
IBM Db2 V11.5

Data Movement Utilities Guide
2020-08-19

IBM

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2016, 2020 i

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

ii Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices iii

iv IBM Db2 V11.5: Data Movement Utilities Guide

About this book

This book provides information about and shows you how to use the following Db2® data movement
utilities:

• Export and Import

The export and import utilities move data between a table or view and another database or spreadsheet
program; between DB2® databases; and between DB2 databases and host databases using Db2
Connect. The export utility moves data from a database into operating system files; you can then use
those files to import or load that data into another database.

• Load

The load utility moves data into tables, extends existing indexes, and generates statistics. The load
utility moves data much faster than the import utility when large amounts of data are involved. Data
exported using the export utility can be loaded using the load utility.

When the load utility is used in a partitioned database environment, large amounts of data can be
distributed and loaded into different database partitions.

For a complete listing of data movement options, see “Data movement options ” on page 1.

© Copyright IBM Corp. 2016, 2020 v

vi IBM Db2 V11.5: Data Movement Utilities Guide

Contents

Notices...i
Trademarks...ii
Terms and conditions for product documentation..ii

About this book... v

Chapter 1. Data movement utilities and reference.. 1
Data movement options...1
Export utility... 5

Overview... 5
Privileges and authorities required ... 5
Exporting data...6

Import utility.. 12
Overview... 12
Privileges and authorities required ...14
Importing data..15
Additional considerations for import... 28

Load utility..29
Load overview...29
Privileges and authorities required to use load...32
Loading data... 33
Monitoring load...56
Additional considerations for load...57
Load features for maintaining referential integrity... 64
Failed or incomplete loads...73
Load overview-partitioned database environments... 78

Ingest utility... 95
Overview of ingest-related tasks... 96
Ingest utility restrictions and limitations.. 108
Additional considerations for ingest operations... 109
Sample ingest utility scripts...113

Other data movement options.. 114
Moving tables online by using the ADMIN_MOVE_TABLE procedure.. 114
IBM Replication tools by component.. 117
Copying schemas... 118
Performing a redirected restore using an automatically generated script.......................................129
Suspended I/O and online split mirror.. 151
db2relocatedb - Relocate database.. 154
db2look - Db2 statistics and DDL extraction tool... 160

Comparison between the ingest, import, and load utilities... 172
File formats and data types...175

Export/import/load utility file formats.. 175
Unicode considerations for data movement .. 221
Character set and national language support... 222
XML data movement.. 223

Index.. 229

 vii

viii

Chapter 1. Data movement utilities and reference

Data movement options
There are various data movement options available in Db2. This topic provides an overview of the data
movement tools, utilities, stored procedures, and commands available to you.

Use these tables as a guide to help you determine which data movement options might best suit your
needs.

Table 1. Load utility

Method Load utility

Purpose To efficiently move large quantities of data into newly created tables, or
into tables that already contain data.

Cross platform compatible Yes

Best practice usage

This utility is best suited to situations where performance is your
primary concern. This utility can be used as an alternative to the import
utility. It is faster then the import utility because it writes formatted
pages directly into the database rather than using SQL INSERTS. In
addition, the load utility allows you the option to not log the data or use
the COPY option to save a copy of the loaded data. Load operations can
fully exploit resources, such as CPUs and memory on SMP and MPP
environments.

References Loading data

Table 2. Ingest utility

Method Ingest utility

Purpose Streams data from files and pipes into Db2 target tables, while still
keeping those tables available.

Cross platform compatible Yes

Best practice usage

This utility strikes a good balance between performance and availability,
but if the latter is more important to you, then you should choose the
ingest utility instead of the load utility. Similar to the import utility,
ingest is suitable if the target tables are updatable views, range-
clustered tables, or nicknames; however, the ingest utility has superior
performance.

References Ingesting data

Table 3. Import utility

Method Import utility

Purpose To insert data from an external file into a table, hierarchy, view, or
nickname

Cross platform compatible Yes

© Copyright IBM Corp. 2016, 2020 1

Table 3. Import utility (continued)

Best practice usage

The import utility can be a good alternative to the load utility in the
following situations:

• where the target table is a view
• the target table has constraints and you don't want the target table to

be put in the Set Integrity Pending state
• the target table has triggers and you want them fired

References Importing data

Table 4. Export utility

Method Export utility

Purpose To export data from a database to one of several external file formats.
The data can then be imported or loaded at a later time.

Cross platform compatible Yes

Best practice usage

This utility is best suited in situations where you want to store data in an
external file, to either process it further or move data to another table.
High Performance Unload (HPU) is an alternative, however, it must be
purchased separately. Export supports XML columns.

References Exporting data

Table 5. db2move command

Method db2move command

Purpose

Using the db2move utility with the COPY option, allows you to copy
schema templates (with or without data) from a source database to a
target database or move an entire schema from a source database to a
target database. Using the db2move utility with the IMPORT or EXPORT
option facilitates the movement of a large numbers of tables between
Db2 databases.

Cross platform compatible Yes

Best practice usage

When used with the COPY option, the source and the target database
must be different. The COPY option is useful in making schema
templates. Use the IMPORT or EXPORT option for cloning databases
when there is no support for cross-platform backup and restore
operations. The IMPORT and EXPORT options are used in conjunction
with the db2look command.

References
• "Copying a schema" in Database Administration Concepts and
Configuration Reference

• Imported table re-creation

Table 6. RESTORE command

Method RESTORE command with the REDIRECT option and the GENERATE
SCRIPT option

Purpose To copy an entire database from one system to another using a script
from an existing backup image.

Cross platform compatible Limited. See References

2 IBM Db2 V11.5: Data Movement Utilities Guide

Table 6. RESTORE command (continued)

Best practice usage This utility is best suited in situations where a backup image exists.

References

• "Performing a redirected restore using an automatically generated
script" in Data Recovery and High Availability Guide and Reference

• "Backup and restore operations between different operating systems
and hardware platforms" in Data Recovery and High Availability Guide
and Reference

Table 7. db2relocatedb command

Method db2relocatedb command

Purpose To rename a database, or relocate a database or part of a database to
the same system or a different system.

Cross platform compatible No

Best practice usage

• This utility can be used for situations where a backup and restore
could be time consuming.

• This utility is an alternative to using backup and restore to move or
create copies of databases.

• It also provides a quick method of cloning a database for alternative
environments such as testing.

• It can be used to move table space containers to a new set of storage
devices

References "db2relocatedb - Relocate database command" in Command Reference

Table 8. ADMIN_COPY_SCHEMA procedure

Method ADMIN_COPY_SCHEMA procedure

Purpose
Allows you to make a copy of all the objects in a single schema and re-
create those objects in a new schema. This copy operation can be
performed with or without data, within a database.

Cross platform compatible Yes

Best practice usage

This utility is useful for making schema templates. It is also useful if you
want to experiment with a schema (for example, try out new indexes)
without impacting the source schema's behavior. The key differences
between the ADMIN_COPY_SCHEMA procedure and the db2move utility
are:

• The ADMIN_COPY_SCHEMA procedure is used on a single database
while the db2move utility is used across databases

• The db2move utility fails when invoked if it cannot create a physical
object such as a table or index. The ADMIN_COPY_SCHEMA procedure
logs errors and continues.

• The ADMIN_COPY_SCHEMA procedure uses load from cursor to move
data from one schema to the other. The db2move utility uses a remote
load, similar to a load from cursor, which pulls in the data from the
source database.

References "Copying a schema" in Database Administration Concepts and
Configuration Reference

Chapter 1. Data movement utilities and reference 3

Table 9. ADMIN_MOVE_TABLE procedure

Method ADMIN_MOVE_TABLE procedure

Purpose
Allows you to move the data in a table to a new table object of the same
name (but with possibly different storage characteristics) while the data
remains online and available for access.

Cross platform compatible Yes

Best practice usage

This utility automates the process of moving table data to a new table
object while allowing the data to remain online for select, insert, update,
and delete access. You can also generate a compression dictionary
when a table is moved.

• Avoid making multiple moves into same table space at the same time.
• Run this procedure when activity on the table is low.
• Use a multi-step move operation. The INIT and COPY phases can be

called at any time. Execute the REPLAY phase multiple times in order
to keep the staging table size small, and then issue the SWAP during a
time of low activity on the table.

• Consider using an offline table move if you are working with tables
without unique indexes or tables with no index.

References
• "ADMIN_MOVE_TABLE procedure - Move an online table" in

Command Reference
• Moving tables online by using the ADMIN_MOVE_TABLE procedure

Table 10. Split mirror

Method Split mirror

Purpose To create a clone, standby, or backup database

Cross platform compatible No

Best practice usage

• create a standby system in case of a primary failure to reduce down
time

• move backup operations away from a live production machine onto a
split database

• provides a quick method of cloning a database for alternate
environments, such as testing

Considerations

• only DMS table spaces can be backed up on the split version of the
database

• usually used in conjunction with some flashcopy technology provided
with storage systems

• an alternative is to issue a file copy once the database is suspended,
however this duplicates the amount of storage for the database

References "High availability through online split mirror and suspended I/O support"
in Data Recovery and High Availability Guide and Reference

4 IBM Db2 V11.5: Data Movement Utilities Guide

Export utility

Export utility overview
The export utility extracts data using an SQL select or an XQuery statement, and places that information
into a file. You can use the output file to move data for a future import or load operation or to make the
data accessible for analysis.

The export utility is a relatively simple, yet flexible data movement utility. You can activate it by issuing
the EXPORT command in the CLP, by calling the ADMIN_CMD stored procedure, or by calling the
db2Export API through a user application.

The following items are mandatory for a basic export operation:

• The path and name of the operating system file in which you want to store the exported data
• The format of the data in the input file

Export supports IXF and DEL data formats for the output files.
• A specification of the data that is to be exported

For the majority of export operations, you need to provide a SELECT statement that specifies the data to
be retrieved for export. When exporting typed tables, you don't need to issue the SELECT statement
explicitly; you only need to specify the subtable traverse order within the hierarchy

You can use the export utility with Db2 Connect if you need to move data in IXF format.
Additional options

There are a number of parameters that allow you to customize an export operation. File type
modifiers offer many options such as allowing you to change the format of the data, date and time
stamps, or code page, or have certain data types written to separate files. Using the METHOD
parameters, you can specify different column names to be used for the exported data.

You can export from tables that include one or more columns with an XML data type. Use the
XMLFILE, XML TO, and XMLSAVESCHEMA parameters to specify details about how those exported
documents are stored.

There are a few ways to improve the export utility's performance. As the export utility is an embedded
SQL application and does SQL fetches internally, optimizations that apply to SQL operations apply to
the export utility as well. Consider taking advantage of large buffer pools, indexing, and sort heaps. In
addition, try to minimize device contention on the output files by placing them away from the
containers and log devices.

The messages file
The export utility writes error, warning, and informational messages to standard ASCII text message
files. For all interfaces except the CLP, you must specify the name of these files in advance with the
MESSAGES parameter. If you are using the CLP and do not specify a messages file, the export utility
writes the messages to standard output.

In IBM® Data Studio Version 3.1 or later, you can use the task assistant for exporting data. Task assistants
can guide you through the process of setting options, reviewing the automatically generated commands
to perform the task, and running these commands. For more details, see Administering databases with
task assistants.

Privileges and authorities required to use the export utility
Privileges enable you to create, update, delete, or access database resources. Authority levels provide a
method of mapping privileges to higher-level database manager maintenance and utility operations.

Together, privileges and authorities control access to the database manager and its database objects. You
can access only those objects for which you have the appropriate authorization: that is, the required
privilege or authority.

You must have DATAACCESS authority or the CONTROL or SELECT privilege for each table or view
participating in the export operation.

Chapter 1. Data movement utilities and reference 5

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

When you are exporting LBAC-protected data, the session authorization ID must be allowed to read the
rows or columns that you are trying to export. Protected rows that the session authorization ID is not
authorized to read are not exported. If the SELECT statement includes any protected columns that the
session authorization ID is not allowed to read, the export utility fails, and an error (SQLSTATE 42512) is
returned.

Exporting data
Use the export utility to export data from a database to a file. The file can have one of several external file
formats. You can specify the data to be exported by supplying an SQL SELECT statement or by providing
hierarchical information for typed tables.

Before you begin

You need DATAACCESS authority, the CONTROL privilege, or the SELECT privilege on each participating
table or view to export data from a database

Before running the export utility, you must be connected (or be able to implicitly connect) to the database
from which you want to export the data. If implicit connect is enabled, a connection to the default
database is established. Utility access to Linux®, UNIX, or Windows database servers from Linux, UNIX, or
Windows clients must be through a direct connection through the engine and not through a Db2 Connect
gateway or loop back environment.

Because the utility issues a COMMIT statement, complete all transactions and release all locks by issuing
a COMMIT or a ROLLBACK statement before running the export utility. There is no requirement for
applications accessing the table and using separate connections to disconnect.

You cannot export tables with structured type columns.

Note: EXPORT utility is an embedded SQL application, and does not support dynamic data format.

Procedure

• To run the export utility:

• Specify the EXPORT command in the command line processor (CLP).
• Call the db2Export application programming interface (API).
• Open the task assistant in IBM Data Studio for the EXPORT command.

Examples

A simple export operation requires you to specify only a target file, a file format, and a source file for the
SELECT statement.

For example:

db2 export to filename of ixf select * from table

where filename is the name of the output file that you want to create and export, ixf is the file format,
and table is the name of the table that contains the data you want to copy.

However, you might also want to specify a messages file to which warning and error messages are
written. To do that, add the MESSAGES parameter and a message file name (in this case, msg.txt). For
example:

db2 export to filename of ixf messages msgs.txt select * from table

Export sessions - CLP examples

Example 1
The following example shows how to export information from the STAFF table in the SAMPLE database
(to which the user must be connected) to myfile.ixf, with the output in IXF format. If the database

6 IBM Db2 V11.5: Data Movement Utilities Guide

connection is not through Db2 Connect, the index definitions (if any) will be stored in the output file;
otherwise, only the data will be stored:

 db2 export to myfile.ixf of ixf messages msgs.txt select * from staff

Example 2
The following example shows how to export the information about employees in Department 20 from the
STAFF table in the SAMPLE database (to which the user must be connected) to awards.ixf, with the
output in IXF format:

 db2 export to awards.ixf of ixf messages msgs.txt select * from staff
 where dept = 20

Example 3
The following example shows how to export LOBs to a DEL file:

 db2 export to myfile.del of del lobs to mylobs/
 lobfile lobs1, lobs2 modified by lobsinfile
 select * from emp_photo

Example 4
The following example shows how to export LOBs to a DEL file, specifying a second directory for files that
might not fit into the first directory:

 db2 export to myfile.del of del
 lobs to /db2exp1/, /db2exp2/ modified by lobsinfile
 select * from emp_photo

Example 5
The following example shows how to export data to a DEL file, using a single quotation mark as the string
delimiter, a semicolon as the column delimiter, and a comma as the decimal point. The same convention
should be used when importing data back into the database:

 db2 export to myfile.del of del
 modified by chardel'' coldel; decpt,
 select * from staff

LBAC-protected data export considerations
When you export data that is protected by label-based access control (LBAC), the data that is exported is
limited to the data that your LBAC credentials allow you to read.

If your LBAC credentials do not allow you to read a row, that row is not exported, but no error is returned.
If your LBAC credentials do not allow you to read a column, the export utility fails, and an error
(SQLSTATE 42512) is returned.

A value from a column with a data type of DB2SECURITYLABEL is exported as raw data enclosed in
character delimiters. If a character delimiter is included in the original data, it is doubled. No other
changes are made to the bytes that make up the exported value. This means that a data file that contains
DB2SECURITYLABEL data can contain newlines, formfeeds, or other non-printable ASCII characters.

If you want the values of columns with a data type of DB2SECURITYLABEL to be exported in a human-
readable form, you can use the SECLABEL_TO_CHAR scalar function in the SELECT statement to convert
the values to the security label string format.

Examples

In the following examples, output is in DEL format and is written to the file myfile.del. The data is
exported from a table named REPS, which was created with the following statement:

create table reps (row_label db2securitylabel,
id integer,
name char(30))
security policy data_access_policy

Chapter 1. Data movement utilities and reference 7

This example exports the values of the row_label column in the default format:

db2 export to myfile.del of del select * from reps

The data file is not very readable in most text editors because the values for the row_label column are
likely to contain several ASCII control characters.

The following example exports the values of the row_label column in the security label string format:

db2 export to myfile.del of del select SECLABEL_TO_CHAR
(row_label,'DATA_ACCESS_POLICY'), id, name from reps

Here is an excerpt of the data file created by the previous example. Notice that the format of the security
label is readable:

...
"Secret:():Epsilon 37", 2005, "Susan Liu"
"Secret:():(Epsilon 37,Megaphone,Cloverleaf)", 2006, "Johnny Cogent"
"Secret:():(Megaphone,Cloverleaf)", 2007, "Ron Imron"
...

Table export considerations
A typical export operation involves the outputting of selected data that is inserted or loaded into existing
tables. However, it is also possible to export an entire table for subsequent re-creation using the import
utility.

To export a table, you must specify the PC/IXF file format. You can then re-create your saved table
(including its indexes) using the import utility in CREATE mode. However, some information is not saved
to the exported IXF file if any of the following conditions exist:

• The index column names contain hexadecimal values of 0x2B or 0x2D.
• The table contains XML columns.
• The table is multidimensional clustered (MDC).
• The table contains a table partitioning key.
• The index name is longer than 128 bytes due to code page conversion.
• The table is protected.
• The EXPORT command contains action strings other than SELECT * FROM tablename
• You specify the METHOD N parameter for the export utility.

For a list of table attributes that are lost, see "Table import considerations." If any information is not
saved, warning SQL27984W is returned when the table is re-created.

Note: Import's CREATE mode is being deprecated. Use the db2look utility to capture and re-create your
tables.

Index information
If the column names specified in the index contain either - or + characters, the index information is
not collected, and warning SQL27984W is returned. The export utility completes its processing, and
the data exported is unaffected. However, the index information is not saved in the IXF file. As a
result, you must create the indexes separately using the db2look utility.

Space limitations
The export operation fails if the data that you are exporting exceeds the space available on the file
system on which the exported file is created. In this case, you should limit the amount of data
selected by specifying conditions on the WHERE clause so that the exported file fits on the target file
system. You can run the export utility multiple times to export all of the data.

Tables with other file formats
If you do not export using the IXF file format, the output files do not contain descriptions of the target
table, but they contain the record data. To re-create a table and its data, create the target table, then
use the load or import utility to populate the table. You can use the db2look utility to capture the
original table definitions and to generate the corresponding data definition language (DDL).

8 IBM Db2 V11.5: Data Movement Utilities Guide

Typed table export considerations
You can use the Db2 export utility can be used to move data out of typed tables for a later import. Export
moves data from one hierarchical structure of typed tables to another by following a specific order and
creating an intermediate flat file.

When working with typed tables, the export utility controls what is placed in the output file; specify only
the target table name and, optionally, the WHERE clause. You can express subselect statements only by
specifying the target table name and the WHERE clause. You cannot specify a fullselect or select-
statement when exporting a hierarchy.

Preservation of hierarchies using traverse order

Typed tables can be in a hierarchy. There are several ways you can move data across hierarchies:

• Movement from one hierarchy to an identical hierarchy
• Movement from one hierarchy to a subsection of a larger hierarchy
• Movement from a subsection of a large hierarchy to a separate hierarchy

Identification of types in a hierarchy is database dependent, meaning that in different databases, the
same type has a different identifier. Therefore, when moving data between these databases, a
mapping of the same types must be done to ensure that the data is moved correctly.

The mapping used for typed tables is known as the traverse order, the order of proceeding top-to-
bottom, left-to-right through all of the supertables and subtables in the hierarchy. Before each typed
row is written out during an export operation, an identifier is translated into an index value. This index
value can be any number from one to the number of relevant types in the hierarchy. Index values are
generated by numbering each type when moving through the hierarchy in a specific order-the traverse
order. Figure 1 shows a hierarchy with four valid traverse orders:

• Person, Employee, Manager, Architect, Student
• Person, Student, Employee, Manager, Architect
• Person, Employee, Architect, Manager, Student
• Person, Student, Employee, Architect, Manager

Chapter 1. Data movement utilities and reference 9

Figure 1. An example of a hierarchy

The traverse order is important when moving data between table hierarchies because it determines
where the data is moved in relation to other data. There are two types of traverse order: default and
user specified.

Default traverse order

With the default traverse order, all relevant types refer to all reachable types in the hierarchy from a
given starting point in the hierarchy. The default order includes all tables in the hierarchy, and each
table is ordered by the scheme used in the OUTER order predicate. For instance, the default traverse
order of Figure 1, indicated by the dotted line, would be Person, Student, Employee, Manager,
Architect.

The default traverse order behaves differently when used with different file formats. Exporting data to
the PC/IXF file format creates a record of all relevant types, their definitions, and relevant tables. The
export utility also completes the mapping of an index value to each table. When working with the
PC/IXF file format, you should use the default traverse order.

With the ASC or DEL file format, the order in which the typed rows and the typed tables are created
could be different, even though the source and target hierarchies might be structurally identical. This
results in time differences that the default traverse order identifies when proceeding through the
hierarchies. The creation time of each type determines the order used to move through the hierarchy
at both the source and the target when using the default traverse order. Ensure that the creation order
of each type in both the source and the target hierarchies is identical and that there is structural
identity between the source and the target. If these conditions cannot be met, select a user-specified
traverse order.

User-specified traverse order

With the user-specified traverse order, you define (in a traverse order list) the relevant types to be
used. This order outlines how to traverse the hierarchy and what sub-tables to export, whereas with
the default traverse order, all tables in the hierarchy are exported.

10 IBM Db2 V11.5: Data Movement Utilities Guide

Although you determine the starting point and the path down the hierarchy when defining the traverse
order, remember that the subtables must be traversed in pre-order fashion. Each branch in the
hierarchy must be traversed to the bottom before a new branch can be started. The export utility
looks for violations of this condition within the specified traverse order. One method of ensuring that
the condition is met is to proceed from the top of the hierarchy (or the root table), down the hierarchy
(subtables) to the bottom subtable, then back up to its supertable, down to the next "right-most"
subtable, then back up to next higher supertable, down to its subtables, and so on.

If you want to control the traverse order through the hierarchies, ensure that the same traverse order
is used for both the export and the import utilities.

Example 1

The following examples are based on the hierarchical structure in Figure 1. To export the entire hierarchy,
enter the following commands:

 DB2 CONNECT TO Source_db
 DB2 EXPORT TO entire_hierarchy.ixf OF IXF HIERARCHY STARTING Person

Note that setting the parameter HIERARCHY STARTING to Person indicates that the default traverse
order starting from the table PERSON.

Example 2

To export the entire hierarchy, but only the data for those people over the age of 20, you would enter the
following commands:

DB2 CONNECT TO Source_db
 DB2 EXPORT TO entire_hierarchy.del OF DEL HIERARCHY (Person,
 Employee, Manager, Architect, Student) WHERE Age>=20

Note that setting the parameter HIERARCHY to Person, Employee, Manager, Architect,
Student indicates a user-specified traverse order.

Identity column export considerations
You can use the export utility to export data from a table containing an identity column. However, the
identity column limits your choice of output file format.

If the SELECT statement that you specify for the export operation is of the form SELECT * FROM
tablename and you do not use the METHOD option, exporting identity column properties to IXF files is
supported. You can then use the REPLACE_CREATE and the CREATE options of the IMPORT command to
re-create the table, including its identity column properties. If you create the exported IXF file from a
table containing an identity column of type GENERATED ALWAYS, the only way that you can successfully
import the data file is to specify the identityignore file type modifier during the import operation.
Otherwise, all rows are rejected (SQL3550W is issued).

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are deprecated and might be
removed in a future release.

LOB export considerations
When exporting tables with large object (LOB) columns, the default action is to export a maximum of 32
KB per LOB value and to place it in the same file as the rest of the column data. If you are exporting LOB
values that exceed 32 KB, you should have the LOB data written to a separate file to avoid truncation.

To specify that LOB should be written to its own file, use the lobsinfile file type modifier. This modifier
instructs the export utility to place the LOB data in the directories specified by the LOBS TO clause. Using
LOBS TO or LOBFILE implicitly activates the lobsinfile file type modifier. By default, LOB values are
written to the same path to which the exported relational data is written. If one or more paths are
specified with the LOBS TO option, the export utility cycles between the paths to write each successful
LOB value to the appropriate LOB file. You can also specify names for the output LOB files using the
LOBFILE option. If the LOBFILE option is specified, the format of lobfilename is
lobfilespec.xxx.lob, where lobfilespec is the value specified for the LOBFILE option, and xxx is

Chapter 1. Data movement utilities and reference 11

a sequence number for LOB files produced by the export utility. Otherwise, lobfilename is of the format:
exportfilename.xxx.lob, where exportfilename is the name of the exported output file specified
for the EXPORT command, and xxx is a sequence number for LOB files produced by the export utility.

By default, LOBs are written to a single file, but you can also specify that the individual LOBs are to be
stored in separate files. The export utility generates a LOB Location Specifier (LLS) to enable the storage
of multiple LOBs in one file. The LLS, which is written to the export output file, is a string that indicates
where the LOB data is stored within the file. The format of the LLS is lobfilename.ext.nnn.mmm/,
where lobfilename.ext is the name of the file that contains the LOB, nnn is the offset of the LOB
within the file (measured in bytes), and mmm is the length of the LOB (measured in bytes). For example,
an LLS of db2exp.001.123.456/ indicates that the LOB is located in the file db2exp.001, begins at an
offset of 123 bytes into the file, and is 456 bytes long. If the indicated size in the LLS is 0, the LOB is
considered to have a length of 0. If the length is -1, the LOB is considered to be NULL and the offset and
file name are ignored.

If you don't want individual LOB data concatenated to the same file, use the lobsinsepfiles file type
modifier to write each LOB to a separate file.

Note: The IXF file format does not store the LOB options of the column, such as whether or not the LOB
column is logged. This means that the import utility cannot re-create a table containing a LOB column that
is defined to be 1 GB or larger.

Example 1
The following example shows how to export LOBs (where the exported LOB files have the specified base
name lobs1) to a DEL file:

 db2 export to myfile.del of del lobs to mylobs/
 lobfile lobs1 modified by lobsinfile
 select * from emp_photo

Example 2
The following example shows how to export LOBs to a DEL file, where each LOB value is written to a
separate file and lobfiles are written to two directories:

db2 export to myfile.del of del
lobs to /db2exp1/, /db2exp2/ modified by lobsinfile
select * from emp_photo

Import utility

Import overview
The import utility populates a table, typed table, or view with data using an SQL INSERT statement. If the
table or view receiving the imported data already contains data, the input data can either replace or be
appended to the existing data.

Like export, import is a relatively simple data movement utility. It can be activated by issuing CLP
commands, by calling the ADMIN_CMD stored procedure, or by calling its API, db2Import, through a
user application.

There are a number of data formats that import supports, as well as features that can be used with
import:

• Import supports IXF, ASC, and DEL data formats.
• Import can be used with file type modifiers to customize the import operation.
• Import can be used to move hierarchical data and typed tables.
• Import logs all activity, updates indexes, verifies constraints, and fires triggers.
• Import allows you to specify the names of the columns within the table or view into which the data is to

be inserted.
• Import can be used with Db2 Connect.

12 IBM Db2 V11.5: Data Movement Utilities Guide

Import modes

Import has five modes which determine the method in which the data is imported. The first three,
INSERT, INSERT_UPDATE, and REPLACE are used when the target tables already exist. All three support
IXF, ASC, and DEL data formats. However, only INSERT and INSERT_UPDATE can be used with
nicknames.

Table 11. Overview of INSERT, INSERT_UPDATE, and REPLACE import modes

Mode Best practice usage

INSERT Inserts input data into target table without
changing existing data

INSERT_UPDATE Updates rows with matching primary key values
with values of input rows
Where there's no matching row, inserts imported
row into the table

REPLACE Deletes all existing data and inserts imported data,
while keeping table and index definitions

The other two modes, REPLACE_CREATE and CREATE, are used when the target tables do not exist. They
can only be used with input files in the PC/IXF format, which contains a structured description of the table
that is to be created. Imports cannot be performed in these modes if the object table has any dependents
other than itself.

Note: Import's CREATE and REPLACE_CREATE modes are being deprecated. Use the db2look utility
instead.

Table 12. Overview of REPLACE_CREATE and CREATE import modes

Mode Best practice usage

REPLACE_CREATE Deletes all existing data and inserts imported data,
while keeping table and index definitions
Creates target table and index if they don't exist

CREATE Creates target table and index
Can specify the name of the table space where the
new table is created

In IBM Data Studio Version 3.1 or later, you can use the task assistant for importing data. Task assistants
can guide you through the process of setting options, reviewing the automatically generated commands
to perform the task, and running these commands. For more details, see Administering databases with
task assistants.

How import works

The number of steps and the amount of time required for an import depend on the amount of data being
moved and the options that you specify. An import operation follows these steps:

1. Locking tables
Import acquires either an exclusive (X) lock or a nonexclusive (IX) lock on existing target tables,
depending on whether you allow concurrent access to the table.

2. Locating and retrieving data
Import uses the FROM clause to locate the input data. If your command indicates that XML or LOB
data is present, import will locate this data.

3. Inserting data
Import either replaces existing data or adds new rows of data to the table.

4. Checking constraints and firing triggers

Chapter 1. Data movement utilities and reference 13

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

As the data is written, import ensures that each inserted row complies with the constraints defined on
the target table. Information about rejected rows is written to the messages file. Import also fires
existing triggers.

5. Committing the operation
Import saves the changes made and releases the locks on the target table. You can also specify that
periodic take place during the import.

The following items are mandatory for a basic import operation:

• The path and the name of the input file
• The name or alias of the target table or view
• The format of the data in the input file
• The method by which the data is to be imported
• The traverse order, when importing hierarchical data
• The subtable list, when importing typed tables

Additional options

There are a number of options that allow you to customize an import operation. You can specify file
type modifiers in the MODIFIED BY clause to change the format of the data, tell the import utility what
to do with the data, and to improve performance.

The import utility, by default, does not perform commits until the end of a successful import, except in
the case of some ALLOW WRITE ACCESS imports. This improves the speed of an import, but for the
sake of concurrency, restartability, and active log space considerations, it might be preferable to
specify that commits take place during the import. One way of doing so is to set the COMMITCOUNT
parameter to "automatic," which instructs import to internally determine when it should perform a
commit. Alternatively, you can set COMMITCOUNT to a specific number, which instructs import to
perform a commit once that specified number of records has been imported.

There are a few ways to improve import's performance. As the import utility is an embedded SQL
application and does SQL fetches internally, optimizations that apply to SQL operations apply to
import as well. You can use the compound file type modifier to perform a specified number of rows to
insert at a time, rather than the default row-by-row insertion. If you anticipate that a large number of
warnings will be generated (and, therefore, slow down the operation) during the import, you can also
specify the norowwarnings file type modifier to suppress warnings about rejected rows.

Messages file

During an import, standard ASCII text message files are written to contain the error, warning, and
informational messages associated with that operation. If the utility is invoked through the application
programming interface (API) db2Import, you must specify the name of these files in advance with
the MESSAGES parameter, otherwise it is optional. The messages file is a convenient way of
monitoring the progress of an import, as you can access is while the import is in progress. In the event
of a failed import operation, message files can be used to determine a restarting point by indicating
the last row that was successfully imported.

Note: If the volume of output messages generated by an import operation against a remote database
exceeds 60 KB, the utility will keep the first 30 KB and the last 30 KB.

Privileges and authorities required to use import
Privileges enable users to create or access database resources. Authority levels provide a method of
grouping privileges and higher-level database manager maintenance and utility operations. Together,
these act to control access to the database manager and its database objects.

Users can access only those objects for which they have the appropriate authorization; that is, the
required privilege or authority.

With DATAACCESS authority, you can perform any type of import operation. The following table lists the
other authorities on each participating table, view or nickname that enable you to perform the
corresponding type of import.

14 IBM Db2 V11.5: Data Movement Utilities Guide

Table 13. Authorities required to perform import operations

Mode Required authority

INSERT CONTROL or
INSERT and SELECT

INSERT_UPDATE CONTROL or
INSERT, SELECT, UPDATE, and DELETE

REPLACE CONTROL or
INSERT, SELECT, and DELETE

REPLACE_CREATE When the target table exists: CONTROL or
INSERT, SELECT, and DELETE
When the target table doesn't exist: CREATETAB (on the database),
USE (on the table space), and
when the schema does not exist: IMPLICIT_SCHEMA (on the
database), or
when the schema exists: CREATEIN (on the schema)

CREATE CREATETAB (on the database), USE (on the table space), and
when the schema does not exist: IMPLICIT_SCHEMA (on the
database), or
when the schema exists: CREATEIN (on the schema)

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are deprecated and might be
removed in a future release.

As well, to use the REPLACE or REPLACE_CREATE option on a table, the session authorization ID must
have the authority to drop the table.

If you want to import to a hierarchy, the required authority also depends on the mode. For existing
hierarchies, CONTROL privilege on every subtable in the hierarchy is sufficient for a REPLACE operation.
For hierarchies that don't exist, CONTROL privilege on every subtable in the hierarchy, along with
CREATETAB and USE, is sufficient for a REPLACE_CREATE operation.

In addition, there a few considerations for importing into tables with label-based access control (LBAC)
security labels defined on them. To import data into a table that has protected columns, the session
authorization ID must have LBAC credentials that allow write access to all protected columns in the table.
To import data into a table that has protected rows, the session authorization ID must have been granted
a security label for write access that is part of the security policy protecting the table.

Importing data
The import utility inserts data from an external file with a supported file format into a table, hierarchy,
view, or nickname. The load utility is a faster alternative, but the load utility does not support loading data
at the hierarchy level.

Before you begin

Before invoking the import utility, you must be connected to (or be able to implicitly connect to) the
database into which you want to import the data. If implicit connect is enabled, a connection to the
default database is established.

Utility access to Db2 for Linux, UNIX, or Windows database servers from Db2 for Linux, UNIX, or Windows
clients must be a direct connection through the engine. Utility access cannot be through a Db2 Connect
gateway or loop back environment.

Since the utility issues a COMMIT or a ROLLBACK statement, complete all transactions and release all
locks by issuing a COMMIT statement or a ROLLBACK operation before invoking import.

Chapter 1. Data movement utilities and reference 15

Note: The CREATE and REPLACE_CREATE parameters of the IMPORT command are deprecated and
might be removed in a future release.

Restrictions

The following restrictions apply to the import utility:

• If the existing table is a parent table containing a primary key that is referenced by a foreign key in a
dependent table, its data cannot be replaced, only appended to.

• You cannot perform an import replace operation into an underlying table of a materialized query table
defined in refresh immediate mode.

• You cannot import data into a system table, a summary table, or a table with a structured type column.
• You cannot import data into declared temporary tables.
• Views cannot be created through the import utility.
• Referential constraints and foreign key definitions are not preserved when creating tables from PC/IXF
files. (Primary key definitions are preserved if the data was previously exported by using SELECT *.)

• Because the import utility generates its own SQL statements, the maximum statement size of 2 MB
might, in some cases, be exceeded.

• You cannot re-create a partitioned table or a multidimensional clustered table (MDC) by using the
CREATE or REPLACE_CREATE import parameters.

• You cannot re-create tables containing XML columns.
• You cannot import encrypted data.
• The import replace operation does not honor the Not Logged Initially clause. The REPLACE parameter

for the IMPORT command does not honor the NOT LOGGED INITIALLY (NLI) clause for the CREATE
TABLE statement clause or the ACTIVATE NOT LOGGED INITIALLY clause for the ALTER TABLE
statement. If an import with the REPLACE action is performed within the same transaction as a CREATE
TABLE or ALTER TABLE statement where the NLI clause is invoked, the import does not honor the NLI
clause. In this scenario, all inserts are logged.

Workaround 1: Delete the contents of the table by using the DELETE statement, then invoke the import
with INSERT statement.

Workaround 2: Drop the table and re-create it, then invoke the import with INSERT statement.

The following limitation applies to the import utility: If the volume of output messages generated by an
import operation against a remote database exceeds 60 KB, the utility keeps the first 30 KB and the last
30 KB.

Procedure

• To invoke the import utility:

• Issue an IMPORT command in the command line processor (CLP).
• Call the db2Import application programming interface (API) from a client application.
• Open the task assistant in IBM Data Studio for the IMPORT command.

Examples

A simple import operation requires you to specify only an input file, a file format, an import mode, and a
target table (or the name of the table that is to be created).

For example, to import data from the CLP, enter the IMPORT command:

db2 import from filename of fileformat import_mode into table

where filename is the name of the input file that contains the data you want to import, fileformat is the file
format, import_mode is the mode, and table is the name of the table that you want to insert the data into.

16 IBM Db2 V11.5: Data Movement Utilities Guide

However, you might also want to specify a messages file to which warning and error messages are
written. To do that, add the MESSAGES parameter and a message file name. For example:

db2 import from filename of fileformat messages messagefile import_mode into table

Import sessions - CLP examples

Example 1

The following example shows how to import information frommyfile.ixf to the STAFF table:

 db2 import from myfile.ixf of ixf messages msg.txt insert into staff

SQL3150N The H record in the PC/IXF file has product "Db2 01.00", date
"19970220", and time "140848".

SQL3153N The T record in the PC/IXF file has name "myfile",
qualifier " ", and source " ".

SQL3109N The utility is beginning to load data from file "myfile".

SQL3110N The utility has completed processing. "58" rows were read from the
input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "58".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "58" rows were processed from the input file. "58" rows were
successfully inserted into the table. "0" rows were rejected.

Example 2

The following example shows how to import into a table that has identity columns:

TABLE1 has 4 columns:

• C1 VARCHAR(30)
• C2 INT GENERATED BY DEFAULT AS IDENTITY
• C3 DECIMAL(7,2)
• C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS identity column.

Data records in DATAFILE1 (DEL format):

 "Liszt"
 "Hummel",,187.43, H
 "Grieg",100, 66.34, G
 "Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):

 "Liszt", 74.49, A
 "Hummel", 0.01, H
 "Grieg", 66.34, G
 "Satie", 818.23, I

The following command generates identity values for rows 1 and 2, since no identity values are supplied
in DATAFILE1 for those rows. Rows 3 and 4, however, are assigned the user-supplied identity values of
100 and 101, respectively.

 db2 import from datafile1.del of del replace into table1

To import DATAFILE1 into TABLE1 so that identity values are generated for all rows, issue one of the
following commands:

Chapter 1. Data movement utilities and reference 17

 db2 import from datafile1.del of del method P(1, 3, 4)
 replace into table1 (c1, c3, c4)
 db2 import from datafile1.del of del modified by identityignore
 replace into table1

To import DATAFILE2 into TABLE1 so that identity values are generated for each row, issue one of the
following commands:

 db2 import from datafile2.del of del replace into table1 (c1, c3, c4)
 db2 import from datafile2.del of del modified by identitymissing
 replace into table1

If DATAFILE1 is imported into TABLE2 without using any of the identity-related file type modifiers, rows 1
and 2 will be inserted, but rows 3 and 4 will be rejected, because they supply their own non-NULL values,
and the identity column is GENERATED ALWAYS.

Example 3

The following example shows how to import into a table that has null indicators:

TABLE1 has 5 columns:

• COL1 VARCHAR 20 NOT NULL WITH DEFAULT
• COL2 SMALLINT
• COL3 CHAR 4
• COL4 CHAR 2 NOT NULL WITH DEFAULT
• COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:

• ELE1 positions 01 to 20
• ELE2 positions 21 to 22
• ELE5 positions 23 to 23
• ELE3 positions 24 to 27
• ELE4 positions 28 to 31
• ELE6 positions 32 to 32
• ELE6 positions 33 to 40

Data Records:

 1...5....10...15...20...25...30...35...40
 Test data 1 XXN 123abcdN
 Test data 2 and 3 QQY wxyzN
 Test data 4,5 and 6 WWN6789 Y

The following command imports records from ASCFILE1 into TABLE1:

 db2 import from ascfile1 of asc
 method L (1 20, 21 22, 24 27, 28 31)
 null indicators (0, 0, 23, 32)
 insert into table1 (col1, col5, col2, col3)

Note:

1. Because COL4 is not provided in the input file, it will be inserted into TABLE1 with its default value (it
is defined NOT NULL WITH DEFAULT).

2. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1 will be loaded NULL for a
given row. If there is a Y in the column's null indicator position for a given record, the column will be
NULL. If there is an N, the data values in the column's data positions of the input record (as defined in

18 IBM Db2 V11.5: Data Movement Utilities Guide

L(........)) are used as the source of column data for the row. In this example, neither column in row 1 is
NULL; COL2 in row 2 is NULL; and COL3 in row 3 is NULL.

3. In this example, the NULL INDICATORS for COL1 and COL5 are specified as 0 (zero), indicating that
the data is not nullable.

4. The NULL INDICATOR for a given column can be anywhere in the input record, but the position must
be specified, and the Y or N values must be supplied.

Imported table re-creation
You can use the import utility's CREATE mode to re-create a table that was saved through the export
utility. However, there are a number of limitations on the process, as many of the input table's attributes
are not retained.

For import to be able to re-create the table, the export operation must meet some requirements. The
original table must have been exported to an IXF file. If you export files with DEL or ASC file formats, the
output files do not contain descriptions of the target table, but they contain the record data. To re-create
a table with data stored in these file formats, create the target table, then use the load or import utility to
populate the table from these files. You can use the db2look utility to capture the original table
definitions and to generate the corresponding data definition language (DDL). As well, the SELECT
statement used during the export can only contain certain action strings. For example, no column names
can be used in the SELECT clause and only SELECT * is permitted.

Note: Import's CREATE mode is being deprecated. Use the db2look utility to capture and re-create your
tables.

Retained attributes

The re-created table will retain the following attributes of the original table:

• The primary key name, and definition
• Column information, including:

– Column name
– Column data type, including user-defined distinct types, which are preserved as their base type
– Identity properties
– Lengths (except for lob_file types)
– Code page (if applicable)
– Identity options
– Whether the column is defined as nullable or not nullable
– Default values for constants, if any, but not other types of default values

• Index information, including:

– Index name
– Index creator name
– Column names, and whether each column is sorted in ascending or descending order
– Whether the index is defined as unique
– Whether the index is clustered
– Whether the index allows reverse scans
– PCTFREE values
– MINPCTUSED values

Note: No index information is retained if the column names in the index contain the characters - or +,
in which case SQL27984W is returned.

Lost attributes

The re-created table does not retain several attributes of the original table, including:

Chapter 1. Data movement utilities and reference 19

• Whether the source was a normal table, a materialized query table (MQT), a view, or a set of
columns from any or all of these sources

• Unique constraints and other types of constraints or triggers (not including primary key constraints)
• Table information, including:

– MQT definition (if applicable)
– MQT options (if applicable)
– Table space options; however, this information can be specified through the IMPORT command
– Multidimensional clustering (MDC) dimensions
– Partitioned table dimensions
– Table partitioning key
– NOT LOGGED INITIALLY property
– Check constraints
– Table code page
– Protected table properties
– Table or value compression options

• Column information, including:

– Any default value except constant values
– LOB options (if any)
– XML properties
– References clause of the CREATE TABLE statement (if any)
– Referential constraints (if any)
– Check constraints (if any)
– Generated column options (if any)
– Columns dependent on database scope sequences
– Implicitly hidden property

• Index information, including:

– INCLUDE columns (if any)
– Index name, if the index is a primary key index
– Descending order of keys, if the index is a primary key index (ascending is the default)
– Index column names that contain hexadecimal values of 0x2B or 0x2D
– Index names that contain more than 128 bytes after code page conversion
– PCTFREE2 value
– Unique constraints

Note: This list is not exhaustive, use with care.

If the import fails and SQL3311N is returned, you can still re-create the table using the file type modifier
forcecreate. This modifier allows you to create the table with missing or limited information.

Typed table import considerations
The import utility can be used to move data both from and into typed tables while preserving the data's
preexisting hierarchy. If desired, import can also be used to create the table hierarchy and the type
hierarchy.

The movement of data from one hierarchical structure of typed tables to another is done through a
specific traverse order and the creation of an intermediate flat file during an export operation. In turn, the
import utility controls the size and the placement of the hierarchy being moved, using the CREATE, INTO
table-name, UNDER, and AS ROOT TABLE parameters. As well, import determines what is placed in the

20 IBM Db2 V11.5: Data Movement Utilities Guide

target database. For example, it can specify an attributes list at the end of each subtable name to restrict
the attributes that are moved to the target database. If no attributes list is used, all of the columns in each
subtable are moved.

Table re-creation

The type of import you are able to perform depends on the file format of the input file. When working
with ASC or DEL data, the target table or hierarchy must exist before the data can be imported.
However, data from a PC/IXF file can be imported even if the table or hierarchy does not already exist
if you specify an import CREATE operation. It must be noted that if the CREATE option is specified,
import cannot alter subtable definitions.

Traverse order

The traverse order contained in the input file enables the hierarchies in the data to be maintained.
Therefore, the same traverse order must be used when invoking the export utility and the import
utility.

For the PC/IXF file format, one need only specify the target subtable name, and use the default
traverse order stored in the file.

When using options other than CREATE with typed tables, the traverse order list enables one to
specify the traverse order. This user-specified traverse order must match the one used during the
export operation. The import utility guarantees the accurate movement of data to the target database
given the following:

• An identical definition of subtables in both the source and the target databases
• An identical hierarchical relationship among the subtables in both the source and target databases
• An identical traverse order

Although you determine the starting point and the path down the hierarchy when defining the traverse
order, each branch must be traversed to the end before the next branch in the hierarchy can be
started. The import utility looks for violations of this condition within the specified traverse order.

Examples

Examples in this section are based on the following hierarchical structure with four valid traverse orders:

• Person, Employee, Manager, Architect, Student
• Person, Student, Employee, Manager, Architect
• Person, Employee, Architect, Manager, Student
• Person, Student, Employee, Architect, Manager

Chapter 1. Data movement utilities and reference 21

Figure 2. An example of a hierarchy

Example 1
To re-create an entire hierarchy (contained in the data file entire_hierarchy.ixf created by a prior
export operation) using import, you would enter the following commands:

 DB2 CONNECT TO Target_db
 DB2 IMPORT FROM entire_hierarchy.ixf OF IXF CREATE INTO
 HIERARCHY STARTING Person AS ROOT TABLE

Each type in the hierarchy is created if it does not exist. If these types already exist, they must have the
same definition in the target database as in the source database. An SQL error (SQL20013N) is returned if
they are not the same. Since a new hierarchy is being created, none of the subtables defined in the data
file being moved to the target database (Target_db) can exist. Each of the tables in the source database
hierarchy is created. Data from the source database is imported into the correct subtables of the target
database.

Example 2
To re-create the entire hierarchy of the source database and import it to the target database, while only
keeping selected data, you would enter the following commands:

 DB2 CONNECT TO Target_db
 DB2 IMPORT FROM entire_hierarchy.del OF DEL INSERT INTO (Person,
 Employee(Salary), Architect) IN HIERARCHY (Person, Employee,
 Manager, Architect, Student)

The target tables PERSON, EMPLOYEE, and ARCHITECT must all exist. Data is imported into the PERSON,
EMPLOYEE, and ARCHITECT subtables. That is, the following will be imported:

• All columns in PERSON into PERSON
• All columns in PERSON plus SALARY in EMPLOYEE into EMPLOYEE
• All columns in PERSON plus SALARY in EMPLOYEE, plus all columns in ARCHITECT into ARCHITECT

22 IBM Db2 V11.5: Data Movement Utilities Guide

Columns SerialNum and REF(Employee_t) are not imported into EMPLOYEE or its subtables (that is,
ARCHITECT, which is the only subtable having data imported into it).

Note: Because ARCHITECT is a subtable of EMPLOYEE, and the only import column specified for
EMPLOYEE is SALARY, SALARY is also the only Employee-specific column imported into ARCHITECT. That
is, neither SerialNum nor REF(Employee_t) columns are imported into either EMPLOYEE or ARCHITECT
rows.

Data for the MANAGER and the STUDENT tables is not imported.

Example 3
This example shows how to export from a regular table, and import as a single subtable in a hierarchy.
The EXPORT command operates on regular (non-typed) tables, so there is no Type_id column in the data
file. The file type modifier no_type_id is used to indicate this, so that the import utility does not expect
the first column to be the Type_id column.

 DB2 CONNECT TO Source_db
 DB2 EXPORT TO Student_sub_table.del OF DEL SELECT * FROM
 Regular_Student
 DB2 CONNECT TO Target_db
 DB2 IMPORT FROM Student_sub_table.del OF DEL METHOD P(1,2,3,5,4)
 MODIFIED BY NO_TYPE_ID INSERT INTO HIERARCHY (Student)

In this example, the target table STUDENT must exist. Since STUDENT is a subtable, the modifier
no_type_id is used to indicate that there is no Type_id in the first column. However, you must ensure
that there is an existing Object_id column, in addition to all of the other attributes that exist in the
STUDENT table. Object-id is expected to be the first column in each row imported into the STUDENT
table. The METHOD clause reverses the order of the last two attributes.

LBAC-protected data import considerations
For a successful import operation into a table with protected rows, you must have LBAC (label-based
access control) credentials. You must also provide a valid security label, or a security label that can be
converted to a valid label, for the security policy currently associated with the target table.

If you do not have valid LBAC credentials, the import fails and an error (SQLSTATE 42512) is returned. In
cases where the input data does not contain a security label or that security label is not in its internal
binary format, you can use several file type modifiers to allow your import to proceed.

When you import data into a table with protected rows, the target table has one column with a data type
of DB2SECURITYLABEL. If the input row of data does not contain a value for that column, that row is
rejected unless the usedefaults file type modifier is specified in the import command, in which case
the security label you hold for write access from the security policy protecting the table is used. If you do
not hold a security label for write access, the row is rejected and processing continues on to the next row.

When you import data into a table that has protected rows and the input data does include a value for the
column with a data type of DB2SECURITYLABEL, the same rules are followed as when you insert data into
that table. If the security label protecting the row being imported (the one in that row of the data file) is
one that you are able to write to, then that security label is used to protect the row. (In other words, it is
written to the column that has a data type of DB2SECURITYLABEL.) If you are not able to write to a row
protected by that security label, what happens depends on how the security policy protecting the source
table was created:

• If the CREATE SECURITY POLICY statement that created the policy included the option RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL, the insert fails and an error is returned.

• If the CREATE SECURITY POLICY statement did not include the option or if it instead included the
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, the security label in the data file for
that row is ignored and the security label you hold for write access is used to protect that row. No error
or warning is issued in this case. If you do not hold a security label for write access, the row is rejected
and processing continues on to the next row.

Delimiter considerations

When importing data into a column with a data type of DB2SECURITYLABEL, the value in the data file
is assumed by default to be the actual bytes that make up the internal representation of that security

Chapter 1. Data movement utilities and reference 23

label. However, some raw data might contain newline characters which could be misinterpreted by
the IMPORT command as delimiting the row. If you have this problem, use the delprioritychar
file type modifier to ensure that the character delimiter takes precedence over the row delimiter.
When you use delprioritychar, any record or column delimiters that are contained within
character delimiters are not recognized as being delimiters. Using the delprioritychar file type
modifier is safe to do even if none of the values contain a newline character, but it does slow the
import down slightly.

If the data being imported is in ASC format, you might want to take an extra step in order to prevent
any trailing white space from being included in the imported security labels and security label names.
ASCII format uses column positions as delimiters, so this might occur when importing into variable-
length fields. Use the striptblanks file type modifier to truncate any trailing blank spaces.

Nonstandard security label values

You can also import data files in which the values for the security labels are strings containing the
values of the components in the security label, for example, S:(ALPHA,BETA). To do so you must use
the file type modifier seclabelchar. When you use seclabelchar, a value for a column with a data
type of DB2SECURITYLABEL is assumed to be a string constant containing the security label in the
string format for security labels. If a string is not in the proper format, the row is not inserted and a
warning (SQLSTATE 01H53) is returned. If the string does not represent a valid security label that is
part of the security policy protecting the table, the row is not inserted and a warning (SQLSTATE
01H53) is returned.

You can also import a data file in which the values of the security label column are security label
names. To import this sort of file you must use the file type modifier seclabelname. When you use
seclabelname, all values for columns with a data type of DB2SECURITYLABEL are assumed to be
string constants containing the names of existing security labels. If no security label exists with the
indicated name for the security policy protecting the table, the row is not inserted and a warning
(SQLSTATE 01H53) is returned.

Examples

For all examples, the input data file myfile.del is in DEL format. All are importing data into a table
named REPS, which was created with this statement:

create table reps (row_label db2securitylabel,
id integer,
name char(30))
security policy data_access_policy

For this example, the input file is assumed to contain security labels in the default format:

db2 import from myfile.del of del modified by delprioritychar insert into reps

For this example, the input file is assumed to contain security labels in the security label string format:

db2 import from myfile.del of del modified by seclabelchar insert into reps

For this example, the input file is assumed to contain security labels names for the security label column:

db2 import from myfile.del of del modified by seclabelname insert into reps

Buffered-insert imports
In a partitioned database environment, the import utility can be enabled to use buffered inserts. This
reduces the messaging that occurs when data is imported, resulting in better performance.

The buffered inserts option should only be enabled if you are not concerned about error reporting, since
details about a failed buffered insert are not returned.

When buffered inserts are used, import sets a default WARNINGCOUNT value to 1. As a result, the
operation will fail if any rows are rejected. If a record is rejected, the utility will roll back the current
transaction. The number of committed records can be used to determine which records were successfully

24 IBM Db2 V11.5: Data Movement Utilities Guide

inserted into the database. The number of committed records can be non zero only if the COMMITCOUNT
option was specified.

If a different WARNINGCOUNT value is explicitly specified on the import command, and some rows are
rejected, the row summary output by the utility can be incorrect. This is due to a combination of the
asynchronous error reporting used with buffered inserts and the fact that an error detected during the
insertion of a group of rows causes all the rows of that group to be backed out. Since the utility would not
reliably report which input records were rejected, it would be difficult to determine which records were
committed and which records need to be re-inserted into the database.

Use the Db2 bind utility to request buffered inserts. The import package, db2uimpm.bnd, must be
rebound against the database using the INSERT BUF option. For example:

 db2 connect to your_database
 db2 bind db2uimpm.bnd insert buf

Buffered inserts feature cannot be used in conjunction with import operations in the INSERT_UPDATE
mode. The bind file db2uImpInsUpdate.bnd enforces this restriction. This file should never be bound
with the INSERT BUF option. This causes the import operations in the INSERT_UPDATE mode to fail.
Import operations in the INSERT, REPLACE, or REPLACE_CREATE modes are not affected by the binding
of the new file.

Identity column import considerations
The import utility can be used to import data into a table containing an identity column whether or not the
input data has identity column values.

If no identity-related file type modifiers are used, the utility works according to the following rules:

• If the identity column is GENERATED ALWAYS, an identity value is generated for a table row whenever
the corresponding row in the input file is missing a value for the identity column, or a NULL value is
explicitly given. If a non-NULL value is specified for the identity column, the row is rejected
(SQL3550W).

• If the identity column is GENERATED BY DEFAULT, the import utility makes use of user-supplied values,
if they are provided; if the data is missing or explicitly NULL, a value is generated.

The import utility does not perform any extra validation of user-supplied identity values beyond what is
normally done for values of the identity column's data type (that is, SMALLINT, INT, BIGINT, or
DECIMAL). Duplicate values will not be reported. In addition, the compound=x modifier cannot be used
when importing data into a table with an identity column.

There are two ways you can simplify the import of data into tables that contain an identity column: the
identitymissing and the identityignore file type modifiers.

Importing data without an identity column
The identitymissing modifier makes importing a table with an identity column more convenient if the
input data file does not contain any values (not even NULLS) for the identity column. For example,
consider a table defined with the following SQL statement:

 create table table1 (c1 char(30),
 c2 int generated by default as identity,
 c3 real,
 c4 char(1))

A user might want to import data from a file (import.del) into TABLE1, and this data might have been
exported from a table that does not have an identity column. The following is an example of such a file:

 Robert, 45.2, J
 Mike, 76.9, K
 Leo, 23.4, I

One way to import this file would be to explicitly list the columns to be imported through the IMPORT
command as follows:

 db2 import from import.del of del replace into table1 (c1, c3, c4)

Chapter 1. Data movement utilities and reference 25

For a table with many columns, however, this syntax might be cumbersome and prone to error. An
alternate method of importing the file is to use the identitymissing file type modifier as follows:

 db2 import from import.del of del modified by identitymissing
 replace into table1

Importing data with an identity column
The identityignore modifier is in some ways the opposite of the identitymissing modifier: it
indicates to the import utility that even though the input data file contains data for the identity column,
the data should be ignored, and an identity value should be generated for each row. For example, a user
might want to import the following data from a file (import.del) into TABLE1, as defined previously:

 Robert, 1, 45.2, J
 Mike, 2, 76.9, K
 Leo, 3, 23.4, I

If the user-supplied values of 1, 2, and 3 are not to be used for the identity column, the user could issue
the following IMPORT command:

 db2 import from import.del of del method P(1, 3, 4)
 replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has many columns. The
identityignore modifier simplifies the syntax as follows:

 db2 import from import.del of del modified by identityignore
 replace into table1

When a table with an identity column is exported to an IXF file, the REPLACE_CREATE and the CREATE
options of the IMPORT command can be used to re-create the table, including its identity column
properties. If such an IXF file is created from a table containing an identity column of type GENERATED
ALWAYS, the only way that the data file can be successfully imported is to specify the identityignore
modifier. Otherwise, all rows will be rejected (SQL3550W).

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are deprecated and might be
removed in a future release.

Generated column import considerations
The import utility can be used to import data into a table containing (nonidentity) generated columns
whether or not the input data has generated column values.

If no generated column-related file type modifiers are used, the import utility works according to the
following rules:

• A value is generated for a generated column whenever the corresponding row in the input file is missing
a value for the column, or a NULL value is explicitly given. If a non-NULL value is supplied for a
generated column, the row is rejected (SQL3550W).

• If the server generates a NULL value for a generated column that is not nullable, the row of data to
which this field belongs is rejected (SQL0407N). This could happen, for example, if a non-nullable
generated column were defined as the sum of two table columns that have NULL values supplied to
them in the input file.

There are two ways you can simplify the import of data into tables that contain a generated column: the
generatedmissing and the generatedignore file type modifiers.

Importing data without generated columns
The generatedmissing modifier makes importing data into a table with generated columns more
convenient if the input data file does not contain any values (not even NULLS) for all generated columns
present in the table. For example, consider a table defined with the following SQL statement:

 create table table1 (c1 int,
 c2 int,
 g1 int generated always as (c1 + c2),

26 IBM Db2 V11.5: Data Movement Utilities Guide

 g2 int generated always as (2 * c1),
 c3 char(1))

A user might want to import data from a file (load.del) into TABLE1, and this data might have been
exported from a table that does not have any generated columns. The following is an example of such a
file:

 1, 5, J
 2, 6, K
 3, 7, I

One way to import this file would be to explicitly list the columns to be imported through the IMPORT
command as follows:

 db2 import from import.del of del replace into table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be cumbersome and prone to error. An
alternate method of importing the file is to use the generatedmissing file type modifier as follows:

 db2 import from import.del of del modified by generatedmissing
 replace into table1

Importing data with generated columns
The generatedignore modifier is in some ways the opposite of the generatedmissing modifier: it
indicates to the import utility that even though the input data file contains data for all generated columns,
the data should be ignored, and values should be generated for each row. For example, a user might want
to import the following data from a file (import.del) into TABLE1, as defined previously:

 1, 5, 10, 15, J
 2, 6, 11, 16, K
 3, 7, 12, 17, I

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16, and 17 (for g2) result in the
row being rejected (SQL3550W). To avoid this, the user could issue the following IMPORT command:

 db2 import from import.del of del method P(1, 2, 5)
 replace into table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table has many columns. The
generatedignore modifier simplifies the syntax as follows:

 db2 import from import.del of del modified by generatedignore
 replace into table1

For an INSERT_UPDATE, if the generated column is also a primary key and the generatedignore
modifier is specified, the IMPORT command honors the generatedignore modifier. The IMPORT
command does not substitute the user-supplied value for this column in the WHERE clause of the
UPDATE statement.

LOB import considerations
Since the import utility restricts the size of a single column value to 32 KB, extra considerations need to
be taken when importing LOBs.

The import utility, by default, treats data in the input file as data to load into the column. However, when
large object (LOB) data is stored in the main input data file, the size of the data is limited to 32 KB.
Therefore, to prevent loss of data, LOB data should be stored separate from the main datafile and the
lobsinfile file type modifier should be specified when importing LOBs.

The LOBS FROM clause implicitly activates lobsinfile. The LOBS FROM clause conveys to the import
utility the list of paths to search for the LOB files while importing the data. If LOBS FROM option is not
specified, the LOB files to import are assumed to reside in the same path as the input relational data file.

Chapter 1. Data movement utilities and reference 27

Indicating where LOB data is stored

The LOB Location Specifier (LLS) can be used to store multiple LOBs in a single file when importing the
LOB information. The export utility generates and stores it in the export output file when lobsinfile is
specified, and it indicates where LOB data can be found. When data with the modified by lobsinfile
option specified is being imported, the database will expect an LLS for each of the corresponding LOB
columns. If something other than an LLS is encountered for a LOB column, the database will treat it as a
LOB file and will load the entire file as the LOB.

For an import in CREATE mode, you can specify that the LOB data be created and stored in a separate
table space by using the LONG IN clause.

The following example shows how you would import an DEL file which has its LOBs stored in separate
files:

IMPORT FROM inputfile.del OF DEL
 LOBS FROM /tmp/data
 MODIFIED BY lobsinfile
 INSERT INTO newtable

User-defined distinct types import considerations

The import utility casts user-defined distinct types (UDTs) to similar base data types automatically. This
saves you from having to explicitly cast UDTs to the base data types. Casting allows for comparisons
between UDTs and the base data types in SQL.

Additional considerations for import

Client/server environments and import
When you import a file to a remote database, a stored procedure can be called to perform the import on
the server.

A stored procedure cannot be called when:

• The application and database code pages are different.
• The file being imported is a multiple-part PC/IXF file.
• The method used for importing the data is either column name or relative column position.
• The target column list provided is longer than 4 KB.
• The LOBS FROM clause or the lobsinfile modifier is specified.
• The NULL INDICATORS clause is specified for ASC files.

When import uses a stored procedure, messages are created in the message file using the default
language installed on the server. The messages are in the language of the application if the language at
the client and the server are the same.

The import utility creates two temporary files in the tmp subdirectory of the sqllib directory (or the
directory indicated by the DB2INSTPROF registry variable, if specified). One file is for data, and the other
file is for messages generated by the import utility.

If you receive an error about writing or opening data on the server, ensure that:

• The directory exists.
• There is sufficient disk space for the files.
• The instance owner has write permission in the directory.

Table locking modes supported by the import utility
The import utility supports two table locking modes: offline, or ALLOW NO ACCESS, mode; and online, or
ALLOW WRITE ACCESS mode.

ALLOW NO ACCESS mode prevents concurrent applications from accessing table data. ALLOW WRITE
ACCESS mode allows concurrent applications both read and write access to the import target table. If no

28 IBM Db2 V11.5: Data Movement Utilities Guide

mode is explicitly specified, import runs in the default mode, ALLOW NO ACCESS. As well, the import
utility is, by default, bound to the database with isolation level RS (read stability).

Offline import (ALLOW NO ACCESS)

In ALLOW NO ACCESS mode, import acquires an exclusive (X) lock on the target table is before inserting
any rows. Holding a lock on a table has two implications:

• First, if there are other applications holding a table lock or row locks on the import target table, the
import utility waits for those applications to commit or roll back their changes.

• Second, while import is running, any other application requesting locks waits for the import operation to
complete.

Note: You can specify a locktimeout value, which prevents applications (including the import utility) from
waiting indefinitely for a lock.

By requesting an exclusive lock at the beginning of the operation, import prevents deadlocks from
occurring as a result of other applications working and holding row locks on the same target table.

Online import (ALLOW WRITE ACCESS)

In ALLOW WRITE ACCESS mode, the import utility acquires a nonexclusive (IX) lock on the target table.
Holding this lock on the table has the following implications:

• If there are other applications holding an incompatible table lock, the import utility does not start
inserting data until all of these applications commit or roll back their changes.

• While import is running, any other application requesting an incompatible table lock waits until the
import commits or rolls back the current transaction. Note that import's table lock does not persist
across a transaction boundary. As a result, online import has to request and potentially wait for a table
lock after every commit.

• If there are other applications holding an incompatible row lock, the import utility stops inserting data
until all of these applications commit or roll back their changes.

• While import is running, any other application requesting an incompatible row lock waits until the
import operation commits or rolls back the current transaction.

To preserve the online properties, and to reduce the chance of a deadlock, an ALLOW WRITE ACCESS
import periodically commits the current transaction and releases all row locks before escalating to an
exclusive table lock. If you have not explicitly set a commit frequency, import performs commits as if
COMMITCOUNT AUTOMATIC has been specified. No commits are performed if COMMITCOUNT is set to 0.

ALLOW WRITE ACCESS mode is not compatible with the following:

• Imports in REPLACE, CREATE, or REPLACE_CREATE mode
• Imports with buffered inserts
• Imports into a target view
• Imports into a hierarchy table
• Imports into a table with its lock granularity is set at the table level (set by using the LOCKSIZE

parameter of the ALTER TABLE statement)

Load utility

Load overview
The load utility is capable of efficiently moving large quantities of data into newly created tables, or into
tables that already contain data. The utility can handle most data types, including XML, large objects
(LOBs), and user-defined types (UDTs). The load utility is faster than the import utility, because it writes
formatted pages directly into the database, while the import utility performs SQL INSERTs. The load

Chapter 1. Data movement utilities and reference 29

utility does not fire triggers, and does not perform referential or table constraints checking (other than
validating the uniqueness of the indexes).

The load process has several distinct phases (see Figure 3 on page 30):

1. Analyze
When data is being loaded into a column-organized table, the first phase is the analyze phase, which is
unique to column-organized tables. The analyze phase occurs only if a column compression dictionary
needs to be built, which happens during a LOAD REPLACE operation, a LOAD REPLACE
RESETDICTIONARY operation, a LOAD REPLACE RESETDICTIONARYONLY operation, or a LOAD
INSERT operation (if the column-organized table is empty). For column-organized tables, this phase is
followed by the load, build, and delete phases. The index copy phase applies to row-organized tables
only.

2. Load
During the load phase, data is loaded into the table, and index keys and table statistics are collected, if
necessary. Save points, or points of consistency, are established at intervals specified through the
SAVECOUNT parameter in the LOAD command. Messages are generated, indicating how many input
rows were successfully loaded at the time of the save point.

3. Build
During the build phase, indexes are produced based on the index keys collected during the load phase.
The index keys are sorted during the load phase, and index statistics are collected (if the STATISTICS
USE PROFILE option was specified, and profile indicates collecting index statistics). The statistics are
similar to those collected through the RUNSTATS command.

