter to either commit or roll back the transaction on the Db2 Connect workstation. Then allow Db2
Connect to resynchronize with the host or System i server based on the heuristic decision.

Recovering indoubt transactions on the host when Db2 Connect does not use the Db2 Syncpoint
Manager
If your application has accessed a host or System i database server during a transaction, there are some
differences in how indoubt transactions are recovered. To access host or System i database servers, Db2
Connect is used. The recovery steps differ if Db2 Connect has the Db2 Syncpoint Manager configured.

About this task

Use the information in this section when TCP/IP connectivity is used to update Db2 for z/OS in a multisite
update from the Db2 Connect Enterprise Edition, and the Db2 Syncpoint Manager is not used. The
recovery of indoubt transactions in this situation differs from that for indoubt transactions involving the
Db2 Syncpoint Manager. When an indoubt transaction occurs in this environment, an alert entry is
generated at the client, at the database server, and (or) at the Transaction Manager (TM) database,
depending on who detected the problem. The alert entry is placed in the db2alert.log file.

The resynchronization of any indoubt transactions occurs automatically as soon as the TM and the
participating databases and their connections are all available again. You should allow automatic
resynchronization to occur rather than heuristically force a decision at the database server. If, however,
you must do this then use the following steps as a guideline.

Note: Because the Db2 Syncpoint Manager is not involved, you cannot use the LIST DRDA INDOUBT
TRANSACTIONS command.

Procedure

1. On the z/OS host, issue the command DISPLAY THREAD TYPE(INDOUBT).

From this list identify the transaction that you want to heuristically complete. For details about the
DISPLAY command, see the Db2 for z/OS Command Reference. The LUWID displayed can be matched
to the same luwid at the Transaction Manager Database.

2. Issue the RECOVER THREAD(<LUWID>) ACTION(ABORT|COMMIT) command, depending on what you
want to do.

For details about the RECOVER THREAD command, see the Db2 for z/OS Command Reference.

Database accessibility during backward phase of crash recovery or HADR takeover

If a database fails unexpectedly before all transactions (or units of work) are committed, or before the
changes associated with committed transactions are fully written to disk, then the database is left in an
inconsistent state. When a database restart is performed, these transactions are rectified during a
process called crash recovery. During crash recovery, the changes associated with these transactions are
first replayed from the transaction logs (we often refer to this as the Forward or Redo phase of crash
recovery). Transactions which were not yet committed at the time of the database failure are then rolled
back (we often refer to this as the Backward or Undo phase of crash recovery). A TAKEOVER HADR
operation can also perform a Backward phase to rollback changes that were not yet committed at the
time of the operation.

For prior releases, the database is only accessible after the full completion of crash recovery or HADR
Takeover. This is not ideal, since a very large transaction could require a lengthy Backward phase, leaving
the database entirely inaccessible until it is completed.

The database can now be configured to allow connectivity during the Backward phase of crash recovery.
This behavior can be enabled by using the following database registry variable:

Chapter 2. Data recovery 367

db2set DB2_ONLINERECOVERY=YES

The registry variable is read at the beginning of crash recovery, it is not possible to enable or disable while
crash recovery is actively running.

The point in time when the database becomes connectable during the Backward phase will depend on the
characteristics of the workload. Uncommitted transactions with certain workload operations will be
undone during the Backward phase without allowing database access :

• SQL Data Definition Language (DDL) statements.
• Operations which modify the database catalogs.
• Operations against column - organized tables.
• Workloads that generate some other log - records that are not yet supported .

We refer to this as the Synchronous portion of the Backward phase. Thus, the database will remain
inaccessible during the Backward phase until the point in time of the very first of these unsupported
operations.

Note: It may be possible that, if the oldest uncommitted transactions contain these unsupported
operations, then the majority of the Backward phase will be performed synchronously without database
access available

After completion of the Synchronous portion of the Backward phase, database access is allowed. We
refer to this as the Asynchronous portion of the Backward phase.

For the duration of the Asynchronous portion of the Backward phase, while database access is allowed :

1. Any tables, indexes, or objects that are not associated with any uncommitted transactions are fully
accessible during the asynchronous Backward phase.

2. Any tables, indexes, or objects that are associated with an uncommitted transaction are protected by
an Exclusive (X) lock if DB2_ONLINERECOVERY_WITH_UR_ACCESS=YES, or a Super Exclusive (Z) lock
if DB2_ONLINERECOVERY_WITH_UR_ACCESS=NO. As the Backward phase compensates the
uncommitted transactions, this lock will be released when there are no more remaining uncommitted
transactions referencing the table/object. Thus, prior to the release of these locks, these tables/
objects are only accessible to queries using UR isolation level when
DB2_ONLINERECOVERY_WITH_UR_ACCESS=YES, and completely inaccessible when
DB2_ONLINERECOVERY_WITH_UR_ACCESS=NO.

If these tables also contain LONG or LOB fields, or are organized by MDC or ITC, they will always be
protected by a Super Exclusive (Z) lock. These objects are never accessible during the Asynchronous
Backward phase.

Note: The undo of these transactions may inherently require a Super Exclusive (Z) lock. For example,
undoing utility operations such as LOAD), and that will always supersede the Exclusive (X) lock
acquired during the Asynchronous portion when DB2_ONLINERECOVERY_WITH_UR_ACCESS=YES.

The RESTART DATABASE or TAKEOVER HADR command will return at the start of the Asynchronous
Backward phase, when the database becomes connectable.

While the crash recovery operation is running, a DEACTIVATE DB operation will return an SQL1495W
warning/error. A db2stop operation will return an SQL1025N error. Attempting to force the crash
recovery application agent using FORCE APPLICATION 0 will return an SQL0104N error. A db2stop
force operation is allowed and will interrupt the crash recovery. A TAKEOVER HADR operation is also
allowed during any phase of crash recovery.

If the INDEXREC configuration parameter is configured for index recreation at database restart time, then
indexes will be recreated after the completion of the Asynchronous Backward phase.

Note: For pureScale instances, the backward phase of member crash recovery will continue to be
performed synchronously without database accessibility on that member, because the database remains
connectable on other members. Similarly for group crash recovery, the backward phase will continue to
be performed synchronously without database accessibility.

368 IBM Db2 V11.5: Data Recovery and High Availability

Monitoring Crash Recovery Progress:

The progress of crash recovery can be monitored during any phase using either of the "db2pd -
recovery" option; the LIST UTILITIES SHOW DETAIL CLP command; the SNAPUTIL administrative
view or SNAP_GET_UTIL table function. During the asynchronous backward phase, the
MON_GET_UTILITY table function and the CHANGE HISTORY event monitor can also be used.

$ db2pd -db mydb1 -recovery
Recovery:
Recovery Status 7400010F40000000
Current Log S0000031.LOG
Current LSN 000000000006114D
Current LRI 000000000000000100000000000026E8000000000006114D
Current LSO 80969655
Job Type CRASH RECOVERY
Job ID 1
Job Start Time (1479058883) Sun Nov 13 12:41:23 2016
Job Description Crash Recovery
Invoker Type User
Total Phases 2
Current Phase 2
Progress:
Address PhaseNum Description StartTime CompletedWork
TotalWork
0x078... 1 Forward Sun Nov 13 12:41:231290045 4
bytes 12900454 bytes
0x078... 2 Backward Sun Nov 13 12:49:27 0 bytes
12900454 bytes

The Forward phase of crash recovery (when transactions are replayed from the transaction logs) is
displayed as the first phase, and its progress can be monitored using the Total Work and Completed Work
values over time.

The Backward phase of crash recovery (where uncommitted transactions are rolled back or undone) is
displayed after the first phase completes. Its progress can also be monitored by observing the Total Work
and Completed Work values over time.

For example, if the CompletedWork value is observed 10mins apart, and the difference in the
CompletedWorkvalue is 123,456 bytes during this duration of time, then we can easily extrapolate
the time to complete the remaining work:

ObservationTime_inMins = 10mins
WorkDone_inBytes = 123,456bytes
RemainingWork_inBytes = TotalWork – CompletedWork;
TimeToCompletion_inMins = (RemaingWork_inBytes / WorkDone_inBytes) * ObservationTime_inMins.

While the Synchronous portion of the Backward phase is in progress, it is not possible to estimate when
the Backward phase will enter the Asynchronous portion. When the Synchronous portion completes, an
ADM1505I message is printed in the administration notification log ("ADM1505I Crash recovery has
completed synchronous processing"), and the following message will be displayed in the db2diag.log:

2016-11-12-50.03.33.674725-300 I269681A541 LEVEL: Info
PID : 63373472 TID : 2058 KTID : 131596723
PROC : db2sysc
INSTANCE: db2inst1 NODE : 000 DB : MYDB1
APPHDL : 0-7 APPID: *LOCAL.dsciaraf.161114020311
AUTHID : DB2INST1 HOSTNAME: hotelaix2
EDUID : 2058 EDUNAME: db2agent (X)
FUNCTION: Db2 UDB, recovery manager, sqlpresr, probe:3170
DATA #1 : <preformatted>
Crash recovery synchronous phase completed. Next LSN is 000000000006113C.

If the Backward phase of crash recovery performs an Asynchronous portion , then the
MON_GET_UTILITY table function will display an entry with a UTILITY_TYPE value of
‘ONLINERECOVERY’ after the database opens up for connectivity .

For example:

$ db2 “ SELECT COORD_MEMBER, APPLICATION_HANDLE AS APPHDL, SUBSTR(APPLICATION_NAME, 1, 30) AS
APPNAME,
SUBSTR(SESSION_AUTH_ID, 1, 10) AS USER, UTILITY_TYPE, UTILITY_INVOKER_TYPE,

Chapter 2. Data recovery 369

SUBSTR(UTILITY_DETAIL, 1, 50) AS CMD FROM TABLE(MON_GET_UTILITY(-2)) AS T ”
COORD_MEMBER APPHDL APPNAME USER UTILITY_TYPE
UTILITY_INVOKER_TYPE CMD
--

0 21 db2undo_trans - ONLINERECOVERY
AUTO RESTART DATABASE MYDB1
1 record(s) selected.

The CHANGE HISTORY event monitor is also capable of recording the start and end of the asynchronous
portion of the Backward phase of crash recovery using an event-control type called ONLINERECOVERY.

Monitoring applications during the Backward phase of crash recovery

After database access is allowed during the Backward phase of crash recovery, monitoring of applications
should be done using traditional methods, with the following considerations:

All uncommitted transactions that are part of the Backward phase of crash recovery will have an
Application Handle (AppHandl) of zero (0). These transactions will also have a transaction state of
'ABORT' and Tflag2 bit 0x00000001 set.

For example:

$ db2pd -db MYDB1 -transactions
Transactions:
Address AppHandl ... TranHdl ... State Tflag Tflag2 ... LogSpace ...
0x... 0 ... 3 ... ABORT 0x00000000 0x00000001 ... 780 ...
0x... 0 ... 4 ... ABORT 0x00000000 0x00000001 ... 9465875 ...
0x... 7 ... 5 ... READ 0x00000000 0x00000000 ... 0 ...
0x... 8 ... 6 ... READ 0x00000000 0x00000000 ... 0 ...

Any tables, indexes, or objects that were associated with an uncommitted transaction are protected by an
Exclusive (X) or Super Exclusive (Z) lock for the duration of the Backward phase of crash recovery. This
means that applications which attempt to access these objects during the Backward phase of crash
recovery are subject to lock - wait conditions.

Lock - wait conditions can be monitored using the MON_GET_APPL_LOCKWAIT table function , or the
db2pd -wlocks option. For example:

$ db2 "select LOCK_OBJECT_TYPE as TYPE, LOCK_NAME, LOCK_MODE as MODE,
LOCK_MODE_REQUESTED as MODE_REQ, LOCK_STATUS as STATUS,
HLD_APPLICATION_HANDLE as HL
D_APPHANDL, REQ_APPLICATION_HANDLE as REQ_APPHANDL
from TABLE (MON_GET_APPL_LOCKWAIT(NULL, -2))"
TYPE LOCK_NAME MODE MODE_REQ STATUS HLD_APPHANDL
REQ_APPHANDL
--

TABLE 02000500000000000000000054 X IS W 0 7
1 record(s) selected.

In this example, Application Handle 7 is requesting an Intent Share (IS) mode lock on a Table, which is
already held in Exclusive (X) mode by Application Handle 0 (an uncommitted transaction that is part of
crash recovery).

Additional lock details can be observed using the MON_FORMAT_LOCK_NAME table function. For example:

$ db2 "SELECT SUBSTR(TABNAME,1,20) AS TABNAME, SUBSTR(VALUE,1,50) AS
VALUE FROM TABLE(MON_FORMAT_LOCK_NAME('02000500000000000000000054')) as LOCK"
NAME VALUE
--
LOCK_OBJECT_TYPE TABLE
TBSP_NAME TSPA
TABSCHEMA MYSCHEM
A1TABNAME MYTABLE3
4 record(s) selected.

In this example, the lock wait condition is associated with a table lock on table MYSCHEMA1.MYTABLE3 in
tablespace TSPA.

Additional details about the application in lock - wait state can be obtained using the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function:

370 IBM Db2 V11.5: Data Recovery and High Availability

db2 "SELECT APPLICATION_HANDLE as APPHNDL,
LOCK_WAIT_TIME, SUBSTR(STMT_TEXT,1,45) AS STMT_TEXT
FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(NULL,-1)) AS T"
APPHNDL LOCAL_START_TIME LOCK_WAIT_TIME STMT_TEXT

10 2016-11-13-12.55.35.821373 0 SELECT APPHNDL,LOCK_WAIT_TIME
7 2016-11-13-12.53.33.777571 27 select count(*) from t2
2 record(s) selected.

Disaster recovery
The term disaster recovery is used to describe the activities that need to be done to restore the database
in the event of a fire, earthquake, vandalism, or other catastrophic events.

A plan for disaster recovery can include one or more of the following:

• A site to be used in the event of an emergency
• A different machine on which to recover the database
• Offsite storage of either database backups, table space backups, or both, as well as archived logs.

If your plan for disaster recovery is to restore the entire database on another machine, it is recommended
that you have at least one full database backup and all the archived logs for the database. Although it is
possible to rebuild a database if you have a full table space backup of each table space in the database,
this method might involve numerous backup images and be more time-consuming than recovery using a
full database backup.

You can choose to keep a standby database up to date by applying the logs to it as they are archived. Or,
you can choose to keep the database or table space backups and log archives in the standby site, and
perform restore and rollforward operations only after a disaster has occurred. (In the latter case, recent
backup images are preferable.) In a disaster situation, however, it is generally not possible to recover all
of the transactions up to the time of the disaster.

The usefulness of a table space backup for disaster recovery depends on the scope of the failure.
Typically, disaster recovery is less complicated and time-consuming if you restore the entire database;
therefore, a full database backup should be kept at a standby site. If the disaster is a damaged disk, a
table space backup of each table space on that disk can be used to recover. If you have lost access to a
container because of a disk failure (or for any other reason), you can restore the container to a different
location.

Another way you can protect your data from partial or complete site failures is to implement the Db2 high
availability disaster recovery (HADR) feature. Once it is set up, HADR protects against data loss by
replicating data changes from a source database, called the primary, to a target database, called the
standby.

You can also protect your data from partial or complete site failures using replication. Replication allows
you to copy data on a regular basis to multiple remote databases. Db2 database provides a number of
replication tools that allow you to specify what data should be copied, which database tables the data
should be copied to, and how often the updates should be copied.

Storage mirroring, such as Peer-to-Peer Remote Copy (PPRC), can also be used to protect your data.
PPRC provides a synchronous copy of a volume or disk to protect against disasters.

Db2 database products provide you with several options when planning for disaster recovery. Based on
your business needs, you might decide to use table space or full database backups as a safeguard against
data loss, or you might decide that your environment is better suited to a solution like HADR. Whatever
your choice, you should test your recovery procedures in a test environment before implementing them in
your production environment.

Version recovery
Version recovery is the restoration of a previous version of the database, using an image that was created
during a backup operation.You use this recovery method with non-recoverable databases (that is,
databases for which you do not have archived logs). You can also use this method with recoverable
databases by using the WITHOUT ROLLING FORWARD option on the RESTORE DATABASE command.

Chapter 2. Data recovery 371

A database restore operation will restore the entire database using a backup image created earlier. A
database backup allows you to restore a database to a state identical to the one at the time that the
backup was made. However, every unit of work from the time of the backup to the time of the failure is
lost (see Figure 19 on page 372).

Figure 19. Version Recovery

Using the version recovery method, you must schedule and perform full backups of the database on a
regular basis.

In a partitioned database environment, the database is located across many database partition servers
(or nodes). You must restore all database partitions, and the backup images that you use for the restore
database operation must all have been taken at the same time. (Each database partition is backed up and
restored separately.) A backup of each database partition taken at the same time is known as a version
backup.

Rollforward recovery
You can complete a rollforward recovery for databases or table spaces.

To use the rollforward recovery method, you must have taken a backup of the database and archived the
logs (by setting the logarchmeth1 and logarchmeth2 configuration parameters to a value other than
OFF). Restoring the database and specifying the WITHOUT ROLLING FORWARD parameter is equivalent
to using the version recovery method. The database is restored to a state identical to the one at the time
that the offline backup image was made. If you restore the database and do not specify the WITHOUT
ROLLING FORWARD parameter for the restore database operation, the database will be in rollforward
pending state at the end of the restore operation. This allows rollforward recovery to take place.

Note: The WITHOUT ROLLING FORWARD parameter cannot be used if:

• You are restoring from an online backup image
• You are issuing a table space-level restore

During a recovery, archived log files are retrieved from the archive. If your archived log files are
compressed, the files are automatically uncompressed and used. The archived log files are also
automatically uncompressed when they are encountered in the active log path or overflow log path, if you
manually copied the files there.

The two types of rollforward recovery to consider are:

• Database rollforward recovery. In this type of rollforward recovery, transactions recorded in database
logs are applied following the database restore operation (see Figure 20 on page 373). The database
logs record all changes made to the database. This method completes the recovery of the database to
its state at a particular point in time, or to its state immediately before the failure (that is, to the end of
the active logs).

372 IBM Db2 V11.5: Data Recovery and High Availability

In a partitioned database environment, the database is located across many database partitions, and
the ROLLFORWARD DATABASE command must be issued on the database partition where the catalog
tables for the database resides (catalog partition). If you are performing point-in-time rollforward
recovery, all database partitions must be rolled forward to ensure that all database partitions are at the
same level. If you need to restore a single database partition, you can perform rollforward recovery to
the end of the logs to bring it up to the same level as the other database partitions in the database. Only
recovery to the end of the logs can be used if one database partition is being rolled forward. Point-in-
time recovery applies to all database partitions.

Figure 20. Database Rollforward Recovery
• Table space rollforward recovery. If the database is enabled for forward recovery, it is also possible to

back up, restore, and roll table spaces forward (see Figure 21 on page 374). To perform a table space
restore and rollforward operation, you need a backup image of either the entire database (that is, all of
the table spaces), or one or more individual table spaces. You also need the log records that affect the
table spaces that are to be recovered. You can roll forward through the logs to one of two points:

– The end of the logs; or,
– A particular point in time (called point-in-time recovery).

Table space rollforward recovery can be used in the following two situations:

• After a table space restore operation, the table space is always in rollforward pending state, and it must
be rolled forward. Invoke the ROLLFORWARD DATABASE command to apply the logs against the table
spaces to either a point in time, or the end of the logs.

• If one or more table spaces are in rollforward pending state after crash recovery, first correct the table
space problem. In some cases, correcting the table space problem does not involve a restore database
operation. For example, a power loss could leave the table space in rollforward pending state. A restore
database operation is not required in this case. Once the problem with the table space is corrected, you
can use the ROLLFORWARD DATABASE command to apply the logs against the table spaces to the end
of the logs. If the problem is corrected before crash recovery, crash recovery might be sufficient to take
the database to a consistent, usable state.

Note: If the table space in error contains the system catalog tables, you will not be able to start the
database. You must restore the SYSCATSPACE table space, then perform rollforward recovery to the
end of the logs.

Chapter 2. Data recovery 373

Figure 21. Table Space Rollforward Recovery

In a partitioned database environment, if you are rolling a table space forward to a point in time, you do
not have to supply the list of database partitions on which the table space resides. The Db2 database
manager submits the rollforward request to all database partitions. This means the table space must be
restored on all database partitions on which the table space resides.

In a partitioned database environment, if you are rolling a table space forward to the end of the logs, you
must supply the list of database partitions if you do not want to roll the table space forward on all
database partitions. If you want to roll all table spaces (on all database partitions) that are in rollforward
pending state forward to the end of the logs, you do not have to supply the list of database partitions. By
default, the database rollforward request is sent to all database partitions.

Table space rollforward operations behave differently in a Db2 pureScale environment. For more
information, see “Log stream merging and log file management in a Db2 pureScale environment” on page
290 and “Log sequence numbers in Db2 pureScale environments” on page 294.

If you are rolling a table space forward that contains any piece of a partitioned table and you are rolling it
forward to a point in time, you must also roll all of the other table spaces in which that table resides
forward to the same point in time. However, you can roll a single table space containing a piece of a
partitioned table forward to the end of logs.

If a partitioned table has any attached, detached, or dropped data partitions, then point-in-time
rollforward must also include all table spaces for these data partitions. To determine if a partitioned table
has any attached, detached, or dropped data partitions, query the SYSDATAPARTITIONS catalog table.

Storage group modifications during rollforward recovery

Whether storage group path modifications are redone during a rollforward operation depends on whether
you redirected the storage group during the restore process. If you did not redefine a storage group
during the database restore operation, log records affecting the storage group or its paths are replayed
during rollforward recovery. Storage path updates, storage group rename operations, and table space
storage group association updates that are described in the log records are applied during the rollforward
operation. If a rollforward operation is attempting to replay a log record related to adding storage paths or
creating a storage group and a storage path cannot be found, error SQL1051N is returned.

If you redefined storage paths during the restore operation, the rollforward operation does not redo any
changes to storage paths or media attributes of storage groups whose paths you redirected. However,
changes to the data tag or name of storage groups are redone. Also, log records for other operations,
including DROP STOGROUP operations, are replayed. It is assumed that any explicitly specified storage
group paths have been set to their desired final paths.

374 IBM Db2 V11.5: Data Recovery and High Availability

If a rebalance operation is encountered in the log, table space rebalance operations are initiated during
rollforward recovery. The rebalance operations might not be completed while the rollforward operation is
in progress. In that case, the rebalance processing is suspended at the completion of the rollforward
operation and is restarted the next time that you activate the database.

During a rollforward operation, if a CREATE STOGROUP statement is encountered in the log, the storage
group is created on the paths that you specified when you issued the CREATE STOGROUP statement.

Incremental backup and recovery
As the size of databases, and particularly warehouses, continues to expand into the terabyte and
petabyte range, the time and hardware resources required to back up and recover these databases is also
growing substantially.

A full backup is a backup image, either database or table space, that contains all pages in the database or
table space set being backed up. Each full database or table space backup image also contains all of the
initial database metadata (such as database configuration, table space definitions, database history, and
so on).

Full database and table space backups are not always the best approach when dealing with large
databases, because the storage requirements for multiple copies of such databases are enormous.

Consider the following issues:

• When a small percentage of the data in a warehouse changes, it should not be necessary to back up the
entire database.

• Appending table spaces to existing databases and then taking only table space backups is risky,
because there is no guarantee that nothing outside of the backed up table spaces has changed between
table space backups.

To address these issues, Db2 provides incremental backup and recovery.

An incremental backup is a backup image that contains only pages that have been updated since the
previous backup was taken. In addition to updated data and index pages, each incremental backup image
also contains all of the initial database metadata (such as database configuration, table space definitions,
database history, and so on) that is normally stored in full backup images.

Note:

1. If you take an incremental backup of a table space that contains pages that have been updated since
the previous backup was taken, all long field or large object data will be copied into the backup image.
Normal data is backed up only if it has changed. That is, if the user does not want all large object data
that do not change to be backed up in the incremental backup image, they should put all large object
data that do not change and normal data that changes in separate table spaces, respectively. This way,
the table space that contains all large object data that do not change will not be backed up in the
incremental backup image.

2. Data redistribution might create table spaces for all new database partitions if the ADD
DBPARTITIONNUMS parameter on the REDISTRIBUTE DATABASE PARTITION GROUP command is
specified. In this case, take a full backup of all newly created table spaces on all database partitions
before taking next incremental backup.

3. The incremental backup does not guarantee improved performance compared to the full backup. For
example, if there are many pages have been updated since the previous backup was taken and these
pages reside in each table space of the database, the incremental backup performance will be close to
the full backup performance.

Two types of incremental backup are supported:

• Incremental. An incremental backup image is a copy of all database data that has changed since the
most recent, successful, full backup operation. This is also known as a cumulative backup image,
because a series of incremental backups taken over time will each have the contents of the previous
incremental backup image. The predecessor of an incremental backup image is always the most recent
successful full backup of the same object.

Chapter 2. Data recovery 375

• Delta. A delta, or incremental delta, backup image is a copy of all database data that has changed since
the last successful backup (full, incremental, or delta) of the table space in question. This is also known
as a differential, or noncumulative, backup image. The predecessor of a delta backup image is the most
recent successful backup containing a copy of each of the table spaces in the delta backup image.

The key difference between incremental and delta backup images is their behavior when successive
backups are taken of an object that is continually changing over time. Each successive incremental image
contains the entire contents of the previous incremental image, plus any data that has changed, or is new,
since the previous full backup was produced. Delta backup images contain only the pages that have
changed since the previous image of any type was produced.

Combinations of database and table space incremental backups are permitted, in both online and offline
modes of operation. Be careful when planning your backup strategy, because combining database and
table space incremental backups implies that the predecessor of a database backup (or a table space
backup of multiple table spaces) is not necessarily a single image, but could be a unique set of previous
database and table space backups taken at different times.

To restore the database or the table space to a consistent state, the recovery process must begin with a
consistent image of the entire object (database or table space) to be restored, and must then apply each
of the appropriate incremental backup images in the order described in the following list.

To enable the tracking of database updates, Db2 supports a new database configuration parameter,
trackmod, which can have one of two accepted values:

• NO. Incremental backup is not permitted with this configuration. Database page updates are not tracked
or recorded in any way. This is the default value.

• YES. Incremental backup is permitted with this configuration. When update tracking is enabled, the
change becomes effective at the first successful connection to the database. Before an incremental
backup can be taken on a particular table space, a full backup of that table space is necessary.

For SMS and DMS table spaces, the granularity of this tracking is at the table space level. In table space
level tracking, a flag for each table space indicates whether or not there are pages in that table space that
need to be backed up. If no pages in a table space need to be backed up, the backup operation can skip
that table space altogether.

Although minimal, the tracking of updates to the database can have an impact on the runtime
performance of transactions that update or insert data.

Restoring from incremental backup images
A restore operation from incremental backup images consists of four steps.

About this task

1. Identifying the incremental target image.

Determine the final image to be restored, and request an incremental restore operation from the Db2
restore utility. This image is known as the target image of the incremental restore, because it is the
last image to be restored. The incremental target image is specified using the TAKEN AT parameter in
the RESTORE DATABASE command.

2. Restoring the most recent full database or table space image to establish a baseline against which
each of the subsequent incremental backup images can be applied.

3. Restoring each of the required full or table space incremental backup images, in the order in which
they were produced, on top of the baseline image restored in Step 2.

4. Repeating Step 3 until the target image from Step 1 is read a second time. The target image is
accessed twice during a complete incremental restore operation. During the first access, only initial
data is read from the image; none of the user data is read. The complete image is read and processed
only during the second access.

The target image of the incremental restore operation must be accessed twice to ensure that the
database is initially configured with the correct history, database configuration, and table space
definitions for the database that is created during the restore operation. In cases where a table space

376 IBM Db2 V11.5: Data Recovery and High Availability

was dropped since the initial full database backup image was taken, the table space data for that
image is read from the backup images but ignored during incremental restore processing.

There are two ways to restore incremental backup images: automatic and manual:

• For an automatic incremental restore, the RESTORE DATABASE command is issued only once
specifying the target image to be used. Db2 then uses the database history to determine the remaining
required backup images and restores them.

• For a manual incremental restore, the RESTORE DATABASE command must be issued once for each
backup image that needs to be restored (as outlined in the steps listed previously).

Procedure

• To restore a set of incremental backup images using automatic incremental restore, issue the
RESTORE DATABASE command specifying time stamp of the last image you want to restore with the
TAKEN AT parameter, as follows:

 db2 restore db sample incremental automatic taken at timestamp

This results in the restore utility performing each of the steps described at the beginning of this section
automatically. During the initial phase of processing, the backup image with the specified time stamp
(specified in the form yyyymmddhhmmss) is read, and the restore utility verifies that the database, its
history, and the table space definitions exist and are valid.

During the second phase of processing, the database history is queried to build a chain of backup
images required to perform the requested restore operation. If, for some reason this is not possible,
and Db2 is unable to build a complete chain of required images, the restore operation terminates, and
an error message is returned. In this case, an automatic incremental restore is not possible, and you
must issue the RESTORE DATABASE command with the INCREMENTAL ABORT parameter. This will
clean up any remaining resources so that you can proceed with a manual incremental restore.

Note: It is highly recommended that you not use the WITH FORCE OPTION of the PRUNE HISTORY
command. The default operation of this command prevents you from deleting history entries that
might be required for recovery from the most recent, full database backup image, but with the WITH
FORCE OPTION, it is possible to delete entries that are required for an automatic restore operation.

During the third phase of processing, Db2 restores each of the remaining backup images in the
generated chain. If an error occurs during this phase, you must issue the RESTORE DATABASE
command with the INCREMENTAL ABORT option to clean up any remaining resources. You must then
determine whether the error can be resolved before you reissue the RESTORE DATABASE command
or attempt the manual incremental restore again.

• To restore a set of incremental backup images, using manual incremental restore, issue RESTORE
DATABASE commands specifying time stamp of each image you want to restore with the TAKEN AT
parameter, as follows:

1. db2 restore database dbname incremental taken at timestamp

where timestamp points to the last incremental backup image (the target image) to be restored.

2. db2 restore database dbname incremental taken at timestamp1

where timestamp1 points to the initial full database (or table space) image.

3. db2 restore database dbname incremental taken at timestampX

where timestampX points to each incremental backup image in creation sequence.
4. Repeat Step 3, restoring each incremental backup image up to and including image timestamp.

If you are performing a database restore operation, and table space backup images have been
produced, the table space images must be restored in the chronological order of their backup time
stamps.

Chapter 2. Data recovery 377

The db2ckrst utility can be used to query the database history and generate a list of backup image
time stamps needed for an incremental restore. A simplified restore syntax for a manual incremental
restore is also generated. It is recommended that you keep a complete record of backups, and use this
utility only as a guide.

Limitations to automatic incremental restore
The automatic incremental restore is useful when you need to restore your database. However, you
should consider the limitations of automatic incremental restore when you are deciding how you will
recover your database to prevent unnecessary issues.

The following limitations affect automatic incremental restore:

1. If a table space name has been changed since the backup operation you want to restore from, and you
use the new name when you issue a table space level restore operation, the required chain of backup
images from the database history will not be generated correctly and an error will occur (SQL2571N).

Example:

db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 rename tablespace from userspace1 to t1
db2 restore db sample tablespace ('t1') incremental automatic taken
at <ts2>

SQL2571N Automatic incremental restore is unable to proceed.
Reason code: "3".

Suggested workaround: Use manual incremental restore.
2. If you drop a database, the database history will be deleted. If you restore the dropped database, the

database history will be restored to its state at the time of the restored backup and all history entries
after that time will be lost. If you then attempt to perform an automatic incremental restore that would
need to use any of these lost history entries, the RESTORE utility will attempt to restore an incorrect
chain of backups and will return an "out of sequence" error (SQL2572N).

Example:

db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 backup db sample incremental delta —> <ts3>
db2 backup db sample incremental delta —> <ts4>
db2 drop db sample
db2 restore db sample incremental automatic taken at <ts2>
db2 restore db sample incremental automatic taken at <ts4>

Suggested workarounds:

• Use manual incremental restore.
• Restore the history file first from image <ts4> before issuing an automatic incremental restore.

3. If you restore a backup image from one database into another database and then do an incremental
(delta) backup, you can no longer use automatic incremental restore to restore this backup image.

Example:

db2 create db a
db2 create db b

db2 update db cfg for a using trackmod on

db2 backup db a —> ts1
db2 restore db a taken at ts1 into b

db2 backup db b incremental —> ts2

db2 restore db b incremental automatic taken at ts2

SQL2542N No match for a database image file was found based on the source
database alias "B" and timestamp "ts1" provided.

378 IBM Db2 V11.5: Data Recovery and High Availability

Suggested workaround:

• Use manual incremental restore as follows:

db2 restore db b incremental taken at ts2
db2 restore db a incremental taken at ts1 into b
db2 restore db b incremental taken at ts2

• After the manual restore operation into database B, issue a full database backup to start a new
incremental chain

Optimizing recovery performance
There are strategies that you can use to improve Db2 performance during database recovery and
decrease the time that is required to recover from a Db2 service outage.

The following should be considered when thinking about recovery performance:

• You can improve performance for databases that are frequently updated by placing the logs on a
separate device. In the case of an online transaction processing (OLTP) environment, often more I/O is
needed to write data to the logs than to store a row of data. Placing the logs on a separate device will
minimize the disk arm movement that is required to move between a log and the database files.

You should also consider what other files are on the disk. For example, moving the logs to the disk used
for system paging in a system that has insufficient real memory will defeat your tuning efforts.

Db2 database products automatically attempt to minimize the time it takes to complete a backup or
restore operation by choosing an optimal value for the number of buffers, the buffer size and the
parallelism settings. The values are based on the amount of utility heap memory available, the number
of processors available and the database configuration.

• To reduce the amount of time required to complete a restore operation, use multiple source devices.
• If a table contains large amounts of long field and LOB data, restoring it could be very time consuming.

If the database is enabled for rollforward recovery, the RESTORE command provides the capability to
restore selected table spaces. If the long field and LOB data is critical to your business, restoring these
table spaces should be considered against the time required to complete the backup task for these
table spaces. By storing long field and LOB data in separate table spaces, the time required to complete
the restore operation can be reduced by choosing not to restore the table spaces containing the long
field and LOB data. If the LOB data can be reproduced from a separate source, choose the NOT LOGGED
option when creating or altering a table to include LOB columns. If you choose not to restore the table
spaces that contain long field and LOB data, but you need to restore the table spaces that contain the
table, you must roll forward to the end of the logs so that all table spaces that contain table data are
consistent.

Note: If you back up a table space that contains table data without the associated long or LOB fields,
you cannot perform point-in-time rollforward recovery on that table space. All the table spaces for a
table must be rolled forward simultaneously to the same point in time.

• The following apply for both backup and restore operations:

– Multiple devices should be used.
– Do not overload the I/O device controller bandwidth.

• Db2 database products use multiple agents to perform both crash recovery and database rollforward
recovery. You can expect better performance during these operations, particularly on symmetric multi-
processor (SMP) machines; using multiple agents during database recovery takes advantage of the
extra CPUs that are available on SMP machines.

The agent type introduced by parallel recovery is db2agnsc. Db2 database managers choose the
number of agents to be used for database recovery based on the number of CPUs on the machine.

Db2 database managers distribute log records to these agents so that they can be reapplied
concurrently, where appropriate. For example, the processing of log records associated with insert,
delete, update, add key, and delete key operations can be parallelized in this way. Because the log

Chapter 2. Data recovery 379

records are parallelized at the page level (log records on the same data page are processed by the same
agent), performance is enhanced, even if all the work was done on one table.

• When you perform a recover operation, Db2 database managers will automatically choose an optimal
value for the number of buffers, the buffer size and the parallelism settings. The values will be based on
the amount of utility heap memory available, the number of processors available and the database
configuration. Therefore, depending on the amount of storage available on your system, you should
consider allocating more memory by increasing the util_heap_sz configuration parameter.

Privileges, authorities, and authorization required to use recover
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the recover utility.

Privileges enable users to create or access database resources. Authority levels provide a method of
grouping privileges and higher-level database manager maintenance and utility operations. Together,
these act to control access to the database manager and its database objects.

Users can access only those objects for which they have the appropriate authorization; that is, the
required privilege or authority.

Restore overview
You can restore the Db2 database to a previous state by using Db2 restore tools. A backup image of the
database must exist before you can use these tools.

The simplest form of the Db2 RESTORE DATABASE command requires only that you specify the alias
name of the database that you want to restore. For example:

db2 restore db sample

In this example, because the SAMPLE database exists and will be replaced when the RESTORE
DATABASE command is issued, the following message is returned:

SQL2539W Warning! Restoring to an existing database that is the same as
the backup image database. The database files will be deleted.
Do you want to continue ? (y/n)

If you specify y, the restore operation should complete successfully.

A database restore operation requires an exclusive connection: that is, no applications can be running
against the database when the operation starts, and the restore utility prevents other applications from
accessing the database until the restore operation completes successfully. A table space restore
operation, however, can be done online.

A table space is not usable until the restore operation (possibly followed by rollforward recovery)
completes successfully.

If you have tables that span more than one table space, you should back up and restore the set of table
spaces together.

When doing a partial or subset restore operation, you can use either a table space-level backup image, or
a full database-level backup image and choose one or more table spaces from that image. All the log files
associated with these table spaces from the time that the backup image was created must exist.

You can restore a database from a backup image taken on a 32-bit level into a 64-bit level, but not vice
versa.

If you are restoring backups from 32-bit level environments to 64-bit level environments, review your
database configuration parameters to ensure that they are optimized for the 64-bit instance environment.
For example, the statement heap's default value is lower in 32-bit environments than in 64-bit
environments.

380 IBM Db2 V11.5: Data Recovery and High Availability

The Db2 backup and restore utilities should be used to backup and restore your databases. Moving a
fileset from one machine to another is not recommended as this may compromise the integrity of the
database.

Under certain conditions, you can use transportable sets with the RESTORE DATABASE command to
move databases. .

In IBM Data Studio Version 3.1 or later, you can use the task assistant for restoring database backups.
Task assistants can guide you through the process of setting options, reviewing the automatically
generated commands to perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Using restore
Use the RESTORE DATABASE command to recover a database or table space after a problem such as
media or storage failure, or application failure. If you have backed up your database, or individual table
spaces, you can re-create them if they have become damaged or corrupted in some way.

Before you begin

When restoring to an existing database, you should not be connected to the database that is to be
restored: the restore utility automatically establishes a connection to the specified database, and this
connection is terminated at the completion of the restore operation. When restoring to a new database,
an instance attachment is required to create the database. When restoring to a new remote database, you
must first attach to the instance where you want the new database to reside. Then, create the new
database, specifying the code page and the territory of the server. The restore utility overwrites the code
page of the destination database with the code page of the backup image.

