
IBM DB2 10.5
for Linux, UNIX, and Windows

SQL Reference Volume 2
Updated October, 2014

SC27-5510-01

���





IBM DB2 10.5
for Linux, UNIX, and Windows

SQL Reference Volume 2
Updated October, 2014

SC27-5510-01

���



Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 1369.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/


Contents

About this book . . . . . . . . . . . vii
Who should use this book . . . . . . . . . vii
How this book is structured. . . . . . . . . vii
How to read the syntax diagrams . . . . . . viii
Conventions used in this manual . . . . . . . x

Error conditions . . . . . . . . . . . . x
Highlighting conventions . . . . . . . . . x

Related documentation . . . . . . . . . . . x

SQL statements . . . . . . . . . . . 1
How SQL statements are invoked . . . . . . . 10

Embedding a statement in an application
program . . . . . . . . . . . . . . 10
Dynamic preparation and execution . . . . . 11
Static invocation of a select-statement. . . . . 11
Dynamic invocation of a select-statement . . . 12
Interactive invocation . . . . . . . . . . 12
SQL use with other host systems . . . . . . 12

Detecting and processing error and warning
conditions in host language applications. . . . . 12
SQL comments . . . . . . . . . . . . . 13
Conditional compilation in SQL . . . . . . . 14
About SQL control statements . . . . . . . . 17

References to SQL parameters, SQL variables,
and global variables . . . . . . . . . . 17
References to SQL labels . . . . . . . . . 18
References to SQL condition names . . . . . 18
References to SQL statement names . . . . . 18
References to SQL cursor names . . . . . . 19

Function, method, and procedure designators . . . 20
ALLOCATE CURSOR . . . . . . . . . . . 24
ALTER AUDIT POLICY . . . . . . . . . . 26
ALTER BUFFERPOOL . . . . . . . . . . . 29
ALTER DATABASE PARTITION GROUP . . . . 32
ALTER DATABASE. . . . . . . . . . . . 36
ALTER EVENT MONITOR . . . . . . . . . 41
ALTER FUNCTION . . . . . . . . . . . 46
ALTER HISTOGRAM TEMPLATE . . . . . . . 50
ALTER INDEX . . . . . . . . . . . . . 52
ALTER MASK . . . . . . . . . . . . . 53
ALTER METHOD . . . . . . . . . . . . 54
ALTER MODULE . . . . . . . . . . . . 56
ALTER NICKNAME . . . . . . . . . . . 64
ALTER PACKAGE . . . . . . . . . . . . 73
ALTER PERMISSION . . . . . . . . . . . 76
ALTER PROCEDURE (external) . . . . . . . 77
ALTER PROCEDURE (sourced). . . . . . . . 80
ALTER PROCEDURE (SQL) . . . . . . . . . 82
ALTER SCHEMA . . . . . . . . . . . . 84
ALTER SECURITY LABEL COMPONENT . . . . 86
ALTER SECURITY POLICY . . . . . . . . . 89
ALTER SEQUENCE . . . . . . . . . . . 93
ALTER SERVER . . . . . . . . . . . . . 97
ALTER SERVICE CLASS . . . . . . . . . 100
ALTER STOGROUP . . . . . . . . . . . 109

ALTER TABLE . . . . . . . . . . . . . 114
ALTER TABLESPACE . . . . . . . . . . 181
ALTER THRESHOLD . . . . . . . . . . 197
ALTER TRIGGER . . . . . . . . . . . . 210
ALTER TRUSTED CONTEXT . . . . . . . . 211
ALTER TYPE (structured) . . . . . . . . . 219
ALTER USAGE LIST . . . . . . . . . . . 226
ALTER USER MAPPING . . . . . . . . . 228
ALTER VIEW . . . . . . . . . . . . . 230
ALTER WORK ACTION SET . . . . . . . . 232
ALTER WORK CLASS SET . . . . . . . . . 246
ALTER WORKLOAD. . . . . . . . . . . 252
ALTER WRAPPER . . . . . . . . . . . 268
ALTER XSROBJECT . . . . . . . . . . . 270
ASSOCIATE LOCATORS . . . . . . . . . 271
AUDIT . . . . . . . . . . . . . . . 273
BEGIN DECLARE SECTION . . . . . . . . 277
CALL . . . . . . . . . . . . . . . . 279
CASE . . . . . . . . . . . . . . . . 287
CLOSE . . . . . . . . . . . . . . . 290
COMMENT . . . . . . . . . . . . . . 292
COMMIT. . . . . . . . . . . . . . . 303
Compound SQL . . . . . . . . . . . . 305
Compound SQL (inlined) . . . . . . . . . 306
Compound SQL (embedded) . . . . . . . . 311
Compound SQL (compiled) . . . . . . . . 315
CONNECT (type 1) . . . . . . . . . . . 332
CONNECT (type 2) . . . . . . . . . . . 339
CREATE ALIAS . . . . . . . . . . . . 346
CREATE AUDIT POLICY . . . . . . . . . 350
CREATE BUFFERPOOL . . . . . . . . . . 353
CREATE DATABASE PARTITION GROUP . . . 357
CREATE EVENT MONITOR . . . . . . . . 359
CREATE EVENT MONITOR (activities) . . . . 379
CREATE EVENT MONITOR (change history) . . 390
CREATE EVENT MONITOR (locking) . . . . . 397
CREATE EVENT MONITOR (package cache)
statement. . . . . . . . . . . . . . . 403
CREATE EVENT MONITOR (statistics). . . . . 410
CREATE EVENT MONITOR (threshold violations) 422
CREATE EVENT MONITOR (unit of work) . . . 434
CREATE FUNCTION. . . . . . . . . . . 439
CREATE FUNCTION (external scalar) . . . . . 440
CREATE FUNCTION (external table) . . . . . 468
CREATE FUNCTION (OLE DB external table) . . 489
CREATE FUNCTION (sourced or template) . . . 500
CREATE FUNCTION (SQL scalar, table, or row) 514
CREATE FUNCTION MAPPING . . . . . . . 532
CREATE GLOBAL TEMPORARY TABLE . . . . 536
CREATE HISTOGRAM TEMPLATE . . . . . . 549
CREATE INDEX . . . . . . . . . . . . 551
CREATE INDEX EXTENSION . . . . . . . . 575
CREATE MASK . . . . . . . . . . . . 581
CREATE METHOD . . . . . . . . . . . 587
CREATE MODULE . . . . . . . . . . . 593
CREATE NICKNAME . . . . . . . . . . 595

© Copyright IBM Corp. 1993, 2014 iii



CREATE PERMISSION . . . . . . . . . . 608
CREATE PROCEDURE . . . . . . . . . . 612
CREATE PROCEDURE (external). . . . . . . 613
CREATE PROCEDURE (sourced) . . . . . . . 629
CREATE PROCEDURE (SQL) . . . . . . . . 635
CREATE ROLE . . . . . . . . . . . . . 645
CREATE SCHEMA . . . . . . . . . . . 646
CREATE SECURITY LABEL COMPONENT . . . 649
CREATE SECURITY LABEL . . . . . . . . 652
CREATE SECURITY POLICY . . . . . . . . 654
CREATE SEQUENCE. . . . . . . . . . . 656
CREATE SERVICE CLASS . . . . . . . . . 662
CREATE SERVER . . . . . . . . . . . . 672
CREATE STOGROUP . . . . . . . . . . 676
CREATE SYNONYM . . . . . . . . . . . 679
CREATE TABLE . . . . . . . . . . . . 680
CREATE TABLESPACE . . . . . . . . . . 765
CREATE THRESHOLD . . . . . . . . . . 780
CREATE TRANSFORM . . . . . . . . . . 797
CREATE TRIGGER . . . . . . . . . . . 801
CREATE TRUSTED CONTEXT . . . . . . . 817
CREATE TYPE . . . . . . . . . . . . . 824
CREATE TYPE (array) . . . . . . . . . . 825
CREATE TYPE (cursor) . . . . . . . . . . 831
CREATE TYPE (distinct). . . . . . . . . . 834
CREATE TYPE (row) . . . . . . . . . . . 842
CREATE TYPE
(structurxxxxxxxxxxxxxxxxxxxxxxed) . . . . . 847
CREATE TYPE MAPPING . . . . . . . . . 871
CREATE USAGE LIST . . . . . . . . . . 878
CREATE USER MAPPING . . . . . . . . . 882
CREATE VARIABLE . . . . . . . . . . . 884
CREATE VIEW . . . . . . . . . . . . . 893
CREATE WORK ACTION SET . . . . . . . 908
CREATE WORK CLASS SET . . . . . . . . 917
CREATE WORKLOAD . . . . . . . . . . 922
CREATE WRAPPER . . . . . . . . . . . 940
DECLARE CURSOR . . . . . . . . . . . 942
DECLARE GLOBAL TEMPORARY TABLE . . . 948
DELETE . . . . . . . . . . . . . . . 961
DESCRIBE . . . . . . . . . . . . . . 971
DESCRIBE INPUT. . . . . . . . . . . . 972
DESCRIBE OUTPUT . . . . . . . . . . . 976
DISCONNECT . . . . . . . . . . . . . 980
DROP . . . . . . . . . . . . . . . . 983
END DECLARE SECTION . . . . . . . . 1016
EXECUTE . . . . . . . . . . . . . . 1017
EXECUTE IMMEDIATE . . . . . . . . . 1025
EXPLAIN . . . . . . . . . . . . . . 1028
FETCH . . . . . . . . . . . . . . . 1033
FLUSH BUFFERPOOLS . . . . . . . . . 1037
FLUSH EVENT MONITOR . . . . . . . . 1038
FLUSH FEDERATED CACHE . . . . . . . 1039
FLUSH OPTIMIZATION PROFILE CACHE . . . 1041
FLUSH PACKAGE CACHE . . . . . . . . 1043
FOR . . . . . . . . . . . . . . . . 1044
FREE LOCATOR . . . . . . . . . . . . 1047
GET DIAGNOSTICS . . . . . . . . . . 1048
GOTO . . . . . . . . . . . . . . . 1051
GRANT (database authorities) . . . . . . . 1053
GRANT (exemption) . . . . . . . . . . 1058

GRANT (global variable privileges) . . . . . 1061
GRANT (index privileges). . . . . . . . . 1063
GRANT (module privileges) . . . . . . . . 1065
GRANT (package privileges) . . . . . . . . 1067
GRANT (role) . . . . . . . . . . . . . 1070
GRANT (routine privileges) . . . . . . . . 1073
GRANT (schema privileges) . . . . . . . . 1078
GRANT (security label) . . . . . . . . . 1081
GRANT (sequence privileges) . . . . . . . 1084
GRANT (server privileges) . . . . . . . . 1087
GRANT (SETSESSIONUSER privilege) . . . . 1089
GRANT (table space privileges) . . . . . . . 1091
GRANT (table, view, or nickname privileges) . . 1093
GRANT (workload privileges) . . . . . . . 1099
GRANT (XSR object privileges) . . . . . . . 1101
IF . . . . . . . . . . . . . . . . . 1102
INCLUDE . . . . . . . . . . . . . . 1104
INSERT . . . . . . . . . . . . . . . 1106
ITERATE . . . . . . . . . . . . . . 1117
LEAVE . . . . . . . . . . . . . . . 1119
LOCK TABLE . . . . . . . . . . . . . 1121
LOOP . . . . . . . . . . . . . . . 1123
MERGE . . . . . . . . . . . . . . . 1125
OPEN . . . . . . . . . . . . . . . 1138
PIPE . . . . . . . . . . . . . . . . 1144
PREPARE . . . . . . . . . . . . . . 1146
REFRESH TABLE. . . . . . . . . . . . 1152
RELEASE (connection) . . . . . . . . . . 1156
RELEASE SAVEPOINT . . . . . . . . . . 1158
RENAME . . . . . . . . . . . . . . 1159
RENAME STOGROUP . . . . . . . . . . 1161
RENAME TABLESPACE . . . . . . . . . 1162
REPEAT . . . . . . . . . . . . . . . 1163
RESIGNAL . . . . . . . . . . . . . . 1165
RETURN . . . . . . . . . . . . . . 1168
REVOKE (database authorities) . . . . . . . 1170
REVOKE (exemption) . . . . . . . . . . 1174
REVOKE (global variable privileges) . . . . . 1176
REVOKE (index privileges) . . . . . . . . 1178
REVOKE (module privileges). . . . . . . . 1180
REVOKE (package privileges) . . . . . . . 1182
REVOKE (role) . . . . . . . . . . . . 1185
REVOKE (routine privileges) . . . . . . . . 1187
REVOKE (schema privileges) . . . . . . . . 1191
REVOKE (security label) . . . . . . . . . 1193
REVOKE (sequence privileges) . . . . . . . 1195
REVOKE (server privileges) . . . . . . . . 1197
REVOKE (SETSESSIONUSER privilege) . . . . 1199
REVOKE (table space privileges) . . . . . . 1201
REVOKE (table, view, or nickname privileges) 1203
REVOKE (workload privileges) . . . . . . . 1208
REVOKE (XSR object privileges) . . . . . . 1210
ROLLBACK . . . . . . . . . . . . . 1211
SAVEPOINT . . . . . . . . . . . . . 1214
SELECT . . . . . . . . . . . . . . . 1217
SELECT INTO. . . . . . . . . . . . . 1218
SET COMPILATION ENVIRONMENT . . . . 1222
SET CONNECTION . . . . . . . . . . . 1223
SET CURRENT DECFLOAT ROUNDING MODE 1225
SET CURRENT DEFAULT TRANSFORM GROUP 1227
SET CURRENT DEGREE . . . . . . . . . 1228

iv SQL Reference Volume 2



SET CURRENT EXPLAIN MODE . . . . . . 1230
SET CURRENT EXPLAIN SNAPSHOT . . . . 1233
SET CURRENT FEDERATED ASYNCHRONY 1235
SET CURRENT IMPLICIT XMLPARSE OPTION 1237
SET CURRENT ISOLATION . . . . . . . . 1238
SET CURRENT LOCALE LC_MESSAGES . . . 1239
SET CURRENT LOCALE LC_TIME . . . . . 1241
SET CURRENT LOCK TIMEOUT . . . . . . 1243
SET CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION . . . . . . . . . . 1245
SET CURRENT MDC ROLLOUT MODE . . . . 1247
SET CURRENT OPTIMIZATION PROFILE . . . 1249
SET CURRENT PACKAGE PATH . . . . . . 1252
SET CURRENT PACKAGESET . . . . . . . 1256
SET CURRENT QUERY OPTIMIZATION . . . 1258
SET CURRENT REFRESH AGE . . . . . . . 1261
SET CURRENT SQL_CCFLAGS . . . . . . . 1264
SET CURRENT TEMPORAL BUSINESS_TIME 1266
SET CURRENT TEMPORAL SYSTEM_TIME . . 1268
SET ENCRYPTION PASSWORD . . . . . . 1270
SET EVENT MONITOR STATE . . . . . . . 1272
SET INTEGRITY . . . . . . . . . . . . 1274
SET PASSTHRU . . . . . . . . . . . . 1293
SET PATH . . . . . . . . . . . . . . 1295
SET ROLE . . . . . . . . . . . . . . 1297
SET SCHEMA. . . . . . . . . . . . . 1298

SET SERVER OPTION . . . . . . . . . . 1300
SET SESSION AUTHORIZATION . . . . . . 1302
SET USAGE LIST STATE . . . . . . . . . 1305
SET variable . . . . . . . . . . . . . 1308
SIGNAL. . . . . . . . . . . . . . . 1319
TRANSFER OWNERSHIP . . . . . . . . . 1322
TRUNCATE . . . . . . . . . . . . . 1334
UPDATE . . . . . . . . . . . . . . 1337
VALUES. . . . . . . . . . . . . . . 1353
VALUES INTO . . . . . . . . . . . . 1354
WHENEVER . . . . . . . . . . . . . 1357
WHILE . . . . . . . . . . . . . . . 1360

Appendix A. DB2 technical
information . . . . . . . . . . . . 1363
DB2 technical library in hardcopy or PDF format 1364
Displaying SQL state help from the command line
processor . . . . . . . . . . . . . . 1366
Accessing DB2 documentation online for different
DB2 versions . . . . . . . . . . . . . 1366
Terms and conditions . . . . . . . . . . 1367

Appendix B. Notices . . . . . . . . 1369

Index . . . . . . . . . . . . . . 1373

Contents v



vi SQL Reference Volume 2



About this book

The SQL Reference in its two volumes defines the SQL language used by DB2®

Database for Linux, UNIX, and Windows.

It includes:
v Information about relational database concepts, language elements, functions,

and the forms of queries (Volume 1)
v Information about the syntax and semantics of SQL statements (Volume 2)

Who should use this book
This book is intended for anyone who wants to use the Structured Query
Language (SQL) to access a database. It is primarily for programmers and database
administrators, but it can also be used by those who access databases through the
command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be writing
application programs and therefore presents the full functions of the database
manager.

How this book is structured
The second volume of the SQL Reference contains information about the syntax and
semantics of SQL statements.
v “Statements” contains syntax diagrams, semantic descriptions, rules, and

examples of all SQL statements, including SQL procedure statements.

© Copyright IBM Corp. 1993, 2014 vii



How to read the syntax diagrams
This topic describes the structure of SQL syntax diagrams.

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The double right arrowhead and line symbol ��── indicates the beginning of a
syntax diagram.

The line and single right arrowhead symbol ──� indicates that the syntax is
continued on the next line.

The right arrowhead and line symbol �── indicates that the syntax is continued
from the previous line.

The line, right arrowhead, and left arrowhead symbol ──�� symbol indicates the
end of a syntax diagram.

Syntax fragments start with the pipe and line symbol |── and end with the ──|
line and pipe symbol.

Required items appear on the horizontal line (the main path).

�� required_item ��

Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on
execution, and is used only for readability.

�� required_item
optional_item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

How to read the syntax diagrams

viii SQL Reference Volume 2



If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For
example, in the following diagram, the variable parameter-block represents the
whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

parameter-block:

parameter1
parameter2 parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in any
sequence.

�� required_item item1 * item2 * item3 * item4 ��

How to read the syntax diagrams

About this book ix



The above diagram shows that item2 and item3 may be specified in either order.
Both of the following are valid:

required_item item1 item2 item3 item4
required_item item1 item3 item2 item4

Conventions used in this manual

Error conditions
An error condition is indicated within the text of the manual by listing the
SQLSTATE associated with the error in parentheses.

For example:
A duplicate signature returns an SQL error (SQLSTATE 42723).

Highlighting conventions
This topic covers the conventions used in the SQL Reference.
v Bold indicates commands, keywords, and other items whose names are

predefined by the system.
v Italics indicates one of the following items:

– Names or values (variables) that must be supplied by the user
– General emphasis
– The introduction of a new term
– A reference to another source of information

Related documentation
The following publications might prove useful when you are preparing
applications:
v Getting Started with Database Application Development

– Provides an introduction to DB2 application development, including platform
prerequisites; supported development software; and guidance on the benefits
and limitations of the supported programming APIs.

v DB2 for i5/OS SQL Reference

– This book defines SQL as supported by DB2 Query Manager and SQL
Development Kit on System i®. It contains reference information for the tasks
of system administration, database administration, application programming,
and operation. This manual includes syntax, usage notes, keywords, and
examples for each of the SQL statements used on i5/OS™ systems running
DB2.

v DB2 for z/OS SQL Reference

– This book defines SQL used in DB2 for z/OS®. It provides query forms, SQL
statements, SQL procedure statements, DB2 limits, SQLCA, SQLDA, catalog
tables, and SQL reserved words for z/OS systems running DB2.

v DB2 Spatial Extender User's Guide and Reference

– This book discusses how to write applications to create and use a geographic
information system (GIS). Creating and using a GIS involves supplying a
database with resources and then querying the data to obtain information
such as locations, distances, and distributions within areas.

v IBM SQL Reference

How to read the syntax diagrams

x SQL Reference Volume 2



– This book contains all the common elements of SQL that span IBM's database
products. It provides limits and rules that assist in preparing portable
programs using IBM databases. This manual provides a list of SQL extensions
and incompatibilities among the following standards and products: SQL92E,
XPG4-SQL, IBM-SQL, and the IBM relational database products.

v American National Standard X3.135-1992, Database Language SQL

– Contains the ANSI standard definition of SQL.
v ISO/IEC 9075:1992, Database Language SQL

– Contains the 1992 ISO standard definition of SQL.
v ISO/IEC 9075-2:2003, Information technology -- Database Languages -- SQL -- Part 2:

Foundation (SQL/Foundation)

– Contains a large portion of the 2003 ISO standard definition of SQL.
v ISO/IEC 9075-4:2003, Information technology -- Database Languages -- SQL -- Part 4:

Persistent Stored Modules (SQL/PSM)

– Contains the 2003 ISO standard definition for SQL procedure control
statements.

Related documentation

About this book xi



Related documentation

xii SQL Reference Volume 2



SQL statements

This topic contains tables that list the SQL statements classified by type.
v SQL schema statements (Table 1)
v SQL data change statements (Table 2 on page 6)
v SQL data statements (Table 3 on page 6)
v SQL transaction statements (Table 4 on page 7)
v SQL connection statements (Table 5 on page 7)
v SQL dynamic statements (Table 6 on page 7)
v SQL session statements (Table 7 on page 7)
v SQL embedded host language statements (Table 8 on page 9)
v SQL control statements (Table 9 on page 9)

Table 1. SQL schema statements

SQL Statement Purpose

“ALTER AUDIT POLICY” on page 26 Modifies the definition of an audit policy at the current server.

“ALTER BUFFERPOOL” on page 29 Changes the definition of a buffer pool.

“ALTER DATABASE” on page 36 Adds new storage paths to the collection of paths that are used for
automatic storage table spaces.

“ALTER EVENT MONITOR” on page 41 Changes the definition of a TABLE or UNFORMATTED EVENT
TABLE event monitor.

“ALTER DATABASE PARTITION GROUP” on
page 32

Changes the definition of a database partition group.

“ALTER FUNCTION” on page 46 Modifies an existing function by changing the properties of the
function.

“ALTER HISTOGRAM TEMPLATE” on page
50

Modifies the template describing the type of histogram that can be
used to override one or more of the default histograms of a service
class or a work class.

“ALTER INDEX” on page 52 Changes the definition of an index.

“ALTER MASK” on page 53 Changes the definition of a column mask.

“ALTER METHOD” on page 54 Modifies an existing method by changing the method body
associated with the method.

“ALTER MODULE” on page 56 Changes the definition of a module.

“ALTER NICKNAME” on page 64 Changes the definition of a nickname.

“ALTER PACKAGE” on page 73 Alters bind options for a package at the current server without
having to bind or rebind the package.

“ALTER PERMISSION” on page 76 Changes the definition of a row permission.

“ALTER PROCEDURE (external)” on page 77 Modifies an existing external procedure by changing the properties of
the procedure.

“ALTER PROCEDURE (sourced)” on page 80 Modifies an existing sourced procedure by changing the data type of
one or more parameters of the sourced procedure.

“ALTER PROCEDURE (SQL)” on page 82 Modifies an existing SQL procedure by changing the properties of the
procedure.

“ALTER SCHEMA” on page 84 Modifies an existing schema by changing the data capture attribute
of the schema.

© Copyright IBM Corp. 1993, 2014 1



Table 1. SQL schema statements (continued)

SQL Statement Purpose

“ALTER SECURITY LABEL COMPONENT”
on page 86

Modifies a security label component.

“ALTER SECURITY POLICY” on page 89 Modifies a security policy.

“ALTER SEQUENCE” on page 93 Changes the definition of a sequence.

“ALTER SERVER” on page 97 Changes the definition of a data source in a federated system.

“ALTER SERVICE CLASS” on page 100 Changes the definition of a service class.

“ALTER STOGROUP” on page 109 Changes the definition of a storage group.

“ALTER TABLE” on page 114 Changes the definition of a table.

“ALTER TABLESPACE” on page 181 Changes the definition of a table space.

“ALTER THRESHOLD” on page 197 Changes the definition of a threshold.

“ALTER TRIGGER” on page 210 Changes the definition of a trigger.

“ALTER TRUSTED CONTEXT” on page 211 Changes the definition of a trusted context at the current server.

“ALTER TYPE (structured)” on page 219 Changes the definition of a structured type.

“ALTER USAGE LIST” on page 226 Changes the definition of a usage list.

“ALTER USER MAPPING” on page 228 Changes the definition of a user authorization mapping.

“ALTER VIEW” on page 230 Changes the definition of a view by altering a reference type column
to add a scope.

“ALTER WORK ACTION SET” on page 232 Adds, alters, or drops work actions within a work action set.

“ALTER WORK CLASS SET” on page 246 Adds, alters, or drops work classes within a work class set.

“ALTER WORKLOAD” on page 252 Changes a workload.

“ALTER WRAPPER” on page 268 Updates the options that, along with a wrapper module, are used to
access data sources of a specific type.

“ALTER XSROBJECT” on page 270 Enables or disables decomposition support for a specific XML
schema.

“AUDIT” on page 273 Determines the audit policy that is to be used for a particular
database or database object at the current server.

“COMMENT” on page 292 Replaces or adds a comment to the description of an object.

“CREATE ALIAS” on page 346 Defines an alias for a module, nickname, sequence, table, view, or
another alias.

“CREATE AUDIT POLICY” on page 350 Defines an auditing policy at the current server.

“CREATE BUFFERPOOL” on page 353 Defines a new buffer pool.

“CREATE DATABASE PARTITION GROUP”
on page 357

Defines a database partition group.

“CREATE EVENT MONITOR” on page 359 Specifies events in the database to monitor.

“CREATE EVENT MONITOR (activities)” on
page 379

Specifies activity events in the database to monitor.

“CREATE EVENT MONITOR (change
history)” on page 390

Specifies change history events in the database to monitor.

“CREATE EVENT MONITOR (locking)” on
page 397

Specifies locking events in the database to monitor.

“CREATE EVENT MONITOR (package cache)
statement” on page 403

Specifies package cache statement events in the database to monitor.

“CREATE EVENT MONITOR (statistics)” on
page 410

Specifies statistics events in the database to monitor.

SQL statements

2 SQL Reference Volume 2



Table 1. SQL schema statements (continued)

SQL Statement Purpose

“CREATE EVENT MONITOR (threshold
violations)” on page 422

Specifies threshold violation events in the database to monitor.

“CREATE EVENT MONITOR (unit of work)”
on page 434

Specifies unit of work events in the database to monitor.

“CREATE FUNCTION” on page 439 Registers a user-defined function.

“CREATE FUNCTION (external scalar)” on
page 440

Registers a user-defined external scalar function.

“CREATE FUNCTION (external table)” on
page 468

Registers a user-defined external table function.

“CREATE FUNCTION (OLE DB external
table)” on page 489

Registers a user-defined OLE DB external table function.

“CREATE FUNCTION (sourced or template)”
on page 500

Registers a user-defined sourced function or a function template.

“CREATE FUNCTION (SQL scalar, table, or
row)” on page 514

Defines a user-defined SQL function.

“CREATE FUNCTION MAPPING” on page
532

Defines a function mapping.

“CREATE GLOBAL TEMPORARY TABLE” on
page 536

Defines a created temporary table.

“CREATE HISTOGRAM TEMPLATE” on page
549

Defines a template describing the type of histogram that can be used
to override one or more of the default histograms of a service class or
a work class.

“CREATE INDEX” on page 551 Defines an index on a table.

“CREATE INDEX EXTENSION” on page 575 Defines an extension object for use with indexes on tables with
structured or distinct type columns.

“CREATE MASK” on page 581 Defines a column mask.

“CREATE METHOD” on page 587 Defines a method body to associate with a previously defined
method specification.

“CREATE MODULE” on page 593 Defines a module.

“CREATE NICKNAME” on page 595 Defines a nickname.

“CREATE PERMISSION” on page 608 Defines a row permission.

“CREATE PROCEDURE” on page 612 Defines a procedure.

“CREATE PROCEDURE (external)” on page
613

Defines an external procedure.

“CREATE PROCEDURE (sourced)” on page
629

Defines a procedure (the sourced procedure) that is based on another
procedure (the source procedure). In a federated system, a federated
procedure is a sourced procedure whose source procedure is at a
supported data source.

“CREATE PROCEDURE (SQL)” on page 635 Defines an SQL procedure.

“CREATE ROLE” on page 645 Defines a role at the current server.

“CREATE SCHEMA” on page 646 Defines a schema.

“CREATE SECURITY LABEL COMPONENT”
on page 649

Defines a component that is to be used as part of a security policy.

“CREATE SECURITY LABEL” on page 652 Defines a security label.

“CREATE SECURITY POLICY” on page 654 Defines a security policy.

SQL statements

Statements 3



Table 1. SQL schema statements (continued)

SQL Statement Purpose

“CREATE SEQUENCE” on page 656 Defines a sequence.

“CREATE SERVER” on page 672 Defines a data source to a federated database.

“CREATE SERVICE CLASS” on page 662 Defines a service class.

“CREATE STOGROUP” on page 676 Defines a new storage group within the database.

“CREATE SYNONYM” on page 679 Defines a synonym for a module, nickname, sequence, table, view, or
another synonym.

“CREATE TABLE” on page 680 Defines a table.

“CREATE TABLESPACE” on page 765 Defines a table space.

“CREATE THRESHOLD” on page 780 Defines a threshold.

“CREATE TRANSFORM” on page 797 Defines transformation functions.

“CREATE TRIGGER” on page 801 Defines a trigger.

“CREATE TRUSTED CONTEXT” on page 817 Defines a trusted context at the current server.

“CREATE TYPE” on page 824 Defines a user-defined data type at the current server.

“CREATE TYPE (array)” on page 825 Defines an array type.

“CREATE TYPE (cursor)” on page 831 Defines a cursor type.

“CREATE TYPE (distinct)” on page 834 Defines a distinct data type.

“CREATE TYPE (row)” on page 842 Defines a row type.

“CREATE TYPE
(structurxxxxxxxxxxxxxxxxxxxxxxed)” on page
847

Defines a structured data type.

“CREATE TYPE MAPPING” on page 871 Defines a mapping between data types.

“CREATE USAGE LIST” on page 878 Defines a usage list in order to monitor all unique sections (DML
statements) that have referenced a particular table or index during
their execution.

“CREATE USER MAPPING” on page 882 Defines a mapping between user authorizations.

“CREATE VARIABLE” on page 884 Defines a global variable.

“CREATE VIEW” on page 893 Defines a view of one or more table, view or nickname.

“CREATE WORK ACTION SET” on page 908 Defines a work action set and work actions within the work action
set.

“CREATE WORK CLASS SET” on page 917 Defines a work class set.

“CREATE WORKLOAD” on page 922 Defines a workload.

“CREATE WRAPPER” on page 940 Registers a wrapper.

“DROP” on page 983 Deletes objects in the database.

“GRANT (database authorities)” on page 1053 Grants authorities on the entire database.

“GRANT (exemption)” on page 1058 Grants an exemption on an access rule for a specified label-based
access control (LBAC) security policy.

“GRANT (global variable privileges)” on page
1061

Grants one or more privileges on a created global variable.

“GRANT (index privileges)” on page 1063 Grants the CONTROL privilege on indexes in the database.

“GRANT (module privileges)” on page 1065 Grants privileges on a module.

“GRANT (package privileges)” on page 1067 Grants privileges on packages in the database.

“GRANT (role)” on page 1070 Grants roles to users, groups, or to other roles.

SQL statements

4 SQL Reference Volume 2



Table 1. SQL schema statements (continued)

SQL Statement Purpose

“GRANT (routine privileges)” on page 1073 Grants privileges on a routine (function, method, or procedure).

“GRANT (schema privileges)” on page 1078 Grants privileges on a schema.

“GRANT (security label)” on page 1081 Grants a label-based access control (LBAC) security label for read
access, write access, or for both read and write access.

“GRANT (sequence privileges)” on page 1084 Grants privileges on a sequence.

“GRANT (server privileges)” on page 1087 Grants privileges to query a specific data source.

“GRANT (SETSESSIONUSER privilege)” on
page 1089

Grants the privilege to use the SET SESSION AUTHORIZATION
statement.

“GRANT (table space privileges)” on page
1091

Grants privileges on a table space.

“GRANT (table, view, or nickname
privileges)” on page 1093

Grants privileges on tables, views and nicknames.

“GRANT (workload privileges)” on page 1099 Grants the USAGE privilege on a workload.

“GRANT (XSR object privileges)” on page
1101

Grants the USAGE privilege on an XSR object.

“REFRESH TABLE” on page 1152 Refreshes the data in a materialized query table.

“RENAME” on page 1159 Renames an existing table.

“RENAME STOGROUP” on page 1161 Renames an existing storage group.

“RENAME TABLESPACE” on page 1162 Renames an existing table space.

“REVOKE (database authorities)” on page
1170

Revokes authorities from the entire database.

“REVOKE (exemption)” on page 1174 Revokes the exemption on an access rule for a specified label-based
access control (LBAC) security policy.

“REVOKE (global variable privileges)” on
page 1176

Revokes one or more privileges on a created global variable.

“REVOKE (index privileges)” on page 1178 Revokes the CONTROL privilege on given indexes.

“REVOKE (module privileges)” on page 1180 Revokes privileges on a module.

“REVOKE (package privileges)” on page 1182 Revokes privileges from given packages in the database.

“REVOKE (role)” on page 1185 Revokes roles from users, groups, or other roles.

“REVOKE (routine privileges)” on page 1187 Revokes privileges on a routine (function, method, or procedure).

“REVOKE (schema privileges)” on page 1191 Revokes privileges on a schema.

“REVOKE (security label)” on page 1193 Revokes a label-based access control (LBAC) security label for read
access, write access, or for both read and write access.

“REVOKE (sequence privileges)” on page
1195

Revokes privileges on a sequence.

“REVOKE (server privileges)” on page 1197 Revokes privileges to query a specific data source.

“REVOKE (SETSESSIONUSER privilege)” on
page 1199

Revokes the privilege to use the SET SESSION AUTHORIZATION
statement.

“REVOKE (table space privileges)” on page
1201

Revokes the USE privilege on a given table space.

“REVOKE (table, view, or nickname
privileges)” on page 1203

Revokes privileges from given tables, views or nicknames.

“REVOKE (workload privileges)” on page
1208

Revokes the USAGE privilege on a workload.

SQL statements

Statements 5



Table 1. SQL schema statements (continued)

SQL Statement Purpose

“REVOKE (XSR object privileges)” on page
1210

Revokes the USAGE privilege on an XSR object.

“SET INTEGRITY” on page 1274 Sets the set integrity pending state and checks data for constraint
violations.

“TRANSFER OWNERSHIP” on page 1322 Transfers ownership of a database object.

Table 2. SQL data change statements

SQL Statement Purpose

“DELETE” on page 961 Deletes one or more rows from a table.

“INSERT” on page 1106 Inserts one or more rows into a table.

“MERGE” on page 1125 Updates a target (a table or view) using data from a source (result of
a table reference).

“TRUNCATE” on page 1334 Deletes all rows from a table.

“UPDATE” on page 1337 Updates the values of one or more columns in one or more rows of a
table.

Table 3. SQL data statements

SQL Statement Purpose

“ALLOCATE CURSOR” on page 24 Allocates a cursor for the result set identified by the result set locator
variable.

“ASSOCIATE LOCATORS” on page 271 Gets the result set locator value for each result set returned by a
procedure.

“CLOSE” on page 290 Closes a cursor.

“DECLARE CURSOR” on page 942 Defines an SQL cursor.

“FETCH” on page 1033 Assigns values of a row to host variables.

“FLUSH BUFFERPOOLS” on page 1037 Writes out the dirty pages in the buffer pools to disk.

“FLUSH EVENT MONITOR” on page 1038 Writes out the active internal buffer of an event monitor.

“FLUSH FEDERATED CACHE” on page 1039 The FLUSH FEDERATED CACHE statement flushes the federated
cache, allowing fresh metadata to be obtained the next time an SQL
statement is issued against the remote table or view using a
federated three part name.

“FLUSH OPTIMIZATION PROFILE CACHE”
on page 1041

Removes the cached optimization profiles.

“FLUSH PACKAGE CACHE” on page 1043 Removes all cached dynamic SQL statements currently in the
package cache.

“FREE LOCATOR” on page 1047 Removes the association between a locator variable and its value.

“LOCK TABLE” on page 1121 Either prevents concurrent processes from changing a table or
prevents concurrent processes from using a table.

“OPEN” on page 1138 Prepares a cursor that will be used to retrieve values when the
FETCH statement is issued.

“SELECT INTO” on page 1218 Specifies a result table of no more than one row and assigns the
values to host variables.

“SET variable” on page 1308 Assigns values to variables.

“VALUES INTO” on page 1354 Specifies a result table of no more than one row and assigns the
values to host variables.

SQL statements

6 SQL Reference Volume 2



Table 4. SQL transaction statements

SQL Statement Purpose

“COMMIT” on page 303 Terminates a unit of work and commits the database changes made
by that unit of work.

“RELEASE SAVEPOINT” on page 1158 Releases a savepoint within a transaction.

“ROLLBACK” on page 1211 Terminates a unit of work and backs out the database changes made
by that unit of work.

“SAVEPOINT” on page 1214 Sets a savepoint within a transaction.

Table 5. SQL connection statements

SQL Statement Purpose

“CONNECT (type 1)” on page 332 Connects to an application server according to the rules for remote
unit of work.

“CONNECT (type 2)” on page 339 Connects to an application server according to the rules for
application-directed distributed unit of work.

“DISCONNECT” on page 980 Terminates one or more connections when there is no active unit of
work.

“RELEASE (connection)” on page 1156 Places one or more connections in the release-pending state.

“SET CONNECTION” on page 1223 Changes the state of a connection from dormant to current, making
the specified location the current server.

Table 6. SQL dynamic statements

SQL Statement Purpose

“DESCRIBE” on page 971 Obtains information about an object.

“DESCRIBE INPUT” on page 972 Obtains information about the input parameter markers of a
prepared statement.

“DESCRIBE OUTPUT” on page 976 Obtains information about a prepared statement or information about
the select list columns in a prepared SELECT statement.

“EXECUTE” on page 1017 Executes a prepared SQL statement.

“EXECUTE IMMEDIATE” on page 1025 Prepares and executes an SQL statement.

“PREPARE” on page 1146 Prepares an SQL statement (with optional parameters) for execution.

Table 7. SQL session statements

SQL Statement Purpose

“DECLARE GLOBAL TEMPORARY TABLE”
on page 948

Defines a declared temporary table.

“EXPLAIN” on page 1028 Captures information about the chosen access plan.

“SET COMPILATION ENVIRONMENT” on
page 1222

Changes the current compilation environment in the connection to
match the values contained in the compilation environment provided
by a deadlock event monitor.

“SET CURRENT DECFLOAT ROUNDING
MODE” on page 1225

Verifies that the specified rounding mode is the value that is
currently set for the CURRENT DECFLOAT ROUNDING MODE
special register.

“SET CURRENT DEFAULT TRANSFORM
GROUP” on page 1227

Changes the value of the CURRENT DEFAULT TRANSFORM
GROUP special register.

“SET CURRENT DEGREE” on page 1228 Changes the value of the CURRENT DEGREE special register.

SQL statements

Statements 7



Table 7. SQL session statements (continued)

SQL Statement Purpose

“SET CURRENT EXPLAIN MODE” on page
1230

Changes the value of the CURRENT EXPLAIN MODE special
register.

“SET CURRENT EXPLAIN SNAPSHOT” on
page 1233

Changes the value of the CURRENT EXPLAIN SNAPSHOT special
register.

“SET CURRENT FEDERATED
ASYNCHRONY” on page 1235

Changes the value of the CURRENT FEDERATED ASYNCHRONY
special register.

“SET CURRENT IMPLICIT XMLPARSE
OPTION” on page 1237

Changes the value of the CURRENT IMPLICIT XMLPARSE OPTION
special register.

“SET CURRENT ISOLATION” on page 1238 Changes the value of the CURRENT ISOLATION special register.

“SET CURRENT LOCALE LC_MESSAGES”
on page 1239

Changes the value of the CURRENT LOCALE LC_MESSAGES
special register.

“SET CURRENT LOCALE LC_TIME” on page
1241

Changes the value of the CURRENT LOCALE LC_TIME special
register.

“SET CURRENT LOCK TIMEOUT” on page
1243

Changes the value of the CURRENT LOCK TIMEOUT special
register.

“SET CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION” on page 1245

Changes the value of the CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION special register.

“SET CURRENT MDC ROLLOUT MODE” on
page 1247

Assigns a value to the CURRENT MDC ROLLOUT MODE special
register.

“SET CURRENT OPTIMIZATION PROFILE”
on page 1249

Assigns a value to the CURRENT OPTIMIZATION PROFILE special
register.

“SET CURRENT PACKAGE PATH” on page
1252

Assigns a value to the CURRENT PACKAGE PATH special register.

“SET CURRENT PACKAGESET” on page
1256

Sets the schema name for package selection.

“SET CURRENT QUERY OPTIMIZATION”
on page 1258

Changes the value of the CURRENT QUERY OPTIMIZATION special
register.

“SET CURRENT REFRESH AGE” on page
1261

Changes the value of the CURRENT REFRESH AGE special register.

“SET CURRENT SQL_CCFLAGS” on page
1264

Changes the value of the CURRENT SQL_CCFLAGS special register.

“SET CURRENT TEMPORAL
BUSINESS_TIME” on page 1266

Changes the value of the CURRENT TEMPORAL BUSINESS_TIME
special register.

“SET CURRENT TEMPORAL
SYSTEM_TIME” on page 1268

Changes the value of the CURRENT TEMPORAL SYSTEM_TIME
special register.

“SET ENCRYPTION PASSWORD” on page
1270

Sets the password for encryption.

“SET EVENT MONITOR STATE” on page
1272

Activates or deactivates an event monitor.

“SET PASSTHRU” on page 1293 Opens a session for submitting data source native SQL directly to the
data source.

“SET PATH” on page 1295 Changes the value of the CURRENT PATH special register.

“SET ROLE” on page 1297 Verifies that the authorization ID of the session is a member of a
specific role.

“SET SCHEMA” on page 1298 Changes the value of the CURRENT SCHEMA special register.

“SET SERVER OPTION” on page 1300 Sets server option settings.

SQL statements

8 SQL Reference Volume 2



Table 7. SQL session statements (continued)

SQL Statement Purpose

“SET SESSION AUTHORIZATION” on page
1302

Changes the value of the SESSION USER special register.

“SET USAGE LIST STATE” on page 1305 Manages the state of a usage list and the associated data and
memory.

Table 8. SQL embedded host language statements

SQL Statement Purpose

“BEGIN DECLARE SECTION” on page 277 Marks the beginning of a host variable declaration section.

“END DECLARE SECTION” on page 1016 Marks the end of a host variable declaration section.

“GET DIAGNOSTICS” on page 1048 Used to obtain information about the previously executed SQL
statement.

“INCLUDE” on page 1104 Inserts code or declarations into a source program.

“RESIGNAL” on page 1165 Used to resignal an error or warning condition.

“SIGNAL” on page 1319 Used to signal an error or warning condition.

“WHENEVER” on page 1357 Defines actions to be taken on the basis of SQL return codes.

Table 9. SQL control statements

SQL Statement Purpose

“CALL” on page 279 Calls a procedure.

“CASE” on page 287 Selects an execution path based on multiple conditions.

“Compound SQL” on page 305 Encloses SQL statements with BEGIN and END keywords.

“Compound SQL (inlined)” on page 306 Combines one or more other SQL statements into an dynamic block.

“Compound SQL (embedded)” on page 311 Combines one or more other SQL statements into an executable
block.

“Compound SQL (compiled)” on page 315 Groups other statements together in an SQL procedure.

“FOR” on page 1044 Executes a statement or group of statements for each row of a table.

“GOTO” on page 1051 Used to branch to a user-defined label within an SQL procedure.

“IF” on page 1102 Selects an execution path based on the evaluation of a condition.

“ITERATE” on page 1117 Causes the flow of control to return to the beginning of a labelled
loop.

“LEAVE” on page 1119 Transfers program control out of a loop or a compound statement.

“LOOP” on page 1123 Repeats the execution of a statement or a group of statements.

“PIPE” on page 1144 Returns a row from a compiled table function.

“REPEAT” on page 1163 Executes a statement or group of statements until a search condition
is true.

“RESIGNAL” on page 1165 Used to resignal an error or warning condition.

“RETURN” on page 1168 Used to return from a routine.

“SIGNAL” on page 1319 Used to signal an error or warning condition.

“WHILE” on page 1360 Repeats the execution of a statement or group of statements while a
specified condition is true.

SQL statements

Statements 9



How SQL statements are invoked
SQL statements are classified as executable or non-executable.

An executable statement can be invoked in four ways. It can be:
v Issued interactively
v Prepared and executed dynamically
v Embedded in an application program
v Embedded in an SQL procedure, trigger, compound SQL (compiled), or

compound SQL (inlined) with some restrictions:
– Refer to “SQL-procedure-statement” in “Compound SQL (compiled)” on page

315 for the set of executable statements supported in SQL procedures and
compound SQL (compiled) statements.

– Refer to “SQL-statement” in “Compound SQL (inlined)” on page 306
statement for the set of executable statements supported in compound SQL
(inlined) statements.

– Refer to “SQL-procedure-statement” in “CREATE TRIGGER” on page 801 for
the set of executable statements supported in a trigger.

Depending on the statement, some or all of these methods can be used. Statements
embedded in REXX are prepared and executed dynamically.

A non-executable statement can only be embedded in an application program.

Another SQL statement construct is the select-statement. A select-statement can be
invoked in three ways. It can be:
v Issued interactively
v Prepared dynamically, referenced in DECLARE CURSOR, and executed

implicitly by OPEN, FETCH and CLOSE (dynamic invocation)
v Included in DECLARE CURSOR, and executed implicitly by OPEN, FETCH and

CLOSE (static invocation)

Embedding a statement in an application program
SQL statements can be included in a source program that will be submitted to a
precompiler. Such statements are said to be embedded in the program.

An embedded statement can be placed anywhere in the program where a host
language statement is allowed. Each embedded statement must be preceded by the
keywords EXEC SQL.

An executable statement embedded in an application program is executed every
time a statement of the host language would be executed if it were specified in the
same place. Thus, a statement within a loop is executed every time the loop is
executed, and a statement within a conditional construct is executed only when the
condition is satisfied.

An embedded statement can contain references to host variables. A host variable
referenced in this way can be used in two ways. It can be used:
v As input (the current value of the host variable is used in the execution of the

statement)
v As output (the variable is assigned a new value as a result of executing the

statement)

How SQL statements are invoked

10 SQL Reference Volume 2



In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input.

All executable statements should be followed by a test of the SQL return code.
Alternatively, the WHENEVER statement (which is itself non-executable) can be
used to change the flow of control immediately after the execution of an embedded
statement.

All objects referenced in data manipulation language (DML) statements must exist
when the statements are bound to a database.

An embedded non-executable statement is processed only by the precompiler. The
precompiler reports any errors encountered in the statement. The statement is never
processed during program execution; therefore, such statements should not be
followed by a test of the SQL return code.

Statements can be included in the SQL-procedure-body portion of the CREATE
PROCEDURE statement. Such statements are said to be embedded in the SQL
procedure. Whenever an SQL statement description refers to a host-variable, an
SQL-variable can be used if the statement is embedded in an SQL procedure.

Dynamic preparation and execution
An application program can dynamically build an SQL statement in the form of a
character string placed in a host variable.

In general, the statement is built from some data available to the program (for
example, input from a workstation). The statement (not a select-statement)
constructed can be prepared for execution by means of the (embedded) PREPARE
statement, and executed by means of the (embedded) EXECUTE statement.
Alternatively, an (embedded) EXECUTE IMMEDIATE statement can be used to
prepare and execute the statement in one step.

A statement that is going to be dynamically prepared must not contain references
to host variables. It can instead contain parameter markers. (For rules concerning
parameter markers, see “PREPARE”.) When the prepared statement is executed,
the parameter markers are effectively replaced by current values of the host
variables specified in the EXECUTE statement. Once prepared, a statement can be
executed several times with different values for the host variables. Parameter
markers are not allowed in the EXECUTE IMMEDIATE statement.

Successful or unsuccessful execution of the statement is indicated by the setting of
an SQL return code in the SQLCA after the EXECUTE (or EXECUTE IMMEDIATE)
statement completes. The SQL return code should be checked, as previously
described. For more information, see “Detecting and processing error and warning
conditions in host language applications” on page 12.

Static invocation of a select-statement
A select-statement can be included as a part of the (non-executable) DECLARE
CURSOR statement.

Such a statement is executed every time the cursor is opened by means of the
(embedded) OPEN statement. After the cursor is open, the result table can be
retrieved, one row at a time, by successive executions of the FETCH statement.

Embedding a statement in an application program

Statements 11



Used in this way, the select-statement can contain references to host variables.
These references are effectively replaced by the values that the variables have when
the OPEN statement executes.

Dynamic invocation of a select-statement
An application program can dynamically build a select-statement in the form of a
character string placed in a host variable.

In general, the statement is built from some data available to the program (for
example, a query obtained from a workstation). The statement so constructed can
be prepared for execution by means of the (embedded) PREPARE statement, and
referenced by a (non-executable) DECLARE CURSOR statement. The statement is
then executed every time the cursor is opened by means of the (embedded) OPEN
statement. After the cursor is open, the result table can be retrieved, one row at a
time, by successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host variables.
It can contain parameter markers instead. The parameter markers are effectively
replaced by the values of the host variables specified in the OPEN statement.

Interactive invocation
A capability for entering SQL statements from a workstation is part of the
architecture of the database manager. A statement entered in this way is said to be
issued interactively.

Such a statement must be an executable statement that does not contain parameter
markers or references to host variables, because these make sense only in the
context of an application program.

SQL use with other host systems
SQL statement syntax exhibits minor variations among different types of host
systems (DB2 for z/OS, DB2 for i, DB2 for Linux, UNIX, and Windows).

Regardless of whether the SQL statements in an application are static or dynamic,
it is important - if the application is meant to access different database host
systems - to ensure that the SQL statements and precompile/bind options are
supported on the database systems that the application will access.

Further information about SQL statements used in other host systems can be found
in the SQL Reference manuals for DB2 for z/OS and DB2 for i.

Detecting and processing error and warning conditions in host
language applications

An application program containing executable SQL statements can use either
SQLCODE or SQLSTATE values to handle return codes from SQL statements.

There are two ways in which an application can get access to these values.
v Include a structure named SQLCA. The SQLCA includes an integer variable

named SQLCODE and a character string variable named SQLSTATE. In REXX,
an SQLCA is provided automatically. In other languages, an SQLCA can be
obtained by using the INCLUDE SQLCA statement.

Static invocation of a select-statement

12 SQL Reference Volume 2



v If LANGLEVEL SQL92E is specified as a precompile option, a variable named
SQLCODE or SQLSTATE can be declared in the SQL declare section of the
program. If neither of these variables is declared in the SQL declare section, it is
assumed that a variable named SQLCODE is declared elsewhere in the program.
With LANGLEVEL SQL92E, the program should not have an INCLUDE SQLCA
statement.

An SQLCODE is set by the database manager after each SQL statement executes.
All database managers conform to the ISO/ANSI SQL standard, as follows:
v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
v If SQLCODE = 100, "no data" was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of the
result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning.
v If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful, but one or

more warning indicators were set.
v If SQLCODE < 0, execution was not successful.

The meaning of SQLCODE values other than 0 and 100 is product-specific.

An SQLSTATE is set by the database manager after each SQL statement executes.
Application programs can check the execution of SQL statements by testing
SQLSTATE instead of SQLCODE. SQLSTATE provides common codes for common
error conditions. Application programs can test for specific errors or classes of
errors. The coding scheme is the same for all IBM® database managers, and is
based on the ISO/ANSI SQL92 standard.

SQL comments
Static SQL statements can include host language or SQL comments. Dynamic SQL
statements can include SQL comments.

There are two types of SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens (--) and end
with the end of line.

bracketed comments
Bracketed comments are introduced by /* and end with */.

The following rules apply to the use of simple comments:
v The two hyphens must be on the same line and must not be separated by a

space.
v Simple comments can be started wherever a space is valid (except within a

delimiter token or between 'EXEC' and 'SQL').
v Simple comments cannot be continued to the next line.
v In COBOL, the hyphens must be preceded by a space.

The following rules apply to the use of bracketed comments:
v The /* must be on the same line and must not be separated by a space.
v The */ must be on the same line and must not be separated by a space.
v Bracketed comments can be started wherever a space is valid (except within a

delimiter token or between 'EXEC' and 'SQL').

Detecting and processing error and warning conditions in host language applications

Statements 13



v Bracketed comments can be continued to subsequent lines.

Examples
v Example 1: This example shows how to include simple comments in a statement:

CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL
AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT

FROM PROJECT
WHERE DEPTNO = ’E21’ -- SYSTEMS SUPPORT DEPT CODE
AND PRSTAFF > 1

v Example 2: This example shows how to include bracketed comments in a
statement:

CREATE VIEW PRJ_MAXPER /* PROJECTS WITH MOST SUPPORT
PERSONNEL */

AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT */
FROM PROJECT
WHERE DEPTNO = ’E21’ /* SYSTEMS SUPPORT DEPT CODE */
AND PRSTAFF > 1

Conditional compilation in SQL
Conditional compilation allows SQL to include compiler directives which are used
to determine the actual SQL that gets compiled.

There are two types of compiler directives that can be used for conditional
compilation:

Selection directive
A compiler control statement used to determine the selection of a code
fragment. The _IF directive can reference inquiry directives or global
variables that are defined as a constant.

Inquiry directive
A reference to a compiler named constant that is assigned by the system or
specified as a conditional compilation named constant in CURRENT
SQL_CCFLAGS. An inquiry directive can be used directly or in a selection
directive.

These directives can be used in the following contexts:
v SQL procedure definitions
v Compiled SQL function definitions
v Compiled trigger definitions
v Oracle PL/SQL package definitions

A directive can only appear after the object type (FUNCTION, PACKAGE,
PACKAGE BODY, PROCEDURE, or TRIGGER) has been identified in the data
definition language statement.

Selection directive

The selection directive is very similar to the IF statement except there are prefixes
on the keywords to indicate use of conditional compilation and the terminating
keyword is _END.

�� _IF search-condition _THEN code-fragment �

SQL comments

14 SQL Reference Volume 2



� �

_ELSEIF search-condition _THEN code-fragment
�

� _END
_ELSE code-fragment

��

search-condition
Specifies the condition that is evaluated to determine what code-fragment, if any,
is included. If the condition is unknown or false, evaluation continues with the
next search condition, until a condition is true, the _ELSE clause is reached, or
the end of the selection directive is reached. The search condition can include
only the following elements (SQLSTATE 428HV):
v Constants of type BOOLEAN, INTEGER, or VARCHAR
v NULL constants
v Inquiry directives
v Global constants, where the defined constant value is a simple literal of type

BOOLEAN, INTEGER, or VARCHAR
v Basic predicates
v NULL predicates
v Predicates that are a Boolean constant or a Boolean inquiry directive
v Logical operators (AND, OR, and NOT)

code-fragment
A portion of SQL code that can be included in the context of the SQL
statement where the selection directive appears. There must not be a selection
directive in code-fragment (SQLSTATE 428HV).

Inquiry directive

An inquiry directive is used to inquire about the compilation environment. An
inquiry directive is specified in an SQL statement as an ordinary identifier prefixed
with two underscore characters. The actual identifier can represent one of the
following values:
v A compilation environment value defined by the system
v A compilation value defined by a user at the database level or at the individual

session level

The only compilation environment variable defined by the system is __SQL_LINE,
which provides the line number of SQL that is currently being compiled.

A user-defined compilation value can be defined at the database level using the
sql_ccflags database configuration parameter or at a session level by assigning it
to the CURRENT SQL_CCFLAGS special register.

If an inquiry directive is referenced but is not defined, processing continues
assuming that the value for the inquiry directive is the null value.

Notes
v References to global variables defined as constants: A reference to a global

variable (which can also be a reference to a module variable published in a

Conditional compilation in SQL

Statements 15



module) in a selection directive is used to provide a value based on a constant at
the time of compilation only. The referenced global variable must meet the
following requirements:
– Exist at the current server (SQLSTATE 42704)
– Have a data type of BOOLEAN, INTEGER, or VARCHAR (SQLSTATE

428HV)
– Be defined using the CONSTANT clause with a single constant value

(SQLSTATE 428HV)

Such a global variable is known as a global constant. Subsequent changes to the
global constant do not have any impact on statements that are already compiled.

v Syntax alternatives: If the data server environment is enabled for PL/SQL
statement execution:
– ELSIF can be specified instead of ELSEIF
– A dollar character ($) can be used instead of an underscore character (_) as

the prefix for the keywords for conditional compilation
– Two dollar characters ($$) can be used instead of two underscore characters

(__) as the prefix for an inquiry directive

The dollar character prefix is intended only to support existing SQL statements
that use inquiry directives and is not recommended for use when writing new
SQL statements.

Example

Specify a database-wide setting for a compilation value called DBV97 that has a
value of TRUE.

UPDATE DATABASE CONFIGURATION USING SQL_CCFLAGS DB2V97:TRUE

The value is available as the default for any subsequent connection to the database.

If a particular session needed a maximum number of years compilation value for
use in defining some routines in the current session, the default SQL_CCFLAGS
can be extended using the SET CURRENT SQL_CCFLAGS statement.

BEGIN
DECLARE CCFLAGS_LIST VARCHAR(1024);
SET CCFLAGS_LIST = CURRENT SQL_CCFLAGS CONCAT ’,max_years:50’;
SET CURRENT SQL_CCFLAGS = CCFLAGS_LIST;

END

The use of CURRENT SQL_CCFLAGS on the right side of the assignment to the
CCFLAGS_LIST variable keeps the existing SQL_CCFLAGS settings, while the
string constant provides the additional compilation values.

Here is an example of a CREATE PROCEDURE statement that uses the contents of
the CURRENT SQL_CCFLAGS.

CREATE PROCEDURE CHECK_YEARS (IN YEARS_WORKED INTEGER)
BEGIN

_IF __DB2V97 _THEN
IF YEARS_WORKED > __MAX_YEARS THEN
...
END IF;

_END

Conditional compilation in SQL

16 SQL Reference Volume 2



The inquiry directive __DB2V97 is used as a Boolean value to determine if the
code can be included. The inquiry directive __MAX_YEARS is replaced during
compilation by the constant value 50.

About SQL control statements
SQL control statements, also called SQL Procedural Language (SQL PL), are SQL
statements that allow SQL to be used in a manner similar to writing a program in
a structured programming language.

SQL control statements provide the capability to control the logic flow, declare, and
set variables, and handle warnings and exceptions. Some SQL control statements
include other nested SQL statements. SQL control statements can be used in the
body of a routine, trigger or a compound statement.

References to SQL parameters, SQL variables, and global
variables

SQL parameters, SQL variables, and global variables can be referenced anywhere in
an SQL procedure statement where an expression or variable can be specified.

Host variables cannot be specified in SQL routines, SQL triggers or dynamic
compound statements. SQL parameters can be referenced anywhere in the routine
body, and can be qualified with the routine name. SQL variables can be referenced
anywhere in the compound statement in which they are declared, and can be
qualified with the label name specified at the beginning of the compound
statement. If an SQL parameter or SQL variable has a row data type, fields can be
referenced anywhere an SQL parameter or SQL variable can be referenced. Global
variables can be referenced within any expression as long as the expression is not
required to be deterministic. The following scenarios require deterministic
expressions, which preclude the use of global variables:
v Check constraints
v Definitions of generated columns
v Refresh immediate MQTs

All SQL parameters, SQL variables, row variable fields, and global variables are
considered nullable. The name of an SQL parameter, SQL variable, row variable
field, or global variable in an SQL routine can be the same as the name of a
column in a table or view referenced in the routine. The name of an SQL variable
or row variable field can also be the same as the name of another SQL variable or
row variable field declared in the same routine. This can occur when the two SQL
variables are declared in different compound statements. The compound statement
that contains the declaration of an SQL variable determines the scope of that
variable. For more information, see “Compound SQL (compiled)” on page 315.

The name of an SQL variable or SQL parameter in an SQL routine can be the same
as the name of an identifier used in certain SQL statements. If the name is not
qualified, the following rules describe whether the name refers to the identifier or
to the SQL parameter or SQL variable:
v In the SET PATH and SET SCHEMA statements, the name is checked as an SQL

parameter or SQL variable. If not found as an SQL variable or SQL parameter, it
is used as an identifier.

v In the CONNECT, DISCONNECT, RELEASE, and SET CONNECTION
statements, the name is used as an identifier.

Conditional compilation in SQL

Statements 17



Names that are the same should be explicitly qualified. Qualifying a name clearly
indicates whether the name refers to a column, SQL variable, SQL parameter, row
variable field, or global variable. If the name is not qualified, or qualified but still
ambiguous, the following rules describe whether the name refers to a column, an
SQL variable, an SQL parameter, or a global variable:
v If the tables and views specified in an SQL routine body exist at the time the

routine is created, the name is first checked as a column name. If not found as a
column, it is then checked as an SQL variable in the compound statement, then
checked as an SQL parameter, and then, finally, checked as a global variable.

v If the referenced tables or views do not exist at the time the routine is created,
the name is first checked as an SQL variable in the compound statement, then as
an SQL parameter, and then as a global variable. The variable can be declared
within the compound statement that contains the reference, or within a
compound statement in which that compound statement is nested. If two SQL
variables are within the same scope and have the same name, which can happen
if they are declared in different compound statements, the SQL variable that is
declared in the innermost compound statement is used. If not found, it is
assumed to be a column.

References to SQL labels
Labels can be specified on most SQL procedure statements.

The compound statement that contains the statement that defines a label
determines the scope of that label name. A label name must be unique within the
compound statement in which it is defined, including any labels defined in
compound statements that are nested within that compound statement (SQLSTATE
42734). The label must not be the same as a label specified on the compound
statement itself (SQLSTATE 42734), or the same as the name of the routine that
contains the SQL procedure statement (SQLSTATE 42734).

A label name can only be referenced within the compound statement in which it is
defined, including any compound statements that are nested within that
compound statement. A label can be used to qualify the name of an SQL variable,
or it can be specified as the target of a GOTO, LEAVE, or ITERATE statement.

References to SQL condition names
The name of an SQL condition can be the same as the name of another SQL
condition declared in the same routine.

This can occur when the two SQL conditions are declared in different compound
statements. The compound statement that contains the declaration of an SQL
condition name determines the scope of that condition name. A condition name
must be unique within the compound statement in which it is declared, excluding
any declarations in compound statements that are nested within that compound
statement (SQLSTATE 42734). A condition name can only be referenced within the
compound statement in which it is declared, including any compound statements
that are nested within that compound statement. When there is a reference to a
condition name, the condition that is declared in the innermost compound
statement is the condition that is used. For more information, see “Compound SQL
(inlined)”.

References to SQL statement names
The name of an SQL statement can be the same as the name of another SQL
statement declared in the same routine.

References to SQL parameters, SQL variables, and global variables

18 SQL Reference Volume 2



This can occur when the two SQL statements are declared in different compound
statements. The compound statement that contains the declaration of an SQL
statement name determines the scope of that statement name. A statement name
must be unique within the compound statement in which it is declared, excluding
any declarations in compound statements that are nested within that compound
statement (SQLSTATE 42734). A statement name can only be referenced within the
compound statement in which it is declared, including any compound statements
that are nested within that compound statement. When there is a reference to a
statement name, the statement that is declared in the innermost compound
statement is the statement that is used. For more information, see “Compound SQL
(inlined)”.

References to SQL cursor names
Cursor names include the names of declared cursors and the names of cursor
variables.

The name of an SQL cursor can be the same as the name of another SQL cursor
declared in the same routine. This can occur when the two SQL cursors are
declared in different compound statements.

The compound statement that contains the declaration of an SQL cursor
determines the scope of that cursor name. A cursor name must be unique within
the compound statement in which it is declared, excluding any declarations in
compound statements that are nested within that compound statement (SQLSTATE
42734). A cursor name can only be referenced within the compound statement in
which it is declared, including any compound statements that are nested within
that compound statement. When there is a reference to a cursor name, the cursor
that is declared in the innermost compound statement is the cursor that is used.
For more information, see “Compound SQL (inlined)”.

If the cursor constructor assigned to a cursor variable contains a reference to a
local SQL variable, then any OPEN statement that uses the cursor variable must be
within the scope where the local SQL variable was declared.

References to SQL statement names

Statements 19



Function, method, and procedure designators
This topic describes syntax fragments that are used to uniquely identify a function,
method, or procedure that is not defined in a module.

Function designator

A function designator uniquely identifies a single function. Function designators
typically appear in DDL statements for functions (such as DROP or ALTER). A
function designator must not identify a module function (SQLSTATE 42883).

function-designator:

�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

FUNCTION function-name
Identifies a particular function, and is valid only if there is exactly one function
instance with the name function-name in the schema. The identified function
can have any number of parameters defined for it. In dynamic SQL statements,
the CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified object
names. If no function by this name exists in the named or implied schema, an
error (SQLSTATE 42704) is raised. If there is more than one instance of the
function in the named or implied schema, an error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function. The
function resolution algorithm is not used.

function-name
Specifies the name of the function. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE FUNCTION statement. The number of data
types, and the logical concatenation of the data types, is used to identify
the specific function instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

Function, method, and procedure designators

20 SQL Reference Volume 2



If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE FUNCTION statement. When length is specified
for character and graphic string data types, the string unit of the length
attribute must exactly match that specified in the CREATE FUNCTION
statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function, using the name that is specified or
defaulted to at function creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements, the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names. The specific-name
must identify a specific function instance in the named or implied schema;
otherwise, an error (SQLSTATE 42704) is raised.

Method designator

A method designator uniquely identifies a single method. Method designators
typically appear in DDL statements for methods (such as DROP or ALTER).

method-designator:

�

METHOD method-name FOR type-name
( )

,

data-type
SPECIFIC METHOD specific-name

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one method
instance with the name method-name for the type type-name. The identified
method can have any number of parameters defined for it. If no method by
this name exists for the type, an error (SQLSTATE 42704) is raised. If there is
more than one instance of the method for the type, an error (SQLSTATE 42725)
is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method. The
method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE TYPE statement. The number of data types, and
the logical concatenation of the data types, is used to identify the specific
method instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

Function, method, and procedure designators

Statements 21



It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE TYPE statement. When length is specified for
character and graphic string data types, the string unit of the length
attribute must exactly match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the type in the named
or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name
Names the type with which the specified method is to be associated. The
name must identify a type already described in the catalog (SQLSTATE
42704). In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or defaulted to
at method creation time. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static
SQL statements, the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names. The specific-name must identify a
specific method instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is raised.

Procedure designator

A procedure designator uniquely identifies a single procedure. Procedure
designators typically appear in DDL statements for procedures (such as DROP or
ALTER). A procedure designator must not identify a module procedure
(SQLSTATE 42883).

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

PROCEDURE procedure-name
Identifies a particular procedure, and is valid only if there is exactly one
procedure instance with the name procedure-name in the schema. The identified
procedure can have any number of parameters defined for it. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for
an unqualified object name. In static SQL statements, the QUALIFIER

Function, method, and procedure designators

22 SQL Reference Volume 2



precompile/bind option implicitly specifies the qualifier for unqualified object
names. If no procedure by this name exists in the named or implied schema,
an error (SQLSTATE 42704) is raised. If there is more than one instance of the
procedure in the named or implied schema, an error (SQLSTATE 42725) is
raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the procedure. The
procedure resolution algorithm is not used.

procedure-name
Specifies the name of the procedure. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE PROCEDURE statement. The number of data
types, and the logical concatenation of the data types, is used to identify
the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE PROCEDURE statement. When length is specified
for character and graphic string data types, the string unit of the length
attribute must exactly match that specified in the CREATE PROCEDURE
statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies a particular procedure, using the name that is specified or defaulted
to at procedure creation time. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name.
In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name must
identify a specific procedure instance in the named or implied schema;
otherwise, an error (SQLSTATE 42704) is raised.

Function, method, and procedure designators

Statements 23



ALLOCATE CURSOR
The ALLOCATE CURSOR statement allocates a cursor for the result set identified
by the result set locator variable.

For more information about result set locator variables, see the description of the
ASSOCIATE LOCATORS statement.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable
statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable ��

Description

cursor-name
Names the cursor. The name must not identify a cursor that has already been
declared in the source SQL procedure (SQLSTATE 24502).

CURSOR FOR RESULT SET rs-locator-variable

Names a result set locator variable that has been declared in the source SQL
procedure, according to the rules for declaring result set locator variables. For
more information about declaring SQL variables, see “Compound SQL
(Procedure) statement”.

The result set locator variable must contain a valid result set locator value, as
returned by the ASSOCIATE LOCATORS SQL statement (SQLSTATE 0F001).

Rules
v The following rules apply when using an allocated cursor:

– An allocated cursor cannot be opened with the OPEN statement (SQLSTATE
24502).

– An allocated cursor cannot be used in a positioned UPDATE or DELETE
statement (SQLSTATE 42828).

– An allocated cursor can be closed with the CLOSE statement. Closing an
allocated cursor closes the associated cursor.

– Only one cursor can be allocated to each result set.
v Allocated cursors last until a rollback operation, an implicit close, or an explicit

close.
v A commit operation destroys allocated cursors that are not defined WITH

HOLD.
v Destroying an allocated cursor closes the associated cursor in the SQL procedure.

ALLOCATE CURSOR

24 SQL Reference Volume 2



Example

This SQL procedure example defines and associates cursor C1 with the result set
locator variable LOC1 and the related result set returned by the SQL procedure:

ALLOCATE C1 CURSOR FOR RESULT SET LOC1;

ALLOCATE CURSOR

Statements 25



ALTER AUDIT POLICY
The ALTER AUDIT POLICY statement modifies the definition of an audit policy at
the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� ALTER AUDIT POLICY policy-name �

� � �

,
(1) (2)

CATEGORIES ALL STATUS BOTH
AUDIT FAILURE
CHECKING NONE
CONTEXT SUCCESS

WITHOUT DATA
EXECUTE

WITH DATA
OBJMAINT
SECMAINT
SYSADMIN
VALIDATE

ERROR TYPE NORMAL
AUDIT

��

Notes:

1 Each of the CATEGORIES and ERROR TYPE clauses can be specified at most
once (SQLSTATE 42614).

2 Each category can be specified at most once (SQLSTATE 42614), and no other
category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name
Identifies the audit policy that is to be altered. This is a one-part name. It is an
SQL identifier (either ordinary or delimited). The name must uniquely identify
an existing audit policy at the current server (SQLSTATE 42704).

CATEGORIES
A list of one or more audit categories for which a new status value is specified.
If ALL is not specified, the STATUS of any category that is not explicitly
specified remains unchanged.

ALL
Sets all categories to the same status. The EXECUTE category is WITHOUT
DATA.

ALTER AUDIT POLICY

26 SQL Reference Volume 2



AUDIT
Generates records when audit settings are changed or when the audit log
is accessed.

CHECKING
Generates records during authorization checking of attempts to access or
manipulate database objects or functions.

CONTEXT
Generates records to show the operation context when a database
operation is performed.

EXECUTE
Generates records to show the execution of SQL statements.

WITHOUT DATA or WITH DATA
Specifies whether or not input data values provided for any host
variables and parameter markers should be logged as part of the
EXECUTE category.

WITHOUT DATA
Input data values provided for any host variables and parameter
markers are not logged as part of the EXECUTE category.

WITH DATA
Input data values provided for any host variables and parameter
markers are logged as part of the EXECUTE category. Not all input
values are logged; specifically, LOB, LONG, XML, and structured
type parameters appear as the null value. Date, time, and
timestamp fields are logged in ISO format. The input data values
are converted to the database code page before being logged. If
code page conversion fails, no errors are returned and the
unconverted data is logged.

OBJMAINT
Generates records when data objects are created or dropped.

SECMAINT
Generates records when object privileges, database privileges, or DBADM
authority is granted or revoked. Records are also generated when the
database manager security configuration parameters sysadm_group,
sysctrl_group, or sysmaint_group are modified.

SYSADMIN
Generates records when operations requiring SYSADM, SYSMAINT, or
SYSCTRL authority are performed.

VALIDATE
Generates records when users are authenticated or when system security
information related to a user is retrieved.

STATUS
Specifies a status for the specified category.

BOTH
Successful and failing events will be audited.

FAILURE
Only failing events will be audited.

SUCCESS
Only successful events will be audited.

ALTER AUDIT POLICY

Statements 27



NONE
No events in this category will be audited.

ERROR TYPE
Specifies whether audit errors are to be returned or ignored.

NORMAL
Any errors generated by the audit are ignored and only the SQLCODEs for
errors associated with the operation being performed are returned to the
application.

AUDIT
All errors, including errors occurring within the audit facility itself, are
returned to the application.

Rules
v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:
– AUDIT
– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)
– DROP (ROLE) or DROP (TRUSTED CONTEXT) if the role or trusted context

is associated with an audit policy
v An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time

across all database partitions. If an uncommitted AUDIT-exclusive SQL
statement is executing, subsequent AUDIT-exclusive SQL statements wait until
the current AUDIT-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

v If the audit policy that is being altered is currently associated with a database
object, the changes do not take effect until the next unit of work for the
application that is affected by the change. For example, if the audit policy is in
use for the database, no current units of work will see the change to the policy
until after a COMMIT or a ROLLBACK statement for that unit of work
completes.

Example

Alter the SECMAINT, CHECKING, and VALIDATE categories of an audit policy
named DBAUDPRF to audit both successes and failures.

ALTER AUDIT POLICY DBAUDPRF
CATEGORIES SECMAINT STATUS BOTH,

CHECKING STATUS BOTH,
VALIDATE STATUS BOTH

ALTER AUDIT POLICY

28 SQL Reference Volume 2



ALTER BUFFERPOOL
The ALTER BUFFERPOOL statement is used to modify the characteristics or
behavior of a buffer pool.

The ALTER BUFFERPOOL statement can modify a buffer pool in the following
ways:
v Modify the size of the buffer pool on all members or on a single member
v Enable or disable automatic sizing of the buffer pool
v Add this buffer pool definition to a new database partition group
v Modify the block area of the buffer pool for block-based I/O

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

�� ALTER BUFFERPOOL bufferpool-name �

�
IMMEDIATE

SIZE number-of-pages
DEFERRED MEMBER member-number AUTOMATIC

number-of-pages
ADD DATABASE PARTITION GROUP db-partition-group-name
NUMBLOCKPAGES number-of-pages

BLOCKSIZE number-of-pages
BLOCKSIZE number-of-pages

��

Description

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). It must be a buffer pool described in the catalog.

IMMEDIATE or DEFERRED
Indicates whether or not the buffer pool size will be changed immediately.

IMMEDIATE
The buffer pool size will be changed immediately. If there is not enough
reserved space in the database shared memory to allocate new space
(SQLSTATE 01657), the statement is executed as DEFERRED.

DEFERRED
The buffer pool size will be changed when the database is reactivated (all
applications need to be disconnected from the database). Reserved memory
space is not needed; the database will allocate the required memory from
the system at activation time.

MEMBER member-number
Specifies the member on which the size of the buffer pool is modified. An
exception entry is created in the SYSCAT.BUFFERPOOLEXCEPTIONS catalog

ALTER BUFFERPOOL

Statements 29



view. The member must be in one of the database partition groups for the
buffer pool (SQLSTATE 42729). If this clause is not specified, the size of the
buffer pool is modified on all members except those that have an exception
entry in SYSCAT.BUFFERPOOLEXCEPTIONS.

SIZE
Specifies a new size for the buffer pool, or enables or disables self tuning for
this buffer pool.

number-of-pages
The number of pages for the new buffer pool size. If the buffer pool is
already a self-tuning buffer pool, and the SIZE number-of-pages clause is
specified, the alter operation disables self-tuning for this buffer pool.

AUTOMATIC
Enables self tuning for this buffer pool. The database manager adjusts the
size of the buffer pool in response to workload requirements. If the
number of pages is specified, the current buffer pool size is set to that
value unless the deferred keyword is also specified, in which case the
number of pages will be ignored. On subsequent database activations, the
buffer pool size is based on the last tuning value that is determined by the
self-tuning memory manager (STMM). The STMM enforces a minimum
size for automatic buffer pools, which is the minimum of the current size
and 5000 pages. To determine the current size of buffer pools that are
enabled for self tuning, use the MON_GET_BUFFERPOOL routine and
examine the current size of the buffer pools. The size of the buffer pool is
found in thebp_cur_buffsz monitor element. When AUTOMATIC is
specified, the MEMBER clause cannot be specified (SQLSTATE 42601).

ADD DATABASE PARTITION GROUP db-partition-group-name
Adds this database partition group to the list of database partition groups to
which the buffer pool definition is applicable. For any member in the database
partition group that does not already have the buffer pool defined, the buffer
pool is created on the member using the default size specified for the buffer
pool. Table spaces in db-partition-group-name may specify this buffer pool. The
database partition group must currently exist in the database (SQLSTATE
42704).

NUMBLOCKPAGES number-of-pages
Specifies the number of pages that should exist in the block-based area. The
number of pages must not be greater than 98 percent of the number of pages
for the buffer pool, based on the NPAGES value in SYSCAT.BUFFERPOOLS
(SQLSTATE 54052). Specifying the value 0 disables block I/O. The actual value
of NUMBLOCKPAGES used will be a multiple of BLOCKSIZE.

NUMBLOCKPAGES is not supported in a DB2 pureScale® environment
(SQLSTATE 56038).

BLOCKSIZE number-of-pages
Specifies the number of pages in a block. The block size must be a value
between 2 and 256 (SQLSTATE 54053). The default value is 32.

BLOCKSIZE is not supported in a DB2 pureScale environment (SQLSTATE
56038).

Notes
v Only the buffer pool size can be changed dynamically (immediately). All other

changes are deferred, and will only come into effect after the database is
reactivated.

ALTER BUFFERPOOL

30 SQL Reference Volume 2



v If the statement is executed as deferred, although the buffer pool definition is
transactional and the changes to the buffer pool definition will be reflected in
the catalog tables on commit, no changes to the actual buffer pool will take
effect until the next time the database is started. The current attributes of the
buffer pool will exist until then, and there will not be any impact to the buffer
pool in the interim. Tables created in table spaces of new database partition
groups will use the default buffer pool. The statement is IMMEDIATE by default
when that keyword applies.

v There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DBPARTITIONNUM or NODE can be specified in place of MEMBER except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

ALTER BUFFERPOOL

Statements 31



ALTER DATABASE PARTITION GROUP
The ALTER DATABASE PARTITION GROUP statement is used to add one or more
database partitions to a database partition group, or drop one or more database
partitions from a database partition group.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Syntax

�� ALTER DATABASE PARTITION GROUP db-partition-name �

� �

,

ADD DBPARTITIONNUM db-partitions-clause
DBPARTITIONNUMS db-partition-options

DROP DBPARTITIONNUM db-partitions-clause
DBPARTITIONNUMS

��

db-partitions-clause:

�

,

( db-partition-number1 )
TO db-partition-number2

db-partition-options:

LIKE DBPARTITIONNUM db-partition-number
WITHOUT TABLESPACES

Description

db-partition-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). It must be a database partition group
described in the catalog. IBMCATGROUP and IBMTEMPGROUP cannot be
specified (SQLSTATE 42832).

ADD DBPARTITIONNUM
Specifies the specific database partition or partitions to add to the database
partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must not already be defined in the database
partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM
Specifies the specific database partition or partitions to drop from the database

ALTER DATABASE PARTITION GROUP

32 SQL Reference Volume 2



partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must already be defined in the database
partition group (SQLSTATE 42729).

db-partitions-clause
Specifies the database partition or partitions to be added or dropped.

db-partition-number1
Specify a specific database partition number.

TO db-partition-number2
Specify a range of database partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of
db-partition-number1 (SQLSTATE 428A9).

db-partition-options

LIKE DBPARTITIONNUM db-partition-number
Specifies that the containers for the existing table spaces in the database
partition group will be the same as the containers on the specified
db-partition-number. The specified database partition must be a partition
that existed in the database partition group before this statement, and that
is not included in a DROP DBPARTITIONNUM clause of the same
statement.

For table spaces that are defined to use automatic storage (that is, table
spaces that were created with the MANAGED BY AUTOMATIC STORAGE
clause of the CREATE TABLESPACE statement, or for which no
MANAGED BY clause was specified at all), the containers will not
necessarily match those from the specified partition. Instead, containers
will automatically be assigned by the database manager based on the
storage paths that are associated with the database, and this might or
might not result in the same containers being used. The size of each table
space is based on the initial size that was specified when the table space
was created, and might not match the current size of the table space on the
specified partition.

WITHOUT TABLESPACES
Specifies that the containers for existing table spaces in the database
partition group are not created on the newly added database partition or
partitions. The ALTER TABLESPACE statement using the db-partitions-clause
or the MANAGED BY AUTOMATIC STORAGE clause must be used to
define containers for use with the table spaces that are defined on this
database partition group. If this option is not specified, the default
containers are specified on newly added database partitions for each table
space defined on the database partition group.

This option is ignored for table spaces that are defined to use automatic
storage (that is, table spaces that were created with the MANAGED BY
AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement,
or for which no MANAGED BY clause was specified at all). There is no
way to defer container creation for these table spaces. Containers will
automatically be assigned by the database manager based on the storage
paths that are associated with the database. The size of each table space
will be based on the initial size that was specified when the table space
was created.

Rules
v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).

ALTER DATABASE PARTITION GROUP

Statements 33



v Each db-partition-number listed in the db-partitions-clause must be for a unique
database partition (SQLSTATE 42728).

v A valid database partition number is between 0 and 999 inclusive (SQLSTATE
42729).

v A database partition cannot appear in both the ADD and DROP clauses
(SQLSTATE 42728).

v There must be at least one database partition remaining in the database partition
group. The last database partition cannot be dropped from a database partition
group (SQLSTATE 428C0).

v If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT
TABLESPACES clause is specified when adding a database partition, the default
is to use the lowest database partition number of the existing database partitions
in the database partition group (say it is 2) and proceed as if LIKE
DBPARTITIONNUM 2 had been specified. For an existing database partition to
be used as the default, it must have containers defined for all the table spaces in
the database partition group (column IN_USE of
SYSCAT.DBPARTITIONGROUPDEF is not 'T').

v The ALTER DATABASE PARTITION GROUP statement might fail (SQLSTATE
55071) if an add database partition server request is either pending or in
progress. This statement might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes
v When a database partition is added to a database partition group, a catalog

entry is made for the database partition (see
SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed
immediately to include the new database partition, along with an indicator
(IN_USE) that the database partition is in the distribution map if either:
– no table spaces are defined in the database partition group or
– no tables are defined in the table spaces defined in the database partition

group and the WITHOUT TABLESPACES clause was not specified.
The distribution map is not changed and the indicator (IN_USE) is set to
indicate that the database partition is not included in the distribution map if
either:
– Tables exist in table spaces in the database partition group or
– Table spaces exist in the database partition group and the WITHOUT

TABLESPACES clause was specified (unless all of the table spaces are defined
to use automatic storage, in which case the WITHOUT TABLESPACES clause
is ignored)

To change the distribution map, the REDISTRIBUTE DATABASE PARTITION
GROUP command must be used. This redistributes any data, changes the
distribution map, and changes the indicator. Table space containers need to be
added before attempting to redistribute data if the WITHOUT TABLESPACES
clause was specified.

v When a database partition is dropped from a database partition group, the
catalog entry for the database partition (see SYSCAT.DBPARTITIONGROUPDEF)
is updated. If there are no tables defined in the table spaces defined in the
database partition group, the distribution map is changed immediately to
exclude the dropped database partition and the entry for the database partition
in the database partition group is dropped. If tables exist, the distribution map is
not changed and the indicator (IN_USE) is set to indicate that the database
partition is waiting to be dropped. The REDISTRIBUTE DATABASE PARTITION

ALTER DATABASE PARTITION GROUP

34 SQL Reference Volume 2



GROUP command must be used to redistribute the data and drop the entry for
the database partition from the database partition group.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Example

Assume that you have a six-partition database that has the following database
partitions: 0, 1, 2, 5, 7, and 8. Two database partitions (3 and 6) are added to the
system.
v Example 1: Assume that you want to add database partitions 3 and 6 to a

database partition group called MAXGROUP, and have table space containers
like those on database partition 2. The statement is as follows:

ALTER DATABASE PARTITION GROUP MAXGROUP
ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

v Example 2: Assume that you want to drop database partition 1 and add database
partition 6 to database partition group MEDGROUP. You will define the table
space containers separately for database partition 6 using ALTER TABLESPACE.
The statement is as follows:

ALTER DATABASE PARTITION GROUP MEDGROUP
ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES
DROP DBPARTITIONNUM(1)

ALTER DATABASE PARTITION GROUP

Statements 35



ALTER DATABASE
The ALTER DATABASE statement adds new storage paths to, or removes existing
storage paths from, the collection of paths that are used for automatic storage table
spaces.

An automatic storage table space is a table space that has been created using
automatic storage; that is, the MANAGED BY AUTOMATIC STORAGE clause has
been specified on the CREATE TABLESPACE statement, or no MANAGED BY
clause has been specified at all. If a database is enabled for automatic storage,
container and space management characteristics of its table spaces can be
completely determined by the database manager. If the database is not currently
enabled for automatic storage then the act of adding storage paths will enable it.

Important: This statement is deprecated and might be removed in a future release.
Use the CREATE STOGROUP or ALTER STOGROUP statements instead.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either
SYSADM or SYSCTRL authority.

Syntax

�� ALTER DATABASE
database-name

�

� � �

�

,
(1)

ADD STORAGE ON 'storage-path'
,

DROP STORAGE ON 'storage-path'

��

Notes:

1 Each clause can be specified only once.

Description

database-name
An optional value specifying the name of the database that is to be altered. If
specified, the value must match the name of the database to which the
application is currently connected (not the alias that the client might have
cataloged); otherwise, an error is returned (SQLSTATE 42961).

ALTER DATABASE

36 SQL Reference Volume 2



ADD STORAGE ON
Specifies that one or more new storage paths are to be added to the collection
of storage paths that are used for automatic storage table spaces.

'storage-path'
A string constant that specifies the location where containers for automatic
storage table spaces are to be created. The format of the string depends on
the operating system, as illustrated in the following table:

Operating system String format

Linux
AIX®

Solaris
HP-UX

An absolute path.

Windows The letter name of a drive.

DROP STORAGE ON
Specifies that one or more storage paths are to be removed from the collection
of storage paths that are used for automatic storage table spaces. If table spaces
are actively using a storage path being dropped, then the state of the storage
path is changed from “In Use” to “Drop Pending” and future use of the
storage path will be prevented.

'storage-path'
A string constant that specifies the location from which storage paths are to
be removed. The format of the string depends on the operating system, as
illustrated in the following table:

Operating system String format

Linux
AIX
Solaris
HP-UX

An absolute path.

Windows The letter name of a drive.

Rules
v For a database that is running on Version 10.1 or later, the operations of this

statement are applied to the default storage group for the database. If no storage
group is defined for the database, the name IBMSTOGROUP is used.

v A storage path being added, must be valid according to the naming rules for
paths, and must be accessible (SQLSTATE 57019). Similarly, in a partitioned
database environment, the storage path must exist and be accessible on every
database partition (SQLSTATE 57019).

v A storage path being dropped must currently exist in the database (SQLSTATE
57019) and cannot already be in the “Drop Pending” state (SQLSTATE 55073).

v A database enabled for automatic storage must have at least one storage path.
Dropping all storage paths from the database is not permitted (SQLSTATE
428HH).

v The ALTER DATABASE statement cannot be executed while a database partition
server is being added (SQLSTATE 55071).

v DROP STORAGE ON cannot be specified in a DB2 pureScale environment
(SQLSTATE 56038).

ALTER DATABASE

Statements 37



Notes
v When adding new storage paths:

– Existing regular and large table spaces using automatic storage will not
initially use these new paths. The database manager might choose to create
new table space containers on these paths only if an out-of-space condition
occurs.

– Existing temporary table spaces managed by automatic storage do not
automatically use new storage paths. The database must be stopped normally
then restarted for containers in these table spaces to use the new storage path
or paths. As an alternative, the temporary table spaces can be dropped and
recreated. When created, these table spaces automatically use all storage paths
that have sufficient free space.

v Adding storage paths to the database to enable automatic storage will not cause
the database to convert existing non-automatic storage enabled table spaces to
use automatic storage.

v Although ADD STORAGE and DROP STORAGE are logged operations, whether
they are redone during a rollforward operation depends on how the database
was restored. If the restore operation does not redefine the storage paths that are
associated with the database, the log record that contains the storage path
change is redone, and the storage paths that are described in the log record are
added or dropped during the rollforward operation. However, if the storage
paths are redefined during the restore operation, the rollforward operation will
not redo ADD STORAGE or DROP STORAGE log records, because it is assumed
that you have already set up the storage paths.

v When free space is calculated for a storage path on a database partition, the
database manager checks for the existence of the following directories or mount
points within the storage path, and will use the first one that is found.
<storage path>/<instance name>/NODE####/<database name>
<storage path>/<instance name>/NODE####
<storage path>/<instance name>
<storage path>

Where:
– <storage path> is a storage path associated with the database
– <instance name> is the instance under which the database resides
– NODE#### corresponds to the database partition number (for example,

NODE0000 or NODE0001)
– <database name> is the name of the database
File systems can be mounted at a point beneath the storage path, and the
database manager will recognize that the actual amount of free space available
for table space containers might not be the same amount that is associated with
the storage path directory itself.
Consider an example in which two logical database partitions exist on one
physical machine, and there is a single storage path (/dbdata). Each database
partition will use this storage path, but you might want to isolate the data from
each partition within its own file system. In this case, a separate file system can
be created for each partition and it can be mounted at /dbdata/<instance>/
NODE####. When creating containers on the storage path and determining free
space, the database manager will not retrieve free space information for /dbdata,
but instead will retrieve it for the corresponding /dbdata/<instance>/NODE####
directory.

v In general, the same storage paths must be used for each partition in a
partitioned database environment. One exception to this is the case in which
database partition expressions are used within the storage path. Doing this

ALTER DATABASE

38 SQL Reference Volume 2



allows the database partition number to be reflected in the storage path, such
that the resulting path name is different on each partition.

v When dropping a storage path that is in use by one or more table spaces, the
state of the path changes from “In Use” to “Drop Pending”. Future growth on
the path will not occur. Before the path can be fully removed from the database,
each affected table space must be rebalanced (using the REBALANCE clause of
the ALTER TABLESPACE statement) so that its container data is moved off the
storage path. Rebalance is only supported for regular and large table spaces.
Temporary table spaces should be dropped and recreated to have their
containers removed from the dropped path. When the path is no longer in use
by any table space, it will be physically removed from the database.
For a partitioned database, the path is maintained independently on each
partition. When a path is no longer in use on a given database partition, it will
be physically removed from that partition. Other partitions may still show the
path as being in the “Drop Pending” state.
The list of automatic storage table spaces using drop pending storage paths can
be determined by issuing the following SQL statement:
SELECT DISTINCT A.TBSP_NAME, A.TBSP_ID, A.TBSP_CONTENT_TYPE

FROM TABLE(MON_GET_TABLESPACE(NULL,-2)) AS A
WHERE A.TBSP_PATHS_DROPPED = 1

v When dropping a storage path that was originally specified using a database
partition expression, the same storage path string, including the database
partition expression, must be used in the drop. If a database partition expression
was specified then this path string can be found in the “Path with db partition
expression” element (db_storage_path_with_dpe) of a database snapshot. This
element is not shown if a database partition expression was not included in the
original path specified.

v It is possible for a given storage path to be added to a database multiple times.
When using the DROP STORAGE ON clause, specifying that particular path
once will drop all instances of the path from the database.

Examples
1. Add two paths under the /db directory (/db/filesystem1 and /db/filesystem2)

and a third path named /filesystem3 to the space for automatic storage table
spaces that is associated with the currently connected database.

ALTER DATABASE ADD STORAGE ON ’/db/filesystem1’, ’/db/filesystem2’,
’/filesystem3’

2. Add drives D and E to the space for automatic storage table spaces that is
associated with the SAMPLE database.

ALTER DATABASE SAMPLE ADD STORAGE ON ’D:’, ’E:\’

3. Add directory F:\DBDATA and drive G to the space for automatic storage table
spaces that is associated with the currently connected database.

ALTER DATABASE ADD STORAGE ON ’F:\DBDATA’, ’G:’

4. Add a storage path that uses a database partition expression to differentiate the
storage paths on each of the database partitions.

ALTER DATABASE ADD STORAGE ON ’/dataForPartition $N’

The storage path that would be used on database partition 0 is
/dataForPartition0; on database partition 1, it would be /dataForPartition1;
and so on.

5. Add storage paths to a database that is not automatic storage enabled, for the
purposes of enabling automatic storage for the database.

ALTER DATABASE

Statements 39



CREATE DATABASE MYDB AUTOMATIC STORAGE NO
CONNECT TO MYDB
ALTER DATABASE ADD STORAGE ON ’/db/filesystem1’, ’/db/filesystem2’

Database MYDB is now enabled for automatic storage.
6. Remove paths /db/filesystem1 and /db/filesystem2 from the currently

connected database.
ALTER DATABASE DROP STORAGE ON ’/db/filesystem1’, ’/db/filesystem2’

After the storage is dropped successfully, use the ALTER TABLESPACE
statement with the REBALANCE clause for each table space that was using
these storage paths to rebalance the table space.

7. A storage path with a database partition expression (/dataForPartition $N) was
previously added to the database and now it is to be removed.

ALTER DATABASE DROP STORAGE ON ’/dataForPartition $N’

After the storage is dropped successfully, use the ALTER TABLESPACE
statement with the REBALANCE clause for each table space that was using
these storage paths to rebalance the table space.

ALTER DATABASE

40 SQL Reference Volume 2



ALTER EVENT MONITOR
The ALTER EVENT MONITOR statement alters the definition of an event monitor
that has a target for the event monitor data of TABLE.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority

Syntax

�� ALTER EVENT MONITOR event-monitor-name �

� �
(1)

ADD LOGICAL GROUP evm-group
( target-table-options )

��

target-table-options:

�
(2) (3)

TABLE table-name
IN tablespace-name
PCTDEACTIVATE integer

Notes:

1 A logical group can be added only to TABLE event monitors (not
UNFORMATTED EVENT TABLE event monitors).

2 Each clause can be specified only once.

3 Clauses can be separated with a space or a comma.

Description

event-monitor-name
The event-monitor-name must identify an event monitor that exists at the current
server and has a target for the event monitor data of TABLE.

ADD LOGICAL GROUP
Adds a logical group to the event monitor that has a target for the data of
TABLE.

ALTER EVENT MONITOR

Statements 41



evm-group
Identifies the logical data group for which a target table is being added.
The value depends upon the type of event monitor, as shown in the
following table:

Table 10. Values for evm-group based on the type of event monitor

Type of Event Monitor evm-group Value

Database v DB

v CONTROL1

v DBMEMUSE

Tables v TABLE

v CONTROL1

Deadlocks v CONNHEADER

v DEADLOCK

v DLCONN

v CONTROL1

Deadlocks with details v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v CONTROL1

Deadlocks with details history v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v STMTHIST

v CONTROL1

Deadlocks with details history
values

v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v STMTHIST

v STMTVALS

v CONTROL1

Table spaces v TABLESPACE

v CONTROL1

Bufferpools v BUFFERPOOL

v CONTROL1

Connections v CONNHEADER

v CONN

v CONTROL1

v CONNMEMUSE

ALTER EVENT MONITOR

42 SQL Reference Volume 2



Table 10. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group Value

Statements v CONNHEADER

v STMT

v SUBSECTION4

v CONTROL1

Transactions v CONNHEADER

v XACT

v CONTROL1

Activities v ACTIVITY

v ACTIVITYMETRICS

v ACTIVITYSTMT

v ACTIVITYVALS

v CONTROL1

Statistics v QSTATS

v SCSTATS

v SCMETRICS

v WCSTATS

v WLSTATS

v WLMETRICS

v HISTOGRAMBIN

v CONTROL1

Threshold Violations v THRESHOLDVIOLATIONS

v CONTROL1

Locking5
v LOCK

v LOCK_PARTICIPANTS

v LOCK_PARTICIPANT_ACTIVITIES

v LOCK_ACTIVITY_VALUES

v CONTROL1

Package Cache5
v PKGCACHE

v PKGCACHE_METRICS

v CONTROL1

Unit of Work5
v UOW

v UOW_METRICS

v UOW_PACKGE_LIST

v UOW_EXECUTABLE_LIST

v CONTROL1

ALTER EVENT MONITOR

Statements 43



Table 10. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group Value

Change History v CHANGESUMMARY

v EVMONSTART

v TXNCOMPLETION

v DDLSTMTEXEC

v DBDBMCFG

v REGVAR

v UTILSTART

v UTILSTOP

v UTILPHASE

v UTILLOCATION

v CONTROL1

1 Logical data groups dbheader (conn_time element only), start and overflow, are all written
to the CONTROL group. The overflow group is written if the event monitor is non-blocked
and events were discarded.

2 Corresponds to the DETAILED_DLCONN event.

3 Corresponds to the LOCK logical data groups that occur within each
DETAILED_DLCONN event.

4 Created only for partitioned database environments.

5 Refers to the Formatted Event Table version of this event monitor type.

TABLE table-name
Specifies the name of the target table. The target table must be a
non-partitioned table. If the name is unqualified, the table schema defaults
to the value in the CURRENT SCHEMA special register. If no name is
provided, the unqualified name is derived from evm-group and
event-monitor-name as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table space
name is provided, the table space is chosen using the same process as
when a table is created without a table space name using the CREATE
TABLE statement.

When specifying the table space name for an activities, locking, package
cache, or unit of work event monitor, the table space's page size affects the
INLINE LOB lengths used. Therefore, consider specifying a table space
with as large a page size as possible to improve the INSERT performance
of the event monitor.

PCTDEACTIVATE integer
If a table is being created in a DMS table space, PCTDEACTIVATE
specifies how full the table space must be before the event monitor
automatically deactivates. The specified value, which represents a
percentage, can range from 0 to 100. The default value is 100 (meaning that
the event monitor deactivates when the table space becomes completely

ALTER EVENT MONITOR

44 SQL Reference Volume 2



full). This option is ignored for SMS table spaces. When a target table
space has auto-resize enabled, it is recommended that PCTDEACTIVATE
be set to 100.

Notes
v When system catalog changes take effect: Changes are written to the system

catalog, but do not take effect until they are committed and the event monitor is
reactivated.

Example

The event monitor ACT is missing the ACTIVITYMETRICS group. Alter the event
monitor to add this group and give the table the name "ACTMETRICS".

ALTER EVENT MONITOR ACT
ADD LOGICAL GROUP ACTIVITYMETRICS TABLE ACTMETRICS

ALTER EVENT MONITOR

Statements 45



ALTER FUNCTION
The ALTER FUNCTION statement modifies the properties of an existing function.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema of the function
v Owner of the function, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view
v DBADM authority

To alter the EXTERNAL NAME of a function, the privileges held by the
authorization ID of the statement must also include at least one of the following
authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database
v DBADM authority

To alter a function to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following authorities:
v CREATE_NOT_FENCED_ROUTINE authority on the database
v DBADM authority

To alter a function to be fenced, no additional authorities or privileges are
required.

To alter a function to be SECURED or NOT SECURED the privileges held by the
authorization ID of the statement must include at least one of the following
authorities:
v SECADM authority
v CREATE_SECURE_OBJECT authority

If no other clauses are specified, then no other privileges are required to process
the statement.

ALTER FUNCTION

46 SQL Reference Volume 2



Syntax

�� ALTER function-designator � EXTERNAL NAME 'string'
identifier

FENCED
NOT FENCED
SECURED
NOT SECURED
THREADSAFE
NOT THREADSAFE

��

function-designator:

�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

Description

function-designator
Uniquely identifies the function to be altered. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the function. This
option can only be specified when altering external functions (SQLSTATE
42849).

FENCED or NOT FENCED
Specifies whether the function is considered safe to run in the database
manager operating environment's process or address space (NOT FENCED), or
not (FENCED). Most functions have the option of running as FENCED or NOT
FENCED.

If a function is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the function. In
general, a function running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:
Use of NOT FENCED for functions that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database. DB2
databases take some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED user-defined functions are used.

A function declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a function has any parameters defined AS LOCATOR, and was defined with
the NO SQL option, the function cannot be altered to be FENCED (SQLSTATE
42613).

ALTER FUNCTION

Statements 47



This option cannot be altered for LANGUAGE OLE, OLEDB, or CLR functions
(SQLSTATE 42849).

SECURED or NOT SECURED
Specifies whether the function is considered secure for row and column access
control.

NOT SECURED
Indicates that the function is not considered secure. When the function is
invoked, the arguments of the function must not reference a column for
which a column mask is enabled and column level access control is
activated for its table (SQLSTATE 428HA). This rule applies to the non
secure user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure.

The function must be secure when it is referenced in a row permission or a
column mask (SQLSTATE 428H8).

The function must be secure when it is referenced in a materialized query
table and the materialized query table references any table that has row or
column level access control activated (SQLSTATE 428H8).

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as
other routines (THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE and OLEDB:
v If the function is defined as THREADSAFE, the database manager can

invoke the function in the same process as other routines. In general, to be
threadsafe, a function should not use any global or static data areas. Most
programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

v If the function is defined as NOT THREADSAFE, the database manager will
never simultaneously invoke the function in the same process as another
routine. Only a fenced function can be NOT THREADSAFE (SQLSTATE
42613).

This option may not be altered for LANGUAGE OLE or OLEDB functions
(SQLSTATE 42849).

Notes
v It is not possible to alter a function that is in the following schema (SQLSTATE

42832):
– SYSIBM
– SYSFUN
– SYSPROC

v Functions declared as LANGUAGE SQL, sourced functions, or template
functions cannot be altered (SQLSTATE 42917).

v Altering a function from NOT SECURED to SECURED: Normally users with
SECADM authority do not have privileges to alter database objects such as
user-defined functions and triggers. Typically they will examine the actions
taken by a function, ensure it is secure, then grant the
CREATE_SECURE_OBJECT authority to someone who has required privileges to
alter the user-defined function to be secure. After the function is altered, they
will revoke the CREATE_SECURE_OBJECT authority from the user who was
granted this authority.

ALTER FUNCTION

48 SQL Reference Volume 2



The function is considered secure. The SECURED attribute is considered to be an
assertion that declares the user has established a change control audit procedure
for all changes to the user-defined function. The database manager assumes that
such a control audit procedure is in place for all subsequent ALTER FUNCTION
statements or changes to external packages.
Packages and dynamically cached SQL statements that depend on the function
might be invalidated because the secure attribute affects the access path selection
for statements involving tables for which row or column level access control is
activated and the function being replaced.

v Altering a function from SECURED to NOT SECURED: The function is
considered not secure. Packages and dynamically cached SQL statements that
depend on the function might be invalidated because the secure attribute affects
the access path selection for statements involving tables for which row or
column level access control is activated.

v Invoking other user-defined functions in a secure function: When a secure
user-defined function is referenced in a data manipulation statement where a
row or column access control enforced table is referenced, if the secure
user-defined function invokes other user-defined functions, the database
manager does not validate whether those nested user-defined functions are
secure. If those nested functions can access sensitive data, the user with
SECADM authority needs to ensure those functions are allowed to access those
data and a change control audit procedure has been established for all changes
to those functions.

Example

The function MAIL() has been thoroughly tested. To improve its performance, alter
the function to be not fenced.

ALTER FUNCTION MAIL() NOT FENCED

ALTER FUNCTION

Statements 49



ALTER HISTOGRAM TEMPLATE
The ALTER HISTOGRAM TEMPLATE statement is used to modify the template
describing the type of histogram that can be used to override one or more of the
default histograms of a service class or a work class.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� ALTER HISTOGRAM TEMPLATE template-name HIGH BIN VALUE bigint-constant ��

Description

template-name
Names the histogram template. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The name must identify an existing histogram
template at the current server (SQLSTATE 42704). The template name can be
the default system histogram template SYSDEFAULTHISTOGRAM.

HIGH BIN VALUE bigint-constant
Specifies the top value of the second to last bin (the last bin has an unbounded
top value). The units depend on how the histogram is used. The maximum
value is 268 435 456.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

ALTER HISTOGRAM TEMPLATE

50 SQL Reference Volume 2



Notes
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Example

Change the high bin value of a histogram template named LIFETIMETEMP.
ALTER HISTOGRAM TEMPLATE LIFETIMETEMP

HIGH BIN VALUE 90000

ALTER HISTOGRAM TEMPLATE

Statements 51



ALTER INDEX
The ALTER INDEX statement alters the definition of an index.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema of the index
v ALTER privilege on the table on which the index is defined
v CONTROL privilege on the index
v DBADM authority

Syntax

�� ALTER INDEX index-name COMPRESS NO
YES

��

Description

INDEX index-name
Identifies the index to be altered. The name must identify an index that exists
at the current server (SQLSTATE 42704).

COMPRESS
Specifies whether index compression is to be enabled or disabled. The index
must not be an MDC or ITC block index, catalog index, XML path index, index
specification, or an index on a created temporary table or declared temporary
table (SQLSTATE 42995).

NO Specifies that index compression is disabled. A compressed index will
remain compressed until the index is rebuilt via index reorganization or
recreation.

YES
Specifies that index compression is enabled. An uncompressed index will
remain uncompressed until the index is rebuilt via index reorganization or
recreation.

Example

Alter index JOB_BY_DPT to be compressed index.
ALTER INDEX JOB_BY_DPT
COMPRESS YES

ALTER INDEX

52 SQL Reference Volume 2



ALTER MASK
The ALTER MASK statement alters a column mask that exists at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� ALTER MASK mask-name ENABLE
DISABLE

��

Description

mask-name
Identifies the column mask to be altered. The name must identify a mask that
exists at the current server (SQLSTATE 42704).

ENABLE

Enables the column mask. If column level access control is not currently
activated on the table, the column mask will become effective when column
level access control is activated on the table. If column level access control is
currently activated on the table, the column mask becomes effective
immediately and all packages and dynamically cached statements that
reference the table are invalidated.

ENABLE is ignored if the column mask is already enabled.

DISABLE

Disables the column mask. If column level access control is not currently
activated on the table, the column mask will remain ineffective when column
level access control is activated on the table. If column level access control is
currently activated on the table, the column mask becomes ineffective
immediately and all packages and dynamically cached statements that
reference the table are invalidated.

DISABLE is ignored if the column mask is already disabled.

Examples
v Example 1: Enable column mask M1.

ALTER MASK M1 ENABLE

v Example 2: Disable column mask M1.
ALTER MASK M1 DISABLE

ALTER MASK

Statements 53



ALTER METHOD
The ALTER METHOD statement modifies an existing method by changing the
method body associated with the method.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database, and at least one of:

– ALTERIN privilege on the schema of the type
– Owner of the type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view
v DBADM authority

Syntax

�� ALTER method-designator EXTERNAL NAME 'string'
identifier

��

method-designator:

�

METHOD method-name FOR type-name
( )

,

data-type
SPECIFIC METHOD specific-name

Description

method-designator
Uniquely identifies the method to be altered. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the method. This
option can only be specified when altering external methods (SQLSTATE
42849).

Notes
v It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC

schema (SQLSTATE 42832).
v Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE 42917).
v Methods declared as LANGUAGE CLR cannot be altered (SQLSTATE 42849).

ALTER METHOD

54 SQL Reference Volume 2



v The specified method must have a body before it can be altered (SQLSTATE
42704).

Example

Alter the method DISTANCE() in the structured type ADDRESS_T to use the
library newaddresslib.

ALTER METHOD DISTANCE()
FOR ADDRESS_T
EXTERNAL NAME ’newaddresslib!distance2’

ALTER METHOD

Statements 55



ALTER MODULE
The ALTER MODULE statement alters the definition of a module.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ownership of the module and also include all of the privileges necessary to invoke
the SQL statements that are specified within the ALTER MODULE statement.

Syntax

�� ALTER MODULE module-name ADD module-condition-definition
module-function-definition
module-procedure-definition
module-type-definition
module-variable-definition

DROP BODY
module-object-identification

PUBLISH module-condition-definition
module-function-definition
module-procedure-definition
module-type-definition
module-variable-definition

��

module-condition-definition:

CONDITION condition-name �

�
VALUE

SQLSTATE
FOR string-constant

module-object-identification:

module-function-designator
module-procedure-designator

CONDITION condition-name
TYPE type-name
VARIABLE variable-name

module-function-designator:

ALTER MODULE

56 SQL Reference Volume 2



�

FUNCTION unqualified-function-name
( )

,

data-type
SPECIFIC FUNCTION unqualified-specific-name

module-procedure-designator:

�

PROCEDURE unqualified-procedure-name
( )

,

data-type
SPECIFIC PROCEDURE unqualified-specific-name

Description

module-name
Identifies the module to be altered. The module-name must identify a module
that exists at the current server (SQLSTATE 42704).

ADD
Adds an object to the module or adds the body to a routine definition that
already exists in the module without a body. If adding a user-defined type or a
global variable, the object must not identify a user-defined type or global
variable that already exists in the module. If the user-defined type or global
variable did not exist, it is added to the module for use within the module
only.

If adding a routine and the specified routine does not exist, the routine is
added. If adding a routine and the specified routine exists, the existing routine
definition must not include a routine body (SQLSTATE 42723). This routine
prototype is completely replaced by the new routine definition, including the
routine attributes and the routine body, except that the published attribute is
retained. The specified routine is considered to exist if one of the following
conditions is true:
v There is a routine in the module with the same specific name and same

routine name.
v The specified routine is a procedure and there is a procedure in the module

with the same procedure name and the same number of parameters. The
names and data types of the parameters do not need to match.

v The specified routine is a function and there is a function in the module
with the same function name and the same number of parameters with
matching data types. The length, precision, and scale of parameter data
types are not compared and can be different when determining if the
specified routine exists. The names of the parameters do not need to match.

module-condition-definition
Adds a module condition.

condition-name
Name of the condition. The name must not identify an existing
condition in the module. The condition-name must be specified
without any qualification (SQLSTATE 42601). The name of the
condition must be unique within the module.

ALTER MODULE

Statements 57



FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The
string-constant must be specified as five characters enclosed in single
quotation marks, and the SQLSTATE class (the first two characters)
must not be '00'. This is an optional clause.

module-function-definition
The syntax to add a function is the same as the CREATE FUNCTION
statement excluding the CREATE keyword and both the function-name
and specific-name must be specified without any qualification (SQLSTATE
42601). If the function is unique within the module, a new function is
added. If the function matches an existing function that does not include a
body (SQL-routine-body or EXTERNAL NAME clause), then this function
prototype is replaced by the new definition except that the published
attribute is retained. All SQL functions added to a module are processed as
if a compound SQL (compiled) statement was used.

The module function definition can only specify the RETURNS TABLE
clause when the SQL-routine-body is an compound SQL (compiled)
statement that specifies NOT ATOMIC. The module function definition
must not specify the SOURCE clause, the TEMPLATE clause, or the
LANGUAGE OLEDEB option (SQLSTATE 42613).

module-procedure-definition
The syntax to define the procedure is the same as the CREATE
PROCEDURE statement excluding the CREATE keyword and both the
procedure-name and specific-name must be specified without any
qualification (SQLSTATE 42601). If the procedure signature is unique
within the module, a new procedure is added. If the procedure matches an
existing procedure that does not include a body (SQL-routine-body or
EXTERNAL NAME clause), then this procedure prototype is replaced by
the new definition except that the published attribute is retained. The name
of the procedure can begin with “SYS_” only to add the module
initialization procedure called SYS_INIT. See Notes for details.

module-type-definition
The syntax to define the user-defined type is the same as the CREATE
TYPE statement excluding the CREATE keyword and the type-name must
be specified without any qualification (SQLSTATE 42601). The name of the
user-defined type must be unique within the module. A structured type
cannot be defined in a module. Any generated functions required to
support the type definition are also defined in the module. If the module
user-defined type is published then so are the generated functions.

module-variable-definition
The syntax to define the variable is the same as the CREATE VARIABLE
statement excluding the CREATE keyword and the variable-name must be
specified without any qualification (SQLSTATE 42601). The name of the
variable must be unique within the module.

DROP
Drops a specified part of a module. The module-object-identification syntax is
used to identify the object to be dropped unless the body of the module is
being dropped.

BODY
Drops the module body, which includes:
v all objects that are not published.
v the routine body of any published SQL routines

ALTER MODULE

58 SQL Reference Volume 2



v the EXTERNAL reference for any published external routines.

PUBLISH
Adds a new object to the module and makes it available for use outside the
module. In the case of routines, a routine prototype can be specified that does
not include the executable body of the routine.

module-condition-definition
Adds a module condition that is available for use outside the module.

condition-name
Name of the condition. The name must not identify an existing
condition in the module. The condition-name must be specified
without any qualification (SQLSTATE 42601). The name of the
condition must be unique within the module.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The
string-constant must be specified as five characters enclosed in single
quotation marks, and the SQLSTATE class (the first two characters)
must not be '00'. This is an optional clause.

module-function-definition
The syntax to define the function is the same as the CREATE FUNCTION
statement excluding the CREATE keyword and both the function-name
and specific-name must be specified without any qualification (SQLSTATE
42601). The definition of the function must include the function name, full
specification of any parameters and the returns clause. Module
user-defined data types that are not published are not candidates for the
parameter data types or the RETURNS clause data type. Module variables
that are not published are not candidates for the anchor object in an
ANCHOR clause of a parameter data type or a returns data type. A
function prototype can be specified by omitting the LANGUAGE clause (or
specifying LANGUAGE SQL) and the SQL-routine-body. The function
signature must be unique within the module. The name of the function
must not begin with "SYS_" (SQLSTATE 42939). All SQL functions added to
a module are processed as if a compound SQL (compiled) statement was
used.

The module function definition can only specify the RETURNS TABLE
clause when the SQL-routine-body is an compound SQL (compiled)
statement that specifies NOT ATOMIC. The module function definition
must not specify the SOURCE clause, the TEMPLATE clause, or the
LANGUAGE OLEDEB option (SQLSTATE 42613).

module-procedure-definition
The syntax to define the procedure is the same as the CREATE
PROCEDURE statement excluding the CREATE keyword and both the
procedure-name and specific-name must be specified without any
qualification (SQLSTATE 42601). The definition of the procedure must
include the procedure name and full specification of any parameters.
Module user-defined data types that are not published are not candidates
for the parameter data types. Module variables that are not published are
not candidates for the anchor object in an ANCHOR clause of a parameter
definition. A function prototype can be specified by omitting the
LANGUAGE clause (or specifying LANGUAGE SQL) and the
SQL-routine-body. The procedure signature must be unique within the
module. The name of the procedure must not begin with "SYS_"
(SQLSTATE 42939).

ALTER MODULE

Statements 59



module-type-definition
The syntax to define the user-defined type is the same as the CREATE
TYPE statement excluding the CREATE keyword and the type-name must
be specified without any qualification (SQLSTATE 42601). Module
user-defined data types that are not published are not candidates for any
data type referenced in the module user-defined data type definition.
Module variables that are not published are not candidates for the anchor
object in an ANCHOR clause. The name of the user-defined type must not
begin with "SYS_" (SQLSTATE 42939) and must be unique within the
module. A structured type cannot be defined in a module. Any generated
functions required to support the type definition are also defined in the
module as published functions.

module-variable-definition
The syntax to define the variable is the same as the CREATE VARIABLE
statement excluding the CREATE keyword and the variable-name must be
specified without any qualification (SQLSTATE 42601). Module
user-defined data types that are not published are not candidates for the
any data type referenced in the variable definition. Module variables that
are not published are not candidates for the anchor object in an ANCHOR
clause. The name of the variable must not begin with "SYS_" (SQLSTATE
42939) and must be unique within the module.

module-object-identification
Identifies a unique module object.

module-function-designator
Uniquely identifies a single module function.

FUNCTION unqualified-function-name
Identifies a particular function, and is valid only if there is exactly one
function instance with the name unqualified-function-name in the
module. The identified function can have any number of parameters
defined for it. If no function by this name exists in the module, an
error (SQLSTATE 42704) is raised. If there is more than one instance of
the function in the module, an error (SQLSTATE 42725) is raised.

FUNCTION unqualified-function-name (data type,...)
Provides the function signature, which uniquely identifies the function.
The function resolution algorithm is not used.

unqualified-function-name
Specifies the name of the function.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) when the function was originally defined. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match. FLOAT() cannot be used (SQLSTATE 42601),
because the parameter value indicates different data types (REAL or

ALTER MODULE

60 SQL Reference Volume 2



DOUBLE). If length, precision, or scale is coded, the value must exactly
match that specified when the function was defined.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.
If no function with the specified signature exists in the module, an
error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION unqualified-specific-name
Identifies a particular user-defined function, using the name that is
specified or defaulted to at function definition time. The
unqualified-specific-name must identify a specific function instance in
the module; otherwise, an error is returned (SQLSTATE 42704).

module-procedure-designator
Uniquely identifies a single module procedure.

PROCEDURE unqualified-procedure-name
Identifies a particular procedure, and is valid only if there is exactly
one procedure instance with the name unqualified-procedure-name in
the module. The identified procedure can have any number of
parameters defined for it. If no procedure by this name exists in the
module, an error is returned (SQLSTATE 42704). If there is more than
one instance of the procedure in the module, an error is returned
(SQLSTATE 42725).

PROCEDURE unqualified-procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the
procedure. The procedure resolution algorithm is not used.

unqualified-procedure-name
Specifies the name of the procedure.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) when the procedure was originally
defined. The number of data types, and the logical concatenation
of the data types, is used to identify the specific procedure
instance.

If a data type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can
be coded to indicate that these attributes are to be ignored when
looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE). If length,
precision, or scale is coded, the value must exactly match that
specified in when the procedure was defined.

A type of FLOAT(n) does not need to match the defined value for
n, because 0 < n < 25 means REAL, and 24 < n < 54 means
DOUBLE. Matching occurs on the basis of whether the type is
REAL or DOUBLE.

If no procedure with the specified signature exists in the module,
an error is returned (SQLSTATE 42883).

ALTER MODULE

Statements 61



SPECIFIC PROCEDURE unqualified-specific-name
Identifies a particular procedure, using the name that is specified
or defaulted to at procedure definition time. The
unqualified-specific-name must identify a specific procedure
instance in the module; otherwise, an error is returned (SQLSTATE
42704).

TYPE type-name
Identifies a user-defined type from the module. The type-name must
be specified without any qualification (SQLSTATE 42601) and must
identify a user-defined type that exists in the module (SQLSTATE
42704).

VARIABLE variable-name
Identifies a global variable from the module. The variable-name must
be specified without any qualification (SQLSTATE 42601) and must
identify a global variable that exists in the module (SQLSTATE 42704).

CONDITION condition-name
Identifies a condition from the module. The condition-name must be
specified without any qualification and must identify a condition that
exists in the module (SQLSTATE 42737).

Rules
v Names of objects in the module cannot begin with "SYS_" with the exception of

specifically designated SYS_INIT procedure name (SQLSTATE 42939).
v ALTER MODULE DROP FUNCTION: If the function is referenced in the definition of a

row permission or column mask, the function cannot be dropped (SQLSTATE
42893).

v ALTER MODULE DROP VARIABLE: If the variable is referenced in the definition of a
row permission or column mask, the variable cannot be dropped (SQLSTATE
42893).

v ALTER MODULE DROP BODY: If the module is referenced in the definition of a row
permission or column mask, the module cannot be dropped (SQLSTATE 42893).

Notes
v Module initialization: A module can have a special initialization procedure

called SYS_INIT that is implicitly executed when the first reference is made to a
module routine or module global variable. The SYS_INIT procedure must be
implemented with no parameters, cannot return result sets, and can be an SQL
or external procedure that cannot be published (SQLSTATE 428HP). If the
SYS_INIT procedure fails, an error is returned for the statement that caused the
module initialization (SQLSTATE 56098).

v Use of module conditions: A module condition can only be used with a SIGNAL
statement, RESIGNAL statement or a handler declaration that is within a
compound SQL (compiled) statement.

v Invalidation: If a routine prototype is replaced using the ADD action, all objects
that depended on the published module routine are invalidated. If DROP BODY
is issued, all objects dependent on published module routines are invalidated.

v Obfuscation: The ALTER MODULE ADD FUNCTION, ALTER MODULE ADD
PROCEDURE, ALTER MODULE PUBLISH FUNCTION, and ALTER MODULE
PUBLISH PROCEDURE statements can be submitted in obfuscated form. In an
obfuscated statement, only the routine name and its parameters are readable.

ALTER MODULE

62 SQL Reference Volume 2



The rest of the statement is encoded in such a way that is not readable but can
be decoded by the database server. Obfuscated statements can be produced by
calling the DBMS_DDL.WRAP function.

Example

The following statements create a module named INVENTORY containing an
associative array type, a variable of that data type, a procedure that adds elements
to the array and a function that extracts elements from the array. Only the function
and the procedure can be referenced from outside of the module based on the
PUBLISH keyword in the corresponding ALTER MODULE statements. The data
type and the variable can only be referenced by other objects in the module.

CREATE MODULE INVENTORY

ALTER MODULE INVENTORY ADD
TYPE ITEMLIST AS INTEGER ARRAY[VARCHAR(100)]

ALTER MODULE INVENTORY ADD
VARIABLE ITEMS ITEMLIST

ALTER MODULE INVENTORY PUBLISH
PROCEDURE UPDATE_ITEM(NAME VARCHAR(100), QUANTITY INTEGER)
BEGIN
SET ITEMS[NAME] = QUANTITY;
END

ALTER MODULE INVENTORY PUBLISH
FUNCTION CHECK_ITEM(NAME VARCHAR(100)) RETURNS INTEGER
RETURN ITEMS[NAME]

ALTER MODULE

Statements 63



ALTER NICKNAME
The ALTER NICKNAME statement modifies the nickname information associated
with a data source object (such as a table, view, or file).

This statement modifies the information that is stored in the federated database in
the following ways:
v Altering the local column names for the columns of the data source object
v Altering the local data types for the columns of the data source object
v Adding, setting, or dropping nickname and column options
v Adding or dropping a primary key
v Adding or dropping one or more unique, referential, or check constraints
v Altering one or more referential or check constraint attributes
v Altering the caching of data at a federated server

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTER privilege on the nickname specified in the statement
v CONTROL privilege on the nickname specified in the statement
v ALTERIN privilege on the schema, if the schema name of the nickname exists
v Owner of the nickname, as recorded in the OWNER column of the

SYSCAT.TABLES catalog view
v DBADM authority

Syntax

�� ALTER NICKNAME nickname �

�

�

,
ADD

OPTIONS ( nickname-option-name string-constant )
SET

DROP nickname-option-name

�

ALTER NICKNAME

64 SQL Reference Volume 2



� � �

,
COLUMN (1)

ALTER column-name LOCAL NAME column-name
LOCAL TYPE local-data-type

(2)
federated-column-options

ADD unique-constraint
referential-constraint
check-constraint

ALTER FOREIGN KEY constraint-name constraint-alteration
CHECK

DROP PRIMARY KEY
FOREIGN KEY constraint-name
UNIQUE
CHECK
CONSTRAINT

ALLOW CACHING
DISALLOW CACHING

��

local-data-type:

built-in-type
(3)

distinct-type-name

built-in-type:

ALTER NICKNAME

Statements 65



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer ) FOR BIT DATA

OCTETS
VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR

(1M)
CLOB
CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M
G

(1)
GRAPHIC

(integer )
CODEUNITS16

VARGRAPHIC (integer )
CODEUNITS16

(1M)
DBCLOB

(integer )
K CODEUNITS16
M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )

federated-column-options:

�

,
ADD

OPTIONS ( column-option-name string-constant )
SET

DROP column-option-name

unique-constraint:

CONSTRAINT constraint-name
UNIQUE
PRIMARY KEY

�

,

( column-name ) �

ALTER NICKNAME

66 SQL Reference Volume 2



� constraint-attributes

referential-constraint:

CONSTRAINT constraint-name
FOREIGN KEY �

,

( column-name ) �

� references-clause

references-clause:

REFERENCES table-name
nickname

�

,

( column-name )

�

� constraint-attributes

check-constraint:

CONSTRAINT constraint-name
CHECK ( check-condition ) �

� constraint-attributes

check-condition:

search-condition
functional-dependency

functional-dependency:

� �

column-name DETERMINED BY column-name
, ,

( column-name ) ( column-name )

constraint-attributes:

*

TRUSTED
NOT ENFORCED

NOT TRUSTED
*

ENABLE QUERY OPTIMIZATION

(4)
DISABLE QUERY OPTIMIZATION

*

ALTER NICKNAME

Statements 67



constraint-alteration:

�
(5)

ENABLE QUERY OPTIMIZATION
DISABLE

TRUSTED
NOT ENFORCED

NOT TRUSTED

Notes:

1 You cannot specify both the ALTER COLUMN clause and an ADD, ALTER,
or DROP informational constraint clause in the same ALTER NICKNAME
statement.

2 If you need to specify the federated-column-options clause in addition to the
LOCAL NAME parameter, the LOCAL TYPE parameter, or both, you must
specify the federated-column-options clause last.

3 The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type (SQLSTATE 428H2).

4 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary
key constraint.

5 The same clause must not be specified more than once.

Description

nickname
Identifies the nickname for the data source object (such as a table, view, or file)
that contains the column being altered. It must be a nickname described in the
catalog.

OPTIONS
Indicates the nickname options that are added, set, or dropped when the
nickname is altered.

ADD
Adds a nickname option.

SET
Changes the setting of a nickname option.

nickname-option-name
Names a nickname option that is to be added or set.

string-constant
Specifies the setting for nickname-option-name as a character string constant.

DROP nickname-option-name
Drops a nickname option.

ALTER COLUMN column-name
Names the column to be altered. The column-name is the federated server's
current name for the column of the table or view at the data source. The
column-name must identify an existing column of the nickname (SQLSTATE
42703). You cannot reference the same column name multiple times in the same
ALTER NICKNAME statement (SQLSTATE 42711).

LOCAL NAME column-name
Specifies a new name, column-name, by which the federated server is to

ALTER NICKNAME

68 SQL Reference Volume 2



reference the column to be altered. The new name cannot be qualified, and the
same name cannot be used for more than one column of the nickname
(SQLSTATE 42711).

LOCAL TYPE local-data-type
Specifies a new local data type to which the data type of the column that is to
be altered will map. The new type is denoted by local-data-type.

Some wrappers only support a subset of the SQL data types. For descriptions
of specific data types, see the description of the “CREATE TABLE” statement.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

OPTIONS
Indicates what column options are to be added, set, or dropped for the column
specified after the COLUMN keyword.

ADD
Adds a column option.

SET
Changes the setting of a column option.

column-option-name
Names a column option that is to be added or set.

string-constant
Specifies the setting for column-option-name as a character string constant.

DROP column-option-name
Drops a column option.

ADD unique-constraint
Defines a unique constraint. See the description of the “CREATE NICKNAME”
statement.

ADD referential-constraint
Defines a referential constraint. See the description of the “CREATE
NICKNAME” statement.

ADD check-constraint
Defines a check constraint. See the description of the “CREATE NICKNAME”
statement.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name. For
a description of the constraint attributes, see the “CREATE NICKNAME”
statement. The constraint-name must identify an existing referential constraint
(SQLSTATE 42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint constraint-name. The
constraint-name must identify an existing check constraint (SQLSTATE 42704).

constraint-alteration
Provides options for changing the attributes associated with referential or
check constraints.

ENABLE QUERY OPTIMIZATION
The constraint can be used for query optimization under appropriate
circumstances.

ALTER NICKNAME

Statements 69



DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

NOT ENFORCED
Specifies that the constraint is not enforced by the database manager
during normal operations such as insert, update, or delete.

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED must
be used only if the data in the table is independently known to
conform to the constraint. Query results might be unpredictable if the
data does not actually conform to the constraint. This is the default
option.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT
TRUSTED is intended for cases where the data conforms to the
constraint for most rows, but it is not independently known that all the
rows or future additions will conform to the constraint. If a constraint
is NOT TRUSTED and enabled for query optimization, then it will not
be used to perform optimizations that depend on the data conforming
completely to the constraint. NOT TRUSTED can be specified only for
referential integrity constraints (SQLSTATE 42613).

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints that are
dependent upon this primary key. The nickname must have a primary key.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify an existing referential constraint defined on the nickname.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential
constraints that are dependent upon this unique constraint. The constraint-name
must identify an existing unique constraint.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the nickname.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key, or unique
constraint defined on the nickname.

ALLOW CACHING or DISALLOW CACHING
Specifies whether the nickname can be referenced in a query that defines a
materialized query table, which could be used to cache data from the data
source at the federated server.

ALLOW CACHING
Specifies that the nickname can be referenced in a query that defines a
materialized query table, which allows data from the data source to be
cached in the materialized query table at the federated server. The
refreshable options defined for the materialized query table specify how
the cached data in the materialized query table is maintained.

DISALLOW CACHING
Specifies that the nickname cannot be referenced in a query that defines a

ALTER NICKNAME

70 SQL Reference Volume 2



materialized query table. DISALLOW CACHING cannot be specified for a
nickname that is referenced in the fullselect of a materialized query table
definition (SQLSTATE 42917).

Rules
v If a nickname is used in a view, SQL method, or SQL function, or informational

constraints are defined on it, the ALTER NICKNAME statement cannot be used
to change the local names or data types for the columns in the nickname
(SQLSTATE 42893). The statement can be used, however, to add, set, or drop
column options, nickname options, or informational constraints.

v If a nickname is referenced by a materialized query table definition, the ALTER
NICKNAME statement cannot be used to change the local names, data types,
column options, or nickname options (SQLSTATE 42893). Moreover, the
statement cannot be used to disable caching (SQLSTATE 42917). The statement
can be used, however, to add, alter, or drop informational constraints.

v A column option cannot be specified more than once in the same ALTER
NICKNAME statement (SQLSTATE 42853). When a column option is enabled,
reset, or dropped, any other column options that are in use are not affected.

v For relational nicknames, the ALTER NICKNAME statement within a given unit
of work (UOW) cannot be processed under either of the following conditions
(SQLSTATE 55007):
– A nickname referenced in this statement has a cursor open on it in the same

UOW
– Either an INSERT, DELETE, or UPDATE statement is already issued in the

same UOW against the nickname that is referenced in this statement
v For non-relational nicknames, the ALTER NICKNAME statement within a given

unit of work (UOW) cannot be processed under any of the following conditions
(SQLSTATE 55007):
– A nickname referenced in this statement has a cursor open on it in the same

UOW
– A nickname referenced in this statement is already referenced by a SELECT

statement in the same UOW
– Either an INSERT, DELETE, or UPDATE statement has already been issued in

the same UOW against the nickname that is referenced in this statement

Notes
v If the ALTER NICKNAME statement is used to change the local name for a

column of a nickname, queries against that column must reference it by its new
name.

v When the local specification of a column's data type is changed, the database
manager invalidates any statistics (HIGH2KEY, LOW2KEY, and so on) gathered
for that column.

v Caching and protected objects: For nicknames whose data source object is
protected, specify DISALLOW CACHING. This ensures that each time the nickname is
used, data for the appropriate authorization ID is returned from the data source
at query execution time. This is done by restricting the nickname from being
used in the definition of a materialized query table at the federated server,
which might be being used to cache the nickname data.

ALTER NICKNAME

Statements 71



Examples
1. The nickname NICK1 references a DB2 for i table called T1. Also, COL1 is the

local name that references this table's first column, C1. Rename the local name
for C1 from COL1 to NEWCOL.

ALTER NICKNAME NICK1
ALTER COLUMN COL1
LOCAL NAME NEWCOL

2. The nickname EMPLOYEE references a DB2 for z/OS table called EMP. Also,
SALARY is the local name that references EMP_SAL, one of this table's
columns. The column's data type, FLOAT, maps to the local data type,
DOUBLE. Change the mapping so that FLOAT maps to DECIMAL (10, 5).

ALTER NICKNAME EMPLOYEE
ALTER COLUMN SALARY
LOCAL TYPE DECIMAL(10,5)

3. Indicate that in an Oracle table, a column with the data type of VARCHAR
does not have trailing blanks. The nickname for the table is NICK2, and the
local name for the column is COL1.

ALTER NICKNAME NICK2
ALTER COLUMN COL1
OPTIONS (ADD VARCHAR_NO_TRAILING_BLANKS ’Y’)

4. Alter the fully qualified path for the table-structured file, drugdata1.txt, for the
nickname DRUGDATA1. Use the FILE_PATH nickname option and change the
path from the current value of '/user/pat/drugdata1.txt' to
'/usr/kelly/data/drugdata1.txt'.

ALTER NICKNAME DRUGDATA1
OPTIONS (SET FILE_PATH ’/usr/kelly/data/drugdata1.txt’)

ALTER NICKNAME

72 SQL Reference Volume 2



ALTER PACKAGE
The ALTER PACKAGE statement alters bind options for a package at the current
server without having to bind or rebind the package.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema
v BIND privilege on the package
v DBADM authority

�� ALTER PACKAGE package-id
schema-name. VERSION

version-id

�

� �
(1)

ACCESS PLAN REUSE YES
NO

OPTIMIZATION PROFILE NONE
optimization-profile-name

KEEP DYNAMIC YES
NO

��

Notes:

1 The same clause must not be specified more than once.

Description

schema-name.package-id
Identifies the package that is to be altered. If a schema name is not specified,
the package ID is implicitly qualified by the default schema. The schema name
and package ID, together with the implicitly or explicitly specified version ID,
must identify a package that exists at the current server (SQLSTATE 42704).

VERSION version-id
Identifies which package version is to be altered. If a value is not specified,
the version defaults to the empty string. If multiple packages with the
same package name but different versions exist, only one package version
can be altered in one invocation of the ALTER PACKAGE statement.
Delimit the version identifier with double quotation marks when it:
v Is generated by the VERSION(AUTO) precompiler option
v Begins with a digit
v Contains lowercase or mixed-case letters

ALTER PACKAGE

Statements 73



If the statement is invoked from an operating system command prompt,
precede each double quotation mark delimiter with a back slash character
to ensure that the operating system does not strip the delimiters.

ACCESS PLAN REUSE
Indicates whether the query compiler should attempt to reuse the access plans
for static statements in the package during future implicit and explicit rebinds.

NO Specifies not to reuse access plans.

YES
Specifies to attempt to reuse access plans.

OPTIMIZATION PROFILE
Indicates what, if any, optimization profile to associate with the package.

NONE
Associates no optimization profile with the package. If an optimization
profile is already associated with the package, the association is removed.

optimization-profile-name
Associates the optimization profile optimization-profile-name with the
package. The optimization profile is a two-part name. If the specified
optimization-profile-name is unqualified, the value of the CURRENT
DEFAULT SCHEMA special register is used as the implicit qualifier. If an
optimization profile is already associated with the package, the association
is replaced with optimization-profile-name.

While the ALTER PACKAGE statement removes the current copy of the
package from the DB2 package cache, it does not invalidate the package and
does not cause an implicit rebind to take place. This means that although
dynamic SQL is affected by the changes made by the statement, query
execution plans for static statements are not be affected until the next implicit
or explicit rebind.

KEEP DYNAMIC

Starting with DB2 for Linux, UNIX, and Windows Version 9.8 Fix Pack 2, you
can modify the value of the KEEPDYNAMIC bind option for a package without
requiring a fresh bind operation, thereby avoiding unnecessary recompilation
until the next bind operation occurs. This option controls how long the
statement text and section associated with a prepared statement are kept in the
SQL context. It takes effect after all applications that are using the package
have completed the transactions that were running when the ALTER PACKAGE
statement was executed.

YES

Instructs the SQL context to keep the statement text and section associated
with prepared statements indefinitely. Dynamic SQL statements are kept
across transactions. All packages bound with KEEPDYNAMIC YES are by
default compatible with the existing package cache behavior.

NO

Instructs the SQL context to remove the statement text and section
associated with prepared statements at the end of each unit of work. The
executable versions of prepared statements and the statement text in
packages bound with the KEEP DYNAMIC NO option are removed from the
SQL context at transaction boundaries. The client, driver, or application
needs to prepare any dynamic SQL statement it wishes to reuse in a new
unit of work again.

ALTER PACKAGE

74 SQL Reference Volume 2



For remote applications that use an IBM non-embedded API, once you
have ensured that statements will be prepared in new transactions, you can
use this option so that WLB will not be disallowed solely based on the
KEEP DYNAMIC behavior. However even with this option, WLB may be
disallowed for other reasons.

SELECT statements issued by cursors with the WITH HOLD option are
disassociated from the SQL context at the next transaction boundary where
the cursor is closed. As a result, workload balancing is allowed as long as
there are no executable versions of prepared statements associated with the
application in the SQL context.

Note: Workload balancing is not restricted for dynamic SQL applications that
use IBM non-embedded APIs, such as JDBC, .NET, or CLI/ODBC, to run SQL
within the common client packages. These interfaces implicitly re-prepare SQL
statements before executing them in transactions where their connection might
have been moved to a new executable version of prepared statements.

Notes
v Catalog view values may not reflect the settings that were in effect for the

package: Because this statement does not trigger a rebind of the package, the
settings for a package as shown in the SYSCAT.PACKAGES catalog view might
not reflect what was actually in effect during the last BIND or REBIND. If the
ALTER_TIME is greater than the LAST_BIND_TIME, then this might be the case.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with the BIND and REBIND commands. These alternatives are
non-standard and should not be used.
– APREUSE can be specified in place of ACCESS PLAN REUSE.
– OPTPROFILE can be specified in place of OPTIMIZATION PROFILE.
– KEEPDYNAMIC can be specified in place of KEEP DYNAMIC.

Examples

Example 1: Enable access plan reuse for package TRUUVERT.EMPADMIN.
ALTER PACKAGE TRUUVERT.EMPADMIN ACCESS PLAN REUSE YES

Example 2: Assume access plan reuse has been enabled for package
TRUUVERT.EMPADMIN. Assume also that optimization profile
AYYANG.INDEXHINTS contains a statement profile for a specific statement within
the package. Associate the optimization profile with this package so that it will
override the reuse of the access plan for the statement.

ALTER PACKAGE TRUUVERT.EMPADMIN OPTIMIZATION PROFILE AYYANG.INDEXHINTS

Dynamic statements will be affected after the statement commits; static statements
will be affected at the next rebind. When the package is rebound, the query
compiler will attempt to reuse the access plans for all static statements in the
package, with the exception of the statement identified by the optimization profile.
When recompiling this statement, the query compiler will instead attempt to apply
the statement profile.

Example 3: The following statement will result in no optimization profile being
associated with package TRUUVERT.EMPADMIN.

ALTER PACKAGE TRUUVERT.EMPADMIN OPTIMIZATION PROFILE NONE

ALTER PACKAGE

Statements 75



ALTER PERMISSION
The ALTER PERMISSION statement alters a row permission that exists at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� ALTER PERMISSION permission-name ENABLE
DISABLE

��

Description

permission-name
This is the name of the row permission to be altered. The name must identify a
row permission that already exists at the current server (SQLSTATE 42704). The
name must not identify a default row permission that is created implicitly by
the database manager (SQLSTATE 428H9).

ENABLE

Enables the row permission. If row level access control is not currently
activated on the table, the row permission will become effective when row
level access control is activated on the table. If row level access control is
currently activated on the table, the row permission becomes effective
immediately and all packages and dynamic cached statements that reference
the table are invalidated.

ENABLE is ignored if the row permission is already defined as enabled.

DISABLE

Disables the row permission. If row level access control is not currently
activated on the table, the row permission will remain ineffective when row
level access control is activated on the table. If row level access control is
currently activated on the table, the row permission becomes ineffective
immediately and all packages and dynamic cached statements that reference
the table are invalidated.

DISABLE is ignored if the row permission is already defined as disabled.

Examples
v Example 1: Enable permission P1.

ALTER PERMISSION P1 ENABLE

v Example 2: Disable permission P1.
ALTER PERMISSION P1 DISABLE

ALTER PERMISSION

76 SQL Reference Volume 2



ALTER PROCEDURE (external)
The ALTER PROCEDURE (External) statement modifies an existing external
procedure by changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema of the procedure
v Owner of the procedure, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view
v DBADM authority

To alter the EXTERNAL NAME of a procedure, the privileges held by the
authorization ID of the statement must also include at least one of the following
authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database
v DBADM authority

To alter a procedure to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following authorities:
v CREATE_NOT_FENCED_ROUTINE authority on the database
v DBADM authority

To alter a procedure to be fenced, no additional authorities or privileges are
required.

Syntax

�� ALTER procedure-designator � EXTERNAL NAME 'string'
identifier

FENCED
NOT FENCED
EXTERNAL ACTION
NO EXTERNAL ACTION
THREADSAFE
NOT THREADSAFE

NEW SAVEPOINT LEVEL

��

procedure-designator:

ALTER PROCEDURE (external)

Statements 77



�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

Description

procedure-designator
Identifies the procedure to alter. The procedure-designator must identify a
procedure that exists at the current server. The owner of the procedure and all
privileges on the procedure are preserved. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the procedure.

FENCED or NOT FENCED
Specifies whether the procedure is considered safe to run in the database
manager operating environment's process or address space (NOT FENCED), or
not (FENCED). Most procedures have the option of running as FENCED or
NOT FENCED.

If a procedure is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the procedure. In
general, a procedure running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:
Use of NOT FENCED for procedures that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database. DB2
databases take some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED stored procedures are used.

A procedure declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a procedure has any parameters defined AS LOCATOR, and was defined
with the NO SQL option, the procedure cannot be altered to be FENCED
(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE or CLR procedures
(SQLSTATE 42849).

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the
system can use certain optimizations that assume the procedure has no
external impact.

THREADSAFE or NOT THREADSAFE
Specifies whether the procedure is considered safe to run in the same process
as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the procedure is defined with LANGUAGE other than OLE:
v If the procedure is defined as THREADSAFE, the database manager can

invoke the procedure in the same process as other routines. In general, to be

ALTER PROCEDURE (external)

78 SQL Reference Volume 2



threadsafe, a procedure should not use any global or static data areas. Most
programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED procedures can be THREADSAFE.

v If the procedure is defined as NOT THREADSAFE, the database manager
will never invoke the procedure in the same process as another routine.
Only a fenced procedure can be NOT THREADSAFE (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE procedures (SQLSTATE
42849).

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A
savepoint level refers to the scope of reference for any savepoint-related
statement, as well as to the name space used for comparison and reference of
any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT
LEVEL.

Rules
v It is not possible to alter a procedure that is in the following schema (SQLSTATE

42832):
– SYSIBM
– SYSFUN
– SYSPROC

Example

Alter the procedure PARTS_ON_HAND() to be not fenced.
ALTER PROCEDURE PARTS_ON_HAND() NOT FENCED

ALTER PROCEDURE (external)

Statements 79



ALTER PROCEDURE (sourced)
The ALTER PROCEDURE (Sourced) statement modifies an existing sourced
procedure by changing the data type of one or more parameters of the sourced
procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema of the procedure
v Owner of the procedure, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view
v DBADM authority

Syntax

�� ALTER procedure-designator �

� � ALTER PARAMETER parameter-alteration ��

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

parameter-alteration:

parameter-name SET DATA TYPE data-type

Description

procedure-designator
Uniquely identifies the procedure to be altered. The identified procedure must
be a sourced procedure (SQLSTATE 42849). For more information, see
“Function, method, and procedure designators” on page 20.

parameter-name
Identifies the parameter to be altered. The parameter-name must identify an

ALTER PROCEDURE (sourced)

80 SQL Reference Volume 2



existing parameter of the procedure (SQLSTATE 42703). The name must not
identify a parameter that is otherwise being altered in the same ALTER
PROCEDURE statement (SQLSTATE 42713).

data-type
Specifies the new local data type of the parameter. SQL data type specifications
and abbreviations that are valid for the data-type definition of a CREATE
TABLE statement can be specified. BLOB, CLOB, DBCLOB, DECFLOAT, XML,
REFERENCE, and user-defined types are not supported (SQLSTATE 42815).

Example

Assume that federated procedure FEDEMPLOYEE has been created for a remote
Oracle procedure named 'EMPLOYEE'. The data type of an input parameter named
SALARY maps to a DOUBLE(8) in DB2. Alter the data type of this parameter to
DECIMAL(5,2).

ALTER PROCEDURE FEDEMPLOYEE
ALTER PARAMETER SALARY
SET DATA TYPE DECIMAL(5,2)

ALTER PROCEDURE (sourced)

Statements 81



ALTER PROCEDURE (SQL)
The ALTER PROCEDURE (SQL) statement modifies an existing SQL procedure by
changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema of the procedure
v Owner of the procedure, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view
v DBADM authority

Syntax

�� ALTER procedure-designator � EXTERNAL ACTION
NO EXTERNAL ACTION

NEW SAVEPOINT LEVEL

��

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

Description

procedure-designator
Identifies the procedure to alter. The procedure-designator must identify a
procedure that exists at the current server. The owner of the procedure and all
privileges on the procedure are preserved. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the
system can use certain optimizations that assume the procedure has no
external impact.

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A

ALTER PROCEDURE (SQL)

82 SQL Reference Volume 2



savepoint level refers to the scope of reference for any savepoint-related
statement, as well as to the name space used for comparison and reference of
any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT
LEVEL.

Rules
v It is not possible to alter a procedure that is in the following schema (SQLSTATE

42832):
– SYSIBM
– SYSFUN
– SYSPROC

Example

Alter the procedure MEDIAN_RESULT_SET to indicate that it has no external
action.

ALTER PROCEDURE MEDIAN_RESULT_SET(DOUBLE)
NO EXTERNAL ACTION

ALTER PROCEDURE (SQL)

Statements 83



ALTER SCHEMA
The ALTER SCHEMA statement modifies the data capture attribute of an existing
schema.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v Owner of the schema, as recorded in the OWNER column of

SYSCAT.SCHEMATA catalog view
v DBADM authority

Syntax

�� ALTER SCHEMA schema-name DATA CAPTURE NONE
CHANGES

��

Description

schema-name
Identifies the schema to be altered. The schema-name must identify a schema
that exists at the current server (SQLSTATE 42704).

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the
log.

NONE
Indicates that no extra information for data replication will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this schema will
be written to the log. This option is required if this schema will be
replicated and a replication capture program is used to capture changes for
this schema from the log.

Notes
v Altering the DATA CAPTURE attribute at the schema level causes newly created

tables to inherit the DATA CAPTURE attribute from the schema if one is not
specified at the table level. Altering the DATA CAPTURE attribute at the schema
level does not affect the DATA CAPTURE attribute of existing tables within that
schema. If the DATA CAPTURE attribute is changed and any existing tables do
not match the new attribute, a warning is returned (SQLSTATE 01696).

v To find the list of tables that have the DATA CAPTURE attribute set to
CHANGES, issue the following query:
SELECT TABNAME, TABSCHEMA FROM SYSCAT.TABLES

WHERE TYPE IN (’T’,’S’,’L’)
AND DATACAPTURE <> ’N’

ALTER SCHEMA

84 SQL Reference Volume 2



v To find the list of tables that have the DATA CAPTURE attribute set to NONE,
issue the following query:
SELECT TABNAME, TABSCHEMA FROM SYSCAT.TABLES

WHERE TYPE IN (’T’,’S’,’L’)
AND DATACAPTURE = ’N’

ALTER SCHEMA

Statements 85



ALTER SECURITY LABEL COMPONENT
The ALTER SECURITY LABEL COMPONENT statement modifies a security label
component.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� ALTER SECURITY LABEL COMPONENT component-name add-element-clause ��

add-element-clause:

ADD ELEMENT string-constant
array-element-clause
tree-element-clause

array-element-clause:

BEFORE
AFTER

string-constant

tree-element-clause:

�

ROOT
UNDER string-constant

,

OVER string-constant

Description

component-name
Specifies the name of the security label component to be altered. The named
component must exist at the current server (SQLSTATE 42704).

ADD ELEMENT
Specifies the element to be added to the security label component. If
array-element-clause and tree-element-clause are not specified, the element is
added to a set component.

string-constant
The string constant value to be added to the set of valid values for the

ALTER SECURITY LABEL COMPONENT

86 SQL Reference Volume 2



security label component. The value cannot be the same as any other value
in the set of valid values for the security label component (SQLSTATE
42713).

BEFORE or AFTER
For an array component, specifies where the element is to be added in the
ordered set of element values for the security label component.

BEFORE
The element to be added is to be ranked immediately before the identified
existing element.

AFTER
The element to be added is to be ranked immediately after the identified
existing element.

string-constant
Specifies a string constant value of an existing element in the array
component (SQLSTATE 42704).

ROOT or UNDER
For a tree component, specifies where the element is to be added in the tree
structure of node element values for the security label component.

ROOT
The element to be added is to be considered the root node of the tree.

UNDER string-constant
The element to be added is an immediate child of the element identified by
the string-constant. The string-constant value must be an existing element in
the tree component (SQLSTATE 42704).

OVER string-constant,...
The element to be added is an immediate child of every element
identified by the list of string-constant values. Each string-constant value
must be an existing element in the tree component (SQLSTATE 42704).

Rules
v Element names cannot contain any of these characters (SQLSTATE 42601):

– Opening parenthesis - (
– Closing parenthesis - )
– Comma - ,
– Colon - :

v An element name can have no more than 32 bytes (SQLSTATE 42622).
v If a security label component is a set or a tree, no more than 64 elements can be

part of that component.
v If the component is an array, it might or might not be possible to arrive at an

array whose total number of elements matches the total number of elements that
could be specified when creating a security label component of type array
(65 535). The database manager assigns an encoded value to the new element
from within the interval into which the new element is added. Depending on the
pattern followed when adding elements to an array component, the number of
possible values that can be assigned from within a particular interval might be
quickly exhausted if several elements are inserted into that interval.

v BEFORE and AFTER must only be specified for a security label component that
is an array (SQLSTATE 42613).

ALTER SECURITY LABEL COMPONENT

Statements 87



v ROOT and UNDER must only be specified for a security label component that is
a tree (SQLSTATE 42613).

Notes
v For a set component, there is no order to the elements in the set.

Examples
v Example 1: Add the element 'High classified' to the LEVEL security label array

component between the elements 'Secret' and 'Classified'.
ALTER SECURITY LABEL COMPONENT LEVEL

ADD ELEMENT ’High classified’ BEFORE ’Classified’

v Example 2: Add the element 'Funding' to the COMPARTMENTS security label set
component.

ALTER SECURITY LABEL COMPONENT COMPARTMENTS
ADD ELEMENT ’Funding’

v Example 3: Add the elements 'ENGINE' and 'TOOLS' to the GROUPS security
label array component. The following diagram shows where these new elements
are to be placed.

PROJECT
________|________
| |

ENGINE TOOLS
________|________
| |

TEST DEVELOPMENT
______|______

| |
CURRENT FIELD

ALTER SECURITY LABEL COMPONENT GROUPS
ADD ELEMENT ’TOOLS’ UNDER ’PROJECT’

ALTER SECURITY LABEL COMPONENT GROUPS
ADD ELEMENT ’ENGINE’ UNDER ’PROJECT’

OVER ’TEST’, ’DEVELOPMENT’

ALTER SECURITY LABEL COMPONENT

88 SQL Reference Volume 2



ALTER SECURITY POLICY
The ALTER SECURITY POLICY statement modifies a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� ALTER SECURITY POLICY security-policy-name �

� �
(1)

ADD SECURITY LABEL COMPONENT component-name
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
USE GROUP AUTHORIZATIONS
IGNORE GROUP AUTHORIZATIONS
USE ROLE AUTHORIZATIONS
IGNORE ROLE AUTHORIZATIONS

��

Notes:

1 Only the ADD SECURITY LABEL COMPONENT clause can be specified
more than once.

Description

security-policy-name
Specifies the name of the security policy to be altered. The name must identify
an existing security policy at the current server (SQLSTATE 42710).

ADD SECURITY LABEL COMPONENT component-name
Adds a security label component to the security policy. The same security
component must not be specified more than once for the security policy
(SQLSTATE 42713). The security policy cannot currently be in use by a table
(SQLSTATE 42893).

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT NOT AUTHORIZED
WRITE SECURITY LABEL

Specifies the action taken when a user is not authorized to write the explicitly
specified security label that is provided in the INSERT or UPDATE statement
issued against a table that is protected with this security policy. A user's
security label and exemption credentials determine the user's authorization to
write an explicitly provided security label.

ALTER SECURITY POLICY

Statements 89



OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the value of the user's security label, rather than the
explicitly specified security label, is used for write access during an insert
or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the insert or update operation will fail if the user is not
authorized to write the explicitly specified security label that is provided in
the INSERT or UPDATE statement (SQLSTATE 42519).

USE GROUP AUTHORIZATION or IGNORE GROUP AUTHORIZATION
Specifies whether or not security labels and exemptions granted to groups,
directly or indirectly, are considered for any access attempt.

USE GROUP AUTHORIZATION
Indicates that any security labels or exemptions granted to groups, directly
or indirectly, are considered.

IGNORE GROUP AUTHORIZATION
Indicates that any security labels or exemptions granted to groups are not
considered.

USE ROLE AUTHORIZATION or IGNORE ROLE AUTHORIZATION
Specifies whether or not security labels and exemptions granted to roles,
directly or indirectly, are considered for any access attempt.

USE ROLE AUTHORIZATION
Indicates that any security labels or exemptions granted to roles, directly or
indirectly, are considered.

IGNORE ROLE AUTHORIZATION
Indicates that any security labels or exemptions granted to roles are not
considered.

Rules
v If a user does not directly hold a security label for write access, an error is

returned in the following situations (SQLSTATE 42519):
– A value for the row security label column is not explicitly provided as part of

the SQL statement
– The OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option is in

effect for the security policy, and the user is not allowed to write a data object
with the provided security label

Notes
v New components are logically added at the end of the existing security label

definition contained by the modified policy. Existing security labels defined for
this security policy are modified to contain the new component as part of their
definition with no element in their value for this component.

v Cache invalidation when changing NOT AUTHORIZED WRITE SECURITY
LABEL: Changing the NOT AUTHORIZED WRITE SECURITY LABEL to a new
value will cause the invalidation of any cached dynamic or static SQL statements
that are dependent on any table that is protected by the security policy being
altered.

v Because the session authorization ID is the focus authorization ID for label-based
access control, security labels granted to groups or to roles that are accessible
through groups are eligible for consideration for all types of SQL statements,
including static SQL.

ALTER SECURITY POLICY

90 SQL Reference Volume 2



v If more than one security label or exemption is available to a user with
associated groups or roles at the time of a read or write access attempt, those
security labels and exemptions will be evaluated for eligibility based on the
following rules:
– If the security policy enables only role authorizations for consideration, all

security labels and exemptions granted to roles of which the user
authorization ID is a direct or indirect member will be considered. Security
labels and exemptions granted to roles for which membership is only
accessible through the groups associated with the user authorization ID will
not be considered.

– If the security policy enables only group authorizations for consideration, all
security labels and exemptions granted to groups associated with the user
authorization ID will be considered. Security labels and exemptions granted
to roles for which membership is only accessible through the groups
associated with the user authorization ID will not be considered.

– If the security policy enables both group and role authorizations for
consideration, any security labels and exemptions granted to roles accessible
to the user indirectly through groups associated with the user authorization
ID will be considered.

– Role authorizations that are accessible to the user only through PUBLIC will
not be considered at any time.

v If more than one security label is eligible for consideration during an access
attempt, the values provided for each security label are merged at the individual
component level to form a security label that reflects the combination of all
available values at each component piece of the security policy. This is the
security label value that will be used for the access attempt.
The mechanisms for combining security labels vary by component type. The
components of the resultant security label are as follows:
– Set components contain the union of all unique values encountered in the

eligible security labels
– Array components contain the highest order element encountered in the

eligible security labels
– Tree components contain the union of all unique values encountered in the

eligible security labels
v If more than one exemption is eligible for consideration during an access

attempt, all found exemptions are applied to the access attempt.

Examples
v Example 1: Alter a security policy named DATA_ACCESS to add a new

component named REGION.
ALTER SECURITY POLICY DATA_ACCESS

ADD COMPONENT REGION

v Example 2: Alter a security policy named DATA_ACCESS to allow access
through security labels granted to roles.

ALTER SECURITY POLICY DATA_ACCESS
USE ROLE AUTHORIZATIONS

v Example 3: Show the eligible security labels that would be considered depending
on the settings for group or role authorizations in a security policy. The security
policy SECUR_POL has an array component and a set component, consisting of
the following elements:

Array = {TS, S, C, U}
Set = {A, B, X, Y}

ALTER SECURITY POLICY

Statements 91



The following security labels are defined for SECUR_POL:
Security label L1 = C:A
Security label L2 = S:B
Security label L3 = TS:X
Security label L4 = U:Y

User Paul is a member of role R1 and group G1. Group G1 is a member of role
R2. Security label L1 is granted to Paul. Security label L2 is granted to role R1.
Security label L3 is granted to group G1. Security label L4 is granted to role R2.
The following table shows what security labels would be considered for any
access attempt by Paul, depending on the different possible settings of the
security policy SECUR_POL.

Table 11. Security labels considered as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled L1, L2, L3, L4 L1, L3

Groups Disabled L1, L2 L1

The following table shows the value of the combined security label for any
access attempt by Paul, depending on the different settings of the security policy
SECUR_POL.

Table 12. Combined security labels as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled TS:(A, B, X, Y) TS:(A, X)

Groups Disabled S:(A, B) C:A

ALTER SECURITY POLICY

92 SQL Reference Volume 2



ALTER SEQUENCE
The ALTER SEQUENCE statement can be used to change a sequence.

A sequence can be changed in the following ways:
v Restarting the sequence
v Changing the increment between future sequence values
v Setting or eliminating the minimum or maximum values
v Changing the number of cached sequence numbers
v Changing the attribute that determines whether the sequence can cycle or not
v Changing whether sequence numbers must be generated in order of request

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTER privilege on the sequence to be altered
v ALTERIN privilege on the schema implicitly or explicitly specified
v DBADM authority

Syntax

�� ALTER SEQUENCE sequence-name �

� �
(1)

RESTART
WITH numeric-constant

INCREMENT BY numeric-constant
MINVALUE numeric-constant
NO MINVALUE
MAXVALUE numeric-constant
NO MAXVALUE
CYCLE
NO CYCLE
CACHE integer-constant
NO CACHE
ORDER
NO ORDER

��

Notes:

1 The same clause must not be specified more than once.

ALTER SEQUENCE

Statements 93



Description

sequence-name
Identifies the sequence that is to be changed. The name, including the implicit
or explicit schema qualifier, must uniquely identify an existing sequence at the
current server. If no sequence by this name exists in the explicitly or implicitly
specified schema, an error (SQLSTATE 42704) is returned. sequence-name must
not be a sequence generated by the system for an identity column (SQLSTATE
428FB).

RESTART
Restarts the sequence. If numeric-constant is not specified, the sequence is
restarted at the value specified implicitly or explicitly as the starting value on
the CREATE SEQUENCE statement that originally created the sequence.

WITH numeric-constant
Restarts the sequence with the specified value. This value can be any
positive or negative value that could be assigned to a column of the data
type associated with the sequence (SQLSTATE 42815), without nonzero
digits existing to the right of the decimal point (SQLSTATE 428FA).

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. This value
can be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815). The value must not
exceed the value of a large integer constant (SQLSTATE 42820) and must not
contain nonzero digits to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, then this is a descending sequence. If this value is 0 or
positive, this is an ascending sequence after the ALTER statement.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles or
stops generating values, or an ascending sequence cycles to after reaching the
maximum value.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be less than or equal to the maximum value
(SQLSTATE 42815).

NO MINVALUE
For an ascending sequence, the value is the original starting value. For a
descending sequence, the value is the minimum value of the data type
associated with the sequence.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or
stops generating values, or a descending sequence cycles to after reaching the
minimum value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be greater than or equal to the minimum value
(SQLSTATE 42815).

ALTER SEQUENCE

94 SQL Reference Volume 2



NO MAXVALUE
For an ascending sequence, the value is the maximum value of the data
type associated with the sequence. For a descending sequence, the value is
the original starting value.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the sequence
can be reached either with the next value landing exactly on the boundary
condition, or by overshooting the value.

CYCLE
Specifies that values continue to be generated for this sequence after the
maximum or minimum value has been reached. If this option is used, after
an ascending sequence reaches its maximum value, it generates its
minimum value; or after a descending sequence reaches its minimum
value, it generates its maximum value. The maximum and minimum
values for the sequence determine the range that is used for cycling.

When CYCLE is in effect, then duplicate values can be generated for the
sequence.

NO CYCLE
Specifies that values will not be generated for the sequence once the
maximum or minimum value for the sequence has been reached.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

CACHE integer-constant
Specifies the maximum number of sequence values that are preallocated
and kept in memory. Preallocating and storing values in the cache reduces
synchronous I/O to the log when values are generated for the sequence.

In the event of a system failure, all cached sequence values that have not
been used in committed statements are lost (that is, they will never be
used). The value specified for the CACHE option is the maximum number
of sequence values that could be lost in case of system failure.

The minimum value is 2 (SQLSTATE 42815).

NO CACHE
Specifies that values of the sequence are not to be preallocated. It ensures
that there is not a loss of values in the case of a system failure, shutdown
or database deactivation. When this option is specified, the values of the
sequence are not stored in the cache. In this case, every request for a new
value for the sequence results in synchronous I/O to the log.

ORDER or NO ORDER
Specifies whether the sequence numbers must be generated in order of request.

ORDER
Specifies that the sequence numbers are generated in order of request.

NO ORDER
Specifies that the sequence numbers do not need to be generated in order
of request.

Notes
v Only future sequence numbers are affected by the ALTER SEQUENCE

statement.

ALTER SEQUENCE

Statements 95



v The data type of a sequence cannot be changed. Instead, drop and re-create the
sequence specifying the required data type for the new sequence.

v All cached values are lost when a sequence is altered.
v After restarting a sequence or changing to CYCLE, it is possible for sequence

numbers to be duplicate values of ones generated by the sequence previously.
v Syntax alternatives: The following syntax alternatives are supported for

compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– A comma can be used to separate multiple sequence options.
– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

can be specified in place of NO MINVALUE, NO MAXVALUE, NO CYCLE,
NO CACHE, and NO ORDER, respectively

Example

A possible reason for specifying RESTART without a numeric value would be to
reset the sequence to the START WITH value. In this example, the goal is to
generate the numbers from 1 up to the number of rows in the table and then
inserting the numbers into a column added to the table using temporary tables.
Another use would be to get results back where all the resulting rows are
numbered:

ALTER SEQUENCE ORG_SEQ RESTART
SELECT NEXT VALUE FOR ORG_SEQ, ORG.* FROM ORG

ALTER SEQUENCE

96 SQL Reference Volume 2



ALTER SERVER
The ALTER SERVER statement is used to modify the definition or configuration of
a data source.

This statement can be used to make the following changes:
v Modify the definition of a specific data source, or the definition of a category of

data sources.
v Make changes in the configuration of a specific data source, or the configuration

of a category of data sources-changes that will persist over multiple connections
to the federated database.

In this statement, the word SERVER and the parameter names that start with
server- refer only to data sources in a federated system. They do not refer to the
federated server in such a system, or to DRDA® application servers.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
authority.

Syntax

�� ALTER SERVER �

� server-name
VERSION server-version

TYPE server-type
VERSION server-version

WRAPPER wrapper-name

�

�

�

,
ADD

OPTIONS ( server-option-name string-constant )
SET

DROP server-option-name

��

server-version:

version
. release

. mod
version-string-constant

Description

server-name
Identifies the federated server's name for the data source to which the changes
being requested are to apply. The data source must be one that is described in
the catalog.

ALTER SERVER

Statements 97



VERSION
After server-name, VERSION and its parameter specify a new version of the
data source that server-name denotes.

version
Specifies the version number. The value must be an integer.

release
Specifies the number of the release of the version denoted by version. The
value must be an integer.

mod
Specifies the number of the modification of the release denoted by release.
The value must be an integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant
can be a single value (for example, '8i'); or it can be the concatenated
values of version, release and, if applicable, mod (for example, '8.0.3').

TYPE server-type
Specifies the type of data source to which the changes being requested are to
apply.

VERSION
After server-type, VERSION and its parameter specify the version of the data
sources for which server options are to be enabled, reset, or dropped.

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to interact
with data sources of the type and version denoted by server-type and
server-version. The wrapper must be listed in the catalog.

OPTIONS
Indicates what server options are to be enabled, reset, or dropped for the data
source denoted by server-name, or for the category of data sources denoted by
server-type and its associated parameters.

ADD
Enables a server option.

SET
Changes the setting of a server option.

server-option-name
Names a server option that is to be enabled or reset.

string-constant
Specifies the setting for server-option-name as a character string constant.

DROP server-option-name
Drops a server option.

Notes
v A server option cannot be specified more than once in the same ALTER SERVER

statement (SQLSTATE 42853). When a server option is enabled, reset, or
dropped, any other server options that are in use are not affected.

v An ALTER SERVER statement within a given unit of work (UOW) cannot be
processed (SQLSTATE 55007) under either of the following conditions:
– The statement references a single data source, and the UOW already includes

one of the following:

ALTER SERVER

98 SQL Reference Volume 2



- A SELECT statement that references a nickname for a table or view within
this data source

- An open cursor on a nickname for a table or view within this data source
- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of
the following:
- A SELECT statement that references a nickname for a table or view within

one of these data sources
- An open cursor on a nickname for a table or view within one of these data

sources
- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v If the server option is set to one value for a type of data source, and set to

another value for an instance of this type, the second value overrides the first
one for the instance. For example, assume that PLAN_HINTS is set to 'Y' for
server type ORACLE, and to 'N' for an Oracle data source named DELPHI. This
configuration causes plan hints to be enabled at all Oracle data sources except
DELPHI.

v You can only alter set or alter drop server options for a category of data sources
that was enabled by a prior alter add server option operation (SQLSTATE
42704).

v When altering the server version, no verification occurs to ensure that the
specified server version matches the remote server version. Specifying an
incorrect server version can result in SQL errors when you access nicknames that
belong to the database server definition. This is most likely when you specify a
server version that is later than the remote server version. In that case, when
you access nicknames that belong to the server definition, the database server
might send SQL that the remote server does not recognize.

Examples
v Example 1: Ensure that when authorization IDs are sent to your Oracle 8.0.3 data

sources, the case of the IDs will remain unchanged. Also, assume that the local
federated server CPU is twice as fast as the data source CPU. Inform the
optimizer of this statistic.

ALTER SERVER
TYPE ORACLE
VERSION 8.0.3
OPTIONS

(ADD FOLD_ID ’N’,
SET CPU_RATIO ’2.0’)

v Example 2: Indicate that the Documentum data source called DCTM_SVR_ASIA
has been changed to Version 4.

ALTER SERVER DCTM_SVR_ASIA
VERSION 4

ALTER SERVER

Statements 99



ALTER SERVICE CLASS
The ALTER SERVICE CLASS statement alters the definition of a service class.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v SQLADM authority, only if every alteration clause is a COLLECT clause
v WLMADM authority
v DBADM authority

Syntax

�� ALTER SERVICE CLASS service-class-name
UNDER service-superclass-name

�

ALTER SERVICE CLASS

100 SQL Reference Volume 2



� �
(1) HARD

CPU SHARES integer-constant
SOFT

CPU LIMIT integer-constant
NONE

PREFETCH PRIORITY DEFAULT
HIGH
MEDIUM
LOW

OUTBOUND CORRELATOR NONE
string-constant

BUFFERPOOL PRIORITY DEFAULT
HIGH
MEDIUM
LOW

(2)
COLLECT ACTIVITY DATA alter-collect-activity-data-clause

NONE
BASE

COLLECT AGGREGATE ACTIVITY DATA
EXTENDED
NONE
BASE

COLLECT AGGREGATE REQUEST DATA
NONE

BASE
COLLECT AGGREGATE UNIT OF WORK DATA

NONE
(3) BASE

COLLECT REQUEST METRICS
NONE
EXTENDED

(4)
ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
UOW LIFETIME HISTOGRAM TEMPLATE template-name
ENABLE
DISABLE

��

alter-collect-activity-data-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

�

�

�

WITHOUT DETAILS
,

(5)
WITH DETAILS

SECTION AND VALUES
INCLUDE ACTUALS BASE

Notes:

1 The same clause must not be specified more than once.

2 All COLLECT clauses except for COLLECT REQUEST METRICS are only
valid for a service subclass.

3 The COLLECT REQUEST METRICS clause is only valid for a service
superclass.

4 The HISTOGRAM TEMPLATE clauses are only valid for a service subclass.

ALTER SERVICE CLASS

Statements 101



5 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

service-class-name
Identifies the service class that is to be altered. This is a one-part name. It is an
SQL identifier (either ordinary or delimited).The service-class-name must
identify a service class that exists in the database (SQLSTATE 42704). To alter a
service subclass, the service-superclass-name must be specified using the UNDER
clause.

UNDER service-superclass-name
This clause is used only for altering a service subclass. The
service-superclass-name identifies the service superclass of the service subclass
and must identify a service superclass that exists in the database (SQLSTATE
42704).

SOFT CPU SHARES integer-constant or HARD CPU SHARES integer-constant
Specifies the number of shares of CPU resources that the workload manager
(WLM) dispatcher allocates to this service class when work is executing within
this service class. Valid values for the integer-constant are integers between 1
and 65535. Qualifying CPU SHARES with the keyword HARD, or specifying CPU
SHARES without qualifying it with the keyword HARD or SOFT, indicates that hard
CPU shares are to be allocated to this service class. Specifying the keyword
SOFT indicates that soft CPU shares are to be allocated to this service class. To
use hard and soft CPU shares with WLM dispatcher, you must enable the
wlm_disp_cpu_shares database manager configuration parameter.

CPU LIMIT integer-constant or CPU LIMIT NONE
Specifies the maximum percentage of the CPU resources that the WLM
dispatcher can assign to this service class. Valid values for the integer-constant
are integers between 1 and 100. You can also specify CPU LIMIT NONE to
indicate that there is no CPU limit.

PREFETCH PRIORITY DEFAULT | HIGH | MEDIUM | LOW
This parameter controls the priority with which agents in the service class can
submit their prefetch requests. Valid values are HIGH, MEDIUM, LOW, or
DEFAULT (SQLSTATE 42615). HIGH, MEDIUM, and LOW mean that prefetch
requests will be submitted to the high, medium, and low priority queues,
respectively. Prefetchers empty the priority queue in order from high to low.
Agents in the service class submit their prefetch requests at the PREFETCH
PRIORITY level when the next activity begins. If PREFETCH PRIORITY is
altered after a prefetch request is submitted, the request priority does not
change. The default value is DEFAULT, which is internally mapped to
MEDIUM for service superclasses. If DEFAULT is specified for a service
subclass, it inherits the PREFETCH PRIORITY of its parent superclass.

PREFETCH PRIORITY cannot be altered for a default subclass (SQLSTATE
5U032).

OUTBOUND CORRELATOR NONE or OUTBOUND CORRELATOR string-constant
Specifies whether or not to associate threads from this service class to an
external workload manager service class.

If OUTBOUND CORRELATOR is set to a string-constant for the service
superclass and OUTBOUND CORRELATOR NONE is set for a service
subclass, the service subclass inherits the OUTBOUND CORRELATOR of its
parent.

ALTER SERVICE CLASS

102 SQL Reference Volume 2



OUTBOUND CORRELATOR NONE
For a service superclass, specifies that there is no external workload
manager service class association with this service class, and for a service
subclass, specifies that the external workload manager service class
association is the same as its parent.

OUTBOUND CORRELATOR string-constant
Specifies the string-constant that is to be used as a correlator to associate
threads from this service class to an external workload manager service
class. The external workload manager must be active (SQLSTATE 5U030).
The external workload manager should be set up to recognize the value of
string-constant.

BUFFERPOOL PRIORITY DEFAULT | HIGH | MEDIUM | LOW
This parameter controls the bufferpool priority of pages fetched by activities in
this service class. Valid values are HIGH, MEDIUM, LOW or DEFAULT
(SQLSTATE 42615). Pages fetched by activities in a service class with higher
bufferpool priority are less likely to be swapped out than pages fetched by
activities in a service class with lower bufferpool priority. If DEFAULT is
specified for a service subclass, it inherits the BUFFERPOOL PRIORITY from
its parent superclass.

BUFFERPOOL PRIORITY cannot be altered for a default subclass (SQLSTATE
5U032).

COLLECT ACTIVITY DATA
Specifies that information about each activity that executes in this service class
is to be sent to any active activities event monitor when the activity completes.
The COLLECT ACTIVITY DATA clause is only valid for a service subclass.

alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator
member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the
activity is processed. On remote members, a record for the activity may
be captured multiple times as the activity comes and goes on those
members. If the AND VALUES clause is specified, activity input values
will be collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the service class
is to be sent to any active activities event monitor, when the activity
completes execution. Details about statement, compilation
environment, and section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to be
sent to any active activities event monitor, for those activities that
have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any active
activities event monitor for those activities that have them.

ALTER SERVICE CLASS

Statements 103



DETAILS must be specified if SECTION is specified. Section
actuals will be collected on any partition where the activity data is
collected.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on any
partition where the activity data is collected. For section actuals
to be collected, either INCLUDE ACTUALS clause must be
specified or the section_actuals database configuration
parameter must be set.

The effective setting for the collection of section actuals is the
combination of the INCLUDE ACTUALS clause (specified on
the WORK ACTION, SERVICE CLASS, or WORKLOAD), the
section_actuals database configuration parameter, and the
<collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if INCLUDE
ACTUALS BASE is specified, yet the section_actuals database
configuration parameter value is NONE and
<collectsectionactuals> is set to NONE, then the effective
setting for the collection of section actuals is BASE.

BASE specifies that the following actuals should be enabled
and collected during the activity's execution:
v Basic operator cardinality counts
v Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
executes in this service class.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data should be captured for this service class
and sent to the statistics event monitor, if one is active. This information is
collected periodically on an interval that is specified by the wlm_collect_int
database configuration parameter. The default is COLLECT AGGREGATE
ACTIVITY DATA BASE. The COLLECT AGGREGATE ACTIVITY DATA clause
is only valid for a service subclass.

BASE
Specifies that basic aggregate activity data should be captured for this
service class and sent to the statistics event monitor, if one is active. Basic
aggregate activity data includes:
v Estimated activity cost high watermark
v Rows returned high watermark
v Temporary table space usage high watermark

Note: Only activities that have an SQLTEMPSPACE threshold applied to
them participate in this high watermark.

v Activity life time histogram
v Activity queue time histogram
v Activity execution time histogram

ALTER SERVICE CLASS

104 SQL Reference Volume 2



EXTENDED
Specifies that all aggregate activity data should be captured for this service
class and sent to the statistics event monitor, if one is active. This includes
all basic aggregate activity data plus:
v Activity data manipulation language (DML) estimated cost histogram
v Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data should be captured for this service
class.

COLLECT AGGREGATE REQUEST DATA
Specifies that aggregate request data should be captured for this service class
and sent to the statistics event monitor, if one is active. This information is
collected periodically on an interval specified by the wlm_collect_int database
configuration parameter. The default is COLLECT AGGREGATE REQUEST
DATA NONE. The COLLECT AGGREGATE REQUEST DATA clause is valid
only for a service subclass.

BASE
Specifies that basic aggregate request data should be captured for this
service class and sent to the statistics event monitor, if one is active.

NONE
Specifies that no aggregate request data should be captured for this service
class.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data is to be captured for this service
class and sent to the statistics event monitor, if one is active. This information
is collected periodically on an interval that is specified by the wlm_collect_int
database configuration parameter. The default, when COLLECT AGGREGATE
UNIT OF WORK DATA is specified, is COLLECT AGGREGATE UNIT OF
WORK DATA BASE.

BASE
Specifies that basic aggregate unit of work data is to be captured for this
service class and sent to the statistics event monitor, if one is active. Basic
aggregate unit of work data includes:
v Unit of work lifetime histogram

NONE
Specifies that no aggregate unit of work data is to be collected for this
service class.

COLLECT REQUEST METRICS
Specifies that monitor metrics should be collected for any request submitted by
a connection that is associated with the specified service superclass and sent to
the statistics and unit of work event monitors, if active. The default is
COLLECT REQUEST METRICS NONE. The COLLECT REQUEST METRICS
clause is only valid for a service superclass (SQLSTATE 50U44).

Note: The effective request metrics collection setting is the combination of the
attribute specified by the COLLECT REQUEST METRICS clause on the service
superclass associated with the connection submitting the request, and the
mon_req_metrics database configuration parameter. If either the service
superclass attribute or the configuration parameter has a value other than
NONE, metrics will be collected for the request.

ALTER SERVICE CLASS

Statements 105



BASE
Specifies that basic metrics will be collected for any request submitted by a
connection associated with the service superclass.

EXTENDED
Specifies that basic metrics will be collected for any request submitted by a
connection associated with the service superclass. In addition, specifies that
the values for the following monitor elements should be determined with
additional granularity:
v total_section_time

v total_section_proc_time

v total_routine_user_code_time

v total_routine_user_code_proc_time

v total_routine_time

NONE
Specifies that no metrics will be collected for any request submitted by a
connection associated with the service superclass.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of database activities running in the
service class during a specific interval. This time includes both time queued
and time executing. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option. This clause is only valid for a service subclass.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities running
in the service class are queued during a specific interval. This information is
only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option. This clause is only valid
for a service subclass.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities running
in the service class are executing during a specific interval. This time does not
include the time spent queued. Activity execution time is collected in this
histogram at the coordinator member only. The time does not include idle
time. Idle time is the time between the execution of requests belonging to the
same activity when no work is being done. An example of idle time is the time
between the end of opening a cursor and the start of fetching from that cursor.
This information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED
option. This clause is only valid for a service subclass.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database requests running
in the service class are executing during a specific interval. This time does not
include the time spent queued. Request execution time is collected in this
histogram on each member where the request executes. This information is
only collected when the COLLECT AGGREGATE REQUEST DATA clause is
specified with the BASE option. This clause is only valid for a service subclass.

ALTER SERVICE CLASS

106 SQL Reference Volume 2



ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of DML activities running in the
service class. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED
option. This clause is only valid for a service subclass.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, between the arrival of one DML
activity and the arrival of the next DML activity. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified with the EXTENDED option. This clause is only valid for a service
subclass.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of units of work running in the
service class during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE UNIT OF WORK DATA clause is specified with the
BASE option.

ENABLE or DISABLE
Specifies whether or not connections and activities can be mapped to the
service class.

ENABLE
Connections and activities can be mapped to the service class.

DISABLE
Connections and activities cannot be mapped to the service class. New
connections or activities that are mapped to a disabled service class will be
rejected (SQLSTATE 5U028). When a service superclass is disabled, its
service subclasses are also disabled. When the service superclass is
re-enabled, its service subclasses return to states that are defined in the
system catalog. A default service class cannot be disabled (SQLSTATE
5U032).

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (histogram template)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work

action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work

class set)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

ALTER SERVICE CLASS

Statements 107



Notes
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all members. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until after a
COMMIT statement, even for the connection that issues the statement.

v After the ALTER SERVICE CLASS statement is committed, changes to
PREFETCH PRIORITY, OUTBOUND CORRELATOR, and COLLECT take effect
for the next new activity in the service class. Existing activities in the service
class continue to complete their work using the old settings.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– o DATABASE PARTITION can be specified in place of MEMBER, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– o DATABASE PARTITIONS can be specified in place of MEMBERS, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
v Example 1: Alter the amount of CPU that can be consumed by work running in

service superclass PETSALES to a maximum of 50%.
ALTER SERVICE CLASS PETSALES CPU LIMIT 50

v Example 2: Alter service superclass BARNSALES and add an outbound correlator
'osLowPriority'. Threads running in the service superclass and its service
subclasses will have the outbound correlator 'osLowPriority' associated with
them.

ALTER SERVICE CLASS BARNSALES OUTBOUND CORRELATOR ’osLowPriority’

ALTER SERVICE CLASS

108 SQL Reference Volume 2



ALTER STOGROUP
The ALTER STOGROUP statement is used to alter the definition of a storage
group.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

�� ALTER STOGROUP storagegroup-name �

� � �

�

,
(1)

ADD 'storage-path'
,

DROP 'storage-path'
OVERHEAD number-of-milliseconds
DEVICE READ RATE number-megabytes-per-second
DATA TAG integer-constant

NONE
SET AS DEFAULT

��

Notes:

1 Each clause can be specified only once.

Description

storagegroup-name
Identifies the storage group to be altered; storagegroup-name must identify a
storage group that exists at the current server (SQLSTATE 42704). This is a
one-part name.

ADD
Specifies that one or more new storage paths are to be added to the specified
storage group.

storage-path
A string constant that specifies containers the location where automatic
storage table spaces are to be created. The format of the string depends on
the operating system, as illustrated in the following table:

ALTER STOGROUP

Statements 109



Operating system Format of storage path string

Linux
AIX
Solaris
HP-UX

An absolute path

Windows The letter name of a drive

The string can include database partition expressions to specify database
partition number information in the storage path. For predictable
performance, ensure the storage paths added to a storage group have
similar media characteristics.

The maximum length of a storage path is 175 characters (SQLSTATE
54036). A storage path being added must be valid according to the naming
rules for paths, and must be accessible (SQLSTATE 57019). Similarly, in a
partitioned database environment, the storage path must exist and be
accessible on every database partition (SQLSTATE 57019).

DROP
Specifies that one or more storage paths are to be removed from the given
storage group. If table spaces are actively using a storage path being dropped,
then the state of the storage path is changed from "In Use" to "Drop Pending"
and future use of the storage path will be prevented.

The DROP storage-path clause is not supported in a DB2 pureScale environment
(SQLSTATE 56038).

storage-path
A string constant that specifies the storage path from which storage groups
are to be dropped. The format of the string depends on the operating
system, as illustrated in the following table:

Operating system Format of storage path string

Linux
AIX
Solaris
HP-UX

An absolute path

Windows The letter name of a drive

The string can include database partition expressions to specify database
partition number information in the storage path.

A storage path being dropped must currently exist in the storage group
(SQLSTATE 57019) and cannot already be in the "Drop Pending" state
(SQLSTATE 55073).

OVERHEAD number-of-milliseconds
Specifies the I/O controller usage and disk seek and latency time. This value is
used to determine the cost of I/O during query optimization. The value of
number-of-milliseconds is any numeric literal (integer, decimal, or floating point).
If this value is not the same for all storage paths, set the value to a numeric
literal which represents the average for all storage paths that belong to the
storage group.

DEVICE READ RATE number-megabytes-per-second
Represents the device specification for the read transfer rate in megabytes per
second. This value is used to determine the cost of I/O during query
optimization. The value of number-megabytes-per-second is any numeric literal

ALTER STOGROUP

110 SQL Reference Volume 2



(integer, decimal, or floating point). If this value is not the same for all storage
paths, set the value to a numeric literal which represents the average for all
storage paths that belong to the storage group.

DATA TAG integer-constant or DATA TAG NONE
Specifies a tag for the data in a given storage group. This value can be used as
part of a WLM configuration in a work class definition or referenced within a
threshold definition. For more information, see the CREATE WORK CLASS
SET, ALTER WORK CLASS SET, CREATE THRESHOLD, and ALTER
THRESHOLD statements.

integer-constant
Valid values for integer-constant are integers from 1 to 9.

NONE
If NONE is specified, there is no data tag.

SET AS DEFAULT
Specifies that the storage group being altered is designated as the default
storage group. There can be only one storage group designated as the default
storage group. There is no affect to the existing table spaces using that storage
group. The designated default storage group is used by automatic storage table
spaces when no storage group is specified at table space creation and a
database managed table space is converted to automatic storage managed
during redirected restore.

Rules
v A storage group must have at least one storage path. Dropping all storage paths

from the storage group is not permitted (SQLSTATE 428HH).
v The ALTER STOGROUP statement cannot be executed while a database partition

server is being added (SQLSTATE 55071).
v A storage group can have up to 128 defined storage paths (SQLSTATE 5U009).
v A transaction can have at most one ALTER STOGROUP statement per storage

group. In the case of the default storage group, there can be at most one ALTER
DATABASE statement or one ALTER STOGROUP statement on the default
storage group (SQLSTATE 25502).

Notes
v Adding new storage paths: When adding new storage paths:

– Existing REGULAR and LARGE table spaces using this storage group will not
initially use these new paths. The database manager might choose to create
new table space containers on these paths only if an out-of-space condition
occurs. You can issue ALTER TABLESPACE REBALANCE statements for
existing table spaces to stripe them over the newly added storage paths.

– Existing temporary table spaces managed by automatic storage do not
automatically use new storage paths. The database must be stopped normally
then restarted for containers in these table spaces to use the new storage path
or paths. As an alternative, the temporary table spaces can be dropped and
re-created. When created, these table spaces automatically use all storage
paths that have sufficient free space.

v Calculation of free space: When free space is calculated for a storage path on a
database partition, the database manager checks for the existence of the
following directories or mount points within the storage path, and will use the
first one that is found.

ALTER STOGROUP

Statements 111



<storage path>/<instance name>/NODE####/<database name>
<storage path>/<instance name>/NODE####
<storage path>/<instance name>
<storage path>

Where:
– <storage path> is a storage path associated with the database.
– <instance name> is the instance under which the database resides.
– NODE#### corresponds to the database partition number (for example,

NODE0000 or NODE0001).
– <database name> is the name of the database.

v Isolating multiple database partitions under one storage path: File systems can
be mounted at a point beneath the storage path, and the database manager will
recognize that the actual amount of free space available for table space
containers might not be the same amount that is associated with the storage
path directory itself.
Consider an example in which two logical database partitions exist on one
physical computer, and there is a single storage path (/dbdata). Each database
partition will use this storage path, but you might want to isolate the data from
each partition within its own file system. In this case, a separate file system can
be created for each partition and it can be mounted at /dbdata/<instance>/
NODE####. When creating containers on the storage path and determining free
space, the database manager will not retrieve free space information for /dbdata,
but instead will retrieve it for the corresponding /dbdata/<instance>/NODE####
directory.

v Dropping a storage path that is in use by one or more table spaces: When
dropping a storage path that is in use by one or more table spaces, the state of
the path changes from "In Use" to "Drop Pending". Future growth on the path
will not occur.
Before the path can be fully removed from the storage group, each affected table
space must be rebalanced (using the REBALANCE clause of the ALTER
TABLESPACE statement) so that its container data is moved off the storage path.
Rebalance is supported only for REGULAR and LARGE table spaces. Drop and
re-create temporary table spaces to have their containers removed from the
dropped path. When the path is no longer in use by any table space, it will be
physically removed from the database.
For a partitioned database environment, the path is maintained independently
on each partition. When a path is no longer in use on a given database partition,
it will be physically removed from that partition. Other partitions might still
show the path as being in the "Drop Pending" state. The list of automatic storage
table spaces using drop pending storage paths can be determined by issuing the
following SQL statement:
SELECT DISTINCT TBSP_NAME, TBSP_ID, TBSP_CONTENT_TYPE

FROM TABLE(MON_GET_TABLESPACE(NULL,-2)) AS T
WHERE TBSP_PATHS_DROPPED = 1

v Dropping a storage path that was added to a storage group multiple times: It is
possible for a given storage path to be added to a storage group multiple times.
When using the DROP clause, specifying that particular path once will drop all
instances of the path from the storage group.

