
Db2 11.1 for Linux, UNIX, and Windows

PL/SQL Support

IBM

Db2 11.1 for Linux, UNIX, and Windows

PL/SQL Support

IBM

ii Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Notice regarding this document

This document in PDF form is provided as a courtesy to customers who have
requested documentation in this format. It is provided As-Is without warranty or
maintenance commitment.

© Copyright IBM Corp. 1994, 2017 iii

iv Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Contents

Notice regarding this document iii

Figures vii

Tables ix

PL/SQL support 1
PL/SQL features 1
Creating PL/SQL procedures and functions from a
CLP script 3
Restrictions on PL/SQL support 4
PL/SQL sample schema 4
Obfuscation 11
Blocks (PL/SQL) 12

Anonymous block statement (PL/SQL) 12
Procedures (PL/SQL) 14

CREATE PROCEDURE statement (PL/SQL) . . 14
Procedure references (PL/SQL) 17
Function invocation syntax support (PL/SQL) . . 18

Functions (PL/SQL) 19
CREATE FUNCTION statement (PL/SQL) . . . 19
Function references (PL/SQL) 22

Collection, record, and object types (PL/SQL) . . . 22
VARRAY collection type declaration (PL/SQL) . 23
CREATE TYPE (VARRAY) statement (PL/SQL) 24
CREATE TYPE (Nested table) statement
(PL/SQL) 25
Records (PL/SQL) 26
CREATE TYPE (Object) statement (PL/SQL) . . 27
Associative arrays (PL/SQL). 28
Collection methods (PL/SQL) 31

Variables (PL/SQL) 36
Variable declarations (PL/SQL) 37
Parameter modes (PL/SQL) 38
Data types (PL/SQL) 39
%TYPE attribute in variable declarations
(PL/SQL) 42

SUBTYPE definitions (PL/SQL). 44
%ROWTYPE attribute in record type declarations
(PL/SQL) 45

Basic statements (PL/SQL) 46
NULL statement (PL/SQL) 46
Assignment statement (PL/SQL) 47
EXECUTE IMMEDIATE statement (PL/SQL) . . 47
SQL statements (PL/SQL) 51
BULK COLLECT INTO clause (PL/SQL) . . . 51
RETURNING INTO clause (PL/SQL) 52
Statement attributes (PL/SQL) 55

Control statements (PL/SQL) 55
IF statement (PL/SQL) 55
CASE statement (PL/SQL) 60
Loops (PL/SQL) 63
Exception handling (PL/SQL) 70
Raise application error (PL/SQL) 72
RAISE statement (PL/SQL) 73
Oracle-Db2 error mapping (PL/SQL) 74

Cursors (PL/SQL) 76
Static cursors (PL/SQL) 76
Cursor variables (PL/SQL) 83

Triggers (PL/SQL) 89
Types of triggers (PL/SQL) 89
Trigger variables (PL/SQL) 89
Trigger event predicates (PL/SQL). 90
Transactions and exceptions (PL/SQL) 90
CREATE TRIGGER statement (PL/SQL) 90
Dropping triggers (PL/SQL). 94
Examples: Triggers (PL/SQL) 94

Packages (PL/SQL) 97
Package components (PL/SQL) 97
Creating packages (PL/SQL) 97
Referencing package objects (PL/SQL) 103
Dropping packages (PL/SQL) 107

Index 109

© Copyright IBM Corp. 1994, 2017 v

vi Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Figures

© Copyright IBM Corp. 1994, 2017 vii

viii Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Tables

1. Collection methods that are supported (or
tolerated) by the Db2 data server in a PL/SQL
context 32

2. Parameter modes 39
3. Supported scalar data types that are available

in PL/SQL 39
4. SQL statements that can be executed by the

Db2 data server within PL/SQL contexts. . . 51

5. Built-in exception names 71
6. Mapping of PL/SQL error codes and exception

names to Db2 data server error codes and
SQLSTATE values 74

7. Summary of cursor attribute values 82

© Copyright IBM Corp. 1994, 2017 ix

x Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

PL/SQL support

PL/SQL (Procedural Language/Structured Query Language) statements can be
compiled and executed using data server interfaces provided by Db2®. This
reduces the complexity of enabling existing PL/SQL solutions to work with the
Db2 data server.

The data server interfaces you can use include:
v The Db2 command line processor (CLP)
v CLPPlus
v IBM® Data Studio client

Enablement

To enable this capability, set the DB2_COMPATIBILITY_VECTOR registry variable to
hexadecimal 0x800 (bit position 800), then stop and restart the instance:
db2set DB2_COMPATIBILITY_VECTOR=800
db2stop
db2start

To activate all compatibility features for Oracle applications, set the
DB2_COMPATIBILITY_VECTOR registry variable to ORA, then stop and restart the
instance:
db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start

PL/SQL features
PL/SQL statements and scripts can be compiled and executed using Db2 database
server interfaces.

You can execute the following PL/SQL statements:
v Anonymous blocks; for example, DECLARE...BEGIN...END
v CREATE OR REPLACE FUNCTION statement
v CREATE OR REPLACE PACKAGE statement
v CREATE OR REPLACE PACKAGE BODY statement
v CREATE OR REPLACE PROCEDURE statement
v CREATE OR REPLACE TRIGGER statement
v CREATE OR REPLACE TYPE statement
v DROP PACKAGE statement
v DROP PACKAGE BODY statement

PL/SQL procedures and functions can be invoked from other PL/SQL statements
or from Db2 SQL PL statements. You can call a PL/SQL procedure from SQL PL by
using the CALL statement.

The following statements and language elements are supported in PL/SQL
contexts:
v Type declarations:

© Copyright IBM Corp. 1994, 2017 1

– Associative arrays
– Record types
– VARRAY types

v Subtype declarations
v Variable declarations:

– %ROWTYPE
– %TYPE

v Basic statements, clauses, and statement attributes:
– Assignment statement
– NULL statement
– RETURNING INTO clause
– Statement attributes, including SQL%FOUND, SQL%NOTFOUND, and

SQL%ROWCOUNT
v Control statements and structures:

– CASE statements:
- Simple CASE statement
- Searched CASE statement

– Exception handling
– EXIT statement
– FOR statement
– GOTO statement
– IF statement
– LOOP statement
– PIPE ROW statement
– RETURN statement
– WHILE statement

v Static cursors:
– CLOSE statement
– Cursor FOR loop statement
– FETCH statement (including FETCH INTO a %ROWTYPE variable)
– OPEN statement
– Parameterized cursors
– Cursor attributes

v REF CURSOR support:
– Variables and parameters of type REF CURSOR
– Strong REF CURSORs
– OPEN FOR statement
– Returning REF CURSORs to JDBC applications

v Error support:
– RAISE_APPLICATION_ERROR procedure
– RAISE statement
– SQLCODE function
– SQLERRM function

2 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Creating PL/SQL procedures and functions from a CLP script
You can create PL/SQL procedures and functions from a Db2 command line
processor (CLP) script.

Procedure
1. Formulate PL/SQL procedure or function definitions within a CLP script file.

Terminate each statement with a new line and a forward slash character (/).
Other statement termination characters are also supported.

2. Save the file. In this example, the file name is script.db2.
3. Execute the script from the CLP. If a forward slash character or a semicolon

was used to terminate statements, issue the following command:
db2 -td/ -vf script.db2

If another statement termination character (for example, the @ character) was
used in the script file, you must specify that character in the command string.
For example:
db2 -td@ -vf script.db2

Results

The CLP script should execute successfully if there are no syntax errors.

Example

The following example of a CLP script creates a PL/SQL function and procedure,
and then calls the PL/SQL procedure.
CONNECT TO mydb
/

CREATE TABLE emp (
name VARCHAR2(10),
salary NUMBER,
comm NUMBER,
tot_comp NUMBER

)
/

INSERT INTO emp VALUES (’Larry’, 1000, 50, 0)
/
INSERT INTO emp VALUES (’Curly’, 200, 5, 0)
/
INSERT INTO emp VALUES (’Moe’, 10000, 1000, 0)
/

CREATE OR REPLACE FUNCTION emp_comp (
p_sal NUMBER,
p_comm NUMBER)

RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp
/

CREATE OR REPLACE PROCEDURE update_comp(p_name IN VARCHAR) AS
BEGIN

UPDATE emp SET tot_comp = emp_comp(salary, comm)
WHERE name = p_name;

END update_comp

PL/SQL support 3

/

CALL update_comp(’Curly’)
/

SELECT * FROM emp
/

CONNECT RESET
/

This script produces the following sample output:
CALL update_comp(’Curly’)

Return Status = 0

SELECT * FROM emp

NAME SALARY COMM TOT_COMP
---------- ------...--------- ----...----------- --------...-------
Larry 1000 50 0
Curly 200 5 4920
Moe 10000 1000 0

3 record(s) selected.

What to do next

Test your new procedures or functions by invoking them. For procedures, use the
CALL statement. For functions, execute queries or other SQL statements that
contain references to those functions.

Restrictions on PL/SQL support
It is important to note the restrictions on PL/SQL compilation support before
performing PL/SQL compilation, or when troubleshooting PL/SQL compilation or
runtime problems.

In this version:
v PL/SQL procedures, functions, triggers, and packages can only be created from

the catalog partition in a partitioned database environment.
v The NCLOB data type is not supported for use in PL/SQL statements or in

PL/SQL contexts when the database is not defined as a Unicode database. In
Unicode databases, the NCLOB data type is mapped to a Db2 DBCLOB data
type.

v The XMLTYPE data type is not supported.
v In a partitioned database environment, you cannot access cursor variables from

remote nodes. You can only access cursor variables from the coordinator node.
v The use of nested type data types with PL/SQL package variables is not

supported in autonomous routines.

PL/SQL sample schema
Most of the PL/SQL examples are based on a PL/SQL sample schema that
represents employees in an organization.

The following script (plsql_sample.sql) defines that PL/SQL sample schema.

4 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

--
-- Script that creates the ’sample’ tables, views, procedures,
-- functions, triggers, and so on.
--
-- Create and populate tables used in the documentation examples.
--
-- Create the ’dept’ table
--
CREATE TABLE dept (

deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
dname VARCHAR2(14) NOT NULL CONSTRAINT dept_dname_uq UNIQUE,
loc VARCHAR2(13)

);
--
-- Create the ’emp’ table
--
CREATE TABLE emp (

empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

REFERENCES dept(deptno)
);
--
-- Create the ’jobhist’ table
--
CREATE TABLE jobhist (

empno NUMBER(4) NOT NULL,
startdate DATE NOT NULL,
enddate DATE,
job VARCHAR2(9),
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2),
chgdesc VARCHAR2(80),
CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)

REFERENCES emp(empno) ON DELETE CASCADE,
CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)

REFERENCES dept (deptno) ON DELETE SET NULL,
CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)

);
--
-- Create the ’salesemp’ view
--
CREATE OR REPLACE VIEW salesemp AS

SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = ’SALESMAN’;
--
-- Sequence to generate values for function ’new_empno’
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
--
-- Load the ’dept’ table
--
INSERT INTO dept VALUES (10,’ACCOUNTING’,’NEW YORK’);
INSERT INTO dept VALUES (20,’RESEARCH’,’DALLAS’);

PL/SQL support 5

INSERT INTO dept VALUES (30,’SALES’,’CHICAGO’);
INSERT INTO dept VALUES (40,’OPERATIONS’,’BOSTON’);
--
-- Load the ’emp’ table
--
INSERT INTO emp VALUES (7369,’SMITH’,’CLERK’,7902,’17-DEC-80’,800,NULL,20);
INSERT INTO emp VALUES (7499,’ALLEN’,’SALESMAN’,7698,’20-FEB-81’,1600,300,30);
INSERT INTO emp VALUES (7521,’WARD’,’SALESMAN’,7698,’22-FEB-81’,1250,500,30);
INSERT INTO emp VALUES (7566,’JONES’,’MANAGER’,7839,’02-APR-81’,2975,NULL,20);
INSERT INTO emp VALUES (7654,’MARTIN’,’SALESMAN’,7698,’28-SEP-81’,1250,1400,30);
INSERT INTO emp VALUES (7698,’BLAKE’,’MANAGER’,7839,’01-MAY-81’,2850,NULL,30);
INSERT INTO emp VALUES (7782,’CLARK’,’MANAGER’,7839,’09-JUN-81’,2450,NULL,10);
INSERT INTO emp VALUES (7788,’SCOTT’,’ANALYST’,7566,’19-APR-87’,3000,NULL,20);
INSERT INTO emp VALUES (7839,’KING’,’PRESIDENT’,NULL,’17-NOV-81’,5000,NULL,10);
INSERT INTO emp VALUES (7844,’TURNER’,’SALESMAN’,7698,’08-SEP-81’,1500,0,30);
INSERT INTO emp VALUES (7876,’ADAMS’,’CLERK’,7788,’23-MAY-87’,1100,NULL,20);
INSERT INTO emp VALUES (7900,’JAMES’,’CLERK’,7698,’03-DEC-81’,950,NULL,30);
INSERT INTO emp VALUES (7902,’FORD’,’ANALYST’,7566,’03-DEC-81’,3000,NULL,20);
INSERT INTO emp VALUES (7934,’MILLER’,’CLERK’,7782,’23-JAN-82’,1300,NULL,10);
--
-- Load the ’jobhist’ table
--
INSERT INTO jobhist VALUES (7369,’17-DEC-80’,NULL,’CLERK’,800,NULL,20,

’New Hire’);
INSERT INTO jobhist VALUES (7499,’20-FEB-81’,NULL,’SALESMAN’,1600,300,30,

’New Hire’);
INSERT INTO jobhist VALUES (7521,’22-FEB-81’,NULL,’SALESMAN’,1250,500,30,

’New Hire’);
INSERT INTO jobhist VALUES (7566,’02-APR-81’,NULL,’MANAGER’,2975,NULL,20,

’New Hire’);
INSERT INTO jobhist VALUES (7654,’28-SEP-81’,NULL,’SALESMAN’,1250,1400,30,

’New Hire’);
INSERT INTO jobhist VALUES (7698,’01-MAY-81’,NULL,’MANAGER’,2850,NULL,30,

’New Hire’);
INSERT INTO jobhist VALUES (7782,’09-JUN-81’,NULL,’MANAGER’,2450,NULL,10,

’New Hire’);
INSERT INTO jobhist VALUES (7788,’19-APR-87’,’12-APR-88’,’CLERK’,1000,NULL,20,

’New Hire’);
INSERT INTO jobhist VALUES (7788,’13-APR-88’,’04-MAY-89’,’CLERK’,1040,NULL,20,

’Raise’);
INSERT INTO jobhist VALUES (7788,’05-MAY-90’,NULL,’ANALYST’,3000,NULL,20,

’Promoted to Analyst’);
INSERT INTO jobhist VALUES (7839,’17-NOV-81’,NULL,’PRESIDENT’,5000,NULL,10,

’New Hire’);
INSERT INTO jobhist VALUES (7844,’08-SEP-81’,NULL,’SALESMAN’,1500,0,30,

’New Hire’);
INSERT INTO jobhist VALUES (7876,’23-MAY-87’,NULL,’CLERK’,1100,NULL,20,

’New Hire’);
INSERT INTO jobhist VALUES (7900,’03-DEC-81’,’14-JAN-83’,’CLERK’,950,NULL,10,

’New Hire’);
INSERT INTO jobhist VALUES (7900,’15-JAN-83’,NULL,’CLERK’,950,NULL,30,

’Changed to Dept 30’);
INSERT INTO jobhist VALUES (7902,’03-DEC-81’,NULL,’ANALYST’,3000,NULL,20,

’New Hire’);
INSERT INTO jobhist VALUES (7934,’23-JAN-82’,NULL,’CLERK’,1300,NULL,10,

’New Hire’);

SET SQLCOMPAT PLSQL;
--
-- Procedure that lists all employees’ numbers and names
-- from the ’emp’ table using a cursor
--
CREATE OR REPLACE PROCEDURE list_emp
IS

v_empno NUMBER(4);
v_ename VARCHAR2(10);
CURSOR emp_cur IS

6 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

SELECT empno, ename FROM emp ORDER BY empno;
BEGIN

OPEN emp_cur;
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH emp_cur INTO v_empno, v_ename;
EXIT WHEN emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || v_ename);

END LOOP;
CLOSE emp_cur;

END;
/
--
-- Procedure that selects an employee row given the employee
-- number and displays certain columns
--
CREATE OR REPLACE PROCEDURE select_emp (

p_empno IN NUMBER
)
IS

v_ename emp.ename%TYPE;
v_hiredate emp.hiredate%TYPE;
v_sal emp.sal%TYPE;
v_comm emp.comm%TYPE;
v_dname dept.dname%TYPE;
v_disp_date VARCHAR2(10);

BEGIN
SELECT ename, hiredate, sal, NVL(comm, 0), dname

INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
FROM emp e, dept d
WHERE empno = p_empno

AND e.deptno = d.deptno;
v_disp_date := TO_CHAR(v_hiredate, ’YYYY/MM/DD’);
DBMS_OUTPUT.PUT_LINE(’Number : ’ || p_empno);
DBMS_OUTPUT.PUT_LINE(’Name : ’ || v_ename);
DBMS_OUTPUT.PUT_LINE(’Hire Date : ’ || v_disp_date);
DBMS_OUTPUT.PUT_LINE(’Salary : ’ || v_sal);
DBMS_OUTPUT.PUT_LINE(’Commission: ’ || v_comm);
DBMS_OUTPUT.PUT_LINE(’Department: ’ || v_dname);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(’Employee ’ || p_empno || ’ not found’);
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(’The following is SQLERRM:’);
DBMS_OUTPUT.PUT_LINE(SQLERRM);
DBMS_OUTPUT.PUT_LINE(’The following is SQLCODE:’);
DBMS_OUTPUT.PUT_LINE(SQLCODE);

END;
/
--
-- Procedure that queries the ’emp’ table based on
-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query (

p_deptno IN NUMBER,
p_empno IN OUT NUMBER,
p_ename IN OUT VARCHAR2,
p_job OUT VARCHAR2,
p_hiredate OUT DATE,
p_sal OUT NUMBER

)
IS
BEGIN

SELECT empno, ename, job, hiredate, sal

PL/SQL support 7

INTO p_empno, p_ename, p_job, p_hiredate, p_sal
FROM emp
WHERE deptno = p_deptno

AND (empno = p_empno
OR ename = UPPER(p_ename));

END;
/
--
-- Procedure to call ’emp_query_caller’ with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query_caller
IS

v_deptno NUMBER(2);
v_empno NUMBER(4);
v_ename VARCHAR2(10);
v_job VARCHAR2(9);
v_hiredate DATE;
v_sal NUMBER;

BEGIN
v_deptno := 30;
v_empno := 0;
v_ename := ’Martin’;
emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
DBMS_OUTPUT.PUT_LINE(’Department : ’ || v_deptno);
DBMS_OUTPUT.PUT_LINE(’Employee No: ’ || v_empno);
DBMS_OUTPUT.PUT_LINE(’Name : ’ || v_ename);
DBMS_OUTPUT.PUT_LINE(’Job : ’ || v_job);
DBMS_OUTPUT.PUT_LINE(’Hire Date : ’ || v_hiredate);
DBMS_OUTPUT.PUT_LINE(’Salary : ’ || v_sal);

EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE(’More than one employee was selected’);
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(’No employees were selected’);
END;
/
--
-- Function to compute yearly compensation based on semimonthly
-- salary
--
CREATE OR REPLACE FUNCTION emp_comp (

p_sal NUMBER,
p_comm NUMBER

) RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/
--
-- After statement-level triggers that display a message after
-- an insert, update, or deletion to the ’emp’ table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE TRIGGER user_ins_audit_trig

AFTER INSERT ON emp
FOR EACH ROW

DECLARE
v_action VARCHAR2(24);

BEGIN
v_action := ’ added employee(s) on ’;
DBMS_OUTPUT.PUT_LINE(’User ’ || USER || v_action ||

TO_CHAR(SYSDATE,’YYYY-MM-DD’));
END;
/

8 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

CREATE OR REPLACE TRIGGER user_upd_audit_trig
AFTER UPDATE ON emp
FOR EACH ROW

DECLARE
v_action VARCHAR2(24);

BEGIN
v_action := ’ updated employee(s) on ’;
DBMS_OUTPUT.PUT_LINE(’User ’ || USER || v_action ||

TO_CHAR(SYSDATE,’YYYY-MM-DD’));
END;
/
CREATE OR REPLACE TRIGGER user_del_audit_trig

AFTER DELETE ON emp
FOR EACH ROW

DECLARE
v_action VARCHAR2(24);

BEGIN
v_action := ’ deleted employee(s) on ’;
DBMS_OUTPUT.PUT_LINE(’User ’ || USER || v_action ||

TO_CHAR(SYSDATE,’YYYY-MM-DD’));
END;
/
--
-- Before row-level triggers that display employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the ’emp’ table
--
CREATE OR REPLACE TRIGGER emp_ins_sal_trig

BEFORE INSERT ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
DBMS_OUTPUT.PUT_LINE(’Inserting employee ’ || :NEW.empno);
DBMS_OUTPUT.PUT_LINE(’..New salary: ’ || :NEW.sal);

END;
/
CREATE OR REPLACE TRIGGER emp_upd_sal_trig

BEFORE UPDATE ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
sal_diff := :NEW.sal - :OLD.sal;
DBMS_OUTPUT.PUT_LINE(’Updating employee ’ || :OLD.empno);
DBMS_OUTPUT.PUT_LINE(’..Old salary: ’ || :OLD.sal);
DBMS_OUTPUT.PUT_LINE(’..New salary: ’ || :NEW.sal);
DBMS_OUTPUT.PUT_LINE(’..Raise : ’ || sal_diff);

END;
/
CREATE OR REPLACE TRIGGER emp_del_sal_trig

BEFORE DELETE ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
DBMS_OUTPUT.PUT_LINE(’Deleting employee ’ || :OLD.empno);
DBMS_OUTPUT.PUT_LINE(’..Old salary: ’ || :OLD.sal);

END;
/
--
-- Package specification for the ’emp_admin’ package
--
CREATE OR REPLACE PACKAGE emp_admin
IS

FUNCTION get_dept_name (
p_deptno NUMBER

PL/SQL support 9

) RETURN VARCHAR2;
FUNCTION update_emp_sal (

p_empno NUMBER,
p_raise NUMBER

) RETURN NUMBER;
PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE,
p_comm NUMBER,
p_mgr NUMBER,
p_deptno NUMBER

);
PROCEDURE fire_emp (

p_empno NUMBER
);

END emp_admin;
/
--
-- Package body for the ’emp_admin’ package
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS

--
-- Function that queries the ’dept’ table based on the department
-- number and returns the corresponding department name
--
FUNCTION get_dept_name (

p_deptno IN NUMBER
) RETURN VARCHAR2
IS

v_dname VARCHAR2(14);
BEGIN

SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
RETURN v_dname;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(’Invalid department number ’ || p_deptno);
RETURN ’’;

END;
--
-- Function that updates an employee’s salary based on the
-- employee number and salary increment/decrement passed
-- as IN parameters. Upon successful completion the function
-- returns the new updated salary.
--
FUNCTION update_emp_sal (

p_empno IN NUMBER,
p_raise IN NUMBER

) RETURN NUMBER
IS

v_sal NUMBER := 0;
BEGIN

SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
v_sal := v_sal + p_raise;
UPDATE emp SET sal = v_sal WHERE empno = p_empno;
RETURN v_sal;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(’Employee ’ || p_empno || ’ not found’);
RETURN -1;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(’The following is SQLERRM:’);
DBMS_OUTPUT.PUT_LINE(SQLERRM);
DBMS_OUTPUT.PUT_LINE(’The following is SQLCODE:’);

10 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

DBMS_OUTPUT.PUT_LINE(SQLCODE);
RETURN -1;

END;
--
-- Procedure that inserts a new employee record into the ’emp’ table
--
PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE,
p_comm NUMBER,
p_mgr NUMBER,
p_deptno NUMBER

)
AS
BEGIN

INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
VALUES(p_empno, p_ename, p_job, p_sal,

p_hiredate, p_comm, p_mgr, p_deptno);
END;
--
-- Procedure that deletes an employee record from the ’emp’ table based
-- on the employee number
--
PROCEDURE fire_emp (

p_empno NUMBER
)
AS
BEGIN

DELETE FROM emp WHERE empno = p_empno;
END;

END;
/

SET SQLCOMPAT DB2;

Obfuscation
Obfuscation encodes the body of the DDL statements for database objects such as
routines, triggers, views, and PL/SQL packages. Obfuscating your code helps
protect your intellectual property because users cannot read the code, but the Db2
data server can still understand it.