About this task

The database can be local or remote.

The following restrictions apply to the restore utility:

• During the RESTORE, if the database uses automatic storage, then the containers that are used on the
automatic storage paths might be rebalanced. The rebalancing can happen when restoring a new or
previously dropped database. Rebalancing can also happen if there are configuration changes to the
free space or the file system. For rebalancing conditions, see .

• You can only use the restore utility if the database has been previously backed up using the Db2 backup
utility.

• If users other than the instance owner (on UNIX), or members of the DB2ADMNS or Administrators
group (on Windows) attempt to restore a backup image, they get an error. If other users need access to
the backup image, you need to change the file permissions the backup is generated.

• You cannot start a database restore operation while the rollforward process is running.
• If you do not specify the TRANSPORT option, then you can restore a table space into an existing

database only if the table space currently exists, and if it is the same table space. In this situation,
"same" means that the table space was not dropped and then re-created between the backup and the
restore operation. The database on disk and in the backup image must be the same.

• You cannot issue a table space-level restore of a table space-level backup to a new database.
• You cannot perform an online table space-level restore operation involving the system catalog tables.
• You cannot restore a backup taken in a single database partition environment into an existing

partitioned database environment. Instead you must restore the backup to a single database partition
environment and then add database partitions as required.

• When you are restoring a backup image with one code page into a system with a different codepage, the
system code page is overwritten by the code page of the backup image.

• You cannot use the RESTORE DATABASE command to convert nonautomatic storage enabled table
spaces to automatic storage enabled table space.

Chapter 2. Data recovery 381

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

• You must verify that the server time was not reset or changed, and that the times associated with the
members in multi-partitioned database environments are in sync. If the server time is not verified, the
upgrade might return a SQL0440N error message.

• In order to change the database directory during restore, the database can not already exist.
• The following restrictions apply when you specify the TRANSPORT option:

– If the backup image can be restored by a restore operation, and is supported for upgrades, then it
can be transported.

– If you are using an online backup, then both source and target data servers must be running the same
Db2 version.

– Issue the RESTORE DATABASE command against the target database. If the remote client is of the
same platform as the server, then you can execute the schema transport locally on the server or
through remote instance attachment. If a target database is a remote database cataloged in the
instance where transport runs locally, then schema transport against that remote target database is
not supported.

– You can only transport tables spaces and schemas into an existing database. The transport operation
does not create a new database. To restore a database into a new database, you can use the
RESTORE DATABASE command without specifying the TRANSPORT option.

– If the schemas in the source database are protected by any Db2 security settings or authorizations,
then the transported schemas in the target database retain these same settings or authorizations.

– The TRANSPORT option is not supported in the Db2 pureScale environment, or in partitioned
database environments.

– If any of the tables within the schema contains an XML column, the transport fails.
– The TRANSPORT option is incompatible with the REBUILD option.
– The TRANSPORT option is not supported for restore from a snapshot backup image.
– The staging database is created for transport. You cannot use it for other operations.
– The database configuration parameters on the staging table and the target table need to be the

same, or the transport operation fails with an incompatibility error.
– The auto_reval configuration parameter must be set to deferred_force on the target database

to transport objects listed as invalid. Otherwise, the transport fails.
– If you use an online backup image and don't include the active logs, then the transport operation

fails.
– If you use an online backup is used, then the backup image must have been created with the
INCLUDE LOGS option

– If the backup image is from a previous release, it must be a full offline database level backup image.
– If an error occurs on either the staging or target database, you must reissue the entire restore

operation. All failures that occur are logged in the db2diag.log file on the target server and should
be reviewed before you reissue the RESTORE DATABASE command.

– If the transport client fails, then the staging database might not be properly cleaned up. In this case,
you need to drop the staging database. Before reissuing the RESTORE DATABASE command, drop all
staging databases to prevent containers of staging database from blocking subsequent transport.

– Concurrent transport running against the same target database is not supported.
– Generating a redirected restore script is not supported with table space transport.

• You can restore a table space if the storage group was updated. The target storage group during the
table space restore is the storage group the table space is currently associated with when RESTORE
DATABASE is executed.

• You cannot perform a point-in-time recovery to an earlier storage group association.
• Restoring a database that contains encrypted data in a Db2 instance that does not support encryption

(where the IBM Global Security Kit is not installed) is supported. The encrypted data is included in the

382 IBM Db2 V11.5: Data Recovery and High Availability

restored database, but you cannot access the encrypted data. To access the encrypted data, upgrade or
restore the database to an instance that supports encryption.

Procedure

Invoke the restore utility, by using one of the following methods:
• Issue the RESTORE DATABASE command.
• Call the db2Restore application programming interface (API).
• Open the task assistant in IBM Data Studio for the RESTORE DATABASE command.

Examples

Following is an example of the RESTORE DATABASE command issued through the CLP:

db2 restore db sample from D:\DB2Backups taken at 20010320122644

What to do next

• When a database is restored, its database configuration file may have either been copied from the
backup image, or an existing version retained, as described in Restoring to an existing database and
Restoring to a new database.Consider reviewing all database configuration parameters to assure that
they reflect the paths and environmental considerations of the system, especially in scenarios where
the database configuration file was copied from the backup image and may not reflect the
characteristics of the new system onto which the database was restored.

Some common considerations are provided here:

– In databases configured with log archival, assure that the LOGARCHMETH1, LOGARCHMETH2,
MIRRORLOGPATH, FAILARCHPATH, OVERFLOWLOGPATH parameters reflect desired paths or
vendor/userexit configurations.

– In databases configured for High Availability Disaster Recovery (HADR), assure that the
HADR_LOCAL_HOST/SVC, HADR_REMOTE_HOST/SVC/INST, HADR_TARGET_LIST parameters
reflect the desired hostnames, ports, and db instance names.

– For databases configured for automatic backup encryption, ensure that ENCRLIB reflects the desired
encryption library path.

Restoring from a snapshot backup image
Restoring from a snapshot backup uses the fast copying technology of a storage device to perform the
data copying portion of the restore.

Before you begin

To perform snapshot backup and restore operations, you need one of two things:

• A Db2 ACS API driver for your storage device. For a list of supported storage hardware for the integrated
driver, refer to this tech note.

• For storage devices that are not supported, implement a custom script that allows your storage device
to perform snapshot operations.

You must perform a snapshot backup before you can restore from a snapshot backup. See: “Performing a
snapshot backup” on page 323.

Procedure

You can restore from a snapshot backup using the RESTORE DATABASE command with the USE
SNAPSHOT parameter, or the db2Restore API with the SQLU_SNAPSHOT_MEDIA media type:

Chapter 2. Data recovery 383

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

• RESTORE DATABASE command:

db2 restore db sample use snapshot

• db2Restore API:

int sampleRestoreFunction(char dbAlias[],
 char restoredDbAlias[],
 char user[],
 char pswd[],
 char workingPath[])
{
 db2MediaListStruct mediaListStruct = { 0 };

 rmediaListStruct.locations = &workingPath;
 rmediaListStruct.numLocations = 1;
 rmediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

 db2RestoreStruct restoreStruct = { 0 };

 restoreStruct.piSourceDBAlias = dbAlias;
 restoreStruct.piTargetDBAlias = restoredDbAlias;
 restoreStruct.piMediaList = &mediaListStruct;
 restoreStruct.piUsername = user;
 restoreStruct.piPassword = pswd;
 restoreStruct.iCallerAction = DB2RESTORE_STORDEF_NOINTERRUPT;

 struct sqlca sqlca = { 0 };

 db2Restore(db2Version900, &restoreStruct, &sqlca);

 return 0;
}

Restoring from a snapshot backup image with a script
Using a custom script allows you to restore snapshot backup images taken using storage devices that are
not supported by Db2 ACS.

Before you begin

You must have one of the following authorities: SYSADM, SYSCTRL, or SYSMAINT.

About this task

A snapshot restore operation restores a snapshot backup. You must use a custom script for that restore
operation if your storage device does not provide a vendor library.

During snapshot restore operations, the protocol files that were written during the snapshot backup are
read. As well, a new protocol file is written for the restore operation to show its progress. If the restore
operation is successful, the protocol file is deleted; if the operation fails, you can use the protocol file to
help investigate the cause of the failure.

A restore operation restores the latest image that matches the specified time stamp. For example, if there
are two images for the time stamp 20121120, one taken at 201211201000 and one taken at
201211202000, the last one is chosen.

Restrictions

Procedure

To perform a snapshot restore:
1. Create a script that implements the Db2 ACS API.

The script must be executable. For information on custom scripts, see “Db2 Advanced Copy Services
(ACS) user scripts” on page 461.

384 IBM Db2 V11.5: Data Recovery and High Availability

2. Initiate the restore operation using either the RESTORE DATABASE command, the ADMIN_CMD
procedure with RESTORE DATABASE option, or the db2Restore API.
RESTORE DATABASE command

RESTORE DATABASE dbname
 USE SNAPSHOT SCRIPT path-to-script
 OPTIONS 'path-to-repository'
 TAKEN AT timestamp LOGTARGET INCLUDE

ADMIN_CMD procedure

CALL SYSPROC.ADMIN_CMD
 (restore database dbname
 use snapshot script path-to-script
 options 'path-to-repository'
 taken at timestamp logtarget include)

db2Restore API

int sampleRestoreFunction(char dbAlias[],
 char restoredDbAlias[],
 char user[],
 char pswd[],
 char workingPath[])
{
 db2MediaListStruct mediaListStruct = { 0 };

 rmediaListStruct.locations = &workingPath;
 rmediaListStruct.numLocations = 1;
 rmediaListStruct.locationType = SQLU_SNAPSHOT_SCRIPT_MEDIA;

 db2RestoreStruct restoreStruct = { 0 };

 restoreStruct.piSourceDBAlias = dbAlias;
 restoreStruct.piTargetDBAlias = restoredDbAlias;
 restoreStruct.piMediaList = &mediaListStruct;
 restoreStruct.piUsername = user;
 restoreStruct.piPassword = pswd;
 restoreStruct.iCallerAction = DB2RESTORE_STORDEF_NOINTERRUPT;

 struct sqlca sqlca = { 0 };

 db2Restore(db2Version1050, &restoreStruct, &sqlca);

 return 0;
}

Restoring to an existing database
For a database-level restore, the backup image can differ from the existing database in its alias name, its
database name, or its database seed. A database seed is a unique identifier for a database that does not
change during the life of the database.
The database manager assigns the seed when you create the database. Db2 always uses the seed from
the backup image.You can restore a table space into an existing database only if the table space exists
and if the table spaces are the same, meaning that you did not drop the table space and then re-create it
between the backup and the restore operations. The database on disk and in the backup image must be
the same.You cannot modify the currently defined storage groups or explicitly create new storage groups
when restoring a table space.

Before you perform a RESTORE DATABASE on an existing image of the database, you must reset the
connect_proc parameter to NULL. If the connect_proc is not set to NULL, you might encounter
ERROR SQL0440N when you attempt a connection or rollforward command. To avoid this error, you must
update the connect_proc parameter to NULL by using the db2 update db cfg for <DATABASE>
using connect_proc NULL command.

When restoring to an existing database, the restore utility performs the following actions:

• Deletes table, index, and long field data from the existing database and replaces it with data from the
backup image.

• Replaces table entries for each table space that you are restoring.

Chapter 2. Data recovery 385

• Retains the recovery history file unless it is damaged or has no entries. If the recovery history file is
damaged or contains no entries, the database manager copies the file from the backup image. If you
want to replace the recovery history file, you can issue the RESTORE DATABASE command with the
REPLACE HISTORY FILE parameter.

• Retains the authentication type for the existing database.
• Retains the database directories for the existing database. The directories define where the database is

located and how it is cataloged.
• Compares the database seeds. If the seeds are different, the utility performs the following actions:

– Deletes the logs that are associated with the existing database.
– Copies the database configuration file from the backup image.
– Sets the NEWLOGPATH parameter for the RESTORE DATABASE command to the value of the logpath

database configuration parameter if you specified the NEWLOGPATH parameter.

If the database seeds are the same, the utility performs the following actions:

– Deletes all log files if the image is for a non-recoverable database.
– Deletes empty log files if the image is for a recoverable database. Non-empty log files are not

affected.
– Retains the current database configuration file.
– Sets the NEWLOGPATH parameter for the RESTORE DATABASE command to the value of the logpath

database configuration parameter if you specified the NEWLOGPATH parameter. Otherwise, the utility
copies the current log path to the database configuration file. Validates the log path. If the database
cannot use the path, the utility changes the database configuration to use the default log path.

Restoring to a new database
You can create a new database and then restore a full database backup image to it. If you do not create a
new database, the restore utility creates one.

When restoring to a new database, the restore utility:

• Creates a new database, using the database alias name that was specified through the target database
alias parameter. (If a target database alias was not specified, the restore utility creates the database
with an alias that is the same as that specified through the source database alias parameter.)

• Restores the database configuration file from the backup image.
• Sets NEWLOGPATH to the value of the logpath database configuration parameter if NEWLOGPATH was
specified on the RESTORE DATABASE command. Validates the log path: If the path cannot be used by
the database, changes the database configuration to use the default log path.

• Restores the authentication type from the backup image.
• Restores the comments from the database directories in the backup image.
• Restores the recovery history file for the database.
• Overwrites the code page of the database with the codepage of the backup image.

Using incremental restore in a test and production environment
Once a production database is enabled for incremental backup and recovery, you can use an incremental
or delta backup image to create or refresh a test database.You can do this by using either manual or
automatic incremental restore.

To restore the backup image from the production database to the test database, use the INTO target-
database-alias option on the RESTORE DATABASE command. For example, in a production database with
the following backup images:

 backup db prod
 Backup successful. The timestamp for this backup image is : ts1

 backup db prod incremental
 Backup successful. The timestamp for this backup image is : ts2

386 IBM Db2 V11.5: Data Recovery and High Availability

an example of a manual incremental restore would be:

 restore db prod incremental taken at ts2 into test without
 prompting
 DB20000I The RESTORE DATABASE command completed successfully.

 restore db prod incremental taken at ts1 into test without
 prompting
 DB20000I The RESTORE DATABASE command completed successfully.

 restore db prod incremental taken at ts2 into test without
 prompting
 DB20000I The RESTORE DATABASE command completed successfully.

If the database TEST already exists, the restore operation overwrites any data that is already there. If the
database TEST does not exist, the restore utility creates it and then populates it with the data from the
backup images.

Since automatic incremental restore operations are dependent on the database history, the restore steps
change slightly based on whether the test database exists. To perform an automatic incremental restore
to the database TEST, its history must contain the backup image history for database PROD. The database
history for the backup image replaces any database history that already exists for database TEST if either
of the following are true:

• The database TEST does not exist when the RESTORE DATABASE command is issued.
• The database TEST exists when the RESTORE DATABASE command is issued, and the database TEST

history contains no records.

The following example shows an automatic incremental restore to database TEST which does not exist:

 restore db prod incremental automatic taken at ts2 into test without
 prompting
 DB20000I The RESTORE DATABASE command completed successfully.

The restore utility creates the TEST database and populates it.

If the database TEST does exist and the database history is not empty, you must drop the database
before the automatic incremental restore operation as follows:

 drop db test
 DB20000I The DROP DATABASE command completed successfully.

 restore db prod incremental automatic taken at ts2 into test without
 prompting
 DB20000I The RESTORE DATABASE command completed successfully.

If you do not want to drop the database, you can issue the PRUNE HISTORY command with a timestamp
far into the future and the WITH FORCE OPTION parameter before issuing the RESTORE DATABASE
command:

 connect to test
 Database Connection Information

 Database server = server_id
 SQL authorization ID = id
 Local database alias = TEST

 prune history 9999 with force option
 DB20000I The PRUNE command completed successfully.

 connect reset
 DB20000I The SQL command completed successfully.
 restore db prod incremental automatic taken at ts2 into test without
 prompting
 SQL2540W Restore is successful, however a warning "2539" was
 encountered during Database Restore while processing in No
 Interrupt mode.

In this case, the RESTORE DATABASE command acts in the same manner as when the database TEST did
not exist.

Chapter 2. Data recovery 387

If the database TEST does exist and the database history is empty, you do not have to drop the database
TEST before the automatic incremental restore operation:

 restore db prod incremental automatic taken at ts2 into test without
 prompting
 SQL2540W Restore is successful, however a warning "2539" was
 encountered during Database Restore while processing in No
 Interrupt mode.

You can continue taking incremental or delta backups of the test database without first taking a full
database backup. However, if you ever need to restore one of the incremental or delta images you have to
perform a manual incremental restore. This requirement is because automatic incremental restore
operations require that each of the backup images restored during an automatic incremental restore are
created from the same database alias.

If you make a full database backup of the test database after you complete the restore operation using
the production backup image, you can take incremental or delta backups and can restore them using
either manual or automatic mode.

Restore and roll forward through a topology change
A topology change involves adding members or dropping members from a Db2 pureScale instance
(explicitly or through restore), or restoring between a Db2 pureScale instance and a Db2 Enterprise Server
Edition instance. Some topology change scenarios also allow restore followed by rollforward recovery.

Adding members to the topology

A strict superset Db2 pureScale environment refers to an environment where all members in the backup
image are defined in the target member topology; and the target member topology contains additional
members. For example, the backup source member topology includes members 0 and 1, and the target
member topology contains members 0, 1 and 2.

Example 1 (Restore from a Db2 pureScale environment to a superset Db2 pureScale environment)

To restore the backup source member topology instance (containing two members) to the target member
topology instance (containing three members):

On the source instance, back up the database:

 db2 backup database sample to /dev3/backup

On the target instance (Db2 pureScale instance that is a superset of the source member topology),
restore database:

 db2 restore database sample from /dev3/backup

After the restore, the database is usable on any of the members in the target instance. For example, to
activate the database on all members, the activate database command can be run from any of the
members:

 db2 activate database sample

Example 2 (Restore a manual file copy Db2 pureScale instance to superset Db2 pureScale instance)

If you have a Db2 pureScale instance with two members (for example 0 and 1), and you perform a manual
file copy backup (such as FlashCopy). Then, you apply the backup to a Db2 pureScale instance with a
superset topology (for example three members 0, 1 and 2), follow the steps in topic “Using a split mirror
as a backup image” on page 135 or topic “Using a split mirror to clone a database in a Db2 pureScale
environment” on page 133.

388 IBM Db2 V11.5: Data Recovery and High Availability

Dropping members from the topology

These examples include an offline database backup image for a consistent database that is restored to a
Db2 pureScale instance. However, the Db2 pureScale instance has a member topology that is not a
superset of the source member topology in the backup image. This case could refer to strictly shrinking
the topology (target member topology is a subset of the source member topology), both growing and
shrinking (the intersection between the source and target member topology is not empty.) In all cases,
there must be a common member between the source and target member topology. In addition, to
ensure recoverability, following the restore you must perform either an incremental or full offline
database backup.

A subset Db2 pureScale environment refers to an environment where not all members in the backup
image are defined in the target member topology. For example, the backup source member topology
includes members 0, 1, 2, and the target member topology contains members 0 and 1.

Example 3 (Restore from a Db2 pureScale environment to a subset Db2 pureScale environment)

To restore the backup source member topology instance (containing three members) to the target
member topology instance (containing two members):

On the source instance, to ensure that the database is in a consistent state, stop the instance and perform
an offline backup:

 db2stop
 db2 backup database sample to /dev3/backup

On the target instance (Db2 pureScale instance that is a superset of the source member topology),
restore database:

 db2 restore database sample from /dev3/backup without rolling forward

Back up the database on the target instance after the topology change

 db2 backup database sample to /dev3/backup

or

 db2 backup database sample incremental to /dev3/backup

Example 4 (Restore from a Db2 pureScale environment to a Db2 pureScale environment that is not
superset

To restore the backup source member topology instance (containing three members) to the target
member topology instance (containing two members):

This example restores a source member topology (containing members 0, 1) to the target member
topology instance (containing members 1 and 2). In this case, the only common member between the
two topologies is member 1.

On the source instance, to ensure that the database is in a consistent state, stop the instance and perform
an offline backup:

 db2stop
 db2 backup database sample to /dev3/backup

On the target instance, restore the database from member 1 (the common member). This causes a
topology breaking event.

 db2 restore database sample from /dev3/backup without rolling forward

You must perform either an incremental or full offline database backup of the database from member 1
(the common member) on the target instance.

Chapter 2. Data recovery 389

 db2 backup database sample to /dev3/backup

or

 db2 backup database sample incremental to /dev3/backup

Restore from Db2 pureScale Feature to Db2 Enterprise Server Edition

Starting in V10.5, the mobility of backup images back and forth between ESE instances and a Db2
pureScale instance is supported. For steps, see “Restore from Db2 pureScale Feature to Db2 Enterprise
Server Edition ” on page 425 or “Restore from Db2 Enterprise Server Edition to Db2 pureScale instance ”
on page 426.

Restore an online backup to a target Db2 pureScale environment that is not a superset

An online backup results in a database that is in an inconsistent state. A database in an inconsistent
backup requires a rollforward operation. However, a rollforward operation through a drop member event
is not supported. Running the restore command results in an error message.

Removing the offline backup requirement after a topology change running db2dart command

For recoverable databases, after a topology change you must take either an incremental or a full offline
database backup for the database to be usable again. To ensure the recoverability of the database from
that point in time, this recoverability is enforced by placing the databases in backup pending state.

A high risk workaround to this requirement, instead of running the BACKUP DATABASE command, you can
run the db2dart command. However, any updates that are performed on the database are not
recoverable until a full database backup is taken. This command has high risk of jeopardizing
recoverability of the database, so it must be used only under the advisement of Db2 Service.

To remove the offline backup requirement:

 db2dart sample /CHST /WHAT DBBP OFF

where WHAT DBBP OFF specifies database backup pending state is to be turned off.

Restore plus rollforward recovery

The ROLLFORWARD DATABASE command supports the recovery through add member events. After the
addition of a new member to a target topology, you do not need to take a database backup. Instead, you
can restore a backup that is taken before the add member events took place. Then, perform a rollforward
recovery to either the end of the transaction log or to any point in time after the add member events
occurred. Inconsistent backups are also supported. Inconsistent backups are those backups when
restored require a rollforward operation to bring the database back to a consistent point. In addition, a
rollforward operation supports encountering add member events in the transaction logs and handle them
transparently.

Example 5 (Performing restore plus rollforward recovery through a member addition event)

The members that do not exist in the backup image could be added during the rollforward operation as
the add member log record is found (this is referred to as an explicit add). Or if the add member log record
(AMLR) is not found, members could be added on the subsequent connect to those members (this is
referred to as an implicit add).

Explicit add: a full database backup B0 for database sample is taken on a Db2 pureScale instance with a
topology that includes only member 0. After some time of processing read/write transactions for this
database on member 0, member 1 is added. Clients continue processing transactions both in member 0
and member 1. The backup image B0 is restored to a cluster with two members 0 and 1. The user
initiates a rollforward operation through the transaction logs. The rollforward operation encounters an
add member log record for member 1 before you reach the end of the logs.

390 IBM Db2 V11.5: Data Recovery and High Availability

On the source instance (member 0), back up to image B0 with just member 0:

 db2 backup database sample to /dev3/backup

Continue processing transactions on member 0, then add member 1:

 db2iupdt -m -add

Continue processing transactions on members 0 and 1.

On the target instance (with member 0 and 1), restore backup image B0 and transaction logs:

 db2 restore database sample from /dev3/backup

Roll forward to end of logs:

 db2 rollforward database sample to end of logs and stop

The ROLLFORWARD DATABASE command encounters an add member log record (AMLR) for member 1
and processes the addition of the member. The rollforward operation reaches end of log and completes.
The database is now usable.

Implicit add: a full database backup B0 for database sample is taken on a Db2 pureScale instance with a
topology that includes only member 0. Process read/write transactions for this database on member 0.
Backup image B0 is restored to a cluster with two members that is a superset of the source member
topology: which includes members 0 and 1. Initiate a rollforward operation through the transaction logs,
which does not find any events for member 1. In this case, after the rollforward completes, to use
member 1, issue a CONNECT command (or ACTIVATE DATABASE command). Member 1 is added
implicitly by either of these commands.

On the source instance (with member 0), back up to image B0:

 db2 backup database sample to /dev3/backup

Continue processing transactions on member 0.

On the target instance (with member 0 and 1), restore backup image B0 and transaction logs (note that all
transaction logs are transferred as well, and potentially archived logs must be accessible on the target
instance):

 db2 restore database sample from /dev3/backup

Roll forward to end of logs:

 db2 rollforward database sample to end of logs and stop

The database is now usable.

Implicit add at a point in time: a full database backup B0 for database sample is taken on a Db2
pureScale instance with a topology that includes only member 0. After some time of processing read/
write transactions for this database on member 0, backup image B0 is restored to a cluster with two
members that is a superset of the source member topology. This superset includes members 0 and 1.
Initiate a rollforward operation through the transaction logs to a point in time before the add member
event (instead of rolling forward to end of logs).

On the source instance (with member 0), back up to image B0 with just member 0:

 db2 backup database sample to /dev3/backup

Continue processing transactions on member 0, then add member 1:

 db2iupdt -m -add

Continue processing transactions on members 0 and 1.

Chapter 2. Data recovery 391

On the target instance (with member 0 and 1), restore backup image B0 and transaction logs:

 db2 restore database sample from /dev3/backup

Roll forward to a point in time before the addition of member 1:

 db2 rollforward database sample to 2013-04-03-14.21.56 and stop

The database is now usable. On the first use new log chains are created for each of the members.

Performing a redirected restore operation
A database restore operation uses a database backup image to recreate a database.

Use a redirected restore operation in any of the following situations:

• If you want to restore a backup image to a target machine that is different from the source machine
• If you want to restore your table space containers into a different physical location
• If your restore operation failed because one or more containers are inaccessible
• If you want to redefine the paths of a defined storage group

Restrictions:
You cannot use a redirected restore to move data from one operating system to another.
You cannot create or drop a storage group during the restore process.
You cannot modify storage group paths during a table space restore process even if you are restoring
all table spaces that are associated with the storage group.

The process for performing a redirected restore by using an incremental backup image is similar to the
process of performing a redirected restore by using a non-incremental backup image. Use one of the
following approaches:

• Issue the RESTORE DATABASE command with the REDIRECT parameter, and specify the backup image
to use for the incremental restore of the database.

• Generate a redirected restore script from a backup image, and then modify the script as required.

Using the RESTORE DATABASE command approach is a two-step database restore process with an
intervening step for defining a table space container or storage group path. To perform a redirected
restore:

1. Issue the RESTORE DATABASE command with the REDIRECT parameter.
2. Take one of the following steps:

• Define table space containers by issuing the SET TABLESPACE CONTAINERS command.
• Define storage group paths for the database to be restored by issuing the SET STOGROUP PATHS

command.
3. Issue the RESTORE DATABASE command again, this time specifying the CONTINUE parameter.

After you issue the RESTORE CONTINUE command, the new path takes effect as the table space
container path for all associated table spaces. If you issue a LIST TABLESPACE CONTAINERS command
or a GET SNAPSHOT FOR TABLESPACES command after the SET STOGROUP PATHS command and
before the RESTORE CONTINUE command, the output for the table space container paths does not
reflect the new paths that you specified by using the SET STOGROUP PATHS command.

During a redirected restore operation, directory and file containers are automatically created if they do
not exist. The database manager does not automatically create device containers.

Db2 database products provide SQL statements for adding, changing, or removing table space containers
non-automatic-storage DMS table spaces, and storage group paths of automatic storage table spaces. A
redirected restore is the only way to modify a non-automatic-storage SMS table space container
configuration.

392 IBM Db2 V11.5: Data Recovery and High Availability

You can redefine table space containers or modify storage group paths by issuing the RESTORE
DATABASE command with the REDIRECT parameter.

Table space container redirection provides considerable flexibility for managing table space containers.
You can alter the storage group configuration of a database before restoring any data pages from the
backup image, similar to the way that you can redirect table space container paths. If you renamed a
storage group since you produced the backup image, the storage group name that is specified by the SET
STOGROUP PATHS command refers to the storage group name from the backup image, not the more
recent name.

Performing a redirected restore operation in a partitioned database environment

In a partitioned database environment, during a redirected database restore, you can redirect the storage
group paths to new storage group paths only from the catalog database partition. For all other database
partitions you must have their storage group paths synchronized with those of the catalog partition.

Modifying any storage group paths on the catalog partition places all non-catalog partitions into a
RESTORE_PENDING state. If you redirect storage group paths, you must restore the catalog partition
before any other database partition. After you restore the catalog database partition, you can restore the
non-catalog database partitions in parallel, without any storage group path redirection. The non-catalog
database partitions automatically acquire the new storage group paths that you specified for the catalog
database partition. New storage group paths are also automatically acquired when the storage group
paths are implicitly changed during a database restore when you are restoring a different database (one
with a different name, instance, or seed).

If you modified the storage group paths since taking the last backup, you can still use that backup image
(with different storage group paths) for a restore on any database partition. This restore is not considered
a redirected restore. Restoring from that backup image temporarily causes the database partition to use
the storage group paths that you defined at the time that you created the backup. Perform a rollforward
recovery to reapply the storage group path modifications and resynchronize all of the database partitions.

Examples
Example 1

You can perform a table space container redirected restore on database SAMPLE by using the SET
TABLESPACE CONTAINERS command to define table space containers:

 db2 restore db sample redirect without prompting
 SQL1277W A redirected restore operation is being performed.
 During a table space restore, only table spaces being restored can
 have their paths reconfigured. During a database restore, storage
 group storage paths and DMS table space containers can be reconfigured.

 DB20000I The RESTORE DATABASE command completed successfully.

 db2 set tablespace containers for 2 using (path 'userspace1.0', path
 'userspace1.1')
 DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

 db2 restore db sample continue
 DB20000I The RESTORE DATABASE command completed successfully.

Example 2

You can redefine the paths of the defined storage group by using the SET STOGROUP PATHS
command:

 RESTORE DB SAMPLE REDIRECT

 SET STOGROUP PATHS FOR sg_hot ON '/ssd/fs1', '/ssd/fs2'
 SET STOGROUP PATHS FOR sg_cold ON '/hdd/path1', '/hdd/path2'

 RESTORE DB SAMPLE CONTINUE

Chapter 2. Data recovery 393

Example 3

Following is a typical non-incremental redirected restore scenario for a database whose alias is
MYDB:

1. Issue a RESTORE DATABASE command with the REDIRECT option.

 db2 restore db mydb replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose containers you want
to redefine. For example, in a Windows environment:

 db2 set tablespace containers for 5 using
 (file 'f:\ts3con1'20000, file 'f:\ts3con2'20000)

To verify that the containers of the restored database are the ones specified in this step, issue the
LIST TABLESPACE CONTAINERS command for every table space whose container locations are
being redefined.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

This is the final step of the redirected restore operation.
4. If step 3 fails, or if the restore operation has been aborted, the redirected restore can be restarted,

beginning at step 1.

Note:

1. After successful completion of step 1, and before completing step 3, the restore operation can be
aborted by issuing:

 db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the redirected restore can be restarted,
beginning at step 1.

Example 4

Following is a typical manual incremental redirected restore scenario for a database whose alias is
MYDB and has the following backup images:

 backup db mydb
 Backup successful. The timestamp for this backup image is : <ts1>

 backup db mydb incremental
 Backup successful. The timestamp for this backup image is : <ts2>

1. Issue a RESTORE DATABASE command with the INCREMENTAL and REDIRECT options.

 db2 restore db mydb incremental taken at <ts2> replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose containers must be
redefined. For example, in a Windows environment:

 db2 set tablespace containers for 5 using
 (file 'f:\ts3con1'20000, file 'f:\ts3con2'20000)

To verify that the containers of the restored database are the ones specified in this step, issue the
LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

4. The remaining incremental restore commands can now be issued as follows:

394 IBM Db2 V11.5: Data Recovery and High Availability

 db2 restore db mydb incremental taken at <ts1>
 db2 restore db mydb incremental taken at <ts2>

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the restore operation can be
aborted by issuing:

 db2 restore db mydb abort

2. After successful completion of step 3, and before issuing all the required commands in step 4, the
restore operation can be aborted by issuing:

 db2 restore db mydb incremental abort

3. If step 3 fails, or if the restore operation has been aborted, the redirected restore can be restarted,
beginning at step 1.

4. If either restore command fails in step 4, the failing command can be reissued to continue the
restore process.

Example 5

Following is a typical automatic incremental redirected restore scenario for the same database:

1. Issue a RESTORE DATABASE command with the INCREMENTAL AUTOMATIC and REDIRECT
options.

 db2 restore db mydb incremental automatic taken at <ts2>
 replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose containers must be
redefined. For example, in a Windows environment:

 db2 set tablespace containers for 5 using
 (file 'f:\ts3con1'20000, file 'f:\ts3con2'20000)

To verify that the containers of the restored database are the ones specified in this step, issue the
LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the restore operation can be
aborted by issuing:

 db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the redirected restore can be restarted,
beginning at step 1 after issuing:

 db2 restore db mydb incremental abort

Redefine table space containers by restoring a database using an automatically generated script
When you restore a database, the restore utility assumes that the physical container layout will be
identical to that of the database when it was backed up. If you need to change the location or size of any
of the physical containers, you must issue the RESTORE DATABASE command with the REDIRECT option.
Using this option requires that you specify the locations of physical containers stored in the backup image

Chapter 2. Data recovery 395

and provide the complete set of containers for each non-automatic table space that will be altered. You
can capture the container information at the time of the backup, but this can be cumbersome.

To make it easier to perform a redirected restore, the restore utility allows you to generate a redirected
restore script from an existing backup image by issuing the RESTORE DATABASE command with the
REDIRECT parameter and the GENERATE SCRIPT parameter. The restore utility examines the backup
image, extracts container information from the backup image, and generates a CLP script that includes all
of the detailed container information. You can then modify any of the paths or container sizes in the
script, then run the CLP script to recreate the database with the new set of containers. The script you
generate can be used to restore a database even if you only have a backup image and you do not know
the layout of the containers. The script is created on the client. Using the script as your basis, you can
decide where the restored database will require space for log files and containers and you can change the
log file and container paths accordingly.

The generated script consists of four sections:
Initialization

The first section sets command options and specifies the database partitions on which the command
will run. The following is an example of the first section:

 UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;
 SET CLIENT ATTACH_DBPARTITIONNUM 0;
 SET CLIENT CONNECT_DBPARTITIONNUM 0;

where

• S ON specifies that execution of the command should stop if a command error occurs
• Z ON SAMPLE_NODE0000.out specifies that output should be directed to a file named
dbalias_NODEdbpartitionnum.out

• V ON specifies that the current command should be printed to standard output.

When running the script on a partitioned database environment, it is important to specify the
database partition on which the script commands will run.

RESTORE DATABASE command with the REDIRECT parameter
The second section starts the RESTORE DATABASE command and uses the REDIRECT parameter.
This section can use all of the RESTORE DATABASE command parameters, except any parameters
that cannot be used with the REDIRECT parameter. The following is an example of the second
section:

 RESTORE DATABASE SAMPLE
 -- USER 'username'
 -- USING 'password'
 FROM '/home/jseifert/backups'
 TAKEN AT 20050906194027
 -- DBPATH ON 'target-directory'
 INTO SAMPLE
 -- NEWLOGPATH '/home/jseifert/jseifert/NODE0000/SQL00001/LOGSTREAM0000/'
 -- WITH num-buff BUFFERS
 -- BUFFER buffer-size
 -- REPLACE HISTORY FILE
 -- REPLACE EXISTING
 REDIRECT
 -- PARALLELISM n
 -- WITHOUT ROLLING FORWARD
 -- WITHOUT PROMPTING
 ;

Table space definitions
This section contains table space definitions for each table space in the backup image or specified on
the command line. There is a section for each table space, consisting of a comment block that
contains information about the name, type and size of the table space. The information is provided in
the same format as a table space snapshot. You can use the information provided to determine the
required size for the table space. In cases where you are viewing output of a table space created
using automatic storage, you will not see a SET TABLESPACE CONTAINERS clause. The following is an
example of the table space definition section:

396 IBM Db2 V11.5: Data Recovery and High Availability

 -- ***
 -- ** Tablespace name = SYSCATSPACE
 -- ** Tablespace ID = 0
 -- ** Tablespace Type = System managed space
 -- ** Tablespace Content Type = Any data
 -- ** Tablespace Page size (bytes) = 4096
 -- ** Tablespace Extent size (pages) = 32
 -- ** Using automatic storage = No
 -- ** Total number of pages = 5572
 -- ***
 SET TABLESPACE CONTAINERS FOR 0
 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS
 USING (
 PATH 'SQLT0000.0'
);
 -- ***
 -- ** Tablespace name = TEMPSPACE1
 -- ** Tablespace ID = 1
 -- ** Tablespace Type = System managed space
 -- ** Tablespace Content Type = System Temporary data
 -- ** Tablespace Page size (bytes) = 4096
 -- ** Tablespace Extent size (pages) = 32
 -- ** Using automatic storage = No
 -- ** Total number of pages = 0
 -- ***
 SET TABLESPACE CONTAINERS FOR 1
 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS
 USING (
 PATH 'SQLT0001.0'
);
 -- ***
 -- ** Tablespace name = DMS
 -- ** Tablespace ID = 2
 -- ** Tablespace Type = Database managed space
 -- ** Tablespace Content Type = Any data
 -- ** Tablespace Page size (bytes) = 4096
 -- ** Tablespace Extent size (pages) = 32
 -- ** Using automatic storage = No
 -- ** Auto-resize enabled = No
 -- ** Total number of pages = 2000
 -- ** Number of usable pages = 1960
 -- ** High water mark (pages) = 96
 -- ***
 SET TABLESPACE CONTAINERS FOR 2
 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS
 USING (
 FILE '/tmp/dms1' 1000
 , FILE '/tmp/dms2' 1000
);

RESTORE DATABASE command with the CONTINUE parameter
The final section issues the RESTORE DATABASE command with the CONTINUE parameter, to
complete the redirected restore. The following is an example of the final section:

 RESTORE DATABASE SAMPLE CONTINUE;

Performing a redirected restore using an automatically generated script
When you perform a redirected restore operation, you must specify the locations of physical containers
that are stored in the backup image and provide the complete set of containers for each table space that
you are altering.

Before you begin

You can perform a redirected restore only if the database was previously backed up using the Db2 backup
utility.

About this task

• If the database exists, you must be able to connect to it in order to generate the script. Therefore, if the
database requires an upgrade or crash recovery, this must be done before you attempt to generate a
redirected restore script.

Chapter 2. Data recovery 397

• If you are working in a partitioned database environment, and the target database does not exist, you
cannot run the command to generate the redirected restore script concurrently on all database
partitions. Instead, the command to generate the redirected restore script must be run one database
partition at a time, starting from the catalog partition.