Examples
1. Add drives D and E to the storage group named COMPLIANCE.

ALTER STOGROUP COMPLIANCE ADD ’D:\’, ’E:\’

ALTER STOGROUP

112 SQL Reference Volume 2



2. Change the data tag for the OPERATIONAL storage group and designate it as
the default storage group.
ALTER STOGROUP OPERATIONAL DATA TAG 3 SET AS DEFAULT

3. Add a storage path that uses a database partition expression to differentiate the
storage paths on each of the database partitions.
ALTER STOGROUP TESTDATA ADD ’/dataForPartition $N’

4. Remove paths /db/filesystem1 and /db/filesystem2 from storage group
TESTDATA.
ALTER STOGROUP TESTDATA DROP ’/db/filesystem1’, ’/db/filesystem2’

ALTER STOGROUP

Statements 113



ALTER TABLE
The ALTER TABLE statement alters the definition of a table.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTER privilege on the table to be altered
v CONTROL privilege on the table to be altered
v ALTERIN privilege on the schema of the table
v DBADM authority

To create or drop a foreign key, the privileges held by the authorization ID of the
statement must include one of the following authorities on the parent table:
v REFERENCES privilege on the table
v REFERENCES privilege on each column of the specified parent key
v CONTROL privilege on the table
v DBADM authority

To drop the primary key or a unique constraint on table T, the privileges held by
the authorization ID of the statement must include at least one of the following
authorities on every table that is a dependent of this parent key of T:
v ALTER privilege on the table
v CONTROL privilege on the table
v ALTERIN privilege on the schema of the table
v DBADM authority

To alter a table to become a materialized query table (using a fullselect), the
privileges held by the authorization ID of the statement must include at least one
of the following authorities:
v CONTROL privilege on the table
v DBADM authority

and at least one of the following authorities on each table or view identified in the
fullselect (excluding group privileges):
v SELECT privilege and ALTER privilege (including group privileges) on the table

or view
v CONTROL privilege on the table or view
v SELECT privilege on the table or view, and ALTERIN privilege (including group

privileges) on the schema of the table or view
v DATAACCESS authority

ALTER TABLE

114 SQL Reference Volume 2



To alter a table so that it is no longer a materialized query table, the privileges held
by the authorization ID of the statement must include at least one of the following
authorities on each table or view identified in the fullselect used to define the
materialized query table:
v ALTER privilege on the table or view
v CONTROL privilege on the table or view
v ALTERIN privilege on the schema of the table or view
v DBADM authority

To add a column of type DB2SECURITYLABEL to a table, the privileges held by
the authorization ID of the statement must include at least a security label from the
security policy associated with the table.

To remove the security policy from a table, the privileges held by the authorization
ID of the statement must include SECADM authority.

To alter a table to attach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following authorities on
the source table:
v SELECT privilege on the table and DROPIN privilege on the schema of the table
v CONTROL privilege on the table
v DATAACCESS authority

and at least one of the following authorities on the target table:
v ALTER and INSERT privileges on the table
v CONTROL privilege on the table
v DATAACCESS authority

To alter a table to detach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following authorities on
the target table of the detached partition:
v CREATETAB authority on the database, and USE privilege on the table spaces

used by the table, as well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the new table does not exist
– CREATEIN privilege on the schema, if the schema name of the new table

refers to an existing schema
v DBADM authority

and at least one of the following authorities on the source table:
v SELECT, ALTER, and DELETE privileges on the table
v CONTROL privilege on the table
v DATAACCESS authority

To alter a table to activate not logged initially with empty table, the privileges held
by the authorization ID of the statement must include at least one of the following
authorities:
v ALTER and DELETE privileges on the table
v CONTROL privilege on the table
v DBADM authority

ALTER TABLE

Statements 115



To alter a table that is protected by a security policy to activate not logged initially
with empty table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities:
v CONTROL privilege on the table
v DBADM authority

To alter a table to ACTIVATE and DEACTIVATE row and column access control,
the privileges held by the authorization ID of the statement must include the
SECADM authority.

To alter a table with ACTIVATE NOT LOGGED INITIALLY WITH EMPTY TABLE,
if that table has row access control activated, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities:
v CONTROL privilege on the table
v DBADM authority

To alter a table to become a system-period temporal table (with the ADD
VERSIONING clause) or alter a system-period temporal table when one or more of
the changes also result in changes to the associated history table, the privileges that
are held by the authorization ID of the statement must also include at least one of
the following authorities:
v ALTER privilege on the history table
v CONTROL privilege on the history table
v ALTERIN privilege on the schema of the history table
v DBADM authority

Syntax

�� ALTER TABLE table-name �

ALTER TABLE

116 SQL Reference Volume 2



� �
(1) COLUMN

ADD column-definition
unique-constraint
referential-constraint
check-constraint
distribution-clause

RESTRICT ON DROP
MATERIALIZED

QUERY
ADD materialized-query-definition
ALTER FOREIGN KEY constraint-name constraint-alteration

CHECK
COLUMN

ALTER column-alteration
(2)

ACTIVATE ROW ACCESS CONTROL
DEACTIVATE

(3)
ACTIVATE COLUMN ACCESS CONTROL
DEACTIVATE

RENAME COLUMN source-column-name TO target-column-name
DROP PRIMARY KEY

FOREIGN KEY constraint-name
UNIQUE
CHECK
CONSTRAINT
COLUMN CASCADE

column-name
RESTRICT

RESTRICT ON DROP
DROP DISTRIBUTION

MATERIALIZED
DROP QUERY
ADD PERIOD period-definition
DROP PERIOD period-name
DATA CAPTURE NONE

CHANGES
INCLUDE LONGVAR COLUMNS

ACTIVATE NOT LOGGED INITIALLY
WITH EMPTY TABLE

PCTFREE integer
LOCKSIZE ROW

BLOCKINSERT
TABLE

APPEND ON
OFF

CARDINALITY
VOLATILE
NOT VOLATILE

ADAPTIVE
COMPRESS YES

STATIC
NO

ACTIVATE VALUE COMPRESSION
DEACTIVATE

LOG INDEX BUILD NULL
OFF
ON

ADD PARTITION add-partition
ATTACH PARTITION attach-partition
DETACH PARTITION partition-name INTO table-name1
ADD SECURITY POLICY policy-name
DROP SECURITY POLICY
ADD VERSIONING USE HISTORY TABLE history-table-name
DROP VERSIONING

��

add-partition:

boundary-spec
partition-name IN tablespace-name

�

�
INDEX IN tablespace-name

LONG IN tablespace-name

ALTER TABLE

Statements 117



boundary-spec:

starting-clause ending-clause
ending-clause

starting-clause:

FROM
STARTING �

,

( constant )
MINVALUE
MAXVALUE

constant
MINVALUE
MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause:

AT
ENDING �

,

( constant )
MINVALUE
MAXVALUE

constant
MINVALUE
MAXVALUE

INCLUSIVE

EXCLUSIVE

attach-partition:

partition-name
boundary-spec FROM table-name �

�
BUILD MISSING INDEXES

REQUIRE MATCHING INDEXES

column-definition:

column-name
(4)

data-type
column-options

column-options:

ALTER TABLE

118 SQL Reference Volume 2



�

NOT NULL
(5)

lob-options
(6)

SCOPE typed-table-name2
typed-view-name2

UNIQUE constraint-attributes
CONSTRAINT constraint-name PRIMARY KEY

references-clause
CHECK ( check-condition )

(7)
default-clause
generated-clause

COMPRESS SYSTEM DEFAULT
COLUMN

SECURED WITH security-label-name
NOT HIDDEN
IMPLICITLY HIDDEN

lob-options:

LOGGED
*

NOT LOGGED

NOT COMPACT
* *

COMPACT

references-clause:

REFERENCES table-name
nickname

�

,

( column-name )

�

� rule-clause constraint-attributes

rule-clause:

ON DELETE NO ACTION ON UPDATE NO ACTION
* * *

ON DELETE RESTRICT ON UPDATE RESTRICT
CASCADE
SET NULL

constraint-attributes:

*

ENFORCED

TRUSTED
NOT ENFORCED

NOT TRUSTED

*

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION
*

default-clause:

ALTER TABLE

Statements 119



WITH
DEFAULT

constant
datetime-special-register
user-special-register
CURRENT SCHEMA
CURRENT MEMBER
NULL
cast-function ( constant )

datetime-special-register
user-special-register
CURRENT SCHEMA

EMPTY_CLOB()
EMPTY_DBCLOB()
EMPTY_BLOB()

generated-clause:

ALWAYS
GENERATED as-row-change-timestamp-clause

BY DEFAULT
ALWAYS

GENERATED as-generated-expression-clause
as-row-transaction-timestamp-clause
as-row-transaction-start-id-clause

as-row-change-timestamp-clause:

(8)
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-generated-expression-clause:

AS ( generation-expression )

as-row-transaction-timestamp-clause:

AS ROW BEGIN
END

as-row-transaction-start-id-clause:

AS TRANSACTION START ID

unique-constraint:

CONSTRAINT constraint-name
UNIQUE
PRIMARY KEY

�

ALTER TABLE

120 SQL Reference Volume 2



� �

,

( column-name )
, BUSINESS_TIME WITHOUT OVERLAPS

�

� constraint-attributes

referential-constraint:

CONSTRAINT constraint-name

�

,

FOREIGN KEY ( column-name ) �

� references-clause

check-constraint:

CONSTRAINT constraint-name
CHECK ( check-condition ) �

� constraint-attributes

check-condition:

search-condition
functional-dependency

functional-dependency:

� �

column-name DETERMINED BY column-name
, ,

( column-name ) ( column-name )

distribution-clause:

HASH
DISTRIBUTE BY �

,

( column-name )

materialized-query-definition:

( fullselect ) refreshable-table-options

ALTER TABLE

Statements 121



refreshable-table-options:

* DATA INITIALLY DEFERRED * REFRESH DEFERRED
IMMEDIATE

* �

�
ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION
*

MAINTAINED BY SYSTEM
USER
REPLICATION
FEDERATED_TOOL

*

constraint-alteration:

�
(9)

ENABLE QUERY OPTIMIZATION
DISABLE
ENFORCED

TRUSTED
NOT ENFORCED

NOT TRUSTED

column-alteration:

column-name SET DATA TYPE altered-data-type
NOT NULL
INLINE LENGTH integer
default-clause

EXPRESSION as-generated-expression-clause
NOT HIDDEN
IMPLICITLY HIDDEN

SET generation-alteration
identity-alteration

SET generation-alteration
SET generation-attribute as-identity-clause

ALWAYS
SET GENERATED as-generated-expression-clause

as-row-transacton-start-id-clause
as-row-transaction-timestamp-clause

DROP DEFAULT
GENERATED
NOT NULL

ADD SCOPE typed-table-name
typed-view-name

COMPRESS SYSTEM DEFAULT
OFF

SECURED WITH security-label-name
DROP COLUMN SECURITY

altered-data-type:

built-in-type
(10)

distinct-type-name

built-in-type:

ALTER TABLE

122 SQL Reference Volume 2



INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (11)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB
CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

as-identity-clause:

AS IDENTITY

�
(9) 1

( START WITH numeric-constant )
1

INCREMENT BY numeric-constant
NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant

ALTER TABLE

Statements 123



generation-alteration:

SET GENERATED ALWAYS
BY DEFAULT

identity-alteration:

�
(9)

SET INCREMENT BY numeric-constant
SET NO MINVALUE

MINVALUE numeric-constant
SET NO MAXVALUE

MAXVALUE numeric-constant
SET NO CYCLE

CYCLE
SET NO CACHE

CACHE integer-constant
SET NO ORDER

ORDER
RESTART

WITH numeric-constant

generation-attribute:

ALWAYS
GENERATED

BY DEFAULT

period-definition:

SYSTEM_TIME ( begin-column-name , end-column-name )
BUSINESS_TIME

Notes:

1 The same clause must not be specified more than once (SQLSTATE 42614).

2 If an ACTIVATE or DEACTIVATE clause is specified for row access control,
no other clause except ACTIVATE or DEACTIVATE column access control can
be specified in the same ALTER TABLE statement (SQLSTATE 42613).

3 If an ACTIVATE or DEACTIVATE clause is specified for column access
control, no other clause except ACTIVATE or DEACTIVATE row access
control can be specified in the same ALTER TABLE statement (SQLSTATE
42613).

4 If the first column option chosen is generated-clause, data-type can be omitted;
it will be computed by the generation expression.

5 The lob-options clause only applies to large object types (CLOB, DBCLOB, and
BLOB), and to distinct types that are based on large object types.

6 The SCOPE clause only applies to the REF type.

7 The default-clause and generated-clause cannot both be specified for the same
column definition (SQLSTATE 42614).

ALTER TABLE

124 SQL Reference Volume 2



8 Data type is optional for a row change timestamp column if the first
column-option specified is a generated-clause; the data type default is
TIMESTAMP(6). Data type is optional for row-begin, row-end, and
transaction-start-ID columns if the first column-option is a generated-clause;
the data type default is TIMESTAMP(12)

9 The same clause must not be specified more than once.

10 The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type (SQLSTATE 428H2).

11 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

Description

table-name
The table-name must identify a table that exists at the current server. It cannot
be a nickname (SQLSTATE 42809) and must not be a view, a catalog table, a
created temporary table, or a declared temporary table (SQLSTATE 42995).

If table-name identifies a materialized query table, alterations are limited to
adding or dropping the materialized query, invoking the ACTIVATING NOT
LOGGED INITIALLY clause, adding or dropping RESTRICT ON DROP,
modifying data capture, pctfree, locksize, append, volatile, data row
compression, value compression, and activating or deactivating row and
column access control.

If table-name identifies a shadow table, alterations can include adding or
dropping primary keys in addition to the alterations that are supported for a
materialized query table.

If table-name identifies a range-clustered table, alterations are limited to adding,
changing, or dropping constraints, activating not logged initially, adding or
dropping RESTRICT ON DROP, changing locksize, data capture, or volatile,
and setting column default values.

ADD column-definition
Adds a column to the table. The table must not be a history table for a
system-period temporal table (SQLSTATE 428HZ) or a typed table (SQLSTATE
428DH). For all existing rows in the table, the value of the new column is set
to its default value. The new column is the last column of the table; that is, if
initially there are n columns, the added column is column n+1.

Adding the new column must not make the total byte count of all columns
exceed the maximum record size.

If the table is a system-period temporal table, the column is added to the
associated history table as well.

If the added column is a generated column that is based on an expression, the
expression must not reference a column for which a column mask is defined
(SQLSTATE 42621).

If a column is added to a table on which a mask or a permission is defined, or
to a table that is referenced in the definition of a mask or a permission, that
mask or permission is invalidated. Access to a table that has column access
control activated and an invalid mask defined on it is blocked until the invalid
mask is either disabled, dropped, or recreated (SQLSTATE 560D0). Access to a
table that has row access control activated and an invalid row permission

ALTER TABLE

Statements 125



defined on it is blocked until the invalid permission is either disabled,
dropped, or recreated (SQLSTATE 560D0).

column-name
Is the name of the column to be added to the table. The name cannot be
qualified. Existing column names or period names in the table cannot be
used (SQLSTATE 42711).

data-type
Is one of the data types listed under “CREATE TABLE”.

NOT NULL
Prevents the column from containing null values. The default-clause must
also be specified (SQLSTATE 42601).

lob-options
Specifies options for LOB data types. See lob-options in “CREATE TABLE”.

SCOPE
Specify a scope for a reference type column.

typed-table-name2
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name2 (SQLSTATE 428DM).
No checking is done of the default value for column-name to ensure
that the value actually references an existing row in typed-table-name2.

typed-view-name2
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name2 (SQLSTATE 428DM).
No checking is done of the default value for column-name to ensure
that the values actually references an existing row in typed-view-name2.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that
was already specified within the same ALTER TABLE statement, or as the
name of any other existing constraint on the table (SQLSTATE 42710).

If the constraint name is not specified by the user, an 18 byte long
identifier unique within the identifiers of the existing constraints defined
on the table is generated by the system. (The identifier consists of "SQL"
followed by a sequence of 15 numeric characters that are generated by a
timestamp-based function.)

When used with a PRIMARY KEY or UNIQUE constraint:
v the constraint-name may be used as the name of an index that is created

to support the constraint. See Notes for details on index names
associated with unique constraints.

v you can use an existing index that is defined with RANDOM columns
for the key index if applicable. If there is more than one index that can
satisfy the primary or unique requirement, then the index that is chosen
cannot be predicted. An existing primary or unique key index cannot be
altered to be an index with random ordering. If a primary or unique key
index with random ordering is required, a suitable index must first be
defined with the RANDOM keyword. Then, the table must be altered to
add the primary or unique key.

PRIMARY KEY
This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified in
the definition of column C, the effect is the same as if the PRIMARY

ALTER TABLE

126 SQL Reference Volume 2



KEY(C) clause were specified as a separate clause. The column cannot
contain null values, so the NOT NULL attribute must also be specified
(SQLSTATE 42831).

See PRIMARY KEY within the unique-constraint description.

UNIQUE
This provides a shorthand method of defining a unique key composed
of a single column. Thus, if UNIQUE is specified in the definition of
column C, the effect is the same as if the UNIQUE(C) clause were
specified as a separate clause.

See UNIQUE within the unique-constraint description.

references-clause
This provides a shorthand method of defining a foreign key composed
of a single column. Thus, if a references-clause is specified in the
definition of column C, the effect is the same as if that
references-clause were specified as part of a FOREIGN KEY clause in
which C is the only identified column.

See references-clause in “CREATE TABLE”.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that
applies to a single column. See check-condition in “CREATE TABLE”.

constraint-attributes
See constraint-attributes in “CREATE TABLE”.

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on
INSERT or is specified as DEFAULT on INSERT or UPDATE. If a
specific default value is not specified following the DEFAULT
keyword, the default value depends on the data type of the column as
shown in Table 13. If a column is defined as an XML or structured
type, then a DEFAULT clause cannot be specified.

If a column is defined using a distinct type, then the default value of
the column is the default value of the source data type cast to the
distinct type.

Table 13. Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string Blanks

Varying-length character string A string of length 0

Fixed-length graphic string Double-byte blanks

Varying-length graphic string A string of length 0

Date For existing rows, a date corresponding to
January 1, 0001. For added rows, the current
date.

ALTER TABLE

Statements 127



Table 13. Default Values (when no value specified) (continued)

Data Type Default Value

Time For existing rows, a time corresponding to 0
hours, 0 minutes, and 0 seconds. For added
rows, the current time.

Timestamp For existing rows, a date corresponding to
January 1, 0001, and a time corresponding to
0 hours, 0 minutes, 0 seconds and 0
microseconds. For added rows, the current
timestamp.

Binary string (blob) A string of length 0

Omission of DEFAULT from a column-definition results in the use of the
null value as the default for the column.

Specific types of values that can be specified with the DEFAULT
keyword are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:
v represent a value that could be assigned to the column in

accordance with the rules of assignment as described in Chapter
3

v not be a floating-point constant unless the column is defined
with a floating-point data type

v be a numeric constant or a decimal floating-point special value if
the data type of the column is decimal floating-point.
Floating-point constants are first interpreted as DOUBLE and
then converted to decimal floating-point. For DECFLOAT(16)
columns, decimal constants must have a precision less than or
equal to 16.

v not have nonzero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

v be expressed with no more than 254 bytes including the quote
characters, any introducer character such as the X for a
hexadecimal constant, and characters from the fully qualified
function name and parentheses when the constant is the
argument of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT
DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the time
of INSERT, UPDATE, or LOAD as the default for the column. The
data type of the column must be the data type that corresponds to
the special register specified (for example, data type must be DATE
when CURRENT DATE is specified). For existing rows, the value is
the current date, current time or current timestamp when the
ALTER TABLE statement is processed.

user-special-register
Specifies the value of the user special register (CURRENT USER,
SESSION_USER, SYSTEM_USER) at the time of INSERT, UPDATE,
or LOAD as the default for the column. The data type of the

ALTER TABLE

128 SQL Reference Volume 2



column must be a character string with a length not less than the
length attribute of a user special register. Note that USER can be
specified in place of SESSION_USER and CURRENT_USER can be
specified in place of CURRENT USER. For existing rows, the value
is the CURRENT USER, SESSION_USER, or SYSTEM_USER of the
ALTER TABLE statement.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register at
the time of INSERT, UPDATE, or LOAD as the default for the
column. If CURRENT SCHEMA is specified, the data type of the
column must be a character string with a length greater than or
equal to the length attribute of the CURRENT SCHEMA special
register. For existing rows, the value of the CURRENT SCHEMA
special register at the time the ALTER TABLE statement is
processed.

CURRENT MEMBER
Specifies the value of the CURRENT MEMBER special register at
the time of INSERT, UPDATE, or LOAD as the default for the
column. If CURRENT MEMBER is specified, the data type of the
column must allow assignment from an integer. For existing rows,
the value of the CURRENT MEMBER special register at the time
the ALTER TABLE statement is processed.

NULL
Specifies NULL as the default for the column. If NOT NULL was
specified, DEFAULT NULL must not be specified within the same
column definition.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception of
distinct types based on BLOB or datetime types, the name of the
function must match the name of the distinct type for the column.
If qualified with a schema name, it must be the same as the
schema name for the distinct type. If not qualified, the schema
name from function resolution must be the same as the schema
name for the distinct type. For a distinct type based on a datetime
type, where the default value is a constant, a function must be
used and the name of the function must match the name of the
source type of the distinct type with an implicit or explicit schema
name of SYSIBM. For other datetime columns, the corresponding
datetime function may also be used. For a BLOB or a distinct type
based on BLOB, a function must be used and the name of the
function must be BLOB with an implicit or explicit schema name of
SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of the
distinct type or for the data type if not a distinct type. If the
cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT

ALTER TABLE

Statements 129



TIMESTAMP. The source type of the distinct type of the
column must be the data type that corresponds to the specified
special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or
SYSTEM_USER. The data type of the source type of the distinct
type of the column must be a string data type with a length of
at least 8 bytes. If the cast-function is BLOB, the length attribute
must be at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register.
The data type of the source type of the distinct type of the
column must be a character string with a length greater than
or equal to the length attribute of the CURRENT SCHEMA
special register. If the cast-function is BLOB, the length attribute
must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The
column must have the data type that corresponds to the result data
type of the function.

If the value specified is not valid, an error (SQLSTATE 42894) is
returned.

generated-clause
Specifies a generated value for the column. This clause must not be
specified with default-clause in a column definition (SQLSTATE 42623). A
generated column cannot be added to a system-period temporal table
(SQLSTATE 428HZ). For details on column generation, see “CREATE
TABLE”.

GENERATED

Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an
identity column, row change timestamp column, row-begin column,
row-end column, transaction start-ID column, or generated expression
column.

If the column is nullable, the null value is assigned as the value for the
column in existing rows. Otherwise, the value for the column in
existing rows depends on the definition of the column:
v ROW CHANGE TIMESTAMP uses a value that corresponds to the

timestamp of the ALTER TABLE statement
v ROW BEGIN uses a date that corresponds to January 1, 0001 and a

time that corresponds to 0 hours, 0 minutes, 0 seconds, and 0
fractional seconds

v ROW END uses a date that corresponds to December 30, 9999, and a
time that corresponds to 0 hours, 0 minutes, 0 seconds, and 0
fractional seconds

v TRANSACTION START ID uses a date that corresponds to January
1, 0001, and a time that corresponds to 0 hours, 0 minutes, 0
seconds, and 0 fractional seconds

v Expressions use the value derived from the expression

ALTER TABLE

130 SQL Reference Volume 2



ALWAYS
Specifies that the database manager will always generate a value
for the column when a row is inserted or updated and a value
must be generated. The result of the expression is stored in the
table. GENERATED ALWAYS is the recommended option unless
data propagation or unload and reload operations are being
performed. GENERATED ALWAYS is the default for generated
columns.

BY DEFAULT
Specifies that the database manager will generate a value for the
column when a row is inserted into the table, or updated,
specifying DEFAULT for the column, unless an explicit value is
specified. BY DEFAULT can only be specified with
as-row-change-timestamp-clause. BY DEFAULT is the recommended
option when using data propagation or performing unload and
reload operations.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column with values
generated by the database manager. A value is generated for the
column in each row that is inserted, and for any row in which any
column is updated. The value that is generated for a ROW
CHANGE TIMESTAMP column is a timestamp that corresponds to
the insert or update time for that row. If multiple rows are inserted
or updated with a single statement, the value of the ROW
CHANGE TIMESTAMP column might be different for each row.

A table can only have one ROW CHANGE TIMESTAMP column
(SQLSTATE 428C1). If data-type is specified, it must be
TIMESTAMP or TIMESTAMP(6) (SQLSTATE 42842). A ROW
CHANGE TIMESTAMP column cannot have a DEFAULT clause
(SQLSTATE 42623). NOT NULL must be specified for a ROW
CHANGE TIMESTAMP column (SQLSTATE 42831).

AS (generation-expression)
Specifies that the definition of the column is based on an
expression. Requires that the table be put in set integrity pending
no access state, using the SET INTEGRITY statement with the OFF
NO ACCESS option. After the ALTER TABLE statement, the SET
INTEGRITY statement with the IMMEDIATE CHECKED and
FORCE GENERATED options must be used to update and check
all the values in that column against the new expression. For
details on specifying a column with a generation-expression, see
“CREATE TABLE”.

AS ROW BEGIN

Specifies that the value is assigned by the database manager
whenever a row is inserted into the table or any column in the row
is updated. The value is generated using a reading of the
time-of-day clock during execution of the first of the following
events in the transaction:
v A data change statement that requires a value to be assigned to

the row-begin or transaction start-ID column in a table
v A deletion of a row in a system-period temporal table

For a system-period temporal table, the database manager ensures
uniqueness of the generated values for a row-begin column across

ALTER TABLE

Statements 131



transactions. The timestamp value might be adjusted to ensure that
rows inserted into an associated history table have the end
timestamp value greater than the begin timestamp value
(SQLSTATE 01695). This can happen when a conflicting transaction
is updating the same row in the system-period temporal table. The
database configuration parameter systime_period_adj must be set
to Yes for this adjustment to the timestamp value to occur
otherwise an error is returned (SQLSTATE 57062). If multiple rows
are inserted or updated within a single SQL transaction and an
adjustment is not needed, the values for the row-begin column are
the same for all the rows and are unique from the values generated
for the column for another transaction. A row-begin column is
required as the begin column of a SYSTEM_TIME period, which is
the intended use for this type of generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If
data-type is not specified the column is defined as a
TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12) (SQLSTATE 42842). The column must be defined
as NOT NULL (SQLSTATE 42831). A row-begin column is not
updatable.

AS ROW END

Specifies that a value for the data type of the column is assigned
by the database manager whenever a row is inserted or any
column in the row is updated. The assigned value is TIMESTAMP
'9999-12-30-00.00.00.000000000000'.

A row-end column is required as the second column of a
SYSTEM_TIME period, which is the intended use for this type of
generated column.

A table can have only one row-end column (SQLSTATE 428C1). If
data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12) (SQLSTATE 42842). The column must be defined
as NOT NULL (SQLSTATE 42831). A row-end column is not
updatable.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager
whenever a row is inserted into the table or any column in the row
is updated. The database manager assigns a unique timestamp
value per transaction or the null value. The null value is assigned
to the transaction start-ID column if the column is nullable and if
there is a row-begin column in the table for which the value did
not need to be adjusted. Otherwise the value is generated using a
reading of the time-of-day clock during execution of the first of the
following events in the transaction:
v A data change statement that requires a value to be assigned to

the row-begin or transaction start-ID column in a table
v A deletion of a row in a system-period temporal table

If multiple rows are inserted or updated within a single SQL
transaction, the values for the transaction start-ID column are the
same for all the rows and are unique from the values generated for
the column for another transaction.

ALTER TABLE

132 SQL Reference Volume 2



A transaction start-ID column is required for a system-period
temporal table, which is the intended use for this type of generated
column.

A table can have only one transaction start-ID column (SQLSTATE
428C1). If data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified it must be
TIMESTAMP(12). A transaction start-ID column is not updatable.

COMPRESS SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for the
data types when no specific values are specified) are to be stored using
minimal space. If the VALUE COMPRESSION clause is not specified, a
warning is returned (SQLSTATE 01648) and system default values are not
stored using minimal space.

Allowing system default values to be stored in this manner causes a slight
performance penalty during insert and update operations on the column
because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or
structured data type (SQLSTATE 42842). If the base data type is a
varying-length string, this clause is ignored. String values of length 0 are
automatically compressed if a table has been set with VALUE
COMPRESSION.

COLUMN SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is
associated with the table. The name must not be qualified (SQLSTATE
42601). The table must have a security policy associated with it (SQLSTATE
55064). The table must not be a system-period temporal table.

NOT HIDDEN or IMPLICITLY HIDDEN
Specifies whether the column is to be defined as hidden. The hidden
attribute determines whether the column is included in an implicit
reference to the table, or whether it can be explicitly referenced in SQL
statements. The default is NOT HIDDEN.

NOT HIDDEN
Specifies that the column is included in implicit references to the table,
and that the column can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the
column is explicitly referenced by name. For example, assuming that a
table includes a column defined with the IMPLICITLY HIDDEN clause,
the result of a SELECT * does not include the implicitly hidden column.
However, the result of a SELECT that explicitly refers to the name of
an implicitly hidden column will include that column in the result
table.

ADD unique-constraint
Defines a unique or primary key constraint. A primary key or unique
constraint cannot be added to a table that is a subtable (SQLSTATE 429B3). If
the table is a supertable at the top of the hierarchy, the constraint applies to the
table and all its subtables.

CONSTRAINT constraint-name
Names the primary key or unique constraint. For more information, see
constraint-name in “CREATE TABLE” on page 680.

ALTER TABLE

Statements 133



UNIQUE (column-name, ... BUSINESS_TIME WITHOUT OVERLAPS)
Defines a unique key composed of the identified columns and periods. The
identified columns must be defined as NOT NULL. Each column-name must
identify a column of the table and the same column must not be identified
more than once. The name cannot be qualified. The number of identified
columns plus two times the number of identified periods must not exceed
64, and the sum of their stored lengths must not exceed the index key
length limit for the page size. For column stored lengths, see “Byte
Counts” in “CREATE TABLE”. For key length limits, see “SQL and XML
limits”. No LOB, distinct type based on any of these types, or structured
type can be used as part of a unique key, even if the length attribute of the
column is small enough to fit within the index key length limit for the
page size (SQLSTATE 54008). The set of columns in the unique key cannot
be the same as the set of columns of the primary key or another unique
key (SQLSTATE 01543). If LANGLEVEL is SQL92E or MIA, an error is
returned, SQLSTATE 42891. Any existing values in the set of identified
columns must be unique (SQLSTATE 23515).

A check is performed to determine whether an existing index matches the
unique key definition (ignoring any INCLUDE columns in the index). An
index definition matches if it identifies the same set of columns without
regard to the order of the columns or the direction (ASC/DESC/
RANDOM) specifications. However, for partitioned tables, non-unique
partitioned indexes whose columns are not a superset of the
table-partitioning key columns are not considered matching indexes.

If a matching index definition is found, the description of the index is
changed to indicate that it is required by the system and it is changed to
unique (after ensuring uniqueness) if it was a non-unique index. If the
table has more than one matching index, an existing unique index is
selected. If there are multiple unique indexes, the selection is arbitrary with
one exception:
v For partitioned tables, matching unique partitioned indexes are favored

over matching unique nonpartitioned indexes or matching non-unique
indexes (partitioned or nonpartitioned).

If no matching index is found, a unique bidirectional index will
automatically be created for the columns, as described in CREATE TABLE.
See Notes for details on index names associated with unique constraints.

BUSINESS_TIME WITHOUT OVERLAPS
For a constraint, BUSINESS_TIME indicates the period name in this
table. The period must exist in the table (SQLSTATE 42727).

BUSINESS_TIME WITHOUT OVERLAPS specifies that overlapping
periods for BUSINESS_TIME are not allowed, and that values for the
rest of the keys must be unique with respect to any period of
BUSINESS_TIME. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the end column and begin column of the period
BUSINESS_TIME (in this order of the columns) will automatically be
added to the index key in ascending order and enforce that there are
no overlaps in time. The columns used to defined BUSINESS_TIME
must not be specified as part of the constraint (SQLSTATE 428HW).

When a partition is attached to a range partitioned application-period
temporal table that has a partitioned BUSINESS_TIME WITHOUT
OVERLAPS index, the source table must have an index that matches

ALTER TABLE

134 SQL Reference Volume 2



the partitioned BUSINESS_TIME WITHOUT OVERLAPS index.
Additionally, the PERIODNAME and PERIODPOLICY attributes on the
indexes must also match.

PRIMARY KEY (column-name, ... BUSINESS_TIME WITHOUT OVERLAPS)
Defines a primary key composed of the identified columns. Each
column-name must identify a column of the table, and the same column
must not be identified more than once. The name cannot be qualified. The
number of identified columns must not exceed 64, and the sum of their
stored lengths must not exceed the index key length limit for the page size.
For column stored lengths, see “Byte Counts” in “CREATE TABLE”. For
key length limits, see “SQL limits”. The table must not have a primary key
and the identified columns must be defined as NOT NULL. No LOB,
distinct type based on any of these types, or structured type may be used
as part of a primary key, even if the length attribute of the column is small
enough to fit within the index key length limit for the page size
(SQLSTATE 54008). The set of columns in the primary key cannot be the
same as the set of columns in a unique key (SQLSTATE 01543). (If
LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)
Any existing values in the set of identified columns must be unique
(SQLSTATE 23515). column-name must not be the name of a row change
timestamp, or a begin or end column of the period (SQLSTATE 428HW).

A check is performed to determine if an existing index matches the
primary key definition (ignoring any INCLUDE columns in the index). An
index definition matches if it identifies the same set of columns without
regard to the order of the columns or the direction (ASC/DESC/
RANDOM) specifications. However, for partitioned tables, non-unique
partitioned indexes whose columns are not a superset of the
table-partitioning key columns are not considered matching indexes.

If a matching index definition is found, the description of the index is
changed to indicate that it is the primary index, as required by the system,
and it is changed to unique (after ensuring uniqueness) if it was a
non-unique index. If the table has more than one matching index, an
existing unique index is selected. If there are multiple unique indexes, the
selection is arbitrary with one exception:
v For partitioned tables, matching unique partitioned indexes are favored

over matching unique nonpartitioned indexes or matching non-unique
indexes (partitioned or nonpartitioned).

If no matching index is found, a unique bidirectional index will
automatically be created for the columns, as described in CREATE TABLE.
See Notes for details on index names associated with unique constraints.

If the primary key is being added to a shadow table, the columns of the
primary key must match the columns of an enforced primary key
constraint or an enforced unique constraint of the base table that is
referenced in the fullselect of materizalized-query-definition.

A primary key cannot be created on a materialized query table that is not
defined with MAINTAINED BY REPLICATION.

Only one primary key can be defined on a table.

BUSINESS_TIME WITHOUT OVERLAPS
For a constraint, BUSINESS_TIME indicates the period name in this
table. The period must exist in the table (SQLSTATE 42727).

ALTER TABLE

Statements 135



BUSINESS_TIME WITHOUT OVERLAPS specifies that overlapping
periods for BUSINESS_TIME are not allowed, and that values for the
rest of the keys must be unique with respect to any period of
BUSINESS_TIME. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the end column and begin column of the period
BUSINESS_TIME (in this order of the columns) will automatically be
added to the index key in ascending order and enforce that there are
no overlaps in time. The columns used to defined BUSINESS_TIME
must not be specified as part of the constraint (SQLSTATE 428HW).

When a partition is attached to a range partitioned application-period
temporal table that has a partitioned BUSINESS_TIME WITHOUT
OVERLAPS index, the source table must have an index that matches
the partitioned BUSINESS_TIME WITHOUT OVERLAPS index.
Additionally, the PERIODNAME and PERIODPOLICY attributes on the
indexes must also match.

constraint-attributes
See constraint-attributes in “CREATE TABLE”.

ADD referential-constraint
Defines a referential constraint. See referential-constraint in “CREATE TABLE”.

ADD check-constraint
Defines a check constraint or functional dependency. See check-constraint in
“CREATE TABLE”.

constraint-attributes
See constraint-attributes in “CREATE TABLE”.

ADD distribution-clause
Defines a distribution key. The table must be defined in a table space on a
single-partition database partition group (SQLSTATE 55037) and must not
already have a distribution key (SQLSTATE 42889). If a distribution key
already exists for the table, the existing key must be dropped before adding the
new distribution key. A distribution key cannot be added to a table that is a
subtable (SQLSTATE 428DH) .

DISTRIBUTE BY HASH (column-name...)
Defines a distribution key using the specified columns. Each column-name
must identify a column of the table, and the same column must not be
identified more than once. The name cannot be qualified. A column cannot
be used as part of a distribution key if the data type of the column is a
BLOB, CLOB, DBCLOB, XML, distinct type on any of these types, or
structured type.

ADD RESTRICT ON DROP
Specifies that the table cannot be dropped, and that the table space that
contains the table cannot be dropped.

ADD MATERIALIZED QUERY

materialized-query-definition
Changes a regular table to a materialized query table for use during query
optimization. The table specified by table-name must not:
v Be previously defined as a materialized query table
v Be a typed table
v Have any constraints, unique indexes, or triggers defined
v Reference a nickname that is marked with caching disabled
v Be referenced in the definition of another materialized query table

ALTER TABLE

136 SQL Reference Volume 2



v Be referenced in the definition of a view that is enabled for query
optimization

If table-name does not meet these criteria, an error is returned (SQLSTATE
428EW).

If row level or column level access control is activated for any table that is
directly or indirectly referenced in the fullselect of materizalized-query-
definition, and row level access control is not activated for the table being
altered, row level access control is implicitly activated for the altered table.
This restricts direct access to the contents of the materialized query table. A
query that explicitly references the table before such a row permission is
defined returns a warning that there is no data in the table (SQLSTATE
02000). To provide access to the materialized query table, an appropriate
row permission can be created, or an ALTER TABLE DEACTIVATE ROW ACCESS
CONTROL on the materialized query table can be issued to remove the row
level protection if that is appropriate.

If the materialized query table references any table that has row level or
column level access control activated, the functions referenced in the
fullselect of materizalized-query-definition must be defined with the SECURED
attribute (SQLSTATE 428EC).

If the table being altered to a materialized query table has any permissions
(excluding the system generated default permission) or masks defined on
it, ALTER fails (SQLSTATE 428EW).

fullselect
Defines the query in which the table is based. The columns of the
existing table must:
v have the same number of columns
v have exactly the same data types
v have the same column names in the same ordinal positions

as the result columns of fullselect (SQLSTATE 428EW). For details about
specifying the fullselect for a materialized query table, see “CREATE
TABLE”. One additional restriction is that table-name cannot be directly
or indirectly referenced in the fullselect.

refreshable-table-options
Specifies the refreshable options for altering a materialized query table.

DATA INITIALLY DEFERRED
The data in the table must be validated using the REFRESH TABLE
or SET INTEGRITY statement.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using the
REFRESH TABLE statement. The data in the table only reflects
the result of the query as a snapshot at the time the REFRESH
TABLE statement is processed. Materialized query tables
defined with this attribute do not allow INSERT, UPDATE, or
DELETE statements (SQLSTATE 42807).

IMMEDIATE
The changes made to the underlying tables as part of a
DELETE, INSERT, or UPDATE are cascaded to the materialized

ALTER TABLE

Statements 137



query table. In this case, the content of the table, at any
point-in-time, is the same as if the specified subselect is
processed. Materialized query tables defined with this attribute
do not allow INSERT, UPDATE, or DELETE statements
(SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query optimization.

DISABLE QUERY OPTIMIZATION
The materialized query table will not be used for query
optimization. The table can still be queried directly.

MAINTAINED BY
Specifies whether the data in the materialized query table is
maintained by the system, user, or replication tool.

SYSTEM
Specifies that the data in the materialized query table is
maintained by the system.

USER
Specifies that the data in the materialized query table is
maintained by the user. The user is allowed to perform update,
delete, or insert operations against user-maintained
materialized query tables. The REFRESH TABLE statement,
used for system-maintained materialized query tables, cannot
be invoked against user-maintained materialized query tables.
Only a REFRESH DEFERRED materialized query table can be
defined as MAINTAINED BY USER.

REPLICATION
Specifies that the data in the materialized query table is
maintained by an external replication technology. The
REFRESH TABLE statement, used for system-maintained
materialized query tables, cannot be issued against
replication-maintained materialized query tables, which are
referred to as shadow tables. Only a REFRESH DEFERRED
materialized query table can be defined as MAINTAINED BY
REPLICATION, and the table being altered must be a
column-organized table.

FEDERATED_TOOL
Specifies that the data in the materialized query table is
maintained by a federated replication tool. The REFRESH
TABLE statement, used for system-maintained materialized
query tables, cannot be invoked against federated_tool-
maintained materialized query tables. Only a REFRESH
DEFERRED materialized query table can be defined as
MAINTAINED BY FEDERATED_TOOL.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name. The
constraint-name must identify an existing referential constraint (SQLSTATE
42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint or functional
dependency constraint-name. The constraint-name must identify an existing
check constraint or functional dependency (SQLSTATE 42704).

ALTER TABLE

138 SQL Reference Volume 2



constraint-alteration
Options for changing attributes associated with referential or check constraints.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether the constraint or functional dependency can be used for
query optimization under appropriate circumstances.

ENABLE QUERY OPTIMIZATION
The constraint is assumed to be true and can be used for query
optimization.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

ENFORCED or NOT ENFORCED
Specifies whether the constraint is enforced by the database manager
during normal operations such as insert, update, or delete. A foreign key
constraint cannot be altered from NOT ENFORCED to ENFORCED if the
parent key is not enforced (SQLSTATE 42888).

ENFORCED
Change the constraint to ENFORCED. ENFORCED cannot be specified
for a functional dependency (SQLSTATE 42621).

NOT ENFORCED
Change the constraint to NOT ENFORCED.

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED
must be used only if the data in the table is independently known
to conform to the constraint. Query results might be unpredictable
if the data does not actually conform to the constraint. This is the
default option.

Informational constraints must not be violated at any time.
Informational constraints are used in query optimization, as well as
the incremental processing of REFRESH IMMEDIATE MQT and
staging tables. These processes might produce unpredictable results
or incorrect MQT and staging table content if the constraints are
violated. For example, the order in which parent-child tables are
maintained is important. When you want to add rows to a
parent-child table, you must insert rows into the parent table first.
To remove rows from a parent-child table, you must delete rows
from the child table first. This ensures that there are no orphan
rows in the child table at any time. If informational constraints are
violated, the incremental maintenance of dependent MQT data and
staging table data might be optimized based on the violated
informational constraints, producing incorrect data.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT
TRUSTED is intended for cases where the data conforms to the
constraint for most rows, but it is not independently known that
all the rows or future additions will conform to the constraint. If a
constraint is NOT TRUSTED and enabled for query optimization,
then it will not be used to perform optimizations that depend on
the data conforming completely to the constraint. NOT TRUSTED
can be specified only for referential integrity constraints
(SQLSTATE 42613).

ALTER TABLE

Statements 139



ALTER column-alteration
Alters the definition of a column. Only the specified attributes will be altered;
others will remain unchanged. Columns of a typed table cannot be altered
(SQLSTATE 428DH). The table must not be defined as a history table
(SQLSTATE 428FR). Columns which are used in expression-based index keys
cannot be altered (SQLSTATE 42893), unless the operation involves the
following column attributes:
v Identity (using clauses under identity-alteration)
v Default compression (using COMPRESS clause)
v Security (using SECURED WITH or DROP COLUMN SECURITY clauses)

column-name
Specifies the name of the column that is to be altered. The column-name
must identify an existing column of the table (SQLSTATE 42703). The name
must not be qualified. The name must not identify a column that is
otherwise being added, altered, or dropped in the same ALTER TABLE
statement (SQLSTATE 42711).

SET DATA TYPE altered-data-type
Specifies the new data type of the column. The new data type must be
castable from the existing data type of the column (SQLSTATE 42837)
except when one of the data types is a distinct type, in which case the
source data type of the distinct type is used in determining if the data
types are castable.

Altering a string data type that results in the truncation of non-blank
characters from existing data is not allowed (SQLSTATE 42837).

Data type alterations require a table reorganization before the table can be
fully accessed (SQLSTATE 57016), except in the following situations:
v Increasing the length of a VARCHAR or VARGRAPHIC column
v Decreasing the length of a VARCHAR or VARGRAPHIC column without

truncating trailing blanks from existing data

The administrative routine SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS
can be called to do table reorganization as required. A data type alteration
that requires a table reorganization cannot be specified if the table is in
SET INTEGRITY PENDING state (SQLSTATE 57007).

A string data type cannot be altered if the column is a column of a
table-partitioning key.

If the column is a column of a distribution key, then the new data type
must meet the following requirements (SQLSTATE 42997):
v Be the same data type as the current column type
v Have the same length of the current column type, except in the case of

increasing column length of VARCHAR and VARGRAPHIC data type
columns

v Cannot be modified to FOR BIT DATA or vice-versa in the cases of
CHAR and VARCHAR data types

If the data type is LOB, the specified length attribute cannot allow for the
possibility of any truncated data (SQLSTATE 42837).

The data type of an identity column cannot be altered (SQLSTATE 42997).

The data type of a column defined as ROW BEGIN, ROW END, or
TRANSACTION START ID cannot be altered (SQLSTATE 428FR).

ALTER TABLE

140 SQL Reference Volume 2



The data type and nullability of BUSINESS_TIME period columns cannot
be altered (SQLSTATE 428FR).

The table cannot have data capture enabled (SQLSTATE 42997).

The data type of a column cannot be altered if any of the following
conditions are true (SQLSTATE 42893):
v The column is a generated expression column and the data of the

generated expression column will change if the column is altered
v The column is referenced in an expression of a generated expression

column and the data of the generated expression column will change if
the column is altered

v The column is referenced in a check constraint and the check constraint
will not be satisfied if the column is altered

v The column is used in a referential integrity constraint and the
referential integrity constraint will not be satisfied if the column is
altered

Altering a column must not make the total byte count of all columns
exceed the maximum record size (SQLSTATE 54010). If the column is used
in a unique constraint or an index, the new length must not cause the sum
of the stored lengths for the unique constraint or index to exceed the index
key length limit for the page size (SQLSTATE 54008). For column stored
lengths, see “Byte Counts” in “CREATE TABLE”. For key length limits, see
“SQL and XML limits”.

If auto_reval is set to DISABLED, the cascaded effects of altering a column
is shown in Table 14.

If either a row permission or a column mask is dependent on the column
being altered (as recorded in the SYSCAT.CONTROLDEP catalog view), an
error is returned (SQLSTATE 42917).

Table 14. Cascaded effects of altering a column

Operation Effect

Altering a column that is referenced by a
view or check constraint

The object is regenerated during alter
processing. In the case of a view, function or
method resolution for the object might be
different after the alter operation, changing
the semantics of the object. In the case of a
check constraint, if the semantics of the
object will change as a result of the alter
operation, the operation fails.

Altering a column in a table that has a
dependent package, trigger, or SQL routine

The object is marked invalid, and is
revalidated on next use.

Altering the type of a column in a table that
is referenced by an XSROBJECT enabled for
decomposition

The XSROBJECT is marked inoperative for
decomposition. Re-enabling the XSROBJECT
might require readjustment of its mappings;
following this, issue an ALTER XSROBJECT
ENABLE DECOMPOSITION statement
against the XSROBJECT.

Altering a column that is referenced in the
default expression of a global variable

The default expression of the global variable
is validated during alter processing. If a
user-defined function used in the default
expression cannot be resolved, the operation
fails.

ALTER TABLE

Statements 141



If the table is a system-period temporal table, the column is also changed
in any associated history table. If the table is a system-period temporal
table, string data type columns cannot be altered to a length that requires
data truncation, and numeric data type columns cannot be altered to lower
precision data types (SQLSTATE 42837).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SET NOT NULL
Specifies that the column cannot contain null values. No value for this
column in existing rows of the table can be the null value (SQLSTATE
23502). This clause is not allowed if the column is specified in the foreign
key of a referential constraint with a DELETE rule of SET NULL, and no
other nullable columns exist in the foreign key (SQLSTATE 42831). Altering
this attribute for a column requires table reorganization before further table
access is allowed (SQLSTATE 57016). Note that because this operation
requires validation of table data, it cannot be performed when the table is
in reorg pending state (SQLSTATE 57016). The table cannot have data
capture enabled (SQLSTATE 42997).

If a row permission or column mask exists, which depends on the column
to be altered, an error will be issued (SQLSTATE 42917).

If the table is a system-period temporal table, the column is also changed
in any associated history table.

SET INLINE LENGTH integer
Changes the inline length of an existing structured type, XML, or LOB data
type column. The inline length indicates the maximum size in bytes of an
instance of a structured type, XML, or LOB data type to store in the base
table row. Instances of a structured type or XML data type that cannot be
stored inline in the base table row are stored separately, similar to the way
that LOB values are stored.

The data type of column-name must be a structured type, XML, or LOB
data type (SQLSTATE 42842).

The default inline length for a structured type column is the inline length
of its data type (specified explicitly or by default in the CREATE TYPE
statement). If the inline length of a structured type is less than 292, the
value 292 is used for the inline length of the column.

The explicit inline length value can only be increased (SQLSTATE 429B2); it
cannot exceed 32673 (SQLSTATE 54010). For a structured type or XML data
type column, it must be at least 292. For a LOB data type column, the
INLINE LENGTH must not be less than the maximum LOB descriptor
size.

Altering the column must not make the total byte count of all columns
exceed the row size limit (SQLSTATE 54010).

Data that is already stored separately from the rest of the row will not be
moved inline into the base table row by this statement. To take advantage
of the altered inline length of a structured type column, invoke the REORG
command against the specified table after altering the inline length of its
column. To take advantage of the altered inline length of an XML data type
column in an existing table, update all rows with an UPDATE statement.
The REORG command has no effect on the row storage of XML
documents. To take advantage of the altered inline length of a LOB data

ALTER TABLE

142 SQL Reference Volume 2



type column, use the REORG command with the LONGLOBDATA option
or UPDATE the corresponding LOB column. For example:
UPDATE table-name SET lob-column = lob-column

WHERE LENGTH(lob-column) <= chosen-inline-length - 4

where table-name is the table that had the inline length of the LOB data
type column altered, lob-column is the LOB data type column that was
altered, and chosen-inline-length is the new value that was chosen for the
INLINE LENGTH.

If a row permission or column mask exists, which depends on the column
to be altered, an error will be returned (SQLSTATE 42917).

If the table is a system-period temporal table, inline length changes are
propagated to the history table.

SET default-clause
Specifies a new default value for the column that is to be altered. The
column must not already be defined as a generated column (SQLSTATE
42623). The specified default value must represent a value that could be
assigned to the column in accordance with the rules for assignment as
described in “Assignments and comparisons”. Altering the default value
does not change the value that is associated with this column for existing
rows.

SET EXPRESSION AS (generation-expression)
Changes the expression for the column to the specified
generation-expression. SET EXPRESSION requires the table to be put in set
integrity pending state, using the SET INTEGRITY statement with the OFF
option. After the ALTER TABLE statement, the SET INTEGRITY statement
with the IMMEDIATE CHECKED and FORCE GENERATED options must
be used to update and check all the values in that column against the new
expression. The column must already be defined as a generated column
based on an expression (SQLSTATE 42837), and must not have appeared in
the PARTITIONING KEY, DIMENSIONS, or KEY SEQUENCE clauses of
the table (SQLSTATE 42997). The generation-expression must conform to
the same rules that apply when defining a generated column. The result
data type of the generation-expression must be assignable to the data type
of the column (SQLSTATE 42821).

The generation-expression must not reference a column for which a column
mask is defined (SQLSTATE 42621).

SET NOT HIDDEN or SET IMPLICITLY HIDDEN
Specifies the hidden attribute for the column.

If the table is a system-period temporal table, the column is also changed
in any associated history table.

NOT HIDDEN
Specifies that the column is included in implicit references to the table,
and that the column can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the
column is explicitly referenced by name. For example, assuming that a
table includes a column defined with the IMPLICITLY HIDDEN clause,
the result of a SELECT * does not include the implicitly hidden column.

ALTER TABLE

Statements 143



However, the result of a SELECT that explicitly refers to the name of
an implicitly hidden column will include that column in the result
table.

IMPLICITLY HIDDEN must not be specified for the last column of the
table that is not hidden (SQLSTATE 428GU).

SET generation-alteration
Specifies that the generation attribute for the column is to be changed.
GENERATED may be specified if the column is an identity column or a
row change timestamp column (SQLSTATE 42837). If the table is a
system-period temporal table, the column in the associated history table is
not affected by the change. If there is an existing default for the column,
that default must be dropped, which can be done in the same
column-alteration using one of the DROP DEFAULT clause. SET
GENERATED must not be specified for a column of a temporal history
table (SQLSTATE 428FR).

GENERATED ALWAYS
Specifies that the database manager will always generate a value for
the column when a row is inserted or updated and a value must be
generated. GENERATED ALWAYS is the recommended option unless
data propagation or unload and reload operations are being
performed. ALWAYS is the default for generated columns.

GENERATED BY DEFAULT
Specifies that the database manager will generate a value for the
column when a row is inserted into the table, or updated, specifying
DEFAULT for the column, unless an explicit value is specified.
GENERATED BY DEFAULT can only be specified with
as-row-change-timestamp-clause. GENERATED BY DEFAULT is the
recommended option when using data propagation or performing
unload and reload operations.

identity-alteration
Alters the identity attributes of the column. The column must be an
identity column.

SET INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The next value to be generated for the identity column will be
determined from the last assigned value with the increment applied.
The column must already be defined with the IDENTITY attribute
(SQLSTATE 42837).

This value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), and does not exceed the value of a
large integer constant (SQLSTATE 42820), without nonzero digits
existing to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence after the ALTER
statement. If this value is 0 or positive, this is an ascending sequence
after the ALTER statement.

SET NO MINVALUE or MINVALUE numeric-constant
Specifies the minimum value at which a descending identity column
either cycles or stops generating values, or the value to which an
ascending identity column cycles after reaching the maximum value.

ALTER TABLE

144 SQL Reference Volume 2



The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MINVALUE
For an ascending sequence, the value is the original starting value.
For a descending sequence, the value is the minimum value of the
data type of the column.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), without nonzero digits existing
to the right of the decimal point (SQLSTATE 428FA), but the value
must be less than or equal to the maximum value (SQLSTATE
42815).

SET NO MAXVALUE or MAXVALUE numeric-constant
Specifies the maximum value at which an ascending identity column
either cycles or stops generating values, or the value to which a
descending identity column cycles after reaching the minimum value.
The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the
data type of the column. For a descending sequence, the value is
the original starting value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), without nonzero digits existing
to the right of the decimal point (SQLSTATE 428FA), but the value
must be greater than or equal to the minimum value (SQLSTATE
42815).

SET NO CYCLE or CYCLE
Specifies whether this identity column should continue to generate
values after generating either its maximum or minimum value. The
column must exist in the specified table (SQLSTATE 42703), and must
already be defined with the IDENTITY attribute (SQLSTATE 42837).

NO CYCLE
Specifies that values will not be generated for the identity column
once the maximum or minimum value has been reached.

CYCLE
Specifies that values continue to be generated for this column after
the maximum or minimum value has been reached. If this option
is used, then after an ascending identity column reaches the
maximum value, it generates its minimum value; or after a
descending sequence reaches the minimum value, it generates its
maximum value. The maximum and minimum values for the
identity column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated for an
identity column. Although not required, if unique values are
desired, a single-column unique index defined using the identity

ALTER TABLE

Statements 145



column will ensure uniqueness. If a unique index exists on such an
identity column and a non-unique value is generated, an error
occurs (SQLSTATE 23505).

SET NO CACHE or CACHE integer-constant
Specifies whether to keep some pre-allocated values in memory for
faster access. This is a performance and tuning option. The column
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO CACHE
Specifies that values for the identity column are not to be
pre-allocated.

In a DB2 pureScale environment, if the identity values must be
generated in order of request, the NO CACHE option must be
used.

When this option is specified, the values of the identity column are
not stored in the cache. In this case, every request for a new
identity value results in synchronous I/O to the log.

CACHE integer-constant
Specifies how many values of the identity sequence are
pre-allocated and kept in memory. When values are generated for
the identity column, pre-allocating and storing values in the cache
reduces synchronous I/O to the log.

If a new value is needed for the identity column and there are no
unused values available in the cache, the allocation of the value
requires waiting for I/O to the log. However, when a new value is
needed for the identity column and there is an unused value in the
cache, the allocation of that identity value can happen more
quickly by avoiding the I/O to the log.

In the event of a database deactivation, either normally or due to a
system failure, all cached sequence values that have not been used
in committed statements are lost (that is, they will never be used).
The value specified for the CACHE option is the maximum
number of values for the identity column that could be lost in case
of system failure.

The minimum value is 2 (SQLSTATE 42815).

In a DB2 pureScale environment, if both CACHE and ORDER are
specified, the specification of ORDER overrides the specification of
CACHE and instead NO CACHE will be in effect.

SET NO ORDER or ORDER
Specifies whether the identity column values must be generated in
order of request. The column must exist in the specified table
(SQLSTATE 42703), and must already be defined with the IDENTITY
attribute (SQLSTATE 42837).

NO ORDER
Specifies that the identity column values do not need to be
generated in order of request.

ORDER
Specifies that the identity column values must be generated in
order of request.

ALTER TABLE

146 SQL Reference Volume 2



RESTART or RESTART WITH numeric-constant
Resets the state of the sequence associated with the identity column. If
WITH numeric-constant is not specified, the sequence for the identity
column is restarted at the value that was specified, either implicitly or
explicitly, as the starting value when the identity column was
originally created.

The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837). RESTART does not change the original START WITH value.

The numeric-constant is an exact numeric constant that can be any
positive or negative value that could be assigned to this column
(SQLSTATE 42815), without nonzero digits existing to the right of the
decimal point (SQLSTATE 428FA). The numeric-constant will be used as
the next value for the column.

SET generation-attribute as-identity-clause
Changes the column to an identity column. This column alteration must
not be specified if the column has a default or is already a generated
column (SQLSTATE 42837). If the table is a system-period temporal table,
the column in the associated history table is not affected by the change.

GENERATED ALWAYS
Specifies that the database manager will always generate a value for
the column when a row is inserted or updated and a value must be
generated. ALWAYS is the default for generated columns.

GENERATED BY DEFAULT
Specifies that the database manager generates a value for the column
when a row is inserted or updated and a default value must be
generated, unless an explicit value is specified.

as-identity-clause
Specifies that the column is the identity column for the table. A table
can only have a single identity column (SQLSTATE 428C1). The
column must be specified as not nullable (SQLSTATE 42997), and the
data type associated with the column must be an exact numeric data
type with a scale of zero (SQLSTATE 42815). An exact numeric data
type is one of: SMALLINT, INTEGER, BIGINT, DECIMAL, or
NUMERIC with a scale of zero, or a distinct type based on one of
these types. For details on identity options, see “CREATE TABLE”.

SET GENERATED ALWAYS
Changes the column to a generated expression column, a row-begin
column, a row-end column, or a transaction-start-ID column. GENERATED
ALWAYS specifies that the database manager will always generate a value
for the column when a row is inserted or updated and a value must be
generated.

AS (generation-expression)
Specifies that the definition of the column is based on an expression.
The column must not already be defined with a generation expression,
cannot be the identity column, or cannot have an explicit default
(SQLSTATE 42837). The generation-expression must conform to the same
rules that apply when defining a generated column. The result data
type of the generation-expression must be assignable to the data type of
the column (SQLSTATE 42821). The column must not be referenced in
the distribution key column or in the multidimensional clustering
(MDC) key (SQLSTATE 42997).

ALTER TABLE

Statements 147



The generation-expression must not reference a column for which a
column mask is defined (SQLSTATE 42621).

AS ROW BEGIN

Specifies that the value is assigned by the database manager whenever
a row is inserted into the table or any column in the row is updated.
The value is generated using a reading of the time-of-day clock during
execution of the first of the following events in the transaction:
v A data change statement that requires a value to be assigned to the

row-begin or transaction start-ID column in a table
v A deletion of a row in a system-period temporal table

For a system-period temporal table, the database manager ensures
uniqueness of the generated values for a row-begin column across
transactions. The timestamp value might be adjusted to ensure that
rows inserted into an associated history table have the end timestamp
value greater than the begin timestamp value (SQLSTATE 01695). This
can happen when a conflicting transaction is updating the same row in
the system-period temporal table. The database configuration
parameter systime_period_adj must be set to Yes for this adjustment
to the timestamp value to occur otherwise an error is returned
(SQLSTATE 57062). If multiple rows are inserted or updated within a
single SQL transaction and an adjustment is not needed, the values for
the row-begin column are the same for all the rows and are unique
from the values generated for the column for another transaction. A
row-begin column is required as the begin column of a SYSTEM_TIME
period, which is the intended use for this type of generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If
data-type is not specified the column is defined as a TIMESTAMP(12). If
data-type is specified, it must be TIMESTAMP(12) (SQLSTATE 42842).
The column must be defined as NOT NULL (SQLSTATE 42831). A
row-begin column is not updatable.

AS ROW END

Specifies that the maximum value for the data type of the column is
assigned by the database manager whenever a row is inserted or any
column in the row is updated.

A row-end column is required as the second column of a
SYSTEM_TIME period, which is the intended use for this type of
generated column.

A table can have only one row-end column (SQLSTATE 428C1). If
data-type is not specified, the column is defined as TIMESTAMP(12). If
data-type is specified, it must be TIMESTAMP(12) (SQLSTATE 42842).
The column must be defined as NOT NULL (SQLSTATE 42831). A
row-end column is not updatable.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager whenever
a row is inserted into the table or any column in the row is updated.
The database manager assigns a unique timestamp value per
transaction or the null value. The null value is assigned to the
transaction start-ID column if the column is nullable and if there is a
row-begin column in the table for which the value did not need to be

ALTER TABLE

148 SQL Reference Volume 2



adjusted. Otherwise the value is generated using a reading of the
time-of-day clock during execution of the first of the following events
in the transaction:
v A data change statement that requires a value to be assigned to the

row-begin or transaction start-ID column in a table
v A deletion of a row in a system-period temporal table

If multiple rows are inserted or updated within a single SQL
transaction, the values for the transaction start-ID column are the same
for all the rows and are unique from the values generated for the
column for another transaction.

A transaction start-ID column is required for a system-period temporal
table, which is the intended use for this type of generated column.

A table can have only one transaction start-ID column (SQLSTATE
428C1). If data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified it must be TIMESTAMP(12). A
transaction start-ID column is not updatable.

DROP DEFAULT
Drops the current default for the column. The specified column must have
a default value (SQLSTATE 42837). This action is propagated to the history
table for a system-period temporal table.

DROP GENERATED
Drops the generated attributes of the column. The column must be defined
as a generated column (SQLSTATE 42837). The column must not be
defined as a row-begin column, row-end column, or a transaction-start-ID
column in a system-period temporal table (SQLSTATE 428FR).

DROP NOT NULL
Drops the NOT NULL attribute of the column, allowing the column to
have the null value. This clause is not allowed if the column is specified in
the primary key, in a unique constraint of the table (SQLSTATE 42831), a
row-begin column, or a row-end column (SQLSTATE 42837). Altering this
attribute for a column requires table reorganization before further table
access is allowed (SQLSTATE 57016). The table cannot have data capture
enabled (SQLSTATE 42997). DROP NOT NULL is blocked for columns
belonging to the BUSINESS_TIME period (SQLSTATE 428FR).

If the table is a system-period temporal table, the NOT NULL attribute is
also dropped from the corresponding column in any associated history
table.

If either a row permission or column mask exists, which depends on the
column to be altered, an error will be issued (SQLSTATE 42917).

ADD SCOPE
Add a scope to an existing reference type column that does not already
have a scope defined (SQLSTATE 428DK). If the table being altered is a
typed table, the column must not be inherited from a supertable
(SQLSTATE 428DJ).

typed-table-name
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that
the values actually reference existing rows in typed-table-name.

ALTER TABLE

Statements 149



typed-view-name
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that
the values actually reference existing rows in typed-view-name.

COMPRESS
Specifies whether or not default values for this column are to be stored
more efficiently.

SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for
the data types when no specific values are specified) are to be stored
using minimal space. If the table is not already set with the VALUE
COMPRESSION attribute activated, a warning is returned (SQLSTATE
01648), and system default values are not stored using minimal space.

Allowing system default values to be stored in this manner causes a
slight performance penalty during insert and update operations on the
column because of the extra checking that is done.

Existing data in the column is not changed. Consider offline table
reorganization to enable existing data to take advantage of storing
system default values using minimal space.

OFF
Specifies that system default values are to be stored in the column as
regular values. Existing data in the column is not changed. Offline
reorganization is recommended to change existing data.

The base data type must not be DATE, TIME or TIMESTAMP (SQLSTATE
42842). If the base data type is a varying-length string, this clause is
ignored. String values of length 0 are automatically compressed if a table
has been set with VALUE COMPRESSION.

If the table being altered is a typed table, the column must not be inherited
from a supertable (SQLSTATE 428DJ).

SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is
associated with the table. The name must not be qualified (SQLSTATE
42601). The table must have a security policy associated with it (SQLSTATE
55064). The table must not be a system-period temporal table.

DROP COLUMN SECURITY
Alters a column to make it a non-protected column.

ACTIVATE ROW ACCESS CONTROL

Activates row level access control on the table. The table must not be a typed
table, a catalog table (SQLSTATE 55019), a created temporary table, a declared
temporary table (SQLSTATE 42995), a nickname (SQLSTATE 42809), or a view
(SQLSTATE 42809).

A default row permission is implicitly created and allows no access to any
rows of the table, unless permitted by a row permission explicitly created by a
user with SECADM authority.

When the table is referenced in a data manipulation statement, all enabled row
permissions that have been created for the table, including the default row
permission, are applied implicitly by the database manager to control the set of
rows in the table that are accessible.

ALTER TABLE

150 SQL Reference Volume 2



If a trigger exists for the table, the trigger must be defined with the SECURED
attribute (SQLSTATE 55019).

The table must not be referenced in the definition of a view if an INSTEAD OF
trigger that is defined with the NOT SECURED attribute exists for the view
(SQLSTATE 55019).

If a materialized query table references the table, the functions referenced in
the fullselect of materizalized-query-definition must be defined with the SECURED
attribute (SQLSTATE 55019).

If a materialized query table (or a staging table) that depends on the table
(directly or indirectly through a view) for which row level access control is
being activated and that materialized query table (or a staging table) does not
already have row level access control activated, row level access control is
implicitly activated for the materialized query table (or a staging table). This
restricts direct access to the contents of the materialized query table (or a
staging table). A query that explicitly references the table before such a row
permission is defined will return a warning that there is no data in the table
(SQLSTATE 02000). To provide access to the materialized query table (or a
staging table), an appropriate row permission can be created, or an ALTER
TABLE DEACTIVATE ROW ACCESS CONTROL statement on the materialized
query table (or a staging table) can be issued to remove the row level
protection if that is appropriate.

ACTIVATE ROW ACCESS CONTROL is ignored if row access control is
already defined as activated for the table.

If the table is a system-period temporal table, the database manager
automatically activates row access control on the history table and creates a
default row permission for the history table.

ACTIVATE COLUMN ACCESS CONTROL

Activates column level access control on the table. The table must not be a
typed table, a catalog table (SQLSTATE 55019), a created temporary table, a
declared temporary table (SQLSTATE 42995), a nickname (SQLSTATE 42809) or
a view (SQLSTATE 42809).

The access to the table is not restricted but when the table is referenced in a
data manipulation statement, all enabled column masks that have been created
for the table are applied implicitly by the database manager to mask the values
returned for the columns referenced in the final result table of the queries.

If a trigger exists for the table, the trigger must be defined with the SECURED
attribute (SQLSTATE 55019).

If a materialized query table references the table, the functions referenced in
the fullselect of materizalized-query-definition must be defined with the SECURED
attribute (SQLSTATE 55019).

The table must not be referenced in the definition of a view if an INSTEAD OF
trigger that is defined with the NOT SECURED attribute exists for the view
(SQLSTATE 55019). If a materialized query table that depends on the table
(directly or indirectly through a view) for which column level access control is
being activated and that materialized query table does not already have row
level access control activated, row level access control is implicitly activated for
the materialized query table. This restricts direct access to the contents of the
materialized query table. A query that explicitly references the table before
such a row permission is defined returns a warning that there is no data in the
table (SQLSTATE 02000). To provide access to the materialized query table, an

ALTER TABLE

Statements 151



appropriate row permission can be created, or an ALTER TABLE DEACTIVATE
ROW ACCESS CONTROL statement on the materialized query table can be
issued to remove the row level protection if that is appropriate.

ACTIVATE COLUMN ACCESS CONTROL is ignored if column level access control is
already defined as activated for the table.

If the table is a system-period temporal table, the database manager
automatically activates row access control on the history table and creates a
default row permission for the history table.

DEACTIVATE ROW ACCESS CONTROL

Deactivates row level access control on the table. When the table is referenced
in a data manipulation statement, any existing enabled row permissions
defined on the table are not applied by the database manager to control the set
of rows in the table that are accessible.

DEACTIVATE ROW ACCESS CONTROL is ignored if row access control is not
activated for the table.

DEACTIVATE COLUMN ACCESS CONTROL

Deactivates column level access control on the table. When the table is
referenced in a data manipulation statement, any existing enabled column
masks defined on the table are not applied by the database manager to control
the values returned for the columns referenced in the final result table of the
queries.

DEACTIVATE COLUMN ACCESS CONTROL is ignored if column access control is not
activated for the table.

RENAME COLUMN source-column-name TO target-column-name
Renames the column that is specified in source-column-name to the name that is
specified in target-column-name. If the auto_reval database configuration
parameter is set to DISABLED, the RENAME COLUMN option of the ALTER
TABLE statement behaves like it is under the control of revalidation immediate
semantics.

The table must not be defined as a history table (SQLSTATE 42986). If the table
is a system-period temporal table, the column is also renamed in any
associated history table.

Columns which are used in expression-based index keys cannot be renamed
(SQLSTATE 42893).

RENAME COLUMN must not rename a column that is referenced in the definition of
a row permission or a column mask. Also, It must not rename a column for
which a column mask is defined (SQLSTATE 42917). If you rename a column
that belongs to a table on which a mask or a permission is defined, or to a
table that is referenced in the definition of a mask or a permission, that mask
or permission is invalidated. Access to a table that has column access control
activated and an invalid mask defined on it is blocked until the invalid mask is
either disabled, dropped, or recreated (SQLSTATE 560D0). Access to a table
that has row access control activated and an invalid row permission defined on
it is blocked until the invalid permission is either disabled, dropped, or
recreated (SQLSTATE 560D0).

source-column-name
Specifies the name of the column that is to be renamed. The
source-column-name must identify an existing column of the table
(SQLSTATE 42703). The name must not be qualified. The name must not

ALTER TABLE

152 SQL Reference Volume 2



identify a column that is otherwise being added, altered, or dropped in the
same ALTER TABLE statement (SQLSTATE 42711).

target-column-name
The new name for the column. The name must not be qualified. Existing
column names or period names in the table must not be used (SQLSTATE
42711).

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints
dependent on this primary key. The table must have a primary key (SQLSTATE
42888).

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint (SQLSTATE 42704). For information about
implications of dropping a referential constraint see Notes.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential
constraints dependent on this unique constraint. The constraint-name must
identify an existing UNIQUE constraint (SQLSTATE 42704). For information on
implications of dropping a unique constraint, see Notes.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the table (SQLSTATE 42704).

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key, or unique
constraint defined on the table (SQLSTATE 42704). For information about
implications of dropping a constraint, see Notes.

DROP COLUMN
Drops the identified column from the table. The table must not be a typed
table (SQLSTATE 428DH). The table cannot have data capture enabled
(SQLSTATE 42997). If a column is dropped, the table must be reorganized
before an update, insert, or delete operation or an index scan can be performed
on the table (SQLSTATE 57016). An XML column can only be dropped only if
all of the other XML columns in the table are dropped at the same time.

DROP COLUMN must not drop a column that is referenced in the definition of a
row permission or a column mask (SQLSTATE 42917). However, a column for
which a column mask is defined can be dropped. When the column is
dropped, any column mask defined on that column is also dropped.

column-name
Identifies the column that is to be dropped. The column name must not be
qualified. The name must identify a column of the specified table
(SQLSTATE 42703). The name must not identify the only column of the
table (SQLSTATE 42814), or a column referenced in the definition of a
period (SQLSTATE 42817). The name must not identify the last column of
the table that is not hidden (SQLSTATE 428GU). The name must not
identify a column in a table that is defined as a system-period temporal
table or history table (SQLSTATE 428FR). The name must not identify a
column that is part of the distribution key, table-partitioning key, or
organizing dimensions (SQLSTATE 42997).

CASCADE
Specifies the following actions, based on the object:

ALTER TABLE

Statements 153



v Any views that are dependent on the column being dropped are marked
inoperative

v Any indexes, triggers, SQL functions, constraints, or global variables that
are dependent on the column being dropped are also dropped

v Any decomposition-enabled XSROBJECTs that are dependent on the
table containing the column are made inoperative for decomposition.

A trigger is dependent on the column if it is referenced in the UPDATE OF
column list, or anywhere in the triggered action. A decomposition-enabled
XSROBJECT is dependent on a table if it contains a mapping of an XML
element or attribute to the table. If an SQL function or global variable is
dependent on another database object, it might not be possible to drop the
function or global variable by means of the CASCADE option. CASCADE
is the default.

RESTRICT
Specifies that the column cannot be dropped if any views, indexes,
triggers, constraints, or global variables are dependent on the column, or if
any decomposition-enabled XSROBJECT is dependent on the table that
contains the column (SQLSTATE 42893). A trigger is dependent on the
column if it is referenced in the UPDATE OF column list, or anywhere in
the triggered action. A decomposition-enabled XSROBJECT is dependent
on a table if it contains a mapping of an XML element or attribute to the
table. The first dependent object that is detected is identified in the
administration log.

Table 15. Cascaded Effects of Dropping a Column

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is
referenced by a view or a
trigger

Dropping the column is not
allowed.

The object and all objects that
are dependent on that object
are dropped.

Dropping a column that is
referenced in the key of an
index

If all columns that are
referenced in the index are
dropped in the same ALTER
TABLE statement, dropping
the index is allowed.
Otherwise, dropping the
column is not allowed.

The index is dropped.

Dropping a column that is
referenced in a unique
constraint

If all columns that are
referenced in the unique
constraint are dropped in the
same ALTER TABLE
statement, and the unique
constraint is not referenced
by a referential constraint, the
columns and the constraint
are dropped. (The index that
is used to satisfy the
constraint is also dropped.)
Otherwise, dropping the
column is not allowed.

The unique constraint and
any referential constraints
that reference that unique
constraint are dropped. (Any
indexes that are used by
those constraints are also
dropped).

ALTER TABLE

154 SQL Reference Volume 2



Table 15. Cascaded Effects of Dropping a Column (continued)

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is
referenced in a referential
constraint

If all columns that are
referenced in the referential
constraint are dropped in the
same ALTER TABLE
statement, the columns and
the constraint are dropped.
Otherwise, dropping the
column is not allowed.

The referential constraint is
dropped.

Dropping a column that is
referenced by a
system-generated column
that is not being dropped.

Dropping the column is not
allowed.

Dropping the column is not
allowed.

Dropping a column that is
referenced in a check
constraint

Dropping the column is not
allowed.

The check constraint is
dropped.

Dropping a column that is
referenced in a
decomposition-enabled
XSROBJECT

Dropping the column is not
allowed.

The XSROBJECT is marked
inoperative for
decomposition. Re-enabling
the XSROBJECT might
require readjustment of its
mappings; following this,
issue an ALTER XSROBJECT
ENABLE DECOMPOSITION
statement against the
XSROBJECT.

Dropping a column that is
referenced in the default
expression of a global
variable

Dropping the column is not
allowed.

The global variable is
dropped, unless the dropping
of the global variable is
disallowed because there are
other objects, which do not
allow the cascade, that
depend on the global
variable.

DROP RESTRICT ON DROP
Removes the restriction, if there is one, on dropping the table and the table
space that contains the table.

DROP DISTRIBUTION
Drops the distribution definition for the table. The table must have a
distribution definition (SQLSTATE 428FT). The table space for the table must
be defined on a single partition database partition group.

DROP MATERIALIZED QUERY
Changes a materialized query table so that it is no longer considered to be a
materialized query table. The table specified by table-name must be defined as a
materialized query table that is not replicated (SQLSTATE 428EW). The
definition of the columns of table-name is not changed, but the table can no
longer be used for query optimization, and the REFRESH TABLE statement
can no longer be used.

If row level access control or column level access control is in effect for the
table, this control remains after the table is no longer a materialized query
table.

ALTER TABLE

Statements 155



ADD PERIOD period-definition
Adds a period definition to the table.

SYSTEM_TIME (begin-column-name, end-column-name)

Defines a system period with the name SYSTEM_TIME. There must not be
a column in the table with the name SYSTEM_TIME (SQLSTATE 42711). A
table can have only one SYSTEM_TIME period (SQLSTATE 42711).
begin-column-name must be defined as ROW BEGIN and end-column-name
must be defined as ROW END (SQLSTATE 428HN).

BUSINESS_TIME (begin-column-name, end-column-name)

Defines an application period with the name BUSINESS_TIME. There must
not be a column in the table with the name BUSINESS_TIME (SQLSTATE
42711). A table can have only one BUSINESS_TIME period (SQLSTATE
42711). begin-column-name and end-column-name must both be defined as
DATE or TIMESTAMP(p) where p is from 0 to 12 (SQLSTATE 42842), and
the columns must be defined as NOT NULL (SQLSTATE 42831).
begin-column-name and end-column-name must not identify a column that is
defined with a GENERATED clause (SQLSTATE 428HZ). Business time
period columns cannot be added to a table that is in set integrity pending
state.

An implicit check constraint is generated to ensure that the value of
end-column-name is greater than the value of begin-column-name. The name
of the implicitly created check constraint is
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME and
must not be the name of an existing check constraint (SQLSTATE 42710).

DROP PERIOD period-name
Drops the identified period from the table. The name must not identify a
period that was already added or altered in this ALTER TABLE statement
(SQLSTATE 42711). Any implicitly generated check constraints for the period
(created when the period was defined) and any indexes that reference the
period are also dropped.

period-name
Identifies the period. Valid period names are BUSINESS_TIME or
SYSTEM_TIME. The period must exist in the table (SQLSTATE 4274M).

When a BUSINESS_TIME period is dropped, all packages with the
application-period temporal table dependency type on that table are
invalidated. Other dependent objects like views and triggers that record a
dependency on the table are also marked as invalid.

SYSTEM_TIME period cannot be dropped if the table is a system-period
temporal table (SQLSTATE 428HZ).

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the
log.

If the table is a typed table, then this option is not supported (SQLSTATE
428DH for root tables or 428DR for other subtables).

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table will be

ALTER TABLE

156 SQL Reference Volume 2



written to the log. This option is required if this table will be replicated
and the Capture program is used to capture changes for this table from the
log.

INCLUDE LONGVAR COLUMNS
Allows data replication utilities to capture changes made to LONG
VARCHAR or LONG VARGRAPHIC columns. The clause may be
specified for tables that do not have any LONG VARCHAR or LONG
VARGRAPHIC columns since it is possible to ALTER the table to
include such columns.

ACTIVATE NOT LOGGED INITIALLY
Activates the NOT LOGGED INITIALLY attribute of the table for this current
unit of work.

Any changes made to the table by an INSERT, DELETE, UPDATE, CREATE
INDEX, DROP INDEX, or ALTER TABLE in the same unit of work after the
table is altered by this statement are not logged. Any changes made to the
system catalog by the ALTER statement in which the NOT LOGGED
INITIALLY attribute is activated are logged. Any subsequent changes made in
the same unit of work to the system catalog information are logged.

At the completion of the current unit of work, the NOT LOGGED INITIALLY
attribute is deactivated and all operations that are done on the table in
subsequent units of work are logged.

If using this feature to avoid locks on the catalog tables while inserting data, it
is important that only this clause be specified on the ALTER TABLE statement.
Use of any other clause in the ALTER TABLE statement will result in catalog
locks. If no other clauses are specified for the ALTER TABLE statement, then
only a SHARE lock will be acquired on the system catalog tables. This can
greatly reduce the possibility of concurrency conflicts for the duration of time
between when this statement is executed and when the unit of work in which
it was executed is ended.

If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).

If the table is a system-period temporal table or a history table, this option is
not supported

For more information about the NOT LOGGED INITIALLY attribute, see the
description of this attribute in “CREATE TABLE” on page 680.

Note: If non-logged activity occurs against a table that has the NOT LOGGED
INITIALLY attribute activated, and if a statement fails (causing a rollback), or a
ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back
(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY
attribute was activated is marked inaccessible after the rollback has occurred
and can only be dropped. Therefore, the opportunity for errors within the unit
of work in which the NOT LOGGED INITIALLY attribute is activated should
be minimized.

WITH EMPTY TABLE
Causes all data currently in table to be removed. Once the data has been
removed, it cannot be recovered except through use of the RESTORE
facility. If the unit of work in which this alter statement was issued is
rolled back, the table data will not be returned to its original state.

ALTER TABLE

Statements 157



When this action is requested, no DELETE triggers defined on the affected
table are fired. The index data is also deleted for all indexes that exist on
the table.

A partitioned table with attached data partitions or logically detached
partitions cannot be emptied (SQLSTATE 42928).

PCTFREE integer
Specifies the percentage of each page that is to be left as free space during a
load or a table reorganization operation. The first row on each page is added
without restriction. When additional rows are added to a page, at least integer
percent of the page is left as free space. The PCTFREE value is considered only
by the load and table reorg utilities. The value of integer can range from 0 to
99. A PCTFREE value of -1 in the system catalog (SYSCAT.TABLES) is
interpreted as the default value. The default PCTFREE value for a table page is
0. If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE
Indicates the size (granularity) of locks used when the table is accessed. Use of
this option in the table definition will not prevent normal lock escalation from
occurring.

If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).

The LOCKSIZE keyword is not supported for column-organized tables
(SQLSTATE 42858).

ROW
Indicates the use of row locks. This is the default lock size when a table is
created.

BLOCKINSERT
Indicates the use of block locks during insert operations. This means that
the appropriate exclusive lock is acquired on the block before insertion,
and row locking is not done on the inserted row. This option is useful
when separate transactions are inserting into separate cells in the table.
Transactions inserting into the same cells can still do so concurrently, but
will insert into distinct blocks, and this can impact the size of the cell if
more blocks are needed. This option is only valid for MDC tables
(SQLSTATE 42613).

TABLE
Indicates the use of table locks. This means that the appropriate share or
exclusive lock is acquired on the table, and that intent locks (except intent
none) are not used. For partitioned tables, this lock strategy is applied to
both the table lock and the data partition locks for any data partitions that
are accessed. Use of this value can improve the performance of queries by
limiting the number of locks that need to be acquired. However,
concurrency is also reduced, because all locks are held over the complete
table.

APPEND
Indicates whether data is appended to the end of the table data or placed
where free space is available in data pages. If the table is a typed table, this
option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

ALTER TABLE

158 SQL Reference Volume 2



ON Indicates that table data will be appended and information about free
space on pages will not be kept. The table must not have a clustered index
(SQLSTATE 428CA).

OFF
Indicates that table data will be placed where there is available space. This
is the default when a table is created.

The table should be reorganized after setting APPEND OFF since the
information about available free space is not accurate and may result in
poor performance during insert.

VOLATILE CARDINALITY or NOT VOLATILE CARDINALITY
Indicates to the optimizer whether or not the cardinality of table table-name can
vary significantly at run time. Volatility applies to the number of rows in the
table, not to the table itself. CARDINALITY is an optional keyword. The
default is NOT VOLATILE.

VOLATILE
Specifies that the cardinality of table table-name can vary significantly at
run time, from empty to large. To access the table, the optimizer will use
an index scan (rather than a table scan, regardless of the statistics) if that
index is index-only (all referenced columns are in the index), or that index
is able to apply a predicate in the index scan. The list prefetch access
method will not be used to access the table. If the table is a typed table,
this option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

NOT VOLATILE
Specifies that the cardinality of table-name is not volatile. Access plans to
this table will continue to be based on existing statistics and on the current
optimization level.

COMPRESS
Specifies whether or not data compression applies to the rows of the table.

YES
Specifies that row and XML compression are enabled. Insert and update
operations on the table will be subject to compression. Index compression
will be enabled for new indexes unless explicitly disabled in the CREATE
INDEX statement. Existing indexes can be compressed by using the ALTER
INDEX statement.

After a table has been altered to enable row compression, all rows in the
table can be compressed immediately by performing one of the following
actions:
v REORG command
v Online table move
v Data unload and reload

ADAPTIVE
Enables adaptive compression for the table. Data rows are subject to
compression with both table-level and page-level compression
dictionaries. XML documents in the XML storage object are subject to
compression with a table-level XML compression dictionary. Page-level
compression dictionaries are created automatically as rows are inserted
or updated. Table-level compression dictionaries are created for both
row and XML data automatically after sufficient data is added, unless
they already exist.

ALTER TABLE

Statements 159



STATIC
Enables classic row compression for the table. Data rows are subject to
compression with a table-level compression dictionary, and XML
documents in the XML storage object are subject to compression using
a table-level XML compression dictionary. If no table-level compression
dictionaries exists for either row or XML data, they will be created
automatically after sufficient data is added.

If neither of the preceding two options are specified along with the
COMPRESS YES clause, ADAPTIVE is used implicitly.

NO Specifies that data row and XML compression are disabled. Inserted and
updated data rows and XML documents in the table will no longer be
subject to compression. Any rows and XML documents in the table that are
already in compressed format remain in compressed format until they are
converted to non-compressed format when they are updated. An offline
reorganization of the table decompresses any rows that are remain
compressed. If table-level or page-level compression dictionaries exist, they
are discarded during table reorganization or truncation (such as, for
example, a LOAD REPLACE operation). Index compression is disabled for
new indexes created on that table unless explicitly enabled in the CREATE
INDEX statement. Index compression for existing indexes can be explicitly
disabled by using the ALTER INDEX statement.

VALUE COMPRESSION
This determines the row format that is to be used. Each data type has a
different byte count depending on the row format that is used. For more
information, see “Byte Counts” in “CREATE TABLE” on page 680. An update
operation causes an existing row to be changed to the new row format. Offline
table reorganization is recommended to improve the performance of update
operations on existing rows. This can also result in the table taking up less
space. If the row size, calculated using the appropriate column in the table
named “Byte Counts of Columns by Data Type” (see “CREATE TABLE”),
would no longer fit within the row size limit, as indicated in the table named
“Limits for Number of Columns and Row Size In Each Table Space Page Size”,
an error is returned (SQLSTATE 54010). If the table is a typed table, this option
is only supported on the root table of the typed table hierarchy (SQLSTATE
428DR).

ACTIVATE
The NULL value is stored using three bytes. This is the same or less space
than when VALUE COMPRESSION is not active for columns of all data
types, with the exception of CHAR(1). Whether or not a column is defined
as nullable has no affect on the row size calculation. The zero-length data
values for columns whose data type is VARCHAR, VARGRAPHIC, CLOB,
DBCLOB, or BLOB are to be stored using two bytes only, which is less
than the storage required when VALUE COMPRESSION is not active.
When a column is defined using the COMPRESS SYSTEM DEFAULT
option, this also allows the system default value for the column to be
stored using three bytes of total storage. The row format that is used to
support this determines the byte counts for each data type, and tends to
cause data fragmentation when updating to or from NULL, a zero-length
value, or the system default value.

DEACTIVATE
The null value is stored with space set aside for possible future updates.
This space is not set aside for varying-length columns. It also does not

ALTER TABLE

160 SQL Reference Volume 2



support efficient storage of system default values for a column. If columns
already exist with the COMPRESS SYSTEM DEFAULT attribute, a warning
is returned (SQLSTATE 01648).

LOG INDEX BUILD
Specifies the level of logging that is to be performed during create, re-create, or
reorganize index operations on this table.

NULL
Specifies that the value of the logindexbuild database configuration
parameter will be used to determine whether or not index build operations
are to be completely logged. This is the default when the table is created.

OFF
Specifies that any index build operations on this table will be logged
minimally. This value overrides the setting of the logindexbuild database
configuration parameter.

ON Specifies that any index build operations on this table will be logged
completely. This value overrides the setting of the logindexbuild database
configuration parameter.

ADD PARTITION add-partition
Adds one or more data partitions to a partitioned table. If the specified table is
not a partitioned table, an error is returned (SQLSTATE 428FT). The number of
data partitions must not exceed 32 767.

partition-name
Names the data partition. The name must not be the same as any other
data partition for the table (SQLSTATE 42710). If this clause is not
specified, the name will be 'PART' followed by the character form of an
integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must
not overlap that of an existing data partition (SQLSTATE 56016). For a
description of the starting-clause and the ending-clause, see “CREATE
TABLE”.

If the starting-clause is omitted, the new data partition is assumed to be at
the end of the table. If the ending-clause is omitted, the new data partition
is assumed to be at the start of the table.

IN tablespace-name
Specifies the table space where the data partition is to be stored. The
named table space must have the same page size, be in the same database
partition group, and manage space in the same way as the other table
spaces of the partitioned table (SQLSTATE 42838). This can be a table space
that is already being used for another data partition of the same table, or a
table space that is currently not being used by this table, but it must be a
table space on which the authorization ID of the statement holds the USE
privilege (SQLSTATE 42727). If this clause is not specified, the table space
of the first visible or attached data partition of the table is used.

INDEX IN tablespace-name
Specifies the table space where partitioned indexes on the data partition
are stored. If the INDEX IN clause is not specified, partitioned indexes on
the data partition are stored in the same table space as the data partition.

ALTER TABLE

Statements 161



The table space used by the new index partition, whether default or
specified by the INDEX IN clause, must match the type (SMS or DMS),
page size, and extent size of the table spaces used by all other index
partitions (SQLSTATE 42838).

LONG IN tablespace-name
Specifies the table space where the data partition containing long column
data is to be stored. The named table space must have the same page size,
be in the same database partition group, and manage space in the same
way as the other table spaces and data partitions of the partitioned table
(SQLSTATE 42838); it must be a table space on which the authorization ID
of the statement holds the USE privilege. The page size and extent size for
the named table space can be different from the page size and extent size
of the other data partitions of the partitioned table.

For rules governing the use of the LONG IN clause with partitioned tables,
see “Large object behavior in partitioned tables”.

ATTACH PARTITION attach-partition
Attaches another table as a new data partition. The data object of the table
being attached becomes a new partition of the table being attached to. There is
no data movement involved. The table is placed in set integrity pending state,
and referential integrity checking is deferred until execution of a SET
INTEGRITY statement. The ALTER TABLE ATTACH operation does not allow
the use of the IN or LONG IN clause. The placement of LOBs for that data
partition is determined at the time the source table is created. For rules
governing the use of the LONG IN clause with partitioned tables, see “Large
object behavior in partitioned tables”.

If the table being attached has either row level access control or column level
access control activated then the table to attach to must have the same controls
activated. No row permissions or column masks are automatically carried over
from the table being attached to the target table. The column masks and row
permissions do not necessarily need to be exactly the same on both tables,
although this would be best from a security perspective. But if the table being
attached has row level access control activated then the table to attach to must
also have row level access control activated (SQLSTATE 428GE). Similarly, if
the table being attached has column level access control activated and at least
one column mask object enabled then the table to attach to must also have
column level access control activated and a column mask object enabled for the
corresponding columns (SQLSTATE 428GE).

partition-name
Names the data partition. The name must not be the same as any other
data partition for the table (SQLSTATE 42710). If this clause is not
specified, the name will be 'PART' followed by the character form of an
integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must
not overlap that of an existing data partition (SQLSTATE 56016). For a
description of the starting-clause and the ending-clause, see “CREATE
TABLE”.

If the starting-clause is omitted, the new data partition is assumed to be at
the end of the table. If the ending-clause is omitted, the new data partition
is assumed to be at the start of the table.

FROM table-name1
Specifies the table that is to be used as the source of data for the new

ALTER TABLE

162 SQL Reference Volume 2



partition. The table definition of table-name1 cannot have multiple data
partitions, and it must match the altered table in the following ways
(SQLSTATE 428GE):
v The number of columns must be the same.
v The data types of the columns in the same ordinal position in the table

must be the same.
v The nullability characteristic of the columns in the same ordinal position

in the table must be the same.
v If the target table has a row change timestamp column, the

corresponding column of the source table must be a row change
timestamp column.

v If the data is also distributed, it must be distributed over the same
database partition group using the same distribution method.

v If the data in either table is organized, the organization must match.
v For structured, XML, or LOB data type, the value for INLINE LENGTH

must be the same.
v If the target table has a BUSINESS_TIME period defined, the source

table must have a BUSINESS_TIME period defined on the corresponding
columns.

After the data from table-name1 is successfully attached, an operation
equivalent to DROP TABLE table-name1 is performed to remove this table,
which no longer has data, from the database.

BUILD MISSING INDEXES
Specifies that if the source table does not have indexes that correspond to
the partitioned indexes on the target table, a SET INTEGRITY operation
builds partitioned indexes on the new data partition to correspond to the
partitioned indexes on the existing data partitions. Indexes on the source
table that do not match the partitioned indexes on the target table are
dropped during attach processing.

REQUIRE MATCHING INDEXES
Specifies that the source table must have indexes to match the partitioned
indexes on the target table; otherwise, an error is returned (SQLSTATE
428GE) and information is written to the administration log about the
indexes that do not match.

If the REQUIRE MATCHING INDEXES clause is not specified and the
indexes on the source table do not match all the partitioned indexes on the
target table, the following behavior occurs:
1. For indexes on the target table that do not have a match on the source

table and are either unique indexes or XML indexes that are defined
with REJECT INVALID VALUES, the ATTACH operation fails
(SQLSTATE 428GE).

2. For all other indexes on the target table that do not have a match on
the source table, the index object on the source table is marked invalid
during the attach operation. If the source table does not have any
indexes, an empty index object is created and marked as invalid. The
ATTACH operation will succeed, but the index object on the new data
partition is marked as invalid. Typically, SET INTEGRITY is the next
operation to run against the data partition. SET INTEGRITY will force a
rebuild, if required, of the index object on data partitions that were
recently attached. The index rebuild can increase the time required to
bring the new data online.

ALTER TABLE

Statements 163



3. Information is written to the administration log about the indexes that
do not match.

DETACH PARTITION partition-name INTO table-name1
Detaches the data partition partition-name from the altered table, and uses the
data partition to create a new table named table-name1. The data partition is
detached from the altered table and is used to create the new table without
any data movement. The specified data partition cannot be the last remaining
partition of the table being altered (SQLSTATE 428G2). The table being altered
to detach a partition must not be a system-period temporal table (SQLSTATE
428HZ).

When a partition is detached from a table for which either row level access
control or column level access control is defined, the new table that is created
for the detached data will automatically have row level access control (though
not column level access control) activated to protect the detached data. Direct
access to this new table will return no rows until appropriate row permissions
are defined for the table or row level access control is deactivated for this table.

ADD SECURITY POLICY policy-name
Adds a security policy to the table. The security policy must exist at the
current server (SQLSTATE 42704). The table must not already have a security
policy (SQLSTATE 55065), and must not be a typed table (SQLSTATE 428DH),
materialized query table (MQT), or staging table (SQLSTATE 428FG).

DROP SECURITY POLICY
Removes the security policy and all LBAC protection from the table. The table
specified by table-name must be protected by a security policy (SQLSTATE
428GT). If the table has a column with data type DB2SECURITYLABEL, the
data type is changed to VARCHAR (128) FOR BIT DATA. If the table has one
or more protected columns, those columns become unprotected.

ADD VERSIONING USE HISTORY TABLE history-table-name
Specifies that the table is a system-period temporal table. The table must not
already be defined as a system-period temporal table or a history table
(SQLSTATE 428HM). A SYSTEM_TIME period and a transaction-start-ID
column must be defined in the table (SQLSTATE 428HM).

The table must not be a materialized query table or a column-organized table
(SQLSTATE 428HM).

Historical versions of the rows in the table are retained by the database
manager. The database manager records extra information that indicates when
a row was inserted into the table, and when it was updated or deleted. When
a row in a system-period temporal table is updated, a previous version of the
row is kept. When data in a system-period temporal table is deleted, the old
version of the row is inserted as a historical record. An associated history table
is used to store the historical rows of the table.

References to the table can include a time period search condition to indicate
which system versions of the data are to be returned.history-table-name
identifies a history table where historical rows of the system-period temporal
table are kept. history-table-name must identify a table that exists at the current
server (SQLSTATE 42704), and is not a catalog table (SQLSTATE 42832), an
existing system-period temporal table, an existing history table, a declared
global temporary table, a created global temporary table, a materialized query
table, or a view, (SQLSTATE 428HX).

ALTER TABLE

164 SQL Reference Volume 2



The identified history table must not contain an identity column, row change
timestamp column, row-begin column, row-end column, transaction start-ID
column, generated expression column, or include a period (SQLSTATE 428HX).

The system-period temporal table and the identified history table must have
the same number and order of columns (SQLSTATE 428HX). The following
attributes for the corresponding columns of the two tables must be the same
(SQLSTATE 428HX):
v Column name
v Column data type
v Column length (including inline LOB lengths), precision, and scale
v Column FOR BIT attribute for character string columns
v Column null attribute
v Column hidden attribute

If row access control or column access control is activated for the
system-period temporal table and row access control is not activated on the
history table, the database manager automatically activates row access control
on the history table and creates a default row permission for the history table.

DROP VERSIONING
Specifies that the table is no longer a system-period temporal table. The table
must be a system-period temporal table (SQLSTATE 428HZ). Historical data is
no longer recorded and maintained for the table. The definition of the columns
and data of the table are not changed, but the table is no longer treated as a
system-period temporal table. The SYSTEM_TIME period is retained.
Subsequent queries that reference the table must not specify a SYSTEM_TIME
period specification for the table. The relationship between the system-period
temporal table and the associated history table is removed. The history table is
not dropped and the contents of the history table are not affected.

When a table is altered with DROP VERSIONING, all packages with the
system-period temporal table dependency type on that table are invalidated.
Other dependent objects like views and triggers that record a dependency on
the table are also marked as invalid.

Rules
v Any unique or primary key constraint defined on the table must be a superset of

the distribution key, if there is one (SQLSTATE 42997).
v Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).
v A column can only be referenced in one ADD, ALTER, or DROP COLUMN

clause in a single ALTER TABLE statement (SQLSTATE 42711).
v A column length, data type, or hidden attribute cannot be altered, nor can the

column be dropped, if the table has any materialized query tables that are
dependent on the table (SQLSTATE 42997).

v VARCHAR and VARGRAPHIC columns that have been altered to be greater
than 4000 and 2000, respectively, must not be used as input parameters in
functions in the SYSFUN schema (SQLSTATE 22001).

v A column length cannot be altered if the table has any views enabled for query
optimization that are dependent on the table (SQLSTATE 42997).

v The table must be put in set integrity pending state, using the SET INTEGRITY
statement with the OFF option (SQLSTATE 55019), before:
– Adding a column with a generation expression
– Altering the generated expression of a column

ALTER TABLE

Statements 165



– Changing a column to have a generated expression
v An existing column cannot be altered to become of type DB2SECURITYLABEL

(SQLSTATE 42837).
v Defining a column of type DB2SECURITYLABEL fails if the table does not have

a security policy associated with it (SQLSTATE 55064).
v A column of type DB2SECURITYLABEL cannot be altered or dropped

(SQLSTATE 42817).
v An ALTER TABLE operation to mark a table as protected fails if there exists an

MQT that depends on that table (SQLSTATE 55067).
v Attaching a partition to a protected partitioned table fails if the source table and

the target table are not protected using the same security policy, do not have the
same row security label column, and do not have the same set of protected
columns (SQLSTATE 428GE).

v If a generated column is referenced in a table-partitioning key, the generated
column expression cannot be altered (SQLSTATE 42837).

v The isolation-clause cannot be specified in the fullselect of the
materialized-query-definition (SQLSTATE 42601).

v Adding or attaching a data partition to a partitioned table fails with SQL0612N
after detaching the same partition name, if asynchronous index cleanup has not
finished to delete index entries for the partition (SQLSTATE 42711).

Notes
v A REORG-recommended operation has occurred when changes resulting from an

ALTER TABLE statement affect the row format of the data. When this occurs,
most subsequent operations on the table are restricted until a table
reorganization operation completes successfully. Up to three ALTER TABLE
statements of this type can execute against a table before reorganization must be
done (SQLSTATE 57016). Multiple alterations that would constitute a
REORG-recommended operation can be made as part of a single ALTER TABLE
statement (one per column); this is considered to be a single
REORG-recommended operation. For example, dropping two columns in a
single ALTER TABLE statement is not considered to be two
REORG-recommended operations. Dropping two columns in two separate
ALTER TABLE statements, however, would be regarded as two statements that
contain REORG-recommended operations.

v The following table operations are allowed after a successful
REORG-recommended operation has occurred:
– ALTER TABLE, where no row data validation is required. However, the

following operations are not allowed (SQLSTATE 57007):
- ADD CHECK CONSTRAINT
- ADD REFERENTIAL CONSTRAINT
- ADD UNIQUE CONSTRAINT
- ALTER COLUMN SET NOT NULL

– DROP TABLE
– RENAME TABLE
– REORG TABLE
– TRUNCATE TABLE
– Table scan access of table data

v Altering a table to make it a materialized query table will put the table in set
integrity pending state. If the table is defined as REFRESH IMMEDIATE, the
table must be taken out of set integrity pending state before INSERT, DELETE,

ALTER TABLE

166 SQL Reference Volume 2



or UPDATE commands can be invoked on the table referenced by the fullselect.
The table can be taken out of set integrity pending state by using REFRESH
TABLE or SET INTEGRITY, with the IMMEDIATE CHECKED option, to
completely refresh the data in the table based on the fullselect. If the data in the
table accurately reflects the result of the fullselect, the IMMEDIATE
UNCHECKED option of SET INTEGRITY can be used to take the table out of set
integrity pending state.

v Altering a table to change it to a REFRESH IMMEDIATE materialized query
table will cause any packages with INSERT, DELETE, or UPDATE usage on the
table referenced by the fullselect to be invalidated.

v Altering a table to change from a materialized query table to a regular table will
cause any packages dependent on the table to be invalidated.

v Altering a table to change from a MAINTAINED BY FEDERATED_TOOL
materialized query table to a regular table will not cause any change in the
subscription setup of the replication tool. Because a subsequent change to a
MAINTAINED BY SYSTEM materialized query table will cause the replication
tool to fail, you must change the subscription setting when changing a
MAINTAINED BY FEDERATED_TOOL materialized query table.

v If a deferred materialized query table is associated with a staging table, the
staging table will be dropped if the materialized query table is altered to a
regular table.

v ADD column clauses are processed before all other clauses. Other clauses are
processed in the order that they are specified.

v Any columns added through an alter table operation will not automatically be
added to any existing view of the table.

v Adding or attaching a data partition to a partitioned table, or detaching a data
partition from a partitioned table, causes any packages that are dependent on
that table to be invalidated.

v After detaching a data partition from a data partitioned table, the STATUS of the
detached partition in the SYSCAT.DATAPARTITIONS catalog can be 'L' when
the partition is logically detached and the detach operation has not completed. If
the STATUS of the detached partition is 'L', the following operations cannot be
performed on the source table (SQLSTATE 55057):
– Adding a unique or primary key constraint that attempts to create a

nonpartitioned index
– Adding, dropping, or renaming a column
– Activating value compression or compression
– Deactivating value compression or compression

v To drop the partitioning for a table, the table must be dropped and then
recreated.

v To drop the organization for a table, the table must be dropped and then
recreated.

v When an index is automatically created for a unique or primary key constraint,
the database manager will try to use the specified constraint name as the index
name with a schema name that matches the schema name of the table. If this
matches an existing index name or no name for the constraint was specified, the
index is created in the SYSIBM schema with a system-generated name formed of
"SQL" followed by a sequence of 15 numeric characters generated by a
timestamp based function.

ALTER TABLE

Statements 167



v When a nonpartitioned index is created on a partitioned table with attached data
partitions, the index will not include the data in the attached data partitions. Use
the SET INTEGRITY statement to maintain all indexes for all attached data
partitions.

v When creating a partitioned index in the presence of attached data partitions
(STATUS of 'A' in SYSCAT.DATAPARTITIONS), an index partition for each
attached data partition will also be created. If the partitioned index is being
created as unique, or is an XML index being created with REJECT INVALID
VALUES, then the index creation can fail if an attached data partition contains
any violations (duplicates for a unique index, or invalid values for the XML
index).

v If a table has a nonpartitioned index, you cannot access a new data partition in
that table within the same transaction as the add or attach operation that created
the partition, if the transaction does not have the table locked in exclusive mode
(SQLSTATE 57007).

v Any table that may be involved in a DELETE operation on table T is said to be
delete-connected to T. Thus, a table is delete-connected to T if it is a dependent of
T or it is a dependent of a table in which deletes from T cascade.

v A package has an insert (update/delete) usage on table T if records are inserted
into (updated in/deleted from) T either directly by a statement in the package,
or indirectly through constraints or triggers executed by the package on behalf
of one of its statements. Similarly, a package has an update usage on a column if
the column is modified directly by a statement in the package, or indirectly
through constraints or triggers executed by the package on behalf of one of its
statements.

v In a federated system, a remote base table that was created using transparent
DDL can be altered. However, transparent DDL does impose some limitations on
the modifications that can be made:
– A remote base table can only be altered by adding new columns or specifying

a primary key.
– Specific clauses supported by transparent DDL include:

- ADD COLUMN column-definition

- NOT NULL and PRIMARY KEY in the column-options clause
- ADD unique-constraint (PRIMARY KEY only)

– You cannot specify a comment on an existing column in a remote base table.
– An existing primary key in a remote base table cannot be altered or dropped.
– Altering a remote base table invalidates any packages that are dependent on

the nickname associated with that remote base table.
– The remote data source must support the changes being requested through

the ALTER TABLE statement. Depending on how the data source responds to
requests it does not support, an error might be returned or the request might
be ignored.

– An attempt to alter a remote base table that was not created using transparent
DDL returns an error.

v Any changes, whether implicit or explicit, to primary key, unique keys, or
foreign keys might have the following effects on packages, indexes, and other
foreign keys.
– If a primary key or unique key is added:

- There is no effect on packages, foreign keys, or existing unique keys. (If the
primary or unique key uses an existing unique index that was created in a

ALTER TABLE

168 SQL Reference Volume 2



previous version and has not been converted to support deferred
uniqueness, the index is converted, and packages with update usage on the
associated table are invalidated.)

– If a primary key or unique key is dropped:
- The index is dropped if it was automatically created for the constraint. Any

packages dependent on the index are invalidated.
- The index is set back to non-unique if it was converted to unique for the

constraint and it is no longer system-required. Any packages dependent on
the index are invalidated.

- The index is set to no longer system required if it was an existing unique
index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for each
dependent foreign key, as specified below.

- A primary key or unique constraint of the table cannot be dropped if it is
the last enforced primary key or unique constraint whose set of columns is
in the select list of an associated shadow table.

- A primary key or unique constraint cannot be dropped if the table has an
associated shadow table, and the primary key of the associated shadow
table depends on the constraint being dropped.

– If a foreign key is added, dropped, or altered from NOT ENFORCED to
ENFORCED (or ENFORCED to NOT ENFORCED):
- All packages with an insert usage on the object table are invalidated.
- All packages with an update usage on at least one column in the foreign

key are invalidated.
- All packages with a delete usage on the parent table are invalidated.
- All packages with an update usage on at least one column in the parent

key are invalidated.
– If a foreign key or a functional dependency is altered from ENABLE QUERY

OPTIMIZATION to DISABLE QUERY OPTIMIZATION:
- All packages with dependencies on the constraint for optimization

purposes are invalidated.
v Adding a column to a table will result in invalidation of all packages with insert

usage on the altered table. If the added column is the first user-defined
structured type column in the table, packages with DELETE usage on the altered
table will also be invalidated.

v Adding a check or referential constraint to a table that already exists and that is
not in set integrity pending state, or altering the existing check or referential
constraint from NOT ENFORCED to ENFORCED on an existing table that is not
in set integrity pending state will cause the existing rows in the table to be
immediately evaluated against the constraint. If the verification fails, an error is
returned (SQLSTATE 23512). If a table is in set integrity pending state, adding a
check or referential constraint, or altering a constraint from NOT ENFORCED to
ENFORCED will not immediately lead to the enforcement of the constraint.
Issue the SET INTEGRITY statement with the IMMEDIATE CHECKED option to
begin enforcing the constraint.

v Adding, altering, or dropping a check constraint will result in invalidation of all
packages with either an insert usage on the object table, an update usage on at
least one of the columns involved in the constraint, or a select usage exploiting
the constraint to improve performance.

v Adding a distribution key invalidates all packages with an update usage on at
least one of the columns of the distribution key.

ALTER TABLE

Statements 169



v A distribution key that was defined by default as the first column of the primary
key is not affected by dropping the primary key and adding a different primary
key.

v Dropping a column or changing its data type removes all runstats information
from the table being altered. Runstats should be performed on the table after it
is again accessible. The statistical profile of the table is preserved if the table
does not contain a column that was explicitly dropped.

v Altering a column (to change its length, data type, nullability, or hidden
attribute) or dropping a column invalidates all packages that reference (directly
or indirectly through a referential constraint or trigger) its table.

v Altering a column (to change its length, data type, nullability, or hidden
attribute) regenerates views (except typed views) that are dependent on its table.
If a problem occurs while regenerating such a view, an error is returned
(SQLSTATE 56098). Any typed views that are dependent on the table are marked
inoperative.

v Altering a column (to change its length, data type, or hidden attribute) marks all
dependent triggers and SQL functions as invalid; they are implicitly recompiled
on next use. If a problem occurs while regenerating such an object, an error is
returned (SQLSTATE 56098).

v Altering a column (to change its length, data type, or nullability attribute) might
cause errors (SQLSTATE 54010) while processing a trigger or an SQL function
when a statement involving the trigger or SQL function is prepared or bound.
This can occur if the row size based on the sum of the lengths of the transition
variables and transition table columns is too long. If such a trigger or SQL
function is dropped, a subsequent attempt to re-create it returns an error
(SQLSTATE 54040).

v A WLM activity event monitor created in an earlier version must be dropped
and re-created to add new table columns introduced by this fix pack and any
subsequent fix packs or releases.

v Altering a structured or XML type column to increase the inline length will
invalidate all packages that reference the table, either directly or indirectly
through a referential constraint or trigger.

v Altering a structured or XML type column to increase the inline length will
regenerate views that are dependent on the table.

v A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table, or if the table is migrated the
using an online table move.

v Changing the LOCKSIZE for a table will result in invalidation of all packages
that have a dependency on the altered table.

v Changing VOLATILE or NOT VOLATILE CARDINALITY will result in
invalidation of all packages that have a dependency on the altered table.

v Replication: Exercise caution when increasing the length or changing the data
type of a column. The change data table that is associated with an application
table might already be at or near the row size limit. The change data table
should be altered before the application table, or the two tables should be
altered within the same unit of work, to ensure that the alteration can be
completed for both tables. Consideration should be given to copies, which might
also be at or near the row size limit, or reside on platforms which lack the
ability to increase the length of an existing column.
If the change data table is not altered before the Capture program processes log
records with the altered attributes, the Capture program will likely fail. If a copy
containing the altered column is not altered before the subscription maintaining
the copy runs, the subscription will likely fail.

ALTER TABLE

170 SQL Reference Volume 2



v When detaching a partition from a protected table, the target table automatically
created the database will be protected in exactly the same way the source table
is protected.

v When a table is altered such that it becomes protected with row level
granularity, any cached dynamic SQL sections that depend on such a table are
invalidated. Similarly, any packages that depend on such a table are also
invalidated.

v When a column of a table, T, is altered such that it becomes a protected column,
any cached dynamic SQL sections that depend on table T are invalidated.
Similarly, any packages that depend on table T are also invalidated.

v When a column of a table, T, is altered such that it becomes a non protected
column, any cached dynamic SQL sections that depend on table T are
invalidated. Similarly, any packages that depend on table T are also invalidated.

v For existing rows in the table, the value of the security label column defaults to
the security label for write access of the session authorization ID at the time the
ALTER statement that adds a row security label column is executed.

v Add materialized query: When a base table is altered to become a materialized
query table, the label-based access control security attributes (security policy,
column security labels, row security label column) are derived in the same way
when creating a new materialized query table. If the base table that is altered
already has label-based access control security attributes, these attributes are
factored in the derivation process as follows:
– Column access control: The existing security label for a column is aggregated

with the corresponding security label derived from the query defining the
materialized query table.

– Row access control: The row access control attributes are setup exactly in the
same way as for a new materialized query table.

v In DB2 Version 9.7 Fix Pack 1 or later releases, new multidimensional clustering
(MDC) table block indexes are partitioned. Adding a data partition to a data
partitioned multidimensional clustering (MDC) table creates the corresponding
empty index partitions for the new partition, including the MDC block indexes.
Also, a new index partition entry is added to SYSCAT.SYSINDEXPARTITIONS
for each MDC block index, as well as for each partitioned index.

v When attaching a data partition to a partitioned MDC table created with DB2
V9.7 Fix Pack 1 or later releases, the source table specified by attach-partition can
be a nonpartitioned MDC table or a single-partition partitioned MDC table.
– If the source table is nonpartitioned: MDC block indexes on the source table

will be inherited and become the partitioned MDC indexes for the new
partition after the ATTACH operation completes.

– If the source table is partitioned: If the source table is a partitioned MDC
table created with DB2 V9.7 Fix Pack 1 or later releases, the block indexes are
partitioned. The block indexes become the new block indexes on the partition.

– If the source partitioned MDC table is created at a level lower than DB2 V9.7
Fix Pack 1, the block indexes on the table are nonpartitioned. During the
ATTACH operation, the block indexes are dropped and created as partitioned
indexes similar to the other partitioned indexes on the source table.
Issuing the SET INTEGRITY statement on the target table is required to bring
the attached partition online.
If the REQUIRE MATCHING INDEXES clause is specified, and the target
table is a partitioned MDC table created in DB2 V9.7 Fix Pack 1 or later
releases, the ALTER TABLE ... ATTACH PARTITION statement fails and

ALTER TABLE

Statements 171



returns SQL20307N (SQLSTATE 428GE). Removing the REQUIRE
MATCHING INDEXES clause allows the attach process to proceed.

If the target partitioned MDC table was created at a level lower than DB2 V9.7
Fix Pack 1, the block indexes are nonpartitioned. The block indexes on the
source MDC table are dropped during the ATTACH operation. Issuing a SET
INTEGRITY statement on the target table is required to bring the attached
partition online. New rows from the attached partition are added to existing
nonpartitioned block indexes.

v When detaching a data partition from a data partitioned MDC table created at a
level lower than DB2 V9.7 Fix Pack 1, the block indexes are nonpartitioned. The
following restrictions apply:
– Access to the newly detached table is not allowed in the same unit of work as

the detach operation.
– Block indexes on the target table, created as part of the detach operation, are

rebuilt upon the first access to the table after the detach operation is
committed. If the source table had any partitioned indexes before the detach
operation then the index object for the target table will be marked invalid to
allow for recreation of the block indexes. As a result, access time is increased
while the block indexes and all other partitioned indexes are re-created.

When detaching a partition from a partitioned MDC table created using DB2
V9.7 Fix Pack 1 or later releases, the block indexes are partitioned, and the
previous restrictions do not apply. Assuming that no other dependent objects
such as dependent MQTs exist, access to the newly detached table is allowed in
the same unit of work. All the partitioned indexes, including block indexes,
become indexes on the target table without the need to be re-created.

v Considerations for implicitly hidden columns: A column that is defined as
implicitly hidden can be explicitly referenced in an ALTER TABLE statement. For
example, an implicitly hidden column can be altered or specified as part of a
referential constraint, check constraint, or materialized query table definition.
Altering a table to make some of its columns implicitly hidden can impact the
behavior of data movement utilities that are working with the table. When a
table contains implicitly hidden columns, utilities like IMPORT, INGEST, and
LOAD require that you specify whether data for the hidden columns is included
in the operation. For example, this might mean that a load operation that ran
successfully before the table was altered, now fails (SQLCODE SQL2437N).
Similarly, EXPORT requires that you specify whether data for the hidden
columns is included in the operation.
Data movement utilities must use the DB2_DMU_DEFAULT registry variable, or
the implicitlyhiddeninclude or implicitlyhiddenmissing file type modifiers
when working with tables that contain implicitly hidden columns.

v Row access control that is activated explicitly: The ACTIVATE ROW ACCESS
CONTROL clause is used to activate row access control for a table. When this
happens, a default row permission is implicitly created and allows no access to
any rows of the table, unless permitted by a row permission explicitly created by
the security administrator. The default row permission is always enabled.
When the table is referenced in a data manipulation statement, all enabled row
permissions that have been created for the table, including the default row
permission, are implicitly applied by the database manager to control which
rows in the table are accessible. A row access control search condition is derived
by application of the logical OR operator to the search condition in each enabled
row permission. This derived search condition acts as a filter to the table before
any user specified operations, such as predicates, grouping, ordering, and so on,

ALTER TABLE

172 SQL Reference Volume 2



are processed. This derived search condition permits the authorization IDs that
are specified in the permission definitions to access certain rows in the table.
When the ACTIVATE ROW ACCESS CONTROL clause is used, all the packages
and dynamically cached statements that reference the table are invalidated.
Row access control remains enforced until the DEACTIVATE ROW ACCESS
CONTROL clause is used to stop enforcing it.

v Implicit object that is created when row access control is activated for a table:
When the ACTIVATE ROW ACCESS CONTROL clause is used to activate row
access control for a table, the database manager implicitly creates a default row
permission for the table. The default row permission prevents all access to the
table. The implicitly created row permission resides in the same schema of the
base table and has a name in the form of
SYS_DEFAULT_ROW_PERMISSION__table-name ... up to 128 characters. Notice
two underscores after "PERMISSION". If this name is not unique, the last 4
characters are reserved for a unique number 'nnnn', where 'nnnn' is a four
alphanumeric character string starting at '0000' and is incremented by 1 value
each time until a unique name is found.
The owner of the default row permission is SYSIBM. The default row permission
is always enabled. The default row permission is dropped when row access
control is deactivated or when the table is dropped.

v Activating column access control: The ACTIVATE COLUMN ACCESS
CONTROL clause is used to activate column level access control for a table. The
access to the table is not restricted but when the table is referenced in a data
manipulation statement, all enabled column masks that have been created for
the table are applied to mask the column values referenced in the final result
table.
When column masks are used to mask the column values, they determine the
values in the final result table. If a column has a column mask and the column
(specifically a simple reference to a column name or a column embedded in an
expression) appears in the outermost select list, the column mask is applied to
the column to produce the values for the final result table. If the column does
not appear in the outermost select list but it participates in the final result table,
for example, it appears in a materialized table expression or view, the column
mask is applied to the column in such a way that the masked value is included
in the result table of the materialized table expression or view so that it can be
used in the final result table.
The application of column masks does not interfere with the operations of other
clauses within the statement such as the WHERE, GROUP BY, HAVING,
SELECT DISTINCT, and ORDER BY. The rows returned in the final result table
remain the same, except that the values in the resulting rows may have been
masked by the column masks. As such, if the masked column also appears in an
ORDER BY sort-key, the order is based on the original column values and the
masked values in the final result table may not reflect that order. Similarly, the
masked values may not reflect the uniqueness enforced by SELECT DISTINCT.
A column mask is applied in the following contexts:
– The outermost SELECT clause or clauses of a SELECT or SELECT INTO

statement, or if the column does not appear in the outermost select list butit
participates in the final result table, the outermost SELECT clause(s) of the
corresponding materialized table expression or view where the column
appears.

– The outermost SELECT clause or clauses of a SELECT FROM INSERT,
SELECT FROM UPDATE, or SELECT FROM DELETE operation.

ALTER TABLE

Statements 173



– The outermost SELECT clause or clauses that are used to derive the new
values for an INSERT, UPDATE, or MERGE statement, or a SET
transition-variable-name assignment statement. The same masking applies to a
scalar fullselect expression that appears in the outermost SELECT clause or
clauses of the previously mentioned statements, the right side of a SET
host-variable assignment statement, the VALUES INTO statement, or the
VALUES statement.

Column masks are not applied when the masked column appears in the
following contexts:
– WHERE clauses.
– GROUP BY clauses.
– HAVING clauses.
– SELECT DISTINCT.
– ORDER BY clauses.

v Row and column access control are not enforced when EXPLAIN tables are
populated: Row and column access control can be enforced for EXPLAIN tables.
However, the enabled row permissions and column masks are not applied when
the database manager inserts rows into those tables.

v Row and column access control are not enforced when event monitor tables are
populated: Row and column access control can be enforced for event monitor
tables. However, the enabled row permissions and column masks are not
applied when the database manager inserts rows into those tables.

v Row and column access control are not enforced when temporal history tables
are populated: Row and column access control can be enforced for temporal
history tables. However, the enabled row permissions and column masks are not
applied when the database manager accesses those tables for operations on the
system-period temporal tables.

v Stop enforcing row or column access control: The DEACTIVATE ROW ACCESS
CONTROL clause is used to stop enforcing row access control for a table. The
default row permission is dropped. Thereafter, when the table is referenced in a
data manipulation statement, explicitly created row permissions are not applied.
The DEACTIVATE COLUMN ACCESS CONTROL clause is used to stop
enforcing column access control for a table. Thereafter, when the table is
referenced in a data manipulation statement, the column masks are not applied.
The explicitly created row permissions or column masks, if any, remain but have
no effect.
All the packages and dynamically cached statements that reference the table are
invalidated when row or column access control is deactivated.

v Secure triggers for row and column access control: Triggers are used for database
integrity, and as such, a balance between row and column access control
(security) and database integrity is needed. Enabled row permissions and
column masks are not applied to the initial values of transition variables and
transition tables. Row and column access control enforced for the triggering
table is also ignored for any transition variables or transition tables referenced in
the trigger body. To ensure there is no security concern for SQL statements in the
trigger action to access sensitive data in transition variables and transition tables,
the trigger must be created or altered with the SECURED option. If a trigger is
not secure, row and column access control cannot be enforced for the triggering
table (SQLSTATE 55019).

v Secure user-defined functions for row and column access control: If a row
permission or column mask definition references a user-defined function, the
function must be altered with the SECURED option because the sensitive data

ALTER TABLE

174 SQL Reference Volume 2



may be passed as arguments to the function. When a user-defined function is
referenced in a data manipulation statement where a table that enforces row or
column access control is referenced, and the function arguments reference the
columns from such a table, if the function is not secure, this impacts the access
plan selection and may yield poor performance. The database manager considers
the SECURED option an assertion that declares the user has established a
change control audit procedure for all changes to the user-defined function. It is
assumed that such a control audit procedure is in place and that all subsequent
ALTER FUNCTION statements or changes to external packages are being
reviewed by this audit process.

v Database operations where row and column access control is not applicable:
Row and column access control must not compromise database integrity.
Columns involved in primary keys, unique keys, indexes, check constraints, and
referential integrity must not be subject to row and column access control.
Column masks can be defined for those columns but they are not applied during
the process of key building or constraint or RI enforcement.

v Defining a system-period temporal table: A system-period temporal table
definition includes the following aspects:
– A system period named SYSTEM_TIME which is defined using a row-begin

column and a row-end column. See the descriptions of AS ROW BEGIN, AS
ROW END, and period-definition.

– A transaction-start-ID column. See the description of AS TRANSACTION
START ID.

– A system-period data versioning definition specified on a subsequent ALTER
TABLE statement using the ADD VERSIONING action which includes the
name of the associated history table. See the description of the ADD
VERSIONING clause under ALTER TABLE.

To ensure that the history table cannot be implicitly dropped when a
system-period temporal table is dropped, use the WITH RESTRICT ON DROP
clause in the definition of the history table.

v Defining an application-period temporal table: An application-period temporal
table definition includes an application period with the name BUSINESS_TIME.
The application period is defined using a begin column and an end column with
both columns having the same data type that is either DATE or TIMESTAMP(p).
See the description of period-definition.
Data change operations on an application-period temporal table may result in an
automatic insert of one or two additional rows when a row is updated or
deleted. When an update or delete of a row in an application-period temporal
table is specified for a portion of the period represented by that row, the row is
updated or deleted and one or two rows are automatically inserted to represent
the portion of the row that is not changed. New values are generated for each
generated column in an application-period temporal table for each row that is
automatically inserted as a result of an update or delete operation on the table.
If a generated column is defined as part of a unique or primary key, parent key
in a referential constraint, or unique index, it is possible that an automatic insert
will violate a constraint or index in which case an error is returned.

v Considerations for transaction-start-ID columns: A transaction-start-ID column
contains a null value if the column allows null values, and there is a row-begin
column and the value of the row-begin column is unique from values of
row-begin columns generated for other transactions. Given that the column may
contain null values, it is recommended that one of the following methods be
used when retrieving a value from the column:
– COALESCE ( transaction_start_id_col, row_begin_col)

ALTER TABLE

Statements 175



– CASE WHEN transaction_start_id_col IS NOT NULL THEN
transaction_start_id_col ELSE row_begin_col END

v Considerations for system-period temporal tables and row and column access
control: Row and column access control can be defined on both the
system-period temporal table and the associated history table.
– When a system-period temporal table is accessed, any row and column access

rules defined on the system-period temporal table are applied to all of the
rows returned from the system-period temporal table, regardless of whether
the rows are stored in the system-period temporal table or the history table.
The row and column access rules defined on the history table are not applied.

– When the history table is accessed directly, the row and column access rules
defined on the history table are applied.

When a system-period temporal table is defined and row access control or
column access control is activated for the system-period temporal table, the
database manager automatically activates row access control on the history table
and creates a default row permission for the history table.

v Considerations for column-organized tables: The following options are
supported to alter a column-organized table definition:
– ADD COLUMN
– ADD PRIMARY KEY NOT ENFORCED / ENFORCED (default)
– DROP PRIMARY KEY
– ADD UNIQUE NOT ENFORCED / ENFORCED (default)
– DROP UNIQUE
– ADD CONSTRAINT CHECK NOT ENFORCED (with ENABLE QUERY

OPTIMIZATION or DISABLE QUERY OPTIMIZATION)
– ADD CONSTRAINT PRIMARY KEY
– ADD CONSTRAINT UNIQUE KEY
– ADD CONSTRAINT FOREIGN KEY NOT ENFORCED
– DROP CONSTRAINT
– ADD MATERIALIZED QUERY
– DROP MATERIALIZED QUERY
– LOG INDEX BUILD
– ADD RESTRICT ON DROP
– DROP RESTRICT ON DROP
– DATA CAPTURE NONE
– ALTER COLUMN <column name> SET IMPLICITLY HIDDEN / NOT

HIDDEN
v Syntax alternatives: The following syntax alternatives are supported for

compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– The ADD keyword is optional for:

- Unnamed PRIMARY KEY constraints
- Unnamed referential constraints
- Referential constraints whose name follows the phrase FOREIGN KEY

– The CONSTRAINT keyword can be omitted from a column-definition defining
a references-clause

– constraint-name can be specified following FOREIGN KEY (without the
CONSTRAINT keyword)

ALTER TABLE

176 SQL Reference Volume 2



– SET SUMMARY AS can be specified in place of SET MATERIALIZED QUERY
AS

– SET MATERIALIZED QUERY AS DEFINITION ONLY can be specified in
place of DROP MATERIALIZED QUERY

– SET MATERIALIZED QUERY AS (fullselect) can be specified in place of ADD
MATERIALIZED QUERY (fullselect)

– ADD PARTITIONING KEY can be specified in place of ADD DISTRIBUTE BY
HASH; the optional USING HASHING clause can also still be specified in
this case

– DROP PARTITIONING KEY can be specified in place of DROP
DISTRIBUTION

– The LONG VARCHAR and LONG VARGRAPHIC data types continue to be
supported but are deprecated and not recommended, especially for portable
applications

– A comma can be used to separate multiple options in the identity-alteration
clause

– PART can be specified in place of PARTITION
– VALUES can be specified in place of ENDING AT
– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

can be specified in place of NO MINVALUE, NO MAXVALUE, NO CYCLE,
NO CACHE, and NO ORDER, respectively

– DROP EXPRESSION can be specified in place of DROP GENERATED to drop
the generated expression attribute for a column.

– DROP IDENTITY can be specified in place of DROP GENERATED to drop
the identity attribute for a column.

Examples
1. Add a new column named RATING, which is one character long, to the

DEPARTMENT table.
ALTER TABLE DEPARTMENT

ADD RATING CHAR(1)

2. Add a new column named SITE_NOTES to the PROJECT table. Create
SITE_NOTES as a varying-length column with a maximum length of 1000
bytes. The values of the column do not have an associated character set and
therefore should not be converted.

ALTER TABLE PROJECT
ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

3. Assume a table called EQUIPMENT exists defined with the following
columns:

Column Name Data Type
EQUIP_NO INT
EQUIP_DESC VARCHAR(50)
LOCATION VARCHAR(50)
EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in
the DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT
table. If a department is removed from the DEPARTMENT table, the owner
(EQUIP_OWNER) values for all equipment owned by that department should
become unassigned (or set to null). Give the constraint the name DEPTQUIP.

ALTER TABLE

Statements 177



ALTER TABLE EQUIPMENT
ADD CONSTRAINT DEPTQUIP
FOREIGN KEY (EQUIP_OWNER)

REFERENCES DEPARTMENT
ON DELETE SET NULL

Also, an additional column is needed to allow the recording of the quantity
associated with this equipment record. Unless otherwise specified, the
EQUIP_QTY column should have a value of 1 and must never be null.

ALTER TABLE EQUIPMENT
ADD COLUMN EQUIP_QTY
SMALLINT NOT NULL DEFAULT 1

4. Alter table EMPLOYEE. Add the check constraint named REVENUE defined
so that each employee must make a total of salary and commission greater
than $30,000.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE
CHECK (SALARY + COMM > 30000)

5. Alter table EMPLOYEE. Drop the constraint REVENUE which was previously
defined.

ALTER TABLE EMPLOYEE
DROP CONSTRAINT REVENUE

6. Alter a table to log SQL changes in the default format.
ALTER TABLE SALARY1

DATA CAPTURE NONE

7. Alter a table to log SQL changes in an expanded format.
ALTER TABLE SALARY2

DATA CAPTURE CHANGES

8. Alter the EMPLOYEE table to add 4 new columns with default values.
ALTER TABLE EMPLOYEE

ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)
ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE(’01-01-1850’)
ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X’01’)
ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X’00’)

The default values use various function names when specifying the default.
Since MEASURE is a distinct type based on INTEGER, the MEASURE
function is used. The HEIGHT column default could have been specified
without the function since the source type of MEASURE is not BLOB or a
datetime data type. Since BIRTHDATE is a distinct type based on DATE, the
DATE function is used (BIRTHDATE cannot be used here). For the FLAGS
and PHOTO columns the default is specified using the BLOB function even
though PHOTO is a distinct type. To specify a default for BIRTHDAY, FLAGS
and PHOTO columns, a function must be used because the type is a BLOB or
a distinct type sourced on a BLOB or datetime data type.

9. A table called CUSTOMERS is defined with the following columns:
Column Name Data Type
BRANCH_NO SMALLINT
CUSTOMER_NO DECIMAL(7)
CUSTOMER_NAME VARCHAR(50)

In this table, the primary key is made up of the BRANCH_NO and
CUSTOMER_NO columns. To distribute the table, you will need to create a
distribution key for the table. The table must be defined in a table space on a
single-node database partition group. The primary key must be a superset of
the distribution key columns: at least one of the columns of the primary key
must be used as the distribution key. Make BRANCH_NO the distribution key
as follows:

ALTER TABLE

178 SQL Reference Volume 2



ALTER TABLE CUSTOMERS
ADD DISTRIBUTE BY HASH (BRANCH_NO)

10. A remote table EMPLOYEE was created in a federated system using
transparent DDL. Alter the remote table EMPLOYEE to add the columns
PHONE_NO and WORK_DEPT; also add a primary key on the existing
column EMP_NO and the new column WORK_DEPT.

ALTER TABLE EMPLOYEE
ADD COLUMN PHONE_NO CHAR(4) NOT NULL
ADD COLUMN WORK_DEPT CHAR(3)
ADD PRIMARY KEY (EMP_NO, WORK_DEPT)

11. Alter the DEPARTMENT table to add a functional dependency FD1, then drop
the functional dependency FD1 from the DEPARTMENT table.

ALTER TABLE DEPARTMENT
ADD CONSTRAINT FD1

CHECK ( DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED

ALTER TABLE DEPARTMENT
DROP CHECK FD1

12. Change the default value for the WORKDEPT column in the EMPLOYEE
table to 123.

ALTER TABLE EMPLOYEE
ALTER COLUMN WORKDEPT

SET DEFAULT ’123’

13. Associate the security policy DATA_ACCESS with the table EMPLOYEE.
ALTER TABLE EMPLOYEE

ADD SECURITY POLICY DATA_ACCESS

14. Alter the table EMPLOYEE to protect the SALARY column.
ALTER TABLE EMPLOYEE

ALTER COLUMN SALARY
SECURED WITH EMPLOYEESECLABEL

15. Assume that you have a table named SALARY_DATA that is defined with the
following columns:
Column Name Data Type
----------- ---------
EMP_NAME VARCHAR(50) NOT NULL
EMP_ID SMALLINT NOT NULL
EMP_POSITION VARCHAR(100) NOT NULL
SALARY DECIMAL(5,2)
PROMOTION_DATE DATE NOT NULL

Change this table to allow salaries to be stored in a DECIMAL(6,2) column,
make PROMOTION_DATE an optional field that can be set to the null value,
and remove the EMP_POSITION column.

ALTER TABLE SALARY_DATA
ALTER COLUMN SALARY SET DATA TYPE DECIMAL(6,2)
ALTER COLUMN PROMOTION_DATE DROP NOT NULL
DROP COLUMN EMP_POSITION

16. Add a column named DATE_ADDED to the table BOOKS. The default value
for this column is the current timestamp.

ALTER TABLE BOOKS
ADD COLUMN DATE_ADDED TIMESTAMP
WITH DEFAULT CURRENT TIMESTAMP

17. Alter table with label-based access control security attributes into a
materialized query table. Base tables tt1 and tt2 exist and were created with
the following SQL:

ALTER TABLE

Statements 179



CREATE TABLE tt1
(c1 INT SECURED WITH C, c2 DB2SECURITYLABEL) SECURITY POLICY P;

CREATE TABLE tt2
(c3 INT SECURED WITH B, c4 DB2SECURITYLABEL) SECURITY POLICY P;

Table tt2 can be altered to be a materialized query table with the following
SQL:

ALTER TABLE tt2 ADD (SELECT * FROM tt1 WHERE c1 > 10)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

Table tt2 becomes a materialized query table with the secure policy P. tt2.c3
has security label P.B. tt2.c4 has security label P.C and it is also
DB2SECURITYLABEL.

ALTER TABLE

180 SQL Reference Volume 2



ALTER TABLESPACE
The ALTER TABLESPACE statement is used to modify an existing table space.

You can modify a tablespace in the following ways:
v Add a container to, or drop a container from a DMS table space; that is, a table

space created with the MANAGED BY DATABASE option.
v Modify the size of a container in a DMS table space.
v Lower the high water mark for a DMS table space through extent movement.
v Add a container to an SMS table space on a database partition that currently has

no containers.
v Modify the PREFETCHSIZE setting for a table space.
v Modify the BUFFERPOOL used for tables in the table space.
v Modify the OVERHEAD setting for a table space.
v Modify the TRANSFERRATE setting for a table space.
v Modify the file system caching policy for a table space.
v Enable or disable auto-resize for a DMS or automatic storage table space.
v Rebalance a regular or large automatic storage table space.
v Modify the DATA TAG setting for a table space.
v Alter a DMS table space to an automatic storage table space.
v Modify the STOGROUP setting associated with a table space.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

�� ALTER TABLESPACE tablespace-name �

ALTER TABLESPACE

Statements 181



� � ADD add-clause
BEGIN NEW STRIPE SET db-container-clause

on-db-partitions-clause
DROP drop-container-clause

on-db-partitions-clause
REDUCE

db-container-clause on-db-partitions-clause
all-containers-clause

MAX
STOP
integer

K
M
G
PERCENT

EXTEND db-container-clause
RESIZE all-containers-clause on-db-partitions-clause

REBALANCE
SUSPEND
RESUME

PREFETCHSIZE AUTOMATIC
number-of-pages
integer K

M
BUFFERPOOL bufferpool-name
OVERHEAD number-of-milliseconds

INHERIT
TRANSFERRATE number-of-milliseconds

INHERIT
FILE SYSTEM CACHING
NO FILE SYSTEM CACHING

DROPPED TABLE RECOVERY ON
OFF

SWITCH ONLINE
AUTORESIZE NO

YES
INCREASESIZE integer PERCENT

K
M
G

MAXSIZE integer K
M
G

NONE
CONVERT TO LARGE
LOWER HIGH WATER MARK

STOP
USING STOGROUP storagegroup-name
DATA TAG integer-constant

INHERIT
NONE

MANAGED BY AUTOMATIC STORAGE

��

add-clause:

db-container-clause
TO STRIPE SET stripeset on-db-partitions-clause
system-container-clause on-db-partitions-clause

db-container-clause:

�

,

( FILE 'container-string' number-of-pages )
DEVICE integer K

M
G

ALTER TABLESPACE

182 SQL Reference Volume 2



drop-container-clause:

�

,

( FILE 'container-string' )
DEVICE

system-container-clause:

�

,

( 'container-string' )

on-db-partitions-clause:

ON DBPARTITIONNUM
DBPARTITIONNUMS

�

� �

,

( db-partition-number1 )
TO db-partition-number2

all-containers-clause:

CONTAINERS
( ALL number-of-pages )

integer K
M
G

Description

tablespace-name
Names the table space. This is a one-part name. It is a long SQL identifier
(either ordinary or delimited).

ADD
Specifies that one or more new containers are to be added to the table space.

TO STRIPE SET stripeset
Specifies that one or more new containers are to be added to the table space,
and that they will be placed into the given stripe set.

BEGIN NEW STRIPE SET
Specifies that a new stripe set is to be created in the table space, and that one
or more containers are to be added to this new stripe set. Containers that are
subsequently added using the ADD option will be added to this new stripe set
unless TO STRIPE SET is specified.

DROP
Specifies that one or more containers are to be dropped from the table space.

REDUCE
For non-automatic storage table spaces, specifies that existing containers are to

ALTER TABLESPACE

Statements 183



be reduced in size. The size specified is the size by which the existing
container is decreased. If the all-containers-clause is specified, all containers in
the table space will decrease by this size. If the reduction in size will result in a
table space size that is smaller than the current high water mark, an attempt
will be made to reduce the high water mark before attempting to reduce the
containers. For non-automatic storage table spaces, the REDUCE clause must
be followed by a db-container-clause or an all-containers-clause.

For automatic storage table spaces, specifies that the current high water mark
is to be reduced, if possible, and that the size of the table space is to be
reduced to the new high water mark. For automatic storage table spaces, the
REDUCE clause must not be followed by a db-container-clause, an
all-containers-clause or an on-db-partitions-clause.

Note: The REDUCE option with the MAX, numeric value, PERCENT, or STOP
clauses, and the LOWER HIGH WATER MARK option including the STOP
clause, are only available for database managed, and automatic storage
managed, table spaces with the reclaimable storage attribute. Moreover, these
options must be specified and run without any other options, including each
other.

The MAX, STOP, integer [K | M | G], or integer PERCENT clause takes effect when
the statement is processed and is not rolled back if the unit of work, in which
the statement is executed, is rolled back.

db-container-clause
Adds one or more containers to a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS table space. The
table space must identify a DMS table space that already exists at the
application server.

MAX
For automatic storage table spaces with reclaimable storage, specifies that
the maximum number of extents should be moved to the beginning of the
table space to lower the high water mark. Additionally, the size of the table
space will be reduced to the new high water mark. This does not apply to
non-automatic storage table spaces.

STOP
For automatic storage table spaces with reclaimable storage, interrupts the
extent movement operation if in progress. This option is not available for
non-automatic storage table spaces.

integer [K | M | G] or integer PERCENT
For automatic storage table spaces with reclaimable storage, specifies the
numeric value by which the table space is to be reduced through extent
movement. The value can be expressed in several ways:
v An integer specified without K, M, G, or PERCENT indicates that the

numeric value is the number of pages by which the table space is to be
reduced.

v An integer specified with K, M, or G indicates the reduction size in
kilobytes, megabytes, or gigabytes, respectively. The value is first
converted from bytes to number of pages based on the page size of the
table space.

v An integer specified with PERCENT indicates the number of extents to
move, as a percentage of the current size of the table space.

ALTER TABLESPACE

184 SQL Reference Volume 2



Once extent movement is complete, the table space size is reduced to the
new high water mark. This option is not available for non-automatic
storage table spaces.

on-db-partitions-clause
Specifies one or more database partitions for the corresponding container
operations.

EXTEND
Specifies that existing containers are to be increased in size. The size specified
is the size by which the existing container is increased. If the
all-containers-clause is specified, all containers in the table space will increase by
this size.

RESIZE
Specifies that the size of existing containers is to be changed. The size specified
is the new size for the container. If the all-containers-clause is specified, all
containers in the table space will be changed to this size. If the operation
affects more than one container, these containers must all either increase in
size, or decrease in size. It is not possible to increase some while decreasing
others (SQLSTATE 429BC).

db-container-clause
Adds one or more containers to a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

drop-container-clause
Drops one or more containers from a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

system-container-clause
Adds one or more containers to an SMS table space on the specified database
partitions. The table space must identify an SMS table space that already exists
at the application server. There must not be any containers on the specified
database partitions for the table space (SQLSTATE 42921).

on-db-partitions-clause
Specifies one or more database partitions for the corresponding container
operations.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS table space. The
table space must identify a DMS table space that already exists at the
application server.

REBALANCE
For regular and large automatic storage table spaces, initiates the creation of
containers on recently added storage paths, the drop of containers from storage
paths that are in the “Drop Pending” state, or both. During the rebalance, data
is moved into containers on new paths, and moved out of containers on
dropped paths. The rebalance runs asynchronously in the background and
does not affect the availability of data.

Note: The SUSPEND or RESUME clause takes effect when the statement is
processed and is not rolled back if the unit of work, in which the statement is
executed, is rolled back.

SUSPEND
Suspends the active rebalance operation on the specified table space. If
there is no active rebalance operation, no action is taken and success is
returned. The suspend state is persistent and if the database is deactivated

ALTER TABLESPACE

Statements 185



while the rebalance is suspended, then upon database activation the
rebalance operation is restarted from the suspended state. Suspending a
rebalance operation when it is already suspended has no effect and success
is returned.

RESUME
Resumes a previously suspended rebalance operation. If there is no active
rebalance operation, no action is taken and success is returned. If the
rebalance is PAUSED because of an online backup operation, then the table
space rebalance is taken out of the suspended state but remains paused
until the online backup is completed.

PREFETCHSIZE
Specifies to read in data needed by a query before it being referenced by the
query, so that the query need not wait for I/O to be performed.

AUTOMATIC
Specifies that the prefetch size of a table space is to be updated
automatically; that is, the prefetch size will be managed by the database
manager.

The database will update the prefetch size automatically whenever the
number of containers in a table space changes (following successful
execution of an ALTER TABLESPACE statement that adds or drops one or
more containers). The prefetch size is also automatically updated at
database startup.

Automatic updating of the prefetch size can be turned off by specifying a
numeric value in the PREFETCHSIZE clause.

number-of-pages
Specifies the number of PAGESIZE pages that will be read from the table
space when data prefetching is being performed. The maximum value is
32767.

integer K | M
Specifies the prefetch size value as an integer value followed by K (for
kilobytes) or M (for megabytes). If specified in this way, the floor of the
number of bytes divided by the page size is used to determine the number
of pages value for prefetch size.

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this table space. The buffer pool
must currently exist in the database (SQLSTATE 42704). The database partition
group of the table space must be defined for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds or OVERHEAD INHERIT
Specifies the I/O controller overhead and disk seek and latency time. This
value is used to determine the cost of I/O during query optimization.

number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
I/O controller overhead and disk seek and latency time, in milliseconds.
The number should be an average for all containers that belong to the
table space, if not the same for all containers.

INHERIT
If INHERIT is specified, the table space must be defined using automatic
storage and the OVERHEAD is dynamically inherited from the storage
group. INHERIT cannot be specified if the table space is not defined using
automatic storage (SQLSTATE 42858). If the OVERHEAD is set to

ALTER TABLESPACE

186 SQL Reference Volume 2



undefined for the storage group and you set OVERHEAD to INHERIT, the
database creation default will be used.

For a database that was created in DB2Version 10.1 or later, the default I/O
controller overhead and disk seek and latency time is 6.725 milliseconds.

For a database that was upgraded from a previous version of DB2 to
DB2Version 10.1 or later, the default I/O controller overhead and disk seek
and latency time is as follows:
v 7.5 milliseconds for a database created in DB2 version 9.7 or higher

TRANSFERRATE number-of-milliseconds or TRANSFERRATE INHERIT
Specifies the time to read one page into memory. This value is used to
determine the cost of I/O during query optimization.

number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
time to read one page (4K or 8K) into memory, in milliseconds. The
number should be an average for all containers that belong to the table
space, if not the same for all containers.

INHERIT
If INHERIT is specified, the table space must be defined using automatic
storage and the TRANSFERRATE is dynamically inherited from the storage
group. INHERIT cannot be specified if the table space is not defined using
automatic storage (SQLSTATE 42858). If the DEVICE READ RATE of the
storage group is set to undefined and the user sets TRANSFERRATE to
INHERIT, the database creation default will be used.

When an automatic storage table space inherits the TRANSFERRATE
setting from the storage group it is using, the DEVICE READ RATE of the
storage group, which is in megabytes per second, is converted into
milliseconds per page read accounting for the table space's PAGESIZE
setting of the table space. The conversion formula follows:

TRANSFERRATE = ( 1 / DEVICE READ RATE ) * 1000 / 1024000 *
PAGESIZE

For a database that was created in DB2Version 10.1 or later, the default time to
read one page into memory for 4 KB PAGESIZE table space is 0.04
milliseconds.

The default time to read one page into memory for 4 KB PAGESIZE table
space is 0.04 milliseconds.

For a database that was upgraded from a previous version of DB2 to
DB2Version 10.1 or later, the default time to read one page into memory is as
follows:
v 0.06 milliseconds for a database created in DB2 version 9.7 or higher

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING
Specifies whether or not I/O operations will be cached at the file system level.
Connections to the database must be terminated before a new caching policy
takes effect. Note that I/O access to long or LOB data is buffered for both SMS
and DMS containers.

FILE SYSTEM CACHING
All I/O operations in the target table space will be cached at the file
system level.

ALTER TABLESPACE

Statements 187



NO FILE SYSTEM CACHING
All I/O operations will bypass the file system level cache.

Note: You must format the disk device to have a disk sector size according
to the following table:

Operating system Disk sector size

AIX 512 bytes

Solaris 512 bytes

HP-UX 1024 bytes

Linux 512 bytes

Windows 512 bytes

DROPPED TABLE RECOVERY
Specifies whether or not tables that have been dropped from tablespace-name
can be recovered using the RECOVER DROPPED TABLE ON option of the
ROLLFORWARD DATABASE command. For partitioned tables, dropped table
recovery is always on, even if dropped table recovery is turned off for
non-partitioned tables in one or more table spaces.

ON Specifies that dropped tables can be recovered.

OFF
Specifies that dropped tables cannot be recovered.

SWITCH ONLINE
Specifies that table spaces in OFFLINE state are to be brought online if their
containers have become accessible. If the containers are not accessible, an error
is returned (SQLSTATE 57048).

AUTORESIZE
Specifies whether or not the auto-resize capability of a database managed
space (DMS) table space or an automatic storage table space is to be enabled.
Auto-resizable table spaces automatically increase in size when they become
full.

NO Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be disabled. If the auto-resize capability
is disabled, any values that have been previously specified for
INCREASESIZE or MAXSIZE will not be kept.

YES
Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be enabled.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G
Specifies the amount, per database partition, by which a table space that is
enabled for auto-resize will automatically be increased when the table space is
full, and a request for space has been made. The integer value must be
followed by:
v PERCENT to specify the amount as a percentage of the table space size at

the time that a request for space is made. When PERCENT is specified, the
integer value must be between 0 and 100 (SQLSTATE 42615).

v K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the
amount in bytes

ALTER TABLESPACE

188 SQL Reference Volume 2



Note that the actual value used might be slightly smaller or larger than what
was specified, because the database manager strives to maintain consistent
growth across containers in the table space.

MAXSIZE integer K | M | G or MAXSIZE NONE
Specifies the maximum size to which a table space that is enabled for
auto-resize can automatically be increased.

integer
Specifies a hard limit on the size, per database partition, to which a DMS
table space or an automatic storage table space can automatically be
increased. The integer value must be followed by K (for kilobytes), M (for
megabytes), or G (for gigabytes). Note that the actual value used might be
slightly smaller than what was specified, because the database manager
strives to maintain consistent growth across containers in the table space.

NONE
Specifies that the table space is to be allowed to grow to file system
capacity, or to the maximum table space size (described in “SQL and XML
limits”).

CONVERT TO LARGE
Modifies an existing regular DMS table space to be a large DMS table space.
The table space and its contents are locked during conversion. This option can
only be used on regular DMS table spaces. If an SMS table space, a temporary
table space, or the system catalog table space is specified, an error is returned
(SQLSTATE 560CF). You cannot convert a table space that contains a data
partition of a partitioned table that has data partitions in another table space
(SQLSTATE 560CF). Conversion cannot be reversed after being committed. If
tables in the table space are defined with DATA CAPTURE CHANGES,
consider the storage and capacity limits of the target table and table space.

LOWER HIGH WATER MARK
For both automatic storage and non-automatic storage table spaces with
reclaimable storage, triggers the extent movement operation to move the
maximum number of extents lower in the table space. Although the high water
mark is lowered, the size of the table space is not reduced. This must be
followed by an ALTER TABLESPACE REDUCE for automatic storage table
spaces or ALTER TABLESPACE REDUCE with the db-container-clause or
all-containers-clause for non-automatic storage table spaces.

Note: The LOWER HIGH WATER MARK option including the STOP clause,
and the REDUCE option with the MAX, numeric value, PERCENT, or STOP
clauses, are only available for database managed and automatic storage
managed table spaces with the reclaimable storage attribute. Moreover, these
options must be specified and run without any other options, including each
other.

Note: This clause takes effect when the statement is processed and is not
rolled back if the unit of work, in which the statement is executed, is rolled
back.

STOP
For both automatic storage and non-automatic storage table spaces with
reclaimable storage, interrupts the extent movement operation if in
progress.

USING STOGROUP
Associates a table space with a different storage group. The data associated

ALTER TABLESPACE

Statements 189



with the table space will be moved from its current storage group to the
specified storage group. This clause only applies to automatic storage table
spaces unless specified with the MANAGED BY AUTOMATIC STORAGE
clause (SQLSTATE 42858).

For automatic storage table spaces, an implicit REBALANCE is started at
commit time. For a database managed table space being converted to
automatic storage managed, an explicit REBALANCE statement is required.

In a partitioned database environment, to alter the storage group association of
a table space, the table space must be defined using automatic storage on all
database partitions. If the table space on any database partition is not defined
using automatic storage, this command will fail unless specified with the
MANAGED BY AUTOMATIC STORAGE clause (SQLSTATE 42858). However,
it is not required that a table space have the same storage group association on
all database partitions for this command to succeed in moving the table space
on all database partitions.

storagegroup-name
Identifies the storage group in which table space data will be stored.
storagegroup-name must identify a storage group that exists at the current
server (SQLSTATE 42704). This is a one-part name.

DATA TAG integer-constant, DATA TAG INHERIT or DATA TAG NONE
Specifies a tag for the data in the table space. This value can be used as part of
a WLM configuration in a work class definition or referenced within a
threshold definition; for more information refer to the CREATE WORK CLASS
SET, ALTER WORK CLASS SET, CREATE THRESHOLD, and ALTER
THRESHOLD statements. This clause cannot be specified for USER or SYSTEM
TEMPORARY table spaces or for the catalog table space (SQLSTATE 42858).

integer-constant
Valid values for integer-constant are integers from 1 to 9. If an
integer-constant is specified and there is an associated storage group, the
data tag specified for the table space will override any data tag value
specified for the associated storage group.

INHERIT
If INHERIT is specified, the table space must be defined using automatic
storage and the DATA TAG is dynamically inherited from the storage
group. INHERIT cannot be specified if the table space is not defined using
automatic storage (SQLSTATE 42858).

NONE
If NONE is specified, there is no data tag.

MANAGED BY AUTOMATIC STORAGE
Enables automatic storage for a database managed (DMS) table space. Once
automatic storage is enabled, no further container operations can be executed
on the table space. The table space being converted cannot be using RAW
(DEVICE) containers.

If the USING STOGROUP clause is not included when converting from a DMS
table space to an automatic storage table space then the default storage group
is specified.

Rules
v The BEGIN NEW STRIPE SET clause cannot be specified in the same statement

as ADD, DROP, EXTEND, REDUCE, and RESIZE, unless those clauses are being
directed to different database partitions (SQLSTATE 429BC).

ALTER TABLESPACE

190 SQL Reference Volume 2



v The stripe set value specified with the TO STRIPE SET clause must be within the
valid range for the table space being altered (SQLSTATE 42615).

v When adding or removing space from the table space, the following rules must
be followed:
– EXTEND and RESIZE can be used in the same statement, provided that the

size of each container is increasing (SQLSTATE 429BC).
– REDUCE and RESIZE can be used in the same statement, provided that the

size of each container is decreasing (SQLSTATE 429BC).
– EXTEND and REDUCE cannot be used in the same statement, unless they are

being directed to different database partitions (SQLSTATE 429BC).
– ADD cannot be used with REDUCE or DROP in the same statement, unless

they are being directed to different database partitions (SQLSTATE 429BC).
– DROP cannot be used with EXTEND or ADD in the same statement, unless

they are being directed to different database partitions (SQLSTATE 429BC).
v The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified for

system managed space (SMS) table spaces, temporary table spaces that were
created using automatic storage, or DMS table spaces that are defined to use raw
device containers (SQLSTATE 42601).

v The INCREASESIZE or MAXSIZE clause cannot be specified if the table space is
not auto-resizable (SQLSTATE 42601).

v When specifying a new maximum size for a table space, the value must be
larger than the current size on each database partition (SQLSTATE 560B0).

v Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE
SET) cannot be performed on automatic storage table spaces, because the
database manager is controlling the space management of such table spaces
(SQLSTATE 42858).

v Raw device containers cannot be added to an auto-resizable DMS table space
(SQLSTATE 42601).

v The CONVERT TO LARGE clause cannot be specified in the same statement as
any other clause (SQLSTATE 429BC).

v The REBALANCE clause cannot be specified with any other clause (SQLSTATE
429BC).

v The REBALANCE clause is only valid for regular and large automatic storage
table spaces (SQLSTATE 42601). Temporary automatic storage table spaces
should be dropped and recreated to take advantage of recently added storage
paths or to have their containers removed from storage paths being dropped.

v Container operations and the REBALANCE clause cannot be specified if the
table space is in the “DMS rebalancer is active” state (SQLSTATE 55041).

v The USING STOGROUP clause cannot be specified for temporary table spaces
(SQLSTATE 42858).

v The following clauses are not supported in DB2 pureScale environments:
– ADD db-container-clause

– BEGIN NEW STRIPE SET db-container-clause

– DROP db-container-clause

– LOWER HIGH WATER MARK
– LOWER HIGH WATER MARK STOP
– REDUCE, unless it is specified without any of its optional elements
– RESIZE db-container-clause

– USING STOGROUP

ALTER TABLESPACE

Statements 191



v The ADD, DROP, RESIZE, EXTEND, REDUCE, LOWER HIGH WATER MARK,
and BEGIN_STRIPE_SET clauses cannot be used in conjunction with the
MANAGED BY AUTOMATIC STORAGE clause or the USING STOGROUP
clause (SQLSTATE 429BC).

v The USING STOGROUP clause cannot be specified if the table space is in the
"rebalancer is active" state (SQLSTATE 55041).

v Container size limit: In DMS table spaces, a container must be at least two times
the extent size pages in length (SQLSTATE 54039). The maximum size of a
container is operating system dependent.

v Container definition length limit: Each container definition requires 53 bytes
plus the number of bytes necessary to store the container name. The combined
length of all container definitions for the table space cannot exceed 208 kilobytes
(SQLSTATE 54034).

Notes
v Default container operations are container operations that are specified in the

ALTER TABLESPACE statement, but that are not explicitly directed to a specific
database partition. These container operations are sent to any database partition
that is not listed in the statement. If these default container operations are not
sent to any database partition, because all database partitions are explicitly
mentioned for a container operation, a warning is returned (SQLSTATE 01589).

v Once space has been added or removed from a table space, and the transaction
is committed, the contents of the table space may be rebalanced across the
containers. Access to the table space is not restricted during rebalancing.

v If the table space is in OFFLINE state and the containers have become accessible,
the user can disconnect all applications and connect to the database again to
bring the table space out of OFFLINE state. Alternatively, SWITCH ONLINE
option can bring the table space up (out of OFFLINE) while the rest of the
database is still up and being used.

v If adding more than one container to a table space, it is recommended that they
be added in the same statement so that the cost of rebalancing is incurred only
once. An attempt to add containers to the same table space in separate ALTER
TABLESPACE statements within a single transaction will result in an error
(SQLSTATE 55041).

v Any attempts to extend, reduce, resize, or drop containers that do not exist will
raise an error (SQLSTATE 428B2).

v When extending, reducing, or resizing a container, the container type must
match the type that was used when the container was created (SQLSTATE
428B2).

v An attempt to change container sizes in the same table space, using separate
ALTER TABLESPACE statements but within a single transaction, will raise an
error (SQLSTATE 55041).

v In a partitioned database if more than one database partition resides on the
same physical node, the same device or specific path cannot be specified for
such database partitions (SQLSTATE 42730). For this environment, either specify
a unique container-string for each database partition or use a relative path name.

v Although the table space definition is transactional and the changes to the table
space definition are reflected in the catalog tables on commit, the buffer pool
with the new definition cannot be used until the next time the database is
started. The buffer pool in use, when the ALTER TABLESPACE statement was
issued, will continue to be used in the interim.

v The REDUCE, RESIZE, or DROP option attempts to free unused extents, if
necessary, for DMS table spaces, and the REDUCE option attempts to free

ALTER TABLESPACE

192 SQL Reference Volume 2



unused extents for automatic storage table spaces. The removal of unused
extents allows the table space high water mark to be reduced to a value that
accurately represents the amount of space used, which, in turn, enables larger
reductions in table space size.

v Conversion to large DMS table spaces: After conversion, it is recommended that
you issue the COMMIT statement and then increase the storage capacity of the
table space.
– If the table space is enabled for auto-resize, the MAXSIZE table space

attribute should be increased, unless it is already set to NONE.
– If the table space is not enabled for auto-resize:

- Enable auto-resize by issuing the ALTER TABLESPACE statement with the
AUTORESIZE YES option, or

- Add more storage by adding stripe sets, extending the size of existing
containers, or both

Indexes for tables in a converted table space must be reorganized or rebuilt
before they can support large record identifiers (RIDs).
– The indexes can be rebuilt using the REORG INDEXES ALL command with the

REBUILD option. Specify the ALLOW NO ACCESS option for partitioned tables.
– Alternatively, the tables can be reorganized (not INPLACE), which will

rebuild all indexes and enable the tables to support more than 255 rows per
page.

To determine which tables do not yet support large RIDs, use the
ADMIN_GET_TAB_INFO table function.

v The rebalance of an automatic storage table space that has containers on a
storage path in the “Drop Pending” state will drop those containers. New
containers may need to be created to hold the data being moved off the dropped
containers. There must be sufficient free space on the other storage paths in the
database to allow those containers to be created, otherwise an error is returned
SQLSTATE 57011. The actual amount of free space required depends on many
factors, including the location of the high-water mark extent and the stripe sets
being altered. However, to ensure that the operation will be successful, there
should be at least enough free space on the remaining storage paths as there is
space being consumed by the containers being dropped.

v If the REBALANCE clause is specified but the data server determines that there
is no need to create new containers or drop existing ones, a rebalance does not
occur and the statement succeeds with a warning (SQLSTATE 01690).

v In addition to adding containers on recently added paths, the REBALANCE
operation may also be used to add containers on existing storage paths. Each
stripe set in the table space is examined and storage paths that are not in use by
a particular stripe set are identified. For each storage path identified, if there is
sufficient free space on it then a new container will be created. The container
will have the same size as the other containers in the stripe set. This would be
beneficial if a given storage path ran out of space, table spaces stopped using it
(by creating stripe sets on the other paths), and more storage was given to the
path. In this case, no new paths have been added, but the rebalance will attempt
to include that storage path in stripe sets where it wasn't included before.

v Auto-resize can still occur while a rebalance of an automatic storage table space
is in progress.

v When a DMS table space is enabled for automatic storage by the MANAGED BY
AUTOMATIC STORAGE clause, that table space will have one or more stripe
sets of user-defined (non-automatic storage) containers and one or more stripe
sets of automatic storage containers. Rebalancing the table space (using the

ALTER TABLESPACE

Statements 193



REBALANCE clause) removes all of the user-defined containers. The database
manager might extend existing automatic storage containers or create new
automatic storage containers to hold the data being moved from the
user-defined containers.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS

Examples
v Example 1: Add a device to the PAYROLL table space.

ALTER TABLESPACE PAYROLL
ADD (DEVICE ’/dev/rhdisk9’ 10000)

v Example 2: Change the prefetch size and I/O overhead for the ACCOUNTING
table space.

ALTER TABLESPACE ACCOUNTING
PREFETCHSIZE 64
OVERHEAD 19.3

v Example 3: Create a table space TS1, then resize the containers so that all of the
containers have 2000 pages. (Three different ALTER TABLESPACE statements
that will accomplish this resizing are shown.)

CREATE TABLESPACE TS1
MANAGED BY DATABASE
USING (FILE ’/conts/cont0’ 1000,

DEVICE ’/dev/rcont1’ 500,
FILE ’cont2’ 700)

ALTER TABLESPACE TS1
RESIZE (FILE ’/conts/cont0’ 2000,

DEVICE ’/dev/rcont1’ 2000,
FILE ’cont2’ 2000)

OR
ALTER TABLESPACE TS1

RESIZE (ALL 2000)

OR
ALTER TABLESPACE TS1

EXTEND (FILE ’/conts/cont0’ 1000,
DEVICE ’/dev/rcont1’ 1500,
FILE ’cont2’ 1300)

v Example 4: Extend all of the containers in the DATA_TS table space by 1000
pages.

ALTER TABLESPACE DATA_TS
EXTEND (ALL 1000)

v Example 5: Resize all of the containers in the INDEX_TS table space to 100
megabytes (MB).

ALTER TABLESPACE INDEX_TS
RESIZE (ALL 100 M)

v Example 6: Add three new containers. Extend the first container, and resize the
second.

ALTER TABLESPACE

194 SQL Reference Volume 2



ALTER TABLESPACE TS0
ADD (FILE ’cont2’ 2000, FILE ’cont3’ 2000)
ADD (FILE ’cont4’ 2000)
EXTEND (FILE ’cont0’ 100)
RESIZE (FILE ’cont1’ 3000)

v Example 7: Table space TSO exists on database partitions 0, 1 and 2. Add a new
container to database partition 0. Extend all of the containers on database
partition 1. Resize a container on all database partitions other than the ones that
were explicitly specified (that is, database partitions 0 and 1).

ALTER TABLESPACE TS0
ADD (FILE ’A’ 200) ON DBPARTITIONNUM (0)
EXTEND (ALL 200) ON DBPARTITIONNUM (1)
RESIZE (FILE ’B’ 500)

The RESIZE clause is the default container clause in this example, and will be
executed on database partition 2, because other operations are being explicitly
sent to database partitions 0 and 1. If, however, there had only been these two
database partitions, the statement would have succeeded, but returned a
warning (SQL1758W) that default containers had been specified but not used.

v Example 8: Enable the auto-resize option for table space DMS_TS1, and set its
maximum size to 256 megabytes.

ALTER TABLESPACE DMS_TS1
AUTORESIZE YES MAXSIZE 256 M

v Example 9: Enable the auto-resize option for table space AUTOSTORE1, and
change its growth rate to 5%.

ALTER TABLESPACE AUTOSTORE1
AUTORESIZE YES INCREASESIZE 5 PERCENT

v Example 10: Change the growth rate for an auto-resizable table space named
MY_TS to 512 kilobytes, and set its maximum size to be as large as possible.

ALTER TABLESPACE MY_TS
INCREASESIZE 512 K MAXSIZE NONE

v Example 11: Enable automatic storage for database managed table space
DMS_TS10 and have it use storage group sg_3.

ALTER TABLESPACE DMS_TS10
MANAGED BY AUTOMATIC STORAGE
USING STOGROUP sg_3

v Example 12: An ALTER DATABASE statement removed the paths
/db/filesystem1 and /db/filesystem2 from the currently connected database.
The table spaces named PRODTS1, PRODTS2, and PRODTS3 were the only table
spaces using the removed paths. Rebalance these table spaces. Three ALTER
TABLESPACE statements must be used.

ALTER TABLESPACE PRODTS1 REBALANCE
ALTER TABLESPACE PRODTS2 REBALANCE
ALTER TABLESPACE PRODTS3 REBALANCE

v Example 13: Enable automatic storage for database managed table space DATA1
and remove all of the existing non-automatic storage containers from the table
space. The first statement must be committed before the second statement can be
run.

ALTER TABLESPACE DATA1 MANAGED BY AUTOMATIC STORAGE
ALTER TABLESPACE DATA1 REBALANCE

v Example 14: Trigger extent movement for an automatic storage table space with
reclaimable storage attribute, to reduce the size of the containers by 10MB.

ALTER TABLESPACE DMS_TS1 REDUCE 10 M

ALTER TABLESPACE

Statements 195



v Example 15: Trigger extent movement for a non-automatic storage table space
with reclaimable storage attribute and subsequently reduce the size of each
container by 10MB.

ALTER TABLESPACE TBSP1 LOWER HIGH WATER MARK
ALTER TABLESPACE TBSP1 REDUCE (ALL CONTAINERS 10 M)

ALTER TABLESPACE

196 SQL Reference Volume 2



ALTER THRESHOLD
The ALTER THRESHOLD statement alters the definition of a threshold.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v SQLADM authority, only if every alteration clause is a COLLECT clause
v WLMADM authority
v DBADM authority

Syntax

�� ALTER THRESHOLD threshold-name �

� �
(1)

WHEN alter-threshold-predicate PERFORM ACTION
alter-threshold-exceeded-actions

EXCEEDED alter-threshold-exceeded-actions
ENABLE
DISABLE

��

alter-threshold-predicate:

ALTER THRESHOLD

Statements 197



�

TOTALMEMBERCONNECTIONS > integer-value
TOTALSCMEMBERCONNECTIONS > integer-value

AND QUEUEDCONNECTIONS > integer-value
AND QUEUEDCONNECTIONS UNBOUNDED

CONNECTIONIDLETIME > integer-value DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES

CONCURRENTWORKLOADOCCURRENCES > integer-value
CONCURRENTWORKLOADACTIVITIES > integer-value
CONCURRENTDBCOORDACTIVITIES > integer-value

AND QUEUEDACTIVITIES > integer-value
AND QUEUEDACTIVITIES UNBOUNDED

ESTIMATEDSQLCOST > bigint-value
SQLROWSRETURNED > integer-value
ACTIVITYTOTALTIME > integer-value DAY

DAYS
HOUR
HOURS
MINUTE
MINUTES
SECONDS

UOWTOTALTIME > integer-value DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECONDS

SQLTEMPSPACE > integer-value K
M
G

AGGSQLTEMPSPACE > integer-value K
M
G

SQLROWSREAD > bigint-value
CHECKING EVERY integer-value SECOND

SECONDS
SQLROWSREADINSC > bigint-value

CHECKING EVERY integer-value SECOND
SECONDS

CPUTIME > integer-value HOUR
HOURS CHECKING EVERY integer-value SECOND
MINUTE SECONDS
MINUTES
SECOND
SECONDS

CPUTIMEINSC > integer-value HOUR
HOURS CHECKING EVERY integer-value SECOND
MINUTE SECONDS
MINUTES
SECOND
SECONDS

,
(2)

DATATAGINSC IN ( integer-constant )
NOT IN

alter-threshold-exceeded-actions:

�
(1)

COLLECT ACTIVITY DATA alter-collect-activity-data-clause
NONE

STOP EXECUTION
CONTINUE
FORCE APPLICATION
remap-activity-action

alter-collect-activity-data-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

�

ALTER THRESHOLD

198 SQL Reference Volume 2



�

�

WITHOUT DETAILS
,

(3)
WITH DETAILS

SECTION AND VALUES

remap-activity-action:

REMAP ACTIVITY TO service-subclass-name
NO EVENT MONITOR RECORD

LOG EVENT MONITOR RECORD

Notes:

1 The same clause must not be specified more than once.

2 Each data tag value can be specified only once.

3 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

threshold-name
Identifies the threshold to be altered. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). The name must uniquely identify an
existing threshold at the current server (SQLSTATE 42704).

WHEN alter-threshold-predicate or WHEN EXCEEDED
Replaces the existing upper bound value in the threshold predicate condition
with a new upper bound value. The condition of the threshold cannot be
changed to a different one.

PERFORM ACTION
When altering the value of the threshold predicate condition, specifies that
the threshold exceeded action is not changed.

EXCEEDED
Specifies to keep the same threshold predicate that was specified originally
for this altered threshold.

alter-threshold-predicate

TOTALMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a member. This value can be zero
or any positive integer (SQLSTATE 42820). A value of zero means that any
new coordinator connection will be prevented from connecting. All
currently running or queued connections will continue.

TOTALSCMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a member in a specific service
superclass. This value can be zero or any positive integer (SQLSTATE
42820). A value of zero means that any new connection will be prevented
from joining the service class. All currently running or queued connections
will continue.

ALTER THRESHOLD

Statements 199



AND QUEUEDCONNECTIONS > integer-value or AND QUEUEDCONNECTIONS
UNBOUNDED

Specifies a queue size for when the maximum number of coordinator
connections is exceeded. This value can be zero or any positive integer
(SQLSTATE 42820). A value of zero means that no coordinator
connections are queued. Specifying UNBOUNDED will queue every
connection that exceeds the specified maximum number of coordinator
connections, and the threshold-exceeded-actions will never be executed.

CONNECTIONIDLETIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES

This condition defines an upper bound for the amount of time the
database manager will allow a connection to remain idle. This value can be
any positive integer (not zero) (SQLSTATE 42820). Use a valid duration
keyword to specify an appropriate unit of time for integer-value. This
condition is enforced at the coordinator member.

If you specify the STOP EXECUTION action with
CONNECTIONIDLETIME thresholds, the connection for the application is
dropped when the threshold is exceeded. Any subsequent attempt by the
application to access the data server will receive SQLSTATE 5U026 since
the application is no longer connected to the data server.

The maximum value for this threshold is 2 147 483 640 seconds. Any value
specified that has a seconds equivalent larger than 2 147 483 640 seconds
will be set to this number of seconds.

CONCURRENTWORKLOADOCCURRENCES > integer-value
This condition defines an upper bound on the number of concurrent
occurrences for the workload on each member. This value can be any
positive integer (not zero) (SQLSTATE 42820).

CONCURRENTWORKLOADACTIVITIES > integer-value
This condition defines an upper bound on the number of concurrent
coordinator activities and nested activities for the workload on each
member. This value can be any positive integer (not zero) (SQLSTATE
42820).

Each nested activity must satisfy the following conditions:
v It must be a recognized coordinator activity. Any nested coordinator

activity that does not fall within the recognized types of activities will
not be counted. Similarly, nested subagent activities, such as remote
node requests, are not counted.

v It must be directly invoked from user logic, such as a user-written
procedure issuing SQL statements.

Consequently, nested coordinator activities that were automatically started
under the invocation of a database manager utility or routines in the
SYSIBM, SYSFUN, or SYSPROC schemas are not counted toward the upper
bound specified by this threshold.

Internal SQL activities, such as those generated by the setting of a
constraint or the refreshing of a materialized query table, are also not
counted by this threshold, because they are initiated by the database
manager and not directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value
This condition defines an upper bound on the number of recognized
database coordinator activities that can run concurrently on all members in
the specified domain. This value can be zero or any positive integer

ALTER THRESHOLD

200 SQL Reference Volume 2



(SQLSTATE 42820). A value of zero means that any new database
coordinator activities will be prevented from executing. All currently
running or queued database coordinator activities will continue. All
activities are tracked by this condition, except for the following items:
v CALL statements are not controlled by this threshold, but all nested

child activities started within the called routine are under this
threshold's control. Anonymous blocks and autonomous routines are
classified as CALL statements.

v User-defined functions are controlled by this threshold, but child
activities nested in a user-defined function are not controlled. If an
autonomous routine is called from within a user defined function,
neither the autonomous routine nor any child activities of the
autonomous routine are under threshold control.

v Trigger actions that invoke CALL statements and the child activities of
these CALL statements are not controlled by this threshold. INSERT,
UPDATE, or DELETE statements that can cause a trigger to activate
continue to be under threshold control.

Important: Before using CONCURRENTDBCOORDACTIVITIES
thresholds, be sure to become familiar with the effects that they can have
on the database system.

For more information, refer to “CONCURRENTDBCOORDACTIVITIES
threshold” in DB2 Workload Management Guide and Reference.

AND QUEUEDACTIVITIES > integer-value or AND QUEUEDACTIVITIES
UNBOUNDED

Specifies a queue size for when the maximum number of database
coordinator activities is exceeded. This value can be zero or any
positive integer (SQLSTATE 42820). A value of zero means that no
database coordinator activities are queued. Specifying UNBOUNDED
will queue every database coordinator activity that exceeds the
specified maximum number of database coordinator activities, and the
threshold-exceeded-actions will never be executed.

Note: If a threshold action of CONTINUE is specified for a queuing
threshold, it effectively makes the size of the queue unbounded,
regardless of any hard value specified for the queue size.

ESTIMATEDSQLCOST > bigint-value
This condition defines an upper bound for the optimizer-assigned cost (in
timerons) of an activity. This value can be any positive big integer (not
zero) (SQLSTATE 42820). This condition is enforced at the coordinator
member. Activities tracked by this condition are:
v Coordinator activities of type data manipulation language (DML).
v Nested DML activities that are invoked from user logic. Consequently,

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition
(unless their cost is included in the parent's estimate, in which case they
are indirectly tracked).

SQLROWSRETURNED > integer-value
This condition defines an upper bound for the number of rows returned to
a client application from the application server. This value can be any
positive integer (not zero) (SQLSTATE 42820).This condition is enforced at
the coordinator member. Activities tracked by this condition are:

ALTER THRESHOLD

Statements 201



v Coordinator activities of type DML.
v Nested DML activities that are derived from user logic. Activities that

are initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as
individual activities. There is no aggregation of the rows that are returned
by the procedure itself.

ACTIVITYTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES | SECONDS

This condition defines an upper bound for the amount of time the
database manager will allow an activity to execute, including the time the
activity was queued. The definition domain for this condition must be
DATABASE, work action (a threshold for a work action definition domain
is created using a CREATE WORK ACTION SET or ALTER WORK
ACTION SET statement, and the work action set must be applied to a
workload or a database), SERVICE SUPERCLASS, SERVICE SUBCLASS, or
WORKLOAD, and the enforcement scope must be DATABASE (SQLSTATE
5U037). This condition is logically enforced at the coordinator member.

The specified integer-value must be an integer that is greater than zero
(SQLSTATE 42820). Use a valid duration keyword to specify an
appropriate unit of time for integer-value. If the specified time unit is
SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The
maximum value that can be specified for this threshold is 2 147 483 640
seconds. If any value (using the DAY, HOUR, MINUTE, or SECONDS time
unit) has a seconds equivalent larger than the maximum value, an error is
returned (SQLSTATE 42615).

UOWTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES | SECONDS

This condition defines an upper bound for the amount of time the
database manager will allow a unit of work to execute. This value can be
any non-zero positive integer (SQLSTATE 42820). Use a valid duration
keyword to specify an appropriate unit of time for integer-value. If the
specified time unit is SECONDS, the value must be a multiple of 10
(SQLSTATE 42615). This condition is enforced at the coordinator member.

The maximum value that can be specified for this threshold is 2 147 483
640 seconds. If any value (using the DAY, HOUR, MINUTE, or SECONDS
time unit) has a seconds equivalent larger than the maximum value, an
error is returned (SQLSTATE 42615).

SQLTEMPSPACE > integer-value K | M | G
This condition defines the maximum amount of system temporary space
that can be consumed by an SQL statement on a member. This value can
be any positive integer (not zero) (SQLSTATE 42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum
size is 1024 times integer-value. If integer-value M is specified, the maximum
size is 1 048 576 times integer-value. If integer-value G is specified, the
maximum size is 1 073 741 824 times integer-value.

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (subsection execution). Activities that are

ALTER THRESHOLD

202 SQL Reference Volume 2



initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

AGGSQLTEMPSPACE > integer-value K | M | G

This condition defines the maximum amount of system temporary space
that can be consumed by a set of statements in a service class on a
member. This value can be any positive integer (not zero) (SQLSTATE
42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum
size is 1024 times integer-value. If integer-value M is specified, the maximum
size is 1 048 576 times integer-value. If integer-value G is specified, the
maximum size is 1 073 741 824 times integer-value.

Activities contributing to the aggregate that is tracked by this condition
are:
v Coordinator activities of type DML and corresponding subagent work

like subsection execution.
v Nested DML activities that are derived from user logic and their

corresponding subagent work like subsection execution. Activities
initiated by the database manager through a utility, procedure, or
internal SQL statement are not affected by this condition.

SQLROWSREAD > bigint-value
This condition defines an upper bound on the number of rows that may be
read by an activity during its lifetime on a particular member. This value
can be any positive big integer (not zero) (SQLSTATE 42820). Note that the
number of rows read is different from the number of rows returned, which
is controlled by the SQLROWSRETURNED condition.

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities like those initiated by the setting of a constraint,
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The threshold is checked at the end of each request (like a
fetch operation, for example) and on the interval defined by the
CHECKING clause. The CHECKING clause defines an upper
bound on how long a threshold violation may go undetected. The
value can be any positive integer (not zero) with a maximum value
of 86400 seconds (SQLSTATE 42820). Setting a low value may
impact system performance negatively.

SQLROWSREADINSC > bigint-value
This condition defines an upper bound on the number of rows that may be
read by an activity on a particular member while it is executing in a
service subclass. Rows read before executing in the service subclass
specified are not counted. This value can be any positive big integer (not

ALTER THRESHOLD

Statements 203



zero) (SQLSTATE 42820). Note that the number of rows read is different
from the number of rows returned, which is controlled by the
SQLROWSRETURNED condition.

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities like those initiated by the setting of a constraint,
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The threshold is checked at the end of each request (like a
fetch operation, for example) and on the interval defined by the
CHECKING clause. The CHECKING clause defines an upper
bound on how long a threshold violation may go undetected. The
value can be any positive integer (not zero) with a maximum value
of 86400 seconds (SQLSTATE 42820). Setting a low value may
impact system performance negatively.

CPUTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES |
SECOND | SECONDS

This condition defines an upper bound for the amount of processor time
that an activity may consume during its lifetime on a particular member.
The processor time tracked by this threshold is measured from the time
that the activity starts executing. This value can be any positive integer
(not zero) (SQLSTATE 42820).

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities, like those initiated by the setting of a constraint
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

v Activities of type CALL. For CALL activities, the processor time tracked
for the procedure does not include the processor time used by any child
activity or by any fenced mode processes. The threshold condition will
be checked only upon return from user logic to the database engine. For
example: During execution of a trusted routine, the threshold condition
will be checked only when the routine issues a request to the database
engine.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an

ALTER THRESHOLD

204 SQL Reference Volume 2



activity. The granularity of the CPUTIME threshold is
approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60
seconds and the degree of parallelism is 2, the activity might use
an extra 2 minutes of processor time instead of 1 minute before the
threshold violation is detected. The value can be any positive
integer (not zero) with a maximum value of 86400 seconds
(SQLSTATE 42820). Setting a low value may impact system
performance negatively.

CPUTIMEINSC > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES
| SECOND | SECONDS

This condition defines an upper bound for the amount of processor time
that an activity may consume on a particular member while it is executing
in a service subclass. The processor time tracked by this threshold is
measured from the time that the activity starts executing in the service
subclass identified in the threshold domain. Any processor time used
before that point is not counted toward the limit imposed by this
threshold. This value can be any positive integer (not zero) (SQLSTATE
42820).

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities, like those initiated by the setting of a constraint
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

v Activities of type CALL. For CALL activities, the processor time tracked
for the procedure does not include the processor time used by any child
activity or by any fenced mode processes. The threshold condition will
be checked only upon return from user logic to the database engine. For
example: During execution of a trusted routine, the threshold condition
will be checked only when the routine issues a request to the database
engine.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The granularity of the CPUTIMEINSC threshold is
approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60
seconds and the degree of parallelism is 2, the activity might use
an extra 2 minutes of processor time instead of 1 minute before the
threshold violation is detected. The value can be any positive
integer (not zero) with a maximum value of 86400 seconds
(SQLSTATE 42820). Setting a low value may impact system
performance negatively.

DATATAGINSC IN (integer-constant, ...)
This condition defines one or more data tag values specified on a table
space that the activity touches. The data tag on a table space, or its
underlying storage group (where applicable), can be either not be set or set

ALTER THRESHOLD

Statements 205



to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or storage group level), this threshold will
not have any affect on that activity. The definition domain for this
condition must be a service subclass (SERVICE CLASS specifying the
UNDER clause), and the enforcement scope must be DATABASE
PARTITION (SQLSTATE 5U037). This condition is enforced independently
at each database partition.

Activities tracked by this condition are:
v Coordinator activities of type data manipulation language (DML).
v Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition.

This threshold is only checked when a scan is opened on a table or when
an insert is performed into a table. Fetching data from a table after a scan
has been opened will not violate the threshold.

DATATAGINSC NOT IN (integer-constant, ...)
This condition defines one or more data tag values not specified on a table
space that the activity touches. The data tag on a table space, or its
underlying storage group (where applicable), can be either not be set or set
to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or storage group level), this threshold will
not have any affect on that activity. The definition domain for this
condition must be a service subclass (SERVICE CLASS specifying the
UNDER clause), and the enforcement scope must be DATABASE
PARTITION (SQLSTATE 5U037). This condition is enforced independently
at each database partition.

Activities tracked by this condition are:
v Coordinator activities of type data manipulation language (DML).
v Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition.

This threshold is only checked when a scan is opened on a table or when
an insert is performed into a table. Fetching data from a table after a scan
has been opened will not violate the threshold.

alter-threshold-exceeded-actions
Specifies what action is to be taken when a condition is exceeded. Each time
that a condition is exceeded, an event is recorded in all active threshold
violations event monitors.

COLLECT ACTIVITY DATA
Specifies that data about each activity that exceeded the threshold is to be
sent to any active activities event monitor when the activity completes. The
COLLECT ACTIVITY DATA setting does not apply to non-activity
thresholds, such as CONNECTIONIDLETIME,
TOTALDBPARTITIONCONNECTIONS,
TOTALSCPARTITIONCONNECTIONS,
CONCURRENTWORKLOADOCCURRENCES, or UOWTOTALTIME.

alter-collect-activity-data-clause

ALTER THRESHOLD

206 SQL Reference Volume 2



ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the
coordinator member of the activity.

ON ALL MEMBERS
Specifies that the activity data is to be collected at all members on
which the activity is processed. On remote members, a record for
the activity may be captured multiple times as the activity comes
and goes on those members. For predictive thresholds, activity
information is collected at all members only if you also specify the
CONTINUE action for exceeded thresholds. For reactive
thresholds, the ON ALL MEMBERS clause has no effect and
activity information is always collected only at the coordinator
member. For both predictive and reactive thresholds, any input
data values, section information, or values will be collected only at
the coordinator member.

WITHOUT DETAILS
Specifies that data about each activity associated with the work
class for which this work action is defined should be sent to any
active activities event monitor, when the activity completes
execution. Details about statement, compilation environment, and
section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to
be sent to any active activities event monitor, for those
activities that have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any
active activities event monitor for those activities that have
them. DETAILS must be specified if SECTION is specified. For
predictive thresholds, section actuals will be collected on any
member where the activity data is collected. For reactive
thresholds, section actuals will be collected only on the
coordinator member.

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
exceeds the threshold.

STOP EXECUTION
The execution of the activity is stopped and an error is returned
(SQLSTATE 5U026). In the case of the UOWTOTALTIME threshold, the
unit of work is rolled back.

CONTINUE
The execution of the activity is not stopped. When the condition also has a
queue, this option causes queuing to extend beyond the size of the queue.

FORCE APPLICATION
The application is forced off the system (SQLSTATE 55032). This action can
only be specified for the UOWTOTALTIME threshold.