The DBMS_DDL module provides two routines for obfuscating your routines,
triggers, views, or your PL/SQL packages:

WRAP function
Takes a routine, trigger, PL/SQL package, or PL/SQL package body
definition as an argument and produces a string containing the initial
header followed by an obfuscated version of the rest of the statement. For
example, input like:
CREATE PROCEDURE P(a INT)
BEGIN

INSERT INTO T1 VALUES (a);
END

using the DBMS_DDL.WRAP function might result in:
CREATE PROCEDURE P(a INT) WRAPPED SQL09072
aBcDefg12AbcasHGJG6JKHhgkjFGHHkkkljljk878979HJHui99

PL/SQL support 11

The obfuscated portion of the DDL statement contains codepage invariant
characters, ensuring that it is valid for any codepage.

CREATE_WRAPPED procedure
Takes the same input as the WRAP function described previously, but
instead of returning the obfuscated text, an object is created in the
database. Internally the object is not obfuscated so that it can be processed
by the compiler, but in catalog views like SYSCAT.ROUTINES or
SYSCAT.TRIGGERS the content of the TEXT column is obfuscated.

An obfuscated statement can be used in CLP scripts and can be submitted as
dynamic SQL using other client interfaces.

Obfuscation is available for the following statements:
v db2look by using the -wrap option
v CREATE FUNCTION
v CREATE PACKAGE
v CREATE PACKAGE BODY
v CREATE PROCEDURE
v CREATE TRIGGER
v CREATE VIEW
v ALTER MODULE

The db2look tool obfuscates all the preceding statements when the -wrap option is
used.

Blocks (PL/SQL)
PL/SQL block structures can be included within PL/SQL procedure, function, or
trigger definitions or executed independently as an anonymous block statement.

PL/SQL block structures and the anonymous block statement contain one or more
of the following sections:
v An optional declaration section
v A mandatory executable section
v An optional exception section

These sections can include SQL statements, PL/SQL statements, data type and
variable declarations, or other PL/SQL language elements.

Anonymous block statement (PL/SQL)
The PL/SQL anonymous block statement is an executable statement that can
contain PL/SQL control statements and SQL statements. It can be used to
implement procedural logic in a scripting language. In PL/SQL contexts, this
statement can be compiled and executed by the Db2 data server.

The anonymous block statement, which does not persist in the database, can
consist of up to three sections: an optional declaration section, a mandatory
executable section, and an optional exception section.

The optional declaration section, which can contain the declaration of variables,
cursors, and types that are to be used by statements within the executable and
exception sections, is inserted before the executable BEGIN-END block.

12 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

The optional exception section can be inserted near the end of the BEGIN-END
block. The exception section must begin with the keyword EXCEPTION, and
continues until the end of the block in which it appears.

Invocation

This statement can be executed from an interactive tool or command line interface
such as the CLP. This statement can also be embedded within a PL/SQL procedure
definition, function definition, or trigger definition. Within these contexts, the
statement is called a block structure instead of an anonymous block statement.

Authorization

No privileges are required to invoke an anonymous block. However, the privileges
held by the authorization ID of the statement must include all necessary privileges
to invoke the SQL statements that are embedded within the anonymous block.

Syntax

►►

▼ declaration
DECLARE

▼BEGIN statement ►

►

▼ ▼ ▼EXCEPTION WHEN exception-condition THEN handler-statement
OR

END ►◄

Description

DECLARE
An optional keyword that starts the DECLARE statement, which can be used
to declare data types, variables, or cursors. The use of this keyword depends
upon the context in which the block appears.

declaration
Specifies a data type, variable, cursor, exception, or procedure declaration
whose scope is local to the block. Each declaration must be terminated by a
semicolon.

BEGIN
A mandatory keyword that introduces the executable section, which can
include one or more SQL or PL/SQL statements. A BEGIN-END block can
contain nested BEGIN-END blocks.

statement
Specifies a PL/SQL or SQL statement. Each statement must be terminated by a
semicolon.

EXCEPTION
An optional keyword that introduces the exception section.

PL/SQL support 13

WHEN exception-condition
Specifies a conditional expression that tests for one or more types of
exceptions.

THEN handler-statement
Specifies a PL/SQL or SQL statement that is executed if a thrown exception
matches an exception in exception-condition. Each statement must be terminated
by a semicolon.

END
A mandatory keyword that ends the block.

Examples

The following example shows the simplest possible anonymous block statement
that the Db2 data server can compile:
BEGIN

NULL;
END;

The following example shows an anonymous block that you can enter interactively
through theDb2 CLP:
SET SERVEROUTPUT ON;

BEGIN
dbms_output.put_line(’Hello’);

END;

The following example shows an anonymous block with a declaration section that
you can enter interactively through the Db2 CLP:
SET SERVEROUTPUT ON;

DECLARE
current_date DATE := SYSDATE;

BEGIN
dbms_output.put_line(current_date);

END;

Procedures (PL/SQL)
The Db2 data server supports the compilation and execution of PL/SQL
procedures.

PL/SQL procedures are database objects that contain PL/SQL procedural logic and
SQL statements that can be invoked in contexts where the CALL statement or
procedure references are valid.

PL/SQL procedures are created by executing the PL/SQL CREATE PROCEDURE
statement. Such procedures can be dropped from the database by using the Db2
SQL DROP statement. If you want to replace the implementation for a procedure,
you do not need to drop it. You can use the CREATE PROCEDURE statement and
specify the OR REPLACE option to replace the procedure implementation.

CREATE PROCEDURE statement (PL/SQL)
The CREATE PROCEDURE statement defines a procedure that is stored in the
database.

14 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Invocation

This statement can be executed from the Db2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the procedure does not exist, IMPLICIT_SCHEMA

authority on the database
v If the schema name of the procedure refers to an existing schema, CREATEIN

privilege on the schema
v DBADM authority

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
procedure body.

The authorization ID of the statement must be the owner of the matched procedure
if OR REPLACE is specified (SQLSTATE 42501).

Syntax

►► CREATE PROCEDURE
OR REPLACE

►

►

▼

()
,

IN
parameter-name data-type

OUT default-clause
IN OUT

►

►
READS SQL DATA

IS
AS

▼

declaration

▼BEGIN statement ►

►

▼ ▼ ▼EXCEPTION WHEN exception THEN statement
OR exception

►

► END
procedure-name

►◄

Description

PROCEDURE procedure-name
Specifies an identifier for the procedure. The unqualified form of
procedure-name is an SQL identifier with a maximum length of 128. In dynamic

PL/SQL support 15

SQL statements, the value of the CURRENT SCHEMA special register is used
to qualify an unqualified object name. In static SQL statements, the
QUALIFIER precompile or bind option implicitly specifies the qualifier for
unqualified object names. The qualified form of procedure-name is a schema
name followed by a period character and an SQL identifier. If a two-part name
is specified, the schema name cannot begin with 'SYS'; otherwise, an error is
returned (SQLSTATE 42939).

The name (including an implicit or explicit qualifier), together with the number
of parameters, must not identify a procedure that is described in the catalog
(SQLSTATE 42723). The unqualified name, together with the number of
parameters, is unique within its schema, but does not need to be unique across
schemas.

parameter-name
Specifies the name of a parameter. The parameter name must be unique for
this procedure (SQLSTATE 42734).

data-type
Specifies one of the supported PL/SQL data types.

READS SQL DATA
Indicates that SQL statements that do not modify SQL data can be included in
the procedure. This clause is a Db2 data server extension.

IS or AS
Introduces the procedure body definition.

declaration
Specifies one or more variable, cursor, or REF CURSOR type declarations.

BEGIN
Introduces the executable block. The BEGIN-END block can contain an
EXCEPTION section.

statement
Specifies a PL/SQL or SQL statement. The statement must be terminated by a
semicolon.

EXCEPTION
An optional keyword that introduces the exception section.

WHEN exception-condition
Specifies a conditional expression that tests for one or more types of
exceptions.

statement
Specifies a PL/SQL or SQL statement. The statement must be terminated by a
semicolon.

END
A mandatory keyword that ends the block. You can optionally specify the
name of the procedure.

Notes

The CREATE PROCEDURE statement can be submitted in obfuscated form. In an
obfuscated statement, only the procedure name is readable. The rest of the
statement is encoded in such a way that it is not readable, but can be decoded by
the database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

16 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Examples

The following example shows a simple procedure that takes no parameters:
CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN

DBMS_OUTPUT.PUT_LINE(’That’’s all folks!’);
END simple_procedure;

The following example shows a procedure that takes an IN and an OUT parameter,
and that has GOTO statements whose labels are of the standard PL/SQL form
(<<label>>):
CREATE OR REPLACE PROCEDURE test_goto
(p1 IN INTEGER, out1 OUT VARCHAR2(30))
IS
BEGIN
<<LABEL2ABOVE>>
IF p1 = 1 THEN
out1 := out1 || ’one’;
GOTO LABEL1BELOW;
END IF;
if out1 IS NULL THEN
out1 := out1 || ’two’;
GOTO LABEL2ABOVE;
END IF;

out1 := out1 || ’three’;

<<LABEL1BELOW>>
out1 := out1 || ’four’;

END test_goto;

Procedure references (PL/SQL)
Invocation references to PL/SQL procedures within PL/SQL contexts can be
compiled by the Db2 data server.

A valid PL/SQL procedure reference consists of the procedure name followed by
its parameters, if any.

Syntax

►► procedure-name

▼

,

()
parameter-value

►◄

Description

procedure-name
Specifies an identifier for the procedure.

parameter-value
Specifies a parameter value. If no parameters are to be passed, the procedure
can be called either with or without parentheses.

PL/SQL support 17

Example

The following example shows how to call a PL/SQL procedure within a PL/SQL
context:
BEGIN

simple_procedure;
END;

After a PL/SQL procedure has been created in a Db2 database, it can also be called
using the CALL statement, which is supported inDb2 SQL contexts and
applications using supported Db2 application programming interfaces.

Function invocation syntax support (PL/SQL)
A number of procedures support function invocation syntax in a PL/SQL
assignment statement.

These procedures include:
v DBMS_SQL.EXECUTE
v DBMS_SQL.EXECUTE_AND_FETCH
v DBMS_SQL.FETCH_ROWS
v DBMS_SQL.IS_OPEN
v DBMS_SQL.LAST_ROW_COUNT
v DBMS_SQL.OPEN_CURSOR
v UTL_SMTP.CLOSE_DATA
v UTL_SMTP.COMMAND
v UTL_SMTP.COMMAND_REPLIES
v UTL_SMTP.DATA
v UTL_SMTP.EHLO
v UTL_SMTP.HELO
v UTL_SMTP.HELP
v UTL_SMTP.MAIL
v UTL_SMTP.NOOP
v UTL_SMTP.OPEN_DATA
v UTL_SMTP.QUIT
v UTL_SMTP.RCPT
v UTL_SMTP.RSET
v UTL_SMTP.VRFY

Examples
DECLARE

cursor1 NUMBER;
rowsProcessed NUMBER;

BEGIN
cursor1 := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cursor1, ’INSERT INTO T1 VALUES (10)’, DBMS_SQL.NATIVE);
rowsProcessed := DBMS_SQL.EXECUTE(cursor1);
DBMS_SQL.CLOSE_CURSOR(cursor1);

END;
/

DECLARE
v_connection UTL_SMTP.CONNECTION;
v_reply UTL_SMTP.REPLY;

18 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

BEGIN
UTL_SMTP.OPEN_CONNECTION(’127.0.0.1’, 25, v_connection, 10, v_reply);
UTL_SMTP.HELO(v_connection,’127.0.0.1’);
UTL_SMTP.MAIL(v_connection, ’sender1@ca.ibm.com’);
UTL_SMTP.RCPT(v_connection, ’receiver1@ca.ibm.com’);
v_reply := UTL_SMTP.OPEN_DATA (v_connection);
UTL_SMTP.WRITE_DATA (v_connection, ’Test message’);
UTL_SMTP.CLOSE_DATA (v_connection);
UTL_SMTP.QUIT(v_connection);

END;
/

Functions (PL/SQL)
The Db2 data server supports the compilation and execution of scalar and
pipelined PL/SQL functions. Scalar PL/SQL functions can be invoked in contexts
where expressions are valid. When evaluated, a scalar PL/SQL function returns a
value that is substituted within the expression in which the function is embedded.
Pipelined PL/SQL functions can be invoked in the FROM clause of SELECT
statements and compute a table one row at a time.

PL/SQL functions are created by executing the CREATE FUNCTION statement.
Such functions can be dropped from the database by using the Db2 SQL DROP
statement. If you want to replace the implementation for a function, you do not
need to drop it. You can use the CREATE FUNCTION statement and specify the
OR REPLACE option to replace the function implementation.

CREATE FUNCTION statement (PL/SQL)
The CREATE FUNCTION statement defines a scalar or pipelined function that is
stored in the database.

Invocation

A scalar function returns a single value each time it is invoked, and is generally
valid wherever an SQL expression is valid. A pipelined function computes a table
one row at a time and can be referenced in the FROM clause of SELECT
statements.

This statement can be executed from the Db2 command line processor, any
supported interactive SQL interface, an application, or routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the function does not exist, IMPLICIT_SCHEMA authority

on the database
v If the schema name of the function refers to an existing schema, CREATEIN

privilege on the schema
v DBADM authority

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
function body.

PL/SQL support 19

The authorization ID of the statement must be the owner of the matched function
if OR REPLACE is specified (SQLSTATE 42501).

Syntax

►► CREATE FUNCTION name
OR REPLACE

►

►

▼

()
,

IN
parameter-name data-type

OUT default-clause
IN OUT

►

► RETURN return-type
PIPELINED

IS
AS

▼

declaration

▼BEGIN statement ►

►

▼ ▼ ▼EXCEPTION WHEN exception THEN statement
OR exception

►

► END
name

►◄

Description

The CREATE FUNCTION statement specifies the name of the function, the
optional parameters, the return type of the function, and the body of the function.
The body of the function is a block that is enclosed by the BEGIN and END
keywords. It can contain an optional EXCEPTION section that defines an action to
be taken when a defined exception condition occurs.

OR REPLACE
Indicates that if a function with the same name already exists in the schema,
the new function is to replace the existing one. If this option is not specified,
the new function cannot replace an existing one with the same name in the
same schema.

FUNCTION name
Specifies an identifier for the function.

parameter-name
Specifies the name of a parameter. The name cannot be the same as any other
parameter-name in the parameter list (SQLSTATE 42734).

data-type
Specifies one of the supported PL/SQL data types.

RETURN return-type
Specifies the data type of the scalar value that is returned by the function.

20 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

PIPELINED
Specifies that the function being created is a pipelined function.

IS or AS
Introduces the block that defines the function body.

declaration
Specifies one or more variable, cursor, or REF CURSOR type declarations.

statement
Specifies one or more PL/SQL program statements. Each statement must be
terminated by a semicolon.

exception
Specifies an exception condition name.

Notes

A PL/SQL function cannot take any action that changes the state of an object that
the database manager does not manage.

The CREATE FUNCTION statement can be submitted in obfuscated form. In an
obfuscated statement, only the function name is readable. The rest of the statement
is encoded in such a way that it is not readable, but can be decoded by the
database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Examples

The following example shows a basic function that takes no parameters:
CREATE OR REPLACE FUNCTION simple_function

RETURN VARCHAR2
IS
BEGIN

RETURN ’That’’s All Folks!’;
END simple_function;

The following example shows a function that takes two input parameters:
CREATE OR REPLACE FUNCTION emp_comp (

p_sal NUMBER,
p_comm NUMBER)

RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

The following example shows a pipelined function that returns a table with two
rows:
CREATE TYPE row_typ as OBJECT(f1 NUMBER, f2 VARCHAR2(10))

CREATE TYPE arr_typ as TABLE OF row_typ

CREATE FUNCTION pipe_func
RETURN arr_typ
PIPELINED
IS
BEGIN

PL/SQL support 21

PIPE ROW (1, ’one’);
PIPE ROW (2, ’two’);
RETURN;

END pipe_func;

Function references (PL/SQL)
Scalar PL/SQL functions can be referenced wherever an expression is supported.
Pipelined PL/SQL functions can be referenced in the FROM clause of SELECT
statements.

Syntax

►► function-name

▼

,

(parameter-value)

►◄

Description

function-name
Specifies an identifier for the function.

parameter-value
Specifies a value for a parameter.

Examples

The following example shows how a function named SIMPLE_FUNCTION,
defined in the PL/SQL sample schema, can be called from a PL/SQL anonymous
block:
BEGIN

DBMS_OUTPUT.PUT_LINE(simple_function);
END;

The following example shows how a scalar function and a pipelined function can
be used within an SQL statement:
SELECT

emp.empno, emp.ename, emp.sal, emp.comm,
emp_comp(sal, comm)+bon.bonus "YEARLY COMPENSATION"

FROM emp, TABLE(bonuses()) as bon(category, bonus)
WHERE bon.category = emp.category

Collection, record, and object types (PL/SQL)
The use of PL/SQL collections is supported by the Db2 data server. A PL/SQL
collection is a set of ordered data elements with the same data type. Individual data
items in the set can be referenced by using subscript notation within parentheses.

In PL/SQL contexts, the Db2 server supports varrays, associative arrays, and
record types. The Db2 server accepts the syntax for the creation of PL/SQL nested
tables and object types, but maps nested tables to associative arrays and object
types to records.

22 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

VARRAY collection type declaration (PL/SQL)
A VARRAY is a type of collection in which each element is referenced by a positive
integer called the array index. The maximum cardinality of the VARRAY is specified
in the type definition.

The TYPE IS VARRAY statement is used to define a VARRAY collection type.

Syntax

►► TYPE varraytype IS VARRAY (n) OF datatype ; ►◄

Description

varraytype
An identifier that is assigned to the array type.

n The maximum number of elements in the array type.

datatype
A supported data type, such as NUMBER, VARCHAR2, RECORD, VARRAY, or
associative array type. The %TYPE attribute and the %ROWTYPE attribute are
also supported.

Example

The following example reads employee names from the EMP table, stores the
names in an array variable of type VARRAY, and then displays the results. The
EMP table contains one column named ENAME. The code is executed from a Db2
script (script.db2). The following commands should be issued from the Db2
command window before executing the script (db2 -tvf script.db2):
db2set DB2_COMPATIBILITY_VECTOR=FFF
db2stop
db2start

The script contains the following code:
SET SQLCOMPAT PLSQL;

connect to mydb
/

CREATE PACKAGE foo
AS

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 5;
i INTEGER := 0;

BEGIN
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;
FOR j IN 1..5 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));

PL/SQL support 23

END LOOP;
END;
/

DROP PACKAGE foo
/

connect reset
/

This script produces the following sample output:
Curly
Larry
Moe
Shemp
Joe

CREATE TYPE (VARRAY) statement (PL/SQL)
The CREATE TYPE (VARRAY) statement defines a VARRAY data type.

Invocation

This statement can be executed from the Db2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the VARRAY type does not exist, IMPLICIT_SCHEMA

authority on the database
v If the schema name of the VARRAY type refers to an existing schema,

CREATEIN privilege on the schema
v DBADM authority

Syntax

►► CREATE TYPE varraytype
OR REPLACE

IS
AS

VARRAY (n) ►

► OF datatype ►◄

Description

OR REPLACE
Indicates that if a user-defined data type with the same name already exists in
the schema, the new data type is to replace the existing one. If this option is
not specified, the new data type cannot replace an existing one with the same
name in the same schema.

varraytype
Specifies an identifier for the VARRAY type. The unqualified form of varraytype
is an SQL identifier with a maximum length of 128. The value of the
CURRENT SCHEMA special register is used to qualify an unqualified object
name. The qualified form of varraytype is a schema name followed by a period
character and an SQL identifier. If a two-part name is specified, the schema
name cannot begin with 'SYS'; otherwise, an error is returned (SQLSTATE

24 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

42939). The name (including an implicit or explicit qualifier) must not identify
a user-defined data type that is described in the catalog (SQLSTATE 42723).
The unqualified name is unique within its schema, but does not need to be
unique across schemas.

n Specifies the maximum number of elements in the array type. The maximum
cardinality of an array on a given system is limited by the total amount of
memory that is available to Db2 applications. As such, although arrays of large
cardinalities (up to 2,147,483,647) can be created, not all elements might be
available for use.

datatype
A supported data type, such as NUMBER, VARCHAR2, RECORD, VARRAY, or
associative array type. The %TYPE attribute and the %ROWTYPE attribute are
also supported.

Example

The following example creates a VARRAY data type with a maximum of 10
elements, where each element has the data type NUMBER:
CREATE TYPE NUMARRAY1 AS VARRAY (10) OF NUMBER

CREATE TYPE (Nested table) statement (PL/SQL)
The CREATE TYPE (Nested table) statement defines an associative array indexed
by INTEGER data type.

Invocation

This statement can be executed from the Db2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the nested table type does not exist, IMPLICIT_SCHEMA

authority on the database
v If the schema name of the nested table type refers to an existing schema,

CREATEIN privilege on the schema
v DBADM authority

Syntax

►► CREATE TYPE assocarray
OR REPLACE

IS
AS

TABLE OF datatype ►◄

Description

OR REPLACE
Indicates that if a user-defined data type with the same name already exists in
the schema, the new data type is to replace the existing one. If this option is
not specified, the new data type cannot replace an existing one with the same
name in the same schema.

assocarray
Specifies an identifier for the associative array type.

PL/SQL support 25

datatype
Specifies a supported data type, such as NUMBER, VARCHAR2, RECORD,
VARRAY, or associative array type.

Example

The following example reads the first ten employee names from the EMP table,
stores them in a nested table, and then displays its contents:
SET SERVEROUTPUT ON
/

CREATE OR REPLACE TYPE emp_arr_typ IS TABLE OF VARCHAR2(10)
/

DECLARE
emp_arr emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
END LOOP;

END
/

Records (PL/SQL)
A record type is a composite data type that consists of one or more identifiers and
their corresponding data types.

You can create user-defined record types by using the TYPE IS RECORD statement
within a package or by using the CREATE TYPE (Object) statement.

Dot notation is used to reference fields in a record. For example, record.field.

Syntax

►► TYPE rectype IS RECORD ▼

,

(field datatype) ►◄

Description

TYPE rectype IS RECORD
Specifies an identifier for the record type.

field
Specifies an identifier for a field of the record type.

datatype
Specifies the corresponding data type of the field. The %TYPE attribute,
RECORD, VARRAY, associative array types, and the %ROWTYPE attributes are
supported.

26 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Example

The following example shows a package that references a user-defined record type:
CREATE OR REPLACE PACKAGE pkg7a
IS
TYPE t1_typ IS RECORD (

c1 T1.C1%TYPE,
c2 VARCHAR(10)

);
END;

CREATE TYPE (Object) statement (PL/SQL)
The CREATE TYPE (Object) statement defines a record data type.