Alternatively, you can first create a dummy database with the same name as your target database. After
the dummy database is created, you can then generate the redirected restore script concurrently on all
database partitions.

• Even if you specify the REPLACE EXISTING parameter when you issue the RESTORE DATABASE
command to generate the script, the REPLACE EXISTING parameter is commented out in the script.

• For security reasons, your password does not appear in the generated script. You need to enter the
password manually.

• The restore script includes the storage group associations for every table space that you restore.

Procedure

To perform a redirected restore using a script:
1. Use the restore utility to generate a redirected restore script.

The restore utility can be invoked through the command line processor (CLP) or the db2Restore
application programming interface (API).
The following is an example of the RESTORE DATABASE command with the REDIRECT parameter and
the GENERATE SCRIPT parameter:

 db2 restore db test from /home/jseifert/backups taken at 20050304090733
 redirect generate script test_node0000.clp

This creates a redirected restore script on the client called test_node0000.clp.
2. Open the redirected restore script in a text editor to make any modifications that are required.

You can modify:

• Restore options
• Automatic storage paths
• Container layout and paths

3. Run the modified redirected restore script.
For example:

 db2 -tvf test_node0000.clp

Cloning a production database using different storage group paths
You might have to clone a production database onto a test database that uses a different machine. The
test machine and production server are likely to have different storage group paths. The test system
might not have paths backed by the newest and fastest storage disks.

About this task

Suppose you have a production database proddb, where some data is in storage group sg_hot, which
has paths on an SSD device. You want to restore the data into the less expensive and lower-performance
test database testdb. The test system does not have the SSD device, but the other paths are equivalent.
Performing a redirected restore can change the paths for sg_hot on the test system without changing the
other storage groups.

Procedure

To restore data from a production database to a test database:
1. Back up the production database.

Issue the following command:

398 IBM Db2 V11.5: Data Recovery and High Availability

BACKUP DATABASE production_db TO /backup

where production_db is the production database.
2. Set up a redirected restore to the test database.

Issue the following command:

RESTORE DATABASE testdb REDIRECT

where testdb is the test database.
3. Modify the storage paths for sg_hot because no hot storage is available on the test database.

Issue the following command:

SET STOGROUP PATHS FOR sg_hot ON '/hdd/path1', '/hdd/path2'

where sg_hot is the sg_hot storage group.
4. Proceed with the test database restore.

Issue the following command:

RESTORE DATABASE testdb CONTINUE

5. Update the storage group name to correspond with the new paths.
Use the following commands:

CONNECT TO testdb
RENAME STOGROUP sg_hot TO sg_cold

Database rebuild
Rebuilding a database is the process of restoring a database or a subset of its table spaces using a set of
restore operations. The functionality provided with database rebuild makes Db2 database products more
robust and versatile, and provides you with a more complete recovery solution.

The ability to rebuild a database from table space backup images means that you no longer have to take
as many full database backups. As databases grow in size, opportunities for taking a full database backup
are becoming limited. With table space backup as an alternative, you no longer need to take full database
backups as frequently. Instead, you can take more frequent table space backups and plan to use them,
along with log files, in case of a disaster.

In a recovery situation, if you need to bring a subset of table spaces online faster than others, you can use
rebuild to accomplish this. The ability to bring only a subset of table spaces online is especially useful in a
test and production environment.

Rebuilding a database involves a series of potentially many restore operations. A rebuild operation can
use a database image, or table space images, or both. It can use full backups, or incremental backups, or
both. The initial restore operation restores the target image, which defines the structure of the database
that can be restored (such as the table space set, the storage groups and the database configuration). For
recoverable databases, rebuilding allows you to build a database that is connectable and that contains
the subset of table spaces that you need to have online, while keeping table spaces that can be recovered
at a later time offline.

The method you use to rebuild your database depends on whether it is recoverable or non-recoverable.

• If the database is recoverable, use one of the following methods:

– Using a full or incremental database or table space backup image as your target, rebuild your
database by restoring SYSCATSPACE and any other table spaces from the target image only using the
REBUILD option. You can then roll your database forward to a point in time.

– Using a full or incremental database or table space backup image as your target, rebuild your
database by specifying the set of table spaces defined in the database at the time of the target image
to be restored using the REBUILD option. SYSCATSPACE must be part of this set. This operation will
restore those table spaces specified that are defined in the target image and then use the recovery

Chapter 2. Data recovery 399

history file to find and restore any other required backup images for the remaining table spaces not in
the target image automatically. Once the restores are complete, roll your database forward to a point
in time.

• If the database is non-recoverable:

– Using a full or incremental database backup image as your target, rebuild your database by restoring
SYSCATSPACE and any other table spaces from the target image using the appropriate REBUILD
syntax. When the restore completes you can connect to the database.

Specifying the target image

To perform a rebuild of a database, you start by issuing the RESTORE command, specifying the most
recent backup image that you use as the target of the restore operation. This image is known as the target
image of the rebuild operation, because it defines the structure of the database to be restored, including
the table spaces that can be restored, the database configuration, and the log sequence. The rebuild
target image is specified using the TAKEN AT parameter in the RESTORE DATABASE command. The
target image can be any type of backup (full, table space, incremental, online or offline). The table spaces
defined in the database at the time the target image was created will be the table spaces available to
rebuild the database.

You must specify the table spaces you want restored using one of the following methods:

• Specify that you want all table spaces defined in the database to be restored and provide an exception
list if there are table spaces you want to exclude

• Specify that you want all table spaces that have user data in the target image to be restored and provide
an exception list if there are table spaces you want to exclude

• Specify the list of table spaces defined in the database that you want to restore

Once you know the table spaces you want the rebuilt database to contain, issue the RESTORE command
with the appropriate REBUILD option and specify the target image to be used.

Rebuild phase

After you issue the RESTORE command with the appropriate REBUILD option and the target image has
been successfully restored, the database is considered to be in the rebuild phase. After the target image
is restored, any additional table space restores that occur will restore data into existing table spaces, as
defined in the rebuilt database. These table spaces will then be rolled forward with the database at the
completion of the rebuild operation.

If you issue the RESTORE command with the appropriate REBUILD option and the database does not
exist, a new database is created based on the attributes in the target image. If the database does exist,
you will receive a warning message notifying you that the rebuild phase is starting. You will be asked if
you want to continue the rebuild operation or not.

The rebuild operation restores all initial metadata from the target image. This includes all data that
belongs to the database and does not belong to the table space data or the log files. Examples of initial
metadata are:

• Table spaces definitions
• The history file, which is a database file that records administrative operations

The rebuild operation also restores the database configuration. The target image sets the log chain that
determines what images can be used for the remaining restores during the rebuild phase. Only images on
the same log chain can be used.

If a database already exists on disk and you want the history file to come from the target image, then you
should specify the REPLACE HISTORY FILE option. The history file on disk at this time is used by the
automatic logic to find the remaining images needed to rebuild the database.

Once the target image is restored:

400 IBM Db2 V11.5: Data Recovery and High Availability

• if the database is recoverable, the database is put into rollforward pending state and all table spaces
that you restore are also put into rollforward pending state. Any table spaces defined in the database
but not restored are put in restore pending state.

• If the database is not recoverable, then the database and the table spaces restored will go into normal
state. Any table spaces not restored are put in drop pending state, as they can no longer be recovered.
For this type of database, the rebuild phase is complete.

For recoverable databases, the rebuild phase ends when the first ROLLFORWARD DATABASE command is
issued and the rollforward utility begins processing log records. If a rollforward operation fails after
starting to process log records and a restore operation is issued next, the restore is not considered to be
part of the rebuild phase. Such restores should be considered as normal table space restores that are not
part of the rebuild phase.

Automatic processing

After the target image is restored, the restore utility determines if there are remaining table spaces that
need to be restored. If there are, they are restored using the same connection that was used for running
the RESTORE DATABASE command with the REBUILD option. The utility uses the history file to find the
most recent backup image taken before the target image. This backup image contains each of the
remaining table spaces that need to be restored. The restore utility uses the backup image location data
stored in the history file to restore each of these images automatically. These subsequent restores, which
are table space level restores, can be performed only offline. If the image selected does not belong on the
current log chain, an error is returned. Each table space that is restored from that image is placed in
rollforward pending state.

The restore utility tries to restore all required table spaces automatically. In some cases, it will not be
able to restore some table spaces due to problems with the history file, or an error will occur restoring
one of the required images. In such a case, you can either finish the rebuild manually or correct the
problem and reissue the rebuild.

If automatic rebuilding cannot complete successfully, the restore utility writes to the diagnostics log
(db2diag log file) any information it gathered for the remaining restore steps. You can use this
information to complete the rebuild manually.

If a database is being rebuilt, only containers belonging to table spaces that are part of the rebuild
process will be acquired.

If any containers need to be redefined through redirected restore, you will need to set the new path and
size of the new container for the remaining restores and the subsequent rollforward operation.

If the data for a table space restored from one of these remaining images cannot fit into the new
container definitions, the table space is put into restore pending state and a warning message is returned
at the end of the restore. You can find additional information about the problem in the diagnostic log.

Completing the rebuild phase

Once all the intended table spaces have been restored you have two options based on the configuration
of the database. If the database is nonrecoverable, the database will be connectable and any table
spaces restored will be online. Any table spaces that are in drop pending state can no longer be recovered
and should be dropped if future backups will be performed on the database.

If the database is recoverable, you can issue the rollforward command to bring the table spaces that were
restored online. If SYSCATSPACE has not been restored, the rollforward will fail and this table space will
have to be restored before the rollforward operation can begin. This means that during the rebuild phase,
SYSCATSPACE must be restored.

Note: In a partitioned database environment, SYSCATSPACE does not exist on non-catalog partitions so it
cannot be rebuilt there. However, on the catalog partition, SYSCATSPACE must be one of the table spaces
that is rebuilt, or the rollforward operation will not succeed.

Chapter 2. Data recovery 401

Rolling the database forward brings the database out of rollforward pending state and rolls any table
spaces in rollforward pending state forward. The rollforward utility will not operate on any table space in
restore pending state.

The stop time for the rollforward operation must be a time that is later than the end time of the most
recent backup image restored during the rebuild phase. An error will occur if any other time is given. If the
rollforward operation is not able to reach the backup time of the oldest image that was restored, the
rollforward utility will not be able to bring the database up to a consistent point, and the rollforward fails.

You must have all log files for the time frame between the earliest and most recent backup images
available for the rollforward utility to use. The logs required are those logs which follow the log chain from
the earliest backup image to the target backup image, as defined by the truncation array in the target
image, otherwise the rollforward operation will fail. If any backup images more recent than the target
image were restored during the rebuild phase, then the additional logs from the target image to the most
recent backup image restored are required. If the logs are not made available, the rollforward operation
will put those table spaces that were not reached by the logs into restore pending state. You can issue the
LIST HISTORY command to show the restore rebuild entry with the log range that will be required by roll
forward.

The correct log files must be available. If you rely on the rollforward utility to retrieve the logs, you must
ensure that the Db2 Log Manager is configured to indicate the location from which log files can be
retrieved. If the log path or archive path has changed, you need to use the OVERFLOW LOG PATH option
of the ROLLFORWARD DATABASE command.

Use the AND STOP option of the ROLLFORWARD DATABASE command to make the database available
when the rollforward command successfully completes. At this point, the database is no longer in
rollforward pending state. If the rollforward operation begins, but an error occurs before it successfully
completes, the rollforward operation stops at the point of the failure and an error is returned. The
database remains in rollforward pending state. You must take steps to correct the problem (for example,
fix the log file) and then issue another rollforward operation to continue processing.

If the error cannot be fixed, you will be able to bring the database up at the point of the failure by issuing
the ROLLFORWARD STOP command. Any log data beyond that point in the logs will no longer be available
once the STOP option is used. The database comes up at that point and any table spaces that have been
recovered are online. Table spaces that have not yet been recovered are in restore pending state. The
database is in the normal state.

You will have to decide what is the best way to recover the remaining table spaces in restore pending
state. This could be by doing a new restore and roll forward of a table space or by reissuing the whole
rebuild operation again. This will depend on the type of problems encountered. In the situation where
SYSCATSPACE is one of the table spaces in restore pending state, the database will not be connectable.

Database rebuild and table space containers
During a database rebuild, only those table spaces that are part of the rebuild process have their
containers acquired. The containers belonging to each table space are acquired at the time the table
space user data is restored out of an image.

When the target image is restored, each table space known to the database at the time of the backup has
its definitions restored. This means the database created by the rebuild has knowledge of the same table
spaces it did at backup time. For those table spaces that should also have their user data restored from
the target image, their containers are also be acquired at this time.

Any remaining table spaces that are restored through intermediate table space restores have their
containers acquired at the time the image that contains the table space data is restored.

Rebuild with redirected restore

In the case of redirected restore, all table space containers must be defined during the restore of the
target image. If you specify the REDIRECT option, control is given back to you to redefine your table
space containers. If you have redefined table space containers using the SET TABLESPACE
CONTAINERS command then those new containers are acquired at that time. Any table space containers

402 IBM Db2 V11.5: Data Recovery and High Availability

that you have not redefined are acquired as normal, at the time the table space user data is restored out
of an image.

If the data for a table space that is restored cannot fit into the new container definitions, the table space
is put into restore-pending state and a warning (SQL2563W) is returned to you at the end of the restore.
There will also be a message in the Db2 diagnostics log detailing the problem.

Database rebuild and temporary table spaces
Temporary table spaces are stored differently than other database components in a backup image.
Because they are stored differently, temporary table spaces are rebuilt differently during a database
restoration.

In general, a Db2 backup image is made up of the following components:

• Initial database metadata, such as the table space definitions, database configuration file, and history
file.

• Data for non-temporary table spaces specified to the BACKUP utility
• Final database metadata such as the log file header
• Log files (if the INCLUDE LOGS option was specified)

In every backup image, whether it is a database or table space backup, a full or incremental (delta)
backup, these core components can always be found.

A database backup image will contain all of the previously listed components, as well as data for every
table space defined in the database at the time of the backup.

A table space backup image will always include the database metadata listed previously, but it will only
contain data for those table spaces that are specified to the backup utility.

Temporary table spaces are treated differently than nontemporary table spaces. Temporary table space
data is never backed up, but their existence is important to the framework of the database. Although
temporary table space data is never backed up, the temporary table spaces are considered part of the
database, so they are specially marked in the metadata that is stored with a backup image. This makes it
look like they are in the backup image. In addition, the table space definitions hold information about the
existence of any temporary table spaces.

Although no backup image ever contains data for a temporary table space, during a database rebuild
operation when the target image is restored (regardless the type of image), temporary table spaces are
also restored, only in the sense that their containers are acquired and allocated. The acquisition and
allocation of containers is done automatically as part of the rebuild processing. As a result, when
rebuilding a database, you cannot exclude temporary table spaces.

Choosing a target image for database rebuild
The rebuild target image should be the most recent backup image that you want to use as the starting
point of your restore operation. This image is known as the target image of the rebuild operation, because
it defines the structure of the database to be restored, including the table spaces that can be restored,
the database configuration, and the log sequence.It can be any type of backup (full, table space,
incremental, online or offline).

The target image sets the log sequence (or log chain) that determines what images can be used for the
remaining restores during the rebuild phase. Only images on the same log chain can be used.

The following examples illustrate how to choose the image you should use as the target image for a
rebuild operation.

Suppose there is a database called SAMPLE that has the following table spaces in it:

• SYSCATSPACE (system catalogs)
• USERSP1 (user data table space)
• USERSP2 (user data table space)
• USERSP3 (user data table space)

Chapter 2. Data recovery 403

Figure 22 on page 404 shows that the following database-level backups and table space-level backups
that have been taken, in chronological order:

1. Full database backup DB1
2. Full table space backup TS1
3. Full table space backup TS2
4. Full table space backup TS3
5. Database restore and roll forward to a point between TS1 and TS2
6. Full table space backup TS4
7. Full table space backup TS5

Figure 22. Database and table space-level backups of database SAMPLE

Example 1

The following example demonstrates the CLP commands you need to issue to rebuild database SAMPLE
to the current point of time. First you need to choose the table spaces you want to rebuild. Since your goal

404 IBM Db2 V11.5: Data Recovery and High Availability

is to rebuild the database to the current point of time you need to select the most recent backup image as
your target image. The most recent backup image is image TS5, which is on log chain 2:

 db2 restore db sample rebuild with all tablespaces in database taken at
 TS5 without prompting
 db2 rollforward db sample to end of logs
 db2 rollforward db sample stop

This restores backup images TS5, TS4, TS1 and DB1 automatically, then rolls the database forward to the
end of log chain 2.

Note: All logs belonging to log chain 2 must be accessible for the rollforward operations to complete.

Example 2

This second example demonstrates the CLP commands you need to issue to rebuild database SAMPLE to
the end of log chain 1. The target image you select should be the most recent backup image on log chain
1, which is TS3:

 db2 restore db sample rebuild with all tablespaces in database
 taken at TS3 without prompting
 db2 rollforward db sample to end of logs
 db2 rollforward db sample stop

This restores backup images TS3, TS2, TS1, and DB1 automatically, then rolls the database forward to
the end of log chain 1.

Note:

• All logs belonging to log chain 1 must be accessible for the rollforward operations to complete.
• This command may fail because a log file is retrieved from a higher log chain (the rollforward utility

always attempts to get log files from the highest log chain), you need to do the following steps:

1. Extract the log files manually to the overflow log path.
2. Run the ROLLFORWARD command. Include the parameters -OVERFLOW LOG PATH, to specify the

location of the extracted log files, and -NORETRIEVE, to disable the retrieval of archived logs.

Choosing the wrong target image for rebuild

Suppose there is a database called SAMPLE2 that has the following table spaces in it:

• SYSCATSPACE (system catalogs)
• USERSP1 (user data table space)
• USERSP2 (user data table space)

Figure 23 on page 406 shows the backup log chain for SAMPLE2, which consists of the following backups:

1. BK1 is a full database backup, which includes all table spaces
2. BK2 is a full table space backup of USERSP1
3. BK3 is a full table space backup of USERSP2

Chapter 2. Data recovery 405

Figure 23. Backup log chain for database SAMPLE2

The following example demonstrates the CLP command you need to issue to rebuild the database from
BK3 using table spaces SYSCATSPACE and USERSP2:

 db2 restore db sample2 rebuild with tablespace (SYSCATSPACE,
 USERSP2) taken at BK3 without prompting

Now suppose that after this restore completes, you decide that you also want to restore USERSP1, so you
issue the following command:

 db2 restore db sample2 tablespace (USERSP1) taken at BK2

This restore fails and provides a message that says BK2 is from the wrong log chain (SQL2154N). As you
can see in Figure 23 on page 406, the only image that can be used to restore USERSP1 is BK1. Therefore,
you need to type the following command:

 db2 restore db sample2 tablespace (USERSP1) taken at BK1

This succeeds so that database can be rolled forward accordingly.

Rebuilding selected table spaces
Rebuilding a database allows you to build a database that contains a subset of the table spaces that make
up the original database.

About this task

Rebuilding only a subset of table spaces within a database can be useful in the following situations:

• In a test and development environment in which you want to work on only a subset of table spaces.
• In a recovery situation in which you need to bring table spaces that are more critical online faster than

others, you can first restore a subset of table spaces then restore other table spaces at a later time.

To rebuild a database that contains a subset of the table spaces that make up the original database,
consider the following example.

In this example, there is a database named SAMPLE that has the following table spaces:

• SYSCATSPACE (system catalogs)
• USERSP1 (user data table space)
• USERSP2 (user data table space)
• USERSP3 (user data table space)

Figure 24 on page 407 shows that the following backups have been taken:

• BK1 is a backup of SYSCATSPACE and USERSP1

406 IBM Db2 V11.5: Data Recovery and High Availability

• BK2 is a backup of USERSP2 and USERSP3
• BK3 is a backup of USERSP3

Figure 24. Backup images available for database SAMPLE

The following procedure demonstrates using the RESTORE DATABASE and ROLLFORWARD DATABASE
commands, issued through the CLP, to rebuild just SYSCATSPACE and USERSP1 to end of logs:

db2 restore db mydb rebuild with all tablespaces in image
 taken at BK1 without prompting
db2 rollforward db mydb to end of logs
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP1 are in NORMAL state.
USERSP2 and USERSP3 are in restore-pending state. You can still restore USERSP2 and USERSP3 at a
later time.

Rebuild and incremental backup images
You can rebuild a database using incremental images.

By default, the restore utility tries to use automatic incremental restore for all incremental images. This
means that if you do not use the INCREMENTAL option of the RESTORE DATABASE command, but the
target image is an incremental backup image, the restore utility will issue the rebuild operation using
automatic incremental restore. If the target image is not an incremental image, but another required
image is an incremental image then the restore utility will make sure those incremental images are
restored using automatic incremental restore. The restore utility will behave in the same way whether you
specify the INCREMENTAL option with the AUTOMATIC option or not.

If you specify the INCREMENTAL option but not the AUTOMATIC option, you will need to perform the
entire rebuild process manually. The restore utility will just restore the initial metadata from the target
image, as it would in a regular manual incremental restore. You will then need to complete the restore of
the target image using the required incremental restore chain. Then you will need to restore the
remaining images to rebuild the database.

It is recommended that you use automatic incremental restore to rebuild your database. Only in the event
of a restore failure, should you attempt to rebuild a database using manual methods.

Rebuilding partitioned databases
To rebuild a partitioned database, rebuild each database partition separately. For each database partition,
beginning with the catalog partition, first restore all the table spaces that you require. Any table spaces

Chapter 2. Data recovery 407

that are not restored are placed in restore pending state. Once all the database partitions are restored,
you then issue the ROLLFORWARD DATABASE command on the catalog partition to roll all of the database
partitions forward.

About this task

Note: If, at a later date, you need to restore any table spaces that were not originally included in the
rebuild phase, you need to make sure that when you subsequently roll the table space forward that the
rollforward utility keeps all the data across the database partitions synchronized. If a table space is
missed during the original restore and rollforward operation, it might not be detected until there is an
attempt to access the data and a data access error occurs. You will then need to restore and roll the
missing table space forward to get it back in sync with the rest of the partitions.

To rebuild a partitioned database using table space level backup images, consider the following example.

In this example, there is a recoverable database called SAMPLE with three database partitions:

• Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and USERSP2, and is the catalog
partition

• Database partition 2 contains table spaces USERSP1 and USERSP3
• Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x on partition y:

• BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2
• BK12 is a backup of USERSP2 and USERSP3
• BK13 is a backup of USERSP1, USERSP2 and USERSP3
• BK21 is a backup of USERSP1
• BK22 is a backup of USERSP1
• BK23 is a backup of USERSP1
• BK31 is a backup of USERSP2
• BK33 is a backup of USERSP2
• BK42 is a backup of USERSP3
• BK43 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and ROLLFORWARD DATABASE
commands, issued through the CLP, to rebuild the entire database to the end of logs.

Procedure

1. On database partition 1, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db sample rebuild with all tablespaces in database
 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db sample rebuild with tablespaces in database
 taken at BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db sample rebuild with all tablespaces in database
 taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option:

 db2 rollforward db sample to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

408 IBM Db2 V11.5: Data Recovery and High Availability

 db2 rollforward db sample stop

What to do next
At this point the database is connectable on all database partitions and all table spaces are in NORMAL
state.

Restrictions for database rebuild
You can use the REBUILD option to complete a set of restore commands, but it has restrictions that you
need to be aware of.

The following list is a summary of database rebuild restrictions:

• One of the table spaces you rebuild must be SYSCATSPACE on the catalog partition.
• You must either issue commands using the command line processor (CLP) or use the corresponding

application programming interfaces (APIs) to perform a rebuild operation.
• The REBUILD option cannot be used against a pre-Version 9.1 target image unless the image is that of

an offline database backup. If the target image is an offline database backup, then only the table spaces
in this image can be used for the rebuild. The database needs to be migrated after the rebuild operation
successfully completes. Attempts to rebuild using any other type of pre-Version 9.1 target image result
in an error.

• The REBUILD option cannot be issued against a target image from a different operating system than the
one being restored on unless the target image is a full database backup. If the target image is a full
database backup, then only the table spaces in this image can be used for the rebuild. Attempts to
rebuild using any other type of target image from a different operating system than the one being
restored on result in an error.

• The TRANSPORT option is incompatible with the REBUILD option.

Rebuild sessions - CLP examples
This topic provides a number of examples of rebuild operations.

Scenario 1

In the following examples, there is a recoverable database called MYDB with the following table spaces in
it:

• SYSCATSPACE (system catalogs)
• USERSP1 (user data table space)
• USERSP2 (user data table space)
• USERSP3 (user data table space)

The following backups have been taken:

• BK1 is a backup of SYSCATSPACE and USERSP1
• BK2 is a backup of USERSP2 and USERSP3
• BK3 is a backup of USERSP3

Example 1

The following rebuilds the entire database to the most recent point in time:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database
 taken at BK3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

Chapter 2. Data recovery 409

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL state.

Example 2

The following rebuilds just SYSCATSPACE and USERSP2 to a point in time (where end of BK3 is less
recent than the point in time, which is less recent than end of logs):

1. Issue a RESTORE DATABASE command with the REBUILD option and specify the table spaces you
want to include.

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)
 taken at BK2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO PIT option (this assumes all logs have
been saved and are accessible):

 db2 rollforward db mydb to PIT

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2 are in NORMAL state.
USERSP1 and USERSP3 are in RESTORE_PENDING state.

To restore USERSP1 and USERSP3 at a later time, using normal table space restores (without the
REBUILD option):

1. Issue the RESTORE DATABASE command without the REBUILD option and specify the table space
you want to restore. First restore USERSPI:

 db2 restore db mydb tablespace (USERSP1) taken at BK1 without prompting

2. Then restore USERSP3:

 db2 restore db mydb tablespace taken at BK3 without prompting

3. Issue a ROLLFORWARD DATABASE command with the END OF LOGS option and specify the table
spaces to be restored (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs tablespace (USERSP1, USERSP3)

The rollforward will replay all logs up to the PIT and then stop for these two table spaces since no
work has been done on them since the first rollforward.

4. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

Example 3

The following rebuilds just SYSCATSPACE and USERSP1 to end of logs:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image
 taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

410 IBM Db2 V11.5: Data Recovery and High Availability

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP1 are in NORMAL state.
USERSP2 and USERSP3 are in RESTORE_PENDING state.

Example 4

In the following example, the backups BK1 and BK2 are no longer in the same location as stated in
the history file, but this is not known when the rebuild is issued.

1. Issue a RESTORE DATABASE command with the REBUILD option , specifying that you want to
rebuild the entire database to the most recent point in time:

 db2 restore db mydb rebuild with all tablespaces in database
 taken at BK3 without prompting

At this point, the target image is restored successfully, but an error is returned from the restore
utility stating it could not find a required image.

2. You must now complete the rebuild manually. Since the database is in the rebuild phase this can
be done as follows:

a. Issue a RESTORE DATABASE command and specify the location of the BK1 backup image:

 db2 restore db mydb tablespace taken at BK1 from location
 without prompting

b. Issue a RESTORE DATABASE command and specify the location of the BK2 backup image:

 db2 restore db mydb tablespace (USERSP2) taken at BK2 from
 location without prompting

c. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes
all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

d. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL state.

Example 5

In this example, table space USERSP3 contains independent data that is needed for generating a
specific report, but you do not want the report generation to interfere with the original database. In
order to gain access to the data but not affect the original database, you can use REBUILD to generate
a new database with just this table space and SYSCATSPACE. SYSCATSPACE is also required so that
the database will be connectable after the restore and roll forward operations.

To build a new database with the most recent data in SYSCATSPACE and USERSP3:

1. Issue a RESTORE DATABASE command with the REBUILD option, and specify that table spaces
SYSCATSPACE and USERSP3 are to be restored to a new database, NEWDB:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP3)
 taken at BK3 into newdb without prompting

2. Issue a ROLLFORWARD DATABASE command on NEWDB with the TO END OF LOGS option (this
assumes all logs have been saved and are accessible):

 db2 rollforward db newdb to end of logs

Chapter 2. Data recovery 411

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db newdb stop

At this point the new database is connectable and only SYSCATSPACE and USERSP3 are in NORMAL
state. USERSP1 and USERSP2 are in RESTORE_PENDING state.

Note: If container paths are an issue between the current database and the new database (for
example, if the containers for the original database need to be altered because the file system does
not exist or if the containers are already in use by the original database) then you will need to perform
a redirected restore. This example assumes the default autostorage database paths are used for the
table spaces.

Scenario 2

In the following example, there is a recoverable database called MYDB that has SYSCATSPACE and one
thousand user table spaces named Txxxx, where xxxx stands for the table space number (for example,
T0001). There is one full database backup image (BK1)

Example 6

The following restores all table spaces except T0999 and T1000:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image except
 tablespace (T0999, T1000) taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database will be connectable and all table spaces except T0999 and T1000 will be in
NORMAL state. T0999 and T1000 will be in RESTORE_PENDING state.

Scenario 3

The examples in this scenario demonstrate how to rebuild a recoverable database using incremental
backups. In the following examples, there is a database called MYDB with the following table spaces in it:

• SYSCATSPACE (system catalogs)
• USERSP1 (data table space)
• USERSP2 (user data table space)
• USERSP3 (user data table space)

The following backups have been taken:

• FULL1 is a full backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3
• DELTA1 is a delta backup of SYSCATSPACE and USERSP1
• INCR1 is an incremental backup of USERSP2 and USERSP3
• DELTA2 is a delta backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3
• DELTA3 is a delta backup of USERSP2
• FULL2 is a full backup of USERSP1

412 IBM Db2 V11.5: Data Recovery and High Availability

Example 7

The following rebuilds just SYSCATSPACE and USERSP2 to the most recent point in time using
incremental automatic restore.

1. Issue a RESTORE DATABASE command with the REBUILD option. The INCREMENTAL AUTO
option is optional. The restore utility will detect what the granularity of the image is and use
automatic incremental restore if it is required.

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)
 incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2 are in NORMAL state.
USERSP1 and USERSP3 are in RESTORE_PENDING state.

Example 8

The following rebuilds the entire database to the most recent point in time using incremental
automatic restore.

1. Issue a RESTORE DATABASE command with the REBUILD option. The INCREMENTAL AUTO
option is optional. The restore utility will detect what the granularity of the image is and use
automatic incremental restore if it is required.

 db2 restore db mydb rebuild with all tablespaces in database
 incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL state.

Example 9

The following rebuilds the entire database, except for USERSP3, to the most recent point in time.

1. Issue a RESTORE DATABASE command with the REBUILD option. Although the target image is a
non-incremental image, the restore utility will detect that the required rebuild chain includes
incremental images and it will automatically restore those images incrementally.

 db2 restore db mydb rebuild with all tablespaces in database except
 tablespace (USERSP3) taken at FULL2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

Chapter 2. Data recovery 413

Scenario 4

The examples in this scenario demonstrate how to rebuild a recoverable database using backup images
that contain log files. In the following examples, there is a database called MYDB with the following table
spaces in it:

• SYSCATSPACE (system catalogs)
• USERSP1 (user data table space)
• USERSP2 (user data table space)

Example 10

The following rebuilds the database with just SYSCATSPACE and USERSP2 to the most recent point in
time. There is a full online database backup image (BK1), which includes log files.

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)
 taken at BK1 logtarget /logs without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs after the end of BK1 have been saved and are accessible):

 db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2 are in NORMAL state.
USERSP1 is in RESTORE_PENDING state.

Example 11

The following rebuilds the database to the most recent point in time. There are two full online table
space backup images that include log files:

• BK1 is a backup of SYSCATSPACE, using log files 10-45
• BK2 is a backup of USERSP1 and USERSP2, using log files 64-80

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database
 taken at BK2 logtarget /logs without prompting

The rollforward operation will start at log file 10, which it will always find in the overflow log path if
not in the primary log file path. The log range 46-63, since they are not contained in any backup
image, will need to be made available for roll forward.

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option, using the
overflow log path for log files 64-80:

 db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL state.

Scenario 5

In the following examples, there is a recoverable database called MYDB with the following table spaces in
it:

• SYSCATSPACE (0), SMS system catalog (relative container)

414 IBM Db2 V11.5: Data Recovery and High Availability

• USERSP1 (1) DMS user data table space (absolute container /usersp2)
• USERSP2 (2) DMS user data table space (absolute container /usersp3)

The following backups have been taken:

• BK1 is a backup of SYSCATSPACE
• BK2 is a backup of USERSP1 and USERSP2
• BK3 is a backup of USERSP2

Example 12

The following rebuilds the entire database to the most recent point in time using redirected restore.

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database
 taken at BK3 redirect without prompting

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose containers you
want to redefine. For example:

 db2 set tablespace containers for 3 using (file '/newusersp1' 10000)

3. db2 set tablespace containers for 4 using (file '/newusersp2' 15000)

4. Issue a RESTORE DATABASE command with the CONTINUE option:

 db2 restore db mydb continue

5. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS option (this assumes all
logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

6. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL state.

Scenario 6

In the following examples, there is a database called MYDB with three database partitions:

• Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and USERSP2, and is the catalog
partition

• Database partition 2 contains table spaces USERSP1 and USERSP3
• Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x on partition y:

• BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2
• BK12 is a backup of USERSP2 and USERSP3
• BK13 is a backup of USERSP1, USERSP2 and USERSP3
• BK21 is a backup of USERSP1
• BK22 is a backup of USERSP1
• BK23 is a backup of USERSP1
• BK31 is a backup of USERSP2
• BK33 is a backup of USERSP2
• BK42 is a backup of USERSP3

Chapter 2. Data recovery 415

• BK43 is a backup of USERSP3

Example 13

The following rebuilds the entire database to the end of logs.

1. On database partition 1, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database
 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with tablespaces in database taken at
 BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database
 taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (assumes all logs have been saved and are accessible on all database partitions):

 db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable on all database partitions and all table spaces are in
NORMAL state.

Example 14

The following rebuilds SYSCATSPACE, USERSP1 and USERSP2 to the most recent point in time.

1. On database partition 1, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database
 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image taken at
 BK22 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image taken at
 BK33 without prompting

Note: this command omitted USERSP1, which is needed to complete the rebuild operation.
4. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option:

 db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

The rollforward succeeds and the database is connectable on all database partitions. All table
spaces are in NORMAL state, except USERSP3, which is in RESTORE PENDING state on all
database partitions on which it exists, and USERSP1, which is in RESTORE PENDING state on
database partition 3.

416 IBM Db2 V11.5: Data Recovery and High Availability

When an attempt is made to access data in USERSP1 on database partition 3, a data access error
will occur. To fix this, USERSP1 will need to be recovered:

a. On database partitions 3, issue a RESTORE DATABASE command, specifying a backup image
that contains USERSP1:

 db2 restore db mydb tablespace taken at BK23 without prompting

b. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO END OF
LOGS option and the AND STOP option:

 db2 rollforward db mydb to end of logs on dbpartitionnum (3) and
stop

At this point USERSP1 on database partition 3 can have its data accessed since it is in NORMAL state.

Scenario 7

In the following examples, there is a nonrecoverable database called MYDB with the following table
spaces:

• SYSCATSPACE (0), SMS system catalog
• USERSP1 (1) DMS user data table space
• USERSP2 (2) DMS user data table space

There is just one backup of the database, BK1:

Example 15

The following demonstrates using rebuild on a nonrecoverable database.

Rebuild the database using only SYSCATSPACE and USERSP1:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP1)
 taken at BK1 without prompting

Following the restore, the database is connectable. If you issue the LIST TABLESPACES command or
the MON_GET_TABLESPACE table function, you see that the SYSCATSPACE and USERSP1 are in
NORMAL state, while USERSP2 is in DELETE_PENDING/OFFLINE state. You can now work with the
two table spaces that are in NORMAL state.

If you want to do a database backup, you will first need to drop USERSP2 using the DROP
TABLESPACE statement, otherwise, the backup will fail.

To restore USERSP2 at a later time, you need to reissue a database restore from BK1.

Monitoring the progress of restore operations
Monitoring of restore operations can be achieved using the LIST UTILITIES command, or the db2pd -
barstats command.

About this task

Using the LIST UTILITIES command:

Procedure

• Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter

 LIST UTILITIES SHOW DETAIL

Chapter 2. Data recovery 417

Results

For restore operations, an initial estimate is not given. Instead, UNKNOWN is specified. As each buffer is
read from the image, the actual number of bytes read is updated. For automatic incremental restore
operations where multiple images might be restored, the progress is tracked by using phases. Each phase
represents an image to be restored from the incremental chain. Initially, only one phase is indicated. After
the first image is restored, the total number of phases will be indicated. As each image is restored the
number of phases completed is updated, as is the number of bytes processed.

Example

The following is an example of the output for monitoring the performance of a restore operation:

ID = 6
Type = RESTORE
Database Name = SAMPLE
Partition Number = 0
Description = db
Start Time = 08/04/2011 12:24:47.494191
State = Executing
Invocation Type = User
Progress Monitoring:
 Completed Work = 4096 bytes
 Start Time = 08/04/2011 12:24:47.494197

Using the db2pd -barstats command:

The db2pd -barstats command can be used to provide backup and restore monitoring and performance
information. See “Monitoring backup and restore performance with db2pd -barstats” on page 294.

Optimizing restore performance
When you perform a restore operation, Db2 database products will automatically choose an optimal value
for the number of buffers, the buffersize and the parallelism settings. The values will be based on the
amount of utility heap memory available, the number of processors available and the database
configuration.
Therefore, depending on the amount of storage available on your system, you should consider allocating
more memory by increasing the util_heap_sz configuration parameter. The objective is to minimize the
time it takes to complete a restore operation. Unless you explicitly enter a value for the following
RESTORE DATABASE command parameters, Db2 database products will select one for them:

• WITH num-buffers BUFFERS
• PARALLELISM n
• BUFFER buffer-size

For restore operations, a multiple of the buffer size used by the backup operation will always be used. You
can specify a buffer size when you issue the RESTORE DATABASE command but you need to make sure
that it is a multiple of the backup buffer size.

You can also choose to do any of the following to reduce the amount of time required to complete a
restore operation:

• Increase the restore buffer size.

The restore buffer size must be a positive integer multiple of the backup buffer size specified during the
backup operation. If an incorrect buffer size is specified, the buffers allocated will be the smallest
acceptable size.

• Increase the number of buffers.

The value you specify must be a multiple of the buffersize that was used for the backup, otherwise it will
be rounded down to the closest multiple of the backup buffersize.

• Increase the value of the PARALLELISM parameter.

This will increase the number of buffer manipulators (BM) that will be used to write to the database
during the restore operation.

418 IBM Db2 V11.5: Data Recovery and High Availability

• Increase the utility heap size

This will increase the memory that can be used simultaneously by the other utilities.