4. Delete
During the delete phase, the rows that caused a unique or primary key violation are removed from the
table. These deleted rows are stored in the load exception table, if one was specified.

5. Index copy
During the index copy phase, the index data is copied from a system temporary table space to the
original table space. This will only occur if a system temporary table space was specified for index
creation during a load operation with the READ ACCESS option specified.

Figure 3. Phases of the Load Process for Row-organized Tables

Note: After you invoke the load utility, you can use the LIST UTILITIES command to monitor the
progress of the load operation.

The following information is required when loading data:

• The path and the name of the input file, named pipe, or device.
• The name or alias of the target table.
• The format of the input source. This format can be DEL, ASC, PC/IXF, or CURSOR.
• Whether the input data is to be appended to the table, or is to replace the existing data in the table.
• A message file name, if the utility is invoked through the application programming interface (API),
db2Load.

Load modes

• INSERT
In this mode, load appends input data to the table without making any changes to the existing data.

• REPLACE
In this mode, load deletes existing data from the table and populates it with the input data.

• RESTART

30 IBM Db2 V11.5: Data Movement Utilities Guide

In this mode, an interrupted load is resumed. In most cases, the load is resumed from the phase it
failed in. If that phase was the load phase, the load is resumed from the last successful consistency
point.

• TERMINATE
In this mode, a failed load operation is rolled back.

The options you can specify include:

• That the data to be loaded resides on the client, if the load utility is invoked from a remotely connected
client. Note that XML and LOB data are always read from the server, even you specify the CLIENT
option.

• The method to use for loading the data: column location, column name, or relative column position.
• How often the utility is to establish consistency points.
• The names of the table columns into which the data is to be inserted.
• Whether or not preexisting data in the table can be queried while the load operation is in progress.
• Whether the load operation should wait for other utilities or applications to finish using the table or

force the other applications off before proceeding.
• An alternate system temporary table space in which to build the index.
• The paths and the names of the input files in which LOBs are stored.

Note: The load utility does not honor the COMPACT lob option.
• A message file name. During load operations, you can specify that message files be created to contain

the error, warning, and informational messages associated with those operations. Specify the name of
these files with the MESSAGES parameter.

Note:

1. You can only view the contents of a message file after the operation is finished. If you want to view
load messages while a load operation is running, you can use the LOAD QUERY command.

2. Each message in a message file begins on a new line and contains information provided by the Db2
message retrieval facility.

• Whether column values being loaded have implied decimal points.
• Whether the utility should modify the amount of free space available after a table is loaded.
• Whether statistics are to be gathered during the load process. This option is only supported if the load

operation is running in REPLACE mode. Statistics are collected according to the profile defined for the
table. The profile must be created by the RUNSTATS command before the LOAD command is executed.
If the profile does not exist and the load operation is instructed to collect statistics according to the
profile, the load will fail, and an error message will be returned.

If data is appended to a table, statistics are not collected. To collect current statistics on an appended
table, invoke the RUNSTATS utility following completion of the load process. If gathering statistics on a
table with a unique index, and duplicate keys are deleted during the delete phase, statistics are not
updated to account for the deleted records. If you expect to have a significant number of duplicate
records, do not collect statistics during the load operation. Instead, invoke the RUNSTATS utility
following completion of the load process.

• Whether to keep a copy of the changes made. This is done to enable rollforward recovery of the
database. This option is not supported if rollforward recovery is disabled for the database; that is, if the
database configuration parameters logarchmeth1 and logarchmeth2 are set to OFF. If no copy is
made, and rollforward recovery is enabled, the table space is left in Backup Pending state at the
completion of the load operation.

Logging is required for fully recoverable databases. The load utility almost completely eliminates the
logging associated with the loading of data. In place of logging, you have the option of making a copy of
the loaded portion of the table. If you have a database environment that allows for database recovery
following a failure, you can do one of the following:

– Explicitly request that a copy of the loaded portion of the table be made.

Chapter 1. Data movement utilities and reference 31

– Take a backup of the table spaces in which the table resides immediately after the completion of the
load operation.

If the database configuration parameter logindexbuild is set, and if the load operation is invoked
with the COPY YES recoverability option and the INCREMENTAL indexing option, the load logs all index
modifications. The benefit of using these options is that when you roll forward through the log records
for this load, you also recover the indexes (whereas normally the indexes are not recovered unless the
load uses the REBUILD indexing mode).

If you are loading a table that already contains data, and the database is non-recoverable, ensure that
you have a backed-up copy of the database, or the table spaces for the table being loaded, before
invoking the load utility, so that you can recover from errors.

If you want to perform a sequence of multiple load operations on a recoverable database, the sequence
of operations will be faster if you specify that each load operation is non-recoverable, and take a backup
at the end of the load sequence, than if you invoke each of the load operations with the COPY YES
option. You can use the NONRECOVERABLE option to specify that a load transaction is to be marked as
non-recoverable, and that it will not be possible to recover it by a subsequent rollforward operation. The
rollforward utility will skip the transaction, and will mark the table into which data was being loaded as
"invalid". The utility will also ignore any subsequent transactions against that table. After the
rollforward operation is completed, such a table can only be dropped (see Figure 4 on page 32). With
this option, table spaces are not put in backup pending state following the load operation, and a copy of
the loaded data does not have to be made during the load operation.

Figure 4. Non-recoverable Processing During a Roll Forward Operation
• The fully qualified path to be used when creating temporary files during a load operation. The name is
specified by the TEMPFILES PATH parameter of the LOAD command. The default value is the database
path. The path resides on the server machine, and is accessed by the Db2 instance exclusively.
Therefore, any path name qualification given to this parameter must reflect the directory structure of
the server, not the client, and the Db2 instance owner must have read and write permission on the path.

Privileges and authorities required to use load
Privileges enable users to create or access database resources. Authority levels provide a method of
grouping privileges and higher-level database manager maintenance and utility operations. Together,
these act to control access to the database manager and its database objects. Users can access only
those objects for which they have the appropriate authorization; that is, the required privilege or
authority.

To load data into a table, you must have one of the following:

• DATAACCESS authority
• LOAD or DBADM authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT mode, TERMINATE mode (to
terminate a previous load insert operation), or RESTART mode (to restart a previous load insert
operation)

– INSERT and DELETE privilege on the table when the load utility is invoked in REPLACE mode,
TERMINATE mode (to terminate a previous load replace operation), or RESTART mode (to restart a
previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the load operation.

32 IBM Db2 V11.5: Data Movement Utilities Guide

– SELECT privilege on SYSCAT.TABLES is required in some cases where LOAD queries the catalog
tables.

Since all load processes (and all Db2 server processes, in general), are owned by the instance owner, and
all of these processes use the identification of the instance owner to access needed files, the instance
owner must have read access to input data files. These input data files must be readable by the instance
owner, regardless of who invokes the command.

If the REPLACE option is specified, the session authorization ID must have the authority to drop the table.

On Windows, and Windows.NET operating systems where Db2 is running as a Windows service, if you are
loading data from files that reside on a network drive, you must configure the Db2 service to run under a
user account that has read access to these files.

Note:

• To load data into a table that has protected columns, the session authorization ID must have LBAC
credentials that allow write access to all protected columns in the table.

• To load data into a table that has protected rows, the session authorization ID must have been granted
a security label for write access that is part of the security policy protecting the table.

Loading data
The load utility efficiently moves large quantities of data into newly created tables, or into tables that
already contain data.

Before you begin

Before invoking the load utility, you must be connected to (or be able to implicitly connect to) the
database into which you want to load the data.

Since the utility issues a COMMIT statement, complete all transactions and release all locks by issuing
either a COMMIT or a ROLLBACK statement before invoking the load utility.

Data is loaded in the sequence that appears in the input file, except when using multidimensional
clustering (MDC) tables, partitioned tables, or the anyorder file type modifier. If you want a particular
sequence, sort the data before attempting a load operation. If clustering is required, the data should be
sorted on the clustering index before loading. When loading data into multidimensional clustered tables
(MDC), sorting is not required before the load operation, and data is clustered according to the MDC table
definition. When loading data into partitioned tables, sorting is not required before the load operation, and
data is partitioned according to the table definition.

Restrictions

These are some of the restrictions that apply to the load utility:

• Loading data into nicknames is not supported.
• Loading data into typed tables, or tables with structured type columns, is not supported.
• Loading data into declared temporary tables and created temporary tables is not supported.
• XML data can only be read from the server side; if you want to have the XML files read from the client,

use the import utility.
• You cannot create or drop tables in a table space that is in Backup Pending state.
• You cannot load data into a database accessed through Db2 Connect or a server level before Db2

Version 2. Options that are only available with the current cannot be used with a server from the
previous release.

• If an error occurs during a LOAD REPLACE operation, the original data in the table is lost. Retain a copy
of the input data to allow the load operation to be restarted.

• Triggers are not activated on newly loaded rows. Business rules associated with triggers are not
enforced by the load utility.

• Loading encrypted data is not supported.

Chapter 1. Data movement utilities and reference 33

These are some of the restrictions that apply to the load utility when loading into a partitioned table:

• Consistency points are not supported when the number of partitioning agents is greater than one.
• Loading data into a subset of data partitions while keeping the remaining data partitions fully online is

not supported.
• The exception table used by a load operation or a set integrity pending operation cannot be partitioned.
• A unique index cannot be rebuilt when the load utility is running in insert mode or restart mode, and the

load target table has any detached dependents.

Procedure

To invoke the load utility:
• Issue a LOAD command in the command line processor (CLP).
• Call the db2Load application programming interface (API) from a client application.
• Open the task assistant in IBM Data Studio for the LOAD command.

Examples

The following is an example of a LOAD command issued through the CLP:

 db2 load from stafftab.ixf of ixf messages staff.msgs
 insert into userid.staff copy yes use tsm data buffer 4000

In this example:

• Any warning or error messages are placed in the staff.msgs file.
• A copy of the changes made is stored in Tivoli® Storage Manager (TSM).
• 4000 pages of buffer space are to be used during the load operation.

The following is another example of a LOAD command issued through the CLP:

 db2 load from stafftab.ixf of ixf messages staff.msgs
 tempfiles path /u/myuser replace into staff

In this example:

• The table data is being replaced.
• The TEMPFILES PATH parameter is used to specify /u/myuser as the server path into which

temporary files are written.

Note: These examples use relative path names for the load input file. Relative path names are only
allowed on calls from a client on the same database partition as the database. The use of fully qualified
path names is recommended.

What to do next

After you invoke the load utility, you can use the LIST UTILITIES command to monitor the progress of
the load operation. If a load operation is performed in either INSERT mode, REPLACE mode, or RESTART
mode, detailed progress monitoring support is available. Issue the LIST UTILITIES command with the
SHOW DETAILS parameter to view detailed information about the current load phase. Details are not
available for a load operation performed in TERMINATE mode. The LIST UTILITIES command simply
shows that a load terminate utility is currently running.

A load operation maintains unique constraints, range constraints for partitioned tables, generated
columns, and LBAC security rules. For all other constraints, the table is placed in the Set Integrity Pending
state at the beginning of a load operation. After the load operation is complete, the SET INTEGRITY
statement must be used to take the table out of Set Integrity Pending state.

34 IBM Db2 V11.5: Data Movement Utilities Guide

Load sessions - CLP examples

Example 1

TABLE1 has 5 columns:

• COL1 VARCHAR 20 NOT NULL WITH DEFAULT
• COL2 SMALLINT
• COL3 CHAR 4
• COL4 CHAR 2 NOT NULL WITH DEFAULT
• COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:

• ELE1 positions 01 to 20
• ELE2 positions 21 to 22
• ELE3 positions 23 to 23
• ELE4 positions 24 to 27
• ELE5 positions 28 to 31
• ELE6 positions 32 to 32
• ELE7 positions 33 to 40

Data Records:

 1...5...10...15...20...25...30...35...40
 Test data 1 XXN 123abcdN
 Test data 2 and 3 QQY XXN
 Test data 4,5 and 6 WWN6789 Y

The following command loads the table from the file:

 db2 load from ascfile1 of asc modified by striptblanks reclen=40
 method L (1 20, 21 22, 24 27, 28 31)
 null indicators (0,0,23,32)
 insert into table1 (col1, col5, col2, col3)

Note:

1. The specification of striptblanks in the MODIFIED BY parameter forces the truncation of blanks in
VARCHAR columns (COL1, for example, which is 11, 17 and 19 bytes long, in rows 1, 2 and 3,
respectively).

2. The specification of reclen=40 in the MODIFIED BY parameter indicates that there is no newline
character at the end of each input record, and that each record is 40 bytes long. The last 8 bytes are
not use to load the table.

3. Since COL4 is not provided in the input file, it will be inserted into TABLE1 with its default value (it is
defined NOT NULL WITH DEFAULT).

4. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1 will be loaded NULL for a
given row. If there is a Y in the column's null indicator position for a given record, the column will be
NULL. If there is an N, the data values in the column's data positions of the input record (as defined in
L(........)) are used as the source of column data for the row. In this example, neither column in row 1 is
NULL; COL2 in row 2 is NULL; and COL3 in row 3 is NULL.

5. In this example, the NULL INDICATORS for COL1 and COL5 are specified as 0 (zero), indicating that
the data is not nullable.

6. The NULL INDICATOR for a given column can be anywhere in the input record, but the position must
be specified, and the Y or N values must be supplied.

Chapter 1. Data movement utilities and reference 35

Example 2 (using dump files)

Table FRIENDS is defined as:

 table friends "(c1 INT NOT NULL, c2 INT, c3 CHAR(8))"

If an attempt is made to load the following data records into this table,

 23, 24, bobby
 , 45, john
 4,, mary

the second row is rejected because the first INT is NULL, and the column definition specifies NOT NULL.
Columns which contain initial characters that are not consistent with the DEL format will generate an
error, and the record will be rejected. Such records can be written to a dump file.

DEL data appearing in a column outside of character delimiters is ignored, but does generate a warning.
For example:

 22,34,"bob"
 24,55,"sam" sdf

The utility will load "sam" in the third column of the table, and the characters "sdf" will be flagged in a
warning. The record is not rejected. Another example:

 22 3, 34,"bob"

The utility will load 22,34,"bob", and generate a warning that some data in column one following the 22
was ignored. The record is not rejected.

Example 3 (Loading a table with an identity column)

TABLE1 has 4 columns:

• C1 VARCHAR(30)
• C2 INT GENERATED BY DEFAULT AS IDENTITY
• C3 DECIMAL(7,2)
• C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS identity column.

Data records in DATAFILE1 (DEL format):

 "Liszt"
 "Hummel",,187.43, H
 "Grieg",100, 66.34, G
 "Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):

 "Liszt", 74.49, A
 "Hummel", 0.01, H
 "Grieg", 66.34, G
 "Satie", 818.23, I

Note:

1. The following command generates identity values for rows 1 and 2, since no identity values are
supplied in DATAFILE1 for those rows. Rows 3 and 4, however, are assigned the user-supplied identity
values of 100 and 101, respectively.

 db2 load from datafile1.del of del replace into table1

2. To load DATAFILE1 into TABLE1 so that identity values are generated for all rows, issue one of the
following commands:

36 IBM Db2 V11.5: Data Movement Utilities Guide

 db2 load from datafile1.del of del method P(1, 3, 4)
 replace into table1 (c1, c3, c4)
 db2load from datafile1.del of del modified by identityignore
 replace into table1

3. To load DATAFILE2 into TABLE1 so that identity values are generated for each row, issue one of the
following commands:

 db2 load from datafile2.del of del replace into table1 (c1, c3, c4)
 db2 load from datafile2.del of del modified by identitymissing
 replace into table1

4. To load DATAFILE1 into TABLE2 so that the identity values of 100 and 101 are assigned to rows 3 and
4, issue the following command:

 db2 load from datafile1.del of del modified by identityoverride
 replace into table2

In this case, rows 1 and 2 will be rejected, because the utility has been instructed to override system-
generated identity values in favor of user-supplied values. If user-supplied values are not present,
however, the row must be rejected, because identity columns are implicitly not NULL.

5. If DATAFILE1 is loaded into TABLE2 without using any of the identity-related file type modifiers, rows
1 and 2 will be loaded, but rows 3 and 4 will be rejected, because they supply their own non-NULL
values, and the identity column is GENERATED ALWAYS.

Example 3 (loading from CURSOR)

MY.TABLE1 has 3 columns:

• ONE INT
• TWO CHAR(10)
• THREE DATE

MY.TABLE2 has 3 columns:

• ONE INT
• TWO CHAR(10)
• THREE DATE

Cursor MYCURSOR is defined as follows:

 declare mycursor cursor for select * from my.table1

The following command loads all the data from MY.TABLE1 into MY.TABLE2:

 load from mycursor of cursor method P(1,2,3) insert into
 my.table2(one,two,three)

Note:

1. Only one cursor name can be specified in a single LOAD command. That is, load from mycurs1,
mycurs2 of cursor... is not allowed.

2. P and N are the only valid METHOD values for loading from a cursor.
3. In this example, METHOD P and the insert column list (one,two,three) could have been omitted

since they represent default values.
4. MY.TABLE1 can be a table, view, alias, or nickname.

Load considerations for partitioned tables

All of the existing load features are supported when the target table is partitioned with the exception of
the following general restrictions:

• Consistency points are not supported when the number of partitioning agents is greater than one.

Chapter 1. Data movement utilities and reference 37

• Loading data into a subset of data partitions while the remaining data partitions remain fully online is
not supported.

• The exception table used by a load operation cannot be partitioned.
• An exception table cannot be specified if the target table contains an XML column.
• A unique index cannot be rebuilt when the load utility is running in insert mode or restart mode, and the

load target table has any detached dependents.
• Similar to loading MDC tables, exact ordering of input data records is not preserved when loading

partitioned tables. Ordering is only maintained within the cell or data partition.
• Load operations utilizing multiple formatters on each database partition only preserve approximate

ordering of input records. Running a single formatter on each database partition, groups the input
records by cell or table partitioning key. To run a single formatter on each database partition, explicitly
request CPU_PARALLELISM of 1.

General load behavior

The load utility inserts data records into the correct data partition. There is no requirement to use an
external utility, such as a splitter, to partition the input data before loading.

The load utility does not access any detached or attached data partitions. Data is inserted into visible
data partitions only. Visible data partitions are neither attached nor detached. In addition, a load
replace operation does not truncate detached or attached data partitions. Since the load utility
acquires locks on the catalog system tables, the load utility waits for any uncommitted ALTER TABLE
transactions. Such transactions acquire an exclusive lock on the relevant rows in the catalog tables,
and the exclusive lock must terminate before the load operation can proceed. This means that there
can be no uncommitted ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION transactions while
load operation is running. Any input source records destined for an attached or detached data
partition are rejected, and can be retrieved from the exception table if one is specified. An
informational message is written to the message file to indicate some of the target table data
partitions were in an attached or detached state. Locks on the relevant catalog table rows
corresponding to the target table prevent users from changing the partitioning of the target table by
issuing any ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION operations while the load utility is
running.

Handling of invalid rows

When the load utility encounters a record that does not belong to any of the visible data partitions the
record is rejected and the load utility continues processing. The number of records rejected because
of the range constraint violation is not explicitly displayed, but is included in the overall number of
rejected records. Rejecting a record because of the range violation does not increase the number of
row warnings. A single message (SQL0327N) is written to the load utility message file indicating that
range violations are found, but no per-record messages are logged. In addition to all columns of the
target table, the exception table includes columns describing the type of violation that had occurred
for a particular row. Rows containing invalid data, including data that cannot be partitioned, are
written to the dump file.

Because exception table inserts are expensive, you can control which constraint violations are
inserted into the exception table. For instance, the default behavior of the load utility is to insert rows
that were rejected because of a range constraint or unique constraint violation, but were otherwise
valid, into the exception table. You can turn off this behavior by specifying, respectively,
NORANGEEXC or NOUNIQUEEXC with the FOR EXCEPTION clause. If you specify that these constraint
violations should not be inserted into the exception table, or you do not specify an exception table,
information about rows violating the range constraint or unique constraint is lost.

History file

If the target table is partitioned, the corresponding history file entry does not include a list of the table
spaces spanned by the target table. A different operation granularity identifier ('R' instead of 'T')
indicates that a load operation ran against a partitioned table.

38 IBM Db2 V11.5: Data Movement Utilities Guide

Terminating a load operation

Terminating a load replace completely truncates all visible data partitions, terminating a load insert
truncates all visible data partitions to their lengths before the load. Indexes are invalidated during a
termination of an ALLOW READ ACCESS load operation that failed in the load copy phase. Indexes are
also invalidated when terminating an ALLOW NO ACCESS load operation that touched the index (It is
invalidated because the indexing mode is rebuild, or a key was inserted during incremental
maintenance leaving the index in an inconsistent state). Loading data into multiple targets does not
have any effect on load recovery operations except for the inability to restart the load operation from
a consistency point taken during the load phase In this case, the SAVECOUNT load option is ignored if
the target table is partitioned. This behavior is consistent with loading data into a MDC target table.

Generated columns

If a generated column is in any of the partitioning, dimension, or distribution keys, the
generatedoverride file type modifier is ignored and the load utility generates values as if the
generatedignore file type modifier is specified. Loading an incorrect generated column value in this
case can place the record in the wrong physical location, such as the wrong data partition, MDC block
or database partition. For example, once a record is on a wrong data partition, set integrity has to
move it to a different physical location, which cannot be accomplished during online set integrity
operations.

Data availability

The current ALLOW READ ACCESS load algorithm extends to partitioned tables. An ALLOW READ
ACCESS load operation allows concurrent readers to access the whole table, including both loading
and non-loading data partitions.

Important: The ALLOW READ ACCESS parameter is deprecated and might be removed in a future
release. For more details, see ALLOW READ ACCESS parameter in the LOAD command is deprecated.

The ingest utility also supports partitioned tables and is better suited to allow data concurrency and
availability than the LOAD command with the ALLOW READ ACCESS parameter. It can move large
amounts of data from files and pipes without locking the target table. In addition, data becomes
accessible as soon as it is committed based on elapsed time or number of rows.

Data partition states

After a successful load, visible data partitions might change to either or both Set Integrity Pending or
Read Access Only table state, under certain conditions. Data partitions might be placed in these
states if there are constraints on the table which the load operation cannot maintain. Such constraints
might include check constraints and detached materialized query tables. A failed load operation
leaves all visible data partitions in the Load Pending table state.

Error isolation

Error isolation at the data partition level is not supported. Isolating the errors means continuing a load
on data partitions that did not run into an error and stopping on data partitions that did run into an
error. Errors can be isolated between different database partitions, but the load utility cannot commit
transactions on a subset of visible data partitions and roll back the remaining visible data partitions.

Other considerations

• Incremental indexing is not supported if any of the indexes are marked invalid. An index is
considered invalid if it requires a rebuild or if detached dependents require validation with the SET
INTEGRITY statement.

• Loading into tables partitioned using any combination of partitioned by range, distributed by hash,
or organized by dimension algorithms is also supported.

• For log records which include the list of object and table space IDs affected by the load, the size of
these log records (LOAD START and COMMIT (PENDING LIST)) could grow considerably and hence
reduce the amount of active log space available to other applications.

• When a table is both partitioned and distributed, a partitioned database load might not affect all
database partitions. Only the objects on the output database partitions are changed.

Chapter 1. Data movement utilities and reference 39

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060625.html

• During a load operation, memory consumption for partitioned tables increases with the number of
tables. Note, that the total increase is not linear as only a small percentage of the overall memory
requirement is proportional to the number of data partitions.

LBAC-protected data load considerations
For a successful load operation into a table with protected rows, you must have LBAC (label-based access
control) credentials. You must also provide a valid security label, or a security label that can be converted
to a valid label, for the security policy currently associated with the target table.

If you do not have valid LBAC credentials, the load fails and an error (SQLSTATE 42512) is returned. In
cases where the input data does not contain a security label or that security label is not in its internal
binary format, you can use several file type modifiers to allow your load to proceed.

When you load data into a table with protected rows, the target table has one column with a data type of
DB2SECURITYLABEL. If the input row of data does not contain a value for that column, that row is
rejected unless the usedefaults file type modifier is specified in the load command, in which case the
security label you hold for write access from the security policy protecting the table is used. If you do not
hold a security label for write access, the row is rejected and processing continues on to the next row.

When you load data into a table that has protected rows and the input data does include a value for the
column with a data type of DB2SECURITYLABEL, the same rules are followed as when you insert data into
that table. If the security label protecting the row being loaded (the one in that row of the data file) is one
that you are able to write to, then that security label is used to protect the row. (In other words, it is
written to the column that has a data type of DB2SECURITYLABEL.) If you are not able to write to a row
protected by that security label, what happens depends on how the security policy protecting the source
table was created:

• If the CREATE SECURITY POLICY statement that created the policy included the option RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL, the row is rejected.

• If the CREATE SECURITY POLICY statement did not include the option or if it instead included the
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, the security label in the data file for
that row is ignored and the security label you hold for write access is used to protect that row. No error
or warning is issued in this case. If you do not hold a security label for write access, the row is rejected
and processing continues on to the next row.

Delimiter considerations

When loading data into a column with a data type of DB2SECURITYLABEL, the value in the data file is
assumed by default to be the actual bytes that make up the internal representation of that security
label. However, some raw data might contain newline characters which could be misinterpreted by
the LOAD command as delimiting the row. If you have this problem, use the delprioritychar file
type modifier to ensure that the character delimiter takes precedence over the row delimiter. When
you use delprioritychar, any record or column delimiters that are contained within character
delimiters are not recognized as being delimiters. Using the delprioritychar file type modifier is
safe to do even if none of the values contain a newline character, but it does slow the load down
slightly.

If the data being loaded is in ASC format, you might have to take an extra step in order to prevent any
trailing white space from being included in the loaded security labels and security label names. ASCII
format uses column positions as delimiters, so this might occur when loading into variable-length
fields. Use the striptblanks file type modifier to truncate any trailing blank spaces.

Nonstandard security label values

You can also load data files in which the values for the security labels are strings containing the values
of the components in the security label, for example, S:(ALPHA,BETA). To do so you must use the file
type modifier seclabelchar. When you use seclabelchar, a value for a column with a data type of
DB2SECURITYLABEL is assumed to be a string constant containing the security label in the string
format for security labels. If a string is not in the proper format, the row is not inserted and a warning
(SQLSTATE 01H53) is returned. If the string does not represent a valid security label that is part of the
security policy protecting the table, the row is not inserted and a warning (SQLSTATE 01H53) is
returned.

40 IBM Db2 V11.5: Data Movement Utilities Guide

You can also load a data file in which the values of the security label column are security label names.
To load this sort of file you must use the file type modifier seclabelname. When you use
seclabelname, all values for columns with a data type of DB2SECURITYLABEL are assumed to be
string constants containing the names of existing security labels. If no security label exists with the
indicated name for the security policy protecting the table, the row is not loaded and a warning
(SQLSTATE 01H53) is returned.

Rejected rows

Rows that are rejected during the load are sent to either a dumpfile or an exception table (if they are
specified in the LOAD command), depending on the reason why the rows were rejected. Rows that are
rejected due to parsing errors are sent to the dumpfile. Rows that violate security policies are sent to
the exception table.

Note: You cannot specify an exception table if the target table contains an XML column.

Examples

For all examples, the input data file myfile.del is in DEL format. All are loading data into a table named
REPS, which was created with this statement:

create table reps (row_label db2securitylabel,
id integer,
name char(30))
security policy data_access_policy

For this example, the input file is assumed to contain security labels in the default format:

db2 load from myfile.del of del modified by delprioritychar insert into reps

For this example, the input file is assumed to contain security labels in the security label string format:

db2 load from myfile.del of del modified by seclabelchar insert into reps

For this example, the input file is assumed to contain security labels names for the security label column:

db2 load from myfile.del of del modified by seclabelname insert into reps

Identity column load considerations
The load utility can be used to load data into a table containing an identity column whether or not the
input data has identity column values.

If no identity-related file type modifiers are used, the utility works according to the following rules:

• If the identity column is GENERATED ALWAYS, an identity value is generated for a table row whenever
the corresponding row in the input file is missing a value for the identity column, or a NULL value is
explicitly given. If a non-NULL value is specified for the identity column, the row is rejected
(SQL3550W).

• If the identity column is GENERATED BY DEFAULT, the load utility makes use of user-supplied values, if
they are provided; if the data is missing or explicitly NULL, a value is generated.

The load utility does not perform any extra validation of user-supplied identity values beyond what is
normally done for values of the identity column's data type (that is, SMALLINT, INT, BIGINT, or
DECIMAL). Duplicate values are not reported.

In most cases the load utility cannot guarantee that identity column values are assigned to rows in the
same order that these rows appear in the data file. Because the assignment of identity column values is
managed in parallel by the load utility, those values are assigned in arbitrary order. The exceptions to this
are as follows:

• In single-partition databases, rows are not processed in parallel when CPU_PARALLELISM is set to 1.
In this case, identity column values are implicitly assigned in the same order that rows appear in the
data file parameter.

Chapter 1. Data movement utilities and reference 41

• In multi-partition databases, identity column values are assigned in the same order that the rows
appear in the data file if the identity column is in the distribution key and if there is a single partitioning
agent (that is, if you do not specify multiple partitioning agents or the anyorder file type modifier).

When loading a table in a partitioned database where the table has an identity column in the partitioning
key and the identityoverride modifier is not specified, the SAVECOUNT option cannot be specified.
When there is an identity column in the partitioning key and identity values are being generated,
restarting a load from the load phase on at least one database partition requires restarting the whole load
from the beginning of the load phase, which means that there can't be any consistency points.

Note: A load RESTART operation is not permitted if all of the following criteria are met:

• The table being loaded is in a partitioned database environment, and it contains at least one identity
column that is either in the distribution key or is referenced by a generated column that is part of the
distribution key.

• The identityoverride modifier is not specified.
• The previous load operation that failed included loading database partitions that failed after the load

phase.

A load TERMINATE or REPLACE operation should be issued instead.

There are three mutually exclusive ways you can simplify the loading of data into tables that contain an
identity column: the identitymissing, the identityignore, and the identityoverride file type
modifiers.

Loading data without identity columns

The identitymissing modifier makes loading a table with an identity column more convenient if the
input data file does not contain any values (not even NULLS) for the identity column. For example,
consider a table defined with the following SQL statement:

 create table table1 (c1 varchar(30),
 c2 int generated by default as identity,
 c3 decimal(7,2),
 c4 char(1))

If you want to load TABLE1 with data from a file (load.del) that has been exported from a table that
does not have an identity column, see the following example:

 Robert, 45.2, J
 Mike, 76.9, K
 Leo, 23.4, I

One way to load this file would be to explicitly list the columns to be loaded through the LOAD command
as follows:

 db2 load from load.del of del replace into table1 (c1, c3, c4)

For a table with many columns, however, this syntax might be cumbersome and prone to error. An
alternate method of loading the file is to use the identitymissing file type modifier as follows:

 db2 load from load.del of del modified by identitymissing
 replace into table1

This command would result in the three columns in the data file being loaded into c1, c3, and c4 of
TABLE1. A value will be generated for each row in c2.

Loading data with identity columns

The identityignore modifier indicates to the load utility that even though the input data file contains
data for the identity column, the data should be ignored, and an identity value should be generated for

42 IBM Db2 V11.5: Data Movement Utilities Guide

each row. For example, a user might want to load TABLE1, as defined previously, from a data file
(load.del) containing the following data:

 Robert, 1, 45.2, J
 Mike, 2, 76.9, K
 Leo, 3, 23.4, I

If the user-supplied values of 1, 2, and 3 are not used for the identity column, you can issue the following
LOAD command:

 db2 load from load.del of del method P(1, 3, 4)
 replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has many columns. The
identityignore modifier simplifies the syntax as follows:

 db2 load from load.del of del modified by identityignore
 replace into table1

Loading data with user-supplied values

The identityoverride modifier is used for loading user-supplied values into a table with a
GENERATED ALWAYS identity column. This can be quite useful when migrating data from another
database system, and the table must be defined as GENERATED ALWAYS, or when loading a table from
data that was recovered using the DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE
command. When this modifier is used, any rows with no data (or NULL data) for the identity column are
rejected (SQL3116W). You should also note that when using this modifier, it is possible to violate the
uniqueness property of GENERATED ALWAYS columns.In this situation, perform a load TERMINATE
operation, followed by a subsequent load INSERT or REPLACE operation.

Generated column load considerations
You can load data into a table containing (nonidentity) generated columns whether or not the input data
has generated column values. The load utility generates the column values.

If no generated column-related file type modifiers are used, the load utility works according to the
following rules:

• Values are created for generated columns when the corresponding row of the data file is missing a value
for the column or a NULL value is supplied. If a non-NULL value is supplied for a generated column, the
row is rejected (SQL3550W).

• If a NULL value is created for a generated column that is not nullable, the entire row of data is rejected
(SQL0407N). This could occur if, for example, a non-nullable generated column is defined as the sum of
two table columns that include NULL values in the data file.

There are three mutually exclusive ways you can simplify the loading of data into tables that contain a
generated column: the generatedmissing, the generatedignore, and the generatedoverride file
type modifiers:

Loading data without generated columns

The generatedmissing modifier makes loading a table with generated columns more convenient if
the input data file does not contain any values (not even NULLS) for all generated columns present in
the table. For example, consider a table defined with the following SQL statement:

 CREATE TABLE table1 (c1 INT,
 c2 INT,
 g1 INT GENERATED ALWAYS AS (c1 + c2),
 g2 INT GENERATED ALWAYS AS (2 * c1),
 c3 CHAR(1))

Chapter 1. Data movement utilities and reference 43

If you want to load TABLE1 with data from a file (load.del) that has been exported from a table that
does not have any generated columns, see the following example:

 1, 5, J
 2, 6, K
 3, 7, I

One way to load this file would be to explicitly list the columns to be loaded through the LOAD
command as follows:

 DB2 LOAD FROM load.del of del REPLACE INTO table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be cumbersome and prone to error. An
alternate method of loading the file is to use the generatedmissing file type modifier as follows:

 DB2 LOAD FROM load.del of del MODIFIED BY generatedmissing
 REPLACE INTO table1

This command will result in the three columns of data file being loaded into c1, c2, and c3 of TABLE1.
Due to the generatedmissing modifier, values for columns g1 and g2 of TABLE1 will be generated
automatically and will not map to any of the data file columns.

Loading data with generated columns

The generatedignore modifier indicates to the load utility that even though the input data file
contains data for all generated columns present in the target table, the data should be ignored, and
the computed values should be loaded into each generated column. For example, if you want to load
TABLE1, as defined previously, from a data file (load.del) containing the following data:

 1, 5, 10, 15, J
 2, 6, 11, 16, K
 3, 7, 12, 17, I

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16, and 17 (for g2) result in
the row being rejected (SQL3550W) if no generated-column related file type modifiers are used. To
avoid this, the user could issue the following LOAD command:

 DB2 LOAD FROM load.del of del method P(1, 2, 5)
 REPLACE INTO table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table has many columns. The
generatedignore modifier simplifies the syntax as follows:

 DB2 LOAD FROM load.del of del MODIFIED BY generatedignore
 REPLACE INTO table1

This command will result in the columns of data file being loaded into c1 (with the data 1, 2, 3), c2
(with the data 5,6,7), and c3 (with the data J, K, I) of TABLE1. Due to the generatedignore
modifier, values for columns g1 and g2 of TABLE1 will be generated automatically and the data file
columns (10, 11, 12 and 15, 16, 17) will be ignored.

Loading data with user-supplied values

The generatedoverride modifier is used for loading user-supplied values into a table with
generated columns. This can be useful when migrating data from another database system, or when
loading a table from data that was recovered using the RECOVER DROPPED TABLE option of the
ROLLFORWARD DATABASE command. When this modifier is used, any rows with no data (or NULL
data) for non-nullable generated columns are rejected (SQL3116W).

When this modifier is used, the table is placed in the Set Integrity Pending state after the load
operation. To take the table out of Set Integrity Pending state without verifying the user-supplied
values, issue the following command:

 SET INTEGRITY FOR table-name GENERATED COLUMN IMMEDIATE
 UNCHECKED

44 IBM Db2 V11.5: Data Movement Utilities Guide

To take the table out of the Set Integrity Pending state and force verification of the user-supplied
values, issue the following command:

 SET INTEGRITY FOR table-name IMMEDIATE CHECKED

If a generated column is in any of the partitioning, dimension, or distribution keys, the
generatedoverride modifier is ignored and the load utility generates values as if the
generatedignore modifier is specified. This is done to avoid a scenario where a user-supplied
generated column value conflicts with its generated column definition, which would place the
resulting record in the wrong physical location, such as the wrong data partition, MDC block, or
database partition.

Note: The LOAD utility does not support generating column values when one of the generated column
expressions contains one of the following:

• a user-defined function that is a compiled compound SQL
• a user-defined function that is FENCED

If you attempt to load into such tables the load operation fails. However, you can provide your own
values for these types of generated columns by using the generatedoverride file type modifier.

Moving data using the CURSOR file type
By specifying the CURSOR file type when using the LOAD command, you can load the results of an SQL
query directly into a target table without creating an intermediate exported file.

Additionally, you can load data from another database by referencing a nickname within the SQL query, by
using the DATABASE option within the DECLARE CURSOR statement, or by using the
sqlu_remotefetch_entry media entry when using the API interface.

There are three approaches for moving data using the CURSOR file type. The first approach uses the
Command Line Processor (CLP), the second the API, and the third uses the ADMIN_CMD procedure. The
key differences between the CLP and the ADMIN_CMD procedure are outlined in the following table.

Table 14. Differences between the CLP and ADMIN_CMD procedure.

Differences CLP ADMIN_CMD_procedure

Syntax The query statement as well as
the source database used by the
cursor are defined outside of the
LOAD command using a
DECLARE CURSOR statement.

The query statement as well as
the source database used by the
cursor is defined within the LOAD
command using the LOAD from
(DATABASE database-alias
query-statement)

Chapter 1. Data movement utilities and reference 45

Table 14. Differences between the CLP and ADMIN_CMD procedure. (continued)

Differences CLP ADMIN_CMD_procedure

User authorization for accessing
a different database

If the data is in a different
database than the one you
currently connect to, the
DATABASE keyword must be
used in the DECLARE CURSOR
statement. You can specify the
user ID and password in the
same statement as well. If the
user ID and password are not
specified in the DECLARE
CURSOR statement, the user ID
and password explicitly specified
for the target database
connection are used to access
the source database.

If the data is in a different
database than the one you are
currently connected to, the
DATABASE keyword must be
used in the LOAD command
before the query statement. The
user ID and password explicitly
specified for the target database
connection are required to
access the source database. You
cannot specify a user ID or
password for the source
database. Therefore, if no user ID
and password were specified
when the connection to the
target database was made, or the
user ID and password specified
cannot be used to authenticate
against the source database, the
ADMIN_CMD procedure cannot
be used to perform the load.

To execute a LOAD FROM CURSOR operation from the CLP, a cursor must first be declared against an SQL
query. Once this is declared, you can issue the LOAD command using the declared cursor's name as the
cursorname and CURSOR as the file type.

For example:

1. Suppose a source and target table both reside in the same database with the following definitions:

Table ABC.TABLE1 has 3 columns:

• ONE INT
• TWO CHAR(10)
• THREE DATE

Table ABC.TABLE2 has 3 columns:

• ONE VARCHAR
• TWO INT
• THREE DATE

Executing the following CLP commands will load all the data from ABC.TABLE1 into ABC.TABLE2:

DECLARE mycurs CURSOR FOR SELECT TWO, ONE, THREE FROM abc.table1
 LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Note: The preceding example shows how to load from an SQL query through the CLP. However,
loading from an SQL query can also be accomplished through the db2Load API. Define the
piSourceList of the sqlu_media_list structure to use the sqlu_statement_entry structure and
SQLU_SQL_STMT media type and define the piFileType value as SQL_CURSOR.

2. Suppose the source and target tables reside in different databases with the following definitions:

Table ABC.TABLE1 in database 'dbsource' has 3 columns:

• ONE INT
• TWO CHAR(10)

46 IBM Db2 V11.5: Data Movement Utilities Guide

• THREE DATE

Table ABC.TABLE2 in database 'dbtarget' has 3 columns:

• ONE VARCHAR
• TWO INT
• THREE DATE

Provided that you have enabled federation and cataloged the data source ('dsdbsource'), you can declare
a nickname against the source database, then declare a cursor against this nickname, and invoke the
LOAD command with the FROM CURSOR option, as demonstrated in the following example:

CREATE NICKNAME myschema1.table1 FOR dsdbsource.abc.table1
DECLARE mycurs CURSOR FOR SELECT TWO,ONE,THREE FROM myschema1.table1
LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Or, you can use the DATABASE option of the DECLARE CURSOR statement, as demonstrated in the
following example:

DECLARE mycurs CURSOR DATABASE dbsource USER myuserid USING mypasswd
FOR SELECT TWO,ONE,THREE FROM abc.table1
LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Using the DATABASE option of the DECLARE CURSOR statement (also known as the remotefetch media
type when using the Load API) has some benefits over the nickname approach:

Performance

Fetching of data using the remotefetch media type is tightly integrated within a load operation. There
are fewer layers of transition to fetch a record compared to the nickname approach. Additionally,
when source and target tables are distributed identically in a multi-partition database, the load utility
can parallelize the fetching of data, which can further improve performance.

Ease of use

There is no need to enable federation, define a remote datasource, or declare a nickname. Specifying
the DATABASE option (and the USER and USING options if necessary) is all that is required.

While this method can be used with cataloged databases, the use of nicknames provides a robust facility
for fetching from various data sources which cannot simply be cataloged.

To support this remotefetch functionality, the load utility makes use of infrastructure which supports the
SOURCEUSEREXIT facility. The load utility spawns a process which executes as an application to manage
the connection to the source database and perform the fetch. This application is associated with its own
transaction and is not associated with the transaction under which the load utility is running.

Note:

1. The previous example shows how to load from an SQL query against a cataloged database through the
CLP using the DATABASE option of the DECLARE CURSOR statement. However, loading from an SQL
query against a cataloged database can also be done through the db2Load API, by defining the
piSourceList and piFileTypevalues of the db2LoadStruct structure to use the sqlu_remotefetch_entry
media entry and SQLU_REMOTEFETCH media type respectively.

2. As demonstrated in the previous example, the source column types of the SQL query do not need to be
identical to their target column types, although they do have to be compatible.

Restrictions

When loading from a cursor defined using the DATABASE option (or equivalently when using the
sqlu_remotefetch_entry media entry with the db2Load API), the following restrictions apply:

1. The SOURCEUSEREXIT option cannot be specified concurrently.
2. The METHOD N option is not supported.
3. The usedefaults file type modifier is not supported.

Chapter 1. Data movement utilities and reference 47

Propagating dependent immediate staging tables
If the table being loaded is an underlying table of a staging table with the immediate propagate attribute,
and if the load operation is done in insert mode, the subsequent propagation into the dependent
immediate staging tables is incremental.

During incremental propagation, the rows corresponding to the appended rows in the underlying tables
are appended into the staging tables. Incremental propagation is faster in the case of large underlying
tables with small amounts of appended data. Performance is also improved if the staging table is used to
refresh its dependent deferred materialized query table. There are cases in which incremental
propagation is not allowed, and the staging table is marked incomplete. That is, the staging byte of the
CONST_CHECKED column has a value of F. In this state, the staging table can not be used to refresh its
dependent deferred materialized query table, and a full refresh is required in the materialized query table
maintenance process.

If a table is in incomplete state and the INCREMENTAL option has been specified, but incremental
propagation of the table is not possible, an error is returned. If any of the following have taken place, the
system turns off immediate data propagation and sets the table state to incomplete:

• A load replace operation has taken place on an underlying table of the staging table, or the NOT
LOGGED INITIALLY WITH EMPTY TABLE option has been activated after the last integrity check on the
underlying table.

• The dependent materialized query table of the staging table, or the staging table has been loaded in
REPLACE or INSERT mode.

• An underlying table has been taken out of Set Integrity Pending state before the staging table has been
propagated by using the FULL ACCESS option during integrity checking.

• An underlying table of the staging table has been checked for integrity non-incrementally.
• The table space containing the staging table or its underlying table has been rolled forward to a point in

time, and the staging table and its underlying table reside in different table spaces.

If the staging table has a W value in the CONST_CHECKED column of the SYSCAT.TABLES catalog, and the
NOT INCREMENTAL option is not specified, incremental propagation to the staging table takes place and
the CONST_CHECKED column of SYSCAT.TABLES is marked as U to indicate that not all data has been
verified by the system.

The following example illustrates a load insert operation into the underlying table UT1 of staging table G1
and its dependent deferred materialized query table AST1. In this scenario, both the integrity checking for
UT1 and the refreshing of AST1 are processed incrementally:

 LOAD FROM IMTFILE1.IXF of IXF INSERT INTO UT1;
 LOAD FROM IMTFILE2.IXF of IXF INSERT INTO UT1;
 SET INTEGRITY FOR UT1,G1 IMMEDIATE CHECKED;

 REFRESH TABLE AST1 INCREMENTAL;

Refreshing dependent immediate materialized query tables
If the underlying table of an immediate refresh materialized query table is loaded using the INSERT
option, executing the SET INTEGRITY statement on the dependent materialized query tables defined with
REFRESH IMMEDIATE results in an incremental refresh of the materialized query table.

During an incremental refresh, the rows corresponding to the appended rows in the underlying tables are
updated and inserted into the materialized query tables. Incremental refresh is faster in the case of large
underlying tables with small amounts of appended data. There are cases in which incremental refresh is
not allowed, and full refresh (that is, recomputation of the materialized query table definition query) is
used.

When the INCREMENTAL option is specified, but incremental processing of the materialized query table is
not possible, an error is returned if:

• A load replace operation has taken place into an underlying table of the materialized query table or the
NOT LOGGED INITIALLY WITH EMPTY TABLE option has been activated since the last integrity check
on the underlying table.

48 IBM Db2 V11.5: Data Movement Utilities Guide

• The materialized query table has been loaded (in either REPLACE or INSERT mode).
• An underlying table has been taken out of Set Integrity Pending state before the materialized query

table is refreshed by using the FULL ACCESS option during integrity checking.
• An underlying table of the materialized query table has been checked for integrity non-incrementally.
• The materialized query table was in Set Integrity Pending state before an upgrade.
• The table space containing the materialized query table or its underlying table has been rolled forward

to a point in time, and the materialized query table and its underlying table reside in different table
spaces.

If the materialized query table has one or more W values in the CONST_CHECKED column of the
SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is not specified in the SET INTEGRITY
statement, the table is incrementally refreshed and the CONST_CHECKED column of SYSCAT.TABLES is
marked U to indicate that not all data has been verified by the system.

The following example illustrates a load insert operation into the underlying table UTI of the materialized
query table AST1. UT1 is checked for data integrity and is placed in the no data movement mode. UT1 is
put back into full access state once the incremental refresh of AST1 is complete. In this scenario, both the
integrity checking for UT1 and the refreshing of AST1 are processed incrementally.

 LOAD FROM IMTFILE1.IXF of IXF INSERT INTO UT1;
 LOAD FROM IMTFILE2.IXF of IXF INSERT INTO UT1;
 SET INTEGRITY FOR UT1 IMMEDIATE CHECKED;
 REFRESH TABLE AST1;

MDC and ITC considerations

The following restrictions apply when loading data into multidimensional clustering (MDC) and insert time
clustering (ITC) tables:

• The SAVECOUNT option of the LOAD command is not supported.
• The totalfreespace file type modifier is not supported since these tables manage their own free

space.
• The anyorder file type modifier is required for MDC or ITC tables. If a load is executed into an MDC or

ITC table without the anyorder modifier, it will be explicitly enabled by the utility.

When using the LOAD command with an MDC or ITC table, violations of unique constraints are be handled
as follows:

• If the table included a unique key before the load operation and duplicate records are loaded into the
table, the original record remains and the new records are deleted during the delete phase.

• If the table did not include a unique key before the load operation and both a unique key and duplicate
records are loaded into the table, only one of the records with the unique key is loaded and the others
are deleted during the delete phase.

Note: There is no explicit technique for determining which record is loaded and which is deleted.

Performance Considerations

To improve the performance of the load utility when loading MDC tables with more than one dimension,
the util_heap_sz database configuration parameter value should be increased. The mdc-load algorithm
performs significantly better when more memory is available to the utility. This reduces disk I/O during
the clustering of data that is performed during the load phase. Beginning in version 9.5, the value of the
DATA BUFFER option of the LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system. .

MDC or ITC load operations always have a build phase since all MDC and ITC tables have block indexes.

Chapter 1. Data movement utilities and reference 49

During the load phase, extra logging for the maintenance of the block map is performed. There are
approximately two extra log records per extent allocated. To ensure good performance, the logbufsz
database configuration parameter should be set to a value that takes this into account.

A system temporary table with an index is used to load data into MDC and ITC tables. The size of the table
is proportional to the number of distinct cells loaded. The size of each row in the table is proportional to
the size of the MDC dimension key. ITC tables only have one cell and use a 2-byte dimension key. To
minimize disk I/O caused by the manipulation of this table during a load operation, ensure that the buffer
pool for the temporary table space is large enough.

Moving data using a customized application (user exit)
The load SOURCEUSEREXIT option provides a facility through which the load utility can execute a
customized script or executable, referred to herein as a user exit.

The purpose of the user exit is to populate one or more named pipes with data that is simultaneously read
from by the load utility. In a multi-partition database, multiple instances of the user exit can be invoked
concurrently to achieve parallelism of the input data.

As Figure 5 on page 50 shows, the load utility creates a one or more named pipes and spawns a process
to execute your customized executable. Your user exit feeds data into the named pipe(s) while the load
utility simultaneously reads.

Figure 5. The load utility reads from the pipe and processes the incoming data.

The data fed into the pipe must reflect the load options specified, including the file type and any file type
modifiers. The load utility does not directly read the data files specified. Instead, the data files specified
are passed as arguments to your user exit when it is executed.

50 IBM Db2 V11.5: Data Movement Utilities Guide

Invoking your user exit

The user exit must reside in the bin subdirectory of the Db2 installation directory (often known as sqllib).
The load utility invokes the user exit executable with the following command line arguments:

<base pipename> <number of source media>
<source media 1> <source media 2> ... <user exit ID>
<number of user exits> <database partition number>

Where:
<base pipename >

Is the base name for named-pipes that the load utility creates and reads data from. The utility creates
one pipe for every source file provided to the LOAD command, and each of these pipes is appended
with .xxx, where xxx is the index of the source file provided. For example, if there are 2 source files
provided to the LOAD command, and the <base pipename> argument passed to the user exit is
pipe123, then the two named pipes that your user exit should feed with data are pipe123.000 and
pipe123.001. In a partitioned database environment, the load utility appends the database partition
(DBPARTITION) number .yyy to the base pipe name, resulting in the pipe name
pipe123.yyy.xxx..

<number of source media>
Is the number of media arguments which follow.

<source media 1> <source media 2> ...
Is the list of one or more source files specified in the LOAD command. Each source file is placed inside
double quotation marks.

<user exit ID>
Is a special value useful when the PARALLELIZE option is enabled. This integer value (from 1 to N,
where N is the total number of user exits being spawned) identifies a particular instance of a running
user exit. When the PARALLELIZE option is not enabled, this value defaults to 1.

<number of user exits>
Is a special value useful when the PARALLELIZE option is enabled. This value represents the total
number of concurrently running user exits. When the PARALLELIZE option is not enabled, this value
defaults to 1.

<database partition number>
Is a special value useful when the PARALLELIZE option is enabled. This is the database partition
(DBPARTITION) number on which the user exit is executing. When the PARALLELIZE option is not
enabled, this value defaults to 0.

Additional options and features

The following section describes additional SOURCEUSEREXIT facility options:

REDIRECT
This option allows you to pass data into the STDIN handle or capture data from the STDOUT and
STDERR handles of the user exit process.

INPUT FROM BUFFER <buffer>
Allows you to pass information directly into the STDIN input stream of your user exit. After spawning
the process which executes the user exit, the load utility acquires the file-descriptor to the STDIN of
this new process and passes in the buffer provided. The user exit reads from STDIN to acquire the
information. The load utility simply sends the contents of <buffer> to the user exit using STDIN and
does not interpret or modify its contents. For example, if your user exit is designed to read two values
from STDIN, an eight-byte userid and an eight-byte password, your user exit executable written in C
might contain the following lines:

rc = read (stdin, pUserID, 8);
rc = read (stdin, pPasswd, 8);

Chapter 1. Data movement utilities and reference 51

A user could pass this information using the INPUT FROM BUFFER option as shown in the following
LOAD command:

LOAD FROM myfile1 OF DEL INSERT INTO table1
SOURCEUSEREXIT myuserexit1 REDIRECT INPUT FROM BUFFER myuseridmypasswd

Note: The load utility limits the size of <buffer> to the maximum size of a LOB value. However, from
within the command line processor (CLP), the size of <buffer> is restricted to the maximum size of a
CLP statement. From within CLP, it is also recommended that <buffer> contain only traditional ASCII
characters. These issues can be avoided if the load utility is invoked using the db2Load API, or if the
INPUT FROM FILE option is used instead.

INPUT FROM FILE <filename>
Allows you to pass the contents of a client side file directly into the STDIN input stream of your user
exit. This option is almost identical to the INPUT FROM BUFFER option, however this option avoids
the potential CLP limitation. The filename must be a fully qualified client side file and must not be
larger than the maximum size of a LOB value.

OUTPUT TO FILE <filename>
Allows you to capture the STDOUT and STDERR streams from your user exit process into a server side
file. After spawning the process which executes the user exit executable, the load utility redirects the
STDOUT and STDERR handles from this new process into the filename specified. This option is useful
for debugging and logging errors and activity within your user exit. The filename must be a fully
qualified server side file. When the PARALLELIZE option is enabled, one file exists per user exit and
each file appends a three-digit numeric identifier, such as filename.000.

PARALLELIZE
This option can increase the throughput of data coming into the load utility by invoking multiple user
exit processes simultaneously. This option is only applicable to a multi-partition database. The
number of user exit instances invoked is equal to the number of partitioning agents if data is to be
distributed across multiple database partitions during the load operation, otherwise it is equal to the
number of loading agents.

The <user exit ID>, <number of user exits>, and <database partition number> arguments passed into
each user exit reflect the unique identifier (1 to N), the total number of user exits (N), and the database
partition (DBPARTITION) number on which the user exit instance is running, respectively. You should
ensure that any data written to the named pipe by each user exit process is not duplicated by the other
concurrent processes. While there are many ways your user exit application might accomplish this, these
values could be helpful to ensure data is not duplicated. For example, if each record of data contains a
unique integer column value, your user exit application could use the <user exit ID> and <number of user
exits> values to ensure that each user exit instance returns a unique result set into its named pipe. Your
user exit application might use the MODULUS property in the following way:

i = <user exit ID>
N = <number of user exits>

foreach record
{
 if ((unique-integer MOD N) == i)
 {
 write this record to my named-pipe
 }
}

The number of user exit processes spawned depends on the distribution mode specified for database
partitioning:

1. As Figure 6 on page 53 shows, one user exit process is spawned for every pre-partitioning agent
when PARTITION_AND_LOAD (default) or PARTITION_ONLY without PARALLEL is specified. .

52 IBM Db2 V11.5: Data Movement Utilities Guide

Figure 6. The various tasks performed when PARTITION_AND_LOAD (default) or PARTITION_ONLY
without PARALLEL is specified.

2. As Figure 7 on page 54 shows, one user exit process is spawned for every partitioning agent when
PARTITION_AND_LOAD (default) or PARTITION_ONLY with PARALLEL is specified.

Chapter 1. Data movement utilities and reference 53

Figure 7. The various tasks performed when PARTITION_AND_LOAD (default) or PARTITION_ONLY
with PARALLEL is specified.

3. As Figure 8 on page 55 shows, one user exit process is spawned for every load agent when
LOAD_ONLY or LOAD_ONLY_VERIFY_PART is specified.

54 IBM Db2 V11.5: Data Movement Utilities Guide

Figure 8. The various tasks performed when LOAD_ONLY or LOAD_ONLY_VERIFY_PART is specified.

Restrictions

• The LOAD_ONLY and LOAD_ONLY_VERIFY_PART partitioned-db-cfg mode options are not supported
when the SOURCEUSEREXIT PARALLELIZE option is not specified.

Examples

Example 1: A Load userexit script that replaces all tab characters '\t' with comma characters ',' from every
record of the source media file. To invoke the Load utility using this userexit script, use a command
similar to the following:

DB2 LOAD FROM /path/file1 OF DEL INSERT INTO schema1.table1
SOURCEUSEREXIT example1.pl REDIRECT OUTPUT TO FILE /path/ue_msgs.txt

Note that the userexit must be placed into the sqllib/bin/ folder, and requires execute permissions.

example1.pl:

#!/bin/perl

Filename: example1.pl
#
This script is a simple example of a userexit for the Load utility
SOURCEUSEREXIT feature. This script will replace all tab characters '\t'
with comma characters ',' from every record of the source media file.
#
To invoke the Load utility using this userexit, use a command similar to:
#
db2 LOAD FROM /path/file1 OF DEL INSERT INTO schema1.table1
SOURCEUSEREXIT example1.pl REDIRECT OUTPUT TO FILE /path/ue_msgs.txt

Chapter 1. Data movement utilities and reference 55

#
The userexit must be placed into the sqllib/bin/ folder, and requires
execute permissions.
#--
if ($#ARGV < 5)
{
 print "Invalid number of arguments:\n@ARGV\n";
 print "Load utility should invoke userexit with 5 arguments (or more):\n";
 print "<base pipename> <number of source media> ";
 print "<source media 1> <source media 2> ... <user exit ID> ";
 print "<number of user exits> <database partition number> ";
 print "<optional: redirected input> \n";
 die;
}

Open the output fifo file (the Load utility is reading from this pipe)
#---
$basePipeName = $ARGV[0];
$outputPipeName = sprintf("%s.000", $basePipeName);
open(PIPETOLOAD, '>', $outputPipeName) || die "Could not open $outputPipeName";

Get number of Media Files
#--------------------------
$NumMediaFiles = $ARGV[1];

Open each media file, read the contents, replace '\t' with ',', send to Load
#---
for ($i=0; $i<$NumMediaFiles; $i++)
{
 # Open the media file
 #--------------------
 $mediaFileName = $ARGV[2+$i];
 open(MEDIAFILETOREAD, '<', $mediaFileName) || die "Could not open $mediaFileName";

 # Read each record of data
 #------------------------
 while ($line = <MEDIAFILETOREAD>)
 {
 # Replace '\t' characters with ','
 #---------------------------------
 $line =~ s/\t/,/g;

 # send this record to Load for processing
 #---
 print PIPETOLOAD $line;
 }
 # Close the media file
 #---------------------
 close MEDIAFILETOREAD;
}

Close the fifo
#---------------
close PIPETOLOAD;

exit 0;

Monitoring a load operation using the LIST UTILITIES command
You can use the LIST UTILITIES command to monitor the progress of load operations on a database.

Procedure

To use the LIST UTILITIES command:

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter:

 list utilities show detail

Example

The following is an example of the output for monitoring the performance of a load operation using the
LIST UTILITIES command:

ID = 10
Type = LOAD

56 IBM Db2 V11.5: Data Movement Utilities Guide

Database Name = TEST
Member Number = 1
Description = OFFLINE LOAD DEL AUTOMATIC INDEXING REPLACE
COPY NO BEER .TABLE1
Start Time = 08/16/2011 08:52:53.861841
State = Executing
Invocation Type = User
Progress Monitoring:
 Phase Number = 1
 Description = SETUP
 Total Work = 0 bytes
 Completed Work = 0 bytes
 Start Time = 08/16/2011 08:52:53.861865

 Phase Number [Current] = 2
 Description = LOAD
 Total Work = 49900 rows
 Completed Work = 25313 rows
 Start Time = 08/16/2011 08:52:54.277687

 Phase Number = 3
 Description = BUILD
 Total Work = 2 indexes
 Completed Work = 0 indexes
 Start Time = Not Started

Additional considerations for load

Parallelism and loading
The load utility takes advantage of a hardware configuration in which multiple processors or multiple
storage devices are used, such as in a symmetric multiprocessor (SMP) environment.

There are several ways in which parallel processing of large amounts of data can take place using the load
utility. One way is through the use of multiple storage devices, which allows for I/O parallelism during the
load operation (see Figure 9 on page 57). Another way involves the use of multiple processors in an SMP
environment, which allows for intra-partition parallelism (see Figure 10 on page 57). Both can be used
together to provide even faster loading of data.

Figure 9. Taking Advantage of I/O Parallelism When Loading Data

Figure 10. Taking Advantage of Intra-partition Parallelism When Loading Data

Chapter 1. Data movement utilities and reference 57

Index creation during load operations
Indexes are built during the build phase of a load operation. There are four indexing modes that can be
specified in the LOAD command.

1. REBUILD. All indexes are rebuilt.
2. INCREMENTAL. Indexes are extended with new data.
3. AUTOSELECT. The load utility automatically decides between REBUILD or INCREMENTAL mode.
AUTOSELECT is the default. If a LOAD REPLACE operation is taking place, the REBUILD indexing mode
is used. Otherwise, the indexing mode chosen is based on the ratio of the amount of existing data in
the table to the amount of newly loaded data. If the ratio is sufficiently large, the INCREMENTAL
indexing mode is chosen. Otherwise, the REBUILD indexing mode is chosen.

4. DEFERRED. The load utility does not attempt index creation if this mode is specified. Indexes are
marked as needing a refresh, and a rebuild might be forced the first time they are accessed. The
DEFERRED option is not allowed in any of the following situations:

• If the ALLOW READ ACCESS option is specified (it does not maintain the indexes and index scanners
require a valid index)

• If any unique indexes are defined against the table
• If any expression-based indexes are defined against the table
• If XML data is being loaded (the XML Paths index is unique and is created by default whenever an

XML column is added to a table)

Load operations that specify the ALLOW READ ACCESS option require special consideration in terms of
space usage and logging depending on the type of indexing mode chosen. When the ALLOW READ
ACCESS option is specified, the load utility keeps indexes available for queries even while they are being
rebuilt.

When a load operation in ALLOW READ ACCESS mode specifies the INDEXING MODE INCREMENTAL
option, the load utility writes some log records that protect the integrity of the index tree. The number of
log records written is a fraction of the number of inserted keys and is a number considerably less than
would be needed by a similar SQL insert operation. A load operation in ALLOW NO ACCESS mode with the
INDEXING MODE INCREMENTAL option specified writes only a small log record beyond the normal space
allocation logs.

Note: This is only true if you did not specify COPY YES and have the logindexbuild configuration
parameter set to ON.

When a load operation in ALLOW READ ACCESS mode specifies the INDEXING MODE REBUILD option,
new indexes are built as a shadow either in the same table space as the original index or in a system
temporary table space. The original indexes remain intact and are available during the load operation and
are only replaced by the new indexes at the end of the load operation while the table is exclusively
locked. If the load operation fails and the transaction is rolled back, the original indexes remain intact.

By default, the shadow index is built in the same table space as the original index. Since both the original
index and the new index are maintained simultaneously, there must be sufficient table space to hold both
indexes at the same time. If the load operation is aborted, the extra space used to build the new index is
released. If the load operation commits, the space used for the original index is released and the new
index becomes the current index. When the new indexes are built in the same table space as the original
indexes, replacing the original indexes takes place almost instantaneously.

If the indexes are built within an SMS table space, you can see index files in the table space directory with
the .IN1 suffix and the .INX suffix. These suffixes do not indicate which is the original index and which is
the shadow index. However, if the indexes are built in a DMS table space, you cannot see the new shadow
index.

58 IBM Db2 V11.5: Data Movement Utilities Guide

Improving index creation performance
Building new indexes in a system temporary table space

The new index can be built in a system temporary table space to avoid running out of space in the
original table space. The USE tablespace-name option allows the indexes to be rebuilt in a system
temporary table space when using INDEXING MODE REBUILD and ALLOW READ ACCESS options.
The system temporary table can be an SMS or a DMS table space, but the page size of the system
temporary table space must match the page size of the original index table space.

The USE tablespace-name option is ignored if the load operation is not in ALLOW READ ACCESS
mode, or if the indexing mode is incompatible. The USE tablespace-name option is only supported for
the INDEXING MODE REBUILD or INDEXING MODE AUTOSELECT options. If the INDEXING MODE
AUTOSELECT option is specified and the load utility selects incremental maintenance of the indexes,
the USE tablespace-name is ignored.

A load restart operation can use an alternate table space for building an index, even if the original load
operation did not use an alternate table space. A load restart operation cannot be issued in ALLOW
READ ACCESS mode if the original load operation was not issued in ALLOW READ ACCESS mode.
Load terminate operations do not rebuild indexes, so the USE tablespace-name is ignored.

During the build phase of the load operation, the indexes are built in the system temporary table
space. Then, during the index copy phase, the index is copied from the system temporary table space
to the original index table space. To make sure that there is sufficient space in the original index table
space for the new index, space is allocated in the original table space during the build phase. So, if the
load operation runs out of index space, it will do so during the build phase. If this happens, the
original index is not lost.

The index copy phase occurs after the build and delete phases. Before the index copy phase begins,
the table is locked exclusively. That is, it is unavailable for read access throughout the index copy
phase. Since the index copy phase is a physical copy, the table might be unavailable for a significant
amount of time.

Note: If either the system temporary table space or the index table space are DMS table spaces, the
read from the system temporary table space can cause random I/O on the system temporary table
space and can cause a delay. The write to the index table space is still optimized and the
DISK_PARALLELISM values are used.

Considerations for large indexes

In order to improve performance when building large indexes during a load, it can be useful to tune
the sortheap database configuration parameter. sortheap allocates the amount of memory
dedicated to the sorting of index keys during a load operation. For example, to direct the load utility to
use 4000 pages of main memory per index for key sorting, set sortheap to 4000 pages, disconnect
all applications from the database, and then issue the LOAD command.

If an index is so large that it cannot be sorted in memory, a sort spill, or an overflow, occurs. That is,
the data is divided among several "sort runs" and stored in a temporary table space that is merged
later. Use the sort_overflows monitor element to determine whether a sort spill occurred. If there
is no way to avoid a sort spill by increasing the size of the sortheap parameter, ensure that the
buffer pool for temporary table spaces be large enough to minimize the amount of disk I/O that
spilling causes. Furthermore, to achieve I/O parallelism during the merging of sort runs, it is
recommended that temporary table spaces be declared with multiple containers, each residing on a
different disk device. If there is more than one index defined on a table, memory consumption
increases proportionally because the load operation keeps all keys in memory.

Deferring index creation

Generally speaking, it is more efficient to allow indexes to be created during the load operation by
specifying either REBUILD or INCREMENTAL mode than it is to have index creation deferred. As Figure
11 on page 60 indicates, tables are normally built in three steps: data loading, index building, and
statistics collection. This causes multiple data I/O during the load operation, index creation (there can
be several indexes for each table), and statistics collection (which causes I/O on the table data and on
all of the indexes). A much faster alternative is to let the load utility complete all of these tasks in one

Chapter 1. Data movement utilities and reference 59

pass through the data. It should be noted, however, that unique indexes reduce load performance if
duplicates are encountered.