Invocation

This statement can be executed from the Db2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the object type does not exist, IMPLICIT_SCHEMA

authority on the database
v If the schema name of the object type refers to an existing schema, CREATEIN

privilege on the schema
v DBADM authority

Syntax

►► CREATE TYPE objecttype
OR REPLACE

►

► ▼

,

AS OBJECT (field datatype) ►◄

Description

OR REPLACE
Indicates that if a user-defined data type with the same name already exists in
the schema, the new data type is to replace the existing one. If this option is
not specified, the new data type cannot replace an existing one with the same
name in the same schema.

objecttype
Specifies an identifier for the record type.

field
Specifies an identifier for a field of the record type.

datatype
Specifies a supported data type, such as NUMBER, VARCHAR2, RECORD,
VARRAY, or associative array type.

PL/SQL support 27

Example

The following example shows a the definition of a record type with two fields:
CREATE TYPE objtyp AS OBJECT
(

c1 NUMBER,
c2 VARCHAR2(10)

);

Associative arrays (PL/SQL)
A PL/SQL associative array is a collection type that associates a unique key with a
value.

An associative array has the following characteristics:
v An associative array type must be defined before array variables of that array

type can be declared. Data manipulation occurs in the array variable.
v The array does not need to be initialized; simply assign values to array elements.
v There is no defined limit on the number of elements in the array; it grows

dynamically as elements are added.
v The array can be sparse; there can be gaps in the assignment of values to keys.
v An attempt to reference an array element that has not been assigned a value

results in an exception.

Use the TYPE IS TABLE OF statement to define an associative array type.

Syntax

►► TYPE assoctype IS TABLE OF datatype ►

► INDEX BY BINARY_INTEGER
PLS_INTEGER
VARCHAR2 (n)

BYTE
CHAR

►◄

Description

TYPE assoctype
Specifies an identifer for the array type.

datatype
Specifies a supported data type, such as VARCHAR2, NUMBER, RECORD,
VARRAY, or associative array type. The %TYPE attribute and the %ROWTYPE
attribute are also supported.

INDEX BY
Specifies that the associative array is to be indexed by one of the data types
introduced by this clause.

BINARY INTEGER
Integer numeric data.

PLS_INTEGER
Integer numeric data.

VARCHAR2 (n[BYTE|CHAR])
A variable-length character string of maximum length n code units, which

28 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

may range from 1 to 32 672 BYTE or from 1 to 8 168 CHAR. The %TYPE
attribute is also supported if the object to which the %TYPE attribute is
being applied is of the BINARY_INTEGER, PLS_INTEGER, or VARCHAR2
data type.

To declare a variable with an associative array type, specify array-name assoctype,
where array-name represents an identifier that is assigned to the associative array,
and assoctype represents the identifier for a previously declared array type.

To reference a particular element of the array, specify array-name(n), where
array-name represents the identifier for a previously declared array, and n
represents a value of INDEX BY data type of assoctype. If the array is defined from
a record type, the reference becomes array-name(n).field, where field is defined
within the record type from which the array type is defined. To reference the entire
record, omit field.

Examples

The following example reads the first ten employee names from the EMP table,
stores them in an array, and then displays the contents of the array.
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type1
IS

TYPE emp_arr_typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
END pkg_test_type1
/

DECLARE
emp_arr pkg_test_type1.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
END LOOP;

END
/

This code generates the following sample output:
SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER

The example can be modified to use a record type in the array definition.
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type2

PL/SQL support 29

IS
TYPE emp_rec_typ IS RECORD (

empno INTEGER,
ename VARCHAR2(10)

);
END pkg_test_type2
/

CREATE OR REPLACE PACKAGE pkg_test_type3
IS

TYPE emp_arr_typ IS TABLE OF pkg_test_type2.emp_rec_typ INDEX BY BINARY_INTEGER;
END pkg_test_type3
/

DECLARE
emp_arr pkg_test_type3.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i).empno := r_emp.empno;
emp_arr(i).ename := r_emp.ename;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ’ ’ ||
emp_arr(j).ename);

END LOOP;
END
/

The modified code generates the following sample output:
EMPNO ENAME
----- -------
1001 SMITH
1002 ALLEN
1003 WARD
1004 JONES
1005 MARTIN
1006 BLAKE
1007 CLARK
1008 SCOTT
1009 KING
1010 TURNER

This example can be further modified to use the emp%ROWTYPE attribute to
define emp_arr_typ, instead of using the emp_rec_typ record type.
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type4
IS

TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
END pkg_test_type4
/

DECLARE
emp_arr pkg_test_type4.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);

30 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

FOR r_emp IN emp_cur LOOP
i := i + 1;
emp_arr(i).empno := r_emp.empno;
emp_arr(i).ename := r_emp.ename;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ’ ’ ||
emp_arr(j).ename);

END LOOP;
END
/

In this case, the sample output is identical to that of the previous example.

Finally, instead of assigning each field of the record individually, a record-level
assignment can be made from r_emp to emp_arr:
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type5
IS

TYPE emp_rec_typ IS RECORD (
empno INTEGER,
ename VARCHAR2(10)

);
END pkg_test_type5
/

CREATE OR REPLACE PACKAGE pkg_test_type6
IS

TYPE emp_arr_typ IS TABLE OF pkg_test_type5.emp_rec_typ INDEX BY BINARY_INTEGER;
END pkg_test_type6
/

DECLARE
emp_arr pkg_test_type6.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ’ ’ ||
emp_arr(j).ename);

END LOOP;
END
/

Collection methods (PL/SQL)
Collection methods can be used to obtain information about collections or to
modify collections.

The following commands should be executed before attempting to run the
examples in Table 1 on page 32.
db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start
db2 connect to mydb

PL/SQL support 31

The MYDB database has one table, EMP, which has one column, ENAME (defined
as VARCHAR(10)):
db2 select * from emp

ENAME

Curly
Larry
Moe
Shemp
Joe

5 record(s) selected.

Table 1. Collection methods that are supported (or tolerated) by the Db2 data server in a PL/SQL context

Collection method Description Example

COUNT Returns the
number of
elements in a
collection.

CREATE PACKAGE foo
AS

TYPE sparse_arr_typ IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

END;
/

SET SERVEROUTPUT ON
/

DECLARE
sparse_arr foo.sparse_arr_typ;

BEGIN
sparse_arr(-10) := -10;
sparse_arr(0) := 0;
sparse_arr(10) := 10;
DBMS_OUTPUT.PUT_LINE(’COUNT: ’ ||
sparse_arr.COUNT);

END;
/

32 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Table 1. Collection methods that are supported (or tolerated) by the Db2 data server in a PL/SQL context (continued)

Collection method Description Example

DELETE Removes all
elements from a
collection.

CREATE PACKAGE foo
AS

TYPE names_typ IS TABLE OF VARCHAR2(10)
INDEX BY BINARY_INTEGER;

END;
/

SET SERVEROUTPUT ON
/

DECLARE
actor_names foo.names_typ;

BEGIN

actor_names(1) := ’Chris’;
actor_names(2) := ’Steve’;
actor_names(3) := ’Kate’;
actor_names(4) := ’Naomi’;
actor_names(5) := ’Peter’;
actor_names(6) := ’Philip’;
actor_names(7) := ’Michael’;
actor_names(8) := ’Gary’;

DBMS_OUTPUT.PUT_LINE(’COUNT: ’ ||
actor_names.COUNT);

actor_names.DELETE(2);
DBMS_OUTPUT.PUT_LINE(’COUNT: ’ ||
actor_names.COUNT);

actor_names.DELETE(3, 5);
DBMS_OUTPUT.PUT_LINE(’COUNT: ’ ||
actor_names.COUNT);

actor_names.DELETE;
DBMS_OUTPUT.PUT_LINE(’COUNT: ’ ||
actor_names.COUNT);

END;
/

DELETE (n) Removes element n
from an associative
array. You cannot
delete individual
elements from a
VARRAY collection
type.

See “DELETE”.

DELETE (n1, n2) Removes all
elements from n1
to n2 from an
associative array.
You cannot delete
individual
elements from a
VARRAY collection
type.

See “DELETE”.

PL/SQL support 33

Table 1. Collection methods that are supported (or tolerated) by the Db2 data server in a PL/SQL context (continued)

Collection method Description Example

EXISTS (n) Returns TRUE if
the specified
element exists.

CREATE PACKAGE foo
AS

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp
WHERE ROWNUM <= 5;

i INTEGER := 0;
BEGIN

FOR r_emp IN emp_cur LOOP
i := i + 1;
emp_arr.EXTEND;
emp_arr(i) := r_emp.ename;

END LOOP;
emp_arr.TRIM;
FOR j IN 1..5 LOOP

IF emp_arr.EXISTS(j) = true THEN
DBMS_OUTPUT.PUT_LINE(emp_arr(j));

ELSE
DBMS_OUTPUT.PUT_LINE(’THIS ELEMENT

HAS BEEN DELETED’);
END IF;

END LOOP;
END;
/

EXTEND Appends a single
NULL element to a
collection.

See “EXISTS (n)”.

EXTEND (n) Appends n NULL
elements to a
collection.

See “EXISTS (n)”.

EXTEND (n1, n2) Appends n1 copies
of the n2th element
to a collection.

See “EXISTS (n)”.

34 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Table 1. Collection methods that are supported (or tolerated) by the Db2 data server in a PL/SQL context (continued)

Collection method Description Example

FIRST Returns the
smallest index
number in a
collection.

CREATE PACKAGE foo
AS

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp
WHERE ROWNUM <= 5;

i INTEGER := 0;
k INTEGER := 0;
l INTEGER := 0;

BEGIN

FOR r_emp IN emp_cur LOOP
i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;

-- Use FIRST and LAST to specify the lower and
-- upper bounds of a loop range:
FOR j IN emp_arr.FIRST..emp_arr.LAST LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
END LOOP;

-- Use NEXT(n) to obtain the subscript of
-- the next element:
k := emp_arr.FIRST;
WHILE k IS NOT NULL LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(k));
k := emp_arr.NEXT(k);

END LOOP;

-- Use PRIOR(n) to obtain the subscript of
-- the previous element:
l := emp_arr.LAST;
WHILE l IS NOT NULL LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(l));
l := emp_arr.PRIOR(l);

END LOOP;

DBMS_OUTPUT.PUT_LINE(’COUNT: ’ || emp_arr.COUNT);

emp_arr.TRIM;
DBMS_OUTPUT.PUT_LINE(’COUNT: ’ || emp_arr.COUNT);

emp_arr.TRIM(2);
DBMS_OUTPUT.PUT_LINE(’COUNT: ’ || emp_arr.COUNT);

DBMS_OUTPUT.PUT_LINE(’Max. no. elements = ’ ||
emp_arr.LIMIT);

END;
/

LAST Returns the largest
index number in a
collection.

See “FIRST”.

PL/SQL support 35

Table 1. Collection methods that are supported (or tolerated) by the Db2 data server in a PL/SQL context (continued)

Collection method Description Example

LIMIT Returns the
maximum number
of elements for a
VARRAY, or NULL
for nested tables.

See “FIRST”.

NEXT (n) Returns the index
number of the
element
immediately
following the
specified index.

See “FIRST”.

PRIOR (n) Returns the index
number of the
element
immediately prior
to the specified
index.

See “FIRST”.

TRIM Removes a single
element from the
end of a collection.
You cannot trim
elements from an
associative array
collection type.

See “FIRST”.

TRIM (n) Removes n
elements from the
end of a collection.
You cannot trim
elements from an
associative array
collection type.

See “FIRST”.

Variables (PL/SQL)
Variables must be declared before they are referenced.

Variables that are used in a block must generally be defined in the declaration
section of the block unless they are global variables or package-level variables. The
declaration section contains the definitions of variables, cursors, and other types
that can be used in PL/SQL statements within the block. A variable declaration
consists of a name that is assigned to the variable and the data type of the
variable. Optionally, the variable can be initialized to a default value within the
variable declaration.

Procedures and functions can have parameters for passing input values.
Procedures can also have parameters for passing output values, or parameters for
passing both input and output values.

PL/SQL also includes variable data types to match the data types of existing
columns, rows, or cursors using the %TYPE and %ROWTYPE qualifiers.

36 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Variable declarations (PL/SQL)
Variables that are used in a block must generally be defined in the declaration
section of the block unless they are global variables or package-level variables. A
variable declaration consists of a name that is assigned to the variable and the data
type of the variable. Optionally, the variable can be initialized to a default value
within the variable declaration.

Syntax

►► name
CONSTANT

type
NOT NULL := expression

DEFAULT NULL

►◄

Description

name
Specifies an identifier that is assigned to the variable.

CONSTANT
Specifies that the variable value is constant. A default expression must be
assigned, and a new value cannot be assigned to the variable within the
application program.

type
Specifies a data type for the variable.

NOT NULL
Currently ignored by Db2. Routines that specify NOT NULL for variable
declarations compile successfully. However, such routines behave as though
NOT NULL has not been specified. No run-time checking is performed to
disallow null values in variables declared NOT NULL. See the following
example, if your application needs to restrict null values in PL/SQL variables.

DEFAULT
Specifies a default value for the variable. This default is evaluated every time
that the block is entered. For example, if SYSDATE has been assigned to a
variable of type DATE, the variable resolves to the current invocation time, not
to the time at which the procedure or function was precompiled.

:= The assignment operator is a synonym for the DEFAULT keyword. However, if
this operator is specified without expression, the variable is initialized to the
value NULL.

expression
Specifies the initial value that is to be assigned to the variable when the block
is entered.

NULL
Specifies the SQL value NULL, which has a null value.

Examples
1. The following procedure shows variable declarations that utilize defaults

consisting of string and numeric expressions:
CREATE OR REPLACE PROCEDURE dept_salary_rpt (

p_deptno NUMBER
)
IS

todays_date DATE := SYSDATE;
rpt_title VARCHAR2(60) := ’Report For Department # ’ || p_deptno

PL/SQL support 37

|| ’ on ’ || todays_date;
base_sal INTEGER := 35525;
base_comm_rate NUMBER := 1.33333;
base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);

BEGIN
DBMS_OUTPUT.PUT_LINE(rpt_title);
DBMS_OUTPUT.PUT_LINE(’Base Annual Salary: ’ || base_annual);

END;

The following sample output was obtained by calling this procedure:
CALL dept_salary_rpt(20);

Report For Department # 20 on 10-JUL-07 16:44:45
Base Annual Salary: 47366.55

2. The following example restricts null values by adding explicit checks using IS
NULL or IS NOT NULL and handles error cases as required:
create table T(col1 integer);
insert into T values null;

declare
N integer not null := 0;
null_variable exception;

begin
select col1 into N from T;
if N is null then
raise null_variable;

end if;
exception

when null_variable then
-- Handle error condition here.
dbms_output.put_line(’Null variable detected’);

end;

Parameter modes (PL/SQL)
PL/SQL procedure parameters can have one of three possible modes: IN, OUT, or
IN OUT. PL/SQL function parameters can only be IN.
v An IN formal parameter is initialized to the actual parameter with which it was

called, unless it was explicitly initialized with a default value. The IN parameter
can be referenced within the called program; however, the called program
cannot assign a new value to the IN parameter. After control returns to the
calling program, the actual parameter always contains the value to which it was
set prior to the call.

v An OUT formal parameter is initialized to the actual parameter with which it
was called. The called program can reference and assign new values to the
formal parameter. If the called program terminates without an exception, the
actual parameter takes on the value to which the formal parameter was last set.
If a handled exception occurs, the actual parameter takes on the last value to
which the formal parameter was set. If an unhandled exception occurs, the value
of the actual parameter remains what it was prior to the call.

v Like an IN parameter, an IN OUT formal parameter is initialized to the actual
parameter with which it was called. Like an OUT parameter, an IN OUT formal
parameter is modifiable by the called program, and the last value of the formal
parameter is passed to the calling program's actual parameter if the called
program terminates without an exception. If a handled exception occurs, the
actual parameter takes on the last value to which the formal parameter was set.
If an unhandled exception occurs, the value of the actual parameter remains
what it was prior to the call.

38 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Table 2 summarizes this behavior.

Table 2. Parameter modes

Mode property IN IN OUT OUT

Formal parameter
initialized to:

Actual parameter
value

Actual parameter
value

Actual parameter
value

Formal parameter
modifiable by the
called program?

No Yes Yes

After normal
termination of the
called program,
actual parameter
contains:

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

After a handled
exception in the
called program,
actual parameter
contains:

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

After an unhandled
exception in the
called program,
actual parameter
contains:

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

Data types (PL/SQL)
A wide range of data types are supported and can be used to declare variables in a
PL/SQL block.

Table 3. Supported scalar data types that are available in PL/SQL

PL/SQL data type Db2 SQL data type Description

BINARY_INTEGER INTEGER Integer numeric data

BLOB BLOB (4096) Binary data

BLOB (n) BLOB (n)
n = 1 to 2 147 483 647

Binary large object data

BOOLEAN BOOLEAN Logical Boolean (true or false)

CHAR CHAR (n)
n = 63 if the string units of the
environment is set to CODEUNITS32
n = 255 otherwise

Fixed-length character string data of
length n

CHAR (n) CHAR (n)
n = 1 to 255

Fixed-length character string data of
length n

CHAR (n CHAR) CHAR (n CODEUNITS32)
n = 1 to 63

Fixed-length character string data of
length n UTF-32 code units1

CHAR VARYING (n) VARCHAR (n) Variable-length character string data
of maximum length n

CHAR VARYING (n CHAR) VARCHAR (n CODEUNITS32)
n = 1 to 8 168

Variable-length character string data
of maximum length n UTF-32 code
units1

PL/SQL support 39

Table 3. Supported scalar data types that are available in PL/SQL (continued)

PL/SQL data type Db2 SQL data type Description

CHARACTER CHARACTER (n)
n = 63 if the string units of the
environment is set to CODEUNITS32
n = 255 otherwise

Fixed-length character string data of
length n

CHARACTER (n) CHARACTER (n)
n = 1 to 255

Fixed-length character string data of
length n

CHARACTER (n CHAR) CHARACTER (
n CODEUNITS32)
n = 1 to 63

Fixed-length character string data of
length n UTF-32 code units1

CHARACTER VARYING (n) VARCHAR (n)
n = 1 to 32 672

Variable-length character string data
of maximum length n

CHARACTER VARYING (n CHAR) VARCHAR (n CODEUNITS32)
n = 1 to 8 168

Variable-length character string data
of maximum length n UTF-32 code
units1

CLOB CLOB (1M) Character large object data

CLOB (n) CLOB (n)
n = 1 to 2 147 483 647

Character large object data of length
n

CLOB (n CHAR) CLOB (n CODEUNITS32)
n = 1 to 536 870 911

Character large object string data of
length n UTF-32 code units1

DATE DATE 2 Date and time data (expressed to the
second)

DEC DEC (9, 2) Decimal numeric data

DEC (p) DEC (p)
p = 1 to 31

Decimal numeric data of precision p

DEC (p, s) DEC (p, s)
p = 1 to 31; s = 1 to 31

Decimal numeric data of precision p
and scale s

DECIMAL DECIMAL (9, 2) Decimal numeric data

DECIMAL (p) DECIMAL (p)
p = 1 to 31

Decimal numeric data of precision p

DECIMAL (p, s) DECIMAL (p, s)
p = 1 to 31; s = 1 to 31

Decimal numeric data of precision p
and scale s

DOUBLE DOUBLE Double precision floating-point
number

DOUBLE PRECISION DOUBLE PRECISION Double precision floating-point
number

FLOAT FLOAT Float numeric data

FLOAT (n)
n = 1 to 24

REAL Real numeric data

FLOAT (n)
n = 25 to 53

DOUBLE Double numeric data

INT INT Signed four-byte integer numeric
data

INTEGER INTEGER Signed four-byte integer numeric
data

LONG CLOB (32760) Character large object data

LONG RAW BLOB (32760) Binary large object data

LONG VARCHAR CLOB (32760) Character large object data

40 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Table 3. Supported scalar data types that are available in PL/SQL (continued)

PL/SQL data type Db2 SQL data type Description

NATURAL INTEGER Signed four-byte integer numeric
data

NCHAR NCHAR (n) 3

n = 63 if the NCHAR_MAPPING
configuration parameter is set to
GRAPHIC_CU32 or CHAR_CU32
n = 127 otherwise

Fixed-length national character string
data of length n

NCHAR (n)
n = 1 to 2000

NCHAR (n) 3 Fixed-length national character string
data of length n

NCLOB 4 NCLOB(1M) 3 National character large object data

NCLOB (n) NCLOB (n) 3 National character large object data
of maximum length n

NVARCHAR2 NVARCHAR 3 Variable-length national character
string data

NVARCHAR2 (n) NVARCHAR (n) 3 Variable-length national character
string data of maximum length n

NUMBER NUMBER 5 Exact numeric data

NUMBER (p) NUMBER (p) 5 Exact numeric data of maximum
precision p

NUMBER (p, s) NUMBER (p, s) 5

p = 1 to 31; s = 1 to 31
Exact numeric data of maximum
precision p and scale s

NUMERIC NUMERIC (9.2) Exact numeric data

NUMERIC (p) NUMERIC (p)
p = 1 to 31

Exact numeric data of maximum
precision p

NUMERIC (p, s) NUMERIC (p, s)
p = 1 to 31; s = 0 to 31

Exact numeric data of maximum
precision p and scale s

PLS_INTEGER INTEGER Integer numeric data

RAW VARBINARY(32672) Variable-length binary string data

RAW (n)
VARBINARY(n)
n = 1 to 32 672

Variable-length binary string data

SMALLINT SMALLINT Signed two-byte integer data

TIMESTAMP (0) TIMESTAMP (0) Date data with timestamp
information

TIMESTAMP (p) TIMESTAMP (p) Date and time data with optional
fractional seconds and precision p

VARCHAR VARCHAR (4096) Variable-length character string data
with a maximum length of 4096

VARCHAR (n) VARCHAR (n) Variable-length character string data
with a maximum length of n

VARCHAR (n CHAR) VARCHAR (n CODEUNITS32)
n = 1 to 8 168

Variable-length character string data
of maximum length n UTF-32 code
units1

VARCHAR2 (n) VARCHAR2 (n) 6 Variable-length character string data
with a maximum length of n

PL/SQL support 41

Table 3. Supported scalar data types that are available in PL/SQL (continued)

PL/SQL data type Db2 SQL data type Description

VARCHAR2 (n CHAR) VARCHAR2 (n CODEUNITS32)
n = 1 to 8 168 6

Variable-length character string data
of maximum length n UTF-32 code
units1

1. If the string units of the environment is set to CODEUNITS32, the CHAR attribute of the length is implicit. This
behavior is similar to NLS_LENGTH_SEMANTICS=CHAR in an Oracle database.

2. When the DB2_COMPATIBILITY_VECTOR registry variable is set for the DATE data type, DATE is equivalent to
TIMESTAMP (0).

3. National character strings are synonyms for character strings or graphic strings with the mapping of data types
determined by the NCHAR_MAPPING configuration parameter. See “National character strings” for details.

4. For restrictions on the NCLOB data type in certain database environments, see “Restrictions on PL/SQL
support”.

5. This data type is supported when the number_compat database configuration parameter set to ON.

6. This data type is supported when the varchar2_compat database configuration parameter set to ON.

In addition to the scalar data types described in Table 3 on page 39, the Db2 data
server also supports collection types, record types, and REF CURSOR types.

%TYPE attribute in variable declarations (PL/SQL)
The %TYPE attribute, used in PL/SQL variable and parameter declarations, is
supported by the Db2 data server. Use of this attribute ensures that type
compatibility between table columns and PL/SQL variables is maintained.

A qualified column name in dot notation or the name of a previously declared
variable must be specified as a prefix to the %TYPE attribute. The data type of this
column or variable is assigned to the variable being declared. If the data type of
the column or variable changes, there is no need to modify the declaration code.

The %TYPE attribute can also be used with formal parameter declarations.