ALTER THRESHOLD

Statements 207



remap-activity-action

REMAP ACTIVITY TO service-subclass-name
The activity is mapped to service-subclass-name. The execution of the activity
is not stopped. This action is valid only for in-service-class thresholds like
CPUTIMEINSC, SQLROWSREADINSC, DATATAGINSC IN and
DATATAGINSC NOT IN thresholds (SQLSTATE 5U037). The
service-subclass-name must identify an existing service subclass under the
same superclass associated with the threshold (SQLSTATE 5U037). The
service-subclass-name cannot be the same as the associated service subclass
of the threshold (SQLSTATE 5U037).

NO EVENT MONITOR RECORD
Specifies that no threshold violation record will be written.

LOG EVENT MONITOR RECORD
Specifies that if a THRESHOLD VIOLATIONS event monitor exists and
is active, a threshold violation record is written to it.

ENABLE or DISABLE
Specifies whether or not the threshold is enabled for use by the database
manager.

ENABLE
The threshold is used by the database manager to restrict the execution of
database activities. Currently running database activities will continue to
execute without the restriction of this threshold.

DISABLE
The threshold is not used by the database manager to restrict the execution
of database activities. New database activities will not be restricted by this
threshold. Thresholds with a queue, for example
TOTALSCMEMBERCONNECTIONS or
CONCURRENTDBCOORDACTIVITIES, must be disabled before they can
be dropped.

Notes
v Thresholds can be defined on different aspects of database behavior to monitor

and control that behavior. When a threshold is defined on activities, unless
otherwise specified, it will be enforced only during the actual execution of SQL
statements, not including compilation time, and the load utility.

v The CONCURRENTWORKLOADOCCURRENCES threshold and the
CONCURRENTWORKLOADACTIVITIES threshold differ in scope.
CONCURRENTWORKLOADOCCURRENCES controls how many connections
can map to a workload definition simultaneously, and
CONCURRENTWORKLOADACTIVITIES controls how many activities each
connection that is mapped to the workload definition can submit concurrently.

v Changes are written to the system catalog, but do not take effect until after a
COMMIT statement, even for the connection that issues the statement.

v Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v The new value for a threshold affects only database activities that start executing
after the alter operation commits.

ALTER THRESHOLD

208 SQL Reference Volume 2



v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DATABASE PARTITION can be specified in place of MEMBER, except when

the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– DATABASE PARTITIONS can be specified in place of MEMBERS, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– TOTALDBPARTITIONCONNECTIONS can be specified in place of

TOTALMEMBERCONNECTIONS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– TOTALSCPARTITIONCONNECTIONS can be specified in place of
TOTALSCMEMBERCONNECTIONS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Example

Alter the threshold MAXBIGQUERIESCONCURRENCY to a maximum of three
activities rather than two.

ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY
WHEN CONCURRENTDBCOORDACTIVITIES > 3
STOP EXECUTION

Because this is a threshold with a queue, the threshold cannot be dropped unless it
is disabled, as follows:

ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY DISABLE

ALTER THRESHOLD

Statements 209



ALTER TRIGGER
The ALTER TRIGGER statement changes the description of a trigger at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following privileges:
v SECADM authority
v CREATE_SECURE_OBJECT authority

Syntax

�� ALTER TRIGGER trigger-name SECURED
NOT SECURED

��

Description

trigger-name
Identifies the trigger to be altered. The trigger-name must identify a trigger that
exists at the current server (SQLSTATE 42704).

NOT SECURED or SECURED
Specifies whether the trigger is considered secure.

SECURED
Specifies the trigger is considered secure. SECURED must be specified for a
trigger whose subject table is a table on which row level or column level
access control has been activated (SQLSTATE 428H8). Similarly, SECURED
must be specified for a trigger that is created on a view and one or more of
the underlying tables in that view definition has row level or column level
access control activated (SQLSTATE 428H8).

NOT SECURED
Specifies the trigger is considered not secure. Altering a trigger from
secured to not secured fails if the trigger is defined on a table for which
row or column level access control is activated (SQLSTATE 428H8).
Similarly, altering a trigger from secured to not secured fails if the trigger
is defined on a view and one or more of the underlying tables in that view
definition has row or column level access control activated (SQLSTATE
428H8).

Examples
v Example 1: Alter trigger TRIGGER1 to SECURED.

ALTER TRIGGER TRIGGER1 SECURED

v Example 2: Alter trigger TRIGGER1 to NOT SECURED.
ALTER TRIGGER TRIGGER1 NOT SECURED

ALTER TRIGGER

210 SQL Reference Volume 2



ALTER TRUSTED CONTEXT
The ALTER TRUSTED CONTEXT statement modifies the definition of a trusted
context at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� ALTER TRUSTED CONTEXT context-name �

� � �

�

�

�

(1)
ALTER SYSTEM AUTHID authorization-name

,
(2)

ATTRIBUTES ( address-clause )
(3)

ENCRYPTION encryption-value
NO DEFAULT ROLE
DEFAULT ROLE role-name
DISABLE
ENABLE

,
(2)

ADD ATTRIBUTES ( address-clause )
,

(2)
DROP ATTRIBUTES ( ADDRESS address-value )

user-clause

��

address-clause:

ADDRESS address-value
WITH ENCRYPTION encryption-value

user-clause:

�

�

�

,
WITHOUT AUTHENTICATION

ADD USE FOR authorization-name
ROLE role-name WITH AUTHENTICATION

PUBLIC
,

WITHOUT AUTHENTICATION
REPLACE USE FOR authorization-name

ROLE role-name WITH AUTHENTICATION
PUBLIC

,

DROP USE FOR authorization-name
PUBLIC

ALTER TRUSTED CONTEXT

Statements 211



Notes:

1 Each of the ATTRIBUTES, DEFAULT ROLE, ENABLE, and WITH USE clauses
can be specified at most once (SQLSTATE 42614).

2 Each attribute name and corresponding value must be unique (SQLSTATE
4274D).

3 ENCRYPTION cannot be specified more than once (SQLSTATE 42614);
however, WITH ENCRYPTION can be specified for each ADDRESS that is
specified.

Description

context-name
Identifies the trusted context that is to be altered. This is a one-part name. It is
an SQL identifier (either ordinary or delimited). The context-name must identify
a trusted context that exists at the current server (SQLSTATE 42704).

ALTER
Alters the options and attributes of a trusted context.

SYSTEM AUTHID authorization-name
Specifies that the context is a connection established by system
authorization ID authorization-name, which must not be associated with an
existing trusted context (SQLSTATE 428GL). It cannot be the authorization
ID of the statement (SQLSTATE 42502).

ATTRIBUTES (...)
Specifies a list of one or more connection trust attributes, upon which the
trusted context is defined, that are to be modified. Existing values for the
specified attributes are replaced with the new values. If an attribute is not
currently part of the trusted context definition, an error is returned
(SQLSTATE 4274C). Attributes that are not specified retain their previous
values.

ADDRESS address-value
Specifies the actual communication address used by the client to
communicate with the database server. The only protocol supported is
TCP/IP. Previous ADDRESS values for the specified trusted context are
removed. The ADDRESS attribute can be specified multiple times, but
each address-value pair must be unique for the set of attributes
(SQLSTATE 4274D).

When establishing a trusted connection, if multiple values are defined
for the ADDRESS attribute of a trusted context, a candidate connection
is considered to match this attribute if the address used by the
connection matches any of the defined values for the ADDRESS
attribute of the trusted context.

address-value
Specifies a string constant that contains the value to be associated
with the ADDRESS trust attribute. The address-value must be an
IPv4 address, an IPv6 address, or a secure domain name.
v An IPv4 address must not contain leading spaces and is

represented as a dotted decimal address. An example of an IPv4
address is 9.112.46.111. The value 'localhost' or its equivalent
representation '127.0.0.1' will not result in a match; the real IPv4
address of the host must be specified instead.

ALTER TRUSTED CONTEXT

212 SQL Reference Volume 2



v An IPv6 address must not contain leading spaces and is
represented as a colon hexadecimal address. An example of an
IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.
IPv4-mapped IPv6 addresses (for example, ::ffff:192.0.2.128) will
not result in a match. Similarly, 'localhost' or its IPv6 short
representation '::1' will not result in a match.

v A domain name is converted to an IP address by the domain
name server where a resulting IPv4 or IPv6 address is
determined. An example of a domain name is
corona.torolab.ibm.com. When a domain name is converted to an
IP address, the result of this conversion could be a set of one or
more IP addresses. In this case, an incoming connection is said
to match the ADDRESS attribute of a trusted context object if the
IP address from which the connection originates matches any of
the IP addresses to which the domain name was converted.
When creating a trusted context object, it is advantageous to
provide domain name values for the ADDRESS attribute instead
of static IP addresses, particularly in Dynamic Host
Configuration Protocol (DHCP) environments. With DHCP, a
device can have a different IP address each time it connects to
the network. So, if a static IP address is provided for the
ADDRESS attribute of a trusted context object, some device
might acquire a trusted connection unintentionally. Providing
domain names for the ADDRESS attribute of a trusted context
object avoids this problem in DHCP environments.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream
or network encryption for this specific address-value. This
encryption-value overrides the global ENCRYPTION attribute
setting for this specific address-value.

encryption-value
Specifies a string constant that contains the value to be
associated with the ENCRYPTION trust attribute for this
specific address-value. The encryption-value must be one of
the following values (SQLSTATE 42615):
v NONE, no specific level of encryption is required
v LOW, a minimum of light encryption is required; the

authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match
the encryption setting for this specific address

v HIGH, Secure Sockets Layer (SSL) encryption must be
used for data communication between the database
client and the database server if an incoming connection
is to match the encryption setting for this specific
address

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or
network encryption. The default is NONE.

encryption-value
Specifies a string constant that contains the value to be associated
with the ENCRYPTION trust attribute for this specific address-value.
The encryption-value must be one of the following values
(SQLSTATE 42615):

ALTER TRUSTED CONTEXT

Statements 213



v NONE, no specific level of encryption is required for an
incoming connection to match the ENCRYPTION attribute of
this trusted context object

v LOW, a minimum of light encryption is required; the
authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

v HIGH, Secure Sockets Layer (SSL) encryption must be used for
data communication between the database client and the
database server if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

For details about the ENCRYPTION trust attribute, see “CREATE
TRUSTED CONTEXT”.

NO DEFAULT ROLE or DEFAULT ROLE role-name
Specifies whether or not a default role is associated with a trusted connection
that is based on this trusted context. If a trusted connection for this context is
active, the change comes into effect on the next switch user request or a new
connection request.

NO DEFAULT ROLE
Specifies that the trusted context does not have a default role.

DEFAULT ROLE role-name
Specifies that role-name is the default role for the trusted context. The
role-name must identify a role that exists at the current server (SQLSTATE
42704). This role is used with the user in a trusted connection, based on
this trusted context, when the user does not have a user-specific role
defined as part of the definition of the trusted context.

ENABLE or DISABLE
Specifies whether the trusted context is enabled or disabled.

ENABLE
Specifies that the trusted context is enabled.

DISABLE
Specifies that the trusted context is disabled. A trusted context that is
disabled is not considered when a trusted connection is established.

ADD ATTRIBUTES
Specifies a list of one or more additional trust attributes on which the trusted
context is defined.

ADDRESS address-value
Specifies the actual communication address used by the client to
communicate with the database server. The only protocol supported is
TCP/IP. The ADDRESS attribute can be specified multiple times, but each
address-value pair must be unique for the set of attributes (SQLSTATE
4274D).

When establishing a trusted connection, if multiple values are defined for
the ADDRESS attribute of a trusted context, a candidate connection is
considered to match this attribute if the address used by the connection
matches any of the defined values for the ADDRESS attribute of the
trusted context.

address-value
Specifies a string constant that contains the value to be associated with

ALTER TRUSTED CONTEXT

214 SQL Reference Volume 2



the ADDRESS trust attribute. The address-value must be an IPv4
address, an IPv6 address, or a secure domain name.
v An IPv4 address must not contain leading spaces and is represented

as a dotted decimal address. An example of an IPv4 address is
9.112.46.111. The value 'localhost' or its equivalent representation
'127.0.0.1' will not result in a match; the real IPv4 address of the host
must be specified instead.

v An IPv6 address must not contain leading spaces and is represented
as a colon hexadecimal address. An example of an IPv6 address is
2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6
addresses (for example, ::ffff:192.0.2.128) will not result in a match.
Similarly, 'localhost' or its IPv6 short representation '::1' will not
result in a match.

v A domain name is converted to an IP address by the domain name
server, where a resulting IPv4 or IPv6 address is determined. An
example of a domain name is corona.torolab.ibm.com.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or
network encryption for this specific address-value. This
encryption-value overrides the global ENCRYPTION attribute setting
for this specific address-value.

encryption-value
Specifies a string constant that contains the value to be
associated with the ENCRYPTION trust attribute for this
specific address-value. The encryption-value must be one of the
following values (SQLSTATE 42615):
v NONE, no specific level of encryption is required
v LOW, a minimum of light encryption is required; the

authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match the
encryption setting for this specific address

v HIGH, Secure Sockets Layer (SSL) encryption must be used
for data communication between the database client and the
database server if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

DROP ATTRIBUTES
Specifies that one or more attributes are to be dropped from the definition of
the trusted context. If the attribute and attribute value pair is not currently part
of the trusted context definition, an error is returned (SQLSTATE 4274C).

ADDRESS address-value
Specifies that the identified communication address is to be removed from
the definition of the trusted context. The address-value specifies a string
constant that contains the value of an existing ADDRESS trust attribute.

ADD USE FOR
Specifies additional users who can use a trusted connection based on this
trusted context. If the definition of a trusted context allows access by PUBLIC
and a list of users, the specifications for a user override the specifications for
PUBLIC.

authorization-name
Specifies that the trusted connection can be used by the specified
authorization-name. The authorization-name must not identify an

ALTER TRUSTED CONTEXT

Statements 215



authorization ID that is already defined to use the trusted context, and
must not be specified more than once in the ADD USE FOR clause
(SQLSTATE 428GM). It must also not be the authorization ID of the
statement (SQLSTATE 42502).

ROLE role-name
Specifies that role-name is the role to be used for the user. The role-name
must identify a role that exists at the current server (SQLSTATE 42704).
The role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on this trusted context can
be used by any user. PUBLIC must not already be defined to use the
trusted context, and PUBLIC must not be specified more than once in the
ADD USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection
based on this trusted context requires authentication.

WITHOUT AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user does not require authentication.

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user requires authentication.

REPLACE USE FOR
Specifies that the way in which a particular user or PUBLIC uses the trusted
context is to change.

authorization-name
Specifies the authorization-name of the user whose use of the trusted
connection is to change. The trusted context must already be defined to
allow use by the authorization-name (SQLSTATE 428GN), and
authorization-name must not be specified more than once in the REPLACE
USE FOR clause (SQLSTATE 428GM). It must also not be the authorization
ID of the statement (SQLSTATE 42502).

ROLE role-name
Specifies that role-name is the role for the user. The role-name must
identify a role that exists at the current server (SQLSTATE 42704). The
role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that the attributes for use of the trusted connection by PUBLIC
are to change. The trusted context must already be defined to allow use by
PUBLIC (SQLSTATE 428GN), and PUBLIC must not be specified more than
once in the REPLACE USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection
based on this trusted context requires authentication.

WITHOUT AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user does not require authentication.

ALTER TRUSTED CONTEXT

216 SQL Reference Volume 2



WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user requires authentication.

DROP USE FOR
Specifies who can no longer use the trusted context. The users who are
removed from the definition of the trusted context are those users who are
currently allowed to use the trusted context. If one or more, but not all, users
can be removed from the definition of the trusted context, the specified users
are removed and a warning is returned (SQLSTATE 01682). If none of the
specified users can be removed from the definition of the trusted context, an
error is returned (SQLSTATE 428GN).

authorization-name
Removes the ability of the specified authorization ID to use this trusted
context.

PUBLIC
Removes the ability of all users (except the system authorization ID and
individual authorization IDs that have been explicitly enabled) to use this
trusted context.

Rules
v A trusted context-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). Trusted context-exclusive SQL
statements are:
– CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP

(TRUSTED CONTEXT)
v A trusted context-exclusive SQL statement cannot be issued within a global

transaction; for example, an XA transaction or a global transaction that is
initiated as part of two-phase commit for federated transactions (SQLSTATE
51041).

Notes
v When providing an IP address as part of a trusted context definition, the address

must be in the format that is in effect for the network. For example, providing
an address in an IPv6 format when the network is IPv4 will not result in a
match. In a mixed environment, it is advantageous to specify both the IPv4 and
the IPv6 representations of the address, or better yet, to specify a secure domain
name (for example, corona.torolab.ibm.com), which hides the address format
details.

v Only one uncommitted trusted context-exclusive SQL statement is allowed at a
time across all database partitions. If an uncommitted trusted context-exclusive
SQL statement is executing, subsequent trusted context-exclusive SQL statements
will wait until the current trusted context-exclusive SQL statement commits or
rolls back.

v Changes are written to the system catalog but do not take effect until they are
committed, even for the connection that issues the statement.

v Order of operations: The order of operations within an ALTER TRUSTED
CONTEXT statement is:
– DROP
– ALTER
– ADD ATTRIBUTES
– ADD USE FOR

ALTER TRUSTED CONTEXT

Statements 217



– REPLACE USE FOR
v Effect of changes on existing trusted connections: If trusted connections exist for

the trusted context being altered, the connections remain trusted with the
definition in effect before the ALTER TRUSTED CONTEXT statement until the
next switch user request or the connection terminates. If the trusted context is
disabled while trusted connections for this context are active, the connections
remain trusted until the next switch user request or the connection terminates. If
trust attributes are changed with the ALTER TRUSTED CONTEXT statement,
trusted connections that exist at the time of the ALTER TRUSTED CONTEXT
statement that use the trusted context are allowed to continue.

v Role privileges: If there is no role associated with the user or the trusted context,
only the privileges associated with the user are applicable. This is the same as
not being in a trusted context.

Examples
v Example 1: Assume that trusted context APPSERVER exists and that it is enabled.

Issue an ALTER TRUSTED CONTEXT statement to allow Bill to use the trusted
context APPSERVER, but put the trusted context in the disabled state.

ALTER TRUSTED CONTEXT APPSERVER
DISABLE
ADD USE FOR BILL

v Example 2: Assume that trusted context SECUREROLE exists. Issue an ALTER
TRUSTED CONTEXT statement to modify the existing user Joe to use the
trusted context with authentication and to add everyone else to use the trusted
context without authentication.

ALTER TRUSTED CONTEXT SECUREROLE
REPLACE USE FOR JOE WITH AUTHENTICATION
ADD USE FOR PUBLIC WITHOUT AUTHENTICATION

v Example 3: Assume that trusted context SECUREROLEENCRYPT exists with
ADDRESS attribute values '9.13.55.100' and '9.12.30.112', and ENCRYPTION
attribute value 'NONE'. Issue an ALTER statement to modify the ADDRESS
attribute values and the encryption attribute to 'LOW'.

ALTER TRUSTED CONTEXT SECUREROLEENCRYPT
ALTER ATTRIBUTES (ADDRESS ’9.12.155.200’,

ENCRYPTION ’LOW’)

ALTER TRUSTED CONTEXT

218 SQL Reference Volume 2



ALTER TYPE (structured)
The ALTER TYPE statement is used to add or drop attributes or method
specifications of a user-defined structured type. Properties of existing methods can
also be altered.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema of the type
v Owner of the type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view
v DBADM authority

To alter a method to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following authorities:
v CREATE_NOT_FENCED_ROUTINE authority on the database
v DBADM authority

To alter a method to be fenced, no additional authorities or privileges are required.

Syntax

�� ALTER TYPE type-name �

� �

�

ADD ATTRIBUTE attribute-definition
RESTRICT

DROP ATTRIBUTE attribute-name
ADD METHOD method-specification

ALTER method-identifier method-options
RESTRICT

DROP method-identifier

��

ALTER TYPE (structured)

Statements 219



method-identifier:

�

METHOD method-name
( )

,

( data-type )
SPECIFIC METHOD specific-name

method-options:

FENCED
NOT FENCED
THREADSAFE
NOT THREADSAFE

Description

type-name
Identifies the structured type to be changed. It must be an existing type
defined in the catalog (SQLSTATE 42704), and the type must be a structured
type (SQLSTATE 428DP). In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static
SQL statements, the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names.

ADD ATTRIBUTE
Adds an attribute after the last attribute of the existing structured type.

attribute-definition
Defines the attributes of the structured type.

attribute-name
Specifies a name for the attribute. The name cannot be the same as any
other attribute of this structured type (including inherited attributes) or
any subtype of this structured type (SQLSTATE 42711).

A number of names used as keywords in predicates are reserved for
system use, and may not be used as an attribute-name (SQLSTATE
42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH
and the comparison operators.

data-type 1
Specifies the data type of the attribute. It is one of the data types listed
under CREATE TABLE, other than XML (SQLSTATE 42601). The data
type must identify an existing data type (SQLSTATE 42704). If data-type
is specified without a schema name, the type is resolved by searching
the schemas on the SQL path. The description of various data types is
given in “CREATE TABLE”. If the attribute data type is a reference
type, the target type of the reference must be a structured type that
exists (SQLSTATE 42704).

To prevent type definitions that, at run time, would permit an instance
of the type to directly, or indirectly, contain another instance of the
same type or one of its subtypes, there is a restriction that a type may
not be defined such that one of its attribute types directly or indirectly
uses itself (SQLSTATE 428EP).

ALTER TYPE (structured)

220 SQL Reference Volume 2



Character and graphic string data types cannot specify string units of
CODEUNITS32.

lob-options
Specifies the options associated with LOB types (or distinct types based
on LOB types). For a detailed description of lob-options, see “CREATE
TABLE”.

DROP ATTRIBUTE
Drops an attribute of the existing structured type.

attribute-name
The name of the attribute. The attribute must exist as an attribute of the
type (SQLSTATE 42703).

RESTRICT
Enforces the rule that no attribute can be dropped if type-name is used as
the type of an existing table, view, column, attribute nested inside the type
of a column, or an index extension.

ADD METHOD method-specification
Adds a method specification to the type identified by type-name. The method
cannot be used until a separate CREATE METHOD statement is used to give
the method a body. For more information about method-specification, see
“CREATE TYPE (Structured)”.

ALTER method-identifier
Uniquely identifies an instance of a method that is to be altered. The specified
method may or may not have an existing method body. Methods declared as
LANGUAGE SQL cannot be altered (SQLSTATE 42917).

method-identifier

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one
method instance with the name method-name for the type type-name.
The identified method can have any number of parameters defined for
it. If no method by this name exists for the type, an error (SQLSTATE
42704) is raised. If there is more than one instance of the method for
the type, an error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method.
The method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE TYPE statement. The
number of data types, and the logical concatenation of the data
types, is used to identify the specific method instance.

If a data type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can
be coded to indicate that these attributes are to be ignored when
looking for a data type match.

ALTER TYPE (structured)

Statements 221



FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for
n, because 0 < n < 25 means REAL, and 24 < n < 54 means
DOUBLE. Matching occurs on the basis of whether the type is
REAL or DOUBLE.

If no method with the specified signature exists for the type in the
named or implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or
defaulted to at method creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names. The specific-name must identify a specific
method instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is raised.

method-options
Specifies the options that are to be altered for the method.

FENCED or NOT FENCED
Specifies whether the method is considered safe to run in the database
manager operating environment's process or address space (NOT
FENCED), or not (FENCED). Most methods have the option of running as
FENCED or NOT FENCED.

If a method is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the method. In
general, a method running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION:
Use of NOT FENCED for methods that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database.
DB2 databases take some precautions against many of the common types
of inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED methods are used.

A method declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a method has any parameters defined AS LOCATOR, and was defined
with the NO SQL option, the method cannot be altered to be FENCED
(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE methods (SQLSTATE
42849).

THREADSAFE or NOT THREADSAFE
Specifies whether a method is considered safe to run in the same process
as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the method is defined with LANGUAGE other than OLE:
v If the method is defined as THREADSAFE, the database manager can

invoke the method in the same process as other routines. In general, to

ALTER TYPE (structured)

222 SQL Reference Volume 2



be threadsafe, a method should not use any global or static data areas.
Most programming references include a discussion of writing threadsafe
routines. Both FENCED and NOT FENCED methods can be
THREADSAFE. If the method is defined with LANGUAGE OLE,
THREADSAFE may not be specified (SQLSTATE 42613).

v If the method is defined as NOT THREADSAFE, the database manager
will never invoke the method in the same process as another routine.
Only a fenced method can be NOT THREADSAFE (SQLSTATE 42613).

DROP method-identifier
Uniquely identifies an instance of a method that is to be dropped. The
specified method must not have an existing method body (SQLSTATE 428ER).
Use the DROP METHOD statement to drop the method body before using
ALTER TYPE DROP METHOD. Methods implicitly generated by the CREATE
TYPE statement (such as mutators and observers) cannot be dropped
(SQLSTATE 42917).

RESTRICT
Indicates that the specified method is restricted from having an existing
method body. Use the DROP METHOD statement to drop the method body
before using ALTER TYPE DROP METHOD.

Rules
v Adding or dropping an attribute is not allowed for type type-name (SQLSTATE

55043) if either:
– The type or one of its subtypes is the type of an existing table or view.
– There exists a column of a table whose type directly or indirectly uses

type-name. The terms directly uses and indirectly uses are defined in “Structured
types”.

– The type or one of its subtypes is used in an index extension.
v A type may not be altered by adding attributes so that the total number of

attributes for the type, or any of its subtypes, exceeds 4082 (SQLSTATE 54050).
v ADD ATTRIBUTE option:

– ADD ATTRIBUTE generates observer and mutator methods for the new
attribute. These methods are similar to those generated when a structured
type is created (see “CREATE TYPE (Structured)”). If these methods conflict
with or override any existing methods or functions, the ALTER TYPE
statement fails (SQLSTATE 42745).

– If the INLINE LENGTH for the type (or any of its subtypes) was explicitly
specified by the user with a value less than 292, and the attributes added
cause the specified inline length to be less than the size of the result of the
constructor function for the altered type (32 bytes plus 10 bytes per attribute),
then an error results (SQLSTATE 42611).

v DROP ATTRIBUTE option:
– An attribute that is inherited from an existing supertype cannot be dropped

(SQLSTATE 428DJ).
– DROP ATTRIBUTE drops the mutator and observer methods of the dropped

attributes, and checks dependencies on those dropped methods.
v DROP METHOD option:

– An original method that is overridden by other methods cannot be dropped
(SQLSTATE 42893).

ALTER TYPE (structured)

Statements 223



Notes
v It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC

schema (SQLSTATE 42832).
v When a type is altered by adding or dropping an attribute, all packages are

invalidated that depend on functions or methods that use this type or a subtype
of this type as a parameter or a result.

v When an attribute is added to or dropped from a structured type:
– If the INLINE LENGTH of the type was calculated by the system when the

type was created, the INLINE LENGTH values are automatically modified for
the altered type, and all of its subtypes to account for the change. The
INLINE LENGTH values are also automatically (recursively) modified for all
structured types where the INLINE LENGTH was calculated by the system
and the type includes an attribute of any type with a changed INLINE
LENGTH.

– If the INLINE LENGTH of any type affected by adding or dropping
attributes was explicitly specified by a user, then the INLINE LENGTH for
that particular type is not changed. Special care must be taken for explicitly
specified inline lengths. If it is likely that a type will have attributes added
later on, then the inline length, for any uses of that type or one of its
subtypes in a column definition, should be large enough to account for the
possible increase in length of the instantiated object.

– If new attributes are to be made visible to application programs, existing
transform functions must be modified to match the new structure of the data
type.

v In a partitioned database environment, the use of SQL in external user-defined
functions or methods is not supported (SQLSTATE 42997).

v Privileges: The EXECUTE privilege is not given for any methods explicitly
specified in the ALTER TYPE statement until a method body is defined using
the CREATE METHOD statement. The owner of the user-defined type has the
ability to drop the method specification using the ALTER TYPE statement.

Examples
v Example 1: The ALTER TYPE statement can be used to permit a cycle of

mutually referencing types and tables. Consider mutually referencing tables
named EMPLOYEE and DEPARTMENT.
The following sequence would allow the types and tables to be created.

CREATE TYPE DEPT ...
CREATE TYPE EMP ... (including attribute named DEPTREF of type REF(DEPT))
ALTER TYPE DEPT ADD ATTRIBUTE MANAGER REF(EMP)
CREATE TABLE DEPARTMENT OF DEPT ...
CREATE TABLE EMPLOYEE OF EMP (DEPTREF WITH OPTIONS SCOPE DEPARTMENT)
ALTER TABLE DEPARTMENT ALTER COLUMN MANAGER ADD SCOPE EMPLOYEE

The following sequence would allow these tables and types to be dropped.
DROP TABLE EMPLOYEE (the MANAGER column in DEPARTMENT becomes unscoped)
DROP TABLE DEPARTMENT
ALTER TYPE DEPT DROP ATTRIBUTE MANAGER
DROP TYPE EMP
DROP TYPE DEPT

v Example 2: The ALTER TYPE statement can be used to create a type with an
attribute that references a subtype.

CREATE TYPE EMP ...
CREATE TYPE MGR UNDER EMP ...
ALTER TYPE EMP ADD ATTRIBUTE MANAGER REF(MGR)

ALTER TYPE (structured)

224 SQL Reference Volume 2



v Example 3: The ALTER TYPE statement can be used to add an attribute. The
following statement adds the SPECIAL attribute to the EMP type. Because the
inline length was not specified on the original CREATE TYPE statement, the
inline length is recalculated by adding 13 (10 bytes for the new attribute +
attribute length + 2 bytes for a non-LOB attribute).

ALTER TYPE EMP ...
ADD ATTRIBUTE SPECIAL CHAR(1)

v Example 4: The ALTER TYPE statement can be used to add a method associated
with a type. The following statement adds a method called BONUS.

ALTER TYPE EMP ...
ADD METHOD BONUS (RATE DOUBLE)

RETURNS INTEGER
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC

Note that the BONUS method cannot be used until a CREATE METHOD
statement is issued to create the method body. If it is assumed that type EMP
includes an attribute called SALARY, then the following example shows a
method body definition.

CREATE METHOD BONUS(RATE DOUBLE) FOR EMP
RETURN CAST(SELF.SALARY * RATE AS INTEGER)

ALTER TYPE (structured)

Statements 225



ALTER USAGE LIST
The ALTER USAGE LIST statement alters the definition of a usage list.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following privileges:
v DBADM authority
v SQLADM authority

Syntax

�� ALTER USAGE LIST usage-list-name �

� �
(1)

LIST SIZE integer-value
WHEN FULL WRAP

DEACTIVATE
INACTIVE ON START DATABASE
ACTIVE ON START DATABASE

��

Notes:

1 The same clause cannot be specified more than once

Description

usage-list-name
Identifies the usage list to be altered. The usage-list-name must identify a usage
list that exists at the current server (SQLSTATE 42704).

LIST SIZE integer-value
Specifies that the size of this list is integer-value entries. The minimum size that
can be specified is 10 and the maximum is 5000 (SQLSTATE 428B7).

WHEN FULL
Specifies the action to perform when an active usage list becomes full.

WRAP
Specifies that the usage list wraps and replaces the oldest entries.

DEACTIVATE
Specifies that the usage list deactivates.

INACTIVE ON START DATABASE
Specifies that the usage list is not activated for monitoring whenever the
database is activated. Collection must be explicitly started using the SET
USAGE LIST statement.

ALTER USAGE LIST

226 SQL Reference Volume 2



ACTIVE ON START DATABASE
Specifies that the usage list is automatically activated for monitoring whenever
the database is activated. In a partitioned database environment or DB2
pureScale environment, the collection is automatically started whenever the
database member is activated.

Notes
v When changes take effect: If the current state of a usage list is active, then the

alterations do not take effect when the statement is processed or when the
changes are committed. The changes to the usage list take effect the next time
the state of usage list is set to active. In a partitioned database environment or
DB2 pureScale environment, the alterations take effect the next time the usage
list at a member is activated.

ALTER USAGE LIST

Statements 227



ALTER USER MAPPING
The ALTER USER MAPPING statement is used to change the authorization ID or
password that is used at a data source for a specified federated server
authorization ID.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

If the authorization ID of the statement is different from the authorization name
that is mapped to the data source, the privileges held by the authorization ID of
the statement must include DBADM authority. Otherwise, if the authorization ID
and the authorization name match, no authorities or privileges are required.

When altering a public user mapping, the privileges held by the authorization ID
of the statement must include DBADM authority.

Syntax

�� ALTER USER MAPPING FOR authorization-name
USER
PUBLIC

SERVER server-name �

� �

,
ADD

OPTIONS ( user-option-name string-constant )
SET

DROP user-option-name

��

Description

authorization-name
Specifies the authorization name under which a user or application connects to
a federated database.

USER
The value in the special register USER. When USER is specified, then the
authorization ID of the ALTER USER MAPPING statement will be mapped to
the data source authorization ID that is specified in the REMOTE_AUTHID
user option.

PUBLIC
Specifies that any valid authorization ID for the local federated database will
be mapped to the data source authorization ID that is specified in the
REMOTE_AUTHID user option.

SERVER server-name
Identifies the data source accessible under the remote authorization ID that
maps to the local authorization ID that's denoted by authorization-name or
referenced by USER.

ALTER USER MAPPING

228 SQL Reference Volume 2



OPTIONS
Indicates what user options are to be enabled, reset, or dropped for the
mapping that is being altered.

ADD
Enables a user option.

SET
Changes the setting of a user option.

user-option-name
Names a user option that is to be enabled or reset.

string-constant
Specifies the setting for user-option-name as a character string constant.

DROP user-option-name
Drops a user option.

Notes
v A user option cannot be specified more than once in the same ALTER USER

MAPPING statement (SQLSTATE 42853). When a user option is enabled, reset,
or dropped, any other user options that are in use are not affected.

v An ALTER USER MAPPING statement within a given unit of work (UOW)
cannot be processed (SQLSTATE 55007) if the UOW already includes one of the
following items:
– A SELECT statement that references a nickname for a table or view at the

data source that is to be included in the mapping
– An open cursor on a nickname for a table or view at the data source that is to

be included in the mapping
– Either an INSERT, DELETE, or UPDATE issued against a nickname for a table

or view at the data source that is to be included in the mapping.
v Public user mappings and non-public user mappings cannot coexist on the same

federated server. This means that if you have created public user mappings, you
will not be able to create non-public user mappings on the same federated
server. The reverse is also true, if you have created non-public user mappings,
you will not be able to create public user mappings on the same federated
server.

Examples
1. Jim uses a local database to connect to an Oracle data source called ORACLE1.

He accesses the local database under the authorization ID KLEEWEIN;
KLEEWEIN maps to CORONA, the authorization ID under which he accesses
ORACLE1. Jim is going to start accessing ORACLE1 under a new ID, JIMK. So
KLEEWEIN now needs to map to JIMK.

ALTER USER MAPPING FOR KLEEWEIN
SERVER ORACLE1
OPTIONS ( SET REMOTE_AUTHID ’JIMK’ )

2. Mary uses a federated database to connect to a DB2 for z/OS data source
called DORADO. She uses one authorization ID to access DB2 and another to
access DORADO, and she has created a mapping between these two IDs. She
has been using the same password with both IDs, but now decides to use a
separate password, ZNYQ, with the ID for DORADO. Accordingly, she needs
to map her federated database password to ZNYQ.

ALTER USER MAPPING FOR MARY
SERVER DORADO
OPTIONS ( ADD REMOTE_PASSWORD ’ZNYQ’ )

ALTER USER MAPPING

Statements 229



ALTER VIEW
The ALTER VIEW statement modifies an existing view by altering a reference type
column to add a scope. The ALTER VIEW statement also enables or disables a
view for use in query optimization.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTERIN privilege on the schema of the view
v Owner of the view to be altered
v CONTROL privilege on the view to be altered
v DBADM authority

To enable or disable a view for use in query optimization, the privileges held by
the authorization ID of the statement must also include at least one of the
following authorities for each of the tables or underlying tables of views that are
referenced in the FROM clause of the view fullselect:
v ALTER privilege on the table
v ALTERIN privilege on the schema of the table
v DBADM authority

Syntax

�� ALTER VIEW view-name �

� �
COLUMN

ALTER column-name ADD SCOPE typed-table-name
typed-view-name

ENABLE QUERY OPTIMIZATION
DISABLE

��

Description

view-name
Specifies the view that is to be changed. It must be a view that is described in
the catalog.

ALTER COLUMN column-name
Specifies the name of the column that is to be altered. The column-name must
identify an existing column of the view (SQLSTATE 42703). The name cannot
be qualified.

ALTER VIEW

230 SQL Reference Volume 2



ADD SCOPE
Adds a scope to an existing reference type column that does not already have
a scope defined (SQLSTATE 428DK). The column must not be inherited from a
superview (SQLSTATE 428DJ).

typed-table-name
Specifies the name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that the
values actually reference existing rows in typed-table-name.

typed-view-name
Specifies the name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that the
values actually reference existing rows in typed-view-name.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether or not the view and any associated statistics are to be used
to improve the optimization of queries. DISABLE QUERY OPTIMIZATION is
the default when a view is created.

ENABLE QUERY OPTIMIZATION
Specifies that the view includes statistics that can be used to improve the
optimization of queries that involve this view or queries that include
subqueries similar to the fullselect of this view.

DISABLE QUERY OPTIMIZATION
Specifies that the view and any associated statistics are not to be used to
improve the optimization of queries.

Rules
v A view cannot be enabled for query optimization if:

– The view directly or indirectly references a materialized query table (MQT).
Note that an MQT or statistical view can reference a statistical view

– The view directly or indirectly references a catalog table.
– It is a typed view

Notes
v To be considered for optimizing a query, a view:

– Cannot contain an aggregation or distinct operation
– Cannot contain a union, except, or intersect operation
– Cannot contain an OLAP specification

v If a view is altered to disable query optimization, cached query plans that used
the view for query optimization are invalidated. If a view is altered to enable
query optimization, cached query plans are invalidated if they reference the
same tables as the newly enabled view references, either directly or indirectly
through other views. The invalidation of these cached query plans results in
implicit revalidation that takes the view's changed query optimization property
into account.
The query optimization property for a view has no impact on static embedded
SQL statements.

ALTER VIEW

Statements 231



ALTER WORK ACTION SET
The ALTER WORK ACTION SET statement alters a work action set by adding,
altering, or dropping work actions within the work action set.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v SQLADM authority, only if every alteration clause is a COLLECT clause
v WLMADM authority
v DBADM authority

Syntax

�� ALTER WORK ACTION SET work-action-set-name �

� �
(1)

ADD work-action-definition
ALTER work-action-alteration

WORK ACTION
DROP work-action-name

(2)
ENABLE
DISABLE

��

work-action-definition:

WORK ACTION
work-action-name ON WORK CLASS work-class-name �

� action-types-clause histogram-template-clause
ENABLE

DISABLE

action-types-clause:

WITH NESTED
MAP ACTIVITY TO service-subclass-name

WITHOUT NESTED
WHEN threshold-predicate-clause threshold-exceeded-actions
PREVENT EXECUTION
COUNT ACTIVITY
COLLECT ACTIVITY DATA collect-activity-data-clause

BASE
COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

ALTER WORK ACTION SET

232 SQL Reference Volume 2



threshold-predicate-clause:

(3)
CONCURRENTDBCOORDACTIVITIES > integer

AND QUEUEDACTIVITIES > integer
AND QUEUEDACTIVITIES UNBOUNDED

SQLTEMPSPACE > integer K
M
G

SQLROWSRETURNED > integer
ESTIMATEDSQLCOST > bigint
CPUTIME > integer-value HOUR

HOURS CHECKING EVERY integer-value SECOND
MINUTE SECONDS
MINUTES

SQLROWSREAD > bigint-value
CHECKING EVERY integer-value SECOND

SECONDS
ACTIVITYTOTALTIME > integer DAY

DAYS
HOUR
HOURS
MINUTE
MINUTES
SECONDS

threshold-exceeded-actions:

COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-activity-data-clause
�

� STOP EXECUTION
CONTINUE

collect-activity-data-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

�

�

�

WITHOUT DETAILS

,
(4)

WITH DETAILS
SECTION AND VALUES

(5)
INCLUDE ACTUALS BASE

histogram-template-clause:

ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM
*

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
�

�
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

�

ALTER WORK ACTION SET

Statements 233



�
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

�

�
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

�

�
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

* *
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

work-action-alteration:

WORK ACTION
work-action-name �

� �
(6)

SET WORK CLASS work-class-name
alter-action-types-clause

* ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name *
* ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name *
* ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name *
* ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name *
* ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name *

ENABLE
DISABLE

alter-action-types-clause:

WITH NESTED
MAP ACTIVITY TO service-subclass-name

WITHOUT NESTED
WHEN threshold-predicate-clause PERFORM ACTION

alter-threshold-exceeded-actions
EXCEEDED alter-threshold-exceeded-actions

PREVENT EXECUTION
COUNT ACTIVITY
COLLECT ACTIVITY DATA alter-collect-activity-data-clause

BASE
COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

alter-threshold-exceeded-actions:

�
(7) (8)

COLLECT ACTIVITY DATA alter-collect-activity-data-clause
NONE

STOP EXECUTION
CONTINUE

alter-collect-activity-data-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

�

ALTER WORK ACTION SET

234 SQL Reference Volume 2



�

�

WITHOUT DETAILS
,

(9)
WITH DETAILS

SECTION AND VALUES
INCLUDE ACTUALS BASE

Notes:

1 The ADD, ALTER, and DROP clauses are processed in the order in which
they are specified.

2 The ENABLE or DISABLE clause can only be specified once in the same
statement.

3 Only one work action of the same threshold type can be applied to a single
work class at a time. When altering a threshold work action, the threshold
predicate cannot be changed.

4 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

5 This clause does not apply to thresholds.

6 The same clause must not be specified more than once.

7 The same clause must not be specified more than once.

8 If an existing work action does not have a threshold-exceeded action defined
for it and it is being altered to become a threshold work action, then either
STOP EXECUTION or CONTINUE must be specified, and if COLLECT
ACTIVITY DATA is not specified, then COLLECT ACTIVITY DATA NONE is
the default.

9 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

work-action-set-name
Identifies the work action set that is to be altered. This is a one-part name. It is
an SQL identifier (either ordinary or delimited). The work-action-set-name must
identify a work action set that exists at the current server (SQLSTATE 42704).

ADD
Adds a work action to the work action set.

WORK ACTION work-action-name
Names the work action. The work-action-name must not identify a work
action that already exists at the current server under this work action set
(SQLSTATE 42710). The work-action-name cannot begin with 'SYS'
(SQLSTATE 42939).

ON WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this
work action will apply. The work-class-name must exist in the
work-class-set-name at the current server (SQLSTATE 42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be
specified if the object for which this work action set is defined is a service
superclass (SQLSTATE 5U034).

ALTER WORK ACTION SET

Statements 235



WITH NESTED or WITHOUT NESTED
Specifies whether or not activities that are nested under this activity
are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED
All database activities that have a nesting level of zero that are
classified under the work class, and all database activities nested
under this activity, are mapped to the service subclass; that is,
activities with a nesting level greater than zero are run under the
same service class as activities with a nesting level of zero.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are
classified under the work class are mapped to the service subclass.
Database activities that are nested under this activity are handled
according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The
service-subclass-name must already exist in the service-superclass-name at
the current server (SQLSTATE 42704). The service-subclass-name cannot
be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE
5U018).

WHEN
Specifies the threshold that will be applied to the database activity that is
associated with the work class for which this work action is defined. A
threshold can only be specified if the database manager object for which
this work action set is defined is a database (SQLSTATE 5U034). None of
these thresholds apply to internal database activities initiated by the
database manager or to database activities generated by administrative
SQL routines.

threshold-predicate-clause
For a description of valid threshold types, see the “CREATE
THRESHOLD” statement.

threshold-exceeded-actions
For a description of valid threshold-exceeded actions, see the “CREATE
THRESHOLD” statement.

PREVENT EXECUTION
Specifies that none of the database activities associated with the work class
for which this work action is defined will be allowed to run (SQLSTATE
5U033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work class
are to be run and that each time one is run, the counter for the work class
will be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class for
which this work action is defined is to be sent to any active activities event
monitor when the activity completes.

collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected at only the
coordinator member of the activity.

ALTER WORK ACTION SET

236 SQL Reference Volume 2



ON ALL MEMBERS
Specifies that the activity data is to be collected at all members on
which the activity is processed. For predictive thresholds, activity
information is collected at all members only if you also specify the
CONTINUE action for exceeded thresholds. For reactive
thresholds, the ON ALL MEMBERS clause has no effect and
activity information is always collected only at the coordinator
member. For both predictive and reactive thresholds, any input
data values, section information, or values will be collected only at
the coordinator member.

WITHOUT DETAILS
Specifies that data about each activity associated with the work
class for which this work action is defined should be sent to any
active activities event monitor, when the activity completes
execution. Details about statement, compilation environment, and
section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to
be sent to any active activities event monitor, for those
activities that have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment and section
environment data is to be sent to any active activities event
monitor for those activities that have them. DETAILS must be
specified if SECTION is specified.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on
any partition where the activity data is collected. For
section actuals to be collected, either INCLUDE ACTUALS
clause must be specified or the section_actuals database
configuration parameter must be set.

The effective setting for the collection of section actuals is
the combination of the INCLUDE ACTUALS clause, the
section_actuals database configuration parameter, and the
<collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if
INCLUDE ACTUALS BASE is specified, yet the
section_actuals database configuration parameter value is
NONE and <collectsectionactuals> is set to NONE, then
the effective setting for the collection of section actuals is
BASE.

BASE specifies that the following actuals should be
enabled and collected during the activity's execution:
v Basic operator cardinality counts
v Statistics for each object referenced (DML statements

only)

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

ALTER WORK ACTION SET

Statements 237



NONE
Specifies that activity data should not be collected for each activity that
is associated with the work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data is to be captured for activities that are
associated with the work class for which this work action is defined and
sent to the statistics event monitor, if one is active. This information is
collected periodically on an interval that is specified by the
wlm_collect_int database configuration parameter. The default is
COLLECT AGGREGATE ACTIVITY DATA BASE. This clause cannot be
specified for a work action defined in a work action set that is applied to a
database.

BASE
Specifies that basic aggregate activity data should be captured for
activities associated with the work class for which this work action is
defined and sent to the statistics event monitor, if one is active. Basic
aggregate activity data includes:
v Estimated activity cost high watermark
v Rows returned high watermark
v Temporary table space usage high watermark. Only activities that

have an SQLTEMPSPACE threshold applied to them participate in
this high watermark.

v Activity life time histogram
v Activity queue time histogram
v Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for
activities associated with the work class for which this work action is
defined and sent to the statistics event monitor, if one is active. This
includes all basic aggregate activity data plus:
v Activity data manipulation language (DML) estimated cost

histogram
v Activity DML inter-arrival time histogram

ENABLE or DISABLE
Specifies whether or not the work action is to be considered when database
activities are submitted. The default is ENABLE.

ENABLE
Specifies that the work action is enabled and will be considered when
database activities are submitted.

DISABLE
Specifies that the work action is disabled and will not be considered
when database activities are submitted.

histogram-template-clause
Specifies histogram templates to use when collecting aggregate activity
data for activities associated with the work class to which this work action
is assigned. Aggregate activity data is only collected for the work class
when the work action type is COLLECT AGGREGATE ACTIVITY DATA.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the duration, in milliseconds, of database

ALTER WORK ACTION SET

238 SQL Reference Volume 2



activities running during a specific interval. The database activities are
those associated with the work class to which this work action is
assigned. This time includes both time queued and time executing. The
default is SYSDEFAULTHISTOGRAM. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the length of time, in milliseconds, that database
activities are queued during a specific interval. The database activities
are those associated with the work class to which this work action is
assigned. The default is SYSDEFAULTHISTOGRAM. This information
is only collected when the COLLECT AGGREGATE ACTIVITY DATA
clause is specified, with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the length of time, in milliseconds, that database
activities are executing during a specific interval. The database
activities are those associated with the work class to which this work
action is assigned. This time does not include the time spent queued.
Activity execution time is collected in this histogram at each member
where the activity executes. On the activity's coordinator member, this
is the end-to-end execution time (that is, the life time less the time
spent queued). On non-coordinator members, this is the time that these
members spend working on behalf of the activity. During the execution
of a given activity, the database manager might present work to a
non-coordinator member more than once, and each time the
non-coordinator member will collect the execution time for that
occurrence of the activity. Therefore, the counts in the execution time
histogram might not represent the actual number of unique activities
that executed on a member. The default is SYSDEFAULTHISTOGRAM.
This information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the estimated cost, in timerons, of DML activities
associated with the work class to which this work action is assigned.
The default is SYSDEFAULTHISTOGRAM. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the length of time, in milliseconds, between the
arrival of one DML activity and the arrival of the next DML activity,
for any activity associated with the work class to which this work
action is assigned. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified with the EXTENDED option.

ALTER
Alters the definition of the work action. You can change the work class to
which this work action applies, and the action that is to be applied to the
database activity that falls within the work class.

ALTER WORK ACTION SET

Statements 239



WORK ACTION work-action-name
Identifies the work action. The work-action-name must identify a work
action that exists at the current server under this work action set
(SQLSTATE 42704).

SET WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this
work action will apply. The work-class-name must exist in the
work-class-set-name at the current server (SQLSTATE 42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be
specified if the object for which this work action set is defined is a service
superclass (SQLSTATE 5U034).

WITH NESTED or WITHOUT NESTED
Specifies whether or not activities that are nested under this activity
are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED
All database activities that have a nesting level of zero that are
classified under the work class, and all database activities nested
under this activity are mapped to the service subclass.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are
classified under the work class are mapped to the service subclass.
Database activities that are nested under this activity are handled
according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The
service-subclass-name must already exist in the service-superclass-name at
the current server (SQLSTATE 42704). The service-subclass-name cannot
be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE
5U018).

WHEN
Specifies the threshold to be altered for the database activity that is
associated with the work class for which this work action is defined.

threshold-predicate-clause
For a description of valid threshold types, see the “CREATE
THRESHOLD” statement.

PERFORM ACTION
When altering the value of the threshold predicate condition, specifies
that the threshold exceeded action is not changed. The work action
must be a threshold (SQLSTATE 42613).

alter-threshold-exceeded-actions
For a description of valid alter-threshold-exceeded-actions, see
threshold-exceeded-actions in the “CREATE THRESHOLD” statement.

EXCEEDED
Specifies to keep the same threshold predicate that was specified
originally for this altered threshold. The work action must be a
threshold (SQLSTATE 42613).

ALTER WORK ACTION SET

240 SQL Reference Volume 2



PREVENT EXECUTION
Specifies that none of the database activities associated with the work class
for which this work action is defined will be allowed to run (SQLSTATE
5U033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work class
are to be run and that each time one is run, the counter for the work class
will be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class for
which this work action is defined is to be sent to any active activities event
monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the
coordinator member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where
the activity is processed. On remote members, a record for the
activity may be captured multiple times as the activity comes and
goes on those members. If the AND VALUES clause is specified,
activity input values will be collected only for the members of the
coordinator.

WITHOUT DETAILS
Specifies that data about each activity that is associated with the
work class for which this work action is defined should be sent to
any active activities event monitor when the activity completes
execution. Details about statement, compilation environment, and
section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to
be sent to any active activities event monitor, for those
activities that have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any
active activities event monitor for those activities that have
them. DETAILS must be specified if SECTION is specified.
Section actuals will be collected on any member where the
activity data is collected.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on
any partition where the activity data is collected. For
section actuals to be collected, either INCLUDE ACTUALS
clause must be specified or the section_actuals database
configuration parameter must be set.

The effective setting for the collection of section actuals is
the combination of the INCLUDE ACTUALS clause, the
section_actuals database configuration parameter, and the

ALTER WORK ACTION SET

Statements 241



<collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if
INCLUDE ACTUALS BASE is specified, yet the
section_actuals database configuration parameter value is
NONE and <collectsectionactuals> is set to NONE, then
the effective setting for the collection of section actuals is
BASE.

BASE specifies that the following actuals should be
enabled and collected during the activity's execution:
v Basic operator cardinality counts
v Statistics for each object referenced (DML statements

only)

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
is associated with the work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data is to be captured for activities that are
associated with the work class for which this work action is defined and
sent to the statistics event monitor, if one is active. This information is
collected periodically on an interval that is specified by the
wlm_collect_int database configuration parameter. The default is
COLLECT AGGREGATE ACTIVITY DATA BASE. This clause cannot be
specified for a work action defined in a work action set that is applied to a
database.

BASE
Specifies that basic aggregate activity data should be captured for
activities associated with the work class for which this work action is
defined and sent to the statistics event monitor, if one is active. Basic
aggregate activity data includes:
v Estimated activity cost high watermark
v Rows returned high watermark
v Temporary table space usage high watermark
v Activity life time histogram
v Activity queue time histogram
v Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for
activities associated with the work class for which this work action is
defined and sent to the statistics event monitor, if one is active. This
includes all basic aggregate activity data plus:
v Activity DML estimated cost histogram
v Activity DML inter-arrival time histogram

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of database activities running
during a specific interval. This time includes both time queued and time
executing. The database activities are those associated with the work class

ALTER WORK ACTION SET

242 SQL Reference Volume 2



to which this work action is assigned. The default is
SYSDEFAULTHISTOGRAM. This information is only collected when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either
the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities are
queued during a specific interval. The database activities are those
associated with the work class to which this work action is assigned. The
default is SYSDEFAULTHISTOGRAM. This information is only collected
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified,
with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities are
executing during a specific interval. The database activities are those
associated with the work class to which this work action is assigned. This
time does not include the time spent queued. Activity execution time is
collected in this histogram at each member where the activity executes. On
the activity's coordinator member, this is the end-to-end execution time
(that is, the life time less the time spent queued). On non-coordinator
members, this is the time that these members spend working on behalf of
the activity. During the execution of a given activity, the database manager
might present work to a non-coordinator member more than once, and
each time the non-coordinator member will collect the execution time for
that occurrence of the activity. Therefore, the counts in the execution time
histogram might not represent the actual number of unique activities that
executed on a member. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE ACTIVITY
DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of data manipulation language
(DML) activities associated with the work class to which this work action
is assigned. The default is SYSDEFAULTHISTOGRAM. This information is
only collected when the COLLECT AGGREGATE ACTIVITY DATA clause
is specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, between the arrival of one
DML activity and the arrival of the next DML activity, for any activity
associated with the work class to which this work action is assigned. The
default is SYSDEFAULTHISTOGRAM. This information is only collected
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified
with the EXTENDED option.

ENABLE or DISABLE
Specifies whether or not the work action is to be considered when database
activities are submitted.

ENABLE
Specifies that the work action is enabled and will be considered when
database activities are submitted.

ALTER WORK ACTION SET

Statements 243



DISABLE
Specifies that the work action is disabled and will not be considered
when database activities are submitted.

DROP work-action-name
Drops the work action from the work action set. The work-action-name must
identify a work action that exists at the current server under this work action
set (SQLSTATE 42704).

A threshold created as part of a work action set cannot be manipulated
directly. You must first disable the work action in order to disable the
threshold. You can then drop the work action once the threshold is not being
used. For more information, see “Dropping a work action” in the DB2 Workload
Management Guide and Reference.

ENABLE or DISABLE
Specifies whether or not the work action set is to be considered when database
activities are submitted.

ENABLE
Specifies that the work action set is enabled and will be considered when
database activities are submitted.

DISABLE
Specifies that the work action set is disabled and will not be considered
when database activities are submitted.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (histogram template)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work

action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work

class set)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.
v Thresholds with a queue, for example CONCURRENTDBCOORDACTIVITIES,

must be disabled before they can be dropped.
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

ALTER WORK ACTION SET

244 SQL Reference Volume 2



v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DATABASE PARTITION can be specified in place of MEMBER, except when

the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– DATABASE PARTITIONS can be specified in place of MEMBERS, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
v Example 1: Alter the DATABASE_ACTIONS work action set and add two work

actions using the work class LARGE_SELECTS. For the work action
ONE_CONCURRENT_SELECT, apply a concurrency threshold of 1 to control
the number of activities that can run at one time, and allow a maximum of 3 to
be queued. For work action BIG_ROWS_RETURNED, limit the number of rows
that can be returned by database activities that fall within that class to
1 000 000.

ALTER WORK ACTION SET DATABASE_ACTIONS
ADD WORK ACTION ONE_CONCURRENT_SELECT ON WORK CLASS LARGE_SELECTS

WHEN CONCURRENTDBCOORDACTIVITIES > 1
AND QUEUEDACTIVITIES > 3 STOP EXECUTION

ADD WORK ACTION BIG_ROWS_RETURNED ON WORK CLASS LARGE_SELECTS
WHEN SQLROWSRETURNED > 1000000 STOP EXECUTION

v Example 2: Alter the ADMIN_APPS_ACTIONS work action set to alter the
MAP_SELECTS work action to map all activities that run in super service class
ADMIN_APPS under the work class SELECT_CLASS to the service subclass
ALL_SELECTS. Also add a new work action called MAP_UPDATES that maps
all activities that would run in the work class UPDATE_CLASS to the service
subclass ALL_SELECTS.

ALTER WORK ACTION SET ADMIN_APPS_ACTIONS
ALTER WORK ACTION MAP_SELECTS MAP ACTIVITY TO ALL_SELECTS
ADD WORK ACTION MAP_UPDATES ON WORK CLASS UPDATE_CLASS

MAP ACTIVITY TO ALL_SELECTS

ALTER WORK ACTION SET

Statements 245



ALTER WORK CLASS SET
The ALTER WORK CLASS SET statement adds, alters, or drops work classes
within a work class set.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� ALTER WORK CLASS SET work-class-set-name �

� �
(1)

ADD work-class-definition
ALTER work-class-alteration

WORK CLASS
DROP work-class-name

��

work-class-definition:

WORK CLASS
work-class-name work-attributes position-clause

work-attributes:

WORK TYPE �

� READ
for-from-to-clause data-tag-clause

WRITE
for-from-to-clause data-tag-clause

CALL
schema-clause

DML
for-from-to-clause data-tag-clause

DDL
LOAD
ALL

for-from-to-clause schema-clause data-tag-clause

for-from-to-clause:

TO UNBOUNDED
FOR TIMERONCOST FROM from-value

CARDINALITY TO to-value

ALTER WORK CLASS SET

246 SQL Reference Volume 2



data-tag-clause:

DATA TAG LIST CONTAINSinteger-constant

schema-clause:

ROUTINES IN SCHEMA schema-name

position-clause:

POSITION LAST

POSITION BEFORE work-class-name
POSITION AFTER work-class-name
POSITION AT integer

work-class-alteration:

WORK CLASS
work-class-name �

� �
(2)

for-from-to-alter-clause
schema-alter-clause
data-tag-alter-clause
position-clause

for-from-to-alter-clause:

TO UNBOUNDED
FOR TIMERONCOST FROM from-value

CARDINALITY TO to-value
ALL UNITS UNBOUNDED

schema-alter-clause:

ROUTINES IN SCHEMA schema-name
ALL

data-tag-alter-clause:

DATA TAG LIST CONTAINS integer-constant
ANY

Notes:

1 The ADD, ALTER, and DROP clauses are processed in the order in which
they are specified.

2 The same clause must not be specified more than once.

ALTER WORK CLASS SET

Statements 247



Description

work-class-set-name
Identifies the work class set that is to be altered. This is a one-part name. It is
an SQL identifier (either ordinary or delimited). The work-class-set-name must
identify a work class set that exists at the current server (SQLSTATE 42704).

ADD
Adds a work class to the work class set. For details, see “CREATE WORK
CLASS SET”.

ALTER
Alters the database activity attributes and the position of a specific work class
within the work class set.

WORK CLASS work-class-name
Identifies the work class to be altered. The work-class-name must identify a
work class that exists within the work class set at the current server
(SQLSTATE 42704).

DROP
Drops the work class from the work class set.

WORK CLASS work-class-name
Identifies the work class to be dropped. The work-class-name must identify
a work class that exists within the work class set at the current server
(SQLSTATE 42704). A work class cannot be dropped if there is a work
action in any of the work action sets associated with this work class set
that is dependent on it (SQLSTATE 42893).

for-to-from-alter-clause

FOR
Indicates the type of information that is being specified in the FROM
from-value TO to-value clause. The FOR clause is only used for the following
work types:
v ALL
v DML
v READ
v WRITE

TIMERONCOST
The estimated cost of the work, in timerons. This value is used to
determine whether the work falls within the range specified in the
FROM from-value TO to-value clause.

CARDINALITY
The estimated cardinality of the work. This value is used to determine
whether the work falls within the range specified in the FROM
from-value TO to-value clause.

FROM from-value TO UNBOUNDED or FROM from-value TO to-value
Specifies the range of either timeron value (for estimated cost) or
cardinality within which the database activity must fall if it is to be
part of this work class. The range is inclusive of from-value and to-value.
This range is only used for the following work types:
v ALL
v DML
v READ

ALTER WORK CLASS SET

248 SQL Reference Volume 2



v WRITE

FROM from-value TO UNBOUNDED
The from-value must be zero or a positive DOUBLE value
(SQLSTATE 5U019). The range has no upper bound.

FROM from-value TO to-value
The from-value must be zero or a positive DOUBLE value and the
to-value must be a positive DOUBLE value. The from-value must be
smaller than or equal to the to-value (SQLSTATE 5U019).

ALL UNITS UNBOUNDED
Indicates that no range is to be specified in the FROM from-value TO
to-value clause, and that all work that falls within the specified work
type is to be included.

schema-alter-clause

ROUTINES
This clause is only used if the work type is CALL or ALL and the
database activity is a CALL statement.

IN SCHEMA schema-name
Specifies the schema name of the procedure that the CALL
statement will be calling.

ALL
Specifies that all schemas are included.

data-tag-alter-clause

DATA TAG LIST CONTAINS integer-constant
Specifies the value of the tag given to any data which the database
activity might touch if it is to be part of this work class. If the clause is
not specified for the work class, all work that falls within the specified
work type, regardless of what data it might touch, will be included
(that is, the default is to ignore the data tag). This clause is used only if
the work type is READ, WRITE, DML, or ALL and the database
activity is a DML statement. Valid values for integer-constant are
integers from 1 to 9.

DATA TAG LIST CONTAINS ANY
Indicates that any data tag setting, including no data tag, is valid for
the work class. All work that falls within the specified work type is to
be included, regardless of the data tag.

position-clause

POSITION
Specifies where this work class is to be placed within the work class
set, which determines the order in which work classes are evaluated.
When performing work class assignment at run time, the database
manager first determines the work class set that is associated with the
object, either the database or a service superclass. The first matching
work class within that work class set is then selected. If this keyword
is not specified, the work class is placed in the last position.

LAST
Specifies that the work class is to be placed last in the ordered list
of work classes within the work class set.

BEFORE work-class-name
Specifies that the work class is to be placed before work class

ALTER WORK CLASS SET

Statements 249



work-class-name in the list. The work-class-name must identify a work
class in the work class set that exists at the current server
(SQLSTATE 42704).

AFTER work-class-name
Specifies that the work class is to be placed after work class
work-class-name in the list. The work-class-name must identify a work
class in the work class set that exists at the current server
(SQLSTATE 42704).

AT position
Specifies the absolute position at which the work class is to be
placed within the work class set in the ordered list of work classes.
This value can be any positive integer (not zero) (SQLSTATE
42615). If position is greater than the number of existing work
classes plus one, the work class is placed at the last position within
the work class set.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

Examples
v Example 1: Alter work class set LARGE_QUERIES and set the two existing work

classes to have each range starting at 100 000, keeping the range unbounded.
Add a third work class for all SELECT statements that have an estimated
timeron cost greater than or equal to 10 000, and position this work class to take
priority over the existing two work classes.

ALTER WORK CLASS SET LARGE_QUERIES
ALTER WORK CLASS LARGE_ESTIMATED_COST
FOR TIMERONCOST FROM 100000 TO UNBOUNDED
ALTER WORK CLASS LARGE_CARDINALITY

ALTER WORK CLASS SET

250 SQL Reference Volume 2



FOR CARDINALITY FROM 100000 TO UNBOUNDED
ADD WORK CLASS LARGE_SELECTS WORK TYPE READ
FOR TIMERONCOST FROM 10000 TO UNBOUNDED POSITION AT 1

v Example 2: Alter a work class set named DML_STATEMENTS to add a work
class that represents all DML SELECT statements that contain a DELETE,
INSERT, MERGE, or UPDATE statement.

ALTER WORK CLASS SET DML_STATEMENTS
ADD WORK CLASS UPDATE_CLASS WORK TYPE WRITE

ALTER WORK CLASS SET

Statements 251



ALTER WORKLOAD
The ALTER WORKLOAD statement alters a workload.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v SQLADM authority, only if every alteration clause is a COLLECT clause
v WLMADM authority
v DBADM authority

To specify any clause other than a COLLECT clause, the authorization ID of the
statement must include DBADM or WLMADM authority.

Syntax

�� ALTER WORKLOAD workload-name �

ALTER WORKLOAD

252 SQL Reference Volume 2



� �

�

(1)
ADD connection-attributes
DROP connection-attributes
ALLOW DB ACCESS
DISALLOW DB ACCESS
ENABLE
DISABLE
MAXIMUM DEGREE DEFAULT

MAXIMUM DEGREE degree
SERVICE CLASS service-class-name

UNDER service-superclass-name
POSITION LAST

BEFORE workload-name
AFTER workload-name
AT position

COLLECT ACTIVITY DATA alter-collect-activity-data-clause
NONE

BASE
COLLECT ACTIVITY METRICS

NONE
EXTENDED

BASE
COLLECT AGGREGATE ACTIVITY DATA

EXTENDED
NONE

BASE
COLLECT AGGREGATE UNIT OF WORK DATA

NONE
COLLECT LOCK TIMEOUT DATA alter-collect-history-clause

NONE
COLLECT DEADLOCK DATA alter-collect-history-clause
COLLECT LOCK WAIT DATA alter-collect-lock-wait-data-clause

NONE
BASE

COLLECT UNIT OF WORK DATA
BASE

,

INCLUDE PACKAGE LIST
EXECUTABLE LIST

NONE
ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
UOW LIFETIME HISTOGRAM TEMPLATE template-name

��

connection-attributes:

ALTER WORKLOAD

Statements 253



�

�

�

�

�

�

�

�

�

�

(2)
ADDRESS ( 'address-value' )

APPLNAME ( 'application-name' )

SYSTEM_USER ( 'authorization-name' )

SESSION_USER ( 'authorization-name' )

SESSION_USER GROUP ( 'authorization-name' )

SESSION_USER ROLE ( 'authorization-name' )

CURRENT CLIENT_USERID ( 'user-id' )

CURRENT CLIENT_APPLNAME ( 'client-application-name' )

CURRENT CLIENT_WRKSTNNAME ( 'workstation-name' )

CURRENT CLIENT_ACCTNG ( 'accounting-string' )

alter-collect-activity-data-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

�

�

�

WITHOUT DETAILS
,

(3)
WITH DETAILS

SECTION AND VALUES
INCLUDE ACTUALS BASE

alter-collect-history-clause:

WITHOUT HISTORY

WITH HISTORY
AND VALUES

alter-collect-lock-wait-data-clause:

* FOR LOCKS WAITING MORE THAN wait-time SECONDS
MICROSECONDS

1 SECOND

* �

ALTER WORKLOAD

254 SQL Reference Volume 2



� alter-collect-history-clause *

Notes:

1 The same clause must not be specified more than once.

2 Each connection attribute clause can only be specified once.

3 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

workload-name
Identifies the workload that is to be altered. This is a one-part name. It is an
SQL identifier (either ordinary or delimited). The workload-name must identify a
workload that exists at the current server (SQLSTATE 42704).

ADD connection-attributes
Adds one or more connection attribute values to the definition of the
workload. Each specified connection attribute value must not already be
defined for the workload (SQLSTATE 5U039). The ADD option cannot be
specified if workload-name is 'SYSDEFAULTUSERWORKLOAD' or
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

DROP connection-attributes
Drops one or more connection attribute values from the definition of the
workload. Each specified connection attribute value must be defined for the
workload (SQLSTATE 5U040). The DROP option cannot be specified if
workload-name is 'SYSDEFAULTUSERWORKLOAD' or
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832). There must be at least
one defined connection attribute value. The last connection attribute value
cannot be dropped (SQLSTATE 5U022).

connection-attributes
Specifies connection attribute values for the workload. All connection attributes
are case sensitive, except for ADDRESS.

ADDRESS ('address-value', ...)
Specifies one or more IPv4 addresses, IPv6 addresses, or secure domain
names for the ADDRESS connection attribute. An address value cannot
appear more than once in the list (SQLSTATE 42713). The only supported
protocol is TCP/IP. Each address value must be an IPv4 address, an IPv6
address, or a secure domain name.

An IPv4 address must not contain leading spaces and is represented as a
dotted decimal address. An example of an IPv4 address is 9.112.46.111.
The value localhost or its equivalent representation 127.0.0.1 will not
result in a match; the real IPv4 address of the host must be specified
instead. An IPv6 address must not contain leading spaces and is
represented as a colon hexadecimal address. An example of an IPv6
address is 2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6
addresses (::ffff:192.0.2.128, for example) will not result in a match.
Similarly, localhost or its IPv6 short representation ::1 will not result in a
match. A domain name is converted to an IP address by the domain name
server where a resulting IPv4 or IPv6 address is determined. An example
of a domain name is corona.torolab.ibm.com. When a domain name is
converted to an IP address, the result of this conversion could be a set of
one or more IP addresses. In this case, an incoming connection is said to

ALTER WORKLOAD

Statements 255



match the ADDRESS attribute of a workload object if the IP address from
which the connection originates matches any of the IP addresses to which
the domain name was converted.

When creating a workload object, you should specify domain name values
for the ADDRESS attribute instead of static IP addresses, particularly in
Dynamic Host Configuration Protocol (DHCP) environments where a
device can have a different IP address each time it connects to the network.

APPLNAME ('application-name', ...)
Specifies one or more applications for the APPLNAME connection
attribute. An application name cannot appear more than once in the list
(SQLSTATE 42713). If application-name does not contain a single asterisk
character (*), is equivalent to the value shown in the “Application name”
field in system monitor output and in output from the LIST
APPLICATIONS command. If application-name does contain a single
asterisk character (*), the value is used as an expression to represent a set
of application names, where the asterisk (*) represents a string of zero or
more characters. If the expression needs to include an asterisk character in
the application name, use a sequence of two asterisk characters (**).

SYSTEM_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SYSTEM USER connection
attribute. An authorization ID cannot appear more than once in the list
(SQLSTATE 42713).

SESSION_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION USER connection
attribute. An authorization ID cannot appear more than once in the list
(SQLSTATE 42713).

SESSION_USER GROUP ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER GROUP
connection attribute. An authorization ID cannot appear more than once in
the list (SQLSTATE 42713).

SESSION_USER ROLE ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER ROLE
connection attribute. The roles of a session authorization ID in this context
refer to all the roles that are available to the session authorization ID,
regardless of how the roles were obtained. An authorization ID cannot
appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_USERID ('user-id', ...)
Specifies one or more client user IDs for the CURRENT CLIENT_USERID
connection attribute. A client user ID cannot appear more than once in the
list (SQLSTATE 42713). If user-id contains a single asterisk character (*), the
value is used as an expression to represent a set of user IDs, where the
asterisk (*) represents a string of zero or more characters. If the expression
needs to include an asterisk character in the user ID, use a sequence of two
asterisk characters (**).

CURRENT CLIENT_APPLNAME ('client-application-name', ...)
Specifies one or more applications for the CURRENT
CLIENT_APPLNAME connection attribute. An application name cannot
appear more than once in the list (SQLSTATE 42713). If
client-application-name does not contain a single asterisk character (*), is
equivalent to the value shown in the “TP Monitor client application name”
field in system monitor output. If client-application-name does contain a
single asterisk character (*), the value is used as an expression to represent

ALTER WORKLOAD

256 SQL Reference Volume 2



a set of application names, where the asterisk (*) represents a string of zero
or more characters. If the expression needs to include an asterisk character
in the application name, use a sequence of two asterisk characters (**).

CURRENT CLIENT_WRKSTNNAME ('workstation-name', ...)
Specifies one or more client workstation names for the CURRENT
CLIENT_WRKSTNNAME connection attribute. A client workstation name
cannot appear more than once in the list (SQLSTATE 42713). If
workstation-name contains a single asterisk character (*), the value is used as
an expression to represent a set of workstation names, where the asterisk
(*) represents a string of zero or more characters. If the expression needs to
include an asterisk character in the workstation name, use a sequence of
two asterisk characters (**).

CURRENT CLIENT_ACCTNG ('accounting-string', ...)
Specifies one or more client accounting strings for the CURRENT
CLIENT_ACCTNG connection attribute. A client accounting string cannot
appear more than once in the list (SQLSTATE 42713). If accounting-string
contains a single asterisk character (*), the value is used as an expression to
represent a set of accounting strings, where the asterisk (*) represents a
string of zero or more characters. If the expression needs to include an
asterisk character in the accounting string, use a sequence of two asterisk
characters (**).

ALLOW DB ACCESS or DISALLOW DB ACCESS
Specifies whether or not a workload occurrence associated with this workload
is allowed access to the database.

ALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are
allowed access to the database.

DISALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are not
allowed access to the database. The next unit of work associated with this
workload will be rejected (SQLSTATE 5U020). Workload occurrences that
are already running are allowed to complete. This option cannot be
specified if workload-name is 'SYSDEFAULTADMWORKLOAD' (SQLSTATE
42832).

ENABLE or DISABLE
Specifies whether or not this workload will be considered when a workload is
chosen.

ENABLE
Specifies that the workload is enabled and will be considered when a
workload is chosen.

DISABLE
Specifies that the workload is disabled and will not be considered when a
workload is chosen. This option cannot be specified if workload-name is
SYSDEFAULTUSERWORKLOAD or SYSDEFAULTADMWORKLOAD
(SQLSTATE 42832).

MAXIMUM DEGREE
Specifies the maximum runtime degree of parallelism for this workload. The
MAXIMUM DEGREE attribute can not be altered if workload-name is
SYSDEFAULTADMWORKLOAD.

DEFAULT
If DB2_WORKLOAD=ANALYTICS, this setting enables intrapartition parallelism

ALTER WORKLOAD

Statements 257



for this workload. Otherwise, this setting specifies that this workload
inherits the intrapartition parallelism setting from the database manager
configuration parameter intra_parallel. When intra_parallel is set to NO,
this workload runs with intrapartition parallelism disabled. When
intra_parallel is set to YES, this workload runs with intrapartition
parallelism enabled. This workload does not specify a maximum runtime
degree for assigned applications. Therefore, the actual runtime degree is
determined as the lower of the value of max_querydegree configuration
parameter, the value set by SET RUNTIME DEGREE command, and the
SQL statement compilation degree.

degree
Specifies the maximum degree of parallelism for this workload. Valid
values are 1 to 32,767. With value 1, the associated requests run with
intrapartition parallelism disabled. With value 2 to 32,767, the associated
requests run with intrapartition parallelism enabled. The actual runtime
degree is determined as the lower of this degree, the value of
max_querydegree configuration parameter, the value set by SET RUNTIME
DEGREE command and the SQL statement compilation degree.

SERVICE CLASS service-class-name
Specifies that requests associated with this workload are to be executed in the
service class service-class-name. The service-class-name must identify a service
class that exists at the current server (SQLSTATE 42704). The service-class-name
cannot be 'SYSDEFAULTSUBCLASS', 'SYSDEFAULTSYSTEMCLASS', or
'SYSDEFAULTMAINTENANCECLASS' (SQLSTATE 5U032). This option cannot
be specified if workload-name is 'SYSDEFAULTADMWORKLOAD' (SQLSTATE
42832).

UNDER service-superclass-name
This clause is used when specifying a service subclass. The
service-superclass-name identifies the service superclass of service-class-name.
The service-superclass-name must identify a service superclass that exists at
the current server (SQLSTATE 42704). The service-superclass-name cannot be
'SYSDEFAULTSYSTEMCLASS' or 'SYSDEFAULTMAINTENANCECLASS'
(SQLSTATE 5U032).

POSITION
Specifies where this workload is to be placed within the ordered list of
workloads. At run time, this list is searched in order for the first workload that
matches the required connection attributes. This option cannot be specified if
workload-name is 'SYSDEFAULTUSERWORKLOAD' or
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

LAST
Specifies that the workload is to be last in the list, before the default
workloads SYSDEFAULTUSERWORKLOAD and
SYSDEFAULTADMWORKLOAD.

BEFORE relative-workload-name
Specifies that the workload is to be placed before workload
relative-workload-name in the list. The relative-workload-name must identify a
workload that exists at the current server (SQLSTATE 42704). The BEFORE
option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD'
(SQLSTATE 42832).

AFTER relative-workload-name
Specifies that the workload is to be placed after workload

ALTER WORKLOAD

258 SQL Reference Volume 2



relative-workload-name in the list. The relative-workload-name must identify a
workload that exists at the current server (SQLSTATE 42704). The AFTER
option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD'
(SQLSTATE 42832).

AT position
Specifies the absolute position at which the workload is to be placed in the
list. This value can be any positive integer (not zero) (SQLSTATE 42615). If
position is greater than the number of existing workloads plus one, the
workload is placed at the last position, just before
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with this workload is to be
sent to any active activities event monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator
member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the
activity is processed. On remote members, a record for the activity may
be captured multiple times as the activity comes and goes on those
members. If the AND VALUES clause is specified, activity input values
will be collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that is associated with this
workload is to be sent to any active activities event monitor, when the
activity completes execution. Details about statement, compilation
environment, and section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to be
sent to any active activities event monitor, for those activities that
have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any active
activities event monitor for those activities that have them.
DETAILS must be specified if SECTION is specified. Section
actuals will be collected on any member where the activity data is
collected.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on any
partition where the activity data is collected. For section actuals
to be collected, either INCLUDE ACTUALS clause must be
specified or the section_actuals database configuration
parameter must be set.

The effective setting for the collection of section actuals is the
combination of the INCLUDE ACTUALS clause, the
section_actuals database configuration parameter, and the

ALTER WORKLOAD

Statements 259



<collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if INCLUDE
ACTUALS BASE is specified, yet the section_actuals database
configuration parameter value is NONE and
<collectsectionactuals> is set to NONE, then the effective
setting for the collection of section actuals is BASE.

BASE specifies that the following actuals should be enabled
and collected during the activity's execution:
v Basic operator cardinality counts
v Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

NONE
Specifies that activity data is not collected for each activity that is
associated with this workload.

COLLECT ACTIVITY METRICS
Specifies that monitor metrics should be collected for an activity submitted by
an occurrence of the workload. The default is COLLECT ACTIVITY METRICS
NONE.

The effective activity metrics collection setting is the combination of the
attribute specified by the COLLECT ACTIVITY METRICS clause on the
workload submitting the activity, and the MON_ACT_METRICS database
configuration parameter. If either the workload attribute or the configuration
parameter has a value other than NONE, metrics will be collected for the
activity.

NONE
Specifies that no metrics will be collected for any activity submitted by an
occurrence of the workload.

BASE
Specifies that basic metrics will be collected for any activity submitted by
an occurrence of the workload.

EXTENDED
Specifies that basic metrics will be collected for any activity submitted by
an occurrence of the workload. In addition, specifies that the values for the
following monitor elements should be determined with additional
granularity:
v total_section_time

v total_section_proc_time

v total_routine_user_code_time

v total_routine_user_code_proc_time

v total_routine_time

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data about the activities associated with this
workload is to be sent to the statistics event monitor, if one is active. This
information is collected periodically on an interval that is specified by the
wlm_collect_int database configuration parameter. The default when
COLLECT AGGREGATE ACTIVITY DATA is specified is COLLECT
AGGREGATE ACTIVITY DATA BASE.

ALTER WORKLOAD

260 SQL Reference Volume 2



BASE
Specifies that basic aggregate activity data about the activities associated
with this workload is to be sent to the statistics event monitor, if one is
active. Basic aggregate activity data includes:
v Estimated activity cost high watermark
v Rows returned high watermark
v Temporary table space usage high watermark. Only activities that have

an SQLTEMPSPACE threshold applied to them participate in this high
watermark.

v Activity life time histogram
v Activity queue time histogram
v Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data about the activities associated with
this workload is to be sent to the statistics event monitor, if one is active.
This includes all basic aggregate activity data plus:
v Activity data manipulation language (DML) estimated cost histogram
v Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data is to be collected for this
workload.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data about the units of work associated
with this workload is to be sent to the statistics event monitor, if one is active.
This information is collected periodically on an interval that is specified by the
wlm_collect_int database configuration parameter. The default, when
COLLECT AGGREGATE UNIT OF WORK DATA is specified, is COLLECT
AGGREGATE UNIT OF WORK DATA BASE.

BASE
Specifies that basic aggregate unit of work data about the units of work
associated with this workload is to be sent to the statistics event monitor, if
one is active. Basic aggregate unit of work data includes:
v Unit of work lifetime histogram

NONE
Specifies that no aggregate unit of work data is to be collected for this
workload.

COLLECT LOCK TIMEOUT DATA
Specifies that data about lock timeout events that occur within this workload is
sent to any active locking event monitor when the lock event occurs. The lock
timeout data is collected on all members. This setting works in conjunction
with the MON_LOCKTIMEOUT database configuration setting. The setting that
produces the most detailed output is honored.

alter-collect-history-clause

WITHOUT HISTORY
Specifies that data about lock events that occur within this workload is
sent to any active locking event monitor when the lock event occurs.
Past activity history and input values are not sent to the event monitor.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for

ALTER WORKLOAD

Statements 261



all of this type of lock events. The activity history buffer will wrap
after the maximum size limit is used.

The default limit on the number of past activities to be kept by any
one application is 250. If the number of past activities is greater than
the limit, only the newest activities are reported. This default value can
be overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit
to increase or reduce the amount of system monitor heap used for past
activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking
event monitor for those activities that have them. These data
values will not include LOB data, LONG VARCHAR data, LONG
VARGRAPHIC data, structured type data, or XML data. For SQL
statements compiled using the REOPT ALWAYS bind option, there
will be no REOPT compilation or statement execution data values
provided in the event information.

NONE
Specifies that lock timeout data for the workload is not collected at any
member.

COLLECT DEADLOCK DATA
Specifies that data about deadlock events that occur within this workload is
sent to any active locking event monitor when the lock event occurs. The
deadlock data is collected on all members. This setting is only honored if the
MON_DEADLOCK database configuration parameter is not set to NONE.

alter-collect-history-clause

WITHOUT HISTORY
Specifies that data about lock events that occur within this workload is
sent to any active locking event monitor when the lock event occurs.
Past activity history and input values are not sent to the event monitor.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for
all of these type of lock events. The activity history buffer will wrap
after the maximum size limit is used.

The default limit on the number of past activities to be kept by any
one application is 250. If the number of past activities is greater than
the limit, only the newest activities are reported. This default value can
be overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit
to increase or reduce the amount of system monitor heap used for past
activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking
event monitor for those activities that have them. These data
values will not include LOB data, LONG VARCHAR data, LONG
VARGRAPHIC data, structured type data, or XML data. For SQL
statements compiled using the REOPT ALWAYS bind option, there
will be no REOPT compilation or statement execution data values
provided in the event information.

COLLECT LOCK WAIT DATA
Specifies that data about lock wait events that occur within this workload is

ALTER WORKLOAD

262 SQL Reference Volume 2



sent to any active locking even monitor when the lock has not been acquired
within wait-time. This setting works in conjunction with the mon_lockwait and
mon_lw_thresh database configuration parameters. The setting that produces
the most detailed output is honored.

alter-collect-lock-wait-data-clause

FOR LOCKS WAITING MORE THAN wait-time SECONDS | MICROSECONDS) | 1
SECOND

Specifies that data about lock wait events that occur within this
workload is sent to the applicable event monitor when the lock has not
been acquired within wait-time.

This value can be any non-negative integer. Use a valid duration
keyword to specify an appropriate unit of time for wait-time. The
minimum valid value for the wait-time parameter is 1000 microseconds.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for
all of this type of lock events. The activity history buffer will wrap
after the maximum size limit is used.

The default limit on the number of past activities to be kept by any
one application is 250. If the number of past activities is greater than
the limit, only the newest activities are reported. This default value can
be overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit
to increase or reduce the amount of system monitor heap used for past
activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking
event monitor for those activities that have them. These data
values will not include LOB data, LONG VARCHAR data, LONG
VARGRAPHIC data, structured type data, or XML data. For SQL
statements compiled using the REOPT ALWAYS bind option, there
will be no REOPT compilation or statement execution data values
provided in the event information.

NONE
Specifies that the lock wait event for the workload is not collected at any
member.

COLLECT UNIT OF WORK DATA
Specifies that data about each unit of work, also referred to as a transaction,
associated with this workload is to be sent to the unit of work event monitors,
if any have been created, when the unit of work ends. The default is
COLLECT UNIT OF WORK BASE. If the mon_uow_data database configuration
parameter is set to BASE, it takes precedence over the COLLECT UNIT OF
WORK DATA parameter. A value of NONE for the mon_uow_data indicates that
the COLLECT UNIT OF WORK DATA parameters of individual workloads is
used.

BASE
Specifies that the base level of data for transactions, associated with this
workload, is sent to the unit of work event monitors.

Some of the information reported in a unit of work event are system level
request metrics. The collection of these metrics is controlled independently
from the collection of the unit of work data. The request metrics are
controlled with the COLLECT REQUEST METRICS clause on superclass, or

ALTER WORKLOAD

Statements 263



using the mon_req_metrics database configuration parameter. The service
super class which the workload is associated with, or the service super
class of the service subclass which the workload is associated with, must
have the collection of request metrics enabled in order for the request
metrics to be present in the unit of work event. If the request metrics
collection is not enabled, the value of the request metrics will be zero.

INCLUDE PACKAGE LIST
Specifies that base level of data and the package list for transactions
associated with this workload are sent to the unit of work event monitor.

The size of the collected package list is determined by the value of the
mon_pkglist_sz database configuration parameter. If this value is 0, then
the package list is not collected even if the PACKAGE LIST option is
specified.

In a partitioned database environment, the package list is only available on
the coordinator member. The BASE level will be collected on remote
members.

Some of the information reported in a unit of work event are system level
request metrics. The collection of these metrics is controlled independently
from the collection of the unit of work data. The request metrics are
controlled with the COLLECT REQUEST METRICS clause on superclass, or
using the mon_req_metrics database configuration parameter. The service
super class which the workload is associated with, or the service super
class of the service subclass which the workload is associated with, must
have the collection of request metrics enabled in order for the request
metrics to be present in the unit of work event. If the request metrics
collection is not enabled, the value of the request metrics will be zero.

INCLUDE EXECUTABLE LIST
Specifies that executable ID list will be collected for a unit of work together
with base level of data and sent to the unit of work event monitor.

NONE
Specifies that no unit of work data for transactions associated with this
workload is sent to the unit of work event monitor.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of database activities running in the
workload during a specific interval. This time includes both time queued and
time executing. This information is collected only when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities running
in the workload are queued during a specific interval. This information is
collected only when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities running
in the workload are executing during a specific interval. This time does not
include the time spent queued. Activity execution time is collected in this
histogram at the coordinator member only. The time does not include idle

ALTER WORKLOAD

264 SQL Reference Volume 2



time. Idle time is the time between the execution of requests belonging to the
same activity when no work is being done. An example of idle time is the time
between the end of opening a cursor and the start of fetching from that cursor.
This information is collected only when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED
option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of DML activities running in the
workload. This information is collected only when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED
option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, between the arrival of one DML
activity into this workload and the arrival of the next DML activity into this
workload. This information is collected only when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED
option.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of units of work running in the
workload during a specific interval. The default is SYSDEFAULTHISTOGRAM.
This information is collected only when the COLLECT AGGREGATE UNIT OF
WORK DATA clause is specified with the BASE option.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement. For newly
submitted workload occurrences, changes take effect after the ALTER
WORKLOAD statement commits. For active workload occurrences, changes take
effect at the beginning of the next unit of work.

v Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is

ALTER WORKLOAD

Statements 265



executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v If the DISABLE option is specified, the workload is disabled after the statement
commits. The workload is not considered the next time that a workload is
chosen. If there is an active workload occurrence associated with this workload
when the ALTER WORKLOAD statement commits, it continues to run until the
end of the current unit of work. At the beginning of the next unit of work, a
workload re-evaluation takes place, and the connection becomes associated with
a different workload.

v Privileges: The USAGE privilege is not granted to any user, group, or role when
a workload is created. To enable use of a workload, grant USAGE privilege on
that workload to a user, a group, or a role using the GRANT USAGE ON
WORKLOAD statement.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DATABASE PARTITION can be specified in place of MEMBER, except when

the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– DATABASE PARTITIONS can be specified in place of MEMBERS, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– COLLECT UNIT OF WORK DATA PACKAGE LIST can be specified in place

of COLLECT UNIT OF WORK DATA BASE INCLUDE PACKAGE LIST.

Examples
v Example 1: The workload PAYROLL is currently positioned such that the

workload INVENTORY is considered first when the database manager chooses a
workload at run time. Alter the evaluation order so that PAYROLL will be
considered first.

ALTER WORKLOAD PAYROLL
POSITION BEFORE INVENTORY

v Example 2: Alter the evaluation order so that the workload BENCHMARK is
evaluated by the database manager before any other workload in the catalog.

ALTER WORKLOAD BENCHMARK
POSITION AT 1

v Example 3: The workload REPORTS was created with APPLNAME set to appl1,
appl2, and appl3, and SYSTEM_USER set to BOB and MARY. Alter the workload
to add a new application, appl4 to the application name list, and remove appl2,
because it should no longer be mapped to REPORTS.

ALTER WORKLOAD REPORTS
ADD APPLNAME (’appl4’)
DROP APPLNAME (’appl2’)

v Example 4: Assuming a lock event monitor called LOCK exists and is active,
create lock event records with statement history for lock timeout events that
occur within the workload APP.

ALTER WORKLOAD APP
COLLECT LOCK TIMEOUT DATA WITH HISTORY

v Example 5: Assuming a lock event monitor called LOCK exists and is active,
create lock event records for only deadlock and lock timeout events that occur
within the workload PAYROLL on all partitions.

ALTER WORKLOAD PAYROLL
COLLECT DEADLOCK DATA
COLLECT LOCK TIMEOUT DATA WITHOUT HISTORY

ALTER WORKLOAD

266 SQL Reference Volume 2



v Example 6: Assuming a lock event monitor called LOCK exists and is active,
create lock event records with statement history and values for deadlock events
that occur within the workload INVOICE.

ALTER WORKLOAD INVOICE
COLLECT DEADLOCK DATA WITH HISTORY AND VALUES

v Example 7: Assuming a lock event monitor called LOCK exists and is active,
create lock event records with statement history and values for locks acquired
after waiting for more than 150 milliseconds that occur within the workload
INVOICE.

ALTER WORKLOAD INVOICE
COLLECT LOCK WAIT DATA FOR LOCKS WAITING MORE THAN 150000
MICROSECONDS WITH HISTORY AND VALUES

v Example 8: Alter the workload REPORTS to collect unit of work data and send it
to the unit of work event monitor:

ALTER WORKLOAD REPORTS
COLLECT UNIT OF WORK DATA BASE

ALTER WORKLOAD

Statements 267



ALTER WRAPPER
The ALTER WRAPPER statement is used to update the properties of a wrapper.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
authority.

Syntax

�� ALTER WRAPPER wrapper-name OPTIONS �

� �

,
ADD

( wrapper-option-name string-constant )
SET

DROP wrapper-option-name

��

Description

wrapper-name
Specifies the name of the wrapper.

OPTIONS
Indicates what wrapper options are to be enabled, reset, or dropped.

ADD
Enables a server option.

SET
Changes the setting of a wrapper option.

wrapper-option-name
Names a wrapper option that is to be enabled or reset. Currently the only
supported wrapper option name is DB2_FENCED.

string-constant
Specifies the setting for wrapper-option-name as a character string constant.
Valid values are 'Y' or 'N'. The default value for relational wrappers is 'N',
and the default value for non-relational wrappers is 'Y'.

DROP wrapper-option-name
Drops a wrapper option.

Notes
v Execution of the ALTER WRAPPER statement does not include checking the

validity of wrapper-specific options.

ALTER WRAPPER

268 SQL Reference Volume 2



v An ALTER WRAPPER statement within a given unit of work (UOW) cannot be
processed (SQLSTATE 55007) if the UOW already includes one of the following
items:
– A SELECT statement that references a nickname that belongs to the wrapper.
– An open cursor on a nickname that belongs to the wrapper.
– An INSERT, DELETE, or UPDATE statement issued against a nickname that

belongs to the wrapper.

Example

Set the DB2_FENCED option on for wrapper NET8.
ALTER WRAPPER NET8 OPTIONS (SET DB2_FENCED ’Y’)

ALTER WRAPPER

Statements 269



ALTER XSROBJECT
This statement is used to either enable or disable the decomposition support for a
specific XML schema. Annotated XML schemas can be used to decompose XML
documents into relational tables, if decomposition has been enabled for those XML
schemas.

Invocation

The ALTER XSROBJECT statement can be embedded in an application program or
issued through the use of dynamic SQL statements. It is an executable statement
that can be dynamically prepared only if the DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization

One of the following authorities is required:
v DBADM
v ALTERIN on the SQL schema
v Ownership of the XSR object to be altered

Syntax

�� ALTER XSROBJECT xsrobject-name ENABLE DECOMPOSITION
DISABLE DECOMPOSITION

��

Description

xsrobject-name
Identifies the XSR object to be altered. The xsrobject-name, including the implicit
or explicit schema qualifier, must uniquely identify an existing XSR object at
the current server. If no XSR object with this identifier exists, an error is
returned (SQLSTATE 42704).

ENABLE DECOMPOSITION or DISABLE DECOMPOSITION
Enables or disables the use of the XSR object for decomposition. The identified
XSR object must be an XML schema (SQLSTATE 42809). In order to enable
decomposition, the XML schema needs to be annotated with decomposition
rules (SQLSTATE 225DE) and the objects referenced by the decomposition rules
must exist at the current server (SQLSTATE 42704).

Notes
v When decomposition for an XSR object is disabled, all related catalog entries are

removed.
v Decomposition support for an XSR object will be disabled if any objects the XSR

object depends on (such as tables) are dropped or altered to become
incompatible with the XSR object.

v In a partitioned database environment, you can issue this statement by
connecting to any partition.

ALTER XSROBJECT

270 SQL Reference Volume 2



ASSOCIATE LOCATORS
The ASSOCIATE LOCATORS statement gets the result set locator value for each
result set returned by a procedure.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable
statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

��
RESULT SET

ASSOCIATE LOCATOR
LOCATORS

�

� �

,

( rs-locator-variable ) WITH PROCEDURE procedure-name ��

Description

rs-locator-variable
Specifies a result set locator variable that has been declared in a compound
SQL (Procedure) statement.

WITH PROCEDURE
Identifies the procedure that returns result set locators by the specified
procedure name.

procedure-name
A procedure name is a qualified or unqualified name.

A fully qualified procedure name is a two-part name. The first part is an
identifier that contains the schema name of the procedure. The last part is
an identifier that contains the name of the procedure. A period must
separate each of the parts. Any or all of the parts can be a delimited
identifier.

If the procedure name is unqualified, it has only one name because the
implicit schema name is not added as a qualifier to the procedure name.
Successful execution of the ASSOCIATE LOCATOR statement only requires
that the unqualified procedure name in the statement be the same as the
procedure name in the most recently executed CALL statement that was
specified with an unqualified procedure name. The implicit schema name
for the unqualified name in the CALL statement is not considered in the
match. The rules for how the procedure name must be specified are
described in the following paragraph.

When the ASSOCIATE LOCATORS statement is executed, the procedure name
or specification must identify a procedure that the requester has already
invoked using the CALL statement. The procedure name in the ASSOCIATE
LOCATORS statement must be specified the same way that it was specified on

ASSOCIATE LOCATORS

Statements 271



the CALL statement. For example, if a two-part name was specified on the
CALL statement, you must use a two-part name in the ASSOCIATE
LOCATORS statement.

Notes
v If the number of result set locator variables that are listed in the ASSOCIATE

LOCATORS statement is less than the number of locators returned by the
procedure, all variables in the statement are assigned a value, and a warning is
issued.

v If the number of result set locator variables that are listed in the ASSOCIATE
LOCATORS statement is greater than the number of locators returned by the
procedure, the extra variables are assigned a value of 0.

v If a procedure is called more than once from the same caller, only the most
recent result sets are accessible.

v Result set locator values are available for a procedure that is called using an
EXECUTE statement executing the CALL statement that was previously
prepared by the PREPARE statement. Result set locator values, however, are not
available for a procedure that is called using an EXECUTE IMMEDIATE
statement.

v Module-procedure names referenced in an ASSOCIATE LOCATORS statement
can only be 1-part or 2-part qualified name references. A 3-part name reference
is not allowed (SQLSTATE 42601). Any CALL statement that references a
module-procedure that was referenced in an ASSOCIATE LOCATORS statement,
must specify the module-procedure with the same 1-part or 2-part qualified
name used in the ASSOCIATE LOCATORS statement.

Examples

The statements in the following examples are assumed to be embedded in SQL
Procedures.
v Example 1: Use result set locator variables LOC1 and LOC2 to get the result set

locator values for the two result sets returned by procedure P1. Assume that the
procedure is called with a one-part name.

CALL P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)

WITH PROCEDURE P1;

v Example 2: Repeat the scenario in Example 1, but use a two-part name to specify
an explicit schema name for the procedure to ensure that procedure P1 in
schema MYSCHEMA is used.

CALL MYSCHEMA.P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)

WITH PROCEDURE MYSCHEMA.P1;

ASSOCIATE LOCATORS

272 SQL Reference Volume 2



AUDIT
The AUDIT statement determines the audit policy that is to be used for a
particular database or database object at the current server. Whenever the object is
in use, it is audited according to that policy.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� AUDIT �

,
(1)

DATABASE
TABLE table-name
TRUSTED CONTEXT context-name

USER authorization-name
GROUP
ROLE
ACCESSCTRL
CREATE_SECURE_OBJECT
DATAACCESS
DBADM
SECADM
SQLADM
SYSADM
SYSCTRL
SYSMAINT
SYSMON
WLMADM

�

� USING POLICY policy-name
REPLACE

REMOVE POLICY

��

Notes:

1 Each clause (with the same object name, if applicable) can be specified at
most once (SQLSTATE 42713).

Description

ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, SECADM, SQLADM,
SYSADM, SYSCTRL, SYSMAINT, SYSMON, or WLMADM

Specifies that an audit policy is to be associated with or removed from the
specified authority. All auditable events that are initiated by a user who holds
the specified authority, even if that authority is not required for the event, will
be audited according to the associated audit policy.

AUDIT

Statements 273



DATABASE
Specifies that an audit policy is to be associated with or removed from the
database at the current server. All auditable events that occur within the
database are audited according to the associated audit policy.

TABLE table-name
Specifies that an audit policy is to be associated with or removed from
table-name. The table-name must identify a table, materialized query table
(MQT), or nickname that exists at the current server (SQLSTATE 42704). It
cannot be a view, a catalog table, a created temporary table, a declared
temporary table (SQLSTATE 42995), or a typed table (SQLSTATE 42997). Only
EXECUTE category audit events, with or without data, will be generated when
the table is accessed, even if the policy indicates that other categories should
be audited.

TRUSTED CONTEXT context-name
Specifies that an audit policy is to be associated with or removed from
context-name. The context-name must identify a trusted context that exists at the
current server (SQLSTATE 42704). All auditable events that happen within the
trusted connection defined by the trusted context context-name will be audited
according to the associated audit policy.

USER authorization-name
Specifies that an audit policy is to be associated with or removed from the user
with authorization ID authorization-name. All auditable events that are initiated
by authorization-name will be audited according to the associated audit policy.

GROUP authorization-name
Specifies that an audit policy is to be associated with or removed from the
group with authorization ID authorization-name. All auditable events that are
initiated by users who are members of authorization-name will be audited
according to the associated audit policy. If user membership in a group cannot
be determined, the policy will not apply to that user.

ROLE authorization-name
Specifies that an audit policy is to be associated with or removed from the role
with authorization ID authorization-name. The authorization-name must identify a
role that exists at the current server (SQLSTATE 42704). All auditable events
that are initiated by users who are members of authorization-name will be
audited according to the associated audit policy. Indirect role membership
through other roles or groups is valid.

USING, REMOVE, or REPLACE
Specifies whether the audit policy should be used, removed, or replaced for
the specified object.

USING
Specifies that the audit policy is to be used for the specified object. An
existing audit policy must not already be defined for the object (SQLSTATE
5U041). If an audit policy already exists, it must be removed or replaced.

REMOVE
Specifies that the audit policy is to be removed from the specified object.
Use of the object will no longer be audited according to the audit policy.
The association is deleted from the catalog when the audit policy is
removed from the object.

REPLACE
Specifies that the audit policy is to replace an existing audit policy for the
specified object. This combines both REMOVE and USING options into one

AUDIT

274 SQL Reference Volume 2



step to ensure that there is no period of time in which an audit policy does
not apply to the specified object. If a policy was not in use for the specified
object, REPLACE is equivalent to USING.

POLICY policy-name
Specifies the audit policy that is to be used to determine audit settings. The
policy-name must identify an existing audit policy at the current server
(SQLSTATE 42704).

Rules
v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:
– AUDIT
– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)
– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)

v An AUDIT-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

v An object can be associated with no more than one policy (SQLSTATE 5U042).

Notes
v Changes are written to the catalog, but do not take effect until after a COMMIT

statement executes.
v Changes do not take effect until the next unit of work that references the object

to which the audit policy applies. For example, if the audit policy is in use for
the database, no current units of work will begin auditing according to the
policy until after a COMMIT or a ROLLBACK statement completes.

v Views accessing a table that is associated with an audit policy are audited
according to the underlying table's policy.

v The audit policy that applies to a table does not apply to a materialized query
table (MQT) based on that table. It is recommended that if you associate an
audit policy with a table, you also associate that policy with any MQT based on
that table. The compiler might automatically use an MQT, even though an SQL
statement references the base table; however, the audit policy in use for the base
table will still be in effect.

v When a switch user operation is performed within a trusted context, all audit
policies are re-evaluated according to the new user, and no policies from the old
user are used for the current session. This applies specifically to audit policies
associated directly with the user, the user's group or role memberships, and the
user's authorities. For example, if the current session was audited because the
previous user was a member of an audited role, and the switched-to user is not
a member of that role, that policy no longer applies to the session.

v When a SET SESSION USER statement is executed, the audit policies associated
with the original user (and that user's group and role memberships and
authorities) are combined with the policies that are associated with the user
specified in the SET SESSION USER statement. The audit policies associated
with the original user are still in effect, as are the policies for the user specified
in the SET SESSION USER statement. If multiple SET SESSION USER statements
are issued within a session, only the audit policies associated with the original
user and the current user are considered.

v If the object with which an audit policy is associated is dropped, the association
to the audit policy is removed from the catalog and no longer exists. If that

AUDIT

Statements 275



object is recreated at some later time, the object will not be audited according to
the policy that was associated with it when the object was dropped.

Examples
v Example 1: Use the audit policy DBAUDPRF to determine the audit settings for

the database at the current server.
AUDIT DATABASE USING POLICY DBAUDPRF

v Example 2: Remove the audit policy from the EMPLOYEE table.
AUDIT TABLE EMPLOYEE REMOVE POLICY

v Example 3: Use the audit policy POWERUSERS to determine the audit settings
for the authorities SYSADM, DBADM, and SECADM, as well as the group
DBAS.

AUDIT SYSADM, DBADM, SECADM, GROUP DBAS USING POLICY POWERUSERS

v Example 4: Replace the audit policy for the role TELLER with the new policy
TELLERPRF.

AUDIT ROLE TELLER REPLACE POLICY TELLERPRF

AUDIT

276 SQL Reference Volume 2



BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of a host variable
declare section.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in REXX.

Authorization

None required.

Syntax

�� BEGIN DECLARE SECTION ��

Description

The BEGIN DECLARE SECTION statement may be coded in the application
program wherever variable declarations can appear in accordance with the rules of
the host language. It is used to indicate the beginning of a host variable declaration
section. A host variable section ends with an END DECLARE SECTION statement.

Rules
v The BEGIN DECLARE SECTION and the END DECLARE SECTION statements

must be paired and may not be nested.
v SQL statements cannot be included within the declare section.
v Variables referenced in SQL statements must be declared in a declare section in

all host languages other than REXX. Furthermore, the section must appear before
the first reference to the variable. Generally, host variables are not declared in
REXX with the exception of LOB locators and file reference variables. In this
case, they are not declared within a BEGIN DECLARE SECTION.

v Variables declared outside a declare section should not have the same name as
variables declared within a declare section.

v LOB data types must have their data type and length preceded with the SQL
TYPE IS keywords.

Examples
v Example 1: Define the host variables hv_smint (smallint), hv_vchar24

(varchar(24)), hv_double (double), hv_blob_50k (blob(51200)), hv_struct (of
structured type "struct_type" as blob(10240)) in a C program.

EXEC SQL BEGIN DECLARE SECTION;
short hv_smint;
struct {
short hv_vchar24_len;
char hv_vchar24_value[24];
} hv_vchar24;
double hv_double;
SQL TYPE IS BLOB(50K) hv_blob_50k;
SQL TYPE IS struct_type AS BLOB(10k) hv_struct;

EXEC SQL END DECLARE SECTION;

BEGIN DECLARE SECTION

Statements 277



v Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24
(varchar(24)), HV-DEC72 (dec(7,2)), and HV-BLOB-50k (blob(51200)) in a COBOL
program.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HV-SMINT PIC S9(4) COMP-4.
01 HV-VCHAR24.

49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.
49 HV-VCHAR24-VALUE PIC X(24).

01 HV-DEC72 PIC S9(5)V9(2) COMP-3.
01 HV-BLOB-50K USAGE SQL TYPE IS BLOB(50K).

EXEC SQL END DECLARE SECTION END-EXEC.

v Example 3: Define the host variables HVSMINT (smallint), HVVCHAR24
(char(24)), HVDOUBLE (double), and HVBLOB50k (blob(51200)) in a Fortran
program.

EXEC SQL BEGIN DECLARE SECTION
INTEGER*2 HVSMINT
CHARACTER*24 HVVCHAR24
REAL*8 HVDOUBLE
SQL TYPE IS BLOB(50K) HVBLOB50K

EXEC SQL END DECLARE SECTION

Note: In Fortran, if the expected value is greater than 254 bytes, then a CLOB
host variable should be used.

v Example 4: Define the host variables HVSMINT (smallint), HVBLOB50K
(blob(51200)), and HVCLOBLOC (a CLOB locator) in a REXX program.

DECLARE :HVCLOBLOC LANGUAGE TYPE CLOB LOCATOR
call sqlexec ’FETCH c1 INTO :HVSMINT, :HVBLOB50K’

Note that the variables HVSMINT and HVBLOB50K were implicitly defined by
using them in the FETCH statement.

BEGIN DECLARE SECTION

278 SQL Reference Volume 2



CALL
The CALL statement calls a procedure or a foreign procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

When invoked using the command line processor, there are some additional rules
for specifying arguments of the procedure.

For more information, refer to “Using command line SQL statements and XQuery
statements” in Command Reference.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v EXECUTE privilege on the procedure
v DATAACCESS authority

If a matching procedure exists that the authorization ID of the statement is not
authorized to execute, an error is returned (SQLSTATE 42501).

Syntax

�� CALL procedure-name

�

,

( argument )

��

argument:

parameter-name =>
expression
DEFAULT
NULL

Description

procedure-name
Specifies the procedure that is to be called. It must be a procedure that is
described in the catalog or that is declared in the scope of the compound SQL
(compiled) statement that includes the CALL statement. The specific procedure
to invoke is chosen using procedure resolution. (For more details, see the
“Notes” section of this statement.)

argument

parameter-name
Name of the parameter to which the argument is assigned. When an
argument is assigned to a parameter by name, then all the arguments that
follow it must also be assigned by name (SQLSTATE 4274K).

CALL

Statements 279



A named argument must be specified only once (implicitly or explicitly)
(SQLSTATE 4274K).

Named arguments are not supported on the call to an uncataloged
procedure (SQLSTATE 4274K).

expression or DEFAULT or NULL
Each specification of expression, the DEFAULT keyword, or the NULL
keyword is an argument of the CALL. The nth unnamed argument of the
CALL statement corresponds to the nth parameter defined in the CREATE
PROCEDURE statement for the procedure.

Named arguments correspond to the same named parameter, regardless of
the order in which they are specified.

If the DEFAULT keyword is specified, the default as defined in the
CREATE PROCEDURE statement is used if it exists; otherwise the null
value is used as the default.

If the NULL keyword is specified, the null value is passed as the
parameter value.

Each argument of the CALL must be compatible with the corresponding
parameter in the procedure definition as follows:
v IN parameter

– The argument must be assignable to the parameter.
– The assignment of a string argument uses the storage assignment

rules.
v OUT parameter

– The argument must be a single variable or parameter marker
(SQLSTATE 42886).

– The argument must be assignable to the parameter.
– The assignment of a string argument uses the retrieval assignment

rules.
v INOUT parameter

– The argument must be a single variable or parameter marker
(SQLSTATE 42886).

– The argument must be assignable to the parameter.
– The assignment of a string argument uses the storage assignment

rules on invocation and the retrieval assignment rules on return.

Notes
v Parameter assignments: When the CALL statement is executed, the value of each

of its arguments is assigned (using storage assignment) to the corresponding
parameter of the procedure. A parameter value that is defined to have a default
value can be omitted from the argument list when invoking the procedure.
When the CALL statement is executed, control is passed to the procedure
according to the calling conventions of the host language. When execution of the
procedure is complete, the value of each parameter of the procedure is assigned
(using storage assignment) to the corresponding argument of the CALL
statement defined as OUT or INOUT. If an error is returned by the procedure,
OUT arguments are undefined and INOUT arguments are unchanged. For
details on the assignment rules, see “Assignments and comparisons”.
When the CALL statement is in an SQL procedure and is calling another SQL
procedure, assignment of XML parameters is done by reference. When an XML

CALL

280 SQL Reference Volume 2



argument is passed by reference, the input node trees, if any, are used directly
from the XML argument, preserving all properties, including document order,
the original node identities, and all parent properties.

v Procedure signatures: A procedure is identified by its schema, a procedure name,
and the number of parameters. This is called a procedure signature, which must
be unique within the database. There can be more than one procedure with the
same name in a schema, provided that the number of parameters is different for
each procedure.

v SQL path: A procedure can be invoked by referring to a qualified name (schema
and procedure name), followed by an optional list of arguments enclosed by
parentheses. A procedure can also be invoked without the schema name,
resulting in a choice of possible procedures in different schemas with the same
number of parameters. In this case, the SQL path is used to assist in procedure
resolution. The SQL path is a list of schemas that is searched to identify a
procedure with the same name and number of parameters. For static CALL
statements, SQL path is specified using the FUNCPATH bind option. For
dynamic CALL statements, SQL path is the value of the CURRENT PATH
special register.

v Procedure resolution: Given a procedure invocation, the database manager must
decide which of the possible procedures with the same name to execute.
Local scope procedure resolution is used when a procedure is invoked from
within a compound SQL (compiled) statement and either of the following
criteria exist:
– A procedure with the same name as the invoked procedure is declared in the

same compound SQL (compiled) statement
– A procedure with the same name as the invoked procedure is declared in a

compound SQL (compiled) statement within which the compound SQL
(compiled) statement that invoked the procedure is nested

Local scope procedure resolution means that only declared procedures within
the scope of the compound SQL (compiled) statement that invoked the
procedure are considered during procedure resolution regardless of the existence
of possible matching built-in procedures, schema procedures, or module
procedures. Global scope procedure resolution is used in all other cases and
considers candidates from schemas and modules depending on the context of
the invocation and the qualification of the procedure name.
– Let A be the number of arguments in a procedure invocation.
– Let P be the number of parameters in a procedure signature.
– Let N be the number of parameters without a default.
Candidate procedures for resolution of a procedure invocation are selected based
on the following criteria:
– Each candidate procedure has a matching name and an applicable number of

parameters. An applicable number of parameters satisfies the condition N ≤ A
≤ P.

– Each candidate procedure has parameters such that for each named argument
in the CALL statement there exists a parameter with a matching name that
does not already correspond to a positional (or unnamed) argument.

– Each parameter of a candidate procedure that does not have a corresponding
argument in the CALL statement, specified by either position or name, is
defined with a default.

– Each candidate procedure from a set of one or more schemas has the
EXECUTE privilege associated with the authorization ID of the statement
invoking the function.

CALL

Statements 281



In addition, the set of candidate procedures depends on the environment where
the procedure is invoked and how the procedure name is qualified.
– If the procedure name is unqualified, procedure resolution is done using the

steps that follow:
1. If the procedure is invoked from within a compound SQL (compiled)

statement and a declared procedure with the same name exists in the
nested scope, search the set of compound SQL (compiled) statements
within which the CALL statement is nested for candidate procedures. If
no candidate procedures are found, an error is returned (SQLSTATE
42884). If a single candidate procedure is found, resolution is complete. If
there are multiple candidate procedures, determine the candidate
procedure with the lowest number of parameters and eliminate candidate
procedures with a higher number of parameters.

2. If the procedure is invoked from within a module object, search within the
module for candidate procedures. If one or more candidate procedures are
found in the context module, then these candidate procedures are
included with any candidate procedures from the schemas in the SQL
path (see next item).

3. Search all schema procedures with a schema in the SQL path for candidate
procedures. If one or more candidate procedures are found in the schemas
of the SQL path, then these candidate procedures are included with any
candidate procedures from the context module (see previous item). If a
single candidate procedure remains, resolution is complete. If there are
multiple candidate procedures, choose the procedure from the context
module if still a candidate and otherwise choose the procedure whose
schema is earliest in the SQL path. If there are still multiple candidate
procedures, determine the candidate procedure with the lowest number of
parameters and eliminate candidate procedures with a higher number of
parameters.

If there are no candidate procedures remaining after step 3, an error is
returned (SQLSTATE 42884).

– If the procedure name is qualified, procedure resolution is done using the
steps that follow:
1. If the procedure is invoked from within a compound SQL (compiled)

statement and a declared procedure with the same name exists where the
qualifier matches the label of the compound SQL (compiled) statement
from the set of compound SQL (compiled) statements within which the
CALL statement is nested, search that compound SQL (compiled)
statement with the matching label for candidate procedures. If no
candidate procedures are found, an error is returned (SQLSTATE 42884). If
a single candidate procedure is found, resolution is complete. If there are
multiple candidate procedures, determine the candidate procedure with
the lowest number of parameters and eliminate candidate procedures with
a higher number of parameters.

2. If the procedure is invoked from within a module and the qualifier
matches the name of the module from within which the procedure is
invoked, search within the module for candidate procedures. If the
qualifier is a single identifier, then the schema name of the module is
ignored when matching the module name. If the qualifier is a two part
identifier, then it is compared to the schema-qualified module name when
determining a match. If a single candidate procedure exists, resolution is
complete. If there are multiple candidate procedures, choose the candidate

CALL

282 SQL Reference Volume 2



procedure with the least number of parameters. If the qualifier does not
match or there are no candidate procedures, then continue with the next
step.

3. Consider the qualifier as a schema name and search within that schema
for candidate procedures. If a single candidate procedure exists, resolution
is complete. If there are multiple candidate procedures, choose the
candidate procedure with the least number of parameters and resolution is
complete. If the schema does not exist or there are no authorized
candidate procedures, and the qualifier matched the name of the module
in the first step, then return an error. Otherwise, continue to the next step.

4. Consider the qualifier as a module name, without considering EXECUTE
privilege on modules.
- If the module name is qualified with a schema name, then search

published procedures within this module for candidate procedures.
- If the module name is not qualified with a schema name, then the

schema for the module is the first schema in the SQL path that has a
matching module name. If found, then search published procedures
within this module for candidate procedures.

- If the module is not found using the SQL path, check for a module
public alias that matches the name of the procedure qualifier. If found,
then search published procedures within this module for candidate
procedures.

If a matching module is not found or there are no candidate procedures in
the matching module, then a procedure not found error is returned
(SQLSTATE 42884). If there are multiple candidate procedures, choose the
candidate procedure with the least number of parameters. Resolution is
complete if the authorization ID of the CALL statement has EXECUTE
privilege on the module of the remaining candidate procedure, otherwise
an authorization error is returned (SQLSTATE 42501).

v Retrieving the DB2_RETURN_STATUS from an SQL procedure: If an SQL
procedure successfully issues a RETURN statement with a status value, this
value is returned in the first SQLERRD field of the SQLCA. If the CALL
statement is issued in an SQL procedure, use the GET DIAGNOSTICS statement
to retrieve the DB2_RETURN_STATUS value. The value is -1 if the SQLSTATE
indicates an error. The values is 0 if no error is returned and the RETURN
statement was not specified in the procedure.

v Returning result sets from procedures: If the calling program is written using
CLI, JDBC, or SQLJ, or the caller is an SQL procedure, result sets can be
returned directly to the caller. The procedure indicates that a result set is to be
returned by declaring a cursor on that result set, opening a cursor on the result
set, and leaving the cursor open when exiting the procedure.
At the end of a procedure:
– For every cursor that has been left open, a result set is returned to the caller

or (for WITH RETURN TO CLIENT cursors) directly to the client.
– Only unread rows are passed back. For example, if the result set of a cursor

has 500 rows, and 150 of those rows have been read by the procedure at the
time the procedure is terminated, rows 151 through 500 will be returned to
the caller or application (as appropriate).

If the procedure was invoked from CLI or JDBC, and more than one cursor is
left open, the result sets can only be processed in the order in which the cursors
were opened.

CALL

Statements 283



v Improving performance: The values of all arguments are passed from the
application to the procedure. To improve the performance of this operation, host
variables that correspond to OUT parameters and have lengths of more than a
few bytes should be set to the null value before the CALL statement is executed.

v Nesting CALL statements: Procedures can be called from routines as well as
application programs. When a procedure is called from a routine, the call is
considered to be nested.
If a procedure returns any query result sets, the result sets are returned as
follows:
– RETURN TO CALLER result sets are visible only to the program that is at the

previous nesting level.
– RETURN TO CLIENT results sets are visible only if the procedure was

invoked from a set of nested procedures. If a function or method occurs
anywhere in the call chain, the result set is not visible. If the result set is
visible, it is only visible to the client application that made the initial
procedure call.

Consider the following example:
Client program:
EXEC SQL CALL PROCA;

PROCA:
EXEC SQL CALL PROCB;

PROCB:
EXEC SQL DECLARE B1 CURSOR WITH RETURN TO CLIENT ...;
EXEC SQL DECLARE B2 CURSOR WITH RETURN TO CALLER ...;
EXEC SQL DECLARE B3 CURSOR FOR SELECT UDFA FROM T1;

UDFA:
EXEC SQL CALL PROCC;

PROCC:
EXEC SQL DECLARE C1 CURSOR WITH RETURN TO CLIENT ...;
EXEC SQL DECLARE C2 CURSOR WITH RETURN TO CALLER ...;

From procedure PROCB:
– Cursor B1 is visible in the client application, but not visible in procedure

PROCA.
– Cursor B2 is visible in PROCA, but not visible to the client.
From procedure PROCC:
– Cursor C1 is visible to neither UDFA nor to the client application. (Because

UDFA appears in the call chain between the client and PROCC, the result set
is not returned to the client.)

– Cursor C2 is visible in UDFA, but not visible to any of the higher procedures.
v Nesting procedures within triggers, compound statements, functions, or methods:

When a procedure is called within a trigger, compound statement, function, or
method:
– The procedure must not issue a COMMIT or a ROLLBACK statement.
– Result sets returned from the procedure cannot be accessed.
– If the procedure is defined as READS SQL DATA or MODIFIES SQL DATA,

no statement in the procedure can access a table that is being modified by the
statement that invoked the procedure (SQLSTATE 57053). If the procedure is
defined as MODIFIES SQL DATA, no statement in the procedure can modify
a table that is being read or modified by the statement that invoked the
procedure (SQLSTATE 57053).

CALL

284 SQL Reference Volume 2



When a procedure is called within a function or method:
- The procedure has the same table access restrictions as the invoking

function or method.
- Savepoints defined before the function or method was invoked will not be

visible to the procedure, and savepoints defined inside the procedure will
not be visible outside the function or method.

- RETURN TO CLIENT result sets returned from the procedure cannot be
accessed from the client.

v Compilation of CALL statements from DB2 for i and DB2 for z/OS: The
compilation of CALL statements from DB2 for i and DB2 for z/OS implicitly
behave as if CALL_RESOLUTION DEFERRED was specified. When CALL
statements are compiled with CALL_RESOLUTION DEFERRED, all arguments
must be provided via host variables, and expressions are not allowed.

v Syntax alternatives: There is an older form of the CALL statement that can be
embedded in an application by precompiling the application with the
CALL_RESOLUTION DEFERRED option. This option is not available for SQL
procedures and federated procedures.

Examples
v Example 1: A Java™ procedure is defined in the database using the following

statement:
CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,

OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

EXTERNAL NAME ’parts!onhand’
LANGUAGE JAVA
PARAMETER STYLE DB2GENERAL;

A Java application calls this procedure using the following code fragment:
...
CallableStatement stpCall;

String sql = "CALL PARTS_ON_HAND (?, ?, ?)";

stpCall = con.prepareCall(sql); /*con is the connection */

stpCall.setInt(1, hvPartnum);
stpCall.setBigDecimal(2, hvCost);
stpCall.setInt(3, hvQuantity);

stpCall.registerOutParameter(2, Types.DECIMAL, 2);
stpCall.registerOutParameter(3, Types.INTEGER);

stpCall.execute();

hvCost = stpCall.getBigDecimal(2);
hvQuantity = stpCall.getInt(3);
...

This application code fragment will invoke the Java method onhand in class
parts, because the procedure name specified on the CALL statement is found in
the database and has the external name parts!onhand.

v Example 2: There are six FOO procedures, in four different schemas, registered as
follows (note that not all required keywords appear):

CREATE PROCEDURE AUGUSTUS.FOO (INT) SPECIFIC FOO_1 ...
CREATE PROCEDURE AUGUSTUS.FOO (DOUBLE, DECIMAL(15, 3)) SPECIFIC FOO_2 ...
CREATE PROCEDURE JULIUS.FOO (INT) SPECIFIC FOO_3 ...
CREATE PROCEDURE JULIUS.FOO (INT, INT, INT) SPECIFIC FOO_4 ...
CREATE PROCEDURE CAESAR.FOO (INT, INT) SPECIFIC FOO_5 ...
CREATE PROCEDURE NERO.FOO (INT,INT) SPECIFIC FOO_6 ...

CALL

Statements 285



The procedure reference is as follows (where I1 and I2 are INTEGER values):
CALL FOO(I1, I2)

Assume that the application making this reference has an SQL path established
as:

"JULIUS", "AUGUSTUS", "CAESAR"

Following through the algorithm...
The procedure with specific name FOO_6 is eliminated as a candidate, because
the schema "NERO" is not included in the SQL path. FOO_1, FOO_3, and
FOO_4 are eliminated as candidates, because they have the wrong number of
parameters. The remaining candidates are considered in order, as determined by
the SQL path. Note that the types of the arguments and parameters are ignored.
The parameters of FOO_5 exactly match the arguments in the CALL, but FOO_2
is chosen because "AUGUSTUS" appears before "CAESAR" in the SQL path.

v Example 3: Assume the following procedure exists.
CREATE PROCEDURE update_order(

IN IN_POID BIGINT,
IN IN_CUSTID BIGINT DEFAULT GLOBAL_CUST_ID,
IN NEW_STATUS VARCHAR(10) DEFAULT NULL,
IN NEW_ORDERDATE DATE DEFAULT NULL,
IN NEW_COMMENTS VARCHAR(1000)DEFAULT NULL)...

Also assume that the global variable GLOBAL_CUST_ID is set to the value 1002.
Call the procedure to change the status of order 5000 for customer 1002 to
'Shipped'. Leave the rest of the order data as it is by allowing the rest of the
arguments to default to the null value.

CALL update_order (5000, NEW_STATUS => ’Shipped’)

The customer with ID 1001 has called and indicated that they received their
shipment for purchase order 5002 and are satisfied. Update their order.

CALL update_order (5002,
IN_CUSTID => 1001,
NEW_STATUS => ’Received’,
NEW_COMMENTS => ’Customer satisfied with the order.’)

v Example 4: The following example illustrates procedure resolution, given two
procedures named p1:

CREATE PROCEDURE p1(i1 INT)...
CREATE PROCEDURE p1(i1 INT DEFAULT 0, i2 INT DEFAULT 0)...
CALL p1(i2=>1)

The argument names are taken into consideration during the candidate selection
process. Therefore, only the second version of p1 will be considered a candidate.
Furthermore, it can be successfully called because i1 in this version of p1 is
defined with a default, so only specifying i2 on the call to p1 is valid.

v Example 5: The following example is another illustration of procedure resolution,
given two procedures named p1:

CREATE PROCEDURE p1(i1 INT, i2 INT DEFAULT 0)...
CREATE PROCEDURE p1(i1 INT DEFAULT 0, i2 INT DEFAULT 0, i3 INT DEFAULT 0)...
CALL p1(i2=>1)

One of the criteria for a procedure parameter which does not have a
corresponding argument in the CALL statement (specified by either position or
name) is that the parameter is defined with a default value. Therefore, the first
version of p1 is not considered a candidate.

CALL

286 SQL Reference Volume 2



CASE
The CASE statement selects an execution path based on multiple conditions. This
statement should not be confused with the CASE expression, which allows an
expression to be selected based on the evaluation of one or more conditions.

Invocation

This statement can be embedded in:
v An SQL procedure definition
v A compound SQL (compiled) statement
v A compound SQL (inlined) statement

The compound SQL statements can be embedded in an SQL procedure definition,
SQL function definition, or SQL trigger definition. The CASE statement is not an
executable statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the CASE statement. However, the privileges
held by the authorization ID of the statement must include all necessary privileges
to invoke the SQL statements and expressions that are embedded in the CASE
statement.

Syntax

�� CASE searched-case-statement-when-clause
simple-case-statement-when-clause

END CASE ��

simple-case-statement-when-clause:

expression � �WHEN expression THEN SQL-procedure-statement ; �

�

�ELSE SQL-procedure-statement ;

searched-case-statement-when-clause:

� �WHEN search-condition THEN SQL-procedure-statement ; �

CASE

Statements 287



�

�ELSE SQL-procedure-statement ;

Description

CASE
Begins a case-statement.

simple-case-statement-when-clause
The value of the expression before the first WHEN keyword is tested for
equality with the value of each expression that follows the WHEN keyword. If
the search condition is true, the THEN statement is executed. If the result is
unknown or false, processing continues to the next search condition. If the
result does not match any of the search conditions, and an ELSE clause is
present, the statements in the ELSE clause are processed.

searched-case-statement-when-clause
The search-condition following the WHEN keyword is evaluated. If it evaluates
to true, the statements in the associated THEN clause are processed. If it
evaluates to false, or unknown, the next search-condition is evaluated. If no
search-condition evaluates to true and an ELSE clause is present, the statements
in the ELSE clause are processed.

SQL-procedure-statement
Specifies a statement that should be invoked. See SQL-procedure-statement in
“Compound SQL (compiled)” statement.

END CASE
Ends a case-statement.

Notes
v If none of the conditions specified in the WHEN are true, and an ELSE clause is

not specified, an error is issued at runtime, and the execution of the case
statement is terminated (SQLSTATE 20000).

v Ensure that your CASE statement covers all possible execution conditions.

Examples

Depending on the value of SQL variable v_workdept, update column DEPTNAME
in table DEPARTMENT with the appropriate name.
v Example 1: The following example shows how to do this using the syntax for a

simple-case-statement-when-clause:
CASE v_workdept

WHEN’A00’
THEN UPDATE department
SET deptname = ’DATA ACCESS 1’;

WHEN ’B01’
THEN UPDATE department
SET deptname = ’DATA ACCESS 2’;

ELSE UPDATE department
SET deptname = ’DATA ACCESS 3’;

END CASE

CASE

288 SQL Reference Volume 2



v Example 2: The following example shows how to do this using the syntax for a
searched-case-statement-when-clause:

CASE
WHEN v_workdept = ’A00’

THEN UPDATE department
SET deptname = ’DATA ACCESS 1’;

WHEN v_workdept = ’B01’
THEN UPDATE department
SET deptname = ’DATA ACCESS 2’;

ELSE UPDATE department
SET deptname = ’DATA ACCESS 3’;

END CASE

CASE

Statements 289



CLOSE
The CLOSE statement closes a cursor. If a result table was created when the cursor
was opened, that table is destroyed.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that cannot be dynamically prepared. When invoked
using the command line processor, some options cannot be specified. For more
information, refer to “Using command line SQL statements and XQuery
statements”.

Authorization

If a global variable is referenced, the privileges held by the authorization ID of the
statement must include one of the following authorities:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For the authorization required to use a cursor, see “DECLARE CURSOR”.

Syntax

�� CLOSE cursor-name
cursor-variable-name WITH RELEASE

��

Description

cursor-name
Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the CLOSE
statement is executed, the cursor must be in the open state.

cursor-variable-name
Identifies the cursor to be closed. The cursor-variable-name must identify a
cursor variable. When the CLOSE statement is executed, the underlying cursor
of cursor-variable-name must be in the open state (SQLSTATE 24501). A CLOSE
statement using cursor-variable-name can only be used within a compound SQL
(compiled) statement.

WITH RELEASE
The release of all locks that have been held for the cursor is attempted. Note
that not all of the locks are necessarily released; these locks may be held for
other operations or activities.

Notes
v At the end of a unit of work, all cursors that belong to an application process

and that were declared without the WITH HOLD option are implicitly closed.
v An underlying cursor of a cursor variable is implicitly closed when it becomes

an orphaned cursor. An underlying cursor becomes orphaned when it is no
longer an underlying cursor of any cursor variable. For example, this could
occur if all the cursor variables for an underlying cursor are in the same scope
and all of them go out of scope at the same time.

CLOSE

290 SQL Reference Volume 2



v The WITH RELEASE clause has no effect when closing cursors defined in
functions or methods. The clause also has no effect when closing cursors defined
in procedures called from functions or methods.

v The WITH RELEASE clause has no effect for cursors that are operating under
isolation levels CS or UR. When specified for cursors that are operating under
isolation levels RS or RR, WITH RELEASE terminates some of the guarantees of
those isolation levels. Specifically, if the cursor is opened again, an RS cursor
may experience the 'nonrepeatable read' phenomenon and an RR cursor may
experience either the 'nonrepeatable read' or 'phantom' phenomenon.
If a cursor that was originally either RR or RS is reopened after being closed
using the WITH RELEASE clause, new locks will be acquired.

v Special rules apply to cursors within a procedure that have not been closed
before returning to the calling program.

v While a cursor is open (that is, it has not been closed yet), any changes to
sequence values as a result of statements involving that cursor (for example, a
FETCH or an UPDATE using the cursor that includes a NEXT VALUE
expression for a sequence) will not result in an update to PREVIOUS VALUE for
those sequences as seen by that cursor. The PREVIOUS VALUE values for these
affected sequences are updated when the cursor is closed explicitly with the
CLOSE statement. In a partitioned database environment, if a cursor is closed
implicitly by a commit or a rollback, the PREVIOUS VALUE may not be
updated with the most recently generated value for the sequence.

Example

A cursor is used to fetch one row at a time into the C program variables dnum,
dname, and mnum. Finally, the cursor is closed. If the cursor is reopened, it is again
located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM TDEPT
WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;

while (SQLCODE==0) { .
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

.

.
}
EXEC SQL CLOSE C1;

CLOSE

Statements 291



COMMENT
The COMMENT statement adds or replaces comments in the catalog descriptions
of various objects.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v Owner of the object (underlying table for column or constraint), as recorded in

the OWNER column of the catalog view for the object
v ALTERIN privilege on the schema (applicable only to objects that allow more

than one-part names)
v CONTROL privilege on the object (applicable only to index, package, table, or

view objects)
v ALTER privilege on the object (applicable only to table objects)
v CREATE_SECURE_OBJECT authority (applicable only to secure functions or

secure triggers)
v The WITH ADMIN OPTION (applicable only to roles)
v WLMADM authority (applicable only to workload manager objects)
v SECADM authority (applicable only to audit policy, column mask, role, row

permission, secure function, secure trigger, security label, security label
component, security policy, or trusted context objects; also applicable to tables
for which row level access control or column level access control has been
activated)

v DBADM authority (applicable to all objects except audit policy, role, security
label, security label component, security policy, or trusted context objects)

Note that for table space, storage group, or database partition group, and
bufferpools, the authorization ID must have SYSCTRL or SYSADM authority.

Syntax

�� COMMENT ON

�

objects IS string-constant
,

table-name ( column-name IS string-constant )
view-name

��

objects:

COMMENT

292 SQL Reference Volume 2



alias-designator
AUDIT POLICY policy-name
COLUMN table-name.column-name

view-name.column-name
CONSTRAINT table-name.constraint-name
DATABASE PARTITION GROUP db-partition-group-name

function-designator
FUNCTION MAPPING function-mapping-name
HISTOGRAM TEMPLATE template-name

(1)
INDEX index-name
MASK mask-name
MODULE module-name
NICKNAME nickname
PACKAGE package-id

schema-name. VERSION
version-id

PERMISSION permission-name
procedure-designator

ROLE role-name
SCHEMA schema-name
SECURITY LABEL sec-label-name
SECURITY LABEL COMPONENT label-comp-name
SECURITY POLICY label-pol-name
SEQUENCE sequence-name
SERVER server-name
SERVER OPTION server-option-name FOR remote-server

service-class-designator
STOGROUP storagegroup-name
TABLE table-name

view-name
TABLESPACE tablespace-name
THRESHOLD threshold-name
TRIGGER trigger-name
TRUSTED CONTEXT context-name
TYPE type-name
TYPE MAPPING type-mapping-name
USAGE LIST usage-list-name
VARIABLE variable-name
WORK ACTION SET work-action-set-name
WORK CLASS SET work-class-set-name
WORKLOAD workload-name
WRAPPER wrapper-name
XSROBJECT xsrobject-name

alias-designator:

FOR TABLE
ALIAS alias-name

PUBLIC FOR MODULE
FOR SEQUENCE

function-designator:

COMMENT

Statements 293



�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

remote-server:

SERVER server-name
SERVER TYPE server-type

VERSION server-version
WRAPPER wrapper-name

server-version:

version
. release

. mod
version-string-constant

service-class-designator:

SERVICE CLASS service-class-name
UNDER service-superclass-name

Notes:

1 Index-name can be the name of either an index or an index specification.

Description

alias-designator

ALIAS alias-name
Indicates a comment will be added or replaced for an alias. The alias-name
must identify an alias that exists at the current server (SQLSTATE 42704).

FOR TABLE, FOR MODULE, or FOR SEQUENCE
Specifies the object type for the alias.

FOR TABLE
The alias is for a table, view, or nickname. The comment replaces
the value of the REMARKS column of the SYSCAT.TABLES catalog
view for the row that describes the alias.

COMMENT

294 SQL Reference Volume 2



FOR MODULE
The alias is for a module. The comment replaces the value of the
REMARKS column of the SYSCAT.MODULES catalog view for the
row that describes the alias.

FOR SEQUENCE
The alias is for a sequence. The comment replaces the value of the
REMARKS column of the SYSCAT.SEQUENCES catalog view for
the row that describes the alias.

If PUBLIC is specified, the alias-name must identify a public alias that
exists at the current server (SQLSTATE 42704).

AUDIT POLICY policy-name
Indicates a comment will be added or replaced for an audit policy. The
policy-name must identify an audit policy that exists at the current server
(SQLSTATE 42704). The comment replaces the value of the REMARKS column
of the SYSCAT.AUDITPOLICIES catalog view for the row that describes the
audit policy.

COLUMN table-name.column-name or view-name.column-name
Indicates that a comment for a column will be added or replaced. The
table-name.column-name or view-name.column-name combination must identify a
column and table combination that exists at the current server (SQLSTATE
42704), but must not identify a global temporary table (SQLSTATE 42995). The
comment replaces the value of the REMARKS column of the
SYSCAT.COLUMNS catalog view for the row that describes the column.

CONSTRAINT table-name.constraint-name
Indicates a comment will be added or replaced for a constraint. The
table-name.constraint-name combination must identify a constraint and the table
that it constrains; they must exist at the current server (SQLSTATE 42704). The
comment replaces the value of the REMARKS column of the
SYSCAT.TABCONST catalog view for the row that describes the constraint.

DATABASE PARTITION GROUP db-partition-group-name
Indicates a comment will be added or replaced for a database partition group.
The db-partition-group-name must identify a distinct database partition group
that exists at the current server (SQLSTATE 42704). The comment replaces the
value for the REMARKS column of the SYSCAT.DBPARTITIONGROUPS
catalog view for the row that describes the database partition group.

function-designator
Indicates a comment will be added or replaced for a function. For more
information, see “Function, method, and procedure designators” on page 20.

It is not possible to comment on a function that is in the SYSIBM,
SYSIBMADM, SYSFUN, or SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the
SYSCAT.ROUTINES catalog view for the row that describes the function.

FUNCTION MAPPING function-mapping-name
Indicates a comment will be added or replaced for a function mapping. The
function-mapping-name must identify a function mapping that exists at the
current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.FUNCMAPPINGS catalog view for the row
that describes the function mapping.

HISTOGRAM TEMPLATE template-name
Indicates a comment will be added or replaced for a histogram template. The

COMMENT

Statements 295



template-name must identify a histogram template that exists at the current
server (SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.HISTOGRAMTEMPLATES catalog view for the row
that describes the histogram template.

INDEX index-name
Indicates a comment will be added or replaced for an index or index
specification. The index-name must identify either a distinct index or an index
specification that exists at the current server (SQLSTATE 42704). The comment
replaces the value for the REMARKS column of the SYSCAT.INDEXES catalog
view for the row that describes the index or index specification.

MASK mask-name
Identifies the column mask to which the comment applies. mask-name must
identify a column mask that exists at the current server (SQLSTATE 42704).
The comment is placed in the REMARKS column of the SYSCAT.CONTROLS
catalog table for the row that describes the mask.

MODULE module-name
Indicates a comment will be added or replaced for a module. The module-name
must identify a module that exists at the current server (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the
SYSCAT.MODULES catalog view for the row that describes the module.

NICKNAME nickname
Indicates a comment will be added or replaced for a nickname. The nickname
must be a nickname that exists at the current server (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the SYSCAT.TABLES
catalog view for the row that describes the nickname.

PACKAGE schema-name.package-id
Indicates that a comment will be added or replaced for a package. If a schema
name is not specified, the package ID is implicitly qualified by the default
schema. The schema name and package ID, together with the implicitly or
explicitly specified version ID, must identify a package that exists at the
current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.PACKAGES catalog view for the row that
describes the package.

VERSION version-id
Identifies which package version is to be commented on. If a value is not
specified, the version defaults to the empty string. If multiple packages
with the same package name but different versions exist, only one package
version can be commented on in one invocation of the COMMENT
statement. Delimit the version identifier with double quotation marks
when it:
v Is generated by the VERSION(AUTO) precompiler option
v Begins with a digit
v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,
precede each double quotation mark delimiter with a back slash character
to ensure that the operating system does not strip the delimiters.

PERMISSION permission-name
Identifies the row permission to which the comment applies. permission-name
must identify a row permission that exists at the current server (SQLSTATE

COMMENT

296 SQL Reference Volume 2



42704, SQLCODE -204). The comment is placed in the REMARKS column of
the SYSCAT.CONTROLS catalog table for the row that describes the
permission.

procedure-designator
Indicates a comment will be added or replaced for a procedure. For more
information, see “Function, method, and procedure designators” on page 20.

It is not possible to comment on a procedure that is in the SYSIBM,
SYSIBMADM, SYSFUN, or SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the
SYSCAT.ROUTINES catalog view for the row that describes the procedure.

ROLE role-name
Indicates a comment will be added or replaced for a role. The role-name must
identify a role that exists at the current server (SQLSTATE 42704). The
comment replaces the value of the REMARKS column of the SYSCAT.ROLES
catalog view for the row that describes the role.

SCHEMA schema-name
Indicates a comment will be added or replaced for a schema. The schema-name
must identify a schema that exists at the current server (SQLSTATE 42704). The
comment replaces the value of the REMARKS column of the
SYSCAT.SCHEMATA catalog view for the row that describes the schema.

SECURITY LABEL sec-label-name
Indicates that a comment will be added or replaced for the security label
named sec-label-name. The name must be qualified with a security policy and
must identify a security label that exists at the current server (SQLSTATE
42704). The comment replaces the value for the REMARKS column of the
SYSCAT.SECURITYLABELS catalog view for the row that describes the
security label.

SECURITY LABEL COMPONENT label-comp-name
Indicates that a comment will be added or replaced for the security label
component named label-comp-name. The label-comp-name must identify a security
label component that exists at the current server (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the
SYSCAT.SECURITYLABELCOMPONENTS catalog view for the row that
describes the security label component.

SECURITY POLICY label-pol-name
Indicates that a comment will be added or replaced for the security policy
named label-pol-name. The label-pol-name must identify a security policy that
exists at the current server (SQLSTATE 42704). The comment replaces the value
for the REMARKS column of the SYSCAT.SECURITYPOLICIES catalog view
for the row that describes the security policy.

SEQUENCE sequence-name
Indicates a comment will be added or replaced for a sequence. The
sequence-name must identify a sequence that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.SEQUENCES catalog view for the row that describes the
sequence.

SERVER server-name
Indicates a comment will be added or replaced for a data source. The
server-name must identify a data source that exists at the current server

COMMENT

Statements 297



(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.SERVERS catalog view for the row that describes the data
source.

SERVER OPTION server-option-name FOR remote-server
Indicates a comment will be added or replaced for a server option.

server-option-name
Identifies a server option. This option must be one that exists at the current
server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.SERVEROPTIONS catalog view for the
row that describes the server option.

remote-server
Describes the data source to which the server-option applies.

SERVER server-name
Names the data source to which the server-option applies. The
server-name must identify a data source that exists at the current server.

TYPE server-type
Specifies the type of data source (such as DB2 for z/OS or Oracle) to
which the server-option applies. The server-type can be specified in either
lower- or uppercase; it will be stored in uppercase in the catalog.

VERSION
Specifies the version of the data source identified by server-name.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by
version. release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, '8i'); or it
can be the concatenated values of version, release, and, if applicable,
mod (for example, '8.0.3').

WRAPPER wrapper-name
Identifies the wrapper that is used to access the data source referenced
by server-name.

service-class-designator

SERVICE CLASS service-class-name
Indicates a comment will be added or replaced for a service class. The
service-class-name must identify a service class that exists at the current
server (SQLSTATE 42704). To add or replace a comment for a service
subclass, the service-superclass-name must be specified using the UNDER
clause. The comment replaces the value for the REMARKS column of the
SYSCAT.SERVICECLASSES catalog view for the row that describes the
service class.

UNDER service-superclass-name
Specifies the service superclass of the service subclass when adding or

COMMENT

298 SQL Reference Volume 2



replacing a comment for a service subclass. The service-superclass-name
must identify a service superclass that exists at the current server
(SQLSTATE 42704).

STOGROUP storagegroup-name
Indicates a comment will be added or replaced for a storage group. The
storagegroup-name must identify a distinct storage group that exists at the
current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.STOGROUPS catalog view for the row that
describes the storage group.

TABLE table-name or view-name
Indicates a comment will be added or replaced for a table or view. The
table-name or view-name must identify a table or view (not an alias or nickname)
that exists at the current server (SQLSTATE 42704) and must not identify a
declared temporary table (SQLSTATE 42995). The comment replaces the value
for the REMARKS column of the SYSCAT.TABLES catalog view for the row
that describes the table or view.

TABLESPACE tablespace-name
Indicates a comment will be added or replaced for a table space. The
tablespace-name must identify a distinct table space that exists at the current
server (SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.TABLESPACES catalog view for the row that describes
the table space.

THRESHOLD threshold-name
Indicates a comment will be added or replaced for a threshold. The
threshold-name must identify a threshold that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.THRESHOLDS catalog view for the row that describes the
threshold.

TRIGGER trigger-name
Indicates a comment will be added or replaced for a trigger. The trigger-name
must identify a distinct trigger that exists at the current server (SQLSTATE
42704). The comment replaces the value for the REMARKS column of the
SYSCAT.TRIGGERS catalog view for the row that describes the trigger.

TRUSTED CONTEXT context-name
Indicates a comment will be added or replaced for a trusted context. The
context-name must identify a trusted context that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.CONTEXTS catalog view for the row that describes the trusted
context.

TYPE type-name
Indicates a comment will be added or replaced for a user-defined type. The
type-name must identify a user-defined type that exists at the current server
(SQLSTATE 42704). The comment replaces the value of the REMARKS column
of the SYSCAT.DATATYPES catalog view for the row that describes the
user-defined type.

In dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names.

TYPE MAPPING type-mapping-name
Indicates a comment will be added or replaced for a user-defined data type

COMMENT

Statements 299



mapping. The type-mapping-name must identify a data type mapping that exists
at the current server (SQLSTATE 42704). The comment replaces the value for
the REMARKS column of the SYSCAT.TYPEMAPPINGS catalog view for the
row that describes the mapping.

USAGE LIST usage-list-name
Indicates a comment will be added or replaced for a usage list. The
usage-list-name must identify a usage list that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.USAGELISTS catalog view for the row that describes the usage
list.

VARIABLE variable-name
Indicates a comment will be added or replaced for a global variable. The
variable-name must identify a global variable that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.VARIABLES catalog view for the row that describes the
variable.

WORK ACTION SET work-action-set-name
Indicates a comment will be added or replaced for a work action set. The
work-action-set-name must identify a work action set that exists at the current
server (SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.WORKACTIONSETS catalog view for the row that
describes the work action set.

WORK CLASS SET work-class-set-name
Indicates a comment will be added or replaced for a work class set. The
work-class-set-name must identify a work class set that exists at the current
server (SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.WORKCLASSSETS catalog view for the row that
describes the work class set.

WORKLOAD workload-name
Indicates that a comment will be added or replaced for a workload. The
workload-name must identify a workload that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.WORKLOADS catalog view for the row that describes the
workload.

WRAPPER wrapper-name
Indicates a comment will be added or replaced for a wrapper. The
wrapper-name must identify a wrapper that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.WRAPPERS catalog view for the row that describes the
wrapper.

XSROBJECT xsrobject-name
Indicates a comment will be added or replaced for an XSR object. The
xsrobject-name must identify an XSR object that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.XSROBJECTS catalog view for the row that describes the XSR
object.

IS string-constant
Specifies the comment to be added or replaced. The string-constant can be any
character string constant of up to 254 bytes. (Carriage return and line feed each
count as 1 byte.)

COMMENT

300 SQL Reference Volume 2



table-name|view-name ( { column-name IS string-constant } ... )
This form of the COMMENT statement provides the ability to specify
comments for multiple columns of a table or view. The column names must
not be qualified, each name must identify a column of the specified table or
view, and the table or view must exist at the current server. The table-name
cannot be a declared temporary table (SQLSTATE 42995).

A comment cannot be made on a column of an inoperative view (SQLSTATE
51024).

Notes
v Syntax alternatives: The following syntax alternatives are supported for

compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– DISTINCT TYPE type-name can be specified in place of TYPE type-name

– DATA TYPE type-name can be specified in place of TYPE type-name

– SYNONYM can be specified in place of ALIAS

Examples
v Example 1: Add a comment for the EMPLOYEE table.

COMMENT ON TABLE EMPLOYEE
IS ’Reflects first quarter reorganization’

v Example 2: Add a comment for the EMP_VIEW1 view.
COMMENT ON TABLE EMP_VIEW1

IS ’View of the EMPLOYEE table without salary information’

v Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE table.
COMMENT ON COLUMN EMPLOYEE.EDLEVEL

IS ’highest grade level passed in school’

v Example 4: Add comments for two different columns of the EMPLOYEE table.
COMMENT ON EMPLOYEE

(WORKDEPT IS ’see DEPARTMENT table for names’,
EDLEVEL IS ’highest grade level passed in school’ )

v Example 5: Pellow wants to comment on the CENTRE function, which he
created in his PELLOW schema, using the signature to identify the specific
function to be commented on.

COMMENT ON FUNCTION CENTRE (INT,FLOAT)
IS ’Frank’’s CENTRE fctn, uses Chebychev method’

v Example 6: McBride wants to comment on another CENTRE function, which she
created in the PELLOW schema, using the specific name to identify the function
instance to be commented on:

COMMENT ON SPECIFIC FUNCTION PELLOW.FOCUS92 IS
’Louise’’s most triumphant CENTRE function, uses the

Brownian fuzzy-focus technique’

v Example 7: Comment on the function ATOMIC_WEIGHT in the CHEM schema,
where it is known that there is only one function with that name:

COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT
IS ’takes atomic nbr, gives atomic weight’

v Example 8: Eigler wants to comment on the SEARCH procedure, which he
created in his EIGLER schema, using the signature to identify the specific
procedure to be commented on.

COMMENT ON PROCEDURE SEARCH (CHAR,INT)
IS ’Frank’’s mass search and replace algorithm’

COMMENT

Statements 301



v Example 9: Macdonald wants to comment on another SEARCH function, which
he created in the EIGLER schema, using the specific name to identify the
procedure instance to be commented on:

COMMENT ON SPECIFIC PROCEDURE EIGLER.DESTROY IS
’Patrick’’s mass search and destroy algorithm’

v Example 10: Comment on the procedure OSMOSIS in the BIOLOGY schema,
where it is known that there is only one procedure with that name:

COMMENT ON PROCEDURE BIOLOGY.OSMOSIS
IS ’Calculations modelling osmosis’

v Example 11: Comment on an index specification named INDEXSPEC.
COMMENT ON INDEX INDEXSPEC

IS ’An index specification that indicates to the optimizer
that the table referenced by nickname NICK1 has an index.’

v Example 12: Comment on the wrapper whose default name is NET8.
COMMENT ON WRAPPER NET8

IS ’The wrapper for data sources associated with
Oracle’s Net8 client software.’

v Example 13: Create a comment on the XML schema HR.EMPLOYEE.
COMMENT ON XSROBJECT HR.EMPLOYEE

IS ’This is the base XML Schema for employee data.’

v Example 14: Create a comment for trusted context APPSERVER.
COMMENT ON TRUSTED CONTEXT APPSERVER

IS ’WebSphere Server’

v Example 15: Create a comment for column mask M1.
COMMENT ON MASK M1 IS ’Column mask for column EMP.SALARY’

COMMENT

302 SQL Reference Volume 2



COMMIT
The COMMIT statement terminates a unit of work and commits the database
changes that were made by that unit of work.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
WORK

COMMIT ��

Description

The unit of work in which the COMMIT statement is executed is terminated and a
new unit of work is initiated. All changes made by the following statements
executed during the unit of work are committed: ALTER, COMMENT, CREATE,
DROP, GRANT, LOCK TABLE, REVOKE, SET INTEGRITY, SET Variable, and the
data change statements (INSERT, DELETE, MERGE, UPDATE), including those
nested in a query.

The following statements, however, are not under transaction control and changes
made by them are independent of the COMMIT statement:
v SET CONNECTION
v SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control,
the passthru session initiated by the statement is under transaction control.

v SET SERVER OPTION
v Assignments to updatable special registers

All locks acquired by the unit of work subsequent to its initiation are released,
except necessary locks for open cursors that are declared WITH HOLD. All open
cursors not defined WITH HOLD are closed. Open cursors defined WITH HOLD
remain open, and the cursor is positioned before the next logical row of the result
table. (A FETCH must be performed before a positioned UPDATE or DELETE
statement is issued.) All LOB locators are freed. Note that this is true even when
the locators are associated with LOB values retrieved via a cursor that has the
WITH HOLD property.

Dynamic SQL statements prepared in a package bound with the KEEPDYNAMIC YES
option are kept in the SQL context after a COMMIT statement. This is the default
behavior. The statement might be implicitly prepared again, as a result of DDL
operations that are rolled back within the unit of work. Inactive dynamic SQL

COMMIT

Statements 303



statements prepared in a package bound with KEEPDYNAMIC NO are removed from
the SQL context after a COMMIT. The statement must be prepared again before it
can be executed in a new transaction.

All savepoints set within the transaction are released.

The following statements behave differently than other data definition language
(DDL) and data control language (DCL) statements. Changes made by these
statements do not take effect until the statement is committed, even for the current
connection that issues the statement. Only one of these statements can be issued by
any application at a time, and only one of these statements is allowed within any
one unit of work. Each statement must be followed by a COMMIT or a
ROLLBACK statement before another one of these statements can be issued.
v CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
v CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
v CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK ACTION)
v CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)
v CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
v GRANT (Workload Privileges) or REVOKE (Workload Privileges)

Notes
v It is strongly recommended that each application process explicitly ends its unit

of work before terminating. If the application program ends normally without a
COMMIT or ROLLBACK statement then the database manager attempts a
commit or rollback depending on the application environment.

v For information about the impact of COMMIT on cached dynamic SQL
statements, see “EXECUTE”.

v For information about potential impacts of COMMIT on created temporary
tables, see “CREATE GLOBAL TEMPORARY TABLE”.

v For information about potential impacts of COMMIT on declared temporary
tables, see “DECLARE GLOBAL TEMPORARY TABLE”.

v The following dynamic SQL statements may be active during COMMIT:
– Open WITH HOLD cursor
– COMMIT statement
– CALL statements under which the COMMIT statement was executed

Example

Commit alterations to the database made since the last commit point.
COMMIT WORK

COMMIT

304 SQL Reference Volume 2



Compound SQL
A compound SQL statement is a sequence of individual SQL statements enclosed
by BEGIN and END keywords.

There are three types of compound SQL statements:
v Inlined: A compound SQL (inlined) statement is a compound SQL statement that

is inlined at run time within another SQL statement. Compound SQL (inlined)
statements have the property of being atomically executed; if the execution of
any of the statements raises an error, the full statement is rolled back.

v Embedded: Combines one or more other SQL statements (sub-statements) into an
executable block.

v Compiled: A compound SQL (compiled) statement can contain SQL control
statements and SQL statements. Compound SQL (compiled) statements can be
used to implement procedural logic through a sequence of SQL statements with
a local scope for variables, conditions, cursors, and handlers.

Compound SQL

Statements 305



Compound SQL (inlined)
A compound SQL (inlined) statement is a compound SQL statement that is inlined
at run time within another SQL statement. Compound SQL (inlined) statements
have the property of being atomically executed; if the execution of any of the
statements raises an error, the full statement is rolled back.

Invocation

This statement can be embedded in a trigger, SQL function, or SQL method, or
issued through the use of dynamic SQL statements. It is an executable statement
that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
compound statement.

Syntax

��
(1)

label:

BEGIN ATOMIC

� SQL-variable-declaration ;
condition-declaration

�

�

�

,

SQL-statement ;

END
label

��

SQL-variable-declaration:

DECLARE �

,

SQL-variable-name data-type
DEFAULT NULL

DEFAULT constant

condition-declaration:

DECLARE condition-name CONDITION FOR �

�

VALUE
SQLSTATE

string-constant

SQL-statement:

Compound SQL (inlined)

306 SQL Reference Volume 2



�

CALL
FOR

fullselect
,

WITH common-table-expression
GET DIAGNOSTICS
IF
INSERT
ITERATE
LEAVE
MERGE
RETURN
searched-delete
searched-update
SET Variable
SIGNAL
WHILE

Notes:

1 A label can only be specified when the statement is in a function, method, or
trigger definition.

Description

label
Defines the label for the code block. If the beginning label is specified, it can be
used to qualify SQL variables declared in the compound SQL (inlined)
statement and can also be specified on a LEAVE statement. If the ending label
is specified, it must be the same as the beginning label.

ATOMIC
ATOMIC indicates that, if an error occurs in the compound statement, all SQL
statements in the compound statement will be rolled back, and any remaining
SQL statements in the compound statement are not processed.

If the ATOMIC keyword is specified in an SQL function in a module or an SQL
procedure, the compound statement is processed as a compound SQL
(compiled) statement.

SQL-statement
Specifies an SQL statement to be executed within the compound SQL (inlined)
statement.

SQL-variable-declaration
Declares a variable that is local to the compound SQL (inlined) statement.

SQL-variable-name
Defines the name of a local variable. SQL variable names are converted to
uppercase. The name cannot be the same as:
v Another SQL variable within the compound statement
v A parameter name

If an SQL statement contains an identifier with the same name as an SQL
variable and a column reference, the identifier is interpreted as a column.

data-type
Specifies the data type of the variable. The XML data type is not supported
in a compound SQL (inlined) statement used in a trigger, in a method, or

Compound SQL (inlined)

Statements 307



as a stand-alone statement (SQLSTATE 429BB). The XML data type is
supported when the compound SQL (inlined) statement is used in an SQL
function body.

DEFAULT
Defines the default for the SQL variable. The variable is initialized when
the compound SQL (inlined) statement is executed. The default value must
be assignment-compatible with the data type of the variable. If a default
value is not specified, the default for the SQL variable is initialized to the
null value.

NULL
Specifies NULL as the default for the SQL variable.

constant
Specifies a constant as the default for the SQL variable.

condition-declaration
Declares a condition name and corresponding SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name must be unique
within the compound statement in which it is declared, excluding any
declarations in compound statements that are nested within that
compound statement (SQLSTATE 42734). A condition name can only be
referenced within the compound statement in which it is declared,
including any compound statements that are nested within that compound
statement (SQLSTATE 42737).

FOR SQLSTATE string-constant
Specifies the SQLSTATE associated with the condition. The string-constant
must be specified as five characters enclosed by single quotation marks,
and the SQLSTATE class (the first two characters) must not be '00'.

Notes
v Compound SQL (inlined) statements are compiled as one single statement. This

statement is effective for short scripts involving little control flow logic but
significant data flow. For larger constructs with requirements for nested control
flow or condition handling, a better choice is to use the compound SQL
(compiled) statement or an SQL procedure.

v A procedure called within a compound statement must not issue a COMMIT or
a ROLLBACK statement (SQLSTATE 42985).

v Table access restrictions: If a procedure is defined as READS SQL DATA or
MODIFIES SQL DATA, no statement in the procedure can access a table that is
being modified by the compound statement that invoked the procedure
(SQLSTATE 57053). If the procedure is defined as MODIFIES SQL DATA, no
statement in the procedure can modify a table that is being read or modified by
the compound statement that invoked the procedure (SQLSTATE 57053).

v XML assignments: Assignment to parameters and variables of data type XML is
done by reference in SQL function bodies.
When XML values are passed by reference, any input node trees are used
directly. This direct usage preserves all properties, including document order, the
original node identities, and all parent properties.

v Isolation level: If a select-statement, fullselect, or subselect specifies an
isolation-clause, the clause is ignored and a warning is returned.

Compound SQL (inlined)

308 SQL Reference Volume 2



Example

This example illustrates how inline SQL PL can be used in a data warehousing
scenario for data cleansing.

The example introduces three tables. The TARGET table contains the cleansed data.
The EXCEPT table stores rows that cannot be cleansed (exceptions) and the
SOURCE table contains the raw data to be cleansed.

A simple SQL function called DISCRETIZE is used to classify and modify the data.
It returns the null value for all bad data. The compound SQL (inlined) statement
then cleanses the data. It walks all rows of the SOURCE table in a FOR-loop and
decides whether the current row gets inserted into the TARGET or the EXCEPT
table, depending on the result of the DISCRETIZE function. More elaborate
mechanisms (multistage cleansing) are possible with this technique.

The same code can be written using an SQL Procedure or any other procedure or
application in a host language. However, the compound SQL (inlined) statement
offers a unique advantage in that the FOR-loop does not open a cursor and the
single row inserts are not really single row inserts. In fact, the logic is effectively a
multi-table insert from a shared select.

This is achieved by compilation of the compound SQL (inlined) statement as a
single statement. Similar to a view whose body is integrated into the query that
uses it and then is compiled and optimized as a whole within the query context,
the database optimizer compiles and optimizes both the control and data flow
together. The whole logic is therefore executed within the runtime environment of
the database. No data is moved outside of the core database engine, as would be
done for a procedure.

The first step is to create the required tables:
CREATE TABLE TARGET

(PK INTEGER NOT NULL
PRIMARY KEY, C1 INTEGER)

This creates a table called TARGET to contain the cleansed data.

CREATE TABLE EXCEPT
(PK INTEGER NOT NULL
PRIMARY KEY, C1 INTEGER)

This creates a table called EXCEPT to contain the exceptions.
CREATE TABLE SOURCE

(PK INTEGER NOT NULL
PRIMARY KEY, C1 INTEGER)

This creates a table called SOURCE to hold the data that is to be cleansed.

Next, a function named DISCRETIZE is created to cleanse the data by throwing
out all values outside [0..1000] and aligning them to steps of 10.

CREATE FUNCTION DISCRETIZE(RAW INTEGER) RETURNS INTEGER
RETURN CASE

WHEN RAW < 0 THEN CAST(NULL AS INTEGER)
WHEN RAW > 1000 THEN NULL
ELSE ((RAW / 10) * 10) + 5

END

Compound SQL (inlined)

Statements 309



Then the values are inserted:
INSERT INTO SOURCE (PK, C1)

VALUES (1, -5),
(2, NULL),
(3, 1200),
(4, 23),
(5, 10),
(6, 876)

Invoke the function:
BEGIN ATOMIC

FOR ROW AS
SELECT PK, C1, DISCRETIZE(C1) AS D FROM SOURCE

DO
IF ROW.D IS NULL THEN

INSERT INTO EXCEPT VALUES(ROW.PK, ROW.C1);
ELSE

INSERT INTO TARGET VALUES(ROW.PK, ROW.D);
END IF;

END FOR;
END

And test the results:

SELECT * FROM EXCEPT ORDER BY 1
PK C1
----------- -----------

1 -5
2 -
3 1200

3 record(s) selected.

SELECT * FROM TARGET ORDER BY 1
PK C1
----------- -----------

4 25
5 15
6 875

3 record(s) selected.

The final step is to clean up:
DROP FUNCTION DISCRETIZE
DROP TABLE SOURCE
DROP TABLE TARGET
DROP TABLE EXCEPT

Compound SQL (inlined)

310 SQL Reference Volume 2



Compound SQL (embedded)
Combines one or more other SQL statements (sub-statements) into an executable
block.

Invocation

This statement can only be embedded in an application program. The entire
compound SQL (embedded) statement construct is an executable statement that
cannot be dynamically prepared. The statement is not supported in REXX.

Authorization

No privileges are required to invoke an compound SQL (embedded). However, the
privileges held by the authorization ID of the statement must include all necessary
privileges to invoke the SQL statements that are embedded in the compound
statement.

Syntax

�� BEGIN COMPOUND ATOMIC
NOT ATOMIC

STATIC �

�
STOP AFTER FIRST host-variable STATEMENTS

�

sql-statement ;
�

� END COMPOUND ��

Description

ATOMIC
Specifies that, if any of the sub-statements within the compound SQL
(embedded) statement fail, then all changes made to the database by any of the
sub-statements, including changes made by successful sub-statements, are
undone.

NOT ATOMIC
Specifies that, regardless of the failure of any sub-statements, the compound
SQL (embedded) statement will not undo any changes made to the database
by the other sub-statements.

STATIC
Specifies that input variables for all sub-statements retain their original value.
For example, if

SELECT ... INTO :abc ...

is followed by:
UPDATE T1 SET C1 = 5 WHERE C2 = :abc

Compound SQL (embedded)

Statements 311



the UPDATE statement will use the value that :abc had at the start of the
execution of the compound SQL (embedded) statement, not the value that
follows the SELECT INTO.

If the same variable is set by more than one sub-statement, the value of that
variable following the compound SQL (embedded) statement is the value set
by the last sub-statement.

Note: Non-static behavior is not supported. This means that the
sub-statements should be viewed as executing non-sequentially and
sub-statements should not have interdependencies.

STOP AFTER FIRST
Specifies that only a certain number of sub-statements will be executed.

host-variable
A small integer that specifies the number of sub-statements to be executed.

STATEMENTS
Completes the STOP AFTER FIRST host-variable clause.

sql-statement
All executable statements except the following can be contained within an
embedded static compound SQL (embedded) statement:

CALL FETCH
CLOSE OPEN
CONNECT PREPARE
Compound SQL RELEASE (Connection)
DESCRIBE ROLLBACK
DISCONNECT SET CONNECTION
EXECUTE IMMEDIATE SET variable

Note: INSERT, UPDATE, and DELETE are not supported in compound SQL
for use with nicknames.

If a COMMIT statement is included, it must be the last sub-statement. If
COMMIT is in this position, it will be issued even if the STOP AFTER FIRST
host-variable STATEMENTS clause indicates that not all of the sub-statements
are to executed. For example, suppose COMMIT is the last sub-statement in a
compound SQL block of 100 sub-statements. If the STOP AFTER FIRST
STATEMENTS clause indicates that only 50 sub-statements are to be executed,
then COMMIT will be the 51st sub-statement.

An error will be returned if COMMIT is included when using CONNECT
TYPE 2 or running in an XA distributed transaction processing environment
(SQLSTATE 25000).

Rules
v DB2 Connect™ does not support SELECT statements selecting LOB columns in a

compound SQL block.
v No host language code is allowed within a compound SQL (embedded)

statement; that is, no host language code is allowed between the sub-statements
that make up the compound SQL (embedded) statement.

v Only NOT ATOMIC compound SQL (embedded) statements will be accepted by
DB2 Connect.

v Compound SQL (embedded) statements cannot be nested.
v A prepared COMMIT statement is not allowed in an ATOMIC compound SQL

(embedded) statement

Compound SQL (embedded)

312 SQL Reference Volume 2



Notes
v One SQLCA is returned for the entire compound SQL (embedded) statement.

Most of the information in that SQLCA reflects the values set by the application
server when it processed the last sub-statement. For instance:
– The SQLCODE and SQLSTATE are normally those for the last sub-statement

(the exception is described in the next point).
– If a 'no data found' warning (SQLSTATE 02000) is returned, that warning is

given precedence over any other warning so that a WHENEVER NOT
FOUND exception can be acted upon. (This means that the SQLCODE,
SQLERRML, SQLERRMC, and SQLERRP fields in the SQLCA that is
eventually returned to the application are those from the sub-statement that
triggered the 'no data found' warning. If there is more than one 'no data
found' warning within the compound SQL (embedded) statement, the fields
for the last sub-statement will be the fields that are returned.)

– The SQLWARN indicators are an accumulation of the indicators set for all
sub-statements.

v If one or more errors occurred during NOT ATOMIC compound SQL execution
and none of these are of a serious nature, the SQLERRMC will contain
information about these errors, up to a maximum of seven errors. The first token
of the SQLERRMC will indicate the total number of errors that occurred. The
remaining tokens will each contain the ordinal position and the SQLSTATE of
the failing sub-statement within the compound SQL (embedded) statement. The
format is a character string of the form:

nnnXsssccccc

with the substring starting with X repeating up to six more times and the string
elements defined as follows.

nnn The total number of statements that produced errors. (If the number
would exceed 999, counting restarts at zero.) This field is left-aligned
and padded with blanks.

X The token separator X'FF'.

sss The ordinal position of the statement that caused the error. (If the
number would exceed 999, counting restarts at zero.) For example, if the
first statement failed, this field would contain the number one
left-aligned ('1 ').

ccccc The SQLSTATE of the error.
v The second SQLERRD field contains the number of statements that failed

(returned negative SQLCODEs).
v The third SQLERRD field in the SQLCA is an accumulation of the number of

rows affected by all sub-statements.
v The fourth SQLERRD field in the SQLCA is a count of the number of successful

sub-statements. If, for example, the third sub-statement in a compound SQL
(embedded) statement failed, the fourth SQLERRD field would be set to 2,
indicating that 2 sub-statements were successfully processed before the error was
encountered.

v The fifth SQLERRD field in the SQLCA is an accumulation of the number of
rows updated or deleted due to the enforcement of referential integrity
constraints for all sub-statements that triggered such constraint activity.

Compound SQL (embedded)

Statements 313



Examples
v Example 1: In a C program, issue a compound SQL (embedded) statement that

updates both the ACCOUNTS and TELLERS tables. If there is an error in any of
the statements, undo the effect of all statements (ATOMIC). If there are no
errors, commit the current unit of work.

EXEC SQL BEGIN COMPOUND ATOMIC STATIC
UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta

WHERE AID = :aid;
UPDATE TELLERS SET TBALANCE = TBALANCE + :delta

WHERE TID = :tid;
INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);
COMMIT;

END COMPOUND;

v Example 2: In a C program, insert 10 rows of data into the database. Assume the
host variable :nbr contains the value 10 and S1 is a prepared INSERT statement.
Further, assume that all the inserts should be attempted regardless of errors
(NOT ATOMIC).

EXEC SQL BEGIN COMPOUND NOT ATOMIC STATIC STOP AFTER FIRST :nbr STATEMENTS
EXECUTE S1 USING DESCRIPTOR :*sqlda0;
EXECUTE S1 USING DESCRIPTOR :*sqlda1;
EXECUTE S1 USING DESCRIPTOR :*sqlda2;
EXECUTE S1 USING DESCRIPTOR :*sqlda3;
EXECUTE S1 USING DESCRIPTOR :*sqlda4;
EXECUTE S1 USING DESCRIPTOR :*sqlda5;
EXECUTE S1 USING DESCRIPTOR :*sqlda6;
EXECUTE S1 USING DESCRIPTOR :*sqlda7;
EXECUTE S1 USING DESCRIPTOR :*sqlda8;
EXECUTE S1 USING DESCRIPTOR :*sqlda9;

END COMPOUND;

Compound SQL (embedded)

314 SQL Reference Volume 2



Compound SQL (compiled)
A compound SQL (compiled) statement can contain SQL control statements and
SQL statements. Compound SQL (compiled) statements can be used to implement
procedural logic through a sequence of SQL statements with a local scope for
variables, conditions, cursors, and handlers.

Invocation

This statement can be embedded in a trigger, SQL function, or SQL procedure; or
issued through the use of dynamic SQL statements. It is an executable statement
that can be dynamically prepared.

Authorization

For an SQL-variable-declaration that specifies a cursor-value-constructor that uses a
select-statement, the privileges held by the authorization ID of the statement must
include the privileges necessary to execute the select-statement. See the
Authorization section in "SQL queries".

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
compound statement.

Only PUBLIC group privileges are considered for any SQL objects specified inside
the body of compound statement.

Syntax

��
label:

BEGIN
NOT ATOMIC

ATOMIC

� type-declaration ;

�

�

� SQL-variable-declaration ;
condition-declaration
return-codes-declaration

�

�

� statement-declaration ; � DECLARE-CURSOR-statement ;

�

�

� procedure-declaration ; � handler-declaration ;

�

Compound SQL (compiled)

Statements 315



�

� SQL-procedure-statement ;

END
label

��

type-declaration:

DECLARE TYPE type-name AS array-type-definition
type-name TYPE distinct-type-definition

row-type-definition

array-type-definition:

2147483647
data-type1 ARRAY [ ]

integer-constant
data-type2

data-type1:

built-in-type
anchored-data-type

row-type-name

built-in-type:

Compound SQL (compiled)

316 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML
BOOLEAN
CURSOR

anchored-data-type:

DATA TYPE TO
ANCHOR variable-name

table-name.column-name
OF

ROW table-name
view-name
cursor-variable-name

data-type2:

Compound SQL (compiled)

Statements 317



INTEGER
INT

VARCHAR ( integer )
CHARACTER VARYING
CHAR

anchored-non-row-data-type

anchored-non-row-data-type:

DATA TYPE TO
ANCHOR variable-name

table-name.column-name

distinct-type-definition:

source-data-type WITH WEAK TYPE RULES
NOT NULL

�

�
CHECK ( check-condition )

source-data-type:

built-in-type
anchored-non-row-data-type

row-type-definition:

�

,

ROW ( field-name data-type3 )
anchored-row-data-type

data-type3:

built-in-type
anchored-non-row-data-type

distinct-type-name

anchored-row-data-type:

DATA TYPE TO
ANCHOR variable-name

OF
ROW table-name

view-name
cursor-variable-name

SQL-variable-declaration:

DECLARE �

,

SQL-variable-name �

Compound SQL (compiled)

318 SQL Reference Volume 2



�
DEFAULT NULL (2)

data-type4
CONSTANT NULL
DEFAULT constant
CONSTANT ( cursor-value-constructor )

RESULT_SET_LOCATOR VARYING

data-type4:

built-in-type
anchored-data-type

(3)
array-type-name
cursor-type-name
distinct-type-name

(4)
row-type-name

cursor-value-constructor:

�

CURSOR holdability FOR select-statement
, (5)

statement-name
( cursor-parameter-declaration )

cursor-parameter-declaration:

parameter-name data-type5

data-type5:

built-in-type
anchored-non-row-data-type

distinct-type-name

holdability:

WITHOUT HOLD

WITH HOLD

condition-declaration:

DECLARE condition-name CONDITION
VALUE

SQLSTATE
FOR string-constant

statement-declaration:

�

,

DECLARE statement-name STATEMENT

Compound SQL (compiled)

Statements 319



return-codes-declaration:

DECLARE
DEFAULT '00000'

SQLSTATE CHARACTER(5)
CHAR(5) DEFAULT string-constant

DEFAULT 0
SQLCODE INTEGER

INT DEFAULT integer-constant

procedure-declaration:

DECLARE PROCEDURE procedure-name
procedure-name PROCEDURE

�

�

�

( ) SQL-procedure-body
,

parameter-declaration

SQL-procedure-body:

SQL-procedure-statement

handler-declaration:

DECLARE CONTINUE
EXIT
UNDO

HANDLER FOR �

� specific-condition-value SQL-procedure-statement
general-condition-value

specific-condition-value:

�

,
VALUE

SQLSTATE string-constant
condition-name

general-condition-value:

�

,

SQLEXCEPTION
SQLWARNING
NOT FOUND

SQL-procedure-statement:

SQL-statement
label:

Compound SQL (compiled)

320 SQL Reference Volume 2



Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

2 If data-type4 specifies a CURSOR built-in type or cursor-type-name, only NULL
or cursor-value-constructor can be specified. Only DEFAULT NULL can be
explicitly specified for array-type-name or row-type-name .

3 Only DEFAULT NULL can be explicitly specified for array-type-name.

4 Only DEFAULT NULL can be explicitly specified for row-type-name.

5 statement-name cannot be specified if cursor-parameter-declaration is specified.

Description

label
Defines the label for the code block. If the beginning label is specified, it can be
used to qualify SQL variables declared in the compound statement and can
also be specified on a LEAVE statement. If the ending label is specified, it must
be the same as the beginning label.

ATOMIC or NOT ATOMIC
ATOMIC indicates that if an unhandled exception condition occurs in the
compound statement, all SQL statements in the compound statement will be
rolled back.

NOT ATOMIC indicates that an unhandled exception condition within the
compound statement does not cause the compound statement to be rolled
back.

If the ATOMIC keyword is specified in a dynamically prepared compound
statement or an SQL function that is not within a module, the compound
statement is processed as a compound SQL (inlined) statement.

A compound statement that is used in the function body of a module table
function can only be defined as NOT ATOMIC.

type-declaration
Declares a user-defined data type that is local to the compound statement.

type-name
Specifies the name of a local user-defined data type. The name cannot
be the same as any other type declared within the current compound
statement (SQLSTATE 42734). The unqualified type-name has the same
restrictions as described in any CREATE TYPE statement (SQLSTATE
42939).

array-type-definition
Specifies the attributes of an array data type to associate with the
type-name. See “CREATE TYPE (array)” for a description of the syntax
elements. The row-type-name can refer to a declared row type that is
previously declared and in the scope of the current compound SQL
(compiled) statement. The variable-name specified in an
anchored-data-type clause can refer to a local variable in the scope of
the current compound SQL (compiled) statement.

distinct-type-definition
Specifies the source type and optional data type constraints of a
weakly typed distinct type to associate with the type-name. See
"CREATE TYPE (distinct)" for a complete description of the syntax

Compound SQL (compiled)

Statements 321



elements. The variable-name specified in anchored-non-row-data-type
clause can refer to a local variable in the scope of the current
compound SQL (compiled) statement. The data type of the anchor
variable-name or column-name must be a built-in data type.

row-type-definition
Specifies the fields of a row data type to associate with the type-name.
See “CREATE TYPE (row)” for a complete description of the syntax
elements. The variable-name specified in anchored-non-row-data-type or
anchored-row-data-type clauses can refer to a local variable in the
scope of the current compound SQL (compiled) statement.

SQL-variable-declaration
Declares a variable that is local to the compound statement.

SQL-variable-name
Defines the name of a local variable. All SQL variable names are converted
to uppercase. The name cannot be the same as another SQL variable within
the same compound statement and cannot be the same as a parameter
name. An SQL variable name must not be the same as a column name. If
an SQL statement contains an identifier with the same name as an SQL
variable and a column reference, the identifier is interpreted as a column.
If the compound statement in which the variable is declared has a label,
then references to the variable can be qualified with the label. For example,
variable V declared in a compound statement with a label C can be
referred to as C.V.

data-type4
Specifies the data type of the variable. A structured type or reference type
cannot be specified (SQLSTATE 429BB).

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type except BOOLEAN and CURSOR, which cannot be
specified for a table, see "CREATE TABLE". The XML data type cannot
be specified in a compound SQL (compiled) statement used in a
trigger, in a function, or as a stand-alone statement (SQLSTATE 429BB).
The XML data type can be specified when the compound SQL
(compiled) statement is used in an SQL procedure body.

BOOLEAN
For a Boolean.

CURSOR
For a cursor.

anchored-data-type
Identifies another object used to determine the data type of the SQL
variable. The data type of the anchor object has the same limitations
that apply to specifying the data type directly, or in the case of a row,
to creating a row type.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data type.

variable-name
Identifies an SQL variable, SQL parameter, or global variable.
The data type of the referenced variable is used as the data
type for SQL-variable-name.

Compound SQL (compiled)

322 SQL Reference Volume 2



table-name.column-name
Identifies a column name of an existing table or view. The data
type of the column is used as the data type for
SQL-variable-name.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are
based on the column names and column data types of the table
identified by table-name or the view identified by view-name.
The data type of SQL-variable-name is an unnamed row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are
based on the field names and field data types of the cursor
variable identified by cursor-variable-name. The specified cursor
variable must be one of the following elements (SQLSTATE
428HS):
v An SQL variable or global variable with a strongly typed

cursor data type
v An SQL variable or global variable with a weakly typed

cursor data type that was created or declared with a
CONSTANT clause specifying a select-statement where all the
result columns are named.

If the cursor type of the cursor variable is not strongly rtyped
using a named row type, the data type of SQL-variable-name is
an unnamed row type.

array-type-name
Specifies the name of a user-defined array type. The array data type
can be a locally declared data type, a schema data type, or a module
data type.

cursor-type-name
Specifies the name of a cursor type. The cursor data type can be a
schema data type or a module data type.

distinct-type-name
Specifies the name of a distinct type. The distinct data type can be a
schema data type or a module data type. The length, precision, and
scale of the declared variable are, respectively, the length, precision,
and scale of the source type of the distinct type.

row-type-name
Specifies the name of a user-defined row type. The row data type can
be a locally declared data type, a schema data type or a module data
type. The fields of the variable are the fields of the row type.

DEFAULT or CONSTANT
Specifies a value for the SQL variable when the compound SQL (compiled)
statement is referenced. If neither is specified, the default for the SQL
variable is the null value. Only DEFAULT NULL can be explicitly specified
if array-type-name or row-type-name is specified.

DEFAULT
Defines the default for the SQL variable. The variable is initialized
when the compound SQL (compiled) statement is referenced. The
default value must be assignment-compatible with the data type of the
variable.

Compound SQL (compiled)

Statements 323



CONSTANT
Specifies that the SQL variable has a fixed value that cannot be
changed. An SQL variable that is defined using CONSTANT cannot be
used as the target of any assignment operation. The fixed value must
be assignment-compatible with the data type of the variable.

NULL
Specifies NULL as the default for the SQL variable.

constant
Specifies a constant as the default for the SQL variable. If data-type4
specifies a CURSOR built-in type or cursor-type-name, constant cannot
be specified (SQLSTATE 42601).

cursor-value-constructor
A cursor-value-constructor specifies the select-statement that is associated
with the SQL variable. The assignment of a cursor-value-constructor to a
cursor variable defines the underlying cursor of that cursor variable.

(cursor-parameter-declaration, ...)
Specifies the input parameters of the cursor, including the name
and the data type of each parameter. Named input parameters can
be specified only if select-statement is also specified in
cursor-value-constructor (SQLSTATE 428HU).

parameter-name
Names the cursor parameter for use as an SQL variable within
select-statement. The name cannot be the same as any other
parameter name for the cursor. Names should also be chosen
to avoid any column names that could be used in
select-statement, since column names are resolved before
parameter names.

data-type5
Specifies the data type of the cursor parameter used within
select-statement. Structured types, and reference types cannot be
specified (SQLSTATE 429BB).

built-in-type
Specifies a built-in data type. For a more complete
description of each built-in data type, see "CREATE
TABLE". The BOOLEAN and CURSOR built-in types
cannot be specified (SQLSTATE 429BB).

anchored-non-row-data-type
Identifies another object used to determine the data type of
the cursor parameter. The data type of the anchor object
has the same limitations that apply to specifying the data
type directly.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the
data type.

variable-name
Identifies a local SQL variable, an SQL parameter,
or a global variable. The data type of the
referenced variable is used as the data type for the
cursor parameter.

Compound SQL (compiled)

324 SQL Reference Volume 2



table-name.column-name
Identifies a column name of an existing table or
view. The data type of the column is used as the
data type for the cursor parameter.

distinct-type-name
Specifies the name of a distinct type. If distinct-type-name is
specified without a schema name, the distinct type is
resolved by searching the schemas in the SQL path.

holdability
Specifies whether the cursor is prevented from being closed as a
consequence of a commit operation. See "DECLARE CURSOR" for
more information. The default is WITHOUT HOLD.

WITHOUT HOLD
Does not prevent the cursor from being closed as a
consequence of a commit operation.

WITH HOLD
Maintains resources across multiple units of work. Prevents the
cursor from being closed as a consequence of a commit
operation.

select-statement
Specifies the SELECT statement of the cursor. See "select-statement"
for more information. If cursor-parameter-declaration is included in
cursor-value-constructor, then select-statement must not include any
local SQL variables or routine SQL parameters (SQLSTATE 42704).

statement-name
Specifies the prepared select-statement of the cursor. See "PREPARE"
for an explanation of prepared statements. The target cursor
variable must not have a data type that is a strongly rtyped
user-defined cursor type (SQLSTATE 428HU). Named input
parameters must not be specified in cursor-value-constructor if
statement-name is specified (SQLSTATE 428HU).

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

condition-declaration
Declares a condition name with an optional associated SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name must be unique
within the compound statement in which it is declared, excluding any
declarations in compound statements that are nested within that
compound statement (SQLSTATE 42734). A condition name can only be
referenced within the compound statement in which it is declared,
including any compound statements that are nested within that compound
statement (SQLSTATE 42737).

CONDITION FOR SQLSTATE VALUEstring-constant
Specifies the SQLSTATE that is associated with the condition. The string
constant must be specified as five characters enclosed in single quotation
marks, and the SQLSTATE class (the first two characters) must not be '00'.
If this clause is not specified, the condition has no associated SQLSTATE
value.

Compound SQL (compiled)

Statements 325



statement-declaration
Declares a list of one or more names that are local to the compound statement.
Each name in statement-name must not be the same as any other statement
name declared in the same compound statement.

return-codes-declaration
Declares special variables called SQLSTATE and SQLCODE that are set
automatically to the value returned after processing an SQL statement. Both
the SQLSTATE and SQLCODE variables can only be declared in the outermost
compound statement when there are nested compound SQL (compiled)
statements; for example in an SQL procedure body. These variables may be
declared only once per SQL procedure.

declare-cursor-statement
Declares a built-in cursor in the procedure body. Variables of user-defined
cursor data types are declared using SQL-variable-declaration statements.

Each declared cursor must have a unique name within the compound
statement in which it is declared, excluding any declarations in compound
statements that are nested within that compound statement (SQLSTATE 42734).
The cursor can be referenced only from within the compound statement in
which it is declared, including any compound statements that are nested
within that compound statement (SQLSTATE 34000).

Use an OPEN statement to open the cursor, and a FETCH statement to read
rows using the cursor. To return result sets from the SQL procedure to the
client application, the cursor must be declared using the WITH RETURN
clause. The following example returns one result set to the client application:

CREATE PROCEDURE RESULT_SET()
LANGUAGE SQL
RESULT SETS 1
BEGIN

DECLARE C1 CURSOR WITH RETURN FOR
SELECT id, name, dept, job

FROM staff;
OPEN C1;

END

Note: To process result sets, you must write your client application using one
of the DB2 Call Level Interface (DB2 Call Level Interface), Open Database
Connectivity (ODBC), Java Database Connectivity (JDBC), or embedded SQL
for Java (SQLJ) application programming interfaces.

For more information about declaring a cursor, see "DECLARE CURSOR".

procedure-declaration
Declares a procedure that is local to the compound statement. The definition of
a local procedure does not include the specification of any of the options
possible in a “CREATE PROCEDURE (SQL)” statement. The options default as
they would for a “CREATE PROCEDURE (SQL)” statement with the exception
of MODIFIES SQL DATA. The data access level for the procedure is
automatically determined to be the minimum level required to process the SQL
procedure body.

procedure-name
Defines the names of a local procedure. The name must be specified
without any qualification (SQLSTATE 42601). The procedure signature,
consisting of the procedure-name and the number of declared parameters,
must be unique within the current compound statement. Outer compound
statements within which the current compound statement is nested cannot
contain a procedure with the same name.

Compound SQL (compiled)

326 SQL Reference Volume 2



parameter-declaration
Specifies the parameters of the local procedure. See “CREATE
PROCEDURE (SQL)” for a description of the syntax elements. The
parameter data type can be a locally declared data type in the scope of the
current compound statement.