Privileges, authorities, and authorization required to use restore
You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to an existing database from a full
database backup. To restore to a new database, you must have SYSADM or SYSCTRL authority.

Privileges enable users to create or access database resources. Authority levels provide a method of
grouping privileges and higher-level database manager maintenance and utility operations. Together,
these act to control access to the database manager and its database objects.

Users can access only those objects for which they have the appropriate authorization; that is, the
required privilege or authority.

Database schema transporting
Transporting a database schema involves taking a backup image of a database and restoring the database
schema to a different, existing database. When you transport a database schema, the database objects in
the transported schema are re-created to reference the new database, and the data is restored to the
new database.

A database schema must be transported in its entirety. If a table space contains both the schema you
want to transport, as well as another schema, you must transport all data objects from both schemas.
These sets of schemas that have no references to other database schemas are called transportable sets.
The data in the table spaces and logical objects in the schemas in a transportable set reference only table
spaces and schemas in the transportable set. For example, tables have table dependencies only on other
tables in the transportable set.

The following diagram illustrates a database with several table spaces and schemas. In the diagram, the
table spaces that are referenced by the schemas are above the schemas. Some schemas reference
multiple table spaces and some table spaces are referenced by multiple schemas.

Figure 25. Sets of table spaces and schemas

The following combinations of table spaces and schemas are valid transportable sets:

• tablespace1 with schema1 and schema2
• tablespace2 and tablespace3 with schema3
• tablespace4, tablespace5, and tablespace6, with schema4 and schema5
• A combination of valid transportable sets also constitutes a valid transportable set:

– tablespace1, tablespace2, and tablespace3, with schema1, schema2, and schema3

Chapter 2. Data recovery 419

The set tablespace4 and tablespace5 with schema4 is not a valid transportable set because there are
references between tablespace5 and schema5 and between schema5 and tablespace6. The set requires
tablespace6 with schema5 to be a valid transportable set.

You can transport database schemas by using the RESTORE command with the TRANSPORT parameter.

Note: The TRANSPORT option is not supported in the Db2 pureScale environment, or in partitioned
database environments.

When you transport database schemas, a temporary database is created and named as a part of the
transport operation. This transport staging database is used to extract logical objects from the backup
image so that they can be re-created on the target database. If logs are included in the backup image,
they are also used to bring the staging database to a point of transactional consistency. The ownership of
the transported table spaces is then transferred to the target database.

Considerations about the database objects re-created when transporting database schemas

Review the following information related to the re-creation of database objects when you are transporting
database schemas:

Table 26. Transport considerations for specific database objects

Database object Consideration when transporting schemas

SQL routines (not
external routines using
SQL)

A new copy of the SQL routine is created in the target database. For SQL
stored procedures, additional catalog space is consumed because an
additional copy of the stored procedure byte code is created in the new
database.

External routines A new catalog entry is created for each routine. This catalog entry references
the same binary file as the original source routine. The RESTORE command
does not copy the external routine binary file from the source system.

Source tables in states
causing access
problems

For tables that are not in normal state at the time the backup image was
generated, such as tables in check pending state or load pending state, the
data from those tables might not be accessible in the target database. To
avoid having this inaccessible data, you can move the tables to normal state in
the source database before schema transport.

Tables containing the
data capture attribute

Source tables with data capture enabled are transported to the target
database with the data capture attribute and continue to log interdatabase
data replication information. However, replicated tables do not extract
information from this table. You have the option of registering the new target
table to act as a replication source after the RESTORE command completes.

Tables using label-
based access control
(LBAC)

When transporting data that is protected by LBAC, the transport operation re-
creates the LBAC objects on the target database. If LBAC objects of the same
name exist on the target database, the transport operation fails. To ensure
that restricted data access is not compromised, the transport operation does
not use existing LBAC objects on the target database.

Temporary table spaces If there are any system temporary table spaces that are defined with the
source backup image and the transport operation excludes them from the
table space list, these system temporary table spaces are still created in the
staging database but not the final target database. As a result, you must issue
the SET TABLESPACE CONTAINERS command for these system temporary
table spaces in order to provide valid containers to complete the restore
operation, just as you would for any table spaces that are specified within the
table space list.

When you transport table spaces, a log record with a special format is created on the target database.
This format cannot be read by previous Db2 versions. If you transport table spaces and then downgrade

420 IBM Db2 V11.5: Data Recovery and High Availability

to a version earlier than Db2 Version 9.7 Fix Pack 2, then you cannot recover the target database that
contains the table spaces that were transported. To ensure that the target database is compatible with
earlier Db2 versions, you can roll forward the target database to a point in time before the transport
operation.

Important: If database rollforward detects a table space schema transport log record, the corresponding
transported table space is taken offline and moved into drop pending state. This is because database
does not have complete logs of transported table spaces to rebuild transported table spaces and their
contents. You can take a full backup of the target database after transport completes, so subsequent
rollforward does not pass the point of schema transport in the log stream.

Transportable objects
When you transport data from a backup image to a target database, there are two main results. The
physical and logical objects in the table spaces that you are restoring are re-created in the target
database, and the table space definitions and containers are added to the target database.

The following logical objects are re-created:

• Tables, created global temporary tables, and materialized query tables
• Normal and statistical views
• The following types of generated columns:

– Expression
– Identity
– Row change timestamp
– Row change token

• User-defined functions and generated functions
• Functions and procedures except for external routine executables
• User-defined types
• The following types of constraints:

– Check
– Foreign key
– Functional dependency
– Primary
– Unique

• Indexes
• Triggers
• Sequences
• Object authorizations, privileges, security, access control, and audit configuration
• Table statistics, profiles, and hints
• Packages

The following components of a schema are not created on the target database:

• Aliases
• Column-organized tables
• Created global variables
• External routine executable files
• Functional mappings and templates
• Hierarchy tables
• Index extensions
• Jobs

Chapter 2. Data recovery 421

• Methods
• Nicknames
• OLE DB external functions
• Range-partitioned tables
• Servers
• Sourced procedures
• Structured types
• System catalogs
• Typed tables and typed views
• Usage lists
• Wrappers

Important: Expression based indexes are not supported when using the schema transport feature.

Transport examples
You can use the RESTORE DATABASE command with the TRANSPORT option to copy a set of table spaces
and SQL schemas from one database to another database.

The following examples use a database named ORIGINALDB as source of the backup image and the
target database TARGETDB.

The following illustration shows the ORIGINALDB table spaces and schemas:

Figure 26. ORIGINALDB database

The originalDB database contains the following valid transportable sets:

• mydata1; schema1 + schema2
• mydata2 + myindex; schema3
• multidata1 + multiindex1 + multiuser2; schema4 + schema5
• A combination of valid transportable sets also constitutes a valid transportable set:

– mydata1 + mydata2 + myindex; schema1 + schema + schema3

The following illustration shows the TARGETDB table spaces and schemas:

422 IBM Db2 V11.5: Data Recovery and High Availability

Figure 27. TARGETDB database

If the sources and target databases contain any schemas with the same schema name, or any table
spaces of the table space name, then you cannot transport that schema or table space to the target
database. Issuing a transport operation that contains a schema or a table space that has the same name
as a schema or a table space on the target database will cause the transport operation to fail. For
example, even though the following grouping is a valid transportable set, it cannot be directly transported
to the target database:

• mydata2 + myindex; schema3 (schema3 exists in both the source and target databases)

If there exists a single online backup image for ORIGINALDB that contains all of the table spaces in the
database, then this will be the source for the transport. This also applies to table space level backup
images.

You can redirect the container paths for the table spaces being transported. This is especially important if
database relative paths were used.

Examples

Example 1: Successfully transport the schemas schema1 and schema2 in the mydata1 table space into
TARGETDB.

db2 restore db originaldb tablespace (mydata1) schema(schema1,schema2)
 from <Media_Target_clause> taken at <date-time>
 transport into targetdb redirect

db2 list tablespaces
db2 set tablespace containers for <tablespace ID for mydata1>
 using (path '/db2DB/data1')

db2 restore db originaldb continue

The resulting TARGETDB will contain the mydata1 table space and schema1 and schema2.

Chapter 2. Data recovery 423

Figure 28. TARGETDB database after transport

Example 2: Transport the schema schema3 in the mydata2 and myindex table spaces into TARGETDB.
You cannot transport a schema that already exists on the target database.

db2 restore db originaldb tablespace (mydata2,myindex) schema(schema3)
 transport into targetdb

The transport operation will fail because the schema schema3 already exists on the target database.
TARGETDB will remain unchanged. SQLCODE=SQL2590N rc=3.

Example 3: Transport the schemas schema4 and schema5 in the multidata1, multiindex1, and multiuser2
table spaces into TARGETDB. You cannot transport a table space that already exists on the target
database.

db2 restore db originaldb tablespace (multidata1,multiindex1,multiuser2)
 schema(schema4,schema5) transport into targetdb

The transport operation will fail and TARGETDB will remain unchanged because table space multiuser2
already exists on the target database. SQLCODE=SQL2590N rc=3.

Example 4: Transport the myindex table space into TARGETDB. You cannot transport partial schemas.

db2 restore db originaldb tablespace (myindex) schema(schema3)
 transport into targetdb

The list of table spaces and schemas being transported is not a valid transportable set. The transport
operation will fail and TARGETDB will remain unchanged. SQLCODE=SQL2590N rc=1.

Example 5: Restore the syscatspace table space into TARGETDB. You cannot transport system catalogs.

db2 restore db originaldb tablespace (syscatspace) schema(sysibm)
 transport into targetdb

The transport operation will fail because the system catalogs can not be transported.
SQLCODE=SQL2590N rc=4. You can transport user defined table spaces or restore the system catalogs
with the RESTORE DATABASE command without specifying the transport option.

Example 6: You cannot restore into a target database that does not exist on the system.

db2 restore db originaldb tablespace (mydata1) schema(schema1,schema2)
 transport into notexists

The transport operation will fail. Table spaces cannot be transported to a target database that does not
exist.

424 IBM Db2 V11.5: Data Recovery and High Availability

Troubleshooting: transporting schemas
If an error occurs on either the staging or target database, you must redo the entire restore operation. All
failures that occur are logged in the db2diag log file on the target server. Review the db2diag log
before reissuing the RESTORE command.

Dealing with errors

Errors occurring during restore are handled in various ways depending on the type of object being copied
and the phase of transport. There might be circumstances, such as a power failure, in which not
everything is cleaned up.

The transport operation consists of the following phases:

• Staging database creation
• Physical table space container restoration
• Rollforward processing
• Schema validation
• Transfer of ownership of the table space containers
• Schema re-creation in target database
• Dropping the staging database (if the STAGE IN parameter is not specified)

If any errors are logged at the end of the schema re-creation phase, about transporting physical objects,
then the restore operation fails and an error is returned. All object creation on the target database is
rolled back, and all internally created tables are cleaned up on the staging database. The rollback occurs
at the end of the re-create phase, to allow all possible errors to be recorded into the db2diag log file. You
can investigate all errors returned before reissuing the command.

The staging database is dropped automatically after success or failure. However, it is not dropped in the
event of failure if the STAGE IN parameter is specified. The staging database must be dropped before the
staging database name can be reused.

Restore from Db2 pureScale Feature to Db2 Enterprise Server Edition
Restore of offline backup images that are taken on Db2 pureScale instance to Db2 Enterprise Server
Edition , without roll forward support through the transition.

About this task

Consider the following before you restore a database from a Db2 pureScale instance to a Db2 Enterprise
Server Edition instance:

• Only backups of consistent databases are supported.
• To be able to support recoverability from the point in time of the restore operation, after completing the

restore operation, you must take a new offline database backup.
• The source and target instances must be from the same Db2 product level.
• The target member topology must include the member identifier of the Db2 ESE instance.

Restrictions

If you are restoring a backup image of an inconsistent database from a Db2 pureScale Feature to a Db2
Enterprise Server Edition instance, as a workaround, you can first perform a full database backup on the
source instance, then restore the full database backup by running the RESTORE command.

Procedure

To restore a database from a Db2 pureScale instance to a Db2 Enterprise Server Edition instance:
1. On the source instance (Db2 pureScale instance with, for example, members 0 and 1), perform an

offline database backup:

Chapter 2. Data recovery 425

db2 backup database sample to /dev3/backup

2. On the target instance (ESE, member 0), perform a restore:

db2 restore database sample from /dev3/backup without rolling forward

3. Perform an offline database backup:

db2 backup database sample to /dev3/backup

Results
The database is now usable.

Restore from Db2 Enterprise Server Edition to Db2 pureScale instance
You can easily restore offline backup images that are taken on ESE to a Db2 pureScale instance.

Before you begin
Before you can restore a Db2 Enterprise Server Edition database backup to a Db2 pureScale instance, you
can verify that your databases are ready for use in a Db2 pureScale environment. To verify that your ESE
database is ready to restore to a Db2 pureScale environment, run the db2checkSD command.

About this task

These requirements must be considered before you restore a database from a Db2 Enterprise Server
Edition instance to a Db2 pureScale instance:

• Only backups of consistent databases are supported.
• To be able to support recoverability from the point in time of the restore operation, after you complete

the restore operation, you must take a new offline full database backup.
• The source and target instances must be from the same Db2 product level.
• The target member topology must include the member identifier of the Db2 ESE instance.

Restrictions

If you are restoring a backup image of an inconsistent database between a Db2 Enterprise Server Edition
instance and a Db2 pureScale instance, as a workaround, you can either perform an offline backup on the
source instance or update the target instance to include a member identifier in the source instance, then
rerun the RESTORE command.

Procedure

To restore a database from a Db2 Enterprise Server Edition instance to a Db2 pureScale instance:
1. Optional: On the source instance (ESE), run the db2checkSD command:

db2checkSD dbname -l filename -u userid -p password

At this point, the db2checkSD command performs compatibility checks that determine if the
database can be used in a Db2 pureScale environment.

2. Perform an offline database backup:

db2 backup database dbname to directory

3. On the target instance (Db2 pureScale instance that includes, for example, member 0 in the topology),
restore the backup on the Db2 pureScale instance with members 0, 1, and 2 from member 0 (the
common member).

db2 restore database dbname from directory without rolling forward

4. On the target instance, run the db2checkSD command again:

426 IBM Db2 V11.5: Data Recovery and High Availability

db2checkSD dbname -l filename -u userid -p password

At this point, the db2checkSD command performs the conversion of the database so that it can be
used in a Db2 pureScale environment.
The user ID must be the same as the user ID that has DATAACCESS authority on the source instance.

5. Optional: Perform either an incremental or full offline database backup from member 0 (the common
member) by issuing the following command:

db2 backup database dbname to directory

Results
The database is now usable.

Rollforward overview
You cannot recover transactions that occurred after backup image creation by using the restore tools.
Instead, you can recover transactions that have occurred since the last backup command was completed
by using rollforward commands. You must enable database logging for these commands to be effective.

The simplest form of the ROLLFORWARD DATABASE command requires only that you specify the alias
name of the database that you want to rollforward recover, as in the following example:

 db2 ROLLFORWARD DB sample

In IBM Data Studio Version 3.1 or later, you can use the task assistant for rolling forward databases. Task
assistants can guide you through the process of setting options, reviewing the automatically generated
commands to perform the task, and running these commands. For more details, see Administering
databases with task assistants.

The following is one approach you can use to perform rollforward recovery:

1. Invoke the rollforward utility without the STOP option.
2. Invoke the rollforward utility with the QUERY STATUS option

If you specify recovery to the end of the logs, the QUERY STATUS option can indicate that one or more
log files are missing, if the returned point in time is earlier than you expect.

If you specify point-in-time recovery, the QUERY STATUS option helps you to ensure that the
rollforward operation completes at the correct point.

3. Invoke the rollforward utility with the STOP option. After the operation stops, it is not possible to roll
additional changes forward.

An alternate approach you can use to perform rollforward recovery is the following:

1. Invoke the rollforward utility with the AND STOP option.
2. The need to take further steps depends on the outcome of the rollforward operation:

• If it is successful, the rollforward is complete and the database is connectable and usable. At this
point, it is not possible to roll additional changes forward.

• If any errors were returned, take whatever action is required to fix the problem. For example, if there
is a missing log file: find the log file, or if there are retrieve errors: ensure that log archiving is
working. Then reissue the rollforward utility with the AND STOP option.

A database must be restored successfully (using the restore utility) before it can be rolled forward, but a
table space does not. A table space can be temporarily put in rollforward pending state, but not require a
restore operation to undo it (following a power interruption, for example).

When the rollforward utility is invoked:

Chapter 2. Data recovery 427

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

• If the database is in rollforward pending state, the database is rolled forward. Any table spaces that
were restored from backup images that were taken after the database backup image, and are currently
in rollforward pending state are also rolled forward. Any table spaces that were taken prior to the
database level backup and restored after the database level backup was restored remain in rollforward
pending state. You must issue a subsequent table space level rollforward to recover them.

• If the database is not in rollforward pending state, but table spaces in the database are in rollforward
pending state:

– If you specify a list of table spaces, only those table spaces are rolled forward.
– If you do not specify a list of table spaces, all table spaces that are in rollforward pending state are

rolled forward.

A database rollforward operation runs offline. The database is not available for use until the rollforward
operation completes successfully, and the operation cannot complete unless the STOP option was
specified when the utility was invoked.

A table space rollforward operation can run offline. The database is not available for use until the
rollforward operation completes successfully. This occurs if the end of the logs is reached, or if the STOP
option was specified when the utility was invoked.

You can perform an online rollforward operation on table spaces, as long as SYSCATSPACE is not
included. When you perform an online rollforward operation on a table space, the table space is not
available for use, but the other table spaces in the database are available.

When you first create a database, it is enabled for circular logging only. This means that logs are reused,
rather than being saved or archived. With circular logging, rollforward recovery is not possible: only crash
recovery or version recovery can be done. Archived logs document changes to a database that occur after
a backup was taken. You enable log archiving (and rollforward recovery) by setting the logarchmeth1
database configuration parameter to a value other than its default of OFF. When you set logarchmeth1
to a value other than OFF, the database is placed in backup pending state, and you must take an offline
backup of the database before it can be used again.

Note: Entries are made in the recovery history file for each log file that is used in a rollforward operation.

In this example, the command returns:

In a partitioned database environment and a Db2 pureScale environment, this status information is
returned for each database partition or member:

db2 rollforward db mydb to end of logs

 Rollforward Status

 Input database alias = mydb
 Number of members have returned status = 3

 Member ID Rollforward Next log Log files processed Last committed transaction
 status to be read
 --------- ------------ ------------ ------------------------- --------------------------
 0 DB working S0000001.LOG S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC
 1 DB working S0000010.LOG S0000000.LOG-S0000009.LOG 2009-05-06-15.28.20.000000 UTC
 2 DB working S0000005.LOG S0000000.LOG-S0000004.LOG 2009-05-06-15.27.33.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

Using rollforward
Use the ROLLFORWARD DATABASE command to apply transactions that were recorded in the database
log files to a restored database backup image or table space backup image.

Before you begin

You should not be connected to the database that is to be rollforward recovered. The rollforward utility
automatically establishes a connection to the specified database, and this connection is terminated at the
completion of the rollforward operation.

428 IBM Db2 V11.5: Data Recovery and High Availability

About this task

Do not restore table spaces without canceling a rollforward operation that is in progress. Otherwise, you
might have a table space set in which some table spaces are in rollforward in progress state, and some
table spaces are in rollforward pending state. A rollforward operation that is in progress only operates on
the tables spaces that are in rollforward in progress state.

The database can be local or remote.

The following restrictions apply to the rollforward utility:

• You can invoke only one rollforward operation at a time. If there are many table spaces to recover, you
can specify all of them in the same operation.

• If you have renamed a table space following the most recent backup operation, ensure that you use the
new name when rolling the table space forward. The previous table space name is not recognized.

• You cannot cancel a rollforward operation that is running. You can only cancel a rollforward operation
that has completed, but for which the STOP parameter has not been specified, or a rollforward
operation that has failed before completing.

• You cannot continue a table space rollforward operation to a point in time, specifying a time stamp that
is less than the previous one. If a point in time is not specified, the previous one is used. You can issue a
rollforward operation that ends at a specified point in time by just specifying STOP, but this is only
allowed if the table spaces involved were all restored from the same offline backup image. In this case,
no log processing is required. If you start another rollforward operation with a different table space list
before the in-progress rollforward operation is either completed or cancelled, an error message
(SQL4908) is returned. Invoke the LIST TABLESPACES command on all database partitions (or use the
MON_GET_TABLESPACE table function) to determine which table spaces are currently being rolled
forward (rollforward in progress state), and which table spaces are ready to be rolled forward
(rollforward pending state). You have three options:

– Finish the in-progress rollforward operation on all table spaces.
– Finish the in-progress rollforward operation on a subset of table spaces. (This might not be possible if

the rollforward operation is to continue to a specific point in time, which requires the participation of
all database partitions.)

– Cancel the in-progress rollforward operation.
• In a partitioned database environment, the rollforward utility must be invoked from the catalog partition

of the database.
• Point in time rollforward of a table space was introduced in Db2 Version 9.1 clients. You should upgrade

to Version 11.5 any clients in order to roll a table space forward to a point in time.
• You cannot roll forward logs from a different release version.

Procedure

To invoke the rollforward utility, use the:

• ROLLFORWARD DATABASE command, or
• db2Rollforward application programming interface (API).
• Open the task assistant inIBM Data Studio for the ROLLFORWARD DATABASE command.

Examples

The following is an example of the ROLLFORWARD DATABASE command issued through the CLP:

db2 rollforward db sample to end of logs and stop

Chapter 2. Data recovery 429

Continuing a stopped or failed rollforward operation
You can continue a rollforward operation if any of the following occurred: the previous rollforward failed;
the previous rollforward was interrupted; or the previous rollforward finished, but the command did not
specify either STOP or COMPLETE.

Before you begin

You should not be connected to the database that is to be rollforward recovered. The rollforward utility
automatically establishes a connection to the specified database, and this connection is terminated at the
completion of the rollforward operation.

About this task

One option you have when continuing a rollforward operation is to use a forced stop, which you do by
issuing a ROLLFORWARD DATABASE command with the STOP option, but specifying TO. A forced stop
means that the rollforward utility ignores certain errors if they are safe to ignore. For example, missing log
file errors, checksum errors, log chain errors, and not reaching the point in time are considered ignorable
errors. If Db2 determines that it is safe to stop, then the rollforward operation goes through the undo
phase, and the database will be available for normal connections. If Db2 determines that it is not safe to
stop, then the rollforward operation fails and the database remains in rollforward pending state.

Restrictions

If you are continuing a rollforward operation that was to a point-in-time, the new rollforward must be one
of the following:

• a rollforward to the same point in time
• a rollforward to a later point in time
• a rollforward to the end of logs
• a rollforward with the STOP or COMPLETE option, but without a point-in-time, END OF LOGS, or END OF

BACKUP option

Procedure

Results

Example

What to do next

Rolling forward changes in a table space
If the database is enabled for rollforward recovery, you have the option of backing up, restoring, and
rolling forward table spaces instead of the entire database. You can roll forward changes to a table space
independently of other table spaces in your database, or you can roll forward changes to all table spaces
at the same time.

Implementing a recovery strategy for individual table spaces can save time because it takes less time to
recover a portion of the database than it does to recover the entire database. For example, if a disk is bad,
and it contains only one table space, you can restore that table space and roll it forward without having to
recover the entire database, and without impacting user access to the rest of the database, unless the
damaged table space contains the system catalog tables; in this situation, you cannot connect to the
database. (You can restore the system catalog table space independently if a table space-level backup
image containing the system catalog table space is available.) Table space-level backups also allow you
to back up critical parts of the database more frequently than other parts, and requires less time than
backing up the entire database.

After a table space is restored, it is always in rollforward pending state. To make the table space usable,
you must perform rollforward recovery on it. In most cases, you have the option of rolling forward to the

430 IBM Db2 V11.5: Data Recovery and High Availability

end of the logs, or rolling forward to a point in time. You cannot, however, roll table spaces containing
system catalog tables forward to a point in time. These table spaces must be rolled forward to the end of
the logs to ensure that all table spaces in the database remain consistent.

If you want to skip the log files known not to contain any log records affecting the table space, ensure that
the DB2_COLLECT_TS_REC_INFO registry variable is set to ON, which is the default setting unless it is a
high availability disaster recovery (HADR) database. This registry variable must be set before the log files
are created and used so that the information required for skipping log files is collected. If
DB2_COLLECT_TS_REC_INFO is set to OFF, all log files are processed even if they do not contain log
records that affect that table space when that table space is rolled forward.

Note: Table space recovery is not supported on high availability disaster recovery (HADR) databases. As a
result, the default setting for the DB2_COLLECT_TS_REC_INFO registry variable is OFF for HADR
databases, which avoids the unnecessary overhead of keeping track of which table spaces have changed
in each log file.

Note: The DB2_COLLECT_TS_REC_INFO registry variable is not supported in Db2 pureScale®

environment. The setting is ignored and all log files are processed during table space recovery.

The table space change history file (DB2TSCHG.HIS), which is located in the database directory, tracks
which logs to process for each table space. You can view the contents of this file with the
db2logsForRfwd utility, and delete entries from it with the PRUNE HISTORY command. During a
database restore operation, the DB2TSCHG.HIS file is restored from the backup image and then brought
up to date during the database rollforward operation. If no information is available for a log file, it is
treated as though it is required for the recovery of every table space.

Because information for each log file is flushed to disk after the log becomes inactive, this information can
be lost as a result of a crash. To prevent this loss from occurring, if a recovery operation begins in the
middle of a log file, the entire log is treated as though it contains modifications to every table space in the
system. All active logs are processed and the information for them is rebuilt. If information for older or
archived log files is lost in a crash situation and no information for them exists in the data file, they are
treated as though they contain modifications for every table space during the table space recovery
operation.

Before you roll a table space forward, use the MON_GET_TABLESPACE table function to determine the
minimum recovery time, which is the earliest point in time to which the table space can be rolled forward.
The minimum recovery time is updated when data definition language (DDL) statements are run against
the table space, or against tables in the table space. The table space must be rolled forward to at least
the minimum recovery time so that it becomes synchronized with the information in the system catalog
tables. If you are recovering more than one table space, the table spaces must be rolled forward to at
least the highest minimum recovery time of all the table spaces that are being recovered. You cannot roll
forward a table space to a time that is earlier than the backup timestamp. In a partitioned database
environment, you must roll forward the table spaces to at least the highest minimum recovery time of all
the table spaces on all database partitions.

If you are rolling table spaces forward to a point in time, and a table is contained in multiple table spaces,
all of these table spaces must be rolled forward simultaneously. If, for example, the table data is
contained in one table space, and the index for the table is contained in another table space, you must roll
both table spaces forward simultaneously to the same point in time.

If the data and the long objects in a table are in separate table spaces, and the long object data was
reorganized, the table spaces for both the data and the long objects must be restored and rolled forward
together. Take a backup of the affected table spaces after the table is reorganized.

If you want to roll forward a table space to a point in time, and a table in the table space is either:

• an underlying table for a materialized query or staging table that is in another table space
• a materialized query or staging table for a table in another table space

then roll both table spaces forward to the same point in time. If you do not, the materialized query or
staging table is placed in set integrity pending state at the end of the rollforward operation. The
materialized query table needs to be fully refreshed, and the staging table is marked as incomplete.

Chapter 2. Data recovery 431

If you want to roll forward a table space to a point in time, and a table in the table space participates in a
referential integrity relationship with another table that is contained in another table space, roll forward
both table spaces simultaneously to the same point in time. If you do not roll forward both table spaces,
the child table in the referential integrity relationship is placed in set integrity pending state at the end of
the rollforward operation. When the child table is later checked for constraint violations, a check on the
entire table is required. If any of the following tables exist, they are also placed in set integrity pending
state with the child table:

• any descendant materialized query tables for the child table
• any descendant staging tables for the child table
• any descendant foreign key tables of the child table

These tables require full integrity processing to bring them out of the set integrity pending state. If you
roll forward both table spaces simultaneously, the constraint remains active at the end of the point-in-
time rollforward operation.

Ensure that a point-in-time table space rollforward operation does not cause a transaction to be rolled
back in some table spaces, and committed in others. This inconsistency can happen in the following
cases:

• A point-in-time rollforward operation is performed on a subset of the table spaces that were updated by
a transaction, and that point in time precedes the time at which the transaction was committed.

• Any table that is contained in the table space being rolled forward to a point in time has an associated
trigger, or is updated by a trigger that affects table spaces other than the one that is being rolled
forward.

The solution is to find a suitable point in time that prevents this from happening.

You can issue the QUIESCE TABLESPACES FOR TABLE command to create a transaction-consistent
point in time for rolling table spaces forward. The quiesce request (in share, intent to update, or exclusive
mode) waits (through locking) for all running transactions against those table spaces to complete, and
blocks new requests. When the quiesce request is granted, the table spaces are in a consistent state. To
determine a suitable time to stop the rollforward operation, you can look in the recovery history file to find
quiesce points, and check whether they occur after the minimum recovery time.

After a table space point-in-time rollforward operation completes, the table space is put in backup
pending state. You must take a backup of the table space because all updates made to it between the
point in time to which you rolled forward and the current time were removed. You can no longer roll
forward the table space to the current time from a previous database- or table space-level backup image.
The following example shows why the table space-level backup image is required, and how it is used. (To
make the table space available, you can either back up the entire database, the table space that is in
backup pending state, or a set of table spaces that includes the table space that is in backup pending
state.)

Database Time of rollforward of Restore
backup table space TABSP1 to database.
 T2. Back up TABSP1. Roll forward
 to end of logs.
T1 T2 T3 T4
| | | |
| | | |
|---
 | Logs are not
 applied to TABSP1
 between T2 and T3
 when it is rolled
 forward to T2.

Figure 29. Table space backup requirement

In the preceding example, the database is backed up at time T1. Then, at time T3, table space TABSP1 is
rolled forward to a specific point in time (T2), The table space is backed up after time T3. Because the
table space is in backup pending state, this backup operation is mandatory. The timestamp of the table

432 IBM Db2 V11.5: Data Recovery and High Availability

space backup image is after time T3, but the table space is at time T2. Log records from between T2 and
T3 are not applied to TABSP1. At time T4, the database is restored, using the backup image that was
created at T1, and rolled forward to the end of the logs. Table space TABSP1 is put in restore pending
state at time T3, because the database manager assumes that operations were performed on TABSP1
between T3 and T4 without the log changes between T2 and T3 being applied to the table space. If these
log changes were in fact applied as part of the rollforward operation against the database, this
assumption would be incorrect. The table space-level backup that must be taken after the table space is
rolled forward to a point in time allows you to roll forward that table space past a previous point-in-time
rollforward operation (T3 in the example).

Assuming that you want to recover table space TABSP1 to T4, you would restore the table space from a
backup image that was taken after T3 (either the required backup, or a later one), then roll forward
TABSP1 to the end of the logs.

In the preceding example, the most efficient way of restoring the database to time T4 would be to
perform the required steps in the following order:

1. Restore the database.
2. Restore the table space.
3. Roll forward the database.

Because you restore the table space before you roll forward the database, resources are not used to
apply log records to the table space when the database is rolled forward.

If you cannot find the TABSP1 backup image that follows time T3, or you want to restore TABSP1 to T3
(or earlier), you can do one of the following actions:

• Roll forward the table space to T3. You do not need to restore the table space again because it was
restored from the database backup image.

• Restore the table space again by restoring the database backup that was taken at time T1, and then roll
forward the table space to a time that precedes time T3.

• Drop the table space.

In a partitioned database environment:

• You must simultaneously roll forward all parts of a table space to the same point in time at the same
time. This ensures that the table space is consistent across database partitions.

• If some database partitions are in rollforward pending state, and on other database partitions, some
table spaces are in rollforward pending state (but the database partitions are not), you must first roll
forward the database partitions, and then roll forward the table spaces.

• If you intend to roll forward a table space to the end of the logs, you do not have to restore it at each
database partition; you must restore it at the database partitions that require recovery. If you intend to
roll forward a table space to a point in time, however, you must restore it at each database partition.

In a database with partitioned tables:

• If you are rolling a table space that contains any piece of a partitioned table forward to a point in time,
you must also roll forward all of the other table spaces in which that table resides to the same point in
time. However, rolling forward a single table space containing a piece of a partitioned table to the end of
logs is allowed. If a partitioned table has any attached, detached, or dropped data partitions, then a
point-in-time rollforward operation must also include all table spaces for these data partitions. In order
to determine if a partitioned table has any attached, detached, or dropped data partitions, query the
SYSCAT.DATAPARTITIONS catalog view.

Database rollforward operations in a Db2 pureScale environment
In a Db2 pureScale environment, each member has its own log stream; however, log streams from all
members are required for successful execution of the ROLLFORWARD DATABASE command.

During a database rollforward operation, log records from all of the log streams are merged and replayed
to make the database consistent. The point in time that you specify on the ROLLFORWARD DATABASE
command is relative to the merged log stream. To restore the database to a consistent state, the specified

Chapter 2. Data recovery 433

time must be later than the minimum recovery time (MRT). The MRT is the earliest time during a
rollforward operation when objects that are listed in the database catalog match the objects that
physically exist on disk. For example, if you are restoring from an image that was created during an online
backup operation, the specified point in time for the rollforward operation must be later than the time at
which the online backup operation completed. This will ensure database consistency.

The specified point in time for the subsequent database rollforward operation must be greater than or
equal to the MRT in the merged log stream; otherwise, the rollforward operation fails (SQL1276N), and
the timestamp of the MRT is returned with the error message. Alternatively, you can use the END OF
BACKUP option to automatically roll forward to the MRT.

It is recommended that the member clocks be synchronized; however, it might not be possible to
synchronize them at all times. This can result in log records having the same time stamp, and merged log
streams with log records that appear to be out of time stamp order. In a Db2 pureScale environment, a
point-in-time database rollforward operation stops when it encounters the first log record whose time
stamp is greater than the specified time stamp from any log stream, and it has processed the log record
that corresponds to the MRT for the database.

An incomplete or interrupted rollforward operation leaves the database in rollforward pending state. In
this case, issue another ROLLFORWARD DATABASE command. In a Db2 pureScale environment,
subsequent ROLLFORWARD DATABASE commands can be run on the same or on a different member.

In a Db2 pureScale environment, if you want to perform a database restore operation into a new database
using an online database backup image, the correct approach depends on whether all of the log files are
available, or only log files from the backup image are available.

• If pre-existing log files or archived log files can be accessed, the following rollforward operation is
appropriate:

 db2 rollforward db dbname to end of logs and stop

Note: Before taking a backup, you need to ensure that the log archiving path is set to a shared directory
so that all the members are able to access the logs for subsequent rollforward operations. If the archive
path is not accessible from the member on which the rollforward is being executed, SQL1273N is
returned. The following command is an example of how to set the log path to the shared directory:

db2 update db cfg using logarchmeth1
 DISK:/db2fs/gpfs1/svtdbm5/svtdbm5/ArchiveLOGS

(where gpfs1 is the shared directory for the members and ArchiveLOGS is the actual directory that
archives the logs.

• If the only log files that can be accessed come from the backup image, the following rollforward
operation is appropriate:

 db2 rollforward db dbname to end of backup and stop

This command replays all required log records to achieve the consistent database state that was in
effect when the backup operation ended. You can also use this command if pre-existing log files or
archived log files can be accessed, but it will stop at the point at which the backup operation ended; it
will not use any extra logs that were generated after the backup operation ended.

A ROLLFORWARD DATABASE command specifying the END OF LOGS option in this case would return
SQL1273N. A subsequent ROLLFORWARD DATABASE command with the STOP option is successful, and
the database will be available, if the missing log files are not needed. However, if the missing log files
are needed (and it is not safe to stop), the rollforward operation will again return SQL1273N.

Example

Suppose that there are two members, M1 and M2. M2's clock is ahead of M1's clock by five seconds. M2's
log stream contains the following log records:

A1 at 2010-04-03-14.21.56

434 IBM Db2 V11.5: Data Recovery and High Availability

A2 at 2010-04-03-14.21.56
B at 2010-04-03-14.21.58
C at 2010-04-03-14.22.01

M1's log stream contains the following log records:

D at 2010-04-03-14.21.55
E at 2010-04-03-14.21.56
F at 2010-04-03-14.21.57

The minimum recovery time (MRT) for the database on M2 is at time 2010-04-03-14.21.55. Because
M1's clock is five seconds slow, log records D, E, and F appear later in the merged log stream:

MRT: 2010-04-03-14.21.55 (M2)
A1: 2010-04-03-14.21.56 (M2)
A2: 2010-04-03-14.21.56 (M2)
B: 2010-04-03-14.21.58 (M2)
D: 2010-04-03-14.21.55 (M1) --> corresponding time on M2 is 14.22.00
C: 2010-04-03-14.22.01 (M2)
E: 2010-04-03-14.21.56 (M1) --> corresponding time on M2 is 14.22.01
F: 2010-04-03-14.21.57 (M1) --> corresponding time on M2 is 14.22.02

The alphabetic characters (A1, A2, B, and so on) represent the order in which the corresponding log
records were actually written at run time (across members). Note that log records A1 and A2 from
member M2 have the same time stamp; this can happen when the Db2 data server tries to optimize
performance by including the commit log record from multiple transactions when data is written from the
log buffer to a log file.

The following command returns SQL1276N (Database "test" cannot be brought out of rollforward pending
state until rollforward has passed a point in time greater than or equal to "2010-04-03-14.21.55"):

db2 rollforward db test to 2010-04-03-14.21.54

But the following command rolls forward the database up to and including log record A2:

db2 rollforward db test to 2010-04-03-14.21.56

Because log records A1 and A2 both have a time stamp that is less than or equal to the time that was
specified in the command, both are replayed. Log record B, whose time stamp (2010-04-03-14.21.58) is
greater than the specified value (2010-04-03-14.21.56), stops the rollforward operation and is not
replayed. Log record D is not replayed either, even though its time stamp is less than the specified value,
because log record B's higher value (2010-04-03-14.21.58) was encountered first. The following
command rolls forward the database up to and including log record D:

db2 rollforward db test to 2010-04-03-14.21.58

Log record C, whose time stamp (2010-04-03-14.22.01) is greater than the specified value
(2010-04-03-14.21.58), stops the rollforward operation and is not replayed. Log record E is not replayed
either, even though its time stamp is less than the specified value.

Rolling forward through an add member operation
Starting in Version 10.5, a IBM Db2 pureScale Feature instance backup image that was taken before
adding a member online can be restored and rolled forward without requiring a full offline database
backup.

Restrictions and requirements

• The ROLLFORWARD command must be initiated from a member that is currently in the database
topology.

• The add member event must correspond to a member that is currently in the member topology.
• The table space ROLLFORWARD command can process one or more add member events in the

transaction logs.