Syntax

►► name table . column
view

variable

%TYPE ►◄

Description

name
Specifies an identifier for the variable or formal parameter that is being
declared.

table
Specifies an identifier for the table whose column is to be referenced.

view
Specifies an identifier for the view whose column is to be referenced.

column
Specifies an identifier for the table or view column that is to be referenced.

42 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

variable
Specifies an identifier for a previously declared variable that is to be
referenced. The variable does not inherit any other column attributes, such as,
for example, the nullability attribute.

Example

The following example shows a procedure that queries the EMP table using an
employee number, displays the employee's data, finds the average salary of all
employees in the department to which the employee belongs, and then compares
the chosen employee's salary with the department average.
CREATE OR REPLACE PROCEDURE emp_sal_query (

p_empno IN NUMBER
)
IS

v_ename VARCHAR2(10);
v_job VARCHAR2(9);
v_hiredate DATE;
v_sal NUMBER(7,2);
v_deptno NUMBER(2);
v_avgsal NUMBER(7,2);

BEGIN
SELECT ename, job, hiredate, sal, deptno

INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
FROM emp WHERE empno = p_empno;

DBMS_OUTPUT.PUT_LINE(’Employee # : ’ || p_empno);
DBMS_OUTPUT.PUT_LINE(’Name : ’ || v_ename);
DBMS_OUTPUT.PUT_LINE(’Job : ’ || v_job);
DBMS_OUTPUT.PUT_LINE(’Hire Date : ’ || v_hiredate);
DBMS_OUTPUT.PUT_LINE(’Salary : ’ || v_sal);
DBMS_OUTPUT.PUT_LINE(’Dept # : ’ || v_deptno);

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = v_deptno;

IF v_sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE(’Employee’’s salary is more than the department ’

|| ’average of ’ || v_avgsal);
ELSE

DBMS_OUTPUT.PUT_LINE(’Employee’’s salary does not exceed the department ’
|| ’average of ’ || v_avgsal);

END IF;
END;

This procedure could be rewritten without explicitly coding the EMP table data
types in the declaration section.
CREATE OR REPLACE PROCEDURE emp_sal_query (

p_empno IN emp.empno%TYPE
)
IS

v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_hiredate emp.hiredate%TYPE;
v_sal emp.sal%TYPE;
v_deptno emp.deptno%TYPE;
v_avgsal v_sal%TYPE;

BEGIN
SELECT ename, job, hiredate, sal, deptno

INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
FROM emp WHERE empno = p_empno;

DBMS_OUTPUT.PUT_LINE(’Employee # : ’ || p_empno);
DBMS_OUTPUT.PUT_LINE(’Name : ’ || v_ename);
DBMS_OUTPUT.PUT_LINE(’Job : ’ || v_job);
DBMS_OUTPUT.PUT_LINE(’Hire Date : ’ || v_hiredate);
DBMS_OUTPUT.PUT_LINE(’Salary : ’ || v_sal);

PL/SQL support 43

DBMS_OUTPUT.PUT_LINE(’Dept # : ’ || v_deptno);

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = v_deptno;

IF v_sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE(’Employee’’s salary is more than the department ’

|| ’average of ’ || v_avgsal);
ELSE

DBMS_OUTPUT.PUT_LINE(’Employee’’s salary does not exceed the department ’
|| ’average of ’ || v_avgsal);

END IF;
END;

The p_empno parameter is an example of a formal parameter that is defined using
the %TYPE attribute. The v_avgsal variable is an example of the %TYPE attribute
referring to another variable instead of a table column.

The following sample output is generated by a call to the EMP_SAL_QUERY
procedure:
CALL emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee’s salary is more than the department average of 1566.67

SUBTYPE definitions (PL/SQL)
A subtype is a definition of a type based on a built-in type.

Subtypes provide a layer of abstraction between variables and parameters and the
data types that they use. This layer allows you to concentrate any changes to the
data types in one location. You can add constraints to subtypes so that they cannot
be nullable or limited to a specific range of values.

Subtypes can be defined in:
v CREATE PACKAGE statement (PL/SQL)
v CREATE PACKAGE BODY statement (PL/SQL)
v CREATE PROCEDURE (PL/SQL)
v CREATE FUNCTION (PL/SQL)
v CREATE TRIGGER (PL/SQL)
v Anonymous block (PL/SQL)

Syntax

►► SUBTYPE type-name IS built-in-type ►

►
RANGE start-value .. end-value NOT NULL

►◄

Description

SUBTYPE type-name
Specifies an identifier for the subtype. You cannot specify BOOLEAN as the
built-in type.

44 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

built-in-type
Specifies the built-in data type that the subtype is based on.

RANGE start-value .. end-value
Optionally defines a range of values within the domain of the subtype that is
valid for the subtype.

NOT NULL
Optionally defines that the subtype is not nullable.

Example

The following example shows a package that defines a subtype for small integers:
CREATE OR REPLACE PACKAGE math
IS
SUBTYPE tinyint IS INTEGER RANGE -256 .. 255 NOT NULL
END;

%ROWTYPE attribute in record type declarations (PL/SQL)
The %ROWTYPE attribute, used to declare PL/SQL variables of type record with
fields that correspond to the columns of a table or view, is supported by the Db2
data server. Each field in a PL/SQL record assumes the data type of the
corresponding column in the table.

A record is a named, ordered collection of fields. A field is similar to a variable; it
has an identifier and a data type, but it also belongs to a record, and must be
referenced using dot notation, with the record name as a qualifier.

Syntax

►► record table
view

%ROWTYPE ►◄

Description

record
Specifies an identifier for the record.

table
Specifies an identifier for the table whose column definitions will be used to
define the fields in the record.

view
Specifies an identifier for the view whose column definitions will be used to
define the fields in the record.

%ROWTYPE
Specifies that the record field data types are to be derived from the column
data types that are associated with the identified table or view. Record fields
do not inherit any other column attributes, such as, for example, the nullability
attribute.

Example

The following example shows how to use the %ROWTYPE attribute to create a
record (named r_emp) instead of declaring individual variables for the columns in
the EMP table.

PL/SQL support 45

CREATE OR REPLACE PROCEDURE emp_sal_query (
p_empno IN emp.empno%TYPE

)
IS

r_emp emp%ROWTYPE;
v_avgsal emp.sal%TYPE;

BEGIN
SELECT ename, job, hiredate, sal, deptno

INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
FROM emp WHERE empno = p_empno;

DBMS_OUTPUT.PUT_LINE(’Employee # : ’ || p_empno);
DBMS_OUTPUT.PUT_LINE(’Name : ’ || r_emp.ename);
DBMS_OUTPUT.PUT_LINE(’Job : ’ || r_emp.job);
DBMS_OUTPUT.PUT_LINE(’Hire Date : ’ || r_emp.hiredate);
DBMS_OUTPUT.PUT_LINE(’Salary : ’ || r_emp.sal);
DBMS_OUTPUT.PUT_LINE(’Dept # : ’ || r_emp.deptno);

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = r_emp.deptno;

IF r_emp.sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE(’Employee’’s salary is more than the department ’

|| ’average of ’ || v_avgsal);
ELSE

DBMS_OUTPUT.PUT_LINE(’Employee’’s salary does not exceed the department ’
|| ’average of ’ || v_avgsal);

END IF;
END;

Basic statements (PL/SQL)
The programming statements that can be used in a PL/SQL application include:
assignment, DELETE, EXECUTE IMMEDIATE, INSERT, NULL, SELECT INTO, and
UPDATE.

NULL statement (PL/SQL)
The NULL statement is an executable statement that does nothing. The NULL
statement can act as a placeholder whenever an executable statement is required,
but no SQL operation is wanted; for example, within a branch of the
IF-THEN-ELSE statement.

Syntax

►► NULL ►◄

Examples

The following example shows the simplest valid PL/SQL program that the Db2
data server can compile:
BEGIN

NULL;
END;

The following example shows the NULL statement within an IF...THEN...ELSE
statement:
CREATE OR REPLACE PROCEDURE divide_it (

p_numerator IN NUMBER,
p_denominator IN NUMBER,
p_result OUT NUMBER

)
IS

46 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

BEGIN
IF p_denominator = 0 THEN

NULL;
ELSE

p_result := p_numerator / p_denominator;
END IF;

END;

Assignment statement (PL/SQL)
The assignment statement sets a previously-declared variable or formal OUT or IN
OUT parameter to the value of an expression.

Syntax

►► variable := expression ►◄

Description

variable
Specifies an identifier for a previously-declared variable, OUT formal
parameter, or IN OUT formal parameter.

expression
Specifies an expression that evaluates to a single value. The data type of this
value must be compatible with the data type of variable.

Example

The following example shows assignment statements in the executable section of a
procedure:
CREATE OR REPLACE PROCEDURE dept_salary_rpt (

p_deptno IN NUMBER,
p_base_annual OUT NUMBER

)
IS

todays_date DATE;
rpt_title VARCHAR2(60);
base_sal INTEGER;
base_comm_rate NUMBER;

BEGIN
todays_date := SYSDATE;
rpt_title := ’Report For Department # ’ || p_deptno || ’ on ’

|| todays_date;
base_sal := 35525;
base_comm_rate := 1.33333;
p_base_annual := ROUND(base_sal * base_comm_rate, 2);

DBMS_OUTPUT.PUT_LINE(rpt_title);
DBMS_OUTPUT.PUT_LINE(’Base Annual Salary: ’ || p_base_annual);

END
/

EXECUTE IMMEDIATE statement (PL/SQL)
The EXECUTE IMMEDIATE statement prepares an executable form of an SQL
statement from a character string form of the statement and then executes the SQL
statement. EXECUTE IMMEDIATE combines the basic functions of the PREPARE
and EXECUTE statements.

PL/SQL support 47

Invocation

This statement can only be specified in a PL/SQL context.

Authorization

The authorization rules are those defined for the specified SQL statement.

The authorization ID of the statement might be affected by the DYNAMICRULES
bind option.

Syntax

►► EXECUTE IMMEDIATE sql-expression ►

►

▼

▼

,

INTO variable
,

BULK COLLECT INTO array-variable

►

►

▼

,
IN

USING expression
IN OUT variable
OUT variable

►◄

Description

sql-expression
An expression returning the statement string to be executed. The expression
must return a character-string type that is less than the maximum statement
size of 2 097 152 bytes. Note that a CLOB(2097152) can contain a maximum
size statement, but a VARCHAR cannot.

The statement string must be one of the following SQL statements:
v ALTER
v CALL
v COMMENT
v COMMIT
v Compound SQL (compiled)
v Compound SQL (inlined)
v CREATE
v DECLARE GLOBAL TEMPORARY TABLE
v DELETE
v DROP
v EXPLAIN
v FLUSH EVENT MONITOR
v FLUSH PACKAGE CACHE
v GRANT

48 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

v INSERT
v LOCK TABLE
v MERGE
v REFRESH TABLE
v RELEASE SAVEPOINT
v RENAME
v REVOKE
v ROLLBACK
v SAVEPOINT
v SELECT (only when the EXECUTE IMMEDIATE statement also specifies the

BULK COLLECT INTO clause)
v SET COMPILATION ENVIRONMENT
v SET CURRENT DECFLOAT ROUNDING MODE
v SET CURRENT DEFAULT TRANSFORM GROUP
v SET CURRENT DEGREE
v SET CURRENT FEDERATED ASYNCHRONY
v SET CURRENT EXPLAIN MODE
v SET CURRENT EXPLAIN SNAPSHOT
v SET CURRENT IMPLICIT XMLPARSE OPTION
v SET CURRENT ISOLATION
v SET CURRENT LOCALE LC_TIME
v SET CURRENT LOCK TIMEOUT
v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
v SET CURRENT MDC ROLLOUT MODE
v SET CURRENT OPTIMIZATION PROFILE
v SET CURRENT QUERY OPTIMIZATION
v SET CURRENT REFRESH AGE
v SET CURRENT SQL_CCFLAGS
v SET ROLE (only if DYNAMICRULES run behavior is in effect for the

package)
v SET ENCRYPTION PASSWORD
v SET EVENT MONITOR STATE (only if DYNAMICRULES run behavior is in

effect for the package)
v SET INTEGRITY
v SET PASSTHRU
v SET PATH
v SET SCHEMA
v SET SERVER OPTION
v SET SESSION AUTHORIZATION
v SET variable
v TRANSFER OWNERSHIP (only if DYNAMICRULES run behavior is in

effect for the package)
v TRUNCATE (only if DYNAMICRULES run behavior is in effect for the

package)
v UPDATE

PL/SQL support 49

The statement string must not contain a statement terminator, with the
exception of compound SQL statements which can contain semicolons (;) to
separate statements within the compound block. A compound SQL statement is
used within some CREATE and ALTER statements which, therefore, can also
contain semicolons.

When an EXECUTE IMMEDIATE statement is executed, the specified
statement string is parsed and checked for errors. If the SQL statement is
invalid, it is not executed, and an exception is thrown.

INTO variable
Specifies the name of a variable that is to receive an output value from the
corresponding parameter marker.

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the
query is assigned to an element in each array in the order of the result set,
with the array index assigned in sequence.
v If exactly one array-variable is specified:

– If the data type of the array-variable element is not a record type, the
SELECT list must have exactly one column and the column data type
must be assignable to the array element data type.

– If the data type of the array-variable element is a record type, the SELECT
list must be assignable to the record type.

v If multiple array variables are specified:
– The data type of the array-variable element must not be a record type.
– There must be an array-variable for each column in the SELECT list.
– The data type of each column in the SELECT list must be assignable to

the array element data type of the corresponding array-variable.

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the
query.

This clause can only be used if the sql-expression is a SELECT statement.

USING

IN expression
Specifies a value that is passed to an input parameter marker. IN is the
default.

IN OUT variable
Specifies the name of a variable that provides an input value to, or receives
an output value from the corresponding parameter marker. This option is
not supported when the INTO or BULK COLLECT INTO clause is used.

OUT variable
Specifies the name of a variable that receives an output value from the
corresponding parameter marker. This option is not supported when the
INTO or BULK COLLECT INTO clause is used.

The number and order of evaluated expressions or variables must match the
number and order of-and be type-compatible with-the parameter markers in
sql-expression.

Notes
v Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

50 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Example
CREATE OR REPLACE PROCEDURE proc1(p1 IN NUMBER, p2 IN OUT NUMBER, p3 OUT NUMBER)
IS
BEGIN

p3 := p1 + 1;
p2 := p2 + 1;

END;
/

EXECUTE IMMEDIATE ’BEGIN proc1(:1, :2, :3); END’ USING IN p1 + 10, IN OUT p3,
OUT p2;

EXECUTE IMMEDIATE ’BEGIN proc1(:1, :2, :3); END’ INTO p3, p2 USING p1 + 10, p3;

SQL statements (PL/SQL)
SQL statements that are supported within PL/SQL contexts can be used to modify
data or to specify the manner in which statements are to be executed.

Table 4 lists these statements. The behavior of these statements when executed in
PL/SQL contexts is equivalent to the behavior of the corresponding Db2 SQL
statements.

Table 4. SQL statements that can be executed by the Db2 data server within PL/SQL
contexts

Command Description

DELETE Deletes rows from a table

INSERT Inserts rows into a table

MERGE Updates a target (a table or view) using data
from a source (result of a table reference)

SELECT INTO Retrieves rows from a table

UPDATE Updates rows in a table

BULK COLLECT INTO clause (PL/SQL)
A SELECT INTO statement with the optional BULK COLLECT keywords
preceding the INTO keyword retrieves multiple rows into an array.

Syntax

►► ▼

,

BULK COLLECT INTO array-variable
LIMIT expression

►◄

Description

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the result
is assigned to an element in each array in the order of the result set, with the
array index assigned in sequence.
v If exactly one array-variable is specified:

– If the data type of the array-variable element is not a record type, the
SELECT list must have exactly one column, and the column data type
must be assignable to the array element data type.

PL/SQL support 51

– If the data type of the array-variable element is a record type, the SELECT
list must be assignable to the record type.

v If multiple array variables are specified:
– The data type of the array-variable element must not be a record type.
– There must be an array-variable for each column in the SELECT list.
– The data type of each column in the SELECT list must be assignable to

the array element data type of the corresponding array-variable.

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the
query.

LIMIT expression
Provides an upper bound for how many rows are being fetched. The
expression can be a numeric literal, a variable, or a complex expression, but it
cannot depend on any column from the select statement.

Notes
v Variations of the BULK COLLECT INTO clause are also supported with the

FETCH statement and the EXECUTE IMMEDIATE statement.

Example

The following example shows a procedure that uses the BULK COLLECT INTO
clause to return an array of rows from the procedure. The procedure and the type
for the array are defined in a package.
CREATE OR REPLACE PACAKGE bci_sample
IS
TYPE emps_array IS VARRAY (30) OF VARCHAR2(6);

PROCEDURE get_dept_empno (
dno IN emp.deptno%TYPE,
emps_dno OUT emps_array
);

END bci_sample;

CREATE OR REPLACE PACKAGE BODY bci_sample
IS
PROCEDURE get_dept_empno (
dno IN emp.deptno%TYPE,
emps_dno OUT emps_array
)
IS
BEGIN
SELECT empno BULK COLLECT INTO emps_dno
FROM emp
WHERE deptno=dno;

END get_dept_empno;
END bci_sample;

RETURNING INTO clause (PL/SQL)
INSERT, UPDATE, and DELETE statements that are appended with the optional
RETURNING INTO clause can be compiled by the Db2 data server. When used in
PL/SQL contexts, this clause captures the newly added, modified, or deleted
values from executing INSERT, UPDATE, or DELETE statements, respectively.

52 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Syntax

►► insert-statement
update-statement
delete-statement

▼

RETURNING *
,

expr ▼

INTO record
,

field

►◄

Description

insert-statement
Specifies a valid INSERT statement. An exception is raised if the INSERT
statement returns a result set that contains more than one row.

update-statement
Specifies a valid UPDATE statement. An exception is raised if the UPDATE
statement returns a result set that contains more than one row.

delete-statement
Specifies a valid DELETE statement. An exception is raised if the DELETE
statement returns a result set that contains more than one row.

RETURNING *
Specifies that all of the values from the row that is affected by the INSERT,
UPDATE, or DELETE statement are to be made available for assignment.

RETURNING expr
Specifies an expression to be evaluated against the row that is affected by the
INSERT, UPDATE, or DELETE statement. The evaluated results are assigned to
a specified record or fields.

INTO record
Specifies that the returned values are to be stored in a record with compatible
fields and data types. The fields must match in number, order, and data type
those values that are specified with the RETURNING clause. If the result set
contains no rows, the fields in the record are set to the null value.

INTO field
Specifies that the returned values are to be stored in a set of variables with
compatible fields and data types. The fields must match in number, order, and
data type those values that are specified with the RETURNING clause. If the
result set contains no rows, the fields are set to the null value.

Examples

The following example shows a procedure that uses the RETURNING INTO
clause:
CREATE OR REPLACE PROCEDURE emp_comp_update (

p_empno IN emp.empno%TYPE,
p_sal IN emp.sal%TYPE,
p_comm IN emp.comm%TYPE

)
IS

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_sal emp.sal%TYPE;
v_comm emp.comm%TYPE;
v_deptno emp.deptno%TYPE;

BEGIN
UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno
RETURNING

PL/SQL support 53

empno,
ename,
job,
sal,
comm,
deptno

INTO
v_empno,
v_ename,
v_job,
v_sal,
v_comm,
v_deptno;

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE(’Updated Employee # : ’ || v_empno);
DBMS_OUTPUT.PUT_LINE(’Name : ’ || v_ename);
DBMS_OUTPUT.PUT_LINE(’Job : ’ || v_job);
DBMS_OUTPUT.PUT_LINE(’Department : ’ || v_deptno);
DBMS_OUTPUT.PUT_LINE(’New Salary : ’ || v_sal);
DBMS_OUTPUT.PUT_LINE(’New Commission : ’ || v_comm);

ELSE
DBMS_OUTPUT.PUT_LINE(’Employee # ’ || p_empno || ’ not found’);

END IF;
END;

This procedure returns the following sample output:
EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
Name : PETERSON
Job : ANALYST
Department : 40
New Salary : 6540.00
New Commission : 1200.00

The following example shows a procedure that uses the RETURNING INTO clause
with record types:
CREATE OR REPLACE PROCEDURE emp_delete (

p_empno IN emp.empno%TYPE
)
IS

r_emp emp%ROWTYPE;
BEGIN

DELETE FROM emp WHERE empno = p_empno
RETURNING

*
INTO

r_emp;

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE(’Deleted Employee # : ’ || r_emp.empno);
DBMS_OUTPUT.PUT_LINE(’Name : ’ || r_emp.ename);
DBMS_OUTPUT.PUT_LINE(’Job : ’ || r_emp.job);
DBMS_OUTPUT.PUT_LINE(’Manager : ’ || r_emp.mgr);
DBMS_OUTPUT.PUT_LINE(’Hire Date : ’ || r_emp.hiredate);
DBMS_OUTPUT.PUT_LINE(’Salary : ’ || r_emp.sal);
DBMS_OUTPUT.PUT_LINE(’Commission : ’ || r_emp.comm);
DBMS_OUTPUT.PUT_LINE(’Department : ’ || r_emp.deptno);

ELSE
DBMS_OUTPUT.PUT_LINE(’Employee # ’ || p_empno || ’ not found’);

END IF;
END;

This procedure returns the following sample output:

54 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

EXEC emp_delete(9503);

Deleted Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00
Commission : 1200.00
Department : 40

Statement attributes (PL/SQL)
SQL%FOUND, SQL%NOTFOUND, and SQL%ROWCOUNT are PL/SQL attributes
that can be used to determine the effect of an SQL statement.
v The SQL%FOUND attribute has a Boolean value that returns TRUE if at least

one row was affected by an INSERT, UPDATE, or DELETE statement, or if a
SELECT INTO statement retrieved one row. The following example shows an
anonymous block in which a row is inserted and a status message is displayed.
BEGIN

INSERT INTO emp (empno,ename,job,sal,deptno)
VALUES (9001, ’JONES’, ’CLERK’, 850.00, 40);

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE(’Row has been inserted’);

END IF;
END;

v The SQL%NOTFOUND attribute has a Boolean value that returns TRUE if no
rows were affected by an INSERT, UPDATE, or DELETE statement, or if a
SELECT INTO statement did not retrieve a row. For example:
BEGIN

UPDATE emp SET hiredate = ’03-JUN-07’ WHERE empno = 9000;
IF SQL%NOTFOUND THEN

DBMS_OUTPUT.PUT_LINE(’No rows were updated’);
END IF;

END;

v The SQL%ROWCOUNT attribute has an integer value that represents the
number of rows that were affected by an INSERT, UPDATE, or DELETE
statement. For example:
BEGIN

UPDATE emp SET hiredate = ’03-JUN-07’ WHERE empno = 9001;
DBMS_OUTPUT.PUT_LINE(’# rows updated: ’ || SQL%ROWCOUNT);

END;

Control statements (PL/SQL)
Control statements are the programming statements that make PL/SQL a full
procedural complement to SQL.

A number of PL/SQL control statements can be compiled by the Db2 data server.

IF statement (PL/SQL)
Use the IF statement within PL/SQL contexts to execute SQL statements on the
basis of certain criteria.