Figure 11. Increasing load performance through concurrent indexing and statistics collection

At certain times, deferring index creation and invoking the CREATE INDEX statement can improve
performance. Sorting during index rebuild uses up to sortheap pages. If more space is required,
TEMP buffer pool is used and (eventually) spilled to disk. If load spills, and thus decreases
performance, it might be advisable to run LOAD with INDEXING MODE DEFERRED and re-create the
index later. The CREATE INDEX statement creates one index at a time, reducing memory usage while
scanning the table multiple times to collect keys.

Another advantage of building indexes with a CREATE INDEX statement instead of concurrently with
the load operation is that the CREATE INDEX statement can use multiple processes, or threads, to
sort keys. The actual building of the index is not executed in parallel.

Compression dictionary creation during load operations
LOAD INSERT and LOAD REPLACE operations on tables for which compression is enabled can trigger the
creation of compression dictionaries. Depending on what type of row compression a table uses, dictionary
creation happens in different ways.

Classic row compression uses a single table-level compression dictionary to compress data. Adaptive
compression uses multiple page-level compression dictionaries to compress individual pages of data,
along with the table-level compression dictionaries used in classic row compression.

Page-level compression dictionaries
Page-level dictionaries are created and updated automatically during either LOAD INSERT or LOAD
REPLACE operations; the KEEPDICTIONARY and RESETDICTIONARY options of the LOAD command have
no effect on page-level dictionaries.

Table-level compression dictionaries

Table-level dictionaries are created automatically for both LOAD INSERT and LOAD REPLACE operations
if no dictionary exists; however, if a table-level dictionary does exist, by default, the dictionary is not
updated. More specifically, LOAD REPLACE operations assume the KEEPDICTIONARY option by default.
You can specify the RESETDICTIONARY option to remove the existing table-level dictionary and create a
new one.

LOAD INSERT always follows the behavior implied by the KEEPDICTIONARY option.

When building table-level dictionaries for non-XML data, the load utility uses the data that exists in the
target table to build the dictionaries, under the assumption that this preexisting data is representative of
the type of data that will be stored in that table. In cases where there is insufficient preexisting data in the
target table, the load utility builds the dictionaries once it has sampled enough input data. In this
situation, the load utility uses only the input data to build the dictionary.

For XML data, the load utility samples incoming data only.

When dictionaries are created for range-partitioned tables, each partition is treated like an individual
table. There will not be any cross-partition dictionaries and dictionary creation does not occur on
partitions already containing dictionaries. For table data, the dictionary generated for each partition is

60 IBM Db2 V11.5: Data Movement Utilities Guide

based on the preexisting table data (and, if necessary, the loaded data) in that partition only. In Version
9.7 Fix Pack 1 and later, if the preexisting data in a partition is less than the minimum threshold, the
dictionary is generated based only on the loaded data. For XML data, the dictionary generated for each
partition is based the data being loaded into that partition.

LOAD REPLACE using the KEEPDICTIONARY option

A LOAD REPLACE that uses the KEEPDICTIONARY option keeps the existing dictionaries and uses
them to compress the loaded data, as long as the target table has the COMPRESS attribute enabled. If
dictionaries do not exist, the load utility generates new ones (provided the data that is being loaded
into the table surpasses a predetermined threshold for table rows or XML documents stored in the
default XML storage object) for tables with the COMPRESS attribute enabled. Since the data in the
target table is replaced, the load utility uses only the input data to build the dictionaries. After a
dictionary has been created, it is inserted into the table and the load operation continues.

LOAD REPLACE using the RESETDICTIONARY option

There are two key implications of using the RESETDICTIONARY option when loading into a table with
the COMPRESS attribute on. First, dictionary creation occurs as long as any amount of data will exist
in the target table once the LOAD REPLACE has completed. In other words, the new compression
dictionaries can be based on a single row of data or a single XML document. The other implication is
that the existing dictionaries are deleted but are not replaced (the target table will no longer have
compression dictionaries) if any of the following situations are true:

• The operation is performed on a table with the COMPRESS attribute off
• Nothing was loaded (zero rows), in which case ADM5591W is printed to the notification log

Note: If you issue a LOAD TERMINATE operation after a LOAD REPLACE with the RESETDICTIONARY
option, any existing compression dictionaries will be deleted and not replaced.

Performance impact

Dictionary creation affects the performance of a load operation in two ways:

• For LOAD INSERT operations, all of the preexisting table data, not just the minimum threshold for
dictionary creation, is scanned before building the table-level compression dictionary. Therefore, the
time used for this scan increases with table size.

• There is additional processing to build the compression dictionaries, although the time used for building
the dictionaries is minimal.

While some operations related to the building of dictionaries can affect the CPU utilization by the LOAD
command, load operations are generally I/O bound. That is, much of the time spent waiting for the load to
complete is taken up waiting for data to be written to disk. The increased load on the CPU caused by
dictionary creation generally does not increase the elapsed time required to perform the load; indeed,
because data is written in compressed format, I/O times can actually decrease as compared to loading
data into uncompressed tables.

Options for improving load performance
There are various command parameters that you can use to optimize load performance. There are also a
number of file type modifiers unique to load which can, in some cases, significantly improve that utility's
performance.

Command parameters

The load utility attempts to deliver the best performance possible by determining optimal values for
DISK_PARALLELISM, CPU_PARALLELISM, and DATA BUFFER, if these parameters have not be specified
by the user. Optimization is done based on the size and the free space available in the utility heap.
Consider using the autonomic DISK_PARALLELISM and CPU_PARALLELISM settings before attempting
to tune these parameters for your particular needs.

Following is information about the performance implications of various options available through the load
utility:

Chapter 1. Data movement utilities and reference 61

ALLOW READ ACCESS
This option allows you to query a table while a load operation is in progress. You can only view data
that existed in the table prior to the load operation. If the INDEXING MODE INCREMENTAL option is
also specified, and the load operation fails, the subsequent load terminate operation might have to
correct inconsistencies in the index. This requires an index scan which involves considerable I/O. If
the ALLOW READ ACCESS option is also specified for the load terminate operation, the buffer pool is
used for I/O.

Important: The ALLOW READ ACCESS parameter is deprecated and might be removed in a future
release. For more details, see ALLOW READ ACCESS parameter in the LOAD command is deprecated.

COPY YES or NO
Use this parameter to specify whether a copy of the input data is to be made during a load operation.
COPY YES, which is only applicable when forward recovery is enabled, reduces load performance
because all of the loading data is copied during the load operation. The increased I/O activity might
increase the load time on an I/O-bound system. Specifying multiple devices or directories (on
different disks) can offset some of the performance penalty resulting from this operation. COPY NO,
which is only applicable when forward recovery is enabled, does not affect load performance.
However, all table spaces related to the loaded table will be placed in a Backup Pending state, and
those table spaces must be backed up before the table can be accessed.

CPU_PARALLELISM
Use this parameter to exploit the number of processes running per database partition (if this is part of
your machine's capability), and significantly improve load performance. The parameter specifies the
number of processes or threads used by the load utility to parse, convert, and format data records.
The maximum number allowed is 30. If there is insufficient memory to support the specified value,
the utility adjusts the value. If this parameter is not specified, the load utility selects a default value
that is based on the number of CPUs on the system.

Record order in the source data is preserved (see Figure 12 on page 62) regardless of the value of
this parameter, provided that:

• the anyorder file type modifier is not specified
• the PARTITIONING_DBPARTNUMS option (and more than one partition is to be used for

partitioning) is not specified

If tables include either LOB or LONG VARCHAR data, CPU_PARALLELISM is set to 1. Parallelism is not
supported in this case.

Although use of this parameter is not restricted to symmetric multiprocessor (SMP) hardware, you
might not obtain any discernible performance benefit from using it in non-SMP environments.

Figure 12. Record Order in the Source Data is Preserved When the Number of Processes Running Per
Database Partition is Exploited During a Load Operation

DATA BUFFER
The DATA BUFFER parameter specifies the total amount of memory, in 4 KB units, allocated to the
load utility as a buffer. It is recommended that this buffer be several extents in size. The data buffer is
allocated from the utility heap; however, the data buffer can exceed the setting for the util_heap_sz
database configuration parameter as long as there is available memory in the system.

DISK_PARALLELISM
The DISK_PARALLELISM parameter specifies the number of processes or threads used by the load
utility to write data records to disk. Use this parameter to exploit available containers when loading
data, and significantly improve load performance. The maximum number allowed is the greater of four
times the CPU_PARALLELISM value (actually used by the load utility), or 50. By default,
DISK_PARALLELISM is equal to the sum of the table space containers on all table spaces containing
objects for the table being loaded, except where this value exceeds the maximum number allowed.

62 IBM Db2 V11.5: Data Movement Utilities Guide

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060625.html

NONRECOVERABLE
If forward recovery is enabled, use this parameter if you do not need to be able to recover load
transactions against a table upon rollforward. A NONRECOVERABLE load and a COPY NO load have
identical performance. However, there is a significant difference in terms of potential data loss. A
NONRECOVERABLE load marks a table as not rollforward recoverable while leaving the table fully
accessible. This can create a problematic situation in which if you need to rollforward through the load
operation, then the loaded data as well as all subsequent updates to the table will be lost. A COPY NO
load places all dependent table spaces in the Backup Pending state which renders the table
inaccessible until a backup is performed. Because you are forced to take a backup after that type of
load, you will not risk losing the loaded data or subsequent updates to the table. That is to say, a
COPY NO load is totally recoverable.

Note: When these load transactions are encountered during subsequent restore and rollforward
recovery operations, the table is not updated, and is marked invalid. Further actions against this
table are ignored. After the rollforward operation is complete, the table can only be dropped.

SAVECOUNT
Use this parameter to set an interval for the establishment of consistency points during the load
phase of a load operation. The synchronization of activities performed to establish a consistency point
takes time. If done too frequently, there is a noticeable reduction in load performance. If a very large
number of rows is to be loaded, it is recommended that a large SAVECOUNT value be specified (for
example, a value of 10 million in the case of a load operation involving 100 million records).

A load restart operation automatically continues from the last consistency point, provided that the
load restart operation resumes from the load phase.

STATISTICS USE PROFILE
Collect statistics specified in table statistics profile. Use this parameter to collect data distribution
and index statistics more efficiently than through invocation of the RUNSTATS utility following
completion of the load operation, even though performance of the load operation itself decreases
(particularly when DETAILED INDEXES ALL is specified).

For optimal performance, applications require the best data distribution and index statistics possible.
Once the statistics are updated, applications can use new access paths to the table data based on the
latest statistics. New access paths to a table can be created by rebinding the application packages
using the BIND command. The table statistics profile is created by running the RUNSTATS command
with the SET PROFILE options.

When loading data into large tables, it is recommended that a larger value for the stat_heap_sz
(statistics heap size) database configuration parameter be specified.

USE <tablespace-name>
When an ALLOW READ ACCESS load is taking place and the indexing mode is REBUILD, this
parameter allows an index to be rebuilt in a system temporary table space and copied back to the
index table space during the index copy phase of a load operation.

By default, the fully rebuilt index (also known as the shadow index) is built in the same table space as
the original index. This might cause resource problems as both the original and the shadow index
reside in the same table space simultaneously. If the shadow index is built in the same table space as
the original index, the original index is instantaneously replaced by the shadow. However, if the
shadow index is built in a system temporary table space, the load operation requires an index copy
phase which copies the index from a system temporary table space to the index table space. There is
considerable I/O involved in the copy. If either of the table spaces is a DMS table space, the I/O on the
system temporary table space might not be sequential. The values specified by the
DISK_PARALLELISM option are respected during the index copy phase.

WARNINGCOUNT
Use this parameter to specify the number of warnings that can be returned by the utility before a load
operation is forced to terminate. Set the WARNINGCOUNT parameter to a relatively low number if you
are expecting only a few or no warnings. The load operation stops after the WARNINGCOUNT number is
reached. This gives you the opportunity to correct problems before attempting to complete the load
operation.

Chapter 1. Data movement utilities and reference 63

File type modifiers
ANYORDER

By default, the load utility preserves record order of source data. When load is operating under an
SMP environment, synchronization between parallel processing is required to ensure that order is
preserved.

In an SMP environment, specifying the anyorder file type modifier instructs the load utility to not
preserve the order, which improves efficiency by avoiding the synchronization necessary to preserve
that order. However, if the data to be loaded is presorted, anyorder might corrupt the presorted
order, and the benefits of presorting are lost for subsequent queries.

Note: The anyorder file type modifier has no effect if CPU_PARALLELISM is 1, and it is not
compatible with the SAVECOUNT option.

BINARYNUMERICS, ZONEDDECIMAL, and PACKEDDECIMAL

For fixed length non-delimited ASCII (ASC) source data, representing numeric data in binary can
result in improved performance when loading. If the packeddecimal file type modifier is specified,
decimal data is interpreted by the load utility to be in packed decimal format (two digits per byte). If
the zoneddecimal file type modifier is specified, decimal data is interpreted by the load utility to be
in zoned decimal format (one digit per byte). For all other numeric types, if the binarynumerics file
type modifier is specified, data is interpreted by the load utility to be in binary format.

Note:

• When the binarynumerics, packeddecimal, or zoneddecimal file type modifiers are specified,
numeric data is interpreted in big-endian (high byte first) format, regardless of platform.

• The packeddecimal and zoneddecimal file type modifiers are mutually exclusive.
• The packeddecimal and zoneddecimal file type modifiers only apply to the decimal target

columns, and the binary data must match the target column definitions.
• The reclen file type modifier must be specified when the binarynumerics, packeddecimal, or
zoneddecimal file type modifiers are specified.

FASTPARSE

Use with caution. In situations where the data being loaded is known to be valid, it can be
unnecessary to have load perform the same amount of syntax checking as with more suspect data. In
fact, decreasing the scope of this step can improve load's performance by about 10 or 20 percent.
This can be done by using the fastparse file type modifier, which reduces the data checking that is
performed on user-supplied column values from ASC and DEL files.

NOROWWARNINGS

During a load operation, warning messages about rejected rows are written to a specified file.
However, if the load utility has to process a large volume of rejected, invalid or truncated records, it
can adversely affect load's performance. In cases where many warnings are anticipated, it is useful to
use the norowwarnings file type modifier to suppress the recording of these warnings.

PAGEFREESPACE, INDEXFREESPACE, and TOTALFREESPACE

As data is inserted and updated in tables over time, the need for table and index reorganization grows.
One solution is to increase the amount of free space for tables and indexes using pagefreespace,
indexfreespace, and totalfreespace. The first two modifiers, which take precedence over the
PCTFREE value, specify the percentage of data and index pages that is to be left as free space, while
totalfreespace specifies the percentage of the total number of pages that is to be appended to the
table as free space.

Load features for maintaining referential integrity
Although the load utility is typically more efficient than the import utility, it requires a number of features
to ensure the referential integrity of the information being loaded:

64 IBM Db2 V11.5: Data Movement Utilities Guide

• Table locks, which provide concurrency control and prevent uncontrolled data access during a load
operation

• Table states and table space states, which can either control access to data or elicit specific user
actions

• Load exception tables, which ensure that rows of invalid data are not simply deleted without your
knowledge

Checking for integrity violations following a load operation

Following a load operation, the loaded table might be in set integrity pending state in either READ or NO
ACCESS mode if any of the following conditions exist:

• The table has table check constraints or referential integrity constraints defined on it.
• The table has generated columns and a V7 or earlier client was used to initiate the load operation.
• The table has descendent immediate materialized query tables or descendent immediate staging tables

referencing it.
• The table is a staging table or a materialized query table.

The STATUS flag of the SYSCAT.TABLES entry corresponding to the loaded table indicates the set
integrity pending state of the table. For the loaded table to be fully usable, the STATUS must have a value
of N and the ACCESS MODE must have a value of F, indicating that the table is fully accessible and in
normal state.

If the loaded table has descendent tables, the SET INTEGRITY PENDING CASCADE parameter can be
specified to indicate whether or not the set integrity pending state of the loaded table should be
immediately cascaded to the descendent tables.

If the loaded table has constraints as well as descendent foreign key tables, dependent materialized
query tables and dependent staging tables, and if all of the tables are in normal state before the load
operation, the following will result based on the load parameters specified:
INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE IMMEDIATE

The loaded table, its dependent materialized query tables and dependent staging tables are placed in
set integrity pending state with read access.

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE DEFERRED
Only the loaded table is placed in set integrity pending with read access. Descendent foreign key
tables, descendent materialized query tables and descendent staging tables remain in their original
states.

INSERT, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE IMMEDIATE
The loaded table, its dependent materialized query tables and dependent staging tables are placed in
set integrity pending state with no access.

INSERT or REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE DEFERRED
Only the loaded table is placed in set integrity pending state with no access. Descendent foreign key
tables, descendent immediate materialized query tables and descendent immediate staging tables
remain in their original states.

REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE IMMEDIATE
The table and all its descendent foreign key tables, descendent immediate materialized query tables,
and descendent immediate staging tables are placed in set integrity pending state with no access.

Note: Specifying the ALLOW READ ACCESS option in a load replace operation results in an error.

To remove the set integrity pending state, use the SET INTEGRITY statement. The SET INTEGRITY
statement checks a table for constraints violations, and takes the table out of set integrity pending state.
If all the load operations are performed in INSERT mode, the SET INTEGRITY statement can be used to
incrementally process the constraints (that is, it checks only the appended portion of the table for
constraints violations). For example:

 db2 load from infile1.ixf of ixf insert into table1
 db2 set integrity for table1 immediate checked

Chapter 1. Data movement utilities and reference 65

Only the appended portion of TABLE1 is checked for constraint violations. Checking only the appended
portion for constraints violations is faster than checking the entire table, especially in the case of a large
table with small amounts of appended data.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for setting integrity. Task assistants
can guide you through the process of setting options, reviewing the automatically generated commands
to perform the task, and running these commands. For more details, see Administering databases with
task assistants.

If a table is loaded with the SET INTEGRITY PENDING CASCADE DEFERRED option specified, and the SET
INTEGRITY statement is used to check for integrity violations, the descendent tables are placed in set
integrity pending state with no access. To take the tables out of this state, you must issue an explicit
request.

If a table with dependent materialized query tables or dependent staging tables is loaded using the
INSERT option, and the SET INTEGRITY statement is used to check for integrity violations, the table is
taken out of set integrity pending state and placed in No Data Movement state. This is done to facilitate
the subsequent incremental refreshes of the dependent materialized query tables and the incremental
propagation of the dependent staging tables. In the No Data Movement state, operations that might cause
the movement of rows within the table are not allowed.

You can override the No Data Movement state by specifying the FULL ACCESS option when you issue the
SET INTEGRITY statement. The table is fully accessible, however a full re-computation of the dependent
materialized query tables takes place in subsequent REFRESH TABLE statements and the dependent
staging tables are forced into an incomplete state.

If the ALLOW READ ACCESS option is specified for a load operation, the table remains in read access
state until the SET INTEGRITY statement is used to check for constraints violations. Applications can
query the table for data that existed before the load operation once it has been committed, but will not be
able to view the newly loaded data until the SET INTEGRITY statement is issued.

Several load operations can take place on a table before checking for constraints violations. If all of the
load operations are completed in ALLOW READ ACCESS mode, only the data that existed in the table
before the first load operation is available for queries.

One or more tables can be checked in a single invocation of this statement. If a dependent table is to be
checked on its own, the parent table can not be in set integrity pending state. Otherwise, both the parent
table and the dependent table must be checked at the same time. In the case of a referential integrity
cycle, all the tables involved in the cycle must be included in a single invocation of the SET INTEGRITY
statement. It might be convenient to check the parent table for constraints violations while a dependent
table is being loaded. This can only occur if the two tables are not in the same table space.

When issuing the SET INTEGRITY statement, you can specify the INCREMENTAL option to explicitly
request incremental processing. In most cases, this option is not needed, because the Db2 database
selects incremental processing. If incremental processing is not possible, full processing is used
automatically. When the INCREMENTAL option is specified, but incremental processing is not possible, an
error is returned if:

• New constraints are added to the table while it is in set integrity pending state.
• A load replace operation takes place, or the NOT LOGGED INITIALLY WITH EMPTY TABLE option is

activated, after the last integrity check on the table.
• A parent table is load replaced or checked for integrity non-incrementally.
• The table is in set integrity pending state before an upgrade. Full processing is required the first time

the table is checked for integrity after an upgrade.
• The table space containing the table or its parent is rolled forward to a point in time and the table and

its parent reside in different table spaces.

If a table has one or more W values in the CONST_CHECKED column of the SYSCAT.TABLES catalog, and if
the NOT INCREMENTAL option is not specified in the SET INTEGRITY statement, the table is
incrementally processed and the CONST_CHECKED column of SYSCAT.TABLES is marked as U to indicate
that not all data has been verified by the system.

66 IBM Db2 V11.5: Data Movement Utilities Guide

https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
https://www.ibm.com/support/knowledgecenter/SS62YD_4.1.1/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

The SET INTEGRITY statement does not activate any DELETE triggers as a result of deleting rows that
violate constraints, but once the table is removed from set integrity pending state, triggers are active.
Thus, if you correct data and insert rows from the exception table into the loaded table, any INSERT
triggers defined on the table are activated. The implications of this should be considered. One option is to
drop the INSERT trigger, insert rows from the exception table, and then re-create the INSERT trigger.

Table locking during load operations
In most cases, the load utility uses table level locking to restrict access to tables. The level of locking
depends on the stage of the load operation and whether it was specified to allow read access.

A load operation in ALLOW NO ACCESS mode uses a super exclusive lock (Z-lock) on the table for the
duration of the load.

Before a load operation in ALLOW READ ACCESS mode begins, the load utility waits for all applications
that began before the load operation to release their locks on the target table. At the beginning of the load
operation, the load utility acquires an update lock (U-lock) on the table. It holds this lock until the data is
being committed. When the load utility acquires the U-lock on the table, it waits for all applications that
hold locks on the table before the start of the load operation to release them, even if they have
compatible locks. This is achieved by temporarily upgrading the U-lock to a Z-lock which does not conflict
with new table lock requests on the target table as long as the requested locks are compatible with the
load operation's U-lock. When data is being committed, the load utility upgrades the lock to a Z-lock, so
there can be some delay in commit time while the load utility waits for applications with conflicting locks
to finish.

Note: The load operation can time out while it waits for the applications to release their locks on the table
before loading. However, the load operation does not time out while waiting for the Z-lock needed to
commit the data.

Applications with conflicting locks
Use the LOCK WITH FORCE option of the LOAD command to force off applications holding conflicting
locks on a target table so that the load operation can proceed. Before a load operation in ALLOW READ
ACCESS mode can proceed, applications holding the following locks are forced off:

• Table locks that conflict with a table update lock (for example, import or insert).
• All table locks that exist at the commit phase of the load operation.

Applications holding conflicting locks on the system catalog tables are not forced off by the load utility. If
an application is forced off the system by the load utility, the application loses its database connection,
and an error is returned (SQL1224N).

When you specify the COPY NO option for a load operation on a recoverable database, all objects in the
target table space are locked in share mode before the table space is placed in the Backup Pending state.
This occurs regardless of the access mode. If you specify the LOCK WITH FORCE option, all applications
holding locks on objects in the table space that conflict with a share lock are forced off.

Read access load operations
The load utility provides two options that control the amount of access other applications have to a table
being loaded. The ALLOW NO ACCESS option locks the table exclusively and allows no access to the table
data while the table is being loaded.

The ALLOW NO ACCESS option is the default behavior. The ALLOW READ ACCESS option prevents all
write access to the table by other applications, but allows read access to preexisting data. This section
deals with the ALLOW READ ACCESS option.

Important: The ALLOW READ ACCESS parameter is deprecated and might be removed in a future release.
For more details, see ALLOW READ ACCESS parameter in the LOAD command is deprecated.

Table data and index data that exist before the start of a load operation are visible to queries while the
load operation is in progress. Consider the following example:

1. Create a table with one integer column:

 create table ED (ed int)

Chapter 1. Data movement utilities and reference 67

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060625.html

2. Load three rows:

 load from File1 of del insert into ED
 ...
 Number of rows read = 3
 Number of rows skipped = 0
 Number of rows loaded = 3
 Number of rows rejected = 0
 Number of rows deleted = 0
 Number of rows committed = 3

3. Query the table:

 select * from ED

 ED

 1
 2
 3

 3 record(s) selected.

4. Perform a load operation with the ALLOW READ ACCESS option specified and load two more rows of
data:

 load from File2 of del insert into ED allow read access

5. At the same time, on another connection query the table while the load operation is in progress:

 select * from ED

 ED

 1
 2
 3

 3 record(s) selected.

6. Wait for the load operation to finish and then query the table:

 select * from ED

 ED

 1
 2
 3
 4
 5

 5 record(s) selected.

The ALLOW READ ACCESS option is very useful when loading large amounts of data because it gives
users access to table data at all times, even when the load operation is in progress or after a load
operation has failed. The behavior of a load operation in ALLOW READ ACCESS mode is independent of
the isolation level of the application. That is, readers with any isolation level can always read the
preexisting data, but they are not be able to read the newly loaded data until the load operation has
finished.

Read access is provided throughout the load operation except for two instances: at the beginning and at
the end of the operation.

Firstly, the load operation acquires a special Z-lock for a short duration of time near the end of its setup
phase. If an application holds an incompatible lock on the table before the load operation requesting this
special Z-lock, then the load operation waits a finite amount of time for this incompatible lock to be
released before timing out and failing. The amount of time is determined by the locktimeout database
configuration parameter. If the LOCK WITH FORCE option is specified then the load operation forces
other applications off to avoid timing out. The load operation acquires the special Z-lock, commits the
phase, releases the lock, and then continues onto the load phase. Any application that requests a lock on

68 IBM Db2 V11.5: Data Movement Utilities Guide

the table for reading after the start of the load operation in ALLOW READ ACCESS mode is granted the
lock, and it does not conflict with this special Z-lock. New applications attempting to read existing data
from the target table are able to do so.

Secondly, before data is committed at the end of the load operation, the load utility acquires an exclusive
lock (Z-lock) on the table. The load utility waits until all applications that hold locks on the table release
them. This can cause a delay before the data is committed. The LOCK WITH FORCE option is used to
force off conflicting applications, and allow the load operation to proceed without having to wait. Usually,
a load operation in ALLOW READ ACCESS mode acquires an exclusive lock for a short amount of time;
however, if the USE <tablespace-name> option is specified, the exclusive lock lasts for the entire
period of the index copy phase.

When the load utility is running against a table defined on multiple database partitions, the load process
model executes on each individual database partition, meaning that locks are acquired and released
independently of other db-partitions. Thus, if a query or other operation is executed concurrently and is
competing for the same locks, there is a chance for deadlocks. For example, suppose that operation A is
granted a table lock on db-partition 0 and the load operation is granted a table lock on db-partition 1. A
deadlock can occur because operation A is waiting to be granted a table lock on db-partition 1, while the
load operation is waiting for a table lock on db-partition 0. In this case, the deadlock detector will
arbitrarily roll back one of the operations.

Note:

1. If a load operation is interrupted or fails, it remains at the same access level that was specified when
the load operation was issued. That is, if a load operation in ALLOW NO ACCESS mode fails, the table
data is inaccessible until a load terminate or a load restart is issued. If a load operation in ALLOW
READ ACCESS mode aborts, the preexisting table data is still accessible for read access.

2. If the ALLOW READ ACCESS option was specified for an interrupted or failed load operation, it can
also be specified for the load restart or load terminate operation. However, if the interrupted or failed
load operation specified the ALLOW NO ACCESS option, the ALLOW READ ACCESS option cannot be
specified for the load restart or load terminate operation.

The ALLOW READ ACCESS option is not supported if:

• The REPLACE option is specified. Since a load replace operation truncates the existing table data before
loading the new data, there is no preexisting data to query until after the load operation is complete.

• The indexes have been marked invalid and are waiting to be rebuilt. Indexes can be marked invalid in
some rollforward scenarios or through the use of the db2dart command.

• The INDEXING MODE DEFERRED option is specified. This mode marks the indexes as requiring a
rebuild.

• An ALLOW NO ACCESS load operation is being restarted or terminated. Until it is brought fully online, a
load operation in ALLOW READ ACCESS mode cannot take place on the table.

• A load operation is taking place to a table that is in Set Integrity Pending No Access state. This is also
the case for multiple load operations on tables with constraints. A table is not brought online until the
SET INTEGRITY statement is issued.

Generally, if table data is taken offline, read access is not available during a load operation until the table
data is back online.

Table space states during and after load operations
The load utility uses table space states to preserve database consistency during a load operation. These
states work by controlling access to data or eliciting user actions.

The load utility does not quiesce (put persistent locks on) the table spaces involved in the load operation
and uses table space states only for load operations for which you specify the COPY NO parameter.

You can check table space states by using the LIST TABLESPACES command. Table spaces can be in
multiple states simultaneously. The states returned by LIST TABLESPACES are as follows:

Chapter 1. Data movement utilities and reference 69

Normal

The Normal state is the initial state of a table space after it is created, indicating that no (abnormal)
states currently affect it.

Load in Progress

The Load in Progress state indicates that there is a load in progress on the table space. This state
prevents the backup of dependent tables during the load. The table space state is distinct from the
Load in Progress table state (which is used in all load operations) because the load utility places table
spaces in the Load in Progress state only when you specify the COPY NO parameter for a recoverable
database. The table spaces remain in this state for the duration of the load operation.

Backup Pending

If you perform a load operation for a recoverable database and specify the COPY NO parameter, table
spaces are placed in the Backup Pending table space state after the first commit. You cannot update a
table space in the Backup Pending state. You can remove the table space from the Backup Pending
state only by backing up the table space. Even if you cancel the load operation, the table space
remains in the Backup Pending state because the table space state is changed at the beginning of the
load operation and cannot be rolled back.

Restore Pending

If you perform a successful load operation with the COPY NO option, restore the database, and then
rollforward through that operation, the associated table spaces are placed in the Restore Pending
state. To remove the table spaces from the Restore Pending state, you must perform a restore
operation.

Note: Db2 LOAD does not set the table space state to Load Pending or Delete Pending.

Example of a table space state

If you load an input file (staffdata.del) into a table NEWSTAFF, as follows:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff copy no;
connect reset;

and you open another session and issue the following commands,

connect to sample;
list tablespaces;
connect reset;

USERSPACE1 (the default table space for the sample database) is in the Load in Progress state and, after
the first commit, the Backup Pending state as well. After the load operation finishes, the LIST
TABLESPACES command reveals that USERSPACE1 is now in the Backup Pending state:

Tablespace ID = 2
Name = USERSPACE1
Type = Database managed space
Contents = All permanent data. Large table space.
State = 0x0020
 Detailed explanation:
 Backup pending

Table states during and after load operations
The load utility uses table states to preserve database consistency during a load operation. These states
work by controlling access to data or eliciting user actions.

To determine the state of a table, issue the LOAD QUERY command, which also checks the status of a
load operation. Tables can be in a number of states simultaneously. The states returned by LOAD QUERY
are as follows:

70 IBM Db2 V11.5: Data Movement Utilities Guide

Normal State
The Normal state is the initial state of a table after it is created, indicating that no (abnormal) states
currently affect the table.

Read Access Only
If you specify the ALLOW READ ACCESS option, the table is in the Read Access Only state. The data
in the table that existed before the invocation of the load command is available in read-only mode
during the load operation. If you specify the ALLOW READ ACCESS option and the load operation
fails, the data that existed in the table before the load operation continues to be available in read-only
mode after the failure.

Load in Progress
The Load in Progress table state indicates that there is a load in progress on the table. The load utility
removes this transient state after the load is successfully completed. However, if the load operation
fails or is interrupted, the table state will change to Load Pending.

Redistribute in Progress
The Redistribute in Progress table state indicates that there is a redistribute in progress on the table.
The redistribute utility removes this transient state after it has successfully completed processing the
table. However, if the redistribute operation fails or is interrupted, the table state will change to
Redistribute Pending.

Load Pending
The Load Pending table state indicates that a load operation failed or was interrupted. You can take
one of the following steps to remove the Load Pending state:

• Address the cause of the failure. For example, if the load utility ran out of disk space, add containers
to the table space. Then, restart the load operation.

• Terminate the load operation.
• Run a load REPLACE operation against the same table on which the load operation failed.
• Recover table spaces for the loading table by using the RESTORE DATABASE command with the

most recent table space or database backup, then carry out further recovery actions.

Redistribute Pending
The Redistribute Pending table state indicates that a redistribute operation failed or was interrupted.
You can perform a REDISTRIBUTE CONTINUE or REDISTRIBUTE ABORT operation to remove the
Redistribute Pending state.

Not Load Restartable
In the Not Load Restartable state, a table is partially loaded and does not allow a load restart
operation. There are two situations in which a table is placed in the Not Load Restartable state:

• If you perform a rollforward operation after a failed load operation that you could not successfully
restart or terminate

• If you perform a restore operation from an online backup that you took while the table was in the
Load in Progress or Load Pending state

The table is also in the Load Pending state. To remove the table from the Not Load Restartable state,
issue the LOAD TERMINATE or the LOAD REPLACE command.

Set Integrity Pending
The Set Integrity Pending state indicates that the loaded table has constraints which have not yet
been verified. The load utility places a table in this state when it begins a load operation on a table
with constraints. Use the SET INTEGRITY statement to take the table out of Set Integrity Pending
state.

Type-1 indexes
The Type-1 Indexes state indicates that the table currently uses type-1 indexes. Type-1 indexes are
no longer supported since Version 9.7. You should convert them to type-2 indexes before upgrading
to Version 10. Otherwise, the type-1 indexes are automatically rebuilt as type-2 indexes the first time
a table is accessed.

Chapter 1. Data movement utilities and reference 71

For details on how to convert type-1 indexes before upgrading databases, see the "Converting type-1
indexes to type-2 indexes" topic.

Unavailable
Rolling forward through an unrecoverable load operation places a table in the Unavailable state. In
this state, the table is unavailable; you must drop it or restore it from a backup.

Example of a table in multiple states

If you load an input file (staffdata.del) with a substantial amount of data into a table NEWSTAFF, as
follows:

connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff allow read access;
connect reset;

and you open another session and issue the following commands,

connect to sample;
load query table newstaff;
connect reset;

the LOAD QUERY command reveals that the NEWSTAFF table is in the Read Access Only and Load in
Progress table states:

Tablestate:
 Load in Progress
 Read Access Only

Load exception tables
A load exception table is a consolidated report of all of the rows that violated unique index rules, range
constraints, and security policies during a load operation. You specify a load exception table by using the
FOR EXCEPTION clause of the LOAD command.

Restriction: An exception table cannot contain an identity column or any other type of generated column.
If an identity column is present in the primary table, the corresponding column in the exception table
should only contain the column's type, length, and nullability attributes. In addition, the exception table
cannot be a range-partitioned table or a column-organized table or have a unique index. Moreover, you
cannot specify an exception table if either of the following conditions is true:

• The target table uses LBAC security and has at least one XML column
• The target table is range partitioned and has at least one XML column

The exception table used with the load utility is identical to the exception tables used by the SET
INTEGRITY statement. It is a user-created table that reflects the definition of the table being loaded and
includes some additional columns.

You can assign a load exception table to the table space where the table being loaded resides or to
another table space. In either case, assign the load exception table and the table being loaded to the
same database partition group, and ensure that both tables use the same distribution key. Additionally,
ensure that the exception table and table being loaded have the same partition map id
(SYSIBM.SYSTABLES.PMAP_ID), which can potentially be different during the redistribute operation (add/
drop database partition operation).

When to use an exception table

Use an exception table when loading data that has a unique index and could have duplicate records. If
you do not specify an exception table and duplicate records are found, the load operation continues, and
only a warning message is issued about the deleted duplicate records. The duplicate records are not
logged.

After the load operation is completed, you can use information in the exception table to correct data that
is in error. You can then insert the corrected data into the table.

72 IBM Db2 V11.5: Data Movement Utilities Guide

Rows are appended to existing information in the exception table. Because there is no checking done to
ensure that the table is empty, new information is simply added to the invalid rows from previous load
operations. If you want only the invalid rows from the current load operation, you can remove the existing
rows before invoking the utility. Alternatively, when you define a load operation, you can specify that the
exception table record the time when a violation is discovered and the name of the constraint violated.

Because each deletion event is logged, the log could fill up during the delete phase of the load if there are
a large number of records that violate a uniqueness condition.

Any rows rejected because of invalid data before the building of an index are not inserted into the
exception table.

Failed or incomplete loads

Restarting an interrupted load operation
If a failure or interruption occurs during a load operation, you can use the load utility to terminate the
operation, reload the table, or restart the load operation.

If the load utility does not even start because of a user error such as a nonexistent data file or invalid
column names, the operation terminates and leaves the target table in a normal state.

When the load operation begins, the target table is placed in the Load in Progress table state. In the event
of a failure, the table state will change to Load Pending. To remove the table from this state, you can issue
a LOAD TERMINATE to roll back the operation, issue a LOAD REPLACE to reload the entire table, or issue
a LOAD RESTART.

Typically, restarting the load operation is the best choice in this situation. It saves time because the load
utility restarts the load operation from the last successfully reached point in its progress, rather than from
the beginning of the operation. Where exactly the operation restarts from depends upon the parameters
specified in the original command. If the SAVECOUNT option was specified, and the previous load
operation failed in the load phase, the load operation restarts at the last consistency point it reached.
Otherwise, the load operation restarts at the beginning of the last phase successfully reached (the load,
build, or delete phase).

If you are loading XML documents, the behavior is slightly different. Because the SAVECOUNT option is not
supported with loading XML data, load operations that fail during the load phase restart from the
beginning of the operation. Just as with other data types, if the load fails during the build phase, indexes
are built in REBUILD mode, so the table is scanned to pick up all index keys from each row; however, each
XML document must also be scanned to pick up the index keys. This process of scanning XML documents
for keys requires them to be reparsed, which is an expensive operation. Furthermore, the internal XML
indexes, such as the regions and paths indexes, need to be rebuilt first, which also requires a scan of the
XDA object.

Once you have fixed the situation that caused the load operation to fail, reissue the load command.
Ensure that you specify exactly the same parameters as in the original command, so that the load utility
can find the necessary temporary files. An exception to this is if you want to disallow read access. A load
operation that specified the ALLOW READ ACCESS option can also be restarted as an ALLOW NO ACCESS
option.

Note: Do not delete or modify any temporary files created by the load utility.

If the load operation resulting from the following command fails,

LOAD FROM file_name OF file_type
SAVECOUNT n
MESSAGES message_file
load_method
INTO target_tablename

you would restart it by replacing the specified load method (load_method) with the RESTART method:

LOAD FROM file_name OF file_type
SAVECOUNT n
MESSAGES message_file

Chapter 1. Data movement utilities and reference 73

RESTART
INTO target_tablename

Failed loads that cannot be restarted

You cannot restart failed or interrupted load operations if the table involved in the operation is in the Not
Load Restartable table state. Tables are put in that state for the following reasons:

• A rollforward operation is performed after a failed load operation that has not been successfully
restarted or terminated

• A restore operation is performed from an online backup that was taken while the table was in the Load
in Progress or Load Pending table state

You should issue either a LOAD TERMINATE or a LOAD REPLACE command.

Failed load limitations

The BACKUP DATABASE command might return an I/O error if the LOAD command fails on a table in SMS
tablespace and the table is left in Load Pending state.

Table data might not appear consistent when a table is in Load Pending state. Inconsistent table data will
cause the BACKUP DATABASE command to fail. The table will remain inconsistent until a subsequent
LOAD TERMINATE, LOAD RESTART, or LOAD REPLACE command is completed.

You must remove the table from the Load Pending state before backing up your database.

Restarting or terminating an ALLOW READ ACCESS load operation
An interrupted or canceled load operation that specifies the ALLOW READ ACCESS parameter can also be
restarted or terminated using the ALLOW READ ACCESS parameter. Using the ALLOW READ ACCESS
parameter allows other applications to query the table data while the terminate or restart operation is in
progress. As with a load operation in ALLOW READ ACCESS mode, the table is locked exclusively before
the data being committed.

About this task

If the index object is unavailable or marked invalid, a load restart or terminate operation in ALLOW READ
ACCESS mode is not permitted.

If the original load operation is interrupted or canceled in the index copy phase, a restart operation in the
ALLOW READ ACCESS mode is not permitted because the index might be corrupted.

If a load operation in ALLOW READ ACCESS mode is interrupted or canceled in the load phase, it restarts
in the load phase. If it is interrupted or canceled in any phase other than the load phase, it restarts in the
build phase. If the original load operation is in ALLOW NO ACCESS mode, a restart operation occurs in the
delete phase if the original load operation reaches that point and the index is valid. If the index is marked
invalid, the load utility restarts the load operation from the build phase.

Note: All load restart operations choose the REBUILD indexing mode even if the INDEXING MODE
INCREMENTAL parameter is specified.

Issuing a LOAD TERMINATE command generally causes the interrupted or canceled load operation to be
rolled back with minimal delay. However, when issuing a LOAD TERMINATE command for a load
operation where ALLOW READ ACCESS and INDEXING MODE INCREMENTAL are specified, there might
be a delay while the load utility scans the indexes and corrects any inconsistencies. The length of this
delay depends on the size of the indexes and occurs whether the ALLOW READ ACCESS parameter is
specified for the load terminate operation. The delay does not occur if the original load operation failed
before the build phase.

Note: The delay resulting from corrections to inconsistencies in the index is considerably less than the
delay caused by marking the indexes as invalid and rebuilding them.

A load restart operation cannot be undertaken on a table that is in the Not Load Restartable table state. A
table can be placed in the Not Load Restartable table state during a rollforward operation. This can occur

74 IBM Db2 V11.5: Data Movement Utilities Guide

if you roll forward to a point in time that is before the end of a load operation, or if you roll forward through
an interrupted or canceled load operation but do not roll forward to the end of the load terminate or load
restart operation.

Important: The ALLOW READ ACCESS parameter is deprecated and might be removed in a future release.
For more details, see ALLOW READ ACCESS parameter in the LOAD command is deprecated.

Recovering data with the load copy location file
The DB2LOADREC registry variable is used to identify the file with the load copy location information. This
file is used during rollforward recovery to locate the load copy.

DB2LOADREC has information about:

• Media type
• Number of media devices to be used
• Location of the load copy generated during a table load operation
• File name of the load copy, if applicable

If the location file does not exist, or no matching entry is found in the file, the information from the log
record is used.

The information in the file might be overwritten before rollforward recovery takes place.

Note:

1. In a multi-partition database, the DB2LOADREC registry variable must be set for all the database
partition servers using the db2set command.

2. In a multi-partition database, the load copy file must exist at each database partition server, and the
file name (including the path) must be the same.

3. If an entry in the file identified by the DB2LOADREC registry variable is not valid, the old load copy
location file is used to provide information to replace the invalid entry.

The following information is provided in the location file. The first five parameters must have valid values,
and are used to identify the load copy. The entire structure is repeated for each load copy recorded. For
example:

TIMestamp 19950725182542 * Time stamp generated at load time
DBPartition 0 * DB Partition number (OPTIONAL)
SCHema PAYROLL * Schema of table loaded
TABlename EMPLOYEES * Table name
DATabasename DBT * Database name
DB2instance toronto * DB2INSTANCE
BUFfernumber NULL * Number of buffers to be used for
 recovery
SESsionnumber NULL * Number of sessions to be used for
 recovery
TYPeofmedia L * Type of media - L for local device
 A for TSM
 O for other vendors
LOCationnumber 3 * Number of locations
 ENTry /u/toronto/dbt.payroll.employes.001
 ENT /u/toronto/dbt.payroll.employes.002
 ENT /dev/rmt0
TIM 19950725192054
DBP 18
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 toronto
BUF NULL
SES NULL
TYP A
TIM 19940325192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 toronto
BUF NULL
SES NULL

Chapter 1. Data movement utilities and reference 75

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060625.html

TYP O
SHRlib /@sys/lib/backup_vendor.a

Note:

1. The first three characters in each keyword are significant. All keywords are required in the specified
order. Blank lines are not accepted.

2. The time stamp is in the form yyyymmddhhmmss.
3. All fields are mandatory, except for BUF and SES (which can be NULL), and DBP (which can be missing

from the list). If SES is NULL, the value specified by the dft_loadrec_ses configuration parameter is
used. If BUF is NULL, the default value is SES+2.

4. If even one of the entries in the location file is invalid, the previous load copy location file is used to
provide those values.

5. The media type can be local device (L for tape, disk or diskettes), TSM (A), or other vendor (O). If the
type is L, the number of locations, followed by the location entries, is required. If the type is A, no
further input is required. If the type is O, the shared library name is required.

6. The SHRlib parameter points to a library that has a function to store the load copy data.
7. If you invoke a load operation, specifying the COPY NO or the NONRECOVERABLE option, and do not

take a backup copy of the database or affected table spaces after the operation completes, you cannot
restore the database or table spaces to a point in time that follows the load operation. That is, you
cannot use rollforward recovery to re-create the database or table spaces to the state they were in
following the load operation. You can only restore the database or table spaces to a point in time that
precedes the load operation.

If you want to use a particular load copy, you can use the recovery history file for the database to
determine the time stamp for that specific load operation. In a multi-partition database, the recovery
history file is local to each database partition.

Load dump file
Specifying the dumpfile file type modifier tells the load utility the name and the location of the
exception file to which rejected rows are written.

When running in a partitioned database environment, rows can be rejected either by the partitioning
subagents or by the loading subagents. Because of this, the dump file name is given an extension that
identifies the subagent type, as well as the database partition number where the exceptions were
generated. For example, if you specified the following dump file value:

 dumpfile = "/u/usrname/dumpit"

Then rows that are rejected by the load subagent on database partition five will be stored in a file
named /u/usrname/dumpit.load.005, rows that are rejected by the load Subagent on database
partition two will be stored in a file named /u/usrname/dumpit.load.002, and rows that are rejected
by the partitioning subagent on database partition two will be stored in a file named /u/usrname/
dumpit.part.002, and so on.

For rows rejected by the load subagent, if the row is less than 32 768 bytes in length, the record is copied
to the dump file in its entirety; if it is longer, a row fragment (including the final bytes of the record) is
written to the file.

For rows rejected by the partitioning subagent, the entire row is copied to the dump file regardless of the
record size.

Load temporary files
The Db2 database system creates temporary binary files during load processing. These files are used for
load crash recovery, load terminate operations, warning and error messages, and runtime control data.

Load temporary files are removed when the load operation completes without error. The temporary files
are written to a path that can be specified through the temp-pathname parameter of the LOAD command,
or in the piTempFilesPath parameter of the db2Load API. The default path is a subdirectory of the
partition-global directory.

76 IBM Db2 V11.5: Data Movement Utilities Guide

Load operations against different databases must not specify the same temporary files path.

The temporary files path resides on the server machine and is accessed by the Db2 instance exclusively.
Therefore, it is imperative that any path name qualification given to the temp-pathname parameter
reflects the directory structure of the server, not the client, and that the Db2 instance owner has read and
write permission on the path.

Note: In a Db2 pureScale® environment, the load temporary files should reside on a path that is
accessible by all members (for example, on a shared disk). The temporary files need to be on a shared
disk, otherwise member crash recovery and LOAD TERMINATE operations executed from a different
member might have issues.

This is different from a partitioned database environment, where the load temporary files path should
reside on a local disk. You should avoid choosing a Network File System (NFS) based path, otherwise
there is significant performance degradation during the load operation.

Attention: The temporary files written to this path must not be tampered with under any
circumstances. Doing so causes the load operation to malfunction and places your database in
jeopardy.

Load utility log records
The utility manager produces log records associated with a number of Db2 utilities, including the load
utility.

The following log records mark the beginning or end of a specific activity during a load operation:

• Setup phase

– Load Start. This log record signifies the beginning of a load operation's setup phase.
– Commit log record. This log record signifies the successful completion of the setup phase.
– Abort log record. This log record signifies the failure of the setup phase. (Alternately, in a single

partition database, if the Load setup phase fails prior to physically modifying the table, it will
generate a Local Pending commit log record).

• Load phase

– Load Start. This log record signifies the beginning of a load operation's load phase.
– Local Pending commit log record. This log record signifies the successful completion of the load

phase.
– Abort log record. This log record signifies the failure of the load phase.

• Delete phase

– Load Delete Start. This log record is associated with the beginning of the delete phase in a load
operation. The delete phase is started only if there are duplicate primary key values. During the
delete phase, each delete operation on a table record, or an index key, is logged.

– Load Delete End. This log record is associated with the end of the delete phase in a load operation.
This delete phase is repeated during the rollforward recovery of a successful load operation.

The following list outlines the log records that the load utility creates depending on the size of the input
data:

• Two log records are created for every table space extent allocated or deleted by the utility in a DMS
table space.

• One log record is created for every chunk of identity values consumed.
• Log records are created for every data row or index key deleted during the delete phase of a load

operation.
• Log records are created that maintain the integrity of the index tree when performing a load operation

with the ALLOW READ ACCESS and INDEXING MODE INCREMENTAL options specified. The number of
records logged is considerably less than a fully logged insertion into the index.

Chapter 1. Data movement utilities and reference 77

Load overview-partitioned database environments
In a multi-partition database, large amounts of data are located across many database partitions.
Distribution keys are used to determine on which database partition each portion of the data resides. The
data must be distributed before it can be loaded at the correct database partition.

When loading tables in a multi-partition database, the load utility can:

• Distribute input data in parallel
• Load data simultaneously on corresponding database partitions
• Transfer data from one system to another system

Loading data into a multi-partition database takes place in two phases: the setup phase, during which
database partition resources such as table locks are acquired, and the load phase, during which the data
is loaded into the database partitions. You can use the ISOLATE_PART_ERRS option of the LOAD
command to select how errors are handled during either of these phases, and how errors on one or more
of the database partitions affect the load operation on the database partitions that are not experiencing
errors.

When loading data into a multi-partition database you can use one of the following modes:
PARTITION_AND_LOAD

Data is distributed (perhaps in parallel) and loaded simultaneously on the corresponding database
partitions. When loading into a random distribution table that uses the random by generation method,
this is the only supported mode.

PARTITION_ONLY
Data is distributed (perhaps in parallel) and the output is written to files in a specified location on each
loading database partition. Each file includes a partition header that specifies how the data was
distributed across the database partitions, and that the file can be loaded into the database using the
LOAD_ONLY mode.

LOAD_ONLY
Data is assumed to be already distributed across the database partitions; the distribution process is
skipped, and the data is loaded simultaneously on the corresponding database partitions.

LOAD_ONLY_VERIFY_PART
Data is assumed to be already distributed across the database partitions, but the data file does not
contain a partition header. The distribution process is skipped, and the data is loaded simultaneously
on the corresponding database partitions. During the load operation, each row is checked to verify
that it is on the correct database partition. Rows containing database partition violations are placed in
a dump file if the dumpfile file type modifier is specified. Otherwise, the rows are discarded. If
database partition violations exist on a particular loading database partition, a single warning is
written to the load message file for that database partition.

ANALYZE
An optimal distribution map with even distribution across all database partitions is generated.

Concepts and terminology

The following terminology is used when discussing the behavior and operation of the load utility in a
partitioned database environment with multiple database partitions:

• The coordinator partition is the database partition to which the user connects in order to perform the
load operation. In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, it is assumed
that the data file resides on this database partition unless the CLIENT option of the LOAD command is
specified. Specifying CLIENT indicates that the data to be loaded resides on a remotely connected
client.

• In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, the pre-partitioning agent
reads the user data and distributes it to the next agent in the pipeline. The actual agent depends on the
distribution method.

– For random distribution tables using random by generation method, the data is distributed in a
round-robin fashion directly to the loading agents.

78 IBM Db2 V11.5: Data Movement Utilities Guide

– Otherwise, data is distributed in a round-robin fashion to the partitioning agents which then distribute
the data. This process is always performed on the coordinator partition. A maximum of one
partitioning agent is allowed per database partition for any load operation.

• In the PARTITION_AND_LOAD, LOAD_ONLY, and LOAD_ONLY_VERIFY_PART modes, load agents run
on each output database partition and coordinate the loading of data to that database partition.

• Load to file agents run on each output database partition during a PARTITION_ONLY load operation.
They receive data from partitioning agents and write it to a file on their database partition.

• The SOURCEUSEREXIT option provides a facility through which the load utility can execute a
customized script or executable, referred to herein as the user exit.

Figure 13. Partitioned Database Load Overview

Loading data in a partitioned database environment
Using the load utility to load data into a partitioned database environment.

Before you begin

Before loading a table in a multi-partition database:

• Ensure that the svcename database manager configuration parameter and the DB2COMM profile registry
variable are set correctly. This step is important because the load utility uses TCP/IP to transfer data
from the pre-partitioning agent to the partitioning agents, and from the partitioning agents to the
loading database partitions.

• Before invoking the load utility, you must be connected to (or be able to implicitly connect to) the
database into which you want to load the data.

• Since the load utility issues a COMMIT statement, complete all transactions and release any locks by
issuing either a COMMIT or a ROLLBACK statement before beginning the load operation. If the
PARTITION_AND_LOAD, PARTITION_ONLY, or ANALYZE mode is being used, the data file that is being
loaded must reside on this database partition unless:

1. The CLIENT parameter has been specified, in which case the data must reside on the client
machine;

2. The input source type is CURSOR, in which case there is no input file.
• Run the Design Advisor to determine the best database partition for each table. For more information,

see "The Design Advisor" in Troubleshooting and Tuning Database Performance.

Restrictions

The following restrictions apply when using the load utility to load data in a multi-partition database:

• The location of the input files to the load operation cannot be a tape device.
• The ROWCOUNT parameter is not supported unless the ANALYZE mode is being used.

Chapter 1. Data movement utilities and reference 79

• If the target table has an identity column that is needed for distributing and the identityoverride
file type modifier is not specified, or if you are using multiple database partitions to distribute and then
load the data, the use of a SAVECOUNT greater than 0 on the LOAD command is not supported.

• If an identity column forms part of the distribution key or it is a random distribution table using the
random by generation method, only the PARTITION_AND_LOAD mode is supported.

• The LOAD_ONLY and LOAD_ONLY_VERIFY_PART modes cannot be used with the CLIENT parameter of
the LOAD command.

• The LOAD_ONLY_VERIFY_PART mode cannot be used with the CURSOR input source type.
• The distribution error isolation modes LOAD_ERRS_ONLY and SETUP_AND_LOAD_ERRS cannot be used

with the ALLOW READ ACCESS and COPY YES parameters of the LOAD command.
• Multiple load operations can load data into the same table concurrently if the database partitions
specified by theOUTPUT_DBPARTNUMS and PARTITIONING_DBPARTNUMS options do not overlap. For
example, if a table is defined on database partitions 0 through 3, one load operation can load data into
database partitions 0 and 1 while a second load operation can load data into database partitions 2 and
3. If the database partitions specified by the PARTITIONING_DBPARTNUMS options do overlap, then
load will automatically choose a PARTITIONING_DBPARTNUMS parameter where no load partitioning
subagent is already executing on the table, or fail if none are available.

Starting with Version 9.7 Fix Pack 6, if the database partitions specified by the
PARTITIONING_DBPARTNUMS options do overlap, the load utility automatically tries to pick up a
PARTITIONING_DBPARTNUMS parameter from the database partitions indicated by
OUTPUT_DBPARTNUMS where no load partitioning subagent is already executing on the table, or fail if
none are available.

It is strongly recommended that if you are going to explicitly specify partitions with the
PARTITIONING_DBPARTNUMS option, you should use that option with all concurrent LOAD commands,
with each command specifying different partitions. If you only specify PARTITIONING_DBPARTNUMS on
some of the concurrent load commands or if you specify overlapping partitions, the LOAD command will
need to pick alternate partitioning nodes for at least some of the concurrent loads, and in rare cases the
command might fail (SQL2038N).

• Only non-delimited ASCII (ASC) and Delimited ASCII (DEL) files can be distributed across tables
spanning multiple database partitions. PC/IXF files cannot be distributed, however, you can load a
PC/IXF file into a table that is distributed over multiple database partitions by using the load operation
in the LOAD_ONLY_VERIFY_PART mode.

Examples

The following examples illustrate how to use the LOAD command to initiate various types of load
operations. The database used in the following examples has five database partitions: 0, 1, 2, 3 and 4.
Each database partition has a local directory /db2/data/. Two tables, TABLE1 and TABLE2, are defined
on database partitions 0, 1, 3 and 4. When loading from a client, the user has access to a remote client
that is not one of the database partitions.

Distribute and load example

In this scenario, you are connected to a database partition that might or might not be a database
partition where TABLE1 is defined. The data file load.del resides in the current working directory of
this database partition. To load the data from load.del into all of the database partitions where
TABLE1 is defined, issue the following command:

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

Note: In this example, default values are used for all of the configuration parameters for partitioned
database environments: The MODE parameter defaults to PARTITION_AND_LOAD. The
OUTPUT_DBPARTNUMS parameter defaults to all database partitions on which TABLE1 is defined. The
PARTITIONING_DBPARTNUMS defaults to the set of database partitions selected according to the
LOAD command rules for choosing database partitions when none are specified.

80 IBM Db2 V11.5: Data Movement Utilities Guide

To perform a load operation where data is distributed over database partitions 3 and 4, issue the
following command:

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1
 PARTITIONED DB CONFIG PARTITIONING_DBPARTNUMS (3,4)

Figure 14. Loading data into database partitions 3 and 4.

Distribute only example

In this scenario, you are connected to a database partition that might or might not be a database
partition where TABLE1 is defined. The data file load.del resides in the current working directory of
this database partition. To distribute (but not load) load.del to all the database partitions on which
TABLE1 is defined, using database partitions 3 and 4 issue the following command:

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1
 PARTITIONED DB CONFIG MODE PARTITION_ONLY
 PART_FILE_LOCATION /db2/data
 PARTITIONING_DBPARTNUMS (3,4)

This results in a file load.del.xxx being stored in the /db2/data directory on each database
partition, where xxx is a three-digit representation of the database partition number.

To distribute the load.del file to database partitions 1 and 3, using only one partitioning agent
running on database partition 0 (which is the default for PARTITIONING_DBPARTNUMS), issue the
following command:

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
 PARTITIONED DB CONFIG MODE PARTITION_ONLY
 PART_FILE_LOCATION /db2/data
 OUTPUT_DBPARTNUMS (1,3)

Chapter 1. Data movement utilities and reference 81

Figure 15. Loading data into database partitions 1 and 3 using one partitioning agent.

Load only example

If you have already performed a load operation in the PARTITION_ONLY mode and want to load the
partitioned files in the /db2/data directory of each loading database partition to all the database
partitions on which TABLE1 is defined, issue the following command:

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
 PARTITIONED DB CONFIG MODE LOAD_ONLY
 PART_FILE_LOCATION /db2/data

82 IBM Db2 V11.5: Data Movement Utilities Guide

Figure 16. Loading data into all database partitions where a specific table is defined.

To load into database partition 4 only, issue the following command:

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
 PARTITIONED DB CONFIG MODE LOAD_ONLY
 PART_FILE_LOCATION /db2/data
 OUTPUT_DBPARTNUMS (4)

Loading pre-distributed files without distribution map headers

The LOAD command can be used to load data files without distribution headers directly into several
database partitions. If the data files exist in the /db2/data directory on each database partition
where TABLE1 is defined and have the name load.del.xxx, where xxx is the database partition
number, the files can be loaded by issuing the following command:

LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows
 REPLACE INTO TABLE1
 PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
 PART_FILE_LOCATION /db2/data

To load the data into database partition 1 only, issue the following command:

LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows
 REPLACE INTO TABLE1
 PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
 PART_FILE_LOCATION /db2/data
 OUTPUT_DBPARTNUMS (1)

Note: Rows that do not belong on the database partition from which they were loaded are rejected
and put into the dump file, if one has been specified.

Chapter 1. Data movement utilities and reference 83

Loading from a remote client to a multi-partition database

To load data into a multi-partition database from a file that is on a remote client, you must specify the
CLIENT parameter of the LOAD command. This parameter indicates that the data file is not on a
server partition. For example:

LOAD CLIENT FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

Note: You cannot use the LOAD_ONLY or LOAD_ONLY_VERIFY_PART modes with the CLIENT
parameter.

Loading from a cursor

As in a single-partition database, you can load from a cursor into a multi-partition database. In this
example, for the PARTITION_ONLY and LOAD_ONLY modes, the PART_FILE_LOCATION parameter
must specify a fully qualified file name. This name is the fully qualified base file name of the
distributed files that are created or loaded on each output database partition. Multiple files can be
created with the specified base name if there are LOB columns in the target table.

To distribute all the rows in the answer set of the statement SELECT * FROM TABLE1 to a file on
each database partition named /db2/data/select.out.xxx (where xxx is the database partition
number), for future loading into TABLE2, issue the following commands:

DECLARE C1 CURSOR FOR SELECT * FROM TABLE1

LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
 PARTITIONED DB CONFIG MODE PARTITION_ONLY
 PART_FILE_LOCATION /db2/data/select.out

The data files produced by the previous operation can then be loaded by issuing the following LOAD
command:

LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
 PARTITIONED CB CONFIG MODE LOAD_ONLY
 PART_FILE_LOCATION /db2/data/select.out

Loading data in a partitioned database environment-hints and tips

The following is some information to consider before loading a table in a multi-partition database:

• Familiarize yourself with the load configuration options by using the utility with small amounts of data.
• If the input data is already sorted, or in some chosen order, and you want to maintain that order during

the loading process, only one database partition should be used for distributing. Parallel distribution
cannot guarantee that the data is loaded in the same order it was received. The load utility chooses a
single partitioning agent by default if the anyorder modifier is not specified on the LOAD command.

• If large objects (LOBs) are being loaded from separate files (that is, if you are using the lobsinfile
modifier through the load utility), all directories containing the LOB files must be read-accessible to all
the database partitions where loading is taking place. The LOAD lob-path parameter must be fully
qualified when working with LOBs.

• You can force a job running in a multi-partition database to continue even if the load operation detects
(at startup time) that some loading database partitions or associated table spaces or tables are offline,
by setting the ISOLATE_PART_ERRS option to SETUP_ERRS_ONLY or SETUP_AND_LOAD_ERRS.

• Use the STATUS_INTERVAL load configuration option to monitor the progress of a job running in a
multi-partition database. The load operation produces messages at specified intervals indicating how
many megabytes of data have been read by the pre-partitioning agent. These messages are dumped to
the pre-partitioning agent message file. To view the contents of this file during the load operation,
connect to the coordinator partition and issue a LOAD QUERY command against the target table.

• Better performance can be expected if the database partitions participating in the distribution process
(as defined by the PARTITIONING_DBPARTNUMS option) are different from the loading database
partitions (as defined by the OUTPUT_DBPARTNUMS option), since there is less contention for CPU

84 IBM Db2 V11.5: Data Movement Utilities Guide

cycles. When loading data into a multi-partition database, invoke the load utility on a database partition
that is not participating in either the distributing or the loading operation.

• Specifying the MESSAGES parameter in the LOAD command saves the messages files from the pre-
partitioning, partitioning, and load agents for reference at the end of the load operation. To view the
contents of these files during a load operation, connect to the appropriate database partition and issue
a LOAD QUERY command against the target table.

• The load utility chooses only one output database partition on which to collect statistics. The
RUN_STAT_DBPARTNUM database configuration option can be used to specify the database partition.

• Before loading data in a multi-partition database, run the Design Advisor to determine the best partition
for each table. For more information, see "The Design Advisor" in Troubleshooting and Tuning Database
Performance.

Troubleshooting

If the load utility is hanging, you can:

• Use the STATUS_INTERVAL parameter to monitor the progress of a multi-partition database load
operation. The status interval information is dumped to the pre-partitioning agent message file on the
coordinator partition.

• Check the partitioning agent messages file to see the status of the partitioning agent processes on each
database partition. If the load is proceeding with no errors, and the TRACE option has been set, there
should be trace messages for a number of records in these message files.

• Check the load messages file to see if there are any load error messages.

Note: You must specify the MESSAGES option of the LOAD command in order for these files to exist.
• Interrupt the current load operation if you find errors suggesting that one of the load processes

encountered errors.

Monitoring a load operation in a partitioned database environment using the LOAD QUERY command
During a load operation in a partitioned database environment, message files are created by some of the
load processes on the database partitions where they are being executed.

The message files store all information, warning, and error messages produced during the execution of
the load operation. The load processes that produce message files that can be viewed by the user are the
load agent, pre-partitioning agent, and partitioning agent. The content of the message file is only available
after the load operation is finished.

You can connect to individual database partitions during a load operation and issue the LOAD QUERY
command against the target table. When issued from the CLP, this command displays the contents of the
load message files that currently reside on that database partition for the table that is specified in the
LOAD QUERY command.

For example, table TABLE1 is defined on database partitions 0 through 3 in database WSDB. You are
connected to database partition 0 and issue the following LOAD command:

 load from load.del of del replace into table1 partitioned db config
 partitioning_dbpartnums (1)

This command initiates a load operation that includes load agents running on database partitions 0, 1, 2,
and 3; a partitioning agent running on database partition 1; and a pre-partitioning agent running on
database partition 0.

Database partition 0 contains one message file for the pre-partitioning agent and one for the load agent
on that database partition. To view the contents of these files at the same time, start a new session and
issue the following commands from the CLP:

 set client connect_node 0
 connect to wsdb
 load query table table1

Chapter 1. Data movement utilities and reference 85

Database partition 1 contains one file for the load agent and one for the partitioning agent. To view the
contents of these files, start a new session and issue the following commands from the CLP:

 set client connect_node 1
 connect to wsdb
 load query table table1

Note: The messages generated by the STATUS_INTERVAL load configuration option appear in the pre-
partitioning agent message file. To view these message during a load operation, you must connect to the
coordinator partition and issue the LOAD QUERY command.

Saving the contents of message files

If a load operation is initiated through the db2Load API, the messages option (piLocalMsgFileName)
must be specified and the message files are brought from the server to the client and stored for you to
view.

For multi-partition database load operations initiated from the CLP, the message files are not displayed to
the console or retained. To save or view the contents of these files after a multi-partition database load is
complete, the MESSAGES option of the LOAD command must be specified. If this option is used, once the
load operation is complete the message files on each database partition are transferred to the client
machine and stored in files using the base name indicated by the MESSAGES option. For multi-partition
database load operations, the name of the file corresponding to the load process that produced it is listed
in the following table:

Process type File name

Load Agent <message-file-name>.LOAD.<dbpartition-number>

Partitioning Agent <message-file-name>.PART.<dbpartition-number>

Pre-partitioning Agent <message-file-name>.PREP.<dbpartition-number>

For example, if the MESSAGES option specifies /wsdb/messages/load, the load agent message file for
database partition 2 is /wsdb/messages/load.LOAD.002.

Note: It is strongly recommended that the MESSAGES option be used for multi-partition database load
operations initiated from the CLP.

Resuming, restarting, or terminating load operations in a partitioned database environment
The steps you need to take following failed load operations in a partitioned database environment depend
on when the failure occurred.