SQL-procedure-body
Specifies the SQL statement that is the body of the SQL procedure. Names
referenced in the SQL-procedure-body can refer to declared objects (such as
declared variables, data types, and procedures) that are previously declared
and in the scope of the compound statement in which the local procedure
is declared.

handler-declaration
Specifies a handler, and a set of one or more SQL-procedure-statements to execute
when an exception or completion condition occurs in the compound
statement.SQL-procedure-statement is a statement that executes when the handler
receives control.

A handler is said to be active for the duration of the execution of the set of
SQL-procedure-statements that follow the set of handler-declarations within the
compound statement in which the handler is declared, including any nested
compound statements.

There are three types of condition handlers:

CONTINUE
After the handler is invoked successfully, control is returned to the SQL
statement that follows the statement that raised the exception. If the error
that raised the exception is a FOR, IF, CASE, WHILE, or REPEAT statement
(but not an SQL-procedure-statement within one of these), then control
returns to the statement that follows END FOR, END IF, END CASE, END
WHILE, or END REPEAT.

EXIT
After the handler is invoked successfully, control is returned to the end of
the compound statement that declared the handler.

UNDO
Before the handler is invoked, any SQL changes that were made in the
compound statement are rolled back. After the handler is invoked
successfully, control is returned to the end of the compound statement that
declared the handler. If UNDO is specified, the compound statement where
the handler is declared must be ATOMIC.

The conditions that cause the handler to be activated are defined in the
handler-declaration as follows:

specific-condition-value
Specifies that the handler is a specific condition handler.

SQLSTATE VALUEstring-constant
Specifies an SQLSTATE for which the handler is invoked. The first two
characters of the SQLSTATE value must not be '00'.

condition-name
Specifies a condition name for which the handler is invoked. The
condition name must be previously defined in a condition declaration
or it must identify a condition that exists at the current server.

Compound SQL (compiled)

Statements 327



general-condition-value
Specifies that the handler is a general condition handler.

SQLEXCEPTION
Specifies that the handler is invoked when an exception condition
occurs. An exception condition is represented by an SQLSTATE value
whose first two characters are not '00', '01', or '02'.

SQLWARNING
Specifies that the handler is invoked when a warning condition occurs.
A warning condition is represented by an SQLSTATE value whose first
two characters are '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition
occurs. A NOT FOUND condition is represented by an SQLSTATE
value whose first two characters are '02'.

SQL-procedure-statement
Specifies the SQL procedure statement.

label
Specifies a label for the SQL procedure statement. The label must be
unique within a list of SQL procedure statements, including any compound
statements nested within the list. Note that compound statements that are
not nested can use the same label. A list of SQL procedure statements is
possible in a number of SQL control statements.

SQL-statement
All executable SQL statements except for:
v ALTER
v CONNECT
v CREATE
v DESCRIBE
v DISCONNECT
v DROP
v FLUSH EVENT MONITOR
v GRANT
v REFRESH TABLE
v RELEASE (connection only)
v RENAME TABLE
v RENAME TABLESPACE
v REVOKE
v SET CONNECTION
v SET INTEGRITY
v SET PASSTHRU
v SET SERVER OPTION
v TRANSFER OWNERSHIP

The following executable statements are not supported in stand-alone
compound SQL (compiled) statements, but are supported in compound
SQL (compiled) statements used within an SQL function, SQL procedure,
or trigger:
v CREATE of an index, table, or view

Compound SQL (compiled)

328 SQL Reference Volume 2



v DECLARE GLOBAL TEMPORARY TABLE
v DROP of an index, table, or view
v GRANT
v ROLLBACK

The ROLLBACK statement is also not supported in any nested statement
invoked within the stand-alone compound SQL (compiled) statement.

The following statements, which are not executable statements, are
supported in compound SQL (compiled) statements:
v ALLOCATE CURSOR
v ASSOCIATE LOCATORS

Rules
v ATOMIC compound statements cannot be nested.
v The following rules apply to handler declarations:

– A handler declaration cannot contain the same condition-name or SQLSTATE
value more than once, and cannot contain an SQLSTATE value and a
condition-name that represent the same SQLSTATE value.

– Where two or more condition handlers are declared in a compound
statement:
- No two handler declarations may specify the same general condition

category (SQLEXCEPTION, SQLWARNING, NOT FOUND).
- No two handler declarations may specify the same specific condition, either

as an SQLSTATE value or as a condition-name that represents the same
value.

– A handler is activated when it is the most appropriate handler for an
exception or completion condition. The most appropriate handler is
determined based on the following considerations:
- The scope of a handler declaration H is the list of SQL-procedure-statement

that follows the handler declarations contained within the compound
statement in which H appears. This means that the scope of H does not
include the statements contained in the body of the condition handler H,
implying that a condition handler cannot handle conditions that arise
inside its own body. Similarly, for any two handlers H1 and H2 declared in
the same compound statement, H1 will not handle conditions arising in the
body of H2, and H2 will not handle conditions arising in the body of H1.

- A handler for a specific-condition-value or a general-condition-value C declared
in an inner scope takes precedence over another handler for C declared in
an enclosing scope.

- When a specific handler for condition C and a general handler which
would also handle C are declared in the same scope, the specific handler
takes precedence over the general handler.

- When a handler for a module condition that has no associated SQLSTATE
value and a handler for SQLSTATE 45000 are declared in the same scope,
the handler for the module condition takes precedence over the handler for
SQLSTATE 45000.

If an exception condition occurs for which there is no appropriate handler, the
SQL procedure containing the failing statement is terminated with an
unhandled exception condition. If a completion condition occurs for which
there is no appropriate handler, execution continues with the next SQL
statement.

Compound SQL (compiled)

Statements 329



v Referencing variables or parameters of data type XML in SQL procedures after a
commit or rollback operation occurs, without first assigning new values to these
variables, is not supported (SQLSTATE 560CE).

v Use of anchored data types: An anchored data type cannot refer to the following
objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

v If named parameter markers are used in a compound SQL (compiled) statement
that is dynamically prepared or executed, every parameter marker name must be
unique (SQLSTATE 42997).

Notes
v XML assignments: Assignment to parameters and variables of data type XML is

done by reference.
Passing parameters of data type XML in a CALL statement to an SQL procedure
is done by reference. When XML values are passed by reference, any input node
trees are used directly from the XML argument. This direct usage preserves all
properties, including document order, the original node identities, and all parent
properties.

Examples
v Example 1: A simple stand-alone compound statement that outputs the word

'Hello':
SET SERVEROUTPUT ON;
BEGIN

CALL DBMS_OUTPUT.PUT_LINE ( ’Hello’ );
END

v Example 2: A simple stand-alone compound statement that counts the number of
records in staff and outputs the result:

SET SERVEROUTPUT ON;
BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;
SELECT COUNT(*) INTO v_numRecords FROM staff;

CALL DBMS_OUTPUT.PUT_LINE (v_numRecords);
END

v Example 3: Create a procedure with a compound SQL (compiled) statement that
performs the following actions:
1. Declares SQL variables
2. Declares a cursor to return the salary of employees in a department

determined by an IN parameter. In the SELECT statement, casts the data
type of the salary column from a DECIMAL into a DOUBLE.

3. Declares an EXIT handler for the condition NOT FOUND (end of file) which
assigns the value '6666' to the OUT parameter medianSalary

4. Select the number of employees in the given department into the SQL
variable numRecords

5. Fetch rows from the cursor in a WHILE loop until 50% + 1 of the employees
have been retrieved

6. Return the median salary
CREATE PROCEDURE DEPT_MEDIAN

(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)
LANGUAGE SQL
BEGIN

Compound SQL (compiled)

330 SQL Reference Volume 2



DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT CAST(salary AS DOUBLE) FROM staff
WHERE DEPT = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

-- initialize OUT parameter
SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords FROM staff

WHERE DEPT = deptNumber;
OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

END

v Example 4: The following example illustrates the flow of execution in a
hypothetical case where an UNDO handler is activated from another condition
as the result of RESIGNAL:

CREATE PROCEDURE A()
LANGUAGE SQL
CS1: BEGIN ATOMIC

DECLARE C CONDITION FOR SQLSTATE ’12345’;
DECLARE D CONDITION FOR SQLSTATE ’23456’;

DECLARE UNDO HANDLER FOR C
H1: BEGIN

-- Perform rollback after error, perform final cleanup, and exit
-- procedure A.

-- ...

-- When this handler completes, execution continues after
-- compound statement CS1; procedure A will terminate.

END;

-- Perform some work here ...
CS2: BEGIN

DECLARE CONTINUE HANDLER FOR D
H2: BEGIN

-- Perform local recovery, then forward the error
-- condition to the outer handler for additional
-- processing.

-- ...

RESIGNAL C; -- will activate UNDO handler H1; execution
-- WILL NOT return here. Any local cursors
-- declared in H2 and CS2 will be closed.

END;

-- Perform some more work here ...

-- Simulate raising of condition D by some SQL statement
-- in compound statement CS2:
SIGNAL D; -- will activate H2

END;
END

Compound SQL (compiled)

Statements 331



CONNECT (type 1)
The CONNECT (Type 1) statement connects an application process to the identified
application server according to the rules for remote unit of work.

An application process can only be connected to one application server at a time.
This is called the current server. A default application server may be established
when the application requester is initialized. If implicit connect is available and an
application process is started, it is implicitly connected to the default application
server. The application process can explicitly connect to a different application
server by issuing a CONNECT statement. A connection lasts until a CONNECT
RESET statement or a DISCONNECT statement is issued or until another
CONNECT statement changes the application server.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. When invoked using the command line processor, additional options can
be specified.

For more information, refer to “Using command line SQL statements and XQuery
statements” in Command Reference.

Authorization

CONNECT processing goes through two levels of access control. Both levels must
be satisfied for the connection to be successful.

The first level of access control is authentication, where the user ID associated with
the connection must be successfully authenticated according to the authentication
method set up for the server. At successful authentication, a database authorization
ID is derived from the connection user ID according to the authentication plug-in
in effect for the server. This database authorization ID must then pass the second
level of access control for the connection, that is, authorization. To do so, this
authorization ID must hold at least one of the following authorities:
v CONNECT authority
v SECADM authority
v DBADM authority
v SYSADM authority
v SYSCTRL authority
v SYSMAINT authority
v SYSMON authority

Note: For a partitioned database, the user and group definitions must be identical
across all database partitions.

Syntax

�� CONNECT �

CONNECT (type 1)

332 SQL Reference Volume 2



�
TO server-name

host-variable lock-block authorization
RESET

(1)
authorization

��

authorization:

USER authorization-name
host-variable

USING password
host-variable

�

�
NEW password CONFIRM password

host-variable

lock-block:

IN SHARE MODE

IN EXCLUSIVE MODE
ON SINGLE MEMBER

Notes:

1 This form is only valid if implicit connect is enabled.

Description

CONNECT (with no operand)
Returns information about the current server. The information is returned in
the SQLERRP field of the SQLCA as described in "Successful Connection".

If a connection state exists, the authorization ID and database alias are placed
in the SQLERRMC field of the SQLCA. If the authorization ID is longer than 8
bytes, it will be truncated to 8 bytes, and the truncation will be flagged in the
SQLWARN0 and SQLWARN1 fields of the SQLCA, with 'W' and 'A',
respectively.

If no connection exists and implicit connect is possible, then an attempt to
make an implicit connection is made. If implicit connect is not available, this
attempt results in an error (no existing connection). If no connection, then the
SQLERRMC field is blank.

The territory code and code page of the application server are placed in the
SQLERRMC field (as they are with a successful CONNECT statement).

This form of CONNECT:
v Does not require the application process to be in the connectable state.
v If connected, does not change the connection state.
v If unconnected and implicit connect is available, a connection to the default

application server is made. In this case, the country or region code and code
page of the application server are placed in the SQLERRMC field, like a
successful CONNECT statement.

v If unconnected and implicit connect is not available, the application process
remains unconnected.

v Does not close cursors.

CONNECT (type 1)

Statements 333



TO server-name or host-variable
Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator
variable. The server-name that is contained within the host-variable must be
left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.
It must be listed in the application requester's local directory.

When the CONNECT statement is executed, the application process must be in
the connectable state.

Successful Connection
If the CONNECT statement is successful:
v All open cursors are closed, all prepared statements are destroyed,

and all locks are released from the previous application server.
v The application process is disconnected from its previous application

server, if any, and connected to the identified application server.
v The actual name of the application server (not an alias) is placed in

the CURRENT SERVER special register.
v Information about the application server is placed in the SQLERRP

field of the SQLCA. If the application server is an IBM product, the
information has the form pppvvrrm, where:
– ppp identifies the product as follows:

- DSN for DB2 for z/OS
- ARI for DB2 Server for VSE & VM
- QSQ for DB2 for i
- SQL for DB2 for Linux, UNIX, and Windows

– vv is a two-digit version identifier, such as '08'
– rr is a two-digit release identifier, such as '01'
– m is a one-character modification level identifier, such as '0'.
For example, Version 9.5 of DB2 for Linux, UNIX, and Windows is
identified as 'SQL09050'.

v The SQLERRMC field of the SQLCA is set to contain the following
values (separated by X'FF')
1. The country or region code of the application server (or blanks

if using DB2 Connect),
2. The code page of the application server (or CCSID if using DB2

Connect),
3. The authorization ID (up to first 8 bytes only),
4. The database alias,
5. The platform type of the application server. Currently identified

values are:

Token Server

QAS DB2 for i

QDB2 DB2 for z/OS

QDB2/6000
DB2 Database for AIX

CONNECT (type 1)

334 SQL Reference Volume 2



QDB2/HPUX
DB2 Database for HP-UX

QDB2/LINUX
DB2 Database for Linux

QDB2/NT
DB2 Database for Windows

QDB2/SUN
DB2 Database for Solaris Operating System

QSQLDS/VM
DB2 Server for VM

QSQLDS/VSE
DB2 Server for VSE

6. The agent ID. It identifies the agent executing within the
database manager on behalf of the application. This field is the
same as the agent_id element returned by the database monitor.

7. The agent index. It identifies the index of the agent and is used
for service.

8. If the server instance operates in a DB2 pureScale environment,
as indicated by SQLWARN0 and SQLWARN4 being set to 'W'
and 'S' respectively, this value represents the member number.
If, as indicated by token 10, the server instance operates in a
partitioned environment, this token represents the member
number. If the server instance operates in a non-partitioned
environment and outside of a DB2 pureScale environment, this
value is not applicable and is always 0.

9. The code page of the application client.
10. If this value is zero, the server instance operates in a

non-partitioned environment and outside of a DB2 pureScale
environment. Otherwise, this non-zero value represents the
number of members in a DB2 pureScale instance, if SQLWARN0
and SQLWARN4 are set to 'W' and 'S' respectively. If this value
is non-zero but neither SQLWARN0 nor SQLWARN4 is set, it
represents the number of members in a partitioned
environment.

v The SQLERRD(1) field of the SQLCA indicates the maximum
expected difference in length of mixed character data (CHAR data
types) when converted to the database code page from the
application code page. A value of 0 or 1 indicates no expansion; a
value greater than 1 indicates a possible expansion in length; a
negative value indicates a possible contraction.

v The SQLERRD(2) field of the SQLCA indicates the maximum
expected difference in length of mixed character data (CHAR data
types) when converted to the application code page from the
database code page. A value of 0 or 1 indicates no expansion; a
value greater than 1 indicates a possible expansion in length; a
negative value indicates a possible contraction.

v The SQLERRD(3) field of the SQLCA indicates whether or not the
database on the connection is updatable. A database is initially
updatable, but is changed to read-only if a unit of work determines
the authorization ID cannot perform updates. The value is one of:
– 1 - updatable

CONNECT (type 1)

Statements 335



– 2 - read-only
v The SQLERRD(4) field of the SQLCA returns certain characteristics

of the connection. The value is one of:

0 N/A (only possible if running from a client which is not at
the latest level, is one-phase commit, and is an updater).

1 one-phase commit.

2 one-phase commit; read-only (only applicable to connections
to DRDA1 databases in a TP Monitor environment).

3 two-phase commit.
v The SQLERRD(5) field of the SQLCA returns the authentication type

for the connection. The value is one of:

0 Authenticated on the server.

1 Authenticated on the client.

2 Authenticated using DB2 Connect.

4 Authenticated on the server with encryption.

5 Authenticated using DB2 Connect with encryption.

7 Authenticated using an external Kerberos security
mechanism.

9 Authenticated using an external GSS API plug-in security
mechanism.

11 Authenticated on the server, which accepts encrypted data.

255 Authentication not specified.
v The SQLERRD(6) field of the SQLCA returns the database partition

number of the database partition to which the connection was made
if in a partitioned database environment. Otherwise, a value of 0 is
returned.

v The SQLWARN1 field in the SQLCA will be set to 'A' if the
authorization ID of the successful connection is longer than 8 bytes.
This indicates that truncation has occurred. The SQLWARN0 field in
the SQLCA will be set to 'W' to indicate this warning.

Unsuccessful Connection
If the CONNECT statement is unsuccessful:
v The SQLERRP field of the SQLCA is set to the name of the module

at the application requester that detected the error. The first three
characters of the module name identify the product.

v If the CONNECT statement is unsuccessful because the application
process is not in the connectable state, the connection state of the
application process is unchanged.

v If the CONNECT statement is unsuccessful because the server-name
is not listed in the local directory, an error message (SQLSTATE
08001) is issued and the connection state of the application process
remains unchanged:
– If the application requester was not connected to an application

server then the application process remains unconnected.

CONNECT (type 1)

336 SQL Reference Volume 2



– If the application requester was already connected to an
application server, the application process remains connected to
that application server. Any further statements are executed at
that application server.

v If the CONNECT statement is unsuccessful for any other reason, the
application process is placed into the unconnected state.

IN SHARE MODE
Allows other concurrent connections to the database and prevents other users
from connecting to the database in exclusive mode.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations at the
application server, unless they have the same authorization ID as the user
holding the exclusive lock. This option is not supported by DB2 Connect.

ON SINGLE MEMBER
Specifies that the coordinator database member is connected in exclusive
mode and all other members are connected in share mode.

If the database is neither in a partitioned environment nor a DB2 pureScale
environment, this option can be specified, but it has no effect.

RESET
Disconnects the application process from the current server. A commit
operation is performed. If implicit connect is available, the application process
remains unconnected until an SQL statement is issued.

USER authorization-name/host-variable
Identifies the user ID trying to connect to the application server. If a
host-variable is specified, it must be a character string variable that does not
include an indicator variable. The user ID that is contained within the
host-variable must be left-aligned and must not be delimited by quotation
marks.

USING password/host-variable
Identifies the password of the user ID trying to connect to the application
server. The password or host-variable can be up to 14 bytes long. If a host
variable is specified, it must be a character string variable with a length
attribute not greater than 14, and it must not include an indicator variable.

NEW password/host-variable CONFIRM password
Identifies the new password that should be assigned to the user ID identified
by the USER option. The password or host-variable can be up to 14 bytes long. If
a host variable is specified, it must be a character string variable with a length
attribute not greater than 14, and it must not include an indicator variable. The
system on which the password will be changed depends on how the user
authentication has been set up. To support the changing passwords on Linux,
the database instance must be configured to use the security plug-ins
IBMOSchgpwdclient and IBMOSchgpwdserver.

Notes
v It is good practice for the first SQL statement executed by an application process

to be the CONNECT statement.
v If a CONNECT statement is issued to the current application server with a

different user ID and password then the conversation is deallocated and
reallocated. All cursors are closed by the database manager (with the loss of the
cursor position if the WITH HOLD option was used).

CONNECT (type 1)

Statements 337



v If a CONNECT statement is issued to the current application server with the
same user ID and password then the conversation is not deallocated and
reallocated. Cursors, in this case, are not closed.

v To use a multiple-partition partitioned database environment, the user or
application must connect to one of the database partitions listed in the
db2nodes.cfg file. You should try to ensure that not all users use the same
database partition as the coordinator partition.

v The authorization-name SYSTEM cannot be explicitly specified in the CONNECT
statement. However, on Windows operating systems, local applications running
under the Local System Account can implicitly connect to the database, such that
the user ID is SYSTEM.

v When connecting to Windows Server explicitly, the authorization-name or user
host-variable can be specified using the Microsoft Windows Security Account
Manager (SAM)-compatible name.

v The database can be inaccessible if the database was not explicitly activated, a
client application performs frequent reconnections, or the time interval between
issuing the DEACTIVATE DATABASE and ACTIVATE DATABASE commands is very
short. Activate the database by issuing the ACTIVATE DATABASE command and
then attempt to connect to the database.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
v Example 1: In a C program, connect to the application server TOROLAB, using

database alias TOROLAB, user ID FERMAT, and password THEOREM.
EXEC SQL CONNECT TO TOROLAB USER FERMAT USING THEOREM;

v Example 2: In a C program, connect to an application server whose database alias
is stored in the host variable APP_SERVER (varchar(8)). Following a successful
connection, copy the 3-character product identifier of the application server to
the variable PRODUCT (char(3)).

EXEC SQL CONNECT TO :APP_SERVER;
if (strncmp(SQLSTATE,’00000’,5))

strncpy(PRODUCT,sqlca.sqlerrp,3);

CONNECT (type 1)

338 SQL Reference Volume 2



CONNECT (type 2)
The CONNECT (Type 2) statement connects an application process to the identified
application server and establishes the rules for application-directed distributed unit
of work. This server is then the current server for the process.

Most aspects of a CONNECT (Type 1) statement also apply to a CONNECT (Type
2) statement. Rather than repeating that material here, this section describes only
those elements of Type 2 that differ from Type 1.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. When invoked using the command line processor, additional options can
be specified.

For more information, refer to “Using command line SQL statements and XQuery
statements” in Command Reference.

Authorization

CONNECT processing goes through two levels of access control. Both levels must
be satisfied for the connection to be successful.

The first level of access control is authentication, where the user ID associated with
the connection must be successfully authenticated according to the authentication
method set up for the server. At successful authentication, a database authorization
ID is derived from the connection user ID according to the authentication plug-in
in effect for the server. This database authorization ID must then pass the second
level of access control for the connection, that is, authorization. To do so, this
authorization ID must hold at least one of the following authorities:
v CONNECT authority
v SECADM authority
v DBADM authority
v SYSADM authority
v SYSCTRL authority
v SYSMAINT authority
v SYSMON authority

Note: For a partitioned database, the user and group definitions must be identical
across all database partitions.

Syntax

The selection between Type 1 and Type 2 is determined by precompiler options.
For an overview of these options, see “Connecting to distributed relational
databases”.

�� CONNECT �

CONNECT (type 2)

Statements 339



�
TO server-name

host-variable lock-block authorization
RESET

(1)
authorization

��

authorization:

USER authorization-name
host-variable

USING password
host-variable

�

�
NEW password CONFIRM password

host-variable

lock-block:

IN SHARE MODE

IN EXCLUSIVE MODE
ON SINGLE MEMBER

Notes:

1 This form is only valid if implicit connect is enabled.

Description

TO server-name/host-variable
The rules for coding the name of the server are the same as for Type 1.

If the SQLRULES(STD) option is in effect, the server-name must not identify an
existing connection of the application process, otherwise an error (SQLSTATE
08002) is raised.

If the SQLRULES(DB2) option is in effect and the server-name identifies an
existing connection of the application process, that connection is made current
and the old connection is placed into the dormant state. That is, the effect of
the CONNECT statement in this situation is the same as that of a SET
CONNECTION statement.

For information about the specification of SQLRULES, see “Options that
Govern Distributed Unit of Work Semantics”.

Successful Connection
If the CONNECT statement is successful:
v A connection to the application server is either created (or made

non-dormant) and placed into the current and held states.
v If the CONNECT TO is directed to a different server than the

current server, then the current connection is placed into the
dormant state.

v The CURRENT SERVER special register and the SQLCA are updated
in the same way as for CONNECT (Type 1).

Unsuccessful Connection
If the CONNECT statement is unsuccessful:

CONNECT (type 2)

340 SQL Reference Volume 2



v No matter what the reason for failure, the connection state of the
application process and the states of its connections are unchanged.

v As with an unsuccessful Type 1 CONNECT, the SQLERRP field of
the SQLCA is set to the name of the module at the application
requester or server that detected the error.

CONNECT (with no operand), IN SHARE/EXCLUSIVE MODE, USER, and USING
If a connection exists, Type 2 behaves like a Type 1. The authorization ID and
database alias are placed in the SQLERRMC field of the SQLCA. If a
connection does not exist, no attempt to make an implicit connection is made
and the SQLERRP and SQLERRMC fields return a blank. (Applications can
check if a current connection exists by checking these fields.)

A CONNECT with no operand that includes USER and USING can still
connect an application process to a database using the DB2DBDFT
environment variable. This method is equivalent to a Type 2 CONNECT
RESET, but permits the use of a user ID and password.

RESET
Equivalent to an explicit connect to the default database if it is available. If a
default database is not available, the connection state of the application process
and the states of its connections are unchanged.

Availability of a default database is determined by installation options,
environment variables, and authentication settings.

Rules
v As outlined in “Options that Govern Distributed Unit of Work Semantics”, a set

of connection options governs the semantics of connection management. Default
values are assigned to every preprocessed source file. An application can consist
of multiple source files precompiled with different connection options.
Unless a SET CLIENT command or API has been executed first, the connection
options used when preprocessing the source file containing the first SQL
statement executed at run time become the effective connection options.
If a CONNECT statement from a source file preprocessed with different
connection options is subsequently executed without the execution of any
intervening SET CLIENT command or API, an error (SQLSTATE 08001) is
returned. Note that once a SET CLIENT command or API has been executed, the
connection options used when preprocessing all source files in the application
are ignored.
Example 1 in the “Examples” section of this statement illustrates these rules.

v Although the CONNECT statement can be used to establish or switch
connections, CONNECT with the USER/USING clause will only be accepted
when there is no current or dormant connection to the named server. The
connection must be released before issuing a connection to the same server with
the USER/USING clause, otherwise it will be rejected (SQLSTATE 51022).
Release the connection by issuing a DISCONNECT statement or a RELEASE
statement followed by a COMMIT statement.

Comparing Type 1 and Type 2 CONNECT Statements

The semantics of the CONNECT statement are determined by the CONNECT
precompiler option or the SET CLIENT API (see “Options that Govern Distributed
Unit of Work Semantics”). CONNECT Type 1 or CONNECT Type 2 can be

CONNECT (type 2)

Statements 341



specified and the CONNECT statements in those programs are known as Type 1
and Type 2 CONNECT statements, respectively. Their semantics are described in
the following tables:

Use of CONNECT:

Type 1 Type 2

Each unit of work can only establish
connection to one application server.

Each unit of work can establish connection to
multiple application servers.

The current unit of work must be committed
or rolled back before allowing a connection
to another application server.

The current unit of work need not be
committed or rolled back before connecting
to another application server.

The CONNECT statement establishes the
current connection. Subsequent SQL requests
are forwarded to this connection until
changed by another CONNECT.

Same as Type 1 CONNECT if establishing
the first connection. If switching to a
dormant connection and SQLRULES is set to
STD, then the SET CONNECTION statement
must be used instead.

Connecting to the current connection is valid
and does not change the current connection.

Same as Type 1 CONNECT if the SQLRULES
precompiler option is set to DB2. If
SQLRULES is set to STD, then the SET
CONNECTION statement must be used
instead.

Connecting to another application server
disconnects the current connection. The new
connection becomes the current connection.
Only one connection is maintained in a unit
of work.

Connecting to another application server
puts the current connection into the dormant
state. The new connection becomes the
current connection. Multiple connections can
be maintained in a unit of work.

If the CONNECT is for an application server
on a dormant connection, it becomes the
current connection.

Connecting to a dormant connection using
CONNECT is only allowed if
SQLRULES(DB2) was specified. If
SQLRULES(STD) was specified, then the SET
CONNECTION statement must be used
instead.

SET CONNECTION statement is supported
for Type 1 connections, but the only valid
target is the current connection.

SET CONNECTION statement is supported
for Type 2 connections to change the state of
a connection from dormant to current.

Use of CONNECT...USER...USING:

Type 1 Type 2

Connecting with the USER...USING clauses
disconnects the current connection and
establishes a new connection with the given
authorization name and password.

Connecting with the USER/USING clause
will only be accepted when there is no
current or dormant connection to the same
named server.

Use of Implicit CONNECT, CONNECT RESET, and Disconnecting:

CONNECT (type 2)

342 SQL Reference Volume 2



Type 1 Type 2

CONNECT RESET can be used to disconnect
the current connection.

CONNECT RESET is equivalent to
connecting to the default application server
explicitly if one has been defined in the
system.

Connections can be disconnected by the
application at a successful COMMIT. Prior to
the commit, use the RELEASE statement to
mark a connection as release-pending. All
such connections will be disconnected at the
next COMMIT.

An alternative is to use the precompiler
options DISCONNECT(EXPLICIT),
DISCONNECT(CONDITIONAL),
DISCONNECT(AUTOMATIC), or the
DISCONNECT statement instead of the
RELEASE statement.

After using CONNECT RESET to disconnect
the current connection, if the next SQL
statement is not a CONNECT statement, then
it will perform an implicit connect to the
default application server if one has been
defined in the system.

CONNECT RESET is equivalent to an
explicit connect to the default application
server if one has been defined in the system.

It is an error to issue consecutive CONNECT
RESETs.

It is an error to issue consecutive CONNECT
RESETs ONLY if SQLRULES(STD) was
specified because this option disallows the
use of CONNECT to existing connection.

CONNECT RESET implicitly rolls back the
current unit of work.

CONNECT RESET implicitly rolls back the
current unit of work.

If an existing connection is disconnected by
the system for whatever reasons, then
subsequent non-CONNECT SQL statements
to this database will receive an SQLSTATE of
08003.

If an existing connection is disconnected by
the system, COMMIT, ROLLBACK, and SET
CONNECTION statements are still
permitted.

The unit of work will be implicitly
committed when the application process
terminates successfully.

Same as Type 1.

All connections (only one) are disconnected
when the application process terminates.

All connections (current, dormant, and those
marked for release pending) are disconnected
when the application process terminates.

CONNECT Failures:

Type 1 Type 2

Regardless of whether there is a current
connection when a CONNECT fails (with an
error other than server-name not defined in
the local directory), the application process is
placed in the unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

If there is a current connection when a
CONNECT fails, the current connection is
unaffected.

If there was no current connection when the
CONNECT fails, then the program is then in
an unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

CONNECT (type 2)

Statements 343



Notes
v Implicit connect is supported for the first SQL statement in an application with

Type 2 connections. In order to execute SQL statements on the default database,
first the CONNECT RESET or the CONNECT USER/USING statement must be
used to establish the connection. The CONNECT statement with no operands
will display information about the current connection if there is one, but will not
connect to the default database if there is no current connection.

v The authorization-name SYSTEM cannot be explicitly specified in the CONNECT
statement. However, on Windows operating systems, local applications running
under the Local System Account can implicitly connect to the database, such that
the user ID is SYSTEM.

v When connecting to Windows Server explicitly, the authorization-name or user
host-variable can be specified using the Microsoft Windows Security Account
Manager (SAM)-compatible name.

v Termination of a connection: When a connection is terminated and a transaction
has not yet been committed or rolled back, see "Use of Implicit CONNECT,
CONNECT RESET, and Disconnecting" section for details on what happens to
such transactions. To ensure consistent behavior, code an explicit COMMIT
statement or ROLLBACK statement instead of depending on the behavior of the
CONNECT statement.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
v Example 1: This example illustrates the use of multiple source programs (shown

in the boxes), some preprocessed with different connection options (shown in the
statement preceding the code), and one of which contains a SET CLIENT API
call.
PGM1: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

...
exec sql CONNECT TO OTTAWA;
exec sql SELECT col1 INTO :hv1
FROM tbl1;
...

PGM2: CONNECT(2) SQLRULES(STD) DISCONNECT(AUTOMATIC)
...
exec sql CONNECT TO QUEBEC;
exec sql SELECT col1 INTO :hv1
FROM tbl2;
...

PGM3: CONNECT(2) SQLRULES(STD) DISCONNECT(EXPLICIT)
...
SET CLIENT CONNECT 2 SQLRULES DB2 DISCONNECT EXPLICIT 1

exec sql CONNECT TO LONDON;
exec sql SELECT col1 INTO :hv1
FROM tbl3;
...

Note:

1. Not the actual syntax of the SET CLIENT API
PGM4: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

CONNECT (type 2)

344 SQL Reference Volume 2



...
exec sql CONNECT TO REGINA;
exec sql SELECT col1 INTO :hv1
FROM tbl4;
...

If the application executes PGM1 then PGM2:
– connect to OTTAWA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL
– connect to QUEBEC fails with SQLSTATE 08001 because both SQLRULES and

DISCONNECT are different.
If the application executes PGM1 then PGM3:
– connect to OTTAWA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL
– connect to LONDON runs: connect=2, sqlrules=DB2, disconnect=EXPLICIT

This is OK because the SET CLIENT API is run before the second CONNECT
statement.
If the application executes PGM1 then PGM4:
– connect to OTTAWA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL
– connect to REGINA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL

This is OK because the preprocessor options for PGM1 are the same as those for
PGM4.

v Example 2: This example shows the interrelationships of the CONNECT (Type 2),
SET CONNECTION, RELEASE, and DISCONNECT statements. S0, S1, S2, and
S3 represent four servers.

Sequence Statement
Current
Server

Dormant
Connections

Release
Pending

0 v No statement v None v None v None

1 v SELECT * FROM TBLA v S0 (default) v None v None

2 v CONNECT TO S1

v SELECT * FROM TBLB

v S1

v S1

v S0

v S0

v None

v None

3 v CONNECT TO S2

v UPDATE TBLC SET ...

v S2

v S2

v S0, S1

v S0, S1

v None

v None

4 v CONNECT TO S3

v SELECT * FROM TBLD

v S3

v S3

v S0, S1, S2

v S0, S1, S2

v None

v None

5 v SET CONNECTION S2 v S2 v S0, S1, S3 v None

6 v RELEASE S3 v S2 v S0, S1 v S3

7 v COMMIT v S2 v S0, S1 v None

8 v SELECT * FROM TBLE v S2 v S0, S1 v None

9 v DISCONNECT S1

v SELECT * FROM TBLF

v S2

v S2

v S0

v S0

v None

v None

CONNECT (type 2)

Statements 345



CREATE ALIAS
The CREATE ALIAS statement defines an alias for a module, nickname, sequence,
table, view, or another alias. Aliases are also known as synonyms.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the alias does not exist
v CREATEIN privilege on the schema, if the schema name of the alias refers to an

existing schema, or CREATEIN privilege on SYSPUBLIC, if a public alias is
being created

v DBADM authority

Privileges required to use the referenced object through its alias are identical to the
privileges required to use the object directly.

To replace an existing alias, the authorization ID of the statement must be the
owner of the existing alias (SQLSTATE 42501).

Syntax

�� CREATE
OR REPLACE PUBLIC

ALIAS table-alias
module-alias
sequence-alias

��

table-alias:

alias-name
TABLE

FOR table-name
view-name
nickname
alias-name2

module-alias:

alias-name FOR MODULE module-name
alias-name2

sequence-alias:

alias-name FOR SEQUENCE sequence-name
alias-name2

CREATE ALIAS

346 SQL Reference Volume 2



Description

OR REPLACE
Specifies to replace the definition for the alias if one exists at the current server.
The existing definition is effectively dropped before the new definition is
replaced in the catalog. This option is ignored if a definition for the alias does
not exist at the current server. This option can be specified only by the owner
of the object.

PUBLIC
Specifies that the alias is an object in the system schema SYSPUBLIC.

alias-name
Names the alias. For a table alias, the name must not identify a nickname,
table, view, or table alias that exists at the current server. For a module alias,
the name must not identify a module or module alias that exists at the current
server. For a sequence alias, the name must not identify a sequence or
sequence alias that exists at the current server.

If a two-part name is specified, the schema name cannot begin with 'SYS'
(SQLSTATE 42939) except if PUBLIC is specified, then the schema name must
be SYSPUBLIC (SQLSTATE 428EK).

FOR TABLE table-name, view-name, nickname, or alias-name2
Identifies the table, view, nickname, or table alias for which alias-name is
defined. If another alias name is supplied (alias-name2), then it must not be the
same as the new alias-name being defined (in its fully-qualified form). The
table-name cannot be a declared temporary table (SQLSTATE 42995).

FOR MODULE module-name, or alias-name2
Identifies the module or module alias for which alias-name is defined. If
another alias name is supplied (alias-name2), then it must not be the same as
the new alias-name being defined (in its fully-qualified form).

FOR SEQUENCE sequence-name, or alias-name2
Identifies the sequence or sequence alias for which alias-name is defined. If
another alias name is supplied (alias-name2), then it must not be the same as
the new alias-name being defined (in its fully-qualified form). The sequence-name
must not be a sequence generated by the system for an identity column
(SQLSTATE 428FB).

Notes
v The keyword PUBLIC is used to create a public alias (also known as a public

synonym). If the keyword PUBLIC is not used, the type of alias is a private alias
(also known as a private synonym).

v The definition of the newly created table alias is stored in SYSCAT.TABLES. The
definition of the newly created module alias is stored in SYSCAT.MODULES.
The definition of the newly created sequence alias is stored in
SYSCAT.SEQUENCES.

v An alias can be defined for an object that does not exist at the time of the
definition. If it does not exist, a warning is issued (SQLSTATE 01522). However,
the referenced object must exist when a SQL statement containing the alias is
compiled, otherwise an error is issued (SQLSTATE 52004).

v An alias can be defined to refer to another alias as part of an alias chain but this
chain is subject to the same restrictions as a single alias when used in an SQL
statement. An alias chain is resolved in the same way as a single alias. If an alias
used in a statement in a package, an SQL routine, a trigger, the default
expression for a global variable, or a view definition points to an alias chain,

CREATE ALIAS

Statements 347



then a dependency is recorded for the package, SQL routine, trigger, global
variable, or view on each alias in the chain. An alias cannot refer to itself in an
alias chain and such a cycle is detected at alias definition time (SQLSTATE
42916).

v Resolving an unqualified alias name: When resolving an unqualified name,
private aliases are considered before public aliases.

v Conservative binding for public aliases: If a public alias is used in a statement
in a package, an SQL routine, a trigger, the default expression for a global
variable, or a view definition, the public alias will continue to be used by these
objects regardless of what other object with the same name is created
subsequently.

v Creating an alias with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
– SYNONYM can be specified in place of ALIAS

Examples
v Example 1: HEDGES attempts to create an alias for a table T1 (both

unqualified).

CREATE ALIAS A1 FOR T1

The alias HEDGES.A1 is created for HEDGES.T1.
v Example 2: HEDGES attempts to create an alias for a table (both qualified).

CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

The alias HEDGES.A1 is created for MCKNIGHT.T1.
v Example 3: HEDGES attempts to create an alias for a table (alias in a different

schema; HEDGES is not a DBADM; HEDGES does not have CREATEIN on
schema MCKNIGHT).

CREATE ALIAS MCKNIGHT.A1 FOR MCKNIGHT.T1

This example fails (SQLSTATE 42501).
v Example 4: HEDGES attempts to create an alias for an undefined table (both

qualified; FUZZY.WUZZY does not exist).
CREATE ALIAS HEDGES.A1 FOR FUZZY.WUZZY

This statement succeeds but with a warning (SQLSTATE 01522).
v Example 5: HEDGES attempts to create an alias for an alias (both qualified).

CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1
CREATE ALIAS HEDGES.A2 FOR HEDGES.A1

The first statement succeeds (as per example 2).
The second statement succeeds and an alias chain is created, consisting of
HEDGES.A2 which refers to HEDGES.A1 which refers to MCKNIGHT.T1. Note
that it does not matter whether or not HEDGES has any privileges on
MCKNIGHT.T1. The alias is created regardless of the table privileges.

v Example 6: Designate A1 as an alias for the nickname FUZZYBEAR.
CREATE ALIAS A1 FOR FUZZYBEAR

CREATE ALIAS

348 SQL Reference Volume 2



v Example 7: A large organization has a finance department numbered D108 and a
personnel department numbered D577. D108 keeps certain information in a table
that resides at a DB2 RDBMS. D577 keeps certain records in a table that resides
at an Oracle RDBMS. A DBA defines the two RDBMSs as data sources within a
federated system, and gives the tables the nicknames of DEPTD108 and
DEPTD577, respectively. A federated system user needs to create joins between
these tables, but would like to reference them by names that are more
meaningful than their alphanumeric nicknames. So the user defines FINANCE
as an alias for DEPTD108 and PERSONNEL as an alias for DEPTD577.

CREATE ALIAS FINANCE FOR DEPTD108
CREATE ALIAS PERSONNEL FOR DEPTD577

v Example 8: Create a public alias called TABS for the catalog view
SYSCAT.TABLES.

CREATE PUBLIC ALIAS TABS FOR SYSCAT.TABLES

CREATE ALIAS

Statements 349



CREATE AUDIT POLICY
The CREATE AUDIT POLICY statement defines an auditing policy at the current
server. The policy determines what categories are to be audited; it can then be
applied to other database objects to determine how the use of those objects is to be
audited.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� CREATE AUDIT POLICY policy-name * CATEGORIES �

� �

,
(1)

ALL STATUS BOTH
AUDIT FAILURE
CHECKING NONE
CONTEXT SUCCESS

WITHOUT DATA
EXECUTE

WITH DATA
OBJMAINT
SECMAINT
SYSADMIN
VALIDATE

�

� * ERROR TYPE NORMAL *

AUDIT
��

Notes:

1 Each category can be specified at most once (SQLSTATE 42614), and no other
category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name
Names the audit policy. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The policy-name must not identify an audit policy
already described in the catalog (SQLSTATE 42710). The name must not begin
with the characters 'SYS' (SQLSTATE 42939).

CREATE AUDIT POLICY

350 SQL Reference Volume 2



CATEGORIES
A list of one or more audit categories for which a status is specified. If ALL is
not specified, the STATUS of any category that is not explicitly specified is set
to NONE.

ALL
Sets all categories to the same status. The EXECUTE category is WITHOUT
DATA.

AUDIT
Generates records when audit settings are changed or when the audit log
is accessed.

CHECKING
Generates records during authorization checking of attempts to access or
manipulate database objects or functions.

CONTEXT
Generates records to show the operation context when a database
operation is performed.

EXECUTE
Generates records to show the execution of SQL statements.

WITHOUT DATA or WITH DATA
Specifies whether or not input data values provided for any host
variables and parameter markers should be logged as part of the
EXECUTE category.

WITHOUT DATA
Input data values provided for any host variables and parameter
markers are not logged as part of the EXECUTE category.
WITHOUT DATA is the default.

WITH DATA
Input data values provided for any host variables and parameter
markers are logged as part of the EXECUTE category. Not all input
values are logged; specifically, LOB, LONG, XML, and structured
type parameters appear as the null value. Date, time, and
timestamp fields are logged in ISO format. The input data values
are converted to the database code page before being logged. If
code page conversion fails, no errors are returned and the
unconverted data is logged.

OBJMAINT
Generates records when data objects are created or dropped.

SECMAINT
Generates records when object privileges, database privileges, or DBADM
authority is granted or revoked. Records are also generated when the
database manager security configuration parameters sysadm_group,
sysctrl_group, or sysmaint_group are modified.

SYSADMIN
Generates records when operations requiring SYSADM, SYSMAINT, or
SYSCTRL authority are performed.

VALIDATE
Generates records when users are authenticated or when system security
information related to a user is retrieved.

CREATE AUDIT POLICY

Statements 351



STATUS
Specifies a status for the specified category.

BOTH
Successful and failing events will be audited.

FAILURE
Only failing events will be audited.

SUCCESS
Only successful events will be audited.

NONE
No events in this category will be audited.

ERROR TYPE
Specifies whether audit errors are to be returned or ignored.

NORMAL
Any errors generated by the audit are ignored and only the SQLCODEs for
errors associated with the operation being performed are returned to the
application.

AUDIT
All errors, including errors occurring within the audit facility itself, are
returned to the application.

Rules
v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:
– AUDIT
– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)
– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)

v An AUDIT-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time

across all database partitions. If an uncommitted AUDIT-exclusive SQL
statement is executing, subsequent AUDIT-exclusive SQL statements wait until
the current AUDIT-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Example

Create an audit policy to audit successes and failures for the AUDIT and
OBJMAINT categories; only failures for the SECMAINT, CHECKING, and
VALIDATE categories, and no events for the other categories.

CREATE AUDIT POLICY DBAUDPRF
CATEGORIES AUDIT STATUS BOTH,

SECMAINT STATUS FAILURE,
OBJMAINT STATUS BOTH,
CHECKING STATUS FAILURE,
VALIDATE STATUS FAILURE

ERROR TYPE NORMAL

CREATE AUDIT POLICY

352 SQL Reference Volume 2



CREATE BUFFERPOOL
The CREATE BUFFERPOOL statement defines a buffer pool at the current server.
Buffer pools are defined on members which can access data partitions.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

�� CREATE BUFFERPOOL bufferpool-name
IMMEDIATE

DEFERRED
�

�

�

ALL DBPARTITIONNUMS

,

DATABASE PARTITION GROUP db-partition-group-name

�

�
SIZE 1000 AUTOMATIC

SIZE number-of-pages
1000

SIZE AUTOMATIC
number-of-pages

*

except-clause
* �

�
NUMBLOCKPAGES 0

NUMBLOCKPAGES number-of-pages
BLOCKSIZE number-of-pages

* �

�
PAGESIZE integer

K

* ��

except-clause:

EXCEPT ON MEMBER
MEMBERS

�

� �

,

( member-number1 SIZE number-of-pages )
TO member-number2

CREATE BUFFERPOOL

Statements 353



Description

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The bufferpool-name must not identify a buffer pool that
already exists in the catalog (SQLSTATE 42710). The bufferpool-name must not
begin with the characters 'SYS' (SQLSTATE 42939).

IMMEDIATE or DEFERRED
Indicates whether or not the buffer pool will be created immediately.

IMMEDIATE
The buffer pool will be created immediately. If there is not enough
reserved space in the database shared memory to allocate the new buffer
pool (SQLSTATE 01657) the statement is executed as DEFERRED.

DEFERRED
The buffer pool will be created when the database is deactivated (all
applications need to be disconnected from the database). Reserved memory
space is not needed; required memory will be allocated from the system.

ALL DBPARTITIONNUMS or DATABASE PARTITION GROUP
Identifies the members on which the buffer pool is to be defined. The default is
ALL DBPARTITIONNUMS.

ALL DBPARTITIONNUMS
This buffer pool will be created on all members which can access all data
partitions in the database.

DATABASE PARTITION GROUP db-partition-group-name, ...
Identifies the database partition group or groups to which the buffer pool
definition applies. The buffer pool will be created only on members in the
specified database partition groups. Each database partition group must
exist in the database (SQLSTATE 42704).

SIZE
Specifies the size of the buffer pool. This size will be the default size for all
members on which the buffer pool exists. The default is 1000 pages.

number-of-pages
The number of pages for the new buffer pool. The minimum number of
pages is 2 and the maximum is architecture-dependent (SQLSTATE 42615).

AUTOMATIC
Enables self tuning for this buffer pool. The database manager adjusts the
size of the buffer pool in response to workload requirements. The implicit
or explicit number of pages that are specified is used as the initial size of
the buffer pool. On subsequent database activations, the buffer pool size is
based on the last tuning value that is determined by the self-tuning
memory manager (STMM). The STMM enforces a minimum size for
automatic buffer pools, which is the minimum of the current size and 5000
pages. To determine the current size of buffer pools that are enabled for
self tuning, use the MON_GET_BUFFERPOOL routine and examine the
current size of the buffer pools. The size of the buffer pool is found in the
bp_cur_buffsz monitor element.

NUMBLOCKPAGES number-of-pages
Specifies the number of pages that should exist in the block-based area. The
number of pages must not be greater than 98 percent of the number of pages

CREATE BUFFERPOOL

354 SQL Reference Volume 2



for the buffer pool (SQLSTATE 54052). Specifying the value 0 disables block
I/O. The actual value of NUMBLOCKPAGES used will be a multiple of
BLOCKSIZE.

NUMBLOCKPAGES is not supported in a DB2 pureScale environment
(SQLSTATE 56038).

BLOCKSIZE number-of-pages
Specifies the number of pages in a block. The block size must be a value
between 2 and 256 (SQLSTATE 54053). The default value is 32.

BLOCKSIZE is not supported in a DB2 pureScale environment (SQLSTATE
56038).

EXCEPT ON MEMBER or EXCEPT ON MEMBERS
Specifies the member or members for which the size of the buffer pool will be
different than the default specified for the database partition group to which
the member has access. If this clause is not specified, all members that can
access the data partitions in the specified database partition group will have
the same size as specified for this buffer pool.

member-number1
Specifies a member number for a member that has access to a data
partition for which the buffer pool is created (SQLSTATE 42729).

TO member-number2
Specifies a range of member numbers. The value of member-number2 must
be greater than or equal to the value of member-number1 (SQLSTATE
428A9). Each member identified by the member number range inclusive
must have access to the data partition for which the buffer pool is created
(SQLSTATE 428A9).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages. The minimum
number of pages is 2 and the maximum is architecture-dependent
(SQLSTATE 42615).

PAGESIZE integer [K]
Defines the size of pages used for the buffer pool. The valid values for integer
without the suffix K are 4096, 8192, 16 384, or 32 768. The valid values for
integer with the suffix K are 4, 8, 16, or 32. Any number of spaces is allowed
between integer and K, including no space. If the page size is not one of these
values, an error is returned (SQLSTATE 428DE).

The default value is provided by the pagesize database configuration
parameter, which is set when the database is created.

Notes
v If the buffer pool is created using the DEFERRED option, any table space created

in this buffer pool will use a small system buffer pool of the same page size,
until next database activation. The database has to be restarted for the buffer
pool to become active and for table space assignments to the new buffer pool to
take effect. The default option is IMMEDIATE.

v There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements. If the database is unable to obtain memory for the regular buffer
pools, it will attempt to start with small system buffer pools, one for each page
size (4K, 8K, 16K and 32K). In this situation, a warning will be returned to the
user (SQLSTATE 01626), and the pages from all table spaces will use the system
buffer pools.

CREATE BUFFERPOOL

Statements 355



v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON
– DBPARTITIONNUMS or NODES can be specified in place of MEMBERS,

except when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set
to ON

CREATE BUFFERPOOL

356 SQL Reference Volume 2



CREATE DATABASE PARTITION GROUP
The CREATE DATABASE PARTITION GROUP statement defines a new database
partition group within the database, assigns database partitions to the database
partition group, and records the database partition group definition in the system
catalog.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

�� CREATE DATABASE PARTITION GROUP db-partition-group-name �

�

�

ON ALL DBPARTITIONNUMS

,

ON DBPARTITIONNUMS ( db-partition-number1 )
DBPARTITIONNUM TO db-partition-number2

��

Description

db-partition-group-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). The db-partition-group-name must not
identify a database partition group that already exists in the catalog
(SQLSTATE 42710). The db-partition-group-name must not begin with the
characters 'SYS' or 'IBM' (SQLSTATE 42939).

ON ALL DBPARTITIONNUMS
Specifies that the database partition group is defined over all database
partitions defined to the database (db2nodes.cfg file) at the time the database
partition group is created.

If a database partition is added to the database system, the ALTER DATABASE
PARTITION GROUP statement should be issued to include this new database
partition in a database partition group (including IBMDEFAULTGROUP).
Furthermore, the REDISTRIBUTE DATABASE PARTITION GROUP command
must be issued to move data to the database partition.

ON DBPARTITIONNUMS
Specifies the database partitions that are in the database partition group.
DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1
Specify a database partition number. (A node-name of the form NODEnnnnn
can be specified for compatibility with the previous version.)

TO db-partition-number2
Specify a range of database partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of

CREATE DATABASE PARTITION GROUP

Statements 357



db-partition-number1 (SQLSTATE 428A9). All database partitions between
and including the specified database partition numbers are included in the
database partition group.

Rules
v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).
v Each db-partition-number listed in the ON DBPARTITIONNUMS clause can

appear only once (SQLSTATE 42728).
v A valid db-partition-number is between 0 and 999 inclusive (SQLSTATE 42729).
v The CREATE DATABASE PARTITION GROUP statement might fail (SQLSTATE

55071) if an add database partition server request is either pending or in
progress. This statement might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes
v This statement creates a distribution map for the database partition group. A

distribution map identifier (PMAP_ID) is generated for each distribution map.
This information is recorded in the catalog and can be retrieved from
SYSCAT.DBPARTITIONGROUPS and SYSCAT.PARTITIONMAPS. Each entry in
the distribution map specifies the target database partition on which all rows
that are hashed reside. For a single-partition database partition group, the
corresponding distribution map has only one entry. For a multiple partition
database partition group, the corresponding distribution map has 32768 entries,
where the database partition numbers are assigned to the map entries in a
round-robin fashion, by default.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Examples

The following examples are based on a partitioned database with six database
partitions defined as 0, 1, 2, 5, 7, and 8.
v Example 1: Assume that you want to create a database partition group called

MAXGROUP on all six database partitions. The statement is as follows:
CREATE DATABASE PARTITION GROUP MAXGROUP ON ALL DBPARTITIONNUMS

v Example 2: Assume that you want to create a database partition group called
MEDGROUP on database partitions 0, 1, 2, 5, and 8. The statement is as follows:

CREATE DATABASE PARTITION GROUP MEDGROUP
ON DBPARTITIONNUMS( 0 TO 2, 5, 8)

v Example 3: Assume that you want to create a single-partition database partition
group MINGROUP on database partition 7. The statement is as follows:

CREATE DATABASE PARTITION GROUP MINGROUP
ON DBPARTITIONNUM (7)

CREATE DATABASE PARTITION GROUP

358 SQL Reference Volume 2



CREATE EVENT MONITOR
The CREATE EVENT MONITOR statement defines a monitor that will record
certain events that occur when using the database. The definition of each event
monitor also specifies where the database should record the events.

Several different types of event monitors can be created using this statement. Some
of these types are described in the sections below, while the remaining types are
described separately (see Related links). The types of event monitors described
separately are:
v Activities. The event monitor will record activity events that occur when using

the database. The definition of the activities event monitor also specifies where
the database should record the events.

v Change history. The event monitor will record events for changes to
configuration parameters, registry variables, and the execution of DDL
statements and utilities. The event monitor will also record initial configuration
and registry values at event monitor startup time.

v Locking. The event monitor will record lock-related events that occur when
using the database. All records are collected in the unformatted event table.

v Package cache. The event monitor will record events related to the package
cache statement.

v Statistics. The event monitor will record statistics events that occur when using
the database. The definition of the statistics event monitor also specifies where
the database should record the events.

v Threshold violations. The event monitor will record threshold violation events
that occur when using the database. The definition of the threshold violations
event monitor also specifies where the database should record the events.

v Unit of work. The event monitor will record events when a unit of work
completes. All records are collected in the unformatted event table.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR �

CREATE EVENT MONITOR

Statements 359



� �

,

DATABASE
TABLES
DEADLOCKS

WITH DETAILS
HISTORY

VALUES
TABLESPACES
BUFFERPOOLS
CONNECTIONS
STATEMENTS WHERE event-condition
TRANSACTIONS

�

� WRITE TO TABLE evm-group-info
PIPE pipe-name
FILE path-name file-options

*

MANUALSTART

AUTOSTART
* �

�
ON DBPARTITIONNUM db-partition-number

*

LOCAL
*

GLOBAL
��

event-condition:

�

AND | OR

APPL_ID = comparison-string
NOT AUTH_ID (1)

APPL_NAME <>
>

(1)
>=
<

(1)
<=
LIKE
NOT LIKE

( event-condition )

evm-group-info:

*

�

,

evm-group
( target-table-options )

* �

�
BUFFERSIZE 4

BUFFERSIZE pages
*

BLOCKED

NONBLOCKED
*

CREATE EVENT MONITOR

360 SQL Reference Volume 2



target-table-options:

�

�

(2) (3)
TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

TRUNC
,

INCLUDES ( element )
EXCLUDES

file-options:

*

MAXFILES NONE

MAXFILES number-of-files
*

MAXFILESIZE pages
NONE

* �

�
BUFFERSIZE 4

BUFFERSIZE pages
*

BLOCKED

NONBLOCKED
*

APPEND

REPLACE
*

Notes:

1 Other forms of these operators are also supported.

2 Each clause can be specified only once.

3 Clauses can be separated with a space or a comma.

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

DATABASE
Specifies that the event monitor records a database event when the last
application disconnects from the database.

TABLES
Specifies that the event monitor records a table event for each active table
when the last application disconnects from the database. For partitioned
tables, a table event is recorded for each data partition of each active table.
An active table is a table that has changed since the first connection to the
database.

DEADLOCKS

Note: This option has been deprecated. Its use is no longer recommended
and might be removed in a future release. Use the CREATE EVENT
MONITOR FOR LOCKING statement to monitor lock-related events, such
as lock timeouts, lock waits, and deadlocks.

CREATE EVENT MONITOR

Statements 361



Specifies that the event monitor records a deadlock event whenever a
deadlock occurs.

WITH DETAILS
Specifies that the event monitor is to generate a more detailed
deadlock connection event for each application that is involved in a
deadlock. This additional detail includes:
v Information about the statement that the application was executing

when the deadlock occurred, such as the statement text
v The locks held by the application when the deadlock occurred. In a

partitioned database environment, this includes only those locks that
are held on the database partition on which the application was
waiting for its lock when the deadlock occurred. For partitioned
tables, this includes the data partition identifier.

HISTORY
Specifies that the event monitor data will also include:
v The history of all statements in the current unit of work at the

participating node (including WITH HOLD cursors opened in
previous units of work). SELECT statements issued at the
uncommitted read (UR) isolation level are not included in the
statement history.

v The statement compilation environment for each SQL statement
in binary format (if available)

VALUES
Specifies that the event monitor data will also include:
v The data values used as input variables for each SQL

statement. These data values will not include LOB data, long
data, structured type data, or XML data.

Only one of: DEADLOCKS, DEADLOCKS WITH DETAILS, DEADLOCKS
WITH DETAILS HISTORY, or DEADLOCKS WITH DETAILS HISTORY
VALUES can be specified in a single CREATE EVENT MONITOR
statement (SQLSTATE 42613).

TABLESPACES
Specifies that the event monitor records a table space event for each table
space when the last application disconnects from the database.

BUFFERPOOLS
Specifies that the event monitor records a buffer pool event when the last
application disconnects from the database.

CONNECTIONS
Specifies that the event monitor records a connection event when an
application disconnects from the database.

STATEMENTS
Specifies that the event monitor records a statement event whenever a SQL
statement finishes executing.

TRANSACTIONS

Note: This option has been deprecated. Its use is no longer recommended
and might be removed in a future release. Use the CREATE EVENT
MONITOR FOR UNIT OF WORK statement to monitor transaction events.

CREATE EVENT MONITOR

362 SQL Reference Volume 2



Specifies that the event monitor records a transaction event whenever a
transaction completes (that is, whenever there is a commit or rollback
operation).

WHERE event-condition
Defines a filter that determines which connections cause a CONNECTION,
STATEMENT or TRANSACTION event to occur. If the result of the event
condition is TRUE for a particular connection, then that connection will
generate the requested events.

This clause is a special form of the WHERE clause that should not be
confused with a standard search condition.

To determine if an application will generate events for a particular event
monitor, the WHERE clause is evaluated:
v For each active connection when an event monitor is first turned on
v Subsequently for each new connection to the database at connect time

The WHERE clause is not evaluated for each event.

If no WHERE clause is specified, all events of the specified event type will
be monitored.

The event-condition must not exceed 32 678 bytes in length in the database
code page (SQLSTATE 22001).

APPL_ID
Specifies that the application ID of each connection should be
compared with the comparison-string in order to determine if the
connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

AUTH_ID
Specifies that the authorization ID of each connection should be
compared with the comparison-string in order to determine if the
connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

APPL_NAME
Specifies that the application program name of each connection should
be compared with the comparison-string in order to determine if the
connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

The application program name is the first 20 bytes of the application
program file name, after the last path separator.

comparison-string
A string to be compared with the APPL_ID, AUTH_ID, or
APPL_NAME of each application that connects to the database.
comparison-string must be a string constant (that is, host variables and
other string expressions are not permitted).

WRITE TO
Introduces the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database
tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data for
groups having a target table is kept, whereas data for groups not having a
target table is discarded. Each monitor element contained within a group is

CREATE EVENT MONITOR

Statements 363



mapped to a table column with the same name. Only elements that have a
corresponding table column are inserted into the table. Other elements are
discarded.

evm-group-info
Defines the target table for a logical data group. This clause should be
specified for each grouping that is to be recorded. However, if no
evm-group-info clauses are specified, all groups for the event monitor
type are recorded.

For more information about logical data groups, refer to “Logical data
groups and event monitor output tables” in Database Monitoring Guide
and Reference.

evm-group
Identifies the logical data group for which a target table is being
defined. The value depends upon the type of event monitor, as
shown in the following table:

Table 16. Values for evm-group based on the type of event monitor

Type of Event Monitor evm-group Value

Database v DB

v CONTROL1

v DBMEMUSE

Tables v TABLE

v CONTROL1

Deadlocks v CONNHEADER

v DEADLOCK

v DLCONN

v CONTROL1

Deadlocks with details v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v CONTROL1

Deadlocks with details history v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v STMTHIST

v CONTROL1

Deadlocks with details history
values

v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v STMTHIST

v STMTVALS

v CONTROL1

CREATE EVENT MONITOR

364 SQL Reference Volume 2



Table 16. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group Value

Table spaces v TABLESPACE

v CONTROL1

Bufferpools v BUFFERPOOL

v CONTROL1

Connections v CONNHEADER

v CONN

v CONTROL1

v CONNMEMUSE

Statements v CONNHEADER

v STMT

v SUBSECTION4

v CONTROL1

Transactions v CONNHEADER

v XACT

v CONTROL1

Activities v ACTIVITY

v ACTIVITYMETRICS

v ACTIVITYSTMT

v ACTIVITYVALS

v CONTROL1

Statistics v QSTATS

v SCSTATS

v SCMETRICS

v WCSTATS

v WLSTATS

v WLMETRICS

v HISTOGRAMBIN

v CONTROL1

Threshold Violations v THRESHOLDVIOLATIONS

v CONTROL1

Locking5
v LOCK

v LOCK_PARTICIPANTS

v LOCK_PARTICIPANT_ACTIVITIES

v LOCK_ACTIVITY_VALUES

v CONTROL1

Package Cache5
v PKGCACHE

v PKGCACHE_METRICS

v CONTROL1

CREATE EVENT MONITOR

Statements 365



Table 16. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group Value

Unit of Work5
v UOW

v UOW_METRICS

v UOW_PACKGE_LIST

v UOW_EXECUTABLE_LIST

v CONTROL1

Change History v CHANGESUMMARY

v EVMONSTART

v TXNCOMPLETION

v DDLSTMTEXEC

v DBDBMCFG

v REGVAR

v UTILSTART

v UTILSTOP

v UTILPHASE

v UTILLOCATION

v CONTROL1

1 Logical data groups dbheader (conn_time element only), start and overflow, are all written
to the CONTROL group. The overflow group is written if the event monitor is non-blocked
and events were discarded.

2 Corresponds to the DETAILED_DLCONN event.

3 Corresponds to the LOCK logical data groups that occur within each
DETAILED_DLCONN event.

4 Created only for partitioned database environments.

5 Refers to the Formatted Event Table version of this event monitor type.

target-table-options
Identifies the target table for the group. If a value for
target-table-options is not specified, CREATE EVENT MONITOR
processing proceeds as follows:
v A derived table name is used (see description for TABLE

table-name).
v A default table space is chosen (see description for IN

tablespace-name).
v All elements are included.
v PCTDEACTIVATE and TRUNC are not specified.

TABLE table-name
Specifies the name of the target table. The target table must
be a nonpartitioned row-organized table. If the name is
unqualified, the table schema defaults to the value in the
CURRENT SCHEMA special register. If no name is
provided, the unqualified name is derived from evm-group
and event-monitor-name as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

CREATE EVENT MONITOR

366 SQL Reference Volume 2



IN tablespace-name
Defines the table space in which the table is to be created.
If no table space name is provided, the table space is
chosen using the same process as when a table is created
without a table space name using CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an
automatic storage (non-temporary) or DMS table space, the
PCTDEACTIVATE parameter specifies how full the table
space must be before the event monitor automatically
deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that
the event monitor deactivates when the table space
becomes completely full. The default value assumed is 100
if PCTDEACTIVATE is not specified. This option is ignored
for SMS table spaces.

Important: If the target table space has auto-resize
enabled, set PCTDEACTIVATE to 100. Alternatively, omit
this clause entirely to have the default of 100 apply.
Otherwise, the event monitor might deactivate
unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is
automatically resized.

It is recommended that, when a target table space has
auto-resize enabled, the PCTDEACTIVATE parameter be
set to 100.

TRUNC
Specifies that the STMT_TEXT and STMT_VALUE_DATA
columns are defined as VARCHAR(n), where n is the
largest size that can fit into the table row. In this case, any
data that is longer than n bytes is truncated. The following
example illustrates how the value of n is calculated.
Assume that:
v The table is created in a table space that uses 32K pages.
v The total length of all the other columns in the table

equals 357 bytes.

In this case, the maximum row size for a table is 32677
bytes. Therefore, the element would be defined as
VARCHAR(32316); that is, 32677 - 357 - 4. If TRUNC is not
specified, the column will be defined as CLOB(2M). Note
that STMT_TEXT is found in the STMT event group, the
STMT_HISTORY event group, and the DLCONN event
group (for deadlocks with details event monitors).
STMT_VALUE_DATA is found in the DATA_VALUE event
group.

INCLUDES
Specifies that the following elements are to be included in
the table.

EXCLUDES
Specifies that the following elements are not to be included
in the table.

CREATE EVENT MONITOR

Statements 367



element
Identifies a monitor element. Element information can be
provided in one of the following forms:
v Specify no element information. In this case, all elements

are included in the CREATE TABLE statement.
v Specify the elements to include in the form: INCLUDES

(element1, element2, ..., elementn). Only table columns
are created for these elements.

v Specify the elements to exclude in the form: EXCLUDES
(element1, element2, ..., elementn). Only table columns
are created for all elements except these.

Use the db2evtbl command to build a CREATE EVENT
MONITOR statement that includes a complete list of
elements for a group.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). Table event monitors insert all data from a buffer, and
issues a COMMIT once the buffer has been processed. The larger
the buffers, the larger the commit scope used by the event monitor.
Highly active event monitors should have larger buffers than
relatively inactive event monitors. When a monitor is started, two
buffers of the specified size are allocated. Event monitors use
double buffering to permit asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are
allocated). The minimum size is 1 page. The maximum size of the
buffers is limited by the size of the monitor heap, because the
buffers are allocated from that heap. If many event monitors are
being used at the same time, increase the size of the mon_heap_sz
database manager configuration parameter.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event
monitors are subject to data loss on highly active systems.

PIPE
Specifies that the target for the event monitor data is a named pipe. The
event monitor writes the data to the pipe in a single stream (that is, as if it
were a single, infinitely long file). When writing the data to a pipe, an
event monitor does not perform blocked writes. If there is no room in the
pipe buffer, then the event monitor will discard the data. It is the
monitoring application's responsibility to read the data promptly if it
wishes to ensure no data loss.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor will
write the data.

CREATE EVENT MONITOR

368 SQL Reference Volume 2



The naming rules for pipes are platform specific.

Operating system Naming rules

AIX
HP-UX
Solaris

Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is a special syntax for a pipe name
and, as a result, absolute pipe names are
required.

The existence of the pipe will not be checked at event monitor creation
time. It is the responsibility of the monitoring application to have
created and opened the pipe for reading at the time that the event
monitor is activated. If the pipe is not available at this time, then the
event monitor will turn itself off, and will log an error. (That is, if the
event monitor was activated at database start time as a result of the
AUTOSTART option, then the event monitor will log an error in the
system error log.) If the event monitor is activated via the SET EVENT
MONITOR STATE SQL statement, then that statement will fail
(SQLSTATE 58030).

In a DB2 pureScale environment, the pipe-name must be on a shared file
system whether this is a LOCAL or GLOBAL event monitor. This
requirement is to allow these event monitors to operate correctly in the
event of a member failover. Failure to use a pipe-name on a shared file
system will result in an error (SQLSTATE 428A3) if the event monitor
activates during a member failover.

FILE
Indicates that the target for the event monitor data is a file (or set of files).
The event monitor writes out the stream of data as a series of 8 character
numbered files, with the extension "evt". (for example, 00000000.evt,
00000001.evt, and 00000002.evt). The data should be considered to be one
logical file even though the data is broken up into smaller pieces (that is,
the start of the data stream is the first byte in the file 00000000.evt; the end
of the data stream is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum
number of files. An event monitor will never split a single event record
across two files. However, an event monitor may write related records in
two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event
files.

path-name
The name of the directory in which the event monitor should write the
event files data. The path must be known at the server; however, the
path itself could reside on another database partition (for example, an
NFS mounted file). A string constant must be used when specifying the
path-name.

The directory does not have to exist at CREATE EVENT MONITOR
time. However, a check is made for the existence of the target path

CREATE EVENT MONITOR

Statements 369



when the event monitor is activated. At that time, if the target path
does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path will be the one used.

In environments other than DB2 pureScale, if a relative path (a path
that does not start with the root) is specified, then the path relative to
the DB2EVENT directory in the database directory will be used. In a
DB2 pureScale environment, if a relative path is specified, then the
path relative to the database owning directory in the database directory
will be used.

It is possible to specify two or more event monitors that have the same
target path. However, once one of the event monitors has been
activated for the first time, and as long as the target directory is not
empty, it will be impossible to activate any of the other event monitors.

In a DB2 pureScale environment, the path-name must be on a shared
file system whether this is a LOCAL or GLOBAL event monitor. This
requirement is to allow these event monitors to operate correctly in the
event of a member failover. Failure to use a path-name on a shared file
system will result in an error (SQLSTATE 428A3) if the event monitor
activates during a member failover.

file-options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files that the
event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files
that will exist for a particular event monitor at any time. Whenever
an event monitor has to create another file, it will check to make
sure that the number of .evt files in the directory is less than
number-of-files. If this limit has already been reached, then the event
monitor will turn itself off.

If an application removes the event files from the directory after
they have been written, then the total number of files that an event
monitor can produce can exceed number-of-files. This option has
been provided to allow a user to guarantee that the event data will
not consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor file.
Whenever an event monitor writes a new event record to a file, it
checks that the file will not grow to be greater than pages (in units
of 4K pages). If the resulting file would be too large, then the event
monitor switches to the next file. The default for this option is:
v Linux - 1000 4K pages
v UNIX - 1000 4K pages
v Windows - 200 4K pages

The number of pages must be greater than at least the size of the
event buffer in pages. If this requirement is not met, then an error
(SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If MAXFILESIZE

CREATE EVENT MONITOR

370 SQL Reference Volume 2



NONE is specified, then MAXFILES 1 must also be specified. This
option means that one file will contain all of the event data for a
particular event monitor. In this case the only event file will be
00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). All event monitor file I/O is buffered to improve the
performance of the event monitors. The larger the buffers, the less
I/O will be performed by the event monitor. Highly active event
monitors should have larger buffers than relatively inactive event
monitors. When the monitor is started, two buffers of the specified
size are allocated. Event monitors use double buffering to permit
asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are
allocated). The minimum size is 1 page. The maximum size of the
buffers is limited by the value of the MAXFILESIZE parameter, as
well as the size of the monitor heap, because the buffers are
allocated from that heap. If many event monitors are being used at
the same time, increase the size of the mon_heap_sz database
manager configuration parameter.

Event monitors that write their data to a pipe also have two
internal (non-configurable) buffers that are each 1 page in size.
These buffers are also allocated from the monitor heap
(MON_HEAP). For each active event monitor that has a pipe
target, increase the size of the database heap by 2 pages.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event
monitors are subject to data loss on highly active systems.

APPEND
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will append the new
event data to the existing stream of data files. When the event
monitor is reactivated, it will resume writing to the event files as if
it had never been turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the directory
where the newly created event monitor is to write its event data.

REPLACE
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will erase all of the
event files and start writing data to file 00000000.evt.

CREATE EVENT MONITOR

Statements 371



MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
has been activated, it can be deactivated only by using the SET EVENT
MONITOR STATE statement or by stopping the instance. This is the default.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the
database partition on which the event monitor runs is activated.

ON DBPARTITIONNUM db-partition-number
Specifies the database partition (in a partitioned database environment) or
member (in a DB2 pureScale environment) on which a file or pipe event
monitor is to run. When the monitoring scope is defined as LOCAL, data is
collected only on the specified partition or member. When the monitoring
scope is defined as GLOBAL, all database partitions or members collect data
and report to the database partition or member with the specified number. The
I/O component will physically run on the specified database partition or
member, writing records to the specified file or pipe.

When DB2 pureScale is enabled, -1 can be specified, which allows the I/O
component to run from any active member. Additionally, in the event that the
I/O component is no longer able to run on a given member, the event monitor
will be restarted with the I/O component running on another available active
member.

This clause is not valid for table event monitors. In a partitioned database
environment, write-to-table event monitors will run and write events on all
database partitions where table spaces for target tables are defined.

In a DB2 pureScale environment, write-to-table event monitors will record
events on all active members.

If this clause is not specified and DB2 pureScale is not enabled, the currently
connected database partition number (for the application) is used.

If this clause is not specified and DB2 pureScale is enabled, the I/O component
is able to run on any currently connected database partition number.

LOCAL
The event monitor reports only on the database partition that is running. It
gives a partial trace of the database activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event
monitors.

GLOBAL
The event monitor reports on all database partitions. For a partitioned
database, only DEADLOCKS event monitors can be defined as GLOBAL.

This clause is valid for file or pipe monitors. It is not valid for table event
monitors.

Rules
v Each of the event types (DATABASE, TABLES, DEADLOCKs, ...) can only be

specified once in a particular event monitor definition.

CREATE EVENT MONITOR

372 SQL Reference Volume 2



Notes
v Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS

catalog view. The events themselves are recorded in the SYSCAT.EVENTS
catalog view. The names of target tables are recorded in the
SYSCAT.EVENTTABLES catalog view.

v There is a performance impact when using DEADLOCKS WITH DETAILS rather
than DEADLOCKS. When a deadlock occurs, the database manager requires
extra time to record the extra deadlock information.

v A CONNHEADER event is normally written whenever a connection is
established. However, if an event monitor is created only for DEADLOCKS
WITH DETAILS, a CONNHEADER event will only be written the first time that
the connection participates in a deadlock.

v In a database with multiple database partitions, the ON DBPARTITIONNUM
clause can be used with FILE and PIPE event monitors having a DEADLOCKS
event type to indicate where the event monitor itself should reside; information
from other database partitions, if relevant, is sent to that location for processing.

v In a database with multiple database partitions, a deadlock event monitor will
receive information about applications that have locks participating in the
deadlock from all the database partitions on which those participating locks
existed. If the database partition to which the application is connected (the
application coordinator partition) is not one of the participating database
partitions, no information about a deadlock event will be received from that
database partition.

v The BUFFERSIZE parameter restricts the size of STMT, STMT_HISTORY,
DATA_VALUE, and DETAILED_DLCONN events. If a STMT or a
STMT_HISTORY event cannot fit within a buffer, it is truncated by truncating
statement text. If a DETAILED_DLCONN event cannot fit within a buffer, it is
truncated by removing locks. If it still cannot fit, statement text is truncated. If a
DATA_VAL event cannot fit within a buffer, the data value is truncated.
Event monitors WITH DETAILS HISTORY VALUES (and, to a lesser extent,
WITH DETAILS HISTORY) use a significant amount of monitor heap space to
track statements and their data values, as described in the mon_heap_sz
configuration parameter.

v If the database partition on which the event monitor is to run is not active, event
monitor activation occurs when that database partition next activates.

v After an event monitor is activated, it behaves like an autostart event monitor
until that event monitor is explicitly deactivated or the instance is recycled. That
is, if an event monitor is active when a database partition is deactivated, and
that database partition is subsequently reactivated, the event monitor is also
explicitly reactivated.

v Write to table event monitors: General notes:
– All target tables are created when the CREATE EVENT MONITOR statement

executes.
– If the creation of a table fails for any reason, an error is passed back to the

application program, and the CREATE EVENT MONITOR statement fails.
– A target table can only be used by one event monitor. During CREATE

EVENT MONITOR processing, if a target table is found to have already been
defined for use by another event monitor, the CREATE EVENT MONITOR
statement fails, and an error is passed back to the application program. A
table is defined for use by another event monitor if the table name matches a
value found in the SYSCAT.EVENTTABLES catalog view.

CREATE EVENT MONITOR

Statements 373



– During CREATE EVENT MONITOR processing, if a table already exists, but
is not defined for use by another event monitor, no table is created, and
processing continues. A warning is passed back to the application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement
is executed. The CREATE EVENT MONITOR statement does not create table
spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO
TABLE event monitors, an event monitor output process or thread is started
on each database partition in the instance, and each of these processes reports
data only for the database partition on which it is running.

– The following event types from the flat monitor log file or pipe format are not
recorded by write to table event monitors:
- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The

element conn_time is recorded in CONTROL.)
– In a partitioned database environment, data is only written to target tables on

the database partitions where their table spaces exist. If a table space for a
target table does not exist on some database partition, data for that target
table is ignored. This behavior allows users to choose a subset of database
partitions for monitoring, by creating a table space that exists only on certain
database partitions.
In a DB2 pureScale environment, data will be written from every member.
In a partitioned database environment, if some target tables do not reside on
a database partition, but other target tables do reside on that same database
partition, only the data for the target tables that do reside on that database
partition is recorded.

– Users must manually prune all target tables.

Table Columns:
– Column names in a table match an event monitor element identifier. Any

event monitor element that does not have a corresponding target table
column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR command
that includes a complete list of elements for a group.

– The types of columns being used for monitor elements correlate to the
following mapping:
SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)

(If the data in the event monitor
record exceeds n bytes,
it is truncated.)

SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP
sqlm_time(elapsed time) BIGINT
sqlca:

sqlerrmc VARCHAR[72]
sqlstate CHAR[5]
sqlwarn CHAR[11]
other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.
– Because the performance of tables with CLOB columns is inferior to tables

that have VARCHAR columns, consider using the TRUNC keyword when

CREATE EVENT MONITOR

374 SQL Reference Volume 2



specifying the STMT evm-group value (or the DLCONN evm-group value, if
using the DEADLOCKS WITH DETAILS event type).

– Unlike other target tables, the columns in the CONTROL table do not match
monitor element identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database only)

PARTITION_NUMBER INTEGER N Database partition number
(partitioned database only)

EVMONNAME VARCHAR(128) N Name of the event monitor

MESSAGE VARCHAR(128) N Describes the nature of the
MESSAGE_TIME column.

For more details see,
“message - Control Table
Message monitor element”
in the Database Monitoring
Guide and Reference

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is
named PARTITION_KEY, is NOT NULL, and is of type INTEGER. This
column is used as the distribution key for the table. The value of this column
is chosen so that each event monitor process inserts data into the database
partition on which the process is running; that is, insert operations are
performed locally on the database partition where the event monitor process
is running. On any database partition, the PARTITION_KEY field will contain
the same value. This means that if a database partition is dropped and data
redistribution is performed, all data on the dropped database partition will go
to one other database partition instead of being evenly distributed. Therefore,
before removing a database partition, consider deleting all table rows on that
database partition.

– In a partitioned database environment, a column named
PARTITION_NUMBER can be defined for each table. This column is NOT
NULL and is of type INTEGER. It contains the number of the database
partition on which the data was inserted. Unlike the PARTITION_KEY
column, the PARTITION_NUMBER column is not mandatory. The
PARTITION_NUMBER column is not allowed in a nonpartitioned database
environment.

Table Attributes:
– Default table attributes are used. Besides distribution key (partitioned

databases only), no extra options are specified when creating tables.
– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints, and so on) can

be added, but the event monitor process (or thread) will ignore them.
– If "not logged initially" is added as a table attribute, it is turned off at the first

COMMIT, and is not set back on.

Event Monitor Activation:
– When an event monitor activates, all target table names are retrieved from the

SYSCAT.EVENTTABLES catalog view.

CREATE EVENT MONITOR

Statements 375



– In a partitioned database environment, activation processing occurs on every
database partition of the instance. On a particular database partition,
activation processing determines the table spaces and database partition
groups for each target table. The event monitor only activates on a database
partition if at least one target table exists on that database partition. Moreover,
if some target table is not found on a database partition, that target table is
flagged so that data destined for that table is dropped during runtime
processing.

– If a target table does not exist when the event monitor activates (or, in a
partitioned database environment, if the table space does not reside on a
database partition), activation continues, and data that would otherwise be
inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation
of the event monitor fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table
rows for FIRST_CONNECT and EVMON_START are only inserted on the
catalog database partition. This requires that the table space for the control
table exist on the catalog database partition. If it does not exist on the catalog
database partition, these inserts are not performed.

– In a partitioned database environment, if a partition is not yet active when a
write to table event monitor is activated, the event monitor will be activated
the next time that partition is activated.

Run Time:
– An event monitor runs with DATAACCESS authority.
– If, while an event monitor is active, an insert operation into a target table

fails:
- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

– If an event monitor is active, it performs a local COMMIT when it has
finished processing an event monitor buffer.

– In a partitioned database environment, the actual statement text, which can be
up to 2MB in length, is only stored (in the STMT or DLCONN table) by the
event monitor process running on the application coordinator database
partition. On other database partitions, this value has zero length.

– In an environment other than a partitioned database or a DB2 pureScale
database, all write to table event monitors are deactivated when the last
application terminates (and the database has not been explicitly activated). In
a DB2 pureScale environment, write to table event monitors are deactivated
on a given member when the database deactivates on that member and
reactivates when the database activates on that member again. In a
partitioned database environment, write to table event monitors are
deactivated when the catalog partition deactivates.

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it will acquire IN table

locks on each target table in order to prevent them from being modified while
the event monitor is active. Table locks are maintained on all tables while the
event monitor is active. If exclusive access is required on any of the target
tables (for example, when a utility is to be run), first deactivate the event
monitor to release the table locks before attempting such access.

CREATE EVENT MONITOR

376 SQL Reference Volume 2



v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODE can be specified in place of DBPARTITIONNUM
– Commas can be used to separate multiple options in the target-table-options

clause.

Examples
v Example 1: The following example creates an event monitor called SMITHPAY.

This event monitor, will collect event data for the database as well as for the
SQL statements performed by the PAYROLL application owned by the JSMITH
authorization ID. The data will be appended to the absolute path
/home/jsmith/event/smithpay/. A maximum of 25 files will be created. Each
file will be a maximum of 1 024 4K pages long. The file I/O will be
non-blocked.

CREATE EVENT MONITOR SMITHPAY
FOR DATABASE, STATEMENTS
WHERE APPL_NAME = ’PAYROLL’ AND AUTH_ID = ’JSMITH’
WRITE TO FILE ’/home/jsmith/event/smithpay’
MAXFILES 25
MAXFILESIZE 1024
NONBLOCKED
APPEND

v Example 2: The following example creates an event monitor called
DEADLOCKS_EVTS. This event monitor will collect deadlock events and will
write them to the relative path DLOCKS. One file will be written, and there is
no maximum file size. Each time the event monitor is activated, it will append
the event data to the file 00000000.evt if it exists. The event monitor will be
started each time the database is started. The I/0 will be blocked by default.

CREATE EVENT MONITOR DEADLOCK_EVTS
FOR DEADLOCKS
WRITE TO FILE ’DLOCKS’
MAXFILES 1
MAXFILESIZE NONE
AUTOSTART

v Example 3: This example creates an event monitor called DB_APPLS. This event
monitor collects connection events, and writes the data to the named pipe
/home/jsmith/applpipe.

CREATE EVENT MONITOR DB_APPLS
FOR CONNECTIONS
WRITE TO PIPE ’/home/jsmith/applpipe’

v Example 4: This example, which assumes a partitioned database environment,
creates an event monitor called FOO. This event monitor collects SQL statement
events and writes them to SQL tables with the following derived names:
– CONNHEADER_FOO
– STMT_FOO
– SUBSECTION_FOO
– CONTROL_FOO

Because no table space information is supplied, all tables will be created in a
table space selected by the system, based on the rules described under the IN
tablespace-name clause. All tables include all elements for their group (that is,
columns are defined whose names are equivalent to the element names.)

CREATE EVENT MONITOR FOO
FOR STATEMENTS
WRITE TO TABLE

CREATE EVENT MONITOR

Statements 377



v Example 5: This example, which assumes a partitioned database environment,
creates an event monitor called BAR. This event monitor collects SQL statement
and transaction events and writes them to tables as follows:
– Any data from the STMT group is written to table MYDEPT.MYSTMTINFO.

The table is created in table space MYTABLESPACE. Create columns only for
the following elements: ROWS_READ, ROWS_WRITTEN, and STMT_TEXT.
Any other elements of the group will be discarded.

– Any data from the SUBSECTION group is written to table
MYDEPT.MYSUBSECTIONINFO. The table is created in table space
MYTABLESPACE. The table includes all columns, except START_TIME,
STOP_TIME, and PARTIAL_RECORD.

– Any data from the XACT group is written to table XACT_BAR. Because no
table space information is supplied, the table will be created in a table space
selected by the system, based on the rules described under the IN
tablespace-name clause. This table includes all elements contained in the XACT
group.

– No tables are created for connheader or control; all data for these groups are
discarded.
CREATE EVENT MONITOR BAR

FOR STATEMENTS, TRANSACTIONS
WRITE TO TABLE
STMT(TABLE MYDEPT.MYSTMTINFO IN MYTABLESPACE
INCLUDES(ROWS_READ, ROWS_WRITTEN, STMT_TEXT)),

STMT(TABLE MYDEPT.MYSTMTINFO IN MYTABLESPACE
EXCLUDES(START_TIME, STOP_TIME, PARTIAL_RECORD)),

XACT

CREATE EVENT MONITOR

378 SQL Reference Volume 2



CREATE EVENT MONITOR (activities)
The CREATE EVENT MONITOR (activities) statement defines a monitor that will
record activity events that occur when using the database. The definition of the
activity event monitor also specifies where the database should record the events.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority
v WLMADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR ACTIVITIES �

� WRITE TO TABLE formatted-event-table-info
PIPE pipe-name
FILE path-name file-options

*

AUTOSTART

MANUALSTART
* �

�
ON MEMBER member-number

*

LOCAL
* ��

formatted-event-table-info:

*

�

,

evm-group
( target-table-options )

*

BLOCKED
*

target-table-options:

�
(1) (2)

TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

CREATE EVENT MONITOR (activities)

Statements 379



file-options:

*

MAXFILES NONE

MAXFILES number-of-files
*

MAXFILESIZE pages
NONE

* �

�
BLOCKED

*

APPEND

REPLACE
*

Notes:

1 Each clause can be specified only once.

2 Clauses can be separated with a space or a comma.

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

ACTIVITIES
Specifies that the event monitor records an activity event when an activity
finishes executing, or before the completion of execution if the event is
triggered by the WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure.
The activity must either:
v Belong to a service class or workload that has COLLECT ACTIVITY

DATA set
v Belong to a work class whose associated work action is COLLECT

ACTIVITY DATA
v Be identified as the activity that violated a threshold whose COLLECT

ACTIVITY DATA clause was specified
v Have been identified in a call to the

WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure before
completing

WRITE TO
Introduces the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database
tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data for
groups having a target table is kept, whereas data for groups not having a
target table is discarded. Each monitor element contained within a group is
mapped to a table column with the same name. Only elements that have a
corresponding table column are inserted into the table. Other elements are
discarded.

formatted-event-table-info
Defines the target tables for an event monitor. This clause should be

CREATE EVENT MONITOR (activities)

380 SQL Reference Volume 2



specified for each grouping that is to be recorded. However, if no
evm-group-info clauses are specified, all groups for the event monitor
type are recorded.

For more information about logical data groups, refer to “Logical data
groups and event monitor output tables” in Database Monitoring Guide
and Reference.

evm-group
Identifies the logical data group for which a target table is being
defined. The value depends upon the type of event monitor, as
shown in the following table:

Type of Event Monitor evm-group Value

Activities v ACTIVITY

v ACTIVITYMETRICS

v ACTIVITYSTMT

v ACTIVITYVALS

v CONTROL

target-table-options
Identifies the target table for the group.

TABLE table-name
Specifies the name of the target table. The target table must
be a non-partitioned table. If the name is unqualified, the
table schema defaults to the value in the CURRENT
SCHEMA special register. If no name is provided, the
unqualified name is derived from evm-group and
event-monitor-name as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created.
If no table space name is provided, the table space is
chosen using the same process as when a table is created
without a table space name using CREATE TABLE.

Since the page size affects the INLINE LOB lengths used,
consider specifying a table space with as large a page size
as possible in order to improve the INSERT performance of
the event monitor.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an
automatic storage (non-temporary) or DMS table space, the
PCTDEACTIVATE parameter specifies how full the table
space must be before the event monitor automatically
deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that
the event monitor deactivates when the table space
becomes completely full. The default value assumed is 100
if PCTDEACTIVATE is not specified. This option is ignored
for SMS table spaces.

Important: If the target table space has auto-resize
enabled, set PCTDEACTIVATE parameter to 100.

CREATE EVENT MONITOR (activities)

Statements 381



Alternatively, omit this clause entirely to have the default
of 100 apply. Otherwise, the event monitor might
deactivate unexpectedly if the table space reaches the
threshold specified by PCTDEACTIVTATE before the table
space is automatically resized.

If a value for target-table-options is not specified, CREATE
EVENT MONITOR processing proceeds as follows:
v A derived table name is used.
v A default table space is chosen.
v The PCTDEACTIVATE parameter defaults to 100.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

PIPE
Specifies that the target for the event monitor data is a named pipe. The
event monitor writes the data to the pipe in a single stream (that is, as if it
were a single, infinitely long file). When writing the data to a pipe, an
event monitor does not perform blocked writes. If there is no room in the
pipe buffer, then the event monitor will discard the data. It is the
monitoring application's responsibility to read the data promptly if it
wishes to ensure no data loss.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor will
write the data.

The naming rules for pipes are platform specific.

Operating system Naming rules

AIX
HP-UX
Solaris

Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is a special syntax for a pipe name
and, as a result, absolute pipe names are
required.

The existence of the pipe will not be checked at event monitor creation
time. It is the responsibility of the monitoring application to have
created and opened the pipe for reading at the time that the event
monitor is activated. If the pipe is not available at this time, then the
event monitor will turn itself off, and will log an error. (That is, if the
event monitor was activated at database start time as a result of the
AUTOSTART option, then the event monitor will log an error in the
system error log.) If the event monitor is activated via the SET EVENT
MONITOR STATE SQL statement, then that statement will fail
(SQLSTATE 58030).

CREATE EVENT MONITOR (activities)

382 SQL Reference Volume 2



FILE
Indicates that the target for the event monitor data is a file (or set of files).
The event monitor writes out the stream of data as a series of 8 character
numbered files, with the extension "evt". (for example, 00000000.evt,
00000001.evt, and 00000002.evt). The data should be considered to be one
logical file even though the data is broken up into smaller pieces (that is,
the start of the data stream is the first byte in the file 00000000.evt; the
end of the data stream is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum
number of files. An event monitor will never split a single event record
across two files. However, an event monitor may write related records in
two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event
files.

path-name
The name of the directory in which the event monitor should write the
event files data. The path must be known at the server; however, the
path itself could reside on another database partition (for example, an
NFS mounted file). A string constant must be used when specifying the
path-name.

The directory does not have to exist at CREATE EVENT MONITOR
time. However, a check is made for the existence of the target path
when the event monitor is activated. At that time, if the target path
does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path will be the one used.
In environments other than DB2 pureScale, if a relative path (a path
that does not start with the root) is specified, then the path relative to
the DB2EVENT directory in the database directory will be used. In a DB2
pureScale environment, if a relative path is specified, then the path
relative to the database owning directory in the database directory will
be used.

It is possible to specify two or more event monitors that have the same
target path. However, once one of the event monitors has been
activated for the first time, and as long as the target directory is not
empty, it will be impossible to activate any of the other event monitors.

file-options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files that the
event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files
that will exist for a particular event monitor at any time. Whenever
an event monitor has to create another file, it will check to make
sure that the number of .evt files in the directory is less than
number-of-files. If this limit has already been reached, then the event
monitor will turn itself off.

If an application removes the event files from the directory after
they have been written, then the total number of files that an event
monitor can produce can exceed number-of-files. This option has

CREATE EVENT MONITOR (activities)

Statements 383



been provided to allow a user to guarantee that the event data will
not consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor file.
Whenever an event monitor writes a new event record to a file, it
checks that the file will not grow to be greater than pages (in units
of 4K pages). If the resulting file would be too large, then the event
monitor switches to the next file. The default for this option is:
v Linux - 1000 4K pages
v UNIX - 1000 4K pages
v Windows - 200 4K pages

The number of pages must be greater than at least the size of the
event buffer in pages. If this requirement is not met, then an error
(SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If MAXFILESIZE
NONE is specified, then MAXFILES 1 must also be specified. This
option means that one file will contain all of the event data for a
particular event monitor. In this case the only event file will be
00000000.evt.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

APPEND
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will append the new
event data to the existing stream of data files. When the event
monitor is reactivated, it will resume writing to the event files as if
it had never been turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the directory
where the newly created event monitor is to write its event data.

REPLACE
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will erase all of the
event files and start writing data to file 00000000.evt.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
has been activated, it can be deactivated only by using the SET EVENT
MONITOR STATE statement or by stopping the instance.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the
database partition on which the event monitor runs is activated. This is the
default behavior of the activities event monitor.

ON MEMBER member-number
Specifies the member on which a file or pipe event monitor is to run. When
the monitoring scope is defined as LOCAL, data is collected only on the

CREATE EVENT MONITOR (activities)

384 SQL Reference Volume 2



specified member. The I/O component will physically run on the specified
member, writing records to the specified file or pipe.

When the DB2 pureScale feature is enabled, -1 is the default.

If a value of -1 is specified, it allows the I/O component to run from any active
member. Additionally, in the event that the I/O component is no longer able to
run on a given member, the event monitor will be restarted with the I/O
component running on another available active member.

This clause is not valid for table event monitors. In a partitioned database
environment, write-to-table event monitors will run and write events on all
database partitions where table spaces for target tables are defined.

In a DB2 pureScale environment, write-to-table event monitors will record
events on all active members.

If this clause is not specified and DB2 pureScale is not enabled, the currently
connected member (for the application) is used.

If this clause is not specified and DB2 pureScale is enabled, the I/O component
is able to run on any currently connected member.

LOCAL
The event monitor reports only on the member that is running. It gives a
partial trace of the database activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event
monitors.

GLOBAL is not a valid scope for this type of event monitor.

Rules
v The ACTIVITIES event type cannot be combined with any other event types in a

particular event monitor definition.

Notes
v Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS

catalog view. The events themselves are recorded in the SYSCAT.EVENTS
catalog view. The names of target tables are recorded in the
SYSCAT.EVENTTABLES catalog view.

v If the member on which the event monitor is to run is not active, event monitor
activation occurs when that member is reactivated.

v After an event monitor is activated, it behaves like an autostart event monitor
until that event monitor is explicitly deactivated or the instance is recycled. That
is, if an event monitor is active when a member is deactivated, and that member
is subsequently reactivated, the event monitor is also explicitly reactivated.

v The FLUSH EVENT MONITOR statement is not applicable to this event monitor
and will have no effect when issued against it.

v Write to table event monitors: General notes:
– All target tables are created when the CREATE EVENT MONITOR statement

executes.
– If the creation of a table fails for any reason, an error is passed back to the

application program, and the CREATE EVENT MONITOR statement fails.
– A target table can only be used by one event monitor. During CREATE

EVENT MONITOR processing, if a target table is found to have already been
defined for use by another event monitor, the CREATE EVENT MONITOR
statement fails, and an error is passed back to the application program. A

CREATE EVENT MONITOR (activities)

Statements 385



table is defined for use by another event monitor if the table name matches a
value found in the SYSCAT.EVENTTABLES catalog view.

– During CREATE EVENT MONITOR processing, if a table already exists, but
is not defined for use by another event monitor, no table is created, and
processing continues. A warning is passed back to the application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement
is executed. The CREATE EVENT MONITOR statement does not create table
spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO
TABLE event monitors, an event monitor output process or thread is started
on each member in the instance, and each of these processes reports data only
for the member on which it is running.

– The following event types from the flat monitor log file or pipe format are not
recorded by write to table event monitors:
- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The

element conn_time is recorded in CONTROL.)
– In a partitioned database environment, data is only written to target tables on

the database partitions where their table spaces exist. If a table space for a
target table does not exist on some database partition, data for that target
table is ignored. This behavior allows users to choose a subset of database
partitions for monitoring, by creating a table space that exists only on certain
database partitions.
In a DB2 pureScale environment, data will be written from every member.
In a partitioned database environment, if some target tables do not reside on
a database partition, but other target tables do reside on that same database
partition, only the data for the target tables that do reside on that database
partition is recorded.

– Users must manually prune all target tables.

Table Columns:
– Column names in a table match an event monitor element identifier. Any

event monitor element that does not have a corresponding target table
column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR statement
that includes a complete list of elements for a group.

– The types of columns being used for monitor elements correlate to the
following mapping:
SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)

(If the data in the event monitor
record exceeds n bytes,
it is truncated.)

SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP
sqlm_time(elapsed time) BIGINT
sqlca:

sqlerrmc VARCHAR[72]
sqlstate CHAR[5]
sqlwarn CHAR[11]
other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.

CREATE EVENT MONITOR (activities)

386 SQL Reference Volume 2



– Unlike other target tables, the columns in the CONTROL table do not match
monitor element identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database only)

PARTITION_NUMBER INTEGER N Database partition number
(partitioned database only)

EVMONNAME VARCHAR(128) N Name of the event monitor

MESSAGE VARCHAR(128) N Describes the nature of the
MESSAGE_TIME column.

For more details see,
“message - Control Table
Message monitor element”
in the Database Monitoring
Guide and Reference

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is
named PARTITION_KEY, is NOT NULL, and is of type INTEGER. This
column is used as the distribution key for the table. The value of this column
is chosen so that each event monitor process inserts data into the member on
which the process is running; that is, insert operations are performed locally
on the member where the event monitor process is running. On any database
partition, the PARTITION_KEY field will contain the same value. This means
that if a database partition is dropped and data redistribution is performed,
all data on the dropped database partition will go to one other database
partition instead of being evenly distributed. Therefore, before removing a
database partition, consider deleting all table rows on that database partition.

– In a partitioned database environment, a column named
PARTITION_NUMBER can be defined for each table. This column is NOT
NULL and is of type INTEGER. It contains the number of the database
partition on which the data was inserted. Unlike the PARTITION_KEY
column, the PARTITION_NUMBER column is not mandatory. The
PARTITION_NUMBER column is not allowed in a non-partitioned database
environment.

Table Attributes:
– Default table attributes are used. Besides distribution key (partitioned

databases only), no extra options are specified when creating tables.
– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints, and so on) can

be added, but the event monitor process (or thread) will ignore them.
– If "not logged initially" is added as a table attribute, it is turned off at the first

COMMIT, and is not set back on.

Event Monitor Activation:
– When an event monitor activates, all target table names are retrieved from the

SYSCAT.EVENTTABLES catalog view.
– In a partitioned database environment, activation processing occurs on every

member of the instance. On a particular member, activation processing
determines the table spaces and database partition groups for each target
table. The event monitor only activates on a database partition if at least one
target table exists on that database partition. Moreover, if some target table is

CREATE EVENT MONITOR (activities)

Statements 387



not found on a database partition, that target table is flagged so that data
destined for that table is dropped during runtime processing.

– If a target table does not exist when the event monitor activates (or, in a
partitioned database environment, if the table space does not reside on a
database partition), activation continues, and data that would otherwise be
inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation
of the event monitor fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table
rows for FIRST_CONNECT and EVMON_START are only inserted on the
catalog database partition. This requires that the table space for the control
table exist on the catalog database partition. If it does not exist on the catalog
database partition, these inserts are not performed.

– In a partitioned database environment, if a member is not yet active when a
write to table event monitor is activated, the event monitor will be activated
the next time that member is activated.

Run Time:
– An event monitor runs with DATAACCESS authority.
– If, while an event monitor is active, an insert operation into a target table

fails:
- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

– If an event monitor is active, it performs a local COMMIT when it has
finished processing an event monitor buffer.

– In an environment other than a partitioned database or a DB2 pureScale
environment, all write to table event monitors are deactivated when the last
application terminates (and the database has not been explicitly activated).
In a DB2 pureScale environment, write to table event monitors are deactivated
on a given member when the member stops and is reactivated when the
member restarts.
In a partitioned database environment, write to table event monitors are
deactivated when the catalog partition deactivates.

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it will acquire IN table

locks on each target table in order to prevent them from being modified while
the event monitor is active. Table locks are maintained on all tables while the
event monitor is active. If exclusive access is required on any of the target
tables (for example, when a utility is to be run), first deactivate the event
monitor to release the table locks before attempting such access.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– Commas can be used to separate multiple options in the target-table-options

clause

Example

Define an activity event monitor named DBACTIVITIES

CREATE EVENT MONITOR (activities)

388 SQL Reference Volume 2



CREATE EVENT MONITOR DBACTIVITIES
FOR ACTIVITIES
WRITE TO TABLE
ACTIVITY (TABLE ACTIVITY_DBACTIVITIES

IN USERSPACE1
PCTDEACTIVATE 100),

ACTIVITYMETRICS (TABLE ACTIVITYMETRICS_DBACTIVITIES
IN USERSPACE1
PCTDEACTIVATE 100),

ACTIVITYSTMT (TABLE ACTIVITYSTMT_DBACTIVITIES
IN USERSPACE1
PCTDEACTIVATE 100),

ACTIVITYVALS (TABLE ACTIVITYVALS_DBACTIVITIES
IN USERSPACE1
PCTDEACTIVATE 100),

CONTROL (TABLE CONTROL_DBACTIVITIES
IN USERSPACE1
PCTDEACTIVATE 100)

AUTOSTART;

CREATE EVENT MONITOR (activities)

Statements 389



CREATE EVENT MONITOR (change history)
The CREATE EVENT MONITOR (change history) statement creates an event
monitor that can record events for changes to configuration parameters, registry
variables, and the execution of DDL statements and utilities.

The event monitor created by the CREATE EVENT MONITOR (change history)
statement can also record initial configuration and registry values at event monitor
startup time. The set of events recorded depends on the event controls specified in
the CREATE EVENT MONITOR statement.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v SQLADM authority
v DBADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name �

� �

,

FOR CHANGE HISTORY WHERE EVENT IN ( event-control ) �

�
AUTOSTART

WRITE TO TABLE formatted-event-table-info
MANUALSTART

��

event-control:

CREATE EVENT MONITOR (change history)

390 SQL Reference Volume 2



ALL
BACKUP
CFGALL
DBCFG
DBCFGVALUES
DBMCFG
DBMCFGVALUES
DDLALL
DDLDATA
DDLFEDERATED
DDLMONITOR
DDLSECURITY
DDLSQL
DDLSTORAGE
DDLWLM
DDLXML
LOAD
MOVETABLE
REDISTRIBUTE
REGVAR
REGVARVALUES
REORG
RESTORE
ROLLFORWARD
RUNSTATS
UTILALL

formatted-event-table-info:

�

,

evm-group
( target-table-options )

target-table-options:

�
(1) (2)

TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

Notes:

1 Each condition can be specified only once (SQLSTATE 42613).

2 Clauses can be separated with a space or a comma.

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that exists in the catalog (SQLSTATE 42710).

CREATE EVENT MONITOR (change history)

Statements 391



FOR
Introduces the type of event to record.

CHANGE HISTORY
Specifies that this event monitor can record events for configuration changes,
registry changes, and the execution of DDL statements and utilities. It can also
record initial configuration and registry values at event monitor startup time.
The set of events recorded depends on the event controls specified in the
WHERE EVENT IN clause.

WHERE EVENT IN (event-control, ...)
Specifies one or more event controls used to identify which events are captured
by the event monitor.

event-control

ALL Capture all event types.

BACKUP
Capture execution of the online backup utility.

CFGALL
Capture all configuration parameter and registry variable event
types.

DBCFG
Capture database configuration parameter changes.

DBCFGVALUES
Record initial values for all database configuration parameters at
event monitor startup time if any database configuration parameter
update was not captured by the event monitor.

DBMCFG
Capture database manager configuration parameter changes.

DBMCFGVALUES
Record initial values for all database manager configuration
parameters at event monitor startup time if any database manager
configuration parameter update was not captured by the event
monitor.

DDLALL
Capture execution for all types of DDL statements.

DDLDATA
Capture execution of index, sequence, table, and temporary table
DDL.

DDLFEDERATED
Capture execution of nickname, server, type mapping, user
mapping, and wrapper DDL.

DDLMONITOR
Capture execution of event monitor and usage list DDL.

DDLSECURITY
Capture execution of audit policy, grant, mask, permission role,
revoke, security label, security label component, security policy,
and trusted context DDL.

CREATE EVENT MONITOR (change history)

392 SQL Reference Volume 2



DDLSQL
Capture execution of alias, function, method, module, package,
procedure, schema, synonym, transform, trigger, type, variable, and
view DDL.

DDLSTORAGE
Capture execution of the ALTER DATABASE statement and buffer
pool, partition group, storage group, and table space DDL.

DDLWLM
Capture execution of histogram, service class, threshold, work
action set, work class set, and workload DDL.

DDLXML
Capture execution of XSROBJECT DDL.

LOAD
Capture execution of the load utility.

MOVETABLE
Capture execution of the table move utility (invocations of the
ADMIN_MOVE_TABLE stored procedure).

REDISTRIBUTE
Capture execution of the redistribute partition group utility.

REGVAR
Capture immediate registry variables changes.

REGVARVALUES
Record initial values for registry variables at event monitor startup
time.

REORG
Capture execution of the reorg utility.

RESTORE
Capture execution of the online restore utility.

ROLLFORWARD
Capture execution of the online rollforward utility.

RUNSTATS
Capture execution of the runstats utility.

UTILALL
Capture execution of the load, move table, online backup, online
restore, online rollforward, redistribute, reorg and runstats utilities.

WRITE TO
Introduces the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database tables.
The event monitor separates the data stream into one or more logical data
groups and inserts each group into a separate table. Each monitor element
contained within a group is mapped to a table column with the same name.
Only elements that have a corresponding table column are inserted into the
table.

formatted-event-table-info
Defines the target table for a logical data group. Specify this clause for each
grouping that is to be recorded. However, if no evm-group clauses are specified,

CREATE EVENT MONITOR (change history)

Statements 393



the groups required for the event-control options specified are created along
with the CONTROL, CHANGESUMMARY, and EVMONSTART logical groups.

evm-group
Identifies the logical data group for which a target table is being defined.
The value depends upon the type of event monitor, as shown in the
following table:

Type of event monitor evm-group value

Change history v CONTROL

v CHANGESUMMARY

v EVMONSTART

v TXNCOMPLETION

v DDLSTMTEXEC

v DBDBMCFG

v REGVAR

v UTILSTART

v UTILSTOP

v UTILPHASE

v UTILLOCATION

target-table-options
Identifies the target table for the group.

TABLE table-name
Specifies the name of the target table. The target table must be a
non-partitioned table. If the name is unqualified, the table schema
defaults to the value in the CURRENT SCHEMA special register. If no
name is provided, the unqualified name is derived from evm-group and
event-monitor-name as follows:
SUBSTRING(evm-group CONCAT ’_’

CONCAT event-monitor-name, 1, 128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table
space name is provided, the table space is chosen using the same
process as when a table is created without a table space name using
CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage
(non-temporary) or DMS table space, the PCTDEACTIVATE parameter
specifies how full the table space must be before the event monitor
automatically deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that the event
monitor deactivates when the table space becomes full. The default
value is 100 if PCTDEACTIVATE is not specified. This option is
ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set
PCTDEACTIVATE parameter to 100. Alternatively, omit this clause
entirely to have the default of 100 apply. Otherwise, the event monitor
might deactivate unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is automatically
resized.

CREATE EVENT MONITOR (change history)

394 SQL Reference Volume 2



If a value for target-table-info is not specified, CREATE EVENT MONITOR
processing proceeds as follows:
v A derived table name is used.
v A default table space is chosen.
v The PCTDEACTIVATE parameter defaults to 100.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the
database partition on which the event monitor runs is activated. This is the
default behavior.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
is activated, it can be deactivated by using the SET EVENT MONITOR STATE
statement or by stopping the instance.

Notes
v Creation of target event tables: The target event tables are created when the

CREATE EVENT MONITOR FOR CHANGE HISTORY statement executes if the
target tables do not exist.

v Previously created event tables: During CREATE EVENT MONITOR FOR
CHANGE HISTORY processing, if an event table has already been defined for
use by another event monitor, the CREATE EVENT MONITOR FOR CHANGE
HISTORY statement fails, and an error is returned to the application program.
An event table is defined for use by another event monitor if the event table
name matches a value found in the SYSCAT.EVENTTABLES catalog view. If the
event table exists and is not defined for use by another event monitor, then a
table is not created, any other table options parameters are ignored, and
processing continues. A warning is returned to the application program.

v Dropping event monitors: Dropping the event monitor does not drop the event
tables. The associated event tables must be manually dropped after the event
monitor is dropped.

v Pruning: The event tables must be manually pruned.
v Behavior in a partitioned environment: In a partitioned environment, if some

target event tables do not exist on a partition, but other target event tables do
exist on that same partition, only the data for the target event tables that do
exist on that partition is recorded.

v FLUSH EVENT MONITOR: The FLUSH EVENT MONITOR statement is not
applicable to this event monitor and has no effect when issued against it.

v Modifying event controls after monitor creation: After the change history event
monitor is created, the event controls specified using the WHERE EVENT IN
clause in the CREATE EVENT MONITOR statement cannot be changed or
altered. To change the event controls, the event monitor must be deactivated,
dropped, and then recreated specifying a new set of event controls using the
WHERE EVENT IN clause.

Examples
v Example 1: This example creates a change history event monitor called

CFG_WITH_OFFLINE that records configuration changes and initial values for
configuration.
CREATE EVENT MONITOR CFG_WITH_OFFLINE

FOR CHANGE HISTORY WHERE EVENT IN (CFGALL)
WRITE TO TABLE

CREATE EVENT MONITOR (change history)

Statements 395



CHANGESUMMARY (TABLE CHG_SUMMARY_HISTORY),
DBDBMCFG (TABLE DB_DBM_HISTORY),
REGVAR (TABLE REGVAR_HISTORY)

AUTOSTART

In this example the target tables are explicitly specified. The previous statement
creates the following tables:
CHG_SUMMARY_HISTORY
DB_DBM_HISTORY
REGVAR_HISTORY

v Example 2: This example creates a change history event monitor called
BKP_REST that collects events describing all online backup and restore utility
executions.
CREATE EVENT MONITOR BKP_REST

FOR CHANGE HISTORY WHERE EVENT IN (BACKUP, RESTORE)
WRITE TO TABLE

In this example the target tables are not explicitly specified. The CREATE
EVENT MONITOR statement creates only the target tables that are needed
based on the controls specified in the WHERE EVENT IN clause, along with
tables for the CONTROL, CHANGESUMMARY, and EVMONSTART logical data
groups. The BACKUP and RESTORE controls enable collection of utility events
for online backup and restore, and require the UTILSTART, UTILSTOP,
UTILLOCATION, and UTILPHASE logical data groups. The previous statement
creates the following tables:
CONTROL_BKP_REST
CHANGESUMMARY_BKP_REST
EVMONSTART_BKP_REST
UTILSTART_BKP_REST
UTILSTOP_BKP_REST
UTILLOCATION_BKP_REST
UTILPHASE_BKP_REST

CREATE EVENT MONITOR (change history)

396 SQL Reference Volume 2



CREATE EVENT MONITOR (locking)
The CREATE EVENT MONITOR (locking) statement creates an event monitor that
will record lock-related events that occur when using the database.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR LOCKING �

� WRITE TO TABLE formatted-event-table-info
UNFORMATTED EVENT TABLE

( target-table-options )

�

�
AUTOSTART

MANUALSTART
��

formatted-event-table-info:

�

,

evm-group
( target-table-options )

target-table-options:

�
(1) (2)

TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

Notes:

1 Each table option can be specified a maximum of one time (SQLSTATE
42613).

2 Clauses can be separated with a space or a comma.

CREATE EVENT MONITOR (locking)

Statements 397



Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

LOCKING
Specifies that this passive event monitor will record any lock event
produced when the database manager encounters one or more of these
conditions:
v LOCKTIMEOUT: the lock has timed-out.
v DEADLOCK: the lock was involved in a deadlock (victim and

participant(s)).
v LOCKWAIT: locks that are not acquired in the specified duration.

The creation of the lock event monitor does not indicate that the locking
data will be collected immediately. The actual locking event of interest is
controlled at the workload level or database level.

WRITE TO
Specifies the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of formatted
event tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data for
groups having a target table is kept, whereas data for groups not having a
target table is discarded. Each monitor element contained within a group is
mapped to a table column with the same name. Only elements that have a
corresponding table column are inserted into the table. Other elements are
discarded.

formatted-event-table-info
Defines the target formatted event tables for the event monitor. This
clause should specify each grouping that is to be recorded. However, if
no evm-group clauses are specified, all groups for the event monitor
type are recorded.

For more information about logical data groups, refer to “Logical data
groups and event monitor output tables” in Database Monitoring Guide
and Reference.

evm-group
Identifies a logical data group for which a target table is being
defined. The value depends upon the type of event monitor, as
shown in the following table:

Type of Event Monitor evm-group Value

Locking v LOCK

v LOCK_PARTICIPANTS

v LOCK_PARTICIPANT_ACTIVITIES

v LOCK_ACTIVITY_VALUES

v CONTROL

CREATE EVENT MONITOR (locking)

398 SQL Reference Volume 2



UNFORMATTED EVENT TABLE
Specifies that the target for the event monitor is an unformatted event
table. The unformatted event table is used to store collected locking event
monitor data. Data is stored in an internal binary format within an inlined
BLOB column. Each event can insert multiple records into this table and
each inserted record can be of a different type with the associated BLOB
content varying as well. The data in the BLOB column is not in a readable
format and requires conversion, through use of the db2evmonfmt Java-based
tool, EVMON_FORMAT_UE_TO_XML table function, or
EVMON_FORMAT_UE_TO_TABLES procedure, into a consumable format
such as an XML document or a relational table.

target-table-options
Identifies options for the target table. If a value for target-table-options is
not specified, CREATE EVENT MONITOR FOR LOCKING processing
proceeds as follows:
v A derived table name is used (as explained in the description for TABLE

table-name).
v A default table space is chosen using the same process as when a table is

created without a table space name using CREATE TABLE.
v PCTDEACTIVATE is set to 100.

TABLE table-name
Specifies the name of the target table. The target table must be a
non-partitioned table. If the name is unqualified, the table schema
defaults to the value in the CURRENT SCHEMA special register. If a
name is not provided for an unformatted event table, the unqualified
name is equal to the event-monitor-name, that is, the unformatted event
table will be named after the event monitor. If no name is provided for
a formatted event table, the unqualified name is derived from
evm-group and event-monitorname as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. The
CREATE EVENT MONITOR FOR LOCKING statement does not create
table spaces.

If a table space name is not provided, the table space is chosen using
the same process as when a table is created without a table space name
using CREATE TABLE.

When specifying the table space name for a formatted event table, the
table space's page size affects the INLINE LOB lengths used Consider
specifying a table space with as large a page size as possible in order
to improve the INSERT performance of the event monitor.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage
(non-temporary) or DMS table space, the PCTDEACTIVATE parameter
specifies how full the table space must be before the event monitor
automatically deactivates. The specified value, which represents a
percentage, can range from 0 to 100. The default value is 100, where
100 means the event monitor deactivates when the table space becomes
completely full. The default value assumed is 100 if PCTDEACTIVATE
is not specified. This option is ignored for SMS table spaces.

CREATE EVENT MONITOR (locking)

Statements 399



Important: If the target table space has auto-resize enabled, set
PCTDEACTIVATE to 100. Alternatively, omit this clause entirely to
have the default of 100 apply. Otherwise, the event monitor might
deactivate unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is automatically
resized.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the
database partition on which the event monitor runs is activated. This is the
default behavior of the locking event monitor.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
has been activated, it can be deactivated only by using the SET EVENT
MONITOR STATE statement or by stopping the instance.

Notes
v The target table is created when the CREATE EVENT MONITOR FOR

LOCKING statement executes, if it doesn't already exist.
v During CREATE EVENT MONITOR FOR LOCKING processing, if a table is

found to have already been defined for use by another event monitor, the
CREATE EVENT MONITOR FOR LOCKING statement fails, and an error is
passed back to the application program. A table is defined for use by another
event monitor if the table name matches a value found in the
SYSCAT.EVENTTABLES catalog view. If the table exists and is not defined for
use by another event monitor, then the event monitor will re-use the table.

v Dropping the event monitor will not drop any tables. Any associated tables must
be manually dropped after the event monitor is dropped.

v Lock event data is not automatically pruned from either unformatted event
tables or regular tables created by this event monitor. An option for pruning
data from UE tables is available when using the
EVMON_FORMAT_UE_TO_TABLES procedure. For event monitors that write to
regular tables, event data must be pruned manually.

v The FLUSH EVENT MONITOR statement is not applicable to this event monitor
and will have no effect when issued against it.

v For unformatted event tables event data is inserted into the table into an inlined
BLOB data column. Normally, BLOB data is stored in a separate LOB table space
and can experience additional performance overhead as a result. When inlined
into the data page of the base table, the BLOB data does not experience this
overhead. The database manager will automatically inline the BLOB data portion
of an unformatted event table record if the size of the BLOB data is less than the
table space page size minus the record prefix. Therefore to achieve high
efficiency and application throughput, it is suggested that you create the event
monitor in as large a table space as possible up to and including a 32KB table
space and associated bufferpool.

Example
The lock event monitor currently has the following two record types:
– Application Info Record
– Application Activity Record

Application Info Record = maximum size 3.5KB

CREATE EVENT MONITOR (locking)

400 SQL Reference Volume 2



Application Activity Record = 3KB + SQL statement text size (where
SQL statement text size is max 2MB)

The Application Info Record is very small and should always be inlined
as long as a 4KB page size is being used. The Application Activity
Record will be inlined based on the following formula:
Application Activity Record < inline length (Pagesize - overhead non-LOB columns (0.5KB))

3KB + SQL statement text < inline length (Pagesize - overhead non-LOB columns (0.5KB))

SQL statement text < Pagesize - nonLOB overhead (1K) - 3KB
SQL statement text < 16KB - 1KB - 3KB

< 12KB

Therefore, when using a 16KB pagesize, the lock event monitor records
will only be inlined if the SQL statement being captured is less than
12KB in size.

v Create only one locking event monitor per database. Creating more than one
locking event monitor uses additional processor cycles and storage, without
providing any additional data.

Important: For compatibility with older versions of the product, all databases
are created with the DB2DETAILDEADLOCK event monitor enabled. The
locking event monitor introduced in DB2 Version 9.7 is the preferred mechanism
for collecting data related to locks; the DB2DETAILEDDEALOCK event monitor
is deprecated and might be removed in a future release. When you create a
locking event monitor, disable and drop the DB2DETAILEDDEADLOCK event
monitor to prevent the collection of duplicate, unnecessary information.

To remove the DB2DETAILDEADLOCK event monitor, issue the following SQL
statements:
SET EVENT MONITOR DB2DETAILDEADLOCK state 0
DROP EVENT MONITOR DB2DETAILDEADLOCK

v In a partitioned database environment, data is written only to target tables on
the database partitions where their table spaces exist. If a table space for a target
table does not exist on some database partition, data for that target table is
ignored. This behavior allows users to choose a subset of database partitions for
monitoring to be chosen, by creating a table space that exists only on certain
database partitions.

v In a partitioned database environment, if some target tables do not reside on a
database partition, but other target tables do reside on that same database
partition, only the data for the target unformatted event tables that do reside on
that database partition is recorded.

Examples
v Example 1: This example creates a locking event monitor LOCKEVMON that will

collect locking events that occur on the database of creation.
CREATE EVENT MONITOR LOCKEVMON

FOR LOCKING
WRITE TO TABLE

This event monitor writes its output to the following tables:
LOCK_LOCKEVMON
LOCK_PARTICIPANTS_LOCKEVMON
LOCK_PARTICIPANT_ACTIVITIES_LOCKEVMON
LOCK_ACTIVITY_VALUES_LOCKEVMON
CONTROL_LOCKEVMON

CREATE EVENT MONITOR (locking)

Statements 401



v Example 2: This example creates a locking event monitor LOCKEVMON that will
collect locking events that occur on the database of creation and store it in the
unformatted event table IMRAN.LOCKEVENTS.

CREATE EVENT MONITOR LOCKEVMON
FOR LOCKING
WRITE TO UNFORMATTED EVENT TABLE (TABLE IMRAN.LOCKEVENTS)

v Example 3: This example creates a locking event monitor LOCKEVMON that will
collect locking events that occur on the database of creation and store it in the
unformatted event table IMRAN.LOCKEVENTS in table space APPSPACE. The
event monitor will deactivate when the table space becomes 85% full.

CREATE EVENT MONITOR LOCKEVMON
FOR LOCKING
WRITE TO UNFORMATTED EVENT TABLE

(TABLE IMRAN.LOCKEVENTS IN APPSPACE PCTDEACTIVATE 85)

CREATE EVENT MONITOR (locking)

402 SQL Reference Volume 2



CREATE EVENT MONITOR (package cache) statement
The CREATE EVENT MONITOR (package cache) statement creates an event
monitor that will record events when the cache entry for a section is flushed from
the package cache.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR PACKAGE CACHE �

� filter-and-collection-options �

� WRITE TO TABLE formatted-event-table-info
UNFORMATTED EVENT TABLE

( target-table-options )

�

�
AUTOSTART

MANUALSTART
��

filter-and-collection-options:

WHERE event-condition

COLLECT BASE DATA

COLLECT DETAILED DATA

event-condition:

�

AND
(1)

UPDATED_SINCE_BOUNDARY_TIME
NUM_EXECUTIONS > integer-constant
STMT_EXEC_TIME <

<=
=
>=

CREATE EVENT MONITOR (package cache) statement

Statements 403



formatted-event-table-info:

�

,

evm-group
( target-table-options )

target-table-options:

�
(2) (3)

TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

Notes:

1 Each condition can be specified only once (SQLSTATE 42613).

2 Each table option can be specified a maximum of one time (SQLSTATE
42613).

3 Clauses can be separated with a space or a comma.

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

PACKAGE CACHE
Specifies that this event monitor will record an event when the cache entry
for a static or dynamic SQL statement is flushed from the package cache.
This event monitor is not passive and will start to record events once it is
activated.

filter-and-collection-options
Specify a set of filter and collection options.

WHERE

event-condition
Defines a filter that determines whether entries that are flushed from
the package cache should cause an event to occur. If the event
condition is TRUE for a particular entry that is being flushed from the
package cache, then that entry will be recorded as an event.

This clause is a special form of the WHERE clause that should not be
confused with a standard search condition. This is a simple WHERE
clause that includes the use of NOT, OR, and LIKE operators, unlike
the WHERE clause specified for the CONNECTIONS,
TRANSACTIONS, and STATEMENTS event monitors.

If the WHERE clause is not specified, all entries flushed from the
package cache will be monitored.

CREATE EVENT MONITOR (package cache) statement

404 SQL Reference Volume 2



UPDATED_SINCE_BOUNDARY_TIME
Specifies that evicted entries, whose metrics were updated after the
boundary time, should be collected by this event monitor. The
boundary time is set by calling the MON_GET_PKG_CACHE_STMT
table function with the value of the input key
"updated_boundary_time" set as the name of this event monitor.

The boundary time is initially set to the activation timestamp of the
event monitor.

NUM_EXECUTIONS > | < | <= | = | >= integer-constant
Specifies that the monitor element num_executions should be compared
with the integer-constant in order to determine whether to generate an
event. NUM_EXECUTIONS is the number of times that the section of
the evicted entry was executed.

Note: The num_executions monitor element counts all executions of a
statement, whether or not the execution of the statement contributed to
the activity metrics that are reported.

STMT_EXEC_TIME > | < | <= | = | >= integer-constant
Specifies that the monitor element stmt_exec_time should be compared
with the integer-constant in order to determine whether to generate an
event. STMT_EXEC_TIME is the total aggregated time spent executing
the statement of the evicted entry. The unit of time for the
integer-constant must be specified as milliseconds.

COLLECT BASE DATA
Specifies that the same level of information returned by the
MON_GET_PKG_CACHE_STMT table function should be captured. This is
the default collect option.

COLLECT DETAILED DATA
Specifies that the BASE level information should be collected as well as the
runtime executable section of the flushed entry.

WRITE TO
Specifies the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database
tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data for
groups having a target table is kept, whereas data for groups not having a
target table is discarded. Each monitor element contained within a group is
mapped to a table column with the same name. Only elements that have a
corresponding table column are inserted into the table. Other elements are
discarded.

formatted-event-table-info
Defines the target formatted event tables for the event monitor. This
clause should specify each grouping that is to be recorded. However, if
no evm-group clauses are specified, all groups for the event monitor
type are recorded.

For more information about logical data groups, refer to “Logical data
groups and event monitor output tables” in Database Monitoring Guide
and Reference.

CREATE EVENT MONITOR (package cache) statement

Statements 405



evm-group
Identifies a logical data group for which a target table is being
defined. The value depends upon the type of event monitor, as
shown in the following table:

Type of Event Monitor evm-group Value

Package Cache v PKGCACHE

v PKGCACHE_METRICS

v PKGCACHE_STMT_ARGS

v CONTROL

UNFORMATTED EVENT TABLE
Specifies that the target for the event monitor is an unformatted event
table. The unformatted event table is used to store collected package cache
event monitor data. Data is stored in its original binary format within an
inlined BLOB column. The BLOB column can contain multiple binary
records of different types. The data in the BLOB column is not in a
readable format and requires conversion, through use of the db2evmonfmt
Java-based tool, EVMON_FORMAT_UE_TO_XML table function, or
EVMON_FORMAT_UE_TO_TABLES procedure, into a consumable format
such as an XML document or a relational table.

target-table-options
Identifies options for the target table. If a value for target-table-options is
not specified, CREATE EVENT MONITOR FOR PACKAGE CACHE
processing proceeds as follows:
v A derived table name is used (as explained in the description for TABLE

table-name).
v A default table space is chosen using the same process as when a table is

created without a table space name using CREATE TABLE.
v PCTDEACTIVATE is set to 100.

TABLE table-name
Specifies the name of the target table. The target table must be a
non-partitioned table. If the name is unqualified, the table schema
defaults to the value in the CURRENT SCHEMA special register. If a
name is not provided for an unformatted event table, the unqualified
name is equal to the event-monitor-name, that is, the unformatted event
table will be named after the event monitor. If no name is provided for
a formatted event table, the unqualified name is derived from
evm-group and event-monitor-name as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

IN tablespace-name
Specifies the table space in which the table is to be created. The
CREATE EVENT MONITOR FOR PACKAGE CACHE statement does
not create table spaces.

If a table space name is not provided, the table space is chosen using
the same process as when a table is created without a table space name
using CREATE TABLE.

The table space's page size affects the INLINE LOB lengths used.
Consider specifying a table space with as large a page size as possible
in order to improve the INSERT performance of the event monitor.

CREATE EVENT MONITOR (package cache) statement

406 SQL Reference Volume 2



PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage
(non-temporary) or DMS table space, the PCTDEACTIVATE parameter
specifies how full the table space must be before the event monitor
automatically deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that the event
monitor deactivates when the table space becomes completely full. The
default value assumed is 100 if PCTDEACTIVATE is not specified. This
option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set
PCTDEACTIVATE parameter to 100. Alternatively, omit this clause
entirely to have the default of 100 apply. Otherwise, the event monitor
might deactivate unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is automatically
resized.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the
database partition on which the event monitor runs is activated. This is the
default behavior of the package cache event monitor.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
has been activated, it can be deactivated by using the SET EVENT MONITOR
STATE statement or by stopping the instance.

Notes
v The target table is created when the CREATE EVENT MONITOR FOR

PACKAGE CACHE statement executes, if it doesn't already exist.
v During CREATE EVENT MONITOR FOR PACKAGE CACHE processing, if a

table is found to have already been defined for use by another event monitor,
the CREATE EVENT MONITOR FOR PACKAGE CACHE statement fails, and an
error is passed back to the application program. A table is defined for use by
another event monitor if the table name matches a value found in the
SYSCAT.EVENTTABLES catalog view. If the table exists and is not defined for
use by another event monitor, then the event monitor will re-use the table.

v Dropping the event monitor will not drop any tables. Any associated tables must
be manually dropped after the event monitor is dropped.

v Lock event data is not automatically pruned from either unformatted event
tables or regular tables created by this event monitor. An option for pruning
data from UE tables is available when using the
EVMON_FORMAT_UE_TO_TABLES procedure. For event monitors that write to
regular tables, event data must be pruned manually.

v In a partitioned database environment, data is written to target tables only on
the members where their table spaces exist. If a table space for a target table
does not exist on a member, the event data that would be written to that target
table is not captured on that member. This behavior allows users to choose a
subset of members for monitoring, by creating a table space that exists only on
certain members.

v In a partitioned database environment, data is written to target tables only on
the member where the entries are evicted from the database package cache.

CREATE EVENT MONITOR (package cache) statement

Statements 407



v In a partitioned database environment, if some target tables do not reside on a
member, but other target tables do reside on that same member, only the data
for the target unformatted event tables that do reside on that member is
recorded.

v The FLUSH EVENT MONITOR statement is not applicable to this event monitor
and will have no effect when issued against it.

v After the package cache event monitor is created, the filter and control options
cannot be changed or altered. To change the filter and control options, the event
monitor must be deactivated, dropped, and then recreated with the new filter
and control options.

Use large table space for high throughput
Event data is inserted into the unformatted event table into an inlined
BLOB data column. Normally, BLOB data is stored in a separate LOB table
space and can experience additional performance overhead as a result.
When inlined into the data page of the base table, the BLOB data does not
experience this overhead. The database manager will automatically inline
the BLOB data portion of an unformatted event table record if the size of
the BLOB data is less than the table space page size minus the record
prefix. Therefore, to achieve high efficiency and application throughput, it
is suggested that you create the event monitor in as large a table space as
possible, up to and including a 32 KB table space, and associated
bufferpool.

Inline of package cache records
For the package cache event monitor, the size of the stmt_text,
comp_env_desc, and the section_env monitor elements will
determine if the package cache record will be inlined or not. If the
total of these fields exceeds the table space size, then the record
will not be inlined.

Determine if EVENT_DATA is inlined
Use the ADMIN_IS_INLINED and
ADMIN_EST_INLINE_LENGTH functions to determine whether
the record is inlined and get an estimate of the inline length that is
required.

Restrictions
v During database deactivation, evicted entries will not be collected by the

package cache event monitor.

Examples
v Example 1: This example creates a package cache event monitor called

CACHEEVMON that will collect data related to package cache section eviction
events and write the data to tables.

CREATE EVENT MONITOR CACHEEVMON
FOR PACKAGE CACHE
WRITE TO TABLE

This event monitor writes its output to the following tables:
PKGCACHE_CACHEEVMON
PKGCACHE_METRICS_CACHEEVMON
PKGCACHE_STMT_ARGS
CONTROL_CACHEEVMON

CREATE EVENT MONITOR (package cache) statement

408 SQL Reference Volume 2



v Example 2: This example creates a package cache event monitor called
CACHESTMTEVMON that will collect data related to package cache section
eviction events and store it in the unformatted event table ALAN.STMTEVENTS.

CREATE EVENT MONITOR CACHESTMTEVMON
FOR PACKAGE CACHE
WRITE TO UNFORMATTED EVENT TABLE (TABLE ALAN.STMTEVENTS)

v Example 3: This example creates a package cache event monitor called
CACHESTMTEVMON that will collect data related to package cache section
eviction events and store it in the unformatted event table ALAN.STMTEVENTS
in table space APPSPACE. The event monitor will deactivate when the table
space becomes 85% full.

CREATE EVENT MONITOR CACHESTMTEVMON
FOR PACKAGE CACHE
WRITE TO UNFORMATTED EVENT TABLE

(TABLE ALAN.STMTEVENTS IN APPSPACE PCTDEACTIVATE 85)

CREATE EVENT MONITOR (package cache) statement

Statements 409



CREATE EVENT MONITOR (statistics)
The CREATE EVENT MONITOR (statistics) statement defines a monitor that will
record statistics events that occur when using the database. The definition of the
statistics event monitor also specifies where the database should record the events.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority
v WLMADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR STATISTICS �

� WRITE TO TABLE formatted-event-table-info
PIPE pipe-name
FILE path-name file-options

*

AUTOSTART

MANUALSTART
* �

�
ON MEMBER member-number

*

LOCAL
* ��

formatted-event-table-info:

*

�

,

evm-group
( target-table-options )

* �

�
BUFFERSIZE 4

BUFFERSIZE pages
*

BLOCKED

NONBLOCKED
*

CREATE EVENT MONITOR (statistics)

410 SQL Reference Volume 2



target-table-options:

�
(1) (2)

TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

file-options:

*

MAXFILES NONE

MAXFILES number-of-files
*

MAXFILESIZE pages
NONE

* �

�
BUFFERSIZE 4

BUFFERSIZE pages
*

BLOCKED

NONBLOCKED
*

APPEND

REPLACE
*

Notes:

1 Each clause can be specified only once.

2 Clauses can be separated with a space or a comma.

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

STATISTICS
Specifies that the event monitor records a service class, workload, or work
class event:
v Every period minutes, where period is the value of the wlm_collect_int

database configuration parameter
v When the mon_collect_stats procedure is called

WRITE TO
Introduces the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database
tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data for
groups having a target table is kept, whereas data for groups not having a
target table is discarded. Each monitor element contained within a group is
mapped to a table column with the same name. Only elements that have a
corresponding table column are inserted into the table. Other elements are
discarded.

formatted-event-table-info
Defines the target tables for an event monitor. This clause should be

CREATE EVENT MONITOR (statistics)

Statements 411



specified for each grouping that is to be recorded. However, if no
evm-group-info clauses are specified, all groups for the event monitor
type are recorded.

For more information about logical data groups, refer to “Logical data
groups and event monitor output tables” in Database Monitoring Guide
and Reference.

evm-group
Identifies the logical data group for which a target table is being
defined. The value depends upon the type of event monitor, as
shown in the following table:

Type of Event Monitor evm-group Value

Statistics v CONTROL

v HISTOGRAMBIN

v OSMETRICS

v QSTATS

v SCMETRICS

v SCSTATS

v WCSTATS

v WLMETRICS

v WLSTATS

target-table-options
Identifies the target table for the group.

TABLE table-name
Specifies the name of the target table. The target table must
be a non-partitioned table. If the name is unqualified, the
table schema defaults to the value in the CURRENT
SCHEMA special register. If no name is provided, the
unqualified name is derived from evm-group and
event-monitor-name as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created.
If no table space name is provided, the table space is
chosen using the same process as when a table is created
without a table space name using CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an
automatic storage (non-temporary) or DMS table space, the
PCTDEACTIVATE parameter specifies how full the table
space must be before the event monitor automatically
deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that
the event monitor deactivates when the table space
becomes completely full. The default value assumed is 100
if PCTDEACTIVATE is not specified. This option is ignored
for SMS table spaces.

CREATE EVENT MONITOR (statistics)

412 SQL Reference Volume 2



Important: If the target table space has auto-resize
enabled, set PCTDEACTIVATE parameter to 100.
Alternatively, omit this clause entirely to have the default
of 100 apply. Otherwise, the event monitor might
deactivate unexpectedly if the table space reaches the
threshold specified by PCTDEACTIVTATE before the table
space is automatically resized.

If a value for target-table-options is not specified, CREATE
EVENT MONITOR processing proceeds as follows:
v A derived table name is used.
v A default table space is chosen.
v PCTDEACTIVATE defaults to 100.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). Table event monitors insert all data from a buffer, and
issues a COMMIT once the buffer has been processed. The larger
the buffers, the larger the commit scope used by the event monitor.
Highly active event monitors should have larger buffers than
relatively inactive event monitors. When a monitor is started, two
buffers of the specified size are allocated. Event monitors use
double buffering to permit asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are
allocated). The minimum size is 1 page. The maximum size of the
buffers is limited by the size of the monitor heap, because the
buffers are allocated from that heap. If many event monitors are
being used at the same time, increase the size of the mon_heap_sz
database manager configuration parameter.

Note: This keyword is not supported for statistics event monitors.
The compiler accepts this keyword, but the keyword has no effect
on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

Note: This keyword is not supported for statistics event monitors.
The compiler accepts this keyword, but the keyword has no effect
for statistics event monitors. The event monitor is created as if the
BLOCKED keyword was specified.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event
monitors are subject to data loss on highly active systems.

PIPE
Specifies that the target for the event monitor data is a named pipe. The
event monitor writes the data to the pipe in a single stream (that is, as if it
were a single, infinitely long file). When writing the data to a pipe, an

CREATE EVENT MONITOR (statistics)

Statements 413



event monitor does not perform blocked writes. If there is no room in the
pipe buffer, then the event monitor will discard the data. It is the
monitoring application's responsibility to read the data promptly if it
wishes to ensure no data loss.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor will
write the data.

The naming rules for pipes are platform specific.

Operating system Naming rules

AIX
HP-UX
Solaris

Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is a special syntax for a pipe name
and, as a result, absolute pipe names are
required.

The existence of the pipe will not be checked at event monitor creation
time. It is the responsibility of the monitoring application to have
created and opened the pipe for reading at the time that the event
monitor is activated. If the pipe is not available at this time, then the
event monitor will turn itself off, and will log an error. (That is, if the
event monitor was activated at database start time as a result of the
AUTOSTART option, then the event monitor will log an error in the
system error log.) If the event monitor is activated via the SET EVENT
MONITOR STATE SQL statement, then that statement will fail
(SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set of files).
The event monitor writes out the stream of data as a series of 8 character
numbered files, with the extension "evt". (for example, 00000000.evt,
00000001.evt, and 00000002.evt). The data should be considered to be one
logical file even though the data is broken up into smaller pieces (that is,
the start of the data stream is the first byte in the file 00000000.evt; the end
of the data stream is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum
number of files. An event monitor will never split a single event record
across two files. However, an event monitor may write related records in
two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event
files.

path-name
The name of the directory in which the event monitor should write the
event files data. The path must be known at the server; however, the
path itself could reside on another database partition (for example, an
NFS mounted file). A string constant must be used when specifying the
path-name.

CREATE EVENT MONITOR (statistics)

414 SQL Reference Volume 2



The directory does not have to exist at CREATE EVENT MONITOR
time. However, a check is made for the existence of the target path
when the event monitor is activated. At that time, if the target path
does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path will be the one used.

In a DB2 pureScale environment, if a relative path is specified, then the
path relative to the database owning directory in the database directory
will be used.

In environments other than DB2 pureScale, if a relative path (a path
that does not start with the root) is specified, then the path relative to
the DB2EVENT directory in the database directory will be used.

It is possible to specify two or more event monitors that have the same
target path. However, once one of the event monitors has been
activated for the first time, and as long as the target directory is not
empty, it will be impossible to activate any of the other event monitors.

file-options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files that the
event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files
that will exist for a particular event monitor at any time. Whenever
an event monitor has to create another file, it will check to make
sure that the number of .evt files in the directory is less than
number-of-files. If this limit has already been reached, then the event
monitor will turn itself off.

If an application removes the event files from the directory after
they have been written, then the total number of files that an event
monitor can produce can exceed number-of-files. This option has
been provided to allow a user to guarantee that the event data will
not consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor file.
Whenever an event monitor writes a new event record to a file, it
checks that the file will not grow to be greater than pages (in units
of 4K pages). If the resulting file would be too large, then the event
monitor switches to the next file. The default for this option is:
v Linux - 1000 4K pages
v UNIX - 1000 4K pages
v Windows - 200 4K pages

The number of pages must be greater than at least the size of the
event buffer in pages. If this requirement is not met, then an error
(SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If MAXFILESIZE
NONE is specified, then MAXFILES 1 must also be specified. This
option means that one file will contain all of the event data for a
particular event monitor. In this case the only event file will be
00000000.evt.

CREATE EVENT MONITOR (statistics)

Statements 415



BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). All event monitor file I/O is buffered to improve the
performance of the event monitors. The larger the buffers, the less
I/O will be performed by the event monitor. Highly active event
monitors should have larger buffers than relatively inactive event
monitors. When the monitor is started, two buffers of the specified
size are allocated. Event monitors use double buffering to permit
asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are
allocated). The minimum size is 1 page. The maximum size of the
buffers is limited by the value of the MAXFILESIZE parameter, as
well as the size of the monitor heap, because the buffers are
allocated from that heap. If many event monitors are being used at
the same time, increase the size of the mon_heap_sz database
manager configuration parameter.

Event monitors that write their data to a pipe also have two
internal (non-configurable) buffers that are each 1 page in size.
These buffers are also allocated from the monitor heap
(MON_HEAP). For each active event monitor that has a pipe
target, increase the size of the database heap by 2 pages.

Note: This keyword is not supported for statistics event monitors.
The compiler accepts this keyword, but the keyword has no effect
on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event
monitors are subject to data loss on highly active systems.

Note: This keyword is not supported for statistics event monitors.
The compiler accepts this keyword, but the keyword has no effect
for statistics event monitors. The event monitor is created as if the
BLOCKED keyword was specified.

APPEND
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will append the new
event data to the existing stream of data files. When the event
monitor is reactivated, it will resume writing to the event files as if
it had never been turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the directory
where the newly created event monitor is to write its event data.

CREATE EVENT MONITOR (statistics)

416 SQL Reference Volume 2



REPLACE
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will erase all of the
event files and start writing data to file 00000000.evt.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
has been activated, it can be deactivated only by using the SET EVENT
MONITOR STATE statement or by stopping the instance.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the
member on which the event monitor runs is activated. This is the default
behavior of the statistics event monitor.

ON MEMBER member-number
Specifies the member on which a file or pipe event monitor is to run. When
the monitoring scope is defined as LOCAL, data is collected only on the
specified member. The I/O component will physically run on the specified
member, writing records to the specified file or pipe.

When DB2 pureScale feature is enabled, -1 is the default.

If -1 is specified, it allows the I/O component to run from any active member.
Additionally, in the event that the I/O component is no longer able to run on a
given member, the event monitor will be restarted with the I/O component
running on another available active member.

This clause is not valid for table event monitors. In a partitioned database
environment, write-to-table event monitors will run and write events on all
database partitions where table spaces for target tables are defined.

In a DB2 pureScale environment, write-to-table event monitors will record
events on all active members.

If this clause is not specified and the DB2 pureScale feature is not enabled, the
currently connected database partition number (for the application) is used.

If this clause is not specified and DB2 pureScale is enabled, the I/O component
is able to run on any currently connected member.

LOCAL
The event monitor reports only on the member that is running. It gives a
partial trace of the database activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event
monitors.

GLOBAL is not a valid scope for this type of event monitor.

Rules
v The STATISTICS event type cannot be combined with any other event types in a

particular event monitor definition.

Notes
v Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS

catalog view. The events themselves are recorded in the SYSCAT.EVENTS
catalog view. The names of target tables are recorded in the
SYSCAT.EVENTTABLES catalog view.

CREATE EVENT MONITOR (statistics)

Statements 417



v If the member on which the event monitor is to run is not active, event monitor
activation occurs when that member next activates.

v After an event monitor is activated, it behaves like an autostart event monitor
until that event monitor is explicitly deactivated or the instance is recycled. That
is, if an event monitor is active when a member is deactivated, and that member
is subsequently reactivated, the event monitor is also explicitly reactivated.

v If you create the event monitor such that the logical data groups event_scstats or
event_wlstats are included in the event monitor output, metrics are reported in
two XML documents contained in the event monitor output. The metrics
elements contained in the metrics document are reset to 0 after each monitoring
interval. The metrics contained in details_xml are not reset after each interval;
instead, they continue to accumulate until the next database activation.

Important: Starting with Version 10.5 Fix Pack 1, the XML document details_xml
is deprecated in the statistics event monitor, and might be removed in a future
release. For more information, see “Reporting of metrics in details_xml by the
statistics event monitor has been deprecated” at http://www.ibm.com/support/
knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060390.html.

v Write to table event monitors: General notes:
– All target tables are created when the CREATE EVENT MONITOR statement

executes.
– If the creation of a table fails for any reason, an error is passed back to the

application program, and the CREATE EVENT MONITOR statement fails.
– A target table can only be used by one event monitor. During CREATE

EVENT MONITOR processing, if a target table is found to have already been
defined for use by another event monitor, the CREATE EVENT MONITOR
statement fails, and an error is passed back to the application program. A
table is defined for use by another event monitor if the table name matches a
value found in the SYSCAT.EVENTTABLES catalog view.

– During CREATE EVENT MONITOR processing, if a table already exists, but
is not defined for use by another event monitor, no table is created, and
processing continues. A warning is passed back to the application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement
is executed. The CREATE EVENT MONITOR statement does not create table
spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO
TABLE event monitors, an event monitor output process or thread is started
on each member in the instance, and each of these processes reports data only
for the member on which it is running.

– The following event types from the flat monitor log file or pipe format are not
recorded by write to table event monitors:
- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The

element conn_time is recorded in CONTROL.)
– In a partitioned database environment, data is only written to target tables on

the database partitions where their table spaces exist. If a table space for a
target table does not exist on some database partition, data for that target
table is ignored. This behavior allows users to choose a subset of member for
monitoring, by creating a table space that exists only on certain member.
In a DB2 pureScale environment, data will be written from every member.

CREATE EVENT MONITOR (statistics)

418 SQL Reference Volume 2

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060390.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060390.html


In a partitioned database environment, if some target tables do not reside on
a database partition, but other target tables do reside on that same database
partition, only the data for the target tables that do reside on that database
partition is recorded.

– Users must manually prune all target tables.

Table Columns:
– Column names in a table match an event monitor element identifier. Any

event monitor element that does not have a corresponding target table
column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR command
that includes a complete list of elements for a group.

– The types of columns being used for monitor elements correlate to the
following mapping:
SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)

(If the data in the event monitor
record exceeds n bytes,
it is truncated.)

SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP
sqlm_time(elapsed time) BIGINT
sqlca:

sqlerrmc VARCHAR[72]
sqlstate CHAR[5]
sqlwarn CHAR[11]
other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.
– Unlike other target tables, the columns in the CONTROL table do not match

monitor element identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database only)

PARTITION_NUMBER INTEGER N Database partition number
(partitioned database only)

EVMONNAME VARCHAR(128) N Name of the event monitor

MESSAGE VARCHAR(128) N Describes the nature of the
MESSAGE_TIME column.

For more details see,
“message - Control Table
Message monitor element”
in the Database Monitoring
Guide and Reference

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is
named PARTITION_KEY, is NOT NULL, and is of type INTEGER. This
column is used as the distribution key for the table. The value of this column
is chosen so that each event monitor process inserts data into the member on
which the process is running; that is, insert operations are performed locally
on the member where the event monitor process is running. On any database
partition, the PARTITION_KEY field will contain the same value. This means

CREATE EVENT MONITOR (statistics)

Statements 419



that if a database partition is dropped and data redistribution is performed,
all data on the dropped database partition will go to one other database
partition instead of being evenly distributed. Therefore, before removing a
database partition, consider deleting all table rows on that database partition.

– In a partitioned database environment, a column named
PARTITION_NUMBER can be defined for each table. This column is NOT
NULL and is of type INTEGER. It contains the number of the database
partition on which the data was inserted. Unlike the PARTITION_KEY
column, the PARTITION_NUMBER column is not mandatory. The
PARTITION_NUMBER column is not allowed in a non-partitioned database
environment.

Table Attributes:
– Default table attributes are used. Besides distribution key (partitioned

databases only), no extra options are specified when creating tables.
– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints, and so on) can

be added, but the event monitor process (or thread) will ignore them.
– If "not logged initially" is added as a table attribute, it is turned off at the first

COMMIT, and is not set back on.

Event Monitor Activation:
– When an event monitor activates, all target table names are retrieved from the

SYSCAT.EVENTTABLES catalog view.
– In a partitioned database environment, activation processing occurs on every

member of the instance. On a particular member, activation processing
determines the table spaces and database partition groups for each target
table. The event monitor only activates on a member if at least one target
table exists on that database partition. Moreover, if some target table is not
found on a database partition, that target table is flagged so that data
destined for that table is dropped during runtime processing.

– If a target table does not exist when the event monitor activates (or, in a
partitioned database environment, if the table space does not reside on a
database partition), activation continues, and data that would otherwise be
inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation
of the event monitor fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table
rows for FIRST_CONNECT and EVMON_START are only inserted on the
catalog database partition. This requires that the table space for the control
table exist on the catalog database partition. If it does not exist on the catalog
database partition, these inserts are not performed.

– In a partitioned database environment, if a member is not yet active when a
write to table event monitor is activated, the event monitor will be activated
the next time that member is activated.

Run Time:
– An event monitor runs with DATAACCESS authority.
– If, while an event monitor is active, an insert operation into a target table

fails:
- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

CREATE EVENT MONITOR (statistics)

420 SQL Reference Volume 2



– If an event monitor is active, it performs a local COMMIT when it has
finished processing an event monitor buffer.

– In an environment other than a partitioned database or a DB2 pureScale
environment, all write to table event monitors are deactivated when the last
application terminates (and the database has not been explicitly activated).
In a DB2 pureScale environment, write to table event monitors are deactivated
on a given member when the member stops and is reactivated when the
member restarts.
In a partitioned database environment, write to table event monitors are
deactivated when the catalog partition deactivates.

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it will acquire IN table

locks on each target table in order to prevent them from being modified while
the event monitor is active. Table locks are maintained on all tables while the
event monitor is active. If exclusive access is required on any of the target
tables (for example, when a utility is to be run), first deactivate the event
monitor to release the table locks before attempting such access.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– Commas can be used to separate multiple options in the target-table-options

clause

Example

Define a statistics event monitor named DBSTATISTICS
CREATE EVENT MONITOR DBSTATISTICS

FOR STATISTICS
WRITE TO TABLE
SCSTATS (TABLE SCSTATS_DBSTATISTICS

IN USERSPACE1
PCTDEACTIVATE 100),

WCSTATS (TABLE WCSTATS_DBSTATISTICS
IN USERSPACE1
PCTDEACTIVATE 100),

WLSTATS (TABLE WLSTATS_DBSTATISTICS
IN USERSPACE1
PCTDEACTIVATE 100),

QSTATS (TABLE QSTATS_DBSTATISTICS
IN USERSPACE1
PCTDEACTIVATE 100),

HISTOGRAMBIN (TABLE HISTOGRAMBIN_DBSTATISTICS
IN USERSPACE1
PCTDEACTIVATE 100),

OSMETRICS (TABLE OSMETRICS_DBSTATISTICS
IN USERSPACE1
PCTDEACTIVATE 100),

CONTROL (TABLE CONTROL_DBSTATISTICS
IN USERSPACE1
PCTDEACTIVATE 100)

AUTOSTART;

CREATE EVENT MONITOR (statistics)

Statements 421



CREATE EVENT MONITOR (threshold violations)
The CREATE EVENT MONITOR (threshold violations) statement defines a monitor
that will record threshold violation events that occur when using the database. The
definition of the threshold violations event monitor also specifies where the
database should record the events.

Invocation

The threshold violations event monitor can collect more information about the
application that violated the threshold. The addition of these monitor elements
does not affect existing threshold violations event monitors, but in order to collect
the additional application information existing monitors must dropped and
recreated.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority
v WLMADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR THRESHOLD VIOLATIONS �

� WRITE TO TABLE formatted-event-table-info
PIPE pipe-name
FILE path-name file-options

*

AUTOSTART

MANUALSTART
* �

�
ON MEMBER member-number

*

LOCAL
* ��

formatted-event-table-info:

*

�

,

evm-group
( target-table-options )

* �

�
BUFFERSIZE 4

BUFFERSIZE pages
*

BLOCKED

NONBLOCKED
*

CREATE EVENT MONITOR (threshold violations)

422 SQL Reference Volume 2



target-table-options:

�
(1) (2)

TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

file-options:

*

MAXFILES NONE

MAXFILES number-of-files
*

MAXFILESIZE pages
NONE

* �

�
BUFFERSIZE 4

BUFFERSIZE pages
*

BLOCKED

NONBLOCKED
*

APPEND

REPLACE
*

Notes:

1 Each clause can be specified only once.

2 Clauses can be separated with a space or a comma.

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

THRESHOLD VIOLATIONS
Specifies that the event monitor records a threshold violation event when a
threshold is violated. Such events can be recorded at any point in the life
of an activity, not just at completion.

WRITE TO
Introduces the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database
tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data for
groups having a target table is kept, whereas data for groups not having a
target table is discarded. Each monitor element contained within a group is
mapped to a table column with the same name. Only elements that have a
corresponding table column are inserted into the table. Other elements are
discarded.

formatted-event-table-info
Defines the target tables for an event monitor. This clause should be
specified for each grouping that is to be recorded. However, if no
evm-group-info clauses are specified, all groups for the event monitor
type are recorded.

CREATE EVENT MONITOR (threshold violations)

Statements 423



For more information about logical data groups, refer to “Logical data
groups and event monitor output tables” in Database Monitoring Guide
and Reference.

evm-group
Identifies the logical data group for which a target table is being
defined. The value depends upon the type of event monitor, as
shown in the following table:

Type of Event Monitor evm-group Value

Threshold violations v THRESHOLDVIOLATIONS

v CONTROL

target-table-options
Identifies the target table for the group.

TABLE table-name
Specifies the name of the target table. The target table must
be a non-partitioned table. If the name is unqualified, the
table schema defaults to the value in the CURRENT
SCHEMA special register. If no name is provided, the
unqualified name is derived from evm-group and
event-monitor-name as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created.
If no table space name is provided, the table space is
chosen using the same process as when a table is created
without a table space name using CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an
automatic storage (non-temporary) or DMS table space, the
PCTDEACTIVATE parameter specifies how full the table
space must be before the event monitor automatically
deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that
the event monitor deactivates when the table space
becomes completely full. The default value assumed is 100
if PCTDEACTIVATE is not specified. This option is ignored
for SMS table spaces.

Important: If the target table space has auto-resize
enabled, set PCTDEACTIVATE parameter to 100.
Alternatively, omit this clause entirely to have the default
of 100 apply. Otherwise, the event monitor might
deactivate unexpectedly if the table space reaches the
threshold specified by PCTDEACTIVTATE before the table
space is automatically resized.

If a value for target-table-options is not specified, CREATE
EVENT MONITOR processing proceeds as follows:
v A derived table name is used.
v A default table space is chosen.

CREATE EVENT MONITOR (threshold violations)

424 SQL Reference Volume 2



v The PCTDEACTIVATE parameter defaults to 100.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). Table event monitors insert all data from a buffer, and
issues a COMMIT once the buffer has been processed. The larger
the buffers, the larger the commit scope used by the event monitor.
Highly active event monitors should have larger buffers than
relatively inactive event monitors. When a monitor is started, two
buffers of the specified size are allocated. Event monitors use
double buffering to permit asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are
allocated). The minimum size is 1 page. The maximum size of the
buffers is limited by the size of the monitor heap, because the
buffers are allocated from that heap. If many event monitors are
being used at the same time, increase the size of the mon_heap_sz
database manager configuration parameter.

Note: This keyword is not supported for threshold violation event
monitors. The compiler accepts this keyword, but the keyword has
no effect on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event
monitors are subject to data loss on highly active systems.

Note: This keyword is not supported for threshold violation event
monitors. The compiler accepts this keyword, but the keyword has
no effect for threshold violation event monitors. The event monitor
is created as if the BLOCKED keyword was specified.

PIPE
Specifies that the target for the event monitor data is a named pipe. The
event monitor writes the data to the pipe in a single stream (that is, as if it
were a single, infinitely long file). When writing the data to a pipe, an
event monitor does not perform blocked writes. If there is no room in the
pipe buffer, then the event monitor will discard the data. It is the
monitoring application's responsibility to read the data promptly if it
wishes to ensure no data loss.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor will
write the data.

The naming rules for pipes are platform specific.

CREATE EVENT MONITOR (threshold violations)

Statements 425



Operating system Naming rules

AIX
HP-UX
Solaris

Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As a
result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is a special syntax for a pipe name
and, as a result, absolute pipe names are
required.

The existence of the pipe will not be checked at event monitor creation
time. It is the responsibility of the monitoring application to have
created and opened the pipe for reading at the time that the event
monitor is activated. If the pipe is not available at this time, then the
event monitor will turn itself off, and will log an error. (That is, if the
event monitor was activated at database start time as a result of the
AUTOSTART option, then the event monitor will log an error in the
system error log.) If the event monitor is activated via the SET EVENT
MONITOR STATE SQL statement, then that statement will fail
(SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set of files).
The event monitor writes out the stream of data as a series of 8 character
numbered files, with the extension "evt". (for example, 00000000.evt,
00000001.evt, and 00000002.evt). The data should be considered to be one
logical file even though the data is broken up into smaller pieces (that is,
the start of the data stream is the first byte in the file 00000000.evt; the end
of the data stream is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum
number of files. An event monitor will never split a single event record
across two files. However, an event monitor may write related records in
two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event
files.

path-name
The name of the directory in which the event monitor should write the
event files data. The path must be known at the server; however, the
path itself could reside on another database partition (for example, an
NFS mounted file). A string constant must be used when specifying the
path-name.

The directory does not have to exist at CREATE EVENT MONITOR
time. However, a check is made for the existence of the target path
when the event monitor is activated. At that time, if the target path
does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path will be the one used.

In environments other than DB2 pureScale, if a relative path (a path
that does not start with the root) is specified, then the path relative to
the DB2EVENT directory in the database directory will be used.

CREATE EVENT MONITOR (threshold violations)

426 SQL Reference Volume 2



In a DB2 pureScale environment, if a relative path is specified, then the
path relative to the database owning directory in the database directory
will be used.

It is possible to specify two or more event monitors that have the same
target path. However, once one of the event monitors has been
activated for the first time, and as long as the target directory is not
empty, it will be impossible to activate any of the other event monitors.

file-options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files that the
event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files
that will exist for a particular event monitor at any time. Whenever
an event monitor has to create another file, it will check to make
sure that the number of .evt files in the directory is less than
number-of-files. If this limit has already been reached, then the event
monitor will turn itself off.

If an application removes the event files from the directory after
they have been written, then the total number of files that an event
monitor can produce can exceed number-of-files. This option has
been provided to allow a user to guarantee that the event data will
not consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor file.
Whenever an event monitor writes a new event record to a file, it
checks that the file will not grow to be greater than pages (in units
of 4K pages). If the resulting file would be too large, then the event
monitor switches to the next file. The default for this option is:
v Linux - 1000 4K pages
v UNIX - 1000 4K pages
v Windows - 200 4K pages

The number of pages must be greater than at least the size of the
event buffer in pages. If this requirement is not met, then an error
(SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If MAXFILESIZE
NONE is specified, then MAXFILES 1 must also be specified. This
option means that one file will contain all of the event data for a
particular event monitor. In this case the only event file will be
00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). All event monitor file I/O is buffered to improve the
performance of the event monitors. The larger the buffers, the less
I/O will be performed by the event monitor. Highly active event
monitors should have larger buffers than relatively inactive event
monitors. When the monitor is started, two buffers of the specified
size are allocated. Event monitors use double buffering to permit
asynchronous I/O.

CREATE EVENT MONITOR (threshold violations)

Statements 427



The default size of each buffer is 4 pages (two 16K buffers are
allocated). The minimum size is 1 page. The maximum size of the
buffers is limited by the value of the MAXFILESIZE parameter, as
well as the size of the monitor heap, because the buffers are
allocated from that heap. If many event monitors are being used at
the same time, increase the size of the mon_heap_sz database
manager configuration parameter.

Event monitors that write their data to a pipe also have two
internal (non-configurable) buffers that are each 1 page in size.
These buffers are also allocated from the monitor heap
(MON_HEAP). For each active event monitor that has a pipe
target, increase the size of the database heap by 2 pages.

Note: This keyword is not supported for threshold violation event
monitors. The compiler accepts this keyword, but the keyword has
no effect on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that
both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event
monitors are subject to data loss on highly active systems.

Note: This keyword is not supported for threshold violation event
monitors. The compiler accepts this keyword, but the keyword has
no effect for threshold violation event monitors. The event monitor
is created as if the BLOCKED keyword was specified.

APPEND
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will append the new
event data to the existing stream of data files. When the event
monitor is reactivated, it will resume writing to the event files as if
it had never been turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the directory
where the newly created event monitor is to write its event data.

REPLACE
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will erase all of the
event files and start writing data to file 00000000.evt.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
has been activated, it can be deactivated only by using the SET EVENT
MONITOR STATE statement or by stopping the instance.

CREATE EVENT MONITOR (threshold violations)

428 SQL Reference Volume 2



AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the
database partition on which the event monitor runs is activated. This is the
default behavior of the threshold violations event monitor.

ON MEMBER member-number
Specifies the member on which a file or pipe event monitor is to run. When
the monitoring scope is defined as LOCAL, data is collected only on the
member. The I/O component will physically run on the specified member,
writing records to the specified file or pipe.

When the DB2 pureScale is enabled, -1 is the default.

If the value is -1, it allows the I/O component to run from any active member.
Additionally, in the event that the I/O component is no longer able to run on a
given member, the event monitor will be restarted with the I/O component
running on another available active member.

This clause is not valid for table event monitors. In a partitioned database
environment, write-to-table event monitors will run and write events on all
database partitions where table spaces for target tables are defined.

In a DB2 pureScale environment, write-to-table event monitors will record
events on all active members.

If this clause is not specified and DB2 pureScale is not enabled, the currently
connected member is used.

If this clause is not specified and DB2 pureScale is enabled, the I/O component
is able to run on any currently connected member.

LOCAL
The event monitor reports only on the member that is running. It gives a
partial trace of the database activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event
monitors.

GLOBAL is not a valid scope for this type of event monitor.

Rules
v The THRESHOLD VIOLATIONS event type cannot be combined with any other

event types in a particular event monitor definition.

Notes
v Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS

catalog view. The events themselves are recorded in the SYSCAT.EVENTS
catalog view. The names of target tables are recorded in the
SYSCAT.EVENTTABLES catalog view.

v If the member on which the event monitor is to run is not active, event monitor
activation occurs when that member next activates.

v After an event monitor is activated, it behaves like an autostart event monitor
until that event monitor is explicitly deactivated or the instance is recycled. That
is, if an event monitor is active when a member is deactivated, and that member
is subsequently reactivated, the event monitor is also explicitly reactivated.

v Write to table event monitors: General notes:
– All target tables are created when the CREATE EVENT MONITOR statement

executes.

CREATE EVENT MONITOR (threshold violations)

Statements 429



– If the creation of a table fails for any reason, an error is passed back to the
application program, and the CREATE EVENT MONITOR statement fails.

– A target table can only be used by one event monitor. During CREATE
EVENT MONITOR processing, if a target table is found to have already been
defined for use by another event monitor, the CREATE EVENT MONITOR
statement fails, and an error is passed back to the application program. A
table is defined for use by another event monitor if the table name matches a
value found in the SYSCAT.EVENTTABLES catalog view.

– During CREATE EVENT MONITOR processing, if a table already exists, but
is not defined for use by another event monitor, no table is created, and
processing continues. A warning is passed back to the application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement
is executed. The CREATE EVENT MONITOR statement does not create table
spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO
TABLE event monitors, an event monitor output process or thread is started
on each member in the instance, and each of these processes reports data only
for the member on which it is running.

– The following event types from the flat monitor log file or pipe format are not
recorded by write to table event monitors:
- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The

element conn_time is recorded in CONTROL.)
– In a partitioned database environment, data is only written to target tables on

the database partitions where their table spaces exist. If a table space for a
target table does not exist on some database partition, data for that target
table is ignored. This behavior allows users to choose a subset of database
partitions for monitoring, by creating a table space that exists only on certain
database partitions.
In a DB2 pureScale environment, data will be written from every member.
In a partitioned database environment, if some target tables do not reside on
a database partition, but other target tables do reside on that same database
partition, only the data for the target tables that do reside on that database
partition is recorded.

– Users must manually prune all target tables.

Table Columns:
– Column names in a table match an event monitor element identifier. Any

event monitor element that does not have a corresponding target table
column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR command
that includes a complete list of elements for a group.

– The types of columns being used for monitor elements correlate to the
following mapping:
SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)

(If the data in the event monitor
record exceeds n bytes,
it is truncated.)

SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP

CREATE EVENT MONITOR (threshold violations)

430 SQL Reference Volume 2



sqlm_time(elapsed time) BIGINT
sqlca:

sqlerrmc VARCHAR[72]
sqlstate CHAR[5]
sqlwarn CHAR[11]
other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.
– Unlike other target tables, the columns in the CONTROL table do not match

monitor element identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database only)

PARTITION_NUMBER INTEGER N Database partition number
(partitioned database only)

EVMONNAME VARCHAR(128) N Name of the event monitor

MESSAGE VARCHAR(128) N Describes the nature of the
MESSAGE_TIME column.

For more details see,
“message - Control Table
Message monitor element”
in the Database Monitoring
Guide and Reference

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is
named PARTITION_KEY, is NOT NULL, and is of type INTEGER. This
column is used as the distribution key for the table. The value of this column
is chosen so that each event monitor process inserts data into the database
partition on which the process is running; that is, insert operations are
performed locally on the database partition where the event monitor process
is running. On any database partition, the PARTITION_KEY field will contain
the same value. This means that if a database partition is dropped and data
redistribution is performed, all data on the dropped database partition will go
to one other database partition instead of being evenly distributed. Therefore,
before removing a database partition, consider deleting all table rows on that
database partition.

– In a partitioned database environment, a column named
PARTITION_NUMBER can be defined for each table. This column is NOT
NULL and is of type INTEGER. It contains the number of the database
partition on which the data was inserted. Unlike the PARTITION_KEY
column, the PARTITION_NUMBER column is not mandatory. The
PARTITION_NUMBER column is not allowed in a non-partitioned database
environment.

Table Attributes:
– Default table attributes are used. Besides distribution key (partitioned

databases only), no extra options are specified when creating tables.
– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints, and so on) can

be added, but the event monitor process (or thread) will ignore them.
– If "not logged initially" is added as a table attribute, it is turned off at the first

COMMIT, and is not set back on.

CREATE EVENT MONITOR (threshold violations)

Statements 431



Event Monitor Activation:
– When an event monitor activates, all target table names are retrieved from the

SYSCAT.EVENTTABLES catalog view.
– In a partitioned database environment, activation processing occurs on every

database partition of the instance. On a particular database partition,
activation processing determines the table spaces and database partition
groups for each target table. The event monitor only activates on a database
partition if at least one target table exists on that database partition. Moreover,
if some target table is not found on a database partition, that target table is
flagged so that data destined for that table is dropped during runtime
processing.

– If a target table does not exist when the event monitor activates (or, in a
partitioned database environment, if the table space does not reside on a
database partition), activation continues, and data that would otherwise be
inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation
of the event monitor fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table
rows for FIRST_CONNECT and EVMON_START are only inserted on the
catalog database partition. This requires that the table space for the control
table exist on the catalog database partition. If it does not exist on the catalog
database partition, these inserts are not performed.

– In a partitioned database environment, if a partition is not yet active when a
write to table event monitor is activated, the event monitor will be activated
the next time that partition is activated.

Run Time:
– An event monitor runs with DATAACCESS authority.
– If, while an event monitor is active, an insert operation into a target table

fails:
- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

– If an event monitor is active, it performs a local COMMIT when it has
finished processing an event monitor buffer.

– In an environment other than a partitioned database or a DB2 pureScale
environment, all write to table event monitors are deactivated when the last
application terminates (and the database has not been explicitly activated).
In a DB2 pureScale environment, write to table event monitors are deactivated
on a given member when the member stops and is reactivated when the
member restarts.
In a partitioned database environment, write to table event monitors are
deactivated when the catalog partition deactivates.

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it will acquire IN table

locks on each target table in order to prevent them from being modified while
the event monitor is active. Table locks are maintained on all tables while the
event monitor is active. If exclusive access is required on any of the target
tables (for example, when a utility is to be run), first deactivate the event
monitor to release the table locks before attempting such access.

CREATE EVENT MONITOR (threshold violations)

432 SQL Reference Volume 2



v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– Commas can be used to separate multiple options in the target-table-options

clause

Example

Define a threshold violation event monitor named DBTHRESHOLDVIOLATIONS
CREATE EVENT MONITOR DBTHRESHOLDVIOLATIONS

FOR THRESHOLD VIOLATIONS
WRITE TO TABLE
THRESHOLDVIOLATIONS (TABLE THRESHOLDVIOLATIONS_DBTHRESHOLDVIOLATIONS

IN USERSPACE1
PCTDEACTIVATE 100),

CONTROL (TABLE CONTROL_DBTHRESHOLDVIOLATIONS
IN USERSPACE1
PCTDEACTIVATE 100)

AUTOSTART;

CREATE EVENT MONITOR (threshold violations)

Statements 433



CREATE EVENT MONITOR (unit of work)
The CREATE EVENT MONITOR (unit of work) statement creates an event monitor
that will record events when a unit of work completes.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:
v DBADM authority
v SQLADM authority

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR UNIT OF WORK �

� WRITE TO TABLE formatted-event-table-info
UNFORMATTED EVENT TABLE

( target-table-options )

�

�
AUTOSTART

MANUALSTART
��

formatted-event-table-info:

�

,

evm-group
( target-table-options )

target-table-options:

�
(1) (2)

TABLE table-name
IN tablespace-name

PCTDEACTIVATE 100
PCTDEACTIVATE integer

Notes:

1 Each table option can be specified a maximum of one time (SQLSTATE
42613).

2 Clauses can be separated with a space or a comma.

CREATE EVENT MONITOR (unit of work)

434 SQL Reference Volume 2



Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

UNIT OF WORK
Specifies that this passive event monitor will record an event whenever a
unit of work is completed (that is, whenever there is a commit or rollback).

The creation of the unit of work event monitor does not indicate that the
unit of work data will be collected immediately. The actual unit of work
event of interest is controlled at the workload level.

WRITE TO
Specifies the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database
tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data for
groups having a target table is kept, whereas data for groups not having a
target table is discarded. Each monitor element contained within a group is
mapped to a table column with the same name. Only elements that have a
corresponding table column are inserted into the table. Other elements are
discarded.

formatted-event-table-info
Defines the target formatted event tables for the event monitor. This
clause should specify each grouping that is to be recorded. However, if
no evm-group clauses are specified, all groups for the event monitor
type are recorded.

For more information about logical data groups, refer to “Logical data
groups and event monitor output tables” in Database Monitoring Guide
and Reference.

evm-group
Identifies a logical data group for which a target table is being
defined. The value depends upon the type of event monitor, as
shown in the following table:

Type of Event Monitor evm-group Value

Unit of work v UOW

v UOW_METRICS

v UOW_PACKGE_LIST

v UOW_EXECUTABLE_LIST

v CONTROL

UNFORMATTED EVENT TABLE
Specifies that the target for the event monitor is an unformatted event
table. The unformatted event table is used to store collected unit of work
event monitor data. Data is stored in its original binary format within an
inlined BLOB column. The BLOB column can contain multiple binary
records of different types. The data in the BLOB column is not in a

CREATE EVENT MONITOR (unit of work)

Statements 435



readable format and requires conversion, through use of the db2evmonfmt
Java-based tool, EVMON_FORMAT_UE_TO_XML table function, or
EVMON_FORMAT_UE_TO_TABLES procedure, into a consumable format
such as an XML document or a relational table.

target-table-options
Identifies options for the target table. If a value for target-table-options is
not specified, CREATE EVENT MONITOR processing proceeds as follows:
v A derived table name is used (as explained in the description for TABLE

table-name).
v A default table space is chosen using the same process as when a table is

created without a table space name using CREATE TABLE.
v PCTDEACTIVATE is set to 100.

TABLE table-name
Specifies the name of the target table. The target table must be a
non-partitioned table. If the name is unqualified, the table schema
defaults to the value in the CURRENT SCHEMA special register. For
an unformatted event table if a name is not provided, the unqualified
name is equal to the event-monitor-name, that is, the unformatted event
table will be named after the event monitor. For a formatted event
table if no name is provided, the unqualified name is derived from
evm-group and event-monitor-name as follows:

substring(evm-group CONCAT ’_’
CONCAT event-monitor-name,1,128)

IN tablespace-name
Specifies the table space in which the table is to be created. The
CREATE EVENT MONITOR FOR UNIT OR WORK statement does not
create table spaces.

If a table space name is not provided, the table space is chosen using
the same process as when a table is created without a table space name
using CREATE TABLE.

Since the page size affects the INLINE LOB lengths used, consider
specifying a table space with as large a page size as possible in order
to improve the INSERT performance of the event monitor.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage
(non-temporary) or DMS table space, the PCTDEACTIVATE parameter
specifies how full the table space must be before the event monitor
automatically deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that the event
monitor deactivates when the table space becomes completely full. The
default value assumed is 100 if PCTDEACTIVATE is not specified. This
option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set
PCTDEACTIVATE parameter to 100. Alternatively, omit this clause
entirely to have the default of 100 apply. Otherwise, the event monitor
might deactivate unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is automatically
resized.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the

CREATE EVENT MONITOR (unit of work)

436 SQL Reference Volume 2



database partition on which the event monitor runs is activated. This is the
default behavior of the unit of work event monitor.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET
EVENT MONITOR STATE statement. After a MANUALSTART event monitor
has been activated, it can be deactivated only by using the SET EVENT
MONITOR STATE statement or by stopping the instance.

Notes
v The table is created when the CREATE EVENT MONITOR FOR UNIT OF

WORK statement executes, if it doesn't already exist.
v During CREATE EVENT MONITOR FOR UNIT OF WORK processing, if a table

is found to have already been defined for use by another event monitor, the
CREATE EVENT MONITOR FOR UNIT OF WORK statement fails, and an error
is passed back to the application program. A table is defined for use by another
event monitor if the table name matches a value found in the
SYSCAT.EVENTTABLES catalog view. If the table exists and is not defined for
use by another event monitor, then no table is created, any other table
target-table-options parameters are ignored, and processing continues. A
warning is passed back to the application program.

v Dropping the event monitor will not drop any tables. Any associated tables must
be manually dropped after the event monitor is dropped.

v Lock event data is not automatically pruned from either unformatted event
tables or regular tables created by this event monitor. An option for pruning
data from UE tables is available when using the
EVMON_FORMAT_UE_TO_TABLES procedure. For event monitors that write to
regular tables, event data must be pruned manually.

v For unformatted event tables event data is inserted into the table into an inlined
BLOB data column. Normally, BLOB data is stored in a separate LOB table space
and can experience additional performance overhead as a result. When inlined
into the data page of the base table, the BLOB data does not experience this
overhead. The database manager will automatically inline the BLOB data portion
of an unformatted event table record if the size of the BLOB data is less than the
table space page size minus the record prefix. Therefore to achieve high
efficiency and application throughput, it is suggested that you create the event
monitor in as large a table space as possible up to and including a 32 KB table
space and associated bufferpool.

v Create only one unit of work event monitor per database and not create multiple
unit of work event monitors on the same database.

v In a partitioned database environment, data is written only to target tables on
the database partitions where their table spaces exist. If a table space for a target
unformatted event table does not exist on some database partition, data for that
target table is ignored. This behavior allows users to choose a subset of database
partitions for monitoring to be chosen, by creating a table space that exists only
on certain database partitions.

v In a multi-member environment, data is only written to target tables on the
member where work occurs within the unit of work.

v In a partitioned database environment, if some target tables do not reside on a
database partition, but other target tables do reside on that same database
partition, only the data for the target tables that do reside on that database
partition is recorded.

v The unit of work event monitor is not affected by the unit or work event
monitor switch. The unit of work event monitor switch is not changed when a

CREATE EVENT MONITOR (unit of work)

Statements 437



unit or work event monitor is created, and the contents of the unit or work
event monitor are not affected by changes to the unit of work event monitor
switch.

v The FLUSH EVENT MONITOR statement is not applicable to this event monitor
and will have no effect when issued against it.

v Creation of the unit of work event monitor does not cause events to be written
to the event monitor. The unit of work event monitor must be activated with
SET EVENT MONITOR STATE, and the unit of work data must be collected by
either altering the appropriate workload to specify COLLECT UNIT OF WORK
DATA or setting the mon_uow_data database configuration parameter to a value
other than NONE.

v When using unformatted event tables, create the unit of work event monitor in a
table space with at least 8 KB page size to ensure that the event data is
contained within the inlined BLOB column of the unformatted event table. If the
BLOB column is not inlined, then the performance of writing and reading the
events to the unformatted event table might not be efficient.

Examples
v Example 1: This example creates a unit of work event monitor UOWEVMON that

collects data for unit of work events that occur on the database of creation, and
writes data tables using default table names:

CREATE EVENT MONITOR UOWEVMON
FOR UNIT OF WORK
WRITE TO TABLE

This event monitor writes its output to the following tables:
UOW_UOWEVMON
UOW_METRICS_UOWEVMON
UOW_PACKAGE_LIST_UOWEVMON
UOW_EXECUTABLE_LIST_UOWEVMON
UOW_CONTROL_UOWEVMON

Note: Whether the tables for package list and executable list information are
populated with data is dependent on whether you specify that that data is to be
collected. You control the collection of this data is using the mon_uow_pkglist or
mon_uow_execlist configuration parameters, or with the appropriate COLLECT
UNIT OF WORK DATA clause on the CREATE or ALTER WORKLOAD
statements.

v Example 2: This example creates a unit of work event monitor UOWEVMON that
will collect unit of work events that occur on the database of creation and store
it in the unformatted event table GREG.UOWEVENTS.

CREATE EVENT MONITOR UOWEVMON
FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE (TABLE GREG.UOWEVENTS)

v Example 3: This example creates a unit of work event monitor UOWEVMON that
will collect unit of work events that occur on the database of creation and store
it in the unformatted event table GREG.UOWEVENTS in table space APPSPACE.
The event monitor will deactivate when the table space becomes 85% full.

CREATE EVENT MONITOR UOWEVMON
FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE

(TABLE GREG.UOWEVENTS IN APPSPACE PCTDEACTIVATE 85)

CREATE EVENT MONITOR (unit of work)

438 SQL Reference Volume 2



CREATE FUNCTION
The CREATE FUNCTION statement is used to register or define a user-defined
function or function template at the current server.

There are five different types of functions that can be created using this statement.
Each of these is described separately.
v External Scalar. The function is written in a programming language and returns

a scalar value. The external executable is registered in the database, along with
various attributes of the function.

v External Table. The function is written in a programming language and returns a
complete table. The external executable is registered in the database along with
various attributes of the function.

v OLE DB External Table. A user-defined OLE DB external table function is
registered in the database to access data from an OLE DB provider.

v Sourced or Template. A source function is implemented by invoking another
function (either built-in, external, SQL, or source) that is already registered in the
database.
It is possible to create a partial function, called a function template, which defines
what types of values are to be returned, but which contains no executable code.
The user maps it to a data source function within a federated system, so that the
data source function can be invoked from a federated database. A function
template can be registered only with an application server that is designated as a
federated server.

v SQL Scalar, Table or Row. The function body is written in SQL and defined
together with the registration in the database. It returns a scalar value, a table, or
a single row.

The CREATE FUNCTION statement can be submitted in obfuscated form. In an
obfuscated statement, only the function name and its parameters are readable. The
rest of the statement is encoded in such a way that is not readable but can be
decoded by the database server. Obfuscated statements can be produced by calling
the DBMS_DDL.WRAP function.

CREATE FUNCTION

Statements 439



CREATE FUNCTION (external scalar)
The CREATE FUNCTION (External Scalar) statement is used to register a
user-defined external scalar function at the current server. A scalar function returns
a single value each time it is invoked, and is in general valid wherever an SQL
expression is valid.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following authorities:
– IMPLICIT_SCHEMA authority on the database, if the schema name of the

function does not refer to an existing schema
– CREATEIN privilege on the schema, if the schema name of the function refers

to an existing schema
v DBADM authority

Group privileges are not considered for any table or view specified in the CREATE
FUNCTION statement.

To create a not-fenced function, the privileges held by the authorization ID of the
statement must also include at least one of the following authorities:
v CREATE_NOT_FENCED_ROUTINE authority on the database
v DBADM authority

To create a fenced function, no additional authorities or privileges are required.

To replace an existing function, the authorization ID of the statement must be the
owner of the existing function (SQLSTATE 42501).

If the SECURED option is specified, the authorization ID of the statement must
include SECADM or CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Syntax

�� CREATE FUNCTION function-name
OR REPLACE

�

�

�

( )
,

parameter-declaration

* �

CREATE FUNCTION (external scalar)

440 SQL Reference Volume 2



� RETURNS data-type2
AS LOCATOR

data-type3 CAST FROM data-type4
AS LOCATOR

�

� option-list ��

parameter-declaration:

IN
parameter-name

(1)
OUT
INOUT

�

� data-type1
default-clause AS LOCATOR

data-type1, data-type2, data-type3, data-type4:

built-in-type
distinct-type-name
structured-type-name
REF ( type-name )

built-in-type:

CREATE FUNCTION (external scalar)

Statements 441



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer ) (2)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

SYSPROC. (3) (4)
DB2SECURITYLABEL

CREATE FUNCTION (external scalar)

442 SQL Reference Volume 2



default-clause:

DEFAULT NULL
constant
special-register
global-variable
( expression )

option-list:

*

(5)
LANGUAGE C

JAVA
CLR
OLE

*

SPECIFIC specific-name
* �

� EXTERNAL *

NAME 'string'
identifier

PARAMETER STYLE DB2GENERAL
JAVA
SQL

* �

�
PARAMETER CCSID ASCII

UNICODE

*

NOT DETERMINISTIC

DETERMINISTIC
* �

�
FENCED

FENCED * THREADSAFE
NOT THREADSAFE

THREADSAFE
NOT FENCED *

*

RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

* �

�
READS SQL DATA

NO SQL
CONTAINS SQL

*

STATIC DISPATCH
*

EXTERNAL ACTION

NO EXTERNAL ACTION
* �

�
NO SCRATCHPAD

100
SCRATCHPAD

length

*

NO FINAL CALL

FINAL CALL
*

ALLOW PARALLEL
DISALLOW PARALLEL

�

� *

NO DBINFO

DBINFO
*

TRANSFORM GROUP group-name
* �

�
PREDICATES ( predicate-specification )

* �

�
INHERIT SPECIAL REGISTERS

*

NOT SECURED

SECURED

CREATE FUNCTION (external scalar)

Statements 443



predicate-specification:

WHEN = constant
<> EXPRESSION AS expression-name
<
>
<=
>=

�

� data-filter
index-exploitation

index-exploitation
data-filter

data-filter:

FILTER USING function-invocation
case-expression

index-exploitation:

SEARCH BY INDEX EXTENSION index-extension-name
EXACT

�

� � exploitation-rule

exploitation-rule:

WHEN KEY ( parameter-name1 ) �

� �

,

USE search-method-name ( parameter-name2 )

Notes:

1 OUT and INOUT are valid only if the function has LANGUAGE C.

2 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

3 DB2SECURITYLABEL is the built-in distinct type that must be used to define
the row security label column of a protected table.

4 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is
implicit and cannot be explicitly specified (SQLSTATE 42842). The default
value for a column of type DB2SECURITYLABEL is the session authorization
ID's security label for write access.

5 LANGUAGE SQL is also supported.

CREATE FUNCTION (external scalar)

444 SQL Reference Volume 2



Description

OR REPLACE
Specifies to replace the definition for the function if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the function are not affected. This option can be specified only by the
owner of the object. This option is ignored if a definition for the function does
not exist at the current server. To replace an existing function, the specific
name and function name of the new definition must be the same as the specific
name and function name of the old definition, or the signature of the new
definition must match the signature of the old definition. Otherwise, a new
function is created.

If the function is referenced in the definition of a row permission or a column
mask, the function cannot be replaced (SQLSTATE 42893).

function-name
Names the function being defined. It is a qualified or unqualified name that
designates a function. The unqualified form of function-name is an SQL
identifier. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements
the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a
period and an SQL identifier. The qualified name must not be the same as the
data type of the first parameter, if that first parameter is a structured type.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without regard for
any length, precision or scale attributes of the data type) must not identify a
function or method described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the parameters,
while of course unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS';.
Otherwise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a function-name. The names are SOME, ANY, ALL,
NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS,
SIMILAR, MATCH, and the comparison operators. Failure to observe this rule
will lead to an error (SQLSTATE 42939).

In general, the same name can be used for more than one function if there is
some difference in the signature of the functions.

Although there is no prohibition against it, an external user-defined function
should not be given the same name as a built-in function, unless it is an
intentional override. To give a function having a different meaning the same
name (for example, LENGTH, VALUE, MAX), with consistent arguments, as a
built-in scalar or aggregate function, is to invite trouble for dynamic SQL
statements, or when static SQL applications are rebound; the application may
fail, or perhaps worse, may appear to run successfully while providing a
different result.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the
mode, name, data type, and optional default value of each parameter. One
entry in the list must be specified for each parameter that the function expects
to receive. Up to 90 parameters can be specified (SQLSTATE 54023).

CREATE FUNCTION (external scalar)

Statements 445



You can register a function that has no parameters; the parentheses must still
be coded, with no intervening data types. For example:

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have
exactly the same type for all corresponding parameters. Lengths, precisions,
and scales are not considered in this type comparison. Therefore, CHAR(8) and
CHAR(35) are considered to be the same type, as are DECIMAL(11,2) and
DECIMAL (4,3). A weakly typed distinct type specified for a parameter is
considered to be the same data type as the source type of the distinct type. For
a Unicode database, CHAR(13) and GRAPHIC(8) are considered to be the
same type. There is some further bundling of types that causes them to be
treated as the same type for this purpose, such as DECIMAL and NUMERIC.
A duplicate signature returns an error (SQLSTATE 42723).

IN | OUT | INOUT
Specifies the mode of the parameter. If an error is returned by the function,
OUT parameters are undefined and INOUT parameters are unchanged.
The default is IN.

IN Identifies the parameter as an input parameter to the function. Any
changes made to the parameter within the function are not available to
the invoking context when control is returned.

OUT
Identifies the parameter as an output parameter for the function.