The four forms of the IF statement are:
v IF...THEN...END IF
v IF...THEN...ELSE...END IF
v IF...THEN...ELSE IF...END IF

PL/SQL support 55

v IF...THEN...ELSIF...THEN...ELSE...END IF

IF...THEN...END IF

The syntax of this statement is:
IF boolean-expression THEN

statements
END IF;

IF...THEN statements are the simplest form of IF. The statements between THEN
and END IF are executed only if the condition evaluates to TRUE. In the following
example, an IF...THEN statement is used to test for and to display those employees
who have a commission.
DECLARE

v_empno emp.empno%TYPE;
v_comm emp.comm%TYPE;
CURSOR emp_cursor IS SELECT empno, comm FROM emp;

BEGIN
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE(’EMPNO COMM’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH emp_cursor INTO v_empno, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

--
-- Test whether or not the employee gets a commission
--

IF v_comm IS NOT NULL AND v_comm > 0 THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ ||
TO_CHAR(v_comm,’$99999.99’));

END IF;
END LOOP;
CLOSE emp_cursor;

END;

This program generates the following sample output:
EMPNO COMM
----- -------
7499 $300.00
7521 $500.00
7654 $1400.00

IF...THEN...ELSE...END IF

The syntax of this statement is:
IF boolean-expression THEN

statements
ELSE

statements
END IF;

IF...THEN...ELSE statements specify an alternative set of statements that should be
executed if the condition evaluates to FALSE. In the following example, the
previous example is modified so that an IF...THEN...ELSE statement is used to
display the text “Non-commission” if an employee does not have a commission.
DECLARE

v_empno emp.empno%TYPE;
v_comm emp.comm%TYPE;
CURSOR emp_cursor IS SELECT empno, comm FROM emp;

BEGIN
OPEN emp_cursor;

56 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

DBMS_OUTPUT.PUT_LINE(’EMPNO COMM’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH emp_cursor INTO v_empno, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

--
-- Test whether or not the employee gets a commission
--

IF v_comm IS NOT NULL AND v_comm > 0 THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ ||
TO_CHAR(v_comm,’$99999.99’));

ELSE
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || ’Non-commission’);

END IF;
END LOOP;
CLOSE emp_cursor;

END;

This program generates the following sample output:
EMPNO COMM
----- -------
7369 Non-commission
7499 $ 300.00
7521 $ 500.00
7566 Non-commission
7654 $ 1400.00
7698 Non-commission
7782 Non-commission
7788 Non-commission
7839 Non-commission
7844 Non-commission
7876 Non-commission
7900 Non-commission
7902 Non-commission
7934 Non-commission

IF...THEN...ELSE IF...END IF

The syntax of this statement is:
IF boolean-expression THEN

IF boolean-expression THEN
statements

ELSE
IF boolean-expression THEN
statements

END IF;

You can nest IF statements so that alternative IF statements are invoked, depending
on whether the conditions of an outer IF statement evaluate to TRUE or FALSE. In
the following example, the outer IF...THEN...ELSE statement tests whether or not
an employee has a commission. The inner IF...THEN...ELSE statements
subsequently test whether the employee's total compensation exceeds or is less
than the company average. When you use this form of the IF statement, you are
actually nesting an IF statement inside of the ELSE part of an outer IF statement.
You therefore need one END IF for each nested IF and one for the parent IF...ELSE.
(Note that the logic in this program can be simplified considerably by calculating
each employee's yearly compensation using an NVL function within the SELECT
statement of the cursor declaration; however, the purpose of this example is to
demonstrate how IF statements can be used.)
DECLARE

v_empno emp.empno%TYPE;
v_sal emp.sal%TYPE;

PL/SQL support 57

v_comm emp.comm%TYPE;
v_avg NUMBER(7,2);
CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;

BEGIN
--
-- Calculate the average yearly compensation
--

SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
DBMS_OUTPUT.PUT_LINE(’Average Yearly Compensation: ’ ||

TO_CHAR(v_avg,’$999,999.99’));
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE(’EMPNO YEARLY COMP’);
DBMS_OUTPUT.PUT_LINE(’----- -----------’);
LOOP

FETCH emp_cursor INTO v_empno, v_sal, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

--
-- Test whether or not the employee gets a commission
--

IF v_comm IS NOT NULL AND v_comm > 0 THEN
--
-- Test whether the employee’s compensation with commission exceeds
-- the company average
--

IF (v_sal + v_comm) * 24 > v_avg THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ ||

TO_CHAR((v_sal + v_comm) * 24,’$999,999.99’) ||
’ Exceeds Average’);

ELSE
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ ||

TO_CHAR((v_sal + v_comm) * 24,’$999,999.99’) ||
’ Below Average’);

END IF;
ELSE

--
-- Test whether the employee’s compensation without commission exceeds
-- the company average
--

IF v_sal * 24 > v_avg THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ ||

TO_CHAR(v_sal * 24,’$999,999.99’) || ’ Exceeds Average’);
ELSE

DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ ||
TO_CHAR(v_sal * 24,’$999,999.99’) || ’ Below Average’);

END IF;
END IF;

END LOOP;
CLOSE emp_cursor;

END;

This program generates the following sample output:
Average Yearly Compensation: $ 53,528.57
EMPNO YEARLY COMP
----- -----------
7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 $ 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 $ 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 $ 36,000.00 Below Average

58 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

7876 $ 26,400.00 Below Average
7900 $ 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average
7934 $ 31,200.00 Below Average

IF...THEN...ELSIF...THEN...ELSE...END IF

The syntax of this statement is:
IF boolean-expression THEN

statements
[ELSIF boolean-expression THEN

statements
[ELSIF boolean-expression THEN

statements] ...]
[ELSE

statements]
END IF;

IF...THEN...ELSIF...ELSE statements provide the means for checking many
alternatives in one statement. Formally, this statement is equivalent to nested
IF...THEN...ELSE...IF...THEN statements, but only one END IF is needed. The
following example uses an IF...THEN...ELSIF...ELSE statement to count the number
of employees by compensation, in steps of $25,000.
DECLARE

v_empno emp.empno%TYPE;
v_comp NUMBER(8,2);
v_lt_25K SMALLINT := 0;
v_25K_50K SMALLINT := 0;
v_50K_75K SMALLINT := 0;
v_75K_100K SMALLINT := 0;
v_ge_100K SMALLINT := 0;
CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO v_empno, v_comp;
EXIT WHEN emp_cursor%NOTFOUND;
IF v_comp < 25000 THEN

v_lt_25K := v_lt_25K + 1;
ELSIF v_comp < 50000 THEN

v_25K_50K := v_25K_50K + 1;
ELSIF v_comp < 75000 THEN

v_50K_75K := v_50K_75K + 1;
ELSIF v_comp < 100000 THEN

v_75K_100K := v_75K_100K + 1;
ELSE

v_ge_100K := v_ge_100K + 1;
END IF;

END LOOP;
CLOSE emp_cursor;
DBMS_OUTPUT.PUT_LINE(’Number of employees by yearly compensation’);
DBMS_OUTPUT.PUT_LINE(’Less than 25,000 : ’ || v_lt_25K);
DBMS_OUTPUT.PUT_LINE(’25,000 - 49,9999 : ’ || v_25K_50K);
DBMS_OUTPUT.PUT_LINE(’50,000 - 74,9999 : ’ || v_50K_75K);
DBMS_OUTPUT.PUT_LINE(’75,000 - 99,9999 : ’ || v_75K_100K);
DBMS_OUTPUT.PUT_LINE(’100,000 and over : ’ || v_ge_100K);

END;

This program generates the following sample output:

PL/SQL support 59

Number of employees by yearly compensation
Less than 25,000 : 2
25,000 - 49,9999 : 5
50,000 - 74,9999 : 6
75,000 - 99,9999 : 0
100,000 and over : 1

CASE statement (PL/SQL)
The CASE statement executes a set of one or more statements when a specified
search condition is true. CASE is a standalone statement that is distinct from the
CASE expression, which must appear as part of an expression.

There are two forms of the CASE statement: the simple CASE statement and the
searched CASE statement.

Simple CASE statement (PL/SQL)
The simple CASE statement attempts to match an expression (known as the
selector) to another expression that is specified in one or more WHEN clauses. A
match results in the execution of one or more corresponding statements.

Syntax

►► CASE selector-expression ►

► ▼ ▼WHEN match-expression THEN statements

▼ELSE statements

►

► END CASE ►◄

Description

CASE selector-expression
Specifies an expression whose value has a data type that is compatible with
each match-expression. If the value of selector-expression matches the first
match-expression, the statements in the corresponding THEN clause are
executed. If there are no matches, the statements in the corresponding ELSE
clause are executed. If there are no matches and there is no ELSE clause, an
exception is thrown.

WHEN match-expression
Specifies an expression that is evaluated within the CASE statement. If
selector-expression matches a match-expression, the statements in the
corresponding THEN clause are executed.

THEN
A keyword that introduces the statements that are to be executed when the
corresponding Boolean expression evaluates to TRUE.

60 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

statements
Specifies one or more SQL or PL/SQL statements, each terminated with a
semicolon.

ELSE
A keyword that introduces the default case of the CASE statement.

Example

The following example uses a simple CASE statement to assign a department
name and location to a variable that is based upon the department number.
DECLARE

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_loc dept.loc%TYPE;
CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;

BEGIN
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME DEPTNO DNAME ’

|| ’ LOC’);
DBMS_OUTPUT.PUT_LINE(’----- ------- ------ ----------’

|| ’ ---------’);
LOOP

FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
EXIT WHEN emp_cursor%NOTFOUND;
CASE v_deptno

WHEN 10 THEN v_dname := ’Accounting’;
v_loc := ’New York’;

WHEN 20 THEN v_dname := ’Research’;
v_loc := ’Dallas’;

WHEN 30 THEN v_dname := ’Sales’;
v_loc := ’Chicago’;

WHEN 40 THEN v_dname := ’Operations’;
v_loc := ’Boston’;

ELSE v_dname := ’unknown’;
v_loc := ’’;

END CASE;
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || RPAD(v_ename, 10) ||

’ ’ || v_deptno || ’ ’ || RPAD(v_dname, 14) || ’ ’ ||
v_loc);

END LOOP;
CLOSE emp_cursor;

END;

This program returns the following sample output:
EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

PL/SQL support 61

Searched CASE statement (PL/SQL)
A searched CASE statement uses one or more Boolean expressions to determine
which statements to execute.

Syntax

►► CASE ▼ WHEN boolean-expression THEN statements ELSE statements ►

► END CASE ►◄

Description

CASE
A keyword that introduces the first WHEN clause in the CASE statement.

WHEN boolean-expression
Specifies an expression that is evaluated when control flow enters the WHEN
clause in which the expression is defined. If boolean-expression evaluates to
TRUE, the statements in the corresponding THEN clause are executed. If
boolean-expression does not evaluate to TRUE, the statements in the
corresponding ELSE clause are executed.

THEN
A keyword that introduces the statements that are to be executed when the
corresponding Boolean expression evaluates to TRUE.

statements
Specifies one or more SQL or PL/SQL statements, each terminated with a
semicolon.

ELSE
A keyword that introduces the default case of the CASE statement.

Example

The following example uses a searched CASE statement to assign a department
name and location to a variable that is based upon the department number.
DECLARE

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_loc dept.loc%TYPE;
CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;

BEGIN
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME DEPTNO DNAME ’

|| ’ LOC’);
DBMS_OUTPUT.PUT_LINE(’----- ------- ------ ----------’

|| ’ ---------’);
LOOP

FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
EXIT WHEN emp_cursor%NOTFOUND;
CASE

WHEN v_deptno = 10 THEN v_dname := ’Accounting’;
v_loc := ’New York’;

WHEN v_deptno = 20 THEN v_dname := ’Research’;

62 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

v_loc := ’Dallas’;
WHEN v_deptno = 30 THEN v_dname := ’Sales’;

v_loc := ’Chicago’;
WHEN v_deptno = 40 THEN v_dname := ’Operations’;

v_loc := ’Boston’;
ELSE v_dname := ’unknown’;

v_loc := ’’;
END CASE;
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || RPAD(v_ename, 10) ||

’ ’ || v_deptno || ’ ’ || RPAD(v_dname, 14) || ’ ’ ||
v_loc);

END LOOP;
CLOSE emp_cursor;

END;

This program returns the following sample output:
EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

Loops (PL/SQL)
Use the EXIT, FOR, LOOP, and WHILE statements to repeat a series of commands
in your PL/SQL program.

FOR (cursor variant) statement (PL/SQL)
The cursor FOR loop statement opens a previously declared cursor, fetches all rows
in the cursor result set, and then closes the cursor.

Use this statement instead of separate SQL statements to open a cursor, define a
loop construct to retrieve each row of the result set, test for the end of the result
set, and then finally close the cursor.

Invocation

This statement can be invoked within a PL/SQL procedure, function, trigger, or
anonymous block.

Authorization

No specific authorization is required to reference a row expression within an SQL
statement; however, for successful statement execution, all other authorization
requirements for processing a cursor are required.

Syntax

►► FOR record IN cursor LOOP statements END LOOP ►◄

PL/SQL support 63

Description

FOR
Introduces the condition that must be true if the FOR loop is to proceed.

record
Specifies an identifier that was assigned to an implicitly declared record with
definition cursor%ROWTYPE.

IN cursor
Specifies the name of a previously declared cursor.

LOOP and END LOOP
Starts and ends the loop containing SQL statements that are to be executed
during each iteration through the loop.

statements
One or more PL/SQL statements. A minimum of one statement is required.

Example

The following example shows a procedure that contains a cursor FOR loop:
CREATE OR REPLACE PROCEDURE cursor_example
IS

CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN

DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
FOR v_emp_rec IN emp_cur_1 LOOP
DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ’ ’ || v_emp_rec.ename);

END LOOP;
END;

FOR (integer variant) statement (PL/SQL)
Use the FOR statement to execute a set of SQL statements more than once.

Invocation

This statement can be embedded within a PL/SQL procedure, function, or
anonymous block statement.

Authorization

No privileges are required to invoke the FOR statement; however, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded in the FOR statement.

Syntax

►► FOR integer-variable IN
REVERSE

expression1 .. expression2 ►

► LOOP statements END LOOP ►◄

Description

integer-variable
An automatically defined integer variable that is used during loop processing.
The initial value of integer-variable is expression1. After the initial iteration, the
value of integer-variable is incremented at the beginning of each subsequent

64 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

iteration. Both expression1 and expression2 are evaluated when entering the loop,
and loop processing stops when integer-variable is equal to expression2.

IN Introduces the optional REVERSE keyword and expressions that define the
range of integer variables for the loop.

REVERSE
Specifies that the iteration is to proceed from expression2 to expression1. Note
that expression2 must have a higher value than expression1, regardless of
whether the REVERSE keyword is specified, if the statements in the loop are to
be processed.

expression1
Specifies the initial value of the range of integer variables for the loop. If the
REVERSE keyword is specified, expression1 specifies the end value of the range
of integer variables for the loop.

expression2
Specifies the end value of the range of integer variables for the loop. If the
REVERSE keyword is specified, expression2 specifies the initial value of the
range of integer variables for the loop.

statements
Specifies the PL/SQL and SQL statements that are executed each time that the
loop is processed.

Examples

The following example shows a basic FOR statement within an anonymous block:
BEGIN

FOR i IN 1 .. 10 LOOP
DBMS_OUTPUT.PUT_LINE(’Iteration # ’ || i);

END LOOP;
END;

This example generates the following output:
Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

If the start value is greater than the end value, the loop body is not executed at all,
but no error is returned, as shown by the following example:
BEGIN

FOR i IN 10 .. 1 LOOP
DBMS_OUTPUT.PUT_LINE(’Iteration # ’ || i);

END LOOP;
END;

This example generates no output, because the loop body is never executed.

The following example uses the REVERSE keyword:

PL/SQL support 65

BEGIN
FOR i IN REVERSE 1 .. 10 LOOP
DBMS_OUTPUT.PUT_LINE(’Iteration # ’ || i);

END LOOP;
END;

This example generates the following output:
Iteration # 10
Iteration # 9
Iteration # 8
Iteration # 7
Iteration # 6
Iteration # 5
Iteration # 4
Iteration # 3
Iteration # 2
Iteration # 1

FORALL statement (PL/SQL)
The FORALL statement executes a data change statement for all elements of an
array or for a range of elements of an array.

Invocation

This statement can only be specified in a PL/SQL block.

Authorization

The privileges held by the authorization ID of the statement must include all of the
privileges necessary to invoke the data change statement that is specified in the
FORALL statement.

Syntax

►► FORALL index-variable IN lower-bound .. upper-bound
INDICES OF indexing-array
VALUES OF indexing-array

►

► insert-statement
searched-delete-statement
searched-update-statement
execute-immediate-statement

►◄

Description

index-variable
Identifies a name to be used as an array index. It is implicitly declared as an
INTEGER and it can only be referenced in the FORALL statement.

lower-bound .. upper-bound
Identifies a range of index values that are assignable to the index-variable with
lower-bound less than upper-bound. The range represents every integer value
starting with lower-bound and incrementing by 1 up to and including
upper-bound.

INDICES OF indexing-array
Identifies the set of array index values of the array identified by indexing-array.
If indexing-array is an associative array, array index values must be assignable
to index-variable and could be a sparse set.

66 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

VALUES OF indexing-array
Identifies the set of element values of the array identified by indexing-array.
The element values must be assignable to index-variable and could be an
unordered sparse set.

insert-statement
Specifies an INSERT statement that is effectively executed for each
index-variable value.

searched-delete-statement
Specifies a searched DELETE statement that is effectively executed for each
index-variable value.

searched-update-statement
Specifies a searched UPDATE statement that is effectively executed for each
index-variable value.

execute-immediate-statement
Specifies an EXECUTE IMMEDIATE statement that is effectively executed for
each index-variable value.

Notes
v FORALL statement processing is not atomic. If an error occurs while iterating in

the FORALL statement, any data change operations that have already been
processed are not implicitly rolled back. An application can use a ROLLBACK
statement to roll back the entire transaction when an error occurs in the
FORALL statement.

Example

The following example shows a basic FORALL statement:
FORALL x

IN in_customer_list.FIRST..in_customer_list.LAST
DELETE FROM customer
WHERE cust_id IN in_customer_list(x);

EXIT statement (PL/SQL)
The EXIT statement terminates execution of a loop within a PL/SQL code block.

Invocation

This statement can be embedded within a FOR, LOOP, or WHILE statement in a
PL/SQL procedure, function, or anonymous block.

Authorization

No privileges are required to invoke the EXIT statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded within the FOR, LOOP, or WHILE statement.

Syntax

►► EXIT ►◄

PL/SQL support 67

Example

The following example shows a basic LOOP statement with an EXIT statement
within an anonymous block:
DECLARE

sum PLS_INTEGER := 0;
BEGIN

LOOP
sum := sum + 1;
IF sum > 10 THEN

EXIT;
END IF;

END LOOP;
END

LOOP statement (PL/SQL)
The LOOP statement executes a sequence of statements within a PL/SQL code
block multiple times.

Invocation

This statement can be embedded in a PL/SQL procedure, function, or anonymous
block statement.

Authorization

No privileges are required to invoke the LOOP statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded within the LOOP statement.

Syntax

►► LOOP statements END LOOP ►◄

Description

statements
Specifies one or more PL/SQL or SQL statements. These statements are
executed during each iteration of the loop.

Example

The following example shows a basic LOOP statement within an anonymous
block:
DECLARE

sum INTEGER := 0;
BEGIN

LOOP
sum := sum + 1;
IF sum > 10 THEN

EXIT;
END IF;

END LOOP;
END

68 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

WHILE statement (PL/SQL)
The WHILE statement repeats a set of SQL statements as long as a specified
expression is true. The condition is evaluated immediately before each entry into
the loop body.

Invocation

This statement can be embedded within a PL/SQL procedure, function, or
anonymous block statement.

Authorization

No privileges are required to invoke the WHILE statement; however, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded in the WHILE statement.

Syntax

►► WHILE expression LOOP statements END LOOP ►◄

Description

expression
Specifies an expression that is evaluated immediately before each entry into the
loop body to determine whether or not the loop is to be executed. If the
expression is logically true, the loop is executed. If the expression is logically
false, loop processing ends. An EXIT statement can be used to terminate the
loop while the expression is true.

statements
Specifies the PL/SQL and SQL statements that are executed each time that the
loop is processed.

Example

The following example shows a basic WHILE statement within an anonymous
block:
DECLARE

sum INTEGER := 0;
BEGIN

WHILE sum < 11 LOOP
sum := sum + 1;

END LOOP;
END

The WHILE statement within this anonymous block executes until sum is equal to
11; loop processing then ends, and processing of the anonymous block proceeds to
completion.

CONTINUE statement (PL/SQL)
The CONTINUE statement terminates the current iteration of a loop within a
PL/SQL code block, and moves to the next iteration of the loop.

Invocation

This statement can be embedded within a FOR, LOOP, or WHILE statement, or
within a PL/SQL procedure, function, or anonymous block statement.

PL/SQL support 69

Authorization

No privileges are required to invoke the CONTINUE statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded within the FOR, LOOP, or WHILE statement.

Syntax

►► CONTINUE ►◄

Example

The following example shows a basic LOOP statement with an CONTINUE
statement within an anonymous block:
BEGIN

FOR i IN 1 .. 5 LOOP
IF i = 3 THEN

CONTINUE;
END IF;
DBMS_OUTPUT.PUT_LINE(’Iteration # ’ || i);

END LOOP;
END;

This example generates the following output:
Iteration # 1
Iteration # 2
Iteration # 4
Iteration # 5

Exception handling (PL/SQL)
By default, any error encountered in a PL/SQL program stops execution of the
program. You can trap and recover from errors by using an EXCEPTION section.

The syntax for exception handlers is an extension of the syntax for a BEGIN block.

Syntax

►►

▼DECLARE declaration

▼BEGIN
statement

►

►

▼ ▼EXCEPTION WHEN exception-condition THEN handler-statement
OR condition

END ►◄

If no error occurs, the block simply executes statement, and control passes to the
statement after END. However, if an error occurs while executing a statement,
further processing of the statement is abandoned, and control passes to the
EXCEPTION section. The WHEN clauses are searched for the first exception
matching the error that occurred. If a match is found, the corresponding
handler-statement is executed, and control passes to the statement after END. If no
match is found, the program stops executing.

70 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

If a new error occurs during execution of the handler-statement, it can only be
caught by a surrounding EXCEPTION clause.

Exceptions in a WHEN clause can be either user-defined or built-in. User-defined
exceptions can be defined in the DECLARE section of either the current block or its
surrounding block, or in the DECLARE section of a PL/SQL package. The syntax
PRAGMA EXCEPTION_INIT or PRAGMA DB2_EXCEPTION_INIT can be used
immediately after the definition of an exception, specifying the sqlcode or sqlstate
that corresponds to the user-defined exception.

In the following example, the DECLARE section contains the definitions of three
named exceptions. The body of the block is a call to procedure MyApp.Main. The
EXCEPTION section contains handlers for the three exceptions:
1. exception1 is not associated with an sqlcode or sqlstate .
2. exception2 is associated with sqlcode -942 (Undefined name).
3. exception3 is associated with sqlstate 42601 (syntax error).
DECLARE

exception1 EXCEPTION;
exception2 EXCEPTION;
PRAGMA EXCEPTION_INIT(exception2,-942);
exception3 EXCEPTION;
PRAGMA DB2_EXCEPTION_INIT(exception3,’42601’);

BEGIN
MyApp.Main(100);

EXCEPTION
WHEN exception1 THEN

DBMS_OUTPUT.PUT_LINE(’User-defined exception1 caught’);
WHEN exception2 THEN

DBMS_OUTPUT.PUT_LINE(’User-defined exception2 (Undefined name) caught’);
WHEN exception3 THEN

DBMS_OUTPUT.PUT_LINE(’User-defined exception3 (Syntax error) caught’);
END

Note: A limited number of Oracle sqlcodes are accepted by the Db2 data server as
arguments to PRAGMA EXCEPTION_INIT. Refer to “Oracle-Db2 error mapping
(PL/SQL)” on page 74 for the full list.