The load process in a multi-partition database consists of two stages:

1. The setup stage, during which database partition-level resources such as table locks on output
database partitions are acquired

In general, if a failure occurs during the setup stage, restart and terminate operations are not
necessary. What you need to do depends on the error isolation mode that was specified for the failed
load operation.

If the load operation specified that setup stage errors were not to be isolated, the entire load
operation is canceled and the state of the table on each database partition is rolled back to the state it
was in before the load operation.

If the load operation specified that setup stage errors were to be isolated, the load operation
continues on the database partitions where the setup stage was successful, but the table on each of
the failing database partitions is rolled back to the state it was in before the load operation. This
means that a single load operation can fail at different stages if some partitions fail during the setup
stage and others fail during the load stage

2. The load stage, during which data is formatted and loaded into tables on the database partitions

86 IBM Db2 V11.5: Data Movement Utilities Guide

If a load operation fails on at least one database partition during the load stage of a multi-partition
database load operation, a LOAD RESTART or LOAD TERMINATE command must be issued. This is
necessary because loading data in a multi-partition database is done through a single transaction.

If you can fix the problems that caused the failed load to occur, choose a LOAD RESTART. This saves
time because if a load restart operation is initiated, the load operation continues from where it left off
on all database partitions.

If you want the table returned to the state it was in before the initial load operation, choose a LOAD
TERMINATE.

Determining when a load failed

The first thing you need to do if your load operation in a partitioned environment fails is to determine on
which partitions it failed and at what stage each of them failed. This is done by looking at the partition
summary. If the LOAD command was issued from the CLP, the partition summary is displayed at the end
of the load (see following example). If the LOAD command was issued from the db2Load API, the
partition summary is contained in the poAgentInfoList field of the db2PartLoadOut structure.

If there is an entry of "LOAD" for "Agent Type", for a given partition, then that partition reached the load
stage, otherwise a failure occurred during the setup stage. A negative SQL Code indicates that it failed. In
the following example, the load failed on partition 1 during the load stage.

 Agent Type Node SQL Code Result
 __
 LOAD 000 +00000000 Success.
 __
 LOAD 001 -00000289 Error. May require RESTART.
 __
 LOAD 002 +00000000 Success.
 __
 LOAD 003 +00000000 Success.
.
.
.

Resuming, restarting, or terminating a failed load

Only loads with the ISOLATE_PART_ERRS option specifying SETUP_ERRS_ONLY or
SETUP_AND_LOAD_ERRS should fail during the setup stage. For loads that fail on at least one output
database partition fail during this stage, you can issue a LOAD REPLACE or LOAD INSERT command. Use
the OUTPUT_DBPARTNUMS option to specify only those database partitions on which it failed.

For loads that fail on at least one output database partition during the load stage, issue a LOAD RESTART
or LOAD TERMINATE command.

For loads that fail on at least one output database partition during the setup stage and at least one output
database partition during the load stage, you need to perform two load operations to resume the failed
load-one for the setup stage failures and one for the load stage failures, as previously described. To
effectively undo this type of failed load operation, issue a LOAD TERMINATE command. However, after
issuing the command, you must account for all partitions because no changes were made to the table on
the partitions that failed during the setup stage, and all the changes are undone for the partitions that
failed during the load stage.

For example, TABLE1 is defined on database partitions 0 through 3 in database WSDB. The following
command is issued:

load from load.del of del insert into table1 partitioned db config
isolate_part_errs setup_and_load_errs

There is a failure on output database partition 1 during the setup stage. Since setup stage errors are
isolated, the load operation continues, but there is a failure on partition 3 during the load stage. To
resume the load operation, you would issue the following commands:

Chapter 1. Data movement utilities and reference 87

load from load.del of del replace into table1 partitioned db config
output_dbpartnums (1)

load from load.del of del restart into table1 partitioned db config
isolate_part_errs setup_and_load_errs

Note: For load restart operations, the options specified in the LOAD RESTART command are honored, so
it is important that they are identical to the ones specified in the original LOAD command.

Migration and version compatibility
The DB2_PARTITIONEDLOAD_DEFAULT registry variable can be used to revert to pre-Db2 Universal
Database Version 8 load behavior in a multi-partition database.

Note: The DB2_PARTITIONEDLOAD_DEFAULT registry variable is deprecated and might be removed in a
later release.

Reverting to the pre-Db2 Version 8 behavior of the LOAD command in a multi-partition database, allows
you to load a file with a valid distribution header into a single database partition without specifying any
extra partitioned database configuration options. You can do this by setting the value of
DB2_PARTITIONEDLOAD_DEFAULT to NO. You might choose to use this option if you want to avoid
modifying existing scripts that issue the LOAD command against single database partitions. For example,
to load a distribution file into database partition 3 of a table that resides in a database partition group with
four database partitions, issue the following command:

 db2set DB2_PARTITIONEDLOAD_DEFAULT=NO

Then issue the following commands from the Db2 Command Line Processor:

 CONNECT RESET

 SET CLIENT CONNECT_NODE 3

 CONNECT TO DB MYDB

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

In a multi-partition database, when no multi-partition database load configuration options are specified,
the load operation takes place on all the database partitions on which the table is defined. The input file
does not require a distribution header, and the MODE option defaults to PARTITION_AND_LOAD. To load a
single database partition, the OUTPUT_DBPARTNUMS option must be specified.

Reference - Load in a partitioned environment

Load sessions in a partitioned database environment - CLP examples
The following examples demonstrate loading data in a multi-partition database.

The database has four database partitions numbered 0 through 3. Database WSDB is defined on all of the
database partitions, and table TABLE1 resides in the default database partition group which is also
defined on all of the database partitions.

Example 1

To load data into TABLE1 from the user data file load.del which resides on database partition 0,
connect to database partition 0 and then issue the following command:

 load from load.del of del replace into table1

If the load operation is successful, the output will be as follows:

 Agent Type Node SQL Code Result

 LOAD 000 +00000000 Success.

 LOAD 001 +00000000 Success.

88 IBM Db2 V11.5: Data Movement Utilities Guide

 LOAD 002 +00000000 Success.

 LOAD 003 +00000000 Success.

 PARTITION 001 +00000000 Success.

 PRE_PARTITION 000 +00000000 Success.

 RESULTS: 4 of 4 LOADs completed successfully.

 Summary of Partitioning Agents:
 Rows Read = 100000
 Rows Rejected = 0
 Rows Partitioned = 100000

 Summary of LOAD Agents:
 Number of rows read = 100000
 Number of rows skipped = 0
 Number of rows loaded = 100000
 Number of rows rejected = 0
 Number of rows deleted = 0
 Number of rows committed = 100000

The output indicates that there was one load agent on each database partition and each ran successfully.
It also shows that there was one pre-partitioning agent running on the coordinator partition and one
partitioning agent running on database partition 1. These processes completed successfully with a
normal SQL return code of 0. The statistical summary shows that the pre-partitioning agent read 100,000
rows, the partitioning agent distributed 100,000 rows, and the sum of all rows loaded by the load agents
is 100,000.

Example 2

In the following example, data is loaded into TABLE1 in the PARTITION_ONLY mode. The distributed
output files is stored on each of the output database partitions in the directory /db/data:

 load from load.del of del replace into table1 partitioned db config mode
 partition_only part_file_location /db/data

The output from the load command is as follows:

 Agent Type Node SQL Code Result

 LOAD_TO_FILE 000 +00000000 Success.

 LOAD_TO_FILE 001 +00000000 Success.

 LOAD_TO_FILE 002 +00000000 Success.

 LOAD_TO_FILE 003 +00000000 Success.

 PARTITION 001 +00000000 Success.

 PRE_PARTITION 000 +00000000 Success.

 Summary of Partitioning Agents:
 Rows Read = 100000
 Rows Rejected = 0
 Rows Partitioned = 100000

The output indicates that there was a load-to-file agent running on each output database partition, and
these agents ran successfully. There was a pre-partitioning agent on the coordinator partition, and a
partitioning agent running on database partition 1. The statistical summary indicates that 100,000 rows
were successfully read by the pre-partitioning agent and 100,000 rows were successfully distributed by
the partitioning agent. Since no rows were loaded into the table, no summary of the number of rows
loaded appears.

Chapter 1. Data movement utilities and reference 89

Example 3

To load the files that were generated during the PARTITION_ONLY load operation shown previously,
issue the following command:

 load from load.del of del replace into table1 partitioned db config mode
 load_only part_file_location /db/data

The output from the load command will be as follows:

 Agent Type Node SQL Code Result

 LOAD 000 +00000000 Success.

 LOAD 001 +00000000 Success.

 LOAD 002 +00000000 Success.

 LOAD 003 +00000000 Success.

 RESULTS: 4 of 4 LOADs completed successfully.

 Summary of LOAD Agents:
 Number of rows read = 100000
 Number of rows skipped = 0
 Number of rows loaded = 100000
 Number of rows rejected = 0
 Number of rows deleted = 0
 Number of rows committed = 100000

The output indicates that the load agents on each output database partition ran successfully and that the
sum of the number of rows loaded by all load agents is 100,000. No summary of rows distributed is
indicated since distribution was not performed.

Example 4

If the following LOAD command is issued:

 load from load.del of del replace into table1

and one of the loading database partitions runs out of space in the table space during the load operation,
the following output might be returned:

 SQL0289N Unable to allocate new pages in table space "DMS4KT".
 SQLSTATE=57011

 Agent Type Node SQL Code Result
 __
 LOAD 000 +00000000 Success.
 __
 LOAD 001 -00000289 Error. May require RESTART.
 __
 LOAD 002 +00000000 Success.
 __
 LOAD 003 +00000000 Success.
 __
 PARTITION 001 +00000000 Success.
 __
 PRE_PARTITION 000 +00000000 Success.
 __
 RESULTS: 3 of 4 LOADs completed successfully.
 __

 Summary of Partitioning Agents:
 Rows Read = 0
 Rows Rejected = 0
 Rows Partitioned = 0

 Summary of LOAD Agents:
 Number of rows read = 0
 Number of rows skipped = 0
 Number of rows loaded = 0
 Number of rows rejected = 0

90 IBM Db2 V11.5: Data Movement Utilities Guide

 Number of rows deleted = 0
 Number of rows committed = 0

The output indicates that the load operation returned error SQL0289. The database partition summary
indicates that database partition 1 ran out of space. If additional space is added to the containers of the
table space on database partition 1, the load operation can be restarted as follows:

 load from load.del of del restart into table1

Load configuration options for partitioned database environments
There are a number of configuration options that you can use to modify a load operation in a partitioned
database environment.

MODE X
Specifies the mode in which the load operation occurs when loading a multi-partition database.
PARTITION_AND_LOAD is the default. Valid values are:

• PARTITION_AND_LOAD. Data is distributed (perhaps in parallel) and loaded simultaneously on the
corresponding database partitions.

• PARTITION_ONLY. Data is distributed (perhaps in parallel) and the output is written to files in a
specified location on each loading database partition. For file types other than CURSOR, the format
of the output file name on each database partition is filename.xxx, where filename is the input
file name specified in the LOAD command and xxx is the 3-digit database partition number. For the
CURSOR file type, the name of the output file on each database partition is determined by the
PART_FILE_LOCATION option. See the PART_FILE_LOCATION option for details on how to specify
the location of the distribution file for each database partition.

Note:

1. This mode cannot be used for a CLI load operation.
2. If the table contains an identity column that is needed for distribution, then this mode is not

supported, unless the identityoverride file type modifier is specified.
3. This mode cannot be used for random distribution tables that use the random by generation

method.
4. Distribution files generated for file type CURSOR are not compatible between Db2 releases. This

means that distribution files of file type CURSOR that were generated in a previous release
cannot be loaded using the LOAD_ONLY mode. Similarly, distribution files of file type CURSOR
that were generated in the current release cannot be loaded in a future release using the
LOAD_ONLY mode.

• LOAD_ONLY. Data is assumed to be already distributed; the distribution process is skipped, and the
data is loaded simultaneously on the corresponding database partitions. For file types other than
CURSOR, the format of the input file name for each database partition should be filename.xxx,
where filename is the name of the file specified in the LOAD command and xxx is the 3-digit
database partition number. For the CURSOR file type, the name of the input file on each database
partition is determined by the PART_FILE_LOCATION option. See the PART_FILE_LOCATION
option for details on how to specify the location of the distribution file for each database partition.

Note:

1. This mode cannot be used for a CLI load operation, or when the CLIENT parameter of LOAD
command is specified.

2. If the table contains an identity column that is needed for distribution, then this mode is not
supported, unless the identityoverride file type modifier is specified.

3. This mode cannot be used for random distribution tables that use the random by generation
method.

• LOAD_ONLY_VERIFY_PART. Data is assumed to be already distributed, but the data file does not
contain a partition header. The distributing process is skipped, and the data is loaded
simultaneously on the corresponding database partitions. During the load operation, each row is

Chapter 1. Data movement utilities and reference 91

checked to verify that it is on the correct database partition. Rows containing database partition
violations are placed in a dump file if the dumpfile file type modifier is specified. Otherwise, the
rows are discarded. If database partition violations exist on a particular loading database partition, a
single warning is written to the load message file for that database partition. The format of the input
file name for each database partition should be filename.xxx, where filename is the name of the
file specified in the LOAD command and xxx is the 3-digit database partition number. See the
PART_FILE_LOCATION option for details on how to specify the location of the distribution file for
each database partition.

Note:

1. This mode cannot be used for a CLI load operation, or when the CLIENT parameter of LOAD
command is specified.

2. If the table contains an identity column that is needed for distribution, then this mode is not
supported, unless the identityoverride file type modifier is specified.

3. This mode cannot be used for random distribution tables that use the random by generation
method.

• ANALYZE. An optimal distribution map with even distribution across all database partitions is
generated.

PART_FILE_LOCATION X
In the PARTITION_ONLY, LOAD_ONLY, and LOAD_ONLY_VERIFY_PART modes, this parameter can
be used to specify the location of the distributed files. This location must exist on each database
partition specified by the OUTPUT_DBPARTNUMS option. If the location specified is a relative path
name, the path is appended to the current directory to create the location for the distributed files.

For the CURSOR file type, this option must be specified, and the location must refer to a fully qualified
file name. This name is the fully qualified base file name of the distributed files that are created on
each output database partition in the PARTITION_ONLY mode, or the location of the files to be read
from for each database partition in the LOAD_ONLY mode. When using the PARTITION_ONLY mode,
multiple files can be created with the specified base name if the target table contains LOB columns.

For file types other than CURSOR, if this option is not specified, the current directory is used for the
distributed files.

OUTPUT_DBPARTNUMS X
X represents a list of database partition numbers. The database partition numbers represent the
database partitions on which the load operation is to be performed. Any data that does not partition to
any of the database partitions listed will not be loaded. Unless we are loading a random distribution
table that uses random by generation method. In that case all data will be loaded into the set of
database partitions listed.

The database partition numbers must be a subset of the database partitions on which the table is
defined, except for column-organized tables, in which case all database partitions must be specified
(SQL27906N). All database partitions are selected by default. The list must be enclosed in
parentheses and the items in the list must be separated by commas. Ranges are permitted (for
example, (0, 2 to 10, 15)).

PARTITIONING_DBPARTNUMS X
X represents a list of database partition numbers that are used in the distribution process. The list
must be enclosed in parentheses and the items in the list must be separated by commas. Ranges are
permitted (for example, (0, 2 to 10, 15)). The database partitions specified for the distribution process
can be different from the database partitions being loaded. If PARTITIONING_DBPARTNUMS is not
specified, the load utility determines how many database partitions are needed and which database
partitions to use in order to achieve optimal performance.

If the anyorder file type modifier is not specified in the LOAD command, only one partitioning agent
is used in the load session. Furthermore, if there is only one database partition specified for the
OUTPUT_DBPARTNUMS option, or the coordinator partition of the load operation is not an element of
OUTPUT_DBPARTNUMS, the coordinator partition of the load operation is used in the distribution

92 IBM Db2 V11.5: Data Movement Utilities Guide

process. Otherwise, the first database partition (not the coordinator partition) in
OUTPUT_DBPARTNUMS is used in the distribution process.

If the anyorder file type modifier is specified, the number of database partitions used in the
distribution process is determined as follows: (number of partitions in OUTPUT_DBPARTNUMS/4 + 1).

This option is ignored when loading random distribution tables using the random by generation
method. That distribution method does not use partitioning agents.

MAX_NUM_PART_AGENTS X
Specifies the maximum numbers of partitioning agents to be used in a load session. The default is 25.
This option has no affect when loading into a random distribution table using random by generation
method. That distribution method does not use partitioning agents.

ISOLATE_PART_ERRS X
Indicates how the load operation reacts to errors that occur on individual database partitions. The
default is LOAD_ERRS_ONLY, unless both the ALLOW READ ACCESS and COPY YES parameters of
the LOAD command are specified, in which case the default is NO_ISOLATION. Valid values are:

• SETUP_ERRS_ONLY. Errors that occur on a database partition during setup, such as problems
accessing a database partition, or problems accessing a table space or table on a database
partition, cause the load operation to stop on the failing database partitions but to continue on the
remaining database partitions. Errors that occur on a database partition while data is being loaded
cause the entire operation to fail.

• LOAD_ERRS_ONLY. Errors that occur on a database partition during setup cause the entire load
operation to fail. If an error occurs while data is being loaded, the load operation will stop on the
database partition where the error occurred. The load operation continues on the remaining
database partitions until a failure occurs or until all the data is loaded. The newly loaded data will
not be visible until a load restart operation is performed and completes successfully.

Note: This mode cannot be used when both the ALLOW READ ACCESS and the COPY YES
parameters of the LOAD command are specified.

• SETUP_AND_LOAD_ERRS. In this mode, database partition-level errors during setup or loading data
cause processing to stop only on the affected database partitions. As with the LOAD_ERRS_ONLY
mode, when partition errors do occur while data is loaded, newly loaded data will not be visible until
a load restart operation is performed and completes successfully.

Note: This mode cannot be used when both the ALLOW READ ACCESS and the COPY YES options
of the LOAD command are specified.

• NO_ISOLATION. Any error during the load operation causes the load operation to fail.

STATUS_INTERVAL X
X represents how often you are notified of the volume of data that has been read. The unit of
measurement is megabytes (MB). The default is 100 MB. Valid values are whole numbers from 1 to
4000.

PORT_RANGE X
X represents the range of TCP ports used to create sockets for internal communications. The default
range is from 49152 to 65535. If defined at the time of invocation, the value of the DB2ATLD_PORTS
registry variable replaces the value of the PORT_RANGE load configuration option. For the
DB2ATLD_PORTS registry variable, the range should be provided in the following format:

 <lower-port-number:higher-port-number>

From the CLP, the format is:

 (lower-port-number, higher-port-number)

CHECK_TRUNCATION
Specifies that the program should check for truncation of data records at input/output. The default
behavior is that data is not checked for truncation at input/output.

Chapter 1. Data movement utilities and reference 93

MAP_FILE_INPUT X
X specifies the input file name for the distribution map. This parameter must be specified if the
distribution map is customized, as it points to the file containing the customized distribution map. A
customized distribution map can be created by using the db2gpmap program to extract the map from
the database system catalog table, or by using the ANALYZE mode of the LOAD command to generate
an optimal map. The map generated by using the ANALYZE mode must be moved to each database
partition in your database before the load operation can proceed.

MAP_FILE_OUTPUT X
X represents the output filename for the distribution map. The output file is created on the database
partition issuing the LOAD command assuming that database partition is participating in the database
partition group where partitioning is performed. If the LOAD command is invoked on a database
partition that is not participating in partitioning (as defined by PARTITIONING_DBPARTNUMS), the
output file is created at the first database partition defined with the PARTITIONING_DBPARTNUMS
parameter. Consider the following partitioned database environment setup:

 1 serv1 0
 2 serv1 1
 3 serv2 0
 4 serv2 1
 5 serv3 0

Running the following LOAD command on serv3, creates the distribution map on serv1.

LOAD FROM file OF ASC METHOD L (...) INSERT INTO table CONFIG
MODE ANALYZE PARTITIONING_DBPARTNUMS(1,2,3,4)
MAP_FILE_OUTPUT '/home/db2user/distribution.map'

This parameter should be used when the ANALYZE mode is specified. An optimal distribution map
with even distribution across all database partitions is generated. If this parameter is not specified
and the ANALYZE mode is specified, the program exits with an error.

TRACE X
Specifies the number of records to trace when you require a review of a dump of the data conversion
process and the output of the hashing values. The default is 0.

NEWLINE
Used when the input data file is an ASC file with each record delimited by a new line character and the
reclen file type modifier is specified in the LOAD command. When this option is specified, each
record is checked for a new line character. The record length, as specified in the reclen file type
modifier, is also checked.

DISTFILE X
If this option is specified, the load utility generates a database partition distribution file with the given
name. The database partition distribution file contains 32 768 integers: one for each entry in the
distribution map for the target table. Each integer in the file represents the number of rows in the
input files being loaded that hashed to the corresponding distribution map entry. This information can
help you identify skew in your data and also help you decide whether a new distribution map should
be generated for the table using the ANALYZE mode of the utility. If this option is not specified, the
default behavior of the load utility is to not generate the distribution file.

Note: When this option is specified, a maximum of one partitioning agent is used for the load
operation. Even if you explicitly request multiple partitioning agents, only one is used.

OMIT_HEADER
Specifies that a distribution map header should not be included in the distribution file. If not specified,
a header is generated.

RUN_STAT_DBPARTNUM X
If the STATISTICS USE PROFILE parameter is specified in the LOAD command, statistics are
collected only on one database partition. This parameter specifies on which database partition to
collect statistics. If the value is -1 or not specified at all, statistics are collected on the first database
partition in the output database partition list.

94 IBM Db2 V11.5: Data Movement Utilities Guide

Ingest utility
The ingest utility (sometimes referred to as continuous data ingest, or CDI) is a high-speed client-side
Db2 utility that streams data from files and pipes into Db2 target tables. Because the ingest utility can
move large amounts of real-time data without locking the target table, you do not need to choose
between the data currency and availability.

The ingest utility ingests pre-processed data directly or from files output by ETL tools or other means. It
can run continually and thus it can process a continuous data stream through pipes. The data is ingested
at speeds that are high enough to populate even large databases in partitioned database environments.

An INGEST command updates the target table with low latency in a single step. The ingest utility uses
row locking, so it has minimal interference with other user activities on the same table.

With this utility, you can perform DML operations on a table using a SQL-like interface without locking the
target table. These ingest operations support the following SQL statements: INSERT, UPDATE, MERGE,
REPLACE, and DELETE. The ingest utility also supports the use of SQL expressions to build individual
column values from more than one data field.

Other important features of the ingest utility include:

• Commit by time or number of rows. You can use the commit_count ingest configuration parameter to
have commit frequency determined by the number of written rows or use the default commit_period
ingest configuration parameter to have commit frequency determined by a specified time.

• Support for copying rejected records to a file or table, or discarding them. You can specify what the
INGEST command does with rows rejected by the ingest utility (using the DUMPFILE parameter) or by
Db2 (using the EXCEPTION TABLE parameter).

• Support for restart and recovery. By default, all INGEST commands are restartable from the last
commit point. In addition, the ingest utility attempts to recover from certain errors if you have set the
retry_count ingest configuration parameter.

The INGEST command supports the following input data formats:

• Delimited text
• Positional text and binary
• Columns in various orders and formats

In addition to regular tables and nicknames, the INGEST command supports the following table types:

• multidimensional clustering (MDC) and insert time clustering (ITC) tables
• range-partitioned tables
• range-clustered tables (RCT)
• materialized query tables (MQTs) that are defined as MAINTAINED BY USER, including summary tables
• temporal tables
• updatable views (except typed views)

A single INGEST command goes through three major phases:
1. Transport

The transporters read from the data source and put records on the formatter queues. For INSERT and
MERGE operations, there is one transporter thread for each input source (for example, one thread for
each input file). For UPDATE and DELETE operations, there is only one transporter thread.

2. Format
The formatters parse each record, convert the data into the format that Db2 database systems
require, and put each formatted record on one of the flusher queues for that record's partition. The
number of formatter threads is specified by the num_formatters configuration parameter. The
default is (number of logical CPUs)/2.

Chapter 1. Data movement utilities and reference 95

3. Flush
The flushers issue the SQL statements to perform the operations on the Db2 tables. The number of
flushers for each partition is specified by the num_flushers_per_partition configuration
parameter. The default is max(1, ((number of logical CPUs)/2)/(number of partitions)).

Overview of ingest-related tasks
This section provides a high-level overview of the main setup and operational tasks related to using the
ingest utility.
Setting up ingest middleware

1. Decide where to run the ingest utility

You can run ingest jobs on an existing machine or from a stand-alone machine. For more
information, see “Deciding where to run the ingest utility ” on page 97

2. Install the ingest utility (part of the Db2 Data Server Runtime Client and the Db2 Data Server
Client).

If you decide to install the ingest utility on a new, stand-alone machine, run the install for the Db2
client image. For more information, see "Installing IBM data server clients (Linux, UNIX)" in
Installing IBM Data Server Clients

Developing a process to populate a table

1. (If required) Address code page issues

Depending on whether the same code page is used by the input data, the Db2 client, and the Db2
server, there may be some user actions to take before running an INGEST command. For more
information, see “Code page considerations for the ingest utility” on page 109.

2. Set up to handle the restart of failed INGEST commands

To make an ingest operation restartable, you need to create a restart log table before issuing the
INGEST command. For more information, see “Creating the restart table” on page 97.

3. Write an INGEST command

Issue the INGEST command along with the mandatory parameters, like the input source and data
type, and various optional parameters. For a detailed description of the command syntax and
usage, as well as examples, see “Ingesting data” on page 98 and "INGEST" in the Command
Reference.

4. Set up to process an ongoing stream of ingest jobs

If you want to easily call a pre-written INGEST command, create a script for the command and call
it when necessary. For more information, see “Scenario: Processing a stream of files with the
ingest utility” on page 113

Performing operational tasks

• (If required) Addressing a failed INGEST command

If an ingest job fails, you have the option of restarting or terminating the command. For more
information, see “Restarting a failed ingest operation ” on page 104 or “Terminating a failed ingest
operation” on page 106.

• Monitoring an INGEST command

For more information, see “Monitoring ingest operations” on page 107.

(Optional) Optimizing performance

• Review tunable configuration parameters for the INGEST command.
• Modify your INGEST command to meet high performance requirements.

For more information, see “Performance considerations for ingest operations” on page 109.

96 IBM Db2 V11.5: Data Movement Utilities Guide

Deciding where to run the ingest utility
The ingest utility is included as a part of the Db2 client install. You can run it from either the client or the
server.

About this task

There are two choices for where to run the ingest utility:
On an existing server in the data warehouse environment

There are two choices for where to run ingest jobs within this type of setup:

• On the Db2 coordinator partition (the database partition server to which applications will connect
and on which the coordinating agent is located)

• On an existing ETL (extract, transform, and load) server

On a new server
There are two choices for where to run ingest jobs within this type of setup:

• On a server that is only running the ingest utility
• On a server that is also hosting an additional Db2 coordinator partition that is dedicated to the

ingest utility.

There are a number of factors that can influence where you decide to install the ingest utility:

• Performance: Having the ingest utility installed on its own server has a significant performance benefit,
so this would be suitable for environments with large data sets.

• Cost: Having the ingest utility installed on an existing server means that no additional expenses are
incurred as a result of using it.

• Ease of administration

Creating the restart table
By default, failed INGEST commands are restartable from the last commit point; however you first need
to create a restart table, which stores the information needed to resume an INGEST command.

About this task

You have to create the restart table only once, and that table will be used by all INGEST commands in the
database.

The ingest utility will use this table to store information needed to resume an incomplete INGEST
command from the last commit point.

Note: The restart table does not contain copies of the input rows, only some counters to indicate which
rows have been committed.

Restrictions

• It is recommended that you place the restart table in the same tablespace as the target tables that the
ingest utility updates. If this is not possible, you must ensure that the tablespace containing the restart
table is at the same level as the tablespace containing the target table. For example, if you restore or
roll forward one of the table spaces, you must restore or roll forward the other to the same level. If the
table spaces are at different levels and you run an INGEST command with the RESTART CONTINUE
option, the ingest utility could fail or ingest incorrect data.

• If your disaster recovery strategy includes replicating the target tables of ingest operations, you must
also replicate the restart table so it is kept in sync with the target tables.

Procedure

Chapter 1. Data movement utilities and reference 97

• If you are using a Version 10.1 or Version 10.5 server, call the SYSPROC.SYSINSTALLOBJECTS stored
procedure:

db2 "CALL SYSPROC.SYSINSTALLOBJECTS('INGEST', 'C', tablespace-name, NULL)"

• If you are using a Version 9.5, Version 9.7, or Version 9.8 server, issue the following SQL statements:

CREATE TABLE SYSTOOLS.INGESTRESTART (
 JOBID VARCHAR(256) NOT NULL,
 APPLICATIONID VARCHAR(256) NOT NULL,
 FLUSHERID INT NOT NULL,
 FLUSHERDISTID INT NOT NULL,
 TRANSPORTERID INT NOT NULL,
 BUFFERID BIGINT NOT NULL,
 BYTEPOS BIGINT NOT NULL,
 ROWSPROCESSED INT NOT NULL,
 PRIMARY KEY (JOBID, FLUSHERID, TRANSPORTERID, FLUSHERDISTID))
 IN <tablespace-name>
 DISTRIBUTE BY (FLUSHERDISTID);

GRANT SELECT, INSERT, UPDATE, DELETE
 ON TABLE SYSTOOLS.INGESTRESTART TO PUBLIC;

Results
The restart table, SYSTOOLS.INGESTRESTART, should now be created in the specified table space, and
you can now run restartable INGEST commands.

Example
A DBA intends to run all INGEST commands as restartable, so the DBA needs to first create a restart
table:

1. The DBA connects to the database:

db2 CONNECT TO sample

2. The DBA calls the stored procedure:

db2 "CALL SYSPROC.SYSINSTALLOBJECTS('INGEST', 'C', NULL, NULL)"

What to do next

Ensure that any user who will modify the restart table has the appropriate authorization:

• If the INGEST command specifies RESTART NEW, the user must have SELECT, INSERT, UPDATE, and
DELETE privilege on the restart table.

• If the INGEST command specifies RESTART TERMINATE, the user must have SELECT and DELETE
privilege on the restart table.

Ingesting data
You can use the ingest utility to continuously pump data into Db2 tables using SQL array inserts, updates,
and deletes until sources are exhausted.

Before you begin
Before invoking the ingest utility, you must be connected to the database into which the data will be
imported.

By default, failed INGEST commands are restartable from the last commit point; however you must first
create a restart table, otherwise you receive an error message notifying you that the command you issued
is not restartable. The ingest utility uses this table to store information needed to resume an incomplete
INGEST command from the last commit point. For more information about this, see “Creating the restart
table” on page 97.

98 IBM Db2 V11.5: Data Movement Utilities Guide

About this task

For a list of the required privileges and authorities, see the INGEST command authorization.

Restrictions

For a comprehensive list of restrictions for the ingest utility, see “Ingest utility restrictions and
limitations” on page 108.

Procedure

Issue the INGEST command specifying, at a minimum, a source, the format, and the target table as in the
following example:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 INSERT INTO <table-name>;

It is recommended that you also specify a string with the RESTART NEW parameter on the INGEST
command:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 RESTART NEW 'CDIjob001'
 INSERT INTO <table-name>;

The string you specify can be up to 128 bytes. Because the string uniquely identifies the INGEST
command, it must be unique across all INGEST commands in the current database that specified the
RESTART NEW option and are not yet complete.

Example

Basic ingest examples
The following example inserts data from a delimited text file:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 INSERT INTO <table-name>

The following example inserts data from a delimited text file with fields separated by a comma (the
default). The fields in the file correspond to the table columns.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Delimiter override example
The following example inserts data like the previous example, but the fields are separated by a
vertical bar.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED by '|'
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Omitting the field definition and VALUES list example
In the following example, the table is defined as follows:

Chapter 1. Data movement utilities and reference 99

CREATE TABLE <table-name> (
 c1 VARCHAR(32),
 c2 INTEGER GENERATED BY DEFAULT AS IDENTITY,
 c3 INTEGER GENERATED ALWAYS AS (c2 + 1),
);

The user issues the following INGEST command:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 INSERT INTO <table-name>;

• The default field definition list will be:

(
 $C1 CHARACTER(32),
 $C2 INTEGER EXTERNAL,
 $C3 INTEGER EXTERNAL
)

• The default VALUES list on the INSERT statement is:

VALUES($C1, $C2, DEFAULT)

Note that the third value is DEFAULT because the column that corresponds to field $C3 is defined as
GENERATED ALWAYS. The fourth value is omitted because it has no field.

Extra fields used to compute column values example
The following example is the same as the delimiter override example, but only the first two fields
correspond to the first two table columns (PROD_ID and DESCRIPTION), whereas the value for the
third table column (TOTAL_PRICE) is computed from the remaining three fields

INGEST FROM FILE <source_file>
 FORMAT DELIMITED BY '|'
 (
 $prod_ID CHAR(8),
 $description CHAR(32),
 $price DECIMAL(5,2) EXTERNAL,
 $sales_tax DECIMAL(4,2) EXTERNAL,
 $shipping DECIMAL(3,2) EXTERNAL
)
 INSERT INTO <table-name>(prod_ID, description, total_price)
 VALUES($prod_id, $description, $price + $sales_tax + $shipping);

Filler fields example
The following example inserts data from a delimited text file with fields separated by a comma (the
default). The fields in the file correspond to the table columns except that there are extra fields
between the fields for columns 2 and 3 and columns 3 and 4.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER,
 $field2 CHAR(8),
 $filler1 CHAR,
 $field3 CHAR(32),
 $filler2 CHAR,
 $field4 DATE
)
 INSERT INTO <table-name> VALUES($field1, $field2, $field3, $field4);

Format modifiers example
The following example inserts data from a delimited text file in code page 850. Date fields are in
American format and char fields are enclosed in equal signs.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 INPUT CODEPAGE 850
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',

100 IBM Db2 V11.5: Data Movement Utilities Guide

 $field3 CHAR(32) ENCLOSED BY '='
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Positional example
The following example inserts data from a file with fields in the specified positions. The fields in the
file correspond to the table columns.

INGEST FROM FILE <source_file>
 FORMAT POSITIONAL
 (
 $field1 POSITION(1:8) INTEGER EXTERNAL,
 $field2 POSITION(10:19) DATE 'yyyy-mm-dd',
 $field3 POSITION(25:34) CHAR(10)
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

DEFAULTIF examples
This example is similar to the previous example, except if the second field starts with a blank, the
ingest utility inserts the default value:

INGEST FROM FILE <source_file>
 FORMAT POSITIONAL
 (
 $field1 POSITION(1:8) INTEGER EXTERNAL,
 $field2 POSITION(10:19) DATE 'yyyy-mm-dd' DEFAULTIF = ' ',
 $field3 POSITION(25:34) CHAR(10)
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

This example is the same as the previous example, except that the default indicator is in the column
after the data columns:

INGEST FROM FILE <source_file>
 FORMAT POSITIONAL
 (
 $field1 POSITION(1:8) INTEGER EXTERNAL,
 $field2 POSITION(10:19) DATE 'yyyy-mm-dd' DEFAULTIF(35) = ' ',
 $field3 POSITION(25:34) CHAR(10)
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Multiple input sources example
This example inserts data from three delimited text files:

INGEST FROM FILE <source_file>, <source_file2>, <source_file3>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Pipe example
This example inserts data from a pipe:

INGEST FROM PIPE my_pipe
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Chapter 1. Data movement utilities and reference 101

Options example
This example inserts data from a delimited text file with fields separated by a comma (the default).
The fields in the file correspond to the table columns. The command specifies that write rows rejected
by Db2 (for example, due to constraint violations) are to be written to table EXCP_TABLE, rows
rejected due to other errors are to be discarded, and messages are to be written to file
messages.txt.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 EXCEPTION TABLE excp_table
 MESSAGES messages.txt
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Restart example
This example issues an INGEST command (which is restartable, by default) with a specified ingest job
id:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 RESTART NEW 'ingestcommand001'
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

If the command terminates before completing, you can restart it with the following command:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 RESTART CONTINUE 'ingestcommand001'
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Restart terminate example
This example issues the same INGEST command as the previous "Restart example":

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 RESTART NEW 'ingestcommand001'
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

If the command terminates before completing and you do not plan to restart it, you can clean up the
restart records with the following command.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 RESTART TERMINATE 'ingestcommand001'

102 IBM Db2 V11.5: Data Movement Utilities Guide

 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

After issuing this command, you can no longer restart the INGEST command with the job id:
"ingestcommand001", but you can reuse that string on the RESTART NEW parameter of a new
INGEST command.

Reordering columns example
This example inserts data from a delimited text file with fields separated by a comma. The table has
three columns and the fields in the input data are in the reverse order of the table columns.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 INSERT INTO <table-name>
 VALUES($field3, $field2, $field1);

Basic UPDATE, MERGE, and DELETE examples
The following examples update the table rows whose primary key matches the corresponding fields in
the input file.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $key1 INTEGER EXTERNAL,
 $key2 INTEGER EXTERNAL,
 $data1 CHAR(8),
 $data2 CHAR(32),
 $data3 DECIMAL(5,2) EXTERNAL
)
 UPDATE <table-name>
 SET (data1, data2, data3) = ($data1, $data2, $data3)
 WHERE (key1 = $key1) AND (key2 = $key2);

or

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $key1 INTEGER EXTERNAL,
 $key2 INTEGER EXTERNAL,
 $data1 CHAR(8),
 $data2 CHAR(32),
 $data3 DECIMAL(5,2) EXTERNAL
)
 UPDATE <table-name>
 SET data1 = $data1, data2 = $data2, data3 = $data3
 WHERE (key1 = $key1) AND (key2 = $key2);

This example merges data from the input file into the target table. For input rows whose primary key
fields match a table row, it updates that table row with the input row. For other input rows, it adds the
row to the table.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $key1 INTEGER EXTERNAL,
 $key2 INTEGER EXTERNAL,
 $data1 CHAR(8),
 $data2 CHAR(32),
 $data3 DECIMAL(5,2) EXTERNAL
)
 MERGE INTO <table-name>
 ON (key1 = $key1) AND (key2 = $key2)
 WHEN MATCHED THEN
 UPDATE SET (data1, data2, data3) = ($data1, $data2, $data3)
 WHEN NOT MATCHED THEN
 INSERT VALUES($key1, $key2, $data1, $data2, $data3);

Chapter 1. Data movement utilities and reference 103

This example deletes table rows whose primary key matches the corresponding primary key fields in
the input file.

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $key1 INTEGER EXTERNAL,
 $key2 INTEGER EXTERNAL
)
 DELETE FROM <table-name>
 WHERE (key1 = $key1) AND (key2 = $key2);

Complex SQL examples
Consider the following example in which there is a table with columns KEY, DATA, and ACTION. The
following command updates the DATA column of table rows where the primary key column (KEY)
matches the corresponding field in the input file and the ACTION column is 'U':

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $key_fld INTEGER EXTERNAL,
 $data_fld INTEGER EXTERNAL
)
 UPDATE <table-name>
 SET data = $data_fld
 WHERE (key = $key_fld) AND (action = 'U');

The following example is the same as the previous example except that if the keys match and the
ACTION column is 'D', then it deletes the row from the table:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $key_fld INTEGER EXTERNAL,
 $data_fld INTEGER EXTERNAL
)
 MERGE INTO <table-name>
 ON (keyl = $key_fld)
 WHEN MATCHED AND (action = 'U') THEN
 UPDATE SET data = $data_fld
 WHEN MATCHED AND (action = 'D') THEN
 DELETE;

What to do next

If the INGEST command completes successfully, you can reuse the string specified with the RESTART
NEW parameter.

If the INGEST command fails and you want to restart it, you must specify the RESTART CONTINUE option
with the string you specified in the original command.

If you do not plan to restart the failed INGEST command and you want to clean up the entries in the
restart table, rerun the INGEST command, specifying the RESTART TERMINATE option.

Restarting a failed ingest operation
If an INGEST command fails before completing and you want to restart it, reissue the INGEST command
with the RESTART CONTINUE option. This second INGEST command starts from the last commit point
and is also restartable.

Before you begin
The userid restarting the failed INGEST command must have SELECT, INSERT, UPDATE, and DELETE
privilege on the restart log table.

About this task

The INGEST utility considers a command to be complete when it reaches the end of the file or pipe. Under
any other conditions, the INGEST utility considers the command incomplete. These can include:

104 IBM Db2 V11.5: Data Movement Utilities Guide

• The INGEST command gets an I/O error while reading the input file or pipe.
• The INGEST command gets a critical system error from the Db2 database system.
• The INGEST command gets a Db2 database system error that is likely to prevent any further SQL

statements in the INGEST command from succeeding (for example, if the table no longer exists).
• The INGEST command is killed or terminates abnormally.

Restrictions

1. If the target table and the restart table are in different table spaces, the two table spaces must be at
the same level in terms of rollforward or restore operations.

2. You cannot modify the contents of the restart table, other than restoring the entire table to keep it in
sync with the target table.

3. The num_flushers_per_partition configuration parameter must be the same as on the original
command.

4. If the input is from files or pipes, the number of input files or pipes must be the same as on the
original command.

5. The input file or pipes must provide the same records and in the same order as on the original
command.

6. The following INGEST command parameters must be the same as on the original command:

• input type (file or pipe)
• the SQL statement
• the field definition list, including the number of fields and all field attributes

7. The target table columns that the SQL command updates must have the same definition as they had
at the time of the original command.

8. In a partitioned database environment, you cannot have added or removed database partitions.
9. In a partitioned database environment, you cannot have redistributed data across the partitions.

10. If an INGEST command specifies the DUMPFILE (BADFILE) parameter, the dump file is guaranteed
to be complete only if the INGEST command completes normally in a single run. If an INGEST
command fails and the restarted command succeeds, the combination of dump files from the two
commands might be missing some records or might contain duplicate records.

If the third, fourth, fifth, or ninth restriction is violated, the ingest utility issues an error and ends the
INGEST command. In the case of the other restrictions, the ingest utility does not issue an error, but the
restarted INGEST command might produce different output rows than the original would have if it had
completed.

Procedure

To restart a failed INGEST operation, do the following:
1. Use the available information to diagnose and correct the problem that caused the failure
2. Reissue the INGEST command, specifying the RESTART CONTINUE option with the appropriate job-id.

Results

Once the restarted INGEST command completes, you can reuse the job-id on a later INGEST command.

Example

The following INGEST command failed:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)

Chapter 1. Data movement utilities and reference 105

)
 RESTART NEW 'ingestjob001'
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

The DBA corrects the problem that cause the failure and restarts the INGEST command (which starts
from the last commit point) with the following command:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 RESTART CONTINUE 'ingestjob001'
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

Terminating a failed ingest operation
If an INGEST command fails before completing and you do not want to restart it, reissue the INGEST
command with the RESTART TERMINATE option. This command option cleans up the log records for the
failed INGEST command.

Before you begin

The user ID terminating the failed INGEST command must have SELECT and DELETE privilege on the
restart log table.

Procedure

To terminate a failed INGEST operation, reissue the INGEST command.
Specify the RESTART TERMINATE parameter with the appropriate string.

Results

After the restarted INGEST command completes, you can reuse the RESTART NEW string on a later
INGEST command.

Example

The following INGEST command failed:

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 RESTART NEW 'ingestjob001'
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

The DBA does not want to restart the INGEST command, so they terminate it with the following command
(which includes the RESTART TERMINATE parameter):

INGEST FROM FILE <source_file>
 FORMAT DELIMITED
 (
 $field1 INTEGER EXTERNAL,
 $field2 DATE 'mm/dd/yyyy',
 $field3 CHAR(32)
)
 RESTART TERMINATE 'ingestjob001'
 INSERT INTO <table-name>
 VALUES($field1, $field2, $field3);

106 IBM Db2 V11.5: Data Movement Utilities Guide

Monitoring ingest operations
You can use the INGEST LIST or INGEST GET STATS commands to monitor the progress of INGEST
commands.

Before you begin

To issue the INGEST LIST and INGEST GET STATS commands, you need a separate CLP session but
they must be run on the same machine that the INGEST command is running on.

Procedure

There are a number of ways to monitor an ingest operation:

• To get basic information about all currently running INGEST commands, use the INGEST LIST
command.

• To get more detailed information about a specific INGEST command or all currently running INGEST
commands, use the INGEST GET STATS command.

• You can also query the following monitor elements by using an interface such as the
MON_GET_CONNECTION table function:

– client_acctng
– client_applname
– appl_name
– client_userid
– client_wrkstnname

Example

The following shows an example of what output to expect from an INGEST LIST command:

INGEST LIST

Ingest job ID = DB21000:20101116.123456.234567:34567:45678
Ingest temp job ID = 1
Database Name = MYDB
Input type = FILE
Target table = MY_SCHEMA.MY_TABLE
Start Time = 04/10/2010 11:54:45.773215
Running Time = 01:02:03
Number of records processed = 30,000

The following shows an example of what output to expect from an INGEST GET STATS command:

INGEST GET STATS FOR 4

Ingest job ID = DB21000:20101116.123456.234567:34567:4567
Database = MYDB
Target table = MY_SCHEMA.MY_TABLE1

Records/sec Flushes/sec Records/sec Flushes/sec
since start since start since last since last Total records
---------------- ----------------- --------------- ---------------- -------------
54321 65432 76543 87654 98765

The following shows an example of using the MON_GET_CONNECTION table function to get the number
of rows modified and the number of commits:

SELECT client_acctng AS "Job ID",
 SUM(rows_modified) AS "Total rows modified",
 SUM(total_app_commits) AS "Total commits"
 FROM TABLE(MON_GET_CONNECTION(NULL, NULL))
 WHERE application_name = 'DB2_INGEST'
 GROUP BY client_acctng
 ORDER BY 1

Job ID Total rows modified Total commits

Chapter 1. Data movement utilities and reference 107

-- ------------------- -------------
DB21000:20101116.123456.234567:34567:45678 92 52
DB21000:20101116.987654.234567:34567:45678 172 132

 2 record(s) selected.

Ingest utility restrictions and limitations
There are a number of restrictions that you should be aware of when using the ingest utility.

Restartability

• If input data source type changed, the ingest utility might not be able to detect the change and will
produce different output rows than the original failed command.

Table support

• The ingest utility supports operations against only Db2 tables.
• The ingest utility does not support operations on:

– created or declared global temporary tables
– typed tables
– typed views

Input types, formats, and column types

• The ingest utility does not support the following column types:

– large object types (LOB, BLOB, CLOB, DBCLOB)
– XML
– structured types
– columns with a user-defined data type based on any of the types listed previously

• In addition, the ingest utility has the following restrictions on generated columns:

– The ingest utility cannot assign a value to a column defined as GENERATED ALWAYS. If the SQL
statement on the INGEST command is INSERT or UPDATE and the target table has a GENERATED
ALWAYS column, the insert or update operation fails (SQL0798N) and the INGEST command
ends unless you do one of the following:

- Omit the column from the list of columns to update.
- On the INSERT or UPDATE statement, specify DEFAULT as the value assigned to the column.

– The ingest utility cannot assign a combination of default values and specific values to a column
defined as GENERATED BY DEFAULT AS IDENTITY or the RANDOM_DISTRIBUTION_KEY of a
random distribution table using the random by generation method. If the SQL statement on the
INGEST command is INSERT or UPDATE and the target table has a GENERATED BY DEFAULT AS
IDENTITY column, the insert or update operation fails (SQL0407N) and the INGEST command
rejects the record unless you do one of the following:

- Omit the column from the list of columns to update.
- On the INSERT or UPDATE statement, specify DEFAULT as the value assigned to the column.
- Specify an expression that never evaluates to NULL as the value assigned to the column. For

example, if the expression is $field1, then $field1 can never have a NULL value in the input
records.

Restrictions related to using other Db2 features with the ingest utility

• Except for the CONNECT_MEMBER parameter, the SET CLIENT command (for connection settings)
does not affect how the ingest utility connects.

• The LIST HISTORY command does not display ingest operations.
• The SET UTIL_IMPACT_PRIORITY command does not affect the INGEST command

108 IBM Db2 V11.5: Data Movement Utilities Guide

• The util_impact_lim database manager configuration parameter does not affect the INGEST
command

• Except for CURRENT SCHEMA, CURRENT TEMPORAL SYSTEM_TIME, and CURRENT TEMPORAL
BUSINESS_TIME, the ingest utility ignores the settings of most special registers that affect SQL
statement execution.

General ingest utility restrictions

• If you ingest into a view that has multiple base tables, any base tables that are protected by a
security policy must be protected by the same security policy. (You can still have some base tables
unprotected but those that are protected must use the same security policy.)

Nickname support

• If the INGEST command specifies or defaults to the RESTART NEW or RESTART CONTINUE
option, and the target table is a nickname or an updatable view that updates a nickname, ensure
that the DB2_TWO_PHASE_COMMIT server option is set to 'Y' for the server definition that
contains the nickname.

• You cannot use the SET SERVER OPTION to enable two-phase commit before issuing the
INGEST command because that command affects only the CLP connection, whereas the
INGEST command establishes its own connection. You must set the server option in the server
definition in the catalog.

• You cannot use the DB2_TWO_PHASE_COMMIT server option with the database partitioning
feature, which means that the combination of partitioned database environment mode, a
restartable ingest command, and ingesting into a nickname is not supported.

• The performance benefit of the utility is reduced when used on nicknames.

Additional considerations for ingest operations

Performance considerations for ingest operations
Use the following set of guidelines to help performance tune your ingest jobs.
Field type and column type

Define fields to be the same type as their corresponding column types. When the types are different,
the ingest utility or Db2 must convert the input data to the column type.

Materialized query tables (MQTs)
If you ingest data into a table that is a base table of an MQT defined as REFRESH IMMEDIATE,
performance can degrade significantly due to the time required to update the MQT.

Row size
For tables with a small row size, increase the setting of the commit_count ingest configuration
parameter; for tables with a large row size, reduce the setting of the commit_count ingest
configuration parameter.

Other workloads
If you are executing the ingest utility with another workload, increase the setting of the locklist
database configuration parameter and reduce the setting of the commit_count ingest configuration
parameter

Code page considerations for the ingest utility
When the ingest utility processes input data, there are three code pages involved: the application (client)
code page, the input data code page, and the database code page.

Code page How specified Default

Application (client) code page,
which is used in the CLP command
file

Determined from the current locale Determined from the
current locale

Chapter 1. Data movement utilities and reference 109

Code page How specified Default

Input data code page INPUT CODEPAGE on the INGEST
command

Application code page

Database code page Specified on the CREATE DATABASE
command

1208 (UTF-8 encoding of
Unicode)

If the input data code page differs from the application code page, the ingest utility temporarily overrides
the application code page with the input data code page so that Db2 converts the data directly from the
input data code page to the database code page. Under some conditions, the ingest utility cannot override
the application code page. In this case, the ingest utility converts character data that is not defined as
FOR BIT DATA to the application code page before passing it to Db2. In all cases, if the column is not
defined as FOR BIT DATA, Db2 converts the data to the database code page.

CLP command file code page
Except for hex constants, the ingest utility assumes that the text of the INGEST command is in the
application code page. Whenever the ingest utility needs to compare strings specified on the INGEST
command (for example, when comparing the DEFAULTIF character to a character in the input data),
the ingest utility performs any necessary code page conversion to ensure the compared strings are in
the same code page. Neither the ingest utility nor Db2 do any conversion of hex constants.

Input data code page
If both a field and the table column that it is assigned to are defined as FOR BIT DATA, then neither
the ingest utility nor Db2 does any code page conversion. For example, suppose that the INGEST
command assigns field $c1 to column C1 and both are defined as CHAR FOR BIT DATA. If the input
field contains X'E9', then Db2 sets column C1 to X'E9', regardless of the input data code page or
database code page.

It is strongly recommended that if a column definition omits FOR BIT DATA, then its corresponding
field definition also omit FOR BIT DATA. Likewise, if a column definition specifies FOR BIT DATA, its
corresponding field should also specify FOR BIT DATA. Otherwise, the value assigned to the column is
unpredictable because it depends on whether the ingest utility can override the application code
page.

The following example illustrates this situation:

• The input data code page is 819.
• The application code page is 850.
• The database code page is 1208 (UTF-8).
• The input data is "é" ("e" with an acute accent), which is X'E9' in code page 819, X'82' in code page

850, and X'C3A9' in UTF-8.

The following table shows what data ends up on the server depending on whether the field and/or
column are defined as FOR BIT DATA and whether the ingest utility can override the application code
page:

Table 15. Possible outcomes if the field and column definitions are defined as FOR BIT DATA

Field
definition

Column
definition

 Input data
(code page
819)

Data after the
ingest utility
converts it to
application
code page 850

Data on the
server if the
ingest utility
can override
the
application
code page

Data on the
server if the
ingest utility
cannot
override the
application
code page

CHAR CHAR X'E9' X'82' X'C3A9' X'C3A9'

CHAR FOR BIT
DATA

CHAR FOR BIT
DATA

X'E9' X'E9' X'E9' X'E9'

110 IBM Db2 V11.5: Data Movement Utilities Guide

Table 15. Possible outcomes if the field and column definitions are defined as FOR BIT DATA
(continued)

Field
definition

Column
definition

 Input data
(code page
819)

Data after the
ingest utility
converts it to
application
code page 850

Data on the
server if the
ingest utility
can override
the
application
code page

Data on the
server if the
ingest utility
cannot
override the
application
code page

CHAR FOR BIT
DATA

CHAR X'E9' X'E9' X'C3A9' X'C39A' ("Ú")

CHAR CHAR FOR BIT
DATA

X'E9' X'82' X'E9' X'82'

The data in the fourth column is what the ingest utility sends to Db2 when it can override the
application code page. The data in the fourth column is what the ingest utility sends when it cannot
override the application code page. Note that when the FOR BIT DATA attribute of the field and
column definitions are different, the results can vary as shown in the preceding table.

Code page errors
In cases where the input code page, application code page, or database code page differ, either the
ingest utility or Db2 or both will perform code page conversion. If Db2 does not support the code page
conversion in any of the following cases, the ingest utility issues an error and the command ends.

Conversion is required
when...

In this case,
conversion from... To... Is done by...

The INGEST command
contains strings or SQL
identifiers that need to
be converted to the
input data code page.

Application code page Input data code page Ingest utility

The utility can override
the application code
page to be the input
data code page.

Input code page Database code page Db2

The utility cannot
override the application
code page.

Input code page Application code page Ingest utility

The utility cannot
override the application
code page.

Application code page Database code page Db2

Ingest operations in a Db2 pureScale environment
When you are using the ingest utility in a Db2 pureScale environment, there are some additional
considerations to take into account.

When each flusher connects to a database on a Db2 pureScale instance:

• If the SET CLIENT command with the CONNECT_MEMBER option has been issued, the flusher connects
to that member.

• Otherwise, the flusher does not specify the member to connect to. In this case, the Db2 client uses
connection-level work load balancing (WLB) to select the member to connect to.

Chapter 1. Data movement utilities and reference 111

Multiple invocations of the ingest utility can operate on the same member or on different members,
depending on whether the SET CLIENT command with the CONNECT_MEMBER option has been specified
and which member WLB chooses.

Ingest operations in a partitioned database environment
You can use the ingest utility to move data into a partitioned database environment.

INGEST commands running on a partitioned database use one or more flushers for each partition, as
specified by the num_flushers_per_partition configuration parameter. The default is as follows:

max(1, ((number of logical CPUs)/2)/(number of partitions))

You can also set this parameter to 0, meaning one flusher for all partitions.

Each flusher connects directly to the partition to which it will send data. In order for the connection to
succeed, all the Db2 server partitions must use the same port number to receive client connections.

If the target table is a type that has a distribution key, the ingest utility determines the partition that each
record belongs to as follows:

1. Determine whether every distribution key has exactly one corresponding field or constant value. This
will be true if:

• For an INSERT statement, the column list contains every distribution key and for each distribution
key, the corresponding item in the VALUES list is a field name or a constant.

• For an UPDATE or DELETE statement, the WHERE predicate is of the form

(dist-key-col1 = value1) AND (dist-key-col2 = value2) AND ...
(dist-key-coln = valuen) [AND any-other-conditions]

where dist-keycol1 to dist-key-coln are all the distribution keys and each value is a field name or a
constant.

• For a MERGE statement, the search condition is of the form shown previously for UPDATE and
DELETE.

2. If every distribution key has exactly one corresponding field or constant value, the ingest utility uses
the distribution key to determine the partition number and then routes the record to one of that
partition's flushers.

Note: In the following cases, the ingest utility does not determine the record's partition. If there is
more than 1 flusher, the ingest utility routes the record to a flusher chosen at random:

• The target table is a type that has no distribution key.
• The column list (INSERT) or predicate (UPDATE, MERGE, DELETE) does not specify all distribution

keys. In the following example, key columns 2-8 are missing:

UPDATE my_table SET data = $data
 WHERE (key1 = $key1) AND (key9 = $key9);

• A distribution key corresponds to more than one field or value, as in the following example:

UPDATE my_table SET data = $data
 WHERE key1 = $key11 OR key1 = $key12;

• A distribution key corresponds to an expression, as in the following example

INGEST FROM FILE ...
 INSERT INTO my_table(dist_key, col1, col2)
 VALUES($field1 + $field2, $col1, $col2);

• A distribution key column has type DB2SECURITYLABEL.
• A field that corresponds to a distribution key has a numeric type, but the distribution key column

type is a different numeric type or has a different precision or scale.

112 IBM Db2 V11.5: Data Movement Utilities Guide

Sample ingest utility scripts
You can use the ingest utility sample script to automate writing a new INGEST command each time there
are new files to process.

The sample script ingest_files.sh is a shell script that automatically checks for new files and
generates an INGEST command to process the files. The script performs the following tasks, in order:

1. Check the directory to see if there are new files to process. If there are no files, the script exits.

Note: The script assumes that the specified directory only contains files for the table that you want to
populate.

2. Obtain the names of the new files and then generate a separate INGEST command for each file
3. Run the INGEST command and handle the return code
4. Move the processed files to a success directory or a failed directory.

The script is provided in the samples/admin_scripts directory under your installation directory.

Modifying the script for your environment

You can use the ingest_files.sh script as a basis for your own script. The important modifications
that you have to make to it are:

• Replace the sample values (namely, the database name, table name) with you own values
• Replace the sample INGEST command with your own command
• Create the directories specified in the script

The script processes files that contain data to populate a single table. To populate multiple tables, you
can either replicate the mechanism for each table that you want to populate or generalize the mechanism
to handle multiple tables.

Sample scenario

A sample scenario has been included in the documentation to show you how you can adapt the sample
script to your data warehouse to automate the generation of new INGEST commands.

Scenario: Processing a stream of files with the ingest utility
The following scenario shows how you can configure your data warehouse to automatically ingest an
ongoing stream of data files.

The problem: In some data warehouses, files arrive in an ongoing stream throughout the day and need to
be processed as they arrive. This means that each time a new file arrives, another INGEST command
needs to be run specifying the new file to process.

The solution: You can write a script that automatically checks for new files, generates a new INGEST
command, and runs that command. The ingest_files.sh is a sample of such a script. You also need to
create a crontab entry in order to specify how frequently the shell script is supposed to run.

Before the user implements this mechanism (that is, the script and the chrontab entry) for processing the
stream of files, the user needs to have met the following prerequisites and dependencies:

• The target table has been created in the target database
• The ingest utility is ready to use (that is, it is installed and set up on a client machine)
• An INGEST command has been specified and verified by running it manually with a test file
• The objects, such as the exception table, referenced in the INGEST command have been created
• A crontab file has been created on the system on which the ingest utility is running
• The user has a process for creating the input files and moving them into the source directory that the

script uses

1. The user creates a new script, using ingest_files.sh as a template by doing the following:

Chapter 1. Data movement utilities and reference 113

a. Replace the following sample input values to reflect the user's values:

• INPUT_FILES_DIRECTORY
• DATABASE_NAME
• SCHEMA_NAME
• TABLE_NAME
• SCRIPT_PATH

b. Replace the sample INGEST command
c. Save the script as populate_table1_script

2. The user adds an entry to the crontab file to specify how frequently the script is to run. Because the
user wants the script to run once a minute, 24 hours a day, every day of the year, the user adds the
following line:

1 * * * * $HOME/bin/populate_table1_script

3. The user tests the script by creating new input files and adding them to the source directory.

Other data movement options

Moving tables online by using the ADMIN_MOVE_TABLE procedure
Using the ADMIN_MOVE_TABLE procedure, you can move tables by using an online or offline move. Use
an online table move instead of an offline table move if you value availability more than cost, space, move
performance, and transaction overhead.

Before you begin

Ensure there is sufficient disk space to accommodate the copies of the table and index, the staging table,
and the additional log entries.

About this task

You can move a table online by calling the stored procedure once or multiple times, one call for each
operation performed by the procedure. Using multiple calls provides you with additional options, such as
cancelling the move or controlling when the target table is taken offline to be updated.

When you call the SYSPROC.ADMIN_MOVE_TABLE procedure, a shadow copy of the source table is
created. During the copy phase, changes to the source table (updates, insertions, or deletions) are
captured using triggers and placed in a staging table. After the copy phase is completed, the changes
captured in the staging table are replayed to the shadow copy. Following that, the stored procedure
briefly takes the source table offline and assigns the source table name and index names to the shadow
copy and its indexes. The shadow table is then brought online, replacing the source table. By default, the
source table is dropped, but you can use the KEEP option to retain it under a different name.

Avoid performing online moves for tables without indexes, particularly unique indexes. Performing a
online move for a table without a unique index might result in deadlocks and complex or expensive
replay.

Applications holding conflicting locks on the source table might fail with SQL0911N reason code 68,
because ADMIN_MOVE_TABLE is more likely to be successful in lock timeout conflicts. To prevent
deadlocks during the SWAP operation, the FORCE_ALL option can be used. See FORCE_ALL for more
details.

Procedure

To move a table online:
1. Call the ADMIN_MOVE_TABLE procedure in one of the following ways:

114 IBM Db2 V11.5: Data Movement Utilities Guide

• Call the ADMIN_MOVE_TABLE procedure once, specifying at least the schema name of the source
table, the source table name, and an operation type of MOVE. For example, use the following syntax
to move the data to an existing table within the same table space:

CALL SYSPROC.ADMIN_MOVE_TABLE (
'schema name',
'source table',
'',
'',
'',
'',
'',
'',
'',
'',
'MOVE')

• Call the ADMIN_MOVE_TABLE procedure multiple times, once for each operation, specifying at least
the schema name of the source table, the source table name, and an operation name. For example,
use the following syntax to move the data to a new table within the same table space:

CALL SYSPROC.ADMIN_MOVE_TABLE (
'schema name',
'source table',
'',
'',
'',
'',
'',
'',
'',
'',
'operation name')

where operation name is one of the following values: INIT, COPY, REPLAY, VERIFY, or SWAP. You
must call the procedure based on this order of operations, for example, you must specify INIT as the
operation name in the first call.

Note: The VERIFY operation is costly; perform this operation only if you require it for your table
move.

2. If the online move fails, rerun it:
a) Fix the problem that caused the table move to fail.
b) Determine the stage that was in progress when the table move failed by querying the

SYSTOOLS.ADMIN_MOVE_TABLE protocol table for the status.
c) Call the stored procedure again, specifying the applicable option:

• If the status of the procedure is INIT, use the INIT option.
• If the status of the procedure is COPY, use the COPY option.
• If the status of the procedure is REPLAY, use the REPLAY or SWAP option.
• If the status of the procedure is CLEANUP, use the CLEANUP option.

If the status of an online table move is not COMPLETED or CLEANUP, you can cancel the move by
specifying the CANCEL option for the stored procedure.

Examples

Example 1: Move the T1 table from schema SVALENTI, to the ACCOUNTING table space without taking T1
offline. Specify the DATA, INDEX, and LONG table spaces to move the table into a new table space.

CALL SYSPROC.ADMIN_MOVE_TABLE(
'SVALENTI',
'T1',
'ACCOUNTING',
'ACCOUNTING',
'ACCOUNTING',
'',
'',

Chapter 1. Data movement utilities and reference 115

'',
'',
'',
'MOVE')

Example 2: Move the T1 table from schema EBABANI to the ACCOUNTING table space without taking T1
offline, and keep a copy of the original table after the move. Use the COPY_USE_LOAD and
LOAD_MSGPATH options to set the load message file path. Specify the DATA, INDEX, and LONG table
spaces to move the table into a new table space. The original table will maintain a name similar to
'EBABANI'.'T1AAAAVxo'.

CALL SYSPROC.ADMIN_MOVE_TABLE(
'EBABANI',
'T1',
'ACCOUNTING',
'ACCOUNTING',
'ACCOUNTING',
'',
'',
'',
'',
'KEEP, COPY_USE_LOAD,LOAD_MSGPATH "/home/ebabani"',
'MOVE')

Example 3: Move the T1 table within the same table space. Change the C1 column within T1, which uses
the deprecated datatype LONG VARCHAR to use a compatible data type.

CALL SYSPROC.ADMIN_MOVE_TABLE(
'SVALENTI',
'T1',
'',
'',
'',
'',
'',
'',
'C1 VARCHAR(1000), C2 INT(5), C3 CHAR(5), C4 CLOB',
'',
'MOVE')

Note: You cannot change the column name during this operation.

Example 4: You have the T1 table created by the following statement:

CREATE TABLE T1(C1 BIGINT,C2 BIGINT,C3 CHAR(20),C4 DEC(10,2),C5 TIMESTAMP,C6 BIGINT
 GENERATED ALWAYS AS (C1+c2),C7 GRAPHIC(10),C8 VARGRAPHIC(20),C9 XML

Move the table within the same table space and drop columns C5 and C6:

CALL SYSPROC.ADMIN_MOVE_TABLE(
'SVALENTI',
'T1',
'',
'',
'',
'',
'',
'',
'c1 BIGINT,c2 BIGINT ,c3 CHAR(20),c4 DEC(10,2),c7 GRAPHIC(10),c8 VARGRAPHIC(20),c9
XML',
'',
'MOVE')

Example 5: You have a range partitioned table with two ranges defined in tablespaces TS1 and TS2. Move
the table to tablespace TS3, but leave the first range in TS1.

CREATE TABLE "EBABANI "."T1" (
 "I1" INTEGER ,
 "I2" INTEGER)
 DISTRIBUTE BY HASH("I1")
 PARTITION BY RANGE("I1")

116 IBM Db2 V11.5: Data Movement Utilities Guide

 (PART "PART0" STARTING(0) ENDING(100) IN "TS1",
 PART "PART1" STARTING(101) ENDING(MAXVALUE) IN "TS2");

Move the T1 table from schema EBABANI to the TS3 table space. Specify the partition definitions.

DB2 "CALL SYSPROC.ADMIN_MOVE_TABLE
('EBABANI',
'T1',
'TS3',
'TS3',
'TS3',
'',
'',
'(I1) (STARTING 0 ENDING 100 IN TS1 INDEX IN TS1 LONG IN TS1,
 STARTING 101 ENDING MAXVALUE IN TS3 INDEX IN TS3 LONG IN TS3)',
'',
'',
'MOVE')"

Related information
Technical article: Convert row-organized tables to column-organized tables in Db2 with BLU Acceleration

The IBM Replication Tools by Component
IBM offers two primary replication solutions: Q replication and SQL replication.