Chapter 2. Data recovery 435

• If there is an online table space roll forward operation in progress for the database, you are not able to
issue the first connection to a database on a newly added member.

Examples
For examples of roll forward operations, see “Restore and roll forward through a topology change” on
page 388

Monitoring a rollforward operation
You can use the db2pd or the LIST UTILITIES command to monitor the progress of rollforward
operations on a database.

Procedure

• Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter

 LIST UTILITIES SHOW DETAIL

• Issue the db2pd command and specify the -recovery parameter:

db2pd -recovery

Results

For rollforward recovery, there are two phases of progress monitoring: FORWARD and BACKWARD. During
the FORWARD phase, log files are read and the log records are applied to the database. For rollforward
recovery, when this phase begins UNKNOWN is specified for the total work estimate. The amount of work
processed in bytes is updated as the process continues.

During the BACKWARD phase, any uncommitted changes applied during the FORWARD phase are rolled
back. An estimate for the amount of log data to be processed, in bytes, is provided. The amount of work
processed, in bytes, is updated as the process continues.

Example

The following is an example of the output for monitoring the performance of a rollforward operation using
the db2pd command:

Recovery:
Recovery Status 0x00000401
Current Log S0000005.LOG
Current LSN 0000001F07BC
Current LSO 000002551BEA
Job Type ROLLFORWARD RECOVERY
Job ID 7
Job Start Time (1107380474) Wed Feb 2 16:41:14 2005
Job Description Database Rollforward Recovery
Invoker Type User
Total Phases 2
Current Phase 1

Progress:
Address PhaseNum Description StartTime CompletedWork TotalWork
0x0000000200667160 1 Forward Wed Feb 2 16:41:14 2005 2268098 bytes Unknown
0x0000000200667258 2 Backward NotStarted 0 bytes Unknown

The following is an example of the output for monitoring the performance of a database rollforward
operation using the LIST UTILITIES command with the SHOW DETAIL option:

ID = 7
Type = ROLLFORWARD RECOVERY
Database Name = TESTDB
Member Number = 0
Description = Database Rollforward Recovery
Start Time = 01/11/2012 16:56:53.770404
State = Executing
Invocation Type = User

436 IBM Db2 V11.5: Data Recovery and High Availability

Progress Monitoring:
 Estimated Percentage Complete = 50
 Phase Number = 1
 Description = Forward
 Total Work = 928236 bytes
 Completed Work = 928236 bytes
 Start Time = 01/11/2012 16:56:53.770492

 Phase Number [Current] = 2
 Description = Backward
 Total Work = 928236 bytes
 Completed Work = 0 bytes
 Start Time = 01/11/2012 16:56:56.886036

The following is an example of the output for monitoring the performance of a table space rollforward
operation using the LIST UTILITIES command with the SHOW DETAIL option:

ID = 17
Type = ROLLFORWARD RECOVERY
Database Name = TESTDB
Member Number = 0
Description = Offline Tablespace Rollforward Recovery: 3
Start Time = 01/11/2012 17:04:27.269171
State = Executing
Invocation Type = User
Progress Monitoring:
 Estimated Percentage Complete = 63
 Phase Number = 1
 Description = Forward
 Total Work = 142
 Completed Work = 90
 Start Time = 01/11/2012 17:04:27.269283

 Phase Number [Current] = 2
 Description = Backward
 Total Work = 0
 Completed Work = 0
 Start Time = Not Started

Authorization required for rollforward
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the rollforward utility.

Privileges enable users to create or access database resources. Authority levels provide a method of
grouping privileges and higher-level database manager maintenance and utility operations. Together,
these act to control access to the database manager and its database objects.

Users can access only those objects for which they have the appropriate authorization; that is, the
required privilege or authority.

Rollforward sessions - CLP examples
You can issue rollforward commands from the Command Line Prompt. Before issuing a rollforward
command, you might find it helpful to review some sample sessions.

Example 1

The ROLLFORWARD DATABASE command permits specification of multiple operations at once, each
being separated with the keyword AND. For example, to roll forward to the end of logs, and complete, the
separate commands are:

 db2 rollforward db sample to end of logs
 db2 rollforward db sample complete

can be combined as follows:

 db2 rollforward db sample to end of logs and complete

Chapter 2. Data recovery 437

Although the two are equivalent, it is recommended that such operations be done in two steps. It is
important to verify that the rollforward operation has progressed as expected before you stop it, so that
you do not miss any logs.

If the rollforward command encounters an error, the rollforward operation will not complete. The error
will be returned, and you will then be able to fix the error and reissue the command. If, however, you are
unable to fix the error, you can force the rollforward to complete by issuing the following:

 db2 rollforward db sample complete

This command brings the database online at the point in the logs before the failure.

Example 2

Roll the database forward to the end of the logs (two table spaces have been restored):

 db2 rollforward db sample to end of logs
 db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND COMPLETE is needed for table space
rollforward recovery to the end of the logs. Table space names are not required. If not specified, all table
spaces requiring rollforward recovery will be included. If only a subset of these table spaces is to be
rolled forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the logs, and the other two to a
point in time, both to be done online:

 db2 rollforward db sample to end of logs tablespace(TBS1) online
 db2 rollforward db sample to 1998-04-03-14.21.56 and stop
 tablespace(TBS2, TBS3) online

Note that two rollforward operations cannot be run concurrently. The second command can only be
invoked after the first rollforward operation completes successfully.

Example 4

After restoring the database, roll forward to a point in time, using OVERFLOW LOG PATH to specify the
directory where the user exit saves archived logs:

 db2 rollforward db sample to 1998-04-03-14.21.56 and stop
 overflow log path (/logs)

Example 5

In the following example, there is a database called sample. The database is backed up and the recovery
logs are included in the backup image; the database is restored; and the database is rolled forward to the
end of backup timestamp.

Back up the database, including the recovery logs in the backup image:

 db2 backup db sample online include logs

Restore the database using that backup image:

 db2 restore db sample

438 IBM Db2 V11.5: Data Recovery and High Availability

Roll forward the database to the end of backup timestamp:

 db2 rollforward db sample to end of backup

Example 6 (partitioned database environments)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on all database partitions,
and table space TBS2 is defined on database partitions 0 and 2. After restoring the database on database
partition 1, and TBS1 on database partitions 0 and 2, roll the database forward on database partition 1:

 db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 ("Database is recovered but one or more table spaces are offline on
database partitions 0 and 2.").

 db2 rollforward db sample to end of logs

This rolls TBS1 forward on database partitions 0 and 2. The clause TABLESPACE(TBS1) is optional in this
case.

Example 7 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the database partitions are
backed up with a single system view backup; the database is restored on all database partitions; and the
database is rolled forward to the end of backup timestamp.

Perform a single system view (SSV) backup:

 db2 backup db sample on all nodes online include logs

Restore the database on all database partitions:

 db2_all "db2 restore db sample taken at 1998-04-03-14.21.56"

Roll forward the database to the end of backup timestamp:

 db2 rollforward db sample to end of backup on all nodes

Example 8 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the database partitions are
backed up with one command using db2_all; the database is restored on all database partitions; and the
database is rolled forward to the end of backup timestamp.

Back up all the database partitions with one command using db2_all:

 db2_all "db2 backup db sample include logs to //dir/"

Restore the database on all database partitions:

 db2_all "db2 restore db sample from //dir/"

Chapter 2. Data recovery 439

Roll forward the database to the end of backup timestamp:

 db2 rollforward db sample to end of backup on all nodes

Example 9 (partitioned database environments)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1 forward on database
partitions 0 and 2:

 db2 rollforward db sample to end of logs

Database partition 1 is ignored.

 db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition 1. Reports SQL4906N.

 db2 rollforward db sample to end of logs on
 dbpartitionnums (0, 2) tablespace(TBS1)

This completes successfully.

 db2 rollforward db sample to 1998-04-03-14.21.56 and stop
 tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition 1; all pieces must be
rolled forward together.

Note: With table space rollforward to a point in time, the dbpartitionnum clause is not accepted. The
rollforward operation must take place on all the database partitions on which the table space resides.

After restoring TBS1 on database partition 1:

 db2 rollforward db sample to 1998-04-03-14.21.56 and stop
 tablespace(TBS1)

This completes successfully.

Example 10 (partitioned database environments)

After restoring a table space on all database partitions, roll forward to PIT2, but do not specify AND STOP.
The rollforward operation is still in progress. Cancel and roll forward to PIT1:

 db2 rollforward db sample to pit2 tablespace(TBS1)
 db2 rollforward db sample cancel tablespace(TBS1)

 ** restore TBS1 on all dbpartitionnums **

 db2 rollforward db sample to pit1 tablespace(TBS1)
 db2 rollforward db sample stop tablespace(TBS1)

Example 11 (partitioned database environments)

Rollforward recover a table space that resides on eight database partitions (3 to 10) listed in the
db2nodes.cfg file:

 db2 rollforward database dwtest to end of logs tablespace (tssprodt)

440 IBM Db2 V11.5: Data Recovery and High Availability

This operation to the end of logs (not point in time) completes successfully. The database partitions on
which the table space resides do not have to be specified. The utility defaults to the db2nodes.cfg file.

Example 12 (partitioned database environments)

Rollforward recover six small table spaces that reside on a single database partition database partition
group (on database partition 6):

 db2 rollforward database dwtest to end of logs on dbpartitionnum (6)
 tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

Example 13 (Partitioned tables - Rollforward to end of log on all data partitions)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index in tbsp0. Later on, a
user adds data partitions to the table in tbsp4, and attaches data partitions from the table in tbsp5. All
table spaces can be rolled forward to END OF LOGS.

 db2 rollforward db PBARDB to END OF LOGS and stop
 tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Example 14 (Partitioned tables - Rollforward to end of logs on one table space)

A partitioned table is created initially using table spaces tbsp1, tbsp2, tbsp3 with an index in tbsp0. Later
on, a user adds data partitions to the table in tbsp4, and attaches data partitions from the table in tbsp5.
Table space tbsp4 becomes corrupt and requires a restore and rollforward to end of logs.

 db2 rollforward db PBARDB to END OF LOGS and stop tablespace(tbsp4)

This completes successfully.

Example 15 (Partitioned tables - Rollforward to PIT of all data partitions including those added,
attached, detached or with indexes)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index in tbsp0. Later on, a
user adds data partitions to the table in tbsp4, attaches data partitions from the table in tbsp5, and
detaches data partitions from tbsp1. The user performs a rollforward to PIT with all the table spaces used
by the partitioned table including those table spaces specified in the INDEX IN clause.

 db2 rollforward db PBARDB to 2005-08-05-05.58.53 and stop
 tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Example 16 (Partitioned tables - Rollforward to PIT on a subset of the table spaces)

A partitioned table is created using three table spaces (tbsp1, tbsp2, tbsp3). Later, the user detaches all
data partitions from tbsp3. The rollforward to PIT is only permitted on tbsp1 and tbsp2.

 db2 rollforward db PBARDB to 2005-08-05-06.02.42 and stop
 tablespace(tbsp1, tbsp2)

This completes successfully.

Chapter 2. Data recovery 441

Data recovery with IBM Tivoli Storage Manager (TSM)
When calling the BACKUP DATABASE or RESTORE DATABASE commands, you can specify that you want
to use the IBM Tivoli Storage Manager (TSM) product to manage database or table space backup or
restore operation.

The minimum required level of TSM client API is Version 4.2.0, except on the following:

• 64-bit Windows operating systems, which require TSM client API Version 5.1.
• All Windows x64 systems, which require TSM client API Version 5.3.2.
• 32-bit Linux for IBM Power Systems, which requires TSM client API Version 5.1.5 or later.
• 64-bit Linux for IBM Power Systems, which requires TSM client API Version 5.2.2 or later.
• 64-bit Linux on AMD Opteron systems, which require TSM client API Version 5.2.0 or later.
• Linux for zSeries, which requires TSM client API Version 5.2.2 or later.

Important: Even though these Tivoli Storage Manager release levels work with Db2, they might not be
supported by Tivoli Storage Manager

Configuring a Tivoli Storage Manager client
Before the Db2 database manager can use an IBM Tivoli Storage Manager (TSM) client to manage
database or table space backup or restore operations, you must configure the TSM environment.

Before you begin

A functioning TSM client and server must be installed and configured. In addition, the TSM client API
must be installed on each Db2 database server. TSM client proxy nodes are supported if the TSM server
has been configured to support them. For information on server configuration and proxy node support,
see “Considerations for using Tivoli Storage Manager” on page 444 or refer to the Tivoli documentation.

Note: Tivoli Storage Manager (TSM) Version 7.1.8 and Version 8.1.2 introduce significant enhancements
for improved security between client and server communication. When the TSM server is upgraded to
Version 7.1.8 (or higher versions) or 8.1.2 (or higher versions) and configured with the improved security
protocol, and the TSM backup-archive client is upgraded to Version 7.1.8 (or higher versions) or Version
8.1.2 (or higher versions), the security settings for the backup-archive client must be re-configured to
work with the new security enhancements on the server. Failure to re-configure the client may result in a
TSM authentication error code 927 or other errors. For details, refer to the New Features and Updates of
TSM Version 7.1.8: https://www.ibm.com/support/knowledgecenter/SSGSG7_7.1.8/client/
r_new_for_version.html, or TSM Version 8.1.2: https://www.ibm.com/support/knowledgecenter/
SSEQVQ_8.1.2/client/r_new_for_version.html.

Procedure

To configure the TSM environment for use by Db2 database systems:
1. Set the environment variables used by the TSM client API:

DSMI_DIR
Identifies the user-defined directory path where the API trusted agent file (dsmtca) is located.

DSMI_CONFIG
Identifies the user-defined directory path to the dsm.opt file, which contains the TSM user
options. Unlike the other two variables, this variable should contain a fully qualified path and file
name.

DSMI_LOG
Identifies the user-defined directory path where the error log (dsierror.log) will be created.

Note: In a multi-partition database environment, these settings must be specified in the sqllib/
userprofile file.

442 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/support/knowledgecenter/SSGSG7_7.1.8/client/r_new_for_version.html
https://www.ibm.com/support/knowledgecenter/SSGSG7_7.1.8/client/r_new_for_version.html
https://www.ibm.com/support/knowledgecenter/SSEQVQ_8.1.2/client/r_new_for_version.html
https://www.ibm.com/support/knowledgecenter/SSEQVQ_8.1.2/client/r_new_for_version.html

2. If any changes are made to these environment variables and the database manager is running, stop
and restart the database manager.
For example:

• Stop the database manager using the db2stop command.
• Start the database manager using the db2start command.

3. Depending on the server's configuration, a Tivoli client might require a password to interface with a
TSM server.

If the TSM environment is configured to use PASSWORDACCESS=generate, the Tivoli client needs to
have its password established.

The executable file dsmapipw is installed in the sqllib/adsm directory of the instance owner. This
executable allows you to establish and reset the TSM password.

To execute the dsmapipw command, you must be logged in as the local administrator or "root" user.
When this command is executed, you will be prompted for the following information:

• Old password, which is the current password for the TSM node, as recognized by the TSM server. The
first time you execute this command, this password will be the one provided by the TSM
administrator at the time your node was registered on the TSM server.

• New password, which is the new password for the TSM node, stored at the TSM server. (You will be
prompted twice for the new password, to check for input errors.)

Note: Users who invoke the BACKUP DATABASE or RESTORE DATABASE commands do not need to
know this password. You only need to run the dsmapipw command to establish a password for the
initial connection, and after the password has been reset on the TSM server.

What to do next

Depending on your backup and log archiving strategies, you might need to perform additional steps to
configure the TSM clients if you want to use proxy nodes. Proxy nodes enable you to consolidate backups
and log archives of databases existing on multiple client nodes or under multiple users to a common
target nodename on the TSM server. This configuration is useful when the administrator or computer that
performs the backup can change over time, such as with clusters. The asnodename option also allows
data to be restored from a different computer or from a user different than the one that performed the
backup.

If you want to use TSM in your Db2 pureScale environment, proxy node configurations are recommended
because each member can be represented as a TSM client or node and be mapped to a common proxy
node.

If you do not want to use proxy nodes by default, no additional client setup is required. When you want to
perform backup or restore operations using proxy nodes, specify the asnodename value in the OPTIONS
parameter when invoking the BACKUP DATABASE or RESTORE DATABASE commands.

If you want to use TSM proxy nodes by default, use the following methods:

• Update database configuration parameters to use different proxy nodes for different databases.
• Update the dsm.sys file to use the same proxy node for all the users and databases on a machine.

Note: Every user-host combination using the same TSM proxy name will appear as the same Db2
instance to TSM. This can mean that if multiple Db2 instances use the same database name in a TSM
client-node proxy configuration, then they can potentially overwrite each other's log archives and
backup images. To avoid this:

– Create a different proxy hostname for each Db2 instance.
– Do not use TSM's client-node proxy feature if multiple Db2 instances might create databases using

the same TSM proxy name.

Chapter 2. Data recovery 443

TSM client setup using vendoropt, logarchopt1, and logarchopt2

You can set one or more of the following database configuration parameters to enable different proxy
node settings for each database:

• To enable commands using TSM (such as backup and restore) to use proxy nodes, specify the
asnodename option in the vendoropt database configuration parameter, as follows:

db2 update db cfg for dbname using vendoropt "'-asnodename=proxynode'"

where proxynode is the name of the shared TSM proxy node.
• To configure log archiving to the TSM server, set the logarchmeth1 database configuration

parameter to TSM and specify the name of the proxy node as the asnodename value in the
logarchopt1 database configuration parameter, as follows:

db2 update db cfg for dbname using logarchmeth1 tsm
logarchopt1 "'-asnodename=proxynode'"

where proxynode is the name of the shared TSM proxy node.

You can make similar updates to the logarchmeth2 and logarchopt2 database configuration
parameters.

In Db2 pureScale environments, these database configuration parameters are global parameters and
you can set them from any member.

TSM client setup method using the dsm.sys file

1. Edit the dsm.sys file and add the proxy node information, as follows:

asnodename proxynode

where proxynode is the name of the shared TSM proxy node.
2. Ensure that the dsm.opt file specified in the DSMI_CONFIG path contains the name of the TSM

server, as follows:

servername servername

where servername is the TSM server name.

Considerations for using Tivoli Storage Manager
You can use Tivoli Storage Manager to create backup images of a Db2 database. When you are deciding
which backup tool to use for your database, you must consider the features and restrictions of each
available option.

• To use specific features within Tivoli Storage Manager (TSM), you might be required to give the fully
qualified path name of the object using the feature. (Remember that on Windows operating systems,
the \ will be used instead of /.) The fully qualified path name of:

– A full database recovery object is: /database/DBPARTnnn/FULL_BACKUP.timestamp.seq_no
– An incremental database recovery object is: /database/DBPARTnnn/
DB_INCR_BACKUP.timestamp.seq_no

– An incremental delta database recovery object is: /database/DBPARTnnn/
DB_DELTA_BACKUP.timestamp.seq_no

– A full table space recovery object is: /database/DBPARTnnn/TSP_BACKUP.timestamp.seq_no
– An incremental table space recovery object is: /database/DBPARTnnn/
TSP_INCR_BACKUP.timestamp.seq_no

– An incremental delta table space recovery object is: /database/DBPARTnnn/
TSP_DELTA_BACKUP.timestamp.seq_no

where database is the database alias name, and DBPARTnnn is the database partition number. The
names shown in uppercase characters must be entered as shown.

444 IBM Db2 V11.5: Data Recovery and High Availability

• In the case where you have multiple backup images using the same database alias name, the time
stamp and sequence number become the distinguishing part of a fully qualified name. You will need to
query TSM to determine which backup version to use.

• If you perform an online backup operation and specify the USE TSM option and the INCLUDE LOGS
option, a deadlock can occur if the two processes try to write to the same tape drive at the same time. If
you are using a tape drive as a storage device for logs and backup images, you need to define two
separate tape pools for TSM, one for the backup image and one for the archived logs.

• To use client proxy nodes, the TSM administrator must complete the following steps on the TSM server:

1. If the Db2 clients are not already registered with the TSM server, register each client using the
register node TSM command.

2. Register a (virtual) common TSM nodename to be used by the group of clients with the TSM server
using the register node TSM command.

3. Grant proxy authority to all computers in the group using the grant proxynode TSM command.

For information on how to set up proxy node clients, see “Configuring a Tivoli Storage Manager client”
on page 442 or refer to the Tivoli documentation.

• When taking incremental backups where only a small number of pages have been modified, it might be
necessary to increase the TSM parameter IDLETIMEOUT to be larger than the time it takes to complete
the backup of the largest tablespace. This prevents TSM from closing the session prior to the
completion of the incremental backup.

Db2 Advanced Copy Services (ACS)
Db2 Advanced Copy Services (ACS) enables you to use the fast copying technology of a storage device to
perform the data copying part of backup and restore operations.

In a traditional backup or restore operation, the database manager copies data to or from disk or a
storage device using operating system calls. Being able to use the storage device to perform the data
copying makes the backup and restore operations much faster. A backup operation that uses Db2 ACS is
called a snapshot backup.

To perform snapshot backup and restore operations, you need one of two things:

• A Db2 ACS API driver for your storage device. For a list of supported storage hardware for the integrated
driver, refer to this tech note.

• For storage devices that are not supported, implement a custom script that allows your storage device
to perform snapshot operations.

Db2 ACS interfaces with a storage solution, such as IBM Spectrum Protect Snapshot. For detailed
instructions on the setup and usage of IBM Spectrum Protect Snapshot, please refer to this document:
https://www.ibm.com/support/knowledgecenter/en/SSERFV_8.1.4/fcm.unx/b_fcmu_db2_guide.pdf

Db2 Advanced Copy Services (ACS) best practices
Consider the following best practices when installing and configuring Db2 Advanced Copy Services (ACS).
Specify a dedicated volume group for log paths

It is recommended that the log paths be contained within their own snapshot volume independent
from the database directory and database containers.

Specify one volume group for each database partition
In a partitioned database environment, each database partition must reside on a set of snapshot
volumes independent of the other database partitions.

Chapter 2. Data recovery 445

http://www-01.ibm.com/support/docview.wss?uid=swg21455924
https://www.ibm.com/support/knowledgecenter/en/SSERFV_8.1.4/fcm.unx/b_fcmu_db2_guide.pdf

Restrictions for FlashCopy Limited Function for xLinux and AIX SDK 1.0
If you are using Db2 Advanced Copy Services (ACS) with the FlashCopy Limited Function for xLinux and
AIX SDK 1.0 that ships with Db2, you should be aware of some restrictions.

Volume sharing is not supported. If a database partition resides on the same storage volume as any other
database partition, snapshot operations are not permitted. In addition, in order to use FlashCopy Limited
Function for xLinux and AIX SDK 1.0 database and log volumes must reside on a file system which
supports freeze and thaw requests. Table 27 on page 446 lists a number of functional restrictions that
can be avoided by obtaining a full license for IBM Tivoli Storage Manager (TSM) or IBM Spectrum Protect.

Table 27. Comparison of supported features with the FlashCopy Limited Function for xLinux and AIX SDK
1.0 that ships with Db2 with the full version of the IBM Tivoli Storage Manager (TSM) product

Functional item
FlashCopy Limited Function for
xLinux and AIX SDK 1.0 support

Tivoli Storage FlashCopy
Manager support

Local snapshot backup versions Maximum of two snapshot
versions supported.

No product limit. Tivoli Storage
FlashCopy Manager supports as
many versions as the storage
device and available resources
allow.

Snapshot support integrated with
mirroring

No support. Support for snapshots from
either source or target mirror
sets for AIX Logical Volume
Manager (LVM) mirroring.

Integrated backup of snapshot
image to tape

No integrated support.
Traditional and snapshot
backups are complementary but
not integrated.

Fully integrated support for
backup of snapshot image to
TSM. A single backup command
can drive the snapshot backup
together with the backup to TSM.

Backup to tape offloaded from
production server

No integrated support for backup
to tape.

Fully integrated support for
performing backup to TSM from a
secondary host.

Integrated backup of Tivoli
Storage FlashCopy Manager
repository

No support. External backup can
be done when repository is
inactive or shut down.

Automatic backup to TSM.

For more information about Tivoli Storage FlashCopy Manager or Spectrum Protect, consult the most
recent documentation at thisdeveloperWorks link.

Enabling Db2 Advanced Copy Services (ACS)
To use Db2 Advanced Copy Services (ACS), or perform snapshot backup operations, you must install,
activate, and configure a Db2 ACS API Driver for your storage device.

Before you begin

To perform snapshot backup and restore operations, you need one of two things:

• A Db2 ACS API driver for your storage device. For a list of supported storage hardware for the integrated
driver, refer to this tech note.

• For storage devices that are not supported, implement a custom script that allows your storage device
to perform snapshot operations.

446 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Storage%20FlashCopy%20Manager/page/Related%20Resources
http://www-01.ibm.com/support/docview.wss?uid=swg21455924

Procedure

1. Install Db2 ACS API Driver. See: “Installing Db2 Advanced Copy Services (ACS) API Driver” on page
447.

2. Create the database manager instance or instances with which you will use Db2 ACS.

When you create a new database manager instance, a directory called acs is created in the new
instance sqllib directory. Because each database manager instance has an acs directory, you can
configure each database manager instance differently.

3. For each database manager instance with which you will use Db2 ACS, perform the following steps:
a) Activate Db2 ACS. See: “Activating Db2 Advanced Copy Services (ACS) Driver manually” on page

448.
b) Configure Db2 ACS. See: “Configuring Db2 Advanced Copy Services (ACS) Driver” on page 448.

Results

After you have enabled Db2 ACS, you have to configure your storage solution before you can perform
snapshot backups. For instructions on configuring and using Tivoli Storage FlashCopy Manager or
FlashCopy Limited Function for xLinux and AIX SDK 1.0 with your Db2 product, consult the most recent
documentation at: Tivoli Documentation Central.

Installing Db2 Advanced Copy Services (ACS) API Driver
The files and libraries that are required for Db2 Advanced Copy Services (ACS) API Driver must be
installed manually.

Before you begin

Before installing ACS, you must have the following libraries installed:

On AIX:

• ln -s /opt/freeware/lib/powerpc-ibm-aix5.3.0//libgcc_s.a /usr/lib/libgcc_s.a

You should also review the following topics:

• "Db2 ACS installation and configuration best practices". See “Db2 Advanced Copy Services (ACS) best
practices” on page 445

• "Restrictions for embedded version of Tivoli Storage FlashCopy Manager". See “Restrictions for
FlashCopy Limited Function for xLinux and AIX SDK 1.0” on page 446

On Red Hat Enterprise Linux:

• ln -s libssl.so.0.9.8xxx libssl.so.0.9.8
• ln -s libcrypto.so.0.9.8xxx libcrypto.so.0.9.8
• ln -s libssl.so.0.9.8xxx libssl.so
• ln -s libssl.so.0.9.8xxx libssl.so.0

Restrictions

Db2 ACS API Driver supports a subset of hardware and operating systems that IBM Data Server supports.
For a list of hardware and operating systems that Db2 ACS supports, consult the relevant documentation
at this developerWorks link.

Procedure

1. Download from PPA
2. Unpack
3. Install

Chapter 2. Data recovery 447

http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Storage+FlashCopy+Manager
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Storage%20FlashCopy%20Manager/page/Related%20Resources

What to do next

After Db2 ACS has been installed, you must activate Db2 ACS and configure Db2 ACS. See “Activating Db2
Advanced Copy Services (ACS) Driver manually” on page 448 and “Configuring Db2 Advanced Copy
Services (ACS) Driver” on page 448.

Activating Db2 Advanced Copy Services (ACS) Driver manually
Before you can use Db2 Advanced Copy Services (ACS) to perform a snapshot backup for a given
database manager instance, Db2 ACS functionality must be activated on that instance. The database
manager automatically calls setup_db2.sh to activate Db2 ACS functionality during database manager
instance creation.

Before you begin

Before you can activate Db2 ACS, it must already be installed and the database manager instance or
instances with which you will use Db2 ACS must have been created.

About this task

The database manager automatically calls setup_db2.sh to activate Db2 ACS functionality during
database manager instance creation. You must explicitly issue the setup script to install DB2® Limited
Function for xLinux and AIX SDK 1.0.

You can also activate Db2 ACS manually.

Procedure

To activate Db2 ACS manually, run the setup_db2.sh script as a user with root authority, and with
appropriate parameters to activate Db2 ACS.

For more information about setup_db2.sh, see: “setup_db2.sh script” on page 449.

Results

One important result of running the setup_db2.sh script is that the ownership and permissions of Db2
ACS executable files in the sqllib/acs directory are verified.

What to do next

After you have activated Db2 ACS, you must configure Db2 ACS before you can perform snapshot backup
operations.

Configuring Db2 Advanced Copy Services (ACS) Driver
Before you can use Db2 Advanced Copy Services (ACS) to perform a snapshot backup, you must configure
Db2 ACS. You use configuration files to configure Db2 ACS.

Before you begin

You must perform the following tasks before you can configure Db2 ACS:

1. Install Db2 ACS. Refer to “Installing Db2 Advanced Copy Services (ACS) API Driver” on page 447.
2. Create the database manager instance or instances with which you will use Db2 ACS..
3. Activate Db2 ACS. Refer to “Activating Db2 Advanced Copy Services (ACS) Driver manually” on page

448.

Procedure

Run the setup_db2.sh script from the sqllib/acs directory without any parameters.

448 IBM Db2 V11.5: Data Recovery and High Availability

This will lead you through an interactive, text-based wizard that will configure Db2 ACS. The wizard
creates a configuration profile file and modifies the /etc/initab on the machine to trigger the launch of
the Db2 ACS daemons.

Configuring the Db2 Advanced Copy Services (ACS) directory
When you create a new database manager instance, a directory called acs is created in the new instance
sqllib directory. Db2 Advanced Copy Services (ACS) uses this acs directory to store configuration files
like the target volume control file and the shared repository for recovery objects. There are restrictions on
the ways you can alter or configure this acs directory.

About this task

1. The acs directory must not be involved in any Db2 ACS or snapshot backup operation.
2. The acs directory can be NFS-exported and NFS-shared on all database partitions and on the backup

system for a snapshot backup using IBM Tivoli Storage Manager (TSM) or Spectrum Protect.

setup_db2.sh script
The setup_db2.sh script activates and configures Db2 Advanced Copy Services (ACS) Driver, and
manually installs Flashcopy Limited Function for xLinux and AIX SDK 1.0

Location

The script setup_db2.sh is located in the sqllib/acs directory.

Syntax

Here is the syntax for setup_db2.sh:
setup_db2.sh

-a action -d Db2_Instance_Directory

where action can be one of:
disable

This option stops Flashcopy Limited Function and removes all entries from /etc/inittab. To use
this option, you must have root authority or be the instance owner.

install
This option installs Flashcopy Limited Functionr. To use this option, you must have root authority.

start
This option starts a previously installed and configured version of Flashcopy Limited Function. To use
this option, you must have root authority or be the instance owner.

stop
This option stops the currently running version of Flashcopy Limited Function. To use this option, you
must have root authority or be the instance owner.

Usage

The database manager automatically calls setup_db2.sh to activate Db2 ACS functionality during
database manager instance creation. You must explicitly issue the setup script to install Flashcopy
Limited Function for xLinux and AIX SDK 1.0.

You can call the setup_db2.sh script manually to do the following tasks:
Activate Db2 ACS

You can activate Db2 ACS Driver by running the setup_db2.sh script with the parameters described
previously, as a user with root authority.

Chapter 2. Data recovery 449

Configuring Db2 ACS

You can configure Db2 ACS Driver by running the setup_db2.sh script without any parameters. If
you run the setup_db2.sh script without any parameters, then a wizard will lead you through Db2
ACS configuration.

Installing Flashcopy Limited Function for xLinux and AIX 1.0
On Linux and AIX systems, you need to manually run the setup_db2.sh script to install Flashcopy
Limited Function.

One important result of running the setup_db2.sh script is that the ownership and permissions of Db2
ACS executable files in the sqllib/acs directory are verified.

Manually installing Tivoli Storage FlashCopy Manager (Linux)
IBM Spectrum® Protect Snapshot (formerly known as Tivoli Storage FlashCopy Manager) is no longer
bundled with Db2. For more information, refer to IBM Spectrum Protect Snapshot.

Db2 Advanced Copy Services (ACS) scripted interface
If you want to perform snapshot operations with a storage device that does not provide a vendor library to
implement the Db2 ACS API, you have to create your own script. A script allows the Db2 ACS API to
directly communicate with the storage system and create a snapshot of volumes which contain data and
log files for a database. Afterward, you can use a different script to perform the complementary action of
restoring the snapshot image, or even deleting the image.

By creating your own script for performing snapshots, you can use unsupported storage boxes, or boxes
that are available before a vendor library is available for interfacing with Db2 ACS. A vendor library
provides the necessary extensions for implementing snapshot-based backup and restore. A script serves
a similar role. With the improved interfacing with scripts introduced in V10.5, Db2 removes the need for
the script to account for some of the more error prone actions, like suspending and resuming operations
when taking a snapshot backup. Like snapshot operations with supported storage hardware, snapshot
operations that use scripts generate a history file entry, meaning that you can monitor the success or
failure of snapshot backups.

The Db2 ACS API is wrapped in the library for Db2 ACS, which is included with the Db2 product. The
library for ACS writes the protocol files to the protocol file repository and invokes the script that you
specify for your snapshot operation.

Db2 Advanced Copy Services (ACS) protocol file
The Db2 Advanced Copy Services (ACS) protocol files are created by the library for Db2 ACS and contain
information that is needed by scripts for snapshot operations.

The protocol files are located in the protocol file repository. You should create a directory for this
repository before performing your snapshot operation. You specify the repository by using the options
parameter with the relevant command. If you do not create a directory, the protocol file repository will be
the same directory that the script is located.

The protocol files serve two purposes:

• They show the progress of the running operation. In the case of failed operations, they also contain
some information that you can use for debugging.

• They contain information and options provided from the library for Db2 ACS to the script. Some of the
information, such as the metadata string, is also needed by the library for Db2 ACS or Db2 to restore the
snapshot.

A protocol file is divided into different sections, each of which shows the progress and options of each
function call. The output in each section contains the following information:

• Function name. For example db2ACSInitialize

For a list of functions see Db2 Advanced Copy Services (ACS) API functions
• Beginning and ending timestamp for the function call

450 IBM Db2 V11.5: Data Recovery and High Availability

https://www.ibm.com/support/knowledgecenter/SSERFV/landing/welcome_sserfv.html

• Commands that were used to invoke the script, in the following format

 cmd: path_to_script -a action
 -c protocol_file_reposity/protocol_file_name.cfg

• Options that were given in the function calls. See Table 28 on page 451 for a list and description of the
options.

Table 28. Options written by the library for Db2 ACS

Key name Description

ACTION Action that is being performed:

• DB2ACS_ACTION_READ_BY_GROUP during
restore of parts of the database, in particular
restore excluding log files

• DB2ACS_ACTION_READ_BY_OBJECT during
restore of the whole database,
DB2ACS_ACTION_WRITE during snapshot

APP_OPTIONS Hex value that combines the DB2BACKUP_*

DATAPATH_AUTOSTORAGE Key for each storage path that is configured in the
database

DATAPATH_DB Database paths configured in the database

DATAPATH_GENERIC • Additional paths configured in the database
• Placeholder for future types

DATAPATH_LOCAL_DB Local database paths configured in the database

DATAPATH_TBSP_CONTAINER Key for each DMS container that is configured in
the database

DATAPATH_TBSP_DEVICE Key for each raw device that is configured in the
database

DATAPATH_TBSP_DIR Key for each SMS storage path that is configured in
the database

DB_NAME Name of the database for that the operation is
done

DBPARTNUM Database partition number to be operated on

DB2BACKUP_MODE Whether the backup is offline or online

DB2BACKUP_LOGS Whether log files are included in or excluded from
the backup. If logs are excluded, LOG_DIR and
MIRRORLOG_DIR are not contained in the
protocol file.

DELETE_OBJ_ID Object ID of the object to be deleted

EXTERNAL_OPTIONS Lists any options that you specify in the backup
and restore command and are automatically
copied into to the custom script.

EXTERNAL_SCRIPT Name of the script for the snapshot operation

FIRST_ACTIVE_LOG_CHAIN The log chain of the first active log

Chapter 2. Data recovery 451

Table 28. Options written by the library for Db2 ACS (continued)

Key name Description

FIRST_ACTIVE_LOG_ID Number of first active log of the database during
the time the snapshot was taken

INSTANCE Name of the instance for the database

LOGPATH_MIRROR Mirror log directory

LOGPATH_PRIMARY Log directory of the database

METADATA String that represents the Base64 encoded meta
data memory block

METADATA_CHECKSUM Checksum of the Base64 metadata string

METADATA_SIZE Size of the encoded metadata string

METADATA_DECODED_SIZE Size of the decoded metadata block

OBJ_DB2ID_LEVEL Fix pack level that was used during the backup

OBJ_DB2ID_RELEASE Release level of the Db2 product that was used
during the backup

OBJ_DB2ID_VERSION Version of the Db2 product that was used during
backup

OBJ_HOST Host server where the database partition resides

OBJ_ID Unique identifier for each stored object

OBJ_OWNER Owner of the object

OBJ_TYPE Snapshot

OPERATION Operation identifier:

• Delete
• Restore
• Snapshot

QUERY_DB Name of the database that is queried for

QUERY_HOST Name in the host in the object

QUERY_INSTANCE Name of the instance of the database that is
contained in the backup image

QUERY_OWNER Owner of the object

QUERY_DBPARTNUM • Number of the database partition backed up to
the object

• -1 for the generic case

QUERY_TIMESTAMP Timestamp queried for

QUERY_TYPE Type of the object to be queried, snapshot or hex
code representing the type

RC_DELETE Return code of the deletion operation. A non-zero
value indicates that an error happened in the
section.

452 IBM Db2 V11.5: Data Recovery and High Availability

Table 28. Options written by the library for Db2 ACS (continued)

Key name Description

RC_OPERATION Return code of the complete backup operation. A
non-zero value indicates that an error happened in
the section.

RC_PREPARE Return code of the prepare action. A non-zero
value indicates that an error happened in the
section.

RC_RESTORE Return code of the complete restore operation. A
non-zero value indicates that an error happened in
the section.

RC_SNAPSHOT Return code of the snapshot action. A non-zero
value indicates that an error happened in the
section.

RC_STORE_METADATA Return code of store_metadata operation. A non-
zero value indicates that an error happened in the
section.

RC_VERIFY Return code of the verify action. A non-zero value
indicates that an error happened in the section.

RESULT_n_FILE The name of the nth file during query, delete and
restore

SIGNATURE Software level of the Db2 version being used

SYNC_MODE Writes NONE on single partition databases,
PARALLEL if snapshot is taken in parallel on all
nodes, SERIAL if the snapshot is taken on the
nodes one after the other.