When an exception initialized with PRAGMA EXCEPTION_INIT is caught, the
value returned by the SQLCODE function is the sqlcode associated with the
exception, not the Oracle value. In the previous example, when exception2 is
caught, the value returned by SQLCODE will be -204, which is the sqlcode
corresponding to Oracle sqlcode -942. If the Oracle sqlcode specified in PRAGMA
EXCEPTION_INIT is not listed in the Oracle-Db2 error mapping table, then
compilation fails. You can avoid this by replacing PRAGMA EXCEPTION_INIT
with PRAGMA DB2_EXCEPTION_INIT and specifying the Db2 sqlstate
corresponding to the error that you want identified.

Table 5 summarizes the built-in exceptions that you can use. The special exception
name OTHERS matches every exception. Condition names are not case sensitive.

Table 5. Built-in exception names

Exception name Description

CASE_NOT_FOUND None of the cases in a CASE statement
evaluates to "true", and there is no ELSE
condition.

CURSOR_ALREADY_OPEN An attempt was made to open a cursor that
is already open.

PL/SQL support 71

Table 5. Built-in exception names (continued)

Exception name Description

DUP_VAL_ON_INDEX There are duplicate values for the index key.

INVALID_CURSOR An attempt was made to access an
unopened cursor.

INVALID_NUMBER The numeric value is invalid.

LOGIN_DENIED The user name or password is invalid.

NO_DATA_FOUND No rows satisfied the selection criteria.

NOT_LOGGED_ON A database connection does not exist.

OTHERS For any exception that has not been caught
by a prior condition in the exception section.

SUBSCRIPT_BEYOND_COUNT An array index is out of range or does not
exist.

SUBSCRIPT_OUTSIDE_LIMIT The data type of an array index expression
is not assignable to the array index type.

TOO_MANY_ROWS More than one row satisfied the selection
criteria, but only one row is allowed to be
returned.

VALUE_ERROR The value is invalid.

ZERO_DIVIDE Division by zero was attempted.

Raise application error (PL/SQL)
The RAISE_APPLICATION_ERROR procedure raises an exception based on a
user-provided error code and message. This procedure is only supported in
PL/SQL contexts.

Syntax

►► RAISE_APPLICATION_ERROR (error-number , message ,) ;
false

keeperrorstack

►◄

Description

error-number
A vendor-specific number that is mapped to an error code before it is stored in
a variable named SQLCODE. The RAISE_APPLICATION_ERROR procedure
accepts user-defined error-number values from -20000 to -20999. The SQLCODE
that is returned in the error message is SQL0438N. The SQLSTATE contains
class 'UD' plus three characters that correspond to the last three digits of the
error-number value.

message
A user-defined message with a maximum length of 70 bytes.

keeperrorstack
An optional boolean value indicating whether the error stack should be
preserved. Currently, only the default value of false is supported.

72 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Example

The following example uses the RAISE_APPLICATION_ERROR procedure to
display error codes and messages that are specific to missing employee
information:
CREATE OR REPLACE PROCEDURE verify_emp (

p_empno NUMBER
)
IS

v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_mgr emp.mgr%TYPE;
v_hiredate emp.hiredate%TYPE;

BEGIN
SELECT ename, job, mgr, hiredate

INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
WHERE empno = p_empno;

IF v_ename IS NULL THEN
RAISE_APPLICATION_ERROR(-20010, ’No name for ’ || p_empno);

END IF;
IF v_job IS NULL THEN

RAISE_APPLICATION_ERROR(-20020, ’No job for’ || p_empno);
END IF;
IF v_mgr IS NULL THEN

RAISE_APPLICATION_ERROR(-20030, ’No manager for ’ || p_empno);
END IF;
IF v_hiredate IS NULL THEN

RAISE_APPLICATION_ERROR(-20040, ’No hire date for ’ || p_empno);
END IF;
DBMS_OUTPUT.PUT_LINE(’Employee ’ || p_empno ||

’ validated without errors’);
EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(’SQLCODE: ’ || SQLCODE);
DBMS_OUTPUT.PUT_LINE(’SQLERRM: ’ || SQLERRM);

END;

CALL verify_emp(7839);

SQLCODE: -438
SQLERRM: SQL0438N Application raised error or warning with
diagnostic text: "No manager for 7839". SQLSTATE=UD030

RAISE statement (PL/SQL)
The RAISE statement raises a previously-defined exception.

Syntax

►► RAISE exception ►◄

Description

exception
Specifies a previously-defined exception.

Example

The following example shows a procedure that raises an exception of oddno or
evenno based on the value provided as argument in the invocation::

PL/SQL support 73

CREATE OR REPLACE PROCEDURE raise_demo (inval NUMBER) IS
evenno EXCEPTION;
oddno EXCEPTION;

BEGIN
IF MOD(inval, 2) = 1 THEN
RAISE oddno;

ELSE
RAISE evenno;

END IF;
EXCEPTION

WHEN evenno THEN
dbms_output.put_line(TO_CHAR(inval) || ’ is even’);

WHEN oddno THEN
dbms_output.put_line(TO_CHAR(inval) || ’ is odd’);

END raise_demo;
/

SET SERVEROUTPUT ON
/

CALL raise_demo (11)
/

The output of the CALL statement would be:
CALL raise_demo (11)

Return Status = 0

11 is odd

Oracle-Db2 error mapping (PL/SQL)
PL/SQL error codes and exception names have corresponding Db2 error codes and
SQLSTATE values.

These error codes, exception names, and SQLSTATE values are summarized in
Table 6.

Table 6. Mapping of PL/SQL error codes and exception names to Db2 data server error
codes and SQLSTATE values

plsqlCode plsqlName db2Code db2State

-1 DUP_VAL_ON_INDEX -803 23505

+100 NO_DATA_FOUND +100 02000

-1012 NOT_LOGGED_ON -1024 08003

-1017 LOGIN_DENIED -30082 08001

-1476 ZERO_DIVIDE -801 22012

-1722 INVALID_NUMBER -420 22018

-1001 INVALID_CURSOR -501 24501

-1422 TOO_MANY_ROWS -811 21000

-6502 VALUE_ERROR -433 22001

-6511 CURSOR_ALREADY_OPEN -502 24502

-6532 SUBSCRIPT_OUTSIDE_LIMIT -20439 428H1

-6533 SUBSCRIPT_BEYOND_COUNT -20439 2202E

-6592 CASE_NOT_FOUND -773 20000

-54 -904 57011

74 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Table 6. Mapping of PL/SQL error codes and exception names to Db2 data server error
codes and SQLSTATE values (continued)

plsqlCode plsqlName db2Code db2State

-60 -911 40001

-310 -206 42703

-595 -390 42887

-597 -303 42806

-598 -407 23502

-600 -30071 58015

-603 -119 42803

-604 -119 42803

-610 -20500 428HR

-611 -117 42802

-612 -117 42802

-613 -811 21000

-615 -420 22018

-616 -420 22018

-617 -418 42610

-618 -420 22018

-619 -418 42610

-620 -171 42815

-622 -304 22003

-623 -604 42611

-904 -206 42703

-911 -7 42601

-942 -204 42704

-955 -601 42710

-996 -1022 57011

-1119 -292 57047

-1002 +231 02000

-1403 -100 02000

-1430 -612 42711

-1436 -20451 560CO

-1438 -413 22003

-1450 -614 54008

-1578 -1007 58034

-2112 -811 21000

-2261 +605 01550

-2291 -530 23503

-2292 -532 23001

-3113 -30081 08001

-3114 -1024 08003

PL/SQL support 75

Table 6. Mapping of PL/SQL error codes and exception names to Db2 data server error
codes and SQLSTATE values (continued)

plsqlCode plsqlName db2Code db2State

-3214 -20170 57059

-3297 -20170 57059

-4061 -727 56098

-4063 -727 56098

-4091 -723 09000

-6502 -304 22003

-6508 -440 42884

-6550 -104 42601

-6553 -104 42601

-14028 -538 42830

-19567 -1523 55039

-30006 -904 57011

-30041 -1139 54047

Cursors (PL/SQL)
A cursor is a named control structure used by an application program to point to
and select a row of data from a result set. Instead of executing a query all at once,
you can use a cursor to read and process the query result set one row at a time.

A cursor in a PL/SQL context is treated as a WITH HOLD cursor. For more
information about WITH HOLD cursors, see “DECLARE CURSOR statement”.

The Db2 data server supports both PL/SQL static cursors and cursor variables.

Static cursors (PL/SQL)
A static cursor is a cursor whose associated query is fixed at compile time.
Declaring a cursor is a prerequisite to using it. Declarations of static cursors using
PL/SQL syntax within PL/SQL contexts are supported by the Db2 data server.

Syntax

►► CURSOR cursor-name IS query ►◄

Description

cursor-name
Specifies an identifier for the cursor that can be used to reference the cursor
and its result set.

query
Specifies a SELECT statement that determines a result set for the cursor.

Example

The following example shows a procedure that contains multiple static cursor
declarations:

76 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

CREATE OR REPLACE PROCEDURE cursor_example
IS

CURSOR emp_cur_1 IS SELECT * FROM emp;

CURSOR emp_cur_2 IS SELECT empno, ename FROM emp;

CURSOR emp_cur_3 IS SELECT empno, ename
FROM emp
WHERE deptno = 10
ORDER BY empno;

BEGIN
OPEN emp_cur_1;

...
END;

Parameterized cursors (PL/SQL)
Parameterized cursors are static cursors that can accept passed-in parameter values
when they are opened.

The following example includes a parameterized cursor. The cursor displays the
name and salary of each employee in the EMP table whose salary is less than that
specified by a passed-in parameter value.
DECLARE

my_record emp%ROWTYPE;
CURSOR c1 (max_wage NUMBER) IS

SELECT * FROM emp WHERE sal < max_wage;
BEGIN

OPEN c1(2000);
LOOP

FETCH c1 INTO my_record;
EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(’Name = ’ || my_record.ename || ’, salary = ’

|| my_record.sal);
END LOOP;
CLOSE c1;

END;

If 2000 is passed in as the value of max_wage, only the name and salary data for
those employees whose salary is less than 2000 is returned:
Name = SMITH, salary = 800.00
Name = ALLEN, salary = 1600.00
Name = WARD, salary = 1250.00
Name = MARTIN, salary = 1250.00
Name = TURNER, salary = 1500.00
Name = ADAMS, salary = 1100.00
Name = JAMES, salary = 950.00
Name = MILLER, salary = 1300.00

Parameterized cursors can only reference its own parameters. Parameterized
cursors cannot reference local variables. In this example, cursor_id must be used
in the select statement because in_id is not within the scope of the cursor.
CREATE OR REPLACE PROCEDURE myproc (in_id IN NUMBER) IS

CURSOR c(cursor_id in NUMBER) IS
SELECT id,emp_name FROM employee WHERE id = cursor_id;
empName VARCHAR2(100);

BEGIN
FOR r IN c(in_id) LOOP

empName := r.emp_name;
DBMS_OUTPUT.PUT_LINE(empName);

END LOOP;
END;

PL/SQL support 77

Opening a cursor (PL/SQL)
The result set that is associated with a cursor cannot be referenced until the cursor
has been opened.

Syntax

►►

▼

OPEN cursor-name
,

(expression)
expression

►◄

Description

cursor-name
Specifies an identifier for a cursor that was previously declared within a
PL/SQL context. The specified cursor cannot already be open.

expression
When cursor-name is a parameterized cursor, specifies one or more optional
actual parameters. The number of actual parameters must match the number of
corresponding formal parameters.

Example

The following example shows an OPEN statement for a cursor that is part of the
CURSOR_EXAMPLE procedure:
CREATE OR REPLACE PROCEDURE cursor_example
IS

CURSOR emp_cur_3 IS SELECT empno, ename
FROM emp
WHERE deptno = 10
ORDER BY empno;

BEGIN
OPEN emp_cur_3;

...
END;

Fetching rows from a cursor (PL/SQL)
The FETCH statement that is required to fetch rows from a PL/SQL cursor is
supported by the Db2 data server in PL/SQL contexts.

Syntax

►► FETCH cursor-name

▼

INTO record
,

variable
bulk-collect-clause

►◄

bulk-collect-clause:

▼

,

BULK COLLECT INTO array-variable
LIMIT integer-constant

78 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Description

cursor-name
Name of a static cursor or cursor variable.

record
Identifier for a previously-defined record. This can be a user-defined record or
a record definition that is derived from a table using the %ROWTYPE
attribute.

variable
A PL/SQL variable that will hold the field data from the fetched row. One or
more variables can be defined, but they must match in order and number the
fields that are returned in the select list of the query that was specified in the
cursor declaration. The data types of the fields in the select list must match or
be implicitly convertible to the data types of the fields in the record or the data
types of the variables.

The variable data types can be defined explicitly or by using the %TYPE
attribute.

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the result
is assigned to an element in each array in the order of the result set, with the
array index assigned in sequence.
v If exactly one array-variable is specified:

– If the data type of the array-variable element is not a record type, the
result row of the cursor must have exactly one column, and the column
data type must be assignable to the array element data type.

– If the data type of the array-variable element is a record type, the result
row of the cursor must be assignable to the record type.

v If multiple array variables are specified:
– The data type of the array-variable element must not be a record type.
– There must be an array-variable for each column in the result row of the

cursor.
– The data type of each column in the result row of the cursor must be

assignable to the array element data type of the corresponding
array-variable.

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the
query, or greater than or equal to the integer-constant that is specified in the
LIMIT clause.

LIMIT integer-constant
Identifies a limit for the number of rows stored in the target array. The cursor
position is moved forward integer-constant rows or to the end of the result set.

Example

The following example shows a procedure that contains a FETCH statement.
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_empno NUMBER(4);
v_ename VARCHAR2(10);
CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10

ORDER BY empno;
BEGIN

PL/SQL support 79

OPEN emp_cur_3;
FETCH emp_cur_3 INTO v_empno, v_ename;

...
END;

If the %TYPE attribute is used to define the data type of a target variable, the
target variable declaration in a PL/SQL application program does not need to
change if the data type of the database column changes. The following example
shows a procedure with variables that are defined using the %TYPE attribute.
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10

ORDER BY empno;
BEGIN

OPEN emp_cur_3;
FETCH emp_cur_3 INTO v_empno, v_ename;

...
END;

If all of the columns in a table are retrieved in the order in which they are defined,
the %ROWTYPE attribute can be used to define a record into which the FETCH
statement will place the retrieved data. Each field within the record can then be
accessed using dot notation. The following example shows a procedure with a
record definition that uses %ROWTYPE. This record is used as the target of the
FETCH statement.
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_emp_rec emp%ROWTYPE;
CURSOR emp_cur_1 IS SELECT * FROM emp;

BEGIN
OPEN emp_cur_1;
FETCH emp_cur_1 INTO v_emp_rec;
DBMS_OUTPUT.PUT_LINE(’Employee Number: ’ || v_emp_rec.empno);
DBMS_OUTPUT.PUT_LINE(’Employee Name : ’ || v_emp_rec.ename);

END;

Closing a cursor (PL/SQL)
After all rows have been retrieved from the result set that is associated with a
cursor, the cursor must be closed. The result set cannot be referenced after the
cursor has been closed.

However, the cursor can be reopened and the rows of the new result set can be
fetched.

Syntax

►► CLOSE cursor-name ►◄

Description

cursor-name
Specifies an identifier for an open cursor that was previously declared within a
PL/SQL context.

80 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Example

The following example shows a CLOSE statement for a cursor that is part of the
CURSOR_EXAMPLE procedure:
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_emp_rec emp%ROWTYPE;
CURSOR emp_cur_1 IS SELECT * FROM emp;

BEGIN
OPEN emp_cur_1;
FETCH emp_cur_1 INTO v_emp_rec;
DBMS_OUTPUT.PUT_LINE(’Employee Number: ’ || v_emp_rec.empno);
DBMS_OUTPUT.PUT_LINE(’Employee Name : ’ || v_emp_rec.ename);
CLOSE emp_cur_1;

END;

Using %ROWTYPE with cursors (PL/SQL)
The %ROWTYPE attribute is used to define a record with fields corresponding to
all of the columns that are fetched from a cursor or cursor variable. Each field
assumes the data type of its corresponding column.

The %ROWTYPE attribute is prefixed by a cursor name or a cursor variable name.
The syntax is record cursor%ROWTYPE, where record is an identifier that is assigned
to the record, and cursor is an explicitly declared cursor within the current scope.

The following example shows how to use a cursor with the %ROWTYPE attribute
to retrieve department information about each employee in the EMP table.
CREATE OR REPLACE PROCEDURE emp_info
IS

CURSOR empcur IS SELECT ename, deptno FROM emp;
myvar empcur%ROWTYPE;

BEGIN
OPEN empcur;
LOOP

FETCH empcur INTO myvar;
EXIT WHEN empcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(myvar.ename || ’ works in department ’

|| myvar.deptno);
END LOOP;
CLOSE empcur;

END;

A call to this procedure (CALL emp_info;) returns the following sample output:
SMITH works in department 20
ALLEN works in department 30
WARD works in department 30
JONES works in department 20
MARTIN works in department 30
BLAKE works in department 30
CLARK works in department 10
SCOTT works in department 20
KING works in department 10
TURNER works in department 30
ADAMS works in department 20
JAMES works in department 30
FORD works in department 20
MILLER works in department 10

Cursor attributes (PL/SQL)
Each cursor has a set of attributes that enables an application program to test the
state of the cursor.

PL/SQL support 81

These attributes are %ISOPEN, %FOUND, %NOTFOUND, and %ROWCOUNT.

%ISOPEN
This attribute is used to determine whether a cursor is in the open state.
When a cursor is passed as a parameter to a function or procedure, it is
useful to know (before attempting to open the cursor) whether the cursor
is already open.

%FOUND
This attribute is used to determine whether a cursor contains rows after
the execution of a FETCH statement. If FETCH statement execution was
successful, the %FOUND attribute has a value of true. If FETCH statement
execution was not successful, the %FOUND attribute has a value of false.
The result is unknown when:
v The value of cursor-variable-name is null
v The underlying cursor of cursor-variable-name is not open
v The %FOUND attribute is evaluated before the first FETCH statement

was executed against the underlying cursor
v FETCH statement execution returns an error

The %FOUND attribute provides an efficient alternative to using a
condition handler that checks for the error that is returned when no more
rows remain to be fetched.

%NOTFOUND
This attribute is the logical opposite of the %FOUND attribute.

%ROWCOUNT
This attribute is used to determine the number of rows that have been
fetched since a cursor was opened.

Table 7 summarizes the attribute values that are associated with certain cursor
events.

Table 7. Summary of cursor attribute values

Cursor attribute %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

Before OPEN False Undefined Undefined “Cursor not
open” exception

After OPEN and
before 1st
FETCH

True Undefined Undefined 0

After 1st
successful
FETCH

True True False 1

After nth
successful
FETCH (last
row)

True True False n

After n+1st
FETCH (after
last row)

True False True n

After CLOSE False Undefined Undefined “Cursor not
open” exception

82 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Cursor variables (PL/SQL)
A cursor variable is a cursor that contains a pointer to a query result set. The result
set is determined by execution of the OPEN FOR statement using the cursor
variable.

A cursor variable, unlike a static cursor, is not associated with a particular query.
The same cursor variable can be opened a number of times with separate OPEN
FOR statements containing different queries. A new result set is created each time
and made available through the cursor variable.

SYS_REFCURSOR cursor variables (PL/SQL)
The Db2 data server supports the declaration of cursor variables of the
SYS_REFCURSOR built-in data type, which can be associated with any result set.

The SYS_REFCURSOR data type is known as a weakly-typed REF CURSOR type.
Strongly-typed cursor variables of the REF CURSOR type require a result set
specification.

Syntax

►► DECLARE cursor-variable-name SYS_REFCURSOR ►◄

Description

cursor-variable-name
Specifies an identifier for the cursor variable.

SYS_REFCURSOR
Specifies that the data type of the cursor variable is the built-in
SYS_REFCURSOR data type.

Example

The following example shows a SYS_REFCURSOR variable declaration:
DECLARE emprefcur SYS_REFCURSOR;

User-defined REF CURSOR type variables (PL/SQL)
The Db2 data server supports the user-defined REF CURSOR data type and cursor
variable declarations.

The user-defined REF CURSOR type can be defined by executing the TYPE
declaration in a PL/SQL context. After the type has been defined, you can declare
a cursor variable of that type.

Restriction: REF CURSOR types can be declared only within a package and are
not supported in routines, triggers, or anonymous blocks.

Syntax

►► TYPE cursor-type-name IS REF CURSOR
RETURN return-type

►◄

PL/SQL support 83

Description

TYPE cursor-type-name
Specifies an identifier for the cursor data type.

IS REF CURSOR
Specifies that the cursor is of a user-defined REF CURSOR data type.

RETURN return-type
Specifies the return type that is associated with the cursor. If a return-type is
specified, this REF CURSOR type is strongly typed; otherwise, it is weakly
typed.

Example

The following example shows a cursor variable declaration in a package:
CREATE OR REPLACE PACKAGE my_pkg
AS
TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
my_rec emp_cur_type;
END my_pkg

Dynamic queries with cursor variables (PL/SQL)
The Db2 data server supports dynamic queries through the OPEN FOR statement
in PL/SQL contexts.

Syntax

►► OPEN cursor-variable-name FOR dynamic-string

▼

,

USING bind-arg

►◄

Description

OPEN cursor-variable-name
Specifies an identifier for a cursor variable that was previously declared within
a PL/SQL context.

FOR dynamic-string
Specifies a string literal or string variable that contains a SELECT statement
(without the terminating semicolon). The statement can contain named
parameters, such as, for example, :param1.

USING bind-arg
Specifies one or more bind arguments whose values are substituted for
placeholders in dynamic-string when the cursor opens.

Examples

The following example shows a dynamic query that uses a string literal:
CREATE OR REPLACE PROCEDURE dept_query
IS

emp_refcur SYS_REFCURSOR;
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

BEGIN
OPEN emp_refcur FOR ’SELECT empno, ename FROM emp WHERE deptno = 30’ ||

’ AND sal >= 1500’;
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);

84 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH emp_refcur INTO v_empno, v_ename;
EXIT WHEN emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || v_ename);

END LOOP;
CLOSE emp_refcur;

END;

The following example output is generated by the DEPT_QUERY procedure:
CALL dept_query;

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

The query in the previous example can be modified with bind arguments to pass
the query parameters:
CREATE OR REPLACE PROCEDURE dept_query (

p_deptno emp.deptno%TYPE,
p_sal emp.sal%TYPE

)
IS

emp_refcur SYS_REFCURSOR;
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

BEGIN
OPEN emp_refcur FOR ’SELECT empno, ename FROM emp WHERE deptno = :dept’

|| ’ AND sal >= :sal’ USING p_deptno, p_sal;
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH emp_refcur INTO v_empno, v_ename;
EXIT WHEN emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || v_ename);

END LOOP;
CLOSE emp_refcur;

END;

The following CALL statement generates the same output that was generated in
the previous example:
CALL dept_query(30, 1500);

A string variable to pass the SELECT statement provides the most flexibility:
CREATE OR REPLACE PROCEDURE dept_query (

p_deptno emp.deptno%TYPE,
p_sal emp.sal%TYPE

)
IS

emp_refcur SYS_REFCURSOR;
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
p_query_string VARCHAR2(100);

BEGIN
p_query_string := ’SELECT empno, ename FROM emp WHERE ’ ||

’deptno = :dept AND sal >= :sal’;
OPEN emp_refcur FOR p_query_string USING p_deptno, p_sal;
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH emp_refcur INTO v_empno, v_ename;
EXIT WHEN emp_refcur%NOTFOUND;

PL/SQL support 85

DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || v_ename);
END LOOP;
CLOSE emp_refcur;

END;

This version of the DEPT_QUERY procedure generates the following example
output:
CALL dept_query(20, 1500);

EMPNO ENAME
----- -------
7566 JONES
7788 SCOTT
7902 FORD

Example: Returning a REF CURSOR from a procedure (PL/SQL)
This example demonstrates how to define and open a REF CURSOR variable, and
then pass it as a procedure parameter.