The primary components of Q replication are the Q Capture program and the Q Apply program. The
primary components of SQL replication are the Capture program and Apply program. Both types of
replication share the Replication Alert Monitor tool. You can set up and administer these replication
components using the Replication Center and the ASNCLP command-line program.

The following list briefly summarizes these replication components:

Q Capture program

Reads the Db2 recovery log looking for changes to Db2 source tables and translates committed source
data into WebSphere® MQ messages that can be published in XML format to a subscribing application, or
replicated in a compact format to the Q Apply program.

Q Apply program

Takes WebSphere MQ messages from a queue, transforms the messages into SQL statements, and
updates a target table or stored procedure. Supported targets include Db2 databases or subsystems and
Oracle, Sybase, Informix® and Microsoft SQL Server databases that are accessed through federated server
nicknames.

Capture program

Reads the Db2 recovery log for changes made to registered source tables or views and then stages
committed transactional data in relational tables called change-data (CD) tables, where they are stored
until the target system is ready to copy them. SQL replication also provides Capture triggers that populate
a staging table called a consistent-change-data (CCD) table with records of changes to non-Db2 source
tables.

Apply program

Reads data from staging tables and makes the appropriate changes to targets. For non-Db2 data sources,
the Apply program reads the CCD table through that table's nickname on the federated database and
makes the appropriate changes to the target table.

Replication Alert Monitor

A utility that checks the health of the Q Capture, Q Apply, Capture, and Apply programs. It checks for
situations in which a program terminates, issues a warning or error message, reaches a threshold for a

Chapter 1. Data movement utilities and reference 117

https://ibm.biz/BdEyiM

specified value, or performs a certain action, and then issues notifications to an email server, pager, or the
z/OS® console.

Use the Replication Center to:

• Define registrations, subscriptions, publications, queue maps, alert conditions, and other objects.
• Start, stop, suspend, resume, and reinitialize the replication programs.
• Specify the timing of automated copying.
• Specify SQL enhancements to the data.
• Define relationships between the source and the target tables.

Copying schemas
The db2move utility and the ADMIN_COPY_SCHEMA procedure allow you to quickly make copies of a
database schema. Once a model schema is established, you can use it as a template for creating new
versions.

Procedure

• Use the ADMIN_COPY_SCHEMA procedure to copy a single schema within the same database.
• Use the db2move utility with the -co COPY action to copy a single schema or multiple schemas from a

source database to a target database.
Most database objects from the source schema are copied to the target database under the new
schema.

Troubleshooting tips

Both the ADMIN_COPY_SCHEMA procedure and the db2move utility invoke the LOAD command. While
the load is processing, the table spaces wherein the database target objects reside are put into backup
pending state.

ADMIN_COPY_SCHEMA procedure
Using this procedure with the COPYNO option places the table spaces wherein the target object
resides into backup pending state, as described in the previous note. To get the table space out of the
set integrity pending state, this procedure issues a SET INTEGRITY statement. In situations where a
target table object has referential constraints defined, the target table is also placed in the set
integrity pending state. Because the table spaces are already in backup pending state, the attempt by
the ADMIN_COPY_SCHEMA procedure to issue a SET INTEGRITY statement fails.

To resolve this situation, issue a BACKUP DATABASE command to get the affected table spaces out of
backup pending state. Next, look at the Statement_text column of the error table generated by this
procedure to find a list of tables in the set integrity pending state. Then issue the SET INTEGRITY
statement for each of the tables listed to take each table out of the set integrity pending state.

db2move utility
This utility attempts to copy all allowable schema objects except for the following types:

• table hierarchy
• staging tables (not supported by the load utility in multiple partition database environments)
• jars (Java™ routine archives)
• nicknames
• packages
• view hierarchies
• object privileges (All new objects are created with default authorizations)
• statistics (New objects do not contain statistics information)
• index extensions (user-defined structured type related)
• user-defined structured types and their transform functions

118 IBM Db2 V11.5: Data Movement Utilities Guide

Unsupported type errors
If an object of one of the unsupported types is detected in the source schema, an entry is logged to an
error file. The error file indicates that an unsupported object type is detected. The COPY operation still
succeeds; the logged entry is meant to inform you of objects not copied by this operation.

Objects not coupled with schemas
Objects that are not coupled with a schema, such as table spaces and event monitors, are not
operated on during a copy schema operation. You should create them on the target database before
the copy schema operation is invoked.

Replicated tables
When copying a replicated table, the new copy of the table is not enabled for replication. The table is
recreated as a regular table.

Different instances
The source database must be cataloged if it does not reside in the same instance as the target
database.

SCHEMA_MAP option
When using the SCHEMA_MAP option to specify a different schema name on the target database, the
copy schema operation will perform only minimal parsing of the object definition statements to
replace the original schema name with the new schema name. For example, any instances of the
original schema that appear inside the contents of an SQL procedure are not replaced with the new
schema name. Thus the copy schema operation might fail to recreate these objects. Other examples
might include staging table, result table, materialized query table. You can use the DDL in the error file
to manually recreate these failed objects after the copy operation completes.

Interdependencies between objects
The copy schema operation attempts to recreate objects in an order that satisfies the
interdependencies between these objects. For example, if a table T1 contains a column that
references a user-defined function U1, then it will recreate U1 before recreating T1. However,
dependency information for procedures is not readily available in the catalogs, so when re-creating
procedures, the copy schema operation will first attempt to re-create all procedures, then try to re-
create those that failed again (on the assumption that if they depended on a procedure that was
successfully created during the previous attempt, then during a subsequent attempt they will be re-
created successfully). The operation will continually try to recreate these failed procedures as long as
it is able to successfully recreate one or more during a subsequent attempt. During every attempt at
recreating a procedure, an error (and DDL) is logged into the error file. You might see many entries in
the error file for the same procedures, but these procedures might have even been successfully
recreated during a subsequent attempt. You should query the SYSCAT.PROCEDURES table upon
completion of the copy schema operation to determine if these procedures listed in the error file were
successfully recreated.

For more information, see the ADMIN_COPY_SCHEMA procedure and the db2move utility.

Examples of schema copy by using the db2move utility
Use the db2move utility with the -co COPY action to copy one or more schemas from a source database
to a target database. After a model schema is established, you can use it as a template for creating new
versions.

Example 1: Using the -c COPY options
The following example of the db2move -co COPY options copies the schema BAR and renames it
FOO from the sample database to the target database:

 db2move sample COPY -sn BAR -co target_db target schema_map
 "((BAR,FOO))" -u userid -p password

The new (target) schema objects are created by using the same object names as the objects in the
source schema, but with the target schema qualifier. It is possible to create copies of tables with or
without the data from the source table. The source and target databases can be on different systems.

Chapter 1. Data movement utilities and reference 119

Example 2: Specifying table space name mappings during the COPY operation
The following example shows how to specify specific table space name mappings to be used instead
of the table spaces from the source system during a db2move COPY operation. You can specify the
SYS_ANY keyword to indicate that the target table space must be chosen by using the default table
space selection algorithm. In this case, the db2move utility chooses any available table space to be
used as the target:

 db2move sample COPY -sn BAR -co target_db target schema_map
 "((BAR,FOO))" tablespace_map "(SYS_ANY)" -u userid -p password

The SYS_ANY keyword can be used for all table spaces, or you can specify specific mappings for some
table spaces, and the default table space selection algorithm for the remaining:

 db2move sample COPY -sn BAR -co target_db target schema_map "
 ((BAR,FOO))" tablespace_map "((TS1, TS2),(TS3, TS4), SYS_ANY)"
 -u userid -p password

This indicates that table space TS1 is mapped to TS2, TS3 is mapped to TS4, but the remaining table
spaces use a default table space selection algorithm.

Example 3: Changing the object owners after the COPY operation
You can change the owner of each new object created in the target schema after a successful COPY.
The default owner of the target objects is the connect user. If this option is specified, ownership is
transferred to a new owner as demonstrated:

 db2move sample COPY -sn BAR -co target_db target schema_map
 "((BAR,FOO))" tablespace_map "(SYS_ANY)" owner jrichards
 -u userid -p password

The new owner of the target objects is jrichards.

The db2move utility must be started on the target system if source and target schemas are found on
different systems. For copying schemas from one database to another, this action requires a list of
schema names to be copied from a source database, separated by commas, and a target database
name.

To copy a schema, issue db2move from an operating system command prompt as follows:

 db2move dbname COPY -co COPY-options
 -u userid -p password

db2move - Database movement tool
The DB2MOVE command, when used with the EXPORT, IMPORT, or LOAD action, facilitates the movement
of large numbers of tables between Db2 databases located on workstations. When the DB2MOVE
command is used with the COPY action, this tool facilitates the duplication of a schema.

When used with the EXPORT, IMPORT, or LOAD actions, the tool queries the system catalog tables for a
particular database and compiles a list of all user tables. It then exports these tables in PC/IXF format.
The PC/IXF files can be imported or loaded to another local Db2 database on the same system, or can be
transferred to another workstation platform and imported or loaded to a Db2 database on that platform.
Tables with structured type columns are not moved when this tool is used.

When used with the COPY action, the tool uses the load API with SQLU_REMOTEFETCH media type to
directly transfer data from one database to another database.

Authorization

This tool calls the Db2 export, import, and load APIs, depending on the action requested by the user.
Therefore, the requesting user ID must have the authorization that the APIs require, or the request fails.

120 IBM Db2 V11.5: Data Movement Utilities Guide

Command syntax

db2move dbname action

-tc table_definers

-tn table_names

-sn schema_names

-ts tablespace_names

-tf filename

-io import_option

-lo load_option

-co copy_option

-l lobpaths

-u userid

-p password

-aw

Command parameters
dbname

Specifies the name of the database.
action

Specifies an action. Values are as follows:
EXPORT

Exports all tables that meet the filtering criteria according to the option specified. If you do not
specify an option then all tables are exported. Internal staging information is stored in the
db2move.lst file.

IMPORT
Imports all tables listed in the db2move.lst internal staging file. Use the -io option for IMPORT
specific actions.

LOAD
Loads all tables listed in the internal staging file db2move.lst. Use the -lo option for LOAD
specific actions.

COPY
Duplicates schemas into a target database. The target database must be a local database. Use the
-sn option to specify one or more schemas. See the -co option for COPY specific options. Use the
-tn or -tf option to filter tables in LOAD_ONLY mode. You must use the SYSTOOLSPACE table
space if you use the ADMIN_COPY_SCHEMA() stored procedure or if you use the db2move
command with the COPY action.

-tc table_definers
Specifies one or more table definers (creators).

This parameter applies only to the EXPORT action. If you specify the -tc parameter, only those tables
that were created by the specified definers are exported. If you do not specify this parameter, all
definers are used. If you specify multiple definers, you must separate them with commas; no blanks
are allowed between definer IDs. You can use this parameter with the -tn table_names parameter to
select the tables for export.

You can use an asterisk (*) as a wildcard character anywhere in the string.

Chapter 1. Data movement utilities and reference 121

-tn table_names
Specifies one or more table names. This parameter applies only to the EXPORT and COPY actions.

If you specify the -tn parameter with the EXPORT action, only those tables whose names match
those in the specified string are exported. If you do not specify this parameter, all user tables are
used. If you specify multiple table names, you must separate them with commas; no blanks are
allowed between table names. Table names must be listed unqualified. To filter schemas, you should
use the -sn parameter.

For export, you can use an asterisk (*) as a wildcard character anywhere in the string.

If you specify the -tn parameter with the COPY action, you must also specify the -co "MODE"
LOAD_ONLY copy_option parameter, and only the specified tables are repopulated in the target
database. The table names must be listed with their schema qualifiers in the format "schema"."table".

-sn schema_names
Specifies one or more schema names. If you specify this parameter, only those tables whose schema
names match those in the specified string are exported or copied. The default for the EXPORT action is
all schemas. The default does not apply to the COPY action.

If you specify multiple schema names, you must separate them with commas; no blanks are allowed
between schema names. Schema names of fewer than 8 characters are padded to 8 characters in
length.

In the case of the EXPORT action, if you use the asterisk (*) wildcard character in the schema names,
it is changed to a percent sign (%), and the table name (with the percent sign) is used in the LIKE
predicate of the WHERE clause. If you use the -sn parameter with the -tn or -tc parameter, the
db2move command acts on only those tables whose schemas match the specified schema names or
whose definers match the specified definers. A schema name fred has to be specified as -sn fr*d*
instead of -sn fr*d when using an asterisk.

Note: The -sn option is not supported on Db2 for z/OS.

-ts tablespace_names
Specifies a list of table space names. This parameter applies only to the EXPORT action.

If you specify the -ts parameter, only those tables in the specified table space are exported. If you
use the asterisk (*) wildcard character in the table space name, it is changed to a percent sign (%),
and the table name (with the percent sign) is used in the LIKE predicate in the WHERE clause. If you
do not specify the -ts parameter, all table spaces are used. If you specify multiple table space
names, you must separate them with commas; no blanks are allowed between table space names.
Table space names with fewer than 8 characters are padded to 8 characters in length. To specify a
table space name mytb, it has to be specified as-ts my*b* instead of -sn my*b when using an
asterisk.

-tf filename

Specifies a file name. This parameter applies only to the EXPORT and COPY actions. If you specify the
-tf parameter with the EXPORT action, only those tables whose names match those in the specified
file are exported. In the file, you should list one table per line, and you should fully qualify each table
name. Wildcard characters are not allowed in the strings. Sample file contents are as follows:

 "SCHEMA1"."TABLE NAME1"
 "SCHEMA NAME77"."TABLE155"

If you do not specify the -tf parameter, all user tables are used.

If you specify this parameter with the COPY action, you must also specify the -co "MODE"
LOAD_ONLY copy_option parameter, and only those tables that you specify in the file are repopulated
in the target database. In the file, you should list the table names with their schema qualifier in the
format "schema"."table".

122 IBM Db2 V11.5: Data Movement Utilities Guide

-io import_option
Specifies options for the IMPORT action. Valid options are INSERT, INSERT_UPDATE, REPLACE,
CREATE, and REPLACE_CREATE. The default is REPLACE_CREATE. For limitations of the import
create function, see "IMPORT command options CREATE and REPLACE_CREATE are deprecated" .

-lo load_option
Specifies options for the LOAD action. Valid options are INSERT and REPLACE. The default is INSERT.

-co
Specifies options for the COPY action.
"TARGET_DB db name [USER userid USING password]"

Specifies the name of the target database, user ID, and password. (The source database userid
and password can be specified using the existing -p and -u options).

The USER USING clause is optional. If USER specifies a userid, then the password must either be
supplied following the USING clause, or if it is not specified, then db2move will prompt for the
password information. The reason for prompting is for security reasons discussed in the following
section.

TARGET_DB is a mandatory option for the COPY action.

The TARGET_DB cannot be the same as the source database and must be a local database. The
ADMIN_COPY_SCHEMA procedure can be used for copying schemas within the same database.

The COPY action requires inputting at least one schema (-sn) or one table (-tn or -tf).

Running multiple db2move commands to copy schemas from one database to another will result
in deadlocks. Only one db2move command should be issued at a time. Changes to tables in the
source schema during copy processing may mean that the data in the target schema is not
identical following a copy.

"MODE"
This option is optional.
DDL_AND_LOAD

Creates all supported objects from the source schema, and populates the tables with the
source table data. This is the default option.

DDL_ONLY
Creates all supported objects from the source schema, but does not repopulate the tables.

LOAD_ONLY
Loads all specified tables from the source database to the target database. The tables must
already exist on the target. The LOAD_ONLY mode requires inputting at least one table using
the -tn or -tf option.

This is an optional option that is only used with the COPY action.

"SCHEMA_MAP"
Renames a schema when copying to a target. This option is optional.

To use this option, provide a list of the source-target schema mappings, separated by commas,
surrounded by parentheses, for example, schema_map ((s1, t1), (s2, t2)). In this case,
objects from schema s1 are copied to schema t1 on the target, and objects from schema s2 are
copied to schema t2 on the target. The default and recommended target schema name is the
source schema name. The reason is that the db2move command does not attempt to modify the
schema of any qualified objects within object bodies. Therefore, using a different target schema
name might lead to problems if there are qualified objects within the object body.

Consider the following example, which creates a view called v1:

create view FOO.v1 as 'select c1 from FOO.t1'

In this case, copy of schema FOO to BAR, v1 will be regenerated as:

create view BAR.v1 as 'select c1 from FOO.t1'

Chapter 1. Data movement utilities and reference 123

This will either fail since schema FOO does not exist on the target database, or have an
unexpected result due to FOO being different than BAR. Maintaining the same schema name as
the source will avoid these issues. If there are cross dependencies between schemas, all inter-
dependent schemas must be copied or there may be errors copying the objects with the cross
dependencies.

For example:

create view FOO.v1 as 'select c1 from BAR.t1'

In this case, the copy of v1 will either fail if BAR is not copied as well, or have an unexpected
result if BAR on the target is different than BAR from the source. db2move will not attempt to
detect cross schema dependencies.

This is an optional option that is only used with the COPY action.

If a target schema already exists, the utility will fail. Use the ADMIN_DROP_SCHEMA procedure to
drop the schema and all objects associated with that schema.

"NONRECOVERABLE"
This option allows the user to override the default behavior of the load to be done with COPY-NO.
With the default behavior, the user will be forced to take backups of each table space that was
loaded into. When specifying this NONRECOVERABLE keyword, the user will not be forced to take
backups of the table spaces immediately. It is, however, highly recommended that the backups
be taken as soon as possible to ensure the newly created tables will be properly recoverable. This
is an optional option available to the COPY action.

"OWNER"
Allows the user to change the owner of each new object created in the target schema after a
successful COPY. The default owner of the target objects will be the connect user; if this option is
specified, ownership will be transferred to the new owner. This is an optional option available to
the COPY action.

"TABLESPACE_MAP"
The user may specify table space name mappings to be used instead of the table spaces from the
source system during a copy. This will be an array of table space mappings surrounded by
brackets. For example, tablespace_map ((TS1, TS2),(TS3, TS4)). This would mean that
all objects from table space TS1 will be copied into table space TS2 on the target database and
objects from table space TS3 will be copied into table space TS4 on the target. In the case of
((T1, T2),(T2, T3)), all objects found in T1 on the source database will be re-created in T2
on the target database and any objects found in T2 on the source database will be re-created in
T3 on the target database. The default is to use the same table space name as from the source, in
which case, the input mapping for this table space is not necessary. If the specified table space
does not exist, the copy of the objects using that table space will fail and be logged in the error
file.

The user also has the option of using the SYS_ANY keyword to indicate that the target table space
should be chosen using the default table space selection algorithm. In this case, db2move will be
able to choose any available table space to be used as the target. The SYS_ANY keyword can be
used for all table spaces, example: tablespace_map SYS_ANY. In addition, the user can specify
specific mappings for some table spaces, and the default table space selection algorithm for the
remaining. For example, tablespace_map ((TS1, TS2),(TS3, TS4), SYS_ANY). This
indicates that table space TS1 is mapped to TS2, TS3 is mapped to TS4, but the remaining table
spaces will be using a default table space target. The SYS_ANY keyword is being used since it's
not possible to have a table space starting with "SYS".

This is an optional option available to the COPY action.

"PARALLEL" number_of_threads
Specify this option to have the load operations for the tables in the schema(s) spread across a
number of threads. The value range for number_of_threads is 0-16

• If PARALLEL is not specified, no threads are used and the load operations are performed
serially.

124 IBM Db2 V11.5: Data Movement Utilities Guide

• If PARALLEL is specified without a number of threads, the db2move utility will choose an
appropriate value.

• If PARALLEL is specified and number_of_threads is provided, the specified number of threads is
used. If number_of_threads is 0 or 1, the load operation is performed serially.

• The maximum value that can be specified for number_of_threads is 16.

This is an optional option available to the COPY action.

-l lobpaths
For IMPORT and EXPORT, if this option is specified, it will be also used for XML paths. The default is
the current directory.

This option specifies the absolute path names where LOB or XML files are created (as part of EXPORT)
or searched for (as part of IMPORT or LOAD). When specifying multiple paths, each must be separated
by commas; no blanks are allowed between paths. If multiple paths are specified, EXPORT will use
them in round-robin fashion. It will write one LOB document to the first path, one to the second path,
and so on up to the last, then back to the first path. The same is true for XML documents. If files are
not found in the first path (during IMPORT or LOAD), the second path will be used, and so on.

-u userid
The default is the logged on user ID.

Both user ID and password are optional. However, if one is specified, the other must be specified. If
the command is run on a client connecting to a remote server, user ID and password should be
specified.

-p password
The default is the logged on password. Both user ID and password are optional. However, if one is
specified, the other must be specified. When the -p option is specified, but the password not
supplied, db2move will prompt for the password. This is done for security reasons. Inputting the
password through command line creates security issues. For example, a ps -ef command would
display the password. If, however, db2move is invoked through a script, then the passwords will have
to be supplied. If the command is issued on a client connecting to a remote server, user ID and
password should be specified.

-aw
Allow Warnings. When -aw is not specified, tables that experience warnings during export are not
included in the db2move.lst file (although that table's .ixf file and .msg file are still generated). In
some scenarios (such as data truncation) the user might want to allow such tables to be included in
the db2move.lst file. Specifying this option allows tables which receive warnings during export to be
included in the .lst file.

Examples

• To export all tables in the SAMPLE database (using default values for all options), issue:

 db2move sample export

• To export all tables created by userid1 or user IDs LIKE us%rid2, and with the name tbname1 or
table names LIKE %tbname2, issue:

 db2move sample export -tc userid1,us*rid2 -tn tbname1,*tbname2

• To import all tables in the SAMPLE database (LOB paths D:\LOBPATH1 and C:\LOBPATH2 are to be
searched for LOB files; this example is applicable to Windows operating systems only), issue:

 db2move sample import -l D:\LOBPATH1,C:\LOBPATH2

Chapter 1. Data movement utilities and reference 125

• To load all tables in the SAMPLE database (/home/userid/lobpath subdirectory and the tmp
subdirectory are to be searched for LOB files; this example is applicable to Linux and UNIX systems
only), issue:

 db2move sample load -l /home/userid/lobpath,/tmp

• To import all tables in the SAMPLE database in REPLACE mode using the specified user ID and
password, issue:

 db2move sample import -io replace -u userid -p password

• To duplicate schema schema1 from source database dbsrc to target database dbtgt, issue:

 db2move dbsrc COPY -sn schema1 -co TARGET_DB dbtgt USER myuser1 USING mypass1

• To duplicate schema schema1 from source database dbsrc to target database dbtgt, rename the
schema to newschema1 on the target, and map source table space ts1 to ts2 on the target, issue:

 db2move dbsrc COPY -sn schema1 -co TARGET_DB dbtgt USER myuser1 USING mypass1
 SCHEMA_MAP ((schema1,newschema1)) TABLESPACE_MAP ((ts1,ts2), SYS_ANY))

Usage notes

• When copying one or more schemas into a target database the schemas must be independent of each
other. If not, some of the objects might not be copied successfully into the target database

• Loading data into tables containing XML columns is only supported for the LOAD and not for the COPY
action. The workaround is to manually issue the IMPORT or EXPORT commands, or use the db2move
Export and db2move Import behavior. If these tables also contain GENERATED ALWAYS identity
columns, data cannot be imported into the tables.

• A db2move EXPORT, followed by a db2move IMPORT or db2move LOAD, facilitates the movement of
table data. It is necessary to manually move all other database objects associated with the tables (such
as aliases, views, or triggers) as well as objects that these tables may depend on (such as user-defined
types or user-defined functions).

• If the IMPORT action with the CREATE or REPLACE_CREATE option is used to create the tables on the
target database (both options are deprecated and may be removed in a future release), then the
limitations outlined in "Imported table re-creation" are imposed. If unexpected errors are encountered
during the db2move import phase when the REPLACE_CREATE option is used, examine the appropriate
tabnnn.msg message file and consider whether the errors might be the result of the limitations on
table creation.

• Tables that contain GENERATED ALWAYS identity columns cannot be imported or loaded using
db2move. You can, however, manually import or load these tables. For more information, see "Identity
column load considerations" or "Identity column import considerations".

• When export, import, or load APIs are called by db2move, the FileTypeMod parameter is set to
lobsinfile. That is, LOB data is kept in files that are separate from the PC/IXF file, for every table.

• The LOAD action must be run locally on the machine where the database and the data file reside.
• When using the db2move LOAD action and the LOGARCHMETH1 database configuration parameter is

enabled for the database (ie. the database is recoverable), db2move will invoke the db2Load API using
the NONRECOVERABLE option. The rollforward recovery behavior of the NONRECOVERABLE option is
described in Options for improving load performance.

• When using the db2move COPY action and the LOGARCHMETH1 database configuration parameter is
enabled for the database (ie. the database is recoverable):

– If the NONRECOVERABLE option is not specified, then db2move will invoke the db2Load API using
the default COPY NO option, and the table spaces where the loaded tables reside are placed in the
Backup Pending state upon completion of the utility (a full database or table space backup is
required to take the table spaces out of the Backup Pending state). If the

126 IBM Db2 V11.5: Data Movement Utilities Guide

DB2_LOAD_COPY_NO_OVERRIDE registry variable is enabled, then Load will take the configured
value with precedence over COPY NO behavior. See DB2_LOAD_COPY_NO_OVERRIDE for details.

– If the NONRECOVERABLE option is specified, the table spaces are not placed in backup-pending state.
The rollforward recovery behavior of the NONRECOVERABLE option is described in Options for
improving load performance.

• Performance for the db2move command with the IMPORT or LOAD actions can be improved by altering
the default buffer pool, IBMDEFAULTBP, and by updating the configuration parameters sortheap,
util_heap_sz, logfilsiz, and logprimary.

• When running data movement utilities such as export and db2move, the query compiler might
determine that the underlying query will run more efficiently against an MQT than the base table or
tables. In this case, the query will execute against a refresh deferred MQT, and the result of the utilities
might not accurately represent the data in the underlying table.

• The db2move command is not available with Db2 clients. If you issue the db2move command from a
client machine, you will receive a db2move is not recognized as an internal or external
command, operable program or batch file error message. To avoid this issue, you can issue
the db2move command directly on the server.

• The db2move COPY action and the ADMIN_COPY_SCHEMA procedure perform similar tasks. The
ADMIN_COPY_SCHEMA procedure copies schemas within the same database, and the db2copy COPY
action copies from one database to another. Many of the usage notes, behaviors, and restrictions that
are covered in ADMIN_COPY_SCHEMA procedure - Copy a specific schema and its objects, also apply to
the db2copy COPY action.

• Row and Column Access Control (RCAC) applies for any SQL access to tables protected with row
permissions and column masks. RCAC includes SQL in applications and utilities like IMPORT and
EXPORT. For example, when exporting data from a table that is protected with row permissions and
column masks that use the EXPORT utility, only the data that you are authorized to access are exported.
If your intent is to export the full content of the table, you need to make sure the SECADM grants you
the proper authorization.

Files Required/Generated When Using EXPORT

• Input: None.
• Output:

EXPORT.out
The summarized result of the EXPORT action.

db2move.lst
The list of original table names, their corresponding PC/IXF file names (tabnnn.ixf), and message file
names (tabnnn.msg). This list, the exported PC/IXF files, and LOB files (tabnnnc.yyy) are used as
input to the db2move IMPORT or LOAD action.

tabnnn.ixf
The exported PC/IXF file of a specific table.

tabnnn.msg
The export message file of the corresponding table.

tabnnnc.yyy
The exported LOB files of a specific table.

nnn is the table number. c is a letter of the alphabet. yyy is a number ranging from 001 to 999.

These files are created only if the table being exported contains LOB data. If created, these LOB
files are placed in the lobpath directories. There are a total of 26,000 possible names for the LOB
files.

Files Required/Generated When Using IMPORT

• Input:

Chapter 1. Data movement utilities and reference 127

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0022035.html

db2move.lst
An output file from the EXPORT action.

tabnnn.ixf
An output file from the EXPORT action.

tabnnnc.yyy
An output file from the EXPORT action.

• Output:
IMPORT.out

The summarized result of the IMPORT action.
tabnnn.msg

The import message file of the corresponding table.

Files Required/Generated When Using LOAD

• Input:
db2move.lst

An output file from the EXPORT action.
tabnnn.ixf

An output file from the EXPORT action.
tabnnnc.yyy

An output file from the EXPORT action.
• Output:

LOAD.out
The summarized result of the LOAD action.

tabnnn.msg
The LOAD message file of the corresponding table.

Files Required/Generated When Using COPY

• Input: None
• Output:

COPYSCHEMA.msg
An output file containing messages generated during the COPY operation.

COPYSCHEMA.err
An output file containing an error message for each error encountered during the COPY operation,
including DDL statements for each object which could not be re-created on the target database.

LOADTABLE.msg
An output file containing messages generated by each invocation of the Load utility (used to
repopulate data on the target database).

LOADTABLE.err
An output file containing the names of tables that either encountered a failure during Load or still
need to be populated on the target database. See the "Restarting a failed copy schema operation"
topic for more details.

These files are timestamped and all files that are generated from one run will have the same timestamp.

128 IBM Db2 V11.5: Data Movement Utilities Guide

Performing a redirected restore using an automatically generated script
When you perform a redirected restore operation, you must specify the locations of physical containers
that are stored in the backup image and provide the complete set of containers for each table space that
you are altering.

Before you begin

You can perform a redirected restore only if the database was previously backed up using the Db2 backup
utility.

About this task

• If the database exists, you must be able to connect to it in order to generate the script. Therefore, if the
database requires an upgrade or crash recovery, this must be done before you attempt to generate a
redirected restore script.

• If you are working in a partitioned database environment, and the target database does not exist, you
cannot run the command to generate the redirected restore script concurrently on all database
partitions. Instead, the command to generate the redirected restore script must be run one database
partition at a time, starting from the catalog partition.

Alternatively, you can first create a dummy database with the same name as your target database. After
the dummy database is created, you can then generate the redirected restore script concurrently on all
database partitions.

• Even if you specify the REPLACE EXISTING parameter when you issue the RESTORE DATABASE
command to generate the script, the REPLACE EXISTING parameter is commented out in the script.

• For security reasons, your password does not appear in the generated script. You need to enter the
password manually.

• The restore script includes the storage group associations for every table space that you restore.

Procedure

To perform a redirected restore using a script:
1. Use the restore utility to generate a redirected restore script.

The restore utility can be invoked through the command line processor (CLP) or the db2Restore
application programming interface (API).
The following is an example of the RESTORE DATABASE command with the REDIRECT parameter and
the GENERATE SCRIPT parameter:

 db2 restore db test from /home/jseifert/backups taken at 20050304090733
 redirect generate script test_node0000.clp

This creates a redirected restore script on the client called test_node0000.clp.
2. Open the redirected restore script in a text editor to make any modifications that are required.

You can modify:

• Restore options
• Automatic storage paths
• Container layout and paths

3. Run the modified redirected restore script.
For example:

 db2 -tvf test_node0000.clp

Chapter 1. Data movement utilities and reference 129

RESTORE DATABASE
The RESTORE DATABASE command restores a database that has been backed up using the Db2 backup
utility. The restored database is in the same state that it was in when the backup copy was made. The
RESTORE DATABASE command can also be used to encrypt an existing database.

Important: The Triple Data Encryption Standard (3DES) native encryption option is deprecated and might
be removed in a future release. We recommend that you now use the Advanced Encryption Standard
(AES) native encryption option.

This utility can also perform the following services:

• Overwrite a database with a different image or restore the backup copy to a new database.
• Restore backup images in Db2 Version 11.5 that were created in Db2 Versions 10.5 or 11.1.

– If a database upgrade is required, it is invoked automatically at the end of the restore operation.
• If, at the time of the backup operation, the database was enabled for rollforward recovery, the database

can be brought to its previous state by starting the rollforward utility after successful completion of a
restore operation.

• Restore a table space level backup.
• Transport a set of table spaces, storage groups, and SQL schemas from database backup image to a

database by using the TRANSPORT option (in Db2 Version 9.7 Fix Pack 2 and later fix packs). The
TRANSPORT option is not supported in the Db2 pureScale environment, or in partitioned database
environments.

• If the database name exists when this command is issued, it replaces and redefines all storage groups
as they were at the time the backup image was produced, unless otherwise redirected by the user.

For more information about the restore operations that are supported by Db2 database systems between
different operating systems and hardware platforms, see "Backup and restore operations between
different operating systems and hardware platforms" in the Data Recovery and High Availability Guide and
Reference.

Incremental images and images only capturing differences from the time of the previous capture (called a
"delta image") cannot be restored when there is a difference in operating systems or word size (32-bit or
64-bit).

Following a successful restore operation from one environment to a different environment, no
incremental or delta backups are allowed until a non-incremental backup is taken. (This is not a limitation
following a restore operation within the same environment).

Even with a successful restore operation from one environment to a different environment, some
considerations exist: packages must be rebound before use (using the BIND command, the REBIND
command, or the db2rbind utility); SQL procedures must be dropped and re-created; and all external
libraries must be rebuilt on the new platform. (These are not considerations when restoring to the same
environment).

A restore operation that is run over an existing database and existing containers reuses the same
containers and table space map.

A restore operation that is run against a new database reacquires all containers and rebuilds an optimized
table space map. A restore operation that is run over an existing database with one or more missing
containers also reacquires all containers and rebuilds an optimized table space map.

Scope

This command only affects the node on which it is run.

You cannot restore SYSCATSPACE online.

Authorization

To restore to an existing database, one of the following authorities:

130 IBM Db2 V11.5: Data Movement Utilities Guide

• SYSADM
• SYSCTRL
• SYSMAINT

To restore to a new database, one of the following authorities:

• SYSADM
• SYSCTRL

If a user name is specified, this user requires CONNECT authority on the database.

Required connection

The required connection varies based on the type of restore action:

• You require a database connection to restore to an existing database. This command automatically
establishes an exclusive connection to the specified database.

• You require an instance and a database connection to restore to a new database. The instance
attachment is required to create the database.

To restore to a new database at an instance different from the current instance, it is necessary to first
attach to the instance where the new database resides. The new instance can be local or remote. The
current instance is defined by the value of the DB2INSTANCE environment variable.

• For snapshot restore, instance and database connections are required.

Command syntax
RESTORE DATABASE

DB

source-database-alias Restore-options

CONTINUE

ABORT

Restore-options

Chapter 1. Data movement utilities and reference 131

USER username

USING password

REBUILD WITH ALL TABLESPACES IN DATABASE

ALL TABLESPACES IN IMAGE EXCEPT rebuild-tablespace-clause

rebuild-tablespace-clause

TABLESPACE

(

,

tablespace-name)

SCHEMA

(

,

schema-name)

HISTORY FILE

COMPRESSION LIBRARY

LOGS

ONLINE

INCREMENTAL

AUTO

AUTOMATIC

ABORT

USE TSM

XBSA

open-sessions

SNAPSHOT

LIBRARY library-name

SCRIPT script-name

options

LOAD shared-library open-sessions options

FROM

,

directory

device

remote-storage

TAKEN AT date-time

TO target-directory

DBPATH ON target-directory

ON path-list

DBPATH ON target-directory

TRANSPORT

STAGE IN staging-database USING STOGROUP storagegroup-name

INTO target-database-alias

LOGTARGET directory

DEFAULT

EXCLUDE

INCLUDE FORCE

NEWLOGPATH directory

DEFAULT

WITH num-buffers BUFFERS

BUFFER buffer-size REPLACE HISTORY FILE

REPLACE EXISTING REDIRECT

GENERATE SCRIPT script

PARALLELISM n COMPRLIB name

ENCRLIB name

COMPROPTS string

ENCROPTS string

NO ENCRYPT

ENCRYPT

Encryption Options Master Key Options

WITHOUT ROLLING FORWARD WITHOUT PROMPTING

Rebuild-tablespace-clause

TABLESPACE (

,

tablespace-name)

132 IBM Db2 V11.5: Data Movement Utilities Guide

Open-sessions

OPEN num-sessions SESSIONS

Options

OPTIONS "options-string"

@ file-name

Encryption Options

CIPHER AES

3DES

MODE CBC
KEY LENGTH key-length

Master Key Options
MASTER KEY LABEL label-name

Command parameters
DATABASE source-database-alias

Alias of the source database from which the backup was taken.
CONTINUE

Specifies that the containers have been redefined, and that the final step in a redirected restore
operation should be performed.

ABORT
This parameter:

• Stops a redirected restore operation. This is useful when an error has occurred that requires one or
more steps to be repeated. After RESTORE DATABASE with the ABORT option has been issued, each
step of a redirected restore operation must be repeated, including RESTORE DATABASE with the
REDIRECT option.

• Terminates an incremental restore operation before completion.

USER username
Specifies the user name to be used when attempting a connection to the database.

USING password
The password that is used to authenticate the user name. If the password is omitted, the user is
prompted to enter it.

REBUILD WITH ALL TABLE SPACES IN DATABASE
Restores the database with all the table spaces that are known to the database at the time of the
image being restored. This restore overwrites a database if it already exists.

REBUILD WITH ALL TABLE SPACES IN DATABASE EXCEPT rebuild-tablespace-clause
Restores the database with all the table spaces that are known to the database at the time of the
image being restored except for those specified in the list. This restore overwrites a database if it
already exists.

REBUILD WITH ALL TABLE SPACES IN IMAGE
Restores the database with only the table spaces in the image being restored. This restore overwrites
a database if it already exists.

REBUILD WITH ALL TABLE SPACES IN IMAGE EXCEPT rebuild-tablespace-clause
Restores the database with only the table spaces in the image being restored except for those
specified in the list. This restore overwrites a database if it already exists.

REBUILD WITH rebuild-tablespace-clause
Restores the database with only the list of table spaces specified. This restore overwrites a database
if it already exists.

Chapter 1. Data movement utilities and reference 133

TABLE SPACE tablespace-name
A list of names that are used to specify the table spaces that are to be restored.

Table space names are required when the TRANSPORT option is specified. This option may take as
much time as a full restore operation.

SCHEMA schema-name
A list of names that are used to specify the schemas that are to be restored.

Schema names are required if the TRANSPORT option is specified. The SCHEMA option is only valid
when the TRANSPORT option is specified.

ONLINE
This keyword, applicable only when performing a table space-level restore operation, is specified to
allow a backup image to be restored online. This means that other agents can connect to the
database while the backup image is being restored, and that the data in other table spaces is available
while the specified table spaces are being restored.

HISTORY FILE
This keyword is specified to restore only the history file from the backup image.

COMPRESSION LIBRARY
This keyword is specified to restore only the compression library from the backup image. If the object
exists in the backup image, it is restored into the database directory. If the object does not exist in the
backup image, the restore operation fails.

LOGS
This keyword is specified to restore only the set of log files that are contained in the backup image. If
the backup image does not contain any log files, the restore operation fails. If this option is specified,
the LOGTARGET option must also be specified. This option might take as much time as a full restore
operation.

INCREMENTAL
Without additional parameters, INCREMENTAL specifies a manual cumulative restore operation.
During manual restore the user must issue each restore command manually for each image that is
involved in the restore. Do so according to the following order: last, first, second, third, and so on, up
to and including the last image.

INCREMENTAL AUTOMATIC/AUTO
Specifies an automatic cumulative restore operation.

INCREMENTAL ABORT
Specifies abortion of an in-progress manual cumulative restore operation.

USE
TSM

Specifies that the database is to be restored by using Tivoli Storage Manager (TSM) as the target
device.

XBSA
Specifies that the XBSA interface is to be used. Backup Services APIs (XBSA) are an open
application programming interface for applications or facilities needing data storage management
for backup or archiving purposes.

SNAPSHOT
Specifies that the data is to be restored from a snapshot backup.

You cannot use the SNAPSHOT parameter with any of the following parameters:

• TABLESPACE
• INCREMENTAL
• TO
• ON
• DBPATH ON

134 IBM Db2 V11.5: Data Movement Utilities Guide

• INTO
• NEWLOGPATH
• WITH num-buffers BUFFERS
• BUFFER
• REDIRECT
• REPLACE HISTORY FILE
• COMPRESSION LIBRARY
• PARALLELISM
• COMPRLIB
• OPEN num-sessions SESSIONS
• HISTORY FILE
• LOGS

Also, you cannot use the SNAPSHOT parameter with any restore operation that involves a table
space list, which includes the REBUILD WITH option.

The default behavior when you restore data from a snapshot backup image is a full database
offline restore of all paths that make up the database, including all containers, the local volume
directory, and the database path (DBPATH). The logs are excluded from a snapshot restore unless
you specify the LOGTARGET INCLUDE parameter; the LOGTARGET EXCLUDE parameter is the
default for all snapshot restores. If you provide a time stamp, the snapshot backup image with
that time stamp is used for the restore.

LIBRARY library-name
Integrated into IBM Data Server is a Db2 ACS API driver for the following storage hardware:

• IBM TotalStorage SAN Volume Controller
• IBM Enterprise Storage Server® Model 800
• IBM Storwize® V7000
• IBM System Storage® DS6000™

• IBM System Storage DS8000®

• IBM System Storage N Series
• IBM XIV®

If you have other storage hardware, and a Db2 ACS API driver for that storage hardware, you
can use the LIBRARY parameter to specify the Db2 ACS API driver.

The value of the LIBRARY parameter is a fully qualified library file name.

SCRIPT script-name
The name of the executable script capable of performing a snapshot restore operation. The
script name must be a fully qualified file name.

OPTIONS
"options-string"

Specifies options to be used for the restore operation. The string is passed exactly as it was
entered, without the double quotation marks.

@file-name
Specifies that the options to be used for the restore operation are contained in a file that is located
on the Db2 server. The string is passed to the vendor support library. The file must be a fully
qualified file name.

You cannot use the VENDOROPT database configuration parameter to specify vendor-specific options
for snapshot restore operations. You must use the OPTIONS parameter of the restore utilities instead.

Chapter 1. Data movement utilities and reference 135

OPEN num-sessions SESSIONS
Specifies the number of I/O sessions that are to be used with TSM or the vendor product.

FROM directory/device/remote-storage
The fully qualified path name of the directory or device on which the backup image resides. If USE
TSM, FROM, and LOAD are omitted, the default value is the current working directory of the client
machine. This target directory or device must exist on the target server/instance.

To restore from files on remote storage, such as IBM Cloud Object Storage or Amazon Simple Storage
Service (S3), you can specify a remote storage location using a storage access alias. Local staging
space is required to temporarily store the backup image that is transferred from the remote storage
server; refer to Remote storage requirements. The syntax for specifying remote storage is:

DB2REMOTE://<alias>//<storage-path>/<file-name>

If several items are specified, and the last item is a tape device, the user is prompted for another tape.
Valid response options are:
c

Continue. Continue using the device that generated the warning message (for example, continue
when a new tape has been mounted).

d
Device terminate. Stop using only the device that generated the warning message (for example,
terminate when there are no more tapes).

t
Terminate. Abort the restore operation after the user has failed to perform some action requested
by the utility.

LOAD shared-library
The name of the shared library (DLL on Windows operating systems) containing the vendor backup
and restore I/O functions to be used. The name can contain a full path. If the full path is not given, the
value defaults to the path on which the user exit program resides.

TAKEN AT date-time
The time stamp of the database backup image. The time stamp is displayed after successful
completion of a backup operation, and is part of the path name for the backup image. It is specified in
the form yyyymmddhhmmss. A partial time stamp can also be specified. For example, if two different
backup images with time stamps 20021001010101 and 20021002010101 exist, specifying
20021002 causes the image with time stamp 20021002010101 to be used. If a value for this
parameter is not specified, there must be only one backup image on the source media.

TO target-directory
This parameter states the target database directory. This parameter is ignored if the utility is restoring
to an existing database. The drive and directory that you specify must be local. If the backup image
contains a database that is enabled for automatic storage, then only the database directory changes.
The storage paths that are associated with the database do not change.

DBPATH ON target-directory
This parameter states the target database directory. This parameter is ignored if the utility is restoring
to an existing database. The drive and directory that you specify must be local. If the backup image
contains a database that is enabled for automatic storage and the parameter is not specifiedON, then
this parameter is synonymous with the TO parameter and only the database directory changes. The
storage paths that are associated with the database do not change.

ON path-list

This parameter redefines the storage paths that are associated with a database. If the database
contains multiple storage groups this option will redirect all storage groups to the specified paths,
such that every defined storage group uses path-list as its new storage group paths. Using this
parameter with a database that has no storage groups defined or is not enabled for automatic storage
results in an error (SQL20321N). The existing storage paths as defined within the backup image are
no longer used and automatic storage table spaces are automatically redirected to the new paths. If

136 IBM Db2 V11.5: Data Movement Utilities Guide

this parameter is not specified for an automatic storage database, then the storage paths remain as
they are defined within the backup image. Without this parameter, while the path might not change, it
is possible for the data and containers on the paths to be rebalanced during the restore. For
rebalancing conditions, see Rebalancing during RESTORE of automatic storage database

One or more paths can be specified, each separated by a comma. Each path must have an absolute
path name and it must exist locally.

If this option is specified with the REDIRECT option, then this option takes effect before the initial
RESTORE ... REDIRECT command returns to the caller, and before any SET STOGROUP PATHS or
SET TABLESPACE CONTAINERS statements are issued. Subsequently, if any storage group paths are
redirected, those modifications override any paths specified in the initial RESTORE ... ON path-list
command.

Any storage groups that have their paths redefined during a restore operation do not have any storage
path-related operations replayed during a subsequent rollforward operation.

If the database does not already exist on disk and the DBPATH ON parameter is not specified, then
the first path is used as the target database directory.

For a multi-partition database, the ON path-list option can only be specified on the catalog
partition. The catalog partition must be restored before any other partitions are restored when the ON
option is used. The restore of the catalog-partition with new storage paths places all non-catalog
database partitions in a RESTORE_PENDING state. The non-catalog database partitions can then be
restored in parallel without specifying the ON clause in the RESTORE command.

In general, the same storage paths must be used for each partition in a multi-partition database and
they must all exist before running the RESTORE DATABASE command. One exception to this is where
database partition expressions are used within the storage path. Doing this allows the database
partition number to be reflected in the storage path such that the resulting path name is different on
each partition.

Using the RESTORE command with the ON clause has the same implications as a redirected restore
operation.

In an HADR environment if the primary database is defined over multiple storage paths, the RESTORE
command to initialize the standby database can use the ON path-list option to specify these
storage paths. These paths must be listed in the same order as the primary database (the order can
be found through the db2pd -db dbname -storagepaths command).

You cannot use the ON parameter to redefine storage paths for schema transport. Schema transport
will use existing storage paths on the target database.

INTO target-database-alias
The target database alias. If the target database does not exist, it is created.

When you restore a database backup to an existing database, the restored database inherits the alias
and database name of the existing database. When you restore a database backup to a nonexistent
database, the new database is created with the alias and database name that you specify. This new
database name must be unique on the system where you restore it.

TRANSPORT INTO target-database-alias
Specifies the existing target database alias for a transport operation. The table spaces and schemas
being transported are added to the database.

The TABLESPACE and SCHEMA options must specify table space names and schema names that
define a valid transportable set or the transport operation fails. SQLCODE=SQL2590N rc=1.

The system catalogs cannot be transported. SQLCODE=SQL2590N rc=4.

After the schemas have been validated by the RESTORE command, the system catalog entries
describing the objects in the table spaces being transported are created in the target database. After
completion of the schema recreation, the target database takes ownership of the physical table space
containers.

Chapter 1. Data movement utilities and reference 137

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0061902.html

The physical and logical objects that are contained in the table spaces being restored are re-created
in the target database and the table space definitions and containers are added to the target
database. Failure during the creation of an object, or the replay of the DDL returns an error.

STAGE IN staging-database
Specifies the name of a temporary staging database for the backup image that is the source for the
transport operation. If the STAGE IN option is specified, the temporary database is not dropped after
the transport operation completes. The database is no longer required after the transport has
completed and can be dropped by the DBA.

The following is true if the STAGE IN option is not specified:

• The database name is of the form SYSTGxxx where xxx is an integer value.
• The temporary staging database is dropped after the transport operation completes.

USING STOGROUP storagegroup-name
For automatic storage table spaces, this specifies the target storage group that will be associated with
all table spaces being transported. If the storage group is not specified, then the currently designated
default storage group of the target database is used. This clause only applies to automatic storage
table spaces and is only valid during a schema transport operation.

Identifies the storage group in which table space data will be stored. storagegroup-name must
identify a storage group that exists at the target-database-alias of the TRANSPORT operation.
(SQLSTATE 42704). This is a one-part name.

LOGTARGET directory
Non-snapshot restores:

The absolute path name of an existing directory on the database server to be used as the target
directory for extracting log files from a backup image. If this option is specified, any log files that are
contained within the backup image will be extracted into the target directory. If this option is not
specified, log files that are contained within a backup image will not be extracted. To extract only the
log files from the backup image, specify the LOGS option. This option automatically appends the
database partition number and a log stream ID to the path.

DEFAULT
Restore log files from the backup image into the database's default log directory, for example /
home/db2user/db2inst/NODE0000/SQL00001/LOGSTREAM0000.

Snapshot restores:

INCLUDE
Restore log directory volumes from the snapshot image. If this option is specified and the backup
image contains log directories, then they will be restored. Existing log directories and log files on
disk will be left intact if they do not conflict with the log directories in the backup image. If existing
log directories on disk conflict with the log directories in the backup image, then an error will be
returned.

EXCLUDE
Do not restore log directory volumes. If this option is specified, then no log directories will be
restored from the backup image. Existing log directories and log files on disk will be left intact if
they do not conflict with the log directories in the backup image. If a path belonging to the
database is restored and a log directory will implicitly be restored because of this, thus causing a
log directory to be overwritten, an error will be returned.

FORCE
Allow existing log directories in the current database to be overwritten and replaced when
restoring the snapshot image. Without this option, existing log directories and log files on disk
which conflict with log directories in the snapshot image will cause the restore to fail. Use this
option to indicate that the restore can overwrite and replace those existing log directories.

Note: Use this option with caution, and always ensure that you have backed up and archived all
logs that might be required for recovery.

For snapshot restores, the default value of the directory option is LOGTARGET EXCLUDE.

138 IBM Db2 V11.5: Data Movement Utilities Guide

NEWLOGPATH directory
The absolute path name of a directory that will be used for active log files after the restore operation.
This parameter has the same function as the newlogpath database configuration parameter. The
parameter can be used when the log path in the backup image is not suitable for use after the restore
operation; for example, when the path is no longer valid, or is being used by a different database.

Note: When the newlogpath command parameter is set, the node number is automatically
appended to the value of logpath parameter. The node number is also automatically appended to
the value of the logpath parameter when the newlogpath database configuration parameter is
updated. For more information, see newlogpath - Change the database log path.

DEFAULT
After the restore completes, the database should use the default log directory: /home/db2user/
db2inst/NODE0000/SQL00001/LOGSTREAM0000 for logging.

WITH num-buffers BUFFERS
The number of buffers to be used. The Db2 database system will automatically choose an optimal
value for this parameter unless you explicitly enter a value. A larger number of buffers can be used to
improve performance when multiple sources are being read from, or if the value of PARALLELISM has
been increased.

BUFFER buffer-size
The size, in pages, of the buffer used for the restore operation. The Db2 database system will
automatically choose an optimal value for this parameter unless you explicitly enter a value. The
minimum value for this parameter is eight pages.

The restore buffer size must be a positive integer multiple of the backup buffer size that is specified
during the backup operation. If an incorrect buffer size is specified, the buffers are allocated to be of
the smallest acceptable size.

REPLACE HISTORY FILE
Specifies that the restore operation should replace the history file on disk with the history file from the
backup image.

REPLACE EXISTING
If a database with the same alias as the target database alias already exists, this parameter specifies
that the restore utility is to replace the existing database with the restored database. This is useful for
scripts that invoke the restore utility because the command line processor will not prompt the user to
verify deletion of an existing database. If the WITHOUT PROMPTING parameter is specified, it is not
necessary to specify REPLACE EXISTING, but in this case, the operation will fail if events occur that
normally require user intervention.

REDIRECT
Specifies a redirected restore operation. To complete a redirected restore operation, this command
should be followed by one or more SET TABLESPACE CONTAINERS commands or SET STOGROUP
PATHS commands, and then by a RESTORE DATABASE command with the CONTINUE option. For
example:

RESTORE DB SAMPLE REDIRECT

SET STOGROUP PATHS FOR sg_hot ON '/ssd/fs1', '/ssd/fs2'
SET STOGROUP PATHS FOR sg_cold ON '/hdd/path1', '/hdd/path2'

RESTORE DB SAMPLE CONTINUE

If a storage group has been renamed since the backup image was produced, the storage group name
that is specified on the SET STOGROUP PATHS command refers to the storage group name from the
backup image, not the most recent name.

All commands that are associated with a single redirected restore operation must be invoked from the
same window or CLP session.

GENERATE SCRIPT script
Creates a redirect restore script with the specified file name. The script name can be relative or
absolute and the script will be generated on the client side. If the file cannot be created on the client

Chapter 1. Data movement utilities and reference 139

side, an error message (SQL9304N) will be returned. If the file already exists, it will be overwritten.
For more information, see the following examples.

WITHOUT ROLLING FORWARD
Specifies that the database is not to be put in rollforward pending state after it has been successfully
restored.

If, following a successful restore operation, the database is in rollforward pending state, the
ROLLFORWARD command must be invoked before the database can be used again.

If this option is specified when restoring from an online backup image, error SQL2537N will be
returned.

If the backup image is of a recoverable database, then WITHOUT ROLLING FORWARD cannot be
specified with REBUILD option.

PARALLELISM n
Specifies the number of buffer manipulators that are to be created during the restore operation. The
Db2 database system will automatically choose an optimal value for this parameter unless you
explicitly enter a value.

COMPRLIB | ENCRLIB name
Indicates the name of the library that is used to decompress or decrypt a backup image. The path to
the following libraries is $HOME/sqllib/lib.

• Encryption libraries: libdb2encr.so (for Linux or UNIX based operating systems); libdb2encr.a
(for AIX®); and db2encr.dll (for Windows operating systems)

• Compression library: libdb2compr.so (for Linux or UNIX based operating systems);
libdb2compr.a (for AIX); and db2compr.dll (for Windows operating systems)

• Encryption and compression libraries: libdb2compr_encr.so (for Linux or UNIX based operating
systems); libdb2compr_encr.a (for AIX); and db2compr_encr.dll (for Windows operating
systems)

The name must be a fully qualified path that refers to a file on the server. If this parameter is not
specified, the Db2 database system attempts to use the library that is stored in the image. If the
backup image is not compressed or encrypted, the value of this parameter is ignored. If the specified
library cannot be loaded, the operation fails.

COMPROPTS | ENCROPTS string
Describes a block of binary data that is passed to the initialization routine in the decompression or
decryption library. The Db2 database system passes this string directly from the client to the server.
Any byte reversal or code page conversion issues are handled by the library. If the first character of
the data block is "@", the remainder of the data is interpreted by the Db2 database system as the
name of a file that is found on the server. The Db2 database system then replaces the contents of the
data block with the contents of this file and passes the new value to the initialization routine instead.
The maximum length for the string is 1024 bytes.

For the default Db2 libraries libdb2compr_encr.so (compression and encryption) or
libdb2encr.so (encryption only), the format of the ENCROPTS variable is as follows:

Master Key Label=label-name

The master key label is optional. If no master key label is specified, the database manager looks in the
keystore for a master key label that was used to create the backup image. If you are using other
libraries, the format of the ENCROPTS variable depends on those libraries.

NO ENCRYPT
Specifies that an encrypted database is to be restored into a non-encrypted new or existing database.
This option does not work on table space restore unless schema transport is specified with table
space restore and the target database is not encrypted.

ENCRYPT
Specifies that the restored database is to be encrypted. Encryption includes all system, user, and
temporary table spaces, indexes, and all transaction log data. All data types within those table spaces

140 IBM Db2 V11.5: Data Movement Utilities Guide

are encrypted, including long field data, LOBs, and XML data. You cannot specify this option when
restoring into an existing database; for table space-level restore operations; when the TRANSPORT
option is specified; or when the USE SNAPSHOT option is specified.
CIPHER

Specifies the encryption algorithm that is to be used for encrypting the database. You can choose
one of the following FIPS 140-2 approved options:
AES

Advanced Encryption Standard (AES) algorithm. This is the default.
3DES

Triple Data Encryption Standard (3DES) algorithm.
MODE CBC

Specifies the encryption algorithm mode that is to be used for encrypting the database. CBC
(Cipher Block Chaining) is the default mode.

KEY LENGTH key-length
Specifies the length of the key that is to be used for encrypting the database. The length can be
one of the following values, which are specified in bits:
128

Available with AES only
168

Available with 3DES only
192

Available with AES only
256

Available with AES only
MASTER KEY LABEL

Specifies a label for the master key that is used to protect the key that is used to encrypt the
database. The encryption algorithm that is used for encrypting with the master key is always AES.
If the master key is automatically generated by the Db2 data server, it is always a 256-bit key.
label-name

Uniquely identifies the master key within the keystore that is identified by the value of the
keystore_type database manager configuration parameter. The maximum length of label-
name is 255 bytes.

WITHOUT PROMPTING
Specifies that the restore operation is to run unattended. Actions that normally require user
intervention will return an error message. When using a removable media device, such as tape or
diskette, the user is prompted when the device ends, even if this option is specified.

Examples

1. In the following example, the database WSDB is defined on all 4 database partitions, numbered 0 - 3.
The path /dev3/backup is accessible from all database partitions. The following offline backup
images are available from /dev3/backup:

 wsdb.0.db2inst1.DBPART000.200802241234.001
 wsdb.0.db2inst1.DBPART001.200802241234.001
 wsdb.0.db2inst1.DBPART002.200802241234.001
 wsdb.0.db2inst1.DBPART003.200802241234.001

To restore the catalog partition first, then all other database partitions of the WSDB database from
the /dev3/backup directory, issue the following commands from one of the database partitions:

 db2_all '<<+0< db2 RESTORE DATABASE wsdb FROM /dev3/backup
 TAKEN AT 200802241234
 INTO wsdb REPLACE EXISTING'
 db2_all '<<+1< db2 RESTORE DATABASE wsdb FROM /dev3/backup
 TAKEN AT 200802241234

Chapter 1. Data movement utilities and reference 141

 INTO wsdb REPLACE EXISTING'
 db2_all '<<+2< db2 RESTORE DATABASE wsdb FROM /dev3/backup
 TAKEN AT 200802241234
 INTO wsdb REPLACE EXISTING'
 db2_all '<<+3< db2 RESTORE DATABASE wsdb FROM /dev3/backup
 TAKEN AT 200802241234
 INTO wsdb REPLACE EXISTING'

The db2_all utility issues the restore command to each specified database partition. When
performing a restore using db2_all, you should always specify REPLACE EXISTING and/or
WITHOUT PROMPTING. Otherwise, if there is prompting, the operation will look like it is hanging. This
is because db2_all does not support user prompting.

2. Following is a typical redirected restore scenario for a database whose alias is MYDB:

a. Issue a RESTORE DATABASE command with the REDIRECT option.

 restore db mydb replace existing redirect

After successful completion of step 1, and before completing step 3, the restore operation can be
aborted by issuing:

 restore db mydb abort

b. Issue a SET TABLESPACE CONTAINERS command for each table space whose containers must
be redefined. For example:

 set tablespace containers for 5 using
 (file 'f:\ts3con1' 20000, file 'f:\ts3con2' 20000)

To verify that the containers of the restored database are the ones specified in this step, issue the
LIST TABLESPACE CONTAINERS command.

c. After successful completion of steps 1 and 2, issue:

 restore db mydb continue

This is the final step of the redirected restore operation.
d. If step 3 fails, or if the restore operation has been aborted, the redirected restore can be

restarted, beginning at step 1.
3. following example is a sample weekly incremental backup strategy for a recoverable database. It

includes a weekly full database backup operation, a daily non-cumulative (delta) backup operation,
and a mid-week cumulative (incremental) backup operation:

 (Sun) backup db mydb use TSM
 (Mon) backup db mydb online incremental delta use TSM
 (Tue) backup db mydb online incremental delta use TSM
 (Wed) backup db mydb online incremental use TSM
 (Thu) backup db mydb online incremental delta use TSM
 (Fri) backup db mydb online incremental delta use TSM
 (Sat) backup db mydb online incremental use TSM

For an automatic database restore of the images created on Friday morning, issue:

 restore db mydb incremental automatic use TSM taken at (Fri)

For a manual database restore of the images created on Friday morning, issue:

 restore db mydb incremental use TSM taken at (Fri)
 restore db mydb incremental use TSM taken at (Sun)
 restore db mydb incremental use TSM taken at (Wed)
 restore db mydb incremental use TSM taken at (Thu)
 restore db mydb incremental use TSM taken at (Fri)

4. To produce a backup image, which includes logs, for transportation to a remote site:

 backup db sample online to /dev3/backup include logs

142 IBM Db2 V11.5: Data Movement Utilities Guide

To restore that backup image, supply a LOGTARGET path and specify this path during ROLLFORWARD:

restore db sample from /dev3/backup logtarget /dev3/logs
 rollforward db sample to end of logs and stop overflow log path (/dev3/logs)

5. To retrieve only the log files from a backup image that includes logs:

 restore db sample logs from /dev3/backup logtarget /dev3/logs

6. In the following example, three identical target directories are specified for a backup operation on
database SAMPLE. The data will be concurrently backed up to the three target directories, and three
backup images will be generated with extensions .001, .002, and .003.

backup db sample to /dev3/backup, /dev3/backup, /dev3/backup

To restore the backup image from the target directories, issue:

restore db sample from /dev3/backup, /dev3/backup, /dev3/backup

7. The USE TSM OPTIONS keywords can be used to specify the TSM information to use for the restore
operation. On Windows platforms, omit the -fromowner option.

• Specifying a delimited string:

restore db sample use TSM options '"-fromnode=bar -fromowner=dmcinnis"'

• Specifying a fully qualified file:

restore db sample use TSM options @/u/dmcinnis/myoptions.txt

The file myoptions.txt contains the following information: -fromnode=bar -
fromowner=dmcinnis

8. The following is a simple restore of a multi-partition automatic-storage-enabled database with new
storage paths. The database was originally created with one storage path, /myPath0:

• On the catalog partition issue: restore db mydb on /myPath1,/myPath2
• On all non-catalog partitions issue: restore db mydb

9. A script output of the following command on a non-auto storage database:

restore db sample from /home/jseifert/backups taken at 20050301100417 redirect
generate script SAMPLE_NODE0000.clp

would look like this:

-- **
-- ** automatically created redirect restore script
-- **
UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;
SET CLIENT ATTACH_DBPARTITIONNUM 0;
SET CLIENT CONNECT_DBPARTITIONNUM 0;
-- **
-- ** initialize redirected restore
-- **
RESTORE DATABASE SAMPLE
-- USER ‘<username>'
-- USING ‘<password>'
FROM ‘/home/jseifert/backups'
TAKEN AT 20050301100417
-- DBPATH ON ‘<target-directory>'
INTO SAMPLE
-- NEWLOGPATH ‘/home/jseifert/jseifert/SAMPLE/NODE0000/LOGSTREAM0000/'
-- WITH <num-buff> BUFFERS
-- BUFFER <buffer-size>
-- REPLACE HISTORY FILE
-- REPLACE EXISTING
REDIRECT
-- PARALLELISM <n>
-- WITHOUT ROLLING FORWARD
-- WITHOUT PROMPTING
;

Chapter 1. Data movement utilities and reference 143

-- **
-- ** tablespace definition
-- **
-- **
-- ** Tablespace name = SYSCATSPACE
-- ** Tablespace ID = 0
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 5572
-- **
SET TABLESPACE CONTAINERS FOR 0
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (
 PATH ‘SQLT0000.0'
);
-- **
-- ** Tablespace name = TEMPSPACE1
-- ** Tablespace ID = 1
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = System Temporary data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 0
-- **
SET TABLESPACE CONTAINERS FOR 1
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (
 PATH ‘SQLT0001.0'
);
-- **
-- ** Tablespace name = USERSPACE1
-- ** Tablespace ID = 2
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 1
-- **
SET TABLESPACE CONTAINERS FOR 2
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (
 PATH ‘SQLT0002.0'
);
-- **
-- ** Tablespace name = DMS
-- ** Tablespace ID = 3
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 3
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (
 FILE /tmp/dms1 1000
, FILE /tmp/dms2 1000
);
-- **
-- ** Tablespace name = RAW
-- ** Tablespace ID = 4
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 4
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

144 IBM Db2 V11.5: Data Movement Utilities Guide

USING (
 DEVICE ‘/dev/hdb1' 1000
, DEVICE ‘/dev/hdb2' 1000
);
-- **
-- ** start redirect restore
-- **
RESTORE DATABASE SAMPLE CONTINUE;
-- **
-- ** end of file
-- **

10. A script output of the following command on an automatic storage database:

restore db test from /home/jseifert/backups taken at 20050304090733 redirect
generate script TEST_NODE0000.clp

would look like this:

-- **
-- ** automatically created redirect restore script
-- **
UPDATE COMMAND OPTIONS USING S ON Z ON TEST_NODE0000.out V ON;
SET CLIENT ATTACH_MEMBER 0;
SET CLIENT CONNECT_MEMBER 0;
-- **
-- ** initialize redirected restore
-- **
RESTORE DATABASE TEST
-- USER ‘<username>'
-- USING ‘<password>'
FROM ‘/home/jseifert/backups'
TAKEN AT 20050304090733
ON ‘/home/jseifert'
-- DBPATH ON <target-directory>
INTO TEST
-- NEWLOGPATH ‘/home/jseifert/jseifert/TEST/NODE0000/LOGSTREAM0000/'
-- WITH <num-buff> BUFFERS
-- BUFFER <buffer-size>
-- REPLACE HISTORY FILE
-- REPLACE EXISTING
REDIRECT
-- PARALLELISM <n>
-- WITHOUT ROLLING FORWARD
-- WITHOUT PROMPTING
;
-- ***
-- ** storage group definition
-- ** Default storage group ID = 0
-- ** Number of storage groups = 3
-- ***
-- ***
-- ** Storage group name = SG_DEFAULT
-- ** Storage group ID = 0
-- ** Data tag = None
-- ***
-- SET STOGROUP PATHS FOR SG_DEFAULT
-- ON '/hdd/path1'
-- , '/hdd/path2'
-- ;
-- ***
-- ** Storage group name = SG_HOT
-- ** Storage group ID = 1
-- ** Data tag = 1
-- ***
-- SET STOGROUP PATHS FOR SG_HOT
-- ON '/ssd/fs1'
-- , '/ssd/fs2'
-- ;
-- ***
-- ** Storage group name = SG_COLD
-- ** Storage group ID = 2
-- ** Data tag = 9

Chapter 1. Data movement utilities and reference 145

-- ***
-- SET STOGROUP PATHS FOR SG_COLD
-- ON '/hdd/slowpath1'
-- ;
-- **
-- ** tablespace definition
-- **
-- **
-- ** Tablespace name = SYSCATSPACE
-- ** Tablespace ID = 0
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 4
-- ** Using automatic storage = Yes
-- ** Storage group ID = 0
-- ** Source storage group ID = -1
-- ** Data tag = None
-- ** Auto-resize enabled = Yes
-- ** Total number of pages = 6144
-- ** Number of usable pages = 6140
-- ** High water mark (pages) = 5968
-- **
-- **
-- ** Tablespace name = TEMPSPACE1
-- ** Tablespace ID = 1
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = System Temporary data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = Yes
-- ** Total number of pages = 0
-- **
-- **
-- ** Tablespace name = USERSPACE1
-- ** Tablespace ID = 2
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = Yes
-- ** Storage group ID = 1
-- ** Source storage group ID = -1
-- ** Data tag = 1
-- ** Auto-resize enabled = Yes
-- ** Total number of pages = 256
-- ** Number of usable pages = 224
-- ** High water mark (pages) = 96
-- **
-- **
-- ** Tablespace name = DMS
-- ** Tablespace ID = 3
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Storage group ID = 2
-- ** Source storage group ID = -1
-- ** Data tag = 9
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 3
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (
 FILE ‘/tmp/dms1' 1000
, FILE ‘/tmp/dms2' 1000
);
-- **

146 IBM Db2 V11.5: Data Movement Utilities Guide

-- ** Tablespace name = RAW
-- ** Tablespace ID = 4
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 4
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (
 DEVICE ‘/dev/hdb1' 1000
, DEVICE ‘/dev/hdb2' 1000
);
-- **
-- ** start redirect restore
-- **
RESTORE DATABASE TEST CONTINUE;
-- **
-- ** end of file
-- **

11. The following are examples of the RESTORE DB command using the SNAPSHOT option:

Restore log directory volumes from the snapshot image and do not prompt.

db2 restore db sample use snapshot LOGTARGET INCLUDE without prompting

Do not restore log directory volumes and do not prompt.

db2 restore db sample use snapshot LOGTARGET EXCLUDE without prompting

Do not restore log directory volumes and do not prompt. When LOGTARGET is not specified, then the
default is LOGTARGET EXCLUDE.

db2 restore db sample use snapshot without prompting

Allow existing log directories in the current database to be overwritten and replaced when restoring
the snapshot image containing conflicting log directories, without prompting.

db2 restore db sample use snapshot LOGTARGET EXCLUDE FORCE without prompting

Allow existing log directories in the current database to be overwritten and replaced when restoring
the snapshot image containing conflicting log directories, without prompting.

db2 restore db sample use snapshot LOGTARGET INCLUDE FORCE without prompting

12. The following are examples of a transport operation using the RESTORE command with the
TRANSPORT REDIRECT option:

Given a source database (TT_SRC) backup image, with storage paths on /src , and a target database
(TT_TGT) with storage paths on /tgt :

> RESTORE DB TT_SRC TABLESPACE (AS1) SCHEMA (KRODGER)
 TRANSPORT INTO TT_TGT REDIRECT

SQL1277W A redirected restore operation is being performed. Table space
configuration can now be viewed and table spaces that do not use automatic
storage can have their containers reconfigured.
DB20000I The RESTORE DATABASE command completed successfully.