The function must be defined with LANGUAGE C (SQLSTATE 42613).

The function can be referenced only on the right side of an assignment
statement that is in a compound SQL (compiled) statement, and the
function reference cannot be part of an expression (SQLSTATE 42887).

INOUT
Identifies the parameter as both an input and output parameter for the
function.

The function must be defined with LANGUAGE C (SQLSTATE 42613).

The function can be referenced only on the right side of an assignment
statement that is in a compound SQL (compiled) statement, and the
function reference cannot be part of an expression (SQLSTATE 42887).

parameter-name
Specifies an optional name for the parameter. Parameter names are
required to reference the parameters of a function in the index-exploitation
clause of a predicate specification. The name cannot be the same as any
other parameter-name in the parameter list (SQLSTATE 42734).

data-type1
Specifies the data type of the parameter. The data type can be a built-in
data type, a distinct type, a structured type, or a reference type. For a more
complete description of each built-in data type, see “CREATE TABLE”.
Some data types are not supported in all languages. For details on the
mapping between SQL data types and host language data types, see “Data
types that map to SQL data types in embedded SQL applications”.
v A datetime type parameter is passed as a character data type, and the

data is passed in the ISO format.
v DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE

(SQLSTATE 42815).

CREATE FUNCTION (external scalar)

446 SQL Reference Volume 2



v DECFLOAT is invalid with LANGUAGE C, COBOL, CLR, JAVA, and
OLE (SQLSTATE 42815).

v XML is invalid with LANGUAGE OLE.
v Because the XML value that is seen inside a function is a serialized

version of the XML value that is passed as a parameter in the function
call, parameters of type XML must be declared using the syntax XML AS
CLOB(n).

v CLR does not support DECIMAL scale greater than 28 (SQLSTATE
42613).

v Array types cannot be specified (SQLSTATE 42815).

For a user-defined distinct type, the length, precision, or scale attributes for
the parameter are those of the source type of the distinct type (those
specified on CREATE TYPE). A distinct type parameter is passed as the
source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching
the schemas in the SQL path.

For a user-defined structured type, the appropriate transform functions
must exist in the associated transform group.

For a reference type, the parameter can be specified as REF(type-name) if
the parameter is unscoped.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a
special register, a global variable, an expression, or the keyword NULL.
The special registers that can be specified as the default are that same as
those that can be specified for a column default (see default-clause in the
CREATE TABLE statement). Other special registers can be specified as the
default by using an expression.

The expression can be any expression of the type described in
"Expressions". If a default value is not specified, the parameter has no
default and the corresponding argument cannot be omitted on invocation
of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or
SQLSTATE 429BL). The expression must be assignment compatible to the
parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:
v For INOUT or OUT parameters (SQLSTATE 42601)
v For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)
v For a parameter to a function definition that also specified a

PREDICATES clause (SQLSTATE 42613)

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data
type (SQLSTATE 42601). Passing locators instead of values can result in
fewer bytes being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types
can be promoted, nor does it affect the function signature, which is used in
function resolution.

CREATE FUNCTION (external scalar)

Statements 447



If the function is FENCED and has the NO SQL option, the AS LOCATOR
clause cannot be specified (SQLSTATE 42613).

RETURNS
This mandatory clause identifies the output of the function.

data-type2
Specifies the data type of the output.

In this case, exactly the same considerations apply as for the parameters of
external functions described previously in data-type1 for function
parameters.

AS LOCATOR
For LOB types or distinct types which are based on LOB types, the AS
LOCATOR clause can be added. This indicates that a LOB locator is to
be passed from the UDF instead of the actual value.

data-type3 CAST FROM data-type4
Specifies the data type of the output.

This form of the RETURNS clause is used to return a different data type to
the invoking statement from the data type that was returned by the
function code. For example, in

CREATE FUNCTION GET_HIRE_DATE(CHAR(6))
RETURNS DATE CAST FROM CHAR(10)
...

the function code returns a CHAR(10) value to the database manager,
which, in turn, converts it to a DATE and passes that value to the invoking
statement. The data-type4 must be castable to the data-type3 parameter. If it
is not castable, an error (SQLSTATE 42880) is raised.

Since the length, precision or scale for data-type3 can be inferred from
data-type4, it not necessary (but still permitted) to specify the length,
precision, or scale for parameterized types specified for data-type3. Instead
empty parentheses may be used (for example VARCHAR() may be used).
FLOAT() cannot be used (SQLSTATE 42601) since parameter value
indicates different data types (REAL or DOUBLE).

Distinct types, array types, and structured types are not valid as the type
specified in data-type4 (SQLSTATE 42815).

The cast operation is also subject to runtime checks that might result in
conversion errors being raised.

AS LOCATOR
For data-type4 specifications that are LOB types or distinct types which
are based on LOB types, the AS LOCATOR clause can be added. This
indicates that a LOB locator is to be passed back from the UDF instead
of the actual value.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined.
This specific name can be used when sourcing on this function, dropping the
function, or commenting on the function. It can never be used to invoke the
function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier.
The name, including the implicit or explicit qualifier, must not identify another

CREATE FUNCTION (external scalar)

448 SQL Reference Volume 2



function instance or method specification that exists at the application server;
otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.
If a qualifier is specified, it must be the same as the explicit or implicit
qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmssxxx.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being used to
register a new function based on code written in an external programming
language and adhering to the documented linkage conventions and interface.

If NAME clause is not specified "NAME function-name" is assumed.

NAME 'string'
This clause identifies the name of the user-written code which implements
the function being defined.

The 'string' option is a string constant with a maximum of 254 bytes. The
format used for the string is dependent on the LANGUAGE specified.
v For LANGUAGE C:

The string specified is the library name and function within the library,
which the database manager invokes to execute the user-defined
function being created. The library (and the function within the library)
do not need to exist when the CREATE FUNCTION statement is
executed. However, when the function is used in an SQL statement, the
library and function within the library must exist and be accessible from
the database server machine; otherwise, an error is returned (SQLSTATE
42724).
The string can be specified as follows:

�� ' library_id '
absolute_path_id ! func_id

��

Extraneous blanks are not permitted within the single quotation marks.

library_id
Identifies the library name containing the function. The database
manager will look for the library as follows:

Operating system Library name location

Linux
AIX
Solaris
HP-UX

If myfunc was given as the library_id, and the
database manager is being run from
/u/production, the database manager will
look for the function in library
/u/production/sqllib/function/myfunc

Windows The database manager will look for the
function in a directory path that is specified
by the LIBPATH or PATH environment
variable

CREATE FUNCTION (external scalar)

Statements 449



absolute_path_id
Identifies the full path name of the file containing the function. The
format depends on the operating system, as illustrated in the
following table:

Operating system Full path name example

Linux
AIX
Solaris
HP-UX

A value of '/u/jchui/mylib/myfunc' would
cause the database manager to look in
/u/jchui/mylib for the myfunc shared
library.

Windows A value of 'd:\mylib\myfunc.dll' would
cause the database manager to load the
dynamic link library, myfunc.dll, from the
d:\mylib directory. If an absolute path ID is
being used to identify the routine body, be
sure to append the .dll extension.

! func_id
Identifies the entry point name of the function to be invoked. The !
serves as a delimiter between the library ID and the function ID. The
format depends on the operating system, as illustrated in the
following table:

Operating system Entry point name of the function

Linux
AIX
Solaris
HP-UX

A value of 'mymod!func8' would direct the
database manager to look for the library
$inst_home_dir/sqllib/function/mymod and
to use entry point func8 within that library.

Windows A value of 'mymod!func8' would direct the
database manager to load the mymod.dll file
and to call the func8() function in the
dynamic link library (DLL).

If the string is not properly formed, an error is returned (SQLSTATE
42878).
The body of every external function should be in a directory that is
available on every database partition.

v For LANGUAGE JAVA:
The string specified contains the optional jar file identifier, class identifier
and method identifier, which the database manager invokes to execute
the user-defined function being created. The class identifier and method
identifier do not need to exist when the CREATE FUNCTION statement
is executed. If a jar_id is specified, it must exist when the CREATE
FUNCTION statement is executed. However, when the function is used
in an SQL statement, the method identifier must exist and be accessible
from the database server machine; otherwise, an error is returned
(SQLSTATE 42724).
The string can be specified as follows:

�� '
jar_id :

class_id .
!

method_id ' ��

Extraneous blanks are not permitted within the single quotation marks.

CREATE FUNCTION (external scalar)

450 SQL Reference Volume 2



jar_id
Identifies the jar identifier given to the jar collection when it was
installed in the database. It can be either a simple identifier, or a
schema qualified identifier. Examples are 'myJar' and
'mySchema.myJar'.

class_id
Identifies the class identifier of the Java object. If the class is part of
a package, the class identifier part must include the complete
package prefix, for example, 'myPacks.UserFuncs'. The directory the
Java virtual machine will look in for the classes depends on the
operating system, as illustrated in the following table:

Operating system
Directory the Java virtual machine will
look in for the classes

Linux
AIX
Solaris
HP-UX

'.../myPacks/UserFuncs/'

Windows '...\myPacks\UserFuncs\'

method_id
Identifies the method name of the Java object to be invoked.

v For LANGUAGE CLR:
The string specified represents the .NET assembly (library or executable),
the class within that assembly, and the method within the class that the
database manager invokes to execute the function being created. The
module, class, and method do not need to exist when the CREATE
FUNCTION statement is executed. However, when the function is used
in an SQL statement, the module, class, and method must exist and be
accessible from the database server machine; otherwise, an error is
returned (SQLSTATE 42724).
C++ routines that are compiled with the '/clr' compiler option to
indicate that they include managed code extensions must be cataloged as
'LANGUAGE CLR' and not 'LANGUAGE C'. The database server needs
to know that the .NET infrastructure is being utilized in a user-defined
function in order to make necessary runtime decisions. All user-defined
functions using the .NET infrastructure must be cataloged as
'LANGUAGE CLR'.
The string can be specified as follows:

�� ' assembly : class_id ! method_id ' ��

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.

assembly
Identifies the DLL or other assembly file in which the class resides.
Any file extensions (such as .dll) must be specified. If the full path
name is not given, the file must reside in the function directory of
the database product's installation path

For example, c:\sqllib\function.

CREATE FUNCTION (external scalar)

Statements 451



If the file resides in a subdirectory of the installation function
directory, the subdirectory can be given before the file name rather
than specifying the full path.

For example, if your install directory is c:\sqllib and your
assembly file is c:\sqllib\function\myprocs\mydotnet.dll, it is only
necessary to specify 'myprocs\mydotnet.dll' for the assembly.

The case sensitivity of this parameter is the same as the case
sensitivity of the file system.

class_id
Specifies the name of the class within the given assembly in which
the method that is to be invoked resides. If the class resides within a
namespace, the full namespace must be given in addition to the
class. For example, if the class EmployeeClass is in namespace
MyCompany.ProcedureClasses, then
MyCompany.ProcedureClasses.EmployeeClass must be specified for
the class. Note that the compilers for some .NET languages will add
the project name as a namespace for the class, and the behavior may
differ depending on whether the command line compiler or the GUI
compiler is used. This parameter is case sensitive.

method_id
Specifies the method within the given class that is to be invoked.
This parameter is case sensitive.

v For LANGUAGE OLE:
The string specified is the OLE programmatic identifier (progid) or class
identifier (clsid), and method identifier, which the database manager
invokes to execute the user-defined function being created. The
programmatic identifier or class identifier, and method identifier do not
need to exist when the CREATE FUNCTION statement is executed.
However, when the function is used in an SQL statement, the method
identifier must exist and be accessible from the database server machine;
otherwise, an error is returned (SQLSTATE 42724).
The string can be specified as follows:

�� ' progid ! method_id '
clsid

��

Extraneous blanks are not permitted within the single quotation marks.

progid
Identifies the programmatic identifier of the OLE object.

progid is not interpreted by the database manager but only
forwarded to the OLE APIs at run time. The specified OLE object
must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can be
used as an alternative for specifying a progid in the case that an OLE
object is not registered with a progid. The clsid has the form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. clsid is not interpreted by the
database manager but only forwarded to the OLE APIs at run time.

CREATE FUNCTION (external scalar)

452 SQL Reference Volume 2



method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used as
the library-id in the string. Unless it is a delimited identifier, the identifier is
folded to upper case. If the identifier is qualified with a schema name, the
schema name portion is ignored. This form of NAME can only be used
with LANGUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the user-defined function body is written.

C This means the database manager will call the user-defined function as
if it were a C function. The user-defined function must conform to the
C language calling and linkage convention as defined by the standard
ANSI C prototype.

JAVA This means the database manager will call the user-defined function as
a method in a Java class.

CLR This means the database manager will call the user-defined function as
a method in a .NET class. At this time, LANGUAGE CLR is only
supported for user-defined functions running on Windows operating
systems. NOT FENCED cannot be specified for a CLR routine
(SQLSTATE 42601).

OLE This means the database manager will call the user-defined function as
if it were a method exposed by an OLE automation object. The
user-defined function must conform with the OLE automation data
types and invocation mechanism, as described in the OLE Automation
Programmer's Reference.

LANGUAGE OLE is supported for user-defined functions for this
database product only in Windows operating systems. THREADSAFE
may not be specified for UDFs defined with LANGUAGE OLE
(SQLSTATE 42613).

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to
and returning the value from functions.

DB2GENERAL
Used to specify the conventions for passing parameters to and returning
the value from external functions that are defined as a method in a Java
class. This can only specified when LANGUAGE JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

JAVA
This means that the function will use a parameter passing convention that
conforms to the Java language and SQLJ Routines specification. This can
only be specified when LANGUAGE JAVA is used, no structured data
types are specified as parameters, and no CLOB, BLOB, or DBCLOB data
types are specified as return types (SQLSTATE 429B8). PARAMETER
STYLE JAVA functions do not support the FINAL CALL, SCRATCHPAD,
or DBINFO clause.

SQL
Used to specify the conventions for passing parameters to and returning
the value from external functions that conform to C language calling and

CREATE FUNCTION (external scalar)

Statements 453



linkage conventions, methods exposed by OLE automation objects, or
public static methods of a .NET object. This must be specified when
LANGUAGE C, LANGUAGE CLR, or LANGUAGE OLE is used.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of
the function. If the PARAMETER CCSID clause is not specified, the default is
PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER
CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031). When the function is invoked, the application
code page for the function is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a
Unicode database, character data is in UTF-8, and graphic data is in UCS-2.
If the database is not a Unicode database, character data is in UTF-8. In
either case, when the function is invoked, the application code page for the
function is 1208.

If the database is not a Unicode database, and a function with
PARAMETER CCSID UNICODE is created, the function cannot have any
graphic types, the XML type, or user-defined types (SQLSTATE 560C1).

If the database is not a Unicode database, and the alternate collating sequence
has been specified in the database configuration, functions can be created with
either PARAMETER CCSID ASCII or PARAMETER CCSID UNICODE. All
string data passed into and out of the function will be converted to the
appropriate code page.

This clause cannot be specified with LANGUAGE OLE, LANGUAGE JAVA, or
LANGUAGE CLR (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same
results for given argument values (DETERMINISTIC) or whether the function
depends on some state values that affect the results (NOT DETERMINISTIC).
That is, a DETERMINISTIC function must always return the same result from
successive invocations with identical inputs. Optimizations taking advantage of
the fact that identical inputs always produce the same results are prevented by
specifying NOT DETERMINISTIC. An example of a NOT DETERMINISTIC
function would be a random-number generator. An example of a
DETERMINISTIC function would be a function that determines the square root
of the input.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered "safe" to run in
the database manager operating environment's process or address space.

If a function is registered as FENCED, the database manager protects its
internal resources (for example, data buffers) from access by the function. Most
functions will have the option of running as FENCED or NOT FENCED. In
general, a function running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CREATE FUNCTION (external scalar)

454 SQL Reference Volume 2



CAUTION:
Use of NOT FENCED for functions not adequately coded, reviewed, and
tested can compromise the integrity of your database. This database product
safeguards against many of the common types of inadvertent failures that
might occur, but cannot guarantee complete integrity when NOT FENCED
user-defined functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or NOT
THREADSAFE (SQLSTATE 42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR
clause cannot be specified (SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED_ROUTINE) is required to register a user-defined
function as NOT FENCED.

LANGUAGE CLR user-defined functions cannot be created when specifying
the NOT FENCED clause (SQLSTATE 42601).

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as
other routines (THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE:
v If the function is defined as THREADSAFE, the database manager can

invoke the function in the same process as other routines. In general, to be
threadsafe, a function should not use any global or static data areas. Most
programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

v If the function is defined as NOT THREADSAFE, the database manager will
never simultaneously invoke the function in the same process as another
routine.

For FENCED functions, THREADSAFE is the default if the LANGUAGE is
JAVA or CLR. For all other languages, NOT THREADSAFE is the default. If
the function is defined with LANGUAGE OLE, THREADSAFE may not be
specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT
THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause can be used to avoid a call to the external function if any
of the arguments is null. If the user-defined function is defined to have no
parameters, then this null argument condition cannot arise, and it does not
matter how this specification is coded. If this clause is not specified, the default
is RETURNS NULL ON NULL INPUT, except when PARAMETER STYLE
JAVA is specified, in which case the default is CALLED ON NULL INPUT.

If RETURNS NULL ON NULL INPUT is specified, and if, at execution time,
any one of the function's arguments is null, then the user-defined function is
not called and the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of whether any
arguments are null, the user-defined function is called. It can return a null
value or a normal (non-null) value. But responsibility for testing for null
argument values lies with the UDF.

CREATE FUNCTION (external scalar)

Statements 455



The value NULL CALL may be used as a synonym for CALLED ON NULL
INPUT for backwards and family compatibility. Similarly, NOT NULL CALL
may be used as a synonym for RETURNS NULL ON NULL INPUT.

READS SQL DATA, NO SQL, or CONTAINS SQL
Specifies the classification of SQL statements that the function can run. The
database manager verifies that the SQL statements that the function issues are
consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines (SQL
and External).

The default is READS SQL DATA.

READS SQL DATA
Specifies that the function can run statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL
(SQLSTATE 38002 or 42985). The function cannot run SQL statements that
modify data. (SQLSTATE 38003 or 42985).

NO SQL
Specifies that the function can run only SQL statements with a data access
classification of NO SQL (SQLSTATE 38001).

CONTAINS SQL
Specifies that the function can run only SQL statements with a data access
classification of CONTAINS SQL or NO SQL (SQLSTATE 38004 or 42985).
The function cannot run any SQL statements that read or modify data
(SQLSTATE 38003 or 42985).

STATIC DISPATCH
This optional clause indicates that at function resolution time, a function is
chosen by the database server based on the static types (declared types) of the
parameters of the function.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that the database manager does not manage. An example of an external
action is sending a message or writing a record to a file. The default is
EXTERNAL ACTION.

EXTERNAL ACTION
Specifies that the function takes an action that changes the state of an
object that the database manager does not manage.

A function with external actions might return incorrect results if the
function is executed by parallel tasks. For example, if the function sends a
note for each initial call to it, one note is sent for each parallel task instead
of once for the function. Specify the DISALLOW PARALLEL clause for
functions that do not work correctly with parallelism.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state
of an object that the database manager does not manage. The database
manager uses this information during optimization of SQL statements.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be
provided for an external function. (It is strongly recommended that
user-defined functions be re-entrant, so a scratchpad provides a means for the
function to "save state" from one call to the next.)

CREATE FUNCTION (external scalar)

456 SQL Reference Volume 2



If SCRATCHPAD is specified, then at first invocation of the user-defined
function, memory is allocated for a scratchpad to be used by the external
function. This scratchpad has the following characteristics:
v length, if specified, sets the size of the scratchpad in bytes; this value must be

between 1 and 32 767 (SQLSTATE 42820). The default size is 100 bytes.
v It is initialized to all X'00''s.
v Its scope is the SQL statement. There is one scratchpad per reference to the

external function in the SQL statement. So if the UDFX function in the
following statement is defined with the SCRATCHPAD keyword, three
scratchpads would be assigned.

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is different
from the one shown previously. If the function is executed in multiple
database partitions, a scratchpad would be assigned in each database
partition where the function is processed, for each reference to the function
in the SQL statement. Similarly, if the query is executed with intrapartition
parallelism enabled, more than three scratchpads may be assigned.

v It is persistent. Its content is preserved from one external function call to the
next. Any changes made to the scratchpad by the external function on one
call will be there on the next call. The database manager initializes
scratchpads at the beginning of execution of each SQL statement. The
database manager may reset scratchpads at the beginning of execution of
each subquery. The system issues a final call before resetting a scratchpad if
the FINAL CALL option is specified.

v It can be used as a central point for system resources (for example, memory)
which the external function might acquire. The function could acquire the
memory on the first call, keep its address in the scratchpad, and refer to it in
subsequent calls.
(In such a case where system resource is acquired, the FINAL CALL
keyword should also be specified; this causes a special call to be made at
end-of-statement to allow the external function to free any system resources
acquired.)

If SCRATCHPAD is specified, then on each invocation of the user-defined
function an additional argument is passed to the external function which
addresses the scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to
the external function.

SCRATCHPAD is not supported for PARAMETER STYLE JAVA functions.

FINAL CALL or NO FINAL CALL
This optional clause specifies whether a final call is to be made to an external
function. The purpose of such a final call is to enable the external function to
free any system resources it has acquired. It can be useful in conjunction with
the SCRATCHPAD keyword in situations where the external function acquires
system resources such as memory and anchors them in the scratchpad. If
FINAL CALL is specified, then at execution time:
v An additional argument is passed to the external function which specifies

the type of call. The types of calls are:
– Normal call: SQL arguments are passed and a result is expected to be

returned.

CREATE FUNCTION (external scalar)

Statements 457



– First call: the first call to the external function for this reference to the
user-defined function in this SQL statement. The first call is a normal call.

– Final call: a final call to the external function to enable the function to free
up resources. The final call is not a normal call. This final call occurs at
the following times:
- End-of-statement: This case occurs when the cursor is closed for

cursor-oriented statements, or when the statement is through executing
otherwise.

- End-of-parallel-task: This case occurs when the function is executed by
parallel tasks.

- End-of-transaction or interrupt: This case occurs when the normal
end-of-statement does not occur. For example, the logic of an
application may for some reason bypass the close of the cursor. During
this type of final call, no SQL statements may be issued except for
CLOSE cursor (SQLSTATE 38505). This type of final call is indicated
with a special value in the "call type" argument.

If a commit operation occurs while a cursor defined as WITH HOLD is
open, a final call is made at the subsequent close of the cursor or at the
end of the application.

If NO FINAL CALL is specified then no "call type" argument is passed to
the external function, and no final call is made.

FINAL CALL is not supported for PARAMETER STYLE JAVA functions.

ALLOW PARALLEL or DISALLOW PARALLEL
This optional clause specifies whether, for a single reference to the function, the
invocation of the function can be parallelized. In general, the invocations of
most scalar functions should be parallelizable, but there may be functions
(such as those depending on a single copy of a scratchpad) that cannot. If
either ALLOW PARALLEL or DISALLOW PARALLEL are specified for a scalar
function, then this specification is accepted. The following questions should be
considered in determining which keyword is appropriate for the function.
v Are all the UDF invocations completely independent of each other? If YES,

then specify ALLOW PARALLEL.
v Does each UDF invocation update the scratchpad, providing value(s) that

are of interest to the next invocation? (For example, the incrementing of a
counter.) If YES, then specify DISALLOW PARALLEL or accept the default.

v Is there some external action performed by the UDF which should happen
only on one database partition? If YES, then specify DISALLOW PARALLEL
or accept the default.

v Is the scratchpad used, but only so that some expensive initialization
processing can be performed a minimal number of times? If YES, then
specify ALLOW PARALLEL.

In any case, the body of every external function should be in a directory that is
available on every database partition.

The default value is ALLOW PARALLEL, except if one or more of the
following options is specified in the statement.
v NOT DETERMINISTIC
v EXTERNAL ACTION
v SCRATCHPAD
v FINAL CALL

CREATE FUNCTION (external scalar)

458 SQL Reference Volume 2



If any of these options is specified or implied, the default value is DISALLOW
PARALLEL.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the function
will inherit their initial values from the environment of the invoking statement.
For a function invoked in the select-statement of a cursor, the initial values are
inherited from the environment when the cursor is opened. For a routine
invoked in a nested object (for example a trigger or view), the initial values are
inherited from the runtime environment (not inherited from the object
definition).

No changes to the special registers are passed back to the invoker of the
function.

Non-updatable special registers, such as the datetime special registers, reflect a
property of the statement currently executing, and are therefore set to their
default values.

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known by
the database server will be passed to the UDF as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the default.
DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613) or
PARAMETER STYLE JAVA.

If DBINFO is specified, then a structure is passed to the UDF which contains
the following information:
v Data base name - the name of the currently connected database.
v Application ID - unique application ID which is established for each

connection to the database.
v Application Authorization ID - the application runtime authorization ID,

regardless of the nested UDFs in between this UDF and the application.
v Code page - identifies the database code page.
v Schema name - under the exact same conditions as for Table name, contains

the name of the schema; otherwise blank.
v Table name - if and only if the UDF reference is either the right side of a

SET clause in an UPDATE statement or an item in the VALUES list of an
INSERT statement, contains the unqualified name of the table being updated
or inserted; otherwise blank.

v Column name - under the exact same conditions as for Table name, contains
the name of the column being updated or inserted; otherwise blank.

v Database version/release - identifies the version, release and modification
level of the database server invoking the UDF.

v Platform - contains the server's platform type.
v Table function result column numbers - not applicable to external scalar

functions.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type
transformations when invoking the function. A transform is required if the
function definition includes a user-defined structured type as either a
parameter or returns data type. If this clause is not specified, the default group
name DB2_FUNCTION is used. If the specified (or default) group-name is not
defined for a referenced structured type, an error is raised (SQLSTATE 42741).

CREATE FUNCTION (external scalar)

Statements 459



If a required FROM SQL or TO SQL transform function is not defined for the
given group-name and structured type, an error is raised (SQLSTATE 42744).

The transform functions, both FROM SQL and TO SQL, whether designated or
implied, must be SQL functions which properly transform between the
structured type and its built in type attributes.

PREDICATES
Defines the filtering or index extension exploitation performed when this
function is used in a predicate. A predicate-specification allows the optional
SELECTIVITY clause of a search-condition to be specified. If the PREDICATES
clause is specified, the function must be defined as DETERMINISTIC with NO
EXTERNAL ACTION (SQLSTATE 42613). If the PREDICATES clause is
specified, and the database is not a Unicode database, PARAMETER CCSID
UNICODE must not be specified (SQLSTATE 42613).

WHEN comparison-operator
Introduces a specific use of the function in a predicate with a comparison
operator ("=", "<", ">", ">=", "<=", "<>").

constant
Specifies a constant value with a data type comparable to the
RETURNS type of the function (SQLSTATE 42818). When a predicate
uses this function with the same comparison operator and this
constant, the specified filtering and index exploitation will be
considered by the optimizer.

EXPRESSION AS expression-name
Provides a name for an expression. When a predicate uses this function
with the same comparison operator and an expression, filtering and
index exploitation may be used. The expression is assigned an
expression name so that it can be used as a search function argument.
The expression-name cannot be the same as any parameter-name of the
function being created (SQLSTATE 42711). When an expression is
specified, the type of the expression is identified.

FILTER USING
Allows specification of an external function or a case expression to be used
for additional filtering of the result table.

function-invocation
Specifies a filter function that can be used to perform additional
filtering of the result table. This is a version of the defined function
(used in the predicate) that reduces the number of rows on which the
user-defined predicate must be executed, to determine if rows qualify.
If the results produced by the index are close to the results expected
for the user-defined predicate, applying the filtering function may be
redundant. If not specified, data filtering is not performed.

This function can use any parameter-name, the expression-name, or
constants as arguments (SQLSTATE 42703), and returns an integer
(SQLSTATE 428E4). A return value of 1 means the row is kept,
otherwise it is discarded.

This function must also:
v Not be defined with LANGUAGE SQL (SQLSTATE 429B4)
v Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION

(SQLSTATE 42845)
v Not have a structured data type as the data type of any of the

parameters (SQLSTATE 428E3)

CREATE FUNCTION (external scalar)

460 SQL Reference Volume 2



v Not include a subquery (SQLSTATE 428E4)
v Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE

428E4)

If an argument invokes another function or method, these rules are
also enforced for this nested function or method. However,
system-generated observer methods are allowed as arguments to the
filter function (or any function or method used as an argument), as
long as the argument evaluates to a built-in data type.

The definer of the function must have EXECUTE privilege on the
specified filter function.

The function-invocation clause must not exceed 65 536 bytes in length in
the database code page (SQLSTATE 22001).

case-expression
Specifies a case expression for additional filtering of the result table.
The searched-when-clause and simple-when-clause can use parameter-name,
expression-name, or a constant (SQLSTATE 42703). An external function
with the rules specified in FILTER USING function-invocation may be
used as a result-expression. Any function or method referenced in the
case-expression must also conform to the four rules listed under
function-invocation.

Subqueries and XMLQUERY or XMLEXISTS expressions cannot be
used anywhere in the case-expression (SQLSTATE 428E4).

The case expression must return an integer (SQLSTATE 428E4). A
return value of 1 in the result-expression means that the row is kept;
otherwise it is discarded.

The case-invocation clause must not exceed 65 536 bytes in length in the
database code page (SQLSTATE 22001).

index-exploitation
Defines a set of rules in terms of the search method of an index extension
that can be used to exploit the index.

SEARCH BY INDEX EXTENSION index-extension-name
Identifies the index extension. The index-extension-name must identify
an existing index extension.

EXACT
Indicates that the index lookup is exact in terms of the predicate
evaluation. Use EXACT indicate that neither the original user-defined
predicate function or the filter need to be applied after the index
lookup. The EXACT predicate is useful when the index lookup returns
the same results as the predicate.

If EXACT is not specified, then the original user-defined predicate is
applied after index lookup. If the index is expected to provide only an
approximation of the predicate, do not specify the EXACT option.

If the index lookup is not used, then the filter function and the original
predicate have to be applied.

exploitation-rule
Describes the search targets and search arguments and how they can be
used to perform the index search through a search method defined in the
index extension.

CREATE FUNCTION (external scalar)

Statements 461



WHEN KEY (parameter-name1)
This defines the search target. Only one search target can be specified
for a key. The parameter-name1 value identifies parameter names of the
defined function (SQLSTATE 42703 or 428E8).

The data type of parameter-name1 must match that of the source key
specified in the index extension (SQLSTATE 428EY). The match must
be exact for built-in and distinct data types and within the same
structured type hierarchy for structured types.

This clause is true when the values of the named parameter are
columns that are covered by an index based on the index extension
specified.

USE search-method-name(parameter-name2,...)
This defines the search argument. It identifies which search method to
use from those defined in the index extension. The search-method-name
must match a search method defined in the index extension
(SQLSTATE 42743). The parameter-name2 values identify parameter
names of the defined function or the expression-name in the
EXPRESSION AS clause (SQLSTATE 42703). It must be different from
any parameter name specified in the search target (SQLSTATE 428E9).
The number of parameters and the data type of each parameter-name2
must match the parameters defined for the search method in the index
extension (SQLSTATE 42816). The match must be exact for built-in and
distinct data types and within the same structured type hierarchy for
structured types.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access
control. The default is NOT SECURED.

NOT SECURED
Indicates that the function is not considered secure. When the function is
invoked, the arguments of the function must not reference a column for
which a column mask is enabled and column level access control is
activated for its table (SQLSTATE 428HA). This rule applies to the non
secure user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be
secure when it is referenced in a row permission or a column mask
(SQLSTATE 428H8).

Notes
v Determining whether one data type is castable to another data type does not

consider length or precision and scale for parameterized data types such as
CHAR and DECIMAL. Therefore, errors may occur when using a function as a
result of attempting to cast a value of the source data type to a value of the
target data type. For example, VARCHAR is castable to DATE but if the source
type is actually defined as VARCHAR(5), an error will occur when using the
function.

v When choosing the data types for the parameters of a user-defined function,
consider the rules for promotion that will affect its input values (see “Promotion
of data types”). For example, a constant which may be used as an input value
could have a built-in data type different from the one expected and, more

CREATE FUNCTION (external scalar)

462 SQL Reference Volume 2



significantly, may not be promoted to the data type expected. Based on the rules
for promotion, it is generally recommended to use the following data types for
parameters:
– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

v For portability of UDFs across platforms the following data types should not be
used:
– FLOAT- use DOUBLE or REAL instead.
– NUMERIC- use DECIMAL instead.
– LONG VARCHAR- use CLOB (or BLOB) instead.

v A function and a method may not be in an overriding relationship (SQLSTATE
42745). For more information about overriding, see “CREATE TYPE
(Structured)”.

v A function may not have the same signature as a method (comparing the first
parameter-type of the function with the subject-type of the method) (SQLSTATE
42723).

v Creating a function with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v In a partitioned database environment, the use of SQL in external user-defined
functions or methods is not supported (SQLSTATE 42997).

v Only routines defined as NO SQL can be used to define an index extension
(SQLSTATE 428F8).

v If the function allows SQL, the external program must not attempt to access any
federated objects (SQLSTATE 55047).

v A Java routine defined as NOT FENCED will be invoked as if it had been
defined as FENCED THREADSAFE.

v XML parameters are only supported in LANGUAGE JAVA external functions
when the PARAMETER STYLE DB2GENERAL clause is specified.

v Table access restrictions

If a function is defined as READS SQL DATA, no statement in the function can
access a table that is being modified by the statement which invoked the
function (SQLSTATE 57053). For example, suppose the user-defined function
BONUS() is defined as READS SQL DATA. If the statement UPDATE
EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is invoked, no SQL
statement in the BONUS function can read from the EMPLOYEE table.

v Setting of the default value: Parameters of a function that are defined with a
default value are set to their default value when the functions is invoked, but
only if a value is not supplied for the corresponding argument, or is specified as
DEFAULT, when the function is invoked.

v Privileges: The definer of a function always receives the EXECUTE privilege
WITH GRANT OPTION on the function, as well as the right to drop the
function.
When the function is used in an SQL statement, the function definer must have
the EXECUTE privilege on any packages used by the function.

CREATE FUNCTION (external scalar)

Statements 463



v EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked
in other than the outermost select list, the results are unpredictable since the
number of times the function is invoked will vary depending on the access plan
used.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of this database product and with other
database products. These alternatives are non-standard and should not be used.
– PARAMETER STYLE DB2SQL can be specified in place of PARAMETER

STYLE SQL
– NOT VARIANT can be specified in place of DETERMINISTIC, and VARIANT

can be specified in place of NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT, and

NOT NULL CALL can be specified in place of RETURNS NULL ON NULL
INPUT

The following syntax is accepted as the default behavior:
– ASUTIME NO LIMIT
– NO COLLID
– PROGRAM TYPE SUB
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE

is not specified
v Creating a secure function: Normally users with SECADM authority do not have

privileges to create database objects such as triggers and functions. Typically;
they will examine the data accessed by the function, ensure it is secure, then
grant the CREATE_SECURE_OBJECT authority to someone who currently has
required privileges to create a secure user-defined function. After the function is
created, they will revoke the CREATE_SECURE_OBJECT authority from the
function owner.
The SECURED attribute is considered to be an assertion that declares the user
has established a change control audit procedure for all changes to the
user-defined function. The database manager assumes that such a control audit
procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

v Invoking other user-defined functions in a secure function: If a secure
user-defined function invokes other user-defined functions, the database
manager does not validate whether those nested user-defined functions have the
SECURED attribute. If those nested functions can access sensitive data, the user
with SECADM authority needs to ensure those functions are allowed to access
those data and a change control audit procedure has been established for all
changes to those functions.

v Replacing an existing function such that the secure attribute is changed (from
SECURED to NOT SECURED and vice versa): Packages and dynamically cached
SQL statements that depend on the function may be invalidated because the
secure attribute affects the access path selection for statements involving tables
for which row or column level access control is activated.

Examples
v Example 1: Pellow is registering the CENTRE function in his PELLOW schema.

Let those keywords that will default do so, and let the system provide a function
specific name:

CREATE FUNCTION (external scalar)

464 SQL Reference Volume 2



CREATE FUNCTION CENTRE (INT,FLOAT)
RETURNS FLOAT
EXTERNAL NAME ’mod!middle’
LANGUAGE C
PARAMETER STYLE SQL
DETERMINISTIC
NO SQL
NO EXTERNAL ACTION

v Example 2: Now, McBride (who has DBADM authority) is registering another
CENTRE function in the PELLOW schema, giving it an explicit specific name for
subsequent data definition language use, and explicitly providing all keyword
values. Note also that this function uses a scratchpad and presumably is
accumulating data there that affects subsequent results. Since DISALLOW
PARALLEL is specified, any reference to the function is not parallelized and
therefore a single scratchpad is used to perform some one-time only
initialization and save the results.

CREATE FUNCTION PELLOW.CENTRE (FLOAT, FLOAT, FLOAT)
RETURNS DECIMAL(8,4) CAST FROM FLOAT
SPECIFIC FOCUS92
EXTERNAL NAME ’effects!focalpt’
LANGUAGE C PARAMETER STYLE SQL
DETERMINISTIC FENCED NOT NULL CALL NO SQL NO EXTERNAL ACTION
SCRATCHPAD NO FINAL CALL
DISALLOW PARALLEL

v Example 3: The following example is the C language user-defined function
program written to implement the rule output = 2 * input - 4 returning NULL
if and only if the input is null. It could be written even more simply (that is,
without null checking), if the CREATE FUNCTION statement had used NOT
NULL CALL. The CREATE FUNCTION statement:

CREATE FUNCTION ntest1 (SMALLINT)
RETURNS SMALLINT
EXTERNAL NAME ’ntest1!nudft1’
LANGUAGE C PARAMETER STYLE SQL
DETERMINISTIC NOT FENCED NULL CALL
NO SQL NO EXTERNAL ACTION

The program code:
#include "sqlsystm.h"
/* NUDFT1 IS A USER_DEFINED SCALAR FUNCTION */
/* udft1 accepts smallint input
and produces smallint output
implementing the rule:
if (input is null)
set output = null;
else
set output = 2 * input - 4;
*/
void SQL_API_FN nudft1
(short *input, /* ptr to input arg */
short *output, /* ptr to where result goes */
short *input_ind, /* ptr to input indicator var */
short *output_ind, /* ptr to output indicator var */
char sqlstate[6], /* sqlstate, allows for null-term */
char fname[28], /* fully qual func name, nul-term */
char finst[19], /* func specific name, null-term */
char msgtext[71]) /* msg text buffer, null-term */
{
/* first test for null input */
if (*input_ind == -1)
{
/* input is null, likewise output */
*output_ind = -1;
}

CREATE FUNCTION (external scalar)

Statements 465



else
{
/* input is not null. set output to 2*input-4 */
*output = 2 * (*input) - 4;
/* and set out null indicator to zero */
*output_ind = 0;
}
/* signal successful completion by leaving sqlstate as is */
/* and exit */
return;
}
/* end of UDF: NUDFT1 */

v Example 4: The following example registers a Java UDF which returns the
position of the first vowel in a string. The UDF is written in Java, is to be run
fenced, and is the findvwl method of class javaUDFs.

CREATE FUNCTION findv ( CLOB(100K))
RETURNS INTEGER
FENCED
LANGUAGE JAVA
PARAMETER STYLE JAVA
EXTERNAL NAME ’javaUDFs.findvwl’
NO EXTERNAL ACTION
CALLED ON NULL INPUT
DETERMINISTIC
NO SQL

v Example 5: This example outlines a user-defined predicate WITHIN that takes
two parameters, g1 and g2, of type SHAPE as input:
CREATE FUNCTION within (g1 SHAPE, g2 SHAPE)
RETURNS INTEGER
LANGUAGE C
PARAMETER STYLE SQL
DETERMINISTIC
NOT FENCED
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME ’db2sefn!SDESpatilRelations’
PREDICATES
WHEN = 1
FILTER USING mbrOverlap(g1..xmin, g1..ymin, g1..xmax, g1..max,
g2..xmin, g2..ymin, g2..xmax, g2..ymax)
SEARCH BY INDEX EXTENSION gridIndex
WHEN KEY(g1) USE withinExplRule(g2)
WHEN KEY(g2) USE withinExplRule(g1)

The description of the WITHIN function is similar to that of any user-defined
function, but the following additions indicate that this function can be used in a
user-defined predicate.
– PREDICATES WHEN = 1 indicates that when this function appears as

within(g1, g2) = 1

in the WHERE clause of a DML statement, the predicate is to be treated as a
user-defined predicate and the index defined by the index extension gridIndex
should be used to retrieve rows that satisfy this predicate. If a constant is
specified, the constant specified during the DML statement has to match
exactly the constant specified in the create index statement. This condition is
provided mainly to cover Boolean expression where the result type is either a
1 or a 0. For other cases, the EXPRESSION clause is a better choice.

– FILTER USING mbrOverlap refers to a filtering function mbrOverlap, which
is a cheaper version of the WITHIN predicate. In this example, the
mbrOverlap function takes the minimum bounding rectangles as input and
quickly determines if they overlap or not. If the minimum bounding

CREATE FUNCTION (external scalar)

466 SQL Reference Volume 2



rectangles of the two input shapes do not overlap, then g1 will not be
contained with g2. Therefore the tuple can be safely discarded, avoiding the
application of the expensive WITHIN predicate.

– The SEARCH BY INDEX EXTENSION clause indicates that combinations of
index extension and search target can be used for this user-defined predicate.

v Example 6: This example outlines a user-defined predicate DISTANCE that takes
two parameters, P1 and P2, of type POINT as input:

CREATE FUNCTION distance (P1 POINT, P2 POINT)
RETURNS INTEGER
LANGUAGE C
PARAMETER STYLE SQL
DETERMINISTIC
NOT FENCED
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME ’db2sefn!SDEDistances’
PREDICATES
WHEN > EXPRESSION AS distExpr
SEARCH BY INDEX EXTENSION gridIndex
WHEN KEY(P1) USE distanceGrRule(P2, distExpr)
WHEN KEY(P2) USE distanceGrRule(P1, distExpr)

The description of the DISTANCE function is similar to that of any user-defined
function, but the following additions indicate that when this function is used in
a predicate, that predicate is a user-defined predicate.
– PREDICATES WHEN > EXPRESSION AS distExpr is another valid

predicate specification. When an expression is specified in the WHEN clause,
the result type of that expression is used for determining if the predicate is a
user-defined predicate in the DML statement. For example:

SELECT T1.C1
FROM T1, T2
WHERE distance (T1.P1, T2.P1) > T2.C2

The predicate specification distance takes two parameters as input and
compares the results with T2.C2, which is of type INTEGER. Since only the
data type of the right side expression matters, (as opposed to using a specific
constant), it is better to choose the EXPRESSION clause in the CREATE
FUNCTION DDL for specifying a wildcard as the comparison value.
Alternatively, the following statement is also a valid user-defined predicate:

SELECT T1.C1
FROM T1, T2
WHERE distance(T1.P1, T2.P1) > distance (T1.P2, T2.P2)

There is currently a restriction that only the right side is treated as the
expression; the term on the left side is the user-defined function for the
user-defined predicate.

– The SEARCH BY INDEX EXTENSION clause indicates that combinations of
index extension and search target can be used for this user-defined-predicate.
In the case of the distance function, the expression identified as distExpr is
also one of the search arguments that is passed to the range-producer
function (defined as part of the index extension). The expression identifier is
used to define a name for the expression so that it is passed to the
range-producer function as an argument.

CREATE FUNCTION (external scalar)

Statements 467



CREATE FUNCTION (external table)
The CREATE FUNCTION (External Table) statement is used to register a
user-defined external table function at the current server.

A table function can be used in the FROM clause of a SELECT, and returns a table
to the SELECT by returning one row at a time.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following authorities:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist
– CREATEIN privilege on the schema, if the schema name of the function exists

v DBADM authority

Group privileges are not considered for any table or view specified in the CREATE
FUNCTION statement.

To create a not-fenced function, the privileges held by the authorization ID of the
statement must also include at least one of the following authorities:
v CREATE_NOT_FENCED_ROUTINE authority on the database
v DBADM authority

To create a fenced function, no additional authorities or privileges are required.

To replace an existing function, the authorization ID of the statement must be the
owner of the existing function (SQLSTATE 42501).

If the SECURED option is specified, the authorization ID of the statement must
include SECADM or CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Syntax

�� CREATE FUNCTION function-name
OR REPLACE

�

CREATE FUNCTION (external table)

468 SQL Reference Volume 2



�

�

( )
,

parameter-declaration

* �

� �

,

RETURNS TABLE ( column-name data-type2 )
AS LOCATOR

GENERIC TABLE

�

� option-list ��

parameter-declaration:

data-type1
parameter-name default-clause AS LOCATOR

data-type1, data-type2:

built-in-type
distinct-type-name
structured-type-name
REF ( type-name )

built-in-type:

CREATE FUNCTION (external table)

Statements 469



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

SYSPROC. (2) (3)
DB2SECURITYLABEL

default-clause:

CREATE FUNCTION (external table)

470 SQL Reference Volume 2



DEFAULT NULL
constant
special-register
global-variable
( expression )

option-list:

*
(4)

LANGUAGE C
JAVA
CLR
OLE

*
SPECIFIC specific-name

* �

� EXTERNAL
NAME 'string'

identifier

* PARAMETER STYLE DB2GENERAL
SQL

* �

�
PARAMETER CCSID ASCII

UNICODE

*
NOT DETERMINISTIC

DETERMINISTIC
* �

�
FENCED

FENCED * THREADSAFE
NOT THREADSAFE

THREADSAFE
NOT FENCED *

*
RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT
*

READS SQL DATA

NO SQL
CONTAINS SQL

�

� *
STATIC DISPATCH

*
EXTERNAL ACTION

NO EXTERNAL ACTION
*

NO SCRATCHPAD

100
SCRATCHPAD

length

* �

�
NO FINAL CALL

FINAL CALL
* �

� DISALLOW PARALLEL
DATABASE PARTITIONS

ALLOW PARALLEL EXECUTE ON ALL RESULT TABLE DISTRIBUTED

* �

�
NO DBINFO

DBINFO
*

CARDINALITY integer
*

TRANSFORM GROUP group-name
* �

�
INHERIT SPECIAL REGISTERS

*
NOT SECURED

SECURED

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define
the row security label column of a protected table.

3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is
implicit and cannot be explicitly specified (SQLSTATE 42842). The default
value for a column of type DB2SECURITYLABEL is the session authorization
ID's security label for write access.

4 For information about creating LANGUAGE OLE DB external table functions,

CREATE FUNCTION (external table)

Statements 471



see “CREATE FUNCTION (OLE DB External Table)”. For information about
creating LANGUAGE SQL table functions, see “CREATE FUNCTION (SQL
Scalar, Table, or Row)”.

Description

OR REPLACE
Specifies to replace the definition for the function if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the function are not affected. This option can be specified only by the
owner of the object. This option is ignored if a definition for the function does
not exist at the current server. To replace an existing function, the specific
name and function name of the new definition must be the same as the specific
name and function name of the old definition, or the signature of the new
definition must match the signature of the old definition. Otherwise, a new
function is created.

If the function is referenced in the definition of a row permission or a column
mask, the function cannot be replaced (SQLSTATE 42893).

function-name
Names the function being defined. It is a qualified or unqualified name that
designates a function. The unqualified form of function-name is an SQL
identifier. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements
the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a
period and an SQL identifier. The qualified name must not be the same as the
data type of the first parameter, if that first parameter is a structured type.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without regard for
any length, precision or scale attributes of the data type) must not identify a
function described in the catalog (SQLSTATE 42723). The unqualified name,
together with the number and data types of the parameters, while of course
unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS'
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a function-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no prohibition
against it, an external user-defined table function should not be given the same
name as a built-in function.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the
data type and optional default value of each parameter. One entry in the list
must be specified for each parameter that the function will expect to receive.
No more than 90 parameters are allowed (SQLSTATE 54023).

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For example:

CREATE FUNCTION WOOFER() ...

CREATE FUNCTION (external table)

472 SQL Reference Volume 2



No two identically-named functions within a schema are permitted to have
exactly the same type for all corresponding parameters. Lengths, precisions,
and scales are not considered in this type comparison. Therefore, CHAR(8) and
CHAR(35) are considered to be the same type, as are DECIMAL(11,2) and
DECIMAL (4,3). A weakly typed distinct type specified for a parameter is
considered to be the same data type as the source type of the distinct type. For
a Unicode database, CHAR(13) and GRAPHIC(8) are considered to be the
same type. There is some further bundling of types that causes them to be
treated as the same type for this purpose, such as DECIMAL and NUMERIC.
A duplicate signature returns an error (SQLSTATE 42723).

parameter-name
Specifies an optional name for the input parameter. The name cannot be
the same as any other parameter-name in the parameter list (SQLSTATE
42734).

data-type1
Specifies the data type of the input parameter. The data type can be a
built-in data type, a distinct type, a structured type, or a reference type.
For a more complete description of each built-in data type, see “CREATE
TABLE”. Some data types are not supported in all languages. For details
on the mapping between SQL data types and host language data types, see
“Data types that map to SQL data types in embedded SQL applications”.
v A datetime type parameter is passed as a character data type, and the

data is passed in the ISO format.
v DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE

(SQLSTATE 42815).
v XML is invalid with LANGUAGE OLE.
v Because the XML value that is seen inside a function is a serialized

version of the XML value that is passed as a parameter in the function
call, parameters of type XML must be declared using the syntax XML AS
CLOB(n).

v CLR does not support DECIMAL scale greater than 28 (SQLSTATE
42613).

v Array types cannot be specified (SQLSTATE 42815).

For a user-defined distinct type, the length, precision, or scale attributes for
the parameter are those of the source type of the distinct type (those
specified on CREATE TYPE). A distinct type parameter is passed as the
source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching
the schemas in the SQL path.

For a user-defined structured type, the appropriate transform functions
must exist in the associated transform group.

For a reference type, the parameter can be specified as REF(type-name) if
the parameter is unscoped.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a
special register, a global variable, an expression, or the keyword NULL.
The special registers that can be specified as the default are that same as
those that can be specified for a column default (see default-clause in the
CREATE TABLE statement). Other special registers can be specified as the
default by using an expression.

CREATE FUNCTION (external table)

Statements 473



The expression can be any expression of the type described in
"Expressions". If a default value is not specified, the parameter has no
default and the corresponding argument cannot be omitted on invocation
of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or
SQLSTATE 429BL). The expression must be assignment compatible to the
parameter data type (SQLSTATE 42821).

A default cannot be specified for a parameter of type ARRAY, ROW, or
CURSOR (SQLSTATE 429BB).

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data
type (SQLSTATE 42601). Passing locators instead of values can result in
fewer bytes being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types
can be promoted, nor does it affect the function signature, which is used in
function resolution.

If the function is FENCED and has the NO SQL option, the AS LOCATOR
clause cannot be specified (SQLSTATE 42613).

RETURNS
Specifies the output of the function.

TABLE
Specifies that the output of the function is a table. The parentheses that
follow this keyword delimit a list of the names and types of the columns
of the table. The list style resembles the style of a simple CREATE TABLE
statement which has no additional specifications (constraints, for example).
No more than 255 columns are allowed (SQLSTATE 54011).

column-name
Specifies the name of this column. The name cannot be qualified and
the same name cannot be used for more than one column of the table.

data-type2
Specifies the data type of the column, and can be any data type
supported for a parameter of a UDF written in the particular language,
except for structured types (SQLSTATE 42997).

AS LOCATOR
When data-type2 is a LOB type or distinct type based on a LOB
type, the use of this option indicates that the function is returning
a locator for the LOB value that is instantiated in the result table.

The valid types for use with this clause are discussed in the
“CREATE FUNCTION (external scalar)” statement topic.

GENERIC TABLE
Specifies that the output of the function is a generic table. This clause is
allowed only if you specify the LANGUAGE JAVA clause and the
PARAMETER STYLE DB2GENERAL clause (SQLSTATE 42613).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

CREATE FUNCTION (external table)

474 SQL Reference Volume 2



SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined.
This specific name can be used when sourcing on this function, dropping the
function, or commenting on the function. It can never be used to invoke the
function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier.
The name, including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.
If a qualifier is specified, it must be the same as the explicit or implicit
qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmssxxx.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being used to
register a new function based on code written in an external programming
language and adhering to the documented linkage conventions and interface.

If NAME clause is not specified "NAME function-name" is assumed.

NAME 'string'
This clause identifies the user-written code that implements the function
being defined.

The 'string' option is a string constant with a maximum of 254 bytes. The
format used for the string is dependent on the LANGUAGE specified.
v For LANGUAGE C:

The string specified is the library name and function within the library,
which the database manager invokes to execute the user-defined
function being created. The library (and the function within the library)
do not need to exist when the CREATE FUNCTION statement is
executed. However, when the function is used in an SQL statement, the
library and function within the library must exist and be accessible from
the database server machine.
The string can be specified as follows:

�� ' library_id '
absolute_path_id ! func_id

��

Extraneous blanks are not permitted within the single quotation marks.

library_id
Identifies the library name containing the function. The database
manager will look for the library as follows:

Operating system Library name location

Linux
AIX
Solaris
HP-UX

If myfunc was given as the library_id, and the
database manager is being run from
/u/production, the database manager will
look for the function in library
/u/production/sqllib/function/myfunc

CREATE FUNCTION (external table)

Statements 475



Operating system Library name location

Windows The database manager will look for the
function in a directory path that is specified
by the LIBPATH or PATH environment
variable

absolute_path_id
Identifies the full path name of the file containing the function. The
format depends on the operating system, as illustrated in the
following table:

Operating system Full path name example

Linux
AIX
Solaris
HP-UX

A value of '/u/jchui/mylib/myfunc' would
cause the database manager to look in
/u/jchui/mylib for the myfunc shared
library.

Windows A value of 'd:\mylib\myfunc.dll' would
cause the database manager to load the
dynamic link library, myfunc.dll, from the
d:\mylib directory. If an absolute path ID is
being used to identify the routine body, be
sure to append the .dll extension.

! func_id
Identifies the entry point name of the function to be invoked. The !
serves as a delimiter between the library ID and the function ID. The
format depends on the operating system, as illustrated in the
following table:

Operating system Entry point name of the function

Linux
AIX
Solaris
HP-UX

A value of 'mymod!func8' would direct the
database manager to look for the library
$inst_home_dir/sqllib/function/mymod and
to use entry point func8 within that library.

Windows A value of 'mymod!func8' would direct the
database manager to load the mymod.dll file
and to call the func8() function in the
dynamic link library (DLL).

If the string is not properly formed, an error is returned (SQLSTATE
42878).
In any case, the body of every external function should be in a directory
that is available on every database partition.

v For LANGUAGE JAVA:
The string specified contains the optional jar file identifier, class identifier
and method identifier, which the database manager invokes to execute
the user-defined function being created. The class identifier and method
identifier do not need to exist when the CREATE FUNCTION statement
is executed. If a jar_id is specified, it must exist when the CREATE
FUNCTION statement is executed. However, when the function is used
in an SQL statement, the method identifier must exist and be accessible
from the database server machine.
The string can be specified as follows:

CREATE FUNCTION (external table)

476 SQL Reference Volume 2



�� '
jar_id :

class_id . method_id '
!

��

Extraneous blanks are not permitted within the single quotation marks.

jar_id
Identifies the jar identifier given to the jar collection when it was
installed in the database. It can be either a simple identifier, or a
schema qualified identifier. Examples are 'myJar' and
'mySchema.myJar'

class_id
Identifies the class identifier of the Java object. If the class is part of
a package, the class identifier part must include the complete
package prefix, for example, 'myPacks.UserFuncs'. The directory the
Java virtual machine will look in for the classes depends on the
operating system, as illustrated in the following table:

Operating system
Directory the Java virtual machine will
look in for the classes

Linux
AIX
Solaris
HP-UX

'.../myPacks/UserFuncs/'

Windows '...\myPacks\UserFuncs\'

method_id
Identifies the method name of the Java object to be invoked.

v For LANGUAGE CLR:
The string specified represents the .NET assembly (library or executable),
the class within that assembly, and the method within the class that the
database manager invokes to execute the function being created. The
module, class, and method do not need to exist when the CREATE
FUNCTION statement is executed. However, when the function is used
in an SQL statement, the module, class, and method must exist and be
accessible from the database server machine; otherwise, an error is
returned (SQLSTATE 42724).
C++ routines that are compiled with the '/clr' compiler option to
indicate that they include managed code extensions must be cataloged as
'LANGUAGE CLR' and not 'LANGUAGE C'. The database server needs
to know that the .NET infrastructure is being utilized in a user-defined
function in order to make necessary runtime decisions. All user-defined
functions using the .NET infrastructure must be cataloged as
'LANGUAGE CLR'.
The string can be specified as follows:

�� ' assembly : class_id ! method_id ' ��

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.

assembly
Identifies the DLL or other assembly file in which the class resides.
Any file extensions (such as .dll) must be specified. If the full path

CREATE FUNCTION (external table)

Statements 477



name is not given, the file must reside in the function directory of
the database product's installation path

For example, c:\sqllib\function.

If the file resides in a subdirectory of the install function directory,
the subdirectory can be given before the file name rather than
specifying the full path.

For example, if your install directory is c:\sqllib and your
assembly file is c:\sqllib\function\myprocs\mydotnet.dll, it is only
necessary to specify 'myprocs\mydotnet.dll' for the assembly.

The case sensitivity of this parameter is the same as the case
sensitivity of the file system.

class_id
Specifies the name of the class within the given assembly in which
the method that is to be invoked resides. If the class resides within a
namespace, the full namespace must be given in addition to the
class. For example, if the class EmployeeClass is in namespace
MyCompany.ProcedureClasses, then
MyCompany.ProcedureClasses.EmployeeClass must be specified for
the class. Note that the compilers for some .NET languages will add
the project name as a namespace for the class, and the behavior may
differ depending on whether the command line compiler or the GUI
compiler is used. This parameter is case sensitive.

method_id
Specifies the method within the given class that is to be invoked.
This parameter is case sensitive.

v For LANGUAGE OLE:
The string specified is the OLE programmatic identifier (progid) or class
identifier (clsid), and method identifier, which the database manager
invokes to execute the user-defined function being created. The
programmatic identifier or class identifier, and method identifier do not
need to exist when the CREATE FUNCTION statement is executed.
However, when the function is used in an SQL statement, the method
identifier must exist and be accessible from the database server machine;
otherwise, an error is returned (SQLSTATE 42724).
The string can be specified as follows:

�� ' progid ! method_id '
clsid

��

Extraneous blanks are not permitted within the single quotation marks.

progid
Identifies the programmatic identifier of the OLE object.

progid is not interpreted by the database manager but only
forwarded to the OLE APIs at run time. The specified OLE object
must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can be
used as an alternative for specifying a progid in the case that an OLE
object is not registered with a progid. The clsid has the form:

CREATE FUNCTION (external table)

478 SQL Reference Volume 2



{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. clsid is not interpreted by the
database manager but only forwarded to the OLE APIs at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This clause identifies the name of the user-written code which implements
the function being defined. The identifier specified is an SQL identifier. The
SQL identifier is used as the library-id in the string. Unless it is a delimited
identifier, the identifier is folded to upper case. If the identifier is qualified
with a schema name, the schema name portion is ignored. This form of
NAME can only be used with LANGUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the user-defined function body is written.

C This means the database manager will call the user-defined function as
if it were a C function. The user-defined function must conform to the
C language calling and linkage convention as defined by the standard
ANSI C prototype.

JAVA This means the database manager will call the user-defined function as
a method in a Java class.

CLR This means the database manager will call the user-defined function as
a method in a .NET class. At this time, LANGUAGE CLR is only
supported for user-defined functions running on Windows operating
systems. NOT FENCED cannot be specified for a CLR routine
(SQLSTATE 42601).

OLE This means the database manager will call the user-defined function as
if it were a method exposed by an OLE automation object. The
user-defined function must conform with the OLE automation data
types and invocation mechanism, as described in the OLE Automation
Programmer's Reference.

LANGUAGE OLE is supported for user-defined functions for this
database product only in Windows 32-bit operating systems.

For information about creating LANGUAGE OLE DB external table
functions, see “CREATE FUNCTION (OLE DB External Table)”.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to
and returning the value from functions.

DB2GENERAL
Used to specify the conventions for passing parameters to and returning
the value from external functions that are defined as a method in a Java
class. This can only be specified when LANGUAGE JAVA is used.

SQL
Used to specify the conventions for passing parameters to and returning
the value from external functions that conform to C language calling and
linkage conventions, methods exposed by OLE automation objects, or
public static methods of a .NET object. This must be specified when
LANGUAGE C, LANGUAGE CLR, or LANGUAGE OLE is used.

CREATE FUNCTION (external table)

Statements 479



PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of
the function. If the PARAMETER CCSID clause is not specified, the default is
PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER
CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031). When the function is invoked, the application
code page for the function is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a
Unicode database, character data is in UTF-8, and graphic data is in UCS-2.
If the database is not a Unicode database, character data is in UTF-8. In
either case, when the function is invoked, the application code page for the
function is 1208.

If the database is not a Unicode database, and a function with
PARAMETER CCSID UNICODE is created, the function cannot have any
graphic types or user-defined types (SQLSTATE 560C1).

If the database is not a Unicode database, table functions can be created
with PARAMETER CCSID UNICODE, but the following rules apply:
v The alternate collating sequence must be specified in the database

configuration before creating the table function (SQLSTATE 56031).
PARAMETER CCSID UNICODE table functions collate with the
alternate collating sequence specified in the database configuration.

v Tables or table functions created with CCSID ASCII, and tables or table
functions created with CCSID UNICODE, cannot both be used in a
single SQL statement (SQLSTATE 53090). This applies to tables and table
functions referenced directly in the statement, as well as to tables and
table functions referenced indirectly (such as, for example, through
referential integrity constraints, triggers, materialized query tables, and
tables in the body of views).

v Table functions created with PARAMETER CCSID UNICODE cannot be
referenced in SQL functions or SQL methods (SQLSTATE 560C0).

v An SQL statement that references a table function created with
PARAMETER CCSID UNICODE cannot invoke an SQL function or SQL
method (SQLSTATE 53090).

v Graphic types, the XML type, and user-defined types cannot be used as
parameters to PARAMETER CCSID UNICODE table functions
(SQLSTATE 560C1).

v SQL statements are always interpreted in the database code page. In
particular, this means that every character in literals, hex literals, and
delimited identifiers must have a representation in the database code
page; otherwise, the character will be replaced with the substitution
character.

If the database is not a Unicode database, and the alternate collating sequence
has been specified in the database configuration, functions can be created with
either PARAMETER CCSID ASCII or PARAMETER CCSID UNICODE. All
string data passed into and out of the function will be converted to the
appropriate code page.

CREATE FUNCTION (external table)

480 SQL Reference Volume 2



This clause cannot be specified with LANGUAGE OLE, LANGUAGE JAVA, or
LANGUAGE CLR (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same
results for given argument values (DETERMINISTIC) or whether the function
depends on some state values that affect the results (NOT DETERMINISTIC).
That is, a DETERMINISTIC function must always return the same table from
successive invocations with identical inputs. Optimizations taking advantage of
the fact that identical inputs always produce the same results are prevented by
specifying NOT DETERMINISTIC. An example of a table function that is
non-deterministic is one that references special registers, global variables,
non-deterministic functions, or sequences in a way that affects the table
function result table.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered "safe" to run in
the database manager operating environment's process or address space (NOT
FENCED), or not (FENCED).

If a function is registered as FENCED, the database manager protects its
internal resources (for example, data buffers) from access by the function. Most
functions will have the option of running as FENCED or NOT FENCED. In
general, a function running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:
Use of NOT FENCED for functions not adequately coded, reviewed and
tested can compromise the integrity of your database. This database product
safeguards against many of the common types of inadvertent failures that
might occur, but cannot guarantee complete integrity when NOT FENCED
user defined functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or NOT
THREADSAFE (SQLSTATE 42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR
clause cannot be specified (SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED_ROUTINE) is required to register a user-defined
function as NOT FENCED.

LANGUAGE CLR user-defined functions cannot be created when specifying
the NOT FENCED clause (SQLSTATE 42601).

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as
other routines (THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE:
v If the function is defined as THREADSAFE, the database manager can

invoke the function in the same process as other routines. In general, to be
threadsafe, a function should not use any global or static data areas. Most
programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

v If the function is defined as NOT THREADSAFE, the database manager will
never simultaneously invoke the function in the same process as another
routine.

CREATE FUNCTION (external table)

Statements 481



For FENCED functions, THREADSAFE is the default if the LANGUAGE is
JAVA or CLR. For all other languages, NOT THREADSAFE is the default. If
the function is defined with LANGUAGE OLE, THREADSAFE may not be
specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT
THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if any
of the arguments is null. If the user-defined function is defined to have no
parameters, then of course this null argument condition cannot arise, and it
does not matter how this specification is coded.

If RETURNS NULL ON NULL INPUT is specified, and if, at table function
OPEN time, any of the function's arguments are null, then the user-defined
function is not called. The result of the attempted table function scan is the
empty table (a table with no rows).

If CALLED ON NULL INPUT is specified, then regardless of whether any
arguments are null, the user-defined function is called. It can return a null
value or a normal (non-null) value. But responsibility for testing for null
argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON NULL
INPUT for backwards and family compatibility. Similarly, NOT NULL CALL
may be used as a synonym for RETURNS NULL ON NULL INPUT.

READS SQL DATA, NO SQL, CONTAINS SQL
Specifies the classification of SQL statements that the function can run. The
database manager verifies that the SQL statements that the function issues are
consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines (SQL
and External).

The default is READS SQL DATA.

READS SQL DATA
Specifies that the function can run statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL
(SQLSTATE 38002 or 42985). The function cannot run SQL statements that
modify data (SQLSTATE 38003 or 42985).

NO SQL
Specifies that the function can run only SQL statements with a data access
classification of NO SQL. If the ALLOW PARALLEL, EXECUTE ON ALL
DATABASE PARTITIONS, and RESULT TABLE DISTRIBUTED clauses are
all specified, NO SQL is the only option allowed.

CONTAINS SQL
Specifies that the function can run only SQL statements with a data access
classification of CONTAINS SQL or NO SQL (SQLSTATE 38004 or 42985).
The function cannot run any SQL statements that read or modify data
(SQLSTATE 38003 or 42985).

STATIC DISPATCH
This optional clause indicates that at function resolution time, a function is
chosen by the database server based on the static types (declared types) of the
parameters of the function.

CREATE FUNCTION (external table)

482 SQL Reference Volume 2



EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that the database manager does not manage. An example of an external
action is sending a message or writing a record to a file. The default is
EXTERNAL ACTION.

EXTERNAL ACTION
Specifies that the function takes an action that changes the state of an
object that the database manager does not manage.

A function with external actions might return incorrect results if the
function is executed by parallel tasks. For example, if the function sends a
note for each initial call to it, one note is sent for each parallel task instead
of once for the function. Specify the DISALLOW PARALLEL clause for
functions that do not work correctly with parallelism.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state
of an object that the database manager does not manage. The database
manager uses this information during optimization of SQL statements.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be
provided for an external function. (It is strongly recommended that
user-defined functions be re-entrant, so a scratchpad provides a means for the
function to "save state" from one call to the next.)

If SCRATCHPAD is specified, then at first invocation of the user-defined
function, memory is allocated for a scratchpad to be used by the external
function. This scratchpad has the following characteristics:
v length, if specified, sets the size of the scratchpad in bytes and must be

between 1 and 32 767 (SQLSTATE 42820). The default value is 100.
v It is initialized to all X'00''s.
v Its scope is the SQL statement. There is one scratchpad per reference to the

external function in the SQL statement. So if the UDFX function in the
following statement is defined with the SCRATCHPAD keyword, two
scratchpads would be assigned.

SELECT A.C1, B.C2
FROM TABLE (UDFX(:hv1)) AS A,

TABLE (UDFX(:hv1)) AS B
WHERE ...

v It is persistent. It is initialized at the beginning of the execution of the
statement, and can be used by the external table function to preserve the
state of the scratchpad from one call to the next. If the FINAL CALL
keyword is also specified for the UDF, then the scratchpad is NEVER
altered, and any resources anchored in the scratchpad should be released
when the special FINAL call is made.
If NO FINAL CALL is specified or defaulted, then the external table function
should clean up any such resources on the CLOSE call, as the database
server will re-initialize the scratchpad on each OPEN call. This
determination of FINAL CALL or NO FINAL CALL and the associated
behavior of the scratchpad could be an important consideration, particularly
if the table function will be used in a subquery or join, since that is when
multiple OPEN calls can occur during the execution of a statement.

CREATE FUNCTION (external table)

Statements 483



v It can be used as a central point for system resources (for example, memory)
which the external function might acquire. The function could acquire the
memory on the first call, keep its address in the scratchpad, and refer to it in
subsequent calls.
(As previously outlined, the FINAL CALL/NO FINAL CALL keyword is
used to control the re-initialization of the scratchpad, and also dictates when
the external table function should release resources anchored in the
scratchpad.)

If SCRATCHPAD is specified, then on each invocation of the user-defined
function an additional argument is passed to the external function which
addresses the scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to
the external function.

FINAL CALL or NO FINAL CALL
This optional clause specifies whether a final call (and a separate first call) is to
be made to an external function. It also controls when the scratchpad is
re-initialized. If NO FINAL CALL is specified, then the database server can
only make three types of calls to the table function: open, fetch and close.
However, if FINAL CALL is specified, then in addition to open, fetch and
close, a first call and a final call can be made to the table function.

For external table functions, the call-type argument is ALWAYS present,
regardless of which option is chosen.

If the final call is being made because of an interrupt or end-of-transaction, the
UDF may not issue any SQL statements except for CLOSE cursor (SQLSTATE
38505). A special value is passed in the "call type" argument for these special
final call situations.

DISALLOW PARALLEL or ALLOW PARALLEL EXECUTE ON ALL DATABASE PARTITIONS
RESULT TABLE DISTRIBUTED

Specifies whether or not, for a single reference to the function, the invocation
of the function is to be parallelized.

DISALLOW PARALLEL
Specifies that on each invocation of the function, the function is invoked on
a single database partition.

ALLOW PARALLEL EXECUTE ON ALL DATABASE PARTITIONS RESULT TABLE
DISTRIBUTED

Specifies that on each invocation of the function, the function is invoked on
all database partitions. The union of the result sets obtained on each
database partition is returned. The function cannot execute SQL statements
(the NO SQL clause must also be specified).

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known to
the database server is to be passed to the function as an additional
invocation-time argument (DBINFO) or not (NO DBINFO). NO DBINFO is the
default. DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613).

If DBINFO is specified, a structure containing the following information is
passed to the function:
v Database name - the name of the currently connected database
v Application ID - the unique application ID that is established for each

connection to the database

CREATE FUNCTION (external table)

484 SQL Reference Volume 2



v Application authorization ID - the application runtime authorization ID,
regardless of any nested functions between this function and the application

v Code page - the database code page
v Schema name - not applicable to external table functions
v Table name - not applicable to external table functions
v Column name - not applicable to external table functions
v Database version or release - the version, release, and modification level of

the database server that is invoking the function
v Platform - the server's platform type
v Table function result column numbers - an array of result column numbers

that is used by the statement referencing the function; this information
enables the function to return only required column values instead of all
column values

v Database partition number - the number of the database partition on which
the external table function is invoked; in a single database partition
environment, this value is 0

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows to be
returned by the function for optimization purposes. Valid values for integer
range from 0 to 9 223 372 036 854 775 807 inclusive.

If the CARDINALITY clause is not specified for a table function, assume a
finite value is assumed as a default; the same value assumed for tables for
which the RUNSTATS utility has not gathered statistics.

Warning: If a function does, in fact, have infinite cardinality - that is, it returns
a row every time it is called to do so, and never returns the "end-of-table"
condition - then queries that require the end-of-table condition to correctly
function will be infinite, and will have to be interrupted. Examples of such
queries are those that contain a GROUP BY or an ORDER BY clause. Writing
such UDFs is not recommended.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type
transformations when invoking the function. A transform is required if the
function definition includes a user-defined structured type as a parameter data
type. If this clause is not specified, the default group name DB2_FUNCTION is
used. If the specified (or default) group-name is not defined for a referenced
structured type, an error results (SQLSTATE 42741). If a required FROM SQL
transform function is not defined for the given group-name and structured
type, an error results (SQLSTATE 42744).

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the function
will inherit their initial values from the environment of the invoking statement.
For a function invoked in the select-statement of a cursor, the initial values are
inherited from the environment when the cursor is opened. For a routine
invoked in a nested object (for example a trigger or view), the initial values are
inherited from the runtime environment (not inherited from the object
definition).

No changes to the special registers are passed back to the invoker of the
function.

CREATE FUNCTION (external table)

Statements 485



Non-updatable special registers, such as the datetime special registers, reflect a
property of the statement currently executing, and are therefore set to their
default values.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access
control. The default is NOT SECURED.

NOT SECURED
Indicates that the function is not considered secure. When the function is
invoked, the arguments of the function must not reference a column for
which a column mask is enabled and column level access control is
activated for its table (SQLSTATE 428HA). This rule applies to the non
secure user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be
secure when it is referenced in a row permission or a column mask
(SQLSTATE 428H8, SQLCODE -20470).

Rules
v In a partitioned database environment, the use of SQL in external user-defined

functions or methods is not supported (SQLSTATE 42997).
v Only routines defined as NO SQL can be used to define an index extension

(SQLSTATE 428F8).
v If the function allows SQL, the external program must not attempt to access any

federated objects (SQLSTATE 55047).
v Table access restrictions If a function is defined as READS SQL DATA, no

statement in the function can access a table that is being modified by the
statement which invoked the function (SQLSTATE 57053). For example, suppose
the user-defined function BONUS() is defined as READS SQL DATA. If the
statement UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is
invoked, no SQL statement in the BONUS function can read from the
EMPLOYEE table.

Notes
v When choosing the data types for the parameters of a user-defined function,

consider the rules for promotion that will affect its input values. For example, a
constant which may be used as an input value could have a built-in data type
that is different from the one expected and, more significantly, may not be
promoted to the data type expected. Based on the rules for promotion, it is
generally recommended to use the following data types for parameters:
– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

v For portability of UDFs across platforms, it is recommended to use the following
data types:
– DOUBLE or REAL instead of FLOAT
– DECIMAL instead of NUMERIC
– CLOB (or BLOB) instead of LONG VARCHAR

v Creating a function with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the

CREATE FUNCTION (external table)

486 SQL Reference Volume 2



statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v A Java routine defined as NOT FENCED will be invoked as if it had been
defined as FENCED THREADSAFE.

v Privileges: The definer of a function always receives the EXECUTE privilege
WITH GRANT OPTION on the function, as well as the right to drop the
function. When the function is used in an SQL statement, the function definer
must have the EXECUTE privilege on any packages used by the function.

v Setting of the default value: Parameters of a function that are defined with a
default value are set to their default value when the functions is invoked, but
only if a value is not supplied for the corresponding argument, or is specified as
DEFAULT, when the function is invoked.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of this database product and with other
database products. These alternatives are non-standard and should not be used.
– PARAMETER STYLE DB2SQL can be specified in place of PARAMETER

STYLE SQL
– NOT VARIANT can be specified in place of DETERMINISTIC
– VARIANT can be specified in place of NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT
– NOT NULL CALL can be specified in place of RETURNS NULL ON NULL

INPUT
– DB2GENRL can be specified in place of DB2GENERAL
The following syntax is accepted as the default behavior:
– ASUTIME NO LIMIT
– NO COLLID
– PROGRAM TYPE SUB
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE

is not specified
v Creating a secure function: Normally users with SECADM authority do not have

privileges to create database objects such as triggers and functions. Typically
they will examine the data accessed by the function, ensure it is secure, then
grant the CREATE_SECURE_OBJECT authority to someone who currently has
required privileges to create a secure user-defined function. After the function is
created, they will revoke the CREATE_SECURE_OBJECT authority from the
function owner.
The SECURED attribute is considered to be an assertion that declares the user
has established a change control audit procedure for all changes to the
user-defined function. The database manager assumes that such a control audit
procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

v Invoking other user-defined functions in a secure function: If a secure
user-defined function invokes other user-defined functions, the database
manager does not validate whether those nested user-defined functions have the
SECURED attribute. If those nested functions can access sensitive data, the user
with SECADM authority needs to ensure those functions are allowed to access
those data and a change control audit procedure has been established for all
changes to those functions.

CREATE FUNCTION (external table)

Statements 487



v Replacing an existing function such that the secure attribute is changed (from
SECURED to NOT SECURED and vice versa): Packages and dynamically cached
SQL statements that depend on the function may be invalidated because the
secure attribute affects the access path selection for statements involving tables
for which row or column level access control is activated.

v EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked
in other than the outermost select list, the results are unpredictable since the
number of times the function is invoked will vary depending on the access plan
used.

Examples
v Example 1: The following example registers a table function written to return a

row consisting of a single document identifier column for each known document
in a text management system. The first parameter matches a given subject area
and the second parameter contains a given string.
Within the context of a single session, the UDF will always return the same
table, and therefore it is defined as DETERMINISTIC. Note the RETURNS clause
which defines the output from DOCMATCH. FINAL CALL must be specified for
each table function. In addition, the DISALLOW PARALLEL keyword is added
as table functions cannot operate in parallel. Although the size of the output for
DOCMATCH is highly variable, CARDINALITY 20 is a representative value,
and is specified to help the database optimizer.

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16))
EXTERNAL NAME ’/common/docfuncs/rajiv/udfmatch’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
NOT FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20

v Example 2: The following example registers an OLE table function that is used
to retrieve message header information and the partial message text of messages
in Microsoft Exchange.

CREATE FUNCTION MAIL()
RETURNS TABLE (TIMERECEIVED DATE,

SUBJECT VARCHAR(15),
SIZE INTEGER,
TEXT VARCHAR(30))

EXTERNAL NAME ’tfmail.header!list’
LANGUAGE OLE
PARAMETER STYLE SQL
NOT DETERMINISTIC
FENCED
CALLED ON NULL INPUT
SCRATCHPAD
FINAL CALL
NO SQL
EXTERNAL ACTION
DISALLOW PARALLEL

CREATE FUNCTION (external table)

488 SQL Reference Volume 2



CREATE FUNCTION (OLE DB external table)
The CREATE FUNCTION (OLE DB External Table) statement is used to register a
user-defined OLE DB external table function to access data from an OLE DB
provider.

A table function can be used in the FROM clause of a SELECT.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following authorities:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist
– CREATEIN privilege on the schema, if the schema name of the function exists

v DBADM authority

Group privileges are not considered for any table or view specified in the CREATE
FUNCTION statement.

If the SECURED option is specified, the authorization ID of the statement must
include SECADM authority or CREATE_SECURE_OBJECT authority (SQLSTATE
42501).

Syntax

�� CREATE FUNCTION function-name ( parameter-declaration ) * �

� �

,

RETURNS TABLE ( column-name data-type2 ) option-list ��

parameter-declaration:

data-type1
parameter-name default-clause

CREATE FUNCTION (OLE DB external table)

Statements 489



data-type1, data-type2:

built-in-type
distinct-type-name
structured-type-name
REF ( type-name )

built-in-type:

CREATE FUNCTION (OLE DB external table)

490 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
SYSPROC. (2) (3)

DB2SECURITYLABEL

default-clause:

CREATE FUNCTION (OLE DB external table)

Statements 491



DEFAULT NULL
constant
special-register
global-variable
( expression )

option-list:

* LANGUAGE OLEDB *

SPECIFIC specific-name
* �

� EXTERNAL NAME 'string' *

NOT DETERMINISTIC

DETERMINISTIC
*

STATIC DISPATCH
�

� *

RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT
*

NO EXTERNAL ACTION

EXTERNAL ACTION
* �

�
CARDINALITY integer

*

NOT SECURED

SECURED

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define
the row security label column of a protected table.

3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is
implicit and cannot be explicitly specified (SQLSTATE 42842). The default
value for a column of type DB2SECURITYLABEL is the session authorization
ID's security label for write access.

Description

function-name
Names the function being defined. It is a qualified or unqualified name that
designates a function. The unqualified form of function-name is an SQL
identifier. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements
the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a
period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without regard for
any length, precision or scale attributes of the data type) must not identify a
function described in the catalog (SQLSTATE 42723). The unqualified name,
together with the number and data types of the parameters, while of course
unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS'
(SQLSTATE 42939).

CREATE FUNCTION (OLE DB external table)

492 SQL Reference Volume 2



A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a function-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no prohibition
against it, an external user-defined table function should not be given the same
name as a built-in function.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the
data type and optional default value of each parameter. If no input parameter
is specified, data is retrieved from the external source possibly subsetted
through query optimization. The input parameter passes command text to an
OLE DB provider.

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For example:

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have
exactly the same type for all corresponding parameters. Lengths, precisions,
and scales are not considered in this type comparison. Therefore, CHAR(8) and
CHAR(35) are considered to be the same type. A weakly typed distinct type
specified for a parameter is considered to be the same data type as the source
type of the distinct type. For a Unicode database, CHAR(13) and GRAPHIC(8)
are considered to be the same type. A duplicate signature returns an error
(SQLSTATE 42723).

parameter-name
Specifies an optional name for the input parameter.

data-type1
Specifies the data type of the input parameter. The data type can be any
character or graphic string data type or a distinct type based on a character
or graphic string data type. Parameters of type XML are not supported
(SQLSTATE 42815).

For a more complete description of each built-in data type, see “CREATE
TABLE”.

For a user-defined distinct type, the length, precision, or scale attributes for
the parameter are those of the source type of the distinct type (those
specified on CREATE TYPE). A distinct type parameter is passed as the
source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching
the schemas in the SQL path.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a
special register, a global variable, an expression, or the keyword NULL.
The special registers that can be specified as the default are that same as
those that can be specified for a column default (see default-clause in the
CREATE TABLE statement). Other special registers can be specified as the
default by using an expression.

The expression can be any expression of the type described in
"Expressions". If a default value is not specified, the parameter has no
default and the corresponding argument cannot be omitted on invocation
of the procedure. The maximum size of the expression is 64K bytes.

CREATE FUNCTION (OLE DB external table)

Statements 493



The default expression must not modify SQL data (SQLSTATE 428FL or
SQLSTATE 429BL). The expression must be assignment compatible to the
parameter data type (SQLSTATE 42821).

A default cannot be specified for a parameter of type ARRAY, ROW, or
CURSOR (SQLSTATE 429BB).

RETURNS TABLE
Specifies that the output of the function is a table. The parentheses that follow
this keyword delimit a list of the names and types of the columns of the table,
resembling the style of a simple CREATE TABLE statement which has no
additional specifications (constraints, for example).

column-name
Specifies the name of the column which must be the same as the
corresponding rowset column name. The name cannot be qualified and the
same name cannot be used for more than one column of the table.

data-type2
Specifies the data type of the column. XML is invalid (SQLSTATE 42815).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined.
This specific name can be used when sourcing on this function, dropping the
function, or commenting on the function. It can never be used to invoke the
function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier.
The name, including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.
If a qualifier is specified, it must be the same as the explicit or implicit
qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmssxxx.

EXTERNAL NAME 'string'
This clause identifies the external table and an OLE DB provider.

The 'string' option is a string constant with a maximum of 254 bytes.

The string specified is used to establish a connection and session with an OLE
DB provider, and retrieve data from a rowset. The OLE DB provider and data
source do not need to exist when the CREATE FUNCTION statement is
executed.

The string can be specified as follows:

�� ' server ! '
rowset

! ! connectstring
rowset ! COLLATING_SEQUENCE = N

Y

��

CREATE FUNCTION (OLE DB external table)

494 SQL Reference Volume 2



server
Identifies the local name of a data source as defined by “CREATE
SERVER”.

rowset
Identifies the rowset (table) exposed by the OLE DB provider. Fully
qualified table names must be provided for OLE DB providers that support
catalog or schema names.

connectstring
String version of the initialization properties needed to connect to a data
source. The basic format of a connection string is based on the ODBC
connection string. The string contains a series of keyword/value pairs
separated by semicolons. The equal sign (=) separates each keyword and
its value. Keywords are the descriptions of the OLE DB initialization
properties (property set DBPROPSET_DBINIT) or provider-specific
keywords.

COLLATING_SEQUENCE
Specifies whether the data source uses the same collating sequence as DB2
Database for Linux, UNIX, and Windows. For details, see “CREATE
SERVER”. Valid values are as follows:
v Y = Same collating sequence
v N = Different collating sequence

If COLLATING_SEQUENCE is not specified, the data source is assumed to
have a different collating sequence than DB2 Database for Linux, UNIX,
and Windows.

If server is provided, connectstring or COLLATING_SEQUENCE are not allowed
in the external name. They are defined as server options CONNECTSTRING
and COLLATING_SEQUENCE. If no server is provided, a connectstring must be
provided. If rowset is not provided, the table function must have an input
parameter to pass through command text to the OLE DB provider.

LANGUAGE OLEDB
This means the database manager will deploy a built-in generic OLE DB
consumer to retrieve data from the OLE DB provider. No table function
implementation is required by the developer.

LANGUAGE OLEDB table functions can be created on any platform, but only
executed on platforms supported by Microsoft OLE DB.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same
results for given argument values (DETERMINISTIC) or whether the function
depends on some state values that affect the results (NOT DETERMINISTIC).
That is, a DETERMINISTIC function must always return the same table from
successive invocations with identical inputs. Optimizations taking advantage of
the fact that identical inputs always produce the same results are prevented by
specifying NOT DETERMINISTIC.

STATIC DISPATCH
This optional clause indicates that at function resolution time, the database
manager chooses a function based on the static types (declared types) of the
parameters of the function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if any

CREATE FUNCTION (OLE DB external table)

Statements 495



of the arguments is null. If the user-defined function is defined to have no
parameters, then of course this null argument condition cannot arise.

If RETURNS NULL ON NULL INPUT is specified and if at execution time any
one of the function's arguments is null, the user-defined function is not called
and the result is the empty table; that is, a table with no rows.

If CALLED ON NULL INPUT is specified, then at execution time regardless of
whether any arguments are null, the user-defined function is called. It can
return an empty table or not, depending on its logic. But responsibility for
testing for null argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON NULL
INPUT for backwards and family compatibility. Similarly, NOT NULL CALL
may be used as a synonym for RETURNS NULL ON NULL INPUT.

NO EXTERNAL ACTION or EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that the database manager does not manage. An example of an external
action is sending a message or writing a record to a file. The default is NO
EXTERNAL ACTION.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state
of an object that the database manager does not manage. The database
manager uses this information during optimization of SQL statements.

EXTERNAL ACTION
Specifies that the function takes an action that changes the state of an
object that the database manager does not manage.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows to be
returned by the function for optimization purposes. Valid values for integer
range from 0 to 2 147 483 647 inclusive.

If the CARDINALITY clause is not specified for a table function, a finite value
is assumed as the default. The finite value is the same value that is assumed
for tables for which the RUNSTATS utility has not gathered statistics.

Warning: If a function does, in fact, have infinite cardinality - that is, it returns
a row every time it is called to do so, and never returns the "end-of-table"
condition - then queries that require the end-of-table condition to correctly
function will be infinite, and will have to be interrupted. Examples of such
queries are those that contain a GROUP BY or an ORDER BY clause. Writing
such UDFs is not recommended.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access
control. The default is NOT SECURED.

NOT SECURED
Indicates that the function is not considered secure. When the function is
invoked, the arguments of the function must not reference a column for
which a column mask is enabled and column level access control is
activated for its table (SQLSTATE 428HA). This rule applies to the non
secure user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be
secure when it is referenced in a row permission or a column mask
(SQLSTATE 428H8).

CREATE FUNCTION (OLE DB external table)

496 SQL Reference Volume 2



Notes
v FENCED, FINAL CALL, SCRATCHPAD, PARAMETER STYLE SQL, DISALLOW

PARALLEL, NO DBINFO, NOT THREADSAFE, and NO SQL are implicit in the
statement and can be specified.

v When choosing the data types for the parameters of a user-defined function,
consider the rules for promotion that will affect its input values. For example, a
constant which may be used as an input value could have a built-in data type
that is different from the one expected and, more significantly, may not be
promoted to the data type expected. Based on the rules for promotion, it is
generally recommended to use the following data types for parameters:
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

v For portability of UDFs across platforms, it is recommended to use the following
data types:
– DOUBLE or REAL instead of FLOAT
– DECIMAL instead of NUMERIC
– CLOB (or BLOB) instead of LONG VARCHAR

v Creating a function with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v Privileges: The definer of a function always receives the EXECUTE privilege
WITH GRANT OPTION on the function, as well as the right to drop the
function.

v Setting of the default value: Parameters of a function that are defined with a
default value are set to their default value when the functions is invoked, but
only if a value is not supplied for the corresponding argument, or is specified as
DEFAULT, when the function is invoked.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NOT VARIANT can be specified in place of DETERMINISTIC
– VARIANT can be specified in place of NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT
– NOT NULL CALL can be specified in place of RETURNS NULL ON NULL

INPUT
v Creating a secure function: Normally users with SECADM authority do not have

privileges to create database objects such as triggers or functions. Typically they
will examine the data accessed by the function, ensure it is secure, then grant
the CREATE_SECURE_OBJECT authority to someone who currently has
required privileges to create a secure user-defined function. After the function is
created, they will revoke the CREATE_SECURE_OBJECT authority from the
function owner.
The SECURED attribute is considered to be an assertion that declares the user
has established a change control audit procedure for all changes to the
user-defined function. The database manager assumes that such a control audit
procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

v Invoking other user-defined functions in a secure function: If a secure
user-defined function invokes other user-defined functions, the database
manager does not validate whether those nested user-defined functions have the

CREATE FUNCTION (OLE DB external table)

Statements 497



SECURED attribute. If those nested functions can access sensitive data, the user
with SECADM authority needs to ensure those functions are allowed to access
those data and a change control audit procedure has been established for all
changes to those functions.

v EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked
in other than the outermost select list, the results are unpredictable since the
number of times the function is invoked will vary depending on the access plan
used.

Examples
1. Register an OLE DB table function, which retrieves order information from a

Microsoft Access database. The connection string is defined in the external
name.

CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER,

customerid CHAR(5),
employeeid INTEGER,
orderdate TIMESTAMP,
requireddate TIMESTAMP,
shippeddate TIMESTAMP,
shipvia INTEGER,
freight dec(19,4))

LANGUAGE OLEDB
EXTERNAL NAME ’!orders!Provider=Microsoft.Jet.OLEDB.3.51;

Data Source=c:\sqllib\samples\oledb\nwind.mdb
!COLLATING_SEQUENCE=Y’;

2. Register an OLE DB table function, which retrieves customer information from
an Oracle database. The connection string is provided through a server
definition. The table name is fully qualified in the external name. The local user
john is mapped to the remote user dave. Other users will use the guest user ID
in the connection string.

CREATE SERVER spirit
WRAPPER OLEDB
OPTIONS (CONNECTSTRING ’Provider=MSDAORA;Persist Security Info=False;

User ID=guest;password=pwd;Locale Identifier=1033;
OLE DB Services=CLIENTCURSOR;Data Source=spirit’);

CREATE USER MAPPING FOR john
SERVER spirit
OPTIONS (REMOTE_AUTHID ’dave’, REMOTE_PASSWORD ’mypwd’);

CREATE FUNCTION customers ()
RETURNS TABLE (customer_id INTEGER,

name VARCHAR(20),
address VARCHAR(20),
city VARCHAR(20),
state VARCHAR(5),
zip_code INTEGER)

LANGUAGE OLEDB
EXTERNAL NAME ’spirit!demo.customer’;

3. Register an OLE DB table function, which retrieves information about stores
from a MS SQL Server 7.0 database. The connection string is provided in the
external name. The table function has an input parameter to pass through
command text to the OLE DB provider. The rowset name does not need to be
specified in the external name. The query example passes in SQL statement text
to retrieve the top three stores.

CREATE FUNCTION favorites (varchar(600))
RETURNS TABLE (store_id CHAR (4),

name VARCHAR (41),
sales INTEGER)

CREATE FUNCTION (OLE DB external table)

498 SQL Reference Volume 2



SPECIFIC favorites
LANGUAGE OLEDB
EXTERNAL NAME ’!!Provider=SQLOLEDB.1;Persist Security Info=False;

User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;
Locale Identifier=1033;Use Procedure for Prepare=1;
Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;
OLE DB Services=CLIENTCURSOR;’;

SELECT *
FROM TABLE (favorites

(’ select top 3 sales.stor_id as store_id, ’ CONCAT
’ stores.stor_name as name, ’ CONCAT
’ sum(sales. qty) as sales ’ CONCAT

’ from sales, stores ’ CONCAT
’ where sales.stor_id = stores.stor_id ’ CONCAT
’ group by sales.stor_id, stores.stor_name ’ CONCAT
’ order by sum(sales.qty) desc ’)) as f;

CREATE FUNCTION (OLE DB external table)

Statements 499



CREATE FUNCTION (sourced or template)
The CREATE FUNCTION (Sourced or Template) statement is used to register a
function or function template with a server.

This statement can register the following objects:
v A user-defined function, based on another existing scalar or aggregate function,

at the current server.
v A function template with an application server that is designated as a federated

server. A function template is a partial function that contains no executable code.
The user creates it for the purpose of mapping it to a data source function. After
the mapping is created, the user can specify the function template in queries
submitted to the federated server. When such a query is processed, the federated
server will invoke the data source function to which the template is mapped,
and return values whose data types correspond to those in the RETURNS
portion of the template's definition.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the function does not exist
v CREATEIN privilege on the schema, if the schema name of the function exists
v DBADM authority

The privileges held by the authorization ID of the statement must also include
EXECUTE privilege on the source function if the authorization ID of the statement
does not have DATAACCESS authority and the SOURCE clause is specified.

Group privileges are not considered for any table or view specified in the CREATE
FUNCTION statement.

Syntax

�� CREATE FUNCTION function-name

�

( )
,

parameter-declaration

* �

� RETURNS data-type2 *
SPECIFIC specific-name

* �

CREATE FUNCTION (sourced or template)

500 SQL Reference Volume 2



�

�

SOURCE function-name
SPECIFIC specific-name PARAMETER CCSID ASCII
function-name ( ) UNICODE

,

data-type
NOT DETERMINISTIC EXTERNAL ACTION

AS TEMPLATE * *
DETERMINISTIC NO EXTERNAL ACTION

* ��

parameter-declaration:

data-type1
parameter-name default-clause

data-type1, data-type2:

built-in-type
distinct-type-name
structured-type-name

built-in-type:

CREATE FUNCTION (sourced or template)

Statements 501



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

SYSPROC. (2) (3)
DB2SECURITYLABEL

default-clause:

CREATE FUNCTION (sourced or template)

502 SQL Reference Volume 2



DEFAULT NULL
constant
special-register
global-variable
( expression )

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define
the row security label column of a protected table.

3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is
implicit and cannot be explicitly specified (SQLSTATE 42842). The default
value for a column of type DB2SECURITYLABEL is the session authorization
ID's security label for write access.

Description

function-name
Names the function or function template being defined. It is a qualified or
unqualified name that designates a function. The unqualified form of
function-name is an SQL identifier. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name.
In static SQL statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The qualified form is a
schema-name followed by a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without regard for
any length, precision or scale attributes of the data type) must not identify a
function or function template described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the parameters,
while of course unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS'
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a function-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

When naming a user-defined function that is sourced on an existing function
with the purpose of supporting the same function with a user-defined distinct
type, the same name as the sourced function may be used. This allows users to
use the same function with a user-defined distinct type without realizing that
an additional definition was required. In general, the same name can be used
for more than one function if there is some difference in the signature of the
functions.

(parameter-declaration,...)
Identifies the number of input parameters of the function or function template,
and specifies the data type and optional default value of each parameter. One
entry in the list must be specified for each parameter that the function or
function template will expect to receive. No more than 90 parameters are
allowed (SQLSTATE 54023).

CREATE FUNCTION (sourced or template)

Statements 503



It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For example:

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have
exactly the same type for all corresponding parameters. This restriction also
applies to a function and function template with the same name within the
same schema. Lengths, precisions, and scales are not considered in this type
comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same
type, as are DECIMAL(11,2) and DECIMAL (4,3). A weakly typed distinct type
specified for a parameter is considered to be the same data type as the source
type of the distinct type. For a Unicode database, CHAR(13) and GRAPHIC(8)
are considered to be the same type. There is some further bundling of types
that causes them to be treated as the same type for this purpose, such as
DECIMAL and NUMERIC. A duplicate signature returns an error (SQLSTATE
42723).

parameter-name
Specifies an optional name for the input parameter. The name cannot be
the same as any other parameter-name in the parameter list (SQLSTATE
42734).

data-type1
Specifies the data type of the input parameter. The data type can be a
built-in data type, a distinct type, or a structured type.

Any valid SQL data type can be used if it is castable to the type of the
corresponding parameter of the function identified in the SOURCE clause
(for information, see “Casting between data types”). However, this
checking does not guarantee that an error will not occur when the function
is invoked.

For a more complete description of each built-in data type, see “CREATE
TABLE”.
v A datetime type parameter is passed as a character data type, and the

data is passed in the ISO format.
v Array types cannot be specified (SQLSTATE 42879).
v A reference type specified as REF(type-name) cannot be specified

(SQLSTATE 42879).

For a user-defined distinct type, the length, precision, or scale attributes for
the parameter are those of the source type of the distinct type (those
specified on CREATE TYPE). A distinct type parameter is passed as the
source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching
the schemas in the SQL path.

For a user-defined structured type, the appropriate transform functions
must exist in the associated transform group.

Because the function is sourced, it is not necessary (but still permitted) to
specify length, precision, or scale for the parameterized data types. Empty
parentheses can be used instead; for example, CHAR(). A parameterized data
type is any one of the data types that can be defined with a specific length,
scale, or precision. The parameterized data types are the string data types,
the decimal data types, and the TIMESTAMP data type.

With a function template, empty parentheses can also be used instead of
specifying length, precision, or scale for the parameterized data types. It is
recommended to use empty parentheses for the parameterized data types.

CREATE FUNCTION (sourced or template)

504 SQL Reference Volume 2



If you use empty parentheses, the length, precision, or scale is the same as
that of the remote function, which is determined when the function
template is mapped to a remote function by creating a function mapping.
If you omit parentheses altogether, the default length for the data type is
used (see “CREATE TABLE”).

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a
special register, a global variable, an expression, or the keyword NULL.
The special registers that can be specified as the default are that same as
those that can be specified for a column default (see default-clause in the
CREATE TABLE statement). Other special registers can be specified as the
default by using an expression.

The expression can be any expression of the type described in
"Expressions". If a default value is not specified, the parameter has no
default and the corresponding argument cannot be omitted on invocation
of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or
SQLSTATE 429BL). The expression must be assignment compatible to the
parameter data type (SQLSTATE 42821).

A default cannot be specified for a parameter of type ARRAY, ROW, or
CURSOR (SQLSTATE 429BB).

RETURNS
This mandatory clause identifies the output of the function or function
template.

data-type2
Specifies the data type of the output.

With a sourced scalar function, any valid SQL data type is acceptable, as is
a distinct type, provided it is castable from the result type of the source
function. An array type cannot be specified as the data type of a parameter
(SQLSTATE 42879).

The parameter of a parameterized type need not be specified for
parameters of a sourced function. Instead, empty parentheses can be used;
for example, VARCHAR().

For additional considerations and rules that apply to the specification of
the data type in the RETURNS clause when the function is sourced on
another, see the “Rules” section of this statement.

With a function template, empty parentheses are not allowed (SQLSTATE
42611). Length, precision, or scale must be specified for the parameterized
data types. It is recommended to specify the same length, precision, or
scale as that of the remote function.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined.
This specific name can be used when sourcing on this function, dropping the
function, or commenting on the function. It can never be used to invoke the
function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier.

CREATE FUNCTION (sourced or template)

Statements 505



The name, including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is returned.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.
If a qualifier is specified, it must be the same as the explicit or implicit
qualifier of function-name or an error (SQLSTATE 42882) is returned.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmssxxx.

SOURCE
Specifies that the new function is being defined as a sourced function. A
sourced function is implemented by another function (the source function). The
function must be a scalar or aggregate function that exists at the current server,
and it must be one of the following types of functions:
v A function that was defined with a CREATE FUNCTION statement
v A cast function that was generated by a CREATE TYPE statement
v A built-in function

If the source function is not a built-in function, the particular function can be
identified by its name, function signature, or specific name.

If the source function is a built-in function, the SOURCE clause must include a
function signature for the built-in function. The source function must not be
any of the following built-in functions (If a particular syntax is indicated, only
the indicated form cannot be specified.):
v CARDINALITY
v CHAR when more than one argument is specified and the first argument is

a datetime data type
v CHARACTER_LENGTH
v COALESCE
v CONTAINS
v CURSOR_ROWCOUNT
v DATAPARTITIONNUM
v DBPARTITIONNUM
v DEREF
v EXTRACT
v GRAPHIC when more than one argument is specified and the first argument

is a datetime data type
v GREATEST
v HASHEDVALUE
v INSERT when more than four arguments are specified
v INSTR when more than four arguments are specified
v LCASE when more than three arguments are specified
v LEAST
v LEFT when more than two arguments are specified
v LENGTH when more than one argument is specified
v LOCATE when more than three arguments are specified

CREATE FUNCTION (sourced or template)

506 SQL Reference Volume 2



v LOCATE_IN_STRING when more than four arguments are specified
v LOWER when more than three arguments are specified
v MAX
v MAX_CARDINALITY
v MIN
v NODENUMBER
v NULLIF
v NVL
v OVERLAY
v PARAMETER
v POSITION
v RAISE_ERROR
v REC2XML
v RID
v RID_BIT
v RIGHT when more than two arguments are specified
v SCORE
v STRIP
v SUBSTRING
v TRIM
v TRIM_ARRAY
v TYPE_ID
v TYPE_NAME
v TYPE_SCHEMA
v UCASE when more than three arguments are specified
v UPPER when more than three arguments are specified
v VALUE
v VARCHAR when more than one argument is specified and the first

argument is a datetime data type
v VARGRAPHIC when more than one argument is specified and the first

argument is a datetime data type
v XMLATTRIBUTES
v XMLCOMMENT
v XMLCONCAT
v XMLDOCUMENT
v XMLELEMENT
v XMLFOREST
v XMLNAMESPACES
v XMLPARSE
v XMLPI
v XMLQUERY
v XMLROW
v XMLSERIALIZE
v XMLTEXT
v XMLVALIDATE

CREATE FUNCTION (sourced or template)

Statements 507



v XMLXSROBJECTID
v XSLTRANSFORM

function-name
Identifies the particular function that is to be used as the source and is
valid only if there is exactly one specific function in the schema with this
function-name for which the authorization ID of the statement has
EXECUTE privilege. This syntax variant is not valid for a source function
that is a built-in function.

If an unqualified name is provided, then the current SQL path (the value
of the CURRENT PATH special register) is used to locate the function. The
first schema in the SQL path that has a function with this name for which
the authorization ID of the statement has EXECUTE privilege is selected.

If no function by this name exists in the named schema or if the name is
not qualified and there is no function with this name in the SQL path, an
error (SQLSTATE 42704) is returned. If there is more than one authorized
specific instance of the function in the named or located schema, an error
(SQLSTATE 42725) is returned. If a function by this name exists and the
authorization ID of the statement does not have EXECUTE privilege on
this function, an error (SQLSTATE 42501) is returned.

SPECIFIC specific-name
Identifies the particular user-defined function that is to be used as the
source, by the specific-name either specified or defaulted to at function
creation time. This syntax variant is not valid for a source function that is a
built-in function.

If an unqualified name is provided, the current SQL path is used to locate
the function. The first schema in the SQL path that has a function with this
specific name for which the authorization ID of the statement has
EXECUTE privilege is selected.

If no function by this specific-name exists in the named schema or if the
name is not qualified and there is no function with this specific-name in the
SQL path, an error (SQLSTATE 42704) is returned. If a function by this
specific-name exists, and the authorization ID of the statement does not have
EXECUTE privilege on this function, an error (SQLSTATE 42501) is
returned.

function-name (data-type,...)
Provides the function signature, which uniquely identifies the source
function. This is the only valid syntax variant for a source function that is
a built-in function.

The rules for function resolution are applied to select one function from the
functions with the same function name, given the data types specified in
the SOURCE clause. However, the data type of each parameter in the
function selected must have the exact same type as the corresponding data
type specified in the source function.

function-name
Gives the function name of the source function. If an unqualified name
is provided, then the schemas of the user's SQL path are considered.

data-type
Must match the data type that was specified on the CREATE
FUNCTION statement in the corresponding position (comma
separated).

CREATE FUNCTION (sourced or template)

508 SQL Reference Volume 2



It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses may be
coded to indicate that these attributes are to be ignored when looking
for a data type match. For example, DECIMAL() will match a
parameter whose data type was defined as DECIMAL(7,2)).

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly
match that specified in the CREATE FUNCTION statement. This can
be useful in assuring that the intended function will be used. Note also
that synonyms for data types will be considered a match (for example
DEC and NUMERIC will match).

A type of FLOAT(n) does not need to match the defined value for n,
because 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching
occurs based on whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is returned.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out
of the function. If the PARAMETER CCSID clause is not specified, the
default is PARAMETER CCSID UNICODE for Unicode databases, and
PARAMETER CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031). When the function is invoked, the
application code page for the function is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a
Unicode database, character data is in UTF-8, and graphic data is in
UCS-2. If the database is not a Unicode database, character data is in
UTF-8. In either case, when the function is invoked, the application
code page for the function is 1208.

The PARAMETER CCSID clause must specify the same encoding scheme
as the source function (SQLSTATE 53090).

AS TEMPLATE
Indicates that this statement will be used to create a function template, not a
function with executable code.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results for identical input
arguments. The default is NOT DETERMINISTIC.

NOT DETERMINISTIC
Specifies that the function might not return the same result each time
that the function is invoked with the same input arguments. The
function depends on some state values that affect the results. The
database manager uses this information during optimization of SQL
statements. An example of a function that is not deterministic is one
that generates random numbers.

CREATE FUNCTION (sourced or template)

Statements 509



A function that is not deterministic might receive incorrect results if it
is executed by parallel tasks.

DETERMINISTIC
Specifies that the function always returns the same result each time
that the function is invoked with the same input arguments. The
database manager uses this information during optimization of SQL
statements. An example of a function that is deterministic is one that
calculates the square root of the input argument.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that the database manager does not manage. An example of an
external action is sending a message or writing a record to a file. The
default is EXTERNAL ACTION.

EXTERNAL ACTION
Specifies that the function takes an action that changes the state of an
object that the database manager does not manage. EXTERNAL
ACTION must be implicitly or explicitly specified if the SQL routine
body invokes a function that is defined with EXTERNAL ACTION
(SQLSTATE 428C2).

A function with external actions might return incorrect results if the
function is executed by parallel tasks. For example, if the function
sends a note for each initial call to it, one note is sent for each parallel
task instead of once for the function.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the
state of an object that the database manager does not manage. The
database manager uses this information during optimization of SQL
statements.

Rules
v For convenience, in this section the function being created will be called CF and

the function identified in the SOURCE clause will be called SF, no matter which
of the three allowable syntaxes was used to identify SF.
– The unqualified name of CF and the unqualified name of SF can be different.
– A function named as the source of another function can, itself, use another

function as its source. Extreme care should be exercised when exploiting this
facility, because it could be very difficult to debug an application if an
indirectly invoked function returns an error.

– The following clauses are invalid if specified in conjunction with the SOURCE
clause (because CF will inherit these attributes from SF):
- CAST FROM ...,
- EXTERNAL ...,
- LANGUAGE ...,
- PARAMETER STYLE ...,
- DETERMINISTIC / NOT DETERMINISTIC,
- FENCED / NOT FENCED,
- RETURNS NULL ON NULL INPUT / CALLED ON NULL INPUT
- EXTERNAL ACTION / NO EXTERNAL ACTION
- NO SQL / CONTAINS SQL / READS SQL DATA
- SCRATCHPAD / NO SCRATCHPAD

CREATE FUNCTION (sourced or template)

510 SQL Reference Volume 2



- FINAL CALL / NO FINAL CALL
- RETURNS TABLE (...)
- CARDINALITY ...
- ALLOW PARALLEL / DISALLOW PARALLEL
- DBINFO / NO DBINFO
- THREADSAFE / NOT THREADSAFE
- INHERIT SPECIAL REGISTERS

An error (SQLSTATE 42613) will result from violation of these rules.
v The number of input parameters in CF must be the same as those in SF;

otherwise an error (SQLSTATE 42624) is returned.
v It is not necessary for CF to specify length, precision, or scale for a

parameterized data type in the case of:
– The function's input parameters,
– Its RETURNS parameter
Instead, empty parentheses may be specified as part of the data type (for
example: VARCHAR()) in order to indicate that the length/precision/scale will
be the same as those of the source function, or determined by the casting.
However, if length, precision, or scale is specified then the value in CF is
checked against the corresponding value in SF as outlined in the remaining rules
for input parameters and returns value.

v The specification of the input parameters of CF are checked against those of SF.
The data type of each parameter of CF must either be the same as or be castable
to the data type of the corresponding parameter of SF. If any parameter is not
the same type or castable, an error (SQLSTATE 42879) is returned.
Note that this rule provides no guarantee against an error occurring when CF is
used. An argument that matches the data type and length or precision attributes
of a CF parameter may not be assignable if the corresponding SF parameter has
a shorter length or less precision. In general, parameters of CF should not have
length or precision attributes that are greater than the attributes of the
corresponding SF parameters.

v The specifications for the RETURNS data type of CF are checked against that of
SF. The final RETURNS data type of SF, after any casting, must either be the
same as or castable to the RETURNS data type of CF. Otherwise an error
(SQLSTATE 42866) is returned.
Note that this rule provides no guarantee against an error occurring when CF is
used. A result value that matches the data type and length or precision attributes
of the SF RETURNS data type may not be assignable if the CF RETURNS data
type has a shorter length or less precision. Caution should be used when
choosing to specify the RETURNS data type of CF as having length or precision
attributes that are less than the attributes of the SF RETURNS data type.

v Revalidation of CF that does not have a parameter with a default expression is
not supported (SQLSTATE 42997).

Notes
v Determining whether one data type is castable to another data type does not

consider length or precision and scale for parameterized data types such as
CHAR and DECIMAL. Therefore, errors may occur when using a function as a
result of attempting to cast a value of the source data type to a value of the
target data type. For example, VARCHAR is castable to DATE but if the source
type is actually defined as VARCHAR(5), an error will occur when using the
function.

CREATE FUNCTION (sourced or template)

Statements 511



v When choosing the data types for the parameters of a user-defined function,
consider the rules for promotion that will affect its input values (see “Promotion
of data types”). For example, a constant which may be used as an input value
could have a built-in data type different from the one expected and, more
significantly, may not be promoted to the data type expected. Based on the rules
for promotion, it is generally recommended to use the following data types for
parameters:
– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

v Creating a function with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v For a federated server to recognize a data source function, the function must
map to a counterpart at the federated database. If the database contains no
counterpart, the user must create the counterpart and then the mapping.
The counterpart can be a function (scalar or source) or a function template. If the
user creates a function and the required mapping, then, each time a query that
specifies the function is processed, the database manager (1) compares strategies
for invoking it with strategies for invoking the data source function, and (2)
invokes the function that is expected to require less overhead.
If the user creates a function template and the mapping, then each time a query
that specifies the template is processed, the database manager invokes the data
source function that it maps to, provided that an access plan for invoking this
function exists.

v Privileges: The definer of a function always receives the EXECUTE privilege on
the function, as well as the right to drop the function. The definer of the
function is also given the WITH GRANT OPTION if any of the following
conditions apply:
– The source function is a built-in function.
– The definer of the function has EXECUTE WITH GRANT OPTION on the

source function.
– The function is a template.

v EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked
in other than the outermost select list, the results are unpredictable since the
number of times the function is invoked will vary depending on the access plan
used.

v Setting of the default value: Parameters of a function that are defined with a
default value are set to their default value when the functions is invoked, but
only if a value is not supplied for the corresponding argument, or is specified as
DEFAULT, when the function is invoked.

v Create function mapping to table or row functions: A create function mapping
to remote functions that returns a table or a row is not supported in a federated
database.

v Inheriting SECURED or NOT SECURED attributes from the source function:
The sourced user-defined function inherits the SECURED or NOT SECURED
attribute from the source function in which only the topmost user-defined
function is considered. If the topmost user-defined function is secure, any nested
user-defined functions are considered secure. The database manager does not
validate whether those nested user-defined functions are secure. If those nested

CREATE FUNCTION (sourced or template)

512 SQL Reference Volume 2



functions can access sensitive data, the user with SECADM authority needs to
ensure those functions are allowed to access those data and that a change
control audit procedure has been established for all changes to those functions.

Examples
v Example 1: Some time after the creation of Pellow's original CENTRE external

scalar function, another user wants to create a function based on it, except this
function is intended to accept only integer arguments.

CREATE FUNCTION MYCENTRE (INTEGER, INTEGER)
RETURNS FLOAT
SOURCE PELLOW.CENTRE (INTEGER, FLOAT)

v Example 2: A distinct type, HATSIZE, has been created based on the built-in
INTEGER data type. It would be useful to have an AVG function to compute the
average hat size of different departments. This is easily done as follows:

CREATE FUNCTION AVG (HATSIZE) RETURNS HATSIZE
SOURCE SYSIBM.AVG (INTEGER)

The creation of the distinct type has generated the required cast function,
allowing the cast from HATSIZE to INTEGER for the argument and from
INTEGER to HATSIZE for the result of the function.

v Example 3: In a federated system, a user wants to invoke an Oracle UDF that
returns table statistics in the form of values with double-precision floating
points. The federated server can recognize this function only if there is a
mapping between the function and a federated database counterpart. But no
such counterpart exists. The user decides to provide one in the form of a
function template, and to assign this template to a schema called NOVA. The
user uses the following code to register the template with the federated server.

CREATE FUNCTION NOVA.STATS (DOUBLE, DOUBLE)
RETURNS DOUBLE
AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

v Example 4: In a federated system, a user wants to invoke an Oracle UDF that
returns the dollar amounts that employees of a particular organization earn as
bonuses. The federated server can recognize this function only if there is a
mapping between the function and a federated database counterpart. No such
counterpart exists; thus, the user creates one in the form of a function template.
The user uses the following code to register this template with the federated
server.

CREATE FUNCTION BONUS ()
RETURNS DECIMAL (8,2)
AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

CREATE FUNCTION (sourced or template)

Statements 513



CREATE FUNCTION (SQL scalar, table, or row)
The CREATE FUNCTION (SQL scalar, table, or row) statement is used to define a
user-defined SQL scalar, table, or row function.

A scalar function returns a single value each time it is invoked, and is generally
valid wherever an SQL expression is valid. A table function can be used in a FROM
clause and returns a table. A row function can be used as a transform function and
returns a row.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the function does not exist
v CREATEIN privilege on the schema, if the schema name of the function refers to

an existing schema
v DBADM authority

and at least one of the following authorities on each table, view, or nickname
identified in any fullselect:
v CONTROL privilege on that table, view, or nickname
v SELECT privilege on that table, view, or nickname
v DATAACCESS authority

Group privileges other than PUBLIC are not considered for any table or view
specified in the CREATE FUNCTION statement.

Authorization requirements of the data source for the table or view referenced by
the nickname are applied when the function is invoked. The authorization ID of
the connection can be mapped to a different remote authorization ID.

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
function body.

To replace an existing function, the authorization ID of the statement must be the
owner of the existing function (SQLSTATE 42501).

If the SECURED option is specified, the authorization ID of the statement must
include SECADM or CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Syntax

�� CREATE FUNCTION function-name
OR REPLACE

�

CREATE FUNCTION (SQL scalar, table, or row)

514 SQL Reference Volume 2



�

�

( )
,

parameter-declaration

* �

� RETURNS data-type2
ROW column-list
TABLE column-list

row-type-name
anchored-row-data-type

ELEMENT OF array-type-name

option-list �

� SQL-function-body ��

parameter-declaration:

IN
parameter-name data-type1

(1) default-clause
OUT
INOUT

data-type1, data-type2:

built-in-type
anchored-data-type

array-type-name
cursor-type-name
distinct-type-name
REF ( type-name )
row-type-name
structured-type-name

built-in-type:

CREATE FUNCTION (SQL scalar, table, or row)

Statements 515



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (2)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML
BOOLEAN
CURSOR

SYSPROC. (3)
DB2SECURITYLABEL

CREATE FUNCTION (SQL scalar, table, or row)

516 SQL Reference Volume 2



anchored-data-type:

DATA TYPE TO
ANCHOR variable-name1

table-name.column-name
OF

ROW table-name
view-name
cursor-variable-name

anchored-row-data-type:

DATA TYPE TO
ANCHOR variable-name

OF
ROW table-name

view-name
cursor-variable-name

default-clause:

DEFAULT NULL
constant
special-register
global-variable
( expression )

column-list:

�

,

( column-name data-type3 )

data-type3:

built-in type
distinct-type-name
REF ( type-name )
structured-type-name

option-list:

*

LANGUAGE SQL
*

PARAMETER CCSID ASCII
UNICODE

* �

�
SPECIFIC specific-name

*

NOT DETERMINISTIC

DETERMINISTIC
* �

CREATE FUNCTION (SQL scalar, table, or row)

Statements 517



�
EXTERNAL ACTION

NO EXTERNAL ACTION
*

READS SQL DATA

CONTAINS SQL
(4)

MODIFIES SQL DATA

* �

�
STATIC DISPATCH

*

CALLED ON NULL INPUT
* �

�
INHERIT SPECIAL REGISTERS

* �

�
(5)

PREDICATES ( predicate-specification )

�

�
INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

NOT SECURED

SECURED

SQL-function-body:

RETURN
(6)

Compound SQL (compiled)
Compound SQL (inlined)

Notes:

1 OUT and INOUT are valid only if RETURNS specifies a scalar result and the
SQL-function-body is a compound SQL (compiled) statement.

2 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

3 DB2SECURITYLABEL is the built-in distinct type that must be used to define
the row security label column of a protected table.

4 Valid only for compiled scalar function definition and an inlined table
function definition. A compiled scalar function defined as MODIFIES SQL
DATA can only be used as the only element on the right side of an
assignment statement that is within a compound SQL (compiled) statement..

5 Valid only if RETURNS specifies a scalar result (data-type2)

6 The following apply to the specification of a compound SQL (compiled)
statement: a) Must be used if the parameter data types or returned data types
include a row type, array type, or cursor type; b) Must be used if the
RETURNS TABLE clause specifies any syntax other than a column-list; c) Not
supported if RETURNS ROW is specified; d) Not supported when defining a
table function in a partitioned database environment.

Description

OR REPLACE
Specifies to replace the definition for the function if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted

CREATE FUNCTION (SQL scalar, table, or row)

518 SQL Reference Volume 2



on the function are not affected. This option can be specified only by the
owner of the object. This option is ignored if a definition for the function does
not exist at the current server. To replace an existing function, the specific
name and function name of the new definition must be the same as the specific
name and function name of the old definition, or the signature of the new
definition must match the signature of the old definition. Otherwise, a new
function is created.

If the function is referenced in the definition of a row permission or a column
mask, the function cannot be replaced (SQLSTATE 42893).

function-name
Names the function being defined. It is a qualified or unqualified name that
designates a function. The unqualified form of function-name is an SQL
identifier. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements
the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a
period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without regard for
any length, precision or scale attributes of the data type) must not identify a
function described in the catalog (SQLSTATE 42723). The unqualified name,
together with the number and data types of the parameters, while of course
unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS'
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a function-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no prohibition
against it, an external user-defined table function should not be given the same
name as a built-in function.

(parameter-declaration, ...)
Identifies the number of input parameters of the function, and specifies the
mode, name, data type, and optional default value of each parameter. One
entry in the list must be specified for each parameter that the function will
expect to receive. No more than 90 parameters are allowed (SQLSTATE 54023).

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For example:

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have
exactly the same type for all corresponding parameters. Lengths, precisions,
and scales are not considered in this type comparison. Therefore, CHAR(8) and
CHAR(35) are considered to be the same type, as are DECIMAL(11,2) and
DECIMAL (4,3), as well as DECFLOAT(16) and DECFLOAT(34). A weakly
typed distinct type specified for a parameter is considered to be the same data
type as the source type of the distinct type. For a Unicode database, CHAR(13)
and GRAPHIC(8) are considered to be the same type. There is some further

CREATE FUNCTION (SQL scalar, table, or row)

Statements 519



bundling of types that causes them to be treated as the same type for this
purpose, such as DECIMAL and NUMERIC. A duplicate signature returns an
error (SQLSTATE 42723).

If the data type for a parameter is a Boolean data type, array type, cursor type,
or row type, the SQL function body can only reference the parameter within a
compound SQL (compiled) statement (SQLSTATE 428H2).

IN | OUT | INOUT
Specifies the mode of the parameter. If an error is returned by the function,
OUT parameters are undefined and INOUT parameters are unchanged.
The default is IN.

IN Identifies the parameter as an input parameter to the function. Any
changes made to the parameter within the function are not available to
the invoking context when control is returned.

OUT
Identifies the parameter as an output parameter for the function.

The function must be a scalar function that is defined with a
compound SQL (compiled) statement (SQLSTATE 42613).

The function can be referenced only on the right side of an assignment
statement that is in a compound SQL (compiled) statement, and the
function reference cannot be part of an expression (SQLSTATE 42887).

INOUT
Identifies the parameter as both an input and output parameter for the
function.

The function must be a scalar function that is defined with a
compound SQL (compiled) statement (SQLSTATE 42613).

The function can be referenced only on the right side of an assignment
statement that is in a compound SQL (compiled) statement, and the
function reference cannot be part of an expression (SQLSTATE 42887).

parameter-name
Specifies a name for the parameter. The name cannot be the same as any
other parameter-name in the parameter list (SQLSTATE 42734).

data-type1
Specifies the data type of the parameter.

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type except BOOLEAN and CURSOR, which cannot be
specified for a table, see “CREATE TABLE”.

BOOLEAN
For a Boolean.

CURSOR
For a reference to an underlying cursor.

anchored-data-type
Identifies another object used to define the parameter data type. The
data type of the anchor object can be any of the data types explicitly
allowed as data-type1. The data type of the anchor object has the same
limitations that apply to specifying the data type directly, or in the case
of a row, to creating a row type.

CREATE FUNCTION (SQL scalar, table, or row)

520 SQL Reference Volume 2



ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data type.

variable-name1
Identifies a global variable. The data type of the global variable
is used as the data type for parameter-name.

table-name.column-name
Identifies a column name of an existing table or view. The data
type of the column is used as the data type for parameter-name.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are
based on the column names and column data types of the table
identified by table-name or the view identified by view-name.
The data type of parameter-name is an unnamed row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are
based on the field names and field data types of the cursor
variable identified by cursor-variable-name. The specified cursor
variable must be one of the following elements (SQLSTATE
428HS):
v A global variable with a strongly typed cursor data type
v A global variable with a weakly typed cursor data type that

was created or declared with a CONSTANT clause
specifying a select-statement where all the result columns are
named.

If the cursor type of the cursor variable is not strongly typed
using a named row type, the data type of parameter-name is an
unnamed row type.

array-type-name
Specifies the name of a user-defined array type. If array-type-name is
specified without a schema name, the array type is resolved by
searching the schemas in the SQL path.

cursor-type-name
Specifies the name of a cursor type. If cursor-type-name is specified
without a schema name, the cursor type is resolved by searching the
schemas in the SQL path.

distinct-type-name
Specifies the name of a distinct type. The length, precision, and scale of
the parameter are, respectively, the length, precision, and scale of the
source type of the distinct type. A distinct type parameter is passed as
the source type of the distinct type. If distinct-type-name is specified
without a schema name, the distinct type is resolved by searching the
schemas in the SQL path.

REF (type-name)
Specifies a reference type without a scope. The specified type-name
must identify a user-defined structured type (SQLSTATE 428DP). The
system does not attempt to infer the scope of the parameter or result.
Inside the body of the function, a reference type can be used in a
dereference operation only by first casting it to have a scope. Similarly,
a reference returned by an SQL function can be used in a dereference
operation only by first casting it to have a scope. If a type name is

CREATE FUNCTION (SQL scalar, table, or row)

Statements 521



specified without a schema name, the type-name is resolved by
searching the schemas in the SQL path.

row-type-name
Specifies the name of a user-defined row type. The fields of the
parameter are the fields of the row type. If row-type-name is specified
without a schema name, the row type is resolved by searching the
schemas in the SQL path.

structured-type-name
Specifies the name of a user-defined structured type. If
structured-type-name is specified without a schema name, the structured
type is resolved by searching the schemas in the SQL path.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a
special register, a global variable, an expression, or the keyword NULL.
The special registers that can be specified as the default are that same as
those that can be specified for a column default (see default-clause in the
CREATE TABLE statement). Other special registers can be specified as the
default by using an expression.

The expression can be any expression of the type described in
"Expressions". If a default value is not specified, the parameter has no
default and the corresponding argument cannot be omitted on invocation
of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or
SQLSTATE 429BL). The expression must be assignment compatible to the
parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:
v For INOUT or OUT parameters (SQLSTATE 42601)
v For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)
v For a parameter to a function definition that also specified RETURNS

ROW or a PREDICATES clause (SQLSTATE 42613)

RETURNS
This mandatory clause identifies the type of output of the function.

If the data type of the output of the function is a Boolean data type, array type,
cursor type, or row type, the SQL function body must be a compound SQL
(compiled) statement (SQLSTATE 428H2).

data-type2
Specifies the data type of the output.

In this statement, exactly the same considerations apply as for the
parameters of SQL functions described previously in data-type1 for function
parameters.

ROW
Specifies that the output of the function is a single row. If the function
returns more than one row, an error is returned (SQLSTATE 21505).

This form of a row function can be used only as a transform function for a
structured type (having one structured type as its parameter and returning
only built-in data types).

column-list
The list of column names and data types returned for a ROW function.
The column-list must include at least two columns (SQLSTATE 428F0).

CREATE FUNCTION (SQL scalar, table, or row)

522 SQL Reference Volume 2



column-name
Specifies the name of this column. The name cannot be qualified
and the same name cannot be used for more than one column in
the list.

data-type3
Specifies the data type of the column, and can be any data type
supported by a parameter of the SQL function.

The same considerations apply as for the parameters of SQL
functions described previously in data-type1 for function
parameters. However, data-type3 does not support
anchored-data-type, array-type-name, cursor-type-name, and
row-type-name.

TABLE
Specifies that the output of the function is a table.

column-list
The list of column names and data types returned for a TABLE
function

column-name
Specifies the name of this column. The name cannot be qualified
and the same name cannot be used for more than one column in
the list.

data-type3
Specifies the data type of the column, and can be any data type
supported by a parameter of the SQL function.

The same considerations apply as for the parameters of SQL
functions described previously in data-type1 for function
parameters. However, data-type3 does not support
anchored-data-type, array-type-name, cursor-type-name, and
row-type-name.

row-type-name
Specifies a row type from which the fields are used to derive the
column list. The field names of the row type are used as the column
names.

anchored-row-data-type
Identifies row information from another object to use as the columns of
the returned table.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data type.

variable-name
Identifies a global variable. The data type of the referenced variable
must be a row type.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based
on the column names and column data types of the table identified
by table-name or the view identified by view-name. The data types of
the anchor object columns have the same limitations that apply to
data-type3.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based

CREATE FUNCTION (SQL scalar, table, or row)

Statements 523



on the field names and field data types of the cursor variable
identified by cursor-variable-name. The specified cursor variable
must be one of the following objects (SQLSTATE 428HS):
v A global variable with a strongly typed cursor data type.
v A global variable with a weakly typed cursor data type that was

created or declared with a CONSTANT clause specifying a
select-statement where all the result columns are named.

ELEMENT OF array-type-name
Specifies an array type from which the element data type is used to
derive the column list. If array-type-name identifies an array type with
elements that are a row type, the field names of the row type are used
as the column names. If the array-type-name identifies an array type
with elements that are not row types, the single result column name is
COLUMN_VALUE.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined.
This specific name can be used when sourcing on this function, dropping the
function, or commenting on the function. It can never be used to invoke the
function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier.
The name, including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error is
raised (SQLSTATE 42710).

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.
If a qualifier is specified, it must be the same as the explicit or implicit
qualifier of function-name or an error is raised (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmssxxx.

LANGUAGE SQL
Specifies that the function is written using SQL.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of
the function. If the PARAMETER CCSID clause is not specified, the default is
PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER
CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in UCS-2.
If the database is not a Unicode database, PARAMETER CCSID UNICODE
cannot be specified (SQLSTATE 56031).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same
results for given argument values (DETERMINISTIC) or whether the function

CREATE FUNCTION (SQL scalar, table, or row)

524 SQL Reference Volume 2



depends on some state values that affect the results (NOT DETERMINISTIC).
That is, a DETERMINISTIC function must always return the same table from
successive invocations with identical inputs. Optimizations taking advantage of
the fact that identical inputs always produce the same results are prevented by
specifying NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that the database manager does not manage. An example of an external
action is sending a message or writing a record to a file. The default is
EXTERNAL ACTION.

EXTERNAL ACTION
Specifies that the function takes an action that changes the state of an
object that the database manager does not manage.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state
of an object that the database manager does not manage. The database
manager uses this information during optimization of SQL statements.

READS SQL DATA, CONTAINS SQL, or MODIFIES SQL DATA
Specifies the classification of SQL statements that the function can run. The
database manager verifies that the SQL statements that the function issues are
consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines (SQL
and External).

The default is READS SQL DATA.

READS SQL DATA
Specifies that the function can run statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot run SQL statements that modify data (SQLSTATE 42985).

CONTAINS SQL
Specifies that the function can run only SQL statements with a data access
classification of CONTAINS SQL. The function cannot run any SQL
statements that read or modify data (SQLSTATE 42985).

MODIFIES SQL DATA
Specifies that the function can run any SQL statement except those
statements that are not supported in any function.

STATIC DISPATCH
This optional clause indicates that at function resolution time, a function is
chosen based on the static types (declared types) of the parameters of the
function.

CALLED ON NULL INPUT
This clause indicates that the function is called regardless of whether any of its
arguments are null. It can return a null value or a non-null value.
Responsibility for testing null argument values lies with the user-defined
function.

The phrase NULL CALL may be used in place of CALLED ON NULL INPUT.

INHERIT SPECIAL REGISTERS
This optional clause indicates that updatable special registers in the function
will inherit their initial values from the environment of the invoking statement.

CREATE FUNCTION (SQL scalar, table, or row)

Statements 525



For a function that is invoked in the select-statement of a cursor, the initial
values are inherited from the environment when the cursor is opened. For a
routine that is invoked in a nested object (for example, a trigger or a view), the
initial values are inherited from the runtime environment (not the object
definition).

No changes to the special registers are passed back to the caller of the function.

Some special registers, such as the datetime special registers, reflect a property
of the statement currently executing, and are therefore never inherited from the
caller.

PREDICATES
For predicates using this function, this clause identifies those that can exploit
the index extensions, and can use the optional SELECTIVITY clause for the
predicate's search condition. If the PREDICATES clause is specified, the
function must be defined as DETERMINISTIC with NO EXTERNAL ACTION
(SQLSTATE 42613). If the PREDICATES clause is specified, and the database is
not a Unicode database, PARAMETER CCSID UNICODE must not be specified
(SQLSTATE 42613). PREDICATES cannot be specified if SQL-function-body is a
compound SQL (compiled) statement (SQLSTATE 42613).

predicate-specification
For details on predicate specification, see “CREATE FUNCTION (External
Scalar)”.

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST or INHERIT ISOLATION LEVEL
WITH LOCK REQUEST

Specifies whether or not a lock request can be associated with the
isolation-clause of the statement when the function inherits the isolation level
of the statement that invokes the function. The default is INHERIT
ISOLATION LEVEL WITHOUT LOCK REQUEST.

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST
Specifies that, as the function inherits the isolation level of the invoking
statement, it cannot be invoked in the context of an SQL statement which
includes a lock-request-clause as part of a specified isolation-clause
(SQLSTATE 42601).

INHERIT ISOLATION LEVEL WITH LOCK REQUEST
Specifies that, as the function inherits the isolation level of the invoking
statement, it also inherits the specified lock-request-clause.

SQL-function-body
Specifies the body of the function. Parameter names can be referenced in the
SQL-function-body. Parameter names may be qualified with the function name
to avoid ambiguous references.

For RETURN statement, see: RETURN statement.

For Compound SQL (compiled), see: Compound SQL (compiled) statement.

For Compound SQL (inlined), see: Compound SQL (inlined) statement.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access
control. The default is NOT SECURED.

NOT SECURED
Indicates that the function is not considered secure. When the function is
invoked, the arguments of the function must not reference a column for
which a column mask is enabled and column level access control is

CREATE FUNCTION (SQL scalar, table, or row)

526 SQL Reference Volume 2



activated for its table (SQLSTATE 428HA). This rule applies to the non
secure user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be
secure when it is referenced in a row permission or a column mask
(SQLSTATE 428H8).

Rules
v Use of anchored data types: An anchored data type cannot refer to the following

objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

v Use of cursor and row types: A function that uses a cursor type or row type for
a parameter or returns a cursor type or row type can only be invoked from
within a compound SQL (compiled) statement (SQLSTATE 428H2).

v Table access restrictions: If a function is defined as READS SQL DATA, no
statement in the function can access a table that is being modified by the
statement that invoked the function (SQLSTATE 57053). For example, suppose
the user-defined function BONUS() is defined as READS SQL DATA. If the
statement UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is
invoked, no SQL statement in the BONUS function can read from the
EMPLOYEE table.
If a function defined with MODIFIES SQL DATA contains nested CALL
statements, read access to the tables being modified by the function (by either
the function definition or the statement that invoked the function) is not allowed
(SQLSTATE 57053).

v Use in a partitioned database environment: In a partitioned database
environment, a scalar function defined using a compound SQL (compiled)
statement can be referenced only on the right side of an assignment statement
and the function reference cannot be part of an expression. Such an assignment
statement cannot be in a Compound SQL (inlined) statement.

Notes
v Resolution of function calls inside the function body is done according to the

SQL path that is effective for the CREATE FUNCTION statement and does not
change after the function is created.

v If an SQL function contains multiple references to any of the date or time special
registers, all references return the same value, and it will be the same value
returned by the register invocation in the statement that called the function.

v The body of an SQL function cannot contain a recursive call to itself or to
another function or method that calls it, since such a function could not exist to
be called.

v If an object referenced in the SQL function body does not exist or is marked
invalid, or the definer temporarily doesn't have privileges to access the object,
and if the database configuration parameter auto_reval is not set to DISABLED,
then the SQL function will still be created successfully. The SQL function will be
marked invalid and will be revalidated the next time it is invoked.

v The following rules are enforced by all statements that create functions or
methods:
– A function may not have the same signature as a method (comparing the first

parameter-type of the function with the subject-type of the method).

CREATE FUNCTION (SQL scalar, table, or row)

Statements 527



– A function and a method may not be in an overriding relationship. That is, if
the function were a method with its first parameter as subject, it must not
override, or be overridden by, another method. For more information about
overriding methods, see the “CREATE TYPE (Structured)” statement.

– Because overriding does not apply to functions, it is permissible for two
functions to exist such that, if they were methods, one would override the
other.

For the purpose of comparing parameter-types in the preceding rules:
– Parameter-names, lengths, AS LOCATOR, and FOR BIT DATA are ignored.
– A subtype is considered to be different from its supertype.

v Privileges: The definer of a function always receives the EXECUTE privilege on
the function, as well as the right to drop the function. The definer of a function
is also given the WITH GRANT OPTION on the function if the definer has
WITH GRANT OPTION on all privileges required to define the function, or if
the definer has SYSADM or DBADM authority.
The definer of a function only acquires privileges if the privileges from which
they are derived exist at the time the function is created. The definer must have
these privileges either directly, or because PUBLIC has the privileges. Privileges
held by groups of which the function definer is a member are not considered.
When using the function, the connected user's authorization ID must have the
valid privileges on the table or view that the nickname references at the data
source.

v Setting of the default value: Parameters of a function that are defined with a
default value are set to their default value when the functions is invoked, but
only if a value is not supplied for the corresponding argument, or is specified as
DEFAULT, when the function is invoked.

v EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked
in other than the outermost select list, the results are unpredictable since the
number of times the function is invoked will vary depending on the access plan
used.

v Creating a secure function: Normally users with SECADM authority do not have
privileges to create database objects such as triggers or functions. Typically they
will examine the data accessed by the function, ensure it is secure, then grant
the CREATE_SECURE_OBJECT authority to someone who currently has
required privileges to create a secure user-defined function. After the function is
created, they will revoke the CREATE_SECURE_OBJECT authority from the
function owner.
The SECURED attribute is considered to be an assertion that declares the user
has established a change control audit procedure for all changes to the
user-defined function. The database manager assumes that such a control audit
procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

v Invoking other user-defined functions in a secure function: If a secure
user-defined function invokes other user-defined functions, the database
manager does not validate whether those nested user-defined functions have the
SECURED attribute. If those nested functions can access sensitive data, the user
with SECADM authority needs to ensure those functions are allowed to access
those data and a change control audit procedure has been established for all
changes to those functions.

v Replacing an existing function such that the secure attribute is changed (from
SECURED to NOT SECURED and vice versa): Packages and dynamically cached
SQL statements that depend on the function may be invalidated because the

CREATE FUNCTION (SQL scalar, table, or row)

528 SQL Reference Volume 2



secure attribute affects the access path selection for statements involving tables
for which row or column level access control is activated.

v Rebinding dependent packages: Every compiled SQL function has a dependent
package. The package can be rebound at any time by using the
REBIND_ROUTINE_PACKAGE procedure. Explicitly rebinding the dependent
package does not revalidate an invalid function. Revalidate an invalid function
with automatic revalidation or explicitly by using the
ADMIN_REVALIDATE_DB_OBJECTS procedure. Function revalidation
automatically rebinds the dependent package.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used:
– NULL CALL can be specified in place of CALLED ON NULL INPUT
The following syntax is accepted as the default behavior:
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database

Examples
v Example 1: Define a scalar function that returns the tangent of a value using the

existing sine and cosine functions.
CREATE FUNCTION TAN (X DOUBLE)

RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(X)/COS(X)

v Example 2: Define a transform function for the structured type PERSON.

CREATE FUNCTION FROMPERSON (P PERSON)
RETURNS ROW (NAME VARCHAR(10), FIRSTNAME VARCHAR(10))
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN VALUES (P..NAME, P..FIRSTNAME)

v Example 3: Define a table function that returns the employees in a specified
department number.

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
RETURNS TABLE (EMPNO CHAR(6),

LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))

LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN

SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

v Example 4: Define the table function from Example 3 with auditing.
CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))

RETURNS TABLE (EMPNO CHAR(6),
LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))

LANGUAGE SQL
MODIFIES SQL DATA

CREATE FUNCTION (SQL scalar, table, or row)

Statements 529



NO EXTERNAL ACTION
DETERMINISTIC
BEGIN ATOMIC

INSERT INTO AUDIT
VALUES (USER,

’Table: EMPLOYEE Prd: DEPTNO = ’ CONCAT DEPTNO);
RETURN

SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

END

v Example 5: Define a scalar function that reverses a string.
CREATE FUNCTION REVERSE(INSTR VARCHAR(4000))

RETURNS VARCHAR(4000)
DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL
BEGIN ATOMIC
DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT ’’;
DECLARE LEN INT;
IF INSTR IS NULL THEN
RETURN NULL;
END IF;
SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR, LEN)

= (SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,
SUBSTR(RESTSTR, 2, LEN - 1),
LEN - 1);

END WHILE;
RETURN REVSTR;

END

v Example 6: Create a function that increments a variable passed as an INOUT
parameter and return any error as the return code.

CREATE FUNCTION increment(INOUT result INTEGER, IN delta INTEGER)
RETURNS INTEGER
BEGIN

DECLARE code INTEGER DEFAULT 0;
DECLARE SQLCODE INTEGER;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN
SET code = SQLCODE;
RETURN code;

END;
SET result = result + delta;
RETURN code;

END@

v Example 7: Create a compiled SQL function that takes an XML document as
input and returns the customer name.

CREATE FUNCTION get_customer_name_compiled(doc XML)
RETURNS VARCHAR(25)
BEGIN

RETURN XMLCAST(XMLQUERY
(’$d/customerinfo/name’ PASSING doc AS "d")AS VARCHAR(25));

END

v Example 8: Create a compiled SQL function that takes a phone number and a
region number passed as IN parameters and returns the complete number in an
OUT XML parameter.

CREATE FUNCTION construct_xml_phone
(IN phoneNo VARCHAR(20),
IN regionNo VARCHAR(8),
OUT full_phone_xml XML)
RETURNS VARCHAR(28)
LANGUAGE SQL
NO EXTERNAL ACTION

CREATE FUNCTION (SQL scalar, table, or row)

530 SQL Reference Volume 2



BEGIN
SET full_phone_xml = XMLELEMENT (NAME "phone", regionNo || phoneNo);
RETURN regionNo || phoneNo;

END

CREATE FUNCTION (SQL scalar, table, or row)

Statements 531



CREATE FUNCTION MAPPING
The CREATE FUNCTION MAPPING statement can define a mapping between a
federated database function or function template and a data source function, or
disable a default mapping between a federated database function and a data
source function.

When defining a mapping, the CREATE FUNCTION MAPPING statement can
associate the federated database function or template with a function at the
following sources:
v A specified data source
v A range of data sources; for example, all data sources of a particular type and

version

If multiple function mappings are applicable to a function, the most recent one is
applied.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
authority.

Syntax

�� CREATE FUNCTION MAPPING
function-mapping-name

FOR �

� �

,

function-name ( )
data-type

SPECIFIC specific-name

�

� SERVER server-name
SERVER TYPE server-type

VERSION server-version
WRAPPER wrapper-name

�

�
function-options WITH INFIX

��

server-version:

version
. release

. mod
version-string-constant

CREATE FUNCTION MAPPING

532 SQL Reference Volume 2



function-options:

�

,

OPTIONS ( function-option-name string-constant )

Description

function-mapping-name
Names the function mapping. The name must not identify a function mapping
that is already described in the catalog (SQLSTATE 42710).

If the function-mapping-name is omitted, a system-generated unique name is
assigned.

function-name
Specifies the qualified or unqualified name of the federated database function
or federated database function template from which to map.

data-type
For a function or function template that has input parameters, data-type
specifies the data type of each parameter. The data type cannot be an XML or a
user-defined type.

Empty parentheses can be used instead of specifying length, precision, or scale
for the parameterized data types. It is recommended to use empty parentheses
for the parameterized data types; for example, CHAR(). A parameterized data
type is any one of the data types that can be defined with a specific length,
scale, or precision. The parameterized data types are the string data types and
the decimal data types. If you specify length, precision, or scale, it must be the
same as that of the function template. If you omit parentheses altogether, the
default length for the data type is used (see the description of the CREATE
TABLE statement).

SPECIFIC specific-name
Identifies the function or function template from which to map. Specify
specific-name to create a convenient function name.

SERVER server-name
Names the data source containing the function that is being mapped.

SERVER TYPE server-type
Identifies the type of data source containing the function that is being mapped.

VERSION
Identifies the version of the data source denoted by server-type.

version
Specifies the version number. The value must be an integer.

release
Specifies the number of the release of the version denoted by version. The
value must be an integer.

mod
Specifies the number of the modification of the release denoted by release.
The value must be an integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant
can be a single value (for example, '8i'); or it can be the concatenated
values of version, release and, if applicable, mod (for example, '8.0.3').

CREATE FUNCTION MAPPING

Statements 533



WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to interact
with data sources of the type and version denoted by server-type and
server-version.

OPTIONS
Indicates what function mapping options are to be enabled.

function-option-name
Names a function mapping option that applies either to the function
mapping or to the data source function included in the mapping.

string-constant
Specifies the setting for function-option-name as a character string constant.

WITH INFIX
Specifies that the data source function be generated in infix format. The
federated database system converts prefix notation to the infix notation that is
used by the remote data source.

Notes
v A federated database function or function template can map to a data source

function if:
– The federated database function or template has the same number of input

parameters as the data source function.
– The data types that are defined for the federated function or template are

compatible with the corresponding data types defined for the data source
function.

v If a distributed request references a built-in database function that maps to a
data source function, the optimizer develops strategies for invoking either
function when the request is processed. The built-in database function is invoked
if doing so requires less overhead than invoking the data source function.
Otherwise, if invoking the built-in database function requires more overhead, the
data source function is invoked.

v If a distributed request references a built-in database function template that
maps to a data source function, only the data source function can be invoked
when the request is processed. The template cannot be invoked because it has no
executable code.

v Default function mappings can be rendered inoperable by disabling them (they
cannot be dropped). To disable a default function mapping, code the CREATE
FUNCTION MAPPING statement so that it specifies the name of the built-in
database function within the mapping and sets the DISABLE option to 'Y'.

v Functions in the SYSIBM schema do not have a specific name. To override the
default function mapping for a function in the SYSIBM schema, specify
function-name using the explicit qualifier SYSIBM; for example,
SYSIBM.LENGTH().

v A CREATE FUNCTION MAPPING statement within a given unit of work
(UOW) cannot be processed (SQLSTATE 55007) under either of the following
conditions:
– The statement references a single data source, and the UOW already includes

one of the following:
- A SELECT statement that references a nickname for a table or view within

this data source
- An open cursor on a nickname for a table or view within this data source

CREATE FUNCTION MAPPING

534 SQL Reference Volume 2



- Either an INSERT, DELETE, or UPDATE statement issued against a
nickname for a table or view within this data source

– The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes one of
the following:
- A SELECT statement that references a nickname for a table or view within

one of these data sources
- An open cursor on a nickname for a table or view within one of these data

sources
- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v Create function mapping to table or row functions: A create function mapping

to remote functions that returns a table or a row is not supported in a federated
database.

v Syntax alternatives: The following syntax is supported for compatibility with
previous versions of DB2:
– ADD can be specified before function-option-name string-constant.

Examples
v Example 1: Map a function template to a UDF that all Oracle data sources can

access. The template is called STATS and belongs to a schema called NOVA. The
Oracle UDF is called STATISTICS and belongs to a schema called STAR.

CREATE FUNCTION MAPPING MY_ORACLE_FUN1
FOR NOVA.STATS (DOUBLE, DOUBLE)
SERVER TYPE ORACLE
OPTIONS (REMOTE_NAME ’STAR.STATISTICS’)

v Example 2: Map a function template called BONUS to a UDF, also called BONUS,
that is used at an Oracle data source called ORACLE1.

CREATE FUNCTION MAPPING MY_ORACLE_FUN2
FOR BONUS()
SERVER ORACLE1
OPTIONS (REMOTE_NAME ’BONUS’)

v Example 3: Assume that there is a default function mapping between the WEEK
system function that is defined to the federated database and a similar function
that is defined to Oracle data sources. When a query that requests Oracle data
and that references WEEK is processed, either WEEK or its Oracle counterpart
will be invoked, depending on which one is estimated by the optimizer to
require less overhead. The DBA wants to find out how performance would be
affected if only WEEK were invoked for such queries. To ensure that WEEK is
invoked each time, the DBA must disable the mapping.

CREATE FUNCTION MAPPING
FOR SYSFUN.WEEK(INT)
SERVER TYPE ORACLE
OPTIONS (DISABLE ’Y’)

v Example 4: Map the federated function UCASE(CHAR) to a UDF that is used at
an Oracle data source called ORACLE2. Include the estimated number of
instructions per invocation of the Oracle UDF.

CREATE FUNCTION MAPPING MY_ORACLE_FUN4
FOR SYSFUN.UCASE(CHAR)
SERVER ORACLE2
OPTIONS

(REMOTE_NAME ’UPPERCASE’,
INSTS_PER_INVOC ’1000’)

CREATE FUNCTION MAPPING

Statements 535



CREATE GLOBAL TEMPORARY TABLE
The CREATE GLOBAL TEMPORARY TABLE statement creates a description of a
temporary table at the current server. Each session that selects from a created
temporary table retrieves only rows that the same session has inserted. When the
session terminates, the rows of the table associated with the session are deleted.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either
DBADM authority, or CREATETAB authority in combination with further
authorization, as described here:
v One of the following privileges and authorities:

– USE privilege on the table space
– SYSADM
– SYSCTRL

v Plus one of these privileges and authorities:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema

When defining a table using LIKE or a fullselect, the privileges held by the
authorization ID of the statement must also include at least one of the following on
each identified table or view:
v SELECT privilege on the table or view
v CONTROL privilege on the table or view
v DATAACCESS authority

Syntax

�� CREATE GLOBAL TEMPORARY TABLE table-name �

� �

,

( column-definition )
LIKE table-name1

view-name copy-options
AS ( fullselect ) WITH NO DATA

copy-options

�

CREATE GLOBAL TEMPORARY TABLE

536 SQL Reference Volume 2



�
ON COMMIT DELETE ROWS

* *

ON COMMIT PRESERVE ROWS
�

�

ON ROLLBACK DELETE ROWS
NOT LOGGED

*

NOT LOGGED ON ROLLBACK PRESERVE ROWS
LOGGED

IN tablespace-name
�

� * *

distribution-clause
��

column-definition:

column-name data-type
column-options

data-type:

built-in-type
(1)

distinct-type-name

built-in-type:

CREATE GLOBAL TEMPORARY TABLE

Statements 537



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (2)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB
CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )

column-options:

* *
NOT NULL

�

CREATE GLOBAL TEMPORARY TABLE

538 SQL Reference Volume 2



� *
default-clause

GENERATED ALWAYS AS IDENTITY
BY DEFAULT identity-options

default-clause:

WITH
DEFAULT

default-values

default-values:

constant
datetime-special-register
user-special-register
CURRENT SCHEMA
NULL
cast-function ( constant )

datetime-special-register
user-special-register
CURRENT SCHEMA

EMPTY_CLOB()
EMPTY_DBCLOB()
EMPTY_NCLOB()
EMPTY_BLOB()

copy-options:

* *

COLUMN
INCLUDING DEFAULTS
EXCLUDING

�

�

COLUMN ATTRIBUTES
EXCLUDING IDENTITY

*

COLUMN ATTRIBUTES
INCLUDING IDENTITY

distribution-clause:

�

,
HASH

DISTRIBUTE BY ( column-name )

Notes:

1 The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type.

2 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

CREATE GLOBAL TEMPORARY TABLE

Statements 539



Description

table-name
Names the table. The name, including the implicit or explicit qualifier, must
not identify a table, view, nickname, or alias described in the catalog. If a
two-part name is specified, the schema name cannot begin with 'SYS'
(SQLSTATE 42939).

column-definition
Defines the attributes of a column of the temporary table.

column-name
Names a column of the table. The name cannot be qualified, and the same
name cannot be used for more than one column of the table (SQLSTATE
42711).

A table can have the following:
v A 4K page size with a maximum of 500 columns, where the byte counts

of the columns must not be greater than 4 005.
v An 8K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 8 101.
v A 16K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 16 293.
v A 32K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 32 677.

A created temporary table cannot have a row-begin column, row-end
column, or a transaction-start-ID column.

For more details, see “Row Size” in “CREATE TABLE” on page 680.

data-type
Specifies the data type of the column

built-in-type
Specifies a built-in data type. See “CREATE TABLE” for a description
of built-in-type.

An XML and SYSPROC.DB2SECURITYLABEL data type cannot be
specified for a created temporary table.

distinct-type-name
For a user-defined type that is a distinct type. If a distinct type name is
specified without a schema name, the distinct type name is resolved by
searching the schemas on the SQL path (defined by the FUNCPATH
preprocessing option for static SQL and by the CURRENT PATH
register for dynamic SQL).

If a column is defined using a distinct type, then the data type of the
column is the distinct type. The length and the scale of the column are
respectively the length and the scale of the source type of the distinct
type. The distinct type for a column cannot have any data type
constraints and the source type cannot be an anchored data type
(SQLSTATE 428H2).

column-options
Defines additional options related to the columns of the table.

NOT NULL
Prevents the column from containing null values. For specification of null
values, see NOT NULL in “CREATE TABLE”.

CREATE GLOBAL TEMPORARY TABLE

540 SQL Reference Volume 2



default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on
INSERT or is specified as DEFAULT on INSERT or UPDATE. If a
default value is not specified following the DEFAULT keyword, the
default value depends on the data type of the column as shown in
“ALTER TABLE”.

If the column is based on a column of a typed table, a specific default
value must be specified when defining a default. A default value
cannot be specified for the object identifier column of a typed table
(SQLSTATE 42997).

If a column is defined using a distinct type, then the default value of
the column is the default value of the source data type cast to the
distinct type.

If a column is defined using a structured type, the default-clause cannot
be specified (SQLSTATE 42842).

Omission of DEFAULT from a column-definition results in the use of the
null value as the default for the column. If such a column is defined
NOT NULL, then the column does not have a valid default.

default-values
Specific types of default values that can be specified are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:
v represent a value that could be assigned to the column in

accordance with the rules of assignment
v not be a floating-point constant unless the column is defined

with a floating-point data type
v be a numeric constant or a decimal floating-point special value if

the data type of the column is a decimal floating-point.
Floating-point constants are first interpreted as DOUBLE and
then converted to decimal floating-point if the target column is
DECFLOAT. For DECFLOAT(16) columns, decimal constants
having precision greater than 16 digits will be rounded using the
rounding modes specified by the CURRENT DECFLOAT
ROUNDING MODE special register.

v not have nonzero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

v be expressed with no more than 254 bytes including the quote
characters, any introducer character such as the X for a
hexadecimal constant, and characters from the fully qualified
function name and parentheses when the constant is the
argument of a cast-function

datetime-special-register
Specifies the value of the datetime special register (CURRENT
DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the time

CREATE GLOBAL TEMPORARY TABLE

Statements 541



of INSERT, UPDATE, or LOAD as the default for the column. The
data type of the column must be the data type that corresponds to
the special register specified (for example, data type must be DATE
when CURRENT DATE is specified).

user-special-register
Specifies the value of the user special register (CURRENT USER,
SESSION_USER, SYSTEM_USER) at the time of INSERT, UPDATE,
or LOAD as the default for the column. The data type of the
column must be a character string with a length not less than the
length attribute of a user special register. Note that USER can be
specified in place of SESSION_USER and CURRENT_USER can be
specified in place of CURRENT USER.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register at
the time of INSERT, UPDATE, or LOAD as the default for the
column. If CURRENT SCHEMA is specified, the data type of the
column must be a character string with a length greater than or
equal to the length attribute of the CURRENT SCHEMA special
register.

NULL
Specifies NULL as the default for the column. If NOT NULL was
specified, DEFAULT NULL may be specified within the same
column definition but will result in an error on any attempt to set
the column to the default value.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception of
distinct types based on BLOB or datetime types, the name of the
function must match the name of the distinct type for the column.
If qualified with a schema name, it must be the same as the
schema name for the distinct type. If not qualified, the schema
name from function resolution must be the same as the schema
name for the distinct type. For a distinct type based on a datetime
type, where the default value is a constant, a function must be
used and the name of the function must match the name of the
source type of the distinct type with an implicit or explicit schema
name of SYSIBM. For other datetime columns, the corresponding
datetime function may also be used. For a BLOB or a distinct type
based on BLOB, a function must be used and the name of the
function must be BLOB with an implicit or explicit schema name of
SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of the
distinct type or for the data type if not a distinct type. If the
cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP. The source type of the distinct type of the
column must be the data type that corresponds to the specified
special register.

CREATE GLOBAL TEMPORARY TABLE

542 SQL Reference Volume 2



user-special-register
Specifies CURRENT USER, SESSION_USER, or
SYSTEM_USER. The data type of the source type of the distinct
type of the column must be a string data type with a length of
at least 8 bytes. If the cast-function is BLOB, the length attribute
must be at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register.
The data type of the source type of the distinct type of the
column must be a character string with a length greater than
or equal to the length attribute of the CURRENT SCHEMA
special register. If the cast-function is BLOB, the length
attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The
column must have the data type that corresponds to the result data
type of the function.

If the value specified is not valid, an error is returned (SQLSTATE
42894).

IDENTITY and identity-options
For specification of identity columns, see IDENTITY and identity-options in
“CREATE TABLE”.

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-name1), view
(view-name), or nickname (nickname). The name specified after LIKE must
identify a table, view, or nickname that exists in the catalog, or a declared
temporary table. A typed table or typed view cannot be specified (SQLSTATE
428EC). A protected table cannot be specified (SQLSTATE 42962). A table that
has a column defined as IMPLICITLY HIDDEN cannot be specified
(SQLSTATE 560AE).

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table (including implicitly hidden columns), view,
or nickname. The implicit definition depends on what is identified after LIKE.
v If a table is identified, then the implicit definition includes the column name,

data type and nullability characteristic of each of the columns of table-name1.
If EXCLUDING COLUMN DEFAULTS is not specified, then the column
default is also included.

v If a view is identified, then the implicit definition includes the column name,
data type, and nullability characteristic of each of the result columns of the
fullselect defined in view-name. The data types of the view columns must be
data types that are valid for columns of a table.

v If a nickname is identified, then the implicit definition includes the column
name, data type, and nullability characteristic of each column of nickname.

Column default and identity column attributes may be included or excluded,
based on the copy-attributes clauses. The implicit definition does not include
any other attributes of the identified table, view, or nickname. Thus the new
table does not have any unique constraints, foreign key constraints, triggers,
indexes, table partitioning keys, or distribution keys. The table is created in the
table space implicitly or explicitly specified by the IN clause, and the table has
any other optional clause only if the optional clause is specified.

CREATE GLOBAL TEMPORARY TABLE

Statements 543



When a table is identified in the LIKE clause and that table contains a ROW
CHANGE TIMESTAMP column, the corresponding column of the new table
inherits only the data type of the ROW CHANGE TIMESTAMP column. The
new column is not considered to be a generated column.

If row or column level access control (RCAC) is enforced for table-name1,
RCAC is not inherited by the new table.

AS (fullselect) WITH NO DATA
Specifies that the columns of the table have the same name and description as
the columns that would appear in the derived result table of the fullselect if
the fullselect were to be executed. The use of AS (fullselect) is an implicit
definition of n columns for the created temporary table, where n is the number
of columns that would result from the fullselect.

The implicit definition includes the following attributes of the n columns (if
applicable to the data type):
v Column name
v Data type, length, precision, and scale
v Nullability

The following attributes are not included (the default value and identity
attributes can be included by using the copy-options):
v Default value
v Identity attributes
v Hidden attribute
v ROW CHANGE TIMESTAMP

The implicit definition does not include any other optional attributes of the
tables or views referenced in the fullselect.

Every select list element must have a unique name (SQLSTATE 42711). The AS
clause can be used in the select clause to provide unique names. The fullselect
must not refer to host variables or include parameter markers. The data types
of the result columns of the fullselect must be data types that are valid for
columns of a table.

If row or column level access control (RCAC) is enforced for any table that is
specified in fullselect, RCAC is not cascaded to the new table.

copy-options
These options specify whether to copy additional attributes of the source result
table definition (table, view, or fullselect).

INCLUDING COLUMN DEFAULTS
Column defaults for each updatable column of the source result table
definition are copied. Columns that are not updatable will not have a
default defined in the corresponding column of the created table.

If LIKE table-name1 is specified, and table-name1 identifies a base table,
created temporary table, or declared temporary table, then INCLUDING
COLUMN DEFAULTS is the default.

EXCLUDING COLUMN DEFAULTS
Column defaults are not copied from the source result table definition.

This clause is the default, except when LIKE table-name is specified and
table-name identifies a base table, created temporary table, or declared
temporary table.

CREATE GLOBAL TEMPORARY TABLE

544 SQL Reference Volume 2



INCLUDING IDENTITY COLUMN ATTRIBUTES
If available, identity column attributes (START WITH, INCREMENT BY,
and CACHE values) are copied from the source's result table definition. It
is possible to copy these attributes if the element of the corresponding
column in the table, view, or fullselect is the name of a column of a table,
or the name of a column of a view which directly or indirectly maps to the
column name of a base table or created temporary table with the identity
property. In all other cases, the columns of the new temporary table will
not get the identity property. For example:
v The select list of the fullselect includes multiple instances of the name of

an identity column (that is, selecting the same column more than once)
v The select list of the fullselect includes multiple identity columns (that is,

it involves a join)
v The identity column is included in an expression in the select list
v The fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table
definition.

ON COMMIT
Specifies the action taken on the created temporary table when a COMMIT
operation is performed. The default is DELETE ROWS.

DELETE ROWS
All rows of the table will be deleted if no WITH HOLD cursor is open on
the table.

PRESERVE ROWS
Rows of the table will be preserved.

LOGGED or NOT LOGGED
Specifies whether operations for the table are logged. The default is NOT
LOGGED ON ROLLBACK DELETE ROWS.

NOT LOGGED
Specifies that insert, update, or delete operations against the table are not
to be logged, but that the creation or dropping of the table is to be logged.
During a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation:
v If the table had been created within a unit of work (or savepoint), the

table is dropped
v If the table had been dropped within a unit of work (or savepoint), the

table is recreated, but without any data

ON ROLLBACK
Specifies the action that is to be taken on the not logged created temporary
table when a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed. The default is DELETE ROWS.

DELETE ROWS
If the table data has been changed, all the rows will be deleted.

PRESERVE ROWS
Rows of the table will be preserved.

LOGGED
Specifies that insert, update, or delete operations against the table as well
as the creation or dropping of the table are to be logged.

CREATE GLOBAL TEMPORARY TABLE

Statements 545



IN tablespace-name
Identifies the table space in which the created temporary table will be
instantiated. The table space must exist and be a USER TEMPORARY table
space (SQLSTATE 42838), over which the authorization ID of the statement has
USE privilege (SQLSTATE 42501). If this clause is not specified, a table space
for the table is determined by choosing the USER TEMPORARY table space
with the smallest sufficient page size over which the authorization ID of the
statement has USE privilege. When more than one table space qualifies,
preference is given according to who was granted the USE privilege:
1. The authorization ID
2. A group to which the authorization ID belongs
3. PUBLIC

If more than one table space still qualifies, the final choice is made by the
database manager. When no USER TEMPORARY table space qualifies, an error
is raised (SQLSTATE 42727).

Determination of the table space can change when:
v Table spaces are dropped or created
v USE privileges are granted or revoked

The sufficient page size of a table is determined by either the byte count of the
row or the number of columns. For more details, see “Row Size” in “CREATE
TABLE” on page 680.

distribution-clause
Specifies the database partitioning or the way the data is distributed across
multiple database partitions.

DISTRIBUTE BY HASH (column-name, ...)
Specifies the use of the default hashing function on the specified columns,
called a distribution key, as the distribution method across database
partitions. The column-name must be an unqualified name that identifies a
column of the table (SQLSTATE 42703). The same column must not be
identified more than once (SQLSTATE 42709). No column whose data type
is BLOB, CLOB, DBCLOB, XML, distinct type based on any of these types,
or structured type can be used as part of a distribution key (SQLSTATE
42962).

If this clause is not specified, and the table resides in a multiple partition
database partition group with multiple database partitions, the distribution
key is defined as the first column whose data type is valid for a
distribution key.

If none of the columns satisfies the requirements for a default distribution
key, the table is created without one. Such tables are allowed only in table
spaces that are defined on single-partition database partition groups.

For tables in table spaces that are defined on single-partition database
partition groups, any collection of columns with data types that are valid
for a distribution key can be used to define the distribution key. If this
clause is not specified, no distribution key is created.

Notes
v A user temporary table space must exist before a created temporary table can be

created (SQLSTATE 42727).
v Instantiation and termination: For the explanations that follow, P denotes a

session and T is a created temporary table in the session P:

CREATE GLOBAL TEMPORARY TABLE

546 SQL Reference Volume 2



– An empty instance of T is created as a result of the first reference to T that is
executed in P.

– Any SQL statement in P can make reference to T and any reference to T in P
is a reference to that same instance of T.

– Assuming that the ON COMMIT DELETE ROWS clause was specified
implicitly or explicitly, then when a commit operation terminates a unit of
work in P, and there is no open WITH HOLD cursor in P that is dependent
on T, the commit includes the operation DELETE FROM T.

– When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes a modification to T:
- If NOT LOGGED was specified, all rows from T are deleted unless ON

ROLLBACK PRESERVE ROWS was also specified
- If NOT LOGGED was not specified, the changes to T are undone

– If NOT LOGGED was specified and an INSERT, UPDATE or DELETE
statement fails during execution (as opposed to a compilation error), all rows
from T are deleted.

– When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes the creation of T, then the rollback
includes the operation DROP TABLE T.

– If a rollback operation terminates a unit of work or a savepoint in P, and that
unit of work or savepoint includes the drop of a created temporary table T,
then the rollback will undo the drop of the table. If NOT LOGGED was
specified, then the table will also have been emptied.

– When the application process that referenced T terminates or disconnects
from the database, the private instance of T is dropped and its instantiated
rows are destroyed.

– When the connection to the server at which T was referenced terminates, the
private instance of T is dropped and its instantiated rows are destroyed.

v Restrictions on the use of created temporary tables: Created temporary tables
cannot:
– Be specified in an ALTER, LOCK, or RENAME statement (SQLSTATE 42995).
– Be specified in referential constraints (SQLSTATE 42995).

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– DEFINITION ONLY can be specified in place of WITH NO DATA
– The PARTITIONING KEY clause can be specified in place of the DISTRIBUTE

BY clause
The following syntax is accepted as the default behavior:
– CCSID ASCII
– CCSID UNICODE

Examples
v Example 1: Create a temporary table, CURRENTMAP. Name two columns, CODE

and MEANING, both of which cannot contain nulls. CODE contains numeric
data and MEANING has character data.

CREATE GLOBAL TEMPORARY TABLE CURRENTMAP
(CODE INTEGER NOT NULL,
MEANING VARCHAR(254) NOT NULL)

v Example 2: Create a temporary table, TMPDEPT.

CREATE GLOBAL TEMPORARY TABLE

Statements 547



CREATE GLOBAL TEMPORARY TABLE TMPDEPT
(TMPDEPTNO CHAR(3) NOT NULL,
TMPDEPTNAME VARCHAR(36) NOT NULL,
TMPMGRNO CHAR(6),
TMPLOCATION CHAR(16) )

CREATE GLOBAL TEMPORARY TABLE

548 SQL Reference Volume 2



CREATE HISTOGRAM TEMPLATE
The CREATE HISTOGRAM TEMPLATE statement defines a template describing
the type of histogram that can be used to override one or more of the default
histograms of a service class or a work class.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� CREATE HISTOGRAM TEMPLATE template-name HIGH BIN VALUE bigint-constant ��

Description

template-name
Names the histogram template. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The name must not identify an existing
histogram template at the current server (SQLSTATE 42710). The name must
not begin with the characters 'SYS' (SQLSTATE 42939).

HIGH BIN VALUE bigint-constant
Specifies the top value of the second to last bin (the last bin has an unbounded
top value). The units depend on how the histogram is used. The maximum
value is 268 435 456.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

CREATE HISTOGRAM TEMPLATE

Statements 549



Notes
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Example

Create a histogram template named LIFETIMETEMP on service class PAYROLL in
service superclass ADMIN that will override the default activity lifetime histogram
template with a new high bin value of 90 000, which represents 90 000
milliseconds. This will produce a histogram with exponentially increasing bin
ranges, ending with a bin whose range is 90 000 to infinity.

CREATE HISTOGRAM TEMPLATE LIFETIMETEMP
HIGH BIN VALUE 90000

CREATE SERVICE CLASS PAYROLL
UNDER ADMIN ACTIVITY LIFETIME HISTOGRAM TEMPLATE LIFETIMETEMP

CREATE HISTOGRAM TEMPLATE

550 SQL Reference Volume 2



CREATE INDEX
The CREATE INDEX statement is used to define an index on a database table.

An index can be defined on XML data, or on relational data. The CREATE INDEX
statement is also used to create an index specification (metadata that indicates to
the optimizer that a data source table has an index).

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v One of:

– CONTROL privilege on the table or nickname on which the index is defined
– INDEX privilege on the table or nickname on which the index is defined

and one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist
– CREATEIN privilege on the schema, if the schema name of the index refers to

an existing schema
v DBADM authority

No explicit privilege is required to create an index on a declared temporary table.

Syntax

�� CREATE INDEX index-name
UNIQUE

�

� �

,
(1) ASC

ON table-name ( column-name )
(2) key-expression DESC

nickname RANDOM
(3)

BUSINESS_TIME WITHOUT OVERLAPS

�

�
PARTITIONED
NOT PARTITIONED

*
(4)

IN tablespace-name

* *
SPECIFICATION ONLY

�

CREATE INDEX

Statements 551



�

�

*
,

(5)
INCLUDE ( column-name )

key-expression

�

�

�

*
(6)

xml-index-specification
CLUSTER
EXTEND USING index-extension-name

,

( constant-expression )

�

�
PCTFREE 10

* *
PCTFREE integer LEVEL2 PCTFREE integer

�

�
ALLOW REVERSE SCANS

* *
MINPCTUSED integer DISALLOW REVERSE SCANS

�

�
PAGE SPLIT SYMMETRIC

*
PAGE SPLIT HIGH

LOW
COLLECT STATISTICS

SAMPLED
DETAILED

UNSAMPLED

�

� * *
COMPRESS NO

YES

INCLUDE NULL KEYS
*

EXCLUDE NULL KEYS
��

Notes:

1 In a federated system, table-name must identify a table in the federated
database. It cannot identify a data source table.

2 If nickname is specified, the CREATE INDEX statement creates an index
specification. In this case, INCLUDE, xml-index-specification, CLUSTER,
EXTEND USING, PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS,
ALLOW REVERSE SCANS, PAGE SPLIT, or COLLECT STATISTICS cannot be
specified.

3 The BUSINESS_TIME WITHOUT OVERLAPS clause can be specified only if
UNIQUE is specified.

4 The IN tablespace-name clause can be specified only for a nonpartitioned index
on a partitioned table.

5 The INCLUDE clause can be specified only if UNIQUE is specified.

6 If xml-index-specification is specified, column-name DESC, INCLUDE, or
CLUSTER cannot be specified.

CREATE INDEX

552 SQL Reference Volume 2



xml-index-specification:

(1)
GENERATE KEY USING XMLPATTERN xmlpattern-clause �

� xmltype-clause

Notes:

1 The alternative syntax GENERATE KEYS USING XMLPATTERN can be used.

xmlpattern-clause:

' pattern-expression '
namespace-declaration

namespace-declaration:

� DECLARE NAMESPACE namespace-prefix=namespace-uri ;
DECLARE DEFAULT ELEMENT NAMESPACE namespace-uri

pattern-expression:

�

�

/ forward-axis xmlname-test
// xmlkind-test

/ forward-axis xmlname-test function-step
//

forward-axis:

child::

@
attribute::
descendant::
self::
descendant-or-self::

xmlname-test:

xml-qname
xml-wildcard

xml-wildcard:

CREATE INDEX

Statements 553



*
xml-nsprefix:*
*:xml-ncname

xmlkind-test:

node()
text()
comment()
processing instruction()

function-step:

fn:upper-case ( )
, locale-name

fn:exists ( xmlname-test )

xmltype-clause:

AS data-type
IGNORE INVALID VALUES

REJECT INVALID VALUES

data-type:

sql-data-type

sql-data-type:

(1)
SQL VARCHAR ( integer )

OCTETS
HASHED

DOUBLE
INTEGER
INT

(5,0)
DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

DATE
TIMESTAMP

Notes:

1 If you specify a function name, such as fn:upper-case, at the end of the XML
pattern, the supported index data types might be a subset of the index data
types shown here. You can check for valid index data types in the description
for xmlpattern-clause.

CREATE INDEX

554 SQL Reference Volume 2



Description

UNIQUE
If ON table-name is specified, UNIQUE prevents the table from containing two
or more rows with the same value of the index key. The uniqueness is enforced
at the end of the SQL statement that updates rows or inserts new rows.

The uniqueness is also checked during the execution of the CREATE INDEX
statement. If the table already contains rows with duplicate key values, the
index is not created.

If the index is on an XML column (the index is an index over XML data), the
uniqueness applies to values with the specified pattern-expression for all rows of
the table. Uniqueness is enforced on each value after the value has been
converted to the specified sql-data-type. Because converting to the specified
sql-data-type might result in a loss of precision or range, or different values
might be hashed to the same key value, multiple values that appear to be
unique in the XML document might result in duplicate key errors. The
uniqueness of character strings depends on XQuery semantics where trailing
blanks are significant. Therefore, values that would be duplicates in SQL but
differ in trailing blanks are considered unique values in an index over XML
data.

When UNIQUE is used, null values are treated as any other values. For
example, if the key is a single column that may contain null values, that
column may contain no more than one null value.

If the UNIQUE option is specified, and the table has a distribution key, the
columns in the index key must be a superset of the distribution key. That is,
the columns specified for a unique index key must include all the columns of
the distribution key (SQLSTATE 42997).

Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

If ON nickname is specified, UNIQUE should be specified only if the data for
the index key contains unique values for every row of the data source table.
The uniqueness will not be checked.

For an index over XML data, UNIQUE can be included only if the context step
of the pattern-expression specifies a single complete path and does not contain a
descendant or descendant-or-self axis, "//", an xml-wildcard, node(), or
processing-instruction() (SQLSTATE 429BS).

In a partitioned database environment, the following rules apply to a table
with one or more XML columns:
v A distributed table cannot have a unique index over XML data.
v A unique index over XML data is supported only on a table that does not

have a distribution key and that is on a single node multi-partition database.
v If a unique index over XML data exists on a table, the table cannot be

altered to add a distribution key.

INDEX index-name
Names the index or index specification. The name, including the implicit or
explicit qualifier, must not identify an index or index specification that is
described in the catalog, or an existing index on a declared temporary table
(SQLSTATE 42704). The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or
SYSSTAT (SQLSTATE 42939).

The implicit or explicit qualifier for indexes on declared global temporary
tables must be SESSION (SQLSTATE 428EK).

CREATE INDEX

Statements 555



ON table-name or nickname
The table-name identifies a table on which an index is to be created. The table
must be a base table (not a view), a created temporary table, a declared
temporary table, a materialized query table that exists at the current server, or
a declared temporary table. The name of a declared temporary table must be
qualified with SESSION.

The table-name must not identify a catalog table (SQLSTATE 42832) or a
column-organized table (SQLSTATE 42858).

If UNIQUE is specified and table-name is a typed table, it must not be a
subtable (SQLSTATE 429B3).

nickname is the nickname on which an index specification is to be created. The
nickname references either a data source table whose index is described by the
index specification, or a data source view that is based on such a table. The
nickname must be listed in the catalog.

If the index key contains at least one key-expression, the table-name cannot be
any of the following objects:
v A materialized query table (MQT) (SQLSTATE 429BX)
v A staging table (SQLSTATE 429BX)
v A typed table (SQLSTATE 429BX)
v A table that is an event monitor target (SQLSTATE 429BX)
v A declared or created user temporary table (SQLSTATE 42995)
v A nickname (SQLSTATE 42601)

column-name
For an index, column-name identifies a column that is to be part of the index
key. For an index specification, column-name is the name by which the
federated server references a column of a data source table.

The number of columns plus twice the number of identified periods cannot
exceed 64 (SQLSTATE 54008). If table-name is a typed table, the number of
columns cannot exceed 63 (SQLSTATE 54008). If table-name is a subtable, at
least one column-name must be introduced in the subtable; that is, not inherited
from a supertable (SQLSTATE 428DS). No column-name can be repeated
(SQLSTATE 42711). The maximum number of columns in an index with
random ordering is reduced by one for each column that is specified with
random ordering

The sum of the stored lengths of the specified columns must not be greater
than the index key length limit for the page size. For key length limits, see
“SQL limits”. If table-name is a typed table, the index key length limit is further
reduced by 4 bytes. If the index has random ordering, the index key length is
further reduced by 2 bytes.

Note that this length can be reduced by system overhead, which varies
according to the data type of the column and whether it is nullable. For more
information on overhead affecting this limit, see “Byte Counts” in “CREATE
TABLE”.

No LOB column or distinct type column based on a LOB can be used as part
of an index, even if the length attribute of the column is small enough to fit
within the index key length limit for the page size (SQLSTATE 54008). A
structured type column can only be specified if the EXTEND USING clause is
also specified (SQLSTATE 42962). If the EXTEND USING clause is specified,

CREATE INDEX

556 SQL Reference Volume 2



only one column can be specified, and the type of the column must be a
structured type or a distinct type that is not based on a LOB (SQLSTATE
42997).

If an index has only one column, and that column has the XML data type, and
the GENERATE KEY USING XMLPATTERN clause is also specified, the index
is an index over XML data. A column with the XML data type can be specified
only if the GENERATE KEY USING XMLPATTERN clause is also specified
(SQLSTATE 42962). If the GENERATE KEY USING XMLPATTERN clause is
specified, only one column can be specified, and the type of the column must
be XML.

key-expression
Specifies an expression that must evaluate to a scalar value with the following
restrictions:
v The expression must return a scalar value which can be indexed (no LOBs,

XMLs, LONG VARCHAR or LONG VARGRAPHIC) (SQLSTATE 429BX)
v The following data types are not supported as input to the expression-based

index key:
– LONG VARCHAR and LONG VARGRAPHIC (deprecated data types)
– XML
– User defined distinct types on any of the types listed previously
– User-defined weakly typed distinct types that include a data type

constraint
– User-defined structured types and reference types
– Array, cursor, and row types

v The expression must contain at least one column reference (SQLSTATE
429BX)

v The expression cannot contain any of the following (SQLSTATE 429BX):
– Subqueries
– Aggregate functions
– Non-deterministic functions
– Functions with external actions
– User-defined functions
– Text search functions, such as SCORE, CONTAINS
– Partitioning scalar functions, such as HASHEDVALUE
– Dynamic data type scalar functions, such TYPE_ID, TYPE_NAME,

TYPE_SCHEMA
– Host Variables
– Parameter markers
– Sequence references
– Special registers and built-in functions that depend on the value of a

special register
– Global variables and built-in functions that depend on the value of a

global variable
– A TYPE predicate
– A LIKE predicate
– OLAP specifications
– Dereference operations or DEREF functions where the scoped reference

argument is other than the object identifier (OID) column

CREATE INDEX

Statements 557



– CAST specifications with a SCOPE clause
– Error tolerant nested-table-expressions

If an index key includes at least one key-expression, the index key is referred to
as an expression-based index key.

ASC
Specifies that index entries are to be kept in ascending order of the column
values; this is the default setting. ASC cannot be specified for indexes that are
defined with EXTEND USING (SQLSTATE 42601).

DESC
Specifies that index entries are to be kept in descending order of the column
values. DESC cannot be specified for indexes that are defined with EXTEND
USING, or if the index is an index over XML data (SQLSTATE 42601).

RANDOM
Specifies that index entries are to be kept in random order of the column
values. RANDOM cannot be specified in the following cases:
v With the EXTENDED USING clause (SQLSTATE 42613).
v With the SPECIFICATION ONLY clause (SQLSTATE 42613).
v For an index that is created on a declared or created globally temporary

table (DGTT or CGTT) (SQLSTATE 42995).
v If the CLUSTER option is specified (SQLSTATE 42613).
v On an indexed column that is of type CHAR or VARCHAR with ICU

collations, except when the columns are declared as FOR BIT DATA
(SQLSTATE 42997).

v On an indexed column that is of type GRAPHIC or VARGRAPHIC with ICU
collations (SQLSTATE 42997).

v On an indexed column that is of type XML (SQLSTATE 42613).
v On an index which includes a key-expression (SQLSTATE 42997).

BUSINESS_TIME WITHOUT OVERLAPS
BUSINESS_TIME WITHOUT OVERLAPS can only be specified for an index
defined as UNIQUE (SQLSTATE 428HW) to indicate that for the rest of the
specified keys, the values are unique with respect to any period of time.
BUSINESS_TIME WITHOUT OVERLAPS can only be specified as the last item
in the list. When BUSINESS_TIME WITHOUT OVERLAPS is specified, the end
column and begin column of the period BUSINESS_TIME are automatically
added to the index key in ascending order and enforce that there are no
overlaps in time. When BUSINESS_TIME WITHOUT OVERLAPS is specified,
the columns of the BUSINESS_TIME period must not be specified as key
columns, as columns in the partitioning key, or as columns in the distribution
key (SQLSTATE 428HW).

PARTITIONED
Indicates that a partitioned index should be created. The table-name must
identify a table defined with data partitions (SQLSTATE 42601).

If the table is partitioned and neither PARTITIONED nor NOT PARTITIONED
is specified, the index is created as partitioned (with a few exceptions). A
nonpartitioned index is created instead of a partitioned index if any of the
following situations apply:
v UNIQUE is specified and the index key does not include all the table

partitioning key columns.
v A spatial index is created.

CREATE INDEX

558 SQL Reference Volume 2



A partitioned index with a definition that duplicates the definition of a
nonpartitioned index is not considered to be a duplicate index. For more
details, see the “Rules” on page 570 section in this topic.

The PARTITIONED keyword cannot be specified for the following indexes:
v An index on a nonpartitioned table (SQLSTATE 42601)
v A unique index where the index key does not explicitly include all the table

partitioning key columns (SQLSTATE 42990)
v A spatial index (SQLSTATE 42997)

A partitioned index cannot be created on a partitioned table that has detached
dependent tables, for example, MQTs (SQLSTATE 55019).

The table space placement for an index partition of the partitioned index is
determined by the following rules:
v If the table being indexed was created using the partition-tablespace-options

INDEX IN clause of the CREATE TABLE statement, the index partition is
created in the table space specified in that INDEX IN clause.

v If the CREATE TABLE statement for the table being indexed did not specify
the partition-tablespace-options INDEX IN clause, the index partition
partitioned index is created in the same table space as the corresponding
data partition that it indexes.

The IN clause of the CREATE INDEX statement is not supported for
partitioned indexes (SQLSTATE 42601). The tablespace-clauses INDEX IN clause
of the CREATE TABLE statement is ignored for partitioned indexes. If
BUSINESS_TIME WITHOUT OVERLAPS is specified for the index key, the
partitioning key columns must not include the begin or end column of the
BUSINESS_TIME period (SQLSTATE 428HW).

NOT PARTITIONED
Indicates that a nonpartitioned index should be created that spans all of the
data partitions defined for the table. The table-name must identify a table
defined with data partitions (SQLSTATE 42601).

A nonpartitioned index with a definition that duplicates the definition of a
partitioned index is not considered to be a duplicate index. For more details,
see the “Rules” on page 570 section in this topic.

The table space placement for a the nonpartitioned index is determined by the
following rules:
v If you specify the IN clause of the CREATE INDEX statement, the

nonpartitioned index is placed in the table space specified in that IN clause.
v If you do not specify the IN clause of the CREATE INDEX statement, the

following rules determine the table space placement of the nonpartitioned
index:
– If the table being indexed was created using the tablespace-clauses INDEX

IN clause of the CREATE TABLE statement, the nonpartitioned index is
placed in the table space specified in that INDEX IN clause.

– If the table being indexed was created without using the tablespace-clauses
INDEX IN clause of the CREATE TABLE statement, the nonpartitioned
index is created in the table space of the first visible or attached data
partition of the table. The first visible or attached data partition of the
table is the first partition in the list of data partitions that are sorted on
the basis of range specifications. Also, the authorization ID of the
statement is not required to have the USE privilege on the default table
space.

CREATE INDEX

Statements 559



IN tablespace-name
Specifies the table space in which the nonpartitioned index on a partitioned
table is created. This clause cannot be specified for a partitioned index or an
index on a nonpartitioned table (SQLSTATE 42601). The specification of a table
space specifically for the index overrides a specification made using the INDEX
IN clause when the table was created.

The table space specified by tablespace-name must be in the same database
partition group as the data table spaces for the table and manage space in the
same way as the other table spaces of the partitioned table (SQLSTATE 42838);
it must be a table space on which the authorization ID of the statement holds
the USE privilege.

If the IN clause is not specified, the index is created in the table space that was
specified by the INDEX IN clause on the CREATE TABLE statement. If no
INDEX IN clause was specified, the table space of the first visible or attached
data partition of the table is used. This is the first partition in the list of data
partitions that are sorted on the basis of range specifications. If the IN clause is
not specified, the authorization ID of the statement is not required to have the
USE privilege on the default table space.

SPECIFICATION ONLY
Indicates that this statement will be used to create an index specification that
applies to the data source table referenced by nickname. SPECIFICATION
ONLY must be specified if nickname is specified (SQLSTATE 42601). It cannot
be specified if table-name is specified (SQLSTATE 42601).

If the index specification applies to an index that is unique, the database
manager does not verify that the column values in the remote table are unique.
If the remote column values are not unique, queries against the nickname that
include the index column might return incorrect data or errors.

This clause cannot be used when creating an index on a created temporary
table or declared temporary table (SQLSTATE 42995).

INCLUDE
This keyword introduces a clause that specifies additional columns to be
appended to the set of index key columns. Any columns included with this
clause are not used to enforce uniqueness. These included columns might
improve the performance of some queries through index only access. The
columns must be distinct from the columns used to enforce uniqueness
(SQLSTATE 42711). UNIQUE must be specified when INCLUDE is specified
(SQLSTATE 42613). The limits for the number of columns and sum of the
length attributes apply to all of the columns in the unique key and in the
index.

This clause cannot be used with created temporary tables or declared
temporary tables (SQLSTATE 42995).

column-name
Identifies a column that is included in the index but not part of the unique
index key. The same rules apply as defined for columns of the unique
index key. The keywords ASC, DESC, or RANDOM can be specified
following column-name but have no effect on the order.

key-expression
Specifies an expression that is included in the index but not part of the
unique index key. The same rules apply as defined for expressions of the
unique index key. The keywords ASC, DESC, or RANDOM can be
specified after key-expression but have no effect on the order.

CREATE INDEX

560 SQL Reference Volume 2



INCLUDE cannot be specified for indexes that are defined with EXTEND
USING, if nickname is specified, or if the index is defined on an XML column
(SQLSTATE 42601).

xml-index-specification
Specifies how index keys are generated from XML documents that are stored
in an XML column. xml-index-specification cannot be specified if there is more
than one index column, or if the column does not have the XML data type.

This clause only applies to XML columns (SQLSTATE 429BS).