Example protocol file for a snapshot backup

This section contains an example protocol file written for a snapshot backup operation invoking the
sample script. For illustrative purposes, it has been broken up into sections for each Db2 ACS API
function that is a part of the operation.
db2ACSInitialize

After loading the library for Db2 ACS and querying the version of the Db2 ACS API, the database
manager establishes a Db2 ACS session by calling db2ACSInitialize(). This step is required for all
operations.

The flags that are of most interest for monitoring purposes are:

• EXTERNAL_SCRIPT: the name and path of the script
• DB_NAME: the database name
• INSTANCE: the Db2 instance name
• DBPARTNUM: the database partition number

==
db2ACSInitialize(): BEGIN [2012-11-30 08:15:45]
EXTERNAL_SCRIPT=/home/hotellnx99/jklauke/libacssc.sh
HANDLE=1354281345
START_TIME=1354281345
DB_NAME=SAMPLE
INSTANCE=jklauke
DBPARTNUM=0
SIGNATURE=SQL10020
EXTERNAL_OPTIONS=/home/hotellnx99/jklauke/repository 2ndoption

Chapter 2. Data recovery 453

db2ACSInitialize(): END
==

db2ACSBeginOperation
The database manager calls db2ACSBeginOperation() to begin the specified operation (indicated in
the OPERATION flag).

==
db2ACSBeginOperation(): BEGIN [2012-11-30 08:15:45]
OPERATION=snapshot
db2ACSBeginOperation(): END
==

db2ACSPartition
The database manager calls db2ACSPartition(), which associates a group identifier with each of the
paths listed by the database manager as belonging to a database partition. The library for Db2 ACS
groups database path information for a single database partition together, so the partition ID is
unique for every path. This makes it possible to take a snapshot at the file-set, file-system, and
volume-group level. The path-related flags that are of interest in this section are:

• LOG_DIR, MIRRORLOG_DIR: the log paths
• DB_PATH, LOCAL_DB_PATH: the database paths
• STORAGE_PATH, CONT_PATH, TBSP_DIR

The SYSIBMADM.DBPATHS administrative view provides these same path types.

A number of flags provide information about the settings for the current operation:

• DB2BACKUP_MODE: Offline or online backup
• DB2BACKUP_LOGS: Exclude or include logs. In this example, the logs are included, so the sample

customer script compresses the log files but in a different file than the other database files.

==
db2ACSPartition(): BEGIN [2012-11-30 08:15:06]
OBJ_HOST=hotellnx99
OBJ_OWNER=
OBJ_TYPE=snapshot
OBJ_DB2ID_LEVEL=0
OBJ_DB2ID_RELEASE=2
OBJ_DB2ID_VERSION=10
APP_OPTIONS=0x1000
DB2BACKUP_MODE=OFFLINE
DB2BACKUP_LOGS=INCLUDE
LOGPATH_PRIMARY=/home/hotellnx99/jklauke/jklauke/NODE0000/SQL00001/LOGSTREAM0000/
DATAPATH_DB=/home/hotellnx99/jklauke/jklauke/NODE0000/SQL00001/MEMBER0000/
DATAPATH_LOCAL_DB=/home/hotellnx99/jklauke/jklauke/NODE0000/sqldbdir/
DATAPATH_DB=/home/hotellnx99/jklauke/jklauke/NODE0000/SQL00001/
DATAPATH_AUTOSTORAGE=/home/hotellnx99/jklauke/jklauke/NODE0000/SAMPLE/
db2ACSPartition(): END
==

db2ACSPrepare
The database manager calls db2ACSPrepare() to prepare to perform the snapshot. In the protocol file,
the prepare section shows the command with which the script was invoked and the return code of the
preparation.

==
db2ACSPrepare(): BEGIN [2012-11-30 08:15:45]
cmd: /home/hotellnx99/jklauke/libacssc.sh -a prepare
 -c /home/hotellnx99/jklauke/repository/db2acs.SAMPLE.0.jklauke.1353420068.cfg
 /home/hotellnx99/jklauke/repository 2ndoption
RC_PREPARE=0
db2ACSPrepare(): END
==

454 IBM Db2 V11.5: Data Recovery and High Availability

If this step completes successfully, the database manager puts the database in SET WRITE SUSPEND
state (assuming the snapshot backup is online).

db2ACSSnapshot
The database manager calls db2ACSSnapshot() to perform the snapshot. The protocol file shows the
command used during the snapshot and the return code of the snapshot operation. This part of the
protocol file shows the point at which the real snapshot is taken and the vendor tools are triggered
that run the operations on the storage boxes.

Note that the content between ACTION=DB2ACS_ACTION_WRITE and RC_SNAPSHOT is specific to
the sample script, which compresses all of the paths shown in the db2ACSPartition section of the
protocol file into one tar file and all log files (primary and mirror log files) to a second tar file.

==
db2ACSSnapshot(): BEGIN [2013-01-15 10:18:23]
OBJ_ID=0
ACTION=DB2ACS_ACTION_WRITE
cmd:/home/hotellnx99/jklauke/sqllib/samples/BARVendor/libacssc.sh -a snapshot
 -c /home/hotellnx99/jklauke/repository/db2acs.SAMPLE.0.jklauke.
1358263103.cfg
BACKUP_FILE=/home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.20130115101824.001.tar
cmd: awk -F= '/^DATAPATH/
 { print $2; }' /home/hotellnx99/jklauke/repository/db2acs.SAMPLE.
0.jklauke.1358263103.cfg
 | tar -Pcf /home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.20130115101824.001.tar
 -T - 2>/dev/null && echo 0 || echo 1
backup tar created, rc=0
Logs to be included
BACKUP_LOGS=/home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.20130115101824.log.tar
cmd: awk -F= '/^LOGPATH/ { print $2; }'
 /home/hotellnx99/jklauke/repository/db2acs.SAMPLE.0.jklauke.1358263103.cfg
 | tar -Pcf /home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.20130115101824.log.tar
 -T - 2>/dev/null && echo 0 || echo 1
tar for logs created, rc=0
RC_SNAPSHOT=0
db2ACSSnapshot(): END [2013-01-15 10:18:24]
==

After this step completes, the database manager puts the database in WRITE RESUME state.
db2ACSVerify

The database manager calls db2ACSVerify() to verify that the snapshot backup succeeded. If your
script contains a verify action, the library for Db2 ACS invokes your script. In the example script, the
verify step only checks for the existence of the two tar files (if EXCLUDE LOGS were specified it would
not checks for the existence of the tar file for the logs).

==
db2ACSVerify(): BEGIN [2012-11-30 08:15:08]
FIRST_ACTIVE_LOG_ID=2
FIRST_ACTIVE_LOG_CHAIN=3
cmd: /home/hotellnx99/jklauke/libacssc.sh -a verify
 -c /home/hotellnx99/jklauke/repository/db2acs_SAMPLE_1354281306_0.cfg
 /home/hotellnx99/jklauke/repository 2ndoption
Backup '/home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.1354281306.001.tar' checked: looks okay
Logs '/home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.1354281306.log.tar' checked: looks okay
RC_VERIFY=0
db2ACSVerify(): END
==

If the script returns a non-zero return code, the following db2ACSStoreMetaData() call is skipped and
db2ACSEndOperation is called instead. In the case of the example script, the library for Db2 ACS
invokes the script with the rollback action. For an example of this, see this section.

Chapter 2. Data recovery 455

db2ACSStoreMetaData
The database manager calls db2ACSStoreMetaData() to store metadata about the recovery object
created by the operation. If your script contains a store_metadata action, the library for Db2 ACS
invokes your script to perform actions such as:

• backing up the protocol file (it has to exist for a snapshot to be restored, queried, or deleted)
• renaming the backup

==
db2ACSStoreMetaData(): BEGIN [2013-01-15 10:18:24]
START_TIME=1358263104
METADATA_SIZE=12024
METADATA=U1FMV...
METADATA_CHECKSUM=16941
cmd: /home/hotellnx99/jklauke/sqllib/samples/BARVendor/libacssc.sh
 -a store_metadata
 -c /home/hotellnx99/jklauke/repository/db2acs.SAMPLE.0.jklauke.1358263103.cfg
RC_STORE_METADATA=0
db2ACSStoreMetaData(): END [2013-01-15 10:18:24]
==

db2ACSEndOperation
The database manager calls db2ACSEndOperation() to end the operation.
Successful operations

The return code of 0 indicates that the snapshot operation was successful.

==
db2ACSEndOperation(): BEGIN [2012-11-30 08:15:08]
RC_OPERATION=0
db2ACSEndOperation(): END

Failed operations
If the snapshot operation failed--that is, a call to the customer script had a non-zero return code
or there was an internal error in the library for Db2 ACS--the db2ACSEndOperation section of the
protocol file has a non-zero return code. If you specify a rollback action in your script, the script is
called at this point. In the case of the sample script, the protocol file contains the following
output:

==
db2ACSEndOperation(): BEGIN [2013-01-18 05:26:06]
RC_OPERATION=1
cmd:/home/hotellnx99/jklauke/sqllib/samples/BARVendor/libacssc.sh -a rollback
 -c /home/hotellnx99/jklauke/repository/db2acs.SAMPLE.0.jklauke.1358504766.cfg
Delete old backup file :
 /home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.0.20130118052606.001.tar
Delete old backup file :
 /home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.0.20130118052606.log.tar
RC_ROLLBACK=0
db2ACSEndOperation(): END [2013-01-18 05:26:06]
==

db2ACSTerminate
The database manager calls db2ACSTerminate() to terminate the session.

==
db2ACSTerminate(): BEGIN [2012-11-30 08:15:08]
db2ACSTerminate(): END
==

Example protocol file for a snapshot restore

This section contains an example protocol file written for a snapshot restore operation invoking the
sample script. A snapshot restore reads the protocol file for the snapshot backup, while at the same time
writing new protocol files for the restore operation. If the restore is successful, those protocol files are

456 IBM Db2 V11.5: Data Recovery and High Availability

deleted. For illustrative purposes, the following protocol file for a snapshot restore has been broken up
into sections for each Db2 ACS API function that is a part of the operation.
db2ACSInitialize

After loading the library for Db2 ACS and querying the version of the Db2 ACS API, the database
manager establishes a Db2 ACS session by calling db2ACSInitialize(). This step is required for all
operations.

The flags that are of most interest for monitoring purposes are:

• EXTERNAL_SCRIPT: the name and path of the script
• DB_NAME: the database name
• INSTANCE: the Db2 instance name
• DBPARTNUM: the database partition number

==
db2ACSInitialize(): BEGIN [2012-11-30 08:27:38]
REPOSITORY_PATH=/home/hotellnx99/jklauke/repository/
EXTERNAL_SCRIPT=/home/hotellnx99/jklauke/libacssc.sh
HANDLE=1354282058
START_TIME=1354282058
DB_NAME=SAMPLE
INSTANCE=jklauke
DBPARTNUM=0
SIGNATURE=SQL10020
EXTERNAL_OPTIONS=/home/hotellnx99/jklauke/repository
db2ACSInitialize(): END
==

db2ACSBeginOperation
The database manager calls db2ACSBeginOperation() to begin the specified operation (indicated in
the OPERATION flag).

db2ACSBeginOperation(): BEGIN [2012-11-30 08:27:38]
OPERATION=restore
db2ACSBeginOperation(): END
==

db2ACSBeginQuery
The database manager calls db2ACSBeginQuery() to determine which snapshot backup objects are
available to be used for the restore operation and to prepare the restore. The protocol file also shows
the command with which the script was invoked for the prepare action and the return code of the
preparation.

==
db2ACSBeginQuery(): BEGIN [2012-11-30 08:27:38]
QUERY_TYPE=snapshot
QUERY_PARTNUM=0
QUERY_DB=SAMPLE
QUERY_INSTANCE=*
QUERY_HOST=*
QUERY_OWNER=*
QUERY_TIMESTAMP=20121130082717
cmd: /home/hotellnx99/jklauke/libacssc.sh -a prepare
 -c/home/hotellnx99/jklauke/db2acs.SAMPLE.0.jklauke.1353421208.cfg
 /home/hotellnx99/jklauke/repository
RC_PREPARE=0
db2ACSBeginQuery(): END
==

db2ACSGetNextObject
The database manager calls db2ACSGetNextObject() to find an appropriate backup image for the
given timestamp. The function is called iteratively and loops over the available files, giving information
about each backup image to the database manager. The following output shows the looping over
three protocol files:

==
db2ACSGetNextObject(): BEGIN [2012-12-13 08:01:39]
RESULT_0_FILE=/home/hotellnx99/jklauke/repository/db2acs.SAMPLE.

Chapter 2. Data recovery 457

0.jklauke.1355341475.cfg
read result object with timestamp 20121212144436
db2ACSGetNextObject(): END [2012-12-13 08:01:39]
==
db2ACSGetNextObject(): BEGIN [2012-12-13 08:01:39]
RESULT_1_FILE=/home/hotellnx99/jklauke/repository/db2acs.SAMPLE.
0.jklauke.1355341690.cfg
read result object with timestamp 20121212144811
db2ACSGetNextObject(): END [2012-12-13 08:01:39]
==
db2ACSGetNextObject(): BEGIN [2012-12-13 08:01:39]
RESULT_2_FILE=/home/hotellnx99/jklauke/repository/db2acs.SAMPLE.
0.jklauke.1355341892.cfg
read result object with timestamp 20121212145133
db2ACSGetNextObject(): END [2012-12-13 08:01:39]
==

db2ACSRetrieveMetaData
The database manager calls db2ACSRetrieveMetaData() to retrieve all metadata about the backup
image.

==
db2ACSRetrieveMetaData(): BEGIN [2012-11-30 08:27:39]
GET_META_OBJ_ID=3
METADATA_DECODED_SIZE=9004
METADATA_CHECKSUM=14583
db2ACSRetrieveMetaData(): END
==

db2ACSSnapshot
The database manager calls db2ACSSnapshot() to perform the restore. The protocol file shows the
commands and actions used by the script and the return code of the snapshot operation. The action
can be one of two options:

• DB2ACS_ACTION_READ_BY_OBJECT. This indicates that the LOGTARGET INCLUDE FORCE
options were specified with the RESTORE DATABASE command. The script uncompresses both tar
files (one for the data and one for the logs). You also need to copy the disks used for the log files.

• DB2ACS_ACTION_READ_BY_GROUP. This indicates that the LOGTARGET EXCLUDE FORCE options
were specified with the RESTORE DATABASE command. This shows the groups, or IDs of the file
systems, for the groups that have to be restored. You must not copy the disks used for the log files.

==
db2ACSSnapshot(): BEGIN [2012-11-30 08:27:40]
OBJ_ID=3
ACTION=DB2ACS_ACTION_READ_BY_OBJECT
cmd:/home/hotellnx99/jklauke/libacssc.sh -a restore
 -c /home/hotellnx99/jklauke/repository/db2acs_SAMPLE_1354282058_0.cfg
 /home/hotellnx99/jklauke/repository
cmd: tar -xf /home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.20121130082717.001.tar
 && echo 0 || echo 1
tar extracted, rc=0
cmd: tar -xf /home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.
0.20121130082717.log.tar
 && echo 0 || echo 1
logs extracted, rc=0
RC_RESTORE=0
db2ACSSnapshot(): END
==

If an appropriate backup image is found, the meta data is read from the protocol file and the restore is
started by invoking the customer library.

db2ACSEndOperation
The database manager calls db2ACSEndOperation() to end the operation. The return code of 0
indicates that the restore operation was successful.

458 IBM Db2 V11.5: Data Recovery and High Availability

==
db2ACSEndOperation(): BEGIN [2012-11-30 08:27:41]
END_ACTION=0
db2ACSEndOperation(): END
==

db2ACSTerminate
The database manager calls db2ACSTerminate() to terminate the session.

==
db2ACSTerminate(): BEGIN [2012-11-30 08:27:41]
db2ACSTerminate(): END
==

Example protocol file for a snapshot deletion

This section contains an example protocol file written for a deletion of a snapshot image which invokes
the sample script. During a deletion, the protocol file for the snapshot backup is read, while at the same
time new protocol files are written for the delete operation. If the deletion is successful, those protocol
files are removed. For illustrative purposes, the following protocol file for the deletion of the snapshot has
been broken up into sections for each Db2 ACS API function that is a part of the operation.
db2ACSInitialize

After loading the library for Db2 ACS and querying the version of the Db2 ACS API, the database
manager establishes a Db2 ACS session by calling db2ACSInitialize(). This step is required for all
operations. Take care that you do not accidentally delete any images by either specifying the
database name or using a unique protocol file repository for each snapshot operation. In the following
output, for example, all backups contained in the /home/hotellnx99/jklauke/ directory are
deleted.

db2ACSInitialize(): BEGIN [2012-11-20 09:10:17]
REPOSITORY_PATH=/home/hotellnx99/jklauke/
EXTERNAL_SCRIPT=/home/hotellnx99/jklauke/libacssc.sh
HANDLE=1353420617
DB_NAME=*
INSTANCE=*
DBPARTNUM=0
SIGNATURE=SQL10020
EXTERNAL_OPTIONS=/home/hotellnx99/jklauke/
db2ACSInitialize(): END
==
db2ACSBeginOperation(): BEGIN [2012-11-20 09:10:17]
OPERATION=delete
db2ACSBeginOperation(): END
==

db2ACSBeginOperation
The database manager calls db2ACSBeginOperation() to begin the specified operation (indicated in
the OPERATION flag).

db2ACSBeginOperation(): BEGIN [2012-11-30 08:27:38]
OPERATION=restore
db2ACSBeginOperation(): END
==

db2ACSBeginQuery
The database manager calls db2ACSBeginQuery() to determine which snapshot backup objects are
available to be deleted and to prepare the restore. The protocol file also shows the command with
which the script was invoked for the prepare action and the return code of the preparation.

==
db2ACSBeginQuery(): BEGIN [2012-12-13 08:24:42]
QUERY_TYPE=0x0
QUERY_DBPARTNUM=-1
QUERY_DB=*
QUERY_INSTANCE=*
QUERY_HOST=*
QUERY_OWNER=*

Chapter 2. Data recovery 459

cmd: /home/hotellnx99/jklauke/sqllib/samples/BARVendor/libacssc.sh -a prepare
 -c /home/hotellnx99/jklauke/repository/db2acs.0.1355405082.cfg
RC_PREPARE=0
db2ACSBeginQuery(): END [2012-12-13 08:24:42]
==

db2ACSGetNextObject
The database manager calls db2ACSGetNextObject() to find an appropriate backup image for the
given timestamp. The function is called iteratively and loops over the available files, giving information
about each backup image to the database manager. The following output shows the looping over
three protocol files:

==
db2ACSGetNextObject(): BEGIN [2012-11-20 09:10:17]
RESULT_0_FILE=/home/hotellnx99/jklauke/db2acs.SAMPLE.0.jklauke.1353420375.cfg
read result object with timestamp 20121120090616
db2ACSGetNextObject(): END
==
db2ACSGetNextObject(): BEGIN [2012-11-20 09:10:17]
db2ACSGetNextObject(): END
==

db2ACSDelete
The database manager calls db2ACSDelete() to delete recovery objects. For every backup image that
matches the timestamp (retrieved during the db2ACSGetNextObject() call), the API and the script are
called sequentially to delete the backup images and any dependent files.

==
db2ACSDelete(): BEGIN [2012-12-13 08:24:44]
DELETE_OBJ_ID=5
cmd: /home/hotellnx99/jklauke/sqllib/samples/BARVendor/libacssc.sh -a delete
 -o 5 -t 20121213051805
 -c /home/hotellnx99/jklauke/repository/db2acs.0.1355405082.cfg
Delete old backup file and logs:
 /home/hotellnx99/jklauke/repository/SAMPLE.0.jklauke.0.20121213051805.001.tar
Delete old configuration file:
 /home/hotellnx99/jklauke/repository/db2acs.SAMPLE.0.jklauke.1355393884.cfg
RC_DELETE=0
db2ACSDelete(): END [2012-12-13 08:24:44]
==

db2ACSEndQuery
The database manager calls db2ACSEndQuery() to terminate the query session for backup images.

==
db2ACSEndQuery(): BEGIN [2012-11-20 09:10:19]
db2ACSEndQuery(): END
==

db2ACSEndOperation
The database manager calls db2ACSEndOperation() to end the operation. The return code of 0
indicates that the deletion was successful.

==
db2ACSEndOperation(): BEGIN [2012-11-20 09:10:19]
END_ACTION=0
db2ACSEndOperation(): END
==

db2ACSTerminate
The database manager calls db2ACSTerminate() to terminate the session.

==
db2ACSTerminate(): BEGIN [2012-11-20 09:10:19]
db2ACSTerminate(): END
==

460 IBM Db2 V11.5: Data Recovery and High Availability

Db2 Advanced Copy Services (ACS) user scripts
By providing your own script for snapshot operations, you can use storage hardware that does not provide
a vendor library.

A script specifies the type of snapshot operation that you want performed, as well as some additional
options. You specify the script name with the -script parameter for the appropriate command or API.
The library for Db2 ACS invokes the script at various times through the operation.

You have to create the script yourself and ensure that it is executable. There is a sample script called
libacssc.sh provided in samples/BARVendor for your reference. The sample script creates one tar
file containing the database files and, if logs are included, a second one for the log files. You can use the
sample script as a template for your own script, with the appropriate modifications that set it up for your
storage device. You would probably want to remove the section that creates the tar file.

Snapshot backup

During a snapshot backup, the script extracts the information that is required for the current phase from
the protocol file and runs the required actions for creating the snapshot. The script writes progress
information to the protocol file for debugging reasons.

A snapshot backup script can implement the following actions, preceded by the flag -a:
prepare

Runs any actions that need to take place before the snapshot is performed
snapshot

Performs the snapshot
verify

Verifies that the snapshot was successful produced (that is, the vendor tools did not return any errors)
store_metadata

Specifies actions that can occur after the snapshot has been produced and all required metadata has
been stored to the protocol file. For example, the script can back up the protocol file or rename the
backup image.

rollback
Cleans up the image if a snapshot has failed

Snapshot restore

During snapshot restores the protocol files that were written during snapshots are read, and new protocol
files are written (to the same repository) to show the progress of the restore operation. Every restore
operation writes a new protocol file. If the restore is successful, the corresponding protocol file is
removed. If the operation fails, the protocol file remains for debugging purposes.

A snapshot restore script can implement the following actions, preceded by the flag -a:
prepare

Runs any actions that need to take place before the restore is performed
restore

Restores the snapshot backup image

Snapshot management

When a snapshot backup image is deleted, the protocol files that were written during snapshots are read,
and new protocol files are written (to the same repository) to show the progress of the delete operation. If
the delete operation is successful, the corresponding protocol file is removed. If the operation fails, the
protocol file remains for debugging purposes.

A snapshot delete script can implement the following actions, preceded by the flag -a:
prepare

Runs any actions that need to take place before the restore is performed

Chapter 2. Data recovery 461

delete
Deletes the snapshot backup image

Db2 Advanced Copy Services (ACS) API
The Db2 Advanced Copy Services (ACS) application programming interface (API) defines a set of
functions that the database manager uses to communicate with storage hardware to perform snapshot
backup operations. The Db2 ACS API is only supported on Linux and UNIX operating systems.

To perform snapshot backup and restore operations, you need one of two things:

• A Db2 ACS API driver for your storage device. For a list of supported storage hardware for the integrated
driver, refer to this tech note.

• For storage devices that are not supported, implement a custom script that allows your storage device
to perform snapshot operations.

Db2 Advanced Copy Services (ACS) API functions
The database manager communicates Db2 ACS requests to storage hardware through the Db2 ACS API
functions.

db2ACSQueryApiVersion - return the current version of the Db2 Advanced Copy Services (ACS) API
Returns the current version of the Db2 Advanced Copy Services (ACS) API.

API include file

db2ACSApi.h

API and data structure syntax

db2ACS_Version db2ACSQueryApiVersion();

Parameters

None.

Usage notes

Possible return values:

• DB2ACS_API_VERSION1
• DB2ACS_API_VERSION_UNKNOWN

db2ACSInitialize - initialize a Db2 Advanced Copy Services (ACS) session
Initializes a new Db2 Advanced Copy Services (ACS) session. This call establishes communication
between the database manager's Db2 ACS library and the Db2 ACS API driver for the storage hardware.

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Session Initialization
 * == */
db2ACS_RC db2ACSInitialize(
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

462 IBM Db2 V11.5: Data Recovery and High Availability

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

Parameters
pControlBlock

Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

Before calling db2ACSInitialize(), the database manager populates the following fields:

 pControlBlock->session
 pControlBlock->options

The Db2 ACS API driver populates the following fields before returning:

 pControlBlock->handle
 pControlBlock->vendorInfo

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 29. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INIT_FAILED The database manager attempted
to initialize a Db2 ACS session, but
the initialization failed.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

Chapter 2. Data recovery 463

Table 29. Return codes (continued)

Return code Description Notes

DB2ACS_RC_COMM_ERROR There was a communication error
with a storage device, such as a
tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_NO_DEV_AVAIL There is currently no storage
device, such as a tape drive,
available to use.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

Before the database manager can make any Db2 ACS API calls, except calls to
db2ACSQueryAPIVersion(), the database manager must call db2ACSInitialize(). Once the
database manager establishes a Db2 ACS session by calling db2ACSInitialize(), then the database
manager can perform any combination of Db2 ACS query, read, write, or delete operations. The database
manager can terminate the Db2 ACS session by calling db2ACSTerminate().

db2ACSTerminate - terminate a Db2 Advanced Copy Services (ACS) session
Terminates a Db2 Advanced Copy Services (ACS) session.

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Session Termination
 * == */
db2ACS_RC db2ACSTerminate(
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pControlBlock

Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

464 IBM Db2 V11.5: Data Recovery and High Availability

The database manager allocated the memory for this parameter before calling
db2ACSInitialize(). The database manager is responsible for freeing this memory after
db2ACSTerminate().

Before calling db2ACSTerminate(), the database manager populates the following fields:

 pControlBlock->options

The Db2 ACS API driver might invalidate and free the memory in pControlBlock-
>vendorInfo.vendorCB.

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 30. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful. Free all memory allocated for this
session and terminate.

DB2ACS_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

The Db2 ACS API driver should free all memory that the driver allocated for the Db2 ACS session in
db2ACSTerminate().

Regardless of whether db2ACSTerminate() completes without error, the database manager cannot call
any Db2 ACS functions on this Db2 ACS session again, without first calling db2ACSInitialize().

Chapter 2. Data recovery 465

db2ACSPrepare - prepare to perform a snapshot backup operation.
When a snapshot backup is performed, the database manager suspends the database.
db2ACSPrepare() performs all the steps to prepare to perform a snapshot backup operation up to, but
not including, the point where the database manager suspends the database.

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Prepare
 * == */
db2ACS_RC db2ACSPrepare(
 db2ACS_GroupList * pGroupList,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pGroupList

Data type: db2ACS_GroupList *

db2ACS_GroupList contains a list of groups to be included in the snapshot backup operation.

If pGroupList is NULL, all groups (paths) will be included in the snapshot backup operation.

If pGroupList is not NULL:

• pGroupList contains a list of groups (paths) to be included in the snapshot backup operation.
• The database manager is responsible for allocating and freeing the memory for pGroupList.
• The database manager populates the following fields before passing pGroupList to
db2ACSPrepare():

 pGroupList->numGroupID
 pGroupList->id

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSPrepare(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

466 IBM Db2 V11.5: Data Recovery and High Availability

Return Codes

Table 31. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

If db2ACSPrepare() succeeds, then the database manager will suspend the database before calling
db2ACSSnapshot().

db2ACSBeginOperation - begin a Db2 Advanced Copy Services (ACS) operation.
Begins a Db2 Advanced Copy Services (ACS) operation.

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Operation Begin
 *
 * A valid ACS operation is specified by passing an ObjectType OR'd with one of
 * the following Operations, such as:
 *
 * (DB2ACS_OP_CREATE | DB2ACS_OBJTYPE_SNAPSHOT)

Chapter 2. Data recovery 467

 * == */
db2ACS_RC db2ACSBeginOperation(
 db2ACS_Operation operation,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
operation

Data type: db2ACS_Operation.

operation is a bitmask indicating the Db2 ACS operation to begin, and the type of object involved.

Operation types:

 DB2ACS_OP_CREATE
 DB2ACS_OP_READ
 DB2ACS_OP_DELETE

Object types:

 DB2ACS_OBJTYPE_BACKUP
 DB2ACS_OBJTYPE_LOG
 DB2ACS_OBJTYPE_LOADCOPY
 DB2ACS_OBJTYPE_SNAPSHOT

For example: (DB2ACS_OP_CREATE | DB2ACS_OBJTYPE_SNAPSHOT) or
(DB2ACS_OP_DELETE | DB2ACS_OBJTYPE_LOADCOPY).

The database manager passes operation to the db2ACSBeginOperation() function call.

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSBeginOperation(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

If operation is DB2ACS_OP_CREATE or DB2ACS_OP_READ, then the database manager also
populates the following field:

 pControlBlock->operation

The information contained within pControlBlock->operation is only valid within the context of a
particular Db2 ACS operation. pControlBlock->operation will be set during
db2ACSBeginOperation(), and will remain unchanged until db2ACSEndOperation() returns.
Neither the database manager nor the Db2 ACS API driver should reference pControlBlock-
>operation outside the scope of a Db2 ACS operation.

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

468 IBM Db2 V11.5: Data Recovery and High Availability

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 32. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_OPTIONS The database manager specified
invalid options.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

None.

db2ACSEndOperation - End a Db2 Advanced Copy Services (ACS) operation
Ends a Db2 Advanced Copy Services (ACS) operation.

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Operation End
 * == */
db2ACS_RC db2ACSEndOperation(
 db2ACS_EndAction endAction,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
endAction

Data type: db2ACS_EndAction.

endAction is a bitmask indicating how the Db2 ACS API driver should end the Db2 ACS operation.

Values:

Chapter 2. Data recovery 469

 DB2ACS_END_COMMIT
 DB2ACS_END_ABORT

The database manager passes endAction to the db2ACSEndOperation() function call.

pControlBlock
Data type: db2ACS_CB

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSEndOperation(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 33. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_COMMIT_FAILED The Db2 ACS API driver could not
commit a transaction.

DB2ACS_RC_ABORT_FAILED The database manager attempted
to abort a Db2 ACS operation, but
the attempt to abort failed.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

470 IBM Db2 V11.5: Data Recovery and High Availability

Usage notes

If the database manager passes DB2ACS_END_ABORT as the endAction parameter, the result should be
that the snapshot backup objects are deleted.

db2ACSBeginQuery - begin a query about snapshot backup objects
Begins a Db2 Advanced Copy Services (ACS) query operation about snapshot backup objects that are
available to be used for restore operations.

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSBeginQuery(
 db2ACS_QueryInput * pQueryInput,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pQueryInput

Data type: db2ACS_QueryInput *

db2ACS_QueryInput has the same fields as db2ACS_ObjectInfo. db2ACS_ObjectInfo contains
information about object created using the Db2 Advanced Copy Services (ACS) API.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

Before calling db2ACSBeginQuery(), the database manager populates the fields of pQueryInput.

The Db2 ACS API driver must support the use of the following wildcards in the query:

• DB2ACS_WILDCARD in string fields
• DB2ACS_ANY_PARTITIONNUM for database partition fields
• DB2ACS_ANY_UINT32 for 32-bit unsigned integer (Uint32) fields

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSBeginQuery(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Chapter 2. Data recovery 471

Return Codes

Table 34. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

db2ACSBeginQuery() does not return any query data.

db2ACSGetNextObject - list next snapshot backup object available to use for restore
Returns the next item in a list of snapshot backup objects that are available to be used for a restore
operation.

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSGetNextObject(
 db2ACS_QueryOutput * pQueryOutput,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

472 IBM Db2 V11.5: Data Recovery and High Availability

Parameters
pQueryOutput

Data type: db2ACS_QueryOutput *

db2ACS_QueryOutput contains query result information about snapshot backup objects.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pQueryOutput before returning.

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSGetNextObject(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 35. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

Chapter 2. Data recovery 473

Table 35. Return codes (continued)

Return code Description Notes

DB2ACS_RC_OBJ_NOT_FOUND The Db2 ACS API driver could not
find the snapshot backup object
specified by the database manager.

The function call didn't fail, but
there are no snapshot backup
objects that match the criteria
passed to db2ACSBeginQuery().

DB2ACS_RC_END_OF_DATA The Db2 ACS API driver cannot find
any more snapshot backup objects.

The function call didn't fail, but
there are no more snapshot backup
objects that match the criteria
passed to db2ACSBeginQuery().

DB2ACS_RC_MORE_DATA There is more data to be transferred
from the storage location to the
database manager.

Information about a snapshot
backup object that matches the
criteria passed to
db2ACSBeginQuery() is returned,
and there are more snapshot
backup objects that match the
criteria passed to
db2ACSBeginQuery().

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

The database manager must call db2ACSBeginQuery() before calling db2ACSGetNextObject(). The
database manager specifies the search criteria in the db2ACS_QueryInput parameter passed to
db2ACSBeginQuery().

db2ACSGetNextObject() returns information about one snapshot backup object that matches the
search criteria passed to db2ACSBeginQuery(). If db2ACSGetNextObject() returns
DB2ACS_RC_MORE_DATA, the database manager can call db2ACSGetNextObject() again to receive
information about another snapshot backup object that matches the search criteria. If
db2ACSGetNextObject() returns DB2ACS_RC_END_OF_DATA, there are no more snapshot backup
objects that match the search criteria.

db2ACSEndQuery - end a query about snapshot backup objects
The database manager uses the Db2 Advanced Copy Services (ACS) API functions
db2ACSBeginQuery() and db2ACSGetNextObject() to query about snapshot backup objects that
are available to use for restore operations. db2ACSEndQuery() terminates that Db2 ACS query session.

Include file

db2ACSApi.h

474 IBM Db2 V11.5: Data Recovery and High Availability

Syntax and data structures

db2ACS_RC db2ACSEndQuery(
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pControlBlock

Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSEndQuery(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 36. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

Chapter 2. Data recovery 475

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

The database manager cannot call db2ACSGetNextObject() again on this Db2 ACS session without
first calling db2ACSBeginQuery() again.

db2ACSSnapshot - perform a Db2 Advanced Copy Services (ACS) operation
Performs a Db2 Advanced Copy Services (ACS) operation.

Include file

db2ACSApi.h

Syntax and data structures

typedef union db2ACS_ReadList
{
 db2ACS_GroupList group;
} db2ACS_ReadList;

db2ACS_RC db2ACSSnapshot(
 db2ACS_Action action,
 db2ACS_ObjectID objectID,
 db2ACS_ReadList * pReadList,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
action

Data type: db2ACS_Action

The type of Db2 ACS action to perform. Values:

 DB2ACS_ACTION_WRITE
 DB2ACS_ACTION_READ_BY_OBJECT
 DB2ACS_ACTION_READ_BY_GROUP

The database manager passes action in to db2ACSSnapshot().

objectID
Data type: db2ACS_ObjectID

A db2ACS_ObjectID is a unique identifier for each stored object, which is returned by a query to the
storage repository. A db2ACS_ObjectID is guaranteed to be unique and persistent only within the
timeframe of a single Db2 ACS session.

If the database manager specified DB2ACS_OP_READ or DB2ACS_OP_DELETE as operation in the
call to db2ACSBeginOperation(), then the database manager passes the value for objectID in to
db2ACSSnapshot().

pReadList
Data type: db2ACS_ReadList *

476 IBM Db2 V11.5: Data Recovery and High Availability

db2ACS_ReadList contains a list of groups.

pReadList is only used if action is DB2ACS_ACTION_READ_BY_GROUP.

If action is DB2ACS_ACTION_READ_BY_GROUP, then the database manager is responsible for
allocating memory for and populating the fields of pReadLIst before calling db2ACSSnapshot(),
and for freeing the memory for pReadList afterwards.

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSSnapshot(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 37. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

Chapter 2. Data recovery 477

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

The database manager calls db2ACSBeginOperation() before calling db2ACSPartition(),
db2ACSPrepare(), and then db2ACSSnapshot(). The database manager specifies the type of Db2
ACS operation that the Db2 ACS API driver should perform in the operation parameter in the call to
db2ACSBeginOperation().

db2ACSPartition - group target data for a database partition together
Associates a group identifier with each of the paths listed by the database manager as belonging to a
database partition.

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Partition
 * == */
db2ACS_RC db2ACSPartition(
 db2ACS_PathList * pPathList,
 db2ACS_CreateObjectInfo * pCreateObjInfo,
 db2ACS_CB * PControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pPathList

Data type: db2ACS_PathList

db2ACS_PathList contains a list of database paths, including some extra information about each of
those paths specific to Db2 ACS operations.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The entry field of the db2ACS_PathList structure is an array of elements of type
db2ACS_PathEntry. db2ACS_PathEntry contains information about a database path.

Before calling db2ACSPartition, the database manager populates the following fields of each
db2ACS_PathEntry entry in pPathList:

• path
• type
• toBeExcluded

Every path identified by the database manager as belonging to this database partition is given a group
identifier by the Db2 ACS API driver. The Db2 ACS API driver populates the groupID field of each
db2ACS_PathEntry in pPathList before returning.

pCreateObjInfo
Data type: db2ACS_CreateObjectInfo

478 IBM Db2 V11.5: Data Recovery and High Availability

db2ACS_CreateObjectInfo contains information about the Db2 ACS backup object creation.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The database manager populates the fields of pCreateObjInfo before calling db2ACSPartition.

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSPartition(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 38. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INIT_FAILED The database manager attempted
to initialize a Db2 ACS session, but
the initialization failed.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

Chapter 2. Data recovery 479

Table 38. Return codes (continued)

Return code Description Notes

DB2ACS_RC_OBJ_OUT_OF_SCOPE The database manager attempted
to perform a Db2 ACS operation on
a recovery object that is not
managed by the Db2 ACS API
driver.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

Db2 Advanced Copy Services handles the data on a single database partition atomically. That is: the data
for one database partition is backed up or restored together, and independently of other database
partitions - even when the action is part of an operation involving multiple database partitions.
db2ACSPartition groups database path information for a single database partition together.

The database manager calls db2ACSPartition before calling db2ACSSnapshot. The database
manager will list all the paths associated with this database partition in the pPathList parameter. The
database manager can perform a Db2 ACS operation on a subset of the paths listed in pPathList by
specifying that subset of paths in the pReadList parameter passed to db2ACSSnapshot.

db2ACSVerify - verify that a Db2 Advanced Copy Services (ACS) operation has completed successfully
Verifies that a Db2 Advanced Copy Services (ACS) operation succeeded

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Verify
 * == */
db2ACS_RC db2ACSVerify(
 db2ACS_PostObjectInfo * pPostObjInfo,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pPostObjInfo

Data type: db2ACS_PostObjectInfo

db2ACS_DB2ID is a set of data that can not be known at snapshot backup object creation time, but
which must be maintained in the object repository.