Table space 'AS1' is transported into a container path, similar to: /tgt/krodger/NODE0000/
TT_TGT/T0000003/C0000000.LRG

Chapter 1. Data movement utilities and reference 147

To specify a target storage group for the transported table spaces, the USING STOGROUP option of
the RESTORE command can be used. In the following example both table spaces TS1 and TS2 will be
restored into the SG_COLD storage group:

> RESTORE DB TT_SRC TABLESPACE (TS1, TS2) SCHEMA (KRODGER)
 TRANSPORT INTO TT_TGT USING STOGROUP SG_COLD

Note: The USING STOGROUP option of the RESTORE command is only valid during a transport
operation, and cannot be used to specify a target storage group during any other restore operation.

To perform a transport into the default storage group of the target database, the USING STOGROUP
option does not need to be specified:

> RESTORE DB TT_SRC TABLESPACE (TS3) SCHEMA (KRODGER)
 TRANSPORT INTO TT_TGT

The storage group name that is specified on the RESTORE command during the TRANSPORT
operation must currently be defined in the target database. It does not need to be defined within the
backup image or source database.

13. The following examples show how to specify encryption options.

Restore into a new encrypted database named CCARDS by using the default encryption options:

RESTORE DATABASE ccards ENCRYPT;

Restore into the same database by using explicitly provided encryption options to decrypt the backup
image:

RESTORE DATABASE ccards
 ENCRLIB 'libdb2encr.so'
 ENCROPTS 'Master key Label=mylabel.mydb.myinstance.myserver';

If you cannot remember what master key label was used to protect a backup image, run the
RESTORE DATABASE command with the SHOW MASTER KEY DETAILS encryption option; its output
is the equivalent of running the ADMIN_GET_ENCRYPTION_INFO table function. The database is not
restored. For example:

RESTORE DATABASE ccards
 ENCRLIB 'libdb2encr.so'
 ENCROPTS 'show master key details'

The command returns the label for each master key that was used to protect the backup image. The
command also returns information about the location of the master key at the time that the backup
was taken. This information is available in the sqllib/db2dump directory in a file whose name has
the following format:

db-name.inst-type.inst-name.
 db-partition.timestamp.masterKeyDetails

If the parameter AT DBPARTITIONNUM is used to re-create a database partition that was dropped
(because it was damaged), the database at this database partition will be in the restore-pending state.
After re-creating the database partition, the database must immediately be restored on this database
partition.

Usage notes

• In a Db2 pureScale environment, both the RESTORE operation using the REBUILD option, as well as the
ensuing database ROLLFORWARD operation, must be performed on a member that exists within the
database member topology of every backup image involved in the operation. For example, suppose the
RESTORE REBUILD operation uses two backup images: backup-image-A has database member
topology {0,1}, and backup-image-B has database member topology {0, 1, 2, 3}. Then, both the
RESTORE operation and the ensuing ROLLFORWARD operation must be performed on either member-0
or member-1 (which exist in all backup images).

148 IBM Db2 V11.5: Data Movement Utilities Guide

• A RESTORE DATABASE command of the form db2 restore db name will perform a full database
restore with a database image and will perform a table space restore operation of the table spaces that
are found in a table space image. A RESTORE DATABASE command of the form db2 restore db
name tablespace performs a table space restore of the table spaces that are found in the image. In
addition, if a list of table spaces is provided with such a command, the explicitly listed table spaces are
restored.

• Following the restore operation of an online backup, you must perform a rollforward recovery.
• You can use the OPTIONS parameter to enable restore operations in TSM environments supporting

proxy nodes. For more information, see the "Configuring a Tivoli Storage Manager client" topic.
• If a backup image is compressed, the Db2 database system detects this and automatically

decompresses the data before restoring it. If a library is specified on the db2Restore API, it is used for
decompressing the data. Otherwise, a check is made to see if a library is stored in the backup image and
if the library exists, it is used. Finally, if a library is not stored in the backup image, the data cannot be
decompressed and the restore operation fails.

• If the compression library is to be restored from a backup image (either explicitly by specifying the
COMPRESSION LIBRARY option or implicitly by performing a normal restore of a compressed backup),
the restore operation must be done on the same platform and operating system that the backup was
taken on. If the platform the backup was taken on is not the same as the platform that the restore is
being done on, the restore operation will fail, even if the Db2 database system normally supports cross-
platform restores involving the two systems.

• A backed-up SMS table space can only be restored into an SMS table space. You cannot restore it into a
DMS table space, or vice versa.

• To restore log files from the backup image that contains them, the LOGTARGET option must be
specified, providing the fully qualified and valid path that exists on the Db2 server. If those conditions
are satisfied, the restore utility will write the log files from the image to the target path. If a LOGTARGET
is specified during a restore of a backup image that does not include logs, the restore operation will
return an error before attempting to restore any table space data. A restore operation will also fail with
an error if an invalid, or read-only, LOGTARGET path is specified.

• If any log files exist in the LOGTARGET path at the time the RESTORE DATABASE command is issued, a
warning prompt will be returned to the user. This warning will not be returned if WITHOUT PROMPTING
is specified.

• During a restore operation where a LOGTARGET is specified, if any log file cannot be extracted, the
restore operation will fail and return an error. If any of the log files being extracted from the backup
image have the same name as an existing file in the LOGTARGET path, the restore operation will fail and
an error will be returned. The restore database utility will not overwrite existing log files in the
LOGTARGET directory.

• You can also restore only the saved log set from a backup image. To indicate that only the log files are
to be restored, specify the LOGS option in addition to the LOGTARGET path. Specifying the LOGS option
without a LOGTARGET path will result in an error. If any problem occurs while restoring log files in this
mode of operation, the restore operation will terminate immediately and an error will be returned.

• During an automatic incremental restore operation, only the log files included in the target image of the
restore operation will be retrieved from the backup image. Any log files that are included in
intermediate images referenced during the incremental restore process will not be extracted from those
intermediate backup images. During a manual incremental restore operation, the LOGTARGET path
should only be specified with the final restore command to be issued.

• Only one incremental restore of a set of table spaces can be in progress at a time. Parallel incremental
table space restores of different table space sets is not supported.

• Offline full database backups as well as offline incremental database backups can be restored to a later
database version, whereas online backups cannot. For multi-partition databases, the catalog partition
must first be restored individually, followed by the remaining database partitions (in parallel or serial).
However, the implicit database upgrade that is done by the restore operation can fail. In a multi-
partition database, it can fail on one or more database partitions. In this case, you can follow the
RESTORE DATABASE command with a single UPGRADE DATABASE command issued from the catalog
partition to upgrade the database successfully.

Chapter 1. Data movement utilities and reference 149

• In a partitioned database environment, a table space can have a different storage group association on
different database partitions. When a redirected restore modifies table space containers from DMS to
automatic storage, the table space is associated with the default storage group. If a new default storage
group is selected in between redirected restores of different database partitions, then the table space
will have an inconsistent storage group association across the partitioned database environment. If this
occurs, then use the ALTER TABLESPACE statement to alter the table space to use automatic storage
on all database partitions, and rebalance if necessary.

• The TRANSPORT option is supported only when the client and database code page are equal.
• The first path that is passed in must contain the first image sequence. If a specified path contains more

than one backup image sequence, they must be listed sequentially and continuously.
• For the Db2 Developer-C Edition, restoring a backup database that has a total size of all table spaces

greater than the defined storage size, or restoring on an SMS table space will result in a fail.

Snapshot restore

Like a traditional (non-snapshot) restore, the default behavior when restoring a snapshot backup
image will be to NOT restore the log directories —LOGTARGET EXCLUDE.

If the Db2 database manager detects that any log directory's group ID is shared among any of the
other paths to be restored, then an error is returned. In this case, LOGTARGET INCLUDE or
LOGTARGET INCLUDE FORCE must be specified, as the log directories must be part of the restore.

The Db2 database manager will make all efforts to save existing log directories (primary, mirror and
overflow) before the restore of the paths from the backup image takes place.

If you want the log directories to be restored and the Db2 database manager detects that the pre-
existing log directories on disk conflict with the log directories in the backup image, then the Db2
database manager will report an error. In such a case, if you have specified LOGTARGET INCLUDE
FORCE, then this error will be suppressed and the log directories from the image will be restored,
deleting whatever existed beforehand.

There is a special case in which the LOGTARGET EXCLUDE option is specified and a log directory path
resides under the database directory (for example, /NODExxxx/SQLxxxxx/LOGSTREAMxxxxx/). In
this case, a restore would still overwrite the log directory as the database path, and all of the contents
beneath it, would be restored. If the Db2 database manager detects this scenario and log files exist in
this log directory, then an error will be reported. If you specify LOGTARGET EXCLUDE FORCE, then
this error will be suppressed and those log directories from the backup image will overwrite the
conflicting log directories on disk.

Transporting table spaces and schemas

The complete list of table spaces and schemas must be specified.

The target database must be active at the time of transport.

If an online backup image is used, then the staging database is rolled forward to the end of the
backup. If an offline backup image is used, then no rollforward processing is performed.

A staging database consisting of the system catalog table space from the backup image is created
under the path specified by the dftdbpath database parameter. This database is dropped when the
RESTORE DATABASE command completes. The staging database is required to extract the DDL used
to regenerate the objects in the table spaces being transported.

When transporting table spaces, the Db2 database manager attempts to assign the first available
buffer pool of matching page size to the table space that is transported. If the target database does
not have buffer pools that match the page size of the table spaces being transported, then a hidden
buffer pool might be assigned. Hidden buffer pools are temporary place holders for transported table
spaces. You can check the buffer pools assigned to the transported table spaces after transport
completes. You can issue the ALTER TABLESPACE command to update buffer pools.

If database rollforward detects a table space schema transport log record, the corresponding
transported table space will be taken offline and moved into drop pending state. This is because
database does not have complete logs of transported table spaces to rebuild transported table

150 IBM Db2 V11.5: Data Movement Utilities Guide

spaces and their contents. You can take a full backup of the target database after transport
completes, so subsequent rollforward does not pass the point of schema transport in the log stream.

The TRANSPORT option to transport table spaces and schemas from the database backup image to
the target database is not supported if a schema being transported includes an index with an
expression-based key.

Transporting storage groups

A transport operation cannot modify the currently defined storage groups of the target database, and
new storage groups cannot be explicitly created during a transport.

The default target storage group of the transport is the default storage group of the target database of
the operation. It is also possible to explicitly redirect all table spaces being restored during a
transport operation into a specific storage group on the target database.

During a transport operation, when a RESTORE command using the TRANSPORT REDIRECT option is
issued, the default storage group configuration for automatic storage table spaces is not the
configuration that is contained in the backup image, but instead the storage groups and storage group
paths of the target database. This is because automatic storage table spaces must be restored and
redirected directly into existing storage group paths, as defined on the target database.

Db2 native encryption
When you restore a database backup image to an existing database, the encryption settings of the
existing database are always preserved. If you specify the ENCRYPT option, an error is returned
because the settings on theRESTORE command will not be used.

When you restore into a new database in a partitioned database environment, restore the catalog
partition first, specifying the encryption options. You can then restore the other partitions without
specifying the encryption optionsbecause the database already exists. When you use the db2_all
command, target the catalog partitions first.

A backup image that was encrypted with Db2 native encryption must be restored into a database
server that has Db2 native encryption available. If you want to restore into a server that is using a Db2
version that does not include Db2 native encryption, you must use an unencrypted backup image.

High availability through suspended I/O and online split mirror support
IBM Db2 server suspended I/O support enables you to split mirrored copies of your primary database
without taking the database offline. You can use this to very quickly create a standby database to take
over if the primary database fails.

Disk mirroring is the process of writing data to two separate hard disks at the same time. One copy of the
data is called a mirror of the other. Splitting a mirror is the process of separating the two copies.

You can use disk mirroring to maintain a secondary copy of your primary database. You can use Db2
server suspended I/O functionality to split the primary and secondary mirrored copies of the database
without taking the database offline. Once the primary and secondary databases copies are split, the
secondary database can take over operations if the primary database fails.

If you would rather not back up a large database using the Db2 server backup utility, you can make copies
from a mirrored image by using suspended I/O and the split mirror function. This approach also:

• Eliminates backup operation overhead from the production machine
• Represents a fast way to clone systems
• Represents a fast implementation of idle standby failover. There is no initial restore operation, and if a

rollforward operation proves to be too slow, or encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:

• As a clone database
• As a standby database
• As a backup image

Chapter 1. Data movement utilities and reference 151

This command can only be issued against a split mirror, and it must be run before the split mirror can be
used.

In a partitioned database environment, you do not have to suspend I/O writes on all database partitions
simultaneously. You can suspend a subset of one or more database partitions to create split mirrors for
performing offline backups. If the catalog partition is included in the subset, it must be the last database
partition to be suspended.

In a partitioned database environment, the db2inidb command must be run on every database partition
before the split image from any of the database partitions can be used. The tool can be run on all
database partitions simultaneously using the db2_all command. If; however, you are using the
RELOCATE USING option, you cannot use the db2_all command to run db2inidb on all of the
database partitions simultaneously. A separate configuration file must be supplied for each database
partition, that includes the NODENUM value of the database partition being changed. For example, if the
name of a database is being changed, every database partition will be affected and the db2relocatedb
command must be run with a separate configuration file on each database partition. If containers
belonging to a single database partition are being moved, the db2relocatedb command only needs to
be run once on that database partition.

Note: Ensure that the split mirror contains all containers and directories which comprise the database,
including the volume directory. To gather this information, refer to the DBPATHS administrative view,
which shows all the files and directories of the database that need to be split.

db2inidb - Initialize a mirrored database
Initializes a mirrored database in a split-mirror environment. The mirrored database can be initialized as a
clone of the primary database, placed in rollforward pending state, or used as a backup image to restore
the primary database.

If the instance that a database belongs to is changing, you must do the following to ensure that changes
to the instance and database support files are made. If a database is being moved to another instance,
create the new instance. The new instance must be at the same release level as the instance where the
database currently resides.

You must issue this command before you can use a split-mirror database.

Authorization

one of the following authorities:

• SYSADM
• SYSCTRL
• SYSMAINT

Required connection

None

Command syntax
db2inidb database_alias AS SNAPSHOT

ACS

STANDBY

MIRROR

RELOCATE USING configFile

152 IBM Db2 V11.5: Data Movement Utilities Guide

Command parameters
database_alias

Specifies the alias of the database to be initialized.
SNAPSHOT

Specifies that the mirrored database will be initialized as a clone of the primary database.
STANDBY

Specifies that the database will be placed in rollforward pending state. New logs from the primary
database can be fetched and applied to the standby database. The standby database can then be
used in place of the primary database if it goes down.
ACS

Specifies that the db2inidb command is to be used against an ACS snapshot copy of the
database to perform the STANDBY action. This option is required because the db2inidb
command can only be issued against split mirror database snapshots created with the SET
WRITE SUSPEND | RESUME command.

Together, the use of the ACS STANDBY option initiates the ACS snapshot copy to be placed into a
rollforward pending state so that the Db2 BACKUP command can be successfully issued against
the snapshot image. Without this, any attempt to connect to the snapshot image results in that
copy of the database being placed in the RESTORE_PENDING state, removing its usefulness as a
backup copy for future recovery.

This feature was introduced specifically for interfacing with storage managers such as IBM Tivoli
Storage FlashCopy® Manager, for the purpose of producing an offloaded Db2 backup that is based
upon an ACS snapshot. Using this option for any other purpose, to mount or modify the contents
of an ACS snapshot copy, even including the production of a Db2 backup, can lead to undefined
behavior in the future.

MIRROR
Specifies that the mirrored database is to be a backup image which you can use to restore the primary
database.

RELOCATE USING configFile
Specifies that the database files are to be relocated based on the information listed in the configFile
before the database is initialized as a snapshot, standby, or mirror. The format of configFile is
described in “db2relocatedb - Relocate database ” on page 154.

Usage notes

Do not issue the db2 connect to database-alias operation before issuing the db2inidb
database_alias as mirror command. Attempting to connect to a split mirror database before
initializing it erases the log files needed during roll forward recovery. The connect sets your database back
to the state it was in when you suspended the database. If the database is marked as consistent when it
was suspended, the Db2 database system concludes there is no need for crash recovery and empties the
logs for future use. If the logs have been emptied, attempting to roll forward results in the SQL4970N
error message being returned.

In partitioned database environments, the db2inidb command must be issued on every database
partition before the split mirror from any of the database partitions can be used. db2inidb can be run on
all database partitions simultaneously using the db2_all command.

However, if you are using the RELOCATE USING option, you cannot use the db2_all command to run
db2inidb on all of the partitions simultaneously. A separate configuration file must be supplied for each
partition, that includes the NODENUM value of the database partition being changed. For example, if the
name of a database is being changed, every database partition will be affected and the db2relocatedb
command must be run with a separate configuration file on each database partition. If containers
belonging to a single database partition are being moved, the db2relocatedb command only needs to
be run once on that database partition.

If the RELOCATE USING configFile parameter is specified and the database is relocated successfully, the
specified configFile will be copied into the database directory and renamed to db2path.cfg. During a

Chapter 1. Data movement utilities and reference 153

subsequent crash recovery or rollforward recovery, this file will be used to rename container paths as log
files are being processed.

If a clone database is being initialized, the specified configFile will be automatically removed from the
database directory after a crash recovery is completed.

If a standby database or mirrored database is being initialized, the specified configFile file is automatically
removed from the database directory after a rollforward recovery is completed or canceled. New
container paths can be added to the db2path.cfg file after db2inidb has been run. This would be
necessary when CREATE or ALTER TABLESPACE operations are done on the original database and
different paths must be used on the standby database.

When performing an initialization of a split mirror database taken from an HADR primary or standby, use
the STANDBY parameter if one of the following apply:

• The new database is going to act in an HADR pair and the HADR configuration settings of the new pair
are not identical to the settings of the original pair.

• The database is to be initialized as a stand-alone database.

In Db2 pureScale environments, you can issue the db2inidb command from any member and have to
issue the command only once.

db2relocatedb - Relocate database
This command renames a database, or relocates a database or part of a database (for example, the
container and the log directory) as specified in the configuration file provided by the user. This tool makes
the necessary changes to the Db2 instance and database support files.

The target database must be offline before running the db2relocatedb command to modify the control
files and metadata of the target database.

The changes that the db2relocatedb command makes to files and control structures of a database are
not logged and are therefore not recoverable. A good practice is to make a full backup after running the
command against a database, especially if the database is recoverable with log files being retained.

Authorization

None

Prerequisite

If automatic storage for the database is enabled, you must move the data from each storage path to a
new location by issuing the following command:

$ mv old_storage_path_N/inst_name/NODE0000/X/old_storage_path_N/inst_name/NODE0000/Y

where old_storage_path_N represents the old storage path name, inst_name represents the instance
name, X represents the old database name and Y represents the new database name.

You must perform this step to ensure that the db2relocatedb command executes without generating
an error message.

Command syntax
db2relocatedb

-fconfigFilename

-g configFilename -d databaseName

-r

,

replaceDefinition

154 IBM Db2 V11.5: Data Movement Utilities Guide

Command parameters
-f configFilename

Specifies the name of the file containing the configuration information necessary for relocating the
database. This can be a relative or absolute file name. The format of the configuration file is:

 DB_NAME=oldName,newName
 DB_PATH=oldPath,newPath
 INSTANCE=oldInst,newInst
 NODENUM=nodeNumber
 LOG_DIR=oldDirPath,newDirPath
 CONT_PATH=oldContPath1,newContPath1
 CONT_PATH=oldContPath2,newContPath2
 ...
 STORAGE_PATH=oldStoragePath1,newStoragePath1
 STORAGE_PATH=oldStoragePath2,newStoragePath2
 ...
 FAILARCHIVE_PATH=newDirPath
 LOGARCHMETH1=newDirPath
 LOGARCHMETH2=newDirPath
 MIRRORLOG_PATH=newDirPath
 OVERFLOWLOG_PATH=newDirPath
 ...

Where:
DB_NAME

Specifies the name of the database being relocated. If the database name is being changed, both
the old name and the new name must be specified. This is a required field.

DB_PATH
Specifies the original path of the database being relocated. If the database path is changing, both
the old path and new path must be specified. This is a required field.

INSTANCE
Specifies the instance where the database exists. If the database is being moved to a new
instance, both the old instance and new instance must be specified. This is a required field.

NODENUM
Specifies the node number for the database node being changed. The default is 0.

LOG_DIR
Specifies a change in the location of the log path. If the log path is being changed, both the old
path and new path must be specified. This specification is optional if the log path resides under
the database path, in which case the path is updated automatically.

CONT_PATH
Specifies a change in the location of table space containers. Both the old and new container path
must be specified. Multiple CONT_PATH lines can be provided if there are multiple container path
changes to be made. This specification is optional if the container paths reside under the database
path, in which case the paths are updated automatically. If you are making changes to more than
one container where the same old path is being replaced by a common new path, a single
CONT_PATH entry can be used. In such a case, an asterisk (*) could be used both in the old and
new paths as a wildcard.

STORAGE_PATH
Specifies a change in the location of one of the storage paths for the database. Both the old
storage path and the new storage path must be specified. Multiple STORAGE_PATH lines can be
given if there are several storage path changes to be made. You can specify this parameter to
modify any storage path in all storage groups. However, you cannot specify this parameter to
modify the storage paths for an individual storage group.

Note: This parameter is not applicable to a database created with the AUTOMATIC STORAGE NO
clause. Although, you can create a database specifying the AUTOMATIC STORAGE NO clause, the
AUTOMATIC STORAGE clause is deprecated and might be removed from a future release.

Chapter 1. Data movement utilities and reference 155

FAILARCHIVE_PATH
Specifies a new location to archive log files if the database manager fails to archive the log files to
either the primary or the secondary archive locations. You should only specify this field if the
database being relocated has the failarchpath configuration parameter set.

LOGARCHMETH1
Specifies a new primary archive location. You should only specify this field if the database being
relocated has the logarchmeth1 configuration parameter set.

LOGARCHMETH2
Specifies a new secondary archive location. You should only specify this field if the database being
relocated has the logarchmeth2 configuration parameter set.

MIRRORLOG_PATH
Specifies a new location for the mirror log path. The string must point to a path name, and it must
be a fully qualified path name, not a relative path name. You should only specify this field if the
database being relocated has the mirrorlogpath configuration parameter set.

OVERFLOWLOG_PATH
Specifies a new location to find log files required for a rollforward operation, to store active log
files retrieved from the archive, and to find and store log files required by the db2ReadLog API.
You should only specify this field if the database being relocated has the overflowlogpath
configuration parameter set.

Blank lines or lines beginning with a comment character (#) are ignored.

-g configFilename
Generates a configuration file and specifies the name of the file containing the configuration
information. This can be a relative or absolute file name. Without the option -r, the output looks as
follows:

 DB_NAME=oldName,oldName
 DB_PATH=oldPath,oldPath
 INSTANCE=oldInst,oldInst
 NODENUM=nodeNumber
 LOG_DIR=oldDirPath,oldDirPath
 CONT_PATH=oldContPath1,oldContPath1
 CONT_PATH=oldContPath2,oldContPath2
 ...
 STORAGE_PATH=oldStoragePath1,oldStoragePath1
 STORAGE_PATH=oldStoragePath2,oldStoragePath2
 ...
 FAILARCHIVE_PATH=oldDirPath
 LOGARCHMETH1=oldDirPath
 LOGARCHMETH2=oldDirPath
 MIRRORLOG_PATH=oldDirPath
 OVERFLOWLOG_PATH=oldDirPath
 ...

-d databaseName
Specifies the database name for which the file has to be generated.

-r replaceDefinition
With this option you replace strings in the generated script. Parameter replaceDefinition must have
the format regularExpression=replacement. See example below.

Examples
Example 1

To change the name of the database TESTDB to PRODDB in the instance db2inst1 that resides on the
path /home/db2inst1, create the following configuration file:

 DB_NAME=TESTDB,PRODDB
 DB_PATH=/home/db2inst1
 INSTANCE=db2inst1
 NODENUM=0

156 IBM Db2 V11.5: Data Movement Utilities Guide

When the configuration file is created, you must alter any automatic storage paths to match the new
database name:

rename /home/db2inst1/db2inst1/TESTDB /home/db2inst1/db2inst1/PRODDB

Save the configuration file as relocate.cfg and use the following command to make the changes to
the database files:

 db2relocatedb -f relocate.cfg

Example 2

To move the database DATAB1 from the instance jsmith on the path /dbpath to the instance
prodinst do the following:

1. Move the files in the directory /dbpath/jsmith to /dbpath/prodinst.
2. Use the following configuration file with the db2relocatedb command to make the changes to

the database files:

 DB_NAME=DATAB1
 DB_PATH=/dbpath
 INSTANCE=jsmith,prodinst
 NODENUM=0

Example 3

The database PRODDB exists in the instance inst1 on the path /databases/PRODDB. The location of
two table space containers needs to be changed as follows:

• SMS container /data/SMS1 needs to be moved to /DATA/NewSMS1.
• DMS container /data/DMS1 needs to be moved to /DATA/DMS1.

After the physical directories and files have been moved to the new locations, the following
configuration file can be used with the db2relocatedb command to make changes to the database
files so that they recognize the new locations:

 DB_NAME=PRODDB
 DB_PATH=/databases/PRODDB
 INSTANCE=inst1
 NODENUM=0
 CONT_PATH=/data/SMS1,/DATA/NewSMS1
 CONT_PATH=/data/DMS1,/DATA/DMS1

Example 4

The database TESTDB exists in the instance db2inst1 and was created on the path /databases/
TESTDB. Table spaces were then created with the following containers:

 TS1
 TS2_Cont0
 TS2_Cont1
 /databases/TESTDB/TS3_Cont0
 /databases/TESTDB/TS4/Cont0
 /Data/TS5_Cont0
 /dev/rTS5_Cont1

TESTDB is to be moved to a new system. The instance on the new system will be newinst and the
location of the database will be /DB2.

When moving the database, all of the files that exist in the /databases/TESTDB/db2inst1
directory must be moved to the /DB2/newinst directory. This means that the first 5 containers will
be relocated as part of this move. (The first 3 are relative to the database directory and the next 2 are
relative to the database path.) Since these containers are located within the database directory or
database path, they do not need to be listed in the configuration file. If the 2 remaining containers are
to be moved to different locations on the new system, they must be listed in the configuration file.

Chapter 1. Data movement utilities and reference 157

After the physical directories and files have been moved to their new locations, the following
configuration file can be used with db2relocatedb to make changes to the database files so that
they recognize the new locations:

 DB_NAME=TESTDB
 DB_PATH=/databases/TESTDB,/DB2
 INSTANCE=db2inst1,newinst
 NODENUM=0
 CONT_PATH=/Data/TS5_Cont0,/DB2/TESTDB/TS5_Cont0
 CONT_PATH=/dev/rTS5_Cont1,/dev/rTESTDB_TS5_Cont1

Example 5

The database TESTDB has two database partitions on database partition servers 10 and 20. The
instance is servinst and the database path is /home/servinst on both database partition servers.
The name of the database is being changed to SERVDB and the database path is being changed to /
databases on both database partition servers. In addition, the log directory is being changed on
database partition server 20 from /testdb_logdir to /servdb_logdir.

Since changes are being made to both database partitions, a configuration file must be created for
each database partition and db2relocatedb must be run on each database partition server with the
corresponding configuration file.

On database partition server 10, the following configuration file will be used:

 DB_NAME=TESTDB,SERVDB
 DB_PATH=/home/servinst,/databases
 INSTANCE=servinst
 NODENUM=10

On database partition server 20, the following configuration file will be used:

 DB_NAME=TESTDB,SERVDB
 DB_PATH=/home/servinst,/databases
 INSTANCE=servinst
 NODENUM=20
 LOG_DIR=/testdb_logdir,/servdb_logdir

Example 6

The database MAINDB exists in the instance maininst on the path /home/maininst. The location
of four table space containers needs to be changed as follows:

 /maininst_files/allconts/C0 needs to be moved to /MAINDB/C0
 /maininst_files/allconts/C1 needs to be moved to /MAINDB/C1
 /maininst_files/allconts/C2 needs to be moved to /MAINDB/C2
 /maininst_files/allconts/C3 needs to be moved to /MAINDB/C3

After the physical directories and files are moved to the new locations, the following configuration file
can be used with the db2relocatedb command to make changes to the database files so that they
recognize the new locations.

A similar change is being made to all of the containers; that is, /maininst_files/allconts/ is
being replaced by /MAINDB/ so that a single entry with the wildcard character can be used:

 DB_NAME=MAINDB
 DB_PATH=/home/maininst
 INSTANCE=maininst
 NODENUM=0
 CONT_PATH=/maininst_files/allconts/*, /MAINDB/*

Example 7

The database MULTIDB exists in the instance inst1 on the path /database/MULTIDB . The
partitioned storage path '/home/olddbpath $N' needs to be changed to '/home/newdbpath
$N'.

158 IBM Db2 V11.5: Data Movement Utilities Guide

To be able to correctly move the partitioned storage path, the parameterized storage path need to be
specified in the STORAGE_PATH field with double quotation mark around it. After the physical
directories and files are moved to the new locations, the following configuration file can be used with
the db2relocatedb command to make changes to the database files so that they recognize the new
locations.

 DB_NAME=MULTIDB
 DB_PATH=/database/MULTIDB
 INSTANCE=inst1
 NODENUM=0
 STORAGE_PATH="/home/olddbpath $N" , "/home/newdbpath $N"

Example 8
The database PRD exists in the instance db2prd on the database path /db2/PRD and storage
paths /db2/PRD/sapdata1 and /db2/PRD/sapdata2. To generate an unmodified script use the
following command that creates the output file relocate.cfg:

db2relocatedb -g relocate.cfg -d PRD

The contents of the output file relocate.cfg look as follows:

DB_NAME=PRD,PRD
DB_PATH=/db2/PRD,/db2/PRD
INSTANCE=db2prd,db2prd
NODENUM=0
STORAGE_PATH=/db2/PRD/sapdata1,/db2/PRD/sapdata1
STORAGE_PATH=/db2/PRD/sapdata2,/db2/PRD/sapdata2

If you want to relocate this database, to change the database name to QAS, to use the instance
db2qas, and to change the autostorage paths accordingly, you can use the following command:

db2relocatedb -g relocate.cfg -d PRD -r PRD=QAS,db2prd=db2qas

The contents of the output file relocate.cfg look as follows:

DB_NAME=PRD,QAS
DB_PATH=/db2/PRD,/db2/QAS
INSTANCE=db2prd,db2qas
NODENUM=0
STORAGE_PATH=/db2/PRD/sapdata1,/db2/QAS/sapdata1
STORAGE_PATH=/db2/PRD/sapdata2,/db2/QAS/sapdata2

Usage notes

If the instance that a database belongs to is changing, the following must be done before running this
command to ensure that changes to the instance and database support files are made:

• If a database is being moved to another instance, create the new instance. The new instance must be at
the same release level as the instance where the database currently resides.

• If the new instance has a different owner than the current instance, grant access to the new instance
owner.

• Copy the files and devices belonging to the databases being copied onto the system where the new
instance resides. The path names must be changed as necessary. However, if there are already
databases in the directory where the database files are moved to, you can mistakenly overwrite the
existing sqldbdir file, thereby removing the references to the existing databases. In this scenario, the
db2relocatedb utility cannot be used. Instead of db2relocatedb, an alternative is a redirected
restore operation.

• Change the permission of the files/devices that were copied so that they are owned by the instance
owner.

Chapter 1. Data movement utilities and reference 159

When moving a database from a database path where more than one database resides, the sqldbdir
directory within that database path must be copied and not moved. This directory is still needed in the old
location for Db2 to locate the databases that are not moving. After copying the sqldbdir directory to the
new location, a LIST DB DIRECTORY ON newPath command lists databases that were not moved.
These references cannot be removed and new databases with those names cannot be created on this
same path. However, databases can be created with those names on a different path.

The db2relocatedb command cannot be used to move existing user created containers for a table
space that was converted to use automatic storage using the ALTER TABLESPACE MANAGED BY
AUTOMATIC STORAGE statement.

If the instance is changing, the command must be run by the new instance owner.

In a partitioned database environment, this tool must be run against every database partition that
requires changes. A separate configuration file must be supplied for each database partition, that
includes the NODENUM value of the database partition being changed. For example, if the name of a
database is being changed, every database partition will be affected and the db2relocatedb command
must be run with a separate configuration file on each database partition. If containers belonging to a
single database partition are being moved, the db2relocatedb command only needs to be run once on
that database partition.

You cannot use the db2relocatedb command to relocate a database that has a load in progress or is
waiting for the completion of a LOAD RESTART or LOAD TERMINATE command.

After you run the db2relocatedb command, you must recycle the Db2 instance to allow the changes to
take effect. To recycle the Db2 instance, perform the following steps:

1. Issue the db2stop command.
2. Issue the db2start command.

Limitation: In a partitioned database environment, you cannot relocate an entire node if that node is one
of two or more logical partitions that reside on the same device.

db2look - Db2 statistics and DDL extraction tool
Extracts the Data Definition Language (DDL) statements that are required to reproduce the database
objects of a production database on a test database.

The db2look command generates the DDL statements by object type. Note that this command ignores
all objects under SYSTOOLS schema except user-defined functions and stored procedures.

It is often advantageous to have a test system that contains a subset of the data of a production system,
but access plans selected for such a test system are not necessarily the same as those that would be
selected for the production system. However, using the db2look tool, you can create a test system with
access plans that are similar to those that would be used on the production system. You can use this tool
to generate the UPDATE statements that are required to replicate the catalog statistics on the objects in a
production database on a test database. You can also use this tool to generate UPDATE DATABASE
CONFIGURATION, UPDATE DATABASE MANAGER CONFIGURATION, and db2set commands so that the
values of query optimizer-related configuration parameters and registry variables on a test database
match those of a production database.

You should check the DDL statements that are generated by the db2look command because they might
not reproduce all characteristics of the original SQL objects. For table spaces on partitioned database
environments, DDL might not be complete if some database partitions are not active. Make sure all
database partitions are active using the ACTIVATE DATABASE command.

Authorization

SELECT privilege on the system catalog tables.

In some cases, such as generating table space container DDL, you will require one of the following
authorities:

• SYSADM

160 IBM Db2 V11.5: Data Movement Utilities Guide

• SYSCTRL
• SYSMAINT
• SYSMON
• DBADM
• EXECUTE privilege on the ADMIN_GET_STORAGE_PATHS table function

Required connection

None

Command syntax
db2look -d DBname

-createdb -printdbcfg -e

-u creator -z schema

-t Tname

-tw Tname
-ct -dp

-v Vname

-h -ap -o Fname

-a -m
-c -r

-l

1

-x

-xdep

2

-xd

-xddep

-f -td delimiter -noview

-i userid -w password -wlm -wrap

-wrapper Wname

-server Sname

-nofed -fedonly -mod

-xs

-xdir dirname

-cor -noimplschema

Notes:
1 You cannot specify both the -x parameter and -xdep parameter
2 You cannot specify both the -xd parameter and -xddep parameter

Chapter 1. Data movement utilities and reference 161

Command parameters
-d DBname

Alias name of the production database that is to be queried. DBname can be the name of a Db2 or Db2
for z/OS database. If the DBname is a Db2 for z/OS database, the db2look command generates the
following statements:

• DDL statements for tables, indexes, views, and user-defined distinct types
• UPDATE statistics statements for tables, columns, column distributions, and indexes

These DDL and UPDATE statistics statements are applicable to a Db2 database and not to a Db2 for
z/OS database. These statements are useful if you want to extract Db2 for z/OS objects and re-create
them in a Db2 database.

-createdb
Generates the CREATE DATABASE command that was used to create the source database.

The generated CREATE DATABASE command contains the usual parameters and options found in the
CREATE DATABASE syntax except the following parameters:

• ALIAS
• NUMSEGS
• RESTRICTIVE
• WITH
• AUTOCONFIGURE

-printdbcfg
Generates UPDATE DB CFG commands for the database configuration parameters. The printdbcfg
command generates UPDATE DB CFG commands in a similar order as the results returned from the
GET DB CFG command.

For the parameters that support the AUTOMATIC value, you might need to add AUTOMATIC at the
end of the generated UPDATE DB CFG command.

The generated UPDATE DB CFG command contains the usual parameters and options found in the
UPDATE DATABASE CONFIGURATION syntax except for the following parameters:

• PAGE_AGE_TRGT_MCR
• DFT_TABLE_ORG
• STRING_UNITS
• NCHAR_MAPPING
• EXTENDED_ROW_SZ
• CONNECT_PROC

-e
Extracts DDL statements for the following database objects:

• Aliases
• Audit policies
• Check constraints
• Function mappings
• Function templates
• Global variables
• Indexes (including partitioned indexes on partitioned tables)
• Index specifications
• Materialized query tables (MQTs)
• Nicknames

162 IBM Db2 V11.5: Data Movement Utilities Guide

• Primary key, referential integrity, and check constraints
• Referential integrity constraints
• Roles
• Schemas
• Security labels
• Security label components
• Security policies
• Sequences
• Servers
• Stored procedures
• Tables

Note: Values from column STATISTICS_PROFILE in the SYSIBM.SYSTABLES catalog table are not
included.

• Triggers
• Trusted contexts
• Type mappings
• User mappings
• User-defined distinct types
• User-defined functions
• User-defined methods
• User-defined structured types
• User-defined transforms
• Views
• Wrappers

If you use DDL statements that are generated by the db2look command to re-create a user-defined
function, the source code that the function references (the EXTERNAL NAME clause, for example)
must be available for the function to be usable.

-u creator
Generates DDL statements for objects that were created with the specified creator ID. Limits output
to objects that were created with the specified creator ID. The output does not include any
inoperative objects. To display inoperative objects, use the -a parameter. If you specify the -a
parameter, the -u parameter is ignored.

-z schema
Generates DDL statements for objects that have the specified schema name. Limits output to objects
that have the specified schema name. The output does not include any inoperative objects. To display
inoperative objects, use the -a parameter. If you do not specify the -z parameter, objects with all
schema names are extracted. If you specify the -a parameter, the -z parameter is ignored. This
parameter is also ignored for federated DDL statements.

-t Tname1 Tname2 ... TnameN
Generates DDL statements for the specified tables and their dependent objects. Limits output to the
tables that are specified in the table list and generates the DDL statements for all dependent objects
of all user specified tables. The maximum number of tables is 30.

The dependent objects include:

• Comments
• Indexes
• Primary keys
• Unique keys

Chapter 1. Data movement utilities and reference 163

• Aliases
• Foreign key constraints
• Check constraints
• Views
• Triggers

Specify the list as follows:

• Separate table names by a blank space.
• Enclose case-sensitive names and double-byte character set (DBCS) names with the backslash (\)

and double quotation marks (" ") (for example, \" MyTabLe \").
• Enclose multiword table names with the backslash and two sets of double quotation marks (for

example, "\"My Table\"") to prevent the pairing from being evaluated word-by-word by the
command line processor (CLP). If you use only one set of double quotation marks (for example, "My
Table"), all words are converted into uppercase, and the db2look command looks for an
uppercase table name (for example, MY TABLE).

If you specify the -t parameter with the -l parameter, partitioned tables are supported.

You can use two-part table names of the format schema.table to fully qualify a table name without
using the -z schema parameter. Use a two-part table name when the table has dependent objects
that are in a different schema than that of the table and you require DDL statements to be generated
for the dependent objects. If you use the -z schema parameter to specify the schema, the parameter
excludes dependent objects that do not have the same parent schema, thereby preventing the
generation of DDL statements for the dependent objects.

-tw Tname
Generates DDL statements for tables with names that match the pattern that you specify with Tname
and generates the DDL statements for all dependent objects of those tables. Tname must be a single
value only. The underscore character (_) in Tname represents any single character. The percent sign
(%) represents a string of zero or more characters. When -tw is specified, the -t option is ignored.

You can use two-part table names of the format schema.table to fully qualify a table name without
using the -z schema parameter. Use a two-part table name when the table has dependent objects
that are in a different schema than that of the table and you require DDL statements to be generated
for the dependent objects. If you use the -z schema parameter to specify the schema, the parameter
excludes dependent objects that do not have the same parent schema, thereby preventing the
generation of DDL statements for the dependent objects.

-ct
Generates DDL statements by object creation time. The object DDL statements might not be displayed
in correct dependency order. If you specify the -ct parameter, the db2look command supports only
the following additional parameters: -e, -a, -u, -z, -t, -tw, -v, -l, -noview, and -wlm. If you use
the -ct parameter with the -z and -t parameters, the db2look command generates the required
UPDATE statements to replicate the statistics on tables, statistical views, columns, and indexes.

-dp
Generates a DROP statement before a CREATE statement. The DROP statement might not work if
there is an object that depends on the dropped object. For example, you cannot drop a schema if
there is a table that depends on the schema, and you cannot drop a user-defined type or user-defined
function if there is a type, function, trigger, or table that depends on that user-defined type or user-
defined function. For typed tables, the DROP TABLE HIERARCHY statement is generated for the root
table only. A DROP statement is not generated for indexes, primary and foreign keys, and constraints
because they are always dropped when the table is dropped. You cannot drop a table that has the
RESTRICT ON DROP attribute.

-v Vname1 Vname2 ... VnameN
Generates DDL statements for the specified views, but not for their dependent objects. The maximum
number of views is 30. The rules governing case-sensitive, DBCS, and multiword table names also
apply to view names. If you specify the -t parameter, the -v parameter is ignored.

164 IBM Db2 V11.5: Data Movement Utilities Guide

You can use a two-part view name of the format schema.view to fully qualify a view.

-h
Display help information. If you specify this parameter, all other parameters are ignored.

-ap
Generates the AUDIT USING statements that are required to associate audit policies with other
database objects.

-o Fname
Writes the output to the Fname file. If you do not specify an extension, the .sql extension is used. If
you do not specify this parameter, output is written to standard output.

-a
Generates DDL statements for objects that were created by any user, including inoperative objects.
For example, if you specify this parameter with the -e parameter, DDL statements are extracted for
all objects in the database. If you specify this parameter with the -m parameter, UPDATE statistics
statements are extracted for all user-created tables and indexes in the database.

If you do not specify either the -u or the -a parameter, the USER environment variable is used. On
UNIX operating systems, you do not have to explicitly set this variable. However, on Windows
operating systems the USER environment variable does not have a default value. Therefore, you must
set a user variable in the SYSTEM variables or issue the set USER=username command for the
session.

-m
Generates the UPDATE statements that are required to replicate the statistics on tables, statistical
views, columns, and indexes. Using the -m parameter is referred to as running in mimic mode.
-c

If you specify this option, the db2look command does not generate COMMIT, CONNECT, and
CONNECT RESET statements. The default action is to generate these statements. This option is
ignored unless you also specify the -m or -e parameter.

-r
If you specify this option with the -m parameter, the db2look command does not generate the
RUNSTATS command. The default action is to generate the RUNSTATS command.

Important: If you intend to run the command processor script that is created using the db2look
command with the -m parameter against another database (for example, to make the catalog
statistics of the test database match those in production), both databases must use the same
codeset, territory, collation, and uniqueness determination.

-l
Generates DDL statements for the following database objects:

• User-defined table spaces
• User-defined storage groups
• User-defined database partition groups
• User-defined buffer pools

-x
Generates authorization DDL statements such as GRANT statements.

The supported authorizations include the following ones:

• Columns: UPDATE, REFERENCES
• Databases: ACCESSCTRL, BINDADD, CONNECT, CREATETAB, CREATE_EXTERNAL_ROUTINE,

CREATE_NOT_FENCED_ROUTINE, DATAACCESS, DBADM, EXPLAIN, IMPLICIT_SCHEMA, LOAD,
QUIESCE_CONNECT, SECADM, SQLADM, WLMADM

• Exemptions
• Global variables
• Indexes: CONTROL

Chapter 1. Data movement utilities and reference 165

• Packages: CONTROL, BIND, EXECUTE
• Roles
• Schemas: CREATEIN, DROPIN, ALTERIN
• Security labels
• Sequences: USAGE, ALTER
• Stored procedures: EXECUTE
• Tables: ALTER, SELECT, INSERT, DELETE, UPDATE, INDEX, REFERENCE, CONTROL
• Views: SELECT, INSERT, DELETE, UPDATE, CONTROL
• User-defined functions (UDFs): EXECUTE
• User-defined methods: EXECUTE
• Table spaces: USE
• Workloads: USAGE

Note: This parameter does not generate authorization DDL statements for dependent objects when
used with either the -t or -tw parameter. Use the -xdep parameter to generate authorization DDL
statements for parent and dependent objects.

-xdep
Generates authorization DDL statements, for example, GRANT statements, for parent and dependent
objects. This parameter is ignored if either the -t or -tw parameter is not specified. The supported
authorizations include the following ones:

• Columns: UPDATE, REFERENCES
• Indexes: CONTROL
• Stored procedures: EXECUTE
• Tables: ALTER, SELECT, INSERT, DELETE, UPDATE, INDEX, REFERENCE, CONTROL
• Table spaces: USE
• User-defined functions (UDFs): EXECUTE
• User-defined methods: EXECUTE
• Views: SELECT, INSERT, DELETE, UPDATE, CONTROL

-xd
Generates authorization DDL statements, including authorization DDL statements for objects whose
authorizations were granted by SYSIBM at object creation time. It does not generate the authorization
DDLs for system catalog tables and catalog views.

Note: This parameter does not generate authorization DDL statements for dependent objects when
used with either the -t or -tw parameter. Use the -xddep parameter to generate authorization DDL
statements for parent and dependent objects.

-xddep
Generates all authorization DDL statements for parent and dependent objects, including authorization
DDL statements for objects whose authorizations were granted by SYSIBM at object creation time.
This parameter is ignored if either the -t or -tw parameter is not specified.

-f
Extracts the configuration parameters and registry variables that affect the query optimizer.

-td delimiter
Specifies the statement delimiter for SQL statements that are generated by the db2look command.
The default delimiter is the semicolon (;). Use this parameter if you specify the -e parameter because
the extracted objects might contain triggers or SQL routines.

-noview
Specifies that CREATE VIEW DDL statements will not be extracted.

166 IBM Db2 V11.5: Data Movement Utilities Guide

-i userid
Specifies the user ID that the db2look command uses to log on to a remote system. When you
specify this parameter and the -w parameter, the db2look command can run against a database on a
remote system. The local and remote database must use the same Db2 for z/OS version.

-w password
Specifies the password that the db2look command uses to log on to a remote system. When you
specify this parameter and the -i parameter, the db2look command can run against a database on a
remote system. The local and remote database must use the same Db2 for z/OS version.

-wlm
Generates WLM-specific DDL output, which can serve to generate CREATE and ALTER statements for
the following items:

• Histograms
• Service classes
• Thresholds
• WLM event monitors
• Workloads
• Work action sets
• Work class sets

-wrap
Generates obfuscated versions of DDL statements for routines, triggers, views, and PL/SQL packages.

-wrapper Wname
Generates DDL statements for federated objects that apply to the specified wrapper. The federated
DDL statements that might be generated include the following ones:

• CREATE FUNCTION ... AS TEMPLATE
• CREATE FUNCTION MAPPING
• CREATE INDEX SPECIFICATION
• CREATE NICKNAME
• CREATE SERVER
• CREATE TYPE MAPPING
• CREATE USER MAPPING
• CREATE WRAPPER
• GRANT (privileges to nicknames, servers, indexes)

An error is returned if you do not specify a wrapper name or specify more than one.
-server Sname

Generates DDL statements for federated objects that apply to the specified server. The federated DDL
statements that might be generated include the following ones:

• CREATE FUNCTION ... AS TEMPLATE
• CREATE FUNCTION MAPPING
• CREATE INDEX SPECIFICATION
• CREATE NICKNAME
• CREATE SERVER
• CREATE TYPE MAPPING
• CREATE USER MAPPING
• CREATE WRAPPER
• GRANT (privileges to nicknames, servers, indexes)

An error is returned if you do not specify a server name or specify more than one.

Chapter 1. Data movement utilities and reference 167

-nofed
Specifies that no federated DDL statements will be generated. If you specify this parameter, the -
wrapper and -server parameters are ignored.

-fedonly
Specifies that only federated DDL statements will be generated.

-mod
Generates DDL statements for each module, and for all of the objects that are defined in each module.

-xs
Exports all files that are necessary to register XML schemas and DTDs at the target database and
generates appropriate commands for registering them. The set of XSR objects that is exported is
controlled by the -u, -z, and -a parameters.

-xdir dirname
Exports XML-related files into the specified path. If you do not specify this parameter, all XML-related
files are exported into the current directory.

-cor
Generates DDL statements with the CREATE OR REPLACE clause, regardless of whether or not the
statements originally contained that clause.

-noimplschema
Specifies that CREATE SCHEMA DDL statements for implicitly created schemas are not generated. If
you specify this parameter, you must also specify the -e parameter.

Examples
The following examples show how to use the db2look command:

• Generate the DDL statements for objects created by user walid in database DEPARTMENT. The output
is sent to the db2look.sql file.

 db2look -d department -u walid -e -o db2look.sql

• Generate the DDL statements for objects that have schema name ianhe, created by user walid, in
database DEPARTMENT. The output is sent to the db2look.sql file.

 db2look -d department -u walid -z ianhe -e -o db2look.sql

• Generate the UPDATE statements to replicate the statistics for the database objects created by user
walid in database DEPARTMENT. The output is sent to the db2look.sql file.

 db2look -d department -u walid -m -o db2look.sql

• Generate both the DDL statements for the objects created by user walid and the UPDATE statements
to replicate the statistics on the database objects created by the same user. The output is sent to the
db2look.sql file.

 db2look -d department -u walid -e -m -o db2look.sql

• Generate the DDL statements for objects created by all users in the database DEPARTMENT. The output
is sent to the db2look.sql file.

 db2look -d department -a -e -o db2look.sql

• Generate the DDL statements for all user-defined database partition groups, buffer pools and table
spaces. The output is sent to the db2look.sql file.

 db2look -d department -l -o db2look.sql

168 IBM Db2 V11.5: Data Movement Utilities Guide

• Generate the UPDATE statements for optimizer-related database and database manager configuration
parameters and the db2set commands for optimizer-related registry variables in database
DEPARTMENT. The output is sent to the db2look.sql file.

 db2look -d department -f -o db2look.sql

• Generate the db2set commands for optimizer-related registry variables and the following statements
for database DEPARTMENT:

– The DDL statements for all database objects
– The UPDATE statements to replicate the statistics on all tables and indexes
– The GRANT authorization statements
– The UPDATE statements for optimizer-related database and database manager configuration

parameters
– The db2set commands for optimizer-related registry variables
– The DDL statements for all user-defined database partition groups, buffer pools, and table spaces

The output is sent to the db2look.sql file.

 db2look -d department -a -e -m -l -x -f -o db2look.sql

• Generate all authorization DDL statements for all objects in database DEPARTMENT, including the
objects that were created by the original creator. (In this case, the authorizations were granted by
SYSIBM at object creation time.) The output is sent to the db2look.sql file.

 db2look -d department -xd -o db2look.sql

• Generate the DDL statements for objects created by all users in the database DEPARTMENT. The output
is sent to the db2look.sql file.

 db2look -d department -a -e -td % -o db2look.sql

The output can then be read by the CLP:

 db2 -td% -f db2look.sql

• Generate the DDL statements for objects in database DEPARTMENT, excluding the CREATE VIEW
statements. The output is sent to the db2look.sql file.

 db2look -d department -e -noview -o db2look.sql

• Generate the DDL statements for objects in database DEPARTMENT related to specified tables. The
output is sent to the db2look.sql file.

 db2look -d department -e -t tab1 "\"My TaBlE2\"" -o db2look.sql

• Generate the DDL statements for all objects (federated and non-federated) in the federated database
FEDDEPART. For federated DDL statements, only those that apply to the specified wrapper, FEDWRAP,
are generated. The output is sent to standard output.

 db2look -d feddepart -e -wrapper fedwrap

• Generate a script file that includes only non-federated DDL statements. The following system command
can be run against a federated database FEDDEPART and yet only produce output like that found when
run against a database which is not federated. The output is sent to the out.sql file.

 db2look -d feddepart -e -nofed -o out

Chapter 1. Data movement utilities and reference 169

• Generate the DDL statements for objects that have schema name walid in the database DEPARTMENT.
The files required to register any included XML schemas and DTDs are exported to the current directory.
The output is sent to the db2look.sql file.

 db2look -d department -z walid -e -xs -o db2look.sql

• Generate the DDL statements for objects that were created by all users in the database DEPARTMENT.
The files that are required to register any included XML schemas and DTDs are exported to the /home/
ofer/ofer/ directory. The output is sent to standard output.

 db2look -d department -a -e -xs -xdir /home/ofer/ofer/

• Generate only WLM-specific DDL statements for database DEPARTMENT:

db2look -d department -wlm

• Generate the DDL statements for all objects in database DEPARTMENT:

db2look -d department -wlm -e -l

• Generate the DDL statements for both the parent table TAB1 in schema TABLES and the dependent
view of TAB1 that is called VIEW1 in the VIEWS schema in database DB1. The output is sent to the
db2look.sql file.

db2look -d DB1 -t TABLES.TAB1 -e -o db2look.sql

• Generate the DDL statements and authorization DDL statements for the parent table TAB1 in schema
TABLES and the dependent view of TAB1 that is called VIEW1 in the VIEWS schema in database DB1.
The output is sent to the db2look.sql file.

db2look -d DB1 -t TABLES.TAB1 -e -xdep -o db2look.sql

• Generate the RUNSTATS DDL statements on the TABLE1 table in mimic mode. The output is sent to the
db2look.sql file. Not all available RUNSTATS clauses of the command are supported.

db2look -d DB1 -t TABLE1 -m -e -o db2look.sql

• Generate the CREATE DATABASE command that was used to create the database DEPARTMENT. The
output is sent to the db2look.sql file.

 db2look -d department -createdb -o db2look.sql

• Generate the UPDATE DB CFG statements from the database DEPARTMENT. The output is sent to the
db2look.sql file.

 db2look -d department -printdbcfg -o db2look.sql

• Generate the CREATE DATABASE command that was used to create the database, the UPDATE DB CFG
statements, and the DDL statements for objects created in the database DEPARTMENT. The output is
sent to the db2look.sql file.

 db2look -d department -createdb -printdbcfg -e -o db2look.sql

Usage notes

On Windows operating systems, you must issue the db2look command from a Db2 command window.

By default, the instance owner has the EXECUTE privilege on db2look packages. For other users to run
the db2look command, the instance owner has to grant the EXECUTE privilege on db2look packages.
To determine the db2look package names, the db2bfd command can be used as follows:

 cd .../sqllib/bnd
 db2bfd -b db2look.bnd

170 IBM Db2 V11.5: Data Movement Utilities Guide

 db2bfd -b db2lkfun.bnd
 db2bfd -b db2lksp.bnd

To create DDL statements for federated objects, you must enable the use of federated systems in the
database manager configuration. After the db2look command generates the script file, you must set the
federated configuration parameter to YES before running the script. The following db2look command
parameters are supported in a federated environment:
-ap

Generates AUDIT USING statements.
-e

Generates DDL statements for federated objects.
-f

Extracts federated-related information from the database manager configuration.
-m

Extracts statistics for nicknames.
-x

Generates GRANT statements to grant privileges on federated objects.
-xd

Generates DDL statements to add system-granted privileges to federated objects.
-wlm

Generates WLM-specific DDL statements.

If the nickname column and the remote table column are of different data types, then the db2look
command will generate an ALTER COLUMN statement for the nickname column.

You must modify the output script to add the remote passwords for the CREATE USER MAPPING
statements.

You must modify the db2look command output script by adding AUTHORIZATION and PASSWORD to
those CREATE SERVER statements that are used to define a Db2 family instance as a data source.

Usage of the -tw option is as follows:

• To both generate the DDL statements for objects in the DEPARTMENT database associated with tables
that have names beginning with abc and send the output to the db2look.sql file:

 db2look -d department -e -tw abc% -o db2look.sql

• To generate the DDL statements for objects in the DEPARTMENT database associated with tables that
have a d as the second character of the name and to send the output to the db2look.sql file:

 db2look -d department -e -tw _d% -o db2look.sql

• The db2look command uses the LIKE predicate when evaluating which table names match the pattern
specified by the Tname argument. Because the LIKE predicate is used, if either the _ character or the %
character is part of the table name, the backslash (\) escape character must be used immediately
before the _ or the %. In this situation, neither the _ nor the % can be used as a wildcard character in
Tname. For example, to generate the DDL statements for objects in the DEPARTMENT database
associated with tables that have a percent sign in the neither the first nor the last position of the name:

 db2look -d department -e -tw string\%string

• Case-sensitive, DBCS, and multi-word table and view names must be enclosed by both a backslash and
double quotation marks. For example:

 \"My TabLe\"

If a multibyte character set (MBCS) or double-byte character set (DBCS) name is not enclosed by the
backward slash and double quotation delimiter and if it contains the same byte as the lowercase

Chapter 1. Data movement utilities and reference 171

character, it will be converted into uppercase and db2look will look for a database object with the
converted name. As a result, the DDL statement will not be extracted.

• The -tw option can be used with the -x option (to generate GRANT privileges), the -m option (to return
table and column statistics), and the -l option (to generate the DDL for user-defined table spaces,
database partition groups, and buffer pools). If the -t option is specified with the -tw option, the -t
option (and its associated Tname argument) is ignored.

• The -tw option cannot be used to generate the DDL for tables (and their associated objects) that reside
on federated data sources, or on Db2 Universal Database on z/OS and OS/390®, Db2 for i , or Db2 Server
for VSE & VM.

• The -tw option is only supported via the CLP.

If you try to generate DDL statements on systems with a partitioned database environment, a warning
message is displayed in place of the DDL statements for table spaces that are on inactive database
partitions. To ensure that correct DDL statements are produced for all table spaces, you must activate all
database partitions.

You can issue the db2look command from a Db2 client to a database that is of the same or later release
as the client, but you cannot issue this command from a client to a database that is of an earlier release
than the client. For example, you can issue the db2look command from a Version 9.8 client to a Version
10.1 database, but you cannot issue the command from a Version 10.1 client to a Version 9.8 database.

When you invoke the db2look utility, the db2look command generates the DDL statements for any object
created using an uncommitted transaction.

When you extract a DDL statement for a security label component of type array, the extracted statement
might not generate a component whose internal representation (encoding of elements in that array)
matches that of the component in the database for which you issued the db2look command. This
mismatch can happen if you altered the security label component by adding one or more elements to it.
In such cases, data that you extract from one table and moved to another table that you created from
db2look output will not have corresponding security label values, and the protection of the new table
might be compromised.

In a partitioned database environment, if the database was created with table spaces managed by
Database Managed Space (DMS) or System Managed Space (SMS) with specified container paths
including those defined by $N expressions, the db2look -createdb generated CREATE DATABASE
command will list all container paths on each database partition, not just the original specified path or the
$N expression. Before you run the generated statement you must adjust the container setting. There is no
restriction with the automatic storage option in a partitioned database environment.

In a pureScale environment, the db2look -printdbcfg command generates the UPDATE DATABASE
CONFIGURATION values based on the values of the database member from where the db2look -
printdbcfg command is run.

Related information
Nickname column and index names
Upgrade changes that affect applications

Comparison between the ingest, import, and load utilities
The following tables summarize some of the key similarities and differences between the ingest, import,
and load utilities.

Table 16. Supported table types

Table type Ingest Load Import

Detached table not
supported

not
supported

not
supported

172 IBM Db2 V11.5: Data Movement Utilities Guide

Table 16. Supported table types (continued)

Table type Ingest Load Import

Global
temporary table

not
supported

not
supported

not
supported

Multidimension
al clustering
(MDC) or insert
time clustering
(ITC) table

supported supported supported

Materialized
query table
(MQT) that is
maintained by
user

supported supported supported

Nickname supported not
supported

supported

Range-
clustered table
(RCT)

supported not
supported

supported

Range-
partitioned
table

supported supported supported

Summary table supported supported supported

Temporal table supported supported supported

Typed table not
supported

not
supported

supported

Untyped
(regular) table

supported supported supported

Updatable view
(except typed
view)

supported not
supported

supported

Table 17. Supported data types

Table type Ingest Load Import

Numeric:
SMALLINT,
INTEGER,
BIGINT,
DECIMAL,
REAL, DOUBLE,
DECFLOAT

supported supported supported

Chapter 1. Data movement utilities and reference 173

Table 17. Supported data types (continued)

Table type Ingest Load Import

Character:
CHAR,
VARCHAR,
NCHAR,
NVARCHAR,
plus
corresponding
FOR BIT DATA
types

supported supported supported

Graphic:
GRAPHIC,
VARGRAPHIC

supported supported supported

Long types:
LONG
VARCHAR,
LONG
VARGRAPHIC

supported supported supported

Date/time:
DATE, TIME,
TIMESTAMP,
including
TIMESTAMP(p)

supported supported supported

BOOLEAN supported supported supported

DB2SECURITYL
ABEL

supported supported supported

LOBs from files:
BLOB, CLOB,
DBCLOB,
NCLOB

not
supported

supported supported

Inline LOBs not
supported

supported supported

XML from files not
supported

supported supported

Inline XML not
supported

supported supported

Distinct type supported
(if based on
a supported
built-in
data type)

supported supported

Structured type not
supported

not
supported

supported

Reference type supported supported supported

174 IBM Db2 V11.5: Data Movement Utilities Guide

Table 18. Supported input sources

Input type Ingest
Restartable?

Load
Restartable?

Import
Restartable?

Cursor not supported
n/a

supported
yes

not supported
n/a

Device not supported
n/a

supported
yes

not supported
n/a

File supported
yes

supported
yes

supported
yes

Pipe supported
yes

supported
yes

not supported
n/a

Table 19. Supported input formats

Table type Ingest Load Import

ASC (including
binary)

supported supported supported

not
supported

not
supported

not
supported

DEL supported supported supported

IXF not
supported

supported supported

There are a number of other important differences that distinguish the ingest utility from the load and
import utility:

• The ingest utility allows the input records to contain extra fields between the fields that correspond to
columns.

• The ingest utility supports update, delete, and merge.
• The ingest utility supports constructing column values from expressions containing field values.
• The ingest utility allows other applications to update the target table while ingest is running.

File formats and data types

Export/Import/Load utility file formats
Four operating system file formats supported by the Db2 export, import, and load utilities are described:
DEL

Delimited ASCII, for data exchange among a wide variety of database managers and file managers.
This common approach to storing data uses special character delimiters to separate column values.

ASC
Non-delimited ASCII, for importing or loading data from other applications that create flat text files
with aligned column data.

PC/IXF
PC version of the Integration Exchange Format (IXF), the preferred method for data exchange within
the database manager. PC/IXF is a structured description of a database table that contains an
external representation of the internal table.

CURSOR
A cursor declared against an SQL query. This file type is only supported by the load utility.

Chapter 1. Data movement utilities and reference 175

When using DEL or ASC data file formats, define the table, including its column names and data types,
before importing the file. The data types in the operating system file fields are converted into the
corresponding type of data in the database table. The import utility accepts data with minor
incompatibility problems, including character data imported with possible padding or truncation, and
numeric data imported into different types of numeric fields.

When using the PC/IXF data file format, the table does not need to exist before you begin the import
operation. However, the user-defined distinct type (UDT) does need to be defined, otherwise you receive
an undefined name error (SQL0204N). Similarly, when you are exporting to the PC/IXF data file format,
UDTs are stored in the output file.

When using the CURSOR file type, the table, including its column names and data types, must be defined
before beginning the load operation. The column types of the SQL query must be compatible with the
corresponding column types in the target table. It is not necessary for the specified cursor to be open
before starting the load operation. The load utility will process the entire result of the query associated
with the specified cursor whether or not the cursor has been used to fetch rows.

Moving data across platforms - file format considerations
Compatibility is important when exporting, importing, or loading data across platforms. The following
sections describe PC/IXF and delimited ASCII (DEL) file format considerations when moving data
between different operating systems.