GENERATE KEY USING XMLPATTERN xmlpattern-clause
Specifies the parts of an XML document that are to be indexed. XML
pattern values are the indexed values generated by the xmlpattern-clause.
List data type nodes are not supported in the index. If a node is qualified
by the xmlpattern-clause and an XML schema exists that specifies that the
node is a list data type, then the list data type node cannot be indexed
(SQLSTATE 23526 for CREATE INDEX statements, or SQLSTATE 23525 for
INSERT and UPDATE statements).

xmlpattern-clause
Contains a pattern expression that identifies the nodes that are to be
indexed. It consists of an optional namespace-declaration and a required
pattern-expression.

namespace-declaration
If the pattern expression contains qualified names, a
namespace-declaration must be specified to define namespace
prefixes. A default namespace can be defined for unqualified
names.

DECLARE NAMESPACE namespace-prefix=namespace-uri
Maps namespace-prefix, which is an NCName, to namespace-uri,
which is a string literal. The namespace-declaration can contain
multiple namespace-prefix-to-namespace-uri mappings. The
namespace-prefix must be unique within the list of
namespace-declaration (SQLSTATE 10503).

DECLARE DEFAULT ELEMENT NAMESPACE namespace-uri
Declares the default namespace URI for unqualified element
names or types. If no default namespace is declared,
unqualified names of elements and types are in no namespace.
Only one default namespace can be declared (SQLSTATE
10502).

pattern-expression
Specifies the nodes in an XML document that are indexed. The
pattern-expression can contain pattern-matching characters (*). It is
similar to a path expression in XQuery, but represents a subset of
the XQuery language that this database supports.

/ (forward slash)
Separates path expression steps.

// (double forward slash)
This is the abbreviated syntax for /descendant-or-self::node()/.
You cannot use // (double forward slash) if you also specify
UNIQUE.

forward-axis

CREATE INDEX

Statements 561



child::
Specifies children of the context node. This is the default, if
no other forward axis is specified.

@ Specifies attributes of the context node. This is the
abbreviated syntax for attribute::.

attribute::
Specifies attributes of the context node.

descendant::
Specifies the descendants of the context node. You cannot
use descendant:: if you also specify UNIQUE.

self::
Specifies just the context node itself.

descendant-or-self::
Specifies the context node and the descendants of the
context node. You cannot use descendant-or-self:: if you
also specify UNIQUE.

xmlname-test
Specifies the node name for the step in the path using a
qualified XML name (xml-qname) or a wildcard
(xml-wildcard).

xml-ncname
An XML name as defined by XML 1.0. It cannot include a
colon character.

xml-qname
Specifies a qualified XML name (also known as a QName)
that can have two possible forms:
v xml-nsprefix:xml-ncname, where the xml-nsprefix is an

xml-ncname that identifies an in-scope namespace
v xml-ncname, which indicates that the default namespace

should be applied as the implicit xml-nsprefix

xml-wildcard
Specifies an xml-qname as a wildcard that can have three
possible forms:
v * (a single asterisk character) indicates any xml-qname
v xml-nsprefix:* indicates any xml-ncname within the

specified namespace
v *:xml-ncname indicates a specific XML name in any

in-scope namespace

You cannot use xml-wildcard in the context step of a pattern
expression if you also specify UNIQUE.

xmlkind-test
Use these options to specify what types of nodes you pattern
match. The following options are available to you:

node()
Matches any node. You cannot use node() if you also
specify UNIQUE.

text()
Matches any text node.

CREATE INDEX

562 SQL Reference Volume 2



comment()
Matches any comment node.

processing-instruction()
Matches any processing instruction node. You cannot use
processing-instruction() if you also specify UNIQUE.

function-step
Use these function calls to specify indexes with special
properties, such as case insensitivity. Only one function step is
allowed per XMLPATTERN clause. Function steps can be
applied only on elements or attributes. No xmlkind-test option
can be placed immediately before the function step. The
function cannot be used in the middle of the XMLPATTERN,
and must appear only in the final step. Currently, only the
fn:upper-case and fn:exists functions are supported.

Note that instead of specifying the prefix fn: for the function
name, you can specify another valid namespace, or you can
omit fn: entirely.

fn:upper-case
Force the index values to be stored in the uppercase form.
The first parameter of fn:upper-case is mandatory, and
must be a context item expression (' . '); the second
parameter is optional, and is the locale. If fn:upper-case
appears in the pattern, VARCHAR and VARCHAR
HASHED are the only index types supported.

fn:exists
Check for the existence of an element or attribute item in
the XML document. If the item exists, this predicate returns
true. The parameter of fn:exists is mandatory, and must be
an element or attribute. If this function is used in the index
path, the index type must be defined as VARCHAR(1).

xmltype-clause

AS data-type
Specifies the data type to which indexed values are converted
before they are stored. Values are converted to the index XML data
type that corresponds to the specified index SQL data type.

Table 17. Corresponding index data types

Index XML data type Index SQL data type

xs:string VARCHAR(integer), VARCHAR HASHED

xs:double DOUBLE

xs:int INTEGER

xs:decimal DECIMAL

xs:date DATE

xs:dateTime TIMESTAMP

For VARCHAR(integer) and VARCHAR HASHED, the value is
converted to an xs:string value using the XQuery function fn:string.
The length attribute of VARCHAR(integer) is applied as a
constraint to the resulting xs:string value. An index SQL data type

CREATE INDEX

Statements 563



of VARCHAR HASHED applies a hash algorithm to the resulting
xs:string value to generate a hash code that is inserted into the
index.

For indexes using the data types DOUBLE, DATE, INTEGER,
DECIMAL, and TIMESTAMP, the value is converted to the index
XML data type using the XQuery cast expression.

If the index is unique, the uniqueness of the value is enforced after
the value is converted to the indexed type.

data-type
The following data type is supported:

sql-data-type
Supported SQL data types are:

VARCHAR(integer[OCTETS])
If this form of VARCHAR is specified, integer is used
as a constraint. If document nodes that are to be
indexed have values that are longer than integer, the
documents are not inserted into the table if the index
already exists. If the index does not exist, the index is
not created. integer is a value between 1 and a page
size-dependent maximum. Table 18 shows the
maximum value for each page size.

Table 18. Maximum length of document nodes by page size

Page size Maximum length of document node (bytes)

4KB 817

8KB 1841

16KB 3889

32KB 7985

XQuery semantics are used for string comparisons,
where trailing blanks are significant. This differs from
SQL semantics, where trailing blanks are insignificant
during comparisons.

OCTETS
Specifies that the units of the length attribute is
bytes.

When no string units are specified for a character
string data type in a Unicode database, the string units
are implicit and determined by the value of the
NLS_STRING_UNITS global variable or string_units
database configuration parameter. When the implicit
string units are CODEUNITS32, the OCTETS keyword
must be specified (SQLSTATE 42601).

In a non-Unicode database, the string units for
character string data types are OCTETS.

VARCHAR HASHED
Specify VARCHAR HASHED to handle indexing of
arbitrary length character strings. The length of an
indexed string has no limit. An eight-byte hash code is

CREATE INDEX

564 SQL Reference Volume 2



generated over the entire string. Indexes that use these
hashed character strings can be used only for equality
lookups. XQuery semantics are used for string equality
comparisons, where trailing blanks are significant. This
differs from SQL semantics, where trailing blanks are
insignificant during comparisons. The hash on the
string preserves XQuery semantics for equality and not
SQL semantics.

DOUBLE
Specifies that the data type DOUBLE is used for
indexing numeric values. Unbounded decimal types
and 64 bit integers may lose precision when they are
stored as a DOUBLE value. The values for DOUBLE
may include the special numeric values NaN, INF,
-INF, +0, and -0, even though the SQL data type
DOUBLE itself does not support these values.

INTEGER
Specifies that the data type INTEGER is used for
indexing XML values. Note that the XML schema data
type xs:integer allows a greater range of values than
does the integer SQL data type. If an out-of-range
value is encountered, an error is returned. If a value
conforms to the lexical format of xs:double but does
not conform to the lexical format of xs:int, such as 3.5,
3.0, or 3E1, an error is also returned.

DECIMAL(integer, integer)
Specifies that the data type DECIMAL is used for
indexing XML values. The DECIMAL type takes two
parameters, precision and scale. The first parameter,
precision, is an integer constant with a value in the
range of 1 to 31 that specifies the total number of
digits. The second parameter, scale, is an integer
constant that is greater than or equal to zero, and less
than or equal to precision. The scale specifies the
number of digits to the right of the decimal point.

Digits are not truncated from the end of a decimal
number. An error is returned if the number of digits to
the right of the decimal separator character is greater
than the scale. Also, an error is returned if the number
of significant digits to the left of the decimal character
(the whole part of the number) is greater than
precision.

DATE
Specifies that the data type DATE is used for indexing
XML values. Note that the XML schema data type for
xs:date allows greater range of values than the
pureXML® xs:date data type that corresponds to the
SQL data type. If an out-of-range value is encountered,
an error is returned.

TIMESTAMP
Specifies that the data type TIMESTAMP is used for
indexing XML values. Note that the XML schema data
type for xs:dateTime allows greater range of values and

CREATE INDEX

Statements 565



fractional seconds precision than the pureXML
xs:dateTime data type that corresponds to the SQL data
type. If an out-of range value is encountered, an error
is returned.

IGNORE INVALID VALUES
Specifies that XML pattern values that are invalid lexical forms for
the target index XML data type are ignored and that the
corresponding values in the stored XML documents are not
indexed by the CREATE INDEX statement. By default, invalid
values are ignored. During insert and update operations, the
invalid XML pattern values are not indexed, but XML documents
are still inserted into the table. No error or warning is raised,
because specifying these data types is not a constraint on the XML
pattern values (XQuery expressions that search for the specific
XML index data type will not consider these values).

The rules for what XML pattern values can be ignored are
determined by the specified SQL data type.
v If the SQL data type is VARCHAR(integer) or VARCHAR

HASHED, XML pattern values are never ignored since any
sequence of characters is valid.

v If the SQL data type is DOUBLE, DECIMAL, or INTEGER, any
XML pattern value that does not conform to the lexical format of
the XML data type xs:double is ignored. If the SQL data type is
DECIMAL or INTEGER and the XML pattern value conforms to
the lexical format of the XML data type xs:double but not to the
lexical format of xs:decimal or xs:int, respectively, an error is
returned. For example, if the SQL data type is INTEGER, the
XML pattern values of 3.5, 3.0, and 3e0 conform to the lexical
format of xs:double but return an error (SQLSTATE 23525)
because they do not conform to the lexical format of xs:int. XML
pattern values such as 'A123' or 'hello' are ignored for the same
index.

v If the SQL data type is a datetime data type, any XML pattern
value that does not conform to the lexical format of the
corresponding XML data type (xs:date or xs:dateTime) is
ignored.

If an XML pattern value does conform to the appropriate lexical
format, an error is returned if the value is outside the value space
for the data type or exceeds the maximum length or precision and
scale of the specified SQL data type. If the index does not exist, the
index is not created (SQLSTATE 23526).

REJECT INVALID VALUES
All XML pattern values must be valid in the context of the lexical
definition of the index XML data type. In addition the value must
be in the range of the value space of the index XML data type. See
the Related reference section, later, for links to details on the lexical
definition and value space for each data type. For example, when
you specify the REJECT INVALID VALUES clause, if you create an
index of INTEGER type, XML pattern values such as 3.5, 3.0, 3e0,
'A123' and 'hello' will return an error (SQLSTATE 23525). XML data
is not inserted or updated in the table if the index already exists
(SQLSTATE 23525). If the index does not exist, the index is not
created (SQLSTATE 23526).

CREATE INDEX

566 SQL Reference Volume 2



CLUSTER
Specifies that the index is the clustering index of the table. The cluster factor of
a clustering index is maintained or improved dynamically as data is inserted
into the associated table, by attempting to insert new rows physically close to
the rows for which the key values of this index are in the same range. Only
one clustering index may exist for a table so CLUSTER may not be specified if
it was used in the definition of any existing index on the table (SQLSTATE
55012). A clustering index may not be created on a table that is defined to use
append mode (SQLSTATE 428D8).

CLUSTER is disallowed if nickname is specified, or if the index is an index over
XML data (SQLSTATE 42601). This clause cannot be used with created
temporary tables or declared temporary tables (SQLSTATE 42995) or
range-clustered tables (SQLSTATE 429BG).

EXTEND USING index-extension-name
Names the index-extension used to manage this index. If this clause is specified,
then there must be only one column-name specified and that column must be a
structured type or a distinct type (SQLSTATE 42997). The index-extension-name
must name an index extension described in the catalog (SQLSTATE 42704). For
a distinct type, the column must exactly match the type of the corresponding
source key parameter in the index extension. For a structured type column, the
type of the corresponding source key parameter must be the same type or a
supertype of the column type (SQLSTATE 428E0).

This clause cannot be used with created temporary tables or declared
temporary tables (SQLSTATE 42995).

Starting with Version 10.5 Fix Pack 4, this clause is also supported in DB2
pureScale environments. For Version 10.5 Fix Pack 3 and earlier fix pack
releases, this clause is not supported in DB2 pureScale environments
(SQLSTATE 56038).

This clause cannot be used if the index key contains at least one key-expression
(SQLSTATE 42601).

constant-expression
Identifies values for any required arguments for the index extension. Each
expression must be a constant value with a data type that exactly matches
the defined data type of the corresponding index extension parameters,
including length or precision, and scale (SQLSTATE 428E0). This clause
must not exceed 32 768 bytes in length in the database code page
(SQLSTATE 22001).

PCTFREE integer
Specifies what percentage of each index page to leave as free space when
building the index. The first entry in a page is added without restriction. When
additional entries are placed in an index page at least integer percent of free
space is left on each page. The value of integer can range from 0 to 99. If a
value greater than 10 is specified, only 10 percent free space will be left in
non-leaf pages.

If an explicit value for PCTFREE is not provided, and if
DB2_INDEX_PCTFREE_DEFAULT is not set, then PCTFREE will have a default value
of 10.

PCTFREE is disallowed if nickname is specified (SQLSTATE 42601). This clause
cannot be used with created temporary tables or declared temporary tables
(SQLSTATE 42995).

CREATE INDEX

Statements 567



LEVEL2 PCTFREE integer
Specifies what percentage of each index level 2 page to leave as free space
when building the index. The value of integer can range from 0 to 99. If
LEVEL2 PCTFREE is not set, a minimum of 10 or PCTFREE percent of free
space is left on all non-leaf pages. If LEVEL2 PCTFREE is set, integer percent of
free space is left on level 2 intermediate pages, and a minimum of 10 or integer
percent of free space is left on level 3 and higher intermediate pages.

LEVEL2 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601).
This clause cannot be used with created temporary tables or declared
temporary tables (SQLSTATE 42995).

MINPCTUSED integer
Indicates whether index leaf pages are merged online, and the threshold for
the minimum percentage of space used on an index leaf page. If, after a key is
removed from an index leaf page, the percentage of space used on the page is
at or below integer percent, an attempt is made to merge the remaining keys on
this page with those of a neighboring page. If there is sufficient space on one
of these pages, the merge is performed and one of the pages is deleted. The
value of integer can be from 0 to 99. A value of 50 or below is recommended
for performance reasons. Specifying this option will have an impact on update
and delete performance. Merging is only done during update and delete
operations when an exclusive table lock is held. If an exclusive table lock does
not exist, keys are marked as pseudo deleted during update and delete
operations, and no merging is done. Consider using the CLEANUP ONLY ALL
option of REORG INDEXES to merge leaf pages instead of using the
MINPCTUSED option of CREATE INDEX.

MINPCTUSED is disallowed if nickname is specified (SQLSTATE 42601). This
clause cannot be used with created temporary tables or declared temporary
tables (SQLSTATE 42995).

DISALLOW REVERSE SCANS
Specifies that an index only supports forward scans or scanning of the index in
the order that was defined at index creation time.

DISALLOW REVERSE SCANS cannot be specified together with nickname
(SQLSTATE 42601).

ALLOW REVERSE SCANS
Specifies that an index can support both forward and reverse scans; that is,
scanning of the index in the order that was defined at index creation time, and
scanning in the opposite order.

ALLOW REVERSE SCANS cannot be specified together with nickname
(SQLSTATE 42601).

PAGE SPLIT
Specifies the page split behavior when values are inserted into an index. The
default is SYMMETRIC.

SYMMETRIC
Specifies that pages are to be split roughly in the middle. Use this option
in the following situations:
v When the insertion into an index is random
v When the insertion into an index does not follow the patterns that are

addressed by the PAGE SPLIT HIGH and PAGE SPLIT LOW options

HIGH
Specifies an index page split behavior that uses the space on index pages

CREATE INDEX

568 SQL Reference Volume 2



efficiently when there are ever-increasing values in the index. Increasing
values in the index might occur when the following conditions are met:
v There is an index with multiple key parts and there are multiple index

pages of values where all except the last key part has the same value.
v All insert operations into the table consist of a new value, which has the

same value as existing keys for all but the last key part.
v The last key part of the inserted value is larger than the values of the

existing keys.

For example, assume that an index has the following key values:
(1,1),(1,2),(1,3), ... (1,n),
(2,1),(2,2),(2,3), ... (2,n),
...
(m,1),(m,2),(m,3), ... (m,n)

The next key to be inserted would have the value (x,y) where 1 <= x <=
m and y > n.

In such cases, use the PAGE SPLIT HIGH clause so that page splits do not
result in many pages that are 50 percent empty.

LOW
Specifies an index page split behavior that uses the space on index pages
efficiently when there are ever-decreasing values in the index. Decreasing
values in the index might occur when the following conditions are met:
v There is an index with multiple key parts and there are multiple index

pages of values where all except the last key part has the same value.
v All insert operations into the table consist of a new value, which has the

same value as existing keys for all but the last key part.
v The last key part of the inserted value is smaller than the values of the

existing keys.

In such cases, use the PAGE SPLIT LOW clause so that page splits do not
result in many pages that are 50 percent empty.

COLLECT STATISTICS
Specifies that basic index statistics are to be collected during index creation.

SAMPLED
Specifies that a sampling technique is to be used when processing index
entries to collect extended index statistics. This option is used to balance
performance considerations with the need for accuracy of the statistics.
This option is the default when DETAILED is specified immediately
following the keyword COLLECT.

UNSAMPLED
Specifies that sampling is not to be used when processing index entries to
collect extended index statistics. Instead, each index entry is examined
individually. This option can significantly increase CPU and memory
consumption.

DETAILED
Specifies that extended index statistics (CLUSTERFACTOR and
PAGE_FETCH_PAIRS) are also to be collected during index creation.

COMPRESS
Specifies whether index compression is enabled. By default, index compression
will be enabled if data row compression is enabled; index compression will be

CREATE INDEX

Statements 569



disabled if data row compression is disabled. This option can be used to
override the default behavior. COMPRESS is disallowed if nickname is specified
(SQLSTATE 42601).

YES
Specifies that index compression is enabled. Insert and update operations
on the index will be subject to compression.

NO Specifies that index compression is disabled.

INCLUDE NULL KEYS
Specifies that an index entry is created when all parts of the index key contain
the null value. This is the default setting.

EXCLUDE NULL KEYS
Specifies that an index entry is not created when all parts of the index key
contain the null value. When any part of the index key is not a null value, an
index entry is created. You cannot specify EXCLUDE NULL KEYS with the
following syntax elements:
v A nickname
v The GENERATE KEY USING XMLPATTERN clause
v The EXTEND USING clause.

If an index is defined as unique, rows with null keys are not considered when
enforcing uniqueness.

Rules
v The CREATE INDEX statement fails (SQLSTATE 01550) when attempting to

create an index that matches an existing index.
A number of factors are used to determine if two indexes match. These factors
are combined in various different ways into the rules that determine if two
indexes match. The following factors are used to determine if two indexes
match:
1. The sets of index columns and key expressions, including any INCLUDE

columns and key expressions, are the same in both indexes.
2. The ordering of index key columns and key expressions, including any

INCLUDE columns, is the same in both indexes.
3. The key columns and key expressions of the new index are the same or a

superset of the key columns and key expressions in the existing index.
4. The ordering attributes of the columns and key expressions are the same in

both indexes.
5. The existing index is unique.
6. Both indexes are non-unique.
The following combinations of these factors form the rules that determine when
two indexes are considered duplicates:
– 1 + 2 + 4 + 5
– 1 + 2 + 4 + 6
– 1 + 2 + 3 + 5

Exceptions:

– If one of the compared indexes is partitioned and the other of the compared
indexes is nonpartitioned, the indexes are not considered duplicates if the
indexes have different names, even if other matching index conditions are
met.

CREATE INDEX

570 SQL Reference Volume 2



– For indexes over XML data, the index descriptions are not considered
duplicates if the index names are different, even if the indexed XML column,
the XML patterns, and the data type, including its options, are identical.

v Unique indexes on system-maintained MQTs are not supported (SQLSTATE
42809).

v The COLLECT STATISTICS options are not supported if a nickname is specified
(SQLSTATE 42601).

v The creation of an index with an expression-based key in a partitioned database
environment is supported only from the catalog database partition (SQLSTATE
42997).

Notes
v Concurrent read/write access during index creation, and default index creation

behavior differs for indexes on nonpartitioned tables, nonpartitioned indexes,
partitioned indexes, and indexes in a DB2 pureScale environment:
– For nonpartitioned indexes, concurrent read/write access to the table is

permitted while an index is being created, except when the EXTEND USING
clause is specified. Once the index has been built, changes that were made to
the table during index creation time are forward-fitted to the new index.
Write access to the table is then briefly blocked while index creation
completes, after which the new index becomes available.

– For partitioned indexes, concurrent read/write access to the table is permitted
while an index is being created, except when the EXTEND USING clause is
specified. Once the index partition has been built, changes that were made to
the partition during creation time of that index partition are forward-fitted to
the new index partition. Write access to the data partition is then blocked
while index creation completes on the remaining data partitions. After the
index partition for the last data partition is built and the transaction is
committed, all data partitions are available for read and write.

– In a DB2 pureScale environment, concurrent read access is the default
behavior. Concurrent write access is not allowed during index creation.

To circumvent this default behavior, use the LOCK TABLE statement to
explicitly lock the table before issuing a CREATE INDEX statement. (The table
can be locked in either SHARE or EXCLUSIVE mode, depending on whether
read access is to be allowed.)

v If the named table already contains data, CREATE INDEX creates the index
entries for it. If the table does not yet contain data, CREATE INDEX creates a
description of the index; the index entries are created when data is inserted into
the table.

v Once the index is created and data is loaded into the table, it is advisable to
issue the RUNSTATS command. The RUNSTATS command updates statistics
collected on the database tables, columns, and indexes. These statistics are used
to determine the optimal access path to the tables. By issuing the RUNSTATS
command, the database manager can determine the characteristics of the new
index. If data has been loaded before the CREATE INDEX statement is issued, it
is recommended that the COLLECT STATISTICS option on the CREATE INDEX
statement be used as an alternative to the RUNSTATS command.

v If you collect statistics during index creation, the resulting statistics might be
inconsistent. If the table has been modified since you last collected statistics on
the table and its existing indexes, you should subsequently run the RUNSTATS
command to provide a set of consistent statistics across the table and all of its
indexes.

CREATE INDEX

Statements 571



v Creating an index with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v The optimizer can recommend indexes before creating the actual index.
v If an index specification is being defined for a data source table that has an

index, the name of the index specification does not have to match the name of
the index.

v The explain facility, the Design Advisor, or Optim™ Workload Query Tuner can
be used to recommend indexes before creating the actual index. However, none
of these methods will recommend indexes containing expression-based keys.

v Collecting index statistics: The UNSAMPLED DETAILED option is available to
change the way index statistics are collected. However, it should be used only in
cases where it is clear that DETAILED does not yield accurate statistics.

v Generated Objects: If an index is created with expression-based keys, a
system-generated statistical view and a system-generated package will also be
created and associated with the index.

v Syntax alternatives: The following syntax is tolerated and ignored:
– CLOSE
– DEFINE
– FREEPAGE
– GBPCACHE
– PIECESIZE
– TYPE 2
– using-block
The following syntax is accepted as the default behavior:
– COPY NO
– DEFER NO

Examples
v Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The

purpose of the index is to ensure that there are not two entries in the table with
the same value for project name (PROJNAME). The index entries are to be in
ascending order.

CREATE UNIQUE INDEX UNIQUE_NAM
ON PROJECT(PROJNAME)

v Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table.
Arrange the index entries in ascending order by job title (JOB) within each
department (WORKDEPT).

CREATE INDEX JOB_BY_DPT
ON EMPLOYEE (WORKDEPT, JOB)

v Example 3: The nickname EMPLOYEE references a data source table called
CURRENT_EMP. After this nickname was created, an index was defined on
CURRENT_EMP. The columns chosen for the index key were WORKDEBT and
JOB. Create an index specification that describes this index. Through this
specification, the optimizer will know that the index exists and what its key is.
With this information, the optimizer can improve its strategy to access the table.

CREATE UNIQUE INDEX JOB_BY_DEPT
ON EMPLOYEE (WORKDEPT, JOB)
SPECIFICATION ONLY

CREATE INDEX

572 SQL Reference Volume 2



v Example 4: Create an extended index type named SPATIAL_INDEX on a
structured type column location. The description in index extension
GRID_EXTENSION is used to maintain SPATIAL_INDEX. The literal is given to
GRID_EXTENSION to create the index grid size.

CREATE INDEX SPATIAL_INDEX ON CUSTOMER (LOCATION)
EXTEND USING (GRID_EXTENSION (x’000100100010001000400010’))

v Example 5: Create an index named IDX1 on a table named TAB1, and collect
basic index statistics on index IDX1.

CREATE INDEX IDX1 ON TAB1 (col1) COLLECT STATISTICS

v Example 6: Create an index named IDX2 on a table named TAB1, and collect
detailed index statistics on index IDX2.

CREATE INDEX IDX2 ON TAB1 (col2) COLLECT DETAILED STATISTICS

v Example 7: Create an index named IDX3 on a table named TAB1, and collect
detailed index statistics on index IDX3 using sampling.

CREATE INDEX IDX3 ON TAB1 (col3) COLLECT SAMPLED DETAILED STATISTICS

v Example 8: Create a unique index named A_IDX on a partitioned table named
MYNUMBERDATA in table space IDX_TBSP.

CREATE UNIQUE INDEX A_IDX ON MYNUMBERDATA (A) IN IDX_TBSP

v Example 9: Create a non-unique index named B_IDX on a partitioned table
named MYNUMBERDATA in table space IDX_TBSP.

CREATE INDEX B_IDX ON MYNUMBERDATA (B)
NOT PARTITIONED IN IDX_TBSP

v Example 10: Create an index over XML data on a table named COMPANYINFO,
which contains an XML column named COMPANYDOCS. The XML column
COMPANYDOCS contains a large number of XML documents similar to the one
below:
<company name="Company1">

<emp id="31201" salary="60000" gender="Female">
<name>

<first>Laura</first>
<last>Brown</last>

</name>
<dept id="M25">

Finance
</dept>

</emp>
</company>

Users of the COMPANYINFO table often need to retrieve employee information
using the employee ID. An index like the following one can make that retrieval
more efficient.

CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)
GENERATE KEY USING XMLPATTERN ’/company/emp/@id’

AS SQL DOUBLE

v Example 11: The following index is logically equivalent to the index created in
the previous example, except that it uses unabbreviated syntax.

CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)
GENERATE KEY USING XMLPATTERN ’/child::company/child::emp/attribute::id’

AS SQL DOUBLE

v Example 12: Create an index on a column named DOC, indexing only the book
title as a VARCHAR(100). Because the book title should be unique across all
books, the index must be unique.

CREATE UNIQUE INDEX MYDOCSIDX ON MYDOCS(DOC)
GENERATE KEY USING XMLPATTERN ’/book/title’

AS SQL VARCHAR(100)

CREATE INDEX

Statements 573



v Example 13: Create an index on a column named DOC, indexing the chapter
number as a DOUBLE. This example includes namespace declarations.

CREATE INDEX MYDOCSIDX ON MYDOCS(DOC)
GENERATE KEY USING XMLPATTERN

’declare namespace b="http://www.example.com/book/";
declare namespace c="http://acme.org/chapters";

/b:book/c:chapter/@number’
AS SQL DOUBLE

v Example 14: Create a unique index named IDXPROJEST on table PROJECT and
include column PRSTAFF to allow index-only access of the estimated mean
staffing information.

CREATE UNIQUE INDEX IDXPROJEST ON PROJECT (PROJNO) INCLUDE (PRSTAFF)

v Example 15: Create a unique index on a column named USER_ID and exclude
null keys from that index.

CREATE UNIQUE INDEX IDXUSERID ON CUSTOMER (USER_ID) EXCLUDE NULL KEYS

v Example 16: Create an index with an expression-based key using upper case of
employee's name and ID:

CREATE INDEX EMP_UPPERNAME ON EMPLOYEE (UPPER(NAME), ID)

CREATE INDEX

574 SQL Reference Volume 2



CREATE INDEX EXTENSION
The CREATE INDEX EXTENSION statement defines an extension object for use
with indexes on tables that have structured type or distinct type columns.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the schema name of the index

extension does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the index extension

refers to an existing schema
v DBADM authority

Syntax

�� CREATE INDEX EXTENSION index-extension-name �

�

�

,

( parameter-name1 data-type1 )

�

� index-maintenance index-search ��

index-maintenance:

FROM SOURCE KEY ( parameter-name2 data-type2 ) �

� GENERATE KEY USING table-function-invocation

index-search:

�

,

WITH TARGET KEY ( parameter-name3 data-type3 ) �

� �

,

SEARCH METHODS search-method-definition

search-method-definition:

�

,

WHEN method-name ( parameter-name4 data-type4 ) �

CREATE INDEX EXTENSION

Statements 575



� RANGE THROUGH range-producing-function-invocation �

�
FILTER USING index-filtering-function-invocation

case-expression

Description

index-extension-name
Names the index extension. The name, including the implicit or explicit
qualifier, must not identify an index extension described in the catalog. If a
two-part index-extension-name is specified, the schema name cannot begin with
'SYS'; otherwise, an error is returned (SQLSTATE 42939).

parameter-name1
Identifies a parameter that is passed to the index extension at CREATE
INDEX time to define the actual behavior of this index extension. The
parameter that is passed to the index extension is called an instance
parameter, because that value defines a new instance of an index extension.

parameter-name1 must be unique within the definition of the index
extension. No more than 90 parameters are allowed. If this limit is
exceeded, an error (SQLSTATE 54023) is returned.

data-type1
Specifies the data type of each parameter. One entry in the list must be
specified for each parameter that the index extension will expect to receive.
The only SQL data types that can be specified are those that can be used as
constants, such as VARCHAR, INTEGER, DECIMAL, DOUBLE, or
VARGRAPHIC (SQLSTATE 429B5). The decimal floating-point data type
cannot be specified (SQLSTATE 429B5). The parameter value that is
received by the index extension at CREATE INDEX must match data-type1
exactly, including length, precision, and scale (SQLSTATE 428E0).

Character and graphic string data types cannot specify string units of
CODEUNITS32.

index-maintenance
Specifies how the index keys of a structured or distinct type column are
maintained. Index maintenance is the process of transforming the source
column to a target key. The transformation process is defined using a table
function that has previously been defined in the database.

FROM SOURCE KEY (parameter-name2 data-type2)
Specifies a structured data type or distinct type for the source key column
that is supported by this index extension.

parameter-name2
Identifies the parameter that is associated with the source key column.
A source key column is the index key column (defined in the CREATE
INDEX statement) with the same data type as data-type2.

data-type2
Specifies the data type for parameter-name2; data-type2 must be a
user-defined structured type or a distinct type that is not sourced on
LOB, XML, or DECFLOAT (SQLSTATE 42997). When the index

CREATE INDEX EXTENSION

576 SQL Reference Volume 2



extension is associated with the index at CREATE INDEX time, the
data type of the index key column must:
v Exactly match data-type2 if it is a distinct type; or
v Be the same type or a subtype of data-type2 if it is a structured type

Otherwise, an error is returned (SQLSTATE 428E0).

GENERATE KEY USING table-function-invocation
Specifies how the index key is generated using a user-defined table
function. Multiple index entries may be generated for a single source key
data value. An index entry cannot be duplicated from a single source key
data value (SQLSTATE 22526). The function can use parameter-name1,
parameter-name2, or a constant as arguments. If the data type of
parameter-name2 is a structured data type, only the observer methods of
that structured type can be used in its arguments (SQLSTATE 428E3). The
output of the GENERATE KEY function must be specified in the TARGET
KEY specification. The output of the function can also be used as input for
the index filtering function specified on the FILTER USING clause.

The function used in table-function-invocation must:
v Resolve to a table function (SQLSTATE 428E4)
v Not be defined with PARAMETER CCSID UNICODE if this database is

not a Unicode database (SQLSTATE 428E4)
v Not be defined with LANGUAGE SQL (SQLSTATE 428E4)
v Not be defined with NOT DETERMINISTIC (SQLSTATE 428E4) or

EXTERNAL ACTION (SQLSTATE 428E4)
v Be defined with NO SQL (SQLSTATE 428E4)
v Not have a structured data type, LOB or XML (SQLSTATE 428E3) in the

data type of the parameters, with the exception of system-generated
observer methods

v Not include a subquery (SQLSTATE 428E3)
v Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE

428E3)
v Return columns with data types that follow the restrictions for data

types of columns of an index defined without the EXTEND USING
clause

If an argument invokes another operation or routine, it must be an
observer method (SQLSTATE 428E3).

The definer of the index extension must have EXECUTE privilege on this
function.

index-search
Specifies how searching is performed by providing a mapping of the search
arguments to search ranges.

WITH TARGET KEY
Specifies the target key parameters that are the output of the key
generation function specified on the GENERATE KEY USING clause.

parameter-name3
Identifies the parameter associated with a given target key. parameter-name3
corresponds to the columns of the RETURNS table as specified in the table
function of the GENERATE KEY USING clause. The number of parameters
specified must match the number of columns returned by that table
function (SQLSTATE 428E2).

CREATE INDEX EXTENSION

Statements 577



data-type3
Specifies the data type for each corresponding parameter-name3. data-type3
must exactly match the data type of each corresponding output column of
the RETURNS table, as specified in the table function of the GENERATE
KEY USING clause (SQLSTATE 428E2), including the length, precision, and
type.

SEARCH METHODS
Introduces the search methods that are defined for the index.

search-method-definition
Specifies the method details of the index search. It consists of a method name,
the search arguments, a range producing function, and an optional index filter
function.

WHEN method-name
The name of a search method. This is an SQL identifier that relates to the
method name specified in the index exploitation rule (found in the
PREDICATES clause of a user-defined function). A search-method-name can
be referenced by only one WHEN clause in the search method definition
(SQLSTATE 42713).

parameter-name4
Identifies the parameter of a search argument. These names are for use in
the RANGE THROUGH and FILTER USING clauses.

data-type4
The data type associated with a search parameter.

RANGE THROUGH range-producing-function-invocation
Specifies an external table function that produces search ranges. This
function uses parameter-name1, parameter-name4, or a constant as arguments
and returns a set of search ranges.

The table function used in range-producing-function-invocation must:
v Resolve to a table function (SQLSTATE 428E4)
v Not include a subquery (SQLSTATE 428E3) or SQL function (SQLSTATE

428E4) in its arguments
v Not include an XMLQUERY or XMLEXISTS expression in its arguments

(SQLSTATE 428E3)
v Not be defined with PARAMETER CCSID UNICODE if this database is

not a Unicode database (SQLSTATE 428E4)
v Not be defined with LANGUAGE SQL (SQLSTATE 428E4)
v Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION

(SQLSTATE 428E4)
v Be defined with NO SQL (SQLSTATE 428E4)

The number and types of this function's results must relate to the results of
the table function specified in the GENERATE KEY USING clause
(SQLSTATE 428E1) by:
v Returning up to twice as many columns as returned by the key

transformation function
v Having an even number of columns, in which the first half of the return

columns defines the start of the range (start key values), and the second
half of the return columns defines the end of the range (stop key values)

v Having each start key column with the same type as the corresponding
stop key column

CREATE INDEX EXTENSION

578 SQL Reference Volume 2



v Having the type of each start key column be the same as the
corresponding key transformation function column

More precisely, let a1:t1, ..., an:tn be the function result columns and data
types of the key transformation function. The function result columns of
the range-producing-function-invocation must be b1:t1, ..., bm:tm, c1:t1, ..., cm:tm,
where m <= n and the "b" columns are the start key columns and the "c"
columns are the stop key columns.

When the range-producing-function-invocation returns a null value as the
start or stop key value, the semantics are undefined.

The definer of the index extension must have EXECUTE privilege on this
function.

FILTER USING
Allows specification of an external function or a case expression to be used for
filtering index entries that were returned after applying the range-producing
function.

index-filtering-function-invocation
Specifies an external function to be used for filtering index entries. This
function uses the parameter-name1, parameter-name3, parameter-name4, or a
constant as arguments (SQLSTATE 42703) and returns an integer
(SQLSTATE 428E4). If the value returned is 1, the row corresponding to the
index entry is retrieved from the table. Otherwise, the index entry is not
considered for further processing.

If not specified, index filtering is not performed.

The function used in the index-filtering-function-invocation must:
v Not be defined with PARAMETER CCSID UNICODE if this database is

not a Unicode database (SQLSTATE 428E4)
v Not be defined with LANGUAGE SQL (SQLSTATE 429B4)
v Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION

(SQLSTATE 42845)
v Be defined with NO SQL (SQLSTATE 428E4)
v Not have a structured data type in the data type of any of the

parameters (SQLSTATE 428E3)
v Not include a subquery (SQLSTATE 428E3)
v Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE

428E3)

If an argument invokes another function or method, these rules are also
enforced for this nested function or method. However, system-generated
observer methods are allowed as arguments to the filter function (or any
function or method used as an argument), as long as the argument results
in a built-in data type.

The definer of the index extension must have EXECUTE privilege on this
function.

case-expression
Specifies a case expression for filtering index entries. Either
parameter-name1, parameter-name3, parameter-name4, or a constant
(SQLSTATE 42703) can be used in the searched-when-clause and
simple-when-clause. An external function with the rules specified in FILTER
USING index-filtering-function-invocation may be used in result-expression.
Any function referenced in the case-expression must also conform to the

CREATE INDEX EXTENSION

Statements 579



rules listed under index-filtering-function-invocation. In addition, subqueries
and XMLQUERY or XMLEXISTS expressions cannot be used anywhere else
in the case-expression (SQLSTATE 428E4). The case expression must return
an integer (SQLSTATE 428E4). A return value of 1 in the result-expression
means that the index entry is kept; otherwise, the index entry is discarded.

Notes
v Creating an index extension with a schema name that does not already exist will

result in the implicit creation of that schema, provided the authorization ID of
the statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.
The CREATEIN privilege on the schema is granted to PUBLIC.

Example

The following example creates an index extension called grid_extension that uses a
structured type SHAPE column in a table function called gridEntry to generate
seven index target keys. This index extension also provides two index search
methods to produce search ranges when given a search argument.

CREATE INDEX EXTENSION GRID_EXTENSION (LEVELS VARCHAR(20) FOR BIT DATA)
FROM SOURCE KEY (SHAPECOL SHAPE)
GENERATE KEY USING GRIDENTRY(SHAPECOL..MBR..XMIN,

SHAPECOL..MBR..YMIN,
SHAPECOL..MBR..XMAX,
SHAPECOL..MBR..YMAX,
LEVELS)

WITH TARGET KEY (LEVEL INT, GX INT, GY INT,
XMIN INT, YMIN INT, XMAX INT, YMAX INT)

SEARCH METHODS
WHEN SEARCHFIRSTBYSECOND (SEARCHARG SHAPE)
RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,

SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX,
LEVELS)

FILTER USING
CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR

SEARCHARG..MBR..YMAX < YMIN) THEN 0
ELSE CHECKDUPLICATE(LEVEL, GX, GY,

XMIN, YMIN, XMAX, YMAX,
SEARCHARG..MBR..XMIN,
SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX,
LEVELS)

END
WHEN SEARCHSECONDBYFIRST (SEARCHARG SHAPE)
RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,

SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX,
LEVELS)

FILTER USING
CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR

SEARCHARG..MBR..YMAX < YMIN) THEN 0
ELSE MBROVERLAP(XMIN, YMIN, XMAX, YMAX,

SEARCHARG..MBR..XMIN,
SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX)

END

CREATE INDEX EXTENSION

580 SQL Reference Volume 2



CREATE MASK
The CREATE MASK statement creates a column mask at the current server. A
column mask specifies the value to be returned for a specified column.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority. SECADM authority can create a column mask in any schema.
Additional privileges are not needed to reference other objects in the mask
definition. For example, the SELECT privilege is not needed to retrieve from a
table, and the EXECUTE privilege is not needed to call a user-defined function.

Syntax

�� CREATE MASK mask-name ON table-name
OR REPLACE

�

�
AS

correlation-name

�

� FOR COLUMN column-name RETURN case-expression
DISABLE

ENABLE
��

Description

OR REPLACE
Specifies to replace the definition for the column mask if one exists at the
current server. The existing definition is effectively dropped before the new
definition is replaced in the catalog.

mask-name
Names the column mask. The name, including the implicit or explicit qualifier,
must not identify a column mask or a row permission that already exists at the
current server (SQLSTATE 42710).

table-name
Identifies the table on which the column mask is created. The name must
identify a table that exists at the current server (SQLSTATE 42704). It must not
identify a nickname, created or declared temporary table, view, synonym,
typed table, alias (SQLSTATE 42809), base table of a shadow table (SQLSTATE
428HZ), or catalog table (SQLSTATE 42832).

correlation-name
Specifies a correlation name that can be used within case-expression to designate
the table.

CREATE MASK

Statements 581



FOR COLUMN column-name
Identifies the column to which the mask applies. column-name must be an
unqualified name that identifies a column of the table (SQLSTATE 42703). A
mask must not already exist for the column (SQLSTATE 428HC). The column
must not be any of the following columns:
v A LOB column or a distinct type column that is based on a LOB (SQLSTATE

42962).
v An XML column (SQLSTATE 42962).
v A column referenced in an expression that defines a generated column

(SQLSTATE 428HB).

RETURN case-expression
Specifies a CASE expression to be evaluated to determine the value to return
for the column (SQLSTATE 42601). The result of the CASE expression is
returned in place of the column value in a row. The result data type, null
attribute, and length attribute of the CASE expression must be identical to
those of column-name (SQLSTATE 428HB). If the data type of column-name is a
user-defined data type, the result data type of the CASE expression must be
the same user-defined data type. The CASE expression must not reference any
of the following objects or elements (SQLSTATE 428HB):
v A created global temporary table or a declared global temporary table.
v A shadow table.
v A nickname.
v A table function.
v A method.
v A parameter marker (SQLSTATE 42601).
v A user-defined function that is defined as not secure.
v A function or expression (such as row change expression, sequence

expression) that is non-deterministic or has an external action.
v An XMLQUERY scalar function.
v An XMLEXISTS predicate.
v An OLAP specification.
v A * or name.* in a SELECT clause.
v A pseudo-column.
v An aggregate function without specifying the SELECT clause.
v A view that includes any of the previously listed restrictions in its definition.

If the CASE expression references tables for which row or column access
control is currently activated, access control from those tables are not cascaded.
See the Notes section for details.

ENABLE or DISABLE
Specifies that the column mask is to be enabled or disabled for column access
control. The default is DISABLE.

DISABLE
Specifies that the column mask is to be disabled for column access control.
If column access control is not currently activated for the table, the column
mask will remain ineffective when column access control is activated for
the table.

ENABLE
Specifies that the column mask is to be enabled for column access control.
If column access control is not currently activated for the table, the column

CREATE MASK

582 SQL Reference Volume 2



mask will become effective when column access control is activated for the
table. If column access control is currently activated for the table, the
column mask becomes effective immediately and all packages and
dynamic cached statements that reference the table are invalidated.

The application of enabled column masks does not interfere with the
operations of other clauses within the statement such as the WHERE, GROUP
BY, HAVING, SELECT DISTINCT, and ORDER BY. The rows returned in the
final result table remain the same, except that the values in the resulting rows
might be masked by the column masks. As such, if the masked column also
appears in an ORDER BY sort-key, the order is based on the original column
values and the masked values in the final result table might not reflect that
order. Similarly, the masked values might not reflect the uniqueness enforced
by SELECT DISTINCT. If the masked column is embedded in an expression,
the result of the expression might become different because the column mask is
applied on the column before the expression evaluation can take place. For
example, applying a column mask on column SSN might change the result of
aggregate function COUNT(DISTINCT SSN) because the DISTINCT operation
is performed on the masked values. On the other hand, if the expression in the
query is the same as the expression used to mask the column value in the
column mask definition, the result of the expression might remain unchanged.
For example, the expression in the query is 'XXX-XX-' || SUBSTR(SSN, 8, 4)
and the same expression appears in the column mask definition. In this
particular example, you can replace the expression in the query with column
SSN to avoid the same expression getting evaluated twice.

A column mask is created as a stand alone object without knowing all of the
contexts in which it might be used. To mask a column value in the final result
table, the column mask definition is merged into a query by the database
manager. When the column mask definition is brought into the context of the
statement, it might conflict with certain SQL semantics in the statement.
Therefore, in some situations, the combination of the statement and the
application of the column mask might return an error (SQLSTATE 428HD).
When this happens, either the statement needs to be modified or the column
mask must be dropped or recreated with a different definition. See the ALTER
TABLE statement description for those situations where a bind time error
might be issued for the statement.

If the column is not nullable, its column mask definition will not consider a
null value for the column. After column access control is activated for the
target table, if the target table is the null-padded table in an outer join
operation, the column value in the final result table might be a null. To ensure
the column mask has the ability to mask a null value, when the database
manager merges the column mask definition into the query, if the target table
is the null-padded table in an outer join operation, "WHEN target-column IS
NULL THEN NULL" will be added as the first WHEN clause to the column
mask definition. This forces a null value to be always masked to a null. For a
nullable column, this takes away the ability to mask a null value to something
else but it is an acceptable restriction from security and usability standpoints.

When a column is used to derive the new value for an INSERT, UPDATE,
MERGE, or a SET transition-variable assignment statement, the original column
value, not the masked value, is used to derive the new value. If the column
has a column mask, that column mask is applied to ensure the evaluation of
the access control rules at run time masks the column to itself, not to a
constant or an expression. This is to ensure the masked values are the same as
the original column values. If a column mask does not mask the column to

CREATE MASK

Statements 583



itself, the existing row is not updated or the new row is not inserted and an
error is returned at run time (SQLSTATE 428HD). If there is a requirement for
masked data to be inserted into a table, it can be done by first assigning the
data to a variable. For example, an array variable can be created with the array
elements having a row data type. Table data with column masks applied can
be assigned to the array variable, which can then be used to insert the data
into some other table. The rules that are used to apply column masks in to
derive the new values follow the same rules described previously for the final
result table of a query. See the INSERT, UPDATE, and MERGE statements for
how the column masks are used to affect the insert and update operation.

See the ALTER TABLE statement with the ACTIVATE COLUMN ACCESS
CONTROL clause for information about how to activate column access control
for the table and how a column mask is applied.

Notes
v Column masks that are created before column access control is activated for a

table: The CREATE MASK statement is an independent statement that can be
used to create a column access control mask before column access control is
activated for a table. The only requirement is that the table and the columns
exist before the mask is created. Multiple column masks can be created for a
table but a column can have one mask only.
The definition of a mask is stored in the database catalog. Dependency on the
table for which the mask is being created and dependencies on other objects
referenced in the definition are recorded. No package or dynamic cached
statement is invalidated. A column mask can be created as enabled or disabled
for column access control. An enabled column mask does not take effect until
the ALTER TABLE statement with the ACTIVATE COLUMN ACCESS
CONTROL clause is used to activate column access control for the table.
SECADM authority is required to issue such an ALTER TABLE statement. A
disabled column mask remains ineffective even when column access control is
activated for the table. The ALTER MASK statement can be used to alter
between ENABLE and DISABLE.
After column access control is activated for a table, when the table is referenced
in a data manipulation statement, all enabled column masks that have been
created for the table are implicitly applied by the database manager to mask the
values returned for the columns referenced in the final result table of the queries
or to determine the new values used in the data change statements.
Creating column masks before activating column access control for a table is the
recommended sequence to avoid multiple invalidations of packages and
dynamic cached statements that reference the table.

v Column masks that are created after column access control is activated for a
table: The enabled column masks become effective as soon as they are
committed. All the packages and dynamic cached statements that reference the
table are invalidated. Thereafter, when the table is referenced in a data
manipulation statement, all enabled column masks are implicitly applied by the
database manager to the statement. Any disabled column masks remain
ineffective even when column access control is activated for the table.

v No cascaded effect when column or row access control enforced tables are
referenced in column mask definitions: A column mask definition can reference
tables and columns that are currently enforced by row or column access control.
Access control from those tables and columns are ignored when the table for
which the column mask is being created is referenced in a data manipulation
statement.

CREATE MASK

584 SQL Reference Volume 2



v Consideration for database limits: If the data manipulation statement already
approaches some database limits in the statement, the more enabled column
masks and enabled row permissions are created, the more likely they might
affect some limits. This is because the enabled column mask and enabled row
permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement.

v Column masks that are enabled but in the invalid state: If a column mask is
enabled for column access control but its state is set to invalid, access to the
table on which the column mask is defined is blocked until this situation is
resolved (SQLSTATE 560D0).

v Column masks that return data which is not assignable to the column the
mask is defined on: A column mask can be defined so it can return data which
is not assignable to the data type of the column the mask is defined on. When
this occurs, the CREATE MASK statement is successful but a cast error will be
reported when the mask is applied in a user query.

Examples
v Example 1: After column access control is activated for table EMPLOYEE, Paul

from the payroll department can see the social security number of the employee
whose employee number is 123456. Mary who is a manager can see only the last
four characters of the social security number. Peter who is neither role cannot
see the social security number.
CREATE MASK SSN_MASK ON EMPLOYEE
FOR COLUMN SSN RETURN
CASE WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,’PAYROLL’) = 1)

THEN SSN
WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,’MGR’) = 1)

THEN ’XXX-XX-’ || SUBSTR(SSN,8,4)
ELSE NULL

END
ENABLE;

ALTER TABLE EMPLOYEE ACTIVATE COLUMN ACCESS CONTROL;
SELECT SSN FROM EMPLOYEE WHERE EMPNO = 123456;

v Example 2: In the SELECT statement, column SSN is embedded in an expression
that is the same as the expression used in the column mask SSN_MASK. After
column access control is activated for table EMPLOYEE, the column mask
SSN_MASK is applied to column SSN in the SELECT statement. For this
particular expression, the SELECT statement produces the same result as before
column access control is activated for all users. The user can replace the
expression in the SELECT statement with column SSN to avoid the same
expression getting evaluated twice.
CREATE MASK SSN_MASK ON EMPLOYEE
FOR COLUMN SSN RETURN
CASE WHEN (1 = 1) THEN ’XXX-XX-’ || SUBSTR(SSN,8,4)

ELSE NULL
END

ENABLE;
ALTER TABLE EMPLOYEE ACTIVATE COLUMN ACCESS CONTROL;
SELECT ’XXX-XX-’ || SUBSTR(SSN,8,4) FROM EMPLOYEE WHERE EMPNO = 123456;

v Example 3: The California state government conducted a survey for the library
usage of the households in each city. Fifty households in each city were sampled
in the survey. Each household was given an option, opt-in or opt-out, to show
whether their usage in any reports generated from the result of the survey.
A SELECT statement is used to generate a report to show the average hours
used by households in each city. Column mask CITY_MASK is created to mask
the city name based on the opt-in or opt-out information chosen by the sampled
households. However, after column access control is activated for table

CREATE MASK

Statements 585



LIBRARY_USAGE, the SELECT statement receives a bind time error. This is
because column mask CITY_MASK references another column LIBRARY_OPT
and LIBRARY_OPT does not identify a grouping column.
CREATE MASK CITY_MASK ON LIBRARY_USAGE
FOR COLUMN CITY RETURN

CASE WHEN (LIBRARY_OPT = ’OPT-IN’) THEN CITY
ELSE ’ ’

END
ENABLE;

ALTER TABLE LIBRARY_USAGE ACTIVATE COLUMN ACCESS CONTROL;
SELECT CITY, AVG(LIBRARY_TIME) FROM LIBRARY_USAGE GROUP BY CITY;

v Example 4: Employee with EMPNO 123456 earns bonus $8000 and salary $80000
in May. When the manager retrieves his salary, the manager receives his salary,
not the null value. This is because of no cascaded effect when column mask
SALARY_MASK references column BONUS for which column mask
BONUS_MASK is defined.
CREATE MASK SALARY_MASK ON EMPLOYEE

FOR COLUMN SALARY RETURN
CASE WHEN (BONUS < 10000) THEN SALARY

ELSE NULL
END

ENABLE;
CREATE MASK BONUS_MASK ON EMPLOYEE
FOR COLUMN BONUS RETURN

CASE WHEN (BONUS > 5000) THEN NULL
ELSE BONUS

END
ENABLE;

ALTER TABLE EMPLOYEE ACTIVATE COLUMN ACCESS CONTROL;
SELECT SALARY FROM EMPLOYEE WHERE EMPNO = 123456;

CREATE MASK

586 SQL Reference Volume 2



CREATE METHOD
The CREATE METHOD statement is used to associate a method body with a
method specification that is already part of the definition of a user-defined
structured type.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CREATEIN privilege on the schema of the structured type referred to in the

CREATE METHOD statement
v The owner of the structured type referred to in the CREATE METHOD

statement
v DBADM authority

To associate an external method body with its method specification, the privileges
held by the authorization ID of the statement must also include at least one of the
following authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database
v DBADM authority

When creating an SQL method, the privileges held by the authorization ID of the
statement must also include at least one of the following authorities for each table,
view, or nickname identified in any fullselect:
v CONTROL privilege on that table, view, or nickname
v SELECT privilege on that table, view, or nickname
v DATAACCESS authority

Group privileges other than PUBLIC are not considered for any table or view
specified in the CREATE METHOD statement.

Authorization requirements of the data source for the table or view referenced by
the nickname are applied when the method is invoked. The authorization ID of the
connection can be mapped to a different remote authorization ID.

Syntax

�� CREATE METHOD method-name FOR type-name
method-signature

SPECIFIC METHOD specific-name

�

CREATE METHOD

Statements 587



� * EXTERNAL * *
NAME 'string' TRANSFORM GROUP group-name

identifier
INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

SQL-method-body
INHERIT ISOLATION LEVEL WITH LOCK REQUEST

��

method-signature:

�

method-name ( )
,

data-type1
parameter-name AS LOCATOR

�

�
RETURNS data-type2

AS LOCATOR
data-type3 CAST FROM data-type4

AS LOCATOR

SQL-method-body:

RETURN
(1)

Compound SQL (inlined)

Notes:

1 The compound SQL (inlined) statement is only supported for an
SQL-method-body in an SQL method definition in a non-partitioned database.

Description

METHOD
Identifies an existing method specification that is associated with a
user-defined structured type. The method-specification can be identified
through one of the following means:

method-name
Names the method specification for which a method body is being defined.
The implicit schema is the schema of the subject type (type-name). There
must be only one method specification for type-name that has this
method-name (SQLSTATE 42725).

method-signature
Provides the method signature which uniquely identifies the method to be
defined. The method signature must match the method specification that
was provided on the CREATE TYPE or ALTER TYPE statement
(SQLSTATE 42883).

method-name
Names the method specification for which a method body is being
defined. The implicit schema is the schema of the subject type
(type-name).

parameter-name
Identifies the parameter name. If parameter names are provided in
the method signature, they must be exactly the same as the

CREATE METHOD

588 SQL Reference Volume 2



corresponding parts of the matching method specification.
Parameter names are supported in this statement solely for
documentation purposes.

data-type1
Specifies the data type of each parameter. Array types are not
supported (SQLSTATE 42815).

For a more complete description of each built-in data type, see
"CREATE TABLE".

Character and graphic string data types cannot specify string units
of CODEUNITS32.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB
type, the AS LOCATOR clause can be added.

RETURNS
This clause identifies the output of the method. If a RETURNS clause
is provided in the method signature, it must be exactly the same as the
corresponding part of the matching method specification on CREATE
TYPE. The RETURNS clause is supported in this statement solely for
documentation purposes.

data-type2
Specifies the data type of the output. Array types are not
supported (SQLSTATE 42815).

AS LOCATOR
For LOB types or distinct types which are based on LOB types,
the AS LOCATOR clause can be added. This indicates that a
LOB locator is to be returned by the method instead of the
actual value.

data-type3 CAST FROM data-type4
This form of the RETURNS clause is used to return a different data
type to the invoking statement from the data type that was
returned by the function code.

AS LOCATOR
For LOB types or distinct types which are based on LOB types,
the AS LOCATOR clause can be used to indicate that a LOB
locator is to be returned from the method instead of the actual
value.

FOR type-name
Names the type for which the specified method is to be associated. The
name must identify a type already described in the catalog (SQLSTATE
42704). In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names.

SPECIFIC METHOD specific-name
Identifies the particular method, using the specific name either specified or
defaulted to at CREATE TYPE time. The specific-name must identify a method
specification in the named or implicit schema; otherwise, an error is raised
(SQLSTATE 42704).

EXTERNAL
This clause indicates that the CREATE METHOD statement is being used to

CREATE METHOD

Statements 589



register a method, based on code written in an external programming
language, and adhering to the documented linkage conventions and interface.
The matching method-specification in CREATE TYPE must specify a
LANGUAGE other than SQL. When the method is invoked, the subject of the
method is passed to the implementation as an implicit first parameter.

If the NAME clause is not specified, "NAME method-name" is assumed.

NAME
This clause identifies the name of the user-written code which implements
the method being defined.

'string'
The 'string' option is a string constant with a maximum of 254 bytes.
The format used for the string is dependent on the LANGUAGE
specified. For more information about the specific language
conventions, see “CREATE FUNCTION (External Scalar) statement”.

identifier
This identifier specified is an SQL identifier. The SQL identifier is used
as the library-id in the string. Unless it is a delimited identifier, the
identifier is folded to upper case. If the identifier is qualified with a
schema name, the schema name portion is ignored. This form of
NAME can only be used with LANGUAGE C (as defined in the
method-specification on CREATE TYPE).

TRANSFORM GROUP group-name
Indicates the transform group that is used for user-defined structured type
transformations when invoking the method. A transform is required since the
method definition includes a user-defined structured type.

It is strongly recommended that a transform group name be specified; if this
clause is not specified, the default group-name used is DB2_FUNCTION. If the
specified (or default) group-name is not defined for a referenced structured
type, an error results (SQLSTATE 42741). Likewise, if a required FROM SQL or
TO SQL transform function is not defined for the given group-name and
structured type, an error results (SQLSTATE 42744).

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST or INHERIT ISOLATION LEVEL
WITH LOCK REQUEST

Specifies whether or not a lock request can be associated with the
isolation-clause of the statement when the method inherits the isolation level of
the statement that invokes the method. The default is INHERIT ISOLATION
LEVEL WITHOUT LOCK REQUEST.

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST
Specifies that, as the method inherits the isolation level of the invoking
statement, it cannot be invoked in the context of an SQL statement which
includes a lock-request-clause as part of a specified isolation-clause
(SQLSTATE 42601).

INHERIT ISOLATION LEVEL WITH LOCK REQUEST
Specifies that, as the method inherits the isolation level of the invoking
statement, it also inherits the specified lock-request-clause.

SQL-method-body
The SQL-method-body defines how the method is implemented if the method
specification in CREATE TYPE is LANGUAGE SQL.

The SQL-method-body must comply with the following parts of method
specification:

CREATE METHOD

590 SQL Reference Volume 2



v DETERMINISTIC or NOT DETERMINISTIC (SQLSTATE 428C2)
v EXTERNAL ACTION or NO EXTERNAL ACTION (SQLSTATE 428C2)
v CONTAINS SQL or READS SQL DATA (SQLSTATE 42985)

Parameter names can be referenced in the SQL-method-body. The subject of the
method is passed to the method implementation as an implicit first parameter
named SELF.

For additional details, see "Compound SQL (inlined) statement" and "RETURN
statement".

Rules
v The method specification must be previously defined using the CREATE TYPE

or ALTER TYPE statement before CREATE METHOD can be used (SQLSTATE
42723).

v If the method being created is an overriding method, those packages that are
dependent on the following methods are invalidated:
– The original method
– Other overriding methods that have as their subject a supertype of the

method being created
v The XML data type cannot be used in a method.

Notes
v If the method allows SQL, the external program must not attempt to access any

federated objects (SQLSTATE 55047).
v Privileges: The definer of a method always receives the EXECUTE privilege on

the method, as well as the right to drop the method.
If an EXTERNAL method is created, the definer of the method always receives
the EXECUTE privilege WITH GRANT OPTION.
If an SQL method is created, the definer of the method will only be given the
EXECUTE privilege WITH GRANT OPTION on the method when the definer
has WITH GRANT OPTION on all privileges required to define the method, or
if the definer has SYSADM or DBADM authority. The definer of an SQL method
only acquires privileges if the privileges from which they are derived exist at the
time the method is created. The definer must have these privileges either
directly, or because PUBLIC has the privileges. Privileges held by groups of
which the method definer is a member are not considered. When using the
method, the connected user's authorization ID must have the valid privileges on
the table or view that the nickname references at the data source.

v Table access restrictions: If a method is defined as READS SQL DATA, no
statement in the method can access a table that is being modified by the
statement which invoked the method (SQLSTATE 57053).

Examples
v Example 1:

CREATE METHOD BONUS (RATE DOUBLE)
FOR EMP
RETURN SELF..SALARY * RATE

v Example 2:
CREATE METHOD SAMEZIP (addr address_t)

RETURNS INTEGER
FOR address_t
RETURN

(CASE

CREATE METHOD

Statements 591



WHEN (self..zip = addr..zip)
THEN 1

ELSE 0
END)

v Example 3:
CREATE METHOD DISTANCE (address_t)

FOR address_t
EXTERNAL NAME ’addresslib!distance’
TRANSFORM GROUP func_group

CREATE METHOD

592 SQL Reference Volume 2



CREATE MODULE
The CREATE MODULE statement creates a module at the application server.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the module does not exist.
v CREATEIN privilege on the schema, if the schema name of the module refers to

an existing schema.
v DBADM authority

To replace an existing module, the authorization ID of the statement must be the
owner of the existing module (SQLSTATE 42501).

Syntax

�� CREATE MODULE module-name
OR REPLACE

��

Description

OR REPLACE
Specifies replacing the definition for the module if one exists at the current
server. The existing module definition is effectively dropped, including all the
objects in the module, before the new definition is replaced in the catalog, with
the exception that privileges that were granted on the module are not affected.
This option is ignored if a definition for the module does not exist at the
current server. This option can be specified only by the owner of the object.

module-name
Names the module. The name, including the implicit or explicit qualifier, must
not identify an existing module at the current server. The module name and
the schema name must not begin with the characters 'SYS' (SQLSTATE 42939)
and use of SESSION is not recommended.

Notes
v A module is intended to be a collection of other database objects. Once a module

is created, objects in the module are managed using the ALTER MODULE
statement. A module can include functions, procedures, types, global variables
and conditions. The objects in a module can be published to make them
available for reference from outside the module. If an object is not published, it
can only be referenced from within the module. A module can be considered to
consist of 2 parts:
– The module specification consists of all the published objects excluding the

bodies of any routines.

CREATE MODULE

Statements 593



– The module body which consists of all objects that are not published and the
bodies of any published routines.

The module management actions include
– ADD to add an object to the module without publishing it or to replace a

routine prototype with the implemented routine definition.
– PUBLISH to add an object to the module and publish it.
– COMMENT on objects in the module.
– DROP to drop an object within the module or drop the module body.

At least one published object should exist in a module in order to have some
way to reference the module.

Example

Create a module named salesModule
CREATE MODULE salesModule

CREATE MODULE

594 SQL Reference Volume 2



CREATE NICKNAME
The CREATE NICKNAME statement defines a nickname for a data source object.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CREATETAB authority on the federated database, as well as one of:

– IMPLICIT_SCHEMA authority on the federated database, if the implicit or
explicit schema name of the nickname does not exist

– CREATEIN privilege on the schema, if the schema name of the nickname
refers to an existing schema

v DBADM authority

For data sources that require a user mapping, the privileges held by the
authorization ID at the data source must include the privilege to select data from
the object that the nickname represents.

To replace an existing nickname, the authorization ID of the statement must be the
owner of the existing nickname (SQLSTATE 42501).

Syntax

�� CREATE NICKNAME nickname
OR REPLACE

�

� FOR remote-object-name
non-relational-data-definition

�

�

�

,

OPTIONS ( nickname-option-name string-constant )

��

non-relational-data-definition:

nickname-column-list FOR SERVER server-name

CREATE NICKNAME

Statements 595



nickname-column-list:

�

,

( nickname-column-definition )
unique-constraint
referential-constraint
check-constraint

nickname-column-definition:

column-name local-data-type nickname-column-options

local-data-type:

built-in-type
(1)

distinct-type-name

built-in-type:

CREATE NICKNAME

596 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer ) (2)

OCTETS FOR BIT DATA
VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR

(1M)
CLOB
CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M
G

(1)
GRAPHIC

(integer )
CODEUNITS16

VARGRAPHIC (integer )
CODEUNITS16

(1M)
DBCLOB

(integer )
K CODEUNITS16
M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

nickname-column-options:

�

NOT NULL
PRIMARY KEY constraint-attributes

CONSTRAINT constraint-name UNIQUE
references-clause

CHECK ( check-condition ) constraint-attributes
federated-column-options

federated-column-options:

�

,

OPTIONS ( column-option-name string-constant )

CREATE NICKNAME

Statements 597



unique-constraint:

CONSTRAINT constraint-name
UNIQUE
PRIMARY KEY

�

,

( column-name ) �

� constraint-attributes

referential-constraint:

CONSTRAINT constraint-name
FOREIGN KEY �

,

( column-name ) �

� references-clause

references-clause:

REFERENCES table-name
nickname

�

,

( column-name )

�

� constraint-attributes

check-constraint:

CONSTRAINT constraint-name
CHECK ( check-condition ) �

� constraint-attributes

check-condition:

search-condition
functional-dependency

functional-dependency:

� �

column-name DETERMINED BY column-name
, ,

( column-name ) ( column-name )

CREATE NICKNAME

598 SQL Reference Volume 2



constraint-attributes:

*

TRUSTED
NOT ENFORCED

NOT TRUSTED
*

ENABLE QUERY OPTIMIZATION

(3)
DISABLE QUERY OPTIMIZATION

*

Notes:

1 The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type (SQLSTATE 428H2).

2 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow.

3 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary
key constraint.

Description

OR REPLACE
Specifies to replace the definition for the nickname if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the nickname are not affected. This option is ignored if a definition for the
nickname does not exist at the current server. This option can be specified only
by the owner of the object.

nickname
Specifies a nickname, the identifier used by the federated server for the data
source object. The nickname, including the implicit or explicit qualifier, must
not identify a table, view, nickname, or alias described in the catalog. The
schema name must not begin with 'SYS' (SQLSTATE 42939).

FOR remote-object-name
Specifies an identifier. For data sources that support schema names, this is a
three-part identifier with the format data-source-name.remote-schema-name.remote-
table-name. For data sources that do not support schema names, this is a
two-part identifier with the format data-source-name.remote-table-name.

data-source-name
Names the data source that contains the table or view for which the
nickname is being created. The data-source-name is the same name that was
assigned to the server-name in the CREATE SERVER statement.

remote-schema-name
Names the schema to which the table or view belongs. If the remote
schema name contains any special or lowercase characters, it must be
enclosed by double quotation marks.

remote-table-name
Names the specific data source object (such as a table, alias of a table, or
view) for which the nickname is being created. The table cannot be a
declared temporary table (SQLSTATE 42995). If the remote table name
contains any special or lowercase characters, it must be enclosed by double
quotation marks.

For DB2 for Linux, UNIX, and Windows you can also specify the alias of a
table, view, or nickname. For DB2 for z/OS or DB2 for i, you can specify
the alias of a table or view.

CREATE NICKNAME

Statements 599



non-relational-data-definition
Defines the data that is to be accessed through a nonrelational wrapper.

nickname-column-definition
Defines the local attributes of the column for the nickname. Some
wrappers require these attributes to be specified, while other wrappers
allow the attributes to be determined from the data source.

column-name
Specifies the local name for the column. The name might be different
than the corresponding column of the remote-object-name.

local-data-type
Specifies the local data type for the column. Some wrappers only
support a subset of the SQL data types. For descriptions of specific
data types, see “CREATE TABLE” .

built-in-type
See "CREATE TABLE" for the description of built-in data types.

nickname-column-options
Specifies additional options related to columns of the nickname.

NOT NULL
Specifies that the column does not allow null values.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a
constraint that was already specified within the same CREATE
NICKNAME statement (SQLSTATE 42710).

If this clause is omitted, an 18 byte long identifier that is unique
among the identifiers of existing constraints defined on the
nickname is generated by the system. (The identifier consists of
'SQL' followed by a sequence of 15 numeric characters generated
by a timestamp-based function.)

When used with a PRIMARY KEY or UNIQUE constraint, the
constraint-name can be used as the name of an index specification
that is created to support the constraint.

PRIMARY KEY
This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the
PRIMARY KEY(C) clause is specified as a separate clause.

See PRIMARY KEY within the description of unique-constraint.

UNIQUE
This provides a shorthand method of defining a unique key
composed of a single column. Thus, if UNIQUE is specified in the
definition of column C, the effect is the same as if the UNIQUE(C)
clause is specified as a separate clause.

See UNIQUE within the description of unique-constraint.

references-clause
This provides a shorthand method of defining a foreign key
composed of a single column. Thus, if a references-clause is
specified in the definition of column C, the effect is the same as if
that references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column.

CREATE NICKNAME

600 SQL Reference Volume 2



See references-clause within the description of referential-constraint.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint
that applies to a single column. See description for CHECK
(check-condition).

OPTIONS
Indicates the column options that are added when the nickname is
created. Some wrappers require that certain column options be
specified.

column-option-name
Specifies the name of the option.

string-constant
Specifies the setting for column-option-name as a character string
constant.

unique-constraint
Defines a unique or primary key constraint.

CONSTRAINT constraint-name
Names the primary key or unique constraint.

UNIQUE (column-name,...)
Defines a unique key composed of the identified columns. The identified
columns must be defined as NOT NULL. Each column-name must identify a
column of the nickname and the same column must not be identified more
than once.

The number of identified columns must not exceed 64, and the sum of
their stored lengths must not exceed the index key length limit for the
page size. For column stored lengths, see “Byte Counts” in “CREATE
TABLE”. For key length limits, see “SQL and XQuery limits”. No LOB
column, distinct type column based on a LOB, or structured type column
can be used as part of a unique key, even if the length attribute of the
column is small enough to fit within the index key length limit for the
page size (SQLSTATE 54008).

The set of columns in the unique key cannot be the same as the set of
columns in the primary key or another unique key (SQLSTATE 01543). (If
LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

The description of the nickname as recorded in the catalog includes the
unique key and its index specification. An index specification will
automatically be created for the columns in the sequence specified with
ascending order for each column. The name of the index specification will
be the same as the constraint-name if this does not conflict with an existing
index or index specification in the schema where the nickname is created.
If the name of the index specification conflicts, the name will be 'SQL'
followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as
the schema name.

PRIMARY KEY (column-name,...)
Defines a primary key composed of the identified columns. The clause
must not be specified more than once, and the identified columns must be
defined as NOT NULL. Each column-name must identify a column of the
nickname, and the same column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of
their stored lengths must not exceed the index key length limit for the

CREATE NICKNAME

Statements 601



page size. For column stored lengths, see “Byte Counts” in “CREATE
TABLE”. For key length limits, see “SQL and XQuery limits”. No LOB
column, distinct type column based on a LOB, or structured type column
can be used as part of a primary key, even if the length attribute of the
column is small enough to fit within the index key length limit for the
page size (SQLSTATE 54008).

The set of columns in the primary key cannot be the same as the set of
columns in a unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or
MIA, an error is returned, SQLSTATE 42891.)

Only one primary key can be defined on a nickname.

The description of the nickname as recorded in the catalog includes the
primary key and its index specification. An index specification will
automatically be created for the columns in the sequence specified with
ascending order for each column. The name of the index specification will
be the same as the constraint-name if this does not conflict with an existing
index or index specification in the schema where the nickname is created.
If the name of the index specification conflicts, the name will be 'SQL',
followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as
the schema name.

referential-constraint
Defines a referential constraint.

CONSTRAINT constraint-name
Names the referential constraint.

FOREIGN KEY (column-name,...)
Defines a referential constraint with the specified constraint-name.

Let N1 denote the object nickname of the statement. The foreign key of the
referential constraint is composed of the identified columns. Each name in
the list of column names must identify a column of N1, and the same
column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of
their stored lengths must not exceed the index key length limit for the
page size. For column stored lengths, see “Byte Counts” in “CREATE
TABLE”. For key length limits, see “SQL and XQuery limits”. Foreign keys
can be defined on variable length columns whose length is greater than
255 bytes. No LOB column, distinct type column based on a LOB, or
structured type column can be used as part of a foreign key (SQLSTATE
42962). There must be the same number of foreign key columns as there
are in the parent key, and the data types of the corresponding columns
must be compatible (SQLSTATE 42830). Two column descriptions are
compatible if they have compatible data types (both columns are numeric,
character string, graphic, datetime, or have the same distinct type).

references-clause
Specifies the parent table or the parent nickname, and the parent key for
the referential constraint.

REFERENCES table-name or nickname
The table or nickname specified in a REFERENCES clause must
identify a base table or a nickname that is described in the catalog, but
must not identify a catalog table.

A referential constraint is a duplicate if its foreign key, parent key, and
parent table or parent nickname are the same as the foreign key, parent

CREATE NICKNAME

602 SQL Reference Volume 2



key, and parent table or parent nickname of a previously specified
referential constraint. Duplicate referential constraints are ignored, and
a warning is returned (SQLSTATE 01543).

In the following discussion, let N2 denote the identified parent table or
parent nickname, and let N1 denote the nickname being created (or
altered). N1 and N2 may be the same nickname.

The specified foreign key must have the same number of columns as
the parent key of N2, and the description of the nth column of the
foreign key must be comparable to the description of the nth column
of that parent key. Datetime columns are not considered to be
comparable to string columns for the purposes of this rule.

The referential constraint specified by a FOREIGN KEY clause defines
a relationship in which N2 is the parent and N1 is the dependent.

(column-name,...)
The parent key of a referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that
identifies a column of N2. The same column must not be identified
more than once.

The list of column names must match the set of columns (in any order)
of the primary key or a unique constraint that exists on N2 (SQLSTATE
42890). If a column name list is not specified, N2 must have a primary
key (SQLSTATE 42888). Omission of the column name list is an
implicit specification of the columns of that primary key in the
sequence originally specified.

constraint-attributes
Defines attributes associated with referential integrity or check
constraints.

NOT ENFORCED
The constraint is not enforced by the database manager during
normal operations, such as insert, update, or delete.

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED
must be used only if the data in the table is independently
known to conform to the constraint. Query results might be
unpredictable if the data does not actually conform to the
constraint. This is the default option.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT
TRUSTED is intended for cases where the data conforms to the
constraint for most rows, but it is not independently known
that all the rows or future additions will conform to the
constraint. If a constraint is NOT TRUSTED and enabled for
query optimization, then it will not be used to perform
optimizations that depend on the data conforming completely
to the constraint. NOT TRUSTED can be specified only for
referential integrity constraints (SQLSTATE 42613).

ENABLE QUERY OPTIMIZATION
The constraint is assumed to be true and can be used for query
optimization under appropriate circumstances.

CREATE NICKNAME

Statements 603



DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

check-constraint
Defines a check constraint. A check-constraint is a search-condition that must
evaluate to not false or that defines a functional dependency between columns.

CONSTRAINT constraint-name
Names the check constraint.

CHECK (check-condition)
Defines a check constraint. The check-condition must be true or unknown
for every row of the nickname.

search-condition
The search-condition has the following restrictions:
v A column reference must be to a column of the nickname being

created.
v The search-condition cannot contain a TYPE predicate.
v It cannot contain any of the following elements (SQLSTATE 42621):

– Subqueries
– Dereference operations or DEREF functions where the scoped

reference argument is other than the object identifier (OID)
column

– CAST specifications with a SCOPE clause
– Column functions
– Functions that are not deterministic
– Functions defined to have an external action
– User-defined functions defined with either CONTAINS SQL or

READS SQL DATA
– Host variables
– Parameter markers
– Special registers and built-in functions that depend on the value

of a special register
– Global variables
– References to generated columns other than the identity column

functional-dependency
Defines a functional dependency between columns.

The parent set of columns contains the identified columns that
immediately precede the DETERMINED BY clause. The child set of
columns contains the identified columns that immediately follow the
DETERMINED BY clause. All of the restrictions on the search-condition
apply to parent set and child set columns, and only simple column
references are allowed in the set of columns (SQLSTATE 42621). The
same column must not be identified more than once in the functional
dependency (SQLSTATE 42709). The data type of the column must not
be a LOB data type, a distinct type based on a LOB data type, or a
structured type (SQLSTATE 42962). No column in the child set of
columns can be a nullable column (SQLSTATE 42621).

If a check constraint is specified as part of a column-definition, a column
reference can only be made to the same column. Check constraints
specified as part of a nickname definition can have column references

CREATE NICKNAME

604 SQL Reference Volume 2



identifying columns previously defined in the CREATE NICKNAME
statement. Check constraints are not checked for inconsistencies, duplicate
conditions, or equivalent conditions. Therefore, contradictory or redundant
check constraints can be defined, resulting in possible errors at execution
time.

FOR SERVER server-name
Specifies a server that was registered using the CREATE SERVER statement.
This server will be used to access the data for the nickname.

OPTIONS
Indicates the nickname options that are enabled when the nickname is created.

nickname-option-name
Specifies the name of the option.

string-constant
Specifies the setting for nickname-option-name as a character string constant.

Notes
v Examples of relational data source objects are: tables and views. Examples of

nonrelational data source objects are: Documentum objects or registered tables,
text files (.txt), and Microsoft Excel files (.xls).

v The data source object that the nickname references must already exist at the
data source denoted by the first qualifier in remote-object-name.

v The list of supported data source data types varies from wrapper to wrapper.
XML and REF data source data types are not supported by any of the wrappers.
DECFLOAT data source data type is supported only by the DB2 wrapper for
IBM DB2 for Linux, UNIX, and Windows Version 9.5 or later. When the CREATE
NICKNAME statement specifies a remote-object-name that has columns with
unsupported data types, an error is returned.
LONG VARCHAR and LONG VARGRAPHIC data source data types are
mapped to CLOB and DBCLOB data types, respectively. LONG VARCHAR FOR
BIT DATA is mapped to BLOB.

v The maximum allowable length for index names is 128 bytes. If a nickname is
being created for a relational table that has an index whose name exceeds this
length, the entire name is not cataloged. Rather, it is truncated to 128 bytes. If
the string formed by these characters is not unique within the schema to which
the index belongs, an attempt is made to make it unique by replacing the last
character with 0. If the result is still not unique, the last character is changed to
1. This process is repeated with numbers 2 through 9 and, if necessary, with
numbers 0 through 9 for the name's 127th character, 126th character, and so on,
until a unique name is generated. To illustrate: The 130-byte name of an index
on a data source table is AREALLY...REALLYLONGNAME. The names
AREALLY...REALLYLONGNA and AREALLY...REALLYLONGN0 already exist in
the schema to which this index belongs. The new name is over 128 bytes;
therefore, it is truncated to AREALLY...REALLYLONGNA. Because this name
already exists in the schema, the truncated version is changed to
AREALLY...REALLYLONGN0. Because this name also exists, the truncated
version is changed to AREALLY...REALLYLONGN1. This name does not already
exist in the schema, so it is accepted as a new name.

v When a nickname is created for a data source object, the names of the nickname
columns are stored in the catalog. When the data source object is a table or a
view, the nickname column names are created to be the same as the table or
view column names. If a name exceeds the maximum allowable length for a
database column name, the name is truncated to this length. If the truncated

CREATE NICKNAME

Statements 605



version is not unique among the other column names in the table or view, it is
made unique by following the procedure described in the preceding paragraph.

v If the data source object has indexes defined, index specifications for each index
are created when the nickname is created. Index specifications are not created at
the data source for indexes that have:
– Duplicate column names
– More than 64 columns
– More than 1024 bytes in the sum of the length of the index key parts

v If the definition of a remote data source object is changed (for example, a
column is deleted or a data type is changed), the nickname should be dropped
and recreated; otherwise, errors might occur when the nickname is used in an
SQL statement.

v Caching and protected objects: When a nickname is created, if the data source
object is not protected, ALLOW CACHING is in effect for the nickname. If the
federated server can detect that the data source object is protected, DISALLOW
CACHING is in effect for the nickname. The DISALLOW CACHING option ensures that
each time the nickname is used, data for the appropriate authorization ID is
returned from the data source at query execution time. This is done by
restricting the nickname from being used in the definition of a materialized
query table at the federated server, which might be being used to cache the
nickname data. The ALTER NICKNAME statement can be used to change
between ALLOW CACHING and DISALLOW CACHING.

v Syntax alternatives: The following syntax is supported for compatibility with
previous versions of DB2:
– ADD can be specified before nickname-option-name string-constant.
– ADD can be specified before column-option-name string-constant.

Examples
1. Create a nickname for a view, DEPARTMENT, that is in a schema called

HEDGES. This view is stored in a DB2 for z/OS data source called OS390A.
CREATE NICKNAME DEPT

FOR OS390A.HEDGES.DEPARTMENT

2. Select all records from the view for which a nickname was created in Example
1. The view must be referenced by its nickname. The remote view can be
referenced using the name by which it is known at the data source only in
pass-through sessions.
The following statement is valid after nickname DEPT is created:

SELECT * FROM DEPT

The following statement is invalid:
SELECT * FROM OS390A.HEDGES.DEPARTMENT

3. Create a nickname for the remote table JAPAN that is in a schema called
salesdata. Because the schema name and table name on the data source are
stored in lowercase, specify the remote schema name and table name with
double quotation marks:

CREATE NICKNAME JPSALES
FOR asia."salesdata"."japan"

4. Create a nickname for the table-structured file DRUGDATA1.TXT. Include the
FILE_PATH, COLUMN DELIMITER, KEY_COLUMN, and
VALIDATE_DATA_FILE nickname options in the statement.

CREATE NICKNAME DRUGDATA1
(Dcode INTEGER,
DRUG CHAR(20),

CREATE NICKNAME

606 SQL Reference Volume 2



MANUFACTURER CHAR(20))
FOR SERVER biochem_lab
OPTIONS

(FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,
COLUMN_DELIMITER ’,’,
KEY_COLUMN ’DCODE’,
SORTED ’Y’,
VALIDATE_DATA_FILE ’Y’)

5. Create the parent nickname CUSTOMERS over multiple XML files under the
specified directory path /home/dbuser. Include the following options:
v Column options:

– XPATH column option for the VARCHAR(5) column named ID, indicating
the element or attribute in the XML file(s) from which the column data is
extracted

– XPATH column option for the VARCHAR(16) column named NAME,
indicating the element or attribute in the XML file(s) from which the
column data is extracted

– XPATH column option for the VARCHAR(30) column named ADDRESS,
indicating the element or attribute in the XML file(s) from which the
column data is extracted

– PRIMARY_KEY column option for the VARCHAR(16) column named CID,
which identifies the customers nickname as a parent nickname in a
hierarchy of nicknames

v Nickname options:
– DIRECTORY_PATH nickname option to indicate the location of the XML

files that provide the data
– XPATH nickname option to indicate the element in the XML files where

the data begins
– STREAMING nickname option to indicate that the XML source data is

separated and processed element by element. In this example, the element
is a customer record.

CREATE NICKNAME customers
(id VARCHAR(5) OPTIONS(XPATH ’./@id’),
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS

(DIRECTORY_PATH ’/home/dbuser’,
XPATH ’//customer’,
STREAMING ’YES’)

CREATE NICKNAME

Statements 607



CREATE PERMISSION
The CREATE PERMISSION statement creates a row permission at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority. SECADM authority can create a row permission in any
schema. Additional privileges are not needed to reference other objects in the
permission definition. For example, the SELECT privilege is not needed to retrieve
from a table, and the EXECUTE privilege is not needed to call a user-defined
function.

Syntax

�� CREATE PERMISSION permission-name ON table-name
OR REPLACE

�

�
AS

correlation-name

�

� FOR ROWS WHERE search-condition ENFORCED FOR ALL ACCESS
DISABLE

ENABLE
��

Description

OR REPLACE
Specifies to replace the definition for the row permission if one exists at the
current server. The existing definition is effectively dropped before the new
definition is replaced in the catalog.

permission-name
Names the row permission. The name, including the implicit or explicit
qualifier, must not identify a row permission or a column mask that already
exists at the current server (SQLSTATE 42710).

table-name
Identifies the table on which the row permission is created. The name must
identify a table that exists at the current server (SQLSTATE 42704). It must not
identify a nickname, created or declared temporary table, view, synonym,
typed table, alias (SQLSTATE 42809), base table of a shadow table (SQLSTATE
428HZ), or catalog table (SQLSTATE 42832).

correlation-name
Specifies a correlation name that can be used within case-expression to designate
the table.

CREATE PERMISSION

608 SQL Reference Volume 2



FOR ROWS WHERE
Indicates that a row permission is created. A row permission specifies a search
condition under which rows of the table can be accessed.

search-condition
Specifies a condition that can be true or false for a row of the table. This
follows the same rules used by the search condition in a WHERE clause of
a subselect query. In addition, the search condition must not reference any
of the following objects or elements (SQLSTATE 428HB):
v A created global temporary table or a declared global temporary table.
v A shadow table.
v A nickname.
v A table function.
v A method.
v A parameter marker (SQLSTATE 42601).
v A user-defined function that is defined as not secure.
v A function or expression (such as row change expression, sequence

expression) that is non deterministic or has an external action
v An XMLQUERY scalar function.
v An XMLEXISTS predicate.
v An OLAP specification.
v A * or name.* in a SELECT clause.
v A pseudocolumn.
v An aggregate function without specifying the SELECT clause.
v A view that includes any of the previously listed restrictions in its

definition.

If search-condition references tables with currently activated row or column
access control, access control from those tables are not cascaded. See
"Notes" for details.

ENFORCED FOR ALL ACCESS
Specifies that the row permission applies to all references of the table. If row
access control is activated for the table, when the table is referenced in a data
manipulation statement, the database manager implicitly applies the row
permission to control the access of the table. If the reference of the table is for a
fetch operation such as SELECT, the application of the row permission
determines what set of rows can be retrieved by the user who requested the
fetch operation. If the reference of the table is for a data change operation such
as INSERT, the application of the row permission determines whether all rows
to be changed can be inserted or updated by the user who requested the data
change operation.

ENABLE or DISABLE
Specifies that the row permission is to be enabled or disabled. The default is
DISABLE.

DISABLE
Specifies that the row permission is to be disabled. If row access control is
not currently activated for the table, the row permission will remain
ineffective when row access control is activated for the table.

ENABLE
Specifies that the row permission is to be enabled for row access control. If
row access control is not currently activated for the table, the row

CREATE PERMISSION

Statements 609



permission will become effective when row access control is activated for
the table. If row access control is currently activated for the table, the row
permission becomes effective immediately and all packages and
dynamically cached statements that reference the table are invalidated.

See the ACTIVATE ROW ACCESS CONTROL clause in the ALTER TABLE
statement for more information about how to activate row access control and
how row permissions are applied.

Notes
v Row permissions that are created before row access control is activated for a

table: The CREATE PERMISSION statement is an independent statement that
can be used to create a row permission before row access control is activated for
a table. The only requirement is that the table and the columns exist before the
permission is created. Multiple row permissions can be created for a table.
The definition of the row permission is stored in the database catalog.
Dependency on the table for which the permission is being created and
dependencies on other objects referenced in the definition are recorded. No
package or dynamic cached statement is invalidated. A row permission can be
created as enabled or disabled for row access control. An enabled row
permission does not take effect until the ALTER TABLE statement with the
ACTIVATE ROW ACCESS CONTROL clause is used to activate row access
control for the table. A disabled row permission remains ineffective even when
row access control is activated for the table. The ALTER PERMISSION statement
can be used to alter between ENABLE and DISABLE.
After row access control is activated for a table, when the table is referenced in a
data manipulation statement, all enabled row permissions that are defined for
the table are implicitly applied by the database manager to control access to the
table.
Creating row permissions before activating row access control for a table is the
recommended sequence to avoid multiple invalidations of packages and
dynamic cached statements that reference the table.

v Row permissions that are created after row access control is activated for a
table: An enabled row permission becomes effective as soon as it is committed.
All the packages and dynamic cached statements that reference the table are
invalidated. Thereafter, when the table is referenced in a data manipulation
statement, all enabled row permissions are implicitly applied to the statement.
Any disabled row permissions remain ineffective even when row access control
is activated for the table.

v No cascaded effect when row or column access control enforced tables are
referenced in row permission definitions: A row permission definition might
reference tables and columns that are currently enforced by row or column
access control. Access control from those tables are ignored when the table for
which the row permission is being created is referenced in a data manipulation
statement.

v Consideration for database limits: If the data manipulation statement already
approaches some database limits in the statement, the more enabled row
permissions and enabled column masks are created, the more likely they might
affect some limits. This is because the enabled column mask and enabled row
permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement. See "SQL and XML Limits" for the
limits of a statement.

CREATE PERMISSION

610 SQL Reference Volume 2



v Permissions that are enabled but in the invalid state: If a permission is enabled
for row access control but its state is set to invalid, access to the table on which
the permission is defined is blocked until this situation is resolved (SQLSTATE
560D0).

Example

The tellers in a bank can only access customers from their own branch. All tellers
are members in role TELLER. The customer service representatives are allowed to
access all customers of the bank. All customer service representatives are members
in role CSR. A row permission is created accordingly for each group of personnel
in the bank by a user with SECADM authority. After row level access control is
activated for table CUSTOMER, in the SELECT statement the search conditions of
both row permissions are merged into the statement and they are combined with
the logical OR operator to control the set of rows accessible by each group.
CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
FOR ROWS WHERE VERIFY_ROLE_FOR_USER
(SESSION_USER,’TELLER’) = 1 AND

BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
WHERE EMP_ID = SESSION_USER)

ENFORCED FOR ALL ACCESS
ENABLE;

CREATE PERMISSION CSR_ROW_ACCESS ON CUSTOMER
FOR ROWS WHERE VERIFY_ROLE_FOR_USER(SESSION_USER,’CSR’) = 1
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE PERMISSION

Statements 611



CREATE PROCEDURE
The CREATE PROCEDURE statement defines a procedure at the current server.

Three different types of procedures can be created using this statement. Each of
these types is described separately.
v External. The procedure body is written in a programming language. The

external executable is referenced by a procedure defined at the current server,
along with various attributes of the procedure.

v Sourced. The procedure body is part of the source procedure, which is
referenced by the sourced procedure that is defined at the current server, along
with various attributes of the procedure. A sourced procedure whose source
procedure is at a data source is also called a federated procedure.

v SQL. The procedure body is written in SQL and defined at the current server,
along with various attributes of the procedure.

The CREATE PROCEDURE statement can be submitted in obfuscated form. In an
obfuscated statement, only the procedure name and its parameters are readable.
The rest of the statement is encoded in such a way that is not readable but can be
decoded by the database server. Obfuscated statements can be produced by calling
the DBMS_DDL.WRAP function.

CREATE PROCEDURE

612 SQL Reference Volume 2



CREATE PROCEDURE (external)
The CREATE PROCEDURE (external) statement defines an external procedure at
the current server.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following authorities:
– IMPLICIT_SCHEMA authority on the database, if the schema name of the

procedure does not refer to an existing schema
– CREATEIN privilege on the schema, if the schema name of the procedure

refers to an existing schema
v DBADM authority

To create a not-fenced procedure, the privileges held by the authorization ID of the
statement must also include at least one of the following authorities:
v CREATE_NOT_FENCED_ROUTINE authority on the database
v DBADM authority

To create a fenced procedure, no additional authorities or privileges are required.

To replace an existing procedure, the authorization ID of the statement must be the
owner of the existing procedure (SQLSTATE 42501).

Syntax

�� CREATE PROCEDURE
OR REPLACE

procedure-name �

�

�

( )
,
IN

data-type
OUT parameter-name default-clause
INOUT

�

� option-list ��

data-type:

built-in-type
array-type-name

CREATE PROCEDURE (external)

Statements 613



built-in-type:

SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME
TIMESTAMP

XML
SYSPROC. (2) (3)

DB2SECURITYLABEL

default-clause:

DEFAULT NULL
constant
special-register
global-variable
( expression )

option-list:

CREATE PROCEDURE (external)

614 SQL Reference Volume 2



* LANGUAGE C
JAVA
COBOL
CLR
OLE

*

SPECIFIC specific-name
* �

�
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer
*

MODIFIES SQL DATA

NO SQL
CONTAINS SQL
READS SQL DATA

* �

�
NOT DETERMINISTIC

DETERMINISTIC
*

CALLED ON NULL INPUT
* �

�
OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL
* EXTERNAL

NAME 'string'
identifier

* �

�
FENCED

FENCED * THREADSAFE
NOT THREADSAFE

THREADSAFE
NOT FENCED *

*

COMMIT ON RETURN NO
*

COMMIT ON RETURN YES
AUTONOMOUS

�

�
EXTERNAL ACTION INHERIT SPECIAL REGISTERS

*

NO EXTERNAL ACTION
�

� PARAMETER STYLE DB2GENERAL
DB2SQL
GENERAL
GENERAL WITH NULLS
JAVA
SQL

*

PARAMETER CCSID ASCII
UNICODE

�

� *

PROGRAM TYPE SUB
MAIN

*

NO DBINFO

DBINFO
*

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define
the row security label column of a protected table.

3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is
implicit and cannot be explicitly specified (SQLSTATE 42842). The default
value for a column of type DB2SECURITYLABEL is the session authorization
ID's security label for write access.

CREATE PROCEDURE (external)

Statements 615



Description

OR REPLACE
Specifies to replace the definition for the procedure if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the procedure are not affected. This option can be specified only by the
owner of the object. This option is ignored if a definition for the procedure
does not exist at the current server. To replace an existing procedure, the
specific name and procedure name of the new definition must be the same as
the specific name and procedure name of the old definition, or the signature of
the new definition must match the signature of the old definition. Otherwise, a
new procedure is created.

procedure-name
Names the procedure being defined. It is a qualified or unqualified name that
designates a procedure. The unqualified form of procedure-name is an SQL
identifier. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements
the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a
period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters must not identify a procedure described in the catalog
(SQLSTATE 42723). The unqualified name, together with the number of the
parameters, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS'
(SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type default-clause,...)
Identifies the parameters of the procedure, and specifies the mode, optional
parameter name, data type, and optional default value of each parameter. One
entry in the list must be specified for each parameter that the procedure will
expect.

No two identically-named procedures within a schema are permitted to have
exactly the same number of parameters. A duplicate signature returns an SQL
error (SQLSTATE 42723).

For example, given the statements:
CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...
CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail, because the number of parameters in the
procedure is the same, even if the data types are not.

If an error is returned by the procedure, OUT parameters are undefined and
INOUT parameters are unchanged.

IN Identifies the parameter as an input parameter to the procedure. Any
changes made to the parameter within the procedure are not available to
the calling SQL application when control is returned. The default is IN.

OUT
Identifies the parameter as an output parameter for the procedure.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure.

CREATE PROCEDURE (external)

616 SQL Reference Volume 2



parameter-name
Optionally specifies the name of the parameter. The parameter name must
be unique for the procedure (SQLSTATE 42734).

data-type
Specifies the data type of the parameter. A structured type cannot be
specified (SQLSTATE 429BB).

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type, see "CREATE TABLE". Only built-in data types that
have a correspondence in the language that is being used to write the
procedure may be specified.
v A datetime type parameter is passed as a character data type, and

the data is passed in the ISO format.
v XML is invalid with LANGUAGE OLE.
v Because the XML value that is seen inside a procedure is a serialized

version of the XML value that is passed as a parameter in the
procedure call, parameters of type XML must be declared using the
syntax XML AS CLOB(n).

v CLR does not support DECIMAL scale greater than 28 (SQLSTATE
42613).

v Decimal floating-point is not supported with languages C, Java
COBOL, CLR, and OLE (SQLSTATE 42613).

array-type-name
Specifies the name of a user-defined array type. If array-type-name is
specified without a schema name, the array type is resolved by searching
the schemas in the SQL path. The array must be an ordinary array and the
procedure must be a Java procedure defined with the PARAMETER STYLE
JAVA clause (SQLSTATE 428H2).

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a
special register, a global variable, an expression or the keyword NULL. The
special registers that can be specified as the default are that same as those
that can be specified for a column default (see "default-clause" in the
"CREATE TABLE" statement). Other special registers can be specified as
the default by using an expression.

The expression can be any expression of the type described in "Expressions".
If a default value is not specified, the parameter has no default and the
corresponding argument cannot be omitted on invocation of the procedure.
The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or
SQLSTATE 429BL). The expression must be assignment compatible to the
parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:
v For INOUT or OUT parameters (SQLSTATE 42601)
v For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being defined.
This specific name can be used when altering, dropping, or commenting on the
procedure. It can never be used to invoke the procedure. The unqualified form
of specific-name is an SQL identifier. The qualified form is a schema-name

CREATE PROCEDURE (external)

Statements 617



followed by a period and an SQL identifier. The name, including the implicit
or explicit qualifier, must not identify another routine instance that exists at the
application server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is
used. If a qualifier is specified, it must be the same as the explicit or implicit
qualifier of procedure-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is 'SQL' followed by a character timestamp:
'SQLyymmddhhmmssxxx'.

DYNAMIC RESULT SETS integer
Indicates the estimated upper bound of returned result sets for the procedure.

MODIFIES SQL DATA, NO SQL, CONTAINS SQL, READS SQL DATA
Specifies the classification of SQL statements that can be run by this procedure,
or any routine that is called by this procedure. The database manager verifies
that the SQL statements issued by the procedure and all routines that are
called by the procedure are consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines (SQL
and External).

The default is MODIFIES SQL DATA.

MODIFIES SQL DATA
Specifies that the procedure can run any SQL statement except statements
that are not supported in procedures (SQLSTATE 38003).

NO SQL
Specifies that the procedure can run only SQL statements with a data
access classification of NO SQL (SQLSTATE 38001).

CONTAINS SQL
Specifies that the procedure can run only statements with a data access
classification of CONTAINS SQL or NO SQL (SQLSTATE 38003 or 38004).

READS SQL DATA
Specifies that the procedure can run statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL
(SQLSTATE 38002 or 38003 or 42985).

DETERMINISTIC or NOT DETERMINISTIC
This clause specifies whether the procedure always returns the same results for
given argument values (DETERMINISTIC) or whether the procedure depends
on some state values that affect the results (NOT DETERMINISTIC). That is, a
DETERMINISTIC procedure must always return the same result from
successive invocations with identical inputs.

This clause currently does not impact processing of the procedure.

CALLED ON NULL INPUT
CALLED ON NULL INPUT always applies to procedures. This means that the
procedure is called regardless of whether any arguments are null. Any OUT or
INOUT parameter can return a null value or a normal (non-null) value.
Responsibility for testing for null argument values lies with the procedure.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether or not this procedure establishes a new savepoint level for

CREATE PROCEDURE (external)

618 SQL Reference Volume 2



savepoint names and effects. OLD SAVEPOINT LEVEL is the default behavior.
For more information about savepoint levels, see the "Rules" section in the
description of the SAVEPOINT statement.

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the procedure body is written.

C This means the database manager will call the procedure as if it were a C
procedure. The procedure must conform to the C language calling and
linkage convention as defined by the standard ANSI C prototype.

JAVA
This means the database manager will call the procedure as a method in a
Java class.

COBOL
This means the database manager will call the procedure as if it were a
COBOL procedure.

CLR
This means the database manager will call the procedure as a method in a
.NET class. At this time, LANGUAGE CLR is only supported for
procedures running on Windows operating systems. NOT FENCED cannot
be specified for a CLR routine (SQLSTATE 42601).

OLE
This means the database manager will call the procedure as if it were a
method exposed by an OLE automation object. The stored-procedure must
conform with the OLE automation data types and invocation mechanism.
Also, the OLE automation object needs to be implemented as an in-process
server (DLL). These restrictions are outlined in the OLE Automation
Programmer's Reference.

LANGUAGE OLE is only supported for procedures stored in databases
running on Windows operating systems. THREADSAFE may not be
specified for procedures defined with LANGUAGE OLE (SQLSTATE
42613).

EXTERNAL
This clause indicates that the CREATE PROCEDURE statement is being used to
register a new procedure based on code written in an external programming
language and adhering to the documented linkage conventions and interface.

If the NAME clause is not specified, “NAME procedure-name” is assumed. If the
NAME clause is not formatted correctly, an error is returned (SQLSTATE
42878).

NAME 'string'
This clause identifies the name of the user-written code which implements
the procedure being defined.

The 'string' option is a string constant with a maximum of 254 bytes. The
format used for the string is dependent on the LANGUAGE specified.
v For LANGUAGE C:

The string specified is the library name and procedure within the library,
which the database manager invokes to execute the procedure being
CREATEd. The library (and the procedure within the library) do not
need to exist when the CREATE PROCEDURE statement is performed.

CREATE PROCEDURE (external)

Statements 619



However, when the procedure is called, the library and procedure within
the library must exist and be accessible from the database server
machine.

�� ' library_id '
absolute_path_id ! proc_id

��

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.

library_id
Identifies the library name containing the procedure. The database
manager will look for the library as follows:

Operating system Library name location

Linux
AIX
Solaris
HP-UX

If 'myfunc' was given as the library_id, and
the database manager is being run from
/u/production, the database manager will
look for the procedure in library
/u/production/sqllib/function/myproc if
FENCED is specified, or
/u/production/sqllib/function/unfenced/
myproc if NOT FENCED is specified.

Windows The database manager will look for the
function in a directory path that is specified
by the LIBPATH or PATH environment
variable.

Stored procedures located in any of these directories do not use any
of the registered attributes.

absolute_path_id
Identifies the full path name of the procedure. The format depends
on the operating system, as illustrated in the following table:

Operating system Full path name example

Linux
AIX
Solaris
HP-UX

A value of '/u/jchui/mylib/myproc' would
cause the database manager to look in
/u/jchui/mylib for the myproc procedure.

Windows A value of 'd:\mylib\myproc.dll' would
cause the database manager to load the file
myproc.dll from the d:\mylib directory. If
an absolute path ID is being used to identify
the routine body, be sure to append the .dll
extension.

! proc_id
Identifies the entry point name of the procedure to be invoked. The
exclamation point (!) serves as a delimiter between the library ID
and the procedure ID. '!proc8' would direct the database manager to
look for the library in the location specified by absolute_path_id, and
to use entry point proc8 within that library.

If the string is not properly formed, an error is returned (SQLSTATE
42878).

CREATE PROCEDURE (external)

620 SQL Reference Volume 2



The body of every procedure should be in a directory that is mounted
and available on every database partition.

v For LANGUAGE JAVA:
The string specified contains the optional jar file identifier, class identifier
and method identifier, which the database manager invokes to execute
the procedure being created. The class identifier and method identifier
do not need to exist when the CREATE PROCEDURE statement is
performed. If a jar_id is specified, it must exist when the CREATE
PROCEDURE statement is performed. However, when the procedure is
called, the class identifier and the method identifier must exist and be
accessible from the database server machine, otherwise an error is
returned (SQLSTATE 42884).

�� '
jar_id :

class_id . method_id '
!

��

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.

jar_id
Identifies the jar identifier given to the jar collection when it was
installed in the database. It can be either a simple identifier or a
schema qualified identifier. Examples are 'myJar' and
'mySchema.myJar'.

class_id
Identifies the class identifier of the Java object. If the class is part of
a package, the class identifier part must include the complete
package prefix, for example, 'myPacks.StoredProcs'. The directory the
Java virtual machine will look in for the classes depends on the
operating system, as illustrated in the following table:

Operating system
Directory the Java virtual machine will
look in for the classes

Linux
AIX
Solaris
HP-UX

'.../myPacks/UserProcs/'

Windows '...\myPacks\UserProcs\'

method_id
Identifies the method name with the Java class to be invoked.

v For LANGUAGE CLR:
The string specified represents the .NET assembly (library or executable),
the class within that assembly, and the method within the class that the
database manager invokes to execute the procedure being created. The
module, class, and method do not need to exist when the CREATE
PROCEDURE statement is executed. However, when the procedure is
called, the module, class, and method must exist and be accessible from
the database server machine, otherwise an error is returned (SQLSTATE
42284).
C++ routines that are compiled with the '/clr' compiler option to
indicate that they include managed code extensions must be cataloged as
'LANGUAGE CLR' and not 'LANGUAGE C'. The database manager
needs to know that the .NET infrastructure is being utilized in a

CREATE PROCEDURE (external)

Statements 621



procedure in order to make necessary runtime decisions. All procedures
using the .NET infrastructure must be cataloged as 'LANGUAGE CLR'.

�� ' assembly : class_id ! method_id ' ��

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.

assembly
Identifies the DLL or other assembly file in which the class is
located. Any file extensions (such as .dll) must be specified. If the
full path name is not given, the file must be in the function directory
of the database instance path (for example, C:\Program
Data\IBM\DB2\Copy Name). If the file is in a subdirectory of the
instance function directory, the subdirectory can be given before the
file name rather than specifying the full path. For example, if your
instance directory is C:\Program Data\IBM\DB2\Copy Name and your
assembly file is C:\Program Data\IBM\DB2\Copy Name\function\
myprocs\mydotnet.dll, it is only necessary to specify
'myprocs\mydotnet.dll' for the assembly. The case sensitivity of this
parameter is the same as the case sensitivity of the file system.

class_id
Specifies the name of the class within the given assembly in which
the method that is to be invoked resides. If the class resides within a
namespace, the full namespace must be given in addition to the
class. For example, if the class EmployeeClass is in namespace
MyCompany.ProcedureClasses, then
MyCompany.ProcedureClasses.EmployeeClass must be specified for
the class. Note that the compilers for some .NET languages will add
the project name as a namespace for the class, and the behavior may
differ depending on whether the command line compiler or the GUI
compiler is used. This parameter is case sensitive.

method_id
Specifies the method within the given class that is to be invoked.
This parameter is case sensitive.

v For LANGUAGE OLE:
The string specified is the OLE programmatic identifier (progid) or class
identifier (clsid), and method identifier (method_id), which the database
manager invokes to execute the procedure being created by the
statement. The programmatic identifier or class identifier, and the
method identifier do not need to exist when the CREATE PROCEDURE
statement is executed. However, when the procedure is used in the
CALL statement, the method identifier must exist and be accessible from
the database server machine, otherwise an error results (SQLSTATE
42724).

�� ' progid ! method_id '
clsid

��

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.

progid
Identifies the programmatic identifier of the OLE object.

CREATE PROCEDURE (external)

622 SQL Reference Volume 2



A progid is not interpreted by the database manager, but only
forwarded to the OLE automation controller at run time. The
specified OLE object must be creatable and support late binding
(also known as IDispatch-based binding). By convention, progids
have the following format:

<program_name>.<component_name>.<version>

Because this is only a convention, and not a rule, progids may in fact
have a different format.

clsid
Identifies the class identifier of the OLE object to create. It can be
used as an alternative for specifying a progid in the case that an
OLE object is not registered with a progid. The clsid has the form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. A clsid is not interpreted by
the database manager, but only forwarded to the OLE APIs at run
time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used as
the library-id in the string. Unless it is a delimited identifier, the identifier is
folded to upper case. If the identifier is qualified with a schema name, the
schema name portion is ignored. This form of NAME can only be used
with LANGUAGE C.

FENCED or NOT FENCED
This clause specifies whether the procedure is considered “safe” to run in the
database manager operating environment's process or address space (NOT
FENCED), or not (FENCED).

If a procedure is registered as FENCED, the database manager protects its
internal resources (for example, data buffers) from access by the procedure. All
procedures have the option of running as FENCED or NOT FENCED. In
general, a procedure running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:
Use of NOT FENCED for procedures that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database. DB2
databases take some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED stored procedures are used.

Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED) is required to register a procedure as NOT
FENCED. Only FENCED can be specified for a procedure with LANGUAGE
OLE or NOT THREADSAFE.

LANGUAGE CLR procedures cannot be created when specifying the NOT
FENCED clause (SQLSTATE 42601).

THREADSAFE or NOT THREADSAFE
Specifies whether the procedure is considered safe to run in the same process
as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the procedure is defined with LANGUAGE other than OLE:

CREATE PROCEDURE (external)

Statements 623



v If the procedure is defined as THREADSAFE, the database manager can
invoke the procedure in the same process as other routines. In general, to be
threadsafe, a procedure should not use any global or static data areas. Most
programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED procedures can be THREADSAFE.

v If the procedure is defined as NOT THREADSAFE, the database manager
will never invoke the procedure in the same process as another routine.

For FENCED procedures, THREADSAFE is the default if the LANGUAGE is
JAVA or CLR. For all other languages, NOT THREADSAFE is the default. If
the procedure is defined with LANGUAGE OLE, THREADSAFE may not be
specified (SQLSTATE 42613).

For NOT FENCED procedures, THREADSAFE is the default. NOT
THREADSAFE cannot be specified (SQLSTATE 42613).

COMMIT ON RETURN
Indicates whether a commit is to be issued on return from the procedure. The
default is NO.

NO A commit is not issued when the procedure returns.

YES
A commit is issued when the procedure returns if a positive SQLCODE is
returned by the CALL statement

The commit operation includes the work that is performed by the calling
application process and the procedure.

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

AUTONOMOUS
Indicates the procedure should execute in its own autonomous transaction
scope.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). The default is EXTERNAL ACTION. If NO
EXTERNAL ACTION is specified, the system can use certain optimizations that
assume the procedure has no external impact.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the procedure
will inherit their initial values from the environment of the invoking statement.

No changes to the special registers are passed back to the caller of the
procedure.

Non-updatable special registers, such as the datetime special registers, reflect a
property of the statement currently executing, and are therefore set to their
default values.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to
and returning the value from procedures.

CREATE PROCEDURE (external)

624 SQL Reference Volume 2



DB2GENERAL
This means that the procedure will use a parameter passing convention
that is defined for use with Java methods. This can only be specified when
LANGUAGE JAVA is used.

DB2SQL
In addition to the parameters on the CALL statement, the following
arguments are passed to the procedure:
v A vector containing a null indicator for each parameter on the CALL

statement
v The SQLSTATE to be returned to the database manager
v The qualified name of the procedure
v The specific name of the procedure
v The SQL diagnostic string to be returned to the database manager

This can only be specified when LANGUAGE C, COBOL, CLR, or OLE is
used.

GENERAL
This means that the procedure will use a parameter passing mechanism by
which the procedure receives the parameters specified on the CALL. The
parameters are passed directly, as expected by the language; the SQLDA
structure is not used. This can only be specified when LANGUAGE C,
COBOL, or CLR is used.

Null indicators are not directly passed to the program.

GENERAL WITH NULLS
In addition to the parameters on the CALL statement specified under
GENERAL, another argument is passed to the procedure. This additional
argument is a vector of null indicators, one for each of the parameters on
the CALL statement. In C, this would be an array of short integers. This
can only be specified when LANGUAGE C, COBOL, or CLR is used.

JAVA
This means that the procedure will use a parameter passing convention
that conforms to the Java language and SQLJ Routines specification.
IN/OUT and OUT parameters will be passed as single entry arrays to
facilitate returning values. This can only be specified when LANGUAGE
JAVA is used.

PARAMETER STYLE JAVA procedures do not support the DBINFO or
PROGRAM TYPE clauses.

SQL
In addition to the parameters on the CALL statement, the following
arguments are passed to the procedure:
v A null indicator for each parameter on the CALL statement
v The SQLSTATE to be returned to the database manager
v The qualified name of the procedure
v The specific name of the procedure
v The SQL diagnostic string to be returned to the database manager

This can only be specified when LANGUAGE C, COBOL, CLR, or OLE is
used.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of

CREATE PROCEDURE (external)

Statements 625



the procedure. If the PARAMETER CCSID clause is not specified, the default is
PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER
CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031). When the procedure is invoked, the
application code page for the procedure is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a
Unicode database, character data is in UTF-8, and graphic data is in UCS-2.
If the database is not a Unicode database, character data is in UTF-8. In
either case, when the procedure is invoked, the application code page for
the procedure is 1208.

If the database is not a Unicode database, and a procedure with
PARAMETER CCSID UNICODE is created, the procedure cannot have any
graphic types, the XML type, or user-defined types (SQLSTATE 560C1).

If the database is not a Unicode database, and the alternate collating sequence
has been specified in the database configuration, procedures can be created
with either PARAMETER CCSID ASCII or PARAMETER CCSID UNICODE.
All data passed into and out of the procedure will be converted to the
appropriate code page.

This clause cannot be specified with LANGUAGE OLE, LANGUAGE JAVA, or
LANGUAGE CLR (SQLSTATE 42613).

PROGRAM TYPE
Specifies whether the procedure expects parameters in the style of a main
routine or a subroutine. The default is SUB.

SUB
The procedure expects the parameters to be passed as separate arguments.

MAIN
The procedure expects the parameters to be passed as an argument
counter, and a vector of arguments (argc, argv). The name of the procedure
to be invoked must also be "main". Stored procedures of this type must
still be built in the same fashion as a shared library, rather than a
stand-alone executable. PROGRAM TYPE MAIN is only valid when the
LANGUAGE clause specifies one of: C, COBOL, or CLR.

DBINFO or NO DBINFO
Specifies whether specific information known by the database manager is
passed to the procedure when it is invoked as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the default.
DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613). It is also
not supported for PARAMETER STYLE JAVA or DB2GENERAL.

If DBINFO is specified, a structure containing the following information is
passed to the procedure:
v Data base name - the name of the currently connected database.
v Application ID - unique application ID which is established for each

connection to the database.
v Application Authorization ID - the authorization ID of the user that

connected to the database (the SYSTEM_USER special register).

CREATE PROCEDURE (external)

626 SQL Reference Volume 2



v Code page - identifies the database code page.
v Database version/release - identifies the version, release and modification

level of the database server invoking the procedure.
v Platform - contains the server's platform type.

The DBINFO structure is common for all external routines and contains
additional fields that are not relevant to procedures.

If you change session authorization ID (the SESSION_USER special register)
using the SET SESSION AUTHORIZATION statement, the Application
Authorization ID still returns the value of the SYSTEM_USER special register.

Rules
v Autonomous routine restrictions: Autonomous routines cannot return result sets

and do not support the following parameter data types (SQLSTATE 428H2):
– Cursor types
– Structured types
– XML

Global variables of cursor types cannot be referenced within the autonomous
scope.

Notes
v Creating a procedure with a schema name that does not already exist results in

the implicit creation of that schema, provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v A Java routine defined as NOT FENCED will be invoked as if it had been
defined as FENCED THREADSAFE.

v A procedure that is called from within a compound SQL (inlined) statement will
execute as if it were created specifying NEW SAVEPOINT LEVEL, even if OLD
SAVEPOINT LEVEL was specified or defaulted to when the procedure was
created.

v XML parameters are only supported in LANGUAGE JAVA external procedures
when the PARAMETER STYLE DB2GENERAL clause is specified.

v Setting of the default value: Parameters of a procedure that are defined with a
default value are set to their default value when the procedure is invoked, but
only if a value is not supplied for the corresponding argument, or is specified as
DEFAULT, when the procedure is invoked.

v Privileges: The definer of a procedure always receives the EXECUTE privilege
WITH GRANT OPTION on the procedure, as well as the right to drop the
procedure. When the procedure is used in an SQL statement, the procedure
definer must have the EXECUTE privilege on any packages used by the
procedure.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– RESULT SETS can be specified in place of DYNAMIC RESULT SETS.
– NULL CALL can be specified in place of CALLED ON NULL INPUT.
– DB2GENRL can be specified in place of DB2GENERAL.
– SIMPLE CALL can be specified in place of GENERAL.
– SIMPLE CALL WITH NULLS can be specified in place of GENERAL WITH

NULLS.

CREATE PROCEDURE (external)

Statements 627



– PARAMETER STYLE DB2DARI is supported.
The following syntax is accepted as the default behavior:
– ASUTIME NO LIMIT
– NO COLLID
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE

is not specified

Examples
v Example 1: Create the procedure definition for a procedure, written in Java, that

is passed a part number and that returns the cost of the part and the quantity
that is currently available.

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

EXTERNAL NAME ’parts.onhand’
LANGUAGE JAVA PARAMETER STYLE JAVA

v Example 2: Create the procedure definition for a procedure, written in C, that is
passed an assembly number and returns the number of parts that make up the
assembly, total part cost, and a result set that lists the part numbers, quantity,
and unit cost of each part.

CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,
OUT NUM_PARTS INTEGER,
OUT COST DOUBLE)

EXTERNAL NAME ’parts!assembly’
DYNAMIC RESULT SETS 1 NOT FENCED
LANGUAGE C PARAMETER STYLE GENERAL

CREATE PROCEDURE (external)

628 SQL Reference Volume 2



CREATE PROCEDURE (sourced)
The CREATE PROCEDURE (sourced) statement defines a procedure (the sourced
procedure) that is based on another procedure (the source procedure). In a federated
system, a federated procedure is a sourced procedure whose source procedure is at a
supported data source.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the schema name of the

procedure does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the procedure refers

to an existing schema
v DBADM authority

For data sources that require a user mapping, the privileges held at the data source
by the authorization ID of the statement must include the privilege to select the
procedure's description from the remote catalog tables.

To replace an existing procedure, the authorization ID of the statement must be the
owner of the existing procedure (SQLSTATE 42501).

Syntax

�� CREATE PROCEDURE procedure-name
OR REPLACE

�

� source-procedure-clause option-list ��

source-procedure-clause:

SOURCE source-object-name
( )
NUMBER OF PARAMETERS integer

�

�
UNIQUE ID unique-id

FOR SERVER server-name

source-object-name:

source-schema-name .
source-package-name .

�

CREATE PROCEDURE (sourced)

Statements 629



� source-procedure-name

option-list:

*

SPECIFIC specific-name
* �

�

�

WITH RETURN TO CALLER ALL

,

WITH RETURN TO CLIENT ( result-set-element-number )
ALL

* �

�
NO SQL
CONTAINS SQL
MODIFIES SQL DATA
READS SQL DATA

*

NOT DETERMINISTIC
DETERMINISTIC

* �

� *

EXTERNAL ACTION
NO EXTERNAL ACTION

Description

OR REPLACE
Specifies to replace the definition for the procedure if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the procedure are not affected. This option can be specified only by the
owner of the object. This option is ignored if a definition for the procedure
does not exist at the current server. To replace an existing procedure, the
specific name and procedure name of the new definition must be the same as
the specific name and procedure name of the old definition, or the signature of
the new definition must match the signature of the old definition. Otherwise, a
new procedure is created.

procedure-name
Names the sourced procedure being defined. It is a qualified or unqualified
name that designates a procedure. The unqualified form of procedure-name is an
SQL identifier. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile or bind option implicitly specifies the
qualifier for unqualified object names. The qualified form is a schema-name
followed by a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters, must not identify a procedure that is described in the
catalog (SQLSTATE 42723). The unqualified name, together with the number of
parameters, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS'
(SQLSTATE 42939).

CREATE PROCEDURE (sourced)

630 SQL Reference Volume 2



In a federated system, procedure-name is the name of the procedure on the
federated server.

SOURCE source-object-name
Specifies the source procedure that is used by the procedure being defined. In
a federated system, the source procedure is a procedure that is located at a
supported data source.

source-schema-name
Identifies the schema name of the source procedure. If a schema name is
used to identify the source procedure, the source-schema-name must be
specified in the CREATE PROCEDURE (Sourced) statement. If the
source-schema-name contains any special or lowercase characters, it must be
enclosed by double quotation marks.

source-package-name
Identifies the package name of the source procedure. The
source-package-name applies only to Oracle data sources. If a package name
is used to identify the source procedure, the source-package-name must be
specified in the CREATE PROCEDURE (Sourced) statement. If the
source-package-name contains any special or lowercase characters, it must be
enclosed by double quotation marks.

source-procedure-name
Identifies the procedure name of the source procedure. If the
source-procedure-name contains any special or lowercase characters, it must
be enclosed by double quotation marks.

( )
Indicates that the number of parameters is zero.

NUMBER OF PARAMETERS integer
Specifies the number of parameters for the source procedure. The minimum
value for integer is 0, and the maximum value is 32 767.

UNIQUE ID string-constant
Provides a way to uniquely identify the source procedure when there are
multiple procedures at the data source with the identical name, schema, and
number of parameters. The string-constant value, which has a maximum length
of 128, is interpreted uniquely by each data source.

FOR SERVER server-name
Specifies a server definition that was registered using the CREATE SERVER
statement.

SPECIFIC specific-name
Provides a unique name for the instance of the sourced procedure that is being
defined. This specific name can be used when altering, dropping, or
commenting on the sourced procedure. This name can never be used to invoke
the sourced procedure. The unqualified form of specific-name is an SQL
identifier. The qualified form of specific-name is a schema-name followed by a
period and an SQL identifier. The specific-name value, including the implicit or
explicit qualifier, must not identify another procedure instance that exists at the
application server; otherwise an error is returned (SQLSTATE 42710).

The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is
used. If a qualifier is specified, it must be the same as the explicit or implicit
qualifier for procedure-name, or an error is returned (SQLSTATE 42882).

CREATE PROCEDURE (sourced)

Statements 631



If specific-name is not specified, a unique name is generated by the database
manager. The unique name is 'SQL' followed by a character timestamp:
'SQLyymmddhhmmssxxx'.

WITH RETURN TO CALLER or WITH RETURN TO CLIENT
Indicates where the result sets from the source procedure are handled. If the
source procedure is not from an Oracle data source, the only one result set is
returned to the caller or client; and if the source procedure is coded to return
more than one result set, only the first result set is returned to the caller or
client. The default is WITH RETURN TO CALLER.

WITH RETURN TO CALLER ALL
Specifies that all result sets from the source procedure are returned to the
caller.

WITH RETURN TO CLIENT
Indicates which result sets from the source procedure are returned directly
to the client application. The dynamic result set value at the data source
must be greater than 0 for a result set to be returned.

(result-set-element-number, ...)
Specifies a non-empty list of result sets to return to the client
application (SQLSTATE 42601). A result-set-element-number identifies a
result set based on the order the result sets are returned, where 1
identifies the first result set, 2 the second result set, and so on. A
result-set-element-number greater than the total number of result sets
returned is ignored. Each result-set-element-number must be an integer
value greater than zero (SQLSTATE 42815), and must not exceed the
value of a small integer constant (SQLSTATE 42820). The list of result
sets to return to the client application must not contain duplicate
values and must be specified in ascending order (SQLSTATE 42815).
Result sets are always processed in the order they are returned from
the source procedure.

Result sets that are not identified in the list to return to client
application are returned to the caller.

Note: This list of result sets to return to the client application must
only be used with source procedures that are known to consistently
return result sets that are intended for the client in the same position in
the list of result sets each time they are executed. It is possible for a
source procedure to return different sets of result sets each time it is
executed, depending on the internal logic of the procedure. If this is
the case, then specify either WITH RETURN TO CALLER ALL or
WITH RETURN TO CLIENT ALL instead, and code the application to
handle this case.

ALL
Specifies all result sets from the source procedure are returned to the
client.

NO SQL, CONTAINS SQL, MODIFIES SQL DATA, READS SQL DATA
Specifies the classification of SQL statements that can be run by this procedure,
or any routine that is called by this procedure. The database manager verifies
that the SQL statements issued by the procedure and all routines that are
called by the procedure are consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines (SQL
and External).

CREATE PROCEDURE (sourced)

632 SQL Reference Volume 2



Because the source procedure for the sourced procedure is not on the federated
server, the specified level is not enforced during execution of the source
procedure at the data source. If there is discrepancy between what is specified
for the sourced procedure and what the source procedure actually does at the
data source, data inconsistency might occur.

If this option is not explicitly specified, the value for the source procedure is
used.

If this option is explicitly specified but does not match the value for the source
procedure, an error is returned (SQLSTATE 428GS).

If this option is not available at the data source, the default is MODIFIES SQL
DATA.

NO SQL
Specifies that the procedure can run only SQL statements with a data
access classification of NO SQL. (SQLSTATE 38001).

CONTAINS SQL
Specifies that the procedure can run only statements with a data access
classification of CONTAINS SQL or NO SQL (SQLSTATE 38003 or 38004).

MODIFIES SQL DATA
Specifies that the procedure can run any SQL statement except statements
that are not supported in procedures (SQLSTATE 38003).

READS SQL DATA
Specifies that the procedure can run statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL
(SQLSTATE 38002 or 38003 or 42985).

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the sourced procedure always returns the same results for
given argument values (DETERMINISTIC), or whether the sourced procedure
depends on some stated values that affect the results (NOT DETERMINISTIC).
A DETERMINISTIC sourced procedure must always return the same result
from successive invocations with identical inputs. This clause currently does
not impact the processing of the procedure. If this option is not explicitly
specified, the value for the source procedure is used. If this option is not
available at the data source, the default is NOT DETERMINISTIC. If this
option is explicitly specified, but does not match the value for the source
procedure, an error is returned (SQLSTATE 428GS).

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the sourced procedure takes some action that changes the
state of an object that is not managed by the database manager (EXTERNAL
ACTION), or does not (NO EXTERNAL ACTION). If the NO EXTERNAL
ACTION clause is specified, the federated database uses optimization that
assumes that the sourced procedure has no external impact. If this option is
not explicitly specified, the value for the source procedure is used. If this
option is not available at the data source, the default is EXTERNAL ACTION.
If this option is explicitly specified but does not match the value for the source
procedure, an error is returned (SQLSTATE 428GS).

Rules
v If the source-object-name, along with the NUMBER OF PARAMETERS and

UNIQUE ID clauses do not identify a procedure at the data source, an error is
returned (SQLSTATE 42883); if more than one procedure is identified, an error is
returned (SQLSTATE 42725).

CREATE PROCEDURE (sourced)

Statements 633



v If the UNIQUE ID clause is specified and the data source does not support
unique IDs, an error is returned (SQLSTATE 42883).

Notes
v Before a federated procedure can be registered for a data source, the federated

server must be configured to access that data source. This configuration
includes: registering the wrapper for the data source, creating the server
definition for the data source, and creating the user mappings between the
federated server and the data source server for the data sources that require user
mapping.

v Creating procedures that are initially invalid: If an object referenced in the
procedure body does not exist or is marked invalid, or the definer temporarily
doesn't have privileges to access the object, and if the database configuration
parameter auto_reval is not set to DISABLED, then the procedure will still be
created successfully. The procedure will be marked invalid and will be
revalidated the next time it is invoked.

v Unlike SQL and external procedures defined at the federated server, federated
procedures do not inherit the special registers of the caller, even those whose
remote-object-name refers to a procedure on a DB2 data source.

v If the definition of the source procedure is changed (for example, a parameter
data type is changed), the federated procedure should be dropped and recreated;
otherwise, errors might occur when the federated procedure is invoked.

v If the length of the source procedure parameter is longer than 128, the parameter
name of the federated procedure is truncated to 128 bytes.

v Compatibilities: The DataJoiner syntax for Create Stored Procedure Nickname is
not supported. Parameter type mapping is handled similarly to nicknames: A
catalog look-up determines the remote data type. The local parameter type is
determined through forward type mapping.

Examples
v Example 1: Create a federated procedure named FEDEMPLOYEE for an Oracle

procedure named EMPLOYEE, using the remote schema name USER1, the
remote package name P1 at the federated server S1, and returning the result set
to the client.

CREATE PROCEDURE FEDEMPLOYEE SOURCE USER1.P1.EMPLOYEE
FOR SERVER S1 WITH RETURN TO CLIENT ALL

v Example 2: Create a federated procedure named FEDSALARYSTAT for an Oracle
procedure named SALARYSTAT, using the remote schema name USER1, the
remote package name P1 at the federated server S1, and returning the first and
the third result set to the client, and remaining result sets to the caller.

CREATE OR REPLACE PROCEDURE FEDSALARYSTAT SOURCE USER1.P1.SALARYSTAT
FOR SERVER S1 WITH RETURN TO CLIENT(1,3)

CREATE PROCEDURE (sourced)

634 SQL Reference Volume 2



CREATE PROCEDURE (SQL)
The CREATE PROCEDURE (SQL) statement defines an SQL procedure at the
current server.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v If the implicit or explicit schema name of the procedure does not exist,

IMPLICIT_SCHEMA authority on the database.
v If the schema name of the procedure refers to an existing schema, CREATEIN

privilege on the schema.
v DBADM authority

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
procedure body.

To replace an existing procedure, the authorization ID of the statement must be the
owner of the existing procedure (SQLSTATE 42501).

Group privileges are not considered for any table or view specified in the CREATE
PROCEDURE (SQL) statement.

Syntax

�� CREATE PROCEDURE
OR REPLACE

procedure-name �

�

�

( )
,
IN

parameter-name data-type
OUT default-clause
INOUT

�

� option-list SQL-procedure-body ��

data-type:

built-in-type
anchored-variable-data-type

array-type-name
cursor-type-name
distinct-type-name
row-type-name

CREATE PROCEDURE (SQL)

Statements 635



built-in-type:

SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML
BOOLEAN
CURSOR

anchored-data-type:

DATA TYPE TO
ANCHOR variable-name

table-name.column-name
OF

ROW table-name
view-name
cursor-variable-name

CREATE PROCEDURE (SQL)

636 SQL Reference Volume 2



default-clause:

DEFAULT NULL
constant
special-register
global-variable
( expression )

option-list:

*

LANGUAGE SQL
*

SPECIFIC specific-name
* �

�
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer
*

MODIFIES SQL DATA

CONTAINS SQL
READS SQL DATA

* �

�
NOT DETERMINISTIC

DETERMINISTIC
*

CALLED ON NULL INPUT
* �

�
COMMIT ON RETURN NO

COMMIT ON RETURN YES
AUTONOMOUS

*

INHERIT SPECIAL REGISTERS
* �

�
OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL
*

EXTERNAL ACTION

NO EXTERNAL ACTION
* �

�
PARAMETER CCSID ASCII

UNICODE

*

SQL-procedure-body:

SQL-procedure-statement

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

Description

OR REPLACE
Specifies to replace the definition for the procedure if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the procedure are not affected. This option can be specified only by the
owner of the object. This option is ignored if a definition for the procedure
does not exist at the current server. To replace an existing procedure, the
specific name and procedure name of the new definition must be the same as

CREATE PROCEDURE (SQL)

Statements 637



the specific name and procedure name of the old definition, or the signature of
the new definition must match the signature of the old definition. Otherwise, a
new procedure is created.

procedure-name
Names the procedure being defined. It is a qualified or unqualified name that
designates a procedure. The unqualified form of procedure-name is an SQL
identifier. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements,
the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a
period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters, must not identify a procedure described in the catalog
(SQLSTATE 42723). The unqualified name, together with the number of
parameters, is unique within its schema, but does not need to be unique across
schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS';
otherwise, an error is returned (SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type default-clause,...)
Identifies the parameters of the procedure, and specifies the mode, name, data
type, and optional default value of each parameter. One entry in the list must
be specified for each parameter that the procedure will expect.

It is possible to register a procedure that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For example:

CREATE PROCEDURE SUBWOOFER() ...

No two identically-named procedures within a schema are permitted to have
exactly the same number of parameters. A duplicate signature raises an SQL
error (SQLSTATE 42723).

For example, given the statements:
CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...
CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters in the
procedure is the same, even if the data types are not.

IN | OUT | INOUT
Specifies the mode of the parameter.

If an error is returned by the procedure, OUT parameters are undefined
and INOUT parameters are unchanged.

IN Identifies the parameter as an input parameter to the procedure.
Any changes made to the parameter within the procedure are not
available to the calling SQL application when control is returned.
The default is IN.

OUT Identifies the parameter as an output parameter for the procedure.

INOUT
Identifies the parameter as both an input and output parameter for
the procedure.

parameter-name
Specifies the name of the parameter. The parameter name must be unique
for the procedure (SQLSTATE 42734).

CREATE PROCEDURE (SQL)

638 SQL Reference Volume 2



data-type
Specifies the data type of the parameter. A structured type or reference
type cannot be specified (SQLSTATE 429BB).

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type except BOOLEAN and CURSOR, which cannot be
specified for a table, see "CREATE TABLE".

BOOLEAN
For a Boolean.

CURSOR
For a reference to an underlying cursor.

anchored-data-type
Identifies another object used to define the data type. The data type of
the anchor object has the same limitations that apply to specifying the
data type directly, or in the case of a row, to creating a row type.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data type.

variable-name
Identifies a global variable. The data type of the global variable
is used as the data type for parameter-name.

table-name.column-name
Identifies a column name of an existing table or view. The data
type of the column is used as the data type for parameter-name.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are
based on the column names and column data types of the table
identified by table-name or the view identified by view-name.
The data type of parameter-name is an unnamed row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are
based on the field names and field data types of the cursor
variable identified by cursor-variable-name. The specified cursor
variable must be one of the following elements (SQLSTATE
428HS):
v A global variable with a strongly typed cursor data type
v A global variable with a weakly typed cursor data type that

was created or declared with a CONSTANT clause
specifying a select-statement where all the result columns are
named.

If the cursor type of the cursor variable is not strongly-typed
using a named row type, the data type of parameter-name is an
unnamed row type.

array-type-name
Specifies the name of a user-defined array type. If array-type-name is
specified without a schema name, the array type is resolved by
searching the schemas in the SQL path.

CREATE PROCEDURE (SQL)

Statements 639



cursor-type-name
Specifies the name of a cursor type. If cursor-type-name is specified
without a schema name, the cursor type is resolved by searching the
schemas in the SQL path.

distinct-type-name
Specifies the name of a distinct type. The length, precision, and scale of
the parameter are, respectively, the length, precision, and scale of the
source type of the distinct type. A distinct type parameter is passed as
the source type of the distinct type. If distinct-type-name is specified
without a schema name, the distinct type is resolved by searching the
schemas in the SQL path.

row-type-name
Specifies the name of a user-defined row type. The fields of the
parameter are the fields of the row type. If row-type-name is specified
without a schema name, the row type is resolved by searching the
schemas in the SQL path.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a
special register, a global variable, an expression or the keyword NULL. The
special registers that can be specified as the default are that same as those
that can be specified for a column default (see default-clause in the CREATE
TABLE statement). Other special registers can be specified as the default by
using an expression.

The expression can be any expression of the type described in
“Expressions”. If a default value is not specified, the parameter has no
default and the corresponding argument cannot be omitted on invocation
of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or
SQLSTATE 429BL). The expression must be assignment compatible to the
parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:
v For INOUT or OUT parameters (SQLSTATE 42601)
v For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being defined.
This specific name can be used when altering, dropping, or commenting on the
procedure. It can never be used to invoke the procedure. The unqualified form
of specific-name is an SQL identifier. The qualified form is a schema-name
followed by a period and an SQL identifier. The name, including the implicit
or explicit qualifier, must not identify another procedure instance that exists at
the application server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is
used. If a qualifier is specified, it must be the same as the explicit or implicit
qualifier for procedure-name, or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is 'SQL' followed by a character timestamp:
'SQLyymmddhhmmssxxx'.

If you intend to archive the procedure by using the GET ROUTINE command,
ensure the specific-name has a maximum length of 18 characters.

CREATE PROCEDURE (SQL)

640 SQL Reference Volume 2



DYNAMIC RESULT SETS integer
Indicates the estimated upper bound of returned result sets for the procedure.

MODIFIES SQL DATA, CONTAINS SQL, READS SQL DATA
Specifies the classification of SQL statements that can be run by this procedure
or any routine that is called by this procedure. The database manager verifies
that the SQL statements issued by the procedure and all routines that are
called by the procedure are consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines (SQL
and External).

The default is MODIFIES SQL DATA.

MODIFIES SQL DATA
Specifies that the procedure can run any SQL statement except statements
that are not supported in procedures (SQLSTATE 38003 or 42985).

CONTAINS SQL
Specifies that the procedure can run only statements with a data access
classification of CONTAINS SQL (SQLSTATE 38003 or 38004 or 42985).

READS SQL DATA
Specifies that the procedure can run statements with a data access
classification of READS SQL DATA or CONTAINS SQL (SQLSTATE 38002
or 38003 or 42985).

If the BEGIN ATOMIC clause is used in a compound SQL procedure, the
procedure can be created only if it is defined as MODIFIES SQL DATA.

DETERMINISTIC or NOT DETERMINISTIC
This clause specifies whether the procedure always returns the same results for
given argument values (DETERMINISTIC) or whether the procedure depends
on some state values that affect the results (NOT DETERMINISTIC). That is, a
DETERMINISTIC procedure must always return the same result from
successive invocations with identical inputs.

This clause currently does not impact processing of the procedure.

CALLED ON NULL INPUT
CALLED ON NULL INPUT always applies to procedures. This means that the
procedure is called regardless of whether any arguments are null. Any OUT or
INOUT parameter can return a null value or a normal (non-null) value.
Responsibility for testing for null argument values lies with the procedure.

COMMIT ON RETURN
Indicates whether a commit is to be issued on return from the procedure. The
default is NO.

NO A commit is not issued when the procedure returns.

YES
A commit is issued when the procedure returns if a positive SQLCODE is
returned by the CALL statement

The commit operation includes the work that is performed by the calling
application process and the procedure.

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

CREATE PROCEDURE (SQL)

Statements 641



AUTONOMOUS
Indicates the procedure should execute in its own autonomous transaction
scope.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the procedure
will inherit their initial values from the environment of the invoking statement.
For a routine invoked in a nested object (for example a trigger or view), the
initial values are inherited from the runtime environment (not inherited from
the object definition).

No changes to the special registers are passed back to the caller of the
procedure.

Non-updatable special registers, such as the datetime special registers, reflect a
property of the statement currently executing, and are therefore set to their
default values.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether or not this procedure establishes a new savepoint level for
savepoint names and effects. OLD SAVEPOINT LEVEL is the default behavior.
For more information about savepoint levels, see “Rules” in “SAVEPOINT”.

LANGUAGE SQL
This clause is used to specify that the procedure body is written in the SQL
language.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). The default is EXTERNAL ACTION. If NO
EXTERNAL ACTION is specified, the system can use certain optimizations that
assume the procedure has no external impact.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of
the procedure. If the PARAMETER CCSID clause is not specified, the default is
PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER
CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in UCS-2.
If the database is not a Unicode database, PARAMETER CCSID UNICODE
cannot be specified (SQLSTATE 56031).

SQL-procedure-body
Specifies the SQL statement that is the body of the SQL procedure.

See SQL-procedure-statement in “Compound SQL (Compiled)” statement.

Rules
v Autonomous routine restrictions: Autonomous routines cannot return result sets

and do not support the following data types (SQLSTATE 428H2):
– User-defined cursor types
– User-defined structured types

CREATE PROCEDURE (SQL)

642 SQL Reference Volume 2



– XML as IN, OUT, and INOUT parameters

Session variables of cursor types cannot be referenced within the autonomous
scope.

v Use of anchored data types: An anchored data type cannot refer to the following
objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

v Use of cursor and row types: A procedure that uses a cursor type or row type
for a parameter can only be invoked from within a compound SQL (compiled)
statement (SQLSTATE 428H2), except for JDBC which can invoke a procedure
with OUT parameters that have a cursor type.

Notes
v Creating a procedure with a schema name that does not already exist will result

in the implicit creation of that schema, provided that the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v A procedure that is called from within a compound SQL (inlined) statement will
execute as if it were created specifying NEW SAVEPOINT LEVEL, even if OLD
SAVEPOINT LEVEL was specified or defaulted to when the procedure was
created.

v Creating procedures that are initially invalid: If an object referenced in the
procedure body does not exist or is marked invalid, or the definer temporarily
doesn't have privileges to access the object, and if the database configuration
parameter auto_reval is not set to DISABLED, then the procedure will still be
created successfully. The procedure will be marked invalid and will be
revalidated the next time it is invoked.

v Setting of the default value: Parameters of a procedure that are defined with a
default value are set to their default value when the procedure is invoked, but
only if a value is not supplied for the corresponding argument, or is specified as
DEFAULT, when the procedure is invoked.

v Privileges: The definer of a procedure always receives the EXECUTE privilege
WITH GRANT OPTION on the procedure, as well as the right to drop the
procedure.

v Rebinding dependent packages: Every SQL procedure has a dependent package.
The package can be rebound at any time by running the
REBIND_ROUTINE_PACKAGE procedure. Explicitly rebinding the dependent
package does not revalidate an invalid procedure. An invalid procedure should
be revalidated with automatic revalidation or by explicitly running the
ADMIN_REVALIDATE_DB_OBJECTS procedure. Procedure revalidation
automatically rebinds the dependent package.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– RESULT SETS can be specified in place of DYNAMIC RESULT SETS.
– NULL CALL can be specified in place of CALLED ON NULL INPUT.
The following syntax is accepted as the default behavior:
– ASUTIME NO LIMIT
– NO COLLID
– STAY RESIDENT NO

CREATE PROCEDURE (SQL)

Statements 643



Example

Create an SQL procedure that returns the median staff salary. Return a result set
containing the name, position, and salary of all employees who earn more than the
median salary.

CREATE PROCEDURE MEDIAN_RESULT_SET (OUT medianSalary DOUBLE)
RESULT SETS 1
LANGUAGE SQL

BEGIN
DECLARE v_numRecords INT DEFAULT 1;
DECLARE v_counter INT DEFAULT 0;

DECLARE c1 CURSOR FOR
SELECT CAST(salary AS DOUBLE)

FROM staff
ORDER BY salary;

DECLARE c2 CURSOR WITH RETURN FOR
SELECT name, job, CAST(salary AS INTEGER)

FROM staff
WHERE salary > medianSalary
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords

FROM STAFF;
OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1)
DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;
OPEN c2;

END

CREATE PROCEDURE (SQL)

644 SQL Reference Volume 2



CREATE ROLE
The CREATE ROLE statement defines a role at the current server.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� CREATE ROLE role-name ��

Description

role-name
Names the role. This is a one-part name. It is an SQL identifier (either ordinary
or delimited). The name must not identify an existing role at the current server
(SQLSTATE 42710). The name must not begin with the characters 'SYS' and
must not be 'ACCESSCTRL', 'DATAACCESS', 'DBADM', 'NONE', 'NULL',
'PUBLIC', 'SECADM', 'SQLADM', or 'WLMADM' (SQLSTATE 42939).

Example

Create a role named DOCTOR.
CREATE ROLE DOCTOR

CREATE ROLE

Statements 645



CREATE SCHEMA
The CREATE SCHEMA statement defines a schema. It is also possible to create
some objects and grant privileges on objects within the statement.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

An authorization ID that holds DBADM authority can create a schema with any
valid schema-name or authorization-name.

An authorization ID that does not hold DBADM authority can only create a
schema with a schema-name or authorization-name that matches the authorization ID
of the statement.

If the statement includes a schema-SQL-statement, the privileges held by the
authorization-name (which, if not specified, defaults to the authorization ID of the
statement) must include at least one of the following authorities:
v The privileges required to perform each schema-SQL-statement

v DBADM authority

Syntax

�� CREATE SCHEMA schema-name
AUTHORIZATION authorization-name
schema-name AUTHORIZATION authorization-name

�

�

�

DATA CAPTURE NONE
CHANGES

schema-SQL-statement

��

Description

schema-name
Names the schema. The name must not identify a schema already described in
the catalog (SQLSTATE 42710). The name cannot begin with 'SYS' (SQLSTATE
42939). The owner of the schema is the authorization ID that issued the
statement.

AUTHORIZATION authorization-name
Identifies the user who is the owner of the schema. The value of
authorization-name is also used to name the schema. The authorization-name must
not identify a schema already described in the catalog (SQLSTATE 42710).

schema-name AUTHORIZATION authorization-name
Identifies a schema called schema-name, whose owner is authorization-name. The
schema-name must not identify a schema already described in the catalog
(SQLSTATE 42710). The schema-name cannot begin with 'SYS' (SQLSTATE
42939).

CREATE SCHEMA

646 SQL Reference Volume 2



DATA CAPTURE
Indicates whether extra information for data replication is to be written to the
log. The default is determined based on the value of database configuration
parameter dft_schemas_dcc. If the value is “Yes” the default is CHANGES,
otherwise the default is NONE.

NONE
Indicates that no extra information for data replication will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this schema will
be written to the log. This option is required if this schema will be
replicated and a replication capture program is used to capture changes for
this schema from the log.

schema-SQL-statement
SQL statements that can be included as part of the CREATE SCHEMA
statement are:
v CREATE TABLE statement, excluding typed tables and materialized query

tables
v CREATE VIEW statement, excluding typed views
v CREATE INDEX statement
v COMMENT statement
v GRANT statement

Notes
v The owner of the schema is determined as follows:

– If an AUTHORIZATION clause is specified, the specified authorization-name is
the schema owner

– If an AUTHORIZATION clause is not specified, the authorization ID that
issued the CREATE SCHEMA statement is the schema owner.

v The schema owner is assumed to be a user (not a group).
v When the schema is explicitly created with the CREATE SCHEMA statement, the

schema owner is granted CREATEIN, DROPIN, and ALTERIN privileges on the
schema with the ability to grant these privileges to other users.

v The definer of any object created as part of the CREATE SCHEMA statement is
the schema owner. The schema owner is also the grantor for any privileges
granted as part of the CREATE SCHEMA statement.

v Unqualified object names in any SQL statement within the CREATE SCHEMA
statement are implicitly qualified by the name of the created schema.

v If the CREATE statement contains a qualified name for the object being created,
the schema name specified in the qualified name must be the same as the name
of the schema being created (SQLSTATE 42875). Any other objects referenced
within the statements may be qualified with any valid schema name.

v It is recommended not to use "SESSION" as a schema name. Since declared
temporary tables must be qualified by "SESSION", it is possible to have an
application declare a temporary table with a name identical to that of a
persistent table. An SQL statement that references a table with the schema name
"SESSION" will resolve (at statement compile time) to the declared temporary
table rather than a persistent table with the same name. Since an SQL statement
is compiled at different times for static embedded and dynamic embedded SQL
statements, the results depend on when the declared temporary table is defined.
If persistent tables, views or aliases are not defined with a schema name of
"SESSION", these issues do not require consideration.

CREATE SCHEMA

Statements 647



v Setting the DATA CAPTURE attribute at the schema level causes newly created
tables to inherit the DATA CAPTURE attribute from the schema if one is not
specified at the table level.

Examples
v Example 1: As a user with DBADM authority, create a schema called RICK with

the user RICK as the owner.
CREATE SCHEMA RICK AUTHORIZATION RICK

v Example 2: Create a schema that has an inventory part table and an index over
the part number. Give authority on the table to user JONES.

CREATE SCHEMA INVENTRY

CREATE TABLE PART (PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QUANTITY INTEGER)

CREATE INDEX PARTIND ON PART (PARTNO)

GRANT ALL ON PART TO JONES

v Example 3: Create a schema called PERS with two tables that each have a
foreign key that references the other table. This is an example of a feature of the
CREATE SCHEMA statement that allows such a pair of tables to be created
without the use of the ALTER TABLE statement.

CREATE SCHEMA PERS

CREATE TABLE ORG (DEPTNUMB SMALLINT NOT NULL,
DEPTNAME VARCHAR(14),
MANAGER SMALLINT,
DIVISION VARCHAR(10),
LOCATION VARCHAR(13),
CONSTRAINT PKEYDNO

PRIMARY KEY (DEPTNUMB),
CONSTRAINT FKEYMGR

FOREIGN KEY (MANAGER)
REFERENCES STAFF (ID) )

CREATE TABLE STAFF (ID SMALLINT NOT NULL,
NAME VARCHAR(9),
DEPT SMALLINT,
JOB VARCHAR(5),
YEARS SMALLINT,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
CONSTRAINT PKEYID

PRIMARY KEY (ID),
CONSTRAINT FKEYDNO

FOREIGN KEY (DEPT)
REFERENCES ORG (DEPTNUMB) )

CREATE SCHEMA

648 SQL Reference Volume 2



CREATE SECURITY LABEL COMPONENT
The CREATE SECURITY LABEL COMPONENT statement defines a component
that is to be used as part of a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� CREATE SECURITY LABEL COMPONENT component-name array-clause
set-clause
tree-clause

��

array-clause:

�

,

ARRAY [ string-constant ]

set-clause:

�

,

SET { string-constant }

tree-clause:

�

TREE ( string-constant ROOT )

, string-constant UNDER string-constant

Description

component-name
Names the security label component. This is a one-part name. The name must
not identify an existing security label component at the current server
(SQLSTATE 42710).

ARRAY
Specifies an ordered set of elements.

string-constant,...
One or more string constant values that make up the set of valid values for
this security label component. The order in which the array elements

CREATE SECURITY LABEL COMPONENT

Statements 649



appear is important. The first element ranks higher than the second
element. The second element ranks higher than the third element and so
on.

SET
Specifies an unordered set of elements.

string-constant,...
One or more string constant values that make up the set of valid values for
this security label component. The order of the elements is not important.

TREE
Specifies a tree structure of node elements.

string-constant
One or more string constant values that make up the set of valid values for
this security label component.

ROOT
Specifies that the string-constant that follows the keyword is the root node
element of the tree.

UNDER
Specifies that the string-constant before the UNDER keyword is a child of
the string-constant that follows the UNDER keyword. An element must be
defined as either being the root element or as being the child of another
element before it can be used as a parent, otherwise an error (SQLSTATE
42704) is returned.

Rules

These rules apply to all three types of component (ARRAY, SET, and TREE):
v Element names cannot contain any of these characters:

– Opening parenthesis - (
– Closing parenthesis - )
– Comma - ,
– Colon - :

v An element name can have no more than 32 bytes (SQLSTATE 42622).
v If a security label component is a set or a tree, no more than 64 elements can be

part of that component.
v A CREATE SECURITY LABEL COMPONENT statement can specify at most

65 535 elements for a security label component of type array.
v No element name can be used more than once in the same component

(SQLSTATE 42713).

Examples
v Example 1: Create an ARRAY type security label component named LEVEL. The

component has the following four elements, listed in order of decreasing rank:
Top Secret, Secret, Classified, and Unclassified.

CREATE SECURITY LABEL COMPONENT LEVEL
ARRAY [’Top Secret’, ’Secret’, ’Classified’, ’Unclassified’]

v Example 2: Create a SET type security label component named
COMPARTMENTS. The component has the following three elements: Research,
Analysis, and Collection.

CREATE SECURITY LABEL COMPONENT COMPARTMENTS
SET {’Collection’, ’Research’, ’Analysis’}

CREATE SECURITY LABEL COMPONENT

650 SQL Reference Volume 2



v Example 3: Create a TREE type security label component named GROUPS.
GROUPS has five elements: PROJECT, TEST, DEVELOPMENT, CURRENT, AND
FIELD. The following diagram shows the relationship of these elements to one
another:

PROJECT
________|________
| |

TEST DEVELOPMENT
______|______
| |

CURRENT FIELD

CREATE SECURITY LABEL COMPONENT GROUPS
TREE (

’PROJECT’ ROOT,
’TEST’ UNDER ’PROJECT’,
’DEVELOPMENT’ UNDER ’PROJECT’,
’CURRENT’ UNDER ’DEVELOPMENT’,
’FIELD’ UNDER ’DEVELOPMENT’

)

CREATE SECURITY LABEL COMPONENT

Statements 651



CREATE SECURITY LABEL
The CREATE SECURITY LABEL statement defines a security label.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� CREATE SECURITY LABEL security-label-name �

� � �

,
,

COMPONENT component-name string-constant ��

Description

security-label-name
Names the security label. The name must be qualified with a security policy
(SQLSTATE 42704), and must not identify an existing security label for this
security policy (SQLSTATE 42710).

COMPONENT component-name
Specifies the name of a security label component. If the component is not part
of the security policy security-policy-name, an error is returned (SQLSTATE
4274G). If a component is specified twice in the same statement, an error is
returned (SQLSTATE 42713).

string-constant,...
Specifies a valid element for the security component. A valid element is one
that was specified when the security component was created. If the element is
invalid, an error is returned (SQLSTATE 4274F).

Examples
v Example 1: Create a security label named EMPLOYEESECLABEL that is part of

the DATA_ACCESS security policy, and that has the element Top Secret for the
LEVEL component and the elements Research and Analysis for the
COMPARTMENTS component.

CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL
COMPONENT LEVEL ’Top Secret’,
COMPONENT COMPARTMENTS ’Research’, ’Analysis’

v Example 2: Create a security label named EMPLOYEESECLABELREAD that has
the element Top Secret for the LEVEL component and the element Research for
the COMPARTMENTS component.

CREATE SECURITY LABEL

652 SQL Reference Volume 2



CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD
COMPONENT LEVEL ’Top Secret’,
COMPONENT COMPARTMENTS ’Research’

v Example 3: Create a security label named EMPLOYEESECLABELWRITE that has
the element Analysis for the COMPARTMENTS component and a null value for
the LEVEL component. Assume that the security policy named DATA_ACCESS
is the same security policy that is used in examples 1 and 2.

CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE
COMPONENT COMPARTMENTS ’Analysis’

v Example 4: Create a security label named BEGINNER that is part of an existing
CLASSPOLICY security policy, and that has the element Trainee for the TRUST
component and the element Morning for the SECTIONS component.

CREATE SECURITY LABEL CLASSPOLICY.BEGINNER
COMPONENT TRUST ’Trainee’,
COMPONENT SECTIONS ’Morning’

CREATE SECURITY LABEL

Statements 653



CREATE SECURITY POLICY
The CREATE SECURITY POLICY statement defines a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� CREATE SECURITY POLICY security-policy-name �

� �

,

COMPONENTS component-name WITH DB2LBACRULES �

�
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
��

Description

security-policy-name
Names the security policy. This is a one-part name. The name must not
identify an existing security policy at the current server (SQLSTATE 42710).

COMPONENTS component-name,...
Identifies a security label component. The name must identify a security label
component that already exists at the current server (SQLSTATE 42704). The
same security component must not be specified more than once for the security
policy (SQLSTATE 42713). No more than 16 security label components can be
specified for a security policy (SQLSTATE 54062).

WITH DB2LBACRULES
Indicates what rule set that will be used when comparing security labels that
are part of this security policy. There is currently only one rule set:
DB2LBACRULES.

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT NOT AUTHORIZED
WRITE SECURITY LABEL

Specifies the action that is to be taken when a user is not authorized to write
the explicitly specified security label that is provided in the INSERT or
UPDATE statement issued against a table that is protected with this security
policy. A user's security label and exemption credentials determine the user's
authorization to write an explicitly provided security label. The default is
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL.

CREATE SECURITY POLICY

654 SQL Reference Volume 2



OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the value of the user's security label, rather than the
explicitly specified security label, is to be used for write access during an
insert or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the insert or update operation will fail if the user is not
authorized to write the explicitly specified security label that is provided in
the INSERT or UPDATE statement (SQLSTATE 42519).

Notes
v DB2LBACRULES rule set: DB2LBACRULES is a predefined set of rules that

includes the following rules: DB2LBACREADARRAY, DB2LBACREADSET,
DB2LBACREADTREE, DB2LBACWRITEARRAY, DB2LBACWRITESET,
DB2LBACWRITETREE.

v Group and role authorizations are not considered by default when a security
policy is created. Use the ALTER SECURITY POLICY statement to change this
behavior and have them considered.

Examples
v Example 1: Create a security policy named DATA_ACCESS that uses the

DB2LBACRULES rule set and has two components: LEVEL and
COMPARTMENTS, in that order. Assume that both components already exist.

CREATE SECURITY POLICY DATA_ACCESS
COMPONENTS LEVEL, COMPARTMENTS
WITH DB2LBACRULES

v Example 2: Create a security policy named CONTRIBUTIONS that has the
components MEMBER and BADGE, which are assumed to already exist.

CREATE SECURITY POLICY CONTRIBUTIONS
COMPONENTS MEMBER, BADGE
WITH DB2LBACRULES

CREATE SECURITY POLICY

Statements 655



CREATE SEQUENCE
The CREATE SEQUENCE statement defines a sequence at the application server.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the sequence does not exist
v CREATEIN privilege on the schema, if the schema name of the sequence refers

to an existing schema
v DBADM authority

To replace an existing sequence, the authorization ID of the statement must be the
owner of the existing sequence (SQLSTATE 42501).

Syntax

�� CREATE SEQUENCE sequence-name
OR REPLACE

*

AS INTEGER

AS data-type
�

� *

START WITH numeric-constant
*

INCREMENT BY 1

INCREMENT BY numeric-constant
�

� *

NO MINVALUE

MINVALUE numeric-constant
*

NO MAXVALUE

MAXVALUE numeric-constant
* �

�
NO CYCLE

CYCLE
*

CACHE 20

CACHE integer-constant
NO CACHE

*

NO ORDER

ORDER
* ��

data-type:

built-in-type
(1)

distinct-type-name

built-in-type:

CREATE SEQUENCE

656 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

Notes:

1 The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type.

Description

OR REPLACE
Specifies to replace the definition for the sequence if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the sequence are not affected. This option is ignored if a definition for the
sequence does not exist at the current server. This option can be specified only
by the owner of the object.

sequence-name
Names the sequence. The combination of name, and the implicit or explicit
schema name must not identify an existing sequence at the current server
(SQLSTATE 42710).

The unqualified form of sequence-name is an SQL identifier. The qualified
form is a qualifier followed by a period and an SQL identifier. The qualifier is
a schema name.

If the sequence name is explicitly qualified with a schema name, the schema
name cannot begin with 'SYS' or an error (SQLSTATE 42939) is raised.

AS data-type
Specifies the data type to be used for the sequence value. The data type can be
any exact numeric type (SMALLINT, INTEGER, BIGINT or DECIMAL) with a
scale of zero, or a user-defined distinct type or reference type for which the
source type is an exact numeric type with a scale of zero (SQLSTATE 42815).
The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type (SQLSTATE 428H2). The default
is INTEGER.

START WITH numeric-constant
Specifies the first value for the sequence. This value can be any positive or
negative value that could be assigned to a column of the data type associated
with the sequence (SQLSTATE 42815), without nonzero digits existing to the
right of the decimal point (SQLSTATE 428FA). The default is MINVALUE for
ascending sequences and MAXVALUE for descending sequences.

This value is not necessarily the value that a sequence would cycle to after
reaching the maximum or minimum value of the sequence. The START WITH
clause can be used to start a sequence outside the range that is used for cycles.
The range used for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. This value
can be any positive or negative value that could be assigned to a column of the

CREATE SEQUENCE

Statements 657



data type associated with the sequence (SQLSTATE 42815). The value must not
exceed the value of a large integer constant (SQLSTATE 42820) and must not
contain nonzero digits to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence. If this value is 0 or
positive, this is an ascending sequence. The default is 1.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles or
stops generating values, or an ascending sequence cycles to after reaching the
maximum value.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be less than or equal to the maximum value
(SQLSTATE 42815).

NO MINVALUE
For an ascending sequence, the value is the START WITH value, or 1 if
START WITH is not specified. For a descending sequence, the value is the
minimum value of the data type associated with the sequence. This is the
default.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or
stops generating values, or a descending sequence cycles to after reaching the
minimum value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be greater than or equal to the minimum value
(SQLSTATE 42815).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the data
type associated with the sequence. For a descending sequence, the value is
the START WITH value, or -1 if START WITH is not specified.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the sequence
can be reached either with the next value landing exactly on the boundary
condition, or by overshooting it.

CYCLE
Specifies that values continue to be generated for this sequence after the
maximum or minimum value has been reached. If this option is used, after
an ascending sequence reaches its maximum value it generates its
minimum value; after a descending sequence reaches its minimum value it
generates its maximum value. The maximum and minimum values for the
sequence determine the range that is used for cycling.

When CYCLE is in effect, then duplicate values can be generated for the
sequence.

CREATE SEQUENCE

658 SQL Reference Volume 2



NO CYCLE
Specifies that values will not be generated for the sequence once the
maximum or minimum value for the sequence has been reached. This is
the default.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

CACHE integer-constant
Specifies the maximum number of sequence values that are preallocated
and kept in memory. Preallocating and storing values in the cache reduces
synchronous I/O to the log when values are generated for the sequence.

In the event of a system failure, all cached sequence values that have not
been used in committed statements are lost (that is, they will never be
used). The value specified for the CACHE option is the maximum number
of sequence values that could be lost in case of system failure.

The minimum value is 2 (SQLSTATE 42815). The default value is CACHE
20.

In a multi-partition or DB2 pureScale environment, use the CACHE and
NO ORDER options to allow multiple DB2 members to cache sequence
values simultaneously.

In a DB2 pureScale environment, if both CACHE and ORDER are
specified, the specification of ORDER overrides the specification of CACHE
and instead NO CACHE will be in effect.

NO CACHE
Specifies that values of the sequence are not to be preallocated. It ensures
that there is not a loss of values in the case of a system failure, shutdown
or database deactivation. When this option is specified, the values of the
sequence are not stored in the cache. In this case, every request for a new
value for the sequence results in synchronous I/O to the log.

NO ORDER or ORDER
Specifies whether the sequence numbers must be generated in order of request.

ORDER
Specifies that the sequence numbers are generated in order of request.

NO ORDER
Specifies that the sequence numbers do not need to be generated in order
of request. This is the default.

Notes
v It is possible to define a constant sequence, that is, one that would always return

a constant value. This could be done by specifying an INCREMENT value of
zero and a START WITH value that does not exceed MAXVALUE, or by
specifying the same value for START WITH, MINVALUE and MAXVALUE. For
a constant sequence, each time NEXT VALUE is invoked for the sequence, the
same value is returned. A constant sequence can be used as a numeric global
variable. ALTER SEQUENCE can be used to adjust the values that will be
generated for a constant sequence.

v A sequence can be cycled manually by using the ALTER SEQUENCE statement.
If NO CYCLE is implicitly or explicitly specified, the sequence can be restarted

CREATE SEQUENCE

Statements 659



or extended using the ALTER SEQUENCE statement to cause values to continue
to be generated once the maximum or minimum value for the sequence has
been reached.

v A sequence can be explicitly defined to cycle by specifying the CYCLE keyword.
Use the CYCLE option when defining a sequence to indicate that the generated
values should cycle once the boundary is reached. When a sequence is defined
to automatically cycle (that is, CYCLE was explicitly specified), the maximum or
minimum value generated for a sequence might not be the actual MAXVALUE
or MINVALUE specified, if the increment is a value other than 1 or -1. For
example, the sequence defined with START WITH=1, INCREMENT=2, MAXVALUE=10
will generate a maximum value of 9, and will not generate the value 10. When
defining a sequence with CYCLE, carefully consider the impact of the values for
MINVALUE, MAXVALUE and START WITH.

v Caching sequence numbers implies that a range of sequence numbers can be
kept in memory for fast access. When an application accesses a sequence that
can allocate the next sequence number from the cache, the sequence number
allocation can happen quickly. However, if an application accesses a sequence
that cannot allocate the next sequence number from the cache, the sequence
number allocation may require having to wait for I/O operations to persistent
storage. The choice of the value for CACHE should be done keeping in mind the
performance and application requirements tradeoffs.

v The definer of a sequences is granted ALTER and USAGE privileges with the
grant option. The owner of the sequence can drop the sequence.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– A comma can be used to separate multiple sequence options
– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

can be specified in place of NO MINVALUE, NO MAXVALUE, NO CYCLE,
NO CACHE, and NO ORDER, respectively

v Considerations for a multi-partition or DB2 pureScale environment:
– In a multi-partition or DB2 pureScale environment, if the CACHE and NO

ORDER options are in effect, multiple caches can be active simultaneously
and the requests for next value assignments from different members might
not result in the assignment of values in strict numeric order. Assume, for
example, that members DB1A and DB1B are using the same sequence, and
DB1A gets the cache values 1 to 20 and DB1B gets the cache values 21 to 40.
In this scenario, if DB1A requested the next value first, then DB1B requested,
and then DB1A requested again, the actual order of values assigned would be
1,21,2. Therefore, to guarantee that sequence numbers are generated in strict
numeric order among multiple members using the same sequence
concurrently, specify the ORDER option.

– In a DB2 pureScale environment, using the ORDER or NO CACHE option
ensures that the values assigned to a sequence which is shared by
applications across multiple members are in strict numeric order. If ORDER is
specified, then NO CACHE is implied even if CACHE n is specified

Example

Create a sequence called ORG_SEQ that starts at 1, increments by 1, does not cycle,
and caches 24 values at a time:

CREATE SEQUENCE

660 SQL Reference Volume 2



CREATE SEQUENCE ORG_SEQ
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24

CREATE SEQUENCE

Statements 661



CREATE SERVICE CLASS
The CREATE SERVICE CLASS statement defines a service class.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� CREATE SERVICE CLASS service-class-name �

�
UNDER service-superclass-name

�

�
HARD CPU SHARES 1000

HARD
CPU SHARES integer-constant

SOFT

�

�
CPU LIMIT integer-constant

NONE

PREFETCH PRIORITY DEFAULT

PREFETCH PRIORITY HIGH
MEDIUM
LOW

�

�
OUTBOUND CORRELATOR NONE

OUTBOUND CORRELATOR string-constant
�

�
BUFFERPOOL PRIORITY DEFAULT

BUFFERPOOL PRIORITY HIGH
MEDIUM
LOW

�

�
(1) COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-activity-data-clause
�

�
COLLECT AGGREGATE ACTIVITY DATA NONE

BASE
COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

�

CREATE SERVICE CLASS

662 SQL Reference Volume 2



�
COLLECT AGGREGATE REQUEST DATA NONE

BASE
COLLECT AGGREGATE REQUEST DATA

�

�
COLLECT AGGREGATE UNIT OF WORK DATA NONE

BASE
COLLECT AGGREGATE UNIT OF WORK DATA

�

�
COLLECT REQUEST METRICS NONE

(2) BASE
COLLECT REQUEST METRICS

EXTENDED

�

�
(3)

histogram-template-clause
ENABLE

DISABLE
��

collect-activity-data-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

�

�

�

WITHOUT DETAILS

,
(4)

WITH DETAILS
SECTION AND VALUES

INCLUDE ACTUALS BASE

histogram-template-clause:

ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM
*

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
�

�
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

�

�
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

�

�
REQUEST EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name

�

�
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

�

CREATE SERVICE CLASS

Statements 663



�
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

�

�
UOW LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

* *
UOW LIFETIME HISTOGRAM TEMPLATE template-name

Notes:

1 All COLLECT clauses except for COLLECT REQUEST METRICS are valid
only for a service subclass.

2 The COLLECT REQUEST METRICS clause is valid only for a service
superclass.

3 The HISTOGRAM TEMPLATE clauses are valid only for a service subclass.

4 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

service-class-name
Names the service class. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). If the service class is a service superclass, the
service-class-name must not identify a service superclass that already exists in
the catalog (SQLSTATE 42710). If the service class is a service subclass, the
service-class-name must not identify a service subclass that already exists under
the service superclass (SQLSTATE 42710). If the service class is a service
subclass, the service-class-name must not be the same as its service superclass
(SQLSTATE 42710). The name must not begin with the characters 'SYS'
(SQLSTATE 42939).

UNDER service-superclass-name
Specifies that the service class is a subclass of service superclass
service-superclass-name. If UNDER is not specified, the service class is a service
superclass. The service-superclass-name must identify a service superclass that
exists for the database (SQLSTATE 42704). The service superclass cannot be a
default service class (SQLSTATE 5U029).

HARD CPU SHARES 1000 or HARD CPU SHARES integer-constant or SOFT CPU SHARES
integer-constant

Specifies the number of shares of CPU resources that the workload manager
(WLM) dispatcher allocates to this service class when work is executing within
this service class. Valid values for the integer-constant are integers between 1
and 65535. The default is HARD CPU SHARES 1000, which allocates 1000 hard
shares to this service class. Qualifying CPU SHARES with the keyword HARD, or
specifying CPU SHARES without qualifying it with the keyword HARD or SOFT,
indicates that hard CPU shares are to be allocated to this service class.
Specifying the keyword SOFT indicates that soft CPU shares are to be allocated
to this service class. To use hard and soft CPU shares with WLM dispatcher,
you must enable the wlm_disp_cpu_shares database manager configuration
parameter.

CPU LIMIT integer-constant or CPU LIMIT NONE
Specifies the maximum percentage of the CPU resources that the WLM
dispatcher can assign to this service class. Valid values for the integer-constant
are integers between 1 and 100. You can also specify CPU LIMIT NONE to
indicate that there is no CPU limit.

CREATE SERVICE CLASS

664 SQL Reference Volume 2



PREFETCH PRIORITY DEFAULT | HIGH | MEDIUM | LOW
This parameter controls the priority with which agents in the service class can
submit their prefetch requests. Valid values are HIGH, MEDIUM, LOW, or
DEFAULT (SQLSTATE 42615). HIGH, MEDIUM, and LOW mean that prefetch
requests will be submitted to the high, medium, and low priority queues,
respectively. Prefetchers empty the priority queue in order from high to low.
Agents in the service class submit their prefetch requests at the PREFETCH
PRIORITY level when the next activity begins. If PREFETCH PRIORITY is
altered after a prefetch request is submitted, the request priority does not
change. The default value is DEFAULT, which is internally mapped to
MEDIUM for service superclasses. If DEFAULT is specified for a service
subclass, it inherits the PREFETCH PRIORITY of its parent superclass.

PREFETCH PRIORITY cannot be altered for a default subclass (SQLSTATE
5U032).

OUTBOUND CORRELATOR NONE or OUTBOUND CORRELATOR string-constant
Specifies whether or not to associate threads from this service class to an
external workload manager service class.

If OUTBOUND CORRELATOR is set to a string-constant for the service
superclass and OUTBOUND CORRELATOR NONE is set for a service
subclass, the service subclass inherits the OUTBOUND CORRELATOR of its
parent. The default is OUTBOUND CORRELATOR NONE.

OUTBOUND CORRELATOR NONE
For a service superclass, specifies that there is no external workload
manager service class association with this service class, and for a service
subclass, specifies that the external workload manager service class
association is the same as its parent.

OUTBOUND CORRELATOR string-constant
Specifies the string-constant that is to be used as a correlator to associate
threads from this service class to an external workload manager service
class. The external workload manager must be active (SQLSTATE 5U030).
The external workload manager should be set up to recognize the value of
string-constant.

BUFFERPOOL PRIORITY DEFAULT | HIGH | MEDIUM | LOW
This parameter controls the bufferpool priority of pages fetched by activities in
this service class. Valid values are HIGH, MEDIUM, LOW or DEFAULT
(SQLSTATE 42615). Pages fetched by activities in a service class with higher
bufferpool priority are less likely to be swapped out than pages fetched by
activities in a service class with lower bufferpool priority. The default value is
DEFAULT, which is internally mapped to LOW for service superclasses. If
DEFAULT is specified for a service subclass, it inherits the BUFFERPOOL
PRIORITY from its parent superclass.

BUFFERPOOL PRIORITY cannot be altered for a default subclass (SQLSTATE
5U032).

COLLECT ACTIVITY DATA
Specifies that information about each activity that executes in this service class
is to be sent to any active activities event monitor when the activity completes.
The default is COLLECT ACTIVITY DATA NONE. The COLLECT ACTIVITY
DATA clause is valid only for a service subclass.

NONE
Specifies that activity data should not be collected for each activity that
executes in this service class.

CREATE SERVICE CLASS

Statements 665



ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator
member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the
activity is processed. On remote members, a record for the activity may be
captured multiple times as the activity comes and goes on those members.
If the AND VALUES clause is specified, activity input values will be
collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the service class is to
be sent to any active activities event monitor, when the activity completes
execution. Details about statement, compilation environment, and section
environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to be sent
to any active activities event monitor, for those activities that have
them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section environment
data, and section actuals are to be sent to any active activities event
monitor for those activities that have them. DETAILS must be specified
if SECTION is specified. Section actuals will be collected on any
member where the activity data is collected.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on any
partition where the activity data is collected. For section actuals to
be collected, either INCLUDE ACTUALS clause must be specified
or the section_actuals database configuration parameter must be
set.

The effective setting for the collection of section actuals is the
combination of the INCLUDE ACTUALS clause, the
section_actuals database configuration parameter, and the
<collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if INCLUDE
ACTUALS BASE is specified, yet the section_actuals database
configuration parameter value is NONE and
<collectsectionactuals> is set to NONE, then the effective setting
for the collection of section actuals is BASE.

BASE specifies that the following should be enabled and collected
during the activity's execution:
v Basic operator cardinality counts
v Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active activities
event monitor, for those activities that have them.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data should be captured for this service class
and sent to the statistics event monitor, if one is active. This information is

CREATE SERVICE CLASS

666 SQL Reference Volume 2



collected periodically on an interval that is specified by the wlm_collect_int
database configuration parameter. The default when COLLECT AGGREGATE
ACTIVITY DATA is not specified is COLLECT AGGREGATE ACTIVITY DATA
NONE. The default when COLLECT AGGREGATE ACTIVITY DATA is
specified is COLLECT AGGREGATE ACTIVITY DATA BASE. The COLLECT
AGGREGATE ACTIVITY DATA clause is valid only for a service subclass.

BASE
Specifies that basic aggregate activity data should be captured for this
service class and sent to the statistics event monitor, if one is active. Basic
aggregate activity data includes:
v Estimated activity cost high watermark
v Rows returned high watermark
v Temporary table space usage high watermark

Note: Only activities that have an SQLTEMPSPACE threshold applied to
them participate in this high watermark.

v Activity life time histogram
v Activity queue time histogram
v Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for this service
class and sent to the statistics event monitor, if one is active. This includes
all basic aggregate activity data plus:
v Activity data manipulation language (DML) estimated cost histogram
v Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data should be captured for this service
class.

COLLECT AGGREGATE REQUEST DATA
Specifies that aggregate request data should be captured for this service class
and sent to the statistics event monitor, if one is active. This information is
collected periodically on an interval specified by the wlm_collect_int database
configuration parameter. The default is COLLECT AGGREGATE REQUEST
DATA NONE. The COLLECT AGGREGATE REQUEST DATA clause is valid
only for a service subclass.

BASE
Specifies that basic aggregate request data should be captured for this
service class and sent to the statistics event monitor, if one is active.

NONE
Specifies that no aggregate request data should be captured for this service
class.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data is to be captured for this service
class and sent to the statistics event monitor, if one is active. This information
is collected periodically on an interval specified by the wlm_collect_int
database configuration parameter. The default is COLLECT AGGREGATE
UNIT OF WORK DATA NONE. The COLLECT AGGREGATE UNIT OF
WORK DATA clause is valid only for a service subclass.

CREATE SERVICE CLASS

Statements 667



BASE
Specifies that basic aggregate unit of work data is to be captured for this
service class and sent to the statistics event monitor, if one is active. Basic
aggregate unit of work includes:
v Unit of work lifetime histogram

NONE
Specifies that no aggregate unit of work data is to be collected for this
service class.

COLLECT REQUEST METRICS
Specifies that monitor metrics should be collected for any request submitted by
a connection that is associated with the specified service superclass and sent to
the statistics and unit of work event monitors, if active. The default is
COLLECT REQUEST METRICS NONE. The COLLECT REQUEST METRICS
clause is valid only for a service superclass (SQLSTATE 50U44).

Note: The effective request metrics collection setting is the combination of the
attribute specified by the COLLECT REQUEST METRICS clause on the service
superclass associated with the connection submitting the request, and the
mon_req_metrics database configuration parameter. If either the service
superclass attribute or the configuration parameter has a value other than
NONE, metrics will be collected for the request.

NONE
Specifies that no metrics will be collected for any request submitted by a
connection associated with the service superclass.

BASE
Specifies that basic metrics will be collected for any request submitted by a
connection associated with the service superclass.

EXTENDED
Specifies that basic aggregate request data should be captured for this
service class and sent to the statistics event monitor, if one is active. In
addition, specifies that the values for the following monitor elements
should be determined with additional granularity:
v total_section_time

v total_section_proc_time

v total_routine_user_code_time

v total_routine_user_code_proc_time

v total_routine_time

histogram-template-clause
Specifies the histogram templates to use when collecting aggregate activity
data for activities executing in the service class. The HISTOGRAM TEMPLATE
clause is valid only for a service subclass.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of database activities running in
the service class during a specific interval. This time includes both time
queued and time executing. The default is SYSDEFAULTHISTOGRAM.
This information is collected only when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED
option.

CREATE SERVICE CLASS

668 SQL Reference Volume 2



ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities
running in the service class are queued during a specific interval. The
default is SYSDEFAULTHISTOGRAM. This information is collected only
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified,
with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities
running in the service class are executing during a specific interval. This
time does not include the time spent queued. Activity execution time is
collected in this histogram at the coordinator member only. The time does
not include idle time. Idle time is the time between the execution of
requests belonging to the same activity when no work is being done. An
example of idle time is the time between the end of opening a cursor and
the start of fetching from that cursor. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either
the BASE or EXTENDED option. Only activities at nesting level 0 are
considered for inclusion in the histogram.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database requests
running in the service class are executing during a specific interval. This
time does not include the time spent queued. Request execution time is
collected in this histogram on each member where the request executes.
The default is SYSDEFAULTHISTOGRAM. This information is collected
only when the COLLECT AGGREGATE REQUEST DATA clause is
specified with the BASE option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of DML activities running in the
service class. The default is SYSDEFAULTHISTOGRAM. This information
is collected only when the COLLECT AGGREGATE ACTIVITY DATA
clause is specified with the EXTENDED option. Only activities at nesting
level 0 are considered for inclusion in the histogram.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, between the arrival of one
DML activity and the arrival of the next DML activity. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified with the
EXTENDED option.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of units of work running in the
service class during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE UNIT OF WORK DATA clause is specified with
the BASE option.

CREATE SERVICE CLASS

Statements 669



ENABLE or DISABLE
Specifies whether or not connections and activities can be mapped to the
service class. The default is ENABLE.

ENABLE
Connections and activities can be mapped to the service class.

DISABLE
Connections and activities cannot be mapped to the service class. New
connections or activities that are mapped to a disabled service class will be
rejected (SQLSTATE 5U028). When a service superclass is disabled, its
service subclasses are also disabled. When the service superclass is
re-enabled, its service subclasses return to states that are defined in the
system catalog. A default service class cannot be disabled (SQLSTATE
5U032).

Rules
v The maximum number of service subclasses that can be created under a service

superclass is 61 (SQLSTATE 5U027).
v The maximum number of service superclasses that can be created for a database

is 64 (SQLSTATE 5U027).
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U027). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (histogram template)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work

action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work

class set)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v A default subclass, SYSDEFAULTSUBCLASS, is automatically created for every

service superclass.
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all members. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until after a
COMMIT statement, even for the connection that issues the statement.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– DATABASE PARTITION can be specified in place of MEMBER, except when

the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– DATABASE PARTITIONS can be specified in place of MEMBERS, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

CREATE SERVICE CLASS

670 SQL Reference Volume 2



Examples
v Example 1: Create a service superclass named PETSALES. The default subclass

for PETSALES is automatically created.
CREATE SERVICE CLASS PETSALES

v Example 2: Create a service subclass named DOGSALES under service superclass
PETSALES. Set service class DOGSALES as disabled.

CREATE SERVICE CLASS DOGSALES UNDER PETSALES DISABLE

v Example 3: Create a service superclass named BARNSALES with a prefetcher
priority of LOW. The default subclass for BARNSALES is automatically created.
Prefetch requests submitted by agents in the BARNSALES service class will go
to the low priority prefetch queue.

CREATE SERVICE CLASS BARNSALES PREFETCH PRIORITY LOW

CREATE SERVICE CLASS

Statements 671



CREATE SERVER
The CREATE SERVER statement defines a data source to a federated database.

In this statement, the term SERVER and the parameter names that start with server-
refer only to data sources in a federated system. They do not refer to the federated
server in such a system, or to DRDA application servers.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
authority.

Syntax

�� CREATE SERVER server-name
TYPE server-type

�

�
VERSION server-version

WRAPPER wrapper-name �

�
AUTHORIZATION remote-authorization-name PASSWORD password

�

�

�

,

OPTIONS ( server-option-name string-constant )

��

server-version:

version
. release

. mod
version-string-constant

Description

server-name
Names the data source that is being defined to the federated database. The
name must not identify a data source that is described in the catalog. The
server-name must not be the same as the name of any table space in the
federated database.

A server definition for relational data sources usually represents a remote
database. Some relational database management systems, such as Oracle, do
not allow multiple databases within each instance. Instead, each instance
represents a server within a federated system.

CREATE SERVER

672 SQL Reference Volume 2



For nonrelational data sources, the purpose of a server definition varies from
data source to data source. Some server definitions map to a search type and
daemon, a website, or a web server. For other nonrelational data sources, a
server definition is created because the hierarchy of federated objects requires
that data source files (identified by nicknames) are associated with a specific
server object.

TYPE server-type
Specifies the type of data source denoted by server-name. This parameter is
required by some wrappers.

VERSION
Specifies the version of the data source denoted by server-name. This parameter
is required by some wrappers.

version
Specifies the version number. The value must be an integer.

release
Specifies the number of the release of the version denoted by version. The
value must be an integer.

mod
Specifies the number of the modification of the release denoted by release.
The value must be an integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant
can be a single value (for example, '8i'); or it can be the concatenated
values of version, release and, if applicable, mod (for example, '8.0.3').

WRAPPER wrapper-name
Names the wrapper that the federated server uses to interact with the server
object specified by server-name.

AUTHORIZATION remote-authorization-name
Required only for DB2 family data sources. Specifies the authorization ID
under which any necessary actions are performed at the data source when the
CREATE SERVER statement is processed. This authorization ID is not used
when establishing subsequent connections to the server.

This ID must hold the authority (BINDADD or its equivalent) that the
necessary actions require. If the remote-authorization-name is specified in mixed
or lowercase characters (and the remote data source has case sensitive
authorization names), the remote-authorization-name should be enclosed by
double quotation marks.

PASSWORD password
Required only for DB2 family data sources. Specifies the password associated
with the authorization ID represented by remote-authorization-name. If the
password is specified in mixed or lowercase characters (and the remote data
source has case sensitive passwords), the password should be enclosed by
double quotation marks.

OPTIONS
Indicates the options that are enabled when the server definition is created.
Server options are used to configure the server definition. Some server options
can be used to create the server definition for any data source. Some server
options are specific to a particular data source.

CREATE SERVER

Statements 673



server-option-name
Names a server option that will be used to either configure or provide
information about the data source denoted by server-name.

string-constant
Specifies the setting for server-option-name as a character string constant.

Notes
v The password should be specified when the data source requires a password. If

any letters in password must be in lowercase, enclose password in quotation
marks.

v If the CREATE SERVER statement is used to define a DB2 family instance as a
data source, DB2 may need to bind certain packages to that instance. If binding
is required, the remote-authorization-name in the statement must have BIND
authority. The time required for the bind operation to complete is dependent on
data source speed and network connection speed.

v No verification occurs to ensure that the specified server version matches the
remote server version. Specifying an incorrect server version can result in SQL
errors when you access nicknames that belong to the database server definition.
This is most likely when you specify a server version that is later than the
remote server version. In that case, when you access nicknames that belong to
the server definition, the database server might send SQL that the remote server
does not recognize.

v Syntax alternatives: The following syntax is supported for compatibility with
previous versions of DB2:
– ADD can be specified before server-option-name string-constant.

Examples
1. Register a server definition to access a DB2 for z/OS and OS/390®, Version 7.1

data source. CRANDALL is the name assigned to the DB2 for z/OS and
OS/390 server definition. DRDA is the name of the wrapper used to access this
data source. In addition, specify that:
v GERALD and drowssap are the authorization ID and password under which

packages are bound at CRANDALL when this statement is processed.
v The alias for the DB2 for z/OS and OS/390 database that was specified with

the CATALOG DATABASE statement is CLIENTS390.
v The authorization IDs and passwords under which CRANDALL can be

accessed are to be sent to CRANDALL in uppercase.
v CLIENTS390 and the federated database use the same collating sequence.

CREATE SERVER CRANDALL
TYPE DB2/ZOS
VERSION 7.1
WRAPPER DRDA
AUTHORIZATION "GERALD"
PASSWORD drowssap
OPTIONS

(DBNAME ’CLIENTS390’,
FOLD_ID ’U’,
FOLD_PW ’U’,
COLLATING_SEQUENCE ’Y’)

2. Register a server definition to access an Oracle 9 data source. CUSTOMERS is
the name assigned to the Oracle server definition. NET8 is the name of the
wrapper used to access this data source. In addition, specify that:
v ABC is the name of the node where the Oracle database server resides.

CREATE SERVER

674 SQL Reference Volume 2



v The CPU for the federated server runs twice as fast as the CPU that supports
CUSTOMERS.

v The I/O devices at the federated server process data one and a half times as
fast as the I/O devices at CUSTOMERS.
CREATE SERVER CUSTOMERS

TYPE ORACLE
VERSION 9
WRAPPER NET8
OPTIONS

(NODE ’ABC’,
CPU_RATIO ’2.0’,
IO_RATIO ’1.5’)

3. Register a server definition for the Excel wrapper. The server definition is
required to preserve the hierarchy of federated objects. BIOCHEM_LAB is the
name assigned to the Excel server definition. EXCEL_2000_WRAPPER is the
name of the wrapper used to access this data source.

CREATE SERVER BIOCHEM_DATA
WRAPPER EXCEL_2000_WRAPPER

CREATE SERVER

Statements 675



CREATE STOGROUP
The CREATE STOGROUP statement defines a new storage group within the
database, assigns storage paths to the storage group, and records the storage group
definition and attributes in the catalog.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

�� CREATE STOGROUP storagegroup-name �

,

ON 'storage-path' * �

� *

OVERHEAD number-of-milliseconds
�

� *

DEVICE READ RATE number-megabytes-per-second
�

� *

DATA TAG integer-constant
NONE

*

SET AS DEFAULT
��

Description

storagegroup-name
Names the storage group. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The storagegroup-name must not identify a
storage group that already exists at the current server (SQLSTATE 42710). The
storagegroup-name must not begin with the characters 'SYS' (SQLSTATE 42939).