480 IBM Db2 V11.5: Data Recovery and High Availability

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The database manager populates the fields of pPostObjInfo before calling db2ACSVerify.
pPostObjInfo contains information that is relevant after the Db2 ACS operation. For example, after
a successful snapshot backup, pPostObjInfo might contain the first active log file. If there is no
data relevant for after the Db2 ACS operation, then the database manager will set pPostObjInfo to
NULL.

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSVerify(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 39. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

Chapter 2. Data recovery 481

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

If db2ACSVerify returns that a snapshot backup operation succeeded, that means that the recovery
objects generated by the snapshot backup are available to be used for restore operations.

db2ACSDelete - delete recovery objects that were created using Db2 Advanced Copy Services (ACS)
Deletes recovery objects that were created using Db2 Advanced Copy Services (ACS)

Include file

db2ACSApi.h

Syntax and data structures

/* ==
 * Delete
 * == */
db2ACS_RC db2ACSDelete(
 db2ACS_ObjectID objectID,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
objectID

Data type: db2ACS_ObjectID

A db2ACS_ObjectID is a unique identifier for each stored object, which is returned by a query to the
storage repository. A db2ACS_ObjectID is guaranteed to be unique and persistent only within the
timeframe of a single Db2 ACS session.

The database manager can use db2ACSQuery() to obtain a valid objectID to pass to
db2ACSDelete().

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSDelete(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

482 IBM Db2 V11.5: Data Recovery and High Availability

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 40. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful. The specified object is deleted. No
further Db2 ACS operations can be
performed on that object.

DB2ACS_RC_DELETE_FAILED The Db2 ACS API driver could not
successfully delete snapshot
backup objects specified by the
database manager.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_OBJ_NOT_FOUND The Db2 ACS API driver could not
find the snapshot backup object
specified by the database manager.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

When the database manager calls db2ACSDelete, the Db2 ACS API driver deletes the recovery object
identified by objectID.

The database manager calls db2ACSDelete when a user calls db2acsutil with the DELETE parameter.

Chapter 2. Data recovery 483

db2ACSStoreMetaData - store metadata for a recovery object generated using Db2 Advanced Copy
Services (ACS)
Stores metadata about a recovery object that was created using Db2 Advanced Copy Services (ACS)

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSStoreMetaData(
 db2ACS_MetaData * pMetaData,
 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pMetaData

Data type: db2ACS_MetaData

db2ACS_MetaData stores snapshot backup meta data.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The metadata stored in the data field of pMetaData is internal to the database manager, and might
change over time, so the Db2 ACS API driver just treats this data as a binary stream.

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSStoreMetaData(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 41. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

484 IBM Db2 V11.5: Data Recovery and High Availability

Table 41. Return codes (continued)

Return code Description Notes

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

A snapshot backup operation is comprised of several Db2 ACS API function calls such as:
db2ACSInitialize, db2ACSBeginOperation, db2ACSPrepare, and db2ACSSnapshot.
db2ACSStoreMetaData is part of the overall operation too. All of these API calls, including
db2ACSStoreMetaData must succeed for the snapshot backup operation to succeed. If
db2ACSStoreMetaData fails, the recovery object that was generated by the Db2 ACS backup operation
is unusable.

db2ACSRetrieveMetaData - retrieve metadata about a recovery object generated using Db2 Advanced
Copy Services (ACS)
Retrieves metadata about a recovery object that was created using Db2 Advanced Copy Services (ACS)

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSRetrieveMetaData(
 db2ACS_MetaData * pMetaData,
 db2ACS_ObjectID objectID,

Chapter 2. Data recovery 485

 db2ACS_CB * pControlBlock,
 db2ACS_ReturnCode * pRC);

Parameters
pMetaData

Data type: db2ACS_MetaData

db2ACS_MetaData stores snapshot backup meta data.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The metadata stored in the data field of pMetaData is internal to the database manager, and might
change over time, so the Db2 ACS API driver just treats this data as a binary stream.

objectID
Data type: db2ACS_ObjectID

A db2ACS_ObjectID is a unique identifier for each stored object, which is returned by a query to the
storage repository. A db2ACS_ObjectID is guaranteed to be unique and persistent only within the
timeframe of a single Db2 ACS session.

The database manager can use db2ACSQuery() to obtain a valid objectID to pass to
db2ACSRetrieveMetaData().

pControlBlock
Data type: db2ACS_CB *

db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

Before calling db2ACSRetrieveMetaData(), the database manager populates the following fields:

 pControlBlock->handle
 pControlBlock->vendorInfo
 pControlBlock->options

pRC
Data type: db2ACS_ReturnCode *

db2ACS_ReturnCode contains diagnostic information including message text and error codes
specific to the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS
API function call will be recorded in the database manager diagnostic logs.

The database manager allocates the memory for this parameter, and passes a pointer to that
instantiated object to the function. The database manager is responsible for freeing this memory.

The Db2 ACS API driver populates the fields of pRC before returning.

Return Codes

Table 42. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested
an action from the Db2 ACS API
driver that is invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

486 IBM Db2 V11.5: Data Recovery and High Availability

Table 42. Return codes (continued)

Return code Description Notes

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a
storage device handle that is
invalid.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage
device, such as a tape drive.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver
encountered an error resulting from
input or output operations.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

DB2ACS_RC_OBJ_NOT_FOUND The Db2 ACS API driver could not
find the snapshot backup object
specified by the database manager.

The Db2 ACS API driver
encountered an error. The database
manager cannot use the Db2 ACS
API session.

If the Db2 ACS API driver encounters an error, the driver might abort a Db2 ACS operation. The Db2 ACS
session cannot be used for any action other than the following:

• If a call to db2ACSBeginQuery() previously succeeded the database manager can call
db2ACSEndQuery()

• If a call to db2ACSBeginOperation() previously succeeded, the database manager can call
db2ACSEndOperation()

• If a call to db2ACSInitialize() previously succeeded, the database manager can call
db2ACSTerminate()

For more information about Db2 ACS API return codes, see the topic: “Db2 Advanced Copy Services (ACS)
API return codes” on page 500.

Usage notes

None.

Db2 Advanced Copy Services (ACS) API data structures
To call Db2 Advanced Copy Services (ACS) API functions, you must use Db2 ACS API data structures.

db2ACS_BackupDetails Db2 Advanced Copy Services (ACS) API data structure
db2ACS_BackupDetails contains information about a snapshot backup operation.

/* -- */
typedef struct db2ACS_BackupDetails
{
 /* A traditional Db2 backup can consist of multiple objects (logical tapes),
 * where each object is uniquely numbered with a non-zero natural number.
 * --- */
 db2Uint32 sequenceNum;

 char imageTimestamp[SQLU_TIME_STAMP_LEN + 1];
} db2ACS_BackupDetails;

sequenceNum
Data type: db2Uint32.

Identifies a backup object by its unique number.

Chapter 2. Data recovery 487

imageTimestamp
Data type: char[].

A character string of length SQLU_TIME_STAMP_LEN + 1.

db2ACS_CB Db2 Advanced Copy Services (ACS) API data structure
db2ACS_CB contains fundamental information required to initialize and terminate a Db2 ACS session.

/* ==
 * Db2 Backup Adapter Control Block
 * == */
typedef struct db2ACS_CB
{
 /* Output: Handle value for this session.
 * --- */
 db2Uint32 handle;
 db2ACS_VendorInfo vendorInfo;

 /* Input fields and parameters.
 * --- */
 db2ACS_SessionInfo session;
 db2ACS_Options options;

 /* Operation info is optional, possibly NULL, and is only ever valid
 * within the context of an operation (from call to BeginOperation() until
 * the EndOperation() call returns).
 *
 * The operation info will be present during creation or read operations
 * of snapshot and backup objects.
 * --- */
 db2ACS_OperationInfo * operation;
} db2ACS_CB;

handle
Data type: db2Uint32.

A handle to reference the Db2 ACS session.

vendorInfo
Data type: db2ACS_VendorInfo.

db2ACS_VendorInfo contains information about the Db2 ACS API driver.

session
Data type: db2ACS_SessionInfo.

db2ACS_SessionInfo contains all the information about the Db2 ACS session.

options
Data type: db2ACS_Options.

db2ACS_Options specifies options to be used for a Db2 ACS operation. This contents of this string is
specific to the Db2 ACS API driver.

operation
Data type: db2ACS_OperationInfo *.

db2ACS_OperationInfo contains information about a snapshot backup operation.

db2ACS_CreateObjectInfo Db2 Advanced Copy Services (ACS) API data structure
db2ACS_CreateObjectInfo contains information about the Db2 ACS backup object creation.

/* ==
 * Object Creation Parameters.
 * == */
typedef struct db2ACS_CreateObjectInfo
{
 db2ACS_ObjectInfo object;
 db2ACS_DB2ID db2ID;

 /* ---

488 IBM Db2 V11.5: Data Recovery and High Availability

 * The following fields are optional information for the database manager
 * to use as it sees fit.
 * --- */

 /* Historically both the size estimate and management
 * class parameters have been used by the TSM client API for traditional
 * backup objects, log archives, and load copies, but not for snapshot
 * backups.
 * --- */
 db2Uint64 sizeEstimate;
 char mgmtClass[DB2ACS_MAX_MGMTCLASS_SZ + 1];

 /* The appOptions is a copy of the iOptions field of flags passed to Db2's
 * db2Backup() API when this execution was initiated. This field will
 * only contain valid data when creating a backup or snapshot object.
 * --- */
 db2Uint32 appOptions;
} db2ACS_CreateObjectInfo;

object
Data type: db2ACS_ObjectInfo

db2ACS_ObjectInfo contains information about object created using the Db2 Advanced Copy
Services (ACS) API.

db2ID
Data type: db2ACS_DB2ID

db2ACS_DB2ID identifies the IBM Data Server.

sizeEstimate
Data type: db2Uint64.

An estimate of the size of backup objects being created. This estimate does not apply to log archives,
load copies, or snapshot backups objects.

mgmtClass
Data type: db2ACS_MgmtClass.

A character string of length db2ACS_MAX_MGMTCLASS_SZ + 1.

This does not apply to snapshot backup objects.

appOptions
Data type: db2Uint32.

A copy of the backup options passed to the backup command that initiated the snapshot backup.

db2ACS_DB2ID Db2 Advanced Copy Services (ACS) API data structure
db2ACS_DB2ID identifies the IBM Data Server.

/* ==
 * Db2 Data Server Identifier
 * == */
typedef struct db2ACS_DB2ID
{
 db2Uint32 version;
 db2Uint32 release;
 db2Uint32 level;
 char signature[DB2ACS_SIGNATURE_SZ + 1];
} db2ACS_DB2ID;

version
Data type: db2Uint32.

Version of IBM Data Server. For example: 9

release
Data type: db2Uint32.

Release level of IBM Data Server. For example: 5

Chapter 2. Data recovery 489

level
Data type: db2Uint32.

Level identifier for the IBM Data Server. For example: 0

signature
Data type: char[].

A character string of length DB2ACS_SIGNATURE_SZ + 1. For example: "SQL09050"

db2ACS_GroupList Db2 Advanced Copy Services (ACS) API data structure
db2ACS_GroupList contains a list of groups to be included in the snapshot backup operation.

/* ==
 * Snapshot Group List
 *
 * This is an array of size 'numGroupIDs', indicating the set of groups that
 * are to be included in the snapshot operation.
 * == */
typedef struct db2ACS_GroupList
{
 db2Uint32 numGroupIDs;
 db2Uint32 * id;
} db2ACS_GroupList;

numGroupIDs
Data type: db2Uint32.

Number of groups in the array id.

id
Data type: db2Uint32 *.

An array of group identifiers. The groups identified are the groups (or lists of paths) to be included in
the snapshot backup operation.

db2ACS_LoadcopyDetails Db2 Advanced Copy Services (ACS) API data structure
db2ACS_LoadcopyDetails contains information about a load copy operation.

/* -- */
typedef struct db2ACS_LoadcopyDetails
{
 /* Just like the BackupDetails, a Db2 load copy can consist of multiple
 * objects (logical tapes), where each object is uniquely numbered with a
 * non-zero natural number.
 * --- */
 db2Uint32 sequenceNum;

 char imageTimestamp[SQLU_TIME_STAMP_LEN + 1];
} db2ACS_LoadcopyDetails;

sequenceNum
Data type: db2Uint32.

Identifies a backup object by its unique number.

imageTimestamp
Data type: char[].

A character string of length SQLU_TIME_STAMP_LEN + 1

db2ACS_LogDetails Db2 Advanced Copy Services (ACS) API data structure
db2ACS_LogDetails contains information that identifies a particular database log file.

/* -- */
typedef struct db2ACS_LogDetails
{
 db2Uint32 fileID;

490 IBM Db2 V11.5: Data Recovery and High Availability

 db2Uint32 chainID;
} db2ACS_LogDetails;

fileID
Data type: db2Uint32.

A number which is the file name of the database log file.

chainID
Data type: db2Uint32.

A number which identifies the database log file chain to which the database log file fileID belongs.

db2ACS_ObjectInfo Db2 Advanced Copy Services (ACS) API data structure
db2ACS_ObjectInfo contains information about object created using the Db2 Advanced Copy Services
(ACS) API.

/* ==
 * Object Description and Associated Information.
 *
 * This structure is used for both input and output, and its contents define
 * the minimum information that must be recorded about any object created
 * through this interface.
 * == */
typedef struct db2ACS_ObjectInfo
{
 db2ACS_ObjectType type;
 SQL_PDB_NODE_TYPE dbPartitionNum;

 char db[SQL_DBNAME_SZ + 1];
 char instance[DB2ACS_MAX_OWNER_SZ + 1];
 char host[SQL_HOSTNAME_SZ + 1];
 char owner[DB2ACS_MAX_OWNER_SZ + 1];

 union
 {
 db2ACS_BackupDetails backup;
 db2ACS_LogDetails log;
 db2ACS_LoadcopyDetails loadcopy;
 db2ACS_SnapshotDetails snapshot;
 } details;
} db2ACS_ObjectInfo;

type
Data type: db2ACS_ObjectType.

Specifies the snapshot backup objects type. Values:

DB2ACS_OBJTYPE_ALL
DB2ACS_OBJTYPE_BACKUP
DB2ACS_OBJTYPE_LOG
DB2ACS_OBJTYPE_LOADCOPY
DB2ACS_OBJTYPE_SNAPSHOT

DB2ACS_OBJTYPE_ALL can only be used as a filter for queries. There are no objects of type 0.

dbPartitionNum
Data type: SQL_PDB_NODE_TYPE.

An identifier for this database partition.

db
Data type: char[].

A character string of length SQL_DBNAME_SZ + 1.

instance
Data type: char[].

A character string of length DB2ACS_MAX_OWNER_SZ + 1.

Chapter 2. Data recovery 491

host
Data type: char[].

A character string of length SQL_HOSTNAME_SZ + 1.

owner
Data type: char[].

A character string of length DB2ACS_MAX_OWNER_SZ + 1.

details
backup

Data type: db2ACS_BackupDetails

db2ACS_BackupDetails contains information about a snapshot backup operation.

log
Data type: db2ACS_LogDetails

db2ACS_LogDetails contains information that identifies a particular database log file.

loadcopy
Data type: db2ACS_LoadcopyDetails

db2ACS_LoadcopyDetails contains information about a load copy operation.

snapshot
Data type: db2ACS_SnapshotDetails

db2ACS_SnapshotDetails contains information about a snapshot backup operation.

db2ACS_ObjectStatus Db2 Advanced Copy Services (ACS) API data structure
db2ACS_ObjectStatus contains information about the status or progress of a snapshot backup
operation, or the status or usability of a snapshot backup object.

typedef struct db2ACS_ObjectStatus
{
 /* The total and completed bytes refer only to the ACS snapshot backup
 * itself, not to the progress of any offloaded tape backup.
 *
 * A bytesTotal of 0 indicates that the progress could not be determined.
 * --- */
 db2Uint64 bytesCompleted;
 db2Uint64 bytesTotal;
 db2ACS_ProgressState progressState;
 db2ACS_UsabilityState usabilityState;
} db2ACS_ObjectStatus;

bytesCompleted
Data type: db2Uint64.

The amount of the snapshot backup that has completed, in bytes.

bytesTotal
Data type: db2Uint64.

The size of the completed snapshot backup, in bytes.

progressState
Data type: db2ACS_ProgressState.

The state of the snapshot backup operation. Values:

DB2ACS_PSTATE_UNKNOWN
DB2ACS_PSTATE_IN_PROGRESS
DB2ACS_PSTATE_SUCCESSFUL
DB2ACS_PSTATE_FAILED

492 IBM Db2 V11.5: Data Recovery and High Availability

usabilityState
Data type: db2ACS_UsabilityState.

The state of the snapshot backup object, how the snapshot backup object can be used. Values:

DB2ACS_USTATE_UNKNOWN
DB2ACS_USTATE_LOCALLY_MOUNTABLE
DB2ACS_USTATE_REMOTELY_MOUNTABLE
DB2ACS_USTATE_REPETITIVELY_RESTORABLE
DB2ACS_USTATE_DESTRUCTIVELY_RESTORABLE
DB2ACS_USTATE_SWAP_RESTORABLE
DB2ACS_USTATE_PHYSICAL_PROTECTION
DB2ACS_USTATE_FULL_COPY
DB2ACS_USTATE_DELETED
DB2ACS_USTATE_FORCED_MOUNT
DB2ACS_USTATE_BACKGROUND_MONITOR_PENDING
DB2ACS_USTATE_TAPE_BACKUP_PENDING
DB2ACS_USTATE_TAPE_BACKUP_IN_PROGRESS
DB2ACS_USTATE_TAPE_BACKUP_COMPLETE

db2ACS_OperationInfo Db2 Advanced Copy Services (ACS) API data structure
db2ACS_OperationInfo contains information about a snapshot backup operation.

/* ==
 * Operation Info
 *
 * The information contained within this structure is only valid within the
 * context of a particular operation. It will be valid at the time
 * BeginOperation() is called, and will remain unchanged until EndOperation()
 * returns, but must not be referenced outside the scope of an operation.
 * == */
typedef struct db2ACS_OperationInfo
{
 db2ACS_SyncMode syncMode;

 /* List of database and backup operation partitions.
 *
 * For details, refer to the db2ACS_PartitionList definition.
 * --- */
 db2ACS_PartitionList * dbPartitionList;
} db2ACS_OperationInfo;

syncMode
Data type: db2ACS_SyncMode.

The level of synchronization between the backup operations on separate database partitions.

Values:

DB2ACS_SYNC_NONE
No synchronization between related operations on multiple database partitions. Used during
operations which do not make use of any synchronization between the multiple database
partitions.

DB2ACS_SYNC_SERIAL
Used when performing concurrent snapshot backup operations on multiple database partitions.
Each database partition will have its input and output (IO) suspended when the snapshot backup
operation is issued, and then the IO on the database partitions is resumed serially, not
concurrently.

DB2ACS_SYNC_PARALLEL
Performing a snapshot operation on multiple partitions concurrently. Once all database partitions
that are involved in the snapshot backup operation have completed preparations for the snapshot
backup operation, input and output (IO) will be suspended on all of the database partitions. The

Chapter 2. Data recovery 493

remaining snapshot backup steps will take place concurrently on all of the involved database
partitions.

dbPartitionList
Data type: db2ACS_PartitionList *.

db2ACS_PartitionList contains information about the database partitions that are in the
database and that are involved in a Db2 ACS operation.

db2ACS_Options Db2 Advanced Copy Services (ACS) API data structure
db2ACS_Options specifies options to be used for a Db2 ACS operation. This contents of this string is
specific to the Db2 ACS API driver.

/* ==
 * Db2 Backup Adapter User Options
 * == */
typedef struct db2ACS_Options
{
 db2Uint32 size;
 void * data;
} db2ACS_Options;

size
Data type: db2Uint32.

Size of data, in bytes.

data
Data type: void *.

Pointer to a block of memory that contains the options.

db2ACS_PartitionEntry Db2 Advanced Copy Services (ACS) API data structure
db2ACS_PartitionEntry is an element of a db2ACS_PartitionList.

typedef struct db2ACS_PartitionEntry
{
 SQL_PDB_NODE_TYPE num;
 char host[SQL_HOSTNAME_SZ + 1];
} db2ACS_PartitionEntry;

num
Data type: SQL_PDB_NODE_TYPE.

An identifier for this database partition entry.

host
Data type: char[].

A character string of length SQL_HOSTNAME_SZ + 1.

db2ACS_PartitionList Db2 Advanced Copy Services (ACS) API data structure
db2ACS_PartitionList contains information about the database partitions that are in the database
and that are involved in a Db2 ACS operation.

typedef struct db2ACS_PartitionList
{
 db2Uint64 numPartsInDB;
 db2Uint64 numPartsInOperation;
 db2ACS_PartitionEntry * partition;
} db2ACS_PartitionList;

numPartsInDB
Data type: db2Uint64.

The number of database partitions in the database.

494 IBM Db2 V11.5: Data Recovery and High Availability

numPartsInOperation
Data type: db2Uint64.

The number of database partitions involved in the Db2 ACS operation.

partition
Data type: db2ACS_PartitionEntry *.

db2ACS_PartitionEntry is an element of a db2ACS_PartitionList.

db2ACS_PathEntry Db2 Advanced Copy Services (ACS) API data structure
db2ACS_PathEntry contains information about a database path.

typedef struct db2ACS_PathEntry
{
 /* INPUT: The path and type will be provided by the database server, as well
 * as a flag indicating if the path is to be excluded from the backup.
 * --- */
 char path[DB2ACS_MAX_PATH_SZ + 1];
 db2ACS_PathType type;
 db2Uint32 toBeExcluded;

 /* OUTPUT: The group ID is to be provided by the backup adapter for use by
 * the Db2 server. The group ID will be used during with snapshot
 * operations as an indication of which paths are dependent and must
 * be included together in any snapshot operation. Unique group IDs
 * indicate that the paths in those groups are independent for the
 * purposes of snapshot operations.
 * --- */
 db2Uint32 groupID;
} db2ACS_PathEntry;

path
Data type: char[].

A character string of length DB2ACS_MAX_PATH_SZ + 1.

type
Data type: db2ACS_PathType.

The type of path. Values:

DB2ACS_PATH_TYPE_UNKNOWN
DB2ACS_PATH_TYPE_LOCAL_DB_DIRECTORY
DB2ACS_PATH_TYPE_DBPATH
DB2ACS_PATH_TYPE_DB_STORAGE_PATH
DB2ACS_PATH_TYPE_TBSP_CONTAINER
DB2ACS_PATH_TYPE_TBSP_DIRECTORY
DB2ACS_PATH_TYPE_TBSP_DEVICE
DB2ACS_PATH_TYPE_LOGPATH
DB2ACS_PATH_TYPE_MIRRORLOGPATH

toBeExcluded
Data type: db2Uint32.

A flag indicating whether to include the given path in the snapshot backup. Values:

• 0 - include the path in the snapshot backup
• 1 - do not include the path in the snapshot backup

groupID
Data type: db2Uint32.

A group identifier.

Chapter 2. Data recovery 495

db2ACS_PathList Db2 Advanced Copy Services (ACS) API data structure
db2ACS_PathList contains a list of database paths, including some extra information about each of
those paths specific to Db2 ACS operations.

/* ==
 * Snapshot File List
 *
 * This is an array of 'numEntries' db2ACS_PathEntry's, where each path entry is
 * a path to some storage on the Db2 server which is in use by the current
 * database.
 * == */

typedef struct db2ACS_PathList
{
 db2Uint32 numEntries;
 db2ACS_PathEntry * entry;
} db2ACS_PathList;

numEntries
Data type: db2Uint32.

The number of path entries in the entry array.

entry
Data type: db2ACS_PathEntry.

db2ACS_PathEntry contains information about a database path.

db2ACS_PostObjectInfo Db2 Advanced Copy Services (ACS) API data structure
db2ACS_DB2ID is a set of data that can not be known at snapshot backup object creation time, but which
must be maintained in the object repository.

/* ==
 * The PostObjectInfo is a set of data that can not be known at object
 * creation time, but which must be maintained in the object repository. This
 * is an optional field on the Verify() call, which may be NULL if there are
 * no post-operation updates to be made.
 * == */
typedef struct db2ACS_PostObjectInfo
{
 /* The first active log will only be valid when creating a backup or
 * snapshot object. It will indicate the file number and chain id of the
 * first log required for recovery using this object.
 * --- */
 db2ACS_LogDetails firstActiveLog;
} db2ACS_PostObjectInfo;

firstActiveLog
Data type: db2ACS_LogDetails.

db2ACS_LogDetails contains information that identifies a particular database log file.

db2ACS_QueryInput and db2ACS_QueryOutput Db2 Advanced Copy Services (ACS) API data structures
db2ACS_QueryInput contains identifying information for an object about which you are querying.
db2ACS_QueryOutput contains query result information about snapshot backup objects.

/* ==
 * Unique Querying.
 *
 * When using this structure as query input, to indicate the
 * intention to supply a 'wildcard' search criteria, Db2 will supply:
 *
 * -- character strings as "*".
 * -- numeric values as (-1), cast as the appropriate signed or unsigned
 * type.
 * == */

typedef struct db2ACS_ObjectInfo db2ACS_QueryInput;

typedef struct db2ACS_QueryOutput

496 IBM Db2 V11.5: Data Recovery and High Availability

{
 db2ACS_ObjectID objectID;
 db2ACS_ObjectInfo object;
 db2ACS_PostObjectInfo postInfo;
 db2ACS_DB2ID db2ID;
 db2ACS_ObjectStatus status;

 /* Size of the object in bytes.
 * -- */
 db2Uint64 objectSize;

 /* Size of the metadata associated with the object, if any, in bytes.
 * -- */
 db2Uint64 metaDataSize;

 /* The creation time of the object is a 64bit value with a definition
 * equivalent to an ANSI C time_t value (seconds since the epoch, GMT).
 *
 * This field is equivalent to the file creation or modification time in
 * a traditional filesystem. This should be created and stored
 * automatically by the BA subsystem, and a valid time value should be
 * returned with object query results, for all object types.
 * -- */
 db2Uint64 createTime;
} db2ACS_QueryOutput;

objectID
Data type: db2ACS_ObjectID.

A db2ACS_ObjectID is a unique identifier for each stored object, which is returned by a query to the
storage repository. A db2ACS_ObjectID is guaranteed to be unique and persistent only within the
timeframe of a single Db2 ACS session.

object
Data type: db2ACS_ObjectInfo

db2ACS_ObjectInfo contains information about object created using the Db2 Advanced Copy
Services (ACS) API.

postInfo
Data type: db2ACS_PostObjectInfo.

db2ACS_DB2ID is a set of data that can not be known at snapshot backup object creation time, but
which must be maintained in the object repository.

db2ID
Data type: db2ACS_DB2ID.

db2ACS_DB2ID identifies the IBM Data Server.

status
Data type: db2ACS_ObjectStatus.

db2ACS_ObjectStatus contains information about the status or progress of a snapshot backup
operation, or the status or usability of a snapshot backup object.

objectSize
Data type: db2Uint64.

Size of the object in bytes.

metaDataSize
Data type: db2Uint64.

Size of the metadata associated with the object, if any, in bytes.

createTime
Data type: db2Uint64.

The creation time of an object. The value of createTime is equivalent to an ANSI C time_t value.

Chapter 2. Data recovery 497

db2ACS_ReadList Db2 Advanced Copy Services (ACS) API data structure
db2ACS_ReadList contains a list of groups.

/* The ReadList will only be used for snapshots where the action is READ, and
 * where one of the granularity modifiers other than BY_OBJ has been specified.
 * In the typical usage scenario of (READ | BY_OBJ) the ReadList parameter
 * should be ignored.
 *
 * When the action is DB2ACS_ACTION_BY_GROUP the union is to be interpreted
 * as a group list.
 * -- */
typedef union db2ACS_ReadList
{
 db2ACS_GroupList group;
} db2ACS_ReadList;

group
Data type: db2ACS_GroupList.

db2ACS_GroupList contains a list of groups to be included in the snapshot backup operation.

db2ACS_ReturnCode Db2 Advanced Copy Services (ACS) API data structure
db2ACS_ReturnCode contains diagnostic information including message text and error codes specific to
the storage hardware. The contents of a db2ACS_ReturnCode parameter for a Db2 ACS API function call
will be recorded in the database manager diagnostic logs.

/* ==
 * Storage Adapter Return Code and Diagnostic Data.
 *
 * These will be recorded in the Db2 diagnostic logs, but are intended to be
 * internal return and reason codes from the storage layers which can be used
 * in conjunction with the DB2ACS_RC to provide more detailed diagnostic info.
 * == */
typedef struct db2ACS_ReturnCode
{
 int returnCode;
 int reasonCode;
 char description[DB2ACS_MAX_COMMENT_SZ + 1];
} db2ACS_ReturnCode;

returnCode
Data type: int.

Return code specific to the storage hardware.

reasonCode
Data type: int.

Reason code specific to the storage hardware.

description
Data type: char[].

A character string of length DB2ACS_MAX_COMMENT_SZ + 1.

db2ACS_SessionInfo Db2 Advanced Copy Services (ACS) API data structure
db2ACS_SessionInfo contains all the information about the Db2 ACS session.

/* ==
 * Session Info
 * == */
typedef struct db2ACS_SessionInfo
{
 db2ACS_DB2ID db2ID;

 /* Fields identifying the backup session originator.
 * --- */
 SQL_PDB_NODE_TYPE dbPartitionNum;
 char db[SQL_DBNAME_SZ + 1];
 char instance[DB2ACS_MAX_OWNER_SZ + 1];

498 IBM Db2 V11.5: Data Recovery and High Availability

 char host[SQL_HOSTNAME_SZ + 1];
 char user[DB2ACS_MAX_OWNER_SZ + 1];
 char password[DB2ACS_MAX_PASSWORD_SZ + 1];

 /* The fully qualified ACS vendor library name to be used.
 * --- */
 char libraryName[DB2ACS_MAX_PATH_SZ + 1];
} db2ACS_SessionInfo;

db2ID
Data type: db2ACS_DB2ID

db2ACS_DB2ID identifies the IBM Data Server.

dbPartitionNum
Data type: SQL_PDB_NODE_TYPE

The unique, numeric identifier for a database partition.

db
Data type: char[].

A character string of length SQL_DBNAME_SZ + 1.

instance
Data type: char[].

A character string of length DB2ACS_MAX_OWNER_SZ + 1.

host
Data type: char[].

A character string of length SQL_HOSTNAME_SZ + 1.

user
Data type: char[].

A character string of length DB2ACS_MAX_OWNER_SZ + 1.

password
Data type: char[].

A character string of length DB2ACS_MAX_PASSWORD_SZ + 1.

libraryName
Data type: char[].

A character string of length DB2ACS_MAX_PATH_SZ + 1.

db2ACS_SnapshotDetails Db2 Advanced Copy Services (ACS) API data structure
db2ACS_SnapshotDetails contains information about a snapshot backup operation.

typedef struct db2ACS_SnapshotDetails
{
 char imageTimestamp[SQLU_TIME_STAMP_LEN + 1];
} db2ACS_SnapshotDetails;

imageTimestamp
Data type: char[].

A character string of length SQLU_TIME_STAMP_LEN + 1.

db2ACS_MetaData Db2 Advanced Copy Services (ACS) API data structure
db2ACS_MetaData stores snapshot backup meta data.

/* ==
 * The metadata structure itself is internal to Db2 and is to be treated by
 * the storage interface as an unstructured block of data of the given size.
 * == */
typedef struct db2ACS_MetaData

Chapter 2. Data recovery 499

{
 db2Uint64 size;
 void * data;
} db2ACS_MetaData;

size
Data type: db2Uint32.

Size of data, in bytes.

data
Data type: void *.

A pointer to a block of memory that the database manager uses to store snapshot backup metadata.

db2ACS_VendorInfo Db2 Advanced Copy Services (ACS) API data structure
db2ACS_VendorInfo contains information about the Db2 ACS API driver.

/* ==
 * Storage Vendor Identifier
 * == */
typedef struct db2ACS_VendorInfo
{
 void * vendorCB; /* Vendor control block */
 db2Uint32 version; /* Current version */
 db2Uint32 release; /* Current release */
 db2Uint32 level; /* Current level */
 char signature[DB2ACS_MAX_VENDORID_SZ + 1];
} db2ACS_VendorInfo;

vendorCB
Data type: void *.

Pointer to a control block that is specific to the Db2 ACS API driver.

version
Data type: db2Uint32.

Version of the Db2 ACS API driver.

release
Data type: db2Uint32.

Release level of the Db2 ACS API driver.

level
Data type: db2Uint32.

Level identifier for the Db2 ACS API driver.

signature
Data type: db2ACS_VendorSignature.

A character string of length DB2ACS_MAX_VENDORID_SZ + 1.

Db2 Advanced Copy Services (ACS) API return codes
Db2 Advanced Copy Services (ACS) API functions return a defined set of possible return codes.

Table 43. Db2 Advanced Copy Services (ACS) API return codes

Return code Description

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_LINK_EXIST The session was previously activated.

DB2ACS_RC_COMM_ERROR There was a communication error with a storage
device, such as a tape drive.

500 IBM Db2 V11.5: Data Recovery and High Availability

Table 43. Db2 Advanced Copy Services (ACS) API return codes (continued)

Return code Description

DB2ACS_RC_INV_VERSION The version of the database manager's Db2 ACS library
and the version of the Db2 ACS API driver are not
compatible.

DB2ACS_RC_INV_ACTION The database manager requested an action from the
Db2 ACS API driver that is invalid.

DB2ACS_RC_NO_DEV_AVAIL There is currently no storage device, such as a tape
drive, available to use.

DB2ACS_RC_OBJ_NOT_FOUND The Db2 ACS API driver could not find the snapshot
backup object specified by the database manager.

DB2ACS_RC_OBJS_FOUND The Db2 ACS API driver found more than one snapshot
backup object that matches the specification given by
the database manager.

DB2ACS_RC_INV_USERID The database manager passed an invalid user id to the
Db2 ACS API driver.

DB2ACS_RC_INV_PASSWORD The database manager passed an invalid password to
the Db2 ACS API driver.

DB2ACS_RC_INV_OPTIONS The database manager specified invalid options.

DB2ACS_RC_INIT_FAILED The database manager attempted to initialize a Db2
ACS session, but the initialization failed.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a storage device handle
that is invalid.

DB2ACS_RC_BUFF_SIZE The database manager specified a buffer size that is
invalid.

DB2ACS_RC_END_OF_DATA The Db2 ACS API driver cannot find any more
snapshot backup objects.

DB2ACS_RC_END_OF_TAPE The storage device unexpectedly reached the end of
tape backup media.

DB2ACS_RC_DATA_RESEND A storage device, such as a tape drive, requested that
the database manager resend the most recent buffer
of data.

DB2ACS_RC_COMMIT_FAILED The Db2 ACS API driver could not commit a
transaction.

DB2ACS_RC_DEV_ERROR There was an error with a storage device, such as a
tape drive.

DB2ACS_RC_WARNING The storage hardware returned a warning. Look in the
database manager diagnostic logs for more
information.

DB2ACS_RC_LINK_NOT_EXIST The session was not activated previously.

DB2ACS_RC_MORE_DATA There is more data to be transferred from the storage
location to the database manager.

DB2ACS_RC_ENDOFMEDIA_NO_DATA The storage device reached the end of the storage
media without finding any data.

Chapter 2. Data recovery 501

Table 43. Db2 Advanced Copy Services (ACS) API return codes (continued)

Return code Description

DB2ACS_RC_ENDOFMEDIA The storage device reached the end of the storage
media.

DB2ACS_RC_MAX_LINK_GRANT The maximum number of links has been established.
The database manager cannot establish more links.

DB2ACS_RC_IO_ERROR The Db2 ACS API driver encountered an error resulting
from input or output operations.

DB2ACS_RC_DELETE_FAILED The Db2 ACS API driver could not successfully delete
snapshot backup objects specified by the database
manager.

DB2ACS_RC_INV_BKUP_FNAME The database manager specified an invalid filename
for the snapshot backup object.

DB2ACS_RC_NOT_ENOUGH_SPACE The Db2 ACS API driver estimated that there is not
enough storage space to perform a snapshot backup
of the database specified by the database manager.

DB2ACS_RC_ABORT_FAILED The database manager attempted to abort a Db2 ACS
operation, but the attempt to abort failed.

DB2ACS_RC_UNEXPECTED_ERROR The Db2 ACS API driver encountered a severe,
unknown error.

DB2ACS_RC_NO_DATA The Db2 ACS API driver did not return any data to the
database manager.

DB2ACS_RC_OBJ_OUT_OF_SCOPE The database manager attempted to perform a Db2
ACS operation on a recovery object that is not
managed by the Db2 ACS API driver.

DB2ACS_RC_INV_CALL_SEQUENCE The database manager made calls to Db2 ACS API
functions in a sequence that is invalid. For example,
the database manager must call db2ACSInitialize
before calling any other Db2 ACS API function except
db2ACSQueryAPIVersion.

DB2ACS_RC_SHARED_STORAGE_GROUP The database manager attempted to perform a
snapshot operation against a storage object that is
being used by another database or application.

Return codes for customer scripts

The db2ACS_ReturnCode data structure contains diagnostic information (specifically a return code and
message text) that help you determine why an error occurred and what to do about it. This information is
written to the db2diag.log file. You should consult the db2diag.log file because the reason code
returned with the standard message might not be accurate. Table 44 on page 502 contains a list of the
return codes that you might see for snapshot operations using a custom script.

Table 44. Error codes for script-initiated snapshot operations

Return code Error condition User response

1 Memory allocation failed Free up memory on the system.

2 Options missing Provide at least the name of the
script to the library.

502 IBM Db2 V11.5: Data Recovery and High Availability

Table 44. Error codes for script-initiated snapshot operations (continued)

Return code Error condition User response

3 Key not found The backup image presented by
the protocol file is no longer
usable. Move the protocol file
away.

4 Checksum mismatch The backup image presented by
the protocol file is no longer
usable. Move the protocol file
away

5 Meta data read failed The backup image presented by
the protocol file is no longer
usable. Move the protocol file
away

6 Reading of one protocol file failed Ensure that the userid issuing the
operation is allowed to read the
protocol file.

7 Writing to the protocol file failed Ensure that there is enough free
space available in the file system,
and check other circumstances
that can cause the flush to fail.

8 Repository check failed Ensure that the repository path
exists and the userid issuing the
operation can read and write to
this path.