PC/IXF file format

PC/IXF is the recommended file format for transferring data across platforms. PC/IXF files allow the load
utility or the import utility to process (normally machine dependent) numeric data in a machine-
independent fashion. For example, numeric data is stored and handled differently by Intel and other
hardware architectures.

To provide compatibility of PC/IXF files among all products in the Db2 family, the export utility creates
files with numeric data in Intel format, and the import utility expects it in this format.

Depending on the hardware platform, Db2 products convert numeric values between Intel and non-Intel
formats (using byte reversal) during both export and import operations.

Implementations of Db2 database based on UNIX operating systems not create multiple-part PC/IXF files
during export. However, they allow you to import a multiple-part PC/IXF file that was created by Db2.
When importing this type of file, all parts should be in the same directory, otherwise an error is returned.

Single-part PC/IXF files created on UNIX operating systems with the Db2 export utility can be imported
by Db2 database for Windows.

Delimited ASCII (DEL) file format

DEL files have differences based on the operating system on which they were created. The differences
are:

• Row separator characters

– Text files from UNIX operating systems use a line feed (LF) character.
– Text files from other operating systems use a carriage return/line feed (CRLF) sequence.

• End-of-file character

– Text files from UNIX operating systems do not have an end-of-file character.
– Text files from other operating systems have an end-of-file character (X'1A').

Since DEL export files are text files, they can be transferred from one operating system to another. File
transfer programs can handle operating system-dependant differences if you transfer the files in text
mode; the conversion of row separator and end-of-file characters is not performed in binary mode.

Note: If character data fields contain row separator characters, these will also be converted during file
transfer. This conversion causes unexpected changes to the data and, for this reason, it is recommended
that you do not use DEL export files to move data across platforms. Use the PC/IXF file format instead.

176 IBM Db2 V11.5: Data Movement Utilities Guide

Delimited ASCII (DEL) file format

A Delimited ASCII (DEL) file is a sequential ASCII file with row and column delimiters. Each DEL file is a
stream of ASCII characters consisting of cell values ordered by row, and then by column. Rows in the data
stream are separated by row delimiters; within each row, individual cell values are separated by column
delimiters.

The following table describes the format of DEL files that can be imported, or that can be generated as the
result of an export action.

DEL file ::= Row 1 data || Row delimiter ||
 Row 2 data || Row delimiter ||
 .
 .
 .
 Row n data || Optional row delimiter

Row i data ::= Cell value(i,1) || Column delimiter ||
 Cell value(i,2) || Column delimiter ||
 .
 .
 .
 Cell value(i,m)

Row delimiter ::= ASCII line feed sequencea

Column delimiter ::= Default value ASCII comma (,)b

Cell value(i,j) ::= Leading spaces
 || ASCII representation of a numeric value
 (integer, decimal, or float)
 || Delimited character string
 || Non-delimited character string
 || Trailing spaces

Non-delimited character string ::= A set of any characters except a
 row delimiter or a column delimiter

Delimited character string ::= A character string delimiter ||
 An extended character string ||
 A character string delimiter ||
 Trailing garbage

Trailing garbage ::= A set of any characters except a row delimiter
 or a column delimiter

Character string delimiter ::= Default value ASCII double quotation
 marks (")c

extended character string ::= || A set of any characters except a
 row delimiter or a character string
 delimiter if the NODOUBLEDEL
 modifier is specified
 || A set of any characters except a
 row delimiter or a character string
 delimiter if the character string
 is not part of two consecutive
 character string delimiters
 || A set of any characters except a
 character string delimiter if the
 character string delimiter is not
 part of two consecutive character
 string delimiters, and the DELPRIORITYCHAR
 modifier is specified

End-of-file character ::= Hex '1A' (Windows operating system only)

ASCII representation of a numeric valued ::= Optional sign '+' or '-'
 || 1 to 31 decimal digits with an optional decimal point before,
 after, or between two digits
 || Optional exponent

Exponent ::= Character 'E' or 'e'
 || Optional sign '+' or '-'
 || 1 to 3 decimal digits with no decimal point

Decimal digit ::= Any one of the characters '0', '1', ... '9'

Chapter 1. Data movement utilities and reference 177

Decimal point ::= Default value ASCII period (.)e

• a The record delimiter is assumed to be a new line character, ASCII x0A. Data generated on the
Windows operating system can use the carriage return/line feed 2-byte standard of 0x0D0A. Data in
EBCDIC code pages should use the EBCDIC LF character (0x25) as the record delimiter (EBCDIC data
can be loaded using the code page file type modifier with the LOAD command).

• b The column delimiter can be specified with the coldel file type modifier.
• c The character string delimiter can be specified with the chardel file type modifier.

Note: The default priority of delimiters is:

1. Record delimiter
2. Character delimiter
3. Column delimiter

• d If the ASCII representation of a numeric value contains an exponent, it is a FLOAT constant. If it has a
decimal point but no exponent, it is a DECIMAL constant. If it has no decimal point and no exponent, it
is an INTEGER constant.

• e The decimal point character can be specified with the decpt file type modifier.

The export utility will replace every character string delimiter byte (default is double quote or x22) that is
embedded within column data with two character string delimiter bytes (ie. doubling it). This is done so
that the import parsing routines can distinguish between a character string delimiter byte that defines the
beginning or end of a column, versus a character string delimiter byte embedded within the column data.
Take caution when using an exported DEL file for some application other than the export utility, and note
that the same doubling of character string delimiters occurs within 'FOR BIT' binary column data.

DEL data type descriptions
The following table lists the data types and the acceptable forms for each one for the import and load
utilities.

Table 20. Acceptable data type forms for the DEL file format

Data type Form in files created by the
export utility

Form acceptable to the import
and load utilities

BIGINT An INTEGER constant in the
range -9223372036854775808
to 9223372036854775807.

An ASCII representation of a
numeric value in the range
-9223372036854775808 to
9223372036854775807.
Decimal and float numbers are
truncated to integer values.

BLOB, CLOB Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or non-delimited
character string. The character
string is used as the database
column value.

BLOB_FILE, CLOB_FILE The character data for each
BLOB/CLOB column is stored in
individual files, and the file name
is enclosed by character
delimiters.

The delimited or non-delimited
name of the file that holds the
data.

BOOLEAN A Boolean value of 1 or 0. Other
values (TRUE or FALSE, YES or
NO, etc.) cannot be used.

A delimited or non-delimited
character string containing the
character "1" (indicating TRUE)
or "0" (indicating FALSE).

178 IBM Db2 V11.5: Data Movement Utilities Guide

Table 20. Acceptable data type forms for the DEL file format (continued)

Data type Form in files created by the
export utility

Form acceptable to the import
and load utilities

CHAR Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or non-delimited
character string. If required to
match the width of the target
column, the character string is
leading truncated or padded with
trailing spaces (X'20').

DATE yyyymmdd (year month day) with
no character delimiters. For
example: 19931029 for 29
October 1993.

Alternatively, the DATESISO
option can be used to specify
that all date values are to be
exported in ISO format.

A delimited or non-delimited
character string containing a date
value in an ISO format consistent
with the territory code of the
target database, or a non-
delimited character string of the
form yyyymmdd.

DBCLOB (DBCS only) Graphic data is exported as a
delimited character string.

A delimited or non-delimited
character string, an even number
of bytes in length. The character
string is used as the database
column value.

DBCLOB_FILE (DBCS only) The character data for each
DBCLOB column is stored in
individual files, and the file name
is enclosed by character
delimiters.

The delimited or non-delimited
name of the file that holds the
data.

DB2SECURITYLABEL Column data is exported as "raw"
data enclosed in quotation marks
("). Use the SECLABEL_TO_CHAR
scalar function in the SELECT
statement to convert the value to
the security label string format.

The value in the data file is
assumed by default to be the
actual bytes that make up the
internal representation of that
security label, delimited by
quotation marks (" ").

DECIMAL A DECIMAL constant with the
precision and scale of the field
being exported. The
decplusblank file type modifier
can be used to specify that
positive decimal values are to be
prefixed with a blank space
instead of a plus sign (+).

An ASCII representation of a
numeric value that does not
overflow the range of the
database column into which the
field is being imported. If the
input value has more digits after
the decimal point than can be
accommodated by the database
column, the excess digits are
truncated.

FLOAT(long) A FLOAT constant in the range
-10E307 to 10E307.

An ASCII representation of a
numeric value in the range
-10E307 to 10E307.

Chapter 1. Data movement utilities and reference 179

Table 20. Acceptable data type forms for the DEL file format (continued)

Data type Form in files created by the
export utility

Form acceptable to the import
and load utilities

GRAPHIC (DBCS only) Graphic data is exported as a
delimited character string.

A delimited or non-delimited
character string, an even number
of bytes in length. The character
string is truncated or padded
with double-byte spaces (for
example, X'8140'), if necessary,
to match the width of the
database column.

INTEGER An INTEGER constant in the
range -2147483648 to
2147483647.

ASCII representation of a
numeric value in the range
-2147483648 to 2147483647.
Decimal and float numbers are
truncated to integer values.

LONG VARCHAR Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or non-delimited
character string. The character
string is used as the database
column value.

LONG VARGRAPHIC (DBCS only) Graphic data is exported as a
delimited character string.

A delimited or non-delimited
character string, an even number
of bytes in length. The character
string is used as the database
column value.

SMALLINT An INTEGER constant in the
range -32768 to 32767.

AnASCII representation of a
numeric value in the range
-32768 to 32767. Decimal and
float numbers are truncated to
integer values.

TIME hh.mm.ss (hour minutes
seconds). A time value in ISO
format enclosed by character
delimiters, as shown in the
following example:
"09.39.43"

A delimited or non-delimited
character string containing a time
value in a format consistent with
the territory code of the target
database.

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn
(year month day hour minutes
seconds microseconds). A
character string representing a
date and time enclosed by
character delimiters.

A delimited or non-delimited
character string containing a time
stamp value acceptable for
storage in a database.

VARCHAR Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or non-delimited
character string. If required to
match the width of the target
column, the character string is
leading or trailing truncated.

180 IBM Db2 V11.5: Data Movement Utilities Guide

Table 20. Acceptable data type forms for the DEL file format (continued)

Data type Form in files created by the
export utility

Form acceptable to the import
and load utilities

VARGRAPHIC (DBCS only) Graphic data is exported as a
delimited character string.

A delimited or non-delimited
character string, an even number
of bytes in length. The character
string is truncated, if necessary,
to match the maximum width of
the database column.

Example DEL file

Following is an example of a DEL file. Each line ends with a line feed sequence (on the Windows operating
system, each line ends with a carriage return/line feed sequence).

 "Smith, Bob",4973,15.46
 "Jones, Bill",12345,16.34
 "Williams, Sam",452,193.78

The following example illustrates the use of non-delimited character strings. The column delimiter has
been changed to a semicolon, because the character data contains a comma.

 Smith, Bob;4973;15.46
 Jones, Bill;12345;16.34
 Williams, Sam;452;193.78

Note:

1. A space (X'20') is never a valid delimiter.
2. Spaces that precede the first character, or that follow the last character of a cell value, are discarded

during import. Spaces that are embedded in a cell value are not discarded.
3. A period (.) is not a valid character string delimiter, because it conflicts with periods in time stamp

values.
4. For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the range of x00 to x3F,

inclusive.
5. For DEL data specified in an EBCDIC code page, the delimiters might not coincide with the shift-in and

shift-out DBCS characters.
6. On the Windows operating system, the first occurrence of an end-of-file character (X'1A') that is not

within character delimiters indicates the end-of-file. Any subsequent data is not imported.
7. A null value is indicated by the absence of a cell value where one would normally occur, or by a string

of spaces.
8. Since some products restrict character fields to 254 or 255 bytes, the export utility generates a

warning message whenever a character column of maximum length greater than 254 bytes is selected
for export. The import utility accommodates fields that are as long as the longest LONG VARCHAR and
LONG VARGRAPHIC columns.

Delimiter considerations for moving data
When moving delimited ASCII (DEL) files, it is important to ensure that the data being moved is not
unintentionally altered because of problems with delimiter character recognition. To help prevent these
errors, Db2 enforces several restrictions and provides a number of file type modifiers.

Delimiter restrictions

There are a number of restrictions in place that help prevent the chosen delimiter character from being
treated as a part of the data being moved. First, delimiters are mutually exclusive. Second, a delimiter
cannot be binary zero, a line-feed character, a carriage-return, or a blank space. As well, the default

Chapter 1. Data movement utilities and reference 181

decimal point (.) cannot be a string delimiter. Finally, in a DBCS environment, the pipe (|) character
delimiter is not supported.

The following characters are specified differently by an ASCII-family code page and an EBCDIC-family
code page:

• The Shift-In (0x0F) and the Shift-Out (0x0E) character cannot be delimiters for an EBCDIC MBCS data
file.

• Delimiters for MBCS, EUC, or DBCS code pages cannot be greater than 0x40, except the default decimal
point for EBCDIC MBCS data, which is 0x4b.

• Default delimiters for data files in ASCII code pages or EBCDIC MBCS code pages are:

– string delimiter: "(0x22, double quotation mark)
– column delimiter: ,(0x2c, comma)

• Default delimiters for data files in EBCDIC SBCS code pages are:

– string delimiter: "(0x7F, double quotation mark)
– column delimiter: ,(0x6B, comma)

• The default decimal point for ASCII data files is 0x2e (period).
• The default decimal point for EBCDIC data files is 0x4B (period).
• If the code page of the server is different from the code page of the client, it is recommended that the

hex representation of non-default delimiters be specified. For example,

 db2 load from ... modified by chardel0x0C coldelX1e ...

Issues with delimiters during data movement
Double character delimiters

By default, for character-based fields of a DEL file, any instance of the character delimiter found
within the field is represented by double character delimiters. For example, assuming that the
character delimiter is the double quote, if you export the text I am 6" tall., the output text in the
DEL file reads "I am 6"" tall." Conversely, if the input text in a DEL file reads "What a
""nice"" day!", the text is imported as What a "nice" day!

nodoubledel
Double character delimiter behavior can be disabled for the import, export, and load utilities by
specifying the nodoubledel file type modifier. However, be aware that double character
delimiter behavior exists in order to avoid parsing errors. When you use nodoubledel with
export, the character delimiter is not doubled if it is present in character fields. When you use
nodoubledel with import and load, the double character delimiter is not interpreted as a literal
instance of the character delimiter.

nochardel
When you use the nochardel file type modifier with export, the character fields are not
surrounded by character delimiters. When nochardel is used import and load, the character
delimiters are not treated as special characters and are interpreted as actual data.

chardel
Other file type modifiers can be used to manually prevent confusion between default delimiters
and the data. Thechardel file type modifier specifies x, a single character, as the character string
delimiter to be used instead of double quotation marks (as is the default).

coldel
Similarly, if you wanted to avoid using the default comma as a column delimiter, you could use
coldel, which specifies x, a single character, as the column data delimiter.

delprioritychar
Another concern in regards to moving DEL files is maintaining the correct precedence order for
delimiters. The default priority for delimiters is: row, character, column. However, some

182 IBM Db2 V11.5: Data Movement Utilities Guide

applications depend on the priority: character, row, column. For example, using the default
priority, the DEL data file:

"Vincent <row delimiter> is a manager",<row delimiter>

would be interpreted as having two rows: Vincent, and is a manager, since <row delimiter>
takes precedence over the character delimiter ("). Using delprioritychar gives the character
delimiter (") precedence over the row delimiter (<row delimiter>), meaning that the same DEL
file would be interpreted (correctly) as having one row: Vincent is a manager.

Non-delimited ASCII (ASC) file format

The non-delimited ASCII format, known as ASC to the import and load utilities, comes in two varieties:
fixed length and flexible length. For fixed length ASC, all records are of a fixed length. For flexible length
ASC, records are delimited by a row delimiter (always a new line). The term non-delimited in non-
delimited ASCII means that column values are not separated by delimiters.

When importing or loading ASC data, specifying the reclen file type modifier will indicate that the
datafile is fixed length ASC. Not specifying it means that the datafile is flexible length ASC.

The non-delimited ASCII format, can be used for data exchange with any ASCII product that has a
columnar format for data, including word processors. Each ASC file is a stream of ASCII characters
consisting of data values ordered by row and column. Rows in the data stream are separated by row
delimiters. Each column within a row is defined by a beginning-ending location pair (specified by IMPORT
parameters). Each pair represents locations within a row specified as byte positions. The first position
within a row is byte position 1. The first element of each location pair is the byte on which the column
begins, and the second element of each location pair is the byte on which the column ends. The columns
might overlap. Every row in an ASC file has the same column definition.

An ASC file is defined by:

ASC file ::= Row 1 data || Row delimiter ||
 Row 2 data || Row delimiter ||
 .
 .
 .
 Row n data

Row i data ::= ASCII characters || Row delimiter

Row Delimiter ::= ASCII line feed sequencea

• a The record delimiter is assumed to be a new line character, ASCII x0A. Data generated on the
Windows operating system can use the carriage return/line feed 2-byte standard of 0x0D0A. Data in
EBCDIC code pages should use the EBCDIC LF character (0x25) as the record delimiter (EBCDIC data
can be loaded using the codepage file type modifier with the LOAD command). The record delimiter is
never interpreted to be part of a field of data.

Chapter 1. Data movement utilities and reference 183

ASC data type descriptions
The following table lists the data types and the acceptable forms for each one for the import and load
utilities.

Table 21. Acceptable Data Type Forms for the ASC File Format

Data type Acceptable forms

BIGINT A constant in any numeric type (SMALLINT, INTEGER, BIGINT, DECIMAL,
or FLOAT) is accepted. Individual values are rejected if they are not in the
range -9223372036854775808 to 9223372036854775807. Decimal
numbers are truncated to integer values. A comma, period, or colon is
considered to be a decimal point. Thousands separators are not allowed.

The beginning and ending locations should specify a field whose width
does not exceed 50 bytes. Integers, decimal numbers, and the mantissas
of floating point numbers can have no more than 31 digits. Exponents of
floating point numbers can have no more than 3 digits.

BLOB/CLOB A string of characters. The character string is truncated on the right, if
necessary, to match the maximum length of the target column. If the ASC
truncate blanks option is in effect, trailing blanks are stripped from the
original or the truncated string.

BLOB_FILE, CLOB_FILE,
DBCLOB_FILE (DBCS only)

A delimited or non-delimited name of the file that holds the data.

BOOLEAN A Boolean value of 1 or 0. Other values (TRUE or FALSE, YES or NO, etc.)
cannot be used.

CHAR A string of characters. If required to match the width of the target column,
the character string is leading truncated or padded with trailing spaces.

DATE A character string representing a date value in a format consistent with
the territory code of the target database.

The beginning and ending locations should specify a field width that is
within the range for the external representation of a date.

DBCLOB (DBCS only) A string of an even number of bytes. A string of an odd number of bytes is
invalid and is not accepted. A valid string is truncated on the right, if
necessary, to match the maximum length of the target column.

DECIMAL A constant in any numeric type (SMALLINT, INTEGER, BIGINT, DECIMAL,
or FLOAT) is accepted. Individual values are rejected if they are not in the
range of the database column into which they are being imported. If the
input value has more digits after the decimal point than the scale of the
database column, the excess digits are truncated. A comma, period, or
colon is considered to be a decimal point. Thousands separators are not
allowed.

The beginning and ending locations should specify a field whose width
does not exceed 50 bytes. Integers, decimal numbers, and the mantissas
of floating point numbers can have no more than 31 digits. Exponents of
floating point numbers can have no more than 3 digits.

184 IBM Db2 V11.5: Data Movement Utilities Guide

Table 21. Acceptable Data Type Forms for the ASC File Format (continued)

Data type Acceptable forms

FLOAT(long) A constant in any numeric type (SMALLINT, INTEGER, BIGINT, DECIMAL,
or FLOAT) is accepted. All values are valid. A comma, period, or colon is
considered to be a decimal point. An uppercase or lowercase E is
accepted as the beginning of the exponent of a FLOAT constant.

The beginning and ending locations should specify a field whose width
does not exceed 50 bytes. Integers, decimal numbers, and the mantissas
of floating point numbers can have no more than 31 digits. Exponents of
floating point numbers can have no more than 3 digits.

GRAPHIC (DBCS only) A string of an even number of bytes. A string of an odd number of bytes is
invalid and is not accepted. A valid string is truncated or padded with
double-byte spaces (0x8140) on the right, if necessary, to match the
maximum length of the target column.

INTEGER A constant in any numeric type (SMALLINT, INTEGER, BIGINT, DECIMAL,
or FLOAT) is accepted. Individual values are rejected if they are not in the
range -2147483648 to 2147483647. Decimal numbers are truncated to
integer values. A comma, period, or colon is considered to be a decimal
point. Thousands separators are not allowed.

The beginning and ending locations should specify a field whose width
does not exceed 50 bytes. Integers, decimal numbers, and the mantissas
of floating point numbers can have no more than 31 digits. Exponents of
floating point numbers can have no more than 3 digits.

LONG VARCHAR A string of characters. If required to match the maximum length of the
target column, the character string is leading truncated. If the ASC
truncate blanks option is in effect, trailing blanks are stripped from the
original or the truncated string.

LONG VARGRAPHIC (DBCS
only)

A string of an even number of bytes. A string of an odd number of bytes is
invalid and is not accepted. A valid string is truncated on the right, if
necessary, to match the maximum length of the target column.

SMALLINT A constant in any numeric type (SMALLINT, INTEGER, BIGINT, DECIMAL,
or FLOAT) is accepted. Individual values are rejected if they are not in the
range -32768 to 32767. Decimal numbers are truncated to integer
values. A comma, period, or colon is considered to be a decimal point.
Thousands separators are not allowed.

The beginning and ending locations should specify a field whose width
does not exceed 50 bytes. Integers, decimal numbers, and the mantissas
of floating point numbers can have no more than 31 digits. Exponents of
floating point numbers can have no more than 3 digits.

TIME A character string representing a time value in a format consistent with
the territory code of the target database.

The beginning and ending locations should specify a field width that is
within the range for the external representation of a time.

TIMESTAMP A character string representing a time stamp value acceptable for storage
in a database.

The beginning and ending locations should specify a field width that is
within the range for the external representation of a time stamp.

Chapter 1. Data movement utilities and reference 185

Table 21. Acceptable Data Type Forms for the ASC File Format (continued)

Data type Acceptable forms

VARCHAR A string of characters. If required to match the maximum length of the
target column, the character string is leading truncated. If the ASC
truncate blanks option is in effect, trailing blanks are stripped from the
original or the truncated string.

VARGRAPHIC (DBCS only) A string of an even number of bytes. A string of an odd number of bytes is
invalid and is not accepted. A valid string is truncated on the right, if
necessary, to match the maximum length of the target column.

Example ASC file

Following is an example of an ASC file. Each line ends with a line feed sequence (on the Windows
operating system, each line ends with a carriage return/line feed sequence).

 Smith, Bob 4973 15.46
 Jones, Suzanne 12345 16.34
 Williams, Sam 452123 193.78

Note:

1. ASC files are assumed not to contain column names.
2. Character strings are not enclosed by delimiters. The data type of a column in the ASC file is

determined by the data type of the target column in the database table.
3. A NULL is imported into a nullable database column if:

• A field of blanks is targeted for a numeric, DATE, TIME, or TIMESTAMP database column
• A field with no beginning and ending location pairs is specified
• A location pair with beginning and ending locations equal to zero is specified
• A row of data is too short to contain a valid value for the target column
• The NULL INDICATORS load option is used, and an N (or other value specified by the user) is found

in the null indicator column.
4. If the target column is not nullable, an attempt to import a field of blanks into a numeric, DATE, TIME,

or TIMESTAMP column causes the row to be rejected.
5. If the input data is not compatible with the target column, and that column is nullable, a null is

imported or the row is rejected, depending on where the error is detected. If the column is not
nullable, the row is rejected. Messages are written to the message file, specifying incompatibilities
that are found.

PC version of IXF file format

The PC version of IXF (PC/IXF) file format is a database manager adaptation of the Integration Exchange
Format (IXF) data interchange architecture. The IXF architecture was specifically designed to enable the
exchange of relational database structures and data. The PC/IXF architecture allows the database
manager to export a database without having to anticipate the requirements and idiosyncrasies of a
receiving product. Similarly, a product importing a PC/IXF file need only understand the PC/IXF
architecture; the characteristics of the product which exported the file are not relevant. The PC/IXF file
architecture maintains the independence of both the exporting and the importing database systems.

The IXF architecture is a generic relational database exchange format that supports a rich set of relational
data types, including some types that might not be supported by specific relational database products.
The PC/IXF file format preserves this flexibility; for example, the PC/IXF architecture supports both
single-byte character string (SBCS) and double-byte character string (DBCS) data types. Not all
implementations support all PC/IXF data types; however, even restricted implementations provide for the
detection and disposition of unsupported data types during import.

186 IBM Db2 V11.5: Data Movement Utilities Guide

In general, a PC/IXF file consists of an unbroken sequence of variable-length records. The file contains
the following record types in the order shown:

• One header record of record type H
• One table record of record type T
• Multiple column descriptor records of record type C (one record for each column in the table)
• Multiple data records of record type D (each row in the table is represented by one or more D records).

A PC/IXF file might also contain application records of record type A, anywhere after the H record. These
records are permitted in PC/IXF files to enable an application to include additional data, not defined by
the PC/IXF format, in a PC/IXF file. A records are ignored by any program reading a PC/IXF file that does
not have particular knowledge about the data format and content implied by the application identifier in
the A record.

Every record in a PC/IXF file begins with a record length indicator. This is a 6-byte right-aligned character
representation of an integer value specifying the length, in bytes, of the portion of the PC/IXF record that
follows the record length indicator; that is, the total record size minus 6 bytes. Programs reading PC/IXF
files should use these record lengths to locate the end of the current record and the beginning of the next
record. H, T, and C records must be sufficiently large to include all of their defined fields, and, of course,
their record length fields must agree with their actual lengths. However, if extra data (for example, a new
field), is added to the end of one of these records, pre-existing programs reading PC/IXF files should
ignore the extra data, and generate no more than a warning message. Programs writing PC/IXF files,
however, should write H, T and C records that are the precise length needed to contain all of the defined
fields.

If a PC/IXF file contains LOB Location Specifier (LLS) columns, each LLS column must have its own D
record. D records are automatically created by the export utility, but you will need to create them
manually if you are using a third party tool to generate the PC/IXF files. Further, an LLS is required for
each LOB column in a table, including those with a null value. If a LOB column is null, you will need to
create an LLS representing a null LOB.

The D record entry for each XML column will contain two bytes little endian indicating the XML data
specifier (XDS) length, followed by the XDS itself.

For example, the following XDS:

 XDS FIL="a.xml" OFF="1000" LEN="100" SCH="RENATA.SCHEMA" />

will be represented by the following bytes in a D record:

 0x3D 0x00 XDS FIL="a.xml" OFF="1000" LEN="100" SCH="RENATA.SCHEMA" />

PC/IXF file records are composed of fields which contain character data. The import and export utilities
interpret this character data using the CPGID of the target database, with two exceptions:

• The IXFADATA field of A records.

The code page environment of character data contained in an IXFADATA field is established by the
application which creates and processes a particular A record; that is, the environment varies by
implementation.

• The IXFDCOLS field of D records.

The code page environment of character data contained in an IXFDCOLS field is a function of
information contained in the C record which defines a particular column and its data.

Numeric fields in H, T, and C records, and in the prefix portion of D and A records should be right-aligned
single-byte character representations of integer values, filled with leading zeros or blanks. A value of zero
should be indicated with at least one (right-aligned) zero character, not blanks. Whenever one of these
numeric fields is not used, for example IXFCLENG, where the length is implied by the data type, it should
be filled with blanks. These numeric fields are:

 IXFHRECL, IXFTRECL, IXFCRECL, IXFDRECL, IXFARECL,
 IXFHHCNT, IXFHSBCP, IXFHDBCP, IXFTCCNT, IXFTNAML,

Chapter 1. Data movement utilities and reference 187

 IXFCLENG, IXFCDRID, IXFCPOSN, IXFCNAML, IXFCTYPE,
 IXFCSBCP, IXFCDBCP, IXFCNDIM, IXFCDSIZ, IXFDRID

Note: The database manager PC/IXF file format is not identical to the System/370.

PC/IXF record types

There are five basic PC/IXF record types:

• header
• table
• column descriptor
• data
• application

There are seven application subtypes that Db2 uses:

• index
• hierarchy
• subtable
• continuation
• terminate
• identity
• Db2 SQLCA

Each PC/IXF record type is defined as a sequence of fields; these fields are required, and must appear in
the order shown.

HEADER RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- ------- --------- -------------
 IXFHRECL 06-BYTE CHARACTER record length
 IXFHRECT 01-BYTE CHARACTER record type = 'H'
 IXFHID 03-BYTE CHARACTER IXF identifier
 IXFHVERS 04-BYTE CHARACTER IXF version
 IXFHPROD 12-BYTE CHARACTER product
 IXFHDATE 08-BYTE CHARACTER date written
 IXFHTIME 06-BYTE CHARACTER time written
 IXFHHCNT 05-BYTE CHARACTER heading record count
 IXFHSBCP 05-BYTE CHARACTER single byte code page
 IXFHDBCP 05-BYTE CHARACTER double byte code page
 IXFHFIL1 02-BYTE CHARACTER reserved

The following fields are contained in the header record:
IXFHRECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. The H record must be sufficiently long to include all of its defined
fields.

IXFHRECT
The IXF record type, which is set to H for this record.

IXFHID
The file format identifier, which is set to IXF for this file.

IXFHVERS
The PC/IXF format level used when the file was created, which is set to '0002'.

IXFHPROD
A field that can be used by the program creating the file to identify itself. If this field is filled in, the
first six bytes are used to identify the product creating the file, and the last six bytes are used to

188 IBM Db2 V11.5: Data Movement Utilities Guide

indicate the version or release of the creating product. The database manager uses this field to signal
the existence of database manager-specific data.

IXFHDATE
The date on which the file was written, in the form yyyymmdd.

IXFHTIME
The time at which the file was written, in the form hhmmss. This field is optional and can be left blank.

IXFHHCNT
The number of H, T, and C records in this file that precede the first data record. A records are not
included in this count.

IXFHSBCP
Single-byte code page field, containing a single-byte character representation of a SBCS CPGID or
'00000'.

The export utility sets this field equal to the SBCS CPGID of the exported database table. For example,
if the table SBCS CPGID is 850, this field contains '00850'.

IXFHDBCP
Double-byte code page field, containing a single-byte character representation of a DBCS CPGID or
'00000'.

The export utility sets this field equal to the DBCS CPGID of the exported database table. For
example, if the table DBCS CPGID is 301, this field contains '00301'.

IXFHFIL1
Spare field set to two blanks to match a reserved field in host IXF files.

TABLE RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- ------- --------- -------------

 IXFTRECL 006-BYTE CHARACTER record length
 IXFTRECT 001-BYTE CHARACTER record type = 'T'
 IXFTNAML 003-BYTE CHARACTER name length
 IXFTNAME 256-BYTE CHARACTER name of data
 IXFTQULL 003-BYTE CHARACTER qualifier length
 IXFTQUAL 256-BYTE CHARACTER qualifier
 IXFTSRC 012-BYTE CHARACTER data source
 IXFTDATA 001-BYTE CHARACTER data convention = 'C'
 IXFTFORM 001-BYTE CHARACTER data format = 'M'
 IXFTMFRM 005-BYTE CHARACTER machine format = 'PC'
 IXFTLOC 001-BYTE CHARACTER data location = 'I'
 IXFTCCNT 005-BYTE CHARACTER 'C' record count
 IXFTFIL1 002-BYTE CHARACTER reserved
 IXFTDESC 030-BYTE CHARACTER data description
 IXFTPKNM 257-BYTE CHARACTER primary key name
 IXFTDSPC 257-BYTE CHARACTER reserved
 IXFTISPC 257-BYTE CHARACTER reserved
 IXFTLSPC 257-BYTE CHARACTER reserved

The following fields are contained in the table record:
IXFTRECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. The T record must be sufficiently long to include all of its defined
fields.

IXFTRECT
The IXF record type, which is set to T for this record.

IXFTNAML
The length, in bytes, of the table name in the IXFTNAME field.

Chapter 1. Data movement utilities and reference 189

IXFTNAME
The name of the table. If each file has only one table, this is an informational field only. The database
manager does not use this field when importing data. When writing a PC/IXF file, the database
manager writes the DOS file name (and possibly path information) to this field.

IXFTQULL
The length, in bytes, of the table name qualifier in the IXFTQUAL field.

IXFTQUAL
Table name qualifier, which identifies the creator of a table in a relational system. This is an
informational field only. If a program writing a file has no data to write to this field, the preferred fill
value is blanks. Programs reading a file might print or display this field, or store it in an informational
field, but no computations should depend on the content of this field.

IXFTSRC
Used to indicate the original source of the data. This is an informational field only. If a program writing
a file has no data to write to this field, the preferred fill value is blanks. Programs reading a file might
print or display this field, or store it in an informational field, but no computations should depend on
the content of this field.

IXFTDATA
Convention used to describe the data. This field must be set to C for import and export, indicating that
individual column attributes are described in the following column descriptor (C) records, and that
data follows PC/IXF conventions.

IXFTFORM
Convention used to store numeric data. This field must be set to M, indicating that numeric data in the
data (D) records is stored in the machine (internal) format specified by the IXFTMFRM field.

IXFTMFRM
The format of any machine data in the PC/IXF file. The database manager will only read or write files if
this field is set to PCbbb, where b represents a blank, and PC specifies that data in the PC/IXF file is in
IBM PC machine format.

IXFTLOC
The location of the data. The database manager only supports a value of I, meaning the data is
internal to this file.

IXFTCCNT
The number of C records in this table. It is a right-aligned character representation of an integer value.

IXFTFIL1
Spare field set to two blanks to match a reserved field in host IXF files.

IXFTDESC
Descriptive data about the table. This is an informational field only. If a program writing a file has no
data to write to this field, the preferred fill value is blanks. Programs reading a file might print or
display this field, or store it in an informational field, but no computations should depend on the
content of this field. This field contains NOT NULL WITH DEFAULT if the column was not null with
default, and the table name came from a workstation database.

IXFTPKNM
The name of the primary key defined on the table (if any). The name is stored as a null-terminated
string.

IXFTDSPC
This field is reserved for future use.

IXFTISPC
This field is reserved for future use.

IXFTLSPC
This field is reserved for future use.

COLUMN DESCRIPTOR RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- ------- --------- -------------

190 IBM Db2 V11.5: Data Movement Utilities Guide

 IXFCRECL 006-BYTE CHARACTER record length
 IXFCRECT 001-BYTE CHARACTER record type = 'C'
 IXFCNAML 003-BYTE CHARACTER column name length
 IXFCNAME 256-BYTE CHARACTER column name
 IXFCNULL 001-BYTE CHARACTER column allows nulls
 IXFCDEF 001-BYTE CHARACTER column has defaults
 IXFCSLCT 001-BYTE CHARACTER column selected flag
 IXFCKPOS 002-BYTE CHARACTER position in primary key
 IXFCCLAS 001-BYTE CHARACTER data class
 IXFCTYPE 003-BYTE CHARACTER data type
 IXFCSBCP 005-BYTE CHARACTER single byte code page
 IXFCDBCP 005-BYTE CHARACTER double byte code page
 IXFCLENG 005-BYTE CHARACTER column data length
 IXFCDRID 003-BYTE CHARACTER 'D' record identifier
 IXFCPOSN 006-BYTE CHARACTER column position
 IXFCDESC 030-BYTE CHARACTER column description
 IXFCLOBL 020-BYTE CHARACTER lob column length
 IXFCUDTL 003-BYTE CHARACTER UDT name length
 IXFCUDTN 256-BYTE CHARACTER UDT name
 IXFCDEFL 003-BYTE CHARACTER default value length
 IXFCDEFV 254-BYTE CHARACTER default value
 IXFCREF 001-BYTE CHARACTER reference type
 IXFCNDIM 002-BYTE CHARACTER number of dimensions
 IXFCDSIZ varying CHARACTER size of each dimension

The following fields are contained in column descriptor records:
IXFCRECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. The C record must be sufficiently long to include all of its defined
fields.

IXFCRECT
The IXF record type, which is set to C for this record.

IXFCNAML
The length, in bytes, of the column name in the IXFCNAME field.

IXFCNAME
The name of the column.

IXFCNULL
Specifies if nulls are permitted in this column. Valid settings are Y or N.

IXFCDEF
Specifies if a default value is defined for this field. Valid settings are Y or N.

IXFCSLCT
An obsolete field whose intended purpose was to allow selection of a subset of columns in the data.
Programs writing PC/IXF files should always store a Y in this field. Programs reading PC/IXF files
should ignore the field.

IXFCKPOS
The position of the column as part of the primary key. Valid values range from 01 to 16, or N if the
column is not part of the primary key.

IXFCCLAS
The class of data types to be used in the IXFCTYPE field. The database manager only supports
relational types (R).

IXFCTYPE
The data type for the column.

IXFCSBCP
Contains a single-byte character representation of a SBCS CPGID. This field specifies the CPGID for
single-byte character data, which occurs with the IXFDCOLS field of the D records for this column.

The semantics of this field vary with the data type for the column (specified in the IXFCTYPE field).

Chapter 1. Data movement utilities and reference 191

• For a character string column, this field should normally contain a non-zero value equal to that of
the IXFHSBCP field in the H record; however, other values are permitted. If this value is zero, the
column is interpreted to contain bit string data.

• For a numeric column, this field is not meaningful. It is set to zero by the export utility, and ignored
by the import utility.

• For a date or time column, this field is not meaningful. It is set to the value of the IXFHSBCP field by
the export utility, and ignored by the import utility.

• For a graphic column, this field must be zero.

IXFCDBCP
Contains a single-byte character representation of a DBCS CPGID. This field specifies the CPGID for
double-byte character data, which occurs with the IXFDCOLS field of the D records for this column.

The semantics of this field vary with the data type for the column (specified in the IXFCTYPE field).

• For a character string column, this field should either be zero, or contain a value equal to that of the
IXFHDBCP field in the H record; however, other values are permitted. If the value in the IXFCSBCP
field is zero, the value in this field must be zero.

• For a numeric column, this field is not meaningful. It is set to zero by the export utility, and ignored
by the import utility.

• For a date or time column, this field is not meaningful. It is set to zero by the export utility, and
ignored by the import utility.

• For a graphic column, this field must have a value equal to the value of the IXFHDBCP field.

IXFCLENG
Provides information about the size of the column being described. For some data types, this field is
unused, and should contain blanks. For other data types, this field contains the right-aligned
character representation of an integer specifying the column length. For yet other data types, this field
is divided into two subfields: 3 bytes for precision, and 2 bytes for scale; both of these subfields are
right-aligned character representations of integers. Starting with Version 9.7, for a timestamp data
type this field contains the right-aligned character representation of an integer specifying the
timestamp precision.

IXFCDRID
The D record identifier. This field contains the right-aligned character representation of an integer
value. Several D records can be used to contain each row of data in the PC/IXF file. This field specifies
which D record (of the several D records contributing to a row of data) contains the data for the
column. A value of one (for example, 001) indicates that the data for a column is in the first D record
in a row of data. The first C record must have an IXFCDRID value of one. All subsequent C records
must have an IXFCDRID value equal to the value in the preceding C record, or one higher.

IXFCPOSN
The value in this field is used to locate the data for the column within one of the D records
representing a row of table data. It is the starting position of the data for this column within the
IXFDCOLS field of the D record. If the column is nullable, IXFCPOSN points to the null indicator;
otherwise, it points to the data itself. If a column contains varying length data, the data itself begins
with the current length indicator. The IXFCPOSN value for the first byte in the IXFDCOLS field of the D
record is one (not zero). If a column is in a new D record, the value of IXFCPOSN should be one;
otherwise, IXFCPOSN values should increase from column to column to such a degree that the data
values do not overlap.

IXFCDESC
Descriptive information about the column. This is an informational field only. If a program writing to a
file has no data to write to this field, the preferred fill value is blanks. Programs reading a file might
print or display this field, or store it in an informational field, but no computations should depend on
the content of this field.

IXFCLOBL
The length, in bytes, of the long or the LOB defined in this column. If this column is not a long or a
LOB, the value in this field is 000.

192 IBM Db2 V11.5: Data Movement Utilities Guide

IXFCUDTL
The length, in bytes, of the user defined type (UDT) name in the IXFCUDTN field. If the type of this
column is not a UDT, the value in this field is 000.

IXFCUDTN
The name of the user defined type that is used as the data type for this column.

IXFCDEFL
The length, in bytes, of the default value in the IXFCDEFV field. If this column does not have a default
value, the value in this field is 000.

IXFCDEFV
Specifies the default value for this column, if one has been defined.

IXFCREF
If the column is part of a hierarchy, this field specifies whether the column is a data column (D), or a
reference column (R).

IXFCNDIM
The number of dimensions in the column. Arrays are not supported in this version of PC/IXF. This field
must therefore contain a character representation of a zero integer value.

IXFCDSIZ
The size or range of each dimension. The length of this field is five bytes per dimension. Since arrays
are not supported (that is, the number of dimensions must be zero), this field has zero length, and
does not actually exist.

DATA RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- ------- --------- -------------
 IXFDRECL 06-BYTE CHARACTER record length
 IXFDRECT 01-BYTE CHARACTER record type = 'D'
 IXFDRID 03-BYTE CHARACTER 'D' record identifier
 IXFDFIL1 04-BYTE CHARACTER reserved
 IXFDCOLS varying variable columnar data

The following fields are contained in the data records:
IXFDRECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each D record must be sufficiently long to include all significant
data for the current occurrence of the last data column stored in the record.

IXFDRECT
The IXF record type, which is set to D for this record, indicating that it contains data values for the
table.

IXFDRID
The record identifier, which identifies a particular D record within the sequence of several D records
contributing to a row of data. For the first D record in a row of data, this field has a value of one; for the
second D record in a row of data, this field has a value of two, and so on. In each row of data, all the D
record identifiers called out in the C records must actually exist.

IXFDFIL1
Spare field set to four blanks to match reserved fields, and hold a place for a possible shift-out
character, in host IXF files.

IXFDCOLS
The area for columnar data. The data area of a data record (D record) is composed of one or more
column entries. There is one column entry for each column descriptor record, which has the same D
record identifier as the D record. In the D record, the starting position of the column entries is
indicated by the IXFCPOSN value in the C records.

The format of the column entry data depends on whether or not the column is nullable:

Chapter 1. Data movement utilities and reference 193

• If the column is nullable (the IXFCNULL field is set to Y), the column entry data includes a null
indicator. If the column is not null, the indicator is followed by data type-specific information,
including the actual database value. The null indicator is a two-byte value set to x'0000' for not null,
and x'FFFF' for null.

• If the column is not nullable, the column entry data includes only data type-specific information,
including the actual database value.

For varying-length data types, the data type-specific information includes a current length indicator.
The current length indicators are 2-byte integers in a form specified by the IXFTMFRM field.

The length of the data area of a D record cannot exceed 32 771 bytes.

APPLICATION RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- ------- --------- -------------
 IXFARECL 06-BYTE CHARACTER record length
 IXFARECT 01-BYTE CHARACTER record type = 'A'
 IXFAPPID 12-BYTE CHARACTER application identifier
 IXFADATA varying variable application-specific data

The following fields are contained in application records:
IXFARECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each A record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies the application creating the A record. PC/IXF files created
by the database manager can have A records with the first 6 characters of this field set to a constant
identifying the database manager, and the last 6 characters identifying the release or version of the
database manager or another application writing the A record.

IXFADATA
This field contains application dependent supplemental data, whose form and content are known only
to the program creating the A record, and to other applications which are likely to process the A
record.

DB2 INDEX RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- -------- --------- -------------
 IXFARECL 006-BYTE CHARACTER record length
 IXFARECT 001-BYTE CHARACTER record type = 'A'
 IXFAPPID 012-BYTE CHARACTER application identifier = 'DB2 02.00'
 IXFAITYP 001-BYTE CHARACTER application specific data type = 'I'
 IXFADATE 008-BYTE CHARACTER date written from the 'H' record
 IXFATIME 006-BYTE CHARACTER time written from the 'H' record
 IXFANDXL 002-BYTE SHORT INT length of name of the index
 IXFANDXN 256-BYTE CHARACTER name of the index
 IXFANCL 002-BYTE SHORT INT length of name of the index creator
 IXFANCN 256-BYTE CHARACTER name of the index creator
 IXFATABL 002-BYTE SHORT INT length of name of the table
 IXFATABN 256-BYTE CHARACTER name of the table
 IXFATCL 002-BYTE SHORT INT length of name of the table creator
 IXFATCN 256-BYTE CHARACTER name of the table creator
 IXFAUNIQ 001-BYTE CHARACTER unique rule
 IXFACCNT 002-BYTE SHORT INT column count
 IXFAREVS 001-BYTE CHARACTER allow reverse scan flag
 IXFAIDXT 001-BYTE CHARACTER type of index
 IXFAPCTF 002-BYTE CHARACTER amount of pct free
 IXFAPCTU 002-BYTE CHARACTER amount of minpctused
 IXFAEXTI 001-BYTE CHARACTER reserved

194 IBM Db2 V11.5: Data Movement Utilities Guide

 IXFACNML 006-BYTE SHORT INT length of name of the columns
 IXFACOLN varying CHARACTER name of the columns in the index

One record of this type is specified for each user defined index. This record is located after all of the C
records for the table. The following fields are contained in Db2 index records:
IXFARECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each A record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies Db2 as the application creating this A record.

IXFAITYP
Specifies that this is subtype "I" of Db2 application records.

IXFADATE
The date on which the file was written, in the form yyyymmdd. This field must have the same value as
IXFHDATE.

IXFATIME
The time at which the file was written, in the form hhmmss. This field must have the same value as
IXFHTIME.

IXFANDXL
The length, in bytes, of the index name in the IXFANDXN field.

IXFANDXN
The name of the index.

IXFANCL
The length, in bytes, of the index creator name in the IXFANCN field.

IXFANCN
The name of the index creator.

IXFATABL
The length, in bytes, of the table name in the IXFATABN field.

IXFATABN
The name of the table.

IXFATCL
The length, in bytes, of the table creator name in the IXFATCN field.

IXFATCN
The name of the table creator.

IXFAUNIQ
Specifies the type of index. Valid values are P for a primary key, U for a unique index, and D for a non
unique index.

IXFACCNT
Specifies the number of columns in the index definition.

IXFAREVS
Specifies whether reverse scan is allowed on this index. Valid values are Y for reverse scan, and N for
no reverse scan.

IXFAIDXT
Specifies the index type. Valid values are R for a regular index, and C for a clustered index.

Chapter 1. Data movement utilities and reference 195

IXFAPCTF
Specifies the percentage of index pages to leave as free. Valid values range from -1 to 99. If a value of
-1 or zero is specified, the system default value is used.

IXFAPCTU
Specifies the minimum percentage of index pages that must be free before two index pages can be
merged. Valid values range from 00 to 99.

IXFAEXTI
Reserved for future use.

IXFACNML
The length, in bytes, of the column names in the IXFACOLN field.

IXFACOLN
The names of the columns that are part of this index. Valid values are in the form +name-name...,
where + specifies an ascending sort on the column, and - specifies a descending sort on the column.

DB2 HIERARCHY RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- -------- --------- -------------
 IXFARECL 006-BYTE CHARACTER record length
 IXFARECT 001-BYTE CHARACTER record type = 'A'
 IXFAPPID 012-BYTE CHARACTER application identifier = 'DB2 02.00'
 IXFAXTYP 001-BYTE CHARACTER application specific data type = 'X'
 IXFADATE 008-BYTE CHARACTER date written from the 'H' record
 IXFATIME 006-BYTE CHARACTER time written from the 'H' record
 IXFAYCNT 010-BYTE CHARACTER 'Y' record count for this hierarchy
 IXFAYSTR 010-BYTE CHARACTER starting column of this hierarchy

One record of this type is used to describe a hierarchy. All subtable records (see the following list) must
be located immediately after the hierarchy record, and hierarchy records are located after all of the C
records for the table. The following fields are contained in Db2 hierarchy records:
IXFARECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each A record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies Db2 as the application creating this A record.

IXFAXTYP
Specifies that this is subtype "X" of Db2 application records.

IXFADATE
The date on which the file was written, in the form yyyymmdd. This field must have the same value as
IXFHDATE.

IXFATIME
The time at which the file was written, in the form hhmmss. This field must have the same value as
IXFHTIME.

IXFAYCNT
Specifies the number of subtable records that are expected after this hierarchy record.

IXFAYSTR
Specifies the index of the subtable records at the beginning of the exported data. If export of a
hierarchy was started from a non-root subtable, all parent tables of this subtable are exported. The
position of this subtable inside of the IXF file is also stored in this field. The first X record represents
the column with an index of zero.

196 IBM Db2 V11.5: Data Movement Utilities Guide

DB2 SUBTABLE RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- -------- --------- -------------
 IXFARECL 006-BYTE CHARACTER record length
 IXFARECT 001-BYTE CHARACTER record type = 'A'
 IXFAPPID 012-BYTE CHARACTER application identifier = 'DB2 02.00'
 IXFAYTYP 001-BYTE CHARACTER application specific data type = 'Y'
 IXFADATE 008-BYTE CHARACTER date written from the 'H' record
 IXFATIME 006-BYTE CHARACTER time written from the 'H' record
 IXFASCHL 003-BYTE CHARACTER type schema name length
 IXFASCHN 256-BYTE CHARACTER type schema name
 IXFATYPL 003-BYTE CHARACTER type name length
 IXFATYPN 256-BYTE CHARACTER type name
 IXFATABL 003-BYTE CHARACTER table name length
 IXFATABN 256-BYTE CHARACTER table name
 IXFAPNDX 010-BYTE CHARACTER subtable index of parent table
 IXFASNDX 005-BYTE CHARACTER starting column index of current table

 IXFAENDX 005-BYTE CHARACTER ending column index of current table

One record of this type is used to describe a subtable as part of a hierarchy. All subtable records
belonging to a hierarchy must be stored together, and immediately after the corresponding hierarchy
record. A subtable is composed of one or more columns, and each column is described in a column
record. Each column in a subtable must be described in a consecutive set of C records. The following
fields are contained in Db2 subtable records:
IXFARECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each A record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies Db2 as the application creating this A record.

IXFAYTYP
Specifies that this is subtype "Y" of Db2 application records.

IXFADATE
The date on which the file was written, in the form yyyymmdd. This field must have the same value as
IXFHDATE.

IXFATIME
The time at which the file was written, in the form hhmmss. This field must have the same value as
IXFHTIME.

IXFASCHL
The length, in bytes, of the subtable schema name in the IXFASCHN field.

IXFASCHN
The name of the subtable schema.

IXFATYPL
The length, in bytes, of the subtable name in the IXFATYPN field.

IXFATYPN
The name of the subtable.

IXFATABL
The length, in bytes, of the table name in the IXFATABN field.

IXFATABN
The name of the table.

Chapter 1. Data movement utilities and reference 197

IXFAPNDX
Subtable record index of the parent subtable. If this subtable is the root of a hierarchy, this field
contains the value -1.

IXFASNDX
Starting index of the column records that made up this subtable.

IXFAENDX
Ending index of the column records that made up this subtable.

DB2 CONTINUATION RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- -------- --------- -------------
 IXFARECL 006-BYTE CHARACTER record length
 IXFARECT 001-BYTE CHARACTER record type = 'A'
 IXFAPPID 012-BYTE CHARACTER application identifier = 'DB2 02.00'
 IXFACTYP 001-BYTE CHARACTER application specific data type = 'C'
 IXFADATE 008-BYTE CHARACTER date written from the 'H' record
 IXFATIME 006-BYTE CHARACTER time written from the 'H' record
 IXFALAST 002-BYTE SHORT INT last diskette volume number
 IXFATHIS 002-BYTE SHORT INT this diskette volume number
 IXFANEXT 002-BYTE SHORT INT next diskette volume number

This record is found at the end of each file that is part of a multi-volume IXF file, unless that file is the final
volume; it can also be found at the beginning of each file that is part of a multi-volume IXF file, unless that
file is the first volume. The purpose of this record is to keep track of file order. The following fields are
contained in Db2 continuation records:
IXFARECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each A record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies Db2 as the application creating this A record.

IXFACTYP
Specifies that this is subtype "C" of Db2 application records.

IXFADATE
The date on which the file was written, in the form yyyymmdd. This field must have the same value as
IXFHDATE.

IXFATIME
The time at which the file was written, in the form hhmmss. This field must have the same value as
IXFHTIME.

IXFALAST
This field is a binary field, in little-endian format. The value should be one less than the value in
IXFATHIS.

IXFATHIS
This field is a binary field, in little-endian format. The value in this field on consecutive volumes should
also be consecutive. The first volume has a value of 1.

IXFANEXT
This field is a binary field, in little-endian format. The value should be one more than the value in
IXFATHIS, unless the record is at the beginning of the file, in which case the value should be zero.

DB2 TERMINATE RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- -------- --------- -------------

198 IBM Db2 V11.5: Data Movement Utilities Guide

 IXFARECL 006-BYTE CHARACTER record length
 IXFARECT 001-BYTE CHARACTER record type = 'A'
 IXFAPPID 012-BYTE CHARACTER application identifier = 'DB2 02.00'
 IXFAETYP 001-BYTE CHARACTER application specific data type = 'E'
 IXFADATE 008-BYTE CHARACTER date written from the 'H' record
 IXFATIME 006-BYTE CHARACTER time written from the 'H' record

This record is the end-of-file marker found at the end of an IXF file. The following fields are contained in
Db2 terminate records:
IXFARECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each A record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies Db2 as the application creating this A record.

IXFAETYP
Specifies that this is subtype "E" of Db2 application records.

IXFADATE
The date on which the file was written, in the form yyyymmdd. This field must have the same value as
IXFHDATE.

IXFATIME
The time at which the file was written, in the form hhmmss. This field must have the same value as
IXFHTIME.

DB2 IDENTITY RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- ------- --------- -------------
 IXFARECL 06-BYTE CHARACTER record length
 IXFARECT 01-BYTE CHARACTER record type = 'A'
 IXFAPPID 12-BYTE CHARACTER application identifier
 IXFATYPE 01-BYTE CHARACTER application specific record type = 'S'
 IXFADATE 08-BYTE CHARACTER application record creation date
 IXFATIME 06-BYTE CHARACTER application record creation time
 IXFACOLN 06-BYTE CHARACTER column number of the identity column
 IXFAITYP 01-BYTE CHARACTER generated always ('Y' or 'N')
 IXFASTRT 33-BYTE CHARACTER identity START AT value
 IXFAINCR 33-BYTE CHARACTER identity INCREMENT BY value
 IXFACACH 10-BYTE CHARACTER identity CACHE value
 IXFAMINV 33-BYTE CHARACTER identity MINVALUE
 IXFAMAXV 33-BYTE CHARACTER identity MAXVALUE
 IXFACYCL 01-BYTE CHARACTER identity CYCLE ('Y' or 'N')
 IXFAORDR 01-BYTE CHARACTER identity ORDER ('Y' or 'N')
 IXFARMRL 03-BYTE CHARACTER identity Remark length
 IXFARMRK 254-BYTE CHARACTER identity Remark value

The following fields are contained in Db2 identity records:
IXFARECL

The record length indicator. A 6-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus 6 bytes. Each A record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

Chapter 1. Data movement utilities and reference 199

IXFAPPID
The application identifier, which identifies Db2 as the application creating this A record.

IXFATYPE
Application specific record type. This field should always have a value of "S".

IXFADATE
The date on which the file was written, in the form yyyymmdd. This field must have the same value as
IXFHDATE.

IXFATIME
The time at which the file was written, in the form hhmmss. This field must have the same value as
IXFHTIME.

IXFACOLN
Column number of the identity column in the table.

IXFAITYP
The type of the identity column. A value of "Y" indicates that the identity column is always
GENERATED. All other values are interpreted to mean that the column is of type GENERATED BY
DEFAULT.

IXFASTRT
The START AT value for the identity column that was supplied to the CREATE TABLE statement at the
time of table creation.

IXFAINCR
The INCREMENT BY value for the identity column that was supplied to the CREATE TABLE statement
at the time of table creation.

IXFACACH
The CACHE value for the identity column that was supplied to the CREATE TABLE statement at the
time of table creation. A value of "1" corresponds to the NO CACHE option.

IXFAMINV
The MINVALUE for the identity column that was supplied to the CREATE TABLE statement at the time
of table creation.

IXFAMAXV
The MAXVALUE for the identity column that was supplied to the CREATE TABLE statement at the time
of table creation.

IXFACYCL
The CYCLE value for the identity column that was supplied to the CREATE TABLE statement at the
time of table creation. A value of "Y" corresponds to the CYCLE option, any other value corresponds to
NO CYCLE.

IXFAORDR
The ORDER value for the identity column that was supplied to the CREATE TABLE statement at the
time of table creation. A value of "Y" corresponds to the ORDER option, any other value corresponds
to NO ORDER.

IXFARMRL
The length, in bytes, of the remark in IXFARMRK field.

IXFARMRK
This is the user-entered remark associated with the identity column. This is an informational field
only. The database manager does not use this field when importing data.

DB2 SQLCA RECORD

 FIELD NAME LENGTH TYPE COMMENTS
 ---------- ------- --------- -------------
 IXFARECL 006-BYTE CHARACTER record length
 IXFARECT 001-BYTE CHARACTER record type = 'A'
 IXFAPPID 012-BYTE CHARACTER application identifier = 'DB2 02.00'
 IXFAITYP 001-BYTE CHARACTER application specific data type = 'A'
 IXFADATE 008-BYTE CHARACTER date written from the 'H' record

200 IBM Db2 V11.5: Data Movement Utilities Guide

 IXFATIME 006-BYTE CHARACTER time written from the 'H' record
 IXFASLCA 136-BYTE variable sqlca - SQL communications area

One record of this type is used to indicate the IXF file cannot be used to re-create the table in a
subsequent import operation. For more information, refer to the message and reason code returned in
IXFASLCA.

The following fields are contained in Db2 SQLCA records:
IXFARECL

The record length indicator. A six-byte character representation of an integer value specifying the
length, in bytes, of the portion of the PC/IXF record that follows the record length indicator; that is,
the total record size minus six bytes. Each 'A' record must be sufficiently long to include at least the
entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to 'A' for this record, indicating that this is an application record.
These records are ignored by programs which do not have particular knowledge about the content
and the format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies Db2 as the application creating this 'A' record.

IXFAITYP
Specifies that this is subtype 'A' of Db2 application records.

IXFADATE
The date on which the file was written, in the form yyyymmdd. This field must have the same value as
IXFHDATE.

IXFATIME
The time at which the file was written, in the form hhmmss. This field must have the same value as
IXFHTIME.

IXFASLCA
SQL communications area, which contains the SQL27984W warning message, along with a reason
code that explains why the IXF file does not contain all of the information required by the IMPORT
command to re-create the table.

PC/IXF data types

Table 22. PC/IXF Data Types

Name IXFCTYPE Value Description

BIGINT 492 An 8-byte integer in the form specified by
IXFTMFRM. It represents a whole number between
-9 223 372 036 854 775 808 and
9 223 372 036 854 775 807. IXFCSBCP and
IXFCDBCP are not significant , and should be zero.
IXFCLENG is not used, and should contain blanks.

BINARY 912 A fixed-length binary string. The string length is
contained in the IXFCLENG field of the column
descriptor record, and cannot exceed 254 bytes.
The string data is binary data and should not be
translated by any transformation program.

Chapter 1. Data movement utilities and reference 201

Table 22. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

BLOB, CLOB 404, 408 A variable-length character string. The maximum
length of the string is contained in the IXFCLENG
field of the column descriptor record, and cannot
exceed 32 767 bytes. The string itself is preceded
by a current length indicator, which is a 4-byte
integer specifying the length of the string, in bytes.
The string is in the code page indicated by
IXFCSBCP.

The following applies to BLOBs only: If IXFCSBCP
is zero, the string is bit data, and should not be
translated by any transformation program.

The following applies to CLOBs only: If IXFCDBCP
is non-zero, the string can also contain double-byte
characters in the code page indicated by
IXFCDBCP.

BLOB_LOCATION_
SPECIFIER and
DBCLOB_ LOCATION_
SPECIFIER

960, 964, 968 A fixed-length field, which cannot exceed 255
bytes. The LOB Location Specifier (LLS)is located in
the code page indicated by IXFCSBCP. If IXFCSBCP
is zero, the LLS is bit data and should not be
translated by any transformation program. If
IXFCDBCP is non-zero, the string can also contain
double-byte characters in the code page indicated
by IXFCDBCP.

Since the length of the LLS is stored in IXFCLENG,
the actual length of the original LOB is lost. PC/IXF
files with columns of this type should not be used
to re-create the LOB field since the LOB will be
created with the length of the LLS.

BLOB_FILE, CLOB_FILE,
DBCLOB_FILE

916, 920, 924 A fixed-length field containing an SQLFILE
structure with the name_length and the name
fields filled in. The length of the structure is
contained in the IXFCLENG field of the column
descriptor record, and cannot exceed 255 bytes.
The file name is in the code page indicated by
IXFCSBCP. If IXFCDBCP is non-zero, the file name
can also contain double-byte characters in the
code page indicated by IXFCDBCP. If IXFCSBCP is
zero, the file name is bit data and should not be
translated by any transformation program.

Since the length of the structure is stored in
IXFCLENG, the actual length of the original LOB is
lost. IXF files with columns of type BLOB_FILE,
CLOB_FILE, or DBCLOB_FILE should not be used to
re-create the LOB field, since the LOB will be
created with a length of sql_lobfile_len.

202 IBM Db2 V11.5: Data Movement Utilities Guide

Table 22. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

CHAR 452 A fixed-length character string. The string length is
contained in the IXFCLENG field of the column
descriptor record, and cannot exceed 254 bytes.
The string is in the code page indicated by
IXFCSBCP. If IXFCDBCP is non-zero, the string can
also contain double-byte characters in the code
page indicated by IXFCDBCP. If IXFCSBCP is zero,
the string is bit data and should not be translated
by any transformation program.

DATE 384 A point in time in accordance with the Gregorian
calendar. Each date is a 10-byte character string in
International Standards Organization (ISO) format:
yyyy-mm-dd. The range of the year part is 0001 to
9999. The range of the month part is 01 to 12. The
range of the day part is 01 to n, where n depends
on the month, using the usual rules for days of the
month and leap year. Leading zeros cannot be
omitted from any part. IXFCLENG is not used, and
should contain blanks. Valid characters within
DATE are invariant in all PC ASCII code pages;
therefore, IXFCSBCP and IXFCDBCP are not
significant, and should be zero.

DBCLOB 412 A variable-length string of double-byte characters.
The IXFCLENG field in the column descriptor
record specifies the maximum number of double-
byte characters in the string, and cannot exceed
16 383. The string itself is preceded by a current
length indicator, which is a 4-byte integer
specifying the length of the string in double-byte
characters (that is, the value of this integer is one
half the length of the string, in bytes). The string is
in the DBCS code page, as specified by IXFCDBCP
in the C record. Since the string consists of double-
byte character data only, IXFCSBCP should be
zero. There are no surrounding shift-in or shift-out
characters.

DECIMAL 484 A packed decimal number with precision P (as
specified by the first three bytes of IXFCLENG in
the column descriptor record) and scale S (as
specified by the last two bytes of IXFCLENG). The
length, in bytes, of a packed decimal number is (P
+2)/2. The precision must be an odd number
between 1 and 31, inclusive. The packed decimal
number is in the internal format specified by
IXFTMFRM, where packed decimal for the PC is
defined to be the same as packed decimal for the
System/370. IXFCSBCP and IXFCDBCP are not
significant, and should be zero.

Chapter 1. Data movement utilities and reference 203

Table 22. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

DECFLOAT 996 A decimal floating-point value is an IEEE 754r
number with a decimal point. The position of the
decimal point is stored in each decimal floating
point value. The range of a decimal floating-point
number is a number with either 16 or 34 digits of
precision, and an exponent range of 10-383 to
10+384 or 10-6143 to 10+6144, respectively. The
storage length of the 16 digit value is 8 bytes, and
the storage length of the 34 digit value is 16 bytes.

FLOATING POINT 480 Either a long (8-byte) or short (4-byte) floating
point number, depending on whether IXFCLENG is
set to eight or to four. The data is in the internal
machine form, as specified by IXFTMFRM.
IXFCSBCP and IXFCDBCP are not significant, and
should be zero. Four-byte floating point is not
supported by the database manager.

GRAPHIC 468 A fixed-length string of double-byte characters.
The IXFCLENG field in the column descriptor
record specifies the number of double-byte
characters in the string, and cannot exceed 127.
The actual length of the string is twice the value of
the IXFCLENG field, in bytes. The string is in the
DBCS code page, as specified by IXFCDBCP in the
C record. Since the string consists of double-byte
character data only, IXFCSBCP should be zero.
There are no surrounding shift-in or shift-out
characters.

INTEGER 496 A 4-byte integer in the form specified by
IXFTMFRM. It represents a whole number between
-2 147 483 648 and +2 147 483 647. IXFCSBCP
and IXFCDBCP are not significant, and should be
zero. IXFCLENG is not used, and should contain
blanks.

LONGVARCHAR 456 A variable-length character string. The maximum
length of the string is contained in the IXFCLENG
field of the column descriptor record, and cannot
exceed 32 767 bytes. The string itself is preceded
by a current length indicator, which is a 2-byte
integer specifying the length of the string, in bytes.
The string is in the code page indicated by
IXFCSBCP. If IXFCDBCP is non-zero, the string can
also contain double-byte characters in the code
page indicated by IXFCDBCP. If IXFCSBCP is zero,
the string is bit data and should not be translated
by any transformation program.

204 IBM Db2 V11.5: Data Movement Utilities Guide

Table 22. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

LONG VARGRAPHIC 472 A variable-length string of double-byte characters.
The IXFCLENG field in the column descriptor
record specifies the maximum number of double-
byte characters for the string, and cannot exceed
16 383. The string itself is preceded by a current
length indicator, which is a 2-byte integer
specifying the length of the string in double-byte
characters (that is, the value of this integer is one
half the length of the string, in bytes). The string is
in the DBCS code page, as specified by IXFCDBCP
in the C record. Since the string consists of double-
byte character data only, IXFCSBCP should be
zero. There are no surrounding shift-in or shift-out
characters.

SMALLINT 500 A 2-byte integer in the form specified by
IXFTMFRM. It represents a whole number between
-32 768 and +32 767. IXFCSBCP and IXFCDBCP
are not significant, and should be zero. IXFCLENG
is not used, and should contain blanks.

TIME 388 A point in time in accordance with the 24-hour
clock. Each time is an 8-byte character string in
ISO format: hh.mm.ss. The range of the hour part is
00 to 24, and the range of the other parts is 00 to
59. If the hour is 24, the other parts are 00. The
smallest time is 00.00.00, and the largest is
24.00.00. Leading zeros cannot be omitted from
any part. IXFCLENG is not used, and should contain
blanks. Valid characters within TIME are invariant
in all PC ASCII code pages; therefore, IXFCSBCP
and IXFCDBCP are not significant, and should be
zero.