ON Specifies storage paths to be added for the named storage group. For
partitioned database environments, the same storage paths will be defined on
all database partitions unless database partition expressions are used.

storage-path
A string constant that specifies containers the location where automatic
storage table spaces are to be created. The format of the string depends on
the operating system, as illustrated in the following table:

CREATE STOGROUP

676 SQL Reference Volume 2



Operating system Format of storage path string

Linux
AIX
Solaris
HP-UX

An absolute path

Windows The letter name of a drive

The string can include database partition expressions to specify database
partition number information in the storage path.

The maximum length of a path is 175 characters (SQLSTATE 54036).A
storage path being added must be valid according to the naming rules for
paths, and must be accessible (SQLSTATE 57019). Similarly, in a partitioned
database environment, the storage path must exist and be accessible on
every database partition (SQLSTATE 57019).

OVERHEAD number-of-milliseconds
Specifies the I/O controller usage and disk seek and latency time. This value is
used to determine the cost of I/O during query optimization. The value of
number-of-milliseconds is any numeric literal (integer, decimal, or floating point).
If this value is not the same for all storage paths, set the value to a numeric
literal which represents the average for all storage paths that belong to the
storage group.

If the OVERHEAD clause is not specified, the OVERHEAD will be set to 6.725
milliseconds.

DEVICE READ RATE number-megabytes-per-second
Specifies the device specification for the read transfer rate in megabytes per
second. This value is used to determine the cost of I/O during query
optimization. The value of number-megabytes-per-second is any numeric literal
(integer, decimal, or floating point). If this value is not the same for all storage
paths, set the value to a numeric literal which represents the average for all
storage paths that belong to the storage group.

If the DEVICE READ RATE clause is not specified, the DEVICE READ RATE
will be set to the built-in default of 100 megabytes per second.

DATA TAG integer-constant or DATA TAG NONE
Specifies a tag for the data for table spaces using this storage group unless
explicitly overridden by the table space definition. This value can be used as
part of a WLM configuration in a work class definition or referenced within a
threshold definition. For more information, see the CREATE WORK CLASS
SET and CREATE THRESHOLD statements.

integer-constant
Valid values for integer-constant are integers from 1 to 9.

NONE
If NONE is specified, there is no data tag.

SET AS DEFAULT
Specifies the storage group being created is designated as the default storage
group. If there is no default storage group, the first one created will be
designated the default even if this clause is not specified. Since there can only
be one storage group designated as the default storage group, specifying this
clause removes the default attribute from the existing default storage group.
Specifying a new default storage group has no affect to the storage group used
by existing table spaces.

CREATE STOGROUP

Statements 677



Rules
v The CREATE STOGROUP statement cannot be executed while a database

partition server is being added (SQLSTATE 55071).
v A storage group can have up to 128 defined storage paths (SQLSTATE 5U009).
v A database instance can have up to 256 defined storage groups (SQLSTATE

54035).

Notes
v Calculation of free space: When free space is calculated for a storage path on a

database partition, the database manager checks for the existence of the
following directories or mount points within the storage path, and will use the
first one that is found.
<storage path>/<instance name>/NODE####/<database name>
<storage path>/<instance name>/NODE####
<storage path>/<instance name>
<storage path>

Where:
– <storage path> is a storage path associated with the database.
– <instance name> is the instance under which the database resides.
– NODE#### corresponds to the database partition number (for example,

NODE0000 or NODE0001).
– <database name> is the name of the database.

v Isolating multiple database partitions under one storage path: File systems can
be mounted at a point beneath the storage path, and the database manager will
recognize that the actual amount of free space available for table space
containers might not be the same amount that is associated with the storage
path directory itself.
Consider an example in which two logical database partitions exist on one
physical computer, and there is a single storage path (/dbdata). Each database
partition will use this storage path, but you might want to isolate the data from
each partition within its own file system. In this case, a separate file system can
be created for each partition and it can be mounted at /dbdata/<instance>/
NODE####. When creating containers on the storage path and determining free
space, the database manager will not retrieve free space information for /dbdata,
but instead will retrieve it for the corresponding /dbdata/<instance>/NODE####
directory.

v Multiple storage paths: A storage path can be added to different storage groups,
or to the same storage group multiple times.

v Similar media characteristics: Ensure that the storage paths added to a storage
group have similar media characteristics. If the media characteristics are
dissimilar, specify a value which represents an average for OVERHEAD and
DEVICE READ RATE.

Examples
1. Create a storage group named HIGHEND with two paths under the /db

directory (/db/filesystem1 and /db/filesystem2) which are attached to Solid
State Disks.
CREATE STOGROUP HIGHEND ON ’/db/filesystem1’, ’/db/filesystem2’

OVERHEAD 0.75 DEVICE READ RATE 500

2. Create a storage group named MIDRANGE with two drives D and E and
designate it as the default storage group.
CREATE STOGROUP MIDRANGE ON ’D:\’, ’E:\’ SET AS DEFAULT

CREATE STOGROUP

678 SQL Reference Volume 2



CREATE SYNONYM
The CREATE SYNONYM statement defines a synonym for a module, nickname,
sequence, table, view, or another synonym.

Description

SYNONYM is a synonym for ALIAS.

CREATE SYNONYM

Statements 679



CREATE TABLE
The CREATE TABLE statement defines a table. The definition must include its
name and the names and attributes of its columns. The definition can include other
attributes of the table, such as its primary key or check constraints.

To create a created temporary table, use the CREATE GLOBAL TEMPORARY
TABLE statement. To declare a declared temporary table, use the DECLARE
GLOBAL TEMPORARY TABLE statement.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either
DBADM authority, or CREATETAB authority in combination with further
authorization, as described here:
v One of the following privileges and authorities:

– USE privilege on the table space
– SYSADM
– SYSCTRL

v Plus one of these privileges and authorities:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema

If a subtable is being defined, the authorization ID must be the same as the owner
of the root table of the table hierarchy.

To define a foreign key, the privileges held by the authorization ID of the statement
must include one of the following on the parent table:
v REFERENCES privilege on the table
v REFERENCES privilege on each column of the specified parent key
v CONTROL privilege on the table
v DBADM authority

To define a materialized query table (with a fullselect), the following criteria must
be met:
v The privileges that are held by the authorization ID of the statement must

include at least one of the following on each table or view that is identified in
the fullselect (excluding group privileges):
– SELECT privilege on the table or view
– CONTROL privilege on the table or view
– DATAACCESS authority

v At least one of the following privileges on each table or view that is identified in
the fullselect:

CREATE TABLE

680 SQL Reference Volume 2



– ALTER privilege on the table or view
– CONTROL privilege on the table or view
– DBADM authority

To define a staging table associated with a materialized query table, the privileges
held by the authorization ID of the statement must include at least one of the
following on the materialized query table:
v ALTER privilege on the materialized query table
v CONTROL privilege on the materialized query table
v DBADM authority

and at least one of the following on each table or view identified in the fullselect of
the materialized query table:
v SELECT privilege or DATAACCESS authority on the table or view, and at least

one of the following:
– ALTER privilege on the table or view
– DBADM authority

v CONTROL privilege on the table or view

Syntax

�� CREATE TABLE table-name element-list
OF type-name1

typed-table-options
LIKE table-name1

view-name copy-options
nickname

as-result-table
copy-options

materialized-query-definition
staging-table-definition

* �

�
ORGANIZE BY ROW

COLUMN
dimensions-clause

(1) KEY SEQUENCE sequence-key-spec
ROW USING INSERT TIME

�

� *
DATA CAPTURE NONE

CHANGES

*
tablespace-clauses

* �

�
distribution-clause

*
partitioning-clause

�

�
COMPRESS NO

*
ADAPTIVE

COMPRESS YES
STATIC

*
VALUE COMPRESSION

�

� *
WITH RESTRICT ON DROP

*
NOT LOGGED INITIALLY

*
CCSID ASCII

UNICODE

�

CREATE TABLE

Statements 681



� * *
SECURITY POLICY policy name

�

�

�

,

OPTIONS ( table-option-name string-constant )

��

element-list:

�

,

( column-definition )
period-definition
unique-constraint
referential-constraint
check-constraint

column-definition:

column-name
(2)

data-type
column-options

data-type:

built-in-type
(3)

distinct-type-name
structured-type-name
REF (type-name2)

built-in-type:

CREATE TABLE

682 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (4)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

SYSPROC. (5) (6)
DB2SECURITYLABEL

column-options:

CREATE TABLE

Statements 683



�

NOT NULL
(7)

lob-options
(8)

SCOPE typed-table-name
typed-view-name

PRIMARY KEY constraint-attributes
CONSTRAINT constraint-name UNIQUE

references-clause
CHECK ( check-condition )

(9)
default-clause
generated-clause

(10)
INLINE LENGTH integer
COMPRESS SYSTEM DEFAULT
COLUMN

SECURED WITH security-label-name
NOT HIDDEN
IMPLICITLY HIDDEN

lob-options:

LOGGED NOT COMPACT
* * *

NOT LOGGED COMPACT

references-clause:

REFERENCES table-name
nickname

�

,

( column-name )

�

� rule-clause constraint-attributes

rule-clause:

ON DELETE NO ACTION ON UPDATE NO ACTION
* * *

ON DELETE RESTRICT ON UPDATE RESTRICT
CASCADE
SET NULL

constraint-attributes:

*

ENFORCED

TRUSTED
NOT ENFORCED

NOT TRUSTED

*

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION
*

default-clause:

WITH
DEFAULT

default-values

CREATE TABLE

684 SQL Reference Volume 2



default-values:

constant
datetime-special-register
user-special-register
CURRENT SCHEMA
CURRENT MEMBER
NULL
cast-function ( constant )

datetime-special-register
user-special-register
CURRENT SCHEMA

EMPTY_CLOB()
EMPTY_DBCLOB()
EMPTY_NCLOB()
EMPTY_BLOB()

generated-clause:

ALWAYS
GENERATED identity-options

BY DEFAULT as-row-change-timestamp-clause
ALWAYS

GENERATED as-generated-expression-clause
as-row-transaction-timestamp-clause
as-row-transaction-start-id-clause

identity-options:

�

AS IDENTITY

(11) 1
( START WITH numeric-constant )

1
INCREMENT BY numeric-constant
NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant
NO ORDER
ORDER

as-row-change-timestamp-clause:

(12)
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-generated-expression-clause:

AS ( generation-expression )

CREATE TABLE

Statements 685



as-row-transaction-timestamp-clause:

(13)
AS ROW BEGIN

END

as-row-transaction-start-id-clause:

(14)
AS TRANSACTION START ID

period-definition:

PERIOD SYSTEM_TIME ( begin-column-name , end-column-name )
BUSINESS_TIME

unique-constraint:

CONSTRAINT constraint-name
UNIQUE
PRIMARY KEY

�

� �

,

( column-name )
, BUSINESS_TIME WITHOUT OVERLAPS

�

� constraint-attributes

referential-constraint:

CONSTRAINT constraint-name
FOREIGN KEY �

,

( column-name ) �

� references-clause

check-constraint:

CONSTRAINT constraint-name
CHECK ( check-condition ) �

� constraint-attributes

CREATE TABLE

686 SQL Reference Volume 2



check-condition:

search-condition
functional-dependency

functional-dependency:

� �

column-name DETERMINED BY column-name
, ,

( column-name ) ( column-name )

typed-table-options:

HIERARCHY hierarchy-name typed-element-list
under-clause

under-clause:

UNDER supertable-name INHERIT SELECT PRIVILEGES

typed-element-list:

�

,

( OID-column-definition )
with-options
unique-constraint
check-constraint

OID-column-definition:

REF IS OID-column-name USER GENERATED

with-options:

column-name WITH OPTIONS column-options

as-result-table:

�

,

( column-name )

AS ( fullselect ) WITH NO DATA

materialized-query-definition:

CREATE TABLE

Statements 687



�

,

( column-name )

AS ( fullselect ) �

� refreshable-table-options

copy-options:

*

COLUMN
INCLUDING DEFAULTS
EXCLUDING

* �

�

COLUMN ATTRIBUTES
EXCLUDING IDENTITY

COLUMN ATTRIBUTES
INCLUDING IDENTITY

*

refreshable-table-options:

DATA INITIALLY DEFERRED REFRESH DEFERRED
IMMEDIATE

* �

�
ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION
*

MAINTAINED BY SYSTEM
USER
REPLICATION
FEDERATED_TOOL

*

staging-table-definition:

�

,

( staging-column-name )

FOR table-name2 PROPAGATE IMMEDIATE

dimensions-clause:

�

�

,
DIMENSIONS

( column-name )
,

( column-name )

sequence-key-spec:

CREATE TABLE

688 SQL Reference Volume 2



�

,
AT

( column-name ENDING constant )
FROM

STARTING constant

�

� ALLOW OVERFLOW
DISALLOW OVERFLOW PCTFREE integer

tablespace-clauses:

�

,
CYCLE

IN tablespace-name
NO CYCLE

* �

�
(15)

INDEX IN tablespace-name
�

,

LONG IN tablespace-name

distribution-clause:

DISTRIBUTE BY �

,
HASH

( column-name )
REPLICATION

partitioning-clause:

PARTITION BY
RANGE

range-partition-spec

range-partition-spec:

�

,

( partition-expression ) �

,

( partition-element )

partition-expression:

column-name
NULLS LAST

NULLS FIRST

CREATE TABLE

Statements 689



partition-element:

boundary-spec partition-tablespace-options
PARTITION partition-name
boundary-spec EVERY ( constant )

(16)
duration-label

constant
(16)

duration-label

boundary-spec:

(17)
starting-clause ending-clause
ending-clause

starting-clause:

FROM
STARTING �

,

( constant )
MINVALUE
MAXVALUE

constant
MINVALUE
MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause:

AT
ENDING �

,

( constant )
MINVALUE
MAXVALUE

constant
MINVALUE
MAXVALUE

INCLUSIVE

EXCLUSIVE

partition-tablespace-options:

IN tablespace-name INDEX IN tablespace-name
�

�
LONG IN tablespace-name

duration-label:

CREATE TABLE

690 SQL Reference Volume 2



YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

Notes:

1 If the default table organization for the database is COLUMN, ROW USING
must be specified.

2 If the first column-option chosen is a generated-clause with a
generation-expression, then the data-type can be omitted. It will be
determined from the resulting data type of the generation-expression.

3 The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type.

4 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

5 DB2SECURITYLABEL is the built-in distinct type that must be used to define
the row security label column of a protected table.

6 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is
implicit and cannot be explicitly specified (SQLSTATE 42842). The default
value for a column of type DB2SECURITYLABEL is the session authorization
ID's security label for write access.

7 The lob-options clause only applies to large object types (BLOB, CLOB and
DBCLOB) and distinct types based on large object types.

8 The SCOPE clause only applies to the REF type.

9 The default-clause and generated-clause cannot both be specified for the same
column definition (SQLSTATE 42614).

10 INLINE LENGTH applies only to columns defined as structured, XML, or
LOB types.

11 The same clause must not be specified more than once.

12 Data type is optional for a row change timestamp column if the first
column-option specified is a generated-clause. The data type default is
TIMESTAMP(6).

13 Data type is optional for a row-begin and row-end timestamp columns if the
first column-option specified is a generated-clause. The data type default is
TIMESTAMP(12).

14 Data type is optional for a transaction-start-ID timestamp columns if the first
column-option specified is a generated-clause. The data type default is
TIMESTAMP(12).

CREATE TABLE

Statements 691



15 Specifying which table space will contain a table's indexes can be done when
the table is created. If the table is a partitioned table, the index table space for
a nonpartitioned index can be specified with the IN clause of the CREATE
INDEX statement.

16 This syntax for a partition-element is valid if there is only one
partition-expression with a numeric or datetime data type.

17 The first partition-element must include a starting-clause and the last
partition-element must include an ending-clause.

Description

System-maintained, user-maintained, federated_tool-maintained, and
replication-maintained materialized query tables (shadow tables) are referred to by
the common term materialized query table, unless there is a need to identify each one
separately.

table-name
Names the table. The name, including the implicit or explicit qualifier, must
not identify a table, view, nickname, or alias described in the catalog. The
schema name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE
42939).

element-list
Defines the elements of a table. This includes the definition of columns and
constraints on the table.

column-definition
Defines the attributes of a column.

column-name
Names a column of the table. The name cannot be qualified, and the same
name cannot be used for more than one column of the table (SQLSTATE
42711).

A row-organized table can have the following:
v A 4K page size with a maximum of 500 columns, where the row size

must not be greater than 4005
v An 8K page size with a maximum of 1012 columns, where the row size

must not be greater than 8101
v A 16K page size with a maximum of 1012 columns, where the row size

must not be greater than 16,293
v A 32K page size with a maximum of 1012 columns, where the row size

must not be greater than 32,677

A column-organized table can have a maximum of 1012 columns,
regardless of page size, where the byte counts of the columns must not be
greater than 32,677. Extended row size support does not apply to
column-organized tables.

For more details, see Row Size Limit.

data-type
Specifies the data type of the column.

built-in-type
For built-in types, use one of the following types.

SMALLINT
For a small integer.

CREATE TABLE

692 SQL Reference Volume 2



INTEGER or INT
For a large integer.

BIGINT
For a big integer.

DECIMAL(precision-integer, scale-integer) or DEC(precision-
integer, scale-integer)

For a decimal number. The first integer is the precision of the
number; that is, the total number of digits; it may range from 1 to
31. The second integer is the scale of the number; that is, the
number of digits to the right of the decimal point; it may range
from 0 to the precision of the number.

If precision and scale are not specified, the default values of 5,0 are
used. The words NUMERIC and NUM can be used as synonyms
for DECIMAL and DEC.

FLOAT(integer)
For a single or double-precision floating-point number, depending
on the value of the integer. The value of the integer must be in the
range 1 through 53. The values 1 through 24 indicate single
precision and the values 25 through 53 indicate double-precision.

You can also specify:

REAL For single precision floating-point.

DOUBLE
For double-precision floating-point.

DOUBLE PRECISION
For double-precision floating-point.

FLOAT
For double-precision floating-point.

DECFLOAT(precision-integer)
For a decimal floating-point number. The value of precision-integer
is the precision of the number; that is, the total number of digits,
which can be 16 or 34.

If the precision is not specified, a default value of 34 is used.

CHARACTER(integer [OCTETS | CODEUNITS32]) or CHAR(integer
[OCTETS | CODEUNITS32]) or CHARACTER or CHAR

For a fixed-length character string of length integer code units,
which may range from 1 to 254 OCTETS or from 1 to 63
CODEUNITS32. If the length specification is omitted, a length of 1
is assumed.

VARCHAR(integer [OCTETS | CODEUNITS32]), or CHARACTER
VARYING(integer [OCTETS | CODEUNITS32]), or CHAR VARYING(integer
[OCTETS | CODEUNITS32])

For a varying-length character string of maximum length integer
code units, which may range from 1 to 32,672 OCTETS or from 1
to 8,168 CODEUNITS32.

FOR BIT DATA
Specifies that the contents of the column are to be treated as bit
(binary) data. During data exchange with other systems, code page
conversions are not performed. Comparisons are done in binary,
irrespective of the database collating sequence.

CREATE TABLE

Statements 693



CLOB or CHARACTER (CHAR) LARGE OBJECT(integer [K | M | G]
[OCTETS | CODEUNITS32])

For a character large object string of the specified maximum length
in code units.

The meaning of the integer K | M | G is the same as for BLOB
when the string unit is OCTETS. When the string unit is
CODEUNITS32, and a multiple of K, M or G that calculates out to
536,870,912 is specified, the actual value used is 536,870,911 (or 2
gigabytes minus 1 string unit divided 4), which is the maximum
length for a LOB column.

If the length specification is omitted, a length of 1,048,576 (1
megabyte) code units is assumed.

It is not possible to specify the FOR BIT DATA clause for CLOB
columns. However, a CHAR FOR BIT DATA string can be assigned
to a CLOB column.

OCTETS
Specifies that the units of the length attribute is bytes.

CODEUNITS32
Specifies that the units of the length attribute is Unicode UTF-32
code units which approximates counting in characters. This does
not affect the underlying code page of the data type. The actual
length of a data value is determined by counting the UTF-32 code
units as if the data was converted to UTF-32. CODEUNITS32 can
be specified only in a Unicode database (SQLSTATE 560AA).

When no string units are specified for a character string data type
in a Unicode database, the string units are implicit and determined
by the value of the NLS_STRING_UNITS global variable or
string_units database configuration parameter. In a non-Unicode
database, the string units for character string data types are
OCTETS.

GRAPHIC(integer CODEUNITS16 | CODEUNITS32])
For a fixed-length graphic string of length integer which may range
from 1 to 127 double bytes, 1 to 127 CODEUNITS16, or 1 to 63
CODEUNITS32. If the length specification is omitted, a length of 1
is assumed.

VARGRAPHIC(integer CODEUNITS16 | CODEUNITS32])
For a varying-length graphic string of maximum length integer,
which may range from 1 to 16,336 double bytes, 1 to 16,336
CODEUNITS16, or 1 to 8,168 CODEUNITS32 .

DBCLOB(integer [K | M | G] CODEUNITS16 | CODEUNITS32])
For a character large object string of the specified maximum length
in double bytes, Unicode UTF-16 code units, or Unicode UTF-32
code units.

The meaning of the integer K | M | G is similar to that for BLOB.
The differences are that the number specified is the number of
double bytes, Unicode UTF-16 code units, or Unicode UTF-32 code
units with a maximum size of 2,147,483,646 total bytes,
1,073,741,823 double bytes, 1,073,741,823 CODEUNITS16, or
536,870,911 CODEUNITS32. When the string unit is CODEUNITS32
and a multiple of K, M or G that calculates out to 536,870,912 is

CREATE TABLE

694 SQL Reference Volume 2



specified, the actual value used is 536,870,911 (or 2 gigabytes minus
1 string unit divided 4), which is the maximum length for a LOB
column.

If the length specification is omitted, a length of 1,048,576 code
units is assumed.

CODEUNITS16
Specifies that the units of the length attribute is Unicode UTF-16
code units which is the same as counting in double bytes.
CODEUNITS16 can be specified only in a Unicode database
(SQLSTATE 560AA).

CODEUNITS32
Specifies that the units of the length attribute is Unicode UTF-32
code units which approximates counting in characters. This does
not affect the underlying code page of the data type. The actual
length of a data value is determined by counting the UTF-32 code
units as if the data was converted to UTF-32. CODEUNITS32 can
be specified only in a Unicode database (SQLSTATE 560AA).

When no string units are specified for a graphic string data type in
a Unicode database, the string units are implicit and determined by
the value of the NLS_STRING_UNITS global variable or
string_units database configuration parameter. In a non-Unicode
database, the string units for character string data types are
double-bytes.

NATIONAL CHARACTER (integer) or NATIONAL CHAR (integer) or NCHAR
(integer)

For a fixed-length string of length integer . If the length
specification is omitted, a length of 1 is assumed.

The NATIONAL CHARACTER type maps to either a fixed-length
character or a fixed-length graphic string based on the current
value of the nchar_mapping database configuration parameter which
also defines the string units.

NATIONAL CHARACTER VARYING (integer) or NATIONAL CHAR VARYING
(integer) or NCHAR VARYING (integer) or NVARCHAR (integer)

For a varying-length string of maximum length integer.

The NATIONAL CHARACTER VARYING type maps to either a
varying-length character or a varying-length graphic string based
on the current value of the nchar_mapping database configuration
parameter which also defines the string units.

NATIONAL CHARACTER LARGE OBJECT (integer [K|M|G]) or NCHAR LARGE
OBJECT (integer [K|M|G]) or NCLOB(integer [K|M|G])

For a large object string of the specified maximum length.

The NATIONAL CHARACTER LARGE OBJECT type maps to
either a character large object or a double-byte character large
object string based on the current value of the nchar_mapping
database configuration parameter which also defines the string
units

The meaning of the integer K | M | G is described under the
mapped data type based on the string units of the mapping.

If the length specification is omitted, a length of 1,048,576 code
units is assumed.

CREATE TABLE

Statements 695



BLOB or BINARY LARGE OBJECT(integer [K | M | G])
For a binary large object string of the specified maximum length in
bytes.

The length may be in the range of 1 byte to 2,147,483,647 bytes.

If integer by itself is specified, that is the maximum length.

If integer K (in either upper- or lowercase) is specified, the
maximum length is 1,024 times integer. The maximum value for
integer is 2,097,152.

If integer M is specified, the maximum length is 1,048,576 times
integer. The maximum value for integer is 2,048.

If integer G is specified, the maximum length is 1,073,741,824 times
integer. The maximum value for integer is 2.

If a multiple of K, M or G that calculates out to 2,147,483,648 is
specified, the actual value used is 2,147,483,647 (or 2 gigabytes
minus 1 byte), which is the maximum length for a LOB column.

If the length specification is omitted, a length of 1,048,576 (1
megabyte) is assumed.

Any number of spaces is allowed between the integer and K, M, or
G, and a space is not required. For example, all of the following
are valid:

BLOB(50K) BLOB(50 K) BLOB (50 K)

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) or TIMESTAMP
For a timestamp. The integer must be between 0 and 12 and
specifies the precision of fractional seconds from 0 (seconds) to 12
(picoseconds). The default is 6 (microseconds).

XML
For an XML document. Only well-formed XML documents can be
inserted into an XML column.

An XML column has the following restrictions:
v The column cannot be part of any index except an index over

XML data. Therefore, it cannot be included as a column of a
primary key or unique constraint (SQLSTATE 42962).

v The column cannot be a foreign key of a referential constraint
(SQLSTATE 42962).

v A default value (WITH DEFAULT) cannot be specified for the
column (SQLSTATE 42613). If the column is nullable, the default
for the column is the null value.

v The column cannot be used as the distribution key (SQLSTATE
42997).

v The column cannot be used as a data partitioning key
(SQLSTATE 42962).

v The column cannot be used to organize a multidimensional
clustering (MDC) table (SQLSTATE 42962).

CREATE TABLE

696 SQL Reference Volume 2



v The column cannot be used in a range-clustered table
(SQLSTATE 429BG).

v The column cannot be referenced in a check constraint except in
a VALIDATED predicate (SQLSTATE 42621).

When a column of type XML is created, an XML path index is
created on that column. A table-level XML region index is also
created when the first column of type XML is created. The name of
these indexes is 'SQL' followed by a character timestamp
(yymmddhhmmssxxx). The schema name is SYSIBM.

SYSPROC.DB2SECURITYLABEL
This is a built-in distinct type that must be used to define the row
security label column of a protected table. The underlying data
type of a column of the built-in distinct type DB2SECURITYLABEL
is VARCHAR(128) FOR BIT DATA. A table can have at most one
column of type DB2SECURITYLABEL (SQLSTATE 428C1).

distinct-type-name
For a user-defined type that is a distinct type. If a distinct type name is
specified without a schema name, the distinct type name is resolved by
searching the schemas on the SQL path (defined by the FUNCPATH
preprocessing option for static SQL and by the CURRENT PATH
register for dynamic SQL).

If a column is defined using a distinct type, then the data type of the
column is the distinct type. The length and the scale of the column are
respectively the length and the scale of the source type of the distinct
type. The specified distinct type cannot have any data type constraints
and the source type cannot be an anchored data type (SQLSTATE
428H2).

If a column defined using a distinct type is a foreign key of a
referential constraint, then the data type of the corresponding column
of the primary key must have the same distinct type.

structured-type-name
For a user-defined type that is a structured type. If a structured type
name is specified without a schema name, the structured type name is
resolved by searching the schemas on the SQL path (defined by the
FUNCPATH preprocessing option for static SQL, and by the
CURRENT PATH register for dynamic SQL).

If a column is defined using a structured type, then the static data type
of the column is the structured type. The column may include values
with a dynamic type that is a subtype of structured-type-name.

A column defined using a structured type cannot be used in a primary
key, unique constraint, foreign key, index key or distribution key
(SQLSTATE 42962).

If a column is defined using a structured type, and contains a
reference-type attribute at any level of nesting, that reference-type
attribute is unscoped. To use such an attribute in a dereference
operation, it is necessary to specify a SCOPE explicitly, using a CAST
specification.

REF (type-name2)
For a reference to a typed table. If type-name2 is specified without a
schema name, the type name is resolved by searching the schemas on
the SQL path (defined by the FUNCPATH preprocessing option for

CREATE TABLE

Statements 697



static SQL and by the CURRENT PATH register for dynamic SQL). The
underlying data type of the column is based on the representation data
type specified in the REF USING clause of the CREATE TYPE
statement for type-name2 or the root type of the data type hierarchy
that includes type-name2.

column-options
Defines additional options related to columns of the table.

NOT NULL
Prevents the column from containing null values.

If NOT NULL is not specified, the column can contain null values, and
its default value is either the null value or the value provided by the
WITH DEFAULT clause.

NOT HIDDEN or IMPLICITLY HIDDEN
Specifies whether the column is to be defined as hidden. The hidden
attribute determines whether the column is included in an implicit
reference to the table, or whether it can be explicitly referenced in SQL
statements. The default is NOT HIDDEN.

NOT HIDDEN
Specifies that the column is included in implicit references to the
table, and that the column can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless
the column is explicitly referenced by name. For example,
assuming that a table includes a column defined with the
IMPLICITLY HIDDEN clause, the result of a SELECT * does not
include the implicitly hidden column. However, the result of a
SELECT that explicitly refers to the name of an implicitly hidden
column will include that column in the result table.

IMPLICITLY HIDDEN must not be specified for all columns of the
table (SQLSTATE 428GU).

lob-options
Specifies options for LOB data types.

LOGGED
Specifies that changes made to the column are to be written to the
log. The data in such columns is then recoverable with database
utilities (such as RESTORE DATABASE). LOGGED is the default.

NOT LOGGED
Specifies that changes made to the column are not to be logged.
This only applies to LOB data that is not inlined.

NOT LOGGED has no effect on a commit or rollback operation;
that is, the database's consistency is maintained even if a
transaction is rolled back, regardless of whether or not the LOB
value is logged. The implication of not logging is that during a roll
forward operation, after a backup or load operation, the LOB data
will be replaced by zeros for those LOB values that would have
had log records replayed during the roll forward. During crash
recovery, all committed changes and changes rolled back will
reflect the expected results.

COMPACT
Specifies that the values in the LOB column should take up

CREATE TABLE

698 SQL Reference Volume 2



minimal disk space (free any extra disk pages in the last group
used by the LOB value), rather than leave any leftover space at the
end of the LOB storage area that might facilitate subsequent
append operations. Note that storing data in this way may cause a
performance penalty in any append (length-increasing) operations
on the column.

NOT COMPACT
Specifies some space for insertions to assist in future changes to the
LOB values in the column. This is the default.

SCOPE
Identifies the scope of the reference type column.

A scope must be specified for any column that is intended to be used
as the left operand of a dereference operator or as the argument of the
DEREF function. Specifying the scope for a reference type column may
be deferred to a subsequent ALTER TABLE statement to allow the
target table to be defined, usually in the case of mutually referencing
tables.

typed-table-name
The name of a typed table. The table must already exist or be the
same as the name of the table being created (SQLSTATE 42704).
The data type of column-name must be REF(S), where S is the type
of typed-table-name (SQLSTATE 428DM). No checking is done of
values assigned to column-name to ensure that the values actually
reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The view must already exist or be the
same as the name of the view being created (SQLSTATE 42704).
The data type of column-name must be REF(S), where S is the type
of typed-view-name (SQLSTATE 428DM). No checking is done of
values assigned to column-name to ensure that the values actually
reference existing rows in typed-view-name.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint
that was already specified within the same CREATE TABLE statement.
(SQLSTATE 42710).

If this clause is omitted, an 18 byte long identifier that is unique
among the identifiers of existing constraints defined on the table is
generated by the system. (The identifier consists of "SQL" followed by
a sequence of 15 numeric characters generated by a timestamp-based
function.)

When used with a PRIMARY KEY or UNIQUE constraint, the
constraint-name may be used as the name of an index that is created to
support the constraint.

PRIMARY KEY
This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified in
the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause is specified as a separate clause.

A primary key cannot be specified if the table is a subtable (SQLSTATE
429B3) because the primary key is inherited from the supertable.

CREATE TABLE

Statements 699



A ROW CHANGE TIMESTAMP column cannot be used as part of a
primary key (SQLSTATE 429BV).

Row-begin, row-end, and transaction-start-ID columns cannot be used
as part of a primary key (SQLSTATE 429BV).

See PRIMARY KEY within the unique-constraint description.

UNIQUE
This provides a shorthand method of defining a unique key composed
of a single column. Thus, if UNIQUE is specified in the definition of
column C, the effect is the same as if the UNIQUE(C) clause is
specified as a separate clause.

A unique constraint cannot be specified if the table is a subtable
(SQLSTATE 429B3) since unique constraints are inherited from the
supertable.

See UNIQUE within the unique-constraint description.

references-clause
This provides a shorthand method of defining a foreign key composed
of a single column. Thus, if a references-clause is specified in the
definition of column C, the effect is the same as if that
references-clause were specified as part of a FOREIGN KEY clause in
which C is the only identified column.

See references-clause under referential-constraint description.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that
applies to a single column. See description for CHECK (check-condition).

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT

Provides a default value in the event a value is not supplied on
insert or is specified as DEFAULT on INSERT or UPDATE. If a
default value is not specified following the DEFAULT keyword, the
default value depends on the data type of the column as shown in
“ALTER TABLE”. This clause must not be specified with
generated-clause in a column definition (SQLSTATE 42614).

If a column is defined as XML, a default value cannot be specified
(SQLSTATE 42613). The only possible default is NULL.

If the column is based on a column of a typed table, a specific
default value must be specified when defining a default. A default
value cannot be specified for the object identifier column of a
typed table (SQLSTATE 42997).

If a column is defined using a distinct type, then the default value
of the column is the default value of the source data type cast to
the distinct type.

If a column is defined using a structured type, the default-clause
cannot be specified (SQLSTATE 42842).

CREATE TABLE

700 SQL Reference Volume 2



Omission of DEFAULT from a column-definition results in the use of
the null value as the default for the column. If such a column is
defined NOT NULL, then the column does not have a valid
default.

default-values
Specific types of default values that can be specified are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:
v represent a value that could be assigned to the column in

accordance with the rules of assignment
v not be a floating-point constant unless the column is defined

with a floating-point data type
v be a numeric constant or a decimal floating-point special

value if the data type of the column is a decimal
floating-point. Floating-point constants are first interpreted
as DOUBLE and then converted to decimal floating-point if
the target column is DECFLOAT. For DECFLOAT(16)
columns, decimal constants having precision greater than 16
digits will be rounded using the rounding modes specified
by the CURRENT DECFLOAT ROUNDING MODE special
register.

v not have nonzero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

v be expressed with no more than 254 bytes including the
quote characters, any introducer character such as the X for
a hexadecimal constant, and characters from the fully
qualified function name and parentheses when the constant
is the argument of a cast-function

datetime-special-register
Specifies the value of the datetime special register (CURRENT
DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the
time of INSERT, UPDATE, or LOAD as the default for the
column. The data type of the column must be the data type
that corresponds to the special register specified (for example,
data type must be DATE when CURRENT DATE is specified).

user-special-register
Specifies the value of the user special register (CURRENT
USER, SESSION_USER, SYSTEM_USER) at the time of INSERT,
UPDATE, or LOAD as the default for the column. The data
type of the column must be a character string with a length not
less than the length attribute of a user special register. Note
that USER can be specified in place of SESSION_USER and
CURRENT_USER can be specified in place of CURRENT
USER.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register
at the time of INSERT, UPDATE, or LOAD as the default for
the column. If CURRENT SCHEMA is specified, the data type

CREATE TABLE

Statements 701



of the column must be a character string with a length greater
than or equal to the length attribute of the CURRENT
SCHEMA special register.

CURRENT MEMBER
Specifies the value of the CURRENT MEMBER special register
at the time of INSERT, UPDATE, or LOAD as the default for
the column. If CURRENT MEMBER is specified, the data type
of the column must allow assignment from an integer.

NULL
Specifies NULL as the default for the column. If NOT NULL
was specified, DEFAULT NULL may be specified within the
same column definition but will result in an error on any
attempt to set the column to the default value.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception
of distinct types based on BLOB or datetime types, the name of
the function must match the name of the distinct type for the
column. If qualified with a schema name, it must be the same
as the schema name for the distinct type. If not qualified, the
schema name from function resolution must be the same as the
schema name for the distinct type. For a distinct type based on
a datetime type, where the default value is a constant, a
function must be used and the name of the function must
match the name of the source type of the distinct type with an
implicit or explicit schema name of SYSIBM. For other
datetime columns, the corresponding datetime function may
also be used. For a BLOB or a distinct type based on BLOB, a
function must be used and the name of the function must be
BLOB with an implicit or explicit schema name of SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of
the distinct type or for the data type if not a distinct type.
If the cast-function is BLOB, the constant must be a string
constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP. The source type of the distinct
type of the column must be the data type that corresponds
to the specified special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or
SYSTEM_USER. The data type of the source type of the
distinct type of the column must be a string data type with
a length of at least 8 bytes. If the cast-function is BLOB, the
length attribute must be at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special
register. The data type of the source type of the distinct
type of the column must be a character string with a length

CREATE TABLE

702 SQL Reference Volume 2



greater than or equal to the length attribute of the
CURRENT SCHEMA special register. If the cast-function is
BLOB, the length attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The
column must have the data type that corresponds to the result
data type of the function.

If the value specified is not valid, an error is returned (SQLSTATE
42894).

generated-clause
Specifies a generated value for the column.

GENERATED

Specifies that the database generates values for the column.
GENERATED must be specified if the column is to be considered
an identity column or a row change timestamp column, row-begin
column, row-end column, transaction-start-ID column, or generated
expression column. A default clause must not be specified for a
column defined as GENERATED (SQLSTATE 42623).

ALWAYS
Specifies that a value will always be generated for the column
when a row is inserted into the table, or whenever the result
value of the generation-expression changes. The result of the
expression is stored in the table. GENERATED ALWAYS is the
recommended value unless data propagation or unload and
reload operations are being done. GENERATED ALWAYS is the
required value for generated columns.

BY DEFAULT
Specifies that the database will generate a value for the column
when a row is inserted, or updated specifying the DEFAULT
clause, unless an explicit value is specified. BY DEFAULT is the
recommended value when using data propagation or
performing an unload and reload operation.

Although not explicitly required, to ensure uniqueness of the
values, define a unique single-column index on generated
IDENTITY columns.

AS IDENTITY
Specifies that the column is to be the identity column for this table.
A table can only have a single identity column (SQLSTATE 428C1).
The IDENTITY keyword can only be specified if the data type
associated with the column is an exact numeric type with a scale of
zero, or a user-defined distinct type for which the source type is an
exact numeric type with a scale of zero (SQLSTATE 42815).
SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale of zero,
or a distinct type based on one of these types, are considered exact
numeric types. By contrast, single- and double-precision floating
points are considered approximate numeric data types. Reference
types, even if represented by an exact numeric type, cannot be
defined as identity columns.

An identity column is implicitly NOT NULL. An identity column
cannot have a DEFAULT clause (SQLSTATE 42623).

CREATE TABLE

Statements 703



START WITH numeric-constant
Specifies the first value for the identity column. This value can
be any positive or negative value that could be assigned to this
column (SQLSTATE 42815), without nonzero digits existing to
the right of the decimal point (SQLSTATE 428FA). The default
is MINVALUE for ascending sequences, and MAXVALUE for
descending sequences. This value is not necessarily the value
that would be cycled to after reaching the maximum or
minimum value for the identity column. The START WITH
clause can be used to start the generation of values outside the
range that is used for cycles. The range used for cycles is
defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the
identity column. This value can be any positive or negative
value that could be assigned to this column (SQLSTATE 42815),
and does not exceed the value of a large integer constant
(SQLSTATE 42820), without nonzero digits existing to the right
of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence. If this
value is 0, or positive, this is an ascending sequence. The
default is 1.

NO MINVALUE or MINVALUE
Specifies the minimum value at which a descending identity
column either cycles or stops generating values, or an
ascending identity column cycles to after reaching the
maximum value.

NO MINVALUE
For an ascending sequence, the value is the START WITH
value, or 1 if START WITH was not specified. For a
descending sequence, the value is the minimum value of
the data type of the column. This is the default.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value.
This value can be any positive or negative value that could
be assigned to this column (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point
(SQLSTATE 428FA), but the value must be less than or
equal to the maximum value (SQLSTATE 42815).

NO MAXVALUE or MAXVALUE
Specifies the maximum value at which an ascending identity
column either cycles or stops generating values, or a
descending identity column cycles to after reaching the
minimum value.

NO MAXVALUE
For an ascending sequence, the value is the maximum
value of the data type of the column. For a descending
sequence, the value is the START WITH value, or -1 if
START WITH was not specified. This is the default.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value.
This value can be any positive or negative value that could

CREATE TABLE

704 SQL Reference Volume 2



be assigned to this column (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point
(SQLSTATE 428FA), but the value must be greater than or
equal to the minimum value (SQLSTATE 42815).

NO CYCLE or CYCLE
Specifies whether this identity column should continue to
generate values after generating either its maximum or
minimum value.

NO CYCLE
Specifies that values will not be generated for the identity
column once the maximum or minimum value has been
reached. This is the default.

CYCLE
Specifies that values continue to be generated for this
column after the maximum or minimum value has been
reached. If this option is used, after an ascending identity
column reaches the maximum value, it generates its
minimum value; or after a descending sequence reaches
the minimum value, it generates its maximum value. The
maximum and minimum values for the identity column
determine the range that is used for cycling.

When CYCLE is in effect, duplicate values might be
generated for an identity column. Although not explicitly
required, a unique, single-column index should be defined
on the generated column to ensure uniqueness of the
values, if unique values are required. If a unique index
exists on such an identity column and a non-unique value
is generated, an error occurs (SQLSTATE 23505).

NO CACHE or CACHE
Specifies whether to keep some pre-allocated values in memory
for faster access. If a new value is needed for the identity
column, and there are none available in the cache, then the end
of the new cache block must be logged. However, when a new
value is needed for the identity column, and there is an
unused value in the cache, then the allocation of that identity
value is faster, because no logging is necessary. This is a
performance and tuning option.

NO CACHE
Specifies that values for the identity column are not to be
pre-allocated.

When this option is specified, the values of the identity
column are not stored in the cache. In this case, every
request for a new identity value results in synchronous I/O
to the log.

CACHE integer-constant
Specifies how many values of the identity sequence are to
be pre-allocated and kept in memory. When values are
generated for the identity column, pre-allocating and
storing values in the cache reduces synchronous I/O to the
log.

CREATE TABLE

Statements 705



If a new value is needed for the identity column and there
are no unused values available in the cache, the allocation
of the value involves waiting for I/O to the log. However,
when a new value is needed for the identity column and
there is an unused value in the cache, the allocation of that
identity value can happen more quickly by avoiding the
I/O to the log.

In the event of a database deactivation, either normally or
due to a system failure, all cached sequence values that
have not been used in committed statements are lost; that
is, they will never be used. The value specified for the
CACHE option is the maximum number of values for the
identity column that could be lost in case of database
deactivation. (If a database is not explicitly activated, using
the ACTIVATE command or API, when the last application
is disconnected from the database, an implicit deactivation
occurs.)

The minimum value is 2 (SQLSTATE 42815). The default
value is CACHE 20.

In a multi-partition or DB2 pureScale environment, use the
CACHE and NO ORDER options to allow multiple
members to cache sequence values simultaneously.

In a DB2 pureScale environment, if both CACHE and
ORDER are specified, the specification of ORDER overrides
the specification of CACHE and instead NO CACHE will
be in effect.

NO ORDER or ORDER
Specifies whether the identity values must be generated in
order of request.

NO ORDER
Specifies that the values do not need to be generated in
order of request. This is the default.

ORDER
Specifies that the values must be generated in order of
request.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column for the table. A
value is generated for the column in each row that is inserted, and
for any row in which any column is updated. The value that is
generated for a ROW CHANGE TIMESTAMP column is a
timestamp that corresponds to the insert or update time for that
row. If multiple rows are inserted or updated with a single
statement, the value of the ROW CHANGE TIMESTAMP column
might be different for each row.

A table can only have one ROW CHANGE TIMESTAMP column
(SQLSTATE 428C1). If data-type is specified, it must be
TIMESTAMP or TIMESTAMP(6) (SQLSTATE 42842). A ROW
CHANGE TIMESTAMP column cannot have a DEFAULT clause
(SQLSTATE 42623). NOT NULL must be specified for a ROW
CHANGE TIMESTAMP column (SQLSTATE 42831).

CREATE TABLE

706 SQL Reference Volume 2



AS (generation-expression)
Specifies that the definition of the column is based on an
expression. (If the expression for a GENERATED ALWAYS column
includes a user-defined external function, changing the executable
for the function (such that the results change for given arguments)
can result in inconsistent data. This can be avoided by using the
SET INTEGRITY statement to force the generation of new values.)
The generation-expression cannot contain any of the following
(SQLSTATE 42621):
v Subqueries
v XMLQUERY or XMLEXISTS expressions
v Column functions
v Dereference operations or DEREF functions
v User-defined or built-in functions that are non-deterministic
v User-defined functions using the EXTERNAL ACTION option
v User-defined functions that are not defined with NO SQL
v Host variables or parameter markers
v Special registers and built-in functions that depend on the value

of a special register
v Global variables
v References to columns defined later in the column list
v References to other generated columns
v References to columns of type XML

The data type for the column is based on the result data type of
the generation-expression. A CAST specification can be used to force
a particular data type and to provide a scope (for a reference type
only). If data-type is specified, values are assigned to the column
according to the appropriate assignment rules. A generated column
is implicitly considered nullable, unless the NOT NULL column
option is used. The data type of a generated column and the result
data type of the generation-expression must have equality defined
(see “Assignments and comparisons”). This excludes columns and
generation expressions of type LOB data types, XML, structured
types, and distinct types based on any of these types (SQLSTATE
42962).

AS ROW BEGIN

Specifies that the generated value is assigned by the database
manager whenever a row is inserted into the table or any column
in the row is updated. The value is generated using a reading from
the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to
the row-begin column or transaction-start-ID column in the table,
or a row in a system-period temporal table is deleted.

For a system-period temporal table, the database manager ensures
uniqueness of the generated values for a row-begin column across
transactions. The timestamp value might be adjusted to ensure that
rows inserted into an associated history table have the end
timestamp value greater than the begin timestamp value. This can
happen when a conflicting transaction is updating the same row in
the system-period temporal table. The database configuration
parameter systime_period_adj must be set to Yes for this

CREATE TABLE

Statements 707



adjustment to the timestamp value to occur. If multiple rows are
inserted or updated within a single SQL transaction and an
adjustment is not needed, the values for the row-begin column are
the same for all the rows and are unique from the values generated
for the column for another transaction. A row-begin column is
required as the begin column of a SYSTEM_TIME period, which is
the intended use for this type of generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If
data-type is not specified the column is defined as a
TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12) (SQLSTATE 42842). The column cannot have a
DEFAULT clause (SQLSTATE 42623), and must be defined as NOT
NULL (SQLSTATE 42831). A row-begin column is not updatable.

AS ROW END

Specifies that a value for the data type of the column is assigned
by the database manager whenever a row is inserted or any
column in the row is updated. The assigned value is TIMESTAMP
'9999-12-30-00.00.00.000000000000'.

A row-end column is required as the second column of a
SYSTEM_TIME period, which is the intended use for this type of
generated column.

A table can have only one row-end column (SQLSTATE 428C1). If
data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12) (SQLSTATE 42842). The column cannot have a
DEFAULT clause (SQLSTATE 42623), and must be defined as NOT
NULL (SQLSTATE 42831). A row-end column is not updatable.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager
whenever a row is inserted into the table or any column in the row
is updated. The database manager assigns a unique timestamp
value per transaction or the null value. The null value is assigned
to the transaction-start-ID column if the column is nullable and if
there is a row-begin column in the table for which the value did
not need to be adjusted. Otherwise the value is generated using a
reading of the time-of-day clock during execution of the first data
change statement in the transaction that requires a value to be
assigned to a row-begin column or transaction-start-ID column in
the table, or a row in a system-period temporal table is deleted. If
multiple rows are inserted or updated within a single SQL
transaction, the values for the transaction-start-ID column are the
same for all the rows and are unique from the values generated for
the column for another transaction.

A transaction-start-ID column is required for a system-period
temporal table, which is the intended use for this type of generated
column.

A table can have only one transaction-start-ID column (SQLSTATE
428C1). If data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified it must be

CREATE TABLE

708 SQL Reference Volume 2



TIMESTAMP(12). A transaction-start-ID column cannot have a
DEFAULT clause (SQLSTATE 42623). A transaction-start-ID column
is not updatable.

INLINE LENGTH integer
This option is valid only for a column defined using a structured type,
XML or LOB data type (SQLSTATE 42842).

For a column of data type XML or LOB, integer indicates the maximum
byte size of the internal representation of an XML document or LOB
data to store in the base table row. XML documents that have a larger
internal representation are stored separately from the base table row in
an auxiliary storage object. This takes place automatically. There is no
default inline length for XML type columns. If the XML document or
LOB data is stored inlined in the base table row, there is an additional
overhead. For LOB data, the overhead is 4 bytes.

For a column of data type LOB, the default inline length is set to be
the maximum size of the LOB descriptor if the clause is not specified.
Any explicit INLINE LENGTH must be at least the maximum LOB
descriptor size. The following table summarizes the LOB descriptor
sizes.

Table 19. Sizes of the LOB descriptor for various LOB lengths

Maximum LOB length in bytes Minimum explicit INLINE LENGTH

1,024 68

8,192 92

65,536 116

524,000 140

4,190,000 164

134,000,000 196

536,000,000 220

1,070,000,000 252

1,470,000,000 276

2,147,483,647 312

For a structured type column, integer indicates the maximum size in
bytes of an instance of a structured type to store inline with the rest of
the values in the row. Instances of structured types that cannot be
stored inline are stored separately from the base table row, similar to
the way that LOB values are stored. This takes place automatically. The
default INLINE LENGTH for a structured-type column is the inline
length of its type (specified explicitly or by default in the CREATE
TYPE statement). If INLINE LENGTH of the structured type is less
than 292, the value 292 is used for the INLINE LENGTH of the
column.

Note: The inline lengths of subtypes are not counted in the default
inline length, meaning that instances of subtypes may not fit inline
unless an explicit INLINE LENGTH is specified at CREATE TABLE
time to account for existing and future subtypes.

CREATE TABLE

Statements 709



The explicit INLINE LENGTH value cannot exceed 32 673. For a
structured type or XML data type, it must be at least 292 (SQLSTATE
54010).

COMPRESS SYSTEM DEFAULT
Specifies that system default values are to be stored using minimal
space. If the VALUE COMPRESSION clause is not specified, a warning
is returned (SQLSTATE 01648), and system default values are not
stored using minimal space.

Allowing system default values to be stored in this manner causes a
slight performance penalty during insert and update operations on the
column because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or
structured data type (SQLSTATE 42842). If the base data type is a
varying-length string, this clause is ignored. String values of length 0
are automatically compressed if a table has been set with VALUE
COMPRESSION.

COLUMN SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is
associated with the table. The name must not be qualified (SQLSTATE
42601). The table must have a security policy associated with it
(SQLSTATE 55064). The table must not be a system-period temporal
table.

period-definition

PERIOD
Defines a period for the table.

SYSTEM_TIME (begin-column-name, end-column-name)

Defines a system period with the name SYSTEM_TIME. There must
not be a column in the table with the name SYSTEM_TIME
(SQLSTATE 42711). A table can have only one SYSTEM_TIME period
(SQLSTATE 42711). begin-column-name must be defined as ROW BEGIN
and end-column-name must be defined as ROW END (SQLSTATE
428HN).

BUSINESS_TIME (begin-column-name, end-column-name)

Defines an application period with the name BUSINESS_TIME. There
must not be a column in the table with the name BUSINESS_TIME
(SQLSTATE 42711). A table can have only one BUSINESS_TIME period
(SQLSTATE 42711). begin-column-name and end-column-name must both
be defined as DATE or TIMESTAMP(p) where p is from 0 to 12
(SQLSTATE 42842), and the columns must be defined as NOT NULL
(SQLSTATE 42831). begin-column-name and end-column-name must not
identify a column that is defined with a GENERATED clause
(SQLSTATE 428HZ).

An implicit check constraint is generated to ensure that the value of
end-column-name is greater than the value of begin-column-name. The
name of the implicitly created check constraint is
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME
and must not be name of any other check constraint specified in the
statement (SQLSTATE 42710).

unique-constraint
Defines a unique or primary key constraint. If the table has a distribution key,

CREATE TABLE

710 SQL Reference Volume 2



any unique or primary key must be a superset of the distribution key. A
unique or primary key constraint cannot be specified for a table that is a
subtable (SQLSTATE 429B3). Primary or unique keys cannot be subsets of
dimensions (SQLSTATE 429BE). If the table is a root table, the constraint
applies to the table and all its subtables.

CONSTRAINT constraint-name
Names the primary key or unique constraint.

UNIQUE (column-name, ...)
Defines a unique key composed of the identified columns. The identified
columns must be defined as NOT NULL. Each column-name must identify a
column of the table and the same column must not be identified more than
once.

If the table has a BUSINESS_TIME period defined, BUSINESS_TIME
WITHOUT OVERLAPS can be specified as the last item in the key
expression list. If BUSINESS_TIME WITHOUT OVERLAPS is specified, the
list must include at least one column-name. WITHOUT OVERLAPS means
that for the other specified keys, the values are unique with respect to time
for the BUSINESS_TIME period. When BUSINESS_TIME WITHOUT
OVERLAPS is specified, the columns of the BUSINESS_TIME period must
not be specified as part of the constraint (SQLSTATE 428HW). The
specification of BUSINESS_TIME WITHOUT OVERLAPS adds the
following attributes to the constraint:
v The end column of the BUSINESS_TIME period in ascending order
v The begin column of the BUSINESS_TIME period in ascending order

The number of identified columns must not exceed 64, and the sum of
their stored lengths must not exceed the index key length limit for the
page size. For column stored lengths, see Byte Counts. For key length
limits, see “SQL limits”. No LOB, XML, distinct type based on one of these
types, or structured type can be used as part of a unique key, even if the
length attribute of the column is small enough to fit within the index key
length limit for the page size (SQLSTATE 54008).

The set of columns in the unique key cannot be the same as the set of
columns in the primary key or another unique key (SQLSTATE 01543). (If
LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

A unique constraint cannot be specified if the table is a subtable
(SQLSTATE 429B3), because unique constraints are inherited from the
supertable.

The description of the table as recorded in the catalog includes the unique
key and, if enforced, its unique index. If enforced, a unique bidirectional
index, which allows forward and reverse scans, will automatically be
created for the columns in the sequence specified with ascending order for
each column. The name of the index will be the same as the constraint-name
if this does not conflict with an existing index in the schema where the
table is created. If the index name conflicts, the name will be SQL,
followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as
the schema name.

PRIMARY KEY (column-name,...)
Defines a primary key composed of the identified columns. The clause
must not be specified more than once, and the identified columns must be
defined as NOT NULL. Each column-name must identify a column of the
table, and the same column must not be identified more than once.

CREATE TABLE

Statements 711



If the table has a BUSINESS_TIME period defined, BUSINESS_TIME
WITHOUT OVERLAPS can be specified as the last item in the key
expression list. If BUSINESS_TIME WITHOUT OVERLAPS is specified, the
list must include at least one column-name. WITHOUT OVERLAPS means
that for the rest of the specified keys, the values are unique with respect to
time for the BUSINESS_TIME period. When BUSINESS_TIME WITHOUT
OVERLAPS is specified, the columns of the BUSINESS_TIME period must
not be specified as part of the constraint (SQLSTATE 428HW). The
specification of BUSINESS_TIME WITHOUT OVERLAPS adds the
following attributes to the constraint:
v The end column of the BUSINESS_TIME period in ascending order
v The begin column of the BUSINESS_TIME period in ascending order

The number of identified columns must not exceed 64, and the sum of
their stored lengths must not exceed the index key length limit for the
page size. For column stored lengths, see Byte Counts. For key length
limits, see “SQL limits”. No LOB, XML, distinct type based on one of these
types, or structured type can be used as part of a primary key, even if the
length attribute of the column is small enough to fit within the index key
length limit for the page size (SQLSTATE 54008).

The set of columns in the primary key cannot be the same as the set of
columns in a unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or
MIA, an error is returned, SQLSTATE 42891.)

Only one primary key can be defined on a table.

A primary key cannot be specified if the table is a subtable (SQLSTATE
429B3) because the primary key is inherited from the supertable.

The description of the table as recorded in the catalog includes the primary
key and, if enforced, its primary index. If enforced, a unique bidirectional
index, which allows forward and reverse scans, will automatically be
created for the columns in the sequence specified with ascending order for
each column. The name of the index will be the same as the constraint-name
if this does not conflict with an existing index in the schema where the
table is created. If the index name conflicts, the name will be SQL,
followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as
the schema name.

If the table has a distribution key, the columns of a unique-constraint must be a
superset of the distribution key columns; column order is unimportant.

referential-constraint
Defines a referential constraint.

CONSTRAINT constraint-name
Names the referential constraint.

FOREIGN KEY (column-name,...)
Defines a referential constraint with the specified constraint-name.

Let T1 denote the object table of the statement. The foreign key of the
referential constraint is composed of the identified columns. Each name in
the list of column names must identify a column of T1 and the same
column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of
their stored lengths must not exceed the index key length limit for the
page size. For column stored lengths, see Byte Counts. For key length

CREATE TABLE

712 SQL Reference Volume 2



limits, see “SQL limits”. No LOB, XML, distinct type based on one of these
types, or structured type column can be used as part of a foreign key
(SQLSTATE 42962). There must be the same number of foreign key
columns as there are in the parent key and the data types of the
corresponding columns must be compatible (SQLSTATE 42830). Two
column descriptions are compatible if they have compatible data types
(both columns are numeric, character strings, graphic, date/time, or have
the same distinct type).

references-clause
Specifies the parent table or the parent nickname, and the parent key for
the referential constraint.

REFERENCES table-name or nickname
The table or nickname specified in a REFERENCES clause must
identify a base table or a nickname that is described in the catalog, but
must not identify a catalog table.

A referential constraint is a duplicate if its foreign key, parent key, and
parent table or parent nickname are the same as the foreign key, parent
key, and parent table or parent nickname of a previously specified
referential constraint. Duplicate referential constraints are ignored, and
a warning is returned (SQLSTATE 01543).

In the following discussion, let T2 denote the identified parent table,
and let T1 denote the table being created (or altered). (T1 and T2 may
be the same table).

The specified foreign key must have the same number of columns as
the parent key of T2 and the description of the nth column of the
foreign key must be comparable to the description of the nth column
of that parent key. Datetime columns are not considered to be
comparable to string columns for the purposes of this rule.

(column-name,...)
The parent key of a referential constraint is composed of the
identified columns. Each column-name must be an unqualified name
that identifies a column of T2. The same column must not be
identified more than once.

The list of column names must match the set of columns (in any
order) of the primary key or a unique constraint that exists on T2
(SQLSTATE 42890). If a column name list is not specified, then T2
must have a primary key (SQLSTATE 42888). Omission of the
column name list is an implicit specification of the columns of that
primary key in the sequence originally specified.

The referential constraint specified by a FOREIGN KEY clause defines
a relationship in which T2 is the parent and T1 is the dependent.

rule-clause
Specifies what action to take on dependent tables.

ON DELETE
Specifies what action is to take place on the dependent tables when
a row of the parent table is deleted. There are four possible actions:
v NO ACTION (default)
v RESTRICT
v CASCADE
v SET NULL

CREATE TABLE

Statements 713



The delete rule applies when a row of T2 is the object of a DELETE
or propagated delete operation and that row has dependents in T1.
Let p denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error occurs and no

rows are deleted.
v If CASCADE is specified, the delete operation is propagated to

the dependents of p in T1.
v If SET NULL is specified, each nullable column of the foreign

key of each dependent of p in T1 is set to null.

SET NULL must not be specified unless some column of the
foreign key allows null values. Omission of the clause is an
implicit specification of ON DELETE NO ACTION.

If T1 is delete-connected to T2 through multiple paths, defining
two SET NULL rules with overlapping foreign key definitions is
not allowed. For example: T1 (i1, i2, i3). Rule1 with foreign key (i1,
i2) and Rule2 with foreign key (i2, i3) is not allowed.

The firing order of the rules is:
1. RESTRICT
2. SET NULL OR CASCADE
3. NO ACTION

If any row in T1 is affected by two different rules, error occurs and
no rows are deleted.

A referential constraint cannot be defined if it would cause a table
to be delete-connected to itself by a cycle involving two or more
tables, and where one of the delete rules is RESTRICT or SET
NULL (SQLSTATE 42915).

A referential constraint that would cause a table to be
delete-connected to either itself or another table by multiple paths
can be defined, except in the following cases (SQLSTATE 42915):
v A table must not be both a dependent table in a CASCADE

relationship (self-referencing, or referencing another table), and
have a self-referencing relationship in which the delete rule is
RESTRICT or SET NULL.

v A key overlaps another key when at least one column in one key
is the same as a column in the other key. When a table is
delete-connected to another table through multiple relationships
with overlapping foreign keys, those relationships must have the
same delete rule, and none of the delete rules can be SET NULL.

v When a table is delete-connected to another table through
multiple relationships, and at least one of those relationships is
specified with a delete rule of SET NULL, the foreign key
definitions of these relationships must not contain any
distribution key or multidimensional clustering (MDC) key
column.

v When two tables are delete-connected to the same table through
CASCADE relationships, the two tables must not be
delete-connected to each other if the delete rule of the last
relationship in each delete-connected path is RESTRICT or SET
NULL.

CREATE TABLE

714 SQL Reference Volume 2



If any row in T1 is affected by different delete rules, the result
would be the effect of all the actions specified by these rules.
AFTER triggers and CHECK constraints on T1 will also see the
effect of all the actions. An example of this is a row that is targeted
to be set null through one delete-connected path to an ancestor
table, and targeted to be deleted by a second delete-connected path
to the same ancestor table. The result would be the deletion of the
row. AFTER DELETE triggers on this descendant table would be
activated, but AFTER UPDATE triggers would not.

In applying the previously mentioned rules to referential
constraints, in which either the parent table or the dependent table
is a member of a typed table hierarchy, all the referential
constraints that apply to any table in the respective hierarchies are
taken into consideration.

ON UPDATE
Specifies what action is to take place on the dependent tables when
a row of the parent table is updated. The clause is optional. ON
UPDATE NO ACTION is the default and ON UPDATE RESTRICT
is the only alternative.

The difference between NO ACTION and RESTRICT is described in
the “Notes” section.

check-constraint
Defines a check constraint. A check-constraint is a search-condition that must
evaluate to not false or a functional dependency that is defined between
columns.

CONSTRAINT constraint-name
Names the check constraint.

CHECK (check-condition)
Defines a check constraint. The search-condition must be true or unknown
for every row of the table.

search-condition
The search-condition has the following restrictions:
v A column reference must be to a column of the table being created.
v The search-condition cannot contain a TYPE predicate.
v The search-condition cannot contain any of the following (SQLSTATE

42621):
– Subqueries
– XMLQUERY or XMLEXISTS expressions
– Dereference operations or DEREF functions where the scoped

reference argument is other than the object identifier (OID)
column

– CAST specifications with a SCOPE clause
– Column functions
– Functions that are not deterministic
– Functions defined to have an external action
– User-defined functions defined with either MODIFIES SQL or

READS SQL DATA
– Host variables
– Parameter markers

CREATE TABLE

Statements 715



– sequence-references

– OLAP specifications
– Special registers and built-in functions that depend on the value

of a special register
– Global variables
– References to generated columns other than the identity column
– References to columns of type XML (except in a VALIDATED

predicate)
– An error tolerant nested-table-expression

functional-dependency
Defines a functional dependency between columns.

column-name DETERMINED BY column-name or (column-name,...)
DETERMINED BY (column-name,...)

The parent set of columns contains the identified columns that
immediately precede the DETERMINED BY clause. The child set of
columns contains the identified columns that immediately follow
the DETERMINED BY clause. All of the restrictions on the
search-condition apply to parent set and child set columns, and only
simple column references are allowed in the set of columns
(SQLSTATE 42621). The same column must not be identified more
than once in the functional dependency (SQLSTATE 42709). The
data type of the column must not be a LOB data type, a distinct
type based on a LOB data type, an XML data type, or a structured
type (SQLSTATE 42962). A ROW CHANGE TIMESTAMP column
cannot be used as part of a primary key (SQLSTATE 429BV). No
column in the child set of columns can be a nullable column
(SQLSTATE 42621).

If a check constraint is specified as part of a column-definition, a column
reference can only be made to the same column. Check constraints
specified as part of a table definition can have column references
identifying columns previously defined in the CREATE TABLE statement.
Check constraints are not checked for inconsistencies, duplicate conditions,
or equivalent conditions. Therefore, contradictory or redundant check
constraints can be defined, resulting in possible errors at execution time.

The search-condition “IS NOT NULL” can be specified; however, it is
recommended that nullability be enforced directly, using the NOT NULL
attribute of a column. For example, CHECK (salary + bonus > 30000) is
accepted if salary is set to NULL, because CHECK constraints must be
either satisfied or unknown, and in this case, salary is unknown. However,
CHECK (salary IS NOT NULL) would be considered false and a violation of
the constraint if salary is set to NULL.

Check constraints with search-condition are enforced when rows in the table
are inserted or updated. A check constraint defined on a table
automatically applies to all subtables of that table.

A functional dependency is not enforced by the database manager during
normal operations such as insert, update, delete, or set integrity. The
functional dependency might be used during query rewrite to optimize
queries. Incorrect results might be returned if the integrity of a functional
dependency is not maintained.

CREATE TABLE

716 SQL Reference Volume 2



constraint-attributes
Defines attributes associated with primary key, unique, referential integrity, or
check constraints.

ENFORCED or NOT ENFORCED
Specifies whether the constraint is enforced by the database manager
during normal operations such as insert, update, or delete. The default is
ENFORCED.

ENFORCED
The constraint is enforced by the database manager. ENFORCED
cannot be specified for a functional dependency (SQLSTATE 42621).
ENFORCED cannot be specified when a referential constraint refers to
a nickname (SQLSTATE 428G7).

NOT ENFORCED
The constraint is not enforced by the database manager. A primary key
constraint or unique constraint cannot be NOT ENFORCED if there is
a dependent ENFORCED referential constraint.

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED
must be used only if the data in the table is independently known
to conform to the constraint. Query results might be unpredictable
if the data does not actually conform to the constraint. This is the
default option.

Informational constraints must not be violated at any time.
Informational constraints are used in query optimization, as well as
the incremental processing of REFRESH IMMEDIATE MQT and
staging tables. These processes might produce unpredictable results
or incorrect MQT and staging table content if the constraints are
violated. For example, the order in which parent-child tables are
maintained is important. When you want to add rows to a
parent-child table, you must insert rows into the parent table first.
To remove rows from a parent-child table, you must delete rows
from the child table first. This ensures that there are no orphan
rows in the child table at any time. If informational constraints are
violated, the incremental maintenance of dependent MQT data and
staging table data might be optimized based on the violated
informational constraints, producing incorrect data.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT
TRUSTED is intended for cases where the data conforms to the
constraint for most rows, but it is not independently known that
all the rows or future additions will conform to the constraint. If a
constraint is NOT TRUSTED and enabled for query optimization,
then it will not be used to perform optimizations that depend on
the data conforming completely to the constraint. NOT TRUSTED
can be specified only for referential integrity constraints
(SQLSTATE 42613).

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether the constraint or functional dependency can be used for
query optimization under appropriate circumstances. The default is
ENABLE QUERY OPTIMIZATION.

CREATE TABLE

Statements 717



ENABLE QUERY OPTIMIZATION
The constraint is assumed to be true and can be used for query
optimization.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization. DISABLE
QUERY OPTIMIZATION cannot be specified for primary key and
unique constraints (SQLSTATE 42613).

OF type-name1
Specifies that the columns of the table are based on the attributes of the
structured type identified by type-name1. If type-name1 is specified without a
schema name, the type name is resolved by searching the schemas on the SQL
path (defined by the FUNCPATH preprocessing option for static SQL and by
the CURRENT PATH register for dynamic SQL). The type name must be the
name of an existing user-defined type (SQLSTATE 42704) and it must be an
instantiable structured type (SQLSTATE 428DP) with at least one attribute
(SQLSTATE 42997).

If UNDER is not specified, an object identifier column must be specified (refer
to the OID-column-definition). This object identifier column is the first column of
the table. The object ID column is followed by columns based on the attributes
of type-name1.

HIERARCHY hierarchy-name
Names the hierarchy table associated with the table hierarchy. It is created at
the same time as the root table of the hierarchy. The data for all subtables in
the typed table hierarchy is stored in the hierarchy table. A hierarchy table
cannot be directly referenced in SQL statements. A hierarchy-name is a
table-name. The hierarchy-name, including the implicit or explicit schema name,
must not identify a table, nickname, view, or alias described in the catalog. If
the schema name is specified, it must be the same as the schema name of the
table being created (SQLSTATE 428DQ). If this clause is omitted when defining
the root table, a name is generated by the system. This name consists of the
name of the table being created, followed by a unique suffix, such that the
identifier is unique among the identifiers of existing tables, views, and
nicknames.

UNDER supertable-name
Indicates that the table is a subtable of supertable-name. The supertable must be
an existing table (SQLSTATE 42704) and the table must be defined using a
structured type that is the immediate supertype of type-name1 (SQLSTATE
428DB). The schema name of table-name and supertable-name must be the same
(SQLSTATE 428DQ). The table identified by supertable-name must not have any
existing subtable already defined using type-name1 (SQLSTATE 42742).

The columns of the table include the object identifier column of the supertable
with its type modified to be REF(type-name1), followed by columns based on
the attributes of type-name1 (remember that the type includes the attributes of
its supertype). The attribute names cannot be the same as the OID column
name (SQLSTATE 42711).

Other table options, including table space, data capture, not logged initially,
and distribution key options cannot be specified. These options are inherited
from the supertable (SQLSTATE 42613).

INHERIT SELECT PRIVILEGES
Any user or group holding a SELECT privilege on the supertable will be
granted an equivalent privilege on the newly created subtable. The subtable
definer is considered to be the grantor of this privilege.

CREATE TABLE

718 SQL Reference Volume 2



typed-element-list
Defines the additional elements of a typed table. This includes the additional
options for the columns, the addition of an object identifier column (root table
only), and constraints on the table.

OID-column-definition
Defines the object identifier column for the typed table.

REF IS OID-column-name USER GENERATED
Specifies that an object identifier (OID) column is defined in the table
as the first column. An OID is required for the root table of a table
hierarchy (SQLSTATE 428DX). The table must be a typed table (the OF
clause must be present) that is not a subtable (SQLSTATE 42613). The
name for the column is defined as OID-column-name and cannot be the
same as the name of any attribute of the structured type type-name1
(SQLSTATE 42711). The column is defined with type REF(type-name1),
NOT NULL and a system required unique index (with a default index
name) is generated. This column is referred to as the object identifier
column or OID column. The keywords USER GENERATED indicate that
the initial value for the OID column must be provided by the user
when inserting a row. Once a row is inserted, the OID column cannot
be updated (SQLSTATE 42808).

with-options
Defines additional options that apply to columns of a typed table.

column-name
Specifies the name of the column for which additional options are
specified. The column-name must correspond to the name of a column
of the table that is not also a column of a supertable (SQLSTATE
428DJ). A column name can only appear in one WITH OPTIONS clause
in the statement (SQLSTATE 42613).

If an option is already specified as part of the type definition (in
CREATE TYPE), the options specified here override the options in
CREATE TYPE.

WITH OPTIONS column-options
Defines options for the specified column. See column-options described
earlier. If the table is a subtable, primary key or unique constraints
cannot be specified (SQLSTATE 429B3).

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-name1), view
(view-name) or nickname (nickname). The name specified after LIKE must
identify a table, view or nickname that exists in the catalog, or a declared
temporary table. A typed table or typed view cannot be specified (SQLSTATE
428EC).

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table (including implicitly hidden columns), view,
or nickname. A column of the new table that corresponds to an implicitly
hidden column in the existing table will also be defined as implicitly hidden.
The implicit definition depends on what is identified after LIKE:
v If a table is identified, then the implicit definition includes the column name,

data type, hidden attribute, and nullability characteristic of each of the
columns of table-name1. If EXCLUDING COLUMN DEFAULTS is not
specified, then the column default is also included.

CREATE TABLE

Statements 719



v If a view is identified, then the implicit definition includes the column name,
data type, and nullability characteristic of each of the result columns of the
fullselect defined in view-name. The data types of the view columns must be
data types that are valid for columns of a table.

v If a nickname is identified, then the implicit definition includes the column
name, data type, and nullability characteristic of each column of nickname.

v If a protected table is identified in the LIKE clause, the new table inherits the
same security policy and protected columns as the identified table.

v If a table is identified in the LIKE clause and the table contains a row-begin
column, row-end column, or transaction-start-ID column, the corresponding
column of the new table inherits only the data type of the source column.
The new column is not considered a generated column.

v When a table that includes a period is identified in the LIKE clause, the new
table does not inherit the period definition.

v When a system-period temporal table is identified in the LIKE clause, the
new table is not a system-period temporal table.

Column default and identity column attributes may be included or excluded,
based on the copy-attributes clauses. The implicit definition does not include
any other attributes of the identified table, view or nickname. Thus the new
table does not have any unique constraints, foreign key constraints, triggers,
indexes, ORGANIZE BY specification, or PARTITIONING KEY specification.
The table is created in the table space implicitly or explicitly specified by the
IN clause, and the table has any other optional clause only if the optional
clause is specified.

When a table is identified in the LIKE clause and that table contains a ROW
CHANGE TIMESTAMP column, the corresponding column of the new table
inherits only the data type of the ROW CHANGE TIMESTAMP column. The
new column is not considered to be a generated column.

If row or column level access control is activated for table-name-1, it is not
inherited by the new table.

copy-options
These options specify whether or not to copy additional attributes of the
source result table definition (table, view or fullselect).

INCLUDING COLUMN DEFAULTS
Column defaults for each updatable column of the source result table
definition are copied. Columns that are not updatable will not have a
default defined in the corresponding column of the created table.

If LIKE table-name is specified and table-name identifies a base table, created
temporary table, or declared temporary table, then INCLUDING COLUMN
DEFAULTS is the default. If LIKE table-name is specified and table-name
identifies a nickname, then INCLUDING COLUMN DEFAULTS has no
effect and column defaults are not copied.

EXCLUDING COLUMN DEFAULTS
Columns defaults are not copied from the source result table definition.

This clause is the default, except when LIKE table-name is specified and
table-name identifies a base table, created temporary table, or declared
temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are copied from the source result table
definition, if possible. It is possible to copy the identity column attributes,

CREATE TABLE

720 SQL Reference Volume 2



if the element of the corresponding column in the table, view, or fullselect
is the name of a table column, or the name of a view column which
directly or indirectly maps to the name of a base table column with the
identity property. In all other cases, the columns of the new table will not
get the identity property. For example:
v the select-list of the fullselect includes multiple instances of an identity

column name (that is, selecting the same column more than once)
v the select list of the fullselect includes multiple identity columns (that is,

it involves a join)
v the identity column is included in an expression in the select list
v the fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table
definition.

as-result-table

column-name
Names the columns in the table. If a list of column names is specified, it
must consist of as many names as there are columns in the result table of
the fullselect. Each column-name must be unique and unqualified. If a list of
column names is not specified, the columns of the table inherit the names
of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect
has duplicate column names of an unnamed column (SQLSTATE 42908).
An unnamed column is a column derived from a constant, function,
expression, or set operation that is not named using the AS clause of the
select list.

AS Introduces the query that is used for the definition of the table.

fullselect
Defines the query on which the table is based. The resulting column
definitions are the same as those for a view defined with the same query.
A column of the new table that corresponds to an implicitly hidden
column of a base table referenced in the fullselect is not considered hidden
in the new table.

Every select list element must have a name (use the AS clause for
expressions). The as-result-table defines attributes of the table. The data
types of the result columns must be data types that are valid for columns
of a table.

The fullselect cannot include a data-change-table-reference clause (SQLSTATE
428FL).

Any valid fullselect that does not reference a typed table or a typed view
can be specified.

If row or column level access control is activated for tables that are
specified in fullselect, it is not cascaded to the new table.

WITH NO DATA
The query is used only to define the table. The table is not populated using
the results of the query.

The columns of the table are defined based on the definitions of the
columns that result from the fullselect. If the fullselect references a single

CREATE TABLE

Statements 721



table in the FROM clause, select list items that are columns of that table are
defined using the column name, data type, and nullability characteristic of
the referenced table.

materialized-query-definition

column-name
Names the columns in the table. If a list of column names is specified, it
must consist of as many names as there are columns in the result table of
the fullselect. Each column-name must be unique and unqualified. If a list of
column names is not specified, the columns of the table inherit the names
of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect
has duplicate column names of an unnamed column (SQLSTATE 42908).
An unnamed column is a column derived from a constant, function,
expression, or set operation that is not named using the AS clause of the
select list.

If MAINTAINED BY REPLICATION is specified, the column names in the
column list must match the names of the columns from the table that is
specified in the fullselect.

AS Introduces the query that is used for the definition of the table and that
determines the data to be included in the table.

fullselect
Defines the query on which the table is based. The resulting column
definitions are the same as those for a view defined with the same query.
A column of the new table that corresponds to an implicitly hidden
column of a base table referenced in the fullselect is not considered hidden
in the new table.

Every select list element must have a name (use the AS clause for
expressions). The materialized-query-definition defines attributes of the
materialized query table. The option chosen also defines the contents of the
fullselect as follows.

The fullselect cannot include a data-change-table-reference clause (SQLSTATE
428FL), the FETCH FIRST clause, or the ORDER BY clause (SQLSTATE
428FJ).

When REFRESH DEFERRED or REFRESH IMMEDIATE is specified, the
fullselect cannot include (SQLSTATE 428EC):
v References to a materialized query table, created temporary table,

declared temporary table, or typed table in any FROM clause
v References to a view where the fullselect of the view violates any of the

listed restrictions on the fullselect of the materialized query table
v Expressions that are a reference type (or distinct type based on this type)
v Functions that have any of the following attributes:

– EXTERNAL ACTION
– LANGUAGE SQL
– CONTAINS SQL
– READS SQL DATA
– MODIFIES SQL DATA

v NOT SECURED functions if the functions reference a materialized query
table which then references a table that has row or column access control
activated.

CREATE TABLE

722 SQL Reference Volume 2



v Functions that depend on physical characteristics (for example,
DBPARTITIONNUM, HASHEDVALUE, RID_BIT, RID)

v A ROW CHANGE expression or reference to a ROW CHANGE
TIMESTAMP column of the row

v Table or view references to system objects (Explain tables also should not
be specified)

v Expressions that are a structured type, LOB type (or a distinct type
based on a LOB type), or XML type

v References to a protected table or protected nickname

When DISTRIBUTE BY REPLICATION is specified, the following
restrictions apply:
v The GROUP BY clause is not allowed.
v The materialized query table must only reference a single table; that is, it

cannot include a join.

When MAINTAINED BY REPLICATION is specified, the following
restrictions apply:
v The query must be a subselect consisting of only a SELECT clause and a

FROM clause.
v The FROM clause must reference a single table that is organized by row

and that is not specified in an existing shadow table definition.
v The referenced table cannot be a range-partitioned table, a

multidimensional clustering table, a range-clustered table, a temporal
table, or a table that contains a LONG VARCHAR or LONG
VARGRAPHIC column.

v The referenced table cannot be protected by row and column access
control (RCAC) or label-based access control (LBAC).

v The select list can include only direct references to the columns of the
table whose data types are supported in a column-organized table. No
expressions can be used.

v The columns that are specified in the select list cannot be renamed by
using the column name list or the AS clause in the select list.

v The referenced table must have at least one enforced primary key
constraint or unique constraint, and the columns that are specified in the
select list must include all the key columns from at least one of these
constraints.

When REFRESH IMMEDIATE is specified:
v The query must be a subselect, with the exception that UNION ALL is

supported in the input table expression of a GROUP BY.
v The query cannot be recursive.
v The query cannot include:

– References to a nickname
– Functions that are not deterministic
– Scalar fullselects
– Predicates with fullselects
– Special registers and built-in functions that depend on the value of a

special register
– Global variables
– SELECT DISTINCT

CREATE TABLE

Statements 723



– An error tolerant nested-table-expression

v If the FROM clause references more than one table or view, it can only
define an inner join without using the explicit INNER JOIN syntax.

v When a GROUP BY clause is specified, the following considerations
apply:
– The supported column functions are SUM, COUNT, COUNT_BIG and

GROUPING (without DISTINCT). The select list must contain a
COUNT(*) or COUNT_BIG(*) column. If the materialized query table
select list contains SUM(X), where X is a nullable argument, the
materialized query table must also have COUNT(X) in its select list.
These column functions cannot be part of any expressions.

– A HAVING clause is not allowed.
– If in a multiple partition database partition group, the distribution

key must be a subset of the GROUP BY items.
v The materialized query table must not contain duplicate rows, and the

following restrictions specific to this uniqueness requirement apply,
depending upon whether or not a GROUP BY clause is specified.
– When a GROUP BY clause is specified, the following

uniqueness-related restrictions apply:
- All GROUP BY items must be included in the select list.
- When the GROUP BY contains GROUPING SETS, CUBE, or

ROLLUP, the GROUP BY items and associated GROUPING column
functions in the select list must form a unique key of the result set.
Thus, the following restrictions must be satisfied:
v No grouping sets can be repeated. For example, ROLLUP(X,Y),X is

not allowed, because it is equivalent to GROUPING
SETS((X,Y),(X),(X)).

v If X is a nullable GROUP BY item that appears within
GROUPING SETS, CUBE, or ROLLUP, then GROUPING(X) must
appear in the select list.

– When a GROUP BY clause is not specified, the following
uniqueness-related restrictions apply:
- The materialized query table's uniqueness requirement is achieved

by deriving a unique key for the materialized view from one of the
unique key constraints defined in each of the underlying tables.
Therefore, the underlying tables must have at least one unique key
constraint defined on them, and the columns of these keys must
appear in the select list of the materialized query table definition.

When REFRESH DEFERRED is specified:
v If the materialized query table is created with the intention of providing

it with an associated staging table in a later statement, the fullselect of
the materialized query table must follow the same restrictions and rules
as a fullselect used to create a materialized query table with the
REFRESH IMMEDIATE option.

v If the query is recursive, the materialized query table is not used to
optimize the processing of queries.

v The materialized query table is not used to optimize the processing of
static queries.

A materialized query table whose fullselect contains a GROUP BY clause is
summarizing data from the tables referenced in the fullselect. Such a

CREATE TABLE

724 SQL Reference Volume 2



materialized query table is also known as a summary table. A summary
table is a specialized type of materialized query table.

If the fullselect references a table or a view that depends on a table for
which row or column level access control has been activated, those row or
column level access controls are ignored when populating the materialized
query table. The materialized query table is automatically created with row
level access control activated. Direct access by end users to this table does
not see any content unless appropriate permissions are created or a user
with SECADM authority chooses to deactivate row level access control on
this materialized query table. Note that row and column level access
control on the materialized query table does not affect internal routing by
the SQL compiler to the materialized query table.

refreshable-table-options
Define the refreshable options of the materialized query table attributes.

DATA INITIALLY DEFERRED
Data is not inserted into the table as part of the CREATE TABLE
statement. A REFRESH TABLE statement specifying the table-name is
used to insert data into the table.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using the
REFRESH TABLE statement. The data in the table only reflects the
result of the query as a snapshot at the time the REFRESH TABLE
statement is processed. System-maintained materialized query
tables defined with this attribute do not allow INSERT, UPDATE,
or DELETE statements (SQLSTATE 42807). User-maintained
materialized query tables defined with this attribute do allow
INSERT, UPDATE, or DELETE statements.

IMMEDIATE
The changes made to the underlying tables as part of a DELETE,
INSERT, or UPDATE are cascaded to the materialized query table.
In this case, the content of the table, at any point-in-time, is the
same as if the specified subselect is processed. Materialized query
tables defined with this attribute do not allow INSERT, UPDATE,
or DELETE statements (SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query optimization under
appropriate circumstances.

DISABLE QUERY OPTIMIZATION
The materialized query table will not be used for query optimization.
The table can still be queried directly.

MAINTAINED BY
Specifies whether the data in the materialized query table is
maintained by the system, user, or replication tool. The default is
SYSTEM.

SYSTEM
Specifies that the data in the materialized query table is maintained
by the system.

CREATE TABLE

Statements 725



USER
Specifies that the data in the materialized query table is maintained
by the user. The user is allowed to perform update, delete, or
insert operations against user-maintained materialized query tables.
The REFRESH TABLE statement, used for system-maintained
materialized query tables, cannot be invoked against
user-maintained materialized query tables. Only a REFRESH
DEFERRED materialized query table can be defined as
MAINTAINED BY USER.

REPLICATION
Specifies that the data in the materialized query table is maintained
by an external replication technology. The REFRESH TABLE
statement, used for system-maintained materialized query tables,
cannot be issued against replication-maintained materialized query
tables, which are referred to as shadow tables. Only a REFRESH
DEFERRED materialized query table can be defined as
MAINTAINED BY REPLICATION, and the definition must include
ORGANIZE BY COLUMN.

FEDERATED_TOOL
Specifies that the data in the materialized query table is maintained
by a federated replication tool. The REFRESH TABLE statement,
used for system-maintained materialized query tables, cannot be
invoked against federated_tool-maintained materialized query
tables. Only a REFRESH DEFERRED materialized query table can
be defined as MAINTAINED BY FEDERATED_TOOL.

When specifying this option, the select clause in the CREATE
TABLE statement cannot contain a reference to a base table
(SQLSTATE 428EC).

staging-table-definition
Defines the query supported by the staging table indirectly through an
associated materialized query table. The underlying tables of the materialized
query table are also the underlying tables for its associated staging table. The
staging table collects changes that need to be applied to the materialized query
table to synchronize it with the contents of the underlying tables.

If the fullselect references a table or a view that depends on a table for which
row or column level access control has been activated, those row or column
level access controls are ignored when populating the staging table. However,
the staging table is automatically created with row level access control
activated. Direct access by end users to this staging table does not see any
content unless appropriate permissions are created or a user with SECADM
authority chooses to deactivate row level access control on this staging table.
Note that row and column level access control on the staging table does not
affect the internal process of applying the changes captured by the staging
table to the associated materialized query table.

staging-column-name
Names the columns in the staging table. If a list of column names is
specified, it must consist of two more names than there are columns in the
materialized query table for which the staging table is defined. If the
materialized query table is a replicated materialized query table, or the
query defining the materialized query table does not contain a GROUP BY
clause, the list of column names must consist of three more names than
there are columns in the materialized query table for which the staging
table is defined. Each column name must be unique and unqualified. If a

CREATE TABLE

726 SQL Reference Volume 2



list of column names is not specified, the columns of the table inherit the
names of the columns of the associated materialized query table. The
additional columns are named GLOBALTRANSID and
GLOBALTRANSTIME, and if a third column is necessary, it is named
OPERATIONTYPE.

Table 20. Extra Columns Appended in Staging Tables

Column Name Data Type Column Description

GLOBALTRANSID CHAR(8) FOR BIT DATA The global transaction ID for
each propagated row

GLOBALTRANSTIME CHAR(13) FOR BIT DATA The timestamp of the
transaction

OPERATIONTYPE INTEGER Operation for the propagated
row, either insert, update, or
delete.

A list of column names must be specified if any of the columns of the
associated materialized query table duplicates any of the generated column
names (SQLSTATE 42711).

FOR table-name2
Specifies the materialized query table that is used for the definition of the
staging table. The name, including the implicit or explicit schema, must
identify a materialized query table that exists at the current server defined
with REFRESH DEFERRED. The fullselect of the associated materialized
query table must follow the same restrictions and rules as a fullselect used
to create a materialized query table with the REFRESH IMMEDIATE
option.

The contents of the staging table can be used to refresh the materialized
query table, by invoking the REFRESH TABLE statement, if the contents of
the staging table are consistent with the associated materialized query table
and the underlying source tables.

PROPAGATE IMMEDIATE
The changes made to the underlying tables as part of a delete, insert, or
update operation are cascaded to the staging table in the same delete,
insert, or update operation. If the staging table is not marked inconsistent,
its content, at any point-in-time, is the delta changes to the underlying
table since the last refresh materialized query table.

ORGANIZE BY
Specifies how the data is organized in the data pages of the table. If this clause
is not specified, the default organization of ROW or COLUMN is determined
by the value of the dft_table_org database configuration parameter, which
defaults to ROW.

The following restrictions apply to a column-organized MQT:
v MQTs other than shadow tables must reference tables with the same

organization as the MQT.
v The ORGANIZE BY COLUMN clause must be specified when creating a

column-organized MQT.
v For a column-organized MQT, only shadow tables and user-maintained

MQTs are allowed.

CREATE TABLE

Statements 727



ROW
The data is stored by row in the data pages of the table. A given data page
stores the data for one or more rows of the table.

COLUMN
The data is stored by column in the data pages of the table. A given data
page stores data for one column of the table.

ROW USING
The data is stored by row in the data pages of the table and further
organized using the specification in the clause that follows. If the default
table organization for the database is COLUMN, this clause must be
specified when organizing the data by dimensions or insert time.

DIMENSIONS (column-name,...)
Specifies a dimension for each column or group of columns used to
cluster the table data. The use of parentheses within the dimension list
specifies that a group of columns is to be treated as one dimension.
The DIMENSIONS keyword is optional. A table whose definition
specifies this clause is known as a multidimensional clustering (MDC)
table.

A clustering block index is automatically maintained for each specified
dimension, and a block index, consisting of all columns used in the
clause, is maintained if none of the clustering block indexes includes
them all. The set of columns used in the ORGANIZE BY clause must
follow the rules for the CREATE INDEX statement that specifies
CLUSTER.

Each column name specified in the ORGANIZE BY clause must be
defined for the table (SQLSTATE 42703). A dimension cannot occur
more than once in the dimension list (SQLSTATE 42709). The
dimensions cannot contain a ROW CHANGE TIMESTAMP column,
row-begin column, row-end column, transaction-start-ID column
(SQLSTATE 429BV), or an XML column (SQLSTATE 42962).

Pages of the table are arranged in blocks of equal size, which is the
extent size of the table space, and all rows of each block contain the
same combination of dimension values.

A table can be both a multidimensional clustering (MDC) table and a
partitioned table. Columns in such a table can be used in both the
range-partition-spec and in the MDC key. Note that table partitioning is
multi-column, not multidimensional.

For a partitioned MDC table created by DB2 Version 9.7 Fix Pack 1 or
later releases, the block indexes are partitioned. The partitioned block
index placement follows the general partitioned index storage
placement rule. All index partitions for a given data partition,
including MDC block indexes, share a single index object. By default,
the index partitions for each specific data partition reside in the same
table space as the data partition. This can be overridden with the
partition level INDEX IN clause.

For MDC tables created by DB2 V9.7 or earlier releases, the block
indexes are nonpartitioned and remain nonpartitioned if they are
rebuilt. MDC tables with partitioned block indexes can co-exist in the
same database as MDC tables with nonpartitioned block indexes. To
change nonpartitioned block indexes to partitioned block indexes, use
an online table move to migrate the MDC table.

CREATE TABLE

728 SQL Reference Volume 2



INSERT TIME
Specifies that rows are clustered in the table relative to the time they
are inserted. Rows are inserted at the logical end of the table object
instead of searching for available space. A table which is organized by
insert time is known as an insert time clustering (ITC) table. This type
of table can use REORG TABLE RECLAIM EXTENTS to reclaim free
extents for immediate use by other objects in the table space.

Data is clustered using an implicitly created virtual dimension. A
clustering block index is automatically maintained for this virtual
dimension. The virtual dimension cannot be manipulated and it
consumes no space for each row that exists in the table. Pages of the
table are arranged in blocks of equal size, which is the extent size of
the table space.

The ORGANIZE BY INSERT TIME clause cannot be specified if the
table is a typed table (SQLSTATE 428DH).

KEY SEQUENCE sequence-key-spec
Specifies that the table is organized in ascending key sequence with a fixed
size based on the specified range of key sequence values. A table organized
in this way is referred to as a range-clustered table. Each possible key value
in the defined range has a predetermined location in the physical table.
The storage required for a range-clustered table must be available when
the table is created, and must be sufficient to contain the number of rows
in the specified range multiplied by the row size (for details on
determining the space requirement, see Row Size Limit and Byte Counts).

column-name
Specifies a column of the table that is included in the unique key that
determines the sequence of the range-clustered table. The data type of
the column must be SMALLINT, INTEGER, or BIGINT (SQLSTATE
42611), and the columns must be defined as NOT NULL (SQLSTATE
42831). The same column must not be identified more than once in the
sequence key. The number of identified columns must not exceed 64
(SQLSTATE 54008).

A unique index entry will automatically be created in the catalog for
the columns in the key sequence specified with ascending order for
each column. The name of the index will be SQL, followed by a
character timestamp (yymmddhhmmssxxx), with SYSIBM as the schema
name. An actual index object is not created in storage, because the
table organization is ordered by this key. If a primary key or a unique
constraint is defined on the same columns as the range-clustered table
sequence key, this same index entry is used for the constraint.

For the key sequence specification, a check constraint exists to reflect
the column constraints. If the DISALLOW OVERFLOW clause is
specified, the name of the check constraint will be RCT, and the check
constraint is enforced. If the ALLOW OVERFLOW clause is specified,
the name of the check constraint will be RCT_OFLOW, and the check
constraint is not enforced.

STARTING FROM constant
Specifies the constant value at the low end of the range for
column-name. Values less than the specified constant are only allowed if
the ALLOW OVERFLOW option is specified. If column-name is a
SMALLINT or INTEGER column, the constant must be an INTEGER
constant. If column-name is a BIGINT column, the constant must be an

CREATE TABLE

Statements 729



INTEGER or BIGINT constant (SQLSTATE 42821). If a starting constant
is not specified, the default value is 1.

ENDING AT constant
Specifies the constant value at the high end of the range for
column-name. Values greater than the specified constant are only
allowed if the ALLOW OVERFLOW option is specified. The value of
the ending constant must be greater than the starting constant. If
column-name is a SMALLINT or INTEGER column, the constant must
be an INTEGER constant. If column-name is a BIGINT column, the
constant must be an INTEGER or BIGINT constant (SQLSTATE 42821).

ALLOW OVERFLOW
Specifies that the range-clustered table allows rows with key values
that are outside of the defined range of values. When a range-clustered
table is created to allow overflows, the rows with key values outside of
the range are placed at the end of the defined range without any
predetermined order. Operations involving these overflow rows are
less efficient than operations on rows having key values within the
defined range.

DISALLOW OVERFLOW
Specifies that the range-clustered table does not allow rows with key
values that are not within the defined range of values (SQLSTATE
23513). Range-clustered tables that disallow overflows will always
maintain all rows in ascending key sequence.

The DISALLOW OVERFLOW clause cannot be specified if the table is
a range-clustered materialized query table (SQLSTATE 429BG).

PCTFREE integer
Specifies the percentage of each page that is to be left as free space.
The first row on each page is added without restriction. When
additional rows are added to a page, at least integer percent of the page
is left as free space. The value of integer can range from 0 to 99. A
PCTFREE value of -1 in the system catalog (SYSCAT.TABLES) is
interpreted as the default value. The default PCTFREE value for a table
page is 0.

DATA CAPTURE
Indicates whether extra information for inter-database data replication is to be
written to the log. This clause cannot be specified when creating a subtable
(SQLSTATE 428DR).

If the clause is not specified and that table is not a typed table, then the default
is determined by the DATA CAPTURE setting of the schema at the time the
table is created.

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table will be
written to the log. This option is required if this table will be replicated
and the Capture program is used to capture changes for this table from the
log.

If the table is a typed table that is not a subtable, then this option is not
supported (SQLSTATE 428DH).

CREATE TABLE

730 SQL Reference Volume 2



IN tablespace-name,...
Identifies the table spaces in which the table will be created. The table spaces
must exist, they must be in the same database partition group, and they must
be all regular DMS or all large DMS or all SMS table spaces (SQLSTATE 42838)
on which the authorization ID of the statement holds the USE privilege.

A maximum of one IN clause is allowed at the table level. All data table spaces
used by a table must have the same page size and extent size.

If only one table space is specified, all table parts are stored in this table space.
This clause cannot be specified when creating a subtable (SQLSTATE 42613),
because the table space is inherited from the root table of the table hierarchy.

If this clause is not specified, the database manager chooses a table space (from
the set of existing table spaces in the database) with the smallest sufficient
page size and where the row size is within the row size limit of the page size
on which the authorization ID of the statement has USE privilege.

If more than one table space qualifies, choose the table space in the following
order of preference, depending how the authorization ID of the statement was
granted USE privilege on the table space:
1. The authorization ID
2. A role to which the authorization ID is granted
3. A group to which the authorization ID belongs
4. A role to which a group the authorization ID belongs is granted
5. PUBLIC
6. A role to which PUBLIC is granted

If more than one table space still qualifies, the final choice is made by the
database manager.

Table space determination can change if:
v Table spaces are dropped or created
v USE privileges are granted or revoked

Partitioned tables can have their data partitions spread across multiple table
spaces. When multiple table spaces are specified, all of the table spaces must
exist, and they must all be either SMS or regular DMS or large DMS table
spaces (SQLSTATE 42838). The authorization ID of the statement must hold the
USE privilege on all of the specified table spaces.

The sufficient page size of a table is determined by either the byte count of the
row or the number of columns. For more information, see Row Size Limits.

When a table is placed in a large table space:
v The table can be larger than a table in a regular table space. For details on

table and table space limits, see “SQL limits”.
v The table can support more than 255 rows per data page, which can

improve space utilization on data pages.
v Indexes that are defined on the table will require an additional 2 bytes per

row entry, compared to indexes defined on a table that resides in a regular
table space.

CYCLE or NO CYCLE
Specifies whether or not the number of data partitions with no explicit
table space can exceed the number of specified table spaces.

CYCLE
Specifies that if the number of data partitions with no explicit table

CREATE TABLE

Statements 731



space exceeds the number of specified table spaces, the table spaces are
assigned to data partitions in a round-robin fashion.

NO CYCLE
Specifies that the number of data partitions with no explicit table space
must not exceed the number of specified tables spaces (SQLSTATE
428G1). This option prevents the round-robin assignment of table
spaces to data partitions.

tablespace-options
Specifies the table space in which indexes or long column values are to be
stored. For details on types of table spaces, see “CREATE TABLESPACE”.

INDEX IN tablespace-name
Identifies the table space in which any indexes on a nonpartitioned
table or nonpartitioned indexes on a partitioned table are to be created.
The specified table space must exist; it must be a DMS table space if
the table has data in DMS table spaces, or an SMS table space if the
partitioned table has data in SMS table spaces; it must be a table space
on which the authorization ID of the statement holds the USE
privilege; and it must be in the same database partition group as
tablespace-name (SQLSTATE 42838).

Specifying which table space will contain indexes can be done when a
table is created or, in the case of partitioned tables, it can be done by
specifying the IN clause of the CREATE INDEX statement for a
nonpartitioned index. Checking for the USE privilege on the table
space is done at table creation time, not when an index is created later.

For a nonpartitioned index on a partitioned table, storage of the index
is as follows:
v The table space by the IN clause of the CREATE INDEX statement
v The table-level table space specified for the INDEX IN clause of the

CREATE TABLE statement
v If neither of the preceding are specified, the index is stored in the

table space of the first attached or visible data partition

For information about partitioned indexes on partitioned tables, see the
description of the partition-element INDEX IN clause.

LONG IN tablespace-name
Identifies the table spaces in which the values of any long columns are
to be stored. Long columns include those with LOB data types, XML
type, distinct types with any of these as source types, or any columns
defined with user-defined structured types whose values cannot be
stored inline. This option is allowed only if the IN clause identifies a
DMS table space.

The specified table space must exist. It can be a regular table space if it
is the same table space in which the data is stored; otherwise, it must
be a large DMS table space on which the authorization ID of the
statement holds the USE privilege. It must also be in the same database
partition group as tablespace-name (SQLSTATE 42838).

Specifying which table space will contain long, LOB, or XML columns
can only be done when a table is created. Checking for the USE
privilege is done at table creation time, not when a long or LOB
column is added later.

CREATE TABLE

732 SQL Reference Volume 2



For rules governing the use of the LONG IN clause with partitioned
tables, see “Large object behavior in partitioned tables”.

distribution-clause
Specifies the database partitioning or the way the data is distributed across
multiple database partitions.

DISTRIBUTE BY HASH (column-name,...)
Specifies the use of the default hashing function on the specified columns,
called a distribution key, as the distribution method across database
partitions. The column-name must be an unqualified name that identifies a
column of the table (SQLSTATE 42703). The same column must not be
identified more than once (SQLSTATE 42709). No column whose data type
is BLOB, CLOB, DBCLOB, XML, distinct type based on any of these types,
or structured type can be used as part of a distribution key (SQLSTATE
42962). The distribution key cannot contain a ROW CHANGE
TIMESTAMP column (SQLSTATE 429BV). A distribution key cannot be
specified for a table that is a subtable (SQLSTATE 42613), because the
distribution key is inherited from the root table in the table hierarchy or a
table with a column of data type XML (SQLSTATE 42997). A distribution
key cannot contain row begin/row end/transaction start id columns. If this
clause is not specified, and the table resides in a multiple partition
database partition group with multiple database partitions, the distribution
key is defined as follows:
v If the table is a typed table, the object identifier column is the

distribution key.
v If a primary key is defined, the first column of the primary key is the

distribution key.
v Otherwise, the first column whose data type is valid for a distribution

key becomes the distribution key.

The columns of the distribution key must be a subset of the columns that
make up any unique constraints.

If none of the columns satisfies the requirements for a default distribution
key, the table is created without one. Such tables are allowed only in table
spaces that are defined on single-partition database partition groups.

For tables in table spaces that are defined on single-partition database
partition groups, any collection of columns with data types that are valid
for a distribution key can be used to define the distribution key. If you do
not specify this clause, no distribution key is created.

For restrictions related to the distribution key, see Rules.

DISTRIBUTE BY REPLICATION
Specifies that the data stored in the table is physically replicated on each
database partition of the database partition group for the table spaces in
which the table is defined. This means that a copy of all of the data in the
table exists on each database partition. This option can only be specified
for a materialized query table (SQLSTATE 42997).

partitioning-clause
Specifies how the data is partitioned within a database partition.

PARTITION BY RANGE range-partition-spec
Specifies the table partitioning scheme for the table.

CREATE TABLE

Statements 733



partition-expression
Specifies the key data over which the range is defined to determine the
target data partition of the data.

column-name
Identifies a column of the table-partitioning key. The column-name
must be an unqualified name that identifies a column of the table
(SQLSTATE 42703). The same column must not be identified more
than once (SQLSTATE 42709). No column with a data type that is a
BLOB, CLOB, DBCLOB, XML, distinct type based on any of these
types, or structured type can be used as part of a table-partitioning
key (SQLSTATE 42962).

The numeric literals used in the range specification are governed
by the rules for numeric literals. All of the numeric literals (except
the decimal floating-point special values) used in ranges
corresponding to numeric columns are interpreted as integer,
floating-point or decimal constants, in accordance with the rules
specified for numeric constants. As a result, for decimal
floating-point columns, the minimum and maximum numeric
constant value that can be used in the range specification of a data
partition is the smallest DOUBLE value and the largest DOUBLE
value, respectively. Decimal floating-point special values can be
used in the range specification. All decimal floating-point special
values are interpreted as greater than MINVALUE and less than
MAXVALUE.

The table partitioning columns cannot contain a ROW CHANGE
TIMESTAMP column (SQLSTATE 429BV). The number of identified
columns must not exceed 16 (SQLSTATE 54008).

NULLS LAST or NULLS FIRST
Indicates the partition placement of rows that have null values in
the table partitioning key columns. These clauses do not affect the
order of rows that are returned in an ORDER BY clause.

NULLS LAST
Indicates that null values are compared as the highest possible
value, and are placed in a range ending at MAXVALUE.

NULLS FIRST
Indicates that null values are compared as the lowest possible
value, and are placed in a range starting at MINVALUE.

partition-element
Specifies ranges for a data partitioning key and the table space where
rows of the table in the range will be stored.

PARTITION partition-name
Names the data partition. The name must not be the same as any
other data partition for the table (SQLSTATE 42710). If this clause
is not specified, the name will be 'PART' followed by the character
form of an integer value to make the name unique for the table.

boundary-spec
Specifies the boundaries of a data partition. The lowest data
partition must include a starting-clause, and the highest data
partition must include an ending-clause (SQLSTATE 56016). Data
partitions between the lowest and the highest can include either a
starting-clause, ending-clause, or both clauses. If only the

CREATE TABLE

734 SQL Reference Volume 2



ending-clause is specified, the previous data partition must also
have included an ending-clause (SQLSTATE 56016).

starting-clause
Specifies the low end of the range for a data partition. There
must be at least one starting value specified and no more
values than the number of columns in the data partitioning key
(SQLSTATE 53038). If there are fewer values specified than the
number of columns, the remaining values are implicitly
MINVALUE.

STARTING FROM
Introduces the starting-clause.

constant
Specifies a constant value with a data type that is
assignable to the data type of the column-name to which
it corresponds (SQLSTATE 53045). The value must not
be in the range of any other boundary-spec for the
table (SQLSTATE 56016).

MINVALUE
Specifies a value that is lower than the lowest possible
value for the data type of the column-name to which it
corresponds.

MAXVALUE
Specifies a value that is greater than the greatest
possible value for the data type of the column-name to
which it corresponds.

INCLUSIVE
Indicates that the specified range values are to be included
in the data partition.

EXCLUSIVE
Indicates that the specified constant values are to be
excluded from the data partition. This specification is
ignored when MINVALUE or MAXVALUE is specified.

ending-clause
Specifies the high end of the range for a data partition. There
must be at least one starting value specified and no more
values than the number of columns in the data partitioning key
(SQLSTATE 53038). If there are fewer values specified than the
number of columns, the remaining values are implicitly
MAXVALUE.

ENDING AT
Introduces the ending-clause.

constant
Specifies a constant value with a data type that is
assignable to the data type of the column-name to which
it corresponds (SQLSTATE 53045). The value must not
be in the range of any other boundary-spec for the
table (SQLSTATE 56016).

CREATE TABLE

Statements 735



MINVALUE
Specifies a value that is lower than the lowest possible
value for the data type of the column-name to which it
corresponds.

MAXVALUE
Specifies a value that is greater than the greatest
possible value for the data type of the column-name to
which it corresponds.

INCLUSIVE
Indicates that the specified range values are to be included
in the data partition.

EXCLUSIVE
Indicates that the specified constant values are to be
excluded from the data partition. This specification is
ignored when MINVALUE or MAXVALUE is specified.

IN tablespace-name
Specifies the table space where the data partition is to be stored.
The named table space must have the same page size, be in the
same database partition group, and manage space in the same way
as the other table spaces of the partitioned table (SQLSTATE
42838); it must be a table space on which the authorization ID of
the statement holds the USE privilege. If this clause is not
specified, a table space is assigned by default in a round-robin
fashion from the list of table spaces specified for the table. If a
table space was not specified for large objects using the LONG IN
clause, large objects are placed in the same table space as are the
rest of the rows for the data partition. For partitioned tables, the
LONG IN clause can be used to provide a list of table spaces. This
list is used in round robin-fashion to place large objects for each
data partition. For rules governing the use of the LONG IN clause
with partitioned tables, see “Large object behavior in partitioned
tables”.

If the INDEX IN clause is not specified on the CREATE TABLE or
the CREATE INDEX statement, the index is placed in the same
table space as the first visible or attached partition of the table.

INDEX IN tablespace-name
Specifies the table space where the partitioned index on the
partitioned table is to be stored.

The partition-element level INDEX IN clause only affects the
storage of partitioned indexes. Storage of the index is as follows:
v If the INDEX IN clause is specified at the partition level when

the table is created, the partitioned index is stored in the
specified table space.

v If the INDEX IN clause is not specified at the partition level
when the table is created, the partitioned index is stored in the
table space of the corresponding data partition.

The INDEX IN clause can only be specified if the data table spaces
are DMS table spaces and the table space specified by the INDEX
IN clause is a DMS table space. If the data table space is an SMS
table space, an error is returned (SQLSTATE 42839).

CREATE TABLE

736 SQL Reference Volume 2



LONG IN tablespace-name
Identifies the table spaces in which the values of any long columns
are to be stored. Long columns include those with LOB data types,
XML type, distinct types with any of these as source types, or any
columns defined with user-defined structured types whose values
cannot be stored inline. This option is allowed only if the IN clause
identifies a DMS table space.

The specified table space must exist. It can be a regular table space
if it is the same table space in which the data is stored; otherwise,
it must be a large DMS table space on which the authorization ID
of the statement holds the USE privilege. It must also be in the
same database partition group as tablespace-name (SQLSTATE
42838).

Specifying which table space will contain long, LOB, or XML
columns can only be done when a table is created. Checking for
the USE privilege is done at table creation time, not when a long or
LOB column is added later.

For rules governing the use of the LONG IN clause with
partitioned tables, see “Large object behavior in partitioned tables”.

EVERY (constant)
Specifies the width of each data partition range when using the
automatically generated form of the syntax. Data partitions will be
created starting at the STARTING FROM value and containing this
number of values in the range. This form of the syntax is only
supported for tables that are partitioned by a single numeric or
datetime column (SQLSTATE 53038).

If the partitioning key column is a numeric type, the starting value
of the first partition is the value specified in the starting-clause.
The ending value for the first and all other partitions is calculated
by adding the starting value of the partition to the increment value
specified as constant in the EVERY clause. The starting value for all
other partitions is calculated by taking the starting value for the
previous partition and adding the increment value specified as
constant in the EVERY clause.

If the partitioning key column is a DATE or a TIMESTAMP, the
starting value of the first partition is the value specified in the
starting-clause. The ending value for the first and all other
partitions is calculated by adding the starting value of the partition
to the increment value specified as a labeled duration in the
EVERY clause. The starting value for all other partitions is
calculated by taking the starting value for the previous partition
and adding the increment value specified as a labeled duration in
the EVERY clause.

For a numeric column, the EVERY value must be a positive
numeric constant, and for a datetime column, the EVERY value
must be a labeled duration (SQLSTATE 53045).

COMPRESS
Specifies whether data compression applies to the rows of the table

NO Specifies that data row compression is disabled.

YES
Specifies that data row compression is enabled. Insert and update

CREATE TABLE

Statements 737



operations on the table will be subject to compression. Any XML storage
objects that exist are also compressed. For both adaptive and classic row
compression, a table-level compression dictionary is automatically created
after the table is sufficiently populated with data. This also applies to the
data in the XML storage object; if there is sufficient data in the XML
storage object, a compression dictionary is automatically created and XML
documents are subject to compression.

Note: The compression applied to the XML storage object is the same,
regardless of whether you use adaptive or classic row compression.

For adaptive row compression, page-level compression dictionaries are
created or updated as soon as data is inserted or changed in the table.

ADAPTIVE
Enables adaptive compression, and records are subject to being
compressed with a table-level and a page-level compression dictionary.
This is the default option when COMPRESS YES is specified. The
functionality of COMPRESS YES ADAPTIVE is a superset of the
functionality of COMPRESS YES STATIC.

STATIC
Enables classic row compression using a table-level compression
dictionary. This is the same row compression functionality that existed
in previous DB2 versions.

VALUE COMPRESSION
This determines the row format that is to be used. Each data type has a
different byte count depending on the row format that is used. For more
information, see Byte Counts. If the table is a typed table, this option is only
supported on the root table of the typed table hierarchy (SQLSTATE 428DR).

The null value is stored using three bytes. This is the same or less space than
when VALUE COMPRESSION is not active for columns of all data types, with
the exception of CHAR(1). Whether or not a column is defined as nullable has
no affect on the row size calculation. The zero-length data values for columns
whose data type is VARCHAR, VARGRAPHIC, LONG VARCHAR, LONG
VARGRAPHIC, CLOB, DBCLOB, BLOB, or XML are to be stored using two
bytes only, which is less than the storage required when VALUE
COMPRESSION is not active. When a column is defined using the COMPRESS
SYSTEM DEFAULT option, this also allows the system default value for the
column to be stored using three bytes of total storage. The row format that is
used to support this determines the byte counts for each data type, and tends
to cause data fragmentation when updating to or from the null value, a
zero-length value, or the system default value.

WITH RESTRICT ON DROP
Indicates that the table cannot be dropped, and that the table space that
contains the table cannot be dropped.

NOT LOGGED INITIALLY
Any changes made to the table by an Insert, Delete, Update, Create Index,
Drop Index, or Alter Table operation in the same unit of work in which the
table is created are not logged. For other considerations when using this
option, see the “Notes” section of this statement.

All catalog changes and storage related information are logged, as are all
operations that are done on the table in subsequent units of work.

CREATE TABLE

738 SQL Reference Volume 2



Note: If non-logged activity occurs against a table that has the NOT LOGGED
INITIALLY attribute activated, and if a statement fails (causing a rollback), or a
ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back
(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY
attribute was activated is marked inaccessible after the rollback has occurred,
and can only be dropped. Therefore, the opportunity for errors within the unit
of work in which the NOT LOGGED INITIALLY attribute is activated should
be minimized.

CCSID
Specifies the encoding scheme for string data stored in the table. If the CCSID
clause is not specified, the default is CCSID UNICODE for Unicode databases,
and CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, CCSID ASCII cannot be specified
(SQLSTATE 56031).

UNICODE
Specifies that string data is encoded in Unicode. If the database is a
Unicode database, character data is in UTF-8, and graphic data is in UCS-2.
If the database is not a Unicode database, character data is in UTF-8.

If the database is not a Unicode database, tables can be created with
CCSID UNICODE, but the following rules apply:
v The alternate collating sequence must be specified in the database

configuration before creating the table (SQLSTATE 56031). CCSID
UNICODE tables collate with the alternate collating sequence specified
in the database configuration.

v Tables or table functions created with CCSID ASCII, and tables or table
functions created with CCSID UNICODE, cannot both be used in a
single SQL statement (SQLSTATE 53090). This applies to tables and table
functions referenced directly in the statement, as well as to tables and
table functions referenced indirectly (such as, for example, through
referential integrity constraints, triggers, materialized query tables, and
tables in the body of views).

v Tables created with CCSID UNICODE cannot be referenced in SQL
functions or SQL methods (SQLSTATE 560C0).

v An SQL statement that references a table created with CCSID UNICODE
cannot invoke an SQL function or SQL method (SQLSTATE 53090).

v Graphic types, the XML type, and user-defined types cannot be used in
CCSID UNICODE tables (SQLSTATE 560C1).

v Anchored data types cannot anchor to columns of a table created with
CCSID UNICODE (SQLSTATE 428HS).

v Tables cannot have both the CCSID UNICODE clause and the DATA
CAPTURE CHANGES clause specified (SQLSTATE 42613).

v The Explain tables cannot be created with CCSID UNICODE (SQLSTATE
55002).

v Created temporary tables and declared temporary tables cannot be
created with CCSID UNICODE (SQLSTATE 56031).

v CCSID UNICODE tables cannot be created in a CREATE SCHEMA
statement (SQLSTATE 53090).

v The exception table for a load operation must have the same CCSID as
the target table for the operation (SQLSTATE 428A5).

CREATE TABLE

Statements 739



v The exception table for a SET INTEGRITY statement must have the same
CCSID as the target table for the statement (SQLSTATE 53090).

v The target table for event monitor data must not be declared as CCSID
UNICODE (SQLSTATE 55049).

v SQL statements are always interpreted in the database code page. In
particular, this means that every character in literals, hex literals, and
delimited identifiers must have a representation in the database code
page; otherwise, the character will be replaced with the substitution
character.

Host variables in the application are always in the application code page,
regardless of the CCSID of any tables in the SQL statements that are invoked.
The database manager will perform code page conversions as necessary to
convert data between the application code page and the section code page. The
registry variable DB2CODEPAGE can be set at the client to change the
application code page.

SECURITY POLICY
Names the security policy to be associated with the table.

policy-name
Identifies a security policy that already exists at the current server
(SQLSTATE 42704).

OPTIONS (table-option-name string-constant, ...)
Table options are used to identify the remote base table. The table-option-name is
the name of the option. The string-constant specifies the setting for the table
option. The string-constant must be enclosed in single quotation marks.

The remote server (the server name that was specified in the CREATE SERVER
statement) must be specified in the OPTIONS clause. The OPTIONS clause can
also be used to override the schema or the unqualified name of the remote
base table that is being created.

It is recommended that a schema name be specified. If a remote schema name
is not specified, the qualifier for the table name is used. If the table name has
no qualifier, the authorization ID of the statement is used.

If an unqualified name for the remote base table is not specified, table-name is
used.

Rules
v The sum of the byte counts of the columns, including the inline lengths of all

structured or XML type columns, must not be greater than the row size limit
that is based on the page size of the table space (SQLSTATE 54010). For more
information, see Byte Counts. For typed tables, the byte count is applied to the
columns of the root table of the table hierarchy, and every additional column
introduced by every subtable in the table hierarchy (additional subtable columns
must be considered nullable for byte count purposes, even if defined as not
nullable). There is also an additional 4 bytes of overhead to identify the subtable
to which each row belongs.

v The number of columns in a table cannot exceed 1,012 (SQLSTATE 54011). For
typed tables, the total number of attributes of the types of all of the subtables in
the table hierarchy cannot exceed 1010.

v An object identifier column of a typed table cannot be updated (SQLSTATE
42808).

CREATE TABLE

740 SQL Reference Volume 2



v Any unique or primary key constraint defined on the table must be a superset of
the distribution key (SQLSTATE 42997).

v The following rules only apply to multiple database partition databases.
– Tables composed only of columns with types LOB, XML, a distinct type based

on one of these types, or a structured type can only be created in table spaces
that are defined on single-partition database partition groups.

– The distribution key definition of a table in a table space that is defined on a
multiple partition database partition group cannot be altered.

– The distribution key column of a typed table must be the OID column.
– Partitioned staging tables are not supported.

v For databases running in a DB2 pureScale environment, the ORGANIZE BY
clause cannot be specified (SQLSTATE 42997).

v The following restrictions apply to range-clustered tables:
– A range-clustered table cannot be specified in a DB2 pureScale environment

(SQLSTATE 42997).
– A clustering index cannot be created.
– Altering the table to add a column is not supported.
– Altering the table to change the data type of a column is not supported.
– Altering the table to change PCTFREE is not supported.
– Altering the table to set APPEND ON is not supported.
– DETAILED statistics are not available.
– The load utility cannot be used to populate the table.
– Columns cannot be of type XML.

v A table is not protected unless it has a security policy associated with it and it
includes either a column of type DB2SECURITYLABEL or a column defined
with the SECURED WITH clause. The former indicates that the table is a
protected table with row level granularity and the latter indicates that the table
a protected table with column level granularity.

v Declaring a column of type DB2SECURITYLABEL fails if the table does not have
a security policy associated with it (SQLSTATE 55064).

v A security policy cannot be added to a typed table (SQLSTATE 428DH),
materialized query table, or staging table (SQLSTATE 428FG).

v An error tolerant nested-table-expression cannot be specified in the fullselect of a
materialized-query-definition (SQLSTATE 428GG).

v When creating a materialized query table and any of the base tables it depends
upon are protected with label-based access control, the following rules apply:
– Row level security

- Only one table in the materialized query table's fullselect can have a
column type of DB2SECURITYLABEL (SQLSTATE 428FG).

- The row security label column must be selected and referenced as a stand
alone column in the outermost SELECT list in the materialized query table
definition (SQLSTATE 428FG). The corresponding column in the
materialized query table will be marked as the row security label column.

– Column level security
- If a table involved in the materialized query table definition has a column

protected with a security label, and that column appears in the materialized
query table definition, that column's security label is inherited by the
corresponding column in the materialized query table. See the examples in
this topic for more details.

CREATE TABLE

Statements 741



– When creating a materialized query table that depends on one or more tables
protected by label-based access control, all base tables must have the same
security policy object (SQLSTATE, 428FG). The materialized query table will
be automatically protected with that security policy object.

– The security label associated with a materialized query table column is
computed as the aggregate of one or more security labels. This aggregate
consists of the security labels associated with the base tables' columns that
participate in the definition of that materialized query table column. The
aggregate also consists of the security labels associated with any base table
columns that appear in other parts of the materialized query table definition,
such as the WHERE, ORDER BY, and HAVING clauses. The ALTER SECURITY POLICY
has a description of how two security labels are aggregated. See the examples
in this topic for more details.

– When a staging table is created for a materialized query table that is
protected with label-based access control, that staging table carries automatic
protection like the materialized query table. See the examples in this topic for
more details.

– Label-based access control is enforced for direct access to a materialized query
table just as it is enforced for a regular table. There are no differences from
this perspective. When the SQL compiler services a query through a
materialized query table, the label-based access control defined on the
materialized query table itself does not need to be enforced. The SQL
compiler uses the materialized query table which factors in the label-based
access control rules from the appropriate base tables.

v The isolation-clause cannot be specified in the full-select of the
materialized-query-table-definition (SQLSTATE 42601).

v Subselect statements containing a lock-request-clause are not be eligible for MQT
routing.

v National character spellings for the graphic data types can be specified only in a
Unicode database (SQLSTATE 560AA).

v The following restrictions apply to insert time clustering (ITC) tables:
– ITC tables are not supported in an SMS table space (SQLSTATE 42838).
– Indexes defined on ITC tables are not supported in an SMS table space

(SQLSTATE 42838).

Notes
v Creating a table with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v If a foreign key is specified:
– All packages with a delete usage on the parent table are invalidated.
– All packages with an update usage on at least one column in the parent key

are invalidated.
v Creating a subtable causes invalidation of all packages that depend on any table

in table hierarchy.
v VARCHAR and VARGRAPHIC columns that are greater than 4,000 and 2,000

respectively should not be used as input parameters in functions in SYSFUN
schema. Errors will occur when the function is invoked with an argument value
that exceeds these lengths (SQLSTATE 22001).

v The use of NO ACTION or RESTRICT as delete or update rules for referential
constraints determines when the constraint is enforced. A delete or update rule

CREATE TABLE

742 SQL Reference Volume 2



of RESTRICT is enforced before all other constraints, including those referential
constraints with modifying rules such as CASCADE or SET NULL. A delete or
update rule of NO ACTION is enforced after other referential constraints. One
example where different behavior is evident involves the deletion of rows from a
view that is defined as a UNION ALL of related tables.

Table T1 is a parent of table T3; delete rule as noted below.
Table T2 is a parent of table T3; delete rule CASCADE.

CREATE VIEW V1 AS SELECT * FROM T1 UNION ALL SELECT * FROM T2

DELETE FROM V1

If table T1 is a parent of table T3 with a delete rule of RESTRICT, a restrict
violation will be raised (SQLSTATE 23001) if there are any child rows for parent
keys of T1 in T3.
If table T1 is a parent of table T3 with a delete rule of NO ACTION, the child
rows may be deleted by the delete rule of CASCADE when deleting rows from
T2 before the NO ACTION delete rule is enforced for the deletes from T1. If
deletes from T2 did not result in deleting all child rows for parent keys of T1 in
T3, then a constraint violation will be raised (SQLSTATE 23504).
Note that the SQLSTATE returned is different depending on whether the delete
or update rule is RESTRICT or NO ACTION.

v For tables in table spaces defined on multiple partition database partition
groups, table collocation should be considered when choosing the distribution
keys. Following is a list of items to consider:
– The tables must be in the same database partition group for collocation. The

table spaces may be different, but must be defined in the same database
partition group.

– The distribution keys of the tables must have the same number of columns,
and the corresponding key columns must be database partition-compatible for
collocation.

– The choice of distribution key also has an impact on performance of joins. If a
table is frequently joined with another table, you should consider the joining
column(s) as a distribution key for both tables.

v The NOT LOGGED INITIALLY option is useful for situations where a large
result set needs to be created with data from an alternate source (another table
or a file) and recovery of the table is not necessary. Using this option will save
the overhead of logging the data. The following considerations apply when this
option is specified:
– When the unit of work is committed, all changes that were made to the table

during the unit of work are flushed to disk.
– When you run the rollforward utility and it encounters a log record that

indicates that a table in the database was either populated by the Load utility
or created with the NOT LOGGED INITIALLY option, the table will be
marked as unavailable. The table will be dropped by the rollforward utility if
it later encounters a DROP TABLE log. Otherwise, after the database is
recovered, an error will be issued if any attempt is made to access the table
(SQLSTATE 55019). The only operation permitted is to drop the table.

– Once such a table is backed up as part of a database or table space back up,
recovery of the table becomes possible.

v Use of materialized query tables to optimize query processing: The various types
of materialized query tables use different controls to optimize the processing of
queries.

CREATE TABLE

Statements 743



– A REFRESH DEFERRED materialized query table defined with ENABLE
QUERY OPTIMIZATION can be used to optimize the processing of queries if
each of the following conditions is true:
- CURRENT REFRESH AGE is set to ANY.
- CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION is set such

that it includes the materialized query table type.
- CURRENT QUERY OPTIMIZATION is set to 2 or a value greater than or

equal to 5.

Note: CURRENT REFRESH AGE does not affect query routing to
MAINTAINED BY FEDERATED_TOOL materialized query tables.

– A shadow table defined with ENABLE QUERY OPTIMIZATION can be used
to optimize the processing of queries based on a replication latency threshold
if each of the following conditions is true:
- CURRENT REFRESH AGE is set to a duration other than zero or ANY.
- CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION is set to

contain only REPLICATION or ALL.
- CURRENT QUERY OPTIMIZATION is set to 2 or a value greater than or

equal to 5.

For a description of the nonzero duration values that can be specified, see
“SET CURRENT REFRESH AGE statement”.

– A REFRESH IMMEDIATE materialized query table defined with ENABLE
QUERY OPTIMIZATION is always considered for optimization if CURRENT
QUERY OPTIMIZATION is set to 2 or a value greater than or equal to 5.

– For this optimization to be able to use a REFRESH DEFERRED materialized
query table that is not maintained by replication or a REFRESH IMMEDIATE
materialized query table, the fullselect must conform to certain rules in
addition to those already described:
- The fullselect must not include any special registers or built-in functions

that depend on the value of a special register.
- The fullselect must not include any global variables.
- The fullselect must not include functions that are not deterministic.

If the query that is specified when creating a materialized query table does
not conform to these rules, a warning is returned (SQLSTATE 01633).

v If a materialized query table is defined with REFRESH IMMEDIATE, or a
staging table is defined with PROPAGATE IMMEDIATE, it is possible for an
error to occur when attempting to apply the change resulting from an insert,
update, or delete operation on an underlying table. The error will cause the
failure of the insert, update, or delete operation on the underlying table.

v Materialized query tables or staging tables cannot be used as exception tables
when constraints are checked in bulk, such as during load operations or during
execution of the SET INTEGRITY statement.

v Certain operations cannot be performed on a table that is referenced by a
materialized query table defined with REFRESH IMMEDIATE, or defined with
REFRESH DEFERRED with an associated staging table:
– IMPORT REPLACE cannot be used.
– ALTER TABLE NOT LOGGED INITIALLY WITH EMPTY TABLE cannot be

done.
v In a federated system, nicknames for relational data sources or local tables can

be used as the underlying tables to create a materialized query table. Nicknames

CREATE TABLE

744 SQL Reference Volume 2



for non-relational data sources are not supported. When a nickname is one of
the underlying tables, the REFRESH DEFERRED option must be used.
System-maintained materialized query tables that reference nicknames are not
supported in a partitioned database environment.

v Considerations for transaction-start-ID columns: A transaction-start-ID column
contains a null value if the column allows null values, and there is a row-begin
column and the value of the column is unique from values for row-begin
columns generated for other transactions. Given that the column may contain
null values, it is recommended that one of the following methods be used when
retrieving a value from the column:
COALESCE ( transaction_start_id_col, row_begin_col)

CASE WHEN transaction_start_id_col IS NOT NULL
THEN transaction_start_id_col

ELSE row_begin_col END

v Defining a system-period temporal table: A system-period temporal table
definition includes the following:
– A system period named SYSTEM_TIME, which is defined using a row-begin

column and a row-end column. See the descriptions of AS ROW BEGIN, AS
ROW END, and period-definition.

– A transaction-start-ID column. See the description of AS TRANSACTION
START ID.

– A system-period data versioning definition specified on a subsequent ALTER
TABLE statement that specifies the ADD VERSIONING action, which includes
the name of the associated history table. See the description of the ADD
VERSIONING clause under ALTER TABLE.

To ensure that the history table cannot be implicitly dropped when a
system-period temporal table is dropped, use the WITH RESTRICT ON DROP
clause in the definition of the history table. A history table can manually be
dropped only when the RESTRICT ON DROP attribute is removed by an ALTER
TABLE statement.

v Defining an application-period temporal table: An application-period temporal
table definition includes an application period named BUSINESS_TIME. The
application period is defined using a begin timestamp column and an end
column. See the description of period-definition.
Data change operations on an application-period temporal table may result in an
automatic insert of one or two additional rows when a row is updated or
deleted. When an update or delete of a row in an application-period temporal
table is specified for a portion of the period represented by that row, the row is
updated or deleted and one or two rows are automatically inserted to represent
the portion of the row that is not changed. New values are generated for each
generated column in an application-period temporal table for each row that is
automatically inserted as a result of an update or delete operation on the table.
If a generated column is defined as part of a unique or primary key, parent key
in a referential constraint, or unique index, it is possible that an automatic insert
will violate a constraint or index in which case an error is returned.

v Considerations for implicitly hidden columns: Creating a table with implicitly
hidden columns can impact the behavior of data movement utilities that are
working with the table. When a table contains implicitly hidden columns,
utilities like IMPORT, INGEST, and LOAD require that you specify whether data
for the hidden columns is included in the operation. For example, this might
mean that a load operation runs successfully against a table without any hidden
columns, but fails when run against a table that contains implicitly hidden

CREATE TABLE

Statements 745



columns (SQLCODE SQL2437N). Similarly, EXPORT requires that you specify
whether data for the hidden columns is included in the operation.
Data movement utilities must use the DB2_DMU_DEFAULT registry variable, or
the implicitlyhiddeninclude or implicitlyhiddenmissing file type modifiers
when working with tables that contain implicitly hidden columns.

v Transparent DDL: In a federated system, a remote base table can be created,
altered, or dropped using DB2 SQL. This capability is known as transparent DDL.
Before a remote base table can be created on a data source, the federated server
must be configured to access that data source. This configuration includes
creating the wrapper for the data source, supplying the server definition for the
server where the remote base table will be located, and creating the user
mappings between the federated server and the data source.
Transparent DDL does impose some limitations on what can be included in the
CREATE TABLE statement:
– Only columns and a primary key can be created on the remote base table.
– Specific clauses supported by transparent DDL include:

- column-definition and unique-constraint in the element-list clause
- NOT NULL and PRIMARY KEY in the column-options clause
- OPTIONS

– The remote data source must support:
- The remote column data types to which the DB2 column data types are

mapped
- The primary key option in the CREATE TABLE statement

Depending on how the data source responds to requests it does not support,
an error might be returned or the request might be ignored.

When a remote base table is created using transparent DDL, a nickname is
automatically created for that remote base table.

v A referential constraint may be defined in such a way that either the parent table
or the dependent table is a part of a table hierarchy. In such a case, the effect of
the referential constraint is as follows:
1. Effects of INSERT, UPDATE, and DELETE statements:

– If a referential constraint exists, in which PT is a parent table and DT is a
dependent table, the constraint ensures that for each row of DT (or any of
its subtables) that has a non-null foreign key, a row exists in PT (or one of
its subtables) with a matching parent key. This rule is enforced against any
action that affects a row of PT or DT, regardless of how that action is
initiated.

2. Effects of DROP TABLE statements:
– for referential constraints in which the dropped table is the parent table or

dependent table, the constraint is dropped
– for referential constraints in which a supertable of the dropped table is the

parent table the rows of the dropped table are considered to be deleted
from the supertable. The referential constraint is checked and its delete
rule is invoked for each of the deleted rows.

– for referential constraints in which a supertable of the dropped table is the
dependent table, the constraint is not checked. Deletion of a row from a
dependent table cannot result in violation of a referential constraint.

v Privileges: When any table is created, the definer of the table is granted
CONTROL privilege. When a subtable is created, the SELECT privilege that each

CREATE TABLE

746 SQL Reference Volume 2



user or group has on the immediate supertable is automatically granted on the
subtable with the table definer as the grantor.

v Row size limit: The maximum number of bytes allowed in the row of a
row-organized table is dependent on the page size of the table space in which
the table is created (tablspace-name1). The following table shows the row size
limit and number of columns limit associated with each table space page size.

Table 21. Limits for Number of Columns and Row Size in Each Table Space Page Size
(row-organized tables)

Page Size Row Size Limit Column Count Limit

4K 4005 500

8K 8101 1012

16K 16,293 1012

32K 32,677 1012

The actual number of columns for a row-organized table can be further limited
by the following formula:

Total Columns * 8 + Number of LOB Columns * 12 <=
Row Size Limit for Page Size

A column-organized table can have a maximum of 1012 columns, regardless of
page size, where the byte counts of the columns must not be greater than 32,677.

v Byte counts: The following table contains the byte counts of columns by data
type. This is used to calculate the row size. The byte counts depend on whether
or not VALUE COMPRESSION is active. When VALUE COMPRESSION is not
active, the byte counts also depend on whether or not the column is nullable.
The byte counts shown apply when row compression is not enabled. If row
compression is active, the total number of bytes used by a row will generally be
smaller than for an uncompressed version of the row; it will never be larger.
If a table is based on a structured type, an additional 4 bytes of overhead is
reserved to identify rows of subtables, regardless of whether or not subtables are
defined. Additional subtable columns must be considered nullable for byte count
purposes, even if defined as not nullable.

Table 22. Byte Counts of Columns by Data Type

Data type
VALUE COMPRESSION is

active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

SMALLINT 4 3 2

INTEGER 6 5 4

BIGINT 10 9 8

REAL 6 5 4

DOUBLE 10 9 8

DECIMAL The integral part of (p/2)+3,
where p is the precision

The integral part of (p/2)+2,
where p is the precision

The integral part of (p/2)+1,
where p is the precision

DECFLOAT(16) 10 9 8

DECFLOAT(34) 18 17 16

CHAR(n) n+2 n+1 n

VARCHAR(n) n+2 n+5 (within a table) n+4 (within a table)

LONG VARCHAR2 22 25 24

GRAPHIC(n) n*2+2 n*2+1 n*2

CREATE TABLE

Statements 747



Table 22. Byte Counts of Columns by Data Type (continued)

Data type
VALUE COMPRESSION is

active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

VARGRAPHIC(n) n*2+2 n*2+5 (within a table) n*2+4 (within a table)

LONG VARGRAPHIC2 22 25 24

DATE 6 5 4

TIME 5 4 3

TIMESTAMP(p) The integral part of
(p+1)/2+9, where p is the

precision of fractional
seconds

The integral part of
(p+1)/2+8, where pis the

precision of fractional
seconds

The integral part of
(p+1)/2+7, where pis the

precision of fractional
seconds

XML (without INLINE
LENGTH specified)

82 85 84

XML (with INLINE
LENGTH specified)

INLINE LENGTH +2 INLINE LENGTH +4 INLINE LENGTH +3

Maximum LOB3 length 1024
(without INLINE LENGTH
specified)

70 73 72

Maximum LOB length 8192
(without INLINE LENGTH
specified)

94 97 96

Maximum LOB length
65,536 (without INLINE
LENGTH specified)

118 121 120

Maximum LOB length
524,000 (without INLINE
LENGTH specified)

142 145 144

Maximum LOB length
4,190,000 (without INLINE
LENGTH specified)

166 169 168

Maximum LOB length
134,000,000 (without
INLINE LENGTH specified)

198 201 200

Maximum LOB length
536,000,000 (without
INLINE LENGTH specified)

222 225 224

Maximum LOB length
1,070,000,000 (without
INLINE LENGTH specified)

254 257 256

Maximum LOB length
1,470,000,000 (without
INLINE LENGTH specified)

278 281 280

Maximum LOB length
2,147,483,647 (without
INLINE LENGTH specified)

314 317 316

LOB with INLINE
LENGTH specified

INLINE LENGTH + 2 INLINE LENGTH + 5 INLINE LENGTH + 4

CREATE TABLE

748 SQL Reference Volume 2



Table 22. Byte Counts of Columns by Data Type (continued)

Data type
VALUE COMPRESSION is

active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable
1 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION is active for that row.

2The LONG VARCHAR and LONG VARGRAPHIC data types are supported but are deprecated and might be
removed in a future release.

3 Each LOB value has a LOB descriptor in the base record that points to the location of the actual value. The size of
the descriptor varies according to the maximum length defined for the column.

For a distinct type, the byte count is equivalent to the length of the source type of the distinct type. For a reference type,
the byte count is equivalent to the length of the built-in data type on which the reference type is based. For a
structured type, the byte count is equivalent to the INLINE LENGTH + 4. The INLINE LENGTH is the value specified
(or implicitly calculated) for the column in the column-options clause.

The row sizes for the following sample tables assume that VALUE
COMPRESSION is not specified:
DEPARTMENT 63 (0 + 3 + 33 + 7 + 3 + 17)
ORG 57 (0 + 3 + 19 + 2 + 15 + 18)

If VALUE COMPRESSION were to be specified, the row sizes would change to:
DEPARTMENT 69 (2 + 5 + 31 + 8 + 5 + 18)
ORG 53 (2 + 4 + 16 + 4 + 12 + 15)

Minimum page size requirements for a table with extended row size : When a
data row is inserted or updated in a table with extended row size support and
the physical data row length exceeds the maximum record length for the table
space, a subset of the varying length string columns (VARCHAR or
VARGRAPHIC) is stored as large object (LOB) data outside of the data row. The
table column in the base row is replaced by a descriptor that is 24 bytes in size.
In order to accommodate the extreme case where all VARCHAR or
VARGRAPHIC data is stored outside of the data row, the database manager
computes the minimum row size using the following method:
– Handles every VARCHAR(n) column where n > 24 as if it were

VARCHAR(24)
– Handles every VARGRAPHIC(m) column where m > 12 as if it were

VARGRAPHIC(12

The value is computed using the Byte Counts of Columns by Data Type table. The
computed result is then used to find the lower bound of the page size where the
table with extended row size can be created.

v Storage byte counts: The following tables describe the storage byte counts of
columns by data type for data values.
The first table defines the sets of attributes. Those attributes are referenced in the
second table, which contains the details for the byte counts for each data type.
The byte counts depend on whether VALUE COMPRESSION is active. When
VALUE COMPRESSION is not active, the byte counts also depend on whether
the column is nullable. The values in the table represent the amount of storage
(in bytes) that is used to store the value. The byte counts shown apply when
row compression is not enabled. If row compression is active, the total number
of bytes used by a row will generally be smaller than for an uncompressed
version of the row; it will never be larger.

CREATE TABLE

Statements 749



Table 23. Definitions of the criteria referenced in the related table

Case Data value
VALUE
COMPRESSION Column nullability

A NULL Not active Nullable

B NULL Active 2 Nullable

C Zero-length Active 2 Not applicable

D System default1 Active 2 Not applicable

E All other data values Not active Nullable

F All other data values Not active Not nullable

G All other data values Active 2 Not applicable
1 When COMPRESS SYSTEM DEFAULT is specified for the column.

2 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION
is active for that row.

Table 24. Storage Byte Counts Based on Row Format, Data Type, and Data Value

Data type Case A Case B Case C Case D Case E Case F Case G

SMALLINT 3 3 - 3 3 2 4

INTEGER 5 3 - 3 5 4 6

BIGINT 9 3 - 3 9 8 10

REAL 5 3 - 3 5 4 6

DOUBLE 9 3 - 3 9 8 10

DECIMAL The integral part
of (p/2)+2, where
p is the precision

3 - 3 The integral
part of (p/2)+2,
where p is the

precision

The integral
part of (p/2)+1,
where p is the

precision

The integral
part of (p/2)+3,
where p is the

precision

DECFLOAT(16) 9 3 - 3 9 8 10

DECFLOAT(34) 17 3 - 3 17 16 18

CHAR(n) n+1 3 - 3 n+1 n n+2

VARCHAR(n) 5 3 2 2 N+5, where N
is the number
of bytes in the

data

N+4, where N
is the number
of bytes in the

data

N+2, where N
is the number
of bytes in the

data

LONG
VARCHAR2

5 3 2 2 25 24 22

GRAPHIC(n) n*2+1 3 - 3 n*2+1 n*2 n*2+2

VARGRAPHIC(n) 5 3 2 2 N*2+5, where N
is the number
of bytes in the

data

N*2+4, where N
is the number
of bytes in the

data

N*2+2, where N
is the number
of bytes in the

data

LONG
VARGRAPHIC2

5 3 2 2 25 24 22

DATE 5 3 - - 5 4 6

TIME 4 3 - - 4 3 5

TIMESTAMP(p) The integral part
of (p+1)/2+8,
where p is the

precision of
fractional seconds

3 - - The integral
part of

(p+1)/2+8,
where p is the

precision of
fractional
seconds

The integral
part of

(p+1)/2+7,
where p is the

precision of
fractional
seconds

The integral
part of

(p+1)/2+9,
where p is the

precision of
fractional
seconds

CREATE TABLE

750 SQL Reference Volume 2



Table 24. Storage Byte Counts Based on Row Format, Data Type, and Data Value (continued)

Data type Case A Case B Case C Case D Case E Case F Case G

Maximum LOB1

length 1024
5 3 2 2 (60 to 68)+5 (60 to 68)+4 (60 to 68)+2

Maximum LOB
length 8192

5 3 2 2 (60 to 92)+5 (60 to 92)+4 (60 to 92)+2

Maximum LOB
length 65,536

5 3 2 2 (60 to 116)+5 (60 to 116)+4 (60 to 116)+2

Maximum LOB
length 524,000

5 3 2 2 (60 to 140)+5 (60 to 140)+4 (60 to 140)+2

Maximum LOB
length 4,190,000

5 3 2 2 (60 to 164)+5 (60 to 164)+4 (60 to 164)+2

Maximum LOB
length 134,000,000

5 3 2 2 (60 to 196)+5 (60 to 196)+4 (60 to 196)+2

Maximum LOB
length 536,000,000

5 3 2 2 (60 to 220)+5 (60 to 220)+4 (60 to 220)+2

Maximum LOB
length
1,070,000,000

5 3 2 2 (60 to 252)+5 (60 to 252)+4 (60 to 252)+2

Maximum LOB
length
1,470,000,000

5 3 2 2 (60 to 276)+5 (60 to 276)+4 (60 to 276)+2

Maximum LOB
length
2,147,483,647

5 3 2 2 (60 to 312)+5 (60 to 312)+4 (60 to 312)+2

XML 5 3 - - 85 84 82
1 When COMPRESS SYSTEM DEFAULT is specified for the column.

2 The LONG VARCHAR and LONG VARGRAPHIC data types are supported but are deprecated and might be removed in a future
release.

v Dimension columns: Because each distinct value of a dimension column is
assigned to a different block of the table, clustering on an expression may be
desirable, such as "INTEGER(ORDER_DATE)/100". In this case, a generated
column can be defined for the table, and this generated column may then be
used in the ORGANIZE BY DIMENSIONS clause. If the expression is monotonic
with respect to a column of the table, the database might use the dimension
index to satisfy range predicates on that column. For example, if the expression
is simply column-name + some-positive-constant, it is monotonic increasing.
User-defined functions, certain built-in functions, and using more than one
column in an expression, prevent monotonicity or its detection.
Dimensions involving generated columns whose expressions are non-monotonic,
or whose monotonicity cannot be determined, can still be created, but range
queries along slice or cell boundaries of these dimensions are not supported.
Equality and IN predicates can be processed by slices or cells.
A generated column is monotonic if the following is true with respect to the
generating function, fn:
– Monotonic increasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>fn(x1). For
example:

SALARY - 10000

– Monotonic decreasing.
For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<fn(x1). For
example:

-SALARY

CREATE TABLE

Statements 751



– Monotonic non-decreasing.
For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>=fn(x1). For
example:

SALARY/1000

– Monotonic non-increasing.
For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<=fn(x1). For
example:

-SALARY/1000

The expression "PRICE*DISCOUNT" is not monotonic, because it involves more
than one column of the table.

v Range-clustered tables: Organizing a table by key sequence is effective for
certain types of tables. The table should have an integer key that is tightly
clustered (dense) over the range of possible values. The columns of this integer
key must not be nullable, and the key should logically be the primary key of the
table. The organization of a range-clustered table precludes the need for a
separate unique index object, providing direct access to the row for a specified
key value, or a range of rows for a specified range of key values. The allocation
of all the space for the complete set of rows in the defined key sequence range is
done during table creation, and must be considered when defining a
range-clustered table. The storage space is not available for any other use, even
though the rows are initially marked deleted. If the full key sequence range will
be populated with data only over a long period of time, this table organization
may not be an appropriate choice.

v A table can have at most one security policy.
v Referential integrity constraints that are defined on protected tables are enforced.

Constraints violations in this case can be difficult to debug, because the database
manager will not allow you to see what row has caused a violation if you do
not have the appropriate security label or exemptions credentials.

v When defining the order of columns in a table, frequently updated columns
should be placed at the end of the definition to minimize the amount of data
logged for updates. This includes ROW CHANGE TIMESTAMP columns. ROW
CHANGE TIMESTAMP columns are guaranteed to be updated on each row
update.

v Security and replication: Replication can cause data rows from a protected table
to be replicated outside of the database. Care must be taken when setting up
replication for a protected table, because data that is outside of the database
cannot be protected.

v Considerations for a multi-partition or DB2 pureScale environment:
– In a multi-partition or DB2 pureScale environment, if the CACHE and NO

ORDER options are in effect, multiple caches can be active simultaneously
and the requests for next value assignments from different members might
not result in the assignment of values in strict numeric order. Assume, for
example, that members DB1A and DB1B are using the same sequence, and
DB1A gets the cache values 1 to 20 and DB1B gets the cache values 21 to 40.
In this scenario, if DB1A requested the next value first, then DB1B requested,
and then DB1A requested again, the actual order of values assigned would be
1,21,2. Therefore, to guarantee that sequence numbers are generated in strict
numeric order among multiple members using the same sequence
concurrently, specify the ORDER option.

– In a DB2 pureScale environment, using the ORDER or NO CACHE option
ensures that the values assigned to a sequence which is shared by

CREATE TABLE

752 SQL Reference Volume 2



applications across multiple members are in strict numeric order. In a DB2
pureScale environment, if ORDER is specified, then NO CACHE is implied
even if CACHE n is specified

v Considerations for row and column access control (RCAC): The ACTIVATE
ROW ACCESS CONTROL, ACTIVATE COLUMN ACCESS CONTROL,
DEACTIVATE ROW ACCESS CONTROL, and DEACTIVATE COLUMN
ACCESS CONTROL clauses are not supported. Use the ALTER TABLE statement
to activate or deactivate row or column level access control on a table.

v Considerations for column-organized tables: Create column-organized tables in
automatic storage table spaces only.
The following options are not supported for column-organized tables. They can,
however, be specified for row-organized tables that will be used in the same
database and workloads as column-organized tables.
– ORGANIZE BY DIMENSIONS
– ORGANIZE BY KEY SEQUENCE
– ORGANIZE BY INSERT TIME
– DATA CAPTURE CHANGES
– VALUE COMPRESSION
– COMPRESS YES ADAPTIVE | STATIC
– COMPRESS NO
– NOT LOGGED INITIALLY
– PARTITION BY RANGE
– DISTRIBUTE BY REPLICATION
– PERIOD BUSINESS_TIME | SYSTEM_TIME
– CREATE TABLE OF (typed table)
– PROPAGATE IMMEDIATE
– CHECK
– DETERMINED BY
Generated columns (including GENERATED AS IDENTITY) and structured type
columns are not supported.
The following data types are supported in a column-organized table:
– SMALLINT
– INTEGER
– BIGINT
– DECIMAL
– REAL
– DOUBLE
– DECFLOAT
– CHAR (including FOR BIT DATA)1

– VARCHAR (including FOR BIT DATA)1

– GRAPHIC1

– VARGRAPHIC1

– DATE
– TIME
– TIMESTAMP (n)
– Distinct types of a supported type

CREATE TABLE

Statements 753



1. The length attribute for character and graphic strings can not be defined as
CODEUNITS32 (SQLSTATE 42613). When the CODEUNITS32 string units are
implicit, OCTETS must be specified when defining character strings and
CODEUNITS16 must be specified when defining graphic strings.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– The following syntax is accepted as the default behavior:

- IN database-name.tablespace-name
- IN DATABASE database-name
- FOR MIXED DATA
- FOR SBCS DATA

– PART can be specified in place of PARTITION
– PARTITION partition-number can be specified instead of PARTITION

partition-name. A partition-number must not identify a partition that was
previously specified in the CREATE TABLE statement. If a partition-number is
not specified, a unique partition number is generated by the database
manager.

– VALUES can be specified in place of ENDING AT
– The CONSTRAINT keyword can be omitted from a column-definition defining

a references-clause
– constraint-name can be specified following FOREIGN KEY (without the

CONSTRAINT keyword)
– SUMMARY can optionally be specified after CREATE
– DEFINITION ONLY can be specified in place of WITH NO DATA
– The PARTITIONING KEY clause can be specified in place of the DISTRIBUTE

BY clause
– REPLICATED can be specified in place of DISTRIBUTE BY REPLICATION
– A comma can be used to separate multiple options in the identity-options

clause
– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

can be specified in place of NO MINVALUE, NO MAXVALUE, NO CYCLE,
NO CACHE, and NO ORDER, respectively

– ADD can be specified before table-option-name string-constant.

Examples
1. Create table TDEPT in the DEPARTX table space. DEPTNO, DEPTNAME,

MGRNO, and ADMRDEPT are column names. CHAR means the column will
contain character data. NOT NULL means that the column cannot contain a
null value. VARCHAR means the column will contain varying-length
character data. The primary key consists of the column DEPTNO.

CREATE TABLE TDEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY(DEPTNO))

IN DEPARTX

2. Create table PROJ in the SCHED table space. PROJNO, PROJNAME,
DEPTNO, RESPEMP, PRSTAFF, PRSTDATE, PRENDATE, and MAJPROJ are
column names. CHAR means the column will contain character data.
DECIMAL means the column will contain packed decimal data. 5,2 means the

CREATE TABLE

754 SQL Reference Volume 2



following: 5 indicates the number of decimal digits, and 2 indicates the
number of digits to the right of the decimal point. NOT NULL means that the
column cannot contain a null value. VARCHAR means the column will
contain varying-length character data. DATE means the column will contain
date information in a three-part format (year, month, and day).

CREATE TABLE PROJ
(PROJNO CHAR(6) NOT NULL,
PROJNAME VARCHAR(24) NOT NULL,
DEPTNO CHAR(3) NOT NULL,
RESPEMP CHAR(6) NOT NULL,
PRSTAFF DECIMAL(5,2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6) NOT NULL)

IN SCHED

3. Create a table called EMPLOYEE_SALARY where any unknown salary is
considered 0. No table space is specified, so that the table will be created in a
table space selected by the system based on the rules described for the IN
tablespace-name clause.

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT)

4. Create distinct types for total salary and miles and use them for columns of a
table created in the default table space. In a dynamic SQL statement assume
the CURRENT SCHEMA special register is JOHNDOE and the CURRENT
PATH is the default ("SYSIBM","SYSFUN","JOHNDOE").
If a value for SALARY is not specified it must be set to 0 and if a value for
LIVING_DIST is not specified it must to set to 1 mile.

CREATE TYPE JOHNDOE.T_SALARY AS INTEGER WITH COMPARISONS

CREATE TYPE JOHNDOE.MILES AS FLOAT WITH COMPARISONS

CREATE TABLE EMPLOYEE
(ID INTEGER NOT NULL,
NAME CHAR (30),
SALARY T_SALARY NOT NULL WITH DEFAULT,
LIVING_DIST MILES DEFAULT MILES(1) )

5. Create distinct types for image and audio and use them for columns of a
table. No table space is specified, so that the table will be created in a table
space selected by the system based on the rules described for the IN
tablespace-name clause. Assume the CURRENT PATH is the default.

CREATE TYPE IMAGE AS BLOB (10M)

CREATE TYPE AUDIO AS BLOB (1G)

CREATE TABLE PERSON
(SSN INTEGER NOT NULL,
NAME CHAR (30),
VOICE AUDIO,
PHOTO IMAGE)

6. Create table EMPLOYEE in the HUMRES table space. The constraints defined
on the table are the following:
v The values of department number must lie in the range 10 to 100.
v The job of an employee can only be either 'Sales', 'Mgr' or 'Clerk'.
v Every employee that has been with the company since 1986 must make

more than $40,500.

CREATE TABLE

Statements 755



Note: If the columns included in the check constraints are nullable they could
also be NULL.

CREATE TABLE EMPLOYEE
(ID SMALLINT NOT NULL,
NAME VARCHAR(9),
DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),
JOB CHAR(5) CHECK (JOB IN (’Sales’,’Mgr’,’Clerk’)),
HIREDATE DATE,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
PRIMARY KEY (ID),
CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) > 1986

OR SALARY > 40500)
)
IN HUMRES

7. Create a table that is wholly contained in the PAYROLL table space.
CREATE TABLE EMPLOYEE .....

IN PAYROLL

8. Create a table with its data part in ACCOUNTING and its index part in
ACCOUNT_IDX.

CREATE TABLE SALARY.....
IN ACCOUNTING INDEX IN ACCOUNT_IDX

9. Create a table and log SQL changes in the default format.
CREATE TABLE SALARY1 .....

or
CREATE TABLE SALARY1 .....

DATA CAPTURE NONE

10. Create a table and log SQL changes in an expanded format.
CREATE TABLE SALARY2 .....

DATA CAPTURE CHANGES

11. Create a table EMP_ACT in the SCHED table space. EMPNO, PROJNO,
ACTNO, EMPTIME, EMSTDATE, and EMENDATE are column names.
Constraints defined on the table are:
v The value for the set of columns, EMPNO, PROJNO, and ACTNO, in any

row must be unique.
v The value of PROJNO must match an existing value for the PROJNO

column in the PROJECT table and if the project is deleted all rows referring
to the project in EMP_ACT should also be deleted.
CREATE TABLE EMP_ACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2),
EMSTDATE DATE,
EMENDATE DATE,
CONSTRAINT EMP_ACT_UNIQ UNIQUE (EMPNO,PROJNO,ACTNO),
CONSTRAINT FK_ACT_PROJ FOREIGN KEY (PROJNO)

REFERENCES PROJECT (PROJNO) ON DELETE CASCADE
)
IN SCHED

A unique index called EMP_ACT_UNIQ is automatically created in the same
schema to enforce the unique constraint.

12. Create a table that is to hold information about famous goals for the ice
hockey hall of fame. The table will list information about the player who

CREATE TABLE

756 SQL Reference Volume 2



scored the goal, the goaltender against who it was scored, the date, and a
description. The description column is nullable.

CREATE TABLE HOCKEY_GOALS
( BY_PLAYER VARCHAR(30) NOT NULL,
BY_TEAM VARCHAR(30) NOT NULL,
AGAINST_PLAYER VARCHAR(30) NOT NULL,
AGAINST_TEAM VARCHAR(30) NOT NULL,
DATE_OF_GOAL DATE NOT NULL,
DESCRIPTION CLOB(5000) )

13. Suppose an exception table is needed for the EMPLOYEE table. One can be
created using the following statement.

CREATE TABLE EXCEPTION_EMPLOYEE AS
(SELECT EMPLOYEE.*,

CURRENT TIMESTAMP AS TIMESTAMP,
CAST (’’ AS CLOB(32K)) AS MSG

FROM EMPLOYEE
) WITH NO DATA

14. Given the following table spaces with the indicated attributes:
TBSPACE PAGESIZE USER USERAUTH
------------------ ----------- ------ --------
DEPT4K 4096 BOBBY Y
PUBLIC4K 4096 PUBLIC Y
DEPT8K 8192 BOBBY Y
DEPT8K 8192 RICK Y
PUBLIC8K 8192 PUBLIC Y

v If RICK creates the following table, it is placed in table space PUBLIC4K
since the byte count is less than 4005; but if BOBBY creates the same table,
it is placed in table space DEPT4K, since BOBBY has USE privilege because
of an explicit grant:

CREATE TABLE DOCUMENTS
(SUMMARY VARCHAR(1000),
REPORT VARCHAR(2000))

v If BOBBY creates the following table, it is placed in table space DEPT8K
since the byte count is greater than 4005, and BOBBY has USE privilege
because of an explicit grant. However, if DUNCAN creates the same table,
it is placed in table space PUBLIC8K, since DUNCAN has no specific
privileges:

CREATE TABLE CURRICULUM
(SUMMARY VARCHAR(1000),
REPORT VARCHAR(2000),
EXERCISES VARCHAR(1500))

15. Create a table with a LEAD column defined with the structured type EMP.
Specify an INLINE LENGTH of 300 bytes for the LEAD column, indicating
that any instances of LEAD that cannot fit within the 300 bytes are stored
outside the table (separately from the base table row, similar to the way LOB
values are handled).

CREATE TABLE PROJECTS (PID INTEGER,
LEAD EMP INLINE LENGTH 300,
STARTDATE DATE,

...)

16. Create a table DEPT with five columns named DEPTNO, DEPTNAME,
MGRNO, ADMRDEPT, and LOCATION. Column DEPT is to be defined as an
IDENTITY column so that a value will always be generated for it. The values
for the DEPT column should begin with 500 and increment by 1.

CREATE TABLE DEPT
(DEPTNO SMALLINT NOT NULL

GENERATED ALWAYS AS IDENTITY
(START WITH 500, INCREMENT BY 1),

CREATE TABLE

Statements 757



DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT SMALLINT NOT NULL,
LOCATION CHAR(30))

17. Create a SALES table that is distributed on the YEAR column, and that has
dimensions on the REGION and YEAR columns. Data will be distributed
across database partitions according to hashed values of the YEAR column.
On each database partition, data will be organized into extents based on
unique combinations of values of the REGION and YEAR columns on those
database partitions.

CREATE TABLE SALES
(CUSTOMER VARCHAR(80),
REGION CHAR(5),
YEAR INTEGER)

DISTRIBUTE BY HASH (YEAR)
ORGANIZE BY DIMENSIONS (REGION, YEAR)

18. Create a SALES table with a PURCHASEYEARMONTH column that is
generated from the PURCHASEDATE column. Use an expression to create a
column that is monotonic with respect to the original PURCHASEDATE
column, and is therefore suitable for use as a dimension. The table is
distributed on the REGION column, and organized within each database
partition into extents according to the PURCHASEYEARMONTH column; that
is, different regions will be on different database partitions, and different
purchase months will belong to different cells (or sets of extents) within those
database partitions.

CREATE TABLE SALES
(CUSTOMER VARCHAR(80),
REGION CHAR(5),
PURCHASEDATE DATE,
PURCHASEYEARMONTH INTEGER

GENERATED ALWAYS AS (INTEGER(PURCHASEDATE)/100))
DISTRIBUTE BY HASH (REGION)
ORGANIZE BY DIMENSIONS (PURCHASEYEARMONTH)

19. Create a CUSTOMER table with a CUSTOMERNUMDIM column that is
generated from the CUSTOMERNUM column. Use an expression to create a
column that is monotonic with respect to the original CUSTOMERNUM
column, and is therefore suitable for use as a dimension. The table is
organized into cells according to the CUSTOMERNUMDIM column, so that
there is a different cell in the table for every 50 customers. If a unique index
were created on CUSTOMERNUM, customer numbers would be clustered in
such a way that each set of 50 values would be found in a particular set of
extents in the table.

CREATE TABLE CUSTOMER
(CUSTOMERNUM INTEGER,
CUSTOMERNAME VARCHAR(80),
ADDRESS VARCHAR(200),
CITY VARCHAR(50),
COUNTRY VARCHAR(50),
CODE VARCHAR(15),
CUSTOMERNUMDIM INTEGER

GENERATED ALWAYS AS (CUSTOMERNUM/50))
ORGANIZE BY DIMENSIONS (CUSTOMERNUMDIM)

20. Create a remote base table called EMPLOYEE on the Oracle server,
ORASERVER. A nickname, named EMPLOYEE, which refers to this newly
created remote base table, will also automatically be created.

CREATE TABLE EMPLOYEE
(EMP_NO CHAR(6) NOT NULL,
FIRST_NAME VARCHAR(12) NOT NULL,
MID_INT CHAR(1) NOT NULL,

CREATE TABLE

758 SQL Reference Volume 2



LAST_NAME VARCHAR(15) NOT NULL,
HIRE_DATE DATE,
JOB CHAR(8),
SALARY DECIMAL(9,2),
PRIMARY KEY (EMP_NO))

OPTIONS
(REMOTE_SERVER ’ORASERVER’,
REMOTE_SCHEMA ’J15USER1’,
REMOTE_TABNAME ’EMPLOYEE’)

The following CREATE TABLE statements show how to specify the table
name, or the table name and the explicit remote base table name, to get the
required case. The lowercase identifier, employee, is used to illustrate the
implicit folding of identifiers.
Create a remote base table called EMPLOYEE (uppercase characters) on an
Informix® server, and create a nickname named EMPLOYEE (uppercase
characters) on that table:

CREATE TABLE employee
(EMP_NO CHAR(6) NOT NULL,
...)

OPTIONS
(REMOTE_SERVER ’INFX_SERVER’)

If the REMOTE_TABNAME option is not specified, and table-name is not
delimited, the remote base table name will be in uppercase characters, even if
the remote data source normally stores names in lowercase characters.
Create a remote base table called employee (lowercase characters) on an
Informix server, and create a nickname named EMPLOYEE (uppercase
characters) on that table:

CREATE TABLE employee
(EMP_NO CHAR(6) NOT NULL,
...)

OPTIONS
(REMOTE_SERVER ’INFX_SERVER’,
REMOTE_TABNAME ’employee’)

When creating a table at a remote data source that supports delimited
identifiers, use the REMOTE_TABNAME option and a character string
constant that specifies the table name in the required case.
Create a remote base table called employee (lowercase characters) on an
Informix server, and create a nickname named employee (lowercase
characters) on that table:

CREATE TABLE "employee"
(EMP_NO CHAR(6) NOT NULL,
...)

OPTIONS
(REMOTE_SERVER ’INFX_SERVER’)

If the REMOTE_TABNAME option is not specified, and table-name is
delimited, the remote base table name will be identical to table-name.

21. Create a range-clustered table that can be used to locate a student using a
student ID. For each student record, include the school ID, program ID,
student number, student ID, student first name, student last name, and
student grade point average (GPA).

CREATE TABLE STUDENTS
(SCHOOL_ID INTEGER NOT NULL,
PROGRAM_ID INTEGER NOT NULL,
STUDENT_NUM INTEGER NOT NULL,
STUDENT_ID INTEGER NOT NULL,

CREATE TABLE

Statements 759



FIRST_NAME CHAR(30),
LAST_NAME CHAR(30),
GPA DOUBLE)

ORGANIZE BY KEY SEQUENCE
(STUDENT_ID

STARTING FROM 1
ENDING AT 1000000)

DISALLOW OVERFLOW

The size of each record is the sum of the columns, plus alignment, plus the
range-clustered table row header. In this case, the row size is 98 bytes: 4 + 4 +
4 + 4 + 30 + 30 + 8 + 3 (for nullable columns) + 1 (for alignment) + 10 (for the
header). With a 4-KB page size (or 4096 bytes), after accounting for page
overhead, there are 4038 bytes available, enough room for 41 records per page.
Allowing for 1 million student records, there is a need for (1 million divided
by 41 records per page) 24,391 pages. With two additional pages for table
overhead, the final number of 4-KB pages that are allocated when the table is
created is 24,393.

22. Create a table named DEPARTMENT with a functional dependency that has
no specified constraint name.

CREATE TABLE DEPARTMENT
(DEPTNO SMALLINT NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT SMALLINT NOT NULL,
LOCATION CHAR(30),

CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED)

23. Create a table with protected rows.
CREATE TABLE TOASTMASTERS

(PERFORMANCE DB2SECURITYLABEL,
POINTS INTEGER,
NAME VARCHAR(50))
SECURITY POLICY CONTRIBUTIONS

24. Create a table with protected columns.
CREATE TABLE TOASTMASTERS

(PERFORMANCE CHAR(8),
POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,
NAME VARCHAR(50))
SECURITY POLICY CONTRIBUTIONS

25. Create a table with protected rows and columns.
CREATE TABLE TOASTMASTERS

(PERFORMANCE DB2SECURITYLABEL,
POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,
NAME VARCHAR(50))
SECURITY POLICY CONTRIBUTIONS

26. Large objects for a partitioned table reside, by default, in the same table space
as the data. This default behavior can be overridden by using the LONG IN
clause to specify one or more table spaces for the large objects. Create a table
named DOCUMENTS whose large object data is to be stored (in a
round-robin fashion for each data partition) in table spaces TBSP1 and TBSP2.

CREATE TABLE DOCUMENTS
(ID INTEGER,
CONTENTS CLOB)
LONG IN TBSP1, TBSP2
PARTITION BY RANGE (ID)

(STARTING 1 ENDING 1000
EVERY 100)

CREATE TABLE

760 SQL Reference Volume 2



Alternatively, use the long form of the syntax to explicitly identify a large
table space for each data partition. In this example, the CLOB data for the first
data partition is placed in LARGE_TBSP3, and the CLOB data for the
remaining data partitions is spread across LARGE_TBSP1 and LARGE_TBSP2
in a round-robin fashion.

CREATE TABLE DOCUMENTS
(ID INTEGER,
CONTENTS CLOB)
LONG IN LARGE_TBSP1, LARGE_TBSP2
PARTITION BY RANGE (ID)

(STARTING 1 ENDING 100
IN TBSP1 LONG IN LARGE_TBSP3,
STARTING 101 ENDING 1000
EVERY 100)

27. Create a partitioned table named ACCESSNUMBERS having two data
partitions. The row (10, NULL) is to be placed in the first partition, and the
row (NULL, 100) is to be placed in the second (last) data partition.

CREATE TABLE ACCESSNUMBERS
(AREA INTEGER,
EXCHANGE INTEGER)
PARTITION BY RANGE (AREA NULLS LAST, EXCHANGE NULLS FIRST)
(STARTING (1,1) ENDING (10,100),
STARTING (11,1) ENDING (MAXVALUE,MAXVALUE))

Because null values in the second column are sorted first, the row (11, NULL)
would sort below the low boundary of the last data partition (11, 1);
attempting to insert this row returns an error. The row (12, NULL) would fall
within the last data partition.

28. Create a table named RATIO having a single data partition and partitioning
column PERCENT.

CREATE TABLE RATIO
(PERCENT INTEGER)
PARTITION BY RANGE (PERCENT)

(STARTING (MINVALUE) ENDING (MAXVALUE))

This table definition allows any integer value for column PERCENT to be
inserted. The following definition for the RATIO table allows any integer
value between 1 and 100 inclusive to be inserted into column PERCENT.

CREATE TABLE RATIO
(PERCENT INTEGER)
PARTITION BY RANGE (PERCENT)

(STARTING 0 EXCLUSIVE ENDING 100 INCLUSIVE)

29. Create a table named MYDOCS with two columns: one is an identifier, and
the other stores XML documents.

CREATE TABLE MYDOCS
(ID INTEGER,
DOC XML)

IN HLTBSPACE

30. Create a table named NOTES with four columns, including one for storing
XML-based notes.

CREATE TABLE NOTES
(ID INTEGER,
DESCRIPTION VARCHAR(255),
CREATED TIMESTAMP,
NOTE XML)

31. Create a table, EMP_INFO, that contains a phone number and address for
each employee. Include a ROW CHANGE TIMESTAMP column in the table to
track the modification of employee information.

CREATE TABLE

Statements 761



CREATE TABLE EMP_INFO
(EMPNO CHAR(6) NOT NULL,
EMP_INFOCHANGE TIMESTAMP NOT NULL GENERATED ALWAYS
FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP,

EMP_ADDRESS VARCHAR(300),
EMP_PHONENO CHAR(4),
PRIMARY KEY (EMPNO) )

32. Create a partitioned table named DOCUMENTS having two data partitions:
v The data object in the first partition resides in table space TBSP11. The

partitioned index partition on the partition resides in table space TBSP21.
The XML data object resides in table space TBSP31.

v The data object in the second partition resides in table space TBSP12. The
partitioned index partition on the partition resides in table space TBSP22.
The XML data object resides in table space TBSP32.

The table level INDEX IN clause has no impact on table space selection for
partitioned indexes.

CREATE TABLE DOCUMENTS
(ID INTEGER,
CONTENTS XML) INDEX IN TBSPX

PARTITION BY (ID NULLS LAST)
(STARTING FROM 1 INCLUSIVE ENDING AT 100 INCLUSIVE
IN TBSP11 INDEX IN TBSP21 LONG IN TBSP31,
STARTING FROM 101 INCLUSIVE ENDING AT 200 INCLUSIVE
IN TBSP21 INDEX IN TBSP22 LONG IN TBSP32)

33. Create a partitioned table named SALES having two data partitions:
v The data object in the first partition resides in table space TBSP11. The

partitioned index partition on the partition resides in table space TBSP21.
v The data object in the second partition resides in table space TBSP12. The

partitioned index object resides in table space TBSP22.

The table level INDEX IN clause has no impact on table space selection for
partitioned indexes.

CREATE TABLE SALES
(SID INTEGER,
AMOUNT INTEGER) INDEX IN TBSPX
PARTITION BY RANGE (SID NULLS LAST)
(STARTING FROM 1 INCLUSIVE ENDING AT 100 INCLUSIVE
IN TBSP11 INDEX IN TBSP21,
STARTING FROM 101 INCLUSIVE ENDING AT 200 INCLUSIVE
IN TBSP12 INDEX IN TBSP22)

34. Create a table named BOOKS with four columns, including one named
DATE_ADDED, which inserts the current TIMESTAMP by default.

CREATE TABLE BOOKS
(ISBN_NUM INTEGER,
TITLE VARCHAR(255),
AUTHOR VARCHAR(255),
DATE_ADDED TIMESTAMP WITH DEFAULT CURRENT TIMESTAMP)

35. Create a Unicode table called STUDENTS in a non-Unicode database. Assume
that the database was created using code set 1252 and territory CA and the
ALT_COLLATE database configuration parameter was updated to
IDENTITY_16BIT.

CREATE TABLE STUDENTS (
STUDENTID INT NOT NULL,

FAMILY_NAME VARCHAR(36) NOT NULL,
GIVEN_NAME VARCHAR(36) NOT NULL,
PRIMARY KEY(STUDENTID))

CCSID UNICODE

CREATE TABLE

762 SQL Reference Volume 2



36. Create a table called TDEPT_TEMP, based on the TDEPT table that is created
in Example 1.

CREATE TABLE TDEPT_TEMP LIKE TDEPT

The TDEPT_TEMP table will have the same definition as TDEPT except that
the primary key will not be defined and a default table space will be
implicitly chosen.

37. Create a column-organized user-maintained materialized query table on
column-organized table CDE.TDEPT.

CREATE TABLE mqt_tdept AS
(SELECT *

FROM cde.tdept
WHERE deptno BETWEEN 10 AND 20)

DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER
ORGANIZE BY COLUMN

38. Column security labels inherited by a materialized query table.
CREATE SECURITY LABEL COMPONENT level_array ARRAY [’A’, ’B’, ’C’]

CREATE SECURITY POLICY P COMPONENTS level_array WITH DB2LBACRULES

CREATE SECURITY LABEL P.A COMPONENT level_array ’A’

CREATE SECURITY LABEL P.B COMPONENT level_array ’B’

CREATE SECURITY LABEL P.C COMPONENT level_array ’C’

CREATE TABLE t1 (c1 INT, c2 INT SECURED WITH B, c3 REAL SECURED WITH A)
SECURITY POLICY P

CREATE TABLE t2 (c4 REAL, c5 INT SECURED WITH C, c6 DB2SECURITYLABEL)
SECURITY POLICY P

Generate a materialized query table
CREATE TABLE m1 AS(SELECT c1, c3, c5, c6 FROM t1, t2 WHERE c2 <> 100)
DATA INITIALLY DEFERRED REFRESH DEFERRED

The security label of t1.c2 is used to compute security labels of all columns of
m1 because it appears in the predicates of the query. The label-based access
control properties of the materialized query table m1 are:
v Security policy = P
v Security label of column m1.c1 = P.B
v Security label of column m1.c3 = P.A
v Security label of column m1.c5 = P.B
v Security label of column m1.c6 = P.B and it is also DB2SECURITYLABEL.

A staging table for a materialized query table is protected with label-based
access control. Staging table st1 is defined as:

CREATE TABLE st1 FOR m1 PROPAGATE IMMEDIATE

The label-based access control properties of the staging table st1 are:
v Security policy = P
v Security label of column st1.c1 = P.B
v Security label of column st1.c3 = P.A
v Security label of column st1.c5 = P.B

CREATE TABLE

Statements 763



v Security label of column st1.c6 = P.B and it is also DB2SECURITYLABEL.
39. The following example shows you how to create a shadow table called

T1_SHADOW that is based on the row-organized table T1.
a. Create the base table and define a primary key. The primary key on the

base table must be included in the select list of the shadow table. The
primary key on the shadow table is required to provide a one-to-one
mapping for each row in the base table to the corresponding row in the
shadow table. The primary key also facilitates maintenance of the shadow
table.
CREATE TABLE t1 (

c1 INTEGER NOT NULL,
c2 INTEGER

) ORGANIZE BY ROW;

ALTER TABLE t1
ADD CONSTRAINT t1_pk PRIMARY KEY(c1);

b. Create the shadow table:
CREATE TABLE t1_shadow AS

(SELECT c1, c2 FROM t1)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY REPLICATION
ORGANIZE BY COLUMN;

SET INTEGRITY FOR t1_shadow ALL IMMEDIATE UNCHECKED;

ALTER TABLE t1_shadow
ADD CONSTRAINT t1_shadow_pk PRIMARY KEY (c1);

CREATE TABLE

764 SQL Reference Volume 2



CREATE TABLESPACE
The CREATE TABLESPACE statement defines a new table space within the
database, assigns containers to the table space, and records the table space
definition and attributes in the catalog.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

�� CREATE
LARGE
REGULAR
SYSTEM

TEMPORARY
USER

TABLESPACE tablespace-name �

�
DATABASE PARTITION GROUP

IN db-partition-group-name

�

�
PAGESIZE integer

K

�

�
MANAGED BY AUTOMATIC STORAGE storage-group size-attributes

MANAGED BY SYSTEM system-containers
DATABASE database-containers size-attributes

�

�
EXTENTSIZE number-of-pages

integer K
M

PREFETCHSIZE AUTOMATIC
number-of-pages
integer K

M

�

�
BUFFERPOOL bufferpool-name OVERHEAD number-of-milliseconds

INHERIT

�

�
NO FILE SYSTEM CACHING
FILE SYSTEM CACHING

TRANSFERRATE number-of-milliseconds
INHERIT

�

CREATE TABLESPACE

Statements 765



�
DATA TAG integer-constant

INHERIT
NONE

DROPPED TABLE RECOVERY ON
OFF

��

storage-group:

USING STOGROUP storagegroup-name

size-attributes:

AUTORESIZE NO
YES

INITIALSIZE integer K
M
G

�

�
INCREASESIZE integer PERCENT

K
M
G

MAXSIZE integer K
M
G

NONE

system-containers:

� �

,

USING ( 'container-string' )
on-db-partitions-clause

database-containers:

� USING container-clause
on-db-partitions-clause

container-clause:

�

,

( FILE 'container-string' number-of-pages )
DEVICE integer K

M
G

on-db-partitions-clause:

ON DBPARTITIONNUM
DBPARTITIONNUMS

�

CREATE TABLESPACE

766 SQL Reference Volume 2



� �

,

( db-partition-number1 )
TO db-partition-number2

Description

LARGE, REGULAR, SYSTEM TEMPORARY, or USER TEMPORARY
Specifies the type of table space that is to be created. If no type is specified, the
default is determined by the MANAGED BY clause.

LARGE
Stores all permanent data. This type is only allowed on database managed
space (DMS) table spaces. It is also the default type for DMS table spaces
when no type is specified. When a table is placed in a large table space:
v The table can be larger than a table in a regular table space. For details

on table and table space limits, see “SQL and XML limits”.
v The table can support more than 255 rows per data page, which can

improve space utilization on data pages.
v Indexes that are defined on the table will require an additional 2 bytes

per row entry, compared to indexes defined on a table that resides in a
regular table space.

REGULAR
Stores all permanent data. This type applies to both DMS and SMS table
spaces. This is the only type allowed for SMS table spaces, and it is also
the default type for SMS table spaces when no type is specified.

SYSTEM TEMPORARY
Stores temporary tables, work areas used by the database manager to
perform operations such as sorts or joins. A database must always have at
least one SYSTEM TEMPORARY table space, because temporary tables can
only be stored in such a table space. A temporary table space is created
automatically when a database is created.

USER TEMPORARY
Stores created temporary tables and declared temporary tables. No user
temporary table spaces exist when a database is created. To allow the
definition of created temporary tables or declared temporary tables, at least
one user temporary table space should be created with appropriate USE
privileges.

tablespace-name
Names the table space. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The tablespace-name must not identify a table space that
already exists in the catalog (SQLSTATE 42710). The tablespace-name must not
begin with the characters 'SYS' (SQLSTATE 42939).

IN DATABASE PARTITION GROUP db-partition-group-name
Specifies the database partition group for the table space. The database
partition group must exist. The only database partition group that can be
specified when creating a SYSTEM TEMPORARY table space is
IBMTEMPGROUP. The DATABASE PARTITION GROUP keywords are
optional.

If the database partition group is not specified, the default database partition
group (IBMDEFAULTGROUP) is used for REGULAR, LARGE, and USER

CREATE TABLESPACE

Statements 767



TEMPORARY table spaces. For SYSTEM TEMPORARY table spaces, the
default database partition group IBMTEMPGROUP is used.

PAGESIZE integer [K]
Defines the size of pages used for the table space. The valid values for integer
without the suffix K are 4 096, 8 192, 16 384, or 32 768. The valid values for
integer with the suffix K are 4, 8, 16, or 32. Any number of spaces is allowed
between integer and K, including no space. An error occurs if the page size is
not one of these values (SQLSTATE 428DE), or if the page size is not the same
as the page size of the buffer pool that is associated with the table space
(SQLSTATE 428CB).

The default value is provided by the pagesize database configuration
parameter, which is set when the database is created.

MANAGED BY AUTOMATIC STORAGE
Specifies that the table space is to be an automatic storage table space. If there
are no storage groups defined, an error is returned (SQLSTATE 55060).

The database manager automatically decides how the automatic storage table
space is initially created. Temporary table spaces are initialized as system
managed space (SMS) table space and permanent table spaces are initialized as
database managed space (DMS) table space. When creating a permanent table
space and the type of table space is not specified, the default behavior is to
create a large table space. With an automatic storage table space, the database
manager determines which containers are to be assigned to the table space,
based upon the storage paths that are associated with the storage group the
table space uses.

storage-group
Specify the storage group for an automatic storage table space.

USING STOGROUP
For an automatic storage table space, identifies the storage group for the
table space in which the table space data will be stored. If a
storagegroup-name is not specified, then the currently designated default
storage group is used. This clause only applies to automatic storage table
spaces (SQLSTATE 42613).

storagegroup-name
Identifies the storage group in which table space data will be stored.
storagegroup-name must identify a storage group that exists at the current
server (SQLSTATE 42704). This is a one-part name.

size-attributes
Specify the size attributes for an automatic storage table space or a DMS table
space that is not an automatic storage table space. SMS table spaces are not
auto-resizable.

AUTORESIZE
Specifies whether or not the auto-resize capability of a DMS table space or
an automatic storage table space is to be enabled. Auto-resizable table
spaces automatically increase in size when they become full. The default is
NO for DMS table spaces and YES for automatic storage table spaces.

NO Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be disabled.

YES
Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be enabled.

CREATE TABLESPACE

768 SQL Reference Volume 2



INITIALSIZE integer K | M | G
Specifies the initial size, per database partition, of an automatic storage
table space. This option is only valid for automatic storage table spaces.
The integer value must be followed by K (for kilobytes), M (for
megabytes), or G (for gigabytes). Note that the actual value used might be
slightly smaller than what was specified, because the database manager
strives to maintain a consistent size across containers in the table space.
Moreover, if the table space is auto-resizable and the initial size is not large
enough to contain meta-data that must be added to the new table space,
the database manager will continue to extend the table space by the value
of INCREASESIZE until there is enough space. If the INITIALSIZE clause
is not specified, the database manager determines an appropriate value.
The value for integer must be at least 48 K.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G
Specifies the amount, per database partition, by which a table space that is
enabled for auto-resize will automatically be increased when the table
space is full, and a request for space has been made. The integer value
must be followed by:
v PERCENT to specify the amount as a percentage of the table space size

at the time that a request for space is made. When PERCENT is
specified, the integer value must be between 0 and 100 (SQLSTATE
42615).

v K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the
amount in bytes

Note that the actual value used might be slightly smaller or larger than
what was specified, because the database manager strives to maintain
consistent growth across containers in the table space. If the table space is
auto-resizable, but the INCREASESIZE clause is not specified, the database
manager determines an appropriate value.

MAXSIZE integer K | M | G or MAXSIZE NONE
Specifies the maximum size to which a table space that is enabled for
auto-resize can automatically be increased. If the table space is
auto-resizable, but the MAXSIZE clause is not specified, the default is
NONE.

integer
Specifies a hard limit on the size, per database partition, to which a
DMS table space or an automatic storage table space can automatically
be increased. The integer value must be followed by K (for kilobytes),
M (for megabytes), or G (for gigabytes). Note that the actual value
used might be slightly smaller than what was specified, because the
database manager strives to maintain consistent growth across
containers in the table space.

NONE
Specifies that the table space is to be allowed to grow to file system
capacity, or to the maximum table space size (described in “SQL and
XML limits”).

MANAGED BY SYSTEM
Specifies that the table space is to be an SMS table space.

MANAGED BY SYSTEM cannot be specified in a DB2 pureScale environment
(SQLSTATE 42997).

CREATE TABLESPACE

Statements 769



Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release.
The SMS table space type is not deprecated for catalog and temporary table
spaces. For more information, see “SMS permanent table spaces have been
deprecated” at http://www.ibm.com/support/knowledgecenter/
SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0058748.html.

system-containers
Specify the containers for an SMS table space.

USING ('container-string', ...)
For an SMS table space, identifies one or more containers that will belong
to the table space and in which the table space data will be stored. The
container-string cannot exceed 240 bytes in length.

Each container-string can be an absolute or relative directory name.

The directory name, if not absolute, is relative to the database directory,
and can be a path name alias (or symbolic link) to storage that is not
physically associated with the database directory. For example,
dbdir/work/c1 could be a symbolic link to a separate file system.

If any component of the directory name does not exist, it is created by the
database manager. When a table space is dropped, all components created
by the database manager are deleted. If the directory identified by
container-string exists, it must not contain any files or subdirectories
(SQLSTATE 428B2).

The format of container-string is dependent on the operating system.

Operating system Format of absolute path name

Linux
AIX
Solaris
HP-UX

An absolute path name begins with a
forward slash (/)

Windows An absolute directory path name begins
with a drive letter and a colon (:)

A relative path name on any platform does not begin with an operating
system-dependent character.

Remote resources (such as LAN-redirected drives or NFS-mounted file
systems) are currently only supported when using Network Appliance
Filers, IBM iSCSI, IBM Network Attached Storage, Network Appliance
iSCSI, NEC iStorage S2100, S2200, or S4100, or NEC Storage NS Series with
a database server on Windows. Note that NEC Storage NS Series is only
supported with the use of an uninterrupted power supply (UPS);
continuous UPS (rather than standby) is recommended.

An NFS-mounted file system on AIX must be mounted in uninterruptible
mode using the -o nointr option.

on-db-partitions-clause
Specifies the database partition or partitions on which the containers are
created in a partitioned database. If this clause is not specified, then the
containers are created on the database partitions in the database partition
group that are not explicitly specified in any other on-db-partitions-clauses.
For a SYSTEM TEMPORARY table space defined on database partition

CREATE TABLESPACE

770 SQL Reference Volume 2

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0058748.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0058748.html


group IBMTEMPGROUP, when the on-db-partitions-clause is not specified,
the containers will also be created on all new database partitions added to
the database.

MANAGED BY DATABASE
Specifies that the table space is to be a DMS table space. When the type of
table space is not specified, the default behavior is to create a large table space.

MANAGED BY DATABASE cannot be specified in a DB2 pureScale
environment (SQLSTATE 42997).

Important: Starting with Version 10.1 Fix Pack 1, the DMS table space type is
deprecated for user-defined permanent table spaces and might be removed in a
future release. The DMS table space type is not deprecated for catalog and
temporary table spaces. For more information, see “DMS permanent table
spaces have been deprecated” at http://www.ibm.com/support/
knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060577.html.

database-containers
Specify the containers for a DMS table space.

USING
Introduces a container-clause.

container-clause
Specifies the containers for a DMS table space.

(FILE|DEVICE 'container-string' number-of-pages, ...)
For a DMS table space, identifies one or more containers that will
belong to the table space and in which the table space data will be
stored. The type of the container (either FILE or DEVICE) and its size
(in PAGESIZE pages) are specified. The size can also be specified as an
integer value followed by K (for kilobytes), M (for megabytes) or G
(for gigabytes). If specified in this way, the floor of the number of bytes
divided by the pagesize is used to determine the number of pages for
the container. A mixture of FILE and DEVICE containers can be
specified. The container-string cannot exceed 254 bytes in length.

For a FILE container, container-string must be an absolute or relative file
name. The file name, if not absolute, is relative to the database
directory. If any component of the directory name does not exist, it is
created by the database manager. If the file does not exist, it will be
created and initialized to the specified size by the database manager.
When a table space is dropped, all components created by the database
manager are deleted.

Note: If the file exists, it is overwritten, and if it is smaller than
specified, it is extended. The file will not be truncated if it is larger
than specified.

For a DEVICE container, container-string must be a device name. The
device must already exist.

All containers must be unique across all databases. A container can
belong to only one table space. The size of the containers can differ;
however, optimal performance is achieved when all containers are the
same size. The exact format of container-string is dependent on the
operating system.