The cursor variable is specified as an IN OUT parameter so that the result set is
made available to the caller of the procedure:
CREATE OR REPLACE PROCEDURE emp_by_job (

p_job VARCHAR2,
p_emp_refcur IN OUT SYS_REFCURSOR

)
IS
BEGIN

OPEN p_emp_refcur FOR SELECT empno, ename FROM emp WHERE job = p_job;
END;

The EMP_BY_JOB procedure is invoked in the following anonymous block by
assigning the procedure's IN OUT parameter to a cursor variable that was declared
in the anonymous block's declaration section. The result set is fetched using this
cursor variable.
DECLARE

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_job emp.job%TYPE := ’SALESMAN’;
v_emp_refcur SYS_REFCURSOR;

BEGIN
DBMS_OUTPUT.PUT_LINE(’EMPLOYEES WITH JOB ’ || v_job);
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
emp_by_job(v_job, v_emp_refcur);
LOOP

FETCH v_emp_refcur INTO v_empno, v_ename;
EXIT WHEN v_emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || v_ename);

END LOOP;
CLOSE v_emp_refcur;

END;

The following example output is generated when the anonymous block executes:
EMPLOYEES WITH JOB SALESMAN
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER

86 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Example: Modularizing cursor operations (PL/SQL)
This example demonstrates how various operations on cursor variables can be
modularized into separate programs or PL/SQL components.

The following example shows a procedure that opens a cursor variable whose
query retrieves all rows in the EMP table:
CREATE OR REPLACE PROCEDURE open_all_emp (

p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN

OPEN p_emp_refcur FOR SELECT empno, ename FROM emp;
END;

In the next example, a procedure opens a cursor variable whose query retrieves all
rows for a given department:
CREATE OR REPLACE PROCEDURE open_emp_by_dept (

p_emp_refcur IN OUT SYS_REFCURSOR,
p_deptno emp.deptno%TYPE

)
IS
BEGIN

OPEN p_emp_refcur FOR SELECT empno, ename FROM emp
WHERE deptno = p_deptno;

END;

The following example shows a procedure that opens a cursor variable whose
query retrieves all rows in the DEPT table:
CREATE OR REPLACE PROCEDURE open_dept (

p_dept_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN

OPEN p_dept_refcur FOR SELECT deptno, dname FROM dept;
END;

In the next example, a procedure fetches and displays a cursor variable result set
consisting of employee number and name:
CREATE OR REPLACE PROCEDURE fetch_emp (

p_emp_refcur IN OUT SYS_REFCURSOR
)
IS

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

BEGIN
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH p_emp_refcur INTO v_empno, v_ename;
EXIT WHEN p_emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ’ ’ || v_ename);

END LOOP;
END;

The following example shows a procedure that fetches and displays a cursor
variable result set consisting of department number and name:
CREATE OR REPLACE PROCEDURE fetch_dept (

p_dept_refcur IN SYS_REFCURSOR
)
IS

v_deptno dept.deptno%TYPE;

PL/SQL support 87

v_dname dept.dname%TYPE;
BEGIN

DBMS_OUTPUT.PUT_LINE(’DEPT DNAME’);
DBMS_OUTPUT.PUT_LINE(’---- ---------’);
LOOP

FETCH p_dept_refcur INTO v_deptno, v_dname;
EXIT WHEN p_dept_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_deptno || ’ ’ || v_dname);

END LOOP;
END;

The following example shows a procedure that closes a cursor variable:
CREATE OR REPLACE PROCEDURE close_refcur (

p_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN

CLOSE p_refcur;
END;

The following example shows an anonymous block that executes these procedures:
DECLARE

gen_refcur SYS_REFCURSOR;
BEGIN

DBMS_OUTPUT.PUT_LINE(’ALL EMPLOYEES’);
open_all_emp(gen_refcur);
fetch_emp(gen_refcur);
DBMS_OUTPUT.PUT_LINE(’****************’);

DBMS_OUTPUT.PUT_LINE(’EMPLOYEES IN DEPT #10’);
open_emp_by_dept(gen_refcur, 10);
fetch_emp(gen_refcur);
DBMS_OUTPUT.PUT_LINE(’****************’);

DBMS_OUTPUT.PUT_LINE(’DEPARTMENTS’);
open_dept(gen_refcur);
fetch_dept(gen_refcur);
DBMS_OUTPUT.PUT_LINE(’*****************’);

close_refcur(gen_refcur);
END;

The following example output is generated when the anonymous block executes:
ALL EMPLOYEES
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EMPLOYEES IN DEPT #10
EMPNO ENAME
----- -------
7782 CLARK

88 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

7839 KING
7934 MILLER

DEPARTMENTS
DEPT DNAME
---- ---------
10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS

Triggers (PL/SQL)
A PL/SQL trigger is a named database object that encapsulates and defines a set of
actions that are to be performed in response to an insert, update, or delete
operation against a table. Triggers are created using the PL/SQL CREATE
TRIGGER statement.

Types of triggers (PL/SQL)
The Db2 data server supports row-level and statement-level triggers within a
PL/SQL context.

A row-level trigger fires once for each row that is affected by a triggering event. For
example, if deletion is defined as a triggering event for a particular table, and a
single DELETE statement deletes five rows from that table, the trigger fires five
times, once for each row.

A statement-level trigger fires only once for each statement. Using the previous
example, if deletion is defined as a triggering event for a particular table, and a
single DELETE statement deletes five rows from that table, the trigger fires once.
Statement-level trigger granularity cannot be specified for BEFORE triggers or
INSTEAD OF triggers.

The trigger code block is executed either before or after each row is affected by the
triggering statement, except for INSTEAD OF triggers which execute the trigger
code block instead of affecting each row based on the activating statement.

Trigger variables (PL/SQL)
NEW and OLD are special variables that you can use with PL/SQL triggers
without explicitly defining them.
v NEW is a pseudo-record name that refers to the new table row for insert and

update operations in row-level triggers. Its usage is :NEW.column, where column
is the name of a column in the table on which the trigger is defined.
– When used in a before row-level trigger, the initial content of :NEW.column is

the column value in the new row that is to be inserted or in the row that is to
replace the old row.

– When used in an after row-level trigger, the new column value has already
been stored in the table.

– When a trigger is activated by a DELETE operation, the :NEW.column used in
that trigger is null.

In the trigger code block, :NEW.column can be used like any other variable. If a
value is assigned to :NEW.column in the code block of a before row-level trigger,
the assigned value is used in the inserted or updated row.

PL/SQL support 89

v OLD is a pseudo-record name that refers to the old table row for update and
delete operations in row-level triggers. Its usage is :OLD.column, where column is
the name of a column in the table on which the trigger is defined.
– When used in a before row-level trigger, the initial content of :OLD.column is the

column value in the row that is to be deleted or in the old row that is to be
replaced by the new row.

– When used in an after row-level trigger, the old column value is no longer
stored in the table.

– When a trigger is activated by an INSERT operation, the :OLD.column used in
that trigger is null.

In the trigger code block, :OLD.column can be used like any other variable. If a
value is assigned to :OLD.column in the code block of a before row-level trigger,
the assigned value has no affect on the action of the trigger.

Trigger event predicates (PL/SQL)
The trigger event predicates, UPDATING, DELETING, and INSERTING can only
be used in a trigger to identify the event that activated the trigger.

►► DELETING
INSERTING
UPDATING

►◄

DELETING
True if the trigger was activated by a delete operation. False otherwise.

INSERTING
True if the trigger was activated by an insert operation. False otherwise.

UPDATING
True if the trigger was activated by an update operation. False otherwise.

These predicates can be specified as a single search condition, or as a boolean
factor within a complex search condition in a WHEN clause or PL/SQL statement.

Transactions and exceptions (PL/SQL)
A trigger is always executed as part of the same transaction within which the
triggering statement is executing.

If no exceptions occur within the trigger code block, the effects of data
manipulation language (DML) within the trigger are committed only if the
transaction that contains the triggering statement commits. If the transaction is
rolled back, the effects of DML within the trigger are also rolled back.

A Db2 rollback can only occur within an atomic block or by using an UNDO
handler. The triggering statement itself is not rolled back unless the application
forces a rollback of the encapsulating transaction.

If an unhandled exception occurs within the trigger code block, the calling
statement is rolled back.

CREATE TRIGGER statement (PL/SQL)
The CREATE TRIGGER statement defines a PL/SQL trigger in the database.

90 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Syntax

►► CREATE TRIGGER trigger-name
OR REPLACE

BEFORE
AFTER
INSTEAD OF

►

► trigger-event ON table-name ►

►

▼
(1) AS

REFERENCING OLD correlation-name
AS

NEW correlation-name

►

► FOR EACH ROW
FOR EACH STATEMENT WHEN (search-condition)

►

►

▼DECLARE declaration

▼BEGIN statement ►

► ▼

▼ ▼EXCEPTION WHEN condition THEN handler-statement
OR

END ►◄

trigger-event:

▼

▼

OR
(2)

INSERT
DELETE
UPDATE

,

OF column-name

Notes:

1 OLD and NEW can only be specified once each.

2 A trigger event must not be specified more than once for the same operation.
For example, INSERT OR DELETE is allowed, but INSERT OR INSERT is not
allowed.

Description

OR REPLACE
Specifies to replace the definition for the trigger if one exists at the current

PL/SQL support 91

server. The existing definition is effectively dropped before the new definition
is replaced in the catalog. This option is ignored if a definition for the trigger
does not exist at the current server.

trigger-name
Names the trigger. The name, including the implicit or explicit schema name,
must not identify a trigger already described in the catalog (SQLSTATE 42710).
If a two-part name is specified, the schema name cannot begin with 'SYS'
(SQLSTATE 42939).

BEFORE
Specifies that the associated triggered action is to be applied before any
changes caused by the actual update of the subject table are applied to the
database.

AFTER
Specifies that the associated triggered action is to be applied after the changes
caused by the actual update of the subject table are applied to the database.

INSTEAD OF
Specifies that the associated triggered action replaces the action against the
subject view.

trigger-event
Specifies that the triggered action associated with the trigger is to be executed
whenever one of the events is applied to the subject table. Any combination of
the events can be specified, but each event (INSERT, DELETE, and UPDATE)
can only be specified once (SQLSTATE 42613).

INSERT
Specifies that the triggered action associated with the trigger is to be
executed whenever an INSERT operation is applied to the subject table.

DELETE
Specifies that the triggered action associated with the trigger is to be
executed whenever a DELETE operation is applied to the subject table.

UPDATE
Specifies that the triggered action associated with the trigger is to be
executed whenever an UPDATE operation is applied to the subject table,
subject to the columns specified or implied.

If the optional column-name list is not specified, every column of the table
is implied. Therefore, omission of the column-name list implies that the
trigger will be activated by the update of any column of the table.

OF column-name,...
Each column-name specified must be a column of the base table
(SQLSTATE 42703). If the trigger is a BEFORE trigger, the column-name
specified cannot be a generated column other than the identity column
(SQLSTATE 42989). No column-name can appear more than once in the
column-name list (SQLSTATE 42711). The trigger will only be activated
by the update of a column that is identified in the column-name list.
This clause cannot be specified for an INSTEAD OF trigger (SQLSTATE
42613).

ON table-name
Designates the subject table of the BEFORE trigger or AFTER trigger definition.
The name must specify a base table or an alias that resolves to a base table
(SQLSTATE 42704 or 42809). The name must not specify a catalog table

92 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

(SQLSTATE 42832), a materialized query table (SQLSTATE 42997), a created
temporary table, a declared temporary table (SQLSTATE 42995), or a nickname
(SQLSTATE 42809).

REFERENCING
Specifies the correlation names for the transition variables. Correlation names
identify a specific row in the set of rows affected by the triggering SQL
operation. Each row affected by the triggering SQL operation is available to the
triggered action by qualifying columns with correlation-names specified as
follows.

OLD AS correlation-name
Specifies a correlation name that identifies the row state prior to the
triggering SQL operation. If the trigger event is INSERT, the values in the
row are null values.

NEW AS correlation-name
Specifies a correlation name that identifies the row state as modified by the
triggering SQL operation and by any SET statement in a BEFORE trigger
that has already executed. If the trigger event is DELETE, the values in the
row are null values.

If the REFERENCING clause is not invoked, then trigger variables NEW and
OLD can optionally be used without explicitly defining them.

FOR EACH ROW
Specifies that the triggered action is to be applied once for each row of the
subject table that is affected by the triggering SQL operation.

FOR EACH STATEMENT
Specifies that the triggered action is to be applied only once for the whole
statement.

WHEN

(search-condition)
Specifies a condition that is true, false, or unknown. The search-condition
provides a capability to determine whether or not a certain triggered action
should be executed. The associated action is performed only if the
specified search condition evaluates as true.

declaration
Specifies a variable declaration.

statement or handler-statement
Specifies a PL/SQL program statement. The trigger body can contain nested
blocks.

condition
Specifies an exception condition name, such as NO_DATA_FOUND.

Example

The following example shows a before row-level trigger that calculates the
commission of every new employee belonging to department 30 before a record for
that employee is inserted into the EMP table. It also records any salary increases
that exceed 50% in an exception table:
CREATE TABLE emp (

name VARCHAR2(10),
deptno NUMBER,
sal NUMBER,

PL/SQL support 93

comm NUMBER
)
/

CREATE TABLE exception (
name VARCHAR2(10),
old_sal NUMBER,
new_sal NUMBER

)
/

CREATE OR REPLACE TRIGGER emp_comm_trig
BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW

BEGIN
IF (:NEW.deptno = 30 and INSERTING) THEN

:NEW.comm := :NEW.sal * .4;
END IF;

IF (UPDATING and (:NEW.sal - :OLD.sal) > :OLD.sal * .5) THEN
INSERT INTO exception VALUES (:NEW.name, :OLD.sal, :NEW.sal);

END IF;
END
/

Dropping triggers (PL/SQL)
You can remove a trigger from the database by using the DROP TRIGGER
statement.

Syntax

►► DROP TRIGGER trigger-name ►◄

Description

trigger-name
Specifies the name of the trigger that is to be dropped.

Examples: Triggers (PL/SQL)
PL/SQL trigger definitions can be compiled by the Db2 data server. These
examples will help you to create valid triggers and to troubleshoot PL/SQL trigger
compilation errors.

Before row-level triggers

The following example shows a before row-level trigger that calculates the
commission of every new employee belonging to department 30 before a record for
that employee is inserted into the EMP table:
CREATE OR REPLACE TRIGGER emp_comm_trig

BEFORE INSERT ON emp
FOR EACH ROW

BEGIN
IF :NEW.deptno = 30 THEN

:NEW.comm := :NEW.sal * .4;
END IF;

END;

The trigger computes the commissions for two new employees and inserts those
values as part of the new employee rows:

94 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

INSERT INTO emp VALUES (9005,’ROBERS’,’SALESMAN’,7782,SYSDATE,3000.00,NULL,30);

INSERT INTO emp VALUES (9006,’ALLEN’,’SALESMAN’,7782,SYSDATE,4500.00,NULL,30);

SELECT * FROM emp WHERE empno IN (9005, 9006);

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------

9005 ROBERS SALESMAN 7782 01-APR-05 3000 1200 30
9006 ALLEN SALESMAN 7782 01-APR-05 4500 1800 30

After row-level triggers

The following example shows three after row-level triggers.
v When a new employee row is inserted into the EMP table, one trigger

(EMP_INS_TRIG) adds a new row to the JOBHIST table for that employee and
adds a row to the EMPCHGLOG table with a description of the action.

v When an existing employee row is updated, the second trigger
(EMP_CHG_TRIG) sets the ENDDATE column of the latest JOBHIST row
(assumed to be the one with a null ENDDATE) to the current date and inserts a
new JOBHIST row with the employee's new information. This trigger also adds
a row to the EMPCHGLOG table with a description of the action

v When an employee row is deleted from the EMP table, the third trigger
(EMP_DEL_TRIG) adds a row to the EMPCHGLOG table with a description of
the action.

CREATE TABLE empchglog (
chg_date DATE,
chg_desc VARCHAR2(30)

);
CREATE OR REPLACE TRIGGER emp_ins_trig

AFTER INSERT ON emp
FOR EACH ROW

DECLARE
v_empno emp.empno%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_action VARCHAR2(7);
v_chgdesc jobhist.chgdesc%TYPE;

BEGIN
v_action := ’Added’;
v_empno := :NEW.empno;
v_deptno := :NEW.deptno;
INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,

:NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, ’New Hire’);

INSERT INTO empchglog VALUES (SYSDATE,
v_action || ’ employee # ’ || v_empno);

END;

CREATE OR REPLACE TRIGGER emp_chg_trig
AFTER UPDATE ON emp
FOR EACH ROW

DECLARE
v_empno emp.empno%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_action VARCHAR2(7);
v_chgdesc jobhist.chgdesc%TYPE;

BEGIN
v_action := ’Updated’;
v_empno := :NEW.empno;
v_deptno := :NEW.deptno;
v_chgdesc := ’’;
IF NVL(:OLD.ename, ’-null-’) != NVL(:NEW.ename, ’-null-’) THEN

PL/SQL support 95

v_chgdesc := v_chgdesc || ’name, ’;
END IF;
IF NVL(:OLD.job, ’-null-’) != NVL(:NEW.job, ’-null-’) THEN

v_chgdesc := v_chgdesc || ’job, ’;
END IF;
IF NVL(:OLD.sal, -1) != NVL(:NEW.sal, -1) THEN

v_chgdesc := v_chgdesc || ’salary, ’;
END IF;
IF NVL(:OLD.comm, -1) != NVL(:NEW.comm, -1) THEN

v_chgdesc := v_chgdesc || ’commission, ’;
END IF;
IF NVL(:OLD.deptno, -1) != NVL(:NEW.deptno, -1) THEN

v_chgdesc := v_chgdesc || ’department, ’;
END IF;
v_chgdesc := ’Changed ’ || RTRIM(v_chgdesc, ’, ’);
UPDATE jobhist SET enddate = SYSDATE WHERE empno = :OLD.empno

AND enddate IS NULL;
INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,

:NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, v_chgdesc);

INSERT INTO empchglog VALUES (SYSDATE,
v_action || ’ employee # ’ || v_empno);

END;

CREATE OR REPLACE TRIGGER emp_del_trig
AFTER DELETE ON emp
FOR EACH ROW

DECLARE
v_empno emp.empno%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_action VARCHAR2(7);
v_chgdesc jobhist.chgdesc%TYPE;

BEGIN
v_action := ’Deleted’;
v_empno := :OLD.empno;
v_deptno := :OLD.deptno;

INSERT INTO empchglog VALUES (SYSDATE,
v_action || ’ employee # ’ || v_empno);

END;

In the following example, two employee rows are added using two separate
INSERT statements, and then both rows are updated using a single UPDATE
statement. The JOBHIST table shows the action of the trigger for each affected row:
two new hire entries for the two new employees and two changed commission
records. The EMPCHGLOG table also shows that the trigger was fired a total of
four times, once for each action against the two rows.
INSERT INTO emp VALUES (9003,’PETERS’,’ANALYST’,7782,SYSDATE,5000.00,NULL,40);

INSERT INTO emp VALUES (9004,’AIKENS’,’ANALYST’,7782,SYSDATE,4500.00,NULL,40);

UPDATE emp SET comm = sal * 1.1 WHERE empno IN (9003, 9004);

SELECT * FROM jobhist WHERE empno IN (9003, 9004);

EMPNO STARTDATE ENDDATE JOB SAL COMM DEPTNO CHGDESC
---------- --------- --------- --------- ---------- ---------- ---------- ------------------

9003 31-MAR-05 31-MAR-05 ANALYST 5000 40 New Hire
9004 31-MAR-05 31-MAR-05 ANALYST 4500 40 New Hire
9003 31-MAR-05 ANALYST 5000 5500 40 Changed commission
9004 31-MAR-05 ANALYST 4500 4950 40 Changed commission

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004

96 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

After both employees are deleted with a single DELETE statement, the
EMPCHGLOG table shows that the trigger was fired twice, once for each deleted
employee:
DELETE FROM emp WHERE empno IN (9003, 9004);

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004
31-MAR-05 Deleted employee # 9003
31-MAR-05 Deleted employee # 9004

Packages (PL/SQL)
PL/SQL package definitions are supported by the Db2 data server. A PL/SQL
package is a named collection of functions, procedures, variables, cursors,
user-defined types, and records that are referenced using a common qualifier, the
package name.

Packages have the following characteristics:
v Packages provide a convenient way of organizing the functions and procedures

that have a related purpose. Permission to use the package functions and
procedures is dependent upon one privilege that is granted to the entire
package.

v Certain items in a package can be declared public. Public entities are visible and
can be referenced by other programs that hold the EXECUTE privilege on the
package. In the case of public functions and procedures, only their signatures are
visible. The PL/SQL code for these function and procedures is not accessible to
others; therefore, applications that utilize such a package are dependent upon
only the information that is available in the signatures.

v Other items in a package can be declared private. Private entities can be
referenced and used by functions and procedures within the package, but not by
external applications.

Package components (PL/SQL)
Packages consist of two main components: the package specification and the
package body.
v The package specification is the public interface, comprising the elements that can

be referenced outside of the package. A package specification is created by
executing the CREATE PACKAGE statement.

v The package body contains the actual implementation of all of the procedures and
functions that are declared within the package specification, as well as any
declaration of private types, variables, and cursors. A package body is created by
executing the CREATE PACKAGE BODY statement.

Creating packages (PL/SQL)
Creating a package specification enables you to encapsulate related data type,
procedure, and function definitions within a single context in the database.

Packages are extensions of schemas that provide namespace support for the objects
that they reference. They are repositories in which executable code can be defined.

PL/SQL support 97

Using a package involves referencing or executing objects that are defined in the
package specification and implemented within the package.

Creating package specifications (PL/SQL)
A package specification establishes which package objects can be referenced from
outside of the package. Objects that can be referenced from outside of a package
are called the public elements of that package.

The following example shows how to create a package specification named
EMP_ADMIN, consisting of two functions and two stored procedures.
CREATE OR REPLACE PACKAGE emp_admin
IS

FUNCTION get_dept_name (
p_deptno NUMBER DEFAULT 10

)
RETURN VARCHAR2;
FUNCTION update_emp_sal (

p_empno NUMBER,
p_raise NUMBER

)
RETURN NUMBER;
PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE DEFAULT sysdate,
p_comm NUMBER DEFAULT 0,
p_mgr NUMBER,
p_deptno NUMBER DEFAULT 10

);
PROCEDURE fire_emp (

p_empno NUMBER
);

END emp_admin;

Attention:

When you use CREATE or REPLACE syntax for package specification of package
whose body was created by a CREATE PACKAGE BODY statement, the existing package
body is dropped and needs to be re-created before any of package objects are
invoked.

CREATE PACKAGE statement (PL/SQL)
The CREATE PACKAGE statement creates a package specification, which defines
the interface to a package.

Syntax

►► CREATE PACKAGE package-name
OR REPLACE

IS
AS

▼

,

declaration
►

98 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

►

▼

▼

▼

▼

PROCEDURE procedure-name
,

()
procedure-parameter

FUNCTION function-name RETURN return-type
,

()
function-parameter

►

► END package-name ►◄

Description

package-name
Specifies an identifier for the package.

declaration
Specifies an identifier for a public item. The public item can be accessed from
outside of the package using the syntax package-name.item-name. There can be
zero or more public items. Public item declarations must come before
procedure or function declarations. The declaration can be any of the following:
v Collection declaration
v EXCEPTION declaration
v Record declaration
v REF CURSOR and cursor variable declaration
v TYPE definition for a collection, record, or REF CURSOR type variable
v SUBTYPE definition
v Variable declaration

procedure-name
Specifies an identifier for a public procedure. The public procedure can be
invoked from outside of the package using the syntax package-
name.procedure-name().

procedure-parameter
Specifies an identifier for a formal parameter of the procedure.

function-name
Specifies an identifier for a public function. The public function can be invoked
from outside of the package using the syntax package-name.function-name().

function-parameter
Specifies an identifier for a formal parameter of the function. Input (IN mode)
parameters can be initialized with a default value.

return-type
Specifies a data type for the value that is returned by the function.