9 Script check failed Ensure that the script exists and
the userid issuing the operation
is allowed to read and execute
the script.

10 Opening of a protocol file
candidate during query, restore,
or delete failed

Check the privileges of all files,
particularly the one reported in
the db2diag.log file.

11 Closing of protocol file failed Ensure that the file system of the
protocol file repository has
enough space.

12 Pipe open failed Ensure that the operating system
has enough resources.

13 Pipe close failed Ensure that the operating system
has enough resources.

14 Script failed with given return
code

Check the return code of the
script; this information can be
found in the db2diag.log file.

15 Wrong object type Rerun the operation.

16 Reading of the options file failed Check the options file.

17 Closing of the options file failed Check the operating system.

18 Wrong query type Rerun the operation.

Chapter 2. Data recovery 503

Table 44. Error codes for script-initiated snapshot operations (continued)

Return code Error condition User response

19 Option length too long Reduce the number of options
that you specify.

504 IBM Db2 V11.5: Data Recovery and High Availability

Index

A
about this book

Data Recovery and High Availability Guide and
Reference v

administration notification log
database restart operations 358
details 274

AIX
backups 289
restores 289

ALTER DATABASE statement
compatibility with online backups 338

ALTER STOGROUP statement
compatibility with online backups 338

alternate servers
examples 35
identifying 33

archive logging
configuration parameters 191
overview 19

archiving
log files

compression 287, 288
on demand 186
overview 181
to tape 187

assisted remote catchup state 208
ASYNC synchronization mode 161
automated HADR cluster

remove 115
automatic backups

enabling 329
sample configuration 169

automatic client reroute
alternate servers 33
connection failures 32
details 30
examples 35
high availability disaster recovery 145
high availability disaster recovery (HADR) 219
limitations 33
roadmap 29
setup 30

automatic incremental restore
limitations 378

automatic maintenance
AUTOMAINT_SET_POLICY procedure 169
AUTOMAINT_SET_POLICYFILE procedure 169
backups 283, 329, 330
configuring 169
policy specification sample 169

automatic reorganization
configuration sample 169

automatic restart
crash recovery 358

automatic statistics collection

automatic statistics collection (continued)
configuration sample 169

autorestart database configuration parameter 148

B
backup

statistics 336
BACKUP DATABASE command

backing up data 322
Db2 pureScale environments 331

backup images 194, 319
backup utility

authorities required 338
displaying information 319
examples 340
monitoring progress 335
overview 319
performance 335
privileges required 338
restrictions 322
troubleshooting 319

backups
automatic 283, 330
CLP examples 340
compression 287
databases

automatic 283, 329, 330
displaying information 319
frequency 285
incremental 375
named pipes 327
offline 285
online 285
operating system restrictions 289
partitioned databases 327
storage considerations 287
tape 325
user exit program 287

blk_log_dsk_ful configuration parameter
overview 171

built-in views
DB_HISTORY

viewing recovery history file entries 307

C
cascading assignment 8
circular logging 18, 191
clients

communication errors 30
clone databases

creating
using different storage group paths 398
using split mirror 132, 133

cluster domain
remove 106

Index 505

cluster domains
database partitions 52
mount points 52
networks 48
overview 46
paths 52

cluster manager utility 93
clustering

heartbeat monitoring 6
Virtual IP address takeover 6

clusters
HACMP 8
IBM PowerHA SystemMirror for AIX 8
managing

high availability disaster recovery (HADR) 160
resource groups 47
resources 47
software 6, 46

command line processor (CLP)
examples

backing up 340
database rebuild sessions 409
redirected restore sessions 392
rollforward sessions 437

commands
db2adutl

cross-node recovery examples 342
upload examples 314

db2cm 93
compression

backup 287
configuration

databases
HADR 155

fault monitor
db2fm command 39
db2fmcu command 39
registry file 38

high availability 138, 148
configuration parameters

auto_del_rec_obj 313
autorestart 358
database logging 170, 171
hadr_peer_window

setting 155
hadr_timeout

setting 155
logarchopt1

cross-node recovery examples 342
vendoropt

cross-node recovery examples 342
configuring cluster

db2cm 97
connections

failures
automatic client reroute 32
parameter setting 155

convert cluster
pacemaker 123, 124
Tivoli SA MP 123, 124

crash recovery
details 358

CREATE STOGROUP statement
compatibility with online backups 338

cross-node database recovery examples 342

D
data

parity striping by sectors (RAID level 5) 361
recovering

overview 283
data recovery

log replay delay 216
database

stopped
stop

stuck 121
database objects

recovery history file 283
recovery log file 283
table space change history file 283

database partition servers
failed 363
recovering from failure 365

database partitions
synchronizing clocks 183

database seeds 385
databases

activating in high availability disaster recovery (HADR)
environment 197
backups

automated 329
strategy 283

configuring
high availability disaster recovery (HADR) 155

connections
high availability disaster recovery (HADR) 155

deactivating
high availability disaster recovery (HADR)
environment 197

logging
circular 18
configuration parameters 171
overview 18

nonrecoverable 283
rebuilding

examples 409
incremental backup images 407
overview 399
partitioned databases 407
restrictions 409
table space containers 402
target image selection 403

recovering
strategy 283

rollforward recovery
overview 372

temporary table spaces 403
transporting schemas

examples 422
overview 419
transportable objects 421
troubleshooting 425

daylight savings time 204
DB_HISTORY administrative view

viewing recovery history file entries 307
Db2 Advanced Copy Services (ACS)

506 IBM Db2 V11.5: Data Recovery and High Availability

Db2 Advanced Copy Services (ACS) (continued)
activating 448
best practices 445
configuring 448, 449
directory 449
enabling 446
installing

process 447
overview 445
protocol file

description 450
usage 450

restrictions 446
scripted interface 450
setup_db2.sh setup script 449
user scripts

description 461
usage 461

Db2 Advanced Copy Services (ACS) API
data structures

db2ACS_BackupDetails 487
db2ACS_CB 488
db2ACS_CreateObjectInfo 488
db2ACS_DB2ID 489
db2ACS_GroupList 490
db2ACS_LoadcopyDetails 490
db2ACS_LogDetails 490
db2ACS_MetaData 499
db2ACS_ObjectInfo 491
db2ACS_ObjectStatus 492
db2ACS_OperationInfo 493
db2ACS_Options 494
db2ACS_PartitionEntry 494
db2ACS_PartitionList 494
db2ACS_PathEntry 495
db2ACS_PathList 496
db2ACS_PostObjectInfo 496
db2ACS_QueryInput 496
db2ACS_QueryOutput 496
db2ACS_ReadList 498
db2ACS_ReturnCode 498
db2ACS_SessionInfo 498
db2ACS_SnapshotDetails 499
db2ACS_VendorInfo 500
overview 487

functions
db2ACSBeginOperation 467
db2ACSBeginQuery 471
db2ACSDelete 482
db2ACSEndOperation 469
db2ACSEndQuery 474
db2ACSGetNextObject 472
db2ACSInitialize 462
db2ACSPartition 478
db2ACSPrepare 466
db2ACSQueryApiVersion 462
db2ACSRetrieveMetaData 485
db2ACSSnapshot 476
db2ACSStoreMetaData 484
db2ACSTerminate 464
db2ACSVerify 480
overview 462

overview 462
return codes 500

Db2 HADR database pair both assume primary role 119
Db2 High Availability Feature

cluster configuration 43
overview 43

Db2 high availability instance configuration utility
see db2haicu utility 52

Db2 instance fails to restart automatically after a failure 118
Db2 pureScale

HADR
preferred replay member 255
replay member 255
standby replay 255

Db2 pureScale environments
backups 331
database rollforward 433
HADR

adding members 256
overview 251
preferred replay member 256
removing members 257
topology changes 256, 257

log file management 290
log record identifiers (LRIs) 294
log sequence numbers (LSNs) 294
log stream merges 290
log streams 290
restoring 331

DB2_FAIL_RECOVERY_ON_TABLESPACE_ERROR registry
variable

high availability disaster recovery (HADR) 148
DB2_PEER_WAIT_LIMIT registry variable

high availability disaster recovery (HADR) 148
db2adutl command

cross-node recovery examples 342
db2Backup API

backing up data 322
db2cm 97
db2cm command

details 93
db2fm command

fault monitor overview 37
db2haicu utility

cluster domains
creating 83
maintaining 84
overview 46

clustered environment 44
details 52
detected database paths 83
input file samples

db2ha_sample_DPF_mutual.xml 76
db2ha_sample_DPF_NPlusM.xml 78
db2ha_sample_HADR.xml 81
db2ha_sample_sharedstorage_mutual.xml 74

input file XML schema
ClusterDomainType 58
ClusterNodeType 64
CustomPolicyType 71
DB2PartitionSetType 66
DB2PartitionType 67
details 56
FailoverPolicyType 65
HADBDefn 74
HADBType 73

Index 507

db2haicu utility (continued)
input file XML schema (continued)

HADRDBDefn 72
HADRDBType 71
InterfaceType 63
IPAddressType 64
MountType 69
MutualPolicyType 69
NPlusMPolicyType 70
PhysicalNetworkType 61
QuorumType 59

maintenance mode 54
prerequisites 82
quorum devices 47
restrictions 85
running

interactive mode 54
XML input file 55, 74

startup mode 54
troubleshooting 85

db2inidb command
creating split mirror 135, 136
overview 126

db2pd command
HADR standby database states 211

db2Recover API
recovering data 341

db2Restore API
recovering data 381

db2Rollforward API
applying transactions to restored backup image 428

db2tapemgr command
archiving log files to tape 187

db2uext2 program
calling format 190
details 188

delete HADR database resource 112
delete HADR DB resource 112
disaster recovery

high availability disaster recovery (HADR)
overview 40
requirements 166

overview 371
disk mirroring 361
disks

failure management 361
redundant array of independent disks (RAID) 361
striping 361

DROP STOGROUP statement
compatibility with online backups 338

dual logging 126
duplexing

RAID level 1 361

E
errors

log full 171
Ethernet adapter

remove resources 115
event monitor 215
event monitor state 215
event monitors

event monitors (continued)
High Availability Cluster Multi-Processing (HACMP) for
AIX 8
IBM PowerHA SystemMirror for AIX 8

examples
alternate server 35
automatic client reroute 35

export utility
online backup compatibility 338

F
failback operations 281
failover

AIX 8
failover policies 49
overview 5
performing 273, 277, 278
Windows 12

fault monitor
configuring

db2fm command 39
db2fmcu command 39
system commands 39

overview 37, 275
registry file 38

H
hadr

databases 120
HADR

active standby database
isolation level 266
replay-only window 266

automatic client reroute 145
cluster managers 160
commands 219
configuring

NAT 167
data concurrency 266
databases

activating 197
deactivating 197

Db2 pureScale environments
adding members 256
CFs 252
member subsetting 252
overview 251
preferred replay member 255
replay member 255
restrictions 251
scenario 260
setup 252
standby members 252
standby replay 255
topology changes 256

designing solution 164
failback 281
failover

multiple standbys 228
performing 278
pureScale environment 258

508 IBM Db2 V11.5: Data Recovery and High Availability

HADR (continued)
initializing

multiple standbys 141
pureScale environment 141
single standby 141

load operations 148
log archiving 157
log flushes 266
managing 219
monitoring

Db2 pureScale environment 252
methods 275
multiple standby databases 226

multiple standbys 221
multiple standbysrestrictions 221
non-replicated operations 207
overview 40
performance 158
primary reintegration 281
quiescing table spaces 215
replicated operations 207
requirements 164, 166
restrictions 167
rolling updates 198, 200, 224
rolling upgrades

multiple standby databases 224
standby databases

determining state 211
initializing 140
log spooling 156
states 208
synchronizing with primary database 205

stopping 196
switching database roles 280
synchronization modes

ASYNC 161
effective 161, 223
NEARSYNC 161
operational 161, 223
SUPERASYNC 161
SYNC 161

takeover
multiple standbys 228
pureScale environment 258

HADR database resource 111
HADR DB resource 111
HADR multiple standbys

adding auxiliary standbys 222
changing the principal standby 222
configuring 229
enabling 141
example 229
modifying your setup 222
monitoring 226
NAT support 167
overview 221
setting up 229
takeover

examples 245
HADR reads on standby

enabling 265
overview 265
restrictions 272
terminating read applications 271

hadr_peer_window database configuration parameter
automatic reconfiguration 223
high availability disaster recovery (HADR) 148
setting parameter 155

hadr_remote_host configuration parameter
automatic reconfiguration 223

hadr_remote_inst configuration parameter
automatic reconfiguration 223

hadr_remote_svc configuration parameter
automatic reconfiguration 223

hadr_replay_delay database configuration parameter
HADR delayed replay 216

hadr_syncmode configuration parameter
automatic reconfiguration 223

hadr_syncmode database configuration parameter
high availability disaster recovery (HADR) 148

hadr_timeout configuration parameter
setting parameter 155

hadr_timeout database configuration parameter
high availability disaster recovery (HADR) 148

hardware
disk arrays 361

heartbeats
High Availability Cluster Multi-Processing (HACMP) for
AIX 8
IBM PowerHA SystemMirror for AIX 8
monitoring 273, 275

high availability
administering 185
configuring

AUTO_DEL_REC_OBJ parameter 313
clustered environments 183
overview 138

Db2 server features 29
designing 1, 164
fault monitor

configuring (db2fm command) 39
configuring (db2fmcu and system commands) 39
overview 275
registry file 38

heartbeat monitoring 275
keepalive timeout

non-JDBC 140
log shipping 125
maintenance

minimizing impact 195
Microsoft Cluster Server (MSCS) 12
outages

avoiding 4
cost 3
detecting 273, 275
overview 1, 2
responding 273, 277
signatures 2
tolerance 3

strategies
clustering 6
failover 5
overview 4
redundancy 5, 205

Tivoli System Automation for Multiplatforms 11
High Availability Cluster Multi-Processing (HACMP)

see IBM PowerHA SystemMirror for AIX 8
high availability disaster recovery

Index 509

high availability disaster recovery (continued)
see HADR 40

High Availability Disaster Recovery
see HADR 40

high availability disaster recovery (HADR)
Db2 pureScale environment

preferred replay member 256
removing members 257
topology changes 257

preferred replay member 256
history file

accessing 307
hot standby configuration

overview 8
HP-UX

backups 289
restores 289

I
IBM PowerHA SystemMirror for AIX

details 8
IBM Spectrum Protect Snapshot

installing 450
IBM Tivoli Storage Manager (TSM)

data recovery 442
IBM Tivoli System Automation for Multiplatforms (SA MP)

overview 44
images

backing up 319
incremental backups

details 375
images for rebuilding databases 407

incremental recovery
overview 375

incremental restores
overview 386
restoring from incremental backup images 376

indexes
logging for high availability disaster recovery (HADR)
147

indoubt transactions
recovering

with Db2 syncpoint manager 366
without Db2 syncpoint manager 367

initializing HADR
multiple standbys 141
pureScale environment 141
single standby 141

instance_name.nfy log file 274

K
keepalive packets 8

L
Linux

backup and restore operations between different
operating systems and hardware platforms 289

local catchup state 208
log

Advanced Log Space Management 20

log (continued)
space management 20

log mirroring
details 126
synchronizing databases 205

log record identifiers (LRIs)
Db2 pureScale environments 294

log replay error
resolving 206

log sequence numbers (LSNs)
Db2 pureScale environments 294

log shipping
details 125
synchronizing database servers 205

log spooling
overview 156

log stream merges
overview 290

log streams
overview 290

logarchmeth1 configuration parameter
high availability disaster recovery (HADR) 157

logarchmeth2 configuration parameter
high availability disaster recovery (HADR) 157

logarchopt1 configuration parameter
cross-node recovery examples 342

logbufsz database configuration parameter
overview 171

logfilsiz database configuration parameter
high availability disaster recovery (HADR) 148
overview 171

logging
reducing 179

logprimary database configuration parameter
overview 171

logs
active 18
administering 274
allocating 191
archive logging 19, 191
archived

compression 287, 288
circular logging 18, 191
configuring 170
control files 29
databases

overview 18
Db2 pureScale environments 290
directory 180
including in backup image 194
indexes 147
log archiving 157, 181, 186
log control files 29
loss prevention 195
managing

overview 185
offline archived 19
online archived 19
removing 191
space requirements

recovery 287
user exit programs 287

logsecond configuration parameter
overview 171

510 IBM Db2 V11.5: Data Recovery and High Availability

LRIs (log record identifiers)
Db2 pureScale environments 294

LSNs (log sequence numbers)
Db2 pureScale environments 294

M
maintenance

scheduling 168
media failures

catalog partitions 361
logs 287
reducing impact 361

Microsoft Failover Clustering server 12
mirrorlogpath database configuration parameter

overview 126, 171
MON_GET_HADR table function

HADR standby database states 211
monitoring

backups 335
high availability disaster recovery (HADR)

Db2 pureScale environment 252
multiple standby databases 226
overview 275

restores 417, 436
multiple instances

Tivoli Storage Manager 444
multiple standbys

configuring 234
example 234
setting up 234

mutual takeover configuration 8

N
named pipes

backing up to 327
NEARSYNC synchronization mode 161
networks in a pacemaker 89
newlogpath database configuration parameter

overview 171
nodedown event 8
nodes

synchronization 183
nodeup event 8
nonrecoverable databases

backup and recovery strategy 283

O
offline archived logs 19
offline backups

compatibility with online backups 338
offline loads

compatibility with online backups 338
on demand log archiving 186
online archived logs 19
online backups

compatibility with other utilities 338
online index creation

compatibility with online backups 338
online index reorganization

compatibility with online backups 338

online inspect
compatibility with online backups 338

online loads
compatibility with online backups 338

online table reorganization
compatibility with online backups 338

optimization
backup performance 335
restore performance 418

overflowlogpath database configuration parameter
overview 171

P
pacemaker

base component 87
install 100
installing 100
network cluster 89
prerequisites 91

Pacemaker
overview 87

pacemaker base component 87
parallelism

recovery 379
partitioned database environments

backing up 327
rebuilding databases 407
transactions

failure recovery 363
partitioned tables

backing up 329
peer states

details 208
pending states 208
performance

high availability disaster recovery (HADR) 158
recovery 379

Performance monitoring, backup 295
Performance monitoring, restore 300
points of consistency

database 358
prerequisites pacemaker 91
primary database connections

configuration parameters 155
primary database reintegration after takeover 281
primary VIP

HADR database 112, 113
privileges

backup utility 338
restore utility 419
rollforward utility 437

proxy nodes
Tivoli Storage Manager (TSM)

configuration 442
example 342

Q
qdevice

configure 104
install 104

quiescing

Index 511

quiescing (continued)
HADR environment 215

quorum
configure 104
install 104

quorum devices
pacemaker 89

R
RAID devices

data striping 361
disk mirroring 361
duplexing 361
level 1 361
level 5 361
parity striping 361
reducing impact of media failure 361

rebalancing
compatibility with online backups 338
table spaces 198

RECOVER DATABASE command
authorities required 380
privileges required 380
recovering data 341

recoverable databases
details 283

recovery
after failure of database partition server 365
crash 358
cross-node examples 342
damaged table spaces 359, 360
databases

overview 341
rebuilding 399

dropped tables 356
history file 303
incremental 375
operating system restrictions 289
parallel 379
performance 379
point-in-time 372
reducing logging 179
rollforward 372
storage considerations 287
strategy overview 283
time required 285
Tivoli Storage Manager (TSM) proxy nodes example 342
to end of logs 372
two-phase commit protocol 363
version 371

recovery history file
active entry status 305
do_not_delete entry status 305, 310
entries

protecting 310
pruning 308

expired entry status 305
inactive entry status 305
pruning

automated 308
causes 313
db2Prune API 308
PRUNE HISTORY command 308

recovery objects
deleting

automating 312
db2Prune API 311
methods 311
PRUNE HISTORY command 311

protecting from being deleted 313
redirected restore

table space 206
redirected restores

overview 392
using generated script 395, 397

redundancy 5
registry variables

DB2_HADR_PEER_WAIT_LIMIT 158
DB2_HADR_SORCVBUF 158
DB2_HADR_SOSNDBUF 158

remote catchup pending state 208
remote catchup state 208
remove resources

instance 115
removing cluster domain 106
RENAME STOGROUP statement

compatibility with online backups 338
reorganization

tables
compatibility with online backups 338

replay delay
HADR configuration 216
HADR standby 216, 217

replicated operations
high availability disaster recovery (HADR) 207

resource groups 47
resources

overview 47
RESTART DATABASE command

crash recovery 358
restore Db2 Enterprise Server Edition to Db2 pureScale
Feature 426
restore Db2 pureScale Feature to Db2 Enterprise Server
Edition 425
restore utility

authorities required 419
compatibility with online backups 338
Db2 pureScale environments 331
examples 392
monitoring progress 417, 436
overview 380
performance 380, 418
privileges required 419
redefining table space containers 392
redirected restores 392
restoring data 381
restoring to existing database 385
restoring to new database 386
restrictions 381
topology change 388

restores
automatic incremental 378
from snapshot backup 383
incremental 375, 376, 386
rollforward recovery 372
snapshot backup

with script 384

512 IBM Db2 V11.5: Data Recovery and High Availability

restores (continued)
statistics 336
to existing database 385
to new database 386
transporting database schemas

examples 422
overview 419
transportable objects 421
troubleshooting 425

restrictions
pacemaker 122

return codes
user exit programs 190

ROLLFORWARD DATABASE command
applying transactions to restored backup image 428
Db2 pureScale environments 433

rollforward recovery
configuration parameters 171
databases 372
log management 185
minimum recovery time 430
table spaces 372, 430
through a topology change 435

rollforward utility
authorities required 437
compatibility with online backups 338
examples 437
overview 427
privileges required 437
recovering dropped table 356
recovery from failures 430
restarting 430
restrictions 428

rolling updates
performing

HADR environments 198, 200
multiple standby databases 224

rolling upgrades
performing

multiple standby databases 224
rotating assignments 8
roving high availability (HA) failover

disabling 50
enabling 50

RUNSTATS utility
compatibility with online backups 338

S
samples

automatic maintenance 169
scalability

multi-clustered databases 8
server clustering 12
servers

alternate 30, 33
SET WRITE command

compatibility with online backups 338
site failures

high availability disaster recovery (HADR) 40
snapshot backups

activating Db2 Advanced Copy Services (ACS) 448
managing snapshot backup objects 313
performing

snapshot backups (continued)
performing (continued)

with script 324
restoring

with script 384
restoring from 383

software disk arrays 361
Solaris operating systems

backups 289
restores 289

split mirrors
backup images

Db2 pureScale environment 136
procedure 135

clone databases
Db2 pureScale environment 133
procedure 132

overview 126
standby databases

Db2 pureScale environment 129
outside a Db2 pureScale environment 127

standby 120
standby VIP

HADR database 114
START HADR command

starting HADR 219
states

standby database 208
STOP HADR command

overview 219
storage

media failures 287
requirements

backup 287
recovery 287

SUPERASYNC synchronization mode 161
suspended I/O

disk mirroring 205
overview 126

switching
database roles 280, 281

sync point manager (SPM)
recovering indoubt transactions 366

SYNC synchronization mode 161
synchronization

HADR synchronization mode 161
partitioned database environments 183

system clock
changing 204

system requirements
high availability disaster recovery (HADR) 164

T
table space containers

redefining by restoring database by using script 395
redefining in redirected restore operation 392

table spaces
containers

rebuilding databases 402
rebalancing 198
rebuilding 399, 406
recovering

damaged table spaces 359

Index 513

table spaces (continued)
recovering (continued)

non-recoverable databases 360
recoverable databases 360
rollforward recovery 430
rollfoward recovery 372

rollforward recovery
details 372, 430

tables
recovering dropped tables 356
related data 289

tablespace errors
HADR standby database 213

takeover
user initiated 109

takeover by force
user initiated 110

TAKEOVER HADR command
overview 219
performing failover operations 278
switching database roles 280

tape backups
procedure 325

tape drives
storing log files on 181, 187

target images
database rebuilds 403

TCP_KEEPALIVE operating system configuration parameter
32
TCP/IP

configuring
high availability 139, 140

temporary table spaces
database rebuilds 403

time change 204
time stamps

conversion in client/server environment 184
Tivoli Storage FlashCopy Manager

installing 450
restrictions 446
setup script setup_db2.sh 449

Tivoli Storage Manager
client configuration 442
dsmapipw command 442
partitioned tables 329
recovery example 342
server configuration 444
upload examples 314

Tivoli System Automation for Multiplatforms (Tivoli SA MP)
AIX 11
Linux 11

transactions
blocking when log directory is full 180
failures

recovery in partitioned database environment 363
reducing impact 358, 362

transports of database schemas
examples 422
overview 419
transportable objects 421
troubleshooting 425

troubleshoot
pacemaker 116, 120, 121

troubleshooting

troubleshooting (continued)
pacemaker 116, 120, 121

TRUNCATE statement
compatibility with online backups 338

two-phase commit
partitioned database environments 363

U
unplanned outages

detecting 275
user exit programs

archiving log files 181
calling format 190
database recovery 188
error handling 190
retrieving log files 181
sample programs

UNIX 189
Windows 189

user initiated takeover 109
user initiated takeover by force 110
user-defined events 8
Using db2pd -barstats 294

V
vendoropt configuration parameter

cross-node recovery examples 342
VERITAS Cluster Server 16
version recovery of databases 371

W
Windows

failover 12

514 IBM Db2 V11.5: Data Recovery and High Availability

IBM®

	Contents
	Notices
	Trademarks
	Terms and conditions for product documentation

	About this book
	Figures
	Tables
	Chapter 1. High availability
	Outages
	Signatures
	Cost
	Tolerance
	Recovery and avoidance strategies

	High availability strategies
	Redundancy
	Failover
	Clustering
	Supported cluster management software
	Pacemaker (Linux)
	IBM PowerHA SystemMirror for AIX
	IBM Tivoli System Automation for Multiplatforms (Linux and AIX)
	Microsoft Failover Clustering support (Windows)
	VERITAS Cluster Server

	Database logging
	Circular logging
	Archive logging
	Advanced Log Space Management
	Log control files

	High availability with Db2 server
	Automatic client reroute
	Configuring automatic client reroute
	Client connection distributor technology
	Identifying an alternate server
	Automatic client reroute limitations
	Automatic client reroute examples

	Db2 fault monitor
	Configuring Db2 fault monitor
	Using the db2fm command
	Using db2fmcu and system commands

	High availability disaster recovery (HADR)
	Db2 High Availability Feature
	Enabling automatic cluster configuration
	Integrated solution using IBM Tivoli SA MP
	Configuring a cluster using db2haicu
	Cluster domain model
	Cluster management software
	Resources and resource groups
	Quorum devices

	Networks
	Failover policies
	Using roving high availability (HA) failover in partitioned database environments

	Mount points

	db2haicu tool
	Startup mode
	Maintenance mode
	Running interactively
	Running with an XML input file
	Input file XML schema (DB2ClusterType)
	ClusterDomainType
	QuorumType
	PhysicalNetworkType
	InterfaceType
	IPAddressType

	ClusterNodeType

	FailoverPolicyType
	DB2PartitionSetType
	DB2PartitionType
	MountType
	MutualPolicyType
	NPlusMPolicyType
	CustomPolicyType XML schema definition for Db2 High Availability Instance Configuration Utility (db2haicu) input files

	HADRDBType
	HADRDBDefn

	HADBType
	HADBDefn

	Sample XML input files
	db2ha_sample_sharedstorage_mutual.xml
	db2ha_sample_DPF_mutual.xml
	db2ha_sample_DPF_NPlusM.xml
	db2ha_sample_HADR.xml

	Prerequisites
	Creating a cluster domain
	Automatically detected database paths

	Maintaining a cluster domain
	Troubleshooting
	Restrictions

	Integrated solution using Pacemaker
	Pacemaker base component
	Networks in a Pacemaker cluster
	Quorum devices support on Pacemaker

	Prerequisites for an integrated solution using Pacemaker
	db2cm - Db2 cluster manager utility
	Configuring a clustered environment using the db2cm utility
	Installing the Pacemaker cluster software stack
	Install and configure a QDevice quorum
	Removing a cluster domain
	Maintaining a Pacemaker cluster domain
	User initiated takeover
	User initiated takeover by force
	Add a HADR database resource to the resource model
	Delete an existing HADR database resource from the resource model
	Associate a primary VIP with an existing HADR database of an instance
	Disassociate a primary VIP with an existing HADR database of an instance
	Associate a standby VIP with an existing HADR database of an instance for read-on-standby
	Disassociate a standby VIP with an existing HADR database of an instance
	Remove all resources related to the public Ethernet adapter device on a host in the resource model
	Remove all resources related to an instance in the resource model
	Remove an automated HADR cluster with Pacemaker

	Troubleshooting Pacemaker
	Db2 instance fails to restart automatically after a failure
	Db2 HADR database pair both assume primary role
	Database resource shows both HADR databases as standby
	Database resource stuck in stopped state

	Restrictions on Pacemaker
	Converting an existing Tivoli SA MP cluster to a Pacemaker cluster
	Converting an existing Pacemaker cluster to a Tivoli SA MP cluster

	Log shipping
	Log mirroring
	Suspended I/O and online split mirror
	Using a split mirror as a standby database
	Using a split mirror as a standby database in a Db2 pureScale environment
	Using a split mirror as a clone database
	Using a split mirror to clone a database in a Db2 pureScale environment
	Using a split mirror as a backup image
	Using a split mirror as a backup image in a Db2 pureScale environment

	Configuring for high availability
	Configuring TCP/IP keepalive parameters
	Configuring operating system TCP/IP keepalive parameters for high availability clients
	Configuring TCP/IP keepalive parameters for high availability clients

	Initializing a standby database
	Initializing HADR
	Configuring automatic client reroute and HADR
	Index logging and HADR
	Database configuration for HADR
	Setting hadr_timeout and hadr_peer_window
	HADR log spooling

	Log archiving configuration for HADR
	HADR performance
	Cluster managers and HADR
	HADR synchronization mode
	High availability disaster recovery (HADR) support
	System requirements
	Installation and storage requirements
	HADR and NAT support
	Restrictions

	Scheduling maintenance
	Configuring an automated maintenance policy
	Sample automated maintenance policy specification

	Configuring database logging
	Configuration parameters
	Reducing logging
	Blocking transactions
	Log archiving

	Configuring a clustered environment
	Synchronizing clocks in a partitioned database environment
	Timestamp conversion

	Administering and maintaining a highly available solution
	Log file management
	On demand log archive
	Log archiving using db2tapemgr
	User exit programs for log file archiving and retrieval
	Samples
	Calling format
	Error handling

	Log file allocation and removal
	Using an overflow log path

	Including log files with a backup image
	Preventing the accidental loss of log files

	Performing maintenance
	Stopping HADR
	HADR database activation and deactivation
	Table space rebalance considerations in a HADR environment
	Performing rolling updates in a HADR environment
	Performing rolling updates in an automated HADR environment
	Performing rolling updates in a Pacemaker automated Db2 high availability disaster recovery (HADR) environment
	Scenario: Changing the system clock

	Synchronizing the primary and standby databases
	Resolving log replay error when creating table space
	HADR replicated operations
	HADR non-replicated operations
	HADR database states
	Determining the HADR standby database state
	Recovering table space errors on an HADR standby database
	Considerations after HADR role switch

	HADR delayed replay
	Recovering data by using HADR delayed replay

	Db2 High availability disaster recovery (HADR) management
	HADR commands

	HADR multiple standby databases
	Restrictions for multiple standby databases
	Modifications to a multiple standby database setup
	Database configuration for multiple HADR standby databases
	Rolling updates with multiple HADR standby databases
	HADR monitoring for multiple standby databases
	HADR takeover operations with multiple standbys
	Scenario: Deploying an HADR multiple standby database setup
	Scenario: Deploying a two-sites multiple standby support with same-site failover automation
	Examples: Takeover in a multiple HADR standby setup

	High availability disaster recovery (HADR) in Db2 pureScale environments
	Restrictions for HADR in Db2 pureScale environments
	HADR setup in a Db2 pureScale environment
	HADR monitoring in a Db2 pureScale environment
	Standby replay in a Db2 pureScale environment
	Changing the preferred replay member

	Db2 pureScale topology changes and HADR
	Adding members to a high availability disaster recovery (HADR) setup
	Removing members from a high availability disaster recovery (HADR) setup

	HADR takeover operations in a Db2 pureScale environment
	Scenario: Deploying HADR in a Db2 pureScale environment

	HADR reads on standby feature
	Enabling reads on standby
	Data concurrency on an active standby
	Isolation level on the active standby database
	Replay-only window on the HADR standby database

	Temporarily terminating read applications on an active standby
	Reads on standby restrictions

	Detecting and responding to system outages
	Administration notification log
	Detecting an unplanned outage
	High availability disaster recovery (HADR) monitoring

	Responding to an unplanned outage
	Performing an HADR failover operation
	Switching the database roles

	Reintegrating a database after a takeover operation

	Chapter 2. Data recovery
	Developing a backup and recovery strategy
	Deciding how often to back up
	Storage considerations
	Backup compression
	Archived log file compression
	Hardware accelerated backup and log file compression

	Keeping related data together
	Backup and restore operations between different operating systems and hardware platforms
	Log stream merging and log file management in a Db2 pureScale environment
	Log sequence numbers in Db2 pureScale environments
	Backup and restore monitoring with db2pd -barstats
	Example output for backup performance monitoring
	Example output for restore performance monitoring

	Recovery history file
	Recovery history file entry status
	Viewing recovery history file entries
	Pruning the recovery history file
	Automating recovery history file pruning
	Protecting recovery history file entries from being pruned

	Managing recovery objects
	Deleting database recovery objects
	Automating database recovery object management
	Protecting recovery objects from being deleted
	Managing snapshot backup objects
	Backup image and log file upload to TSM

	Backup
	Backing up data
	Using snapshot backup
	Performing a snapshot backup with a script

	Backing up to tape
	Backing up to named pipes

	Backing up partitioned databases
	Using IBM Tivoli Space Manager Hierarchical Storage Management

	Enabling automatic backup
	Automatic database backup

	Backup and restore operations in a Db2 pureScale environment
	Monitoring backup operations
	Optimizing backup performance
	Backup and restore statistics
	Authorization required for backup
	Compatibility of online backup and other utilities
	Backup examples

	Recover
	Recovering data
	Using db2adutl
	Recovering a dropped table

	Crash recovery
	Recovering damaged table spaces
	Recovering table spaces in recoverable databases
	Recovering table spaces in non-recoverable databases
	Reducing the impact of media failure
	Reducing the impact of transaction failure
	Recovering from transaction failures in a partitioned database environment
	Recovering from the failure of a database partition server
	Recovering indoubt transactions on mainframe or midrange servers
	... with Db2 syncpoint manager
	... without Db2 syncpoint manager

	Database accessibility during backward phase of crash recovery or HADR takeover

	Disaster recovery
	Version recovery
	Rollforward recovery
	Incremental backup and recovery
	Restoring from incremental backup images
	Limitations to automatic incremental restore

	Optimizing recovery performance
	Authorization required for recover

	Restore
	Restoring data
	From a snapshot backup image
	Restoring from a snapshot backup image with a script

	To an existing database
	To a new database
	Using incremental restore
	Restore and roll forward through a topology change

	Performing a redirected restore operation
	Redefine table space containers by restoring a database using an automatically generated script
	Performing a redirected restore using an automatically generated script
	Cloning a production database using different storage group paths

	Rebuilding databases
	Database rebuild and table space containers
	Temporary table spaces
	Choosing a target image
	Rebuilding only selected table spaces
	Rebuild using incremental backup images
	Rebuilding partitioned databases
	Rebuild restrictions
	Rebuild examples

	Monitoring restore
	Optimizing restore performance
	Authorization required for restore
	Database schema transporting
	Transportable objects
	Transport examples
	Troubleshooting: transporting schemas

	Restore from Db2 pureScale Feature to Db2 Enterprise Server Edition
	Restore a Db2 Enterprise Server Edition to aDb2 pureScale instance.

	Rollforward
	Rolling forward data
	Continuing a stopped or failed rollforward operation
	Rolling forward changes in a table space

	Database rollforward operations in a Db2 pureScale environment
	Rolling forward through an add member operation

	Monitoring rollforward
	Authorization required for rollforward
	Rollforward examples

	IBM Tivoli Storage Manager (TSM)
	Configuring a TSM client
	Considerations for using TSM

	Db2 Advanced Copy Services (ACS)
	ACS best practices
	Restrictions for Flashcopy Limited Function for xLinux and AIX SDK 1.0
	Enabling Db2 ACS
	Installing Db2 ACS
	Activating Db2 ACS
	Configuring Db2 ACS
	Configuring the Db2 ACS directory

	setup_db2.sh script

	Manually installing Tivoli Storage FlashCopy Manager
	Db2 ACS scripted interface
	Db2 ACS protocol file
	Db2 ACS user scripts

	Db2 ACS API
	Db2 ACS API functions
	db2ACSQueryApiVersion - current Db2 ACS API version
	db2ACSInitialize - initialize a Db2 ACS session
	db2ACSTerminate - terminate a Db2 ACS session
	db2ACSPrepare - prepare to perform a snapshot backup operation.
	db2ACSBeginOperation - begin a Db2 ACS operation
	db2ACSEndOperation - End a Db2 ACS operation
	db2ACSBeginQuery - begin a query about snapshot backup objects
	db2ACSGetNextObject - list next available snapshot backup object
	db2ACSEndQuery - end a query about snapshot backup objects
	db2ACSSnapshot - perform a Db2 ACS operation
	db2ACSPartition - group database partition target data
	db2ACSVerify - verify Db2 ACS operation success
	db2ACSDelete - delete Db2 ACS recovery objects
	db2ACSStoreMetaData - store Db2 ACS object metadata
	db2ACSRetrieveMetaData - retrieve Db2 ACS object metadata

	Db2 ACS API data structures
	db2ACS_BackupDetails
	db2ACS_CB
	db2ACS_CreateObjectInfo
	db2ACS_DB2ID
	db2ACS_GroupList
	db2ACS_LoadcopyDetails
	db2ACS_LogDetails
	db2ACS_ObjectInfo
	db2ACS_ObjectStatus
	db2ACS_OperationInfo
	db2ACS_Options
	db2ACS_PartitionEntry
	db2ACS_PartitionList
	db2ACS_PathEntry
	db2ACS_PathList
	db2ACS_PostObjectInfo
	db2ACS_QueryInput and db2ACS_QueryOutput
	db2ACS_ReadList
	db2ACS_ReturnCode
	db2ACS_SessionInfo
	db2ACS_SnapshotDetails
	db2ACS_MetaData
	db2ACS_VendorInfo

	Db2 ACS API return codes

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