TIMESTAMP 392 The date and time with fractional second precision.
Each time stamp is a character string of the form
yyyy-mm-dd-hh.mm.ss.nnnnnn (year month day
hour minutes seconds fractional seconds). Starting
with Version 9.7, the timestamp precision is
contained in the IXFCLENG field of the column
descriptor record, and cannot exceed 12. before
Version 9.7, IXFCLENG is not used, and should
contain blanks. Valid characters within
TIMESTAMP are invariant in all PC ASCII code
pages; therefore, IXFCSBCP and IXFCDBCP are not
significant, and should be zero.

VARBINARY 908 A variable-length binary string. The maximum
length of the string, in bytes, is contained in the
IXFCLENG field of the column descriptor record,
and cannot exceed 32672 bytes. The string itself is
preceded by a current length indicator, which is a
two-byte integer specifying the length of the string,
in bytes. The string data is binary data and should
not be translated by any transformation program.

Chapter 1. Data movement utilities and reference 205

Table 22. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

VARCHAR 448 A variable-length character string. The maximum
length of the string, in bytes, is contained in the
IXFCLENG field of the column descriptor record,
and cannot exceed 32672 bytes. The string itself is
preceded by a current length indicator, which is a
two-byte integer specifying the length of the string,
in bytes. The string is in the code page indicated by
IXFCSBCP. If IXFCDBCP is non-zero, the string can
also contain double-byte characters in the code
page indicated by IXFCDBCP. If IXFCSBCP is zero,
the string is bit data and should not be translated
by any transformation program.

VARGRAPHIC 464 A variable-length string of double-byte characters.
The IXFCLENG field in the column descriptor
record specifies the maximum number of double-
byte characters in the string, and cannot exceed
127. The string itself is preceded by a current
length indicator, which is a 2-byte integer
specifying the length of the string in double-byte
characters (that is, the value of this integer is one
half the length of the string, in bytes). The string is
in the DBCS code page, as specified by IXFCDBCP
in the C record. Since the string consists of double-
byte character data only, IXFCSBCP should be
zero. There are no surrounding shift-in or shift-out
characters.

Not all combinations of IXFCSBCP and IXFCDBCP values for PC/IXF character or graphic columns are
valid. A PC/IXF character or graphic column with an invalid (IXFCSBCP,IXFCDBCP) combination is an
invalid data type.

Table 23. Valid PC/IXF Data Types

PC/IXF Data Type Valid (IXFCSBCP,IXFCDBCP)
Pairs

Invalid (IXFCSBCP,IXFCDBCP)
Pairs

CHAR, VARCHAR, or LONG
VARCHAR

(0,0), (x,0), or (x,y)1 (0,y)1

BLOB (0,0) (x,0), (0,y), or (x,y)1

CLOB (x,0), (x,y)1 (0,0), (0,y)1

GRAPHIC, VARGRAPHIC, LONG
VARGRAPHIC, or DBCLOB

(0,y)1 (0,0), (x,0), or (x,y)1

BINARY, VARBINARY (0,0) (x,0), (0,y), or (x,y)1

Note: 1 Neither x nor y is 0.

206 IBM Db2 V11.5: Data Movement Utilities Guide

PC/IXF data type descriptions
The following table lists the data types and the acceptable forms for each one for the import and load
utilities.

Table 24. Acceptable data type forms for the PC/IXF file format

Data type Form in files created by the
export utility

Form acceptable to the import and load
utilities

BIGINT A BIGINT column, identical to the
database column, is created.

A column in any numeric type (SMALLINT,
INTEGER, BIGINT, DECIMAL, or FLOAT) is
accepted. Individual values are rejected if
they are not in the range
-9 223 372 036 854 775 808 to
9 223 372 036 854 775 807.

BINARY A PC/IXF BINARY column is
created. The database column
length, the SBCS CPGID value,
and the DBCS CPGID value are
copied to the PC/IXF column
descriptor record.

A PC/IXF CHAR or VARCHAR column is
acceptable if the PC/IXF column single-byte
code page values and double-byte code page
values are both zero. Otherwise, a BINARY or
VARBINARY column is acceptable.

If the PC/IXF column is of fixed length, its
length must be compatible with the length of
the database column. The data is padded on
the right with hexadecimal zero characters
(x'00'), if necessary.

BLOB A PC/IXF BLOB column is
created. The maximum length of
the database column, the SBCS
CPGID value, and the DBCS
CPGID value are copied to the
column descriptor record.

A PC/IXF CHAR, VARCHAR, LONG VARCHAR,
BLOB, BLOB_FILE, or
BLOB_LOCATION_SPECIFIER column is
acceptable if:

• The database column is marked FOR BIT
DATA

• The PC/IXF column single-byte code page
value equals the SBCS CPGID of the
database column, and the PC/IXF column
double-byte code page value equals zero,
or the DBCS CPGID of the database
column. A PC/IXF GRAPHIC, VARGRAPHIC,
or LONG VARGRAPHIC BLOB column is
also acceptable. If the PC/IXF column is of
fixed length, its length must be compatible
with the maximum length of the database
column.

BOOLEAN A Boolean value is converted to a
SMALLINT:

• FALSE is converted to 0.
• TRUE is converted to 1.
• NULL remains NULL.

A non-zero SMALLINT value is converted to
TRUE, zero is converted to FALSE, and NULL
remains NULL.

Chapter 1. Data movement utilities and reference 207

Table 24. Acceptable data type forms for the PC/IXF file format (continued)

Data type Form in files created by the
export utility

Form acceptable to the import and load
utilities

CHAR A PC/IXF CHAR column is
created. The database column
length, the SBCS CPGID value,
and the DBCS CPGID value are
copied to the PC/IXF column
descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG
VARCHAR column is acceptable if:

• The database column is marked FOR BIT
DATA

• The PC/IXF column single-byte code page
value equals the SBCS CPGID of the
database column, and the PC/IXF column
double-byte code page value equals zero,
or the DBCS CPGID of the database
column.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC column is also acceptable if
the database column is marked FOR BIT
DATA. In any case, if the PC/IXF column is of
fixed length, its length must be compatible
with the length of the database column. If
required to match the width of the target
column, the character string is leading
truncated or padded with trailing spaces
(X'20').

CLOB A PC/IXF CLOB column is
created. The maximum length of
the database column, the SBCS
CPGID value, and the DBCS
CPGID value are copied to the
column descriptor record.

A PC/IXF CHAR, VARCHAR, LONG VARCHAR,
CLOB, CLOB_FILE, or
CLOB_LOCATION_SPECIFIER column is
acceptable if the PC/IXF column single-byte
code page value equals the SBCS CPGID of
the database column, and the PC/IXF column
double-byte code page value equals zero, or
the DBCS CPGID of the database column. If
the PC/IXF column is of fixed length, its
length must be compatible with the
maximum length of the database column.

DATE A DATE column, identical to the
database column, is created.

A PC/IXF column of type DATE is the usual
input. The import utility also attempts to
accept columns in any of the character types,
except those with incompatible lengths. The
character column in the PC/IXF file must
contain dates in a format consistent with the
territory code of the target database.

DBCLOB A PC/IXF DBCLOB column is
created. The maximum length of
the database column, the SBCS
CPGID value, and the DBCS
CPGID value are copied to the
column descriptor record.

A PC/IXF GRAPHIC, VARGRAPHIC, LONG
VARGRAPHIC, DBCLOB, DBCLOB_FILE, or
DBCLOB_LOCATION_SPECIFIER column is
acceptable if the PC/IXF column double-byte
code page value equals that of the database
column. If the PC/IXF column is of fixed
length, its length must be compatible with
the maximum length of the database column.

208 IBM Db2 V11.5: Data Movement Utilities Guide

Table 24. Acceptable data type forms for the PC/IXF file format (continued)

Data type Form in files created by the
export utility

Form acceptable to the import and load
utilities

DECIMAL A DECIMAL column, identical to
the database column, is created.
The precision and scale of the
column is stored in the column
descriptor record.

A column in any numeric type (SMALLINT,
INTEGER, BIGINT, DECIMAL, or FLOAT) is
accepted. Individual values are rejected if
they are not in the range of the DECIMAL
column into which they are being imported.

DECFLOAT A DECFLOAT column, identical to
the database column, is created.
The precision of the column is
stored in the column descriptor
record.

A column in the following types: SMALLINT,
INTEGER, BIGINT (only into DECFLOAT(34)),
DECIMAL, FLOAT, REAL, DOUBLE, or
DECFLOAT(16) (only into DECFLOAT(34)) is
accepted. Other numeric column types are
valid for DECFLOAT, but if the value does not
fit within the target precision, it is rounded.

FLOAT A FLOAT column, identical to the
database column, is created.

A column in any numeric type (SMALLINT,
INTEGER, BIGINT, DECIMAL, or FLOAT) is
accepted. All values are within range.

GRAPHIC (DBCS
only)

A PC/IXF GRAPHIC column is
created. The database column
length, the SBCS CPGID value,
and the DBCS CPGID value are
copied to the column descriptor
record.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC column is acceptable if the
PC/IXF column double-byte code page value
equals that of the database column. If the
PC/IXF column is of fixed length, its length
must be compatible with the database
column length. The data is padded on the
right with double-byte spaces (x'8140'), if
necessary.

INTEGER An INTEGER column, identical to
the database column, is created.

A column in any numeric type (SMALLINT,
INTEGER, BIGINT, DECIMAL, or FLOAT) is
accepted. Individual values are rejected if
they are not in the range -2 147 483 648 to
2 147 483 647.

LONG VARCHAR A PC/IXF LONG VARCHAR
column is created. The maximum
length of the database column,
the SBCS CPGID value, and the
DBCS CPGID value are copied to
the column descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG
VARCHAR column is acceptable if:

• The database column is marked FOR BIT
DATA

• The PC/IXF column single-byte code page
value equals the SBCS CPGID of the
database column, and the PC/IXF column
double-byte code page value equals zero,
or the DBCS CPGID of the database
column.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC column is also acceptable if
the database column is marked FOR BIT
DATA. In any case, if the PC/IXF column is of
fixed length, its length must be compatible
with the maximum length of the database
column.

Chapter 1. Data movement utilities and reference 209

Table 24. Acceptable data type forms for the PC/IXF file format (continued)

Data type Form in files created by the
export utility

Form acceptable to the import and load
utilities

LONG VARGRAPHIC
(DBCS only)

A PC/IXF LONG VARGRAPHIC
column is created. The maximum
length of the database column,
the SBCS CPGID value, and the
DBCS CPGID value are copied to
the column descriptor record.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC column is acceptable if the
PC/IXF column double-byte code page value
equals that of the database column. If the
PC/IXF column is of fixed length, its length
must be compatible with the maximum
length of the database column.

SMALLINT A SMALLINT column, identical to
the database column, is created.

A column in any numeric type (SMALLINT,
INTEGER, BIGINT, DECIMAL, or FLOAT) is
accepted. Individual values are rejected if
they are not in the range -32 768 to 32 767.

TIME A TIME column, identical to the
database column, is created.

A PC/IXF column of type TIME is the usual
input. The import utility also attempts to
accept columns in any of the character types,
except those with incompatible lengths. The
character column in the PC/IXF file must
contain time data in a format consistent with
the territory code of the target database.

TIMESTAMP A TIMESTAMP column, identical
to the database column, is
created.

A PC/IXF column of type TIMESTAMP is the
usual input. The import utility also attempts
to accept columns in any of the character
types, except those with incompatible
lengths. The character column in the PC/IXF
file must contain data in the input format for
time stamps.

VARBINARY A PC/IXF VARBINARY column is
created. The database column
length, the SBCS CPGID value,
and the DBCS CPGID value are
copied to the PC/IXF column
descriptor record.

A PC/IXF CHAR or VARCHAR column is
acceptable if the PC/IXF column single-byte
code page values and double-byte code page
values are both zero.

Otherwise, a BINARY or VARBINARY column
is acceptable.

210 IBM Db2 V11.5: Data Movement Utilities Guide

Table 24. Acceptable data type forms for the PC/IXF file format (continued)

Data type Form in files created by the
export utility

Form acceptable to the import and load
utilities

VARCHAR If the maximum length of the
database column is = 32672, a
PC/IXF VARCHAR column is
created. If the maximum length
of the database column is >
32672, a PC/IXF LONG VARCHAR
column is created. The maximum
length of the database column,
the SBCS CPGID value, and the
DBCS CPGID value are copied to
the column descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG
VARCHAR column is acceptable if:

• The database column is marked FOR BIT
DATA

• The PC/IXF column single-byte code page
value equals the SBCS CPGID of the
database column, and the PC/IXF column
double-byte code page value equals zero,
or the DBCS CPGID of the database
column.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC column is also acceptable if
the database column is marked FOR BIT
DATA. In any case, if the PC/IXF column is of
fixed length, its length must be compatible
with the maximum length of the database
column. If required to match the maximum
length of the target column, the character
string is leading truncated. If the ASC
truncate blanks option is in effect, trailing
blanks are stripped from the original or the
truncated string.

VARGRAPHIC (DBCS
only)

If the maximum length of the
database column is = 127, a
PC/IXF VARGRAPHIC column is
created. If the maximum length
of the database column is > 127,
a PC/IXF LONG VARGRAPHIC
column is created. The maximum
length of the database column,
the SBCS CPGID value, and the
DBCS CPGID value are copied to
the column descriptor record.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC column is acceptable if the
PC/IXF column double-byte code page value
equals that of the database column. If the
PC/IXF column is of fixed length, its length
must be compatible with the maximum
length of the database column.

General rules governing PC/IXF file import into databases

The database manager import utility applies the following general rules when importing a PC/IXF file in
either an SBCS or a DBCS environment:

• The import utility accepts PC/IXF format files only (IXFHID = 'IXF'). IXF files of other formats cannot be
imported.

• The import utility rejects a PC/IXF file with more than 1024 columns.
• When exporting to the IXF format, if identifiers exceed the maximum size supported by the IXF format,

the export operation succeeds, but the resulting data file cannot be used by a subsequent import
operation using the CREATE mode. SQL27984W is returned.

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are deprecated and might
be removed in a future release.

• The value of IXFHSBCP in the PC/IXF H record must equal the SBCS CPGID, or there must be a
conversion table between the IXFHSBCP/IXFHDBCP and the SBCS/DBCS CPGID of the target database.
The value of IXFHDBCP must equal either '00000', or the DBCS CPGID of the target database. If either

Chapter 1. Data movement utilities and reference 211

of these conditions is not satisfied, the import utility rejects the PC/IXF file, unless the FORCEIN option
is specified.

• Invalid data types - new tables

Import of a PC/IXF file into a new table is specified by the CREATE or the REPLACE_CREATE keywords
in the IMPORT command. If a PC/IXF column of an invalid data type is selected for import into a new
table, the import utility terminates. The entire PC/IXF file is rejected, no table is created, and no data is
imported.

• Invalid data types - existing tables

Import of a PC/IXF file into an existing table is specified by the INSERT, the INSERT_UPDATE, the
REPLACE or the REPLACE_CREATE keywords in the IMPORT command. If a PC/IXF column of an invalid
data type is selected for import into an existing table, one of two actions is possible:

– If the target table column is nullable, all values for the invalid PC/IXF column are ignored, and the
table column values are set to NULL

– If the target table column is not nullable, the import utility terminates. The entire PC/IXF file is
rejected, and no data is imported. The existing table remains unaltered.

• When importing into a new table, nullable PC/IXF columns generate nullable database columns, and
not nullable PC/IXF columns generate not nullable database columns.

• A not nullable PC/IXF column can be imported into a nullable database column.
• A nullable PC/IXF column can be imported into a not nullable database column. If a NULL value is

encountered in the PC/IXF column, the import utility rejects the values of all columns in the PC/IXF row
that contains the NULL value (the entire row is rejected), and processing continues with the next PC/IXF
row. That is, no data is imported from a PC/IXF row that contains a NULL value if a target table column
(for the NULL) is not nullable.

• Incompatible Columns - New Table

If, during import to a new database table, a PC/IXF column is selected that is incompatible with the
target database column, the import utility terminates. The entire PC/IXF file is rejected, no table is
created, and no data is imported.

Note: IMPORT's FORCEIN option extends the scope of compatible columns.
• Incompatible columns - existing table

If, during import to an existing database table, a PC/IXF column is selected that is incompatible with the
target database column, one of two actions is possible:

– If the target table column is nullable, all values for the PC/IXF column are ignored, and the table
column values are set to NULL

– If the target table column is not nullable, the import utility terminates. The entire PC/IXF file is
rejected, and no data is imported. The existing table remains unaltered.

Note: IMPORT's FORCEIN option extends the scope of compatible columns.
• Invalid values

If, during import, a PC/IXF column value is encountered that is not valid for the target database column,
the import utility rejects the values of all columns in the PC/IXF row that contains the invalid value (the
entire row is rejected), and processing continues with the next PC/IXF row.

Data type-specific rules governing PC/IXF file import into databases

• A valid PC/IXF numeric column can be imported into any compatible numeric database column. PC/IXF
columns containing 4-byte floating point data are not imported, because this is an invalid data type.

• Database date/time columns can accept values from matching PC/IXF date/time columns (DATE, TIME,
and TIMESTAMP), as well as from PC/IXF character columns (CHAR, VARCHAR, and LONG VARCHAR),
subject to column length and value compatibility restrictions.

• A valid PC/IXF character column (CHAR, VARCHAR, or LONG VARCHAR) can always be imported into an
existing database character column marked FOR BIT DATA; otherwise:

212 IBM Db2 V11.5: Data Movement Utilities Guide

– IXFCSBCP and the SBCS CPGID must agree
– There must be a conversion table for the IXFCSBCP/IXFCDBCP and the SBCS/DBCS
– One set must be all zeros (FOR BIT DATA).

If IXFCSBCP is not zero, the value of IXFCDBCP must equal either zero or the DBCS CPGID of the target
database column.

If either of these conditions is not satisfied, the PC/IXF and database columns are incompatible.

When importing a valid PC/IXF character column into a new database table, the value of IXFCSBCP
must equal either zero or the SBCS CPGID of the database, or there must be a conversion table. If
IXFCSBCP is zero, IXFCDBCP must also be zero (otherwise the PC/IXF column is an invalid data type);
IMPORT creates a character column marked FOR BIT DATA in the new table. If IXFCSBCP is not zero,
and equals the SBCS CPGID of the database, the value of IXFCDBCP must equal either zero or the DBCS
CPGID of the database; in this case, the utility creates a character column in the new table with SBCS
and DBCS CPGID values equal to those of the database. If these conditions are not satisfied, the PC/IXF
and database columns are incompatible.

The FORCEIN option can be used to override code page equality checks. However, a PC/IXF character
column with IXFCSBCP equal to zero and IXFCDBCP not equal to zero is an invalid data type, and
cannot be imported, even if FORCEIN is specified.

• A valid PC/IXF graphic column (GRAPHIC, VARGRAPHIC, or LONG VARGRAPHIC) can always be
imported into an existing database character column marked FOR BIT DATA, but is incompatible with all
other database columns. The FORCEIN option can be used to relax this restriction. However, a PC/IXF
graphic column with IXFCSBCP not equal to zero, or IXFCDBCP equal to zero, is an invalid data type,
and cannot be imported, even if FORCEIN is specified.

When importing a valid PC/IXF graphic column into a database graphic column, the value of IXFCDBCP
must equal the DBCS CPGID of the target database column (that is, the double-byte code pages of the
two columns must agree).

• If, during import of a PC/IXF file into an existing database table, a fixed-length string column (CHAR or
GRAPHIC) is selected whose length is greater than the maximum length of the target column, the
columns are incompatible.

• If, during import of a PC/IXF file into an existing database table, a variable-length string column
(VARCHAR, LONG VARCHAR, VARGRAPHIC, or LONG VARGRAPHIC) is selected whose length is greater
than the maximum length of the target column, the columns are compatible. Individual values are
processed according to the compatibility rules governing the database manager INSERT statement, and
PC/IXF values which are too long for the target database column are invalid.

• PC/IXF values imported into a fixed-length database character column (that is, a CHAR column) are
padded on the right with single-byte spaces (0x20), if necessary, to obtain values whose length equals
that of the database column. PC/IXF values imported into a fixed-length database graphic column (that
is, a GRAPHIC column) are padded on the right with double-byte spaces (0x8140), if necessary, to
obtain values whose length equals that of the database column.

• Since PC/IXF VARCHAR columns have a maximum length of 254 bytes, a database VARCHAR column of
maximum length n, with 254 n 4001, must be exported into a PC/IXF LONG VARCHAR column of
maximum length n.

• Although PC/IXF LONG VARCHAR columns have a maximum length of 32 767 bytes, and database
LONG VARCHAR columns have a maximum length restriction of 32 700 bytes, PC/IXF LONG VARCHAR
columns of length greater than 32 700 bytes (but less than 32 768 bytes) are still valid, and can be
imported into database LONG VARCHAR columns, but data might be lost.

• Since PC/IXF VARGRAPHIC columns have a maximum length of 127 bytes, a database VARGRAPHIC
column of maximum length n, with 127 n 2001, must be exported into a PC/IXF LONG VARGRAPHIC
column of maximum length n.

• Although PC/IXF LONG VARGRAPHIC columns have a maximum length of 16 383 bytes, and database
LONG VARGRAPHIC columns have a maximum length restriction of 16 350, PC/IXF LONG VARGRAPHIC
columns of length greater than 16 350 bytes (but less than 16 384 bytes) are still valid, and can be
imported into database LONG VARGRAPHIC columns, but data might be lost.

Chapter 1. Data movement utilities and reference 213

Table 25 on page 214 and Table 26 on page 214 summarize PC/IXF file import into new or existing
database tables without the FORCEIN option.

Table 25. Summary of PC/IXF file import without FORCEIN option-numeric types

PC/IXF COLUMN DATA
TYPE

DATABASE COLUMN DATA TYPE

SMALL INT INT BIGINT DEC DFP FLT

-SMALLINT N

E E E Ea E E

-INTEGER N

Ea E E Ea E E

-BIGINT N

Ea Ea E Ea E E

-DECIMAL N

Ea Ea Ea Ea E E

-DECFLOAT N

Ea Ea Ea Ea E Ea

-FLOAT N

Ea Ea Ea Ea E E

a Individual values are rejected if they are out of range for the target numeric data type.

Table 26. Summary of PC/IXF file import without FORCEIN option-character, graphic, and date/time types

PC/IXF COLUMN
DATA TYPE

DATABASE COLUMN DATA TYPE

(0,0) (SBCS,
0)d

(SBCS,
DBCS)b

GRAPHb DATE TIME TIME
STAMP

-(0,0) N

E Ec Ec Ec

-(SBCS,0) N N

E E E Ec Ec Ec

-(SBCS, DBCS) N Ec Ec Ec

E E

-GRAPHIC N

E E

-DATE N

E

-TIME N

E

-TIME STAMP N

E

214 IBM Db2 V11.5: Data Movement Utilities Guide

b Data type is available only in DBCS environments.
c Individual values are rejected if they are not valid date or time values.
d Data type is not available in DBCS environments.

Note:

1. The table is a matrix of all valid PC/IXF and database manager data types. If a PC/IXF column can be
imported into a database column, a letter is displayed in the matrix cell at the intersection of the
PC/IXF data type matrix row and the database manager data type matrix column. An 'N' indicates that
the utility is creating a new database table (a database column of the indicated data type is created).
An 'E' indicates that the utility is importing data to an existing database table (a database column of
the indicated data type is a valid target).

2. Character string data types are distinguished by code page attributes. These attributes are shown as
an ordered pair (SBCS,DBCS), where:

• SBCS is either zero or denotes a non-zero value of the single-byte code page attribute of the
character data type

• DBCS is either zero or denotes a non-zero value of the double-byte code page attribute of the
character data type.

3. If the table indicates that a PC/IXF character column can be imported into a database character
column, the values of their respective code page attribute pairs satisfy the rules governing code page
equality.

Differences between PC/IXF and Version 0 System/370 IXF

The following describes differences between PC/IXF, used by the database manager, and Version 0
System/370 IXF, used by several host database products:

• PC/IXF files are ASCII, rather than EBCDIC oriented. PC/IXF files have significantly expanded code page
identification, including new code page identifiers in the H record, and the use of actual code page
values in the column descriptor records. There is also a mechanism for marking columns of character
data as FOR BIT DATA. FOR BIT DATA columns are of special significance, because transforms which
convert a PC/IXF file format to or from any other IXF or database file format cannot perform any code
page translation on the values contained in FOR BIT DATA columns.

• Only the machine data form is permitted; that is, the IXFTFORM field must always contain the value M.
Furthermore, the machine data must be in PC forms; that is, the IXFTMFRM field must contain the value
PC. This means that integers, floating point numbers, and decimal numbers in data portions of PC/IXF
data records must be in PC forms.

• Application (A) records are permitted anywhere after the H record in a PC/IXF file. They are not counted
when the value of the IXFHHCNT field is computed.

• Every PC/IXF record begins with a record length indicator. This is a 6-byte character representation of
an integer value containing the length, in bytes, of the PC/IXF record not including the record length
indicator itself; that is, the total record length minus 6 bytes. The purpose of the record length field is to
enable PC programs to identify record boundaries.

• To facilitate the compact storage of variable-length data, and to avoid complex processing when a field
is split into multiple records, PC/IXF does not support Version 0 IXF X records, but does support D
record identifiers. Whenever a variable-length field or a nullable field is the last field in a data D record,
it is not necessary to write the entire maximum length of the field to the PC/IXF file.

FORCEIN option
The forcein file type modifier permits import of a PC/IXF file despite code page differences between
data in the PC/IXF file and the target database. It offers additional flexibility in the definition of
compatible columns.

General semantics of forcein

The following general semantics apply when using the forcein file type modifier in either an SBCS or a
DBCS environment:

Chapter 1. Data movement utilities and reference 215

• The forcein file type modifier should be used with caution. It is usually advisable to attempt an import
without this option enabled. However, because of the generic nature of the PC/IXF data interchange
architecture, some PC/IXF files might contain data types or values that cannot be imported without
intervention.

• Import with forcein to a new table might yield a different result than import to an existing table. An
existing table has predefined target data types for each PC/IXF data type.

• When LOB data is exported with the lobsinfile file type modifier, and the files move to another client
with a different code page, then, unlike other data, the CLOBS and DBCLOBS in the separate files are
not converted to the client code page when imported or loaded into a database.

Code page semantics for forcein

The following code page semantics apply when using the forcein file type modifier in either an SBCS or
a DBCS environment:

• The forcein file type modifier disables all import utility code page comparisons.

This rule applies to code page comparisons at the column level and at the file level as well, when
importing to a new or an existing database table. At the column (for example, data type) level, this rule
applies only to the following database manager and PC/IXF data types: character (CHAR, VARCHAR,
and LONG VARCHAR), and graphic (GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC). The restriction
follows from the fact that code page attributes of other data types are not relevant to the interpretation
of data type values.

• forcein does not disable inspection of code page attributes to determine data types.

For example, the database manager allows a CHAR column to be declared with the FOR BIT DATA
attribute. Such a declaration sets both the SBCS CPGID and the DBCS CPGID of the column to zero; it is
the zero value of these CPGIDs that identifies the column values as bit strings (rather than character
strings).

• forcein does not imply code page translation.

Values of data types that are sensitive to the forcein file type modifier are copied "as is". No code
point mappings are employed to account for a change of code page environments. Padding of the
imported value with spaces might be necessary in the case of fixed length target columns.

• When data is imported to an existing table using forcein:

– The code page value of the target database table and columns always prevails.
– The code page value of the PC/IXF file and columns is ignored.

This rule applies whether or not forcein is used. The database manager does not permit changes to a
database or a column code page value once a database is created.

• When importing to a new table using forcein:

– The code page value of the target database prevails.
– PC/IXF character columns with IXFCSBCP = IXFCDBCP = 0 generate table columns marked FOR BIT

DATA.
– All other PC/IXF character columns generate table character columns with SBCS and DBCS CPGID

values equal to those of the database.
– PC/IXF graphic columns generate table graphic columns with an SBCS CPGID of "undefined", and a

DBCS CPGID equal to that of the database (DBCS environment only).

Consider a PC/IXF CHAR column with IXFCSBCP = '00897' and IXFCDBCP = '00301'. This column is to be
imported into a database CHAR column whose SBCS CPGID = '00850' and DBCS CPGID = '00000'.
Without forcein, the utility terminates, and no data is imported, or the PC/IXF column values are
ignored, and the database column contains NULLs (if the database column is nullable). With forcein, the
utility proceeds, ignoring code page incompatibilities. If there are no other data type incompatibilities
(such as length, for example), the values of the PC/IXF column are imported "as is", and become available
for interpretation under the database column code page environment.

216 IBM Db2 V11.5: Data Movement Utilities Guide

The following two tables show:

• The code page attributes of a column created in a new database table when a PC/IXF file data type with
specified code page attributes is imported.

• That the import utility rejects PC/IXF data types if they are invalid or incompatible.

Table 27. Summary of Import Utility Code Page Semantics (New Table) for SBCS

CODE PAGE ATTRIBUTES of
PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE COLUMN

Without forcein With forcein

(0,0) (0,0) (0,0)

(a,0) (a,0) (a,0)

(x,0) reject (a,0)

(x,y) reject (a,0)

(a,y) reject (a,0)

(0,y) reject (0,0)

Note:

1. This table assumes there is no conversion table between a and x. If there were, items 3 and 4 would
work successfully without forcein.

2. See the notes for Table 28 on page 217.

Table 28. Summary of Import Utility Code Page Semantics (New Table) for DBCS

CODE PAGE ATTRIBUTES of
PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE COLUMN

Without forcein With forcein

(0,0) (0,0) (0,0)

(a,0) (a,b) (a,b)

(x,0) reject (a,b)

(a,b) (a,b) (a,b)

(x,y) reject (a,b)

(a,y) reject (a,b)

(x,b) reject (a,b)

(0,b) (-,b) (-,b)

(0,y) reject (-,b)

Note:

1. This table assumes there is no conversion table between a and x.
2. Code page attributes of a PC/IXF data type are shown as an ordered pair, where x represents a non-

zero single-byte code page value, and y represents a non-zero double-byte code page value. A '-'
represents an undefined code page value.

3. The use of different letters in various code page attribute pairs is deliberate. Different letters imply
different values. For example, if a PC/IXF data type is shown as (x,y), and the database column as (a,y),
x does not equal a, but the PC/IXF file and the database have the same double-byte code page value y.

4. Only character and graphic data types are affected by the forcein code page semantics.

Chapter 1. Data movement utilities and reference 217

5. It is assumed that the database containing the new table has code page attributes of (a,0); therefore,
all character columns in the new table must have code page attributes of either (0,0) or (a,0).

In a DBCS environment, it is assumed that the database containing the new table has code page
attributes of (a,b); therefore, all graphic columns in the new table must have code page attributes of
(-,b), and all character columns must have code page attributes of (a,b). The SBCS CPGID is shown as
'-', because it is undefined for graphic data types.

6. The data type of the result is determined by the rules described in Data type semantics for forcein.
7. The reject result is a reflection of the rules for invalid or incompatible data types.

The following two tables show:

• That the import utility accepts PC/IXF data types with various code page attributes into an existing table
column (the target column) having the specified code page attributes.

• That the import utility does not permit a PC/IXF data type with certain code page attributes to be
imported into an existing table column having the code page attributes shown. The utility rejects PC/IXF
data types if they are invalid or incompatible.

Table 29. Summary of Import Utility Code Page Semantics (Existing Table) for SBCS

CODE PAGE
ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE
ATTRIBUTES OF

TARGET DATABASE
COLUMN

RESULTS OF IMPORT

Without forcein With forcein

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

(x,0) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(0,y) (0,0) accept accept

(0,0) (a,0) null or reject accept

(a,0) (a,0) accept accept

(x,0) (a,0) null or reject accept

(x,y) (a,0) null or reject accept

(a,y) (a,0) null or reject accept

(0,y) (a,0) null or reject null or reject

Note:

• This table assumes there is no conversion table between a and x.
• See the notes for Table 27 on page 217.
• The null or reject result is a reflection of the rules for invalid or incompatible data types.

Table 30. Summary of Import Utility Code Page Semantics (Existing Table) for DBCS

CODE PAGE
ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE
ATTRIBUTES OF

TARGET DATABASE
COLUMN

RESULTS OF IMPORT

Without forcein With forcein

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

218 IBM Db2 V11.5: Data Movement Utilities Guide

Table 30. Summary of Import Utility Code Page Semantics (Existing Table) for DBCS (continued)

CODE PAGE
ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE
ATTRIBUTES OF

TARGET DATABASE
COLUMN

RESULTS OF IMPORT

Without forcein With forcein

(x,0) (0,0) accept accept

(a,b) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(x,b) (0,0) accept accept

(0,b) (0,0) accept accept

(0,y) (0,0) accept accept

(0,0) (a,b) null or reject accept

(a,0) (a,b) accept accept

(x,0) (a,b) null or reject accept

(a,b) (a,b) accept accept

(x,y) (a,b) null or reject accept

(a,y) (a,b) null or reject accept

(x,b) (a,b) null or reject accept

(0,b) (a,b) null or reject null or reject

(0,y) (a,b) null or reject null or reject

(0,0) (-,b) null or reject accept

(a,0) (-,b) null or reject null or reject

(x,0) (-,b) null or reject null or reject

(a,b) (-,b) null or reject null or reject

(x,y) (-,b) null or reject null or reject

(a,y) (-,b) null or reject null or reject

(x,b) (-,b) null or reject null or reject

(0,b) (-,b) accept accept

(0,y) (-,b) null or reject accept

Note:

• This table assumes there is no conversion table between a and x.
• See the notes for Table 27 on page 217.
• The null or reject result is a reflection of the rules for invalid or incompatible data types.

Data type semantics for forcein

The forcein file type modifier permits import of certain PC/IXF columns into target database columns of
unequal and otherwise incompatible data types. The following data type semantics apply when using
forcein in either an SBCS or a DBCS environment (except where noted):

Chapter 1. Data movement utilities and reference 219

• In SBCS environments, forcein permits import of:

– A PC/IXF BIT data type (IXFCSBCP = 0 = IXFCDBCP for a PC/IXF character column) into a database
character column (non-zero SBCS CPGID, and DBCS CPGID = 0); existing tables only

– A PC/IXF MIXED data type (non-zero IXFCSBCP and IXFCDBCP) into a database character column;
both new and existing tables

– A PC/IXF GRAPHIC data type into a database FOR BIT DATA column (SBCS CPGID = 0 = DBCS
CPGID); new tables only (this is always permitted for existing tables).

• The forcein file type modifier does not extend the scope of valid PC/IXF data types.

PC/IXF columns with data types not defined as valid PC/IXF data types are invalid for import with or
without forcein.

• In DBCS environments, forcein permits import of:

– A PC/IXF BIT data type into a database character column
– A PC/IXF BIT data type into a database graphic column; however, if the PC/IXF BIT column is of fixed

length, that length must be even. A fixed length PC/IXF BIT column of odd length is not compatible
with a database graphic column. A varying-length PC/IXF BIT column is compatible whether its
length is odd or even, although an odd-length value from a varying-length column is an invalid value
for import into a database graphic column

– A PC/IXF MIXED data type into a database character column.

Table 31 on page 220 summarizes PC/IXF file import into new or existing database tables with forcein
specified.

Table 31. Summary of PC/IXF File Import with forcein

PC/IXF
COLUMN DATA
TYPE

DATABASE COLUMN DATA TYPE

SMALL
INT

INT BIGINT DEC FLT (0,0) (SBCS,
0)e

(SBCS,
DBCS)b

GRAPH
b

DATE TIME TIME
STAMP

-SMALLINT N

E E E Ea E

-INTEGER N

Ea E E Ea E

-BIGINT N

Ea Ea E Ea E

-DECIMAL N

Ea Ea Ea Ea E

-FLOAT N

Ea Ea Ea Ea E

-(0,0)
N

-(SBCS,0) E E w/F E w/F E w/F Ec Ec Ec

N N

-(SBCS, DBCS) E E E Ec Ec Ec

N w/Fd N Ec Ec Ec

E E w/F E

-GRAPHIC N w/Fd N

E E

-DATE N

E

220 IBM Db2 V11.5: Data Movement Utilities Guide

Table 31. Summary of PC/IXF File Import with forcein (continued)

PC/IXF
COLUMN DATA
TYPE

DATABASE COLUMN DATA TYPE

SMALL
INT

INT BIGINT DEC FLT (0,0) (SBCS,
0)e

(SBCS,
DBCS)b

GRAPH
b

DATE TIME TIME
STAMP

-TIME N

E

-TIME STAMP N

E

a Individual values are rejected if they are out of range for the target numeric data type.
b Data type is available only in DBCS environments.
c Individual values are rejected if they are not valid date or time values.
d Applies only if the source PC/IXF data type is not supported by the target database.
e Data type is not available in DBCS environments.

Note: If a PC/IXF column can be imported into a database column only with forcein, the string 'w/F' is
displayed together with an 'N' or an 'E'. An 'N' indicates that the utility is creating a new database table; an
'E' indicates that the utility is importing data to an existing database table. The forcein file type modifier
affects compatibility of character and graphic data types only.

Unicode considerations for data movement
The export, import, and load utilities are not supported when they are used with a Unicode client
connected to a non-Unicode database.

The DEL, ASC, and PC/IXF file formats are supported for a Unicode database, as described in this section.

When exporting from a Unicode database to an ASCII delimited (DEL) file, all character data is converted
to the application code page. Both character string and graphic string data are converted to the same
SBCS or MBCS code page of the client. This is expected behavior for the export of any database, and
cannot be changed, because the entire delimited ASCII file can have only one code page. Therefore, if you
export to a delimited ASCII file, only those UCS-2 characters that exist in your application code page will
be saved. Other characters are replaced with the default substitution character for the application code
page. For UTF-8 clients (code page 1208), there is no data loss, because all UCS-2 characters are
supported by UTF-8 clients.

When importing from an ASCII file (DEL or ASC) to a Unicode database, character string data is converted
from the application code page to UTF-8, and graphic string data is converted from the application code
page to UCS-2. There is no data loss. If you want to import ASCII data that has been saved under a
different code page, you should change the data file code page before issuing the IMPORT command. You
can specify the code page of the data file by setting the DB2CODEPAGE registry variable to the code page
of the ASCII data file or by using the codepage file type modifier.

The range of valid ASCII delimiters for SBCS and MBCS clients is identical to what is currently supported
by Db2 for those clients. The range of valid delimiters for UTF-8 clients is X'01' to X'7F', with the usual
restrictions.

When exporting from a Unicode database to a PC/IXF file, character string data is converted to the SBCS/
MBCS code page of the client. Graphic string data is not converted, and is stored in UCS-2 (code page
1200). There is no data loss.

When importing from a PC/IXF file to a Unicode database, character string data is assumed to be in the
SBCS/MBCS code page stored in the PC/IXF header, and graphic string data is assumed to be in the DBCS
code page stored in the PC/IXF header. Character string data is converted by the import utility from the
code page specified in the PC/IXF header to the code page of the client, and then from the client code
page to UTF-8 (by the INSERT statement). Graphic string data is converted by the import utility from the
DBCS code page specified in the PC/IXF header directly to UCS-2 (code page 1200).

Chapter 1. Data movement utilities and reference 221

The load utility places the data directly into the database and, by default, assumes data in ASC or DEL
files to be in the code page of the database. Therefore, by default, no code page conversion takes place
for ASCII files. When the code page for the data file has been explicitly specified (using the codepage file
type modifier), the load utility uses this information to convert from the specified code page to the
database code page before loading the data. For PC/IXF files, the load utility always converts from the
code pages specified in the IXF header to the database code page (1208 for CHAR, and 1200 for
GRAPHIC).

The code page for DBCLOB files is always 1200 for UCS-2. The code page for CLOB files is the same as
the code page for the data files being imported, loaded or exported. For example, when loading or
importing data using the PC/IXF format, the CLOB file is assumed to be in the code page specified by the
PC/IXF header. If the DBCLOB file is in ASC or DEL format, the load utility assumes that CLOB data is in
the code page of the database, while the import utility assumes it to be in the code page of the client
application.

The nochecklengths modifier is always specified for a Unicode database, because:

• Any SBCS can be connected to a database for which there is no DBCS code page
• Character strings in UTF-8 format usually have different lengths than those in client code pages.

Considerations for code page 1394, 1392, and 5488

The import, export and load utilities can be used to transfer data from the Chinese code page GB18030
(code page identifier 1392 and 5488) and the Japanese code page ShiftJISX 0213 (code page identifier
1394) to Db2 Unicode databases. In addition, the export utility can be used to transfer data from Db2
Unicode databases to GB18030 or ShiftJIS X0213 code page data.

For example, the following command will load the Shift JIS X0213 data file u/jp/user/x0213/
data.del residing on a remotely connected client into MYTABLE:

 db2 load client from /u/jp/user/x0213/data.del
 of del modified by codepage=1394 insert into mytable

where MYTABLE is located on a Db2 Unicode database.

Since only connections between a Unicode client and a Unicode server are supported, you need to use
either a Unicode client or set the Db2 registry variable DB2CODEPAGE to 1208 before using the load,
import, or export utilities.

Conversion from code page 1394 to Unicode can result in expansion. For example, a 2-byte character can
be stored as two 16-bit Unicode characters in the GRAPHIC columns. You need to ensure the target
columns in the Unicode database are wide enough to contain any expanded Unicode byte.

Incompatibilities

For applications connected to a Unicode database, graphic string data is always in UCS-2 (code page
1200). For applications connected to non-Unicode databases, the graphic string data is in the DBCS code
page of the application, or not allowed if the application code page is SBCS. For example, when a 932
client is connected to a Japanese non-Unicode database, the graphic string data is in code page 301. For
the 932 client applications connected to a Unicode database, the graphic string data is in UCS-2
encoding.

Character set and national language support
The Db2 data movement utilities offer the following national language support:

• The import and the export utilities provide automatic code page conversion from a client code page to
the server code page.

• For the load utility, data can be converted from any code page to the server code page by using the
codepage modifier with DEL and ASC files.

222 IBM Db2 V11.5: Data Movement Utilities Guide

• For all utilities, IXF data is automatically converted from its original code page (as stored in the IXF file)
to the server code page.

Unequal code page situations, involving expansion or contraction of the character data, can sometimes
occur. For example, Japanese or Traditional-Chinese Extended UNIX Code (EUC) and double-byte
character sets (DBCS) might encode different lengths for the same character. Normally, comparison of
input data length to target column length is performed before reading in any data. If the input length is
greater than the target length, NULLs are inserted into that column if it is nullable. Otherwise, the request
is rejected. If the nochecklengths file type modifier is specified, no initial comparison is performed, and
an attempt is made to import or load the data. If the data is too long after translation is complete, the row
is rejected. Otherwise, the data is imported or loaded.

XML data movement
Support for XML data movement is provided by the load, import and export utilities. Support for moving
tables that contain XML columns without taking the tables offline is provided by the
ADMIN_MOVE_TABLE stored procedure.

Importing XML data

The import utility can be used to insert XML documents into a regular relational table. Only well-formed
XML documents can be imported.

Use the XML FROM option of the IMPORT command to specify the location of the XML documents to
import. The XMLVALIDATE option specifies how imported documents should be validated. You can select
to have the imported XML data validated against a schema specified with the IMPORT command, against
a schema identified by a schema location hint inside of the source XML document, or by the schema
identified by the XML Data Specifier in the main data file. You can also use the XMLPARSE option to
specify how whitespace is handled when the XML document is imported. The xmlchar and xmlgraphic
file type modifiers allow you to specify the encoding characteristics for the imported XML data.

Loading XML data

The load utility offers an efficient way to insert large volumes of XML data into a table. This utility also
allows certain options unavailable with the import utility, such as the ability to load from a user-defined
cursor.

Like the IMPORT command, with the LOAD command you can specify the location of the XML data to load,
validation options for the XML data, and how whitespace is handled. As with IMPORT, you can use the
xmlchar and xmlgraphic file type modifiers to specify the encoding characteristics for the loaded XML
data.

Exporting XML data

Data may be exported from tables that include one or more columns with an XML data type. Exported
XML data is stored in files separate from the main data file containing the exported relational data.
Information about each exported XML document is represented in the main exported data file by an XML
data specifier (XDS). The XDS is a string that specifies the name of the system file in which the XML
document is stored, the exact location and length of the XML document inside of this file, and the XML
schema used to validate the XML document.

You can use the XMLFILE, XML TO, and XMLSAVESCHEMA parameters of the EXPORT command to
specify details about how exported XML documents are stored. The xmlinsepfiles,
xmlnodeclaration, xmlchar, and xmlgraphic file type modifiers allow you to specify further details
about the storage location and the encoding of the exported XML data.

Moving tables online

The ADMIN_MOVE_TABLE stored procedure moves the data in an active table into a new table object with
the same name, while the data remains online and available for access. The table can include one or more

Chapter 1. Data movement utilities and reference 223

columns with an XML data type. Use an online table move instead of an offline table move if you value
availability more than cost, space, move performance, and transaction overhead

You can call the procedure once or multiple times, one call for each operation performed by the
procedure. Using multiple calls provides you with additional options, such as cancelling the move or
controlling when the target table is taken offline to be updated.

Important considerations for XML data movement
There are a number of restrictions, prerequisites, and reminders to consider when importing or exporting
XML data. Review these considerations before importing or exporting XML data.

Keep the following consideration in mind when exporting or importing XML data:

• Exported XML data is always stored separately from the main data file containing exported relational
data.

• By default, the export utility writes XML data in Unicode. Use the xmlchar file type modifier to have
XML data written in the character code page, or use the xmlgraphic file type modifier to have XML
data written in UTF-16 (the graphic code page) regardless of the application code page.

• XML data can be stored in non-Unicode databases, and the data inserted into an XML column is
converted from the database codepage to UTF-8 before insertion. In order to avoid the possible
introduction of substitution characters during XML parsing, character data to be inserted should consist
only of code points that are part of the database codepage. Setting the enable_xmlchar configuration
parameter to no blocks the insertion of character data types during XML parsing, restricting insertion to
data types that do not undergo codepage conversion, such as BIT DATA, BLOB, or XML.

• When importing or loading XML data, the XML data is assumed to be in Unicode unless the XML
document to import contains a declaration tag that includes an encoding attribute. You can use the
xmlchar file type modifier to indicate that XML documents to import are encoded in the character code
page, while the xmlgraphic file type modifier indicates that XML documents to import are encoded in
UTF-16.

• The import and load utilities reject rows that contain documents that are not well-formed.
• If the XMLVALIDATE option is specified for the import utility or the load utility, documents that

successfully validate against their matching schema are annotated with information about the schema
used for validation as they are inserted into a table. Rows containing documents that fail to validate
against their matching schema are rejected.

• If the XMLVALIDATE option is specified for an import or load utility and multiple XML schemas are used
to validate XML documents, you might need to increase the catalog cache size configuration parameter
catalogcache_sz. If increasing the value of catalogcache_sz is not feasible or possible, you can
separate the single import or load command into multiple commands that use fewer schema
documents.

• When you export XML data specifying an XQuery statement, you might export Query and XPath Data
Model (XDM) instances that are not well-formed XML documents. Exported XML documents that are not
well-formed cannot be imported directly into an XML column, because columns defined with the XML
data type can contain only complete, well formed XML documents.

• The CPU_PARALLELISM setting during a load is reduced to 1 if statistics are being collected.
• An XML load operation requires the use of shared sort memory to proceed. Enable SHEAPTHRES_SHR or
INTRA_PARALLEL, or turn on the connection concentrator. By default, SHEAPTHRES_SHR is set, so
shared sort memory is available on the default configuration.

• You cannot specify the SOURCEUSEREXIT option or SAVECOUNT parameter of the LOAD command
when loading a table containing an XML column.

• As with LOB files, XML files have to reside on the server side when using the LOAD command.
• When loading XML data to multiple database partitions in a partitioned database environment, the files

containing the XML data must be accessible to all database partitions. For example, you can copy the
files or create an NFS mount to make the files accessible.

224 IBM Db2 V11.5: Data Movement Utilities Guide

LOB and XML file behavior when importing and exporting
LOB and XML files share certain behaviors and compatibilities that can be used when importing and
exporting data.

Export
When exporting data, if one or more LOB paths are specified with the LOBS TO option, the export
utility will cycle between the paths to write each successive LOB value to the appropriate LOB file.
Similarly, if one or more XML paths are specified with the XML TO option, the export utility will cycle
between the paths to write each successive XQuery and XPath Data Model (XDM) instance to the
appropriate XML file. By default, LOB values and XDM instances are written to the same path to which
the exported relational data is written. Unless the LOBSINSEPFILES or XMLINSEPFILES file type
modifier is set, both LOB files and XML files can have multiple values concatenated to the same file.

The LOBFILE option provides a means to specify the base name of the LOB files generated by the
export utility. Similarly, the XMLFILE option provides a means to specify the base name of the XML
files generated by the export utility. The default LOB file base name is the name of the exported data
file, with the extension .lob. The default XML file base name is the name of the exported data file,
with the extension .xml. The full name of the exported LOB file or XML file therefore consists of the
base name, followed by a number extension that is padded to three digits, and the extension .lob
or .xml.

Import
When importing data, a LOB Location Specifier (LLS) is compatible with an XML target column, and an
XML Data Specifier (XDS) is compatible with a LOB target column. If the LOBS FROM option is not
specified, the LOB files to import are assumed to reside in the same path as the input relational data
file. Similarly, if the XML FROM option is not specified, the XML files to import are assumed to reside in
the same path as the input relational data file.

Export examples

In the following example, all LOB values are written to the file /mypath/t1export.del.001.lob, and
all XDM instances are written to the file /mypath/t1export.del.001.xml:

 EXPORT TO /mypath/t1export.del OF DEL MODIFIED BY LOBSINFILE
 SELECT * FROM USER.T1

In the following example, the first LOB value is written to the file /lob1/t1export.del.001.lob, the
second is written to the file /lob2/t1export.del.002.lob, the third is appended to /lob1/
t1export.del.001.lob, the fourth is appended to /lob2/t1export.del.002.lob, and so on:

 EXPORT TO /mypath/t1export.del OF DEL LOBS TO /lob1,/lob2
 MODIFIED BY LOBSINFILE SELECT * FROM USER.T1

In the following example, the first XDM instance is written to the file /xml1/xmlbase.001.xml, the
second is written to the file /xml2/xmlbase.002.xml, the third is written to /xml1/
xmlbase.003.xml, the fourth is written to /xml2/xmlbase.004.xml, and so on:

 EXPORT TO /mypath/t1export.del OF DEL XML TO /xml1,/xml2 XMLFILE xmlbase
 MODIFIED BY XMLINSEPFILES SELECT * FROM USER.T1

Import examples

For a table "mytable" that contains a single XML column, and the following IMPORT command:

 IMPORT FROM myfile.del of del LOBS FROM /lobpath XML FROM /xmlpath
 MODIFIED BY LOBSINFILE XMLCHAR replace into mytable

If "myfile.del" contains the following data:

 mylobfile.001.lob.123.456/

Chapter 1. Data movement utilities and reference 225

The import utility will try to import an XML document from the file /lobpath/mylobfile.001.lob,
starting at file offset 123, with its length being 456 bytes.

The file "mylobfile.001.lob" is assumed to be in the LOB path, as opposed to the XML path, since the value
is referred to by a LOB Location Specifier (LLS) instead of an XML Data Specifier (XDS).

The document is assumed to be encoded in the character codepage, since the XMLCHAR file type
modifier is specified.

XML data specifier
XML data moved with the export, import and load utilities must be stored in files separate from the main
data file. The XML data is represented in the main data file with an XML data specifier (XDS).

The XDS is a string represented as an XML tag named "XDS", which has attributes that describe
information about the actual XML data in the column; such information includes the name of the file that
contains the actual XML data, and the offset and length of the XML data within that file. The attributes of
the XDS are described in the following list.

FIL
The name of the file that contains the XML data. You cannot specify a named pipe. Importing or
loading XML documents from a named pipe is not supported.

OFF
The byte offset of the XML data in the file named by the FIL attribute, where the offset begins from 0.

LEN
The length in bytes of the XML data in the file named by the FIL attribute.

SCH
The fully qualified SQL identifier of the XML schema that is used to validate this XML document. The
schema and name components of the SQL identifier are stored as the "OBJECTSCHEMA" and
"OBJECTNAME" values, respectively, of the row in the SYSCAT.XSROBJECTS catalog table that
corresponds to this XML schema.

The XDS is interpreted as a character field in the data file and is subject to the parsing behavior for
character columns of the file format. For the delimited ASCII file format (DEL), for example, if the
character delimiter is present in the XDS, it must be doubled. The special characters <, >, &, ', " within the
attribute values must always be escaped. Case-sensitive object names must be placed between "
character entities.

Examples

Consider a FIL attribute with the value abc&"def".del. To include this XDS in a delimited ASCII file,
where the character delimiter is the " character, the " characters are doubled and special characters are
escaped.

<XDS FIL=""abc&"def".del"" />

The following example shows an XDS as it would appear in a delimited ASCII data file. XML data is stored
in the file xmldocs.xml.001 beginning at byte offset 100 with a length of 300 bytes. Because this XDS is
within an ASCII file delimited with double quotation marks, the double quotation marks within the XDS
tag itself must be doubled.

"<XDS FIL = ""xmldocs.xml.001"" OFF=""100"" LEN=""300"" />"

The following example shows the fully qualified SQL identifier ANTHONY.purchaseOrderTest. The
case-sensitive portion of the identifier must be placed between " character entities in the XDS:

"<XDS FIL='/home/db2inst1/xmlload/a.xml' OFF='0' LEN='6758'
 SCH='ANTHONY."purchaseOrderTest"' />"

226 IBM Db2 V11.5: Data Movement Utilities Guide

Query and XPath Data Model
You can access XML data in tables either by using the XQuery functions available in SQL, or by invoking
XQuery directly. An instance of the Query and XPath Data Model (XDM) can be well-formed XML
documents, sequences of nodes or atomic values, or any combination of nodes and atomic values.

Individual XDM instances can be written to one or more XML files by means of the EXPORT command.

Chapter 1. Data movement utilities and reference 227

228 IBM Db2 V11.5: Data Movement Utilities Guide

Index

A
ADMIN_COPY_SCHEMA procedure

overview 1
application records

PC/IXF 188
ASC data type descriptions 184
ASC files

format 183
sample 186

automatic dictionary creation (ADC)
data movement 60

auxiliary storage objects
XML data specifier 226

B
buffered inserts

import utility 24

C
CDI

overview 95
character strings

delimiter 181
code pages

conversion
files 211
PC/IXF data 211

import utility 222
load utility 222

column descriptor record 188
columns

LBAC-protected
exporting 5, 7
importing 23
loading 40

values
invalid 211

commands
db2inidb 152
db2look

details 160
db2move 120
db2relocatedb 154
RESTORE DATABASE 130

commit_count configuration parameter
performance tuning 109

compression
tables

loading data 60
compression dictionaries

KEEPDICTIONARY option 60
RESETDICTIONARY option 60

constraints
checking

constraints (continued)
checking (continued)

after load operations 65
continuation record type 188
conversion

code page
ingest utility 109

CURSOR file type
data movement 45

D
data

distribution
moving data 50

exporting 6
importing 15
ingesting

partitioned database environment 112
label-based access control (LBAC)

exporting 5
loading 32

transferring
across platforms 176

data movement
delimiter restrictions 181
export utility 5
import utility 12
load utility 29
tools 1
XML 224

Data Movement Guide
overview v

data record type 188
data types

ASC 184
DEL 178
PC/IXF 201, 207

database movement tool command 120
databases

rebuilding
RESTORE DATABASE command 130

restoring 130
Db2 statistics and DDL extraction tool command 160
db2inidb command

details 152
overview 151

DB2LOADREC registry variable
recovering data 75

db2look command
details 160

db2move command
details 120
overview 1
schema copying examples 119

db2relocatedb command
details 154

Index 229

db2relocatedb command (continued)
overview 1

DB2SECURITYLABEL data type
exporting 7
importing 23
loading 40

DEL data type descriptions 178
DEL file

format 177
sample 181

delimited ASCII (DEL) file format
moving data across platforms 176
overview 177

delimiters
character string 181
modifying 181
restrictions on moving data 181

delprioritychar file type modifier
LBAC-protected data import 23
LBAC-protected data load 40

distribution keys
loading data 78

dump files
load utility 76

E
exception tables

load utility 72
export utility

authorities required 5
file formats 175
identity columns 11
LOBs 11
options 5
overview 1, 5
performance 5
prerequisites 6
privileges required 5
restrictions 6
table re-creation 8

exported tables
re-creating 19

exports
data

examples 6
export utility overview 5
LBAC-protected 7
procedure 6

F
file formats

CURSOR 45
delimited ASCII (DEL) 177
nondelimited ASCII (ASC) 183
PC version of IXF (PC/IXF) 186

file type modifiers
dumpfile 76

forcein file type modifier
details 215

G
generated columns

import utility 26
load utility 43

generatedignore file type modifier
importing columns 26

generatedmissing file type modifier
importing columns 26

H
header record 188
hierarchy records 188

I
IBM Relational Data Replication Tools 117
identity columns

exporting data 11
import utility 25
load utility 41

identity records 188
identityignore file type modifier

IMPORT command 25
identitymissing file type modifier

IMPORT command 25
import utility

ALLOW NO ACCESS locking mode 28
ALLOW WRITE ACCESS locking mode 28
authorities required 14
buffered inserts 24
client/server environments 28
code pages 222
exported table re-creation 19
file formats 175
generated columns 26
identity columns 25
ingest utility comparison 172
load utility comparison 172
LOBs 27
overview 1, 12
prerequisites 15
privileges required 14
remote databases 28
restrictions 15
table locking 28
user-defined distinct types (UDTs) 28

imports
data 15, 23
LBAC protection 14
overview 12
PC/IXF files

data type-specific rules 212
FORCEIN option 215
general rules 211

indexes
creating

improving performance after load operations 58
modes 58
PC/IXF record 188
rebuilding 58

INGEST command

230 IBM Db2 V11.5: Data Movement Utilities Guide

INGEST command (continued)
restart table 97
restarting 104
sample scripts 113
terminating 106

ingest utility
Db2 pureScale environments 111
import utility comparison 172
ingesting data 98
limitations 108
load utility comparison 172
monitoring 107
overview 1, 95
partitioned database environments 112
performance tuning 109
processing new files

scenario 113
restart table 97
restarting 104
restrictions 108
running 97
task overview 96

initialize mirrored database command 152
insert time clustering (ITC) tables

loading 49
Integration Exchange Format (IXF) 186
integrity checking 65

L
large objects (LOBs)

exporting 11, 225
importing 27, 225

LBAC
exporting data 5, 7
importing data 14, 23
loading data 32, 40

LOAD command
partitioned database environments 79, 88

load copy location file 75
LOAD QUERY command

partitioned database environments 85
load utility

authorities 32
build phase 29
code pages 222
database recovery 29
delete phase 29
dump file 76
exception tables 72
file formats 175
file type modifiers 61
generated columns 43
identity columns 41
import utility comparison 172
index copy phase 29
ingest utility comparison 172
load phase 29
log records 77
moving data using SOURCEUSEREXIT 50
overview 1, 29
parallelism 57
performance optimization 61
prerequisites 33

load utility (continued)
privileges 32
referential integrity features

overview 64
table space states 69
table states 70

rejected rows 76
required information 29
restrictions 33
table locking 67
table space states 69
table states 70
temporary files

overview 76
loads

access options 67
build phase 58
compressed tables 60
configuration options 91
database partitions 78, 84
examples

overview 35
partitioned database environments 88

index creation 58
insert time clustering (ITC) tables 49
LBAC-protected data 40
monitoring progress 56
multidimensional clustering (MDC) tables 49
Not Load Restartable loads 73
partitioned database environments 91
partitioned tables 37
recovery from failures 73
restarting

ALLOW READ ACCESS mode 74
overview 73
partitioned database environments 86

table access options 67
using CURSOR file type 45

LOB Location Specifier (LLS) 186
lobsinfile file type modifier

exporting 11
lobsinsepfiles file type modifier 11
locks

import utility 28
table level 67

log records
load utility 77

M
MDC tables

loading 49
messages

export utility 5
import utility 12
load utility 29

monitoring
loads 56

MQTs
dependent immediate 48
refreshing data 48
Set Integrity Pending state 48

Index 231

N
non-delimited ASCII (ASC) file format 183
non-identity generated columns 26
nonidentity generated columns 43
nonrecoverable databases

load options 29

P
parallelism

load utility 57
partitioned database environments

loading data
migration 88
monitoring 85
overview 78, 84
restrictions 79
version compatibility 88

migrating 88
version compatibility 88

partitioned tables
loading 37

PC/IXF
code page conversion files 211
data types

invalid 201, 211
valid 201, 207

file importing
data type-specific rules 212
forcein file type modifier 215
general rules 211

incompatible columns 211
invalid column values 211
moving data across platforms 176
overview 186
record types 188
System/370 IXF comparison 215

performance
load utility 61

privileges
export utility 5
import utility 14
load utility 32

R
records

types
PC/IXF 188

recoverable databases
load options 29

recovery
databases

RESTORE DATABASE command 130
without rollforward 130

redirected restores
using generated script 129

registry variables
DB2LOADREC 75

relocate database command 154
REMOTEFETCH media type 45
replication

replication (continued)
tools 117

restart table
creating 97

RESTORE DATABASE command
details 130

restore utility
GENERATE SCRIPT option 1
REDIRECT option 1

restores
earlier versions of Db2 databases 130

rollforward utility
load copy location file 75

rows
exporting LBAC-protected data 5, 7
importing to LBAC-protected 23
loading data into LBAC-protected rows 40

S
samples

ASC file 186
DEL file 181

schemas
copying 118

seclabelchar file type modifier
data importing 23
data loading 40

seclabelname file type modifier
data importing 23
data loading 40

SOURCEUSEREXIT option 50
split mirrors

overview 1, 151
staging tables

dependent immediate 48
propagating 48

storage
XML data specifier 226

striptblanks file type modifier
LBAC-protected data importing 23
LBAC-protected data loading 40

subtable records 188
summary tables

import restriction 15
suspended I/O

overview 151
SYSINSTALLOBJECTS procedure

creating restart table 97
System/370 IXF

contrasted with PC/IXF 215

T
table record 188
table spaces

states 69
table states

load operations 70
tables

loading 67
locking 67
moving online

232 IBM Db2 V11.5: Data Movement Utilities Guide

tables (continued)
moving online (continued)

ADMIN_MOVE_TABLE procedure 114
re-creating exported 19

temporary files
load utility

overview 76
termination

load operations
ALLOW READ ACCESS 74
partitioned database environments 86

PC/IXF records 188
typed tables

exporting 9
importing 20
moving data between 9, 20
re-creating 20
traverse order 9, 20

U
UDTs

distinct types
importing 28

Unicode UCS-2 encoding
data movement 221

usedefaults file type modifier
LBAC-protected data imports 23
LBAC-protected data loads 40

user exit programs
data movement 50

utilities
file formats 175

X
XML data

movement 223, 224
Query and XPath Data Model 227

XML data type
exporting 225
importing 225

XQuery statements
Query and XPath Data Model 227

Index 233

234 IBM Db2 V11.5: Data Movement Utilities Guide

IBM®

	Contents
	Notices
	Trademarks
	Terms and conditions for product documentation

	About this book
	Chapter 1. Data movement utilities and reference
	Data movement options
	Export utility
	Overview
	Privileges and authorities required
	Exporting data
	Export sessions - CLP examples
	LBAC-protected data export considerations
	Table export considerations
	Typed table export considerations
	Identity column export considerations
	LOB export considerations

	Import utility
	Overview
	Privileges and authorities required
	Importing data
	Import sessions - CLP examples
	Imported table re-creation
	Typed table import considerations
	LBAC-protected data import considerations
	Buffered-insert imports
	Identity column import considerations
	Generated column considerations
	LOB import considerations
	User-defined distinct types considerations

	Additional considerations for import
	Client/server environments and import
	Table locking during import

	Load utility
	Load overview
	Privileges and authorities required to use load
	Loading data
	Load sessions - CLP examples
	Load considerations for partitioned tables
	LBAC-protected data load considerations
	Identity column load considerations
	Generated column load considerations
	Moving data using the cursor file type
	Propagating dependent immediate staging tables
	Refreshing dependent immediate materialized query tables
	MDC and ITC considerations
	Moving data using a customized application (user exit)

	Monitoring load
	Additional considerations for load
	Parallelism and loading
	Index creation during load operations
	Compression dictionary creation during load operations
	Options for improving load performance

	Load features for maintaining referential integrity
	Checking for integrity violations
	Table locking during load operations
	Enabling read access during load operations
	Table space states during and after load operations
	Table states during and after load operations
	Load exception tables

	Failed or incomplete loads
	Restarting an interrupted load operation
	Restarting or terminating an ALLOW READ ACCESS load operation
	Recovering data with the load copy location file
	Load dump file
	Load temporary files
	Load utility log records

	Load overview-partitioned database environments
	Loading data in a partitioned database environment
	Loading data in a partitioned database environment-hints and tips

	Monitoring a partitioned database load using the LOAD QUERY command
	Resuming, restarting, or terminating load operations in a partitioned database environment
	Migration and version compatibility
	Reference - Load in a partitioned environment
	Load sessions in a partitioned database environment - CLP examples
	Partitioned database load configuration options

	Ingest utility
	Overview of ingest-related tasks
	Deciding where to run the ingest utility
	Creating the restart table
	Ingesting data
	Restarting a failed ingest operation
	Terminating a failed ingest operation

	Monitoring ingest operations

	Ingest utility restrictions and limitations
	Additional considerations for ingest operations
	Performance considerations for ingest operations
	Code page considerations for the ingest utility
	Ingest operations in a Db2 pureScale environment
	Ingest operations in a partitioned database environment

	Sample ingest utility scripts
	Scenario: Processing a stream of files with the ingest utility

	Other data movement options
	Moving tables online by using the ADMIN_MOVE_TABLE procedure
	IBM Replication tools by component
	Copying schemas
	Examples of schema copy by using the db2move utility
	db2move - Database movement tool

	Performing a redirected restore using an automatically generated script
	RESTORE DATABASE

	Suspended I/O and online split mirror
	db2inidb - Initialize a mirrored database

	db2relocatedb - Relocate database
	db2look - Db2 statistics and DDL extraction tool

	Comparison between the ingest, import, and load utilities
	File formats and data types
	Export/import/load utility file formats
	File formats
	Delimited ASCII (DEL) file format
	DEL data type descriptions
	Example DEL file
	Delimiter considerations for moving data

	Non-delimited ASCII (ASC) file format
	ASC data type descriptions
	Example ASC file

	PC version of IXF file format
	PC/IXF record types
	PC/IXF data types
	PC/IXF data type descriptions
	General rules governing PC/IXF file import into databases
	Data type-specific rules governing PC/IXF file import into databases
	Differences between PC/IXF and Version 0 System/370 IXF
	FORCEIN option

	Unicode considerations for data movement
	Character set and national language support
	XML data movement
	Important considerations for XML data movement
	LOB and XML file behavior
	XML data specifier
	Query and XPath Data Model

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	X