PL/SQL support 99

Notes

The CREATE PACKAGE statement can be submitted in obfuscated form. In an
obfuscated statement, only the package name is readable. The rest of the statement
is encoded in such a way that it is not readable, but can be decoded by the
database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Creating the package body (PL/SQL)
A package body contains the implementation of all of the procedures and functions
that are declared within the package specification.

The following example shows how to create a package body for the EMP_ADMIN
package specification.
--
-- Package body for the ’emp_admin’ package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS

--
-- Function that queries the ’dept’ table based on the department
-- number and returns the corresponding department name.
--
FUNCTION get_dept_name (

p_deptno IN NUMBER DEFAULT 10
)
RETURN VARCHAR2
IS

v_dname VARCHAR2(14);
BEGIN

SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
RETURN v_dname;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(’Invalid department number ’ || p_deptno);
RETURN ’’;

END;
--
-- Function that updates an employee’s salary based on the
-- employee number and salary increment/decrement passed
-- as IN parameters. Upon successful completion the function
-- returns the new updated salary.
--
FUNCTION update_emp_sal (

p_empno IN NUMBER,
p_raise IN NUMBER

)
RETURN NUMBER
IS

v_sal NUMBER := 0;
BEGIN

SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
v_sal := v_sal + p_raise;
UPDATE emp SET sal = v_sal WHERE empno = p_empno;
RETURN v_sal;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(’Employee ’ || p_empno || ’ not found’);
RETURN -1;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(’The following is SQLERRM:’);
DBMS_OUTPUT.PUT_LINE(SQLERRM);
DBMS_OUTPUT.PUT_LINE(’The following is SQLCODE:’);
DBMS_OUTPUT.PUT_LINE(SQLCODE);

100 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

RETURN -1;
END;
--
-- Procedure that inserts a new employee record into the ’emp’ table.
--
PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE DEFAULT sysdate,
p_comm NUMBER DEFAULT 0,
p_mgr NUMBER,
p_deptno NUMBER DEFAULT 10

)
AS
BEGIN

INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
VALUES(p_empno, p_ename, p_job, p_sal,

p_hiredate, p_comm, p_mgr, p_deptno);
END;
--
-- Procedure that deletes an employee record from the ’emp’ table based
-- on the employee number.
--
PROCEDURE fire_emp (

p_empno NUMBER
)
AS
BEGIN

DELETE FROM emp WHERE empno = p_empno;
END;

END;

CREATE PACKAGE BODY statement (PL/SQL)
The CREATE PACKAGE BODY statement creates a package body, which contains
the implementation of all of the procedures and functions that are declared within
the package specification, as well as any declaration of private types, variables, and
cursors.

Syntax

►► CREATE PACKAGE BODY package-name
OR REPLACE

IS
AS

►

► ▼

private-declaration

▼

procedure-specification
►

► ▼

function-specification

▼BEGIN initialization-statement

►

PL/SQL support 101

► END ►◄

procedure-specification:

PROCEDURE procedure-name

▼

,

(parameter)

IS
AS

►

►
procedure-declaration

BEGIN statement ►

►

▼ ▼EXCEPTION WHEN condition THEN handler-statement
OR

END

function-specification:

FUNCTION function-name

▼

,

(parameter)

RETURN return-type ►

► IS
AS function-declaration

BEGIN statement ►

►

▼ ▼EXCEPTION WHEN condition THEN handler-statement
OR

END

Description

package-name
Specifies the name of the package whose body is to be created. A package
specification with the same name must exist.

private-declaration
Specifies the name of a private object that can be accessed by any procedure or
function within the package. There can be zero or more private variables. The
private-declaration can be any of the following:
v Variable declaration
v Record declaration
v Collection declaration
v REF CURSOR and cursor variable declaration
v TYPE definitions for records, collections, or variables of the REF CURSOR

type
v SUBTYPE definition over a base type

procedure-name
Specifies the name of a public procedure that is declared in the package
specification and its signature. The signature can specify any one of the
following: the formal parameter names, data types, parameter modes, the order

102 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

of the formal parameters, or the number of formal parameters. When the
procedure name and package specification exactly match the signature of the
public procedure's declaration, procedure-name defines the body of this public
procedure.

If none of these conditions is true, procedure-name defines a new private
procedure.

parameter
Specifies a formal parameter of the procedure.

procedure-declaration
Specifies a declaration that can be accessed only from within procedure
procedure-name. This is a PL/SQL statement.

statement
Specifies a PL/SQL program statement.

function-name
Specifies the name of a public function that is declared in the package
specification and its signature. The signature can specify any one of the
following: the formal parameter names, data types, parameter modes, the order
of the formal parameters, or the number of formal parameters. When the
function name and package specification exactly match the signature of the
public function's declaration, function-name defines the body of this public
function.

If none of these conditions is true, function-name defines a new private
function.

parameter
Specifies a formal parameter of the function.

return-type
Specifies the data type of the value that is returned by the function.

function-declaration
Specifies a declaration that can be accessed only from within function
function-name. This is a PL/SQL statement.

statement
Specifies a PL/SQL program statement.

initialization-statement
Specifies a statement in the initialization section of the package body. The
initialization section, if specified, must contain at least one statement. The
statements in the initialization section are executed once per user session when
the package is first referenced.

Notes

The CREATE PACKAGE BODY statement can be submitted in obfuscated form. In
an obfuscated statement, only the package name is readable. The rest of the
statement is encoded in such a way that it is not readable, but can be decoded by
the database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Referencing package objects (PL/SQL)
References to objects that are defined within a package must sometimes be
qualified with the package name.

PL/SQL support 103

To reference the objects that are declared in a package specification, specify the
package name, a period character, and then the name of the object. If the package
is not defined in the current schema, specify the schema name as well. For
example:
package_name.type_name
package_name.item_name
package_name.subprogram_name
schema.package_name.subprogram_name

Example

The following example contains a reference to a function named
GET_DEPT_NAME that is defined in a package named EMP_ADMIN:

select emp_admin.get_dept_name(10) from dept

Packages with user-defined types (PL/SQL)
User-defined types can be declared and referenced in packages.

The following example shows a package specification for the EMP_RPT package.
This definition includes the following declarations:
v A publicly accessible record type, EMPREC_TYP
v A publicly accessible weakly-typed REF CURSOR type, EMP_REFCUR
v A publicly accessible subtype, DEPT_NUM, restricted to the range of values

from 1 to 99
v Two functions, GET_DEPT_NAME and OPEN_EMP_BY_DEPT; both functions

have an input parameter of the subtype DEPT_NUM; the latter function returns
the REF CURSOR type EMP_REFCUR

v Two procedures, FETCH_EMP and CLOSE_REFCUR; both declare a
weakly-typed REF CURSOR type as a formal parameter

CREATE OR REPLACE PACKAGE emp_rpt
IS

TYPE emprec_typ IS RECORD (
empno NUMBER(4),
ename VARCHAR(10)

);
TYPE emp_refcur IS REF CURSOR;
SUBTYPE dept_num IS dept.deptno%TYPE RANGE 1..99;

FUNCTION get_dept_name (
p_deptno IN dept_num

) RETURN VARCHAR2;
FUNCTION open_emp_by_dept (

p_deptno IN dept_num
) RETURN EMP_REFCUR;
PROCEDURE fetch_emp (

p_refcur IN OUT SYS_REFCURSOR
);
PROCEDURE close_refcur (

p_refcur IN OUT SYS_REFCURSOR
);

END emp_rpt;

The definition of the associated package body includes the following private
variable declarations:
v A static cursor, DEPT_CUR
v An associative array type, DEPTTAB_TYP
v An associative array variable, T_DEPT

104 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

v An integer variable, T_DEPT_MAX
v A record variable, R_EMP
CREATE OR REPLACE PACKAGE BODY emp_rpt
IS

CURSOR dept_cur IS SELECT * FROM dept;
TYPE depttab_typ IS TABLE of dept%ROWTYPE

INDEX BY BINARY_INTEGER;
t_dept DEPTTAB_TYP;
t_dept_max INTEGER := 1;
r_emp EMPREC_TYP;

FUNCTION get_dept_name (
p_deptno IN dept_num

) RETURN VARCHAR2
IS
BEGIN

FOR i IN 1..t_dept_max LOOP
IF p_deptno = t_dept(i).deptno THEN

RETURN t_dept(i).dname;
END IF;

END LOOP;
RETURN ’Unknown’;

END;

FUNCTION open_emp_by_dept(
p_deptno IN dept_num

) RETURN EMP_REFCUR
IS

emp_by_dept EMP_REFCUR;
BEGIN

OPEN emp_by_dept FOR SELECT empno, ename FROM emp
WHERE deptno = p_deptno;

RETURN emp_by_dept;
END;

PROCEDURE fetch_emp (
p_refcur IN OUT SYS_REFCURSOR

)
IS
BEGIN

DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH p_refcur INTO r_emp;
EXIT WHEN p_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(r_emp.empno || ’ ’ || r_emp.ename);

END LOOP;
END;

PROCEDURE close_refcur (
p_refcur IN OUT SYS_REFCURSOR

)
IS
BEGIN

CLOSE p_refcur;
END;

BEGIN
OPEN dept_cur;
LOOP

FETCH dept_cur INTO t_dept(t_dept_max);
EXIT WHEN dept_cur%NOTFOUND;
t_dept_max := t_dept_max + 1;

END LOOP;
CLOSE dept_cur;
t_dept_max := t_dept_max - 1;

END emp_rpt;

PL/SQL support 105

This package contains an initialization section that loads the private associative
array variable T_DEPT, using the private static cursor DEPT_CUR. T_DEPT serves
as a department name lookup table in function GET_DEPT_NAME. The function
OPEN_EMP_BY_DEPT returns a REF CURSOR variable for the result set of
employee numbers and names for a given department. This REF CURSOR variable
can then be passed to procedure FETCH_EMP to retrieve and list the individual
rows of the result set. Finally, procedure CLOSE_REFCUR can be used to close the
REF CURSOR variable that is associated with this result set.

The following anonymous block runs the package functions and procedures. The
declaration section includes the declaration of a scalar variable V_DEPTNO, using
the public SUBTYPE DEPT_NUM and a cursor variable V_EMP_CUR, using the
public REF CURSOR type, EMP_REFCUR. V_EMP_CUR contains a pointer to the
result set that is passed between the package function and procedures.
DECLARE

v_deptno emp_rpt.DEPT DEFAULT 30;
v_emp_cur emp_rpt.EMP_REFCUR;

BEGIN
v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
DBMS_OUTPUT.PUT_LINE(’EMPLOYEES IN DEPT #’ || v_deptno ||

’: ’ || emp_rpt.get_dept_name(v_deptno));
emp_rpt.fetch_emp(v_emp_cur);
DBMS_OUTPUT.PUT_LINE(’**********************’);
DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ’ rows were retrieved’);
emp_rpt.close_refcur(v_emp_cur);

END;

This anonymous block produces the following sample output:
EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

The following anonymous block shows another way of achieving the same result.
Instead of using the package procedures FETCH_EMP and CLOSE_REFCUR, the
logic is coded directly into the anonymous block. Note the declaration of record
variable R_EMP, using the public record type EMPREC_TYP.
DECLARE

v_deptno emp_rpt.DEPT DEFAULT 30;
v_emp_cur emp_rpt.EMP_REFCUR;
r_emp emp_rpt.EMPREC_TYP;

BEGIN
v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
DBMS_OUTPUT.PUT_LINE(’EMPLOYEES IN DEPT #’ || v_deptno ||

’: ’ || emp_rpt.get_dept_name(v_deptno));
DBMS_OUTPUT.PUT_LINE(’EMPNO ENAME’);
DBMS_OUTPUT.PUT_LINE(’----- -------’);
LOOP

FETCH v_emp_cur INTO r_emp;
EXIT WHEN v_emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(r_emp.empno || ’ ’ ||

r_emp.ename);
END LOOP;

106 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

DBMS_OUTPUT.PUT_LINE(’**********************’);
DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ’ rows were retrieved’);
CLOSE v_emp_cur;

END;

This anonymous block produces the following sample output:
EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

Dropping packages (PL/SQL)
You can drop a package if it is no longer needed. Alternatively, if you want to
reuse the package, you have the option to drop only the package body.

Syntax

►► DROP PACKAGE package-name
BODY

►◄

Description

BODY
Specifies that only the package body is to be dropped. If this keyword is
omitted, both the package specification and the package body are dropped.

package-name
Specifies the name of a package.

Examples

The following example shows how to drop only the body of a package named
EMP_ADMIN:
DROP PACKAGE BODY emp_admin

The following example shows how to drop both the specification and the body of
the package:
DROP PACKAGE emp_admin

PL/SQL support 107

108 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

Index

A
anonymous block statement

PL/SQL 12
anonymous blocks 12
arrays

associative 28
assignment statement

PL/SQL 47
associative arrays

overview 28
attributes

cursor 82
PL/SQL

%ROWTYPE 45
%TYPE 42

statement
PL/SQL 55

B
blocks

PL/SQL 12
BULK COLLECT INTO clause 51

C
CASE statement

PL/SQL 60
searched 62
simple 60

CLOSE statement
closing cursors 80

collections
associative arrays 28
methods 31
overview 22
VARRAY type 23

CONTINUE statement 69
control statements

PL/SQL
CONTINUE 69
EXIT 67
list 55
LOOP 68

CREATE FUNCTION statement
PL/SQL 19

CREATE PACKAGE BODY
statement 101

CREATE PACKAGE statement 98
CREATE PROCEDURE statement

PL/SQL 15
CREATE TRIGGER statement 91
CREATE TYPE (Nested table) statement

PL/SQL 25
CREATE TYPE (Object) statement

PL/SQL 27
CREATE TYPE (VARRAY) statement

PL/SQL 24
cursor variables

details 83

cursor variables (continued)
example 87
opening 84
ROWTYPE attribute 81
SYS_REFCURSOR 83

cursors
parameterized 77
PL/SQL

attributes 82
closing 80
declaring 76
details 76
fetching rows 78
opening 78
processing result sets 63

D
data types

PL/SQL 26, 39, 44
REF CURSOR 83

E
errors

Db2-dashDB mapping 74
Db2-Oracle mapping 74
mapping 74
PL/SQL applications 72

examples
PL/SQL schema 4
PL/SQL triggers 94

exceptions
PL/SQL

handling 70
transactions 90

EXECUTE IMMEDIATE statement
PL/SQL 48

EXIT statement 67

F
FETCH statement

PL/SQL 78
FOR (cursor variant) statement 63
FOR (integer variant) statement 64
FORALL statement

PL/SQL 66
FOUND cursor attribute 82
functions

invocation syntax support in
PL/SQL 18

parameter modes 38
PL/SQL

overview 19
references 22

I
IF statement

PL/SQL 55
ISOPEN attribute 82

L
LOOP statement

PL/SQL 68
loops

PL/SQL 63

M
methods

collection 31

N
NEW trigger variable 89
NOTFOUND attribute 82
NULL

statement 46

O
obfuscation

PL/SQL 11
SQL PL 11

objects
packages 104

OLD trigger variable 89
OPEN FOR statement 84
OPEN statement

PL/SQL 78

P
packages

bodies 100
objects 104
PL/SQL

components 97
creating 97
creating package bodies 100, 101
creating package specifications 98
dropping 107
overview 97
user-defined types 104

parameter modes 38
parameterized cursors 77
PL/SQL

blocks 12
collection methods 31
collections

associative arrays 28
overview 22
VARRAY type 23

© Copyright IBM Corp. 1994, 2017 109

PL/SQL (continued)
control statements

CONTINUE 69
EXIT 67
FOR (cursor variant) 63
FOR (integer variant) 64
FORALL 66
LOOP 68
overview 55
WHILE 69

cursor variables
opening 84
overview 83
ROWTYPE attribute 81
SYS_REFCURSOR built-in data

type 83
cursors

attributes 82
closing 80
declaring 76
fetching rows from 78
opening 78
overview 76
parameterized 77

data types
list 39
record 26, 45
subtype 44

dynamic queries 84
exception handling 70
function invocation syntax

support 18
functions

creating 3
overview 19
references to 22

loops 63
modularizing cursor operations

example 87
obfuscation 11
overview 1
packages

components 97
creating 97
creating body 100
creating package specifications 98
dropping 107
overview 97
referencing objects 104
specifications 98
user-defined types 104

parameters
%TYPE attribute 42

procedures
creating 3
overview 14
references to 17

raising exceptions 72
REF CURSOR data type

details 83
example 86

restrictions 4
sample schema 4
statement attributes 55
statements

anonymous block 12
assignment 47

PL/SQL (continued)
statements (continued)

basic 46
BULK COLLECT INTO clause 51
CASE 60
CREATE FUNCTION 19
CREATE PACKAGE 98
CREATE PACKAGE BODY 101
CREATE PROCEDURE 15
CREATE TRIGGER 91
CREATE TYPE (Nested table) 25
CREATE TYPE (Object) 27
CREATE TYPE (VARRAY) 24
EXECUTE IMMEDIATE 48
IF 55
NULL 46
RAISE 73
RETURNING INTO clause 53
searched CASE 62
simple CASE 60
SQL 51

SYS_REFCURSOR data type 83
triggers

commits 90
dropping 94
examples 94
overview 89
rollbacks 90
row-level 89
trigger event predicates 90
trigger variables 89

variables
%TYPE attribute 42
declaring 37
overview 36
record 26

predicates
trigger event (PL/SQL) 90

procedures
PL/SQL

overview 14
parameter modes 38
references to 17

R
RAISE statement 73
records

types
user-defined 26

variables 26
REF CURSOR data type

details 83
example 86

RETURNING INTO clause 53
ROWCOUNT attribute 82
ROWTYPE attribute 45, 81

S
samples

PL/SQL schema 4
schemas

sample 4
searched CASE statement

PL/SQL 62

specifications
packages 98

SQL Procedural Language (SQL PL)
obfuscation 11

SQL statements
CREATE TYPE

nested table 25
object 27

PL/SQL 51
SQL%FOUND statement attribute 55
SQL%NOTFOUND statement

attribute 55
SQL%ROWCOUNT statement

attribute 55
statement attributes

PL/SQL 55
statements

PL/SQL
anonymous block 12
assignment 47
basic 46
BULK COLLECT INTO clause 51
CASE 60
CLOSE 80
CONTINUE 69
control 55
CREATE FUNCTION 19
CREATE PACKAGE 98
CREATE PACKAGE BODY 101
CREATE PROCEDURE 15
CREATE TRIGGER 91
CREATE TYPE (Nested table) 25
CREATE TYPE (Object) 27
CREATE TYPE (VARRAY) 24
EXECUTE IMMEDIATE 48
EXIT 67
FETCH 78
FOR (cursor variant) 63
FOR (integer variant) 64
FORALL 66
IF 55
LOOP 68
NULL 46
OPEN 78
OPEN FOR 84
RAISE 73
RETURNING INTO clause 53
searched CASE 62
simple CASE 60
WHILE 69

subtype
types

user-defined 44

T
transactions

PL/SQL 90
triggers

event predicates 90
PL/SQL

commits 90
creating 91
dropping 94
examples 94
overview 89
rollbacks 90

110 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

triggers (continued)
PL/SQL (continued)

row-level 89
trigger event predicates 90
trigger variables 89

TYPE attribute 42

U
UDTs

PL/SQL packages 104

V
variables

cursor data types 83
PL/SQL

declaring 37
overview 36
record 26

REF CURSOR 83
trigger 89

VARRAY collection type 23

Index 111

112 Db2 11.1 for Linux, UNIX, and Windows: PL/SQL Support

IBM®

Printed in USA

	Notice regarding this document
	Contents
	Figures
	Tables
	PL/SQL support
	PL/SQL features
	Creating PL/SQL procedures and functions from a CLP script
	Restrictions on PL/SQL support
	PL/SQL sample schema
	Obfuscation
	Blocks (PL/SQL)
	Anonymous block statement (PL/SQL)

	Procedures (PL/SQL)
	CREATE PROCEDURE statement (PL/SQL)
	Procedure references (PL/SQL)
	Function invocation syntax support (PL/SQL)

	Functions (PL/SQL)
	CREATE FUNCTION statement (PL/SQL)
	Function references (PL/SQL)

	Collection, record, and object types (PL/SQL)
	VARRAY collection type declaration (PL/SQL)
	CREATE TYPE (VARRAY) statement (PL/SQL)
	CREATE TYPE (Nested table) statement (PL/SQL)
	Records (PL/SQL)
	CREATE TYPE (Object) statement (PL/SQL)
	Associative arrays (PL/SQL)
	Collection methods (PL/SQL)

	Variables (PL/SQL)
	Variable declarations (PL/SQL)
	Parameter modes (PL/SQL)
	Data types (PL/SQL)
	%TYPE attribute in variable declarations (PL/SQL)
	SUBTYPE definitions (PL/SQL)
	%ROWTYPE attribute in record type declarations (PL/SQL)

	Basic statements (PL/SQL)
	NULL statement (PL/SQL)
	Assignment statement (PL/SQL)
	EXECUTE IMMEDIATE statement (PL/SQL)
	SQL statements (PL/SQL)
	BULK COLLECT INTO clause (PL/SQL)
	RETURNING INTO clause (PL/SQL)
	Statement attributes (PL/SQL)

	Control statements (PL/SQL)
	IF statement (PL/SQL)
	CASE statement (PL/SQL)
	Simple CASE statement (PL/SQL)
	Searched CASE statement (PL/SQL)

	Loops (PL/SQL)
	FOR (cursor variant) statement (PL/SQL)
	FOR (integer variant) statement (PL/SQL)
	FORALL statement (PL/SQL)
	EXIT statement (PL/SQL)
	LOOP statement (PL/SQL)
	WHILE statement (PL/SQL)
	CONTINUE statement (PL/SQL)

	Exception handling (PL/SQL)
	Raise application error (PL/SQL)
	RAISE statement (PL/SQL)
	Oracle-Db2 error mapping (PL/SQL)

	Cursors (PL/SQL)
	Static cursors (PL/SQL)
	Parameterized cursors (PL/SQL)
	Opening a cursor (PL/SQL)
	Fetching rows from a cursor (PL/SQL)
	Closing a cursor (PL/SQL)
	Using %ROWTYPE with cursors (PL/SQL)
	Cursor attributes (PL/SQL)

	Cursor variables (PL/SQL)
	SYS_REFCURSOR cursor variables (PL/SQL)
	User-defined REF CURSOR type variables (PL/SQL)
	Dynamic queries with cursor variables (PL/SQL)
	Example: Returning a REF CURSOR from a procedure (PL/SQL)
	Example: Modularizing cursor operations (PL/SQL)

	Triggers (PL/SQL)
	Types of triggers (PL/SQL)
	Trigger variables (PL/SQL)
	Trigger event predicates (PL/SQL)
	Transactions and exceptions (PL/SQL)
	CREATE TRIGGER statement (PL/SQL)
	Dropping triggers (PL/SQL)
	Examples: Triggers (PL/SQL)

	Packages (PL/SQL)
	Package components (PL/SQL)
	Creating packages (PL/SQL)
	Creating package specifications (PL/SQL)
	CREATE PACKAGE statement (PL/SQL)
	Creating the package body (PL/SQL)
	CREATE PACKAGE BODY statement (PL/SQL)

	Referencing package objects (PL/SQL)
	Packages with user-defined types (PL/SQL)

	Dropping packages (PL/SQL)

	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