Remote resources (such as LAN-redirected drives or NFS-mounted file
systems) are currently only supported when using Network Appliance

CREATE TABLESPACE

Statements 771

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060577.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060577.html


Filers, IBM iSCSI, IBM Network Attached Storage, Network Appliance
iSCSI, NEC iStorage S2100, S2200, or S4100, or NEC Storage NS Series
with a database server on Windows. Note that NEC Storage NS Series
is only supported with the use of an uninterrupted power supply
(UPS); continuous UPS (rather than standby) is recommended.

on-db-partitions-clause
Specifies the database partition or partitions on which the containers
are created in a partitioned database. If this clause is not specified,
then the containers are created on the database partitions in the
database partition group that are not explicitly specified in any other
on-db-partitions-clause. For a SYSTEM TEMPORARY table space defined
on database partition group IBMTEMPGROUP, when the
on-db-partitions-clause is not specified, the containers will also be
created on all new database partitions added to the database.

on-db-partitions-clause
Specifies the database partitions on which containers are created in a
partitioned database.

ON DBPARTITIONNUMS
Keywords indicating that individual database partitions are specified.
DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1
Specify a database partition number.

TO db-partition-number2
Specify a range of database partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of
db-partition-number1 (SQLSTATE 428A9). Containers are to be created
on each database partition between and including the specified values.
A specified database partition must be in the database partition group
for the table space.

The database partition specified by number, and every database partition
within the specified range of database partitions must exist in the database
partition group for the table space (SQLSTATE 42729). A database partition
number can only appear explicitly or within a range in exactly one
on-db-partitions-clause for the statement (SQLSTATE 42613).

EXTENTSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be written to a
container before skipping to the next container. The extent size value can
also be specified as an integer value followed by K (for kilobytes) or M (for
megabytes). If specified in this way, the floor of the number of bytes
divided by the page size is used to determine the value for the extent size.
The database manager cycles repeatedly through the containers as data is
stored.

In a DB2 pureScale environment, you should use an extent size of at least
32 pages. This minimum extent size reduces the amount of internal
message traffic within the DB2 pureScale environment when extents are
added for a table or index.

The default value is provided by the dft_extent_sz database configuration
parameter, which has a valid range of 2-256 pages.

CREATE TABLESPACE

772 SQL Reference Volume 2



PREFETCHSIZE
Specifies to read in data needed by a query before it being referenced by
the query, so that the query need not wait for I/O to be performed.

The default value is provided by the dft_prefetch_sz database
configuration parameter.

AUTOMATIC
Specifies that the prefetch size of a table space is to be updated
automatically; that is, the prefetch size will be managed by the
database manager.

The prefetch size will be updated automatically whenever the number
of containers in a table space changes (following successful execution
of an ALTER TABLESPACE statement that adds or drops one or more
containers). The prefetch size is also automatically updated at database
startup.

number-of-pages
Specifies the number of PAGESIZE pages that will be read from the
table space when data prefetching is being performed. The maximum
value is 32767.

integer K | M
Specifies the prefetch size value as an integer value followed by K (for
kilobytes) or M (for megabytes). If specified in this way, the floor of
the number of bytes divided by the page size is used to determine the
number of pages value for prefetch size.

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this table space. The buffer
pool must exist (SQLSTATE 42704). If not specified, the default buffer pool
(IBMDEFAULTBP) is used. The page size of the buffer pool must match
the page size specified (or defaulted) for the table space (SQLSTATE
428CB). The database partition group of the table space must be defined
for the buffer pool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds or OVERHEAD INHERIT
Specifies the I/O controller overhead and disk seek and latency time. This
value is used to determine the cost of I/O during query optimization. If
OVERHEAD is not specified for a non-automatic storage table space, the
value will default to the database creation default described later in the
description for this keyword. If OVERHEAD is not specified for an
automatic storage table space the default is to INHERIT the value from the
storage group it is using. If the OVERHEAD value at the storage group is
undefined, the OVERHEAD will default to the database creation default.

number-of-milliseconds
The value of number-of-milliseconds is any numeric literal (integer,
decimal, or floating point). If this value is not the same for all
containers, the number should be the average for all containers that
belong to the table space.

INHERIT
If INHERIT is specified, the table space must be defined using
automatic storage and the OVERHEAD is dynamically inherited from
the storage group. INHERIT cannot be specified if the table space is
not defined using automatic storage (SQLSTATE 42613).

CREATE TABLESPACE

Statements 773



For a database that was created in DB2 Version 10.1 or later, the default
I/O controller overhead and disk seek and latency time for 4 KB
PAGESIZE table space is 6.725 milliseconds.

For a database that was upgraded from a previous version of DB2 to DB2
Version 10.1 or later, the default I/O controller overhead and disk seek and
latency time is as follows:
v 7.5 milliseconds for a database created in DB2 version 9.7 or higher

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING
Specifies whether or not I/O operations are to be cached at the file system
level. If neither option is specified, the default is:
v FILE SYSTEM CACHING for JFS on AIX, Linux System z®, all non-VxFS

file systems on Solaris, HP-UX, SMS temporary table space files on all
platforms, and all LOB and large data

v NO FILE SYSTEM CACHING on all other platforms and file system
types

FILE SYSTEM CACHING
Specifies that all I/O operations in the target table space are to be
cached at the file system level.

NO FILE SYSTEM CACHING
Specifies that all I/O operations are to bypass the file system-level
cache.

Note: You must format the disk device to have a disk sector size
according to the following table:

Operating system Disk sector size

AIX 512 bytes

Solaris 512 bytes

HP-UX 1024 bytes

Linux 512 bytes

Windows 512 bytes

TRANSFERRATE number-of-milliseconds or TRANSFERRATE INHERIT
Specifies the time to read one page into memory. If TRANSFERRATE is not
specified for a non-automatic storage table space, the value will default to
the database creation default described later in the description for this
keyword. If TRANSFERRATE is not specified for an automatic storage
table space the default is to INHERIT the value from the storage group it is
using. If the DEVICE READ RATE value at the storage group is undefined,
the TRANSFERRATE will default to the database creation default.

number-of-milliseconds
This value is used to determine the cost of I/O during query
optimization. The value of number-of-milliseconds is any numeric literal
(integer, decimal, or floating point). If this value is not the same for all
containers, the number should be the average for all containers that
belong to the table space.

INHERIT
If INHERIT is specified, the table space must be defined using
automatic storage and the TRANSFERRATE is dynamically inherited

CREATE TABLESPACE

774 SQL Reference Volume 2



from the DEVICE READ RATE of the storage group. INHERIT cannot
be specified if the table space is not defined using automatic storage
(SQLSTATE 42613).

When an automatic storage table space inherits the TRANSFERRATE
setting from the storage group it is using, the DEVICE READ RATE of
the storage group, which is in megabytes per second, is converted into
milliseconds per page read accounting for the PAGESIZE setting of the
table space. The conversion formula follows:

TRANSFERRATE = ( 1 / DEVICE READ RATE ) * 1000 / 1024000 *
PAGESIZE

For a database that was created in DB2Version 10.1 or later, the default
time to read one page into memory for 4 KB PAGESIZE table space is 0.04
milliseconds.

For a database that was upgraded from a previous version of DB2 to
DB2Version 10.1 or later, the default time to read one page into memory is
as follows:
v 0.06 milliseconds for a database created in DB2 version 9.17 or higher

DATA TAG integer-constant, DATA TAG INHERIT or DATA TAG NONE
Specifies a tag for the data in the table space. If the DATA TAG is not
specified, the default for automatic storage table spaces is to INHERIT
from the storage group it is using and for non-automatic table spaces it
will be set to NONE. This value can be used as part of a WLM
configuration in a work class definition (see “CREATE WORK CLASS SET”
on page 917) or referenced within a threshold definition (see “CREATE
THRESHOLD” on page 780). This clause cannot be specified if
TEMPORARY is also specified (SQLSTATE 42613).

integer-constant
Valid values for integer-constant are integers from 1 to 9. If an
integer-constant is specified and there is an associated storage group,
the data tag specified for the table space will override any data tag
value specified for the associated storage group.

INHERIT
If INHERIT is specified, the table space must be defined using
automatic storage and the data tag is dynamically inherited from the
storage group. INHERIT cannot be specified if the table space is not
defined using automatic storage (SQLSTATE 42613).

NONE
If NONE is specified, there is no data tag.

DROPPED TABLE RECOVERY
Indicates whether dropped tables in the specified table space can be
recovered using the RECOVER DROPPED TABLE option of the ROLLFORWARD
DATABASE command. This clause can only be specified for a regular or large
table space (SQLSTATE 42613).

ON Specifies that dropped tables can be recovered. This is the default.

OFF
Specifies that dropped tables cannot be recovered.

CREATE TABLESPACE

Statements 775



Rules
v If automatic storage is not defined for the database, an error is returned

(SQLSTATE 55060).
v The INITIALSIZE clause cannot be specified with the MANAGED BY SYSTEM

or MANAGED BY DATABASE clause (SQLSTATE 42601).
v The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified

with the MANAGED BY SYSTEM clause (SQLSTATE 42601).
v The AUTORESIZE, INITIALSIZE, INCREASESIZE, or MAXSIZE clause cannot

be specified for the creation of a temporary automatic storage table space
(SQLSTATE 42601).

v The INCREASESIZE or MAXSIZE clause cannot be specified if the tables space
is not auto-resizable (SQLSTATE 42601).

v AUTORESIZE cannot be enabled for DMS table spaces that are defined to use
raw device containers (SQLSTATE 42601).

v A table space must initially be large enough to hold five extents (SQLSTATE
57011).

v The maximum size of a table space must be larger than its initial size
(SQLSTATE 560B0).

v Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE
SET) cannot be performed on automatic storage table spaces, because the
database manager is controlling the space management of such table spaces
(SQLSTATE 42858).

v Each container definition requires 53 bytes plus the number of bytes necessary to
store the container name. The combined length of all container definitions for
the table space cannot exceed 208 kilobytes (SQLSTATE 54034).

v For a partitioned database, if more than one database partition resides on the
same physical node, the same device or path cannot be specified for more than
one database partition (SQLSTATE 42730). In this environment, either specify a
unique container-string for each database partition, or use a relative path name.

v Only automatic storage table spaces can be created in a DB2 pureScale
environment(SQLSTATE 42997).

v Container size limits: In DMS table spaces, a container must be at least two
times the extent size pages in length (SQLSTATE 54039). The maximum size of a
container is operating system dependent.

Notes
v Choosing between a database-managed space or a system-managed space for a

table space is a fundamental choice involving trade-offs.
v When more than one TEMPORARY table space exists in the database, they are

used in round-robin fashion to balance their usage.
v The owner of the table space is granted USE privilege with the WITH GRANT

OPTION on the table space when it is created.
v An automatic storage table space is created as either an SMS table space or a

DMS table space. DMS is chosen for large and regular table spaces, and SMS is
chosen for temporary table spaces. Note that this behavior cannot be depended
upon, because it might change in a future release. When DMS is chosen and the
type of table space is not specified, the default behavior is to create a large table
space.

v The creation of an automatic storage table space does not include container
definitions. The database manager automatically determines the location and
size, if applicable, of the containers on the basis of the storage paths that are

CREATE TABLESPACE

776 SQL Reference Volume 2



associated with the specified storage group or the default storage group. The
database manager will attempt to grow large and regular table spaces, as
necessary, provided that the maximum size has not been reached. This might
involve extending existing containers or adding containers to a new stripe set.
Every time that the database is activated, the database manager automatically
reconfigures the number and location of the containers for temporary table
spaces that are not in an abnormal state.

v A large or regular automatic storage table space will not use new storage paths
(see the description of the ALTER STOGROUP statement) until there is no more
space in one of the existing storage paths that the table space is using.
Temporary automatic storage table spaces can only use the new storage paths
once the database has been deactivated and then reactivated.

v Media attributes: The following table shows how the media attributes of newly
created table spaces are treated in upgraded and newly created DB2 Version 10.1
databases.

Table 25. Media attributes across different versions of DB2

Media attributes Upgraded Database Newly Created Database

New automatic storage table
spaces / storage group
DEVICE READ RATE set to
undefined

Defaults based on version
database was created (no
change)

Not applicable

New automatic storage table
spaces / storage group
OVERHEAD set to undefined

Defaults based on version
database was created (no
change)

Not applicable

New automatic storage table
spaces / storage group
DEVICE READ RATE is set

Inherit from storage group
factoring in PAGESIZE

Inherit from storage group
factoring in PAGESIZE

New automatic storage table
spaces / storage group
OVERHEAD is set

Inherit from storage group Inherit from storage group

New non-automatic storage
table spaces

Defaults based on version
database was created (no
change)

DB2 Version 10.1 media
defaults taking PAGESIZE
into account

v Default TRANSFERRATE: The following table shows how the default
TRANSFERRATE value differs for newly created table spaces.

Table 26. Default TRANSFERRATE

PAGESIZE TRANSFERRATE

4 KB 0.04 ms per page read

8 KB 0.08 ms per page read

16 KB 0.16 ms per page read

32 KB 0.32 ms per page read

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– LONG can be specified in place of LARGE

CREATE TABLESPACE

Statements 777



Examples
1. Create a large DMS table space on a Linux system using three devices of

10 000 4K pages each. Specify their I/O characteristics.
CREATE TABLESPACE PAYROLL

MANAGED BY DATABASE
USING (DEVICE’/dev/rhdisk6’ 10000,

DEVICE ’/dev/rhdisk7’ 10000,
DEVICE ’/dev/rhdisk8’ 10000)

OVERHEAD 12.67
TRANSFERRATE 0.18

2. Create a regular SMS table space on Windows using three directories on three
separate drives, with a 64-page extent size, and a 32-page prefetch size.

CREATE TABLESPACE ACCOUNTING
MANAGED BY SYSTEM
USING (’/tbsp/acc1’, ’/tbsp/acc2’, ’/tbsp/acc3’)
EXTENTSIZE 64
PREFETCHSIZE 32

3. Create a system temporary DMS table space on a Linux system using two files
of 50 000 pages each, and a 256-page extent size.

CREATE TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY DATABASE
USING (FILE ’dbtmp/tempspace2.f1’ 50000,

FILE ’dbtmp/tempspace2.f2’ 50000)
EXTENTSIZE 256

4. Create a large DMS table space in database partition group
ODDNODEGROUP (database partitions 1, 3, and 5) on a Linux system. Use
the device /dev/rhdisk0 for 10 000 4K pages on each database partition.
Specify a database partition-specific device with 40 000 4K pages for each
database partition.

CREATE TABLESPACE PLANS
MANAGED BY DATABASE
USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn1hd01’ 40000)
ON DBPARTITIONNUM (1)
USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn3hd03’ 40000)
ON DBPARTITIONNUM (3)
USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn5hd05’ 40000)
ON DBPARTITIONNUM (5)

5. Create a large automatic storage table space named DATATS, allowing the
system to make all decisions with respect to table space size and growth.

CREATE TABLESPACE DATATS

or
CREATE TABLESPACE DATATS

MANAGED BY AUTOMATIC STORAGE

6. Create a system temporary automatic storage table space named TEMPDATA.
CREATE TEMPORARY TABLESPACE TEMPDATA

or
CREATE TEMPORARY TABLESPACE TEMPDATA

MANAGED BY AUTOMATIC STORAGE

7. Create a large automatic storage table space named USERSPACE3 with an
initial size of 100 megabytes and a maximum size of 1 gigabyte.

CREATE TABLESPACE USERSPACE3
INITIALSIZE 100 M
MAXSIZE 1 G

8. Create a large automatic storage table space named LARGEDATA with a
growth rate of 10 percent (that is, its total size increases by 10 percent each

CREATE TABLESPACE

778 SQL Reference Volume 2



time that it is automatically resized) and a maximum size of 512 megabytes.
Instead of specifying the INITIALSIZE clause, let the database manager
determine an appropriate initial size for the table space.

CREATE LARGE TABLESPACE LARGEDATA
INCREASESIZE 10 PERCENT
MAXSIZE 512 M

9. Create a large DMS table space named USERSPACE4 with two file containers
(each container being 1 megabyte in size), a growth rate of 2 megabytes, and a
maximum size of 100 megabytes.

CREATE TABLESPACE USERSPACE4
MANAGED BY DATABASE USING (FILE ’/db/file1’ 1 M, FILE ’/db/file2’ 1 M)
AUTORESIZE YES
INCREASESIZE 2 M
MAXSIZE 100 M

10. Create large DMS table spaces, using RAW devices on a Windows operating
system.
v To specify entire physical drives, use the \\.\physical-drive format:

CREATE TABLESPACE TS1
MANAGED BY DATABASE USING (DEVICE ’\\.\PhysicalDrive5’ 10000,

DEVICE ’\\.\PhysicalDrive6’ 10000)

v To specify logical partitions by using drive letters:
CREATE TABLESPACE TS2

MANAGED BY DATABASE USING (DEVICE ’\\.\G:’ 10000,
DEVICE ’\\.\H:’ 10000)

v To specify logical partitions by using volume global unique identifiers
(GUIDs), use the db2listvolumes utility to retrieve the volume GUID for
each local partition, then copy the GUID for the logical partition that you
want into the table space container clause:

CREATE TABLESPACE TS3
MANAGED BY DATABASE USING (

DEVICE ’\\?\Volume{2ca6a0c1-8542-11d8-9734-00096b5322d2}\’ 20000M)

You might prefer to use volume GUIDs over the drive letter format if you
have more partitions than available drive letters on the machine.

v To specify logical partitions by using junction points (or volume mount
points), mount the RAW partition to another NTFS-formatted volume as a
junction point, then specify the path to the junction point on the NTFS
volume as the container path. For example:

CREATE TABLESPACE TS4
MANAGED BY DATABASE USING (DEVICE ’C:\JUNCTION\DISK_1’ 10000,

DEVICE ’C:\JUNCTION\DISK_2’ 10000)

The partition is queried first to see whether there is a file system on it; if
yes, the partition is not treated as a RAW device, and normal file system
I/O operations are performed on the partition.

CREATE TABLESPACE

Statements 779



CREATE THRESHOLD
The CREATE THRESHOLD statement defines a threshold.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� CREATE THRESHOLD threshold-name FOR threshold-domain ACTIVITIES �

� ENFORCEMENT enforcement-scope
ENABLE

DISABLE
�

� WHEN threshold-predicate threshold-exceeded-actions ��

threshold-domain:

DATABASE
SERVICE CLASS service-class-name

UNDER service-class-name
STATEMENT TEXT statement-text

REFERENCE executable-id
WORKLOAD workload-name

enforcement-scope:

DATABASE
MEMBER
WORKLOAD OCCURRENCE

threshold-predicate:

CREATE THRESHOLD

780 SQL Reference Volume 2



�

TOTALMEMBERCONNECTIONS > integer-value
AND QUEUEDCONNECTIONS > 0

TOTALSCMEMBERCONNECTIONS > integer-value
AND QUEUEDCONNECTIONS > integer-value
AND QUEUEDCONNECTIONS UNBOUNDED

CONNECTIONIDLETIME > integer-value DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES

CONCURRENTWORKLOADOCCURRENCES > integer-value
CONCURRENTWORKLOADACTIVITIES > integer-value

AND QUEUEDACTIVITIES > 0
CONCURRENTDBCOORDACTIVITIES > integer-value

AND QUEUEDACTIVITIES > integer-value
AND QUEUEDACTIVITIES UNBOUNDED

ESTIMATEDSQLCOST > bigint-value
SQLROWSRETURNED > integer-value
ACTIVITYTOTALTIME > integer-value DAY

DAYS
HOUR
HOURS
MINUTE
MINUTES
SECONDS

UOWTOTALTIME > integer-value DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECONDS

SQLTEMPSPACE > integer-value K
M
G

AGGSQLTEMPSPACE > integer-value K
M
G

CHECKING EVERY 60 SECONDS
SQLROWSREAD > bigint-value

CHECKING EVERY integer-value SECOND
SECONDS

CHECKING EVERY 60 SECONDS
SQLROWSREADINSC > bigint-value

CHECKING EVERY integer-value SECOND
SECONDS

CHECKING EVERY 60 SECONDS
CPUTIME > integer-value HOUR

HOURS CHECKING EVERY integer-value SECOND
MINUTE SECONDS
MINUTES
SECOND
SECONDS

CHECKING EVERY 60 SECONDS
CPUTIMEINSC > integer-value HOUR

HOURS CHECKING EVERY integer-value SECOND
MINUTE SECONDS
MINUTES
SECOND
SECONDS

,
(1)

DATATAGINSC IN ( integer-constant )
NOT IN

threshold-exceeded-actions:

COLLECT ACTIVITY DATA NONE

MEMBER
ON COORDINATOR

COLLECT ACTIVITY DATA
MEMBERS

ON ALL

�

CREATE THRESHOLD

Statements 781



�

�

WITHOUT DETAILS
STOP EXECUTION

, CONTINUE
(2) FORCE APPLICATION

WITH DETAILS remap-activity-action
SECTION AND VALUES

remap-activity-action:

REMAP ACTIVITY TO service-subclass-name
NO EVENT MONITOR RECORD

LOG EVENT MONITOR RECORD

Notes:

1 Each data tag value can be specified only once.

2 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

threshold-name
Names the threshold. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The threshold-name must not identify a threshold that
already exists at the current server (SQLSTATE 42710). The name must not
begin with the characters 'SYS' (SQLSTATE 42939).

FOR threshold-domain ACTIVITIES
Specifies the definition domain of the threshold.

DATABASE
This threshold applies to any activity in the database.

SERVICE CLASS service-class-name
This threshold applies to activities executing in service class
service-class-name. If UNDER is not specified, service-class-name must
identify an existing service superclass (SQLSTATE 42704). If UNDER is
specified, service-class-name must identify an existing service subclass of the
service superclass specified after the UNDER keyword (SQLSTATE 42704).
The service-class-name cannot be the SYSDEFAULTSYSTEMCLASS service
class or the SYSDEFAULTMAINTENANCECLASS service class (SQLSTATE
5U032).

UNDER service-class-name
Specifies a service superclass. The service-class-name must identify an
existing service superclass (SQLSTATE 42704).

STATEMENT
This threshold applies to activities for a specific SQL statement. You
identify the statement to use for the threshold by specifying the statement
text or the statement's executable ID .

TEXT statement-text
This threshold applies to statements matching the text specified in
statement-text. Both static and dynamic SQL statements are considered
when the condition for the threshold is evaluated. At run time, the text
specified for statement-text must be an exact match of the text of a
statement in the package cache for the threshold to be violated.
Differences in letter case or use of white space prevent a match from
occurring between statement-text and any running SQL statement. The

CREATE THRESHOLD

782 SQL Reference Volume 2



text for statement-text must be specified as a string constant. As such,
the maximum length for the text of a statement for a statement
threshold is 32 672 bytes, and not the usual 2 MB upper limit for
statements.

Access plan differences do not affect statement matching. It is possible
for multiple cached statements with same text but different access
plans to match the threshold text defined by statement-text.

If a statement that otherwise matches the statement supplied for
statement-text is altered or transformed during compilation in such a
way that it differs from statement-text, the statements will not match.
For example, if the statement concentrator is enabled, literal values
might be replaced by parameter markers. No such transformation is
applied to text supplied for the statement-text in the CREATE
THRESHOLD statement. The text supplied to CREATE THRESHOLD
must match exactly the transformed text of any statement of interest.
You can determine the exact text of statements as they are executed
using monitoring table functions such as MON_GET_PKG_CACHE_STMT and
MON_GET_ACTIVITY_DETAILS.

The following predicates can be used with a statement threshold:
ESTIMATEDSQLCOST, SQLROWSRETURNED, ACTIVITYTOTALTIME, SQLROWSREAD,
CPUTIME, SQLTEMPSPACE.

REFERENCE executable-id
This threshold applies to statements with text that matches the text of
the statement with the specified executable ID. The database manager
uses the executable ID to locate text of the statement from its section in
the package cache. The text of the statement that is used for the
threshold is that which was cached for the section at the time the
threshold was created. For dynamic SQL, the statement referenced by
the executable ID must be in the package cache. For static SQL, if the
statement is not in the cache, the database manager retrieves it from
the system catalogs.

Once the statement text is retrieved from the package cache, there is no
direct relationship between the threshold and the specified executable
ID; the cached section can even be evicted from the cache without
impact on any threshold that was derived from it. Once the text
associated with the executable ID is determined, the threshold created
by this clause behaves in exactly the same way as one created by the
STATEMENT TEXT clause.

WORKLOAD workload-name
This threshold applies to the specified workload. The workload-name must
identify an existing workload (SQLSTATE 42704).

ENFORCEMENT enforcement-scope
The enforcement scope of the threshold.

DATABASE
The threshold is enforced across all members within the definition domain;
that is, all members of the database, and all members of the service class.

MEMBER
The threshold is enforced on a per member basis. There is no coordination
across all members to enforce the threshold.

WORKLOAD OCCURRENCE
The threshold is enforced only within a workload occurrence. Two

CREATE THRESHOLD

Statements 783



workload occurrences running concurrently on the same member will each
have their own running count for this threshold.

ENABLE or DISABLE
Specifies whether or not the threshold is enabled for use by the database
manager.

ENABLE
The threshold is used by the database manager to restrict the execution of
database activities.

DISABLE
The threshold is not used by the database manager to restrict the execution
of database activities.

WHEN threshold-predicate
Specifies the condition of the threshold.

TOTALMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a member. This value can be zero
or any positive integer (SQLSTATE 42820). A value of zero means that any
new coordinator connection will be prevented from connecting. All
currently running or queued connections will continue. The definition
domain for this condition must be DATABASE, and the enforcement scope
must be MEMBER (SQLSTATE 5U037). This threshold is not enforced for
users with DBADM or WLMADM authority.

TOTALSCMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a member in a specific service
superclass. This value can be zero or any positive integer (SQLSTATE
42820). A value of zero means that any new connection will be prevented
from joining the service class. All currently running or queued connections
will continue. The definition domain for this condition must be SERVICE
SUPERCLASS, and the enforcement scope must be MEMBER (SQLSTATE
5U037).

AND QUEUEDCONNECTIONS > integer-value or AND QUEUEDCONNECTIONS
UNBOUNDED

Specifies a queue size for when the maximum number of coordinator
connections is exceeded. This value can be any positive integer,
including zero (SQLSTATE 42820). A value of zero means that no
coordinator connections are queued. Specifying UNBOUNDED will
queue every connection that exceeds the specified maximum number
of coordinator connections, and the threshold-exceeded-actions will never
be executed. The default is zero.

CONNECTIONIDLETIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES

This condition defines an upper bound for the amount of time the
database manager will allow a connection to remain idle. This value can be
any positive integer (not zero) (SQLSTATE 42820). Use a valid duration
keyword to specify an appropriate unit of time for integer-value. The
definition domain for this condition must be DATABASE or SERVICE
SUPERCLASS, and the enforcement scope must be DATABASE (SQLSTATE
5U037). This condition is enforced at the coordinator member.

If you specify the STOP EXECUTION action with
CONNECTIONIDLETIME thresholds, the connection for the application is

CREATE THRESHOLD

784 SQL Reference Volume 2



dropped when the threshold is exceeded. Any subsequent attempt by the
application to access the data server will receive SQLSTATE 5U026.

The maximum value for this threshold is 2 147 483 640 seconds. Any value
specified that has a seconds equivalent larger than 2 147 483 640 seconds
will be set to this number of seconds.

CONCURRENTWORKLOADOCCURRENCES > integer-value
This condition defines an upper bound on the number of concurrent
occurrences for the workload on each member. This value can be any
positive integer (not zero) (SQLSTATE 42820). The definition domain for
this condition must be WORKLOAD and the enforcement scope must be
MEMBER (SQLSTATE 5U037).

CONCURRENTWORKLOADACTIVITIES > integer-value
This condition defines an upper bound on the number of concurrent
coordinator activities and nested activities for the workload on each
member. This value can be any positive integer (not zero) (SQLSTATE
42820). The definition domain for this condition must be WORKLOAD and
the enforcement scope for this condition must be WORKLOAD
OCCURRENCE (SQLSTATE 5U037).

Each nested activity must satisfy the following conditions:
v It must be a recognized coordinator activity. Any nested coordinator

activity that does not fall within the recognized types of activities will
not be counted. Similarly, nested subagent activities, such as remote
node requests, are not counted.

v It must be directly invoked from user logic, such as a user-written
procedure issuing SQL statements.

Consequently, nested coordinator activities that were automatically started
under the invocation of a database manager utility or routines in the
SYSIBM, SYSFUN, or SYSPROC schemas are not counted toward the upper
bound specified by this threshold.

Internal SQL activities, such as those initiated by the setting of a constraint
or the refreshing of a materialized query table, are also not counted by this
threshold, because they are initiated by the database manager and not
directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value
This condition defines an upper bound on the number of recognized
database coordinator activities that can run concurrently on all members in
the specified domain. This value can be zero or any positive integer
(SQLSTATE 42820). A value of zero means that any new database
coordinator activities will be prevented from executing. All currently
running or queued database coordinator activities will continue. The
definition domain for this condition must be DATABASE, work action (a
threshold for a work action definition domain is created using a CREATE
WORK ACTION SET or ALTER WORK ACTION SET statement, and the
work action set must be applied to a workload or a database), SERVICE
SUPERCLASS, or SERVICE SUBCLASS. Also, the enforcement scope must
be DATABASE (SQLSTATE 5U037) in environments other than DB2
pureScale, where the condition is enforced across the entire database, and
MEMBER (SQLSTATE 5U037) in DB2 pureScale where the condition is
enforced at each coordinator member. All activities are tracked by this
condition, except for the following items:

CREATE THRESHOLD

Statements 785



v CALL statements are not controlled by this threshold, but all nested
child activities started within the called routine are under this
threshold's control. Anonymous blocks and autonomous routines are
classified as CALL statements.

v User-defined functions are controlled by this threshold, but child
activities nested in a user-defined function are not controlled. If an
autonomous routine is called from within a user defined function,
neither the autonomous routine nor any child activities of the
autonomous routine are under threshold control.

v Trigger actions that invoke CALL statements and the child activities of
these CALL statements are not controlled by this threshold. INSERT,
UPDATE, or DELETE statements that can cause a trigger to activate
continue to be under threshold control.

v To manage concurrency with a CALL statement, you may be able to use
the TOTALSCPARTITIONCONNECTIONS threshold. The
TOTALSCPARTITIONCONNECTIONS threshold is effective for
controlling concurrency of CALL statements when your workload
consists of transient connections. Transient connections are connections
that are established only during the procedure invocation. The
TOTALSCPARTITIONCONNECTIONS threshold is not appropriate if
your workload consists of long-lived connections.

When a threshold is defined as part of a work action set, the enforcement
scope is determined automatically based on the current environment
(MEMBER, if the current environment is DB2 pureScale; DATABASE, if it
is otherwise).

Important: Before using CONCURRENTDBCOORDACTIVITIES
thresholds, be sure to become familiar with the effects that they can have
on the database system.

For more information, refer to “CONCURRENTDBCOORDACTIVITIES
threshold” in DB2 Workload Management Guide and Reference.

AND QUEUEDACTIVITIES > integer-value or AND QUEUEDACTIVITIES
UNBOUNDED

Specifies a queue size for when the maximum number of database
coordinator activities is exceeded. This value can be zero or any
positive integer (SQLSTATE 42820). A value of zero means that no
database coordinator activities are queued. Specifying UNBOUNDED
will queue every database coordinator activity that exceeds the
specified maximum number of database coordinator activities, and the
threshold-exceeded-actions will never be executed. The default is zero.

Note: If a threshold action of CONTINUE is specified for a queuing
threshold, it effectively makes the size of the queue unbounded,
regardless of any hard value specified for the queue size.

ESTIMATEDSQLCOST > bigint-value
This condition defines an upper bound for the optimizer-assigned cost (in
timerons) of an activity. This value can be any positive big integer (not
zero) (SQLSTATE 42820). The definition domain for this condition must be
DATABASE, work action (a threshold for a work action definition domain
is created using a CREATE WORK ACTION SET or ALTER WORK
ACTION SET statement, and the work action set must be applied to a
workload or a database), SERVICE SUPERCLASS, SERVICE SUBCLASS, or

CREATE THRESHOLD

786 SQL Reference Volume 2



WORKLOAD, and the enforcement scope must be DATABASE (SQLSTATE
5U037). This condition is enforced at the coordinator member. Activities
tracked by this condition are:
v Coordinator activities of type data manipulation language (DML).
v Nested DML activities that are invoked from user logic. Consequently,

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition
(unless their cost is included in the parent's estimate, in which case they
are indirectly tracked).

SQLROWSRETURNED > integer-value
This condition defines an upper bound for the number of rows returned to
a client application from the application server. This value can be any
positive integer (not zero) (SQLSTATE 42820). The definition domain for
this condition must be DATABASE, work action (a threshold for a work
action definition domain is created using a CREATE WORK ACTION SET
or ALTER WORK ACTION SET statement, and the work action set must
be applied to a workload or a database), SERVICE SUPERCLASS, SERVICE
SUBCLASS, or WORKLOAD, and the enforcement scope must be
DATABASE (SQLSTATE 5U037). This condition is enforced at the
coordinator member. Activities tracked by this condition are:
v Coordinator activities of type DML.
v Nested DML activities that are derived from user logic. Activities that

are initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as
individual activities. There is no aggregation of the rows that are returned
by the procedure itself.

ACTIVITYTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES | SECONDS

This condition defines an upper bound for the amount of time the
database manager will allow an activity to execute, including the time the
activity was queued. The definition domain for this condition must be
DATABASE, work action (a threshold for a work action definition domain
is created using a CREATE WORK ACTION SET or ALTER WORK
ACTION SET statement, and the work action set must be applied to a
workload or a database), SERVICE SUPERCLASS, SERVICE SUBCLASS, or
WORKLOAD, and the enforcement scope must be DATABASE (SQLSTATE
5U037). This condition is logically enforced at the coordinator member.

The specified integer-value must be an integer that is greater than zero
(SQLSTATE 42820). Use a valid duration keyword to specify an
appropriate unit of time for integer-value. If the specified time unit is
SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The
maximum value that can be specified for this threshold is 2 147 483 640
seconds. If any value (using the DAY, HOUR, MINUTE, or SECONDS time
unit) has a seconds equivalent larger than the maximum value, an error is
returned (SQLSTATE 42615).

UOWTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES | SECONDS

This condition defines an upper bound for the amount of time the
database manager will allow a unit of work to execute. This value can be
any non-zero positive integer (SQLSTATE 42820). Use a valid duration
keyword to specify an appropriate unit of time for integer-value. If the

CREATE THRESHOLD

Statements 787



specified time unit is SECONDS, the value must be a multiple of 10
(SQLSTATE 42615). The definition domain for this condition must be
DATABASE, SERVICE SUPERCLASS, or WORKLOAD, and the
enforcement scope must be DATABASE (SQLSTATE 5U037). This condition
is enforced at the coordinator member.

The maximum value that can be specified for this threshold is 2 147 483
640 seconds. If any value (using the DAY, HOUR, MINUTE, or SECONDS
time unit) has a seconds equivalent larger than the maximum value, an
error is returned (SQLSTATE 42615).

SQLTEMPSPACE > integer-value K | M | G
This condition defines the maximum amount of system temporary space
that can be consumed by an SQL statement on a member. This value can
be any positive integer (not zero) (SQLSTATE 42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum
size is 1024 times integer-value. If integer-value M is specified, the maximum
size is 1 048 576 times integer-value. If integer-value G is specified, the
maximum size is 1 073 741 824 times integer-value.

The definition domain for this condition must be DATABASE, work action
(a threshold for a work action definition domain is created using a
CREATE WORK ACTION SET or ALTER WORK ACTION SET statement,
and the work action set must be applied to a workload or a database),
SERVICE SUPERCLASS, SERVICE SUBCLASS, or WORKLOAD, and the
enforcement scope must be MEMBER (SQLSTATE 5U037). Activities
tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (subsection execution). Activities that are
initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

AGGSQLTEMPSPACE > integer-value K | M | G

This condition defines the maximum amount of system temporary space
that can be consumed by a set of statements in a service class on a
member. This value can be any positive integer (not zero) (SQLSTATE
42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum
size is 1024 times integer-value. If integer-value M is specified, the maximum
size is 1 048 576 times integer-value. If integer-value G is specified, the
maximum size is 1 073 741 824 times integer-value.

The definition domain for this condition must be SERVICE SUBCLASS and
the enforcement scope must be MEMBER (SQLSTATE 5U037).

Activities contributing to the aggregate that is tracked by this condition
are:
v Coordinator activities of type DML and corresponding subagent work

like subsection execution.
v Nested DML activities that are derived from user logic and their

corresponding subagent work like subsection execution. Activities
initiated by the database manager through a utility, procedure, or
internal SQL statement are not affected by this condition.

CREATE THRESHOLD

788 SQL Reference Volume 2



SQLROWSREAD > bigint-value
This condition defines an upper bound on the number of rows that may be
read by an activity during its lifetime on a particular member. This value
can be any positive big integer (not zero) (SQLSTATE 42820). Note that the
number of rows read is different from the number of rows returned, which
is controlled by the SQLROWSRETURNED condition.

The definition domain for this condition must be DATABASE, SERVICE
CLASS, a service subclass (SERVICE CLASS specifying the UNDER clause),
WORKLOAD or a work action (a threshold for a work action definition
domain is created using a CREATE WORK ACTION SET or ALTER WORK
ACTION SET statement, and the work action set must be applied to a
workload or a database), and the enforcement scope must be MEMBER
(SQLSTATE 5U037). This condition is enforced independently at each
member.

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities like those initiated by the setting of a constraint,
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The threshold is checked at the end of each request (like a
fetch operation, for example) and on the interval defined by the
CHECKING clause. The CHECKING clause defines an upper
bound on how long a threshold violation may go undetected. The
default is 60 seconds. The value can be any positive integer (not
zero) with a maximum value of 86400 seconds (SQLSTATE 42820).
Setting a low value may impact system performance negatively.

SQLROWSREADINSC > bigint-value
This condition defines an upper bound on the number of rows that may be
read by an activity on a particular member while it is executing in a
service subclass. Rows read before executing in the service subclass
specified are not counted. This value can be any positive big integer (not
zero) (SQLSTATE 42820). Note that the number of rows read is different
from the number of rows returned, which is controlled by the
SQLROWSRETURNED condition.

The definition domain for this condition must be a service subclass
(SERVICE CLASS specifying the UNDER clause) and the enforcement
scope must be MEMBER (SQLSTATE 5U037). This condition is enforced
independently at each member.

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that

CREATE THRESHOLD

Statements 789



are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities like those initiated by the setting of a constraint,
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The threshold is checked at the end of each request (like a
fetch operation, for example) and on the interval defined by the
CHECKING clause. The CHECKING clause defines an upper
bound on how long a threshold violation may go undetected. The
default is 60 seconds. The value can be any positive integer (not
zero) with a maximum value of 86400 seconds (SQLSTATE
42820).Setting a low value may impact system performance
negatively.

CPUTIME > integer-value HOUR | HOURS | MINUTE | MINUTES | SECOND |
SECONDS

This condition defines an upper bound for the amount of processor time
that an activity may consume during its lifetime on a particular member.
The processor time tracked by this threshold is measured from the time
that the activity starts executing. This value can be any positive integer
(not zero) (SQLSTATE 42820).

The definition domain for this condition must be DATABASE, a service
superclass (SERVICE CLASS), a service subclass (SERVICE CLASS
specifying the UNDER clause), WORKLOAD or work action (a threshold
for a work action definition domain is created using a CREATE WORK
ACTION SET or ALTER WORK ACTION SET statement, and the work
action set must be applied to a workload or a database), and the
enforcement scope must be MEMBER (SQLSTATE 5U037). This condition is
enforced independently at each member.

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities, like those initiated by the setting of a constraint
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

v Activities of type CALL. For CALL activities, the processor time tracked
for the procedure does not include the processor time used by any child
activities or by any fenced mode processes. The threshold condition will
be checked only upon return from user logic to the database engine. For
example: During the execution of a trusted routine, the threshold
condition will be checked only when the routine issues a request to the
database engine).

CREATE THRESHOLD

790 SQL Reference Volume 2



CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The granularity of the CPUTIME threshold is
approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60
seconds and the degree of parallelism is 2, the activity might use
an extra 2 minutes of processor time instead of 1 minute before the
threshold violation is detected. The default is 60 seconds. The
value can be any positive integer (not zero) with a maximum value
of 86400 seconds (SQLSTATE 42820). Setting a low value may
impact system performance negatively.

CPUTIMEINSC > integer-value HOUR | HOURS | MINUTE | MINUTES | SECOND |
SECONDS

This condition defines an upper bound for the amount of processor time
that an activity may consume on a particular member while it is executing
in a particular service subclass. The processor time tracked by this
threshold is measured from the time that the activity starts executing in the
service subclass identified in the threshold domain. Any processor time
used before that point is not counted toward the limit imposed by this
threshold. This value can be any positive integer (not zero) (SQLSTATE
42820).

The definition domain for this condition must be a service subclass
(SERVICE CLASS specifying the UNDER clause), and the enforcement
scope must be MEMBER (SQLSTATE 5U037). This condition is enforced
independently at each member.

Activities tracked by this condition are:
v Coordinator activities of type DML and corresponding subagent work

(like subsection execution).
v Nested DML activities that are derived from user logic and their

corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

v Internal SQL activities, like those initiated by the setting of a constraint
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

v Activities of type CALL. For CALL activities, the processor time tracked
for the procedure does not include the processor time used by any child
activities or by any fenced mode processes. The threshold condition will
be checked only upon return from user logic to the database engine. For
example: During the execution of a trusted routine, the threshold
condition will be checked only when the routine issues a request to the
database engine).

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The granularity of the CPUTIMEINSC threshold is
approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60
seconds and the degree of parallelism is 2, the activity might use
an extra 2 minutes of processor time instead of 1 minute before the
threshold violation is detected. The default is 60 seconds. The
value can be any positive integer (not zero) with a maximum value

CREATE THRESHOLD

Statements 791



of 86400 seconds (SQLSTATE 42820). Setting a low value may
impact system performance negatively.

DATATAGINSC IN (integer-constant, ...)
This condition defines one or more data tag values specified on a table
space that the activity touches. The data tag on a table space, or its
underlying storage group (where applicable), can be either not be set or set
to a value from 1 to 9. If the activity touches a table space that has no data
tag set (at either the table space or the storage group level), this threshold
will not have any affect on that activity. The definition domain for this
condition must be a service subclass (SERVICE CLASS specifying the
UNDER clause), and the enforcement scope must be DATABASE
PARTITION (SQLSTATE 5U037). This condition is enforced independently
at each database partition.

Activities tracked by this condition are:
v Coordinator activities of type data manipulation language (DML).
v Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition.

This threshold is checked only when a scan is opened on a table or when
an insert is performed into a table. Fetching data from a table after a scan
has been opened will not violate the threshold.

DATATAGINSC NOT IN (integer-constant, ...)
This condition defines one or more data tag values not specified on a table
space that the activity touches. The data tag on a table space, or its
underlying storage group (where applicable), can be either not be set or set
to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or the storage group level), this threshold
will not have any affect on that activity. The definition domain for this
condition must be a service subclass (SERVICE CLASS specifying the
UNDER clause) and the enforcement scope must be DATABASE
PARTITION (SQLSTATE 5U037). This condition is enforced independently
at each database partition.

Activities tracked by this condition are:
v Coordinator activities of type data manipulation language (DML).
v Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition.

This threshold is checked only when a scan is opened on a table or when
an insert is performed into a table. Fetching data from a table after a scan
has been opened will not violate the threshold.

threshold-exceeded-actions
Specifies what action is to be taken when a condition is exceeded. Each time
that a condition is exceeded, an event is recorded in the threshold violations
event monitor, if one is active.

COLLECT ACTIVITY DATA
Specifies that data about each activity that exceeded the threshold is to be
sent to any active activities event monitor, when the activity completes.
The default is COLLECT ACTIVITY DATA NONE. If COLLECT ACTIVITY
DATA is specified, the default is WITHOUT DETAILS. The COLLECT
ACTIVITY DATA setting does not apply to non-activity thresholds, such as

CREATE THRESHOLD

792 SQL Reference Volume 2



the following: CONNECTIONIDLETIME,
TOTALDBPARTITIONCONNECTIONS,
TOTALSCPARTITIONCONNECTIONS,
CONCURRENTWORKLOADOCCURRENCES, UOWTOTALTIME.

NONE
Specifies that activity data should not be collected for each activity that
exceeds the threshold.

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the coordinator
member of the activity.

ON ALL MEMBERS
Specifies that the activity data is to be collected at all members on
which the activity is processed. On remote members, a record for the
activity may be captured multiple times as the activity comes and goes
on those members. For predictive thresholds, activity information is
collected at all members only if you also specify the CONTINUE action
for exceeded thresholds. For reactive thresholds, the ON ALL
MEMBERS clause has no effect and activity information is always
collected only at the coordinator member. For both predictive and
reactive thresholds, any activity details, section information, or values
will be collected only at the coordinator member.

WITHOUT DETAILS
Specifies that data about each activity associated with the work class
for which this work action is defined is to be sent to any active
activities event monitor, when the activity completes execution. Details
about statement, compilation environment, and section environment
data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to be
sent to any active activities event monitor, for those activities that
have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any active
activities event monitor for those activities that have them.
DETAILS must be specified if SECTION is specified. For predictive
thresholds, section actuals will be collected on any member where
the activity data is collected. For reactive thresholds, section actuals
will be collected only on the coordinator member.

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

STOP EXECUTION
The execution of the activity is stopped and an error is returned
(SQLSTATE 5U026). In the case of the UOWTOTALTIME threshold, the
unit of work is rolled back.

CONTINUE
The execution of the activity is not stopped.

CREATE THRESHOLD

Statements 793



FORCE APPLICATION
The application is forced off the system (SQLSTATE 55032). This action can
only be specified for the UOWTOTALTIME threshold.

remap-activity-action

REMAP ACTIVITY TO service-subclass-name
The activity is mapped to service-subclass-name.The execution of the
activity is not stopped. This action is valid only for in-service-class
thresholds like CPUTIMEINSC, SQLROWSREADINSC,
DATATAGINSC IN and DATATAGINSC NOT IN thresholds
(SQLSTATE 5U037). The service-subclass-name must identify an
existing service subclass under the same superclass associated with the
threshold (SQLSTATE 5U037). The service-subclass-name cannot be the
same as the associated service subclass of the threshold (SQLSTATE
5U037).

NO EVENT MONITOR RECORD
Specifies that no threshold violation record will be written.

LOG EVENT MONITOR RECORD
Specifies that if a THRESHOLD VIOLATIONS event monitor exists and
is active, a threshold violation record is written to it.

Notes
v Thresholds can be defined on different aspects of database behavior to monitor

and control that behavior. When a threshold is defined on activities, unless
otherwise specified, it will be enforced only during the actual execution of SQL
statements, not including compilation time, and the load utility.

v The CONCURRENTWORKLOADOCCURRENCES threshold and the
CONCURRENTWORKLOADACTIVITIES threshold differ in scope.
CONCURRENTWORKLOADOCCURRENCES controls how many connections
can map to a workload definition simultaneously, and
CONCURRENTWORKLOADACTIVITIES controls how many activities each
connection that is mapped to the workload definition can submit concurrently.

v Changes are written to the system catalog, but do not take effect until after a
COMMIT statement, even for the connection that issues the statement.

v Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v Threshold exceeded action of CONTINUE and event monitor data: Event
monitor data is collected only once per member when a threshold condition has
been exceeded. If the threshold exceeded action is CONTINUE, the activity
continues executing and no further event monitor data is collected for that
threshold at the affected member. For example, consider a time threshold of 10
minutes with an action of CONTINUE. After an activity exceeds the 10-minute
upper bound, event monitor data is collected for the threshold at the affected
member.

v Quiescing a service class: The TOTALSCPARTITIONCONNECTIONS threshold
condition can be used to simulate quiescing service classes that cannot normally
be quiesced (for example, the default user class, or the default system class).
This is useful, because thresholds do not apply to users with DBADM authority
running in the SYSDEFAULTADMWORKLOAD, whereas a quiesced service
class is not available to anyone. Consequently, default service classes cannot be

CREATE THRESHOLD

794 SQL Reference Volume 2



quiesced directly but only through a threshold that allows users with DBADM
authority to join them when connected to the database using the
SYSDEFAULTADMWORKLOAD.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– DATABASE PARTITION can be specified in place of MEMBER, except when

the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– DATABASE PARTITIONS can be specified in place of MEMBERS, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– TOTALDBPARTITIONCONNECTIONS can be specified in place of

TOTALMEMBERCONNECTIONS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– TOTALSCPARTITIONCONNECTIONS can be specified in place of
TOTALSCMEMBERCONNECTIONS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
v Example 1: Create a threshold that enforces a maximum temporary table space

usage of 50M (per database partition) to any activity in the database. Any
activity that violates this threshold is to be stopped.

CREATE THRESHOLD DBMAX50MEGTEMPSPACE
FOR DATABASE ACTIVITIES
ENFORCEMENT MEMBER
WHEN SQLTEMPSPACE > 50 M
STOP EXECUTION

v Example 2: Create a second threshold to limit the default runtime of any activity
in the database to a maximum of 1 hour. Any activity that violates this threshold
is to be stopped.

CREATE THRESHOLD DBMAX1HOURRUNTIME
FOR DATABASE ACTIVITIES
ENFORCEMENT DATABASE
WHEN ACTIVITYTOTALTIME > 1 HOUR
STOP EXECUTION

v Example 3: Assume that a service superclass named BIGQUERIES was created to
host queries using more temporary space than average and running longer than
1 hour. The thresholds defined inside this service class will override the values
that were set in the previous example at the database level. Note how activities
violating the thresholds inside this superclass are allowed to continue executing,
but detailed information is collected for further analysis.

CREATE THRESHOLD BIGQUERIESMAX500MEGTEMPSPACE
FOR SERVICE CLASS BIGQUERIES ACTIVITIES
ENFORCEMENT DATABASE MEMBER
WHEN SQLTEMPSPACE > 500 M
COLLECT ACTIVITY DATA WITH DETAILS AND VALUES
CONTINUE

CREATE THRESHOLD BIGQUERIESLONGRUNNINGTIME
FOR SERVICE CLASS BIGQUERIES ACTIVITIES
ENFORCEMENT DATABASE
WHEN ACTIVITYTOTALTIME > 10 HOURS
COLLECT ACTIVITY DATA WITH DETAILS AND VALUES
CONTINUE

v Example 4: Assuming the existence of a workload named PAYROLL, create a
threshold that enforces the maximum number of activities within the workload
to be less than or equal to 10.

CREATE THRESHOLD

Statements 795



CREATE THRESHOLD MAXACTIVITIESINPAYROLL
FOR WORKLOAD PAYROLL ACTIVITIES
ENFORCEMENT WORKLOAD OCCURRENCE
WHEN CONCURRENTWORKLOADACTIVITIES > 10
STOP EXECUTION

v Example 5: Create a threshold that enforces a maximum concurrency of 2
activities in the service class BIGQUERIES.

CREATE THRESHOLD MAXBIGQUERIESCONCURRENCY
FOR SERVICE CLASS BIGQUERIES ACTIVITIES
ENFORCEMENT DATABASE
WHEN CONCURRENTDBCOORDACTIVITIES > 2
STOP EXECUTION

v Example 6: Create a threshold that captures activity information for a specific
statement that runs for longer than one minute, but do not cease statement
execution.

CREATE THRESHOLD TH1
FOR STATEMENT
TEXT ’SELECT DISTINCT PARTS_BIN FROM STOCK WHERE PART_NUMBER = ?’
ACTIVITIES ENFORCEMENT DATABASE
WHEN ACTIVITYTOTALTIME > 1 MINUTE
COLLECT ACTIVITY DATA WITH DETAILS, SECTION AND VALUES
CONTINUE

CREATE THRESHOLD

796 SQL Reference Volume 2



CREATE TRANSFORM
The CREATE TRANSFORM statement defines transformation functions, identified
by a group name, that are used to exchange structured type values with host
language programs and with external functions.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v Owner of the type identified by type-name, and EXECUTE privilege on every

specified function
v DBADM authority

Syntax

�� CREATE TRANSFORM FOR type-name
TRANSFORMS

�

� � �

,
(1)

group-name ( TO SQL WITH function-designator )
FROM SQL

��

function-designator:

�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

Notes:

1 The same clause must not be specified more than once.

Description

TRANSFORM or TRANSFORMS
Indicates that one or more transform groups is being defined. Either version of
the keyword can be specified.

FOR type-name
Specifies a name for the user-defined structured type for which the transform
group is being defined.

CREATE TRANSFORM

Statements 797



In dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified type-name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier for an
unqualified type-name. The type-name must be the name of an existing
user-defined type (SQLSTATE 42704), and it must be a structured type
(SQLSTATE 42809). The structured type or any other structured type in the
same type hierarchy must not have transforms already defined with the given
group-name (SQLSTATE 42739).

group-name
Names the transform group. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The group-name must not identify a transform
group that already exists in the catalog for the specified type-name (SQLSTATE
42739). The group-name must not begin with the characters 'SYS' (SQLSTATE
42939). At most, one of each of the FROM SQL and TO SQL function
designations can be specified for any given group (SQLSTATE 42628).

TO SQL
Defines the specific function used to transform a value to the SQL user-defined
structured type format. The function must have all its parameters as built-in
data types and the returned type is type-name.

FROM SQL
Defines the specific function used to transform a value to a built in data type
value representing the SQL user-defined structured type. The function must
have one parameter of data type type-name, and return a built-in data type (or
set of built-in data types).

WITH function-designator
Uniquely identifies the transform function.

If FROM SQL is specified, function-designator must identify a function that
meets the following requirements:
v There is one parameter of type type-name.
v The return type is a built-in type, or a row whose columns all have built-in

types.
v The signature specifies either LANGUAGE SQL or the use of another FROM

SQL transform function that has LANGUAGE SQL.

If TO SQL is specified, function-designator must identify a function that meets
the following requirements:
v All parameters have built-in types.
v The return type is type-name.
v The signature specifies either LANGUAGE SQL or the use of another TO

SQL transform function that has LANGUAGE SQL.

If function-designator identifies a function that does not meet these requirements
(according to its use as a FROM SQL or a TO SQL transform function), an
error is raised (SQLSTATE 428DC).

Methods (even if specified with FUNCTION ACCESS) cannot be specified as
transforms through function-designator. Instead, only functions that are defined
by the CREATE FUNCTION statement can act as transforms (SQLSTATE 42704
or 42883).

For more information, see “Function, method, and procedure designators” on
page 20.

CREATE TRANSFORM

798 SQL Reference Volume 2



Rules
v The one or more built-in types that are returned from the FROM SQL function

should directly correspond to the one or more built-in types that are parameters
of the TO SQL function. This is a logical consequence of the inverse relationship
between these two functions.

Notes
v When a transform group is not specified in an application program (using the

TRANSFORM GROUP precompile or bind option for static SQL, or the SET
CURRENT DEFAULT TRANSFORM GROUP statement for dynamic SQL), the
transform functions in the transform group 'DB2_PROGRAM' are used (if
defined) when the application program is retrieving or sending host variables
that are based on the user-defined structured type identified by type-name. When
retrieving a value of data type type-name, the FROM SQL transform is invoked to
transform the structured type to the built-in data type returned by the transform
function. Similarly, when sending a host variable that will be assigned to a value
of data type type-name, the TO SQL transform is invoked to transform the
built-in data type value to the structured type value. If a user-defined transform
group is not specified, or a 'DB2_PROGRAM' group is not defined (for the given
structured type), an error is raised (SQLSTATE 42741).

v The built-in data type representation for a structured type host variable must be
assignable:
– from the result of the FROM SQL transform function for the structured type

as defined by the specified TRANSFORM GROUP option of the precompile
command (using retrieval assignment rules) and

– to the parameter of the TO SQL transform function for the structured type as
defined by the specified TRANSFORM GROUP option of the precompile
command (using storage assignment rules).

If a host variable is not assignment compatible with the type required by the
applicable transform function, an error is raised (for bind-in: SQLSTATE 42821;
for bind-out: SQLSTATE 42806). For errors that result from string assignments,
see “String Assignments”.

v The transform functions identified in the default transform group named
'DB2_FUNCTION' are used whenever a user-defined function not written in
SQL is invoked using the data type type-name as a parameter or returns type.
This applies when the function does not specify the TRANSFORM GROUP
clause. When invoking the function with an argument of data type type-name,
the FROM SQL transform is executed to transform the structured type to the
built-in data type returned by the transform function. Similarly, when the
returns data type of the function is of data type type-name, the TO SQL transform
is invoked to transform the built-in data type value returned from the external
function program into the structured type value.

v If a structured type contains an attribute that is also a structured type, the
associated transform functions must recursively expand (or assemble) all nested
structured types. This means that the results or parameters of the transform
functions consist only of the set of built-in types representing all base attributes
of the subject structured type (including all its nested structured types). There is
no "cascading" of transform functions for handling nested structured types.

v The functions identified in this statement are resolved according to the rules
outlined previously at the execution of this statement. When these functions are
used (implicitly) in subsequent SQL statements, they do not undergo another
resolution process. The transform functions defined in this statement are
recorded exactly as they are resolved in this statement.

CREATE TRANSFORM

Statements 799



v When attributes or subtypes of a given type are created or dropped, the
transform functions for the user-defined structured type must also be changed.

v For a given transform group, the FROM SQL and TO SQL transforms can be
specified in either the same group-name clause, in separate group-name clauses, or
in separate CREATE TRANSFORM statements. The only restriction is that a
given FROM SQL or TO SQL transform designation may not be redefined
without first dropping the existing group definition. This allows you to define,
for example, a FROM SQL transform for a given group first, and the
corresponding TO SQL transform for the same group at a later time.

Example

Create two transform groups that associate the user-defined structured type
polygon with transform functions customized for C and Java, respectively.

CREATE TRANSFORM FOR POLYGON
mystruct1 (FROM SQL WITH FUNCTION myxform_sqlstruct,

TO SQL WITH FUNCTION myxform_structsql)
myjava1 (FROM SQL WITH FUNCTION myxform_sqljava,

TO SQL WITH FUNCTION myxform_javasql)

CREATE TRANSFORM

800 SQL Reference Volume 2



CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger in the database.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v ALTER privilege on the table on which the BEFORE or AFTER trigger is defined
v CONTROL privilege on the view on which the INSTEAD OF trigger is defined
v Owner of the view on which the INSTEAD OF trigger is defined
v ALTERIN privilege on the schema of the table or view on which the trigger is

defined
v DBADM authority

and one of:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the trigger does not exist
v CREATEIN privilege on the schema, if the schema name of the trigger refers to

an existing schema
v DBADM authority

If the authorization ID of the statement does not have DATAACCESS authority, the
privileges (excluding group privileges) held by the authorization ID of the
statement must include all of the following authorities, as long as the trigger exists:
v On the table on which the trigger is defined, if any transition variables or tables

are specified:
– SELECT privilege on the table on which the trigger is defined, if any

transition variables or tables are specified
– CONTROL privilege on the table on which the trigger is defined, if any

transition variables or tables are specified
– DATAACCESS authority

v On any table or view referenced in the triggered action condition:
– SELECT privilege on any table or view referenced in the triggered action

condition
– CONTROL privilege on any table or view referenced in the triggered action

condition
– DATAACCESS authority

v Necessary privileges to invoke the triggered SQL statements specified.

Group privileges are not considered for any table or view specified in the CREATE
TRIGGER statement.

To replace an existing trigger, the authorization ID of the statement must be the
owner of the existing trigger (SQLSTATE 42501).

CREATE TRIGGER

Statements 801



If the SECURED option is specified, the privileges held by the authorization ID of
the statement must additionally include SECADM or CREATE_SECURE_OBJECT
authority (SQLSTATE 42501).

Syntax

�� CREATE TRIGGER trigger-name
OR REPLACE

NO CASCADE
BEFORE

AFTER
INSTEAD OF

�

� trigger-event ON table-name
view-name

�

�

�
(1) (2) AS

REFERENCING OLD correlation-name
AS

NEW correlation-name
AS

OLD TABLE identifier
AS

NEW TABLE identifier

�

� FOR EACH ROW
(3)

FOR EACH STATEMENT

NOT SECURED

SECURED
triggered-action ��

trigger-event:

�

�

OR
(4)

INSERT
DELETE
UPDATE

,

OF column-name

triggered-action:

(5)
WHEN ( search-condition )

�

� SQL-procedure-statement
label:

SQL-procedure-statement:

CREATE TRIGGER

802 SQL Reference Volume 2



�

CALL
(6)

Compound SQL (compiled)
Compound SQL (inlined)
FOR

fullselect
,

WITH common-table-expression
GET DIAGNOSTICS
IF
INSERT
ITERATE
LEAVE
MERGE
searched-delete
searched-update
SET Variable
SIGNAL
WHILE

Notes:

1 OLD and NEW can only be specified once each.

2 OLD TABLE and NEW TABLE can only be specified once each, and only for
AFTER triggers or INSTEAD OF triggers.

3 FOR EACH STATEMENT may not be specified for BEFORE triggers or
INSTEAD OF triggers.

4 A trigger event must not be specified more than once for the same operation.
For example, INSERT OR DELETE is allowed, but INSERT OR INSERT is not
allowed.

5 WHEN condition may not be specified for INSTEAD OF triggers.

6 A compound SQL (compiled) statement cannot be specified if the trigger
definition includes a REFERENCING OLD TABLE clause or a
REFERENCING NEW TABLE clause. A compound SQL (compiled) statement
also cannot be specified for a trigger definition in a partitioned database
environment.

Description

OR REPLACE
Specifies to replace the definition for the trigger if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog. This option is ignored if a definition for the trigger
does not exist at the current server. This option can be specified only by the
owner of the object.

trigger-name
Names the trigger. The name, including the implicit or explicit schema name,
must not identify a trigger already described in the catalog (SQLSTATE 42710).
If a two-part name is specified, the schema name cannot begin with 'SYS'
(SQLSTATE 42939).

NO CASCADE BEFORE
Specifies that the associated triggered action is to be applied before any

CREATE TRIGGER

Statements 803



changes caused by the actual update of the subject table are applied to the
database. It also specifies that the triggered action of the trigger will not cause
other triggers to be activated.

AFTER
Specifies that the associated triggered action is to be applied after the changes
caused by the actual update of the subject table are applied to the database.

INSTEAD OF
Specifies that the associated triggered action replaces the action against the
subject view. Only one INSTEAD OF trigger is allowed for each kind of
operation on a given subject view (SQLSTATE 428FP).

trigger-event
Specifies that the triggered action associated with the trigger is to be executed
whenever one of the events is applied to the subject table or subject view. Any
combination of the events can be specified, but each event (INSERT, DELETE,
and UPDATE) can only be specified once (SQLSTATE.42613). If multiple events
are specified, the triggered action must be a compound SQL (compiled)
statement (SQLSTATE 42601).

INSERT
Specifies that the triggered action associated with the trigger is to be
executed whenever an INSERT operation is applied to the subject table or
subject view.

DELETE
Specifies that the triggered action associated with the trigger is to be
executed whenever a DELETE operation is applied to the subject table or
subject view.

UPDATE
Specifies that the triggered action associated with the trigger is to be
executed whenever an UPDATE operation is applied to the subject table or
subject view, subject to the columns specified or implied.

If the optional column-name list is not specified, every column of the table
or view is implied. Therefore, omission of the column-name list implies that
the trigger will be activated by the update of any column of the table or
view.

OF column-name,...
Each column-name specified must be a column of the base table
(SQLSTATE 42703). If the trigger is a BEFORE trigger, the column-name
specified cannot be a generated column other than the identity column
(SQLSTATE 42989). No column-name can appear more than once in the
column-name list (SQLSTATE 42711). The trigger will only be activated
by the update of a column that is identified in the column-name list.
This clause cannot be specified for an INSTEAD OF trigger (SQLSTATE
42613).

ON

table-name
Designates the subject table of the BEFORE trigger or AFTER trigger
definition. The name must specify a base table or an alias that resolves to a
base table (SQLSTATE 42704 or 42809). The name must not specify a
catalog table (SQLSTATE 42832), a materialized query table (SQLSTATE
42997), a created temporary table, a declared temporary table (SQLSTATE
42995), or a nickname (SQLSTATE 42809).

CREATE TRIGGER

804 SQL Reference Volume 2



view-name
Designates the subject view of the INSTEAD OF trigger definition. The
name must specify an untyped view or an alias that resolves to an untyped
view with no columns of type XML (SQLSTATE 42704 or 42809). The name
must not specify a catalog view (SQLSTATE 42832). The name must not
specify a view that is defined using WITH CHECK OPTION (a symmetric
view), or a view on which a symmetric view has been defined, directly or
indirectly (SQLSTATE 428FQ).

NOT SECURED or SECURED
Specifies whether the trigger is considered secure. The default is NOT
SECURED.

NOT SECURED
Specifies the trigger is considered not secure.

SECURED
Specifies the trigger is considered secure. SECURED must be specified for a
trigger whose subject table is a table on which row level or column level
access control has been activated (SQLSTATE 428H8). Similarly, SECURED
must be specified for a trigger that is created on a view and one or more of
the underlying tables in that view definition has row level or column level
access control activated (SQLSTATE 428H8).

REFERENCING
Specifies the correlation names for the transition variables and the table names
for the transition tables. Correlation names identify a specific row in the set of
rows affected by the triggering SQL operation. Table names identify the
complete set of affected rows. Each row affected by the triggering SQL
operation is available to the triggered action by qualifying columns with
correlation-names specified as follows.

OLD AS correlation-name
Specifies a correlation name which identifies the row state before the
triggering SQL operation.

NEW AS correlation-name
Specifies a correlation name which identifies the row state as modified by
the triggering SQL operation and by any SET statement in a BEFORE
trigger that has already executed.

The complete set of rows affected by the triggering SQL operation is available
to the triggered action by using a temporary table name specified as follows.

OLD TABLE AS identifier
Specifies a temporary table name which identifies the set of affected rows
before the triggering SQL operation. If the trigger event is INSERT, the
temporary table is empty.

NEW TABLE AS identifier
Specifies a temporary table name which identifies the affected rows as
modified by the triggering SQL operation and by any SET statement in a
BEFORE trigger that has already executed. If the trigger event is DELETE,
the temporary table is empty.

The following rules apply to the REFERENCING clause:
v None of the OLD and NEW correlation names and the OLD TABLE and

NEW TABLE names can be identical (SQLSTATE 42712).

CREATE TRIGGER

Statements 805



v Only one OLD and one NEW correlation-name may be specified for a trigger
(SQLSTATE 42613).

v Only one OLD TABLE and one NEW TABLE identifier may be specified for a
trigger (SQLSTATE 42613).

v OLD TABLE or NEW TABLE identifiers cannot be defined in a BEFORE
trigger (SQLSTATE 42898).

v A NEW transition variable can only be the target of an assignment in a
BEFORE trigger. Otherwise, transition variables cannot be the target of an
assignment (SQLSTATE 42703 or 42987).

v OLD or NEW correlation names cannot be defined in a FOR EACH
STATEMENT trigger (SQLSTATE 42899).

v Transition tables cannot be modified (SQLSTATE 42807).
v The total of the references to the transition table columns and transition

variables in the triggered-action cannot exceed the limit for the number of
columns in a table or the sum of their lengths cannot exceed the maximum
length of a row in a table (SQLSTATE 54040).

v The scope of each correlation-name and each identifier is the entire trigger
definition.

v If the triggered-action includes a compound SQL (compiled) statement:
– OLD TABLE or NEW TABLE identifiers cannot be defined.
– If the operation is a DELETE operation, OLD correlation-name captures the

value of the deleted row. If it is an UPDATE operation, it captures the
value of the row before the UPDATE operation. For an insert operation,
OLD correlation-name captures null values for each column of a row.

– For an insert operation or an update operation, the value of NEW
captures the new state of the row as provided by the original operation
and as modified by any BEFORE trigger that has executed to this point.
For a delete operation, NEW correlation-name captures null values for each
column of a row. In a BEFORE DELETE trigger, any non-null values
assigned to the new transition variables persist only within the trigger
where the assignment occurred.

v If the triggered-action does not include a compound SQL (compiled)
statement:
– The OLD correlation-name and the OLD TABLE identifier can only be used

if the trigger event is either a DELETE operation or an UPDATE operation
(SQLSTATE 42898). If the operation is a DELETE operation, OLD
correlation-name captures the value of the deleted row. If it is an UPDATE
operation, it captures the value of the row before the UPDATE operation.
The same applies to the OLD TABLE identifier and the set of affected
rows.

– The NEW correlation-name and the NEW TABLE identifier can only be used
if the trigger event is either an INSERT operation or an UPDATE
operation (SQLSTATE 42898). In both operations, the value of NEW
captures the new state of the row as provided by the original operation
and as modified by any BEFORE trigger that has executed to this point.
The same applies to the NEW TABLE identifier and the set of affected
rows.

FOR EACH ROW
Specifies that the triggered action is to be applied once for each row of the
subject table or subject view that is affected by the triggering SQL operation.

CREATE TRIGGER

806 SQL Reference Volume 2



FOR EACH STATEMENT
Specifies that the triggered action is to be applied only once for the whole
statement. This type of trigger granularity cannot be specified for a BEFORE
trigger or an INSTEAD OF trigger (SQLSTATE 42613). If specified, an UPDATE
or DELETE trigger is activated, even if no rows are affected by the triggering
UPDATE or DELETE statement.

triggered-action
Specifies the action to be performed when a trigger is activated. A triggered
action is composed of an SQL-procedure-statement and by an optional condition
for the execution of the SQL-procedure-statement.

Trigger event predicates can be used anywhere in the triggered action of a
CREATE TRIGGER statement that uses a compound SQL (compiled) statement
as the SQL-procedure-statement.

WHEN

(search-condition)
Specifies a condition that is true, false, or unknown. The
search-condition provides a capability to determine whether or not a
certain triggered action should be executed. The associated action is
performed only if the specified search condition evaluates as true. If
the WHEN clause is omitted, the associated SQL-procedure-statement is
always performed.

The WHEN clause cannot be specified for INSTEAD OF triggers
(SQLSTATE 42613).

A reference to a transition variable with an XML data type can be used
only in a VALIDATED predicate.

label:
Specifies the label for an SQL procedure statement. The label must be
unique within a list of SQL procedure statements, including any compound
statements nested within the list. Note that compound statements that are
not nested can use the same label. A list of SQL procedure statements is
possible in a number of SQL control statements.

Only the FOR statement, WHILE statement, and the compound SQL
statement can include a label.

SQL-procedure-statement
Specifies the SQL statement that is to be part of the triggered action. A
searched update, searched delete, insert, or merge operation on nicknames
inside compound SQL is not supported.

The triggered action of a BEFORE trigger on a column of type XML can
invoke the XMLVALIDATE function through a SET statement, leave values
of type XML unchanged, or assign them to NULL using a SET statement.

The SQL-procedure-statement must not contain a statement that is not
supported (SQLSTATE 42987).

The SQL-procedure-statement cannot reference an undefined transition
variable (SQLSTATE 42703), a federated object (SQLSTATE 42997), or a
declared temporary table (SQLSTATE 42995). or the start and end columns
of the BUSINESS_TIME period (SQLSTATE 42808).

The SQL-procedure-statement in a BEFORE trigger cannot:

CREATE TRIGGER

Statements 807



v Contain any INSERT, DELETE, or UPDATE operations, nor invoke any
routine defined with MODIFIES SQL DATA, if it is not a compound SQL
(compiled).

v Contain any DELETE or UPDATE operations on the trigger subject
table, nor invoke any routine containing such operations, if it is a
compound SQL (compiled).

v Reference a materialized query table defined with REFRESH
IMMEDIATE (SQLSTATE 42997)

v Reference a generated column other than the identity column in the
NEW transition variable (SQLSTATE 42989).

A triggered action cannot include an operation that does an insert or
update to a column-organized table.

Notes
v Adding a trigger to a table that already has rows in it will not cause any

triggered actions to be activated. Thus, if the trigger is designed to enforce
constraints on the data in the table, those constraints may not be satisfied by the
existing rows.

v If the events for two triggers occur simultaneously (for example, if they have the
same event, activation time, and subject tables), then the first trigger created is
the first to execute. If the OR REPLACE option is used to replace a previously
created trigger, the create time is changed and therefore could affect the order of
trigger execution.

v If a column is added to the subject table after triggers have been defined, the
following rules apply:
– If the trigger is an UPDATE trigger that was specified without an explicit

column list, then an update to the new column will cause the activation of the
trigger.

– The column will not be visible in the triggered action of any previously
defined trigger.

– The OLD TABLE and NEW TABLE transition tables will not contain this
column. Thus, the result of performing a "SELECT *" on a transition table will
not contain the added column.

v If a column is added to any table referenced in a triggered action, the new
column will not be visible to the triggered action.

v If an object referenced in the trigger body does not exist or is marked invalid, or
the definer temporarily doesn't have privileges to access the object, and if the
database configuration parameter auto_reval is not set to DISABLED, then the
trigger will still be created successfully. The trigger will be marked invalid and
will be revalidated the next time it is invoked.

v The result of a fullselect specified in a SQL-procedure-statement is not available
inside or outside of the trigger.

v A procedure called within a triggered compound statement must not issue a
COMMIT or a ROLLBACK statement (SQLSTATE 42985).

v A procedure that contains a reference to a nickname in a searched UPDATE
statement, a searched DELETE statement, or an INSERT statement is not
supported (SQLSTATE 25000).

v Table access restrictions:: If a procedure is defined as READS SQL DATA or
MODIFIES SQL DATA, no statement in the procedure can access a table that is
being modified by the compound statement that invoked the procedure
(SQLSTATE 57053). If the procedure is defined as MODIFIES SQL DATA, no

CREATE TRIGGER

808 SQL Reference Volume 2



statement in the procedure can modify a table that is being read or modified by
the compound statement that invoked the procedure (SQLSTATE 57053).

v A BEFORE DELETE trigger defined on a table involved in a cycle of cascaded
referential constraints should not include references to the table on which it is
defined or any other table modified by cascading during the evaluation of the
cycle of referential integrity constraints. The results of such a trigger are data
dependent and therefore may not produce consistent results.
In its simplest form, this means that a BEFORE DELETE trigger on a table with
a self-referencing referential constraint and a delete rule of CASCADE should
not include any references to the table in the triggered-action.

v The creation of a trigger causes certain packages to be marked invalid:
– If an UPDATE trigger without an explicit column list is created, then

packages with an update usage on the target table or view are invalidated.
– If an UPDATE trigger with a column list is created, then packages with

update usage on the target table are only invalidated if the package also has
an update usage on at least one column in the column-name list of the
CREATE TRIGGER statement.

– If an INSERT trigger is created, packages that have an insert usage on the
target table or view are invalidated.

– If a delete trigger is created, packages that have a delete usage on the target
table or view are invalidated.

v A package remains invalid until the application program is explicitly bound or
rebound, or it is executed and the database manager automatically rebinds it.

v Inoperative triggers: An inoperative trigger is a trigger that is no longer available
and is therefore never activated. A trigger becomes inoperative if:
– a privilege that the creator of the trigger is required to have for the trigger to

execute is revoked
– an object such as a table, view or alias, upon which the triggered action is

dependent, is dropped
– a view, upon which the triggered action is dependent, becomes inoperative
– an alias that is the subject table of the trigger is dropped.
In practical terms, an inoperative trigger is one in which a trigger definition has
been dropped as a result of cascading rules for DROP or REVOKE statements.
For example, when a view is dropped, any trigger with an SQL-procedure-
statement that contains a reference to that view is made inoperative.
When a trigger is made inoperative, all packages with statements performing
operations that were activating the trigger will be marked invalid. When the
package is rebound (explicitly or implicitly) the inoperative trigger is completely
ignored. Similarly, applications with dynamic SQL statements performing
operations that were activating the trigger will also completely ignore any
inoperative triggers.
The trigger name can still be specified in the DROP TRIGGER and COMMENT
ON TRIGGER statements.
An inoperative trigger may be re-created by issuing a CREATE TRIGGER
statement using the definition text of the inoperative trigger. This trigger
definition text is stored in the TEXT column of the SYSCAT.TRIGGERS catalog
view. Note that there is no need to explicitly drop the inoperative trigger in
order to re-create it. Issuing a CREATE TRIGGER statement with the same
trigger-name as an inoperative trigger will cause that inoperative trigger to be
replaced with a warning (SQLSTATE 01595).

CREATE TRIGGER

Statements 809



Inoperative triggers are indicated by an X in the VALID column of the
SYSCAT.TRIGGERS catalog view.

v Errors executing triggers: Errors that occur during the execution of triggered SQL
statements are returned using SQLSTATE 09000 unless the error is considered
severe. If the error is severe, the severe error SQLSTATE is returned. The
SQLERRMC field of the SQLCA for non-severe error will include the trigger
name, SQLCODE, SQLSTATE and as many tokens as will fit from the tokens of
the failure.
The SQL-procedure-statement could include a SIGNAL SQLSTATE statement or a
RAISE_ERROR function. In both these cases, the SQLSTATE returned is the one
specified in the SIGNAL SQLSTATE statement or the RAISE_ERROR condition.

v Creating a trigger with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v DB2SECURITYLABEL column: A DB2SECURITYLABEL column can be
referenced in the trigger body of a BEFORE TRIGGER but it cannot be changed
in the body of a BEFORE trigger (SQLSTATE 42989).

v BUSINESS_TIME period columns: The start and end columns of a
BUSINESS_TIME period cannot be changed in the body of BEFORE UPDATE
trigger (SQLSTATE 42808).

v Read-only views: The addition of an INSTEAD OF trigger for a view affects the
read only characteristic of the view. If a read-only view has a dependency
relationship with an INSTEAD OF trigger, the type of operation that is defined
for the INSTEAD OF trigger defines whether the view is deletable, insertable, or
updatable.

v Transition variable values and INSTEAD OF triggers: The initial values for new
transition variables or new transition table columns that are visible in an
INSTEAD OF INSERT trigger are set as follows:
– If a value is explicitly specified for a column in the insert operation, the

corresponding new transition variable is that explicitly specified value.
– If a value is not explicitly specified for a column in the insert operation or the

DEFAULT clause is specified, the corresponding new transition variable is:
- the default value of the underlying table column if the view column is

updatable (without the INSTEAD OF trigger)
- otherwise, the null value

The initial values for new transition variables that are visible in an INSTEAD OF
UPDATE trigger are set as follows:
– If a value is explicitly specified for a column in the update operation, the

corresponding new transition variable is that explicitly specified value.
– If the DEFAULT clause is explicitly specified for a column in the update

operation, the corresponding new transition variable is:
- the default value of the underlying table column if the view column is

updatable (without the INSTEAD OF trigger)
- otherwise, the null value

– Otherwise, the corresponding new transition variable is the existing value of
the column in the row.

v Triggers and typed tables: A BEFORE or AFTER trigger can be attached to a
typed table at any level of a table hierarchy. If an SQL statement activates
multiple triggers, the triggers will be executed in their creation order, even if
they are attached to different tables in the typed table hierarchy.

CREATE TRIGGER

810 SQL Reference Volume 2



When a trigger is activated, its transition variables (OLD, NEW, OLD TABLE
and NEW TABLE) may contain rows of subtables. However, they will contain
only columns defined on the table to which they are attached.
Effects of INSERT, UPDATE, and DELETE statements:
– Row triggers: When an SQL statement is used to INSERT, UPDATE, or

DELETE a table row, it activates row-triggers attached to the most specific
table containing the row, and all supertables of that table. This rule is always
true, regardless of how the SQL statement accesses the table. For example,
when issuing an UPDATE EMP command, some of the updated rows may be
in the subtable MGR. For EMP rows, the row-triggers attached to EMP and its
supertables are activated. For MGR rows, the row-triggers attached to MGR
and its supertables are activated.

– Statement triggers: An INSERT, UPDATE, or DELETE statement activates
statement-triggers attached to tables (and their supertables) that could be
affected by the statement. This rule is always true, regardless of whether any
actual rows in these tables were affected. For example, on an INSERT INTO
EMP command, statement-triggers for EMP and its supertables are activated.
As another example, on either an UPDATE EMP or DELETE EMP command,
statement triggers for EMP and its supertables and subtables are activated,
even if no subtable rows were updated or deleted. Likewise, a UPDATE
ONLY (EMP) or DELETE ONLY (EMP) command will activate
statement-triggers for EMP and its supertables, but not statement-triggers for
subtables.

Effects of DROP TABLE statements: A DROP TABLE statement does not activate
any triggers that are attached to the table being dropped. However, if the
dropped table is a subtable, all the rows of the dropped table are considered to
be deleted from its supertables. Therefore, for a table T:
– Row triggers: DROP TABLE T activates row-type delete-triggers that are

attached to all supertables of T, for each row of T.
– Statement triggers: DROP TABLE T activates statement-type delete-triggers

that are attached to all supertables of T, regardless of whether T contains any
rows.

Actions on Views: To predict what triggers are activated by an action on a view,
use the view definition to translate that action into an action on base tables. For
example:
1. An SQL statement performs UPDATE V1, where V1 is a typed view with a

subview V2. Suppose V1 has underlying table T1, and V2 has underlying
table T2. The statement could potentially affect rows in T1, T2, and their
subtables, so statement triggers are activated for T1 and T2 and all their
subtables and supertables.

2. An SQL statement performs UPDATE V1, where V1 is a typed view with a
subview V2. Suppose V1 is defined as SELECT ... FROM ONLY(T1) and V2
is defined as SELECT ... FROM ONLY(T2). Since the statement cannot affect
rows in subtables of T1 and T2, statement triggers are activated for T1 and
T2 and their supertables, but not their subtables.

3. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed view
defined as SELECT ... FROM T1. The statement can potentially affect T1 and
its subtables. Therefore, statement triggers are activated for T1 and all its
subtables and supertables.

4. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed view
defined as SELECT ... FROM ONLY(T1). In this case, T1 is the only table that

CREATE TRIGGER

Statements 811



can be affected by the statement, even if V1 has subviews and T1 has
subtables. Therefore, statement triggers are activated only for T1 and its
supertables.

v MERGE statement and triggers: The MERGE statement can execute update,
delete, and insert operations. The applicable UPDATE, DELETE, or INSERT
triggers are activated for the MERGE statement when an update, delete, or insert
operation is executed.

v Obfuscation: The CREATE TRIGGER statement can be submitted in obfuscated
form. In an obfuscated statement, only the trigger name is readable. The rest of
the statement is encoded in such a way that is not readable but can be decoded
by the database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

v Creating a trigger with the SECURED option: Normally users with SECADM
authority do not have privileges to create database objects such as triggers or
user-defined functions. Typically, they will examine the data accessed by a
trigger, ensure it is secure, then grant the CREATE_SECURE_OBJECT authority
to someone who has the required privileges to create the secure trigger. After the
trigger is created, they will revoke the CREATE_SECURE_OBJECT authority
from the trigger owner.
The trigger is considered secure. The database manager treats the SECURED
attribute as an assertion that declares the user has established an audit
procedure for all activities in the trigger body. If a secure trigger references
user-defined functions, the database manager assumes those functions are secure
without validation. If those functions can access sensitive data, the user with
SECADM authority needs to ensure those functions are allowed to access those
data and that all subsequent ALTER FUNCTION statements or changes to
external packages are being reviewed by this audit process.
A trigger must be secure if its subject table has row level or column level access
control activated. Similarly, a trigger must be secure if its subject table is a view
and one or more of the underlying tables in the view definition has row level or
column level access control activated.

v Creating a trigger with the NOT SECURED option: The CREATE TRIGGER
statement returns an error if the trigger's subject table has row level or column
level access control activated. Similarly, the CREATE TRIGGER statement fails if
the trigger is defined on a view and one or more of the underlying tables in that
view definition has row level or column level access control activated.

v Row and column access control that is not enforced for transition variables and
transition tables: Triggers are used for database integrity, and as such a balance
between security and database integrity is needed. If row level or column level
access control is activated on the subject table or an underlying table of the
subject view, row permissions and column masks are not applied to the initial
values of transition variables and transition tables. Row level and column level
access control that is enforced for the subject table or an underlying table of the
subject view is also ignored for transition variables and transition tables that are
referenced in the trigger body or are passed as arguments to user-defined
functions invoked in the trigger body. To ensure there is no security concern for
SQL statements in the trigger action to access sensitive data in transition
variables and transition tables, the trigger must be created with the SECURED
option. If a trigger is not secure, the CREATE TRIGGER statement returns an
error.

v Considerations for implicitly hidden columns: A transition variable exists for any
column defined as implicitly hidden. In the body of a trigger, a transition
variable that corresponds to an implicitly hidden column can be referenced.

CREATE TRIGGER

812 SQL Reference Volume 2



v Rebinding dependent packages: Every compiled trigger has a dependent
package. The package can be rebound at any time by using the
REBIND_ROUTINE_PACKAGE procedure. Explicitly rebinding the dependent
package does not revalidate an invalid trigger. Revalidate an invalid trigger by
using automatic revalidation or explicitly by using the
ADMIN_REVALIDATE_DB_OBJECTS procedure. Trigger revalidation
automatically rebinds the dependent package.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– OLD_TABLE can be specified in place of OLD TABLE, and NEW_TABLE can

be specified in place of NEW TABLE
– MODE DB2SQL can be specified following FOR EACH ROW or FOR EACH

STATEMENT

Examples
v Example 1: Create two triggers that will result in the automatic tracking of the

number of employees a company manages. The triggers will interact with the
following tables:
– EMPLOYEE table with these columns: ID, NAME, ADDRESS, and POSITION.
– COMPANY_STATS table with these columns: NBEMP, NBPRODUCT, and

REVENUE.
The first trigger increments the number of employees each time a new person is
hired; that is, each time a new row is inserted into the EMPLOYEE table:

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The second trigger decrements the number of employees each time an employee
leaves the company; that is, each time a row is deleted from the table
EMPLOYEE:

CREATE TRIGGER FORMER_EMP
AFTER DELETE ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1

v Example 2: Create a trigger that ensures that whenever a parts record is updated,
the following check and (if necessary) action is taken:
– If the on-hand quantity is less than 10% of the maximum stocked quantity,

then issue a shipping request ordering the number of items for the affected
part to be equal to the maximum stocked quantity minus the on-hand
quantity.

The trigger will interact with the PARTS table with these columns: PARTNO,
DESCRIPTION, ON_HAND, MAX_STOCKED, and PRICE.
ISSUE_SHIP_REQUEST is a user-defined function that sends an order form for
additional parts to the appropriate company.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N
FOR EACH ROW
WHEN (N.ON_HAND < 0.10 * N.MAX_STOCKED)
BEGIN ATOMIC
VALUES(ISSUE_SHIP_REQUEST(N.MAX_STOCKED - N.ON_HAND, N.PARTNO));
END

CREATE TRIGGER

Statements 813



v Example 3: Repeat the scenario in Example 2 except use a fullselect instead of a
VALUES statement to invoke the user-defined function. This example also shows
how to define the trigger as a statement trigger instead of a row trigger. For
each row in the transition table that evaluates to true for the WHERE clause, a
shipping request is issued for the part.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW TABLE AS NTABLE
FOR EACH STATEMENT

BEGIN ATOMIC
SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)

FROM NTABLE
WHERE (ON_HAND < 0.10 * MAX_STOCKED);

END

v Example 4: Create a trigger that will cause an error when an update occurs that
would result in a salary increase greater than ten percent of the current salary.

CREATE TRIGGER RAISE_LIMIT
AFTER UPDATE OF SALARY ON EMPLOYEE
REFERENCING NEW AS N OLD AS O
FOR EACH ROW
WHEN (N.SALARY > 1.1 * O.SALARY)

SIGNAL SQLSTATE ’75000’ SET MESSAGE_TEXT=’Salary increase>10%’

v Example 5: Consider an application which records and tracks changes to stock
prices. The database contains two tables, CURRENTQUOTE and
QUOTEHISTORY.

Tables: CURRENTQUOTE (SYMBOL, QUOTE, STATUS)
QUOTEHISTORY (SYMBOL, QUOTE, QUOTE_TIMESTAMP)

When the QUOTE column of CURRENTQUOTE is updated, the new quote
should be copied, with a timestamp, to the QUOTEHISTORY table. Also, the
STATUS column of CURRENTQUOTE should be updated to reflect whether the
stock is:
1. rising in value;
2. at a new high for the year;
3. dropping in value;
4. at a new low for the year;
5. steady in value.
CREATE TRIGGER statements that accomplish this are as follows.
– Trigger Definition to set the status:

CREATE TRIGGER STOCK_STATUS
NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE
FOR EACH ROW
BEGIN ATOMIC

SET NEWQUOTE.STATUS =
CASE

WHEN NEWQUOTE.QUOTE >
(SELECT MAX(QUOTE) FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL
AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE) )

THEN ’High’
WHEN NEWQUOTE.QUOTE <

(SELECT MIN(QUOTE) FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL
AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE) )

THEN ’Low’
WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE

THEN ’Rising’
WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE

CREATE TRIGGER

814 SQL Reference Volume 2



THEN ’Dropping’
WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE

THEN ’Steady’
END;

END

– Trigger Definition to record change in QUOTEHISTORY table:
CREATE TRIGGER RECORD_HISTORY

AFTER UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE
FOR EACH ROW
BEGIN ATOMIC

INSERT INTO QUOTEHISTORY
VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);

END

v Example 6:Create a trigger that overrides any changes to the location field in the
employee record in the org table. This trigger would be useful if new employee
records acquired when a smaller company was purchased are processed and the
target location allocated to the employee is 'Toronto' and the new target location
is 'Los Angeles'. The before trigger will ensure that regardless what value the
application allocates for this field, that the final resultant value is 'Los Angeles'.

CREATE TRIGGER LOCATION_TRIGGER
NO CASCADE
BEFORE UPDATE ON ORG
REFERENCING

OLD AS PRE
NEW AS POST

FOR EACH ROW
WHEN (POST.LOCATION = ’Toronto’)

SET POST.LOCATION = ’Los Angeles’;
END

v Example 7: Create a BEFORE trigger that automatically validates XML documents
containing new product descriptions before they are inserted into the PRODUCT
table of the SAMPLE database:

CREATE TRIGGER NEWPROD NO CASCADE BEFORE INSERT ON PRODUCT
REFERENCING NEW AS N
FOR EACH ROW
BEGIN ATOMIC

SET (N.DESCRIPTION) = XMLVALIDATE(N.DESCRIPTION
ACCORDING TO XMLSCHEMA ID product);

END

v Example 8: Create a multiple-event trigger that tracks of the number and salary
of employees a company manages. The triggers will interact with the following
columns and tables:
– ID, NAME, ADDRESS, SALARY, and POSITION columns in the EMPLOYEE

table
– NBEMP, NBPRODUCT, and REVENUE columns in the COMPANY_STATS

table

The trigger increments the number of employees each time a new employee is
hired; decrements the number of employees each time an employee leaves the
company, and raises an error when an update occurs that would result in a
salary increase greater than ten percent of the current salary:
CREATE OR REPLACE TRIGGER HIRED

AFTER INSERT OR DELETE OR UPDATE OF SALARY ON EMPLOYEE
REFERENCING NEW AS N OLD AS O FOR EACH ROW
BEGIN

IF INSERTING THEN UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
ELSEIF DELETING THEN UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;

CREATE TRIGGER

Statements 815



ELSEIF (UPDATING AND (N.SALARY > 1.1 * O.SALARY))
THEN SIGNAL SQLSTATE ’75000’ SET MESSAGE_TEXT=’Salary increase>10%’;

END IF;
END;

v Example 9: Create a trigger that ensures that the following check and (if
necessary) action is taken, before a parts record is updated:
– If the on-hand quantity is less than 10% of the maximum stocked quantity,

then place a new order record into the ORDER table and issue a shipping
request ordering the number of items for the affected part to be equal to the
maximum stocked quantity minus the on-hand quantity.

The trigger interacts with the following columns and tables:
– PARTNO, DESCRIPTION, ON_HAND, MAX_STOCKED, and PRICE columns

in the PARTS table
– PARTNO and PRICE columns in the ORDER table

ISSUE_SHIP_REQUEST is a user-defined SQL data modification stored
procedure that sends an order form for additional parts to the supply company,
and deletes the corresponding row from the ORDER table after the order form is
confirmed by the supply company.
CREATE TRIGGER REORDER

BEFORE UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N
FOR EACH ROW
WHEN (N.ON_HAND < 0.10 * N.MAX_STOCKED)
BEGIN

INSERT INTO ORDERS VALUES (N.MAX_STOCKED - N.ON_HAND, N.PARTNO);
CALL ISSUE_SHIP_REQUEST(N.MAX_STOCKED - N.ON_HAND, N.PARTNO);

END;

CREATE TRIGGER

816 SQL Reference Volume 2



CREATE TRUSTED CONTEXT
The CREATE TRUSTED CONTEXT statement defines a trusted context at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� CREATE TRUSTED CONTEXT context-name BASED UPON CONNECTION USING �

� SYSTEM AUTHID authorization-name * ATTRIBUTES �

� �

,
(1)

( ADDRESS address-value ) *
WITH ENCRYPTION encryption-value

(2)
ENCRYPTION encryption-value

�

�
NO DEFAULT ROLE

DEFAULT ROLE role-name
*

DISABLE

ENABLE
* �

�

�

,
WITHOUT AUTHENTICATION

WITH USE FOR authorization-name
ROLE role-name WITH AUTHENTICATION

PUBLIC

* ��

Notes:

1 Each combination of an attribute name and its corresponding value, as a pair,
must be unique (SQLSTATE 4274D).

2 ENCRYPTION cannot be specified more than once (SQLSTATE 42614);
however, WITH ENCRYPTION can be specified for each ADDRESS that is
specified.

Description

context-name
Names the trusted context. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The name must not identify a trusted context
that already exists at the current server (SQLSTATE 42710). The name must not
begin with the characters 'SYS' (SQLSTATE 42939).

BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name
Specifies that the context is a connection established by system authorization

CREATE TRUSTED CONTEXT

Statements 817



ID authorization-name, which must not be associated with an existing trusted
context (SQLSTATE 428GL). It cannot be the authorization ID of the statement
(SQLSTATE 42502).

ATTRIBUTES (...)
Specifies a list of one or more connection trust attributes upon which the
trusted context is defined.

ADDRESS address-value
Specifies the actual communication address used by the client to
communicate with the database server. The only protocol supported is
TCP/IP. The ADDRESS attribute can be specified multiple times, but each
address-value pair must be unique for the set of attributes (SQLSTATE
4274D).

When establishing a trusted connection, if multiple values are defined for
the ADDRESS attribute of a trusted context, a candidate connection is
considered to match this attribute if the address used by the connection
matches any of the defined values for the ADDRESS attribute of the
trusted context.

address-value
Specifies a string constant that contains the value to be associated with
the ADDRESS trust attribute. The address-value must be an IPv4
address, an IPv6 address, or a secure domain name.
v An IPv4 address must not contain leading spaces and is represented

as a dotted decimal address. An example of an IPv4 address is
9.112.46.111. The value 'localhost' or its equivalent representation
'127.0.0.1' will not result in a match; the real IPv4 address of the host
must be specified instead.

v An IPv6 address must not contain leading spaces and is represented
as a colon hexadecimal address. An example of an IPv6 address is
2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6
addresses (for example, ::ffff:192.0.2.128) will not result in a match.
Similarly, 'localhost' or its IPv6 short representation '::1' will not
result in a match.

v A domain name is converted to an IP address by the domain name
server where a resulting IPv4 or IPv6 address is determined. An
example of a domain name is corona.torolab.ibm.com. When a
domain name is converted to an IP address, the result of this
conversion could be a set of one or more IP addresses. In this case,
an incoming connection is said to match the ADDRESS attribute of a
trusted context object if the IP address from which the connection
originates matches any of the IP addresses to which the domain
name was converted. When creating a trusted context object, it is
advantageous to provide domain name values for the ADDRESS
attribute instead of static IP addresses, particularly in Dynamic Host
Configuration Protocol (DHCP) environments. With DHCP, a device
can have a different IP address each time it connects to the network.
So, if a static IP address is provided for the ADDRESS attribute of a
trusted context object, some device might acquire a trusted
connection unintentionally. Providing domain names for the
ADDRESS attribute of a trusted context object avoids this problem in
DHCP environments.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or

CREATE TRUSTED CONTEXT

818 SQL Reference Volume 2



network encryption for this specific address-value. This
encryption-value overrides the global ENCRYPTION attribute setting
for this specific address-value.

encryption-value
Specifies a string constant that contains the value to be
associated with the ENCRYPTION trust attribute for this
specific address-value. The encryption-value must be one of the
following values (SQLSTATE 42615):
v NONE, no specific level of encryption is required
v LOW, a minimum of light encryption is required; the

authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match the
encryption setting for this specific address

v HIGH, Secure Sockets Layer (SSL) encryption must be used
for data communication between the database client and the
database server if an incoming connection is to match the
encryption setting for this specific address

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or network
encryption. The default is NONE.

encryption-value
Specifies a string constant that contains the value to be associated with
the ENCRYPTION trust attribute for this specific address-value. The
encryption-value must be one of the following values (SQLSTATE
42615):
v NONE, no specific level of encryption is required for an incoming

connection to match the ENCRYPTION attribute of this trusted
context object

v LOW, a minimum of light encryption is required; the authentication
type on the database manager must be DATA_ENCRYPT if an
incoming connection is to match the ENCRYPTION attribute of this
trusted context object

v HIGH, Secure Sockets Layer (SSL) encryption must be used for data
communication between the database client and the database server
if an incoming connection is to match the ENCRYPTION attribute of
this trusted context object

The following table summarizes when a trusted context can be used,
depending on the encryption used by the existing connection. If the
trusted context cannot be used for the connection, a warning is
returned (SQLSTATE 01679) and the SQLWARN8 field of the SQLCA is
set to 'Y', indicating that the connection is a regular (non-trusted)
connection.

Table 27. Encryption and trusted contexts

Encryption used by
existing connection

ENCRYPTION value for
trusted context

Can the trusted context
be used for the
connection?

No encryption 'NONE' Yes

No encryption 'LOW' No

No encryption 'HIGH' No

CREATE TRUSTED CONTEXT

Statements 819



Table 27. Encryption and trusted contexts (continued)

Encryption used by
existing connection

ENCRYPTION value for
trusted context

Can the trusted context
be used for the
connection?

Low encryption
(DATA_ENCRYPT)

'NONE' Yes

Low encryption
(DATA_ENCRYPT)

'LOW' Yes

Low encryption
(DATA_ENCRYPT)

'HIGH' No

High encryption (SSL) 'NONE' Yes

High encryption (SSL) 'LOW' Yes

High encryption (SSL) 'HIGH' Yes

NO DEFAULT ROLE or DEFAULT ROLE role-name
Specifies whether or not a default role is associated with a trusted connection
that is based on this trusted context. The default is NO DEFAULT ROLE.

NO DEFAULT ROLE
Specifies that the trusted context does not have a default role.

DEFAULT ROLE role-name
Specifies that role-name is the default role for the trusted context. The
role-name must identify a role that exists at the current server (SQLSTATE
42704). This role is used with the user in a trusted connection, based on
this trusted context, when the user does not have a user-specific role
defined as part of the definition of the trusted context.

DISABLE or ENABLE
Specifies whether the trusted context is created in the enabled or disabled state.
The default is DISABLE.

DISABLE
Specifies that the trusted context is created in the disabled state. A trusted
context that is disabled is not considered when a trusted connection is
established.

ENABLE
Specifies that the trusted context is created in the enabled state.

WITH USE FOR
Specifies who can use a trusted connection that is based on this trusted
context.

authorization-name
Specifies that the trusted connection can be used by the specified
authorization-name. The authorization-name must not be specified more than
once in the WITH USE FOR clause (SQLSTATE 428GM). It must also not
be the authorization ID of the statement (SQLSTATE 42502). If the
definition of a trusted context allows access by both PUBLIC and a list of
users, the specifications for a user override the specifications for PUBLIC.
For example, assume that a trusted context is defined that allows access by
both PUBLIC WITH AUTHENTICATION and JOE WITHOUT
AUTHENTICATION. If the trusted context is used by JOE, authentication
is not required. However, if the trusted context is used by GEORGE,
authentication is required.

CREATE TRUSTED CONTEXT

820 SQL Reference Volume 2



ROLE role-name
Specifies that role-name is the role to be used for the user when a
trusted connection is using the trusted context. The role-name must
identify a role that exists at the current server (SQLSTATE 42704). The
role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on this trusted context can
be used by any user. PUBLIC must not be specified more than once
(SQLSTATE 428GM). All users using such a trusted connection make use of
the privileges associated with the default role for the associated trusted
context. If a default role is not defined for the trusted context, there is no
role associated with the users that use a trusted connection based on this
trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the user on a trusted connection
requires authentication of the user. The default is WITHOUT
AUTHENTICATION.

WITHOUT AUTHENTICATION
Specifies that switching the current user on a trusted connection to this
user does not require authentication.

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection to this
user requires authentication.

Rules
v A trusted context-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). Trusted context-exclusive SQL
statements are:
– CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP

(TRUSTED CONTEXT)
v A trusted context-exclusive SQL statement cannot be issued within a global

transaction; for example, an XA transaction or a global transaction that is
initiated as part of two-phase commit for federated transactions (SQLSTATE
51041).

Notes
v When providing an IP address as part of a trusted context definition, the address

must be in the format that is in effect for the network. For example, providing
an address in an IPv6 format when the network is IPv4 will not result in a
match. In a mixed environment, it is advantageous to specify both the IPv4 and
the IPv6 representations of the address, or better yet, to specify a secure domain
name (for example, corona.torolab.ibm.com), which hides the address format
details.

v Specifying a role in the definition of a trusted context: The definition of a
trusted context can designate a role for a specific authorization ID, and a default
role to be used for authorization IDs for which a specific role has not been
specified in the definition of the trusted context. This role can be used with a
trusted connection based on the trusted context, but it does not make the role
available outside of a trusted connection based on the trusted context.

v When issuing a data manipulation language (DML) SQL statement using a
trusted connection, the privileges held by a context-assigned role in effect for the

CREATE TRUSTED CONTEXT

Statements 821



authorization ID within the definition of the associated trusted context are
considered in addition to other privileges directly held by the authorization ID
of the statement, or indirectly by other roles held by the authorization ID of the
statement.

v The privileges held by a context-assigned role in effect for the authorization ID
within the definition of the associated trusted context are not considered for data
definition language (DDL) SQL statements. For example, to create an object, the
authorization ID of the statement must be able to do so without including the
privileges held by the context-assigned role.

v When installing a new application that authenticates to the database server
using the same credentials as an existing application on the same machine, and
which takes advantage of a trusted context, the new application might also take
advantage of the same trusted context object (inheriting the trusted context role,
for example). This might not be the security administrator's intention. The
security administrator might want to turn on the database audit facility to find
out what applications are taking advantage of trusted context objects.

v Only one uncommitted trusted context-exclusive SQL statement is allowed at a
time across all database partitions. If an uncommitted trusted context-exclusive
SQL statement is executing, subsequent trusted context-exclusive SQL statements
will wait until the current trusted context-exclusive SQL statement commits or
rolls back.

v Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Examples
v Example 1: Create a trusted context such that the current user on a trusted

connection based on this trusted context can be switched to two different user
IDs. When the current user of the connection is switched to user ID JOE,
authentication is not required. However, authentication is required when the
current user of the connection is switched to user ID BOB. Note that the trusted
context has a default role called context-role. This implies that users working
within the confines of this trusted context inherit the privileges associated with
role context-role.

CREATE TRUSTED CONTEXT APPSERVER
BASED UPON CONNECTION USING SYSTEM AUTHID WRJAIBI
DEFAULT ROLE CONTEXT_ROLE
ENABLE
ATTRIBUTES (ADDRESS ’9.26.113.204’)
WITH USE FOR JOE WITHOUT AUTHENTICATION
BOB WITH AUTHENTICATION

v Example 2: Create a trusted context such that the current user of a trusted
connection based on this trusted context can be switched to any user ID without
authentication.

CREATE TRUSTED CONTEXT SECUREROLE
BASED UPON CONNECTION USING SYSTEM AUTHID PBIRD
ENABLE
ATTRIBUTES (ADDRESS ’9.26.113.204’)
WITH USE FOR PUBLIC WITHOUT AUTHENTICATION

v Example 3: Create a trusted context such that the current user of a trusted
connection based on this trusted context can be switched to any user ID without
authentication. The difference between this trusted context and the trusted
context created in example 2, is that this trusted context has an additional
attribute called ENCRYPTION. The ENCRYPTION attribute setting for trusted
context SECUREROLEENCRYPT states that the encryption setting used by a
connection must be at least "low encryption" (see Table 27 on page 819) to match
this trusted context attribute.

CREATE TRUSTED CONTEXT

822 SQL Reference Volume 2



CREATE TRUSTED CONTEXT SECUREROLEENCRYPT
BASED UPON CONNECTION USING SYSTEM AUTHID SHARPER
ENABLE
ATTRIBUTES (ADDRESS ’9.26.113.204’
ENCRYPTION ’LOW’)

WITH USE FOR PUBLIC WITHOUT AUTHENTICATION

v Example 4: Create a trusted context, such that connections made by user
WRJAIBI from addresses 9.26.146.201 and 9.26.146.203 are trusted when no
encryption is used, but a connection made by user WRJAIBI from address
9.26.146.202 requires a LOW level of encryption to be trusted.

CREATE TRUSTED CONTEXT WALIDLOCSENSITIVE
BASED UPON CONNECTION USING SYSTEM AUTHID WRJAIBI
ENABLE
ATTRIBUTES (ADDRESS ’9.26.146.201’,
ADDRESS ’9.26.146.202’ WITH ENCRYPTION ’LOW’,
ADDRESS ’9.26.146.203’
ENCRYPTION ’NONE’)

CREATE TRUSTED CONTEXT

Statements 823



CREATE TYPE
The CREATE TYPE statement defines a user-defined data type at the current
server.

Five different kinds of user-defined data types can be created using this statement.
Each of these types is described separately.
v Array. A user-defined data type that is an ordinary array or an associative array.

The elements of an array type are based on one of the built-in data types or a
user-defined type other than a cursor type or structured type.

v Cursor. A user-defined data type that is a cursor type.
v Distinct. A user-defined data type that is sourced on one of the built-in data

types and can be defined to use strong type rules or weak type rules.. Functions
that cast between the user-defined distinct type and the source built-in data type
are generated when a strongly typed distinct type is created. Optionally, support
for comparison operations to use with the strongly typed distinct type can be
generated when the user-defined distinct type is created.

v Row. A user-defined data type that represents a row. It includes one or more
fields with associated data types that make up a row of data.

v Structured. A user-defined data type that represents an object and associated
methods. It may include zero or more attributes and may be a subtype allowing
attributes to be inherited from a supertype. Some methods are generated when
the user-defined structured type is created and others can be specified as part of
the definition.

CREATE TYPE

824 SQL Reference Volume 2



CREATE TYPE (array)
The CREATE TYPE (array) statement defines an array type. The elements of an
array type are based on one of the built-in data types or a user-defined distinct
type.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the schema name of the array

type does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the array type refers

to an existing schema
v DBADM authority

Syntax

�� CREATE TYPE type-name AS data-type
OR REPLACE

ARRAY [ �

�
2147483647

integer-constant
data-type2

] ��

data-type:

built-in-type
anchored-data-type

row-type-name
array-type-name

data-type2:

INTEGER
INT
VARCHAR ( integer )

CHARACTER VARYING OCTETS
CHAR CODEUNITS32

anchored-non-row-data-type

anchored-data-type:

CREATE TYPE (array)

Statements 825



DATA TYPE TO
ANCHOR variable-name

table-name.column-name
OF

ROW table-name
view-name
cursor-variable-name

CREATE TYPE (array)

826 SQL Reference Volume 2



built-in-type:

SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

(6)
TIMESTAMP

(integer)
BOOLEAN

anchored-non-row-data-type:

ANCHOR DATA TYPE TO variable-name
table-name.column-name

CREATE TYPE (array)

Statements 827



Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

Description

OR REPLACE
Specifies to replace the definition for the data type if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that functions and methods are
invalidated instead of dropped when they have parameters or a return value
defined with the data type being replaced. The existing definition must not be
a structured type (SQLSTATE 42809). This option is ignored if a definition for
the data type does not exist at the current server.

type-name
Names the type. The name, including the implicit or explicit qualifier, must not
identify any other type (built-in or user-defined) that already exists at the
current server. The unqualified name must not be the same as the name of a
built-in data type or BOOLEAN, BINARY or VARBINARY (SQLSTATE 42918).

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a type-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part type-name is specified, the schema name must not begin with the
characters 'SYS' (SQLSTATE 42939).

data-type
Specifies the data type of the array elements.

built-in-type
Specifies a built-in data type. See "CREATE TABLE" for the description of
built-in data types. Built-in types include the data types described in
“CREATE TABLE”, other than reference, SYSPROC.DB2SECURITYLABEL,
XML, or user-defined types (SQLSTATE 429C2).

row-type-name
Specifies the name of a user-defined row type. If a row-type-name is
specified without a schema name, the row-type-name is resolved by
searching the schemas in the SQL path. Row types can be nested as
elements in other array types with a maximum nesting level of sixteen.

array-type-name
Specifies an array type. If an array-type-name is specified without a schema
name, the array-type-name is resolved by searching the schemas in the SQL
path. Array types can be nested as elements in other array types with a
maximum nesting level of sixteen.

anchored-data-type
Identifies another object used to determine the data type. The data type of
the anchor object is bound by the same limitations that apply when
specifying the data type directly, or in the case of a row, to creating a row
type.

ANCHOR DATA TYPE TO
Indicates that an anchored data type is used to specify the data type.

CREATE TYPE (array)

828 SQL Reference Volume 2



variable-name
Identifies a global variable. The data type of the global variable is
used as the data type for the array elements.

table-name.column-name
Identifies a column name of an existing table or view. The data
type of the column is used as the data type for the array elements.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based
on the column names and column data types of the table identified
by table-name or the view identified by view-name.The data type of
the array elements is an unnamed row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based
on the field names and field data types of the cursor variable
identified by cursor-variable-name. The specified cursor variable
must be one of the following elements (SQLSTATE 428HS):
v A global variable with a strongly typed cursor data type
v A global variable with a weakly typed cursor data type that was

created or declared with a CONSTANT clause specifying a
select-statement where all the result columns are named.

If the cursor type of the cursor variable is not strongly-typed using
a named row type, the data type of the array elements is an
unnamed row type.

anchored-non-row-data-type
Identifies another object used to determine the data type. The data type of the
anchor object is bound by the same limitations that apply when specifying the
data type directly.

ANCHOR DATA TYPE TO
Indicates that an anchored data type is used to specify the data type.

variable-name
Identifies a global variable with a data type that is an INTEGER or
VARCHAR data type. The data type of the global variable is used as
the data type for the array index.

table-name.column-name
Identifies a column name of an existing table or view with a data type
that is an INTEGER or VARCHAR data type. The data type of the
column is used as the data type for the array index.

ARRAY [integer-constant]
Specifies that the type is an array with a maximum cardinality of
integer-constant. The value must be a positive integer (not zero) and less than
the largest positive integer value (SQLSTATE 42820). The default is the largest
positive integer value (2 147 483 647). The cardinality of an array value is
determined by the highest element position assigned to the array value.

The maximum cardinality of an array on a given system is limited by the total
amount of memory available to database applications. As such, although arrays
of large cardinalities can be created, not all elements might be available for use.

ARRAY[data-type2]
Specifies that the type is an associative array that is indexed with values of
data type data-type2. The data type must be either the INTEGER or VARCHAR
data type (SQLSTATE 429C2). The values specified as the index when

CREATE TYPE (array)

Statements 829



assigning an array element must be assignable to a value of data-type2. The
cardinality of an array value is determined by the number of unique index
values used when assigning array elements.

Rules
v Use of anchored data types: An anchored data type cannot refer to the following

objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

Notes
v Array type usage: An array type can only be used as the data type of:

– A local variable in a compound SQL (compiled) statement
– A parameter of an SQL routine
– A parameter of a Java procedure (non-nested ordinary arrays only)
– The returns type of an SQL function
– A global variable

v A variable or parameter defined with an array type can only be used in
compound SQL (compiled) statements

Examples

Example 1: Create an array type named PHONENUMBERS with a maximum of 50
elements that are of the DECIMAL(10, 0) data type.

CREATE TYPE PHONENUMBERS AS DECIMAL(10,0)
ARRAY[50]

Example 2: Create an array type named NUMBERS with the default number of
elements in the schema GENERIC.

CREATE TYPE GENERIC.NUMBERS AS DECFLOAT(34)
ARRAY[]

Example 3: Create an associative array named PERSONAL_PHONENUMBERS with
elements that are DECIMAL(16, 0) that is indexed by strings like 'Home', 'Work', or
'Mom'.

CREATE TYPE PERSONALPHONENUMBERS AS DECIMAL(16, 0) ARRAY[VARCHAR(8)]

Example 4: Create an associative array type where the indexes are province,
territory, or country names and the elements are capital cities:

CREATE TYPE CAPITALSARRAY AS VARCHAR(30) ARRAY[VARCHAR(20)]

Example 5: Create an associative array type for product descriptions of up to 40
characters long, where the indexes are the product numbers, which are a maximum
of 12 characters long:

CREATE TYPE PRODUCTS AS VARCHAR(40) ARRAY[VARCHAR(12)]

CREATE TYPE (array)

830 SQL Reference Volume 2



CREATE TYPE (cursor)
The CREATE TYPE (cursor) statement defines a user-defined cursor type.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the schema name of the cursor

type does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the cursor type

refers to an existing schema
v DBADM authority

Syntax

�� CREATE TYPE type-name AS CURSOR
OR REPLACE anchored-row-data-type

row-type-name

��

anchored-row-data-type:

DATA TYPE TO
ANCHOR variable-name

OF
ROW table-name

view-name
cursor-variable-name

Description

OR REPLACE
Specifies to replace the definition for the data type if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that functions and methods are
invalidated instead of dropped when they have parameters or a return value
defined with the data type being replaced. The existing definition must not be
a structured type (SQLSTATE 42809). This option is ignored if a definition for
the data type does not exist at the current server.

type-name

Names the type. The name, including the implicit or explicit qualifier, must not
identify any other type (built-in or user-defined) that already exists at the
current server. The unqualified name must not be the same as the name of a
built-in data type or BOOLEAN, BINARY or VARBINARY (SQLSTATE 42918).

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a type-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

CREATE TYPE (cursor)

Statements 831



UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators. If a
two-part type-name is specified, the schema name must not begin with the
characters 'SYS' (SQLSTATE 42939).

anchored-row-data-type
Identifies row information from another object used to determine the row type
associated with the cursor type. The data type of the anchor object has the
same limitations that apply to creating a row type.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data type.

variable-name
Identifies a global variable. The data type of the referenced variable
must be a row type and is used as the row type associated with the
cursor type.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on
the column names and column data types of the table identified by
table-name or the view identified by view-name. The data types of the
anchor object columns have the same limitations that apply to field
data types. The row type associated with the cursor type is an
unnamed row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on
the field names and field data types of the cursor variable identified by
cursor-variable-name. The specified cursor variable must be one of the
following objects (SQLSTATE 428HS):
v A global variable with a strongly typed cursor data type
v A global variable with a weakly typed cursor data type that was

created or declared with a CONSTANT clause specifying a
select-statement where all the result columns are named.

If the cursor type of the cursor variable is not strongly-typed using a
named row type, the row type associated with the cursor type is an
unnamed row type.

row-type-name
Specifies the row type that will be used to check the row type of the result
table of the select-statement assigned to a variable of the cursor type. The
assignment fails if the type check fails (SQLSTATE 42821). If row-type-name is
specified without a schema name, the row type is resolved by searching the
schemas in the SQL path.

Rules
v Use of anchored data types: An anchored data type cannot refer to the following

objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

Notes
v Cursor type usage: A cursor type can only be used as the data type of:

– A local variable in a compound SQL (compiled) statement
– A parameter of an SQL routine
– The returns type of an SQL function

CREATE TYPE (cursor)

832 SQL Reference Volume 2



– A global variable
v A variable or parameter defined with a cursor type can only be used in

compound SQL (compiled) statements
v A variable or parameter that has a strongly-typed cursor type must not be used

to assign cursor values that are based on a statement-name instead of a
select-statement

v A user-defined cursor type with an associated row type is a strongly-typed
cursor type; otherwise, it is a weakly-typed cursor type.

Examples
v Example 1: Create a cursor type that can be used with any cursor.

CREATE TYPE EMPCURSOR AS CURSOR

v Example 2: Create a strongly-typed cursor type that is based on the row data
type DEPTROW:
CREATE TYPE DEPTCURSOR AS DEPTROW CURSOR

CREATE TYPE (cursor)

Statements 833



CREATE TYPE (distinct)
The CREATE TYPE (Distinct) statement defines a distinct type. The distinct type is
always sourced on one of the built-in data types and can be defined to use strong
type or weak type rules..

Successful execution of the statement that defines a strongly typed distinct type
also generates functions to cast between the distinct type and its source type and,
optionally, generates support for the comparison operators (=, <>, <, <=, >, and
>=) for use with the distinct type. Successful execution of the statement that
defines a weakly typed distinct type does not generate any functions.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include as least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the schema name of the

distinct type does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the distinct type

refers to an existing schema
v DBADM authority

Syntax

�� CREATE TYPE distinct-type-name AS �

�
WITH STRONG TYPE RULES

source-data-type
WITH WEAK TYPE RULES

data-type-constraints

��

source-data-type:

built-in-type
anchored-data-type

built-in-type:

CREATE TYPE (distinct)

834 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1 BYTE)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )

anchored-data-type:

ANCHOR variable-name
DATA TYPE TO table-name.column-name

CREATE TYPE (distinct)

Statements 835



data-type-constraints:

NOT NULL CHECK ( check-condition )

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

Description

distinct-type-name
Names the distinct type. The name, including the implicit or explicit qualifier,
must not identify any other type (built-in or user-defined) that already exists at
the current server. The unqualified name must not be the same as the name of
a built-in data type or BOOLEAN, BINARY, or VARBINARY (SQLSTATE
42918). The unqualified name should also not be ARRAY, INTERVAL, or
ROWID.

In dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a
period and an SQL identifier.

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a distinct-type-name (SQLSTATE 42939). The names
are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part distinct-type-name is specified, the schema name must not begin
with the characters 'SYS' (SQLSTATE 42939).

source-data-type
Specifies the data type used as the basis for the internal representation of the
distinct type. The data type must be a built-in data type. For more information
on built-in data types, see “CREATE TABLE”. The source data type cannot be
of type BOOLEAN, XML or an ARRAY type (SQLSTATE 42601). For portability
of applications across platforms, use the following recommended data type
names:
v DOUBLE or REAL instead of FLOAT
v DECIMAL instead of NUMERIC
v VARCHAR, BLOB, or CLOB instead of LONG VARCHAR
v VARGRAPHIC or DBCLOB instead of LONG VARGRAPHIC

anchored-data-type
Identifies another object used to determine the data type. The data type of the
anchor object is bound by the same limitations that apply when specifying the
data type directly.

ANCHOR DATA TYPE TO
Indicates that an anchored data type is used to specify the data type.

variable-name
Identifies a global variable with a data type that is a built-in type other
than ROW or CURSOR. The data type of the global variable is used as
the source data type for the distinct type.

CREATE TYPE (distinct)

836 SQL Reference Volume 2



table-name.column-name
Identifies a column name of an existing table or view with a data type
that must be specified as a built-in-type. The data type of the column
is used as the source data type for the distinct type.

WITH STRONG TYPE RULES
Specifies that strong typing rules are used for operations where this data type
is an operand including assignments and comparisons. This is the default.

WITH WEAK TYPE RULES
Specifies that weak typing rules are used for operations where this data type is
an operand including assignments, comparisons, and function resolution.
When values of a of a weakly typed distinct type are used, the data type is
effectively treated as the specified source-data-type when processing the
operation.

data-type-constraints
Defines constraints on the distinct type that are applied when values are
assigned or cast to the distinct type.

NOT NULL
Prevents a value with this distinct type from having a null value. If NOT
NULL is not specified, a value with this distinct type can have the null
value.

CHECK (check-condition)
Defines a data type check constraint. At any time, the check-condition
must be true or unknown for every value with this data type. The
check-conditionis a form of the search-condition that conforms to the rules of
table check constraints (SQLSTATE 426211) with the addition that the
VALUE keyword is used to reference a value that is assigned or cast to the
distinct type in the same way that a column name is referenced in a table
check constraint. Note that the check-condition cannot reference global
variables.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

Rules
v Use of anchored data types: An anchored data type cannot refer to the following

objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

Notes
v Privileges: The definer of the user-defined type always receives the EXECUTE

privilege WITH GRANT OPTION on all functions automatically generated for
the distinct type.
EXECUTE privilege on all functions automatically generated during the CREATE
TYPE (Distinct) statement is granted to PUBLIC.

v Creating a distinct type with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID of
the statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.
The CREATEIN privilege on the schema is granted to PUBLIC.

v Additional generated functions: When a strongly typed distinct type is created,
the following functions are generated to cast to and from the source type:

CREATE TYPE (distinct)

Statements 837



– One function to convert from the distinct type to the source type
– One function to convert from the source type to the distinct type
– One function to convert from INTEGER to the distinct type if the source type

is SMALLINT
– One function to convert from VARCHAR to the distinct type if the source

type is CHAR
– One function to convert from VARGRAPHIC to the distinct type if the source

type is GRAPHIC.
In general these functions will have the following format:

CREATE FUNCTION source-type-name (distinct-type-name)
RETURNS source-type-name ...

CREATE FUNCTION distinct-type-name (source-type-name)
RETURNS distinct-type-name ...

In cases in which the source type is a parameterized type, the function to
convert from the distinct type to the source type will have as function name the
name of the source type without the parameters (see Table 28 for details). The
type of the return value of this function will include the parameters given on the
CREATE TYPE (Distinct) statement. The function to convert from the source type
to the distinct type will have an input parameter whose type is the source type
including its parameters. For example,

CREATE TYPE T_SHOESIZE AS CHAR(2)
WITH COMPARISONS

CREATE TYPE T_MILES AS DOUBLE
WITH COMPARISONS

will generate the following functions:
FUNCTION CHAR (T_SHOESIZE) RETURNS CHAR (2)

FUNCTION T_SHOESIZE (CHAR (2))
RETURNS T_SHOESIZE

FUNCTION DOUBLE (T_MILES) RETURNS DOUBLE

FUNCTION T_MILES (DOUBLE) RETURNS T_MILES

The schema of the generated cast functions is the same as the schema of the
distinct type. No other function with this name and with the same signature
may already exist in the database (SQLSTATE 42710).
The following table gives the names of the functions to convert from the distinct
type to the source type and from the source type to the distinct type for all
predefined data types.

Table 28. CAST functions on distinct types

Source Type Name Function Name Parameter Return-type

SMALLINT distinct-type-name SMALLINT distinct-type-name

SMALLINT distinct-type-name INTEGER distinct-type-name

SMALLINT SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER INTEGER distinct-type-name INTEGER

BIGINT distinct-type-name BIGINT distinct-type-name

BIGINT BIGINT distinct-type-name BIGINT

DECIMAL distinct-type-name DECIMAL (p,s) distinct-type-name

CREATE TYPE (distinct)

838 SQL Reference Volume 2



Table 28. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

DECIMAL DECIMAL distinct-type-name DECIMAL (p,s)

NUMERIC distinct-type-name DECIMAL (p,s) distinct-type-name

NUMERIC DECIMAL distinct-type-name DECIMAL (p,s)

REAL distinct-type-name REAL distinct-type-name

REAL distinct-type-name DOUBLE distinct-type-name

REAL REAL distinct-type-name REAL

FLOAT(n) where n<=24 distinct-type-name REAL distinct-type-name

FLOAT(n) where n<=24 distinct-type-name DOUBLE distinct-type-name

FLOAT(n) where n<=24 REAL distinct-type-name REAL

FLOAT(n) where n>24 distinct-type-name DOUBLE distinct-type-name

FLOAT(n) where n>24 DOUBLE distinct-type-name DOUBLE

FLOAT distinct-type-name DOUBLE distinct-type-name

FLOAT DOUBLE distinct-type-name DOUBLE

DOUBLE distinct-type-name DOUBLE distinct-type-name

DOUBLE DOUBLE distinct-type-name DOUBLE

DOUBLE PRECISION distinct-type-name DOUBLE distinct-type-name

DOUBLE PRECISION DOUBLE distinct-type-name DOUBLE

DECFLOAT distinct-type-name DECFLOAT(n) distinct-type-name

DECFLOAT DECFLOAT distinct-type-name DECFLOAT(n)

CHAR distinct-type-name CHAR (n) distinct-type-name

CHAR CHAR distinct-type-name CHAR (n)

CHAR distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR VARCHAR distinct-type-name VARCHAR (n)

CLOB distinct-type-name CLOB (n) distinct-type-name

CLOB CLOB distinct-type-name CLOB (n)

GRAPHIC distinct-type-name GRAPHIC (n) distinct-type-name

GRAPHIC GRAPHIC distinct-type-name GRAPHIC (n)

GRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC VARGRAPHIC distinct-type-name VARGRAPHIC (n)

DBCLOB distinct-type-name DBCLOB (n) distinct-type-name

DBCLOB DBCLOB distinct-type-name DBCLOB (n)

BLOB distinct-type-name BLOB (n) distinct-type-name

BLOB BLOB distinct-type-name BLOB (n)

DATE distinct-type-name DATE distinct-type-name

DATE DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME TIME distinct-type-name TIME

TIMESTAMP distinct-type-name TIMESTAMP(p distinct-type-name

CREATE TYPE (distinct)

Statements 839



Table 28. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

TIMESTAMP TIMESTAMP distinct-type-name TIMESTAMP(p)

Note: NUMERIC and FLOAT are not recommended when creating a user-defined type for a portable application.
DECIMAL and DOUBLE should be used instead.

The functions described in the preceding table and the comparison operator
functions are the only functions that are generated automatically when distinct
types are defined. Consequently, none of the built-in functions (AVG, MAX,
LENGTH, and so on) are supported for strongly typed distinct types until the
CREATE FUNCTION statement is used to register user-defined functions for the
strongly typed distinct type, and those user-defined functions are sourced on the
appropriate built-in functions. In particular, note that it is possible to register
user-defined functions that are sourced on the built-in column functions.
When a strongly typed distinct type is created, system-generated comparison
operators are created when the source type supports comparisons . Creation of
these comparison operators will generate entries in the SYSCAT.ROUTINES
catalog view for the new functions.
The schema name of the distinct type must be included in the SQL path or the
FUNCPATH BIND option for successful use of these operators and cast
functions in SQL statements.

v When a weakly typed distinct type is created, no additional functions need to be
generated or created because the weak type rules allow a weakly typed distinct
type to be used in the same context where the source type can be used.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– CREATE DISTINCT TYPE can be specified in place of CREATE TYPE
– The LONG VARCHAR and LONG VARGRAPHIC data types and cast

functions are supported but are deprecated and might be removed in a future
release. The WITH COMPARISONS clause continues to not support the
LONG VARCHAR and LONG VARGRAPHIC data types.

– The WITH COMPARISONS clause, which specifies that system-generated
comparison operators are to be created for comparing two instances of the
distinct type, can be specified as the last clause of the statement if WITH
WEAK TYPE RULES is not specified. Use WITH COMPARISONS only if it is
required for compatibility with earlier versions of products in the DB2 family.
If the source data type is either BLOB, CLOB, or DBCLOB and WITH
COMPARISONS is specified, a warning occurs as in previous releases.

– ALLOW NULL, or just NULL, can be specified as the opposite of NOT
NULL. This is the default nullability characteristic of the distinct type if
neither the ALLOW NULL clause nor the NOT NULL clause are specified.
Specification of ALLOW NULL is not considered to define a data type
constraint for the distinct type.

Examples
v Example 1: Create a strongly typed distinct type named SHOESIZE that is based

on an INTEGER data type.
CREATE TYPE SHOESIZE AS INTEGER

This will also result in the creation of comparison operators (=, <>, <, <=, >, >=)
and cast functions INTEGER(SHOESIZE) returning INTEGER and
SHOESIZE(INTEGER) returning SHOESIZE.

CREATE TYPE (distinct)

840 SQL Reference Volume 2



v Example 2: Create a strongly typed distinct type named MILES that is based on
a DOUBLE data type.

CREATE TYPE MILES AS DOUBLE

This will also result in the creation of comparison operators (=, <>, <, =, >, >=)
and cast functions DOUBLE(MILES) returning DOUBLE and MILES(DOUBLE)
returning MILES.

v Example 3: Create a weakly typed distinct type named BONUS that is based on
an INTEGER data type and represents a percentage which cannot exceed 100.

CREATE TYPE BONUS AS INTEGER WITH WEAK TYPE RULES
CHECK(VALUE >= 0 AND VALUE <= 100)

Because it is defined with weak type rules, comparison and cast functions are
not generated for the weakly typed distinct type called BONUS.

v Example 4: Create a weakly typed distinct type named SALARY that is based on
a DOUBLE data type which cannot be NULL and where the upper range is
limited to less than one hundred thousand.

CREATE TYPE SALARY AS DOUBLE WITH WEAK TYPE RULES
NOT NULL CHECK(VALUE < 100000)

CREATE TYPE (distinct)

Statements 841



CREATE TYPE (row)
The CREATE TYPE (row) statement defines a row type. A row type includes one
or more fields with associated data types that make up a row of data.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the schema name of the row

type does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the row type refers

to an existing schema
v DBADM authority

Syntax

�� CREATE TYPE
OR REPLACE

type-name AS ROW �

� �

,

( field-definition )
anchored-row-data-type

��

field-definition:

field-name data-type

data-type:

built-in-type
anchored-non-row-data-type
anchored-row-data-type

row-type-name
array-type-name
distinct-type-name

built-in-type:

CREATE TYPE (row)

842 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1 BYTE)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

(6)
TIMESTAMP

(integer)
BOOLEAN

CREATE TYPE (row)

Statements 843



anchored-non-row-data-type:

DATA TYPE TO
ANCHOR variable-name

table-name.column-name

anchored-row-data-type:

DATA TYPE TO
ANCHOR variable-name

OF
ROW table-name

view-name
cursor-variable-name

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

Description

OR REPLACE
Specifies to replace the definition for the data type if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that functions and methods are
invalidated instead of dropped when they have parameters or a return value
defined with the data type being replaced. The existing definition must not be
a structured type (SQLSTATE 42809). This option is ignored if a definition for
the data type does not exist at the current server.

type-name
Names the type. The name, including the implicit or explicit qualifier, must not
identify any other type (built-in, structured, array, row, or distinct) already
described in the catalog. The unqualified name must not be the same as the
name of a built-in data type or BOOLEAN (SQLSTATE 42918).

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a type-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part type-name is specified, the schema name cannot begin with 'SYS';
otherwise, an error is returned (SQLSTATE 42939).

field-definition
Defines the fields of the row type.

field-name
Specifies the name of a field within the row type. The name cannot be the
same as any other field of this row type (SQLSTATE 42711).

data-type
Specifies the data type of the field.

built-in-type
Specifies a built-in data type. See "CREATE TABLE" for the description
of built-in data types. Built-in types include the data types described in

CREATE TYPE (row)

844 SQL Reference Volume 2



“CREATE TABLE”, other than reference,
SYSPROC.DB2SECURITYLABEL, XML, or user-defined types
(SQLSTATE 429C2).

row-type-name
Specifies the name of a user-defined row type. If a row-type-name is
specified without a schema name, the row-type-name is resolved by
searching the schemas in the SQL path. Row types can be nested as
field types of a row type with a maximum nesting level of sixteen.

array-type-name
Specifies an array type. If an array-type-name is specified without a
schema name, the array-type-name is resolved by searching the schemas
in the SQL path. Array types can be nested as field types of a row type
with a maximum nesting level of sixteen.

distinct-type-name
Specifies a user-defined distinct data type. The specified distinct type
cannot have any data type constraints (SQLSTATE 429C5).

anchored-non-row-data-type
Identifies another object used to determine the data type. The data type of the
anchor object is has the same limitations that apply when specifying the data
type directly.

ANCHOR DATA TYPE TO
Indicates that an anchored data type is used to specify the data type.

variable-name
Identifies a global variable with a data type that is a supported row
field data type. The data type of the global variable is used as the data
type for the field.

table-name.column-name
Identifies a column name of an existing table or view with a data type
that is a built-in-type or a distinct type. The data type of the column is
used as the data type for the field.

anchored-row-data-type
Identifies row information from another object to use as the fields of the row.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data type.

variable-name
Identifies a global variable. The data type of the referenced variable
must be a row type.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on
the column names and column data types of the table identified by
table-name or the view identified by view-name. The data types of the
anchor object columns have the same limitations that apply to field
data types.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on
the field names and field data types of the cursor variable identified by
cursor-variable-name. The specified cursor variable must be one of the
following objects (SQLSTATE 428HS):
v A global variable with a strongly typed cursor data type

CREATE TYPE (row)

Statements 845



v A global variable with a weakly typed cursor data type that was
created or declared with a CONSTANT clause specifying a
select-statement where all the result columns are named.

Rules
v Use of anchored data types: An anchored data type cannot refer to the following

objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

Notes
v Row type usage: A row type can only be used as the data type of:

– A local variable in a compound SQL (compiled) statement
– A parameter of an SQL routine
– The returns type of an SQL function
– The element of an array type
– A user-defined cursor type
– A global variable

v A variable or parameter defined with a row type can only be used in compound
SQL (compiled) statements

Example
v Create a row type based on the columns of the DEPARTMENT table.

CREATE TYPE DEPTROW AS ROW (DEPTNO VARCHAR(3),
DEPTNAME VARCHAR(29),
MGRNO CHAR(6),
ADMRDEPT CHAR(3),
LOCATION CHAR(16))

CREATE TYPE (row)

846 SQL Reference Volume 2



CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)
The CREATE TYPE statement defines a user-defined structured type.

A user-defined structured type can include zero or more attributes. A structured
type can be a subtype allowing attributes to be inherited from a supertype.
Successful execution of the statement generates methods, for retrieving and
updating values of attributes. Successful execution of the statement also generates
functions, for constructing instances of a structured type used in a column, for
casting between the reference type and its representation type, and for supporting
the comparison operators (=, <>, <, <=, >, and >=) on the reference type.

The CREATE TYPE statement also defines any method specifications for
user-defined methods to be used with the user-defined structured type.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the schema name of the type

does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the type refers to an

existing schema
v DBADM authority

If UNDER is specified, and the authorization ID of the statement is not the same as
the owner of the root type of the type hierarchy, DBADM authority is required.

Syntax

�� CREATE TYPE type-name
UNDER supertype-name

�

�

�

,

AS ( attribute-definition )

*

INSTANTIABLE

NOT INSTANTIABLE
* �

�
INLINE LENGTH integer

*

WITHOUT COMPARISONS
*

NOT FINAL
* �

� MODE DB2SQL *

WITH FUNCTION ACCESS
*

REF USING rep-type
�

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 847



� *

CAST (SOURCE AS REF) WITH funcname1
* �

�
CAST (REF AS SOURCE) WITH funcname2

* �

�

�

,

method-specification

��

attribute-definition:

attribute-name data-type
lob-options

rep-type:

SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR BIT DATA
VARCHAR (integer)

CHARACTER VARYING
CHAR

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

method-specification:

METHOD method-name
OVERRIDING

�

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

848 SQL Reference Volume 2



�

�

( )
,

data-type2
parameter-name AS LOCATOR

* RETURNS �

� data-type3
AS LOCATOR

data-type4 CAST FROM data-type5
AS LOCATOR

* �

�
SPECIFIC specific-name

*

SELF AS RESULT
* �

�
SQL-routine-characteristics

external-routine-characteristics
*

SQL-routine-characteristics:

*

LANGUAGE SQL
*

PARAMETER CCSID ASCII
UNICODE

* �

�
NOT DETERMINISTIC

DETERMINISTIC
*

EXTERNAL ACTION

NO EXTERNAL ACTION
*

READS SQL DATA

CONTAINS SQL
* �

�
CALLED ON NULL INPUT

*

INHERIT SPECIAL REGISTERS
*

external-routine-characteristics:

* LANGUAGE C
JAVA
OLE

* PARAMETER STYLE DB2GENERAL
SQL

* �

�
PARAMETER CCSID ASCII

UNICODE

*

NOT DETERMINISTIC

DETERMINISTIC
* �

�
FENCED

FENCED * THREADSAFE
NOT THREADSAFE

THREADSAFE
NOT FENCED *

*

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT
* �

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 849



�
READS SQL DATA

NO SQL
CONTAINS SQL

*

EXTERNAL ACTION

NO EXTERNAL ACTION
*

NO SCRATCHPAD

100
SCRATCHPAD

length

�

� *

NO FINAL CALL

FINAL CALL
*

ALLOW PARALLEL

DISALLOW PARALLEL
*

NO DBINFO

DBINFO
* �

�
INHERIT SPECIAL REGISTERS

*

Description

type-name
Names the type. The name, including the implicit or explicit qualifier, must not
identify any other type (built-in, structured, or distinct) that already exists at
the current server. The unqualified name must not be the same as the name of
a built-in data type, BINARY, VARBINARY, or BOOLEAN (SQLSTATE 42918).
The unqualified name should also not be ARRAY, INTERVAL, or ROWID. In
dynamic SQL statements, the CURRENT SCHEMA special register is used as a
qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile or bind option implicitly specifies the qualifier for
unqualified object names.

A number of names used as keywords in predicates are reserved for system
use, and cannot be used as a type-name (SQLSTATE 42939). The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part type-name is specified, the schema name must not begin with the
characters 'SYS' (SQLSTATE 42939).

UNDER supertype-name
Specifies that this structured type is a subtype under the specified
supertype-name. The supertype-name must identify an existing structured type
(SQLSTATE 42704). If supertype-name is specified without a schema name, the
type is resolved by searching the schemas on the SQL path. The structured
type includes all the attributes of the supertype followed by the additional
attributes given in the attribute-definition.

attribute-definition
Defines the attributes of the structured type.

attribute-name
The name of an attribute. The attribute-name cannot be the same as any
other attribute of this structured type or any supertype of this structured
type (SQLSTATE 42711).

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as an attribute-name (SQLSTATE 42939).
The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the
comparison operators.

data-type
The data type of the attribute. It is one of the data types listed under
“CREATE TABLE”, other than XML or a weakly typed distinct type
(SQLSTATE 42601). The data type must identify an existing data type

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

850 SQL Reference Volume 2



(SQLSTATE 42704). If data-type is specified without a schema name, the
type is resolved by searching the schemas on the SQL path. The
description of various data types is given in “CREATE TABLE”. If the
attribute data type is a reference type, the target type of the reference must
be a structured type that exists, or is created by this statement (SQLSTATE
42704).

To prevent type definitions that would, at run time, permit an instance of
the type to directly or indirectly contain another instance of the same type
or one of its subtypes, a type cannot be defined such that one of its
attribute types directly or indirectly uses itself (SQLSTATE 428EP).

Character and graphic string data types cannot specify string units of
CODEUNITS32.

lob-options
Specifies the options associated with LOB types (or distinct types based on
LOB types). For a detailed description of lob-options, see “CREATE TABLE”.

INSTANTIABLE or NOT INSTANTIABLE
Determines whether an instance of the structured type can be created.
Implications of not instantiable structured types are:
v no constructor function is generated for a non-instantiable type
v a non-instantiable type cannot be used as the type of a table or view

(SQLSTATE 428DP)
v a non-instantiable type can be used as the type of a column (only null values

or instances of instantiable subtypes can be inserted into the column.

To create instances of a non-instantiable type, instantiable subtypes must be
created. If NOT INSTANTIABLE is specified, no instance of the new type can
be created.

INLINE LENGTH integer
This option indicates the maximum size (in bytes) of a structured type column
instance to store inline with the rest of the values in the row of a table.
Instances of a structured type or its subtypes, that are larger than the specified
inline length, are stored separately from the base table row, similar to the way
that LOB values are handled.

If the specified INLINE LENGTH is smaller than the size of the result of the
constructor function for the newly-created type (32 bytes plus 10 bytes per
attribute) and smaller than 292 bytes, an error results (SQLSTATE 429B2). Note
that the number of attributes includes all attributes inherited from the
supertype of the type.

The INLINE LENGTH for the type, whether specified or a default value, is the
default inline length for columns that use the structured type. This default can
be overridden at CREATE TABLE time.

INLINE LENGTH has no meaning when the structured type is used as the
type of a typed table.

The default INLINE LENGTH for a structured type is calculated by the system.
In the formulae that follow, the following terms are used:

short attribute
refers to an attribute with any of the following data types: SMALLINT,
INTEGER, BIGINT, REAL, DOUBLE, FLOAT, DATE, or TIME. Also
included are distinct types or reference types based on these types.

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 851



non-short attribute
refers to an attribute of any of the remaining data types, or distinct
types based on those data types.

The system calculates the default inline length as follows:
1. Determine the added space requirements for non-short attributes using the

following formula:
space_for_non_short_attributes = SUM(attributelength + n)
n is defined as:
v 0 bytes for nested structured type attributes
v 2 bytes for non-LOB attributes
v 9 bytes for LOB attributes
attributelength is based on the data type specified for the attribute as shown
in Table 29.

2. Calculate the total default inline length using the following formula:
default_length(structured_type) = (number_of_attributes * 10) + 32 +
space_for_non-short_attributes

number_of_attributes is the total number of attributes for the structured type,
including attributes that are inherited from its supertype. However,
number_of_attributes does not include any attributes defined for any subtype
of structured_type.

Table 29. Byte Counts for Attribute Data Types

Attribute Data Type Byte Count

DECIMAL The integral part of (p / 2) + 1, where p is the precision

DECFLOAT(n) If n is 16, the byte count is 8; if n is 34, the byte count is 16

CHAR(n) n

VARCHAR(n) n

GRAPHIC(n) n * 2

VARGRAPHIC(n) n * 2

TIMESTAMP 10

LOB type Each LOB attribute has a LOB descriptor in the structured
type instance that points to the location of the actual value.
The size of the descriptor varies according to the maximum
length defined for the LOB attribute (see Table 30.

Distinct type Length of the source type of the distinct type

Reference type Length of the built-in data type on which the reference type
is based

Structured type inline_length(attribute_type)

Table 30. LOB Descriptor Size as a Function of the Maximum LOB Length

Maximum LOB Length LOB Descriptor Size

1024 68

8192 92

65 536 116

524 000 140

4 190 000 164

134 000 000 196

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

852 SQL Reference Volume 2



Table 30. LOB Descriptor Size as a Function of the Maximum LOB Length (continued)

Maximum LOB Length LOB Descriptor Size

536 000 000 220

1 070 000 000 252

1 470 000 000 276

2 147 483 647 312

WITHOUT COMPARISONS
Indicates that there are no comparison functions supported for instances of the
structured type.

NOT FINAL
Indicates that the structured type may be used as a supertype.

MODE DB2SQL
This clause is required and allows for direct invocation of the constructor
function on this type.

WITH FUNCTION ACCESS
Indicates that all methods of this type and its subtypes, including methods
created in the future, can be accessed using functional notation. This clause can
be specified only for the root type of a structured type hierarchy (the UNDER
clause is not specified) (SQLSTATE 42613). This clause is provided to allow the
use of functional notation for those applications that prefer this form of
notation over method invocation notation.

REF USING rep-type
Defines the built-in data type used as the representation (underlying data type)
for the reference type of this structured type and all its subtypes. This clause
can only be specified for the root type of a structured type hierarchy (UNDER
clause is not specified) (SQLSTATE 42613). The rep-type cannot be a REAL,
FLOAT, DECFLOAT, BLOB, CLOB, DBCLOB, array type, or structured type,
and must have a length less than or equal to 32 672 bytes (SQLSTATE 42613).

If this clause is not specified for the root type of a structured type hierarchy,
then REF USING VARCHAR(16) FOR BIT DATA is assumed.

CAST (SOURCE AS REF) WITH funcname1
Defines the name of the system-generated function that casts a value with the
data type rep-type to the reference type of this structured type. A schema name
must not be specified as part of funcname1 (SQLSTATE 42601). The cast
function is created in the same schema as the structured type. If the clause is
not specified, the default value for funcname1 is type-name (the name of the
structured type). A function signature matching funcname1(rep-type) must not
already exist in the same schema (SQLSTATE 42710).

CAST (REF AS SOURCE) WITH funcname2
Defines the name of the system-generated function that casts a reference type
value for this structured type to the data type rep-type. A schema name must
not be specified as part of funcname2 (SQLSTATE 42601). The cast function is
created in the same schema as the structured type. If the clause is not
specified, the default value for funcname2 is rep-type (the name of the
representation type).

method-specification
Defines the methods for this type. A method cannot actually be used until it is
given a body with a CREATE METHOD statement (SQLSTATE 42884).

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 853



OVERRIDING
Specifies that the method being defined overrides a method of a supertype
of the type being defined. Overriding enables one to re-implement
methods in subtypes, thereby providing more specific functionality.
Overriding is not supported for the following types of methods:
v Table and row methods
v External methods declared with PARAMETER STYLE JAVA
v Methods that can be used as predicates in an index extension
v System-generated mutator or observer methods

Attempting to override such a method will result in an error (SQLSTATE
42745).

If a method is to be a valid overriding method, there must already exist
one original method for one of the proper supertypes of the type being
defined, and the following relationships must exist between the overriding
method and the original method:
v The method name of the method being defined and the original method

are equivalent.
v The method being defined and the original method have the same

number of parameters.
v The data type of each parameter of the method being defined and the

data type of the corresponding parameters of the original method are
identical. This requirement excludes the implicit SELF parameter.

If such an original method does not exist, an error is returned (SQLSTATE
428FV).

The overriding method inherits the following attributes from the original
method:
v Language
v Determinism indication
v External action indication
v An indication whether this method should be called if any of its

arguments is the null value
v Result cast (if specified in the original method)
v SELF AS RESULT indication
v The SQL-data access or CONTAINS SQL indication
v For external methods:

– Parameter style
– Locator indication of the parameters and of the result (if specified in

the original method)
– FENCED, SCRATCHPAD, FINAL CALL, ALLOW PARALLEL, and

DBINFO indication
– INHERIT SPECIAL REGISTER and THREADSAFE indication

method-name
Names the method being defined. It must be an unqualified SQL identifier
(SQLSTATE 42601). The method name is implicitly qualified with the
schema used for CREATE TYPE.

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a method-name (SQLSTATE 42939). The

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

854 SQL Reference Volume 2



names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE,
EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the
comparison operators.

In general, the same name can be used for more than one method if there
is some difference in their signatures.

parameter-name
Identifies the parameter name. It cannot be SELF, which is the name
for the implicit subject parameter of a method (SQLSTATE 42734). If
the method is an SQL method, all its parameters must have names
(SQLSTATE 42629). If the method being declared overrides another
method, the parameter name must be exactly the same as the name of
the corresponding parameter of the overridden method; otherwise, an
error is returned (SQLSTATE 428FV).

data-type2
Specifies the data type of each parameter. One entry in the list must be
specified for each parameter that the method will expect to receive. No
more than 90 parameters are allowed, including the implicit SELF
parameter. If this limit is exceeded, an error is raised (SQLSTATE
54023).

You can specify SQL data types and abbreviations that can be specified
as a column type in the CREATE TABLE statement, and that have
equivalents in the language that is being used to write the method. For
details on the mapping between SQL data types and host language
data types, see the topic that pertains to your language from the
following list of related topics.

Note: If the SQL data type in question is a structured type, there is no
default mapping to a host language data type. A user-defined
transform function must be used to create a mapping between the
structured type and the host language data type.

DECIMAL (or NUMERIC) and decimal floating-point are invalid with
LANGUAGE C and OLE (SQLSTATE 42815).

XML data types cannot be used (SQLSTATE 42815).

REF may be specified, but it does not have a defined scope. Inside the
body of the method, a reference-type can be used in a path-expression
only by first casting it to have a scope. Similarly, a reference returned
by a method can be used in a path-expression only by first casting it to
have a scope.

AS LOCATOR
For LOB types or distinct types which are based on a LOB type, the AS
LOCATOR clause can be added. This indicates that a LOB locator is to
be passed to the method instead of the actual value. This saves greatly
in the number of bytes passed to the method, and may save as well in
performance, particularly in the case where only a few bytes of the
value are actually of interest to the method.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a
type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 855



If the method being declared overrides another method, the AS
LOCATOR indication of the parameter must match exactly the AS
LOCATOR indication of the corresponding parameter of the
overridden method (SQLSTATE 428FV).

If the method being declared overrides another method, the FOR BIT
DATA indication of each parameter must match exactly the FOR BIT
DATA indication of the corresponding parameter of the overridden
method. (SQLSTATE 428FV).

RETURNS
This mandatory clause identifies the method's result.

data-type3
Specifies the data type of the method's result. In this case, exactly the same
considerations apply as for the parameters of methods specified in the
description for data-type2.

AS LOCATOR
For LOB types or distinct types which are based on LOB types, the AS
LOCATOR clause can be added. This indicates that a LOB locator is to
be passed from the method instead of the actual value.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a
type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

If the method being defined overrides another method, this clause
cannot be specified (SQLSTATE 428FV).

If the method overrides another method, data-type3 must be a subtype of
the data type of the result of the overridden method if this data type is a
structured type; otherwise both data types must be identical (SQLSTATE
428FV).

data-type4 CAST FROM data-type5
Specifies the data type of the method's result.

This clause is used to return a different data type to the invoking statement
from the data type returned by the method code. The data-type5 must be
castable to the data-type4 parameter. If it is not castable, an error is returned
(SQLSTATE 42880).

Because the length, precision, or scale for data-type4 can be inferred from
data-type5, it is not necessary (but still permitted) to specify the length,
precision, or scale for parameterized types specified for data-type4. Instead,
empty parentheses can be used, such as VARCHAR(), for example.
FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

A distinct type is not valid as the type specified in data-type5 (SQLSTATE
42815). XML is not valid as the type specified in data-type4 or data-type5
(SQLSTATE 42815).

The cast operation is also subject to runtime checks that might result in
conversion errors being returned.

AS LOCATOR
For LOB types or distinct types which are based on LOB types, the AS

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

856 SQL Reference Volume 2



LOCATOR clause can be added. This indicates that a LOB locator is to
be passed from the method instead of the actual value.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a
type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

If the method being defined overrides another method, this clause cannot
be specified (SQLSTATE 428FV).

If the method being defined overrides another method, the FOR BIT DATA
clause cannot be specified (SQLSTATE 428FV).

SPECIFIC specific-name
Provides a unique name for the instance of the method that is being defined.
This specific name can be used when creating the method body or dropping
the method. It can never be used to invoke the method. The unqualified form
of specific-name is an SQL identifier (with a maximum length of 18). The
qualified form is a schema-name followed by a period and an SQL identifier.
The name, including the implicit or explicit qualifier, must not identify another
specific method name that exists at the application server; otherwise an error is
raised (SQLSTATE 42710).

The specific-name may be the same as an existing method-name.

If no qualifier is specified, the qualifier that was used for type-name is used. If a
qualifier is specified, it must be the same as the explicit or implicit qualifier of
type-name or an error is raised (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmssxxx.

SELF AS RESULT
Identifies this method as a type-preserving method, which is defined as
follows:
v The declared return type must be the same as the declared subject-type

(SQLSTATE 428EQ).
v When an SQL statement is compiled and resolves to a type preserving

method, the static type of the result of the method is the same as the static
type of the subject argument.

v The method must be implemented in such a way that the dynamic type of
the result is the same as the dynamic type of the subject argument
(SQLSTATE 2200G), and the result cannot be NULL (SQLSTATE 22004).

If the method being defined overrides another method, this clause cannot be
specified (SQLSTATE 428FV).

SQL-routine-characteristics
Specifies the characteristics of the method body that will be defined for this
type using CREATE METHOD.

LANGUAGE SQL
This clause is used to indicate that the method is written in SQL with a
single RETURN statement. The method body is specified using the
CREATE METHOD statement.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 857



of the SQL method. If the PARAMETER CCSID clause is not specified, the
default is PARAMETER CCSID UNICODE for Unicode databases, and
PARAMETER CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in
UCS-2. If the database is not a Unicode database, PARAMETER CCSID
UNICODE cannot be specified (SQLSTATE 56031).

NOT DETERMINISTIC or DETERMINISTIC
This optional clause specifies whether the method always returns the same
results for given argument values (DETERMINISTIC) or whether the
method depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC method must always return
the same result from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC. NOT DETERMINISTIC must be explicitly or implicitly
specified if the body of the method accesses a special register, or calls
another non-deterministic routine (SQLSTATE 428C2).

EXTERNAL ACTION or NO EXTERNAL ACTION
This optional clause specifies whether or not the method takes some action
that changes the state of an object not managed by the database manager.
Optimizations that assume methods have no external impacts are
prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements that the method can run. The
database manager verifies that the SQL statements that the method issues
are consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines
(SQL and External).

Because the SQL statement supported is the RETURN statement, the
distinction has to do with whether the expression is a subquery.

The default is READS SQL DATA.

READS SQL DATA
Specifies that the method can run statements with a data access
classification of READS SQL DATA or CONTAINS SQL. The method
cannot run SQL statements that modify data (SQLSTATE 42985).
Nicknames cannot be referenced in the SQL statement (SQLSTATE
42997).

CONTAINS SQL
Specifies that the method can run only SQL statements with a data
access classification of CONTAINS SQL. The method cannot run any
SQL statements that read or modify data (SQLSTATE 42985).

CALLED ON NULL INPUT
This optional clause indicates that regardless of whether any arguments are

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

858 SQL Reference Volume 2



null, the user-defined method is called. It can return a null value or a
normal (non-null) value. However, responsibility for testing for null
argument values lies with the method.

If the method being defined overrides another method, this clause cannot
be specified (SQLSTATE 428FV).

NULL CALL can be used as a synonym for CALLED ON NULL INPUT.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the method
will inherit their initial values from the environment of the invoking
statement. For a method invoked in the select-statement of a cursor, the
initial values are inherited from the environment in which the cursor is
opened. For a routine invoked in a nested object (for example a trigger or
view), the initial values are inherited from the runtime environment (not
inherited from the object definition).

No changes to the special registers are passed back to the invoker of the
function.

Non-updatable special registers, such as the datetime special registers,
reflect a property of the statement currently executing, and are therefore set
to their default values.

external-routine-characteristics

LANGUAGE
This mandatory clause is used to specify the language interface convention
to which the user-defined method body is written.

C This means the database manager will call the user-defined method as
if it were a C function. The user-defined method must conform to the
C language calling and linkage convention as defined by the standard
ANSI C prototype.

JAVA
This means the database manager will call the user-defined method as
a method in a Java class.

OLE
This means the database manager will call the user-defined method as
if it were a method exposed by an OLE automation object. The method
must conform with the OLE automation data types and invocation
mechanism as described in the OLE Automation Programmer's Reference.

LANGUAGE OLE is only supported for user-defined methods stored
in Windows 32-bit operating systems. THREADSAFE may not be
specified for methods defined with LANGUAGE OLE (SQLSTATE
42613).

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters
to and returning the value from methods.

DB2GENERAL
Used to specify the conventions for passing parameters to and
returning the value from external methods that are defined as a
method in a Java class. This can only be specified when LANGUAGE
JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 859



SQL
Used to specify the conventions for passing parameters to and
returning the value from external methods that conform to C language
calling and linkage conventions or methods exposed by OLE
automation objects. This must be specified when either LANGUAGE C
or LANGUAGE OLE is used.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out
of the external method. If the PARAMETER CCSID clause is not specified,
the default is PARAMETER CCSID UNICODE for Unicode databases, and
PARAMETER CCSID ASCII for all other databases.

ASCII
Specifies that string data is encoded in the database code page. If the
database is a Unicode database, PARAMETER CCSID ASCII cannot be
specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in
UCS-2. If the database is not a Unicode database, PARAMETER CCSID
UNICODE cannot be specified (SQLSTATE 56031).

This clause cannot be specified with LANGUAGE OLE (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the method always returns the same
results for given argument values (DETERMINISTIC) or whether the
method depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC method must always return
the same result from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a type that is non-deterministic is one
that references special registers, global variables, or non-deterministic
functions in a way that affects the result type.

FENCED or NOT FENCED
This clause specifies whether the method is considered "safe" to run in the
database manager operating environment's process or address space (NOT
FENCED), or not (FENCED).

If a method is registered as FENCED, the database manager protects its
internal resources (data buffers, for example) from access by the method.
Most methods will have the option of running as FENCED or NOT
FENCED. In general, a method running as FENCED will not perform as
well as a similar one running as NOT FENCED.

CAUTION:
Use of NOT FENCED for methods that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database.
DB2 databases take some precautions against many of the common types
of inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED methods are used.

Only FENCED can be specified for a method with LANGUAGE OLE or
NOT THREADSAFE (SQLSTATE 42613).

If the method is FENCED and has the NO SQL option, the AS LOCATOR
clause cannot be specified (SQLSTATE 42613).

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

860 SQL Reference Volume 2



Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED_ROUTINE) is required to register a method as
NOT FENCED.

THREADSAFE or NOT THREADSAFE
Specifies whether the method is considered “safe” to run in the same
process as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the method is defined with LANGUAGE other than OLE:
v If the method is defined as THREADSAFE, the database manager can

invoke the method in the same process as other routines. In general, to
be threadsafe, a method should not use any global or static data areas.
Most programming references include a discussion of writing threadsafe
routines. Both FENCED and NOT FENCED methods can be
THREADSAFE.

v If the method is defined as NOT THREADSAFE, the database manager
will never invoke the method in the same process as another routine.

For FENCED methods, THREADSAFE is the default if the LANGUAGE is
JAVA. For all other languages, NOT THREADSAFE is the default. If the
method is defined with LANGUAGE OLE, THREADSAFE may not be
specified (SQLSTATE 42613).

For NOT FENCED methods, THREADSAFE is the default. NOT
THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external method if
any of the non-subject arguments is null.

If RETURNS NULL ON NULL INPUT is specified, and if at execution time
any one of the method's arguments is null, the method is not called and
the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of the number
of null arguments, the method is called. It can return a null value or a
normal (non-null) value. However, responsibility for testing for null
argument values lies with the method.

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON NULL
INPUT.

There are two cases in which this specification is ignored:
v If the subject argument is null, in which case the method is not executed

and the result is null
v If the method is defined to have no parameters, in which case this null

argument condition cannot occur.

READS SQL DATA, NO SQL, CONTAINS SQL
Specifies the classification of SQL statements that the method can run. The
database manager verifies that the SQL statements that the method issues
are consistent with this specification.

For the classification of each statement, see “SQL statements that can be
executed in routines and triggers” in Developing User-defined Routines
(SQL and External).

The default is READS SQL DATA.

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 861



READS SQL DATA
Specifies that the method can run statements with a data access
classification of READS SQL DATA or CONTAINS SQL (SQLSTATE
38002 or 42985). The method cannot run SQL statements that modify
data (SQLSTATE 38003 or 42985).

NO SQL
Specifies that the method can run only SQL statements with a data
access classification of NO SQL (SQLSTATE 38001).

CONTAINS SQL
Specifies that the method can run only SQL statements with a data
access classification of CONTAINS SQL (SQLSTATE 38004 or 42985).
The method cannot run any SQL statements that read or modify data
(SQLSTATE 38003 or 42985).

EXTERNAL ACTION or NO EXTERNAL ACTION
This optional clause specifies whether or not the method takes some action
that changes the state of an object not managed by the database manager.
Optimizations that assume methods have no external impacts are
prevented by specifying EXTERNAL ACTION.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be
provided for an external method. It is strongly recommended that methods
be re-entrant, so a scratchpad provides a means for the method to "save
state" from one call to the next.

If SCRATCHPAD is specified, then at the first invocation of the
user-defined method, memory is allocated for a scratchpad to be used by
the external method. This scratchpad has the following characteristics:
v length, if specified, sets the size in bytes of the scratchpad and must be

between 1 and 32 767 (SQLSTATE 42820). The default value is 100.
v It is initialized to all X'00''s.
v Its scope is the SQL statement. There is one scratchpad per reference to

the external method in the SQL statement.

So, if method X in the following statement is defined with the
SCRATCHPAD keyword, three scratchpads would be assigned.

SELECT A, X..(A) FROM TABLEB
WHERE X..(A) > 103 OR X..(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is
different from the one shown previously. If the method is executed on
multiple database partitions, a scratchpad would be assigned on each
database partition where the method is processed, for each reference to the
method in the SQL statement. Similarly, if the query is executed with
intrapartition parallelism enabled, more than three scratchpads may be
assigned.

The scratchpad is persistent. Its content is preserved from one external
method call to the next. Any changes made to the scratchpad by the
external method on one call will be present on the next call. The database
manager initializes scratchpads at the beginning of execution of each SQL
statement. The database manager may reset scratchpads at the beginning of
execution of each subquery. The system issues a final call before resetting a
scratchpad if the FINAL CALL option is specified.

The scratchpad can be used as a central point for system resources
(memory, for example) which the external method might acquire. The

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

862 SQL Reference Volume 2



method could acquire the memory on the first call, keep its address in the
scratchpad, and refer to it in subsequent calls.

In such a case where system resource is acquired, the FINAL CALL
keyword should also be specified; this causes a special call to be made at
end-of-statement to allow the external method to free any system resources
acquired.

If SCRATCHPAD is specified, then on each invocation of the user-defined
method, an additional argument is passed to the external method which
addresses the scratchpad.

If NO SCRATCHPAD is specified, then no scratchpad is allocated or
passed to the external method.

NO FINAL CALL or FINAL CALL
This optional clause specifies whether a final call is to be made to an
external method. The purpose of such a final call is to enable the external
method to free any system resources it has acquired. It can be useful in
conjunction with the SCRATCHPAD keyword in situations where the
external method acquires system resources such as memory and anchors
them in the scratchpad.

If FINAL CALL is specified, then at execution time, an additional
argument is passed to the external method which specifies the type of call.
The types of calls are:
v Normal call: SQL arguments are passed and a result is expected to be

returned.
v First call: the first call to the external method for this specific reference

to the method in this specific SQL statement. The first call is a normal
call.

v Final call: a final call to the external method to enable the method to free
up resources. The final call is not a normal call. This final call occurs at
the following times:
– End-of-statement: this case occurs when the cursor is closed for

cursor-oriented statements, or when the statement is through
executing otherwise.

– End-of-transaction: This case occurs when the normal
end-of-statement does not occur. For example, the logic of an
application may for some reason bypass the close of the cursor.

If a commit operation occurs while a cursor defined as WITH HOLD is
open, a final call is made at the subsequent close of the cursor or at the
end of the application.

If NO FINAL CALL is specified, then no "call type" argument is passed to
the external method, and no final call is made.

ALLOW PARALLEL or DISALLOW PARALLEL
This optional clause specifies whether, for a single reference to the method,
the invocation of the method can be parallelized. In general, the
invocations of most scalar methods should be parallelizable, but there may
be methods (such as those depending on a single copy of a scratchpad)
that cannot. If either ALLOW PARALLEL or DISALLOW PARALLEL are
specified for a method, then this specification will be accepted.

The following questions should be considered in determining which
keyword is appropriate for the method:

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 863



v Are all the method invocations completely independent of each other? If
YES, then specify ALLOW PARALLEL.

v Does each method invocation update the scratchpad, providing value(s)
that are of interest to the next invocation (the incrementing of a counter,
for example)? If YES, then specify DISALLOW PARALLEL or accept the
default.

v Is there some external action performed by the method which should
happen only on one database partition? If YES, then specify DISALLOW
PARALLEL or accept the default.

v Is the scratchpad used, but only so that some expensive initialization
processing can be performed a minimal number of times? If YES, then
specify ALLOW PARALLEL.

In any case, the body of every external method should be in a directory
that is available on every database partition.

The syntax diagram indicates that the default value is ALLOW PARALLEL.
However, the default is DISALLOW PARALLEL if one or more of the
following options is specified in the statement:
v NOT DETERMINISTIC
v EXTERNAL ACTION
v SCRATCHPAD
v FINAL CALL

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known
by the database manager will be passed to the method as an additional
invocation-time argument (DBINFO), or not (NO DBINFO).NO DBINFO is
the default. DBINFO is not supported for LANGUAGE OLE (SQLSTATE
42613). If the method being defined overrides another method, this clause
cannot be specified (SQLSTATE 428FV).

If DBINFO is specified, a structure that contains the following information
is passed to the method:
v Database name - the name of the currently connected database.
v Application ID - unique application ID which is established for each

connection to the database.
v Application Authorization ID - the application runtime authorization ID,

regardless of the nested methods in between this method and the
application.

v Code page - identifies the database code page.
v Schema name - under the exact same conditions as for Table name,

contains the name of the schema; otherwise blank.
v Table name - if and only if the method reference is either the right side

of a SET clause in an UPDATE statement, or an item in the VALUES list
of an INSERT statement, contains the unqualified name of the table
being updated or inserted; otherwise blank.

v Column name - under the exact same conditions as for Table name,
contains the name of the column being updated or inserted; otherwise
blank.

v Database version/release - identifies the version, release and
modification level of the database server invoking the method.

v Platform - contains the server's platform type.
v Table method result column numbers - not applicable to methods.

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

864 SQL Reference Volume 2



INHERIT SPECIAL REGISTERS
This optional clause specifies that special registers in the method will
inherit their initial values from the calling statement. For cursors, the initial
values are inherited from the time that the cursor is opened.

No changes to the special registers are passed back to the caller of the
method.

Some special registers, such as the datetime special registers, reflect a
property of the statement currently executing, and are therefore never
inherited from the caller.

Notes
v Creating a structured type with a schema name that does not already exist will

result in the implicit creation of that schema provided the authorization ID of
the statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.
The CREATEIN privilege on the schema is granted to PUBLIC.

v A structured subtype defined with no attributes defines a subtype that inherits
all its attributes from the supertype. If neither an UNDER clause nor any other
attribute is specified, then the type is a root type of a type hierarchy without any
attributes.

v The addition of a new subtype to a type hierarchy may cause packages to be
invalidated. A package may be invalidated if it depends on a supertype of the
new type. Such a dependency is the result of the use of a TYPE predicate or a
TREAT specification.

v A structured type may have no more than 4082 attributes (SQLSTATE 54050).
v A method specification is not allowed to have the same signature as a function

(comparing the first parameter-type of the function with the subject-type of the
method).

v No original method may override another method, or be overridden by an
original method (SQLSTATE 42745). Furthermore, a function and a method
cannot be in an overriding relationship. This means that if the function were
considered to be a method with its first parameter as subject S, it must not
override another method in any supertype of S, and it must not be overridden
by another method in any subtype of S (SQLSTATE 42745).

v Creation of a structured type automatically generates a set of functions and
methods for use with the type. All the functions and methods are generated in
the same schema as the structured type. If the signature of the generated
function or method conflicts with or overrides the signature of an existing
function in this schema, the statement fails (SQLSTATE 42710). The generated
functions or methods cannot be dropped without dropping the structured type
(SQLSTATE 42917). The following functions and methods are generated:
– Functions

- Reference Comparisons
Six comparison functions with names =, <>, <, <=, >, >= are generated for
the reference type REF(type-name). Each of these functions takes two
parameters of type REF(type-name) and returns true, false, or unknown. The
comparison operators for REF(type-name) are defined to have the same
behavior as the comparison operators for the underlying data type of
REF(type-name). (All references in a type hierarchy have the same reference
representation type. This enables REF(S) and REF(T) to be compared,
provided that S and T have a common supertype. Because uniqueness of
the OID column is enforced only within a table hierarchy, it is possible that

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 865



a value of REF(T) in one table hierarchy may be "equal" to a value of
REF(T) in another table hierarchy, even though they reference different
rows.)
The scope of the reference type is not considered in the comparison.

- Cast functions
Two cast functions are generated to cast between the generated reference
type REF(type-name) and the underlying data type of this reference type.
v The name of the function to cast from the underlying type to the

reference type is the implicit or explicit funcname1.
The format of this function is:

CREATE FUNCTION funcname1 (rep-type)
RETURNS REF(type-name) ...

v The name of the function to cast from the reference type to the
underlying type of the reference type is the implicit or explicit funcname2.
The format of this function is:

CREATE FUNCTION funcname2 ( REF(type-name) )
RETURNS rep-type ...

For some rep-types, there are additional cast functions generated with
funcname1 to handle casting from constants.
v If rep-type is SMALLINT, the additional generated cast function has the

format:
CREATE FUNCTION funcname1 (INTEGER)

RETURNS REF(type-name)

v If rep-type is CHAR(n), the additional generated cast function has the
format:

CREATE FUNCTION funcname1 ( VARCHAR(n))
RETURNS REF(type-name)

v If rep-type is GRAPHIC(n), the additional generated cast function has the
format:

CREATE FUNCTION funcname1 (VARGRAPHIC(n))
RETURNS REF(type-name)

The schema name of the structured type must be included in the SQL path
for successful use of these operators and cast functions in SQL statements.

- Constructor function
The constructor function is generated to allow a new instance of the type to
be constructed. This new instance will have null for all attributes of the
type, including attributes that are inherited from a supertype.
The format of the generated constructor function is:

CREATE FUNCTION type-name ( )
RETURNS type-name

...

If NOT INSTANTIABLE is specified, no constructor function is generated.
– Methods

- Observer methods
An observer method is defined for each attribute of the structured type. For
each attribute, the observer method returns the type of the attribute. If the
subject is null, the observer method returns a null value of the attribute
type.
For example, the attributes of an instance of the structured type ADDRESS
can be observed using C1..STREET, C1..CITY, C1..COUNTRY, and C1..CODE.

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

866 SQL Reference Volume 2



The method signature of the generated observer method is as if the
following statement had been executed:

CREATE TYPE type-name
...

METHOD attribute-name()
RETURNS attribute-type

where type-name is the structured type name.
- Mutator methods

A type-preserving mutator method is defined for each attribute of the
structured type. Use mutator methods to change attributes within an
instance of a structured type. For each attribute, the mutator method
returns a copy of the subject modified by assigning the argument to the
named attribute of the copy.
For example, an instance of the structured type ADDRESS can be mutated
using C1..CODE(’M3C1H7’). If the subject is null, the mutator method raises
an error (SQLSTATE 2202D).
The method signature of the generated mutator method is as if the
following statement had been executed:
CREATE TYPE type-name

...
METHOD attribute-name (attribute-type)

RETURNS type-name

If the attribute data type is SMALLINT, REAL, CHAR, or GRAPHIC, an
additional mutator method is generated in order to support mutation using
constants:
v If attribute-type is SMALLINT, the additional mutator supports an

argument of type INTEGER.
v If attribute-type is REAL, the additional mutator supports an argument of

type DOUBLE.
v If attribute-type is CHAR, the additional mutator supports an argument of

type VARCHAR.
v If attribute-type is GRAPHIC, the additional mutator supports an

argument of type VARGRAPHIC.
- If the structured type is used as a column type, the length of an instance of

the type can be no more than 1 GB in length at runtime (SQLSTATE 54049).
v When creating a new subtype for an existing structured type (for use as a

column type), any transform functions already written in support of existing
related structured types should be re-examined and updated as necessary.
Whether the new type is in the same hierarchy as a given type, or in the
hierarchy of a nested type, it is likely that the existing transform function
associated with this type will need to be modified to include some or all of the
new attributes introduced by the new subtype. Generally speaking, because it is
the set of transform functions associated with a given type (or type hierarchy)
that enables UDF and client application access to the structured type, the
transform functions should be written to support all of the attributes in a given
composite hierarchy (that is, including the transitive closure of all subtypes and
their nested structured types).
When a new subtype of an existing type is created, all packages dependent on
methods that are defined in supertypes of the type being created, and that are
eligible for overriding, are invalidated.

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 867



v Table access restrictions: If a method is defined as READS SQL DATA, no
statement in the method can access a table that is being modified by the
statement which invoked the method (SQLSTATE 57053). For example, suppose
the method BONUS() is defined as READS SQL DATA. If the statement
UPDATE DEPTINFO SET SALARY = SALARY + EMP..BONUS() is invoked, no
SQL statement in the BONUS method can read from the EMPLOYEE table.

v Privileges: The definer of the user-defined type always receives the EXECUTE
privilege WITH GRANT OPTION on all methods and functions automatically
generated for the structured type. The EXECUTE privilege is not granted on any
methods explicitly specified in the CREATE TYPE statement until a method
body is defined using the CREATE METHOD statement. The definer of the
user-defined type does have the right to drop the method specification using the
ALTER TYPE statement. EXECUTE privilege on all methods and functions
automatically generated during the CREATE TYPE (structured) statement is
granted to PUBLIC.
When an external method is used in an SQL statement, the method definer must
have the EXECUTE privilege on any packages used by the method.

v In a partitioned database environment, the use of SQL in external user-defined
functions or methods is not supported (SQLSTATE 42997).

v Only routines defined as NO SQL can be used to define an index extension
(SQLSTATE 428F8).

v A Java routine defined as NOT FENCED will be invoked as if it had been
defined as FENCED THREADSAFE.

v EXTERNAL ACTION methods: If an EXTERNAL ACTION method is invoked in
other than the outermost select list, the results are unpredictable since the
number of times the method is invoked will vary depending on the access plan
used.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NOT VARIANT can be specified in place of DETERMINISTIC
– VARIANT can be specified in place of NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT
– NOT NULL CALL can be specified in place of RETURNS NULL ON NULL

INPUT
– PARAMETER STYLE DB2SQL can be specified in place of PARAMETER

STYLE SQL

The following syntax is accepted as the default behavior for external methods:
– ASUTIME NO LIMIT
– NO COLLID
– PROGRAM TYPE SUB
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE

is not specified

The following syntax is accepted as the default behavior for SQL methods:
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

868 SQL Reference Volume 2



Examples
v Example 1: Create a type for department.

CREATE TYPE DEPT AS
(DEPT NAME VARCHAR(20),

MAX_EMPS INT)
REF USING INT

MODE DB2SQL

v Example 2: Create a type hierarchy consisting of a type for employees and a
subtype for managers.

CREATE TYPE EMP AS
(NAME VARCHAR(32),
SERIALNUM INT,
DEPT REF(DEPT),
SALARY DECIMAL(10,2))
MODE DB2SQL

CREATE TYPE MGR UNDER EMP AS
(BONUS DECIMAL(10,2))
MODE DB2SQL

v Example 3: Create a type hierarchy for addresses. Addresses are intended to be
used as types of columns. The inline length is not specified, so a default length
is calculated. Encapsulate within the address type definition an external method
that calculates how close this address is to a given input address. Create the
method body using the CREATE METHOD statement.

CREATE TYPE address_t AS
(STREET VARCHAR(30),
NUMBER CHAR(15),
CITY VARCHAR(30),
STATE VARCHAR(10))
NOT FINAL
MODE DB2SQL

METHOD SAMEZIP (addr address_t)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
NO EXTERNAL ACTION,

METHOD DISTANCE (address_t)
RETURNS FLOAT
LANGUAGE C
DETERMINISTIC
PARAMETER STYLE SQL
NO SQL
NO EXTERNAL ACTION

CREATE TYPE germany_addr_t UNDER address_t AS
(FAMILY_NAME VARCHAR(30))
NOT FINAL
MODE DB2SQL

CREATE TYPE us_addr_t UNDER address_t AS
(ZIP VARCHAR(10))
NOT FINAL
MODE DB2SQL

v Example 4: Create a type that has nested structured type attributes.
CREATE TYPE PROJECT AS

(PROJ_NAME VARCHAR(20),
PROJ_ID INTEGER,
PROJ_MGR MGR,

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

Statements 869



PROJ_LEAD EMP,
LOCATION ADDR_T,
AVAIL_DATE DATE)
MODE DB2SQL

CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)

870 SQL Reference Volume 2



CREATE TYPE MAPPING
The CREATE TYPE MAPPING statement defines a mapping between data types.

The mapping can be defined between the following data types:
v The data type of a column in a data source table or view that is going to be

defined to a federated database
v A corresponding data type that is already defined to the federated database

The mapping can associate the federated database data type with a data type at:
v A specified data source
v A range of data sources; for example, all data sources of a particular type and

version

A data type mapping must be created only if an existing one is not adequate.

If multiple type mappings are applicable when creating a nickname or creating a
table (transparent DDL), the most recent one is applied.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
authority.

Syntax

�� CREATE TYPE MAPPING
type-mapping-name

* �

�
(1) LOCAL TYPE

FROM local-data-type
TO

* �

� TO remote-server
FROM

REMOTE
TYPE data-source-data-type �

CREATE TYPE MAPPING

Statements 871



�
FOR BIT DATA
( p )

[p..p] ,s P=S
,[s..s] P>S

P<S
P>=S
P<=S
P<>S

��

local-data-type:

�� built-in-type ��

built-in-type:

CREATE TYPE MAPPING

872 SQL Reference Volume 2



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer ) FOR BIT DATA

OCTETS
VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR

(1M)
CLOB
CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M
G

(1)
GRAPHIC

(integer )
CODEUNITS16

VARGRAPHIC (integer )
CODEUNITS16

(1M)
DBCLOB

(integer )
K CODEUNITS16
M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

remote-server:

SERVER server-name
SERVER TYPE server-type

VERSION server-version
WRAPPER wrapper-name

server-version:

version
. release

. mod
version-string-constant

CREATE TYPE MAPPING

Statements 873



Notes:

1 Both a TO and a FROM keyword must be present in the CREATE TYPE
MAPPING statement.

Description

type-mapping-name
Names the data type mapping. The name must not identify a data type
mapping that is already described in the catalog. A unique name is generated
if type-mapping-name is not specified.

FROM or TO
Specifies a reverse or forward type mapping.

FROM
Specifies a forward type mapping when followed by local-data-type or a
reverse type mapping when followed by remote-server.

TO Specifies a forward type mapping when followed by remote-server or a
reverse type mapping when followed by local-data-type.

local-data-type
Identifies a data type that is defined to a federated database. If local-data-type is
specified without a schema name, the type name is resolved by searching the
schemas in the SQL path.

Empty parentheses can be used for the parameterized data types. A
parameterized data type is any one of the data types that can be defined with
a specific length, scale, or precision. If empty parentheses are specified in a
forward type mapping, such as, for example, CHAR(), the length is determined
from the column length on the remote table. If empty parentheses are specified
in a reverse type mapping, the type mapping is applied to the data type with
any length. If you omit parentheses altogether, the default length for the data
type is used.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE). NUMBER() cannot be used
(SQLSTATE 42601), because the parameter value indicates different data types
(DECFLOAT or DECIMAL).

DECFLOAT can be accepted only as the local-data-type by Oracle wrapper, DB2
wrapper for IBM DB2 Version 9.5 for Linux, UNIX, and Windows or later.

The local-data-type cannot be a user-defined type (SQLSTATE 42611).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SERVER server-name
Names the data source to which data-source-data-type is defined.

SERVER TYPE server-type
Identifies the type of data source to which data-source-data-type is defined.

VERSION
Identifies the version of the data source to which data-source-data-type is
defined.

version
Specifies the version number. The value must be an integer.

CREATE TYPE MAPPING

874 SQL Reference Volume 2



release
Specifies the number of the release of the version denoted by version.
The value must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. The value must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, '8i'); or it can
be the concatenated values of version, release and, if applicable, mod (for
example, '8.0.3').

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to
interact with data sources of the type and version denoted by
server-type and server-version.

TYPE data-source-data-type
Specifies the data source data type that is being mapped to or from the local
data type.

Empty parentheses can be used for the parameterized data types. If empty
parentheses are specified in a forward type mapping, such as, for example,
CHAR(), the type mapping is applied to the data type with any length. If
empty parentheses are specified in a reverse type mapping, the length is
determined from the column length specified in the transparent DDL. If you
omit parentheses altogether, the default length for the data type is used.

The data-source-data-type must be a built-in data type. User-defined types are
not allowed.

If server-name is specified with a type mapping, or existing servers are affected
by the type mapping, data-source-data-type, p, and s are verified when creating
the type mapping (SQLSTATE 42611).

p If p is specified, only the data type whose length or precision equals p is
affected by the type mapping.

[p1..p2]
For forward type mapping only. For a decimal data type, p1 and p2 specify the
minimum and maximum number of digits that a value can have. For string
data types, p1 and p2 specify the minimum and maximum number of
characters that a value can have. In all cases, the maximum must equal or
exceed the minimum; and both numbers must be valid with respect to the data
type.

s If s is specified, only the data type whose scale equals s is affected by the type
mapping.

[s1..s2]
For forward type mapping only. For a decimal data type, s1 and s2 specify the
minimum and maximum number of digits allowed to the right of the decimal
point. The maximum must equal or exceed the minimum, and both numbers
must be valid with respect to the data type.

P [operand] S
For a decimal data type, P [operand] S specifies a comparison between the
precision and the number of digits allowed to the right of the decimal point.

CREATE TYPE MAPPING

Statements 875



For example, the operand = indicates that the type mapping is applied if the
precision and the number of digits allowed in the decimal fraction are the
same.

FOR BIT DATA
Indicates whether data-source-data-type is for bit data. These keywords are
required if the data source type column contains binary values. The database
manager will determine this attribute if it is not specified for a character data
type.

Notes
v A CREATE TYPE MAPPING statement within a given unit of work (UOW)

cannot be processed (SQLSTATE 55007) under either of the following conditions:
– The statement references a single data source, and the UOW already includes

one of the following:
- A SELECT statement that references a nickname for a table or view within

this data source
- An open cursor on a nickname for a table or view within this data source
- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of
the following:
- A SELECT statement that references a nickname for a table or view within

one of these data sources
- An open cursor on a nickname for a table or view within one of these data

sources
- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v When multiple type mappings are applicable, the most recent one will be used.

You can retrieve the creation time for a type mapping by querying the
CREATE_TIME column of the SYSCAT.TYPEMAPPINGS catalog view.

Examples
1. Create a forward type mapping between the Oracle data type DATE and the

data type SYSIBM.DATE. For all of the nicknames that are created after this
mapping is defined, Oracle columns of data type DATE will map to DB2
columns of data type DATE.

CREATE TYPE MAPPING MY_ORACLE_DATE
FROM LOCAL TYPE SYSIBM.DATE
TO SERVER TYPE ORACLE
REMOTE TYPE DATE

2. Create a forward type mapping between data type SYSIBM.DECIMAL(10,2)
and the Oracle data type NUMBER([10..38],2) at data source ORACLE1. If there
is a column in the Oracle table of data type NUMBER(11,2), it will be mapped
to a column of data type DECIMAL(10,2), because 11 is between 10 and 38.

CREATE TYPE MAPPING MY_ORACLE_DEC
FROM LOCAL TYPE SYSIBM.DECIMAL(10,2)
TO SERVER ORACLE1
REMOTE TYPE NUMBER([10..38],2)

3. Create a forward type mapping between data type SYSIBM.VARCHAR(p) and
the Oracle data type CHAR(p) at data source ORACLE1 (p is any length). If
there is a column in the Oracle table of data type CHAR(10), it will be mapped
to a column of data type VARCHAR(10).

CREATE TYPE MAPPING

876 SQL Reference Volume 2



CREATE TYPE MAPPING MY_ORACLE_CHAR
FROM LOCAL TYPE SYSIBM.VARCHAR()
TO SERVER ORACLE1
REMOTE TYPE CHAR()

4. Create a reverse type mapping between the Oracle data type NUMBER(10,2) at
data source ORACLE2 and data type SYSIBM.DECIMAL(10,2). If you use
transparent DDL to create an Oracle table and specify a column of data type
DECIMAL(10,2), DB2 will create the Oracle table with a column of data type
NUMBER(10,2).

CREATE TYPE MAPPING MY_ORACLE_DEC
TO LOCAL TYPE SYSIBM.DECIMAL(10,2)
FROM SERVER ORACLE2
REMOTE TYPE NUMBER(10,2)

CREATE TYPE MAPPING

Statements 877



CREATE USAGE LIST
The CREATE USAGE LIST statement defines a usage list. A usage list is a database
object for monitoring all unique sections (DML statements) that have referenced a
particular table or index during their execution.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following privileges:
v DBADM authority
v SQLADM authority

Syntax

�� CREATE USAGE LIST usage-list-name FOR TABLE object-name
INDEX

�

�
LIST SIZE 100 WHEN FULL WRAP

LIST SIZE integer-value WHEN FULL DEACTIVATE
�

�
INACTIVE ON START DATABASE

ACTIVE ON START DATABASE
��

Description

usage-list-name
Names the usage list. The usage-list-name, including the implicit or explicit
qualifier, must not identify a usage list that is described in the catalog
(SQLSTATE 42710). If the usage list is explicitly qualified with a schema name,
the schema name must not begin with the characters 'SYS' (SQLSTATE 42939).

TABLE object-name
Designates the table for which the usage list is defined. The object-name,
including the implicit or explicit qualifier, must specify a table defined in the
catalog (SQLSTATE 42704). The name must not specify an alias, catalog table,
created temporary table, hierarchy table, detached table, nickname, typed table,
or view (SQLSTATE 42809).

INDEX object-name
Designates the index for which the usage list is defined. The object-name,
including the implicit or explicit qualifier, must specify an index defined in the
catalog (SQLSTATE 42704). Indexes defined on tables other than untyped tables
or materialized query tables are not supported (SQLSTATE 42809). The name
must specify a physical index; Block Indexes (BLOK), Clustering indexes
(CLUS), Dimension block indexes (DIM), Regular indexes (REG), and Physical
indexes over XML column (XVIP). All other index types are not supported
(SQLSTATE 42809).

CREATE USAGE LIST

878 SQL Reference Volume 2



LIST SIZE integer-value
Specifies that the size of this list is integer-value entries. The minimum size that
can be specified is 10 and the maximum is 5000 (SQLSTATE 428B7). The
default size is 100 entries.

WHEN FULL
Specifies what action is performed when an active usage list becomes full. The
default is to wrap when the list becomes full.

WRAP
Specifies that the usage list wraps and replaces the oldest entries.

DEACTIVATE
Specifies that the usage list deactivates.

INACTIVE ON START DATABASE
Specifies that the usage list is not activated for monitoring whenever the
database is activated. Collection must be explicitly started using the SET
USAGE LIST statement. This clause is the default.

ACTIVE ON START DATABASE
Specifies that the usage list is automatically activated for monitoring whenever
the database is activated.

Notes
v Tracking sections with unique keys: A usage list keep tracks of all unique

sections (DML statements only) that have referenced a particular object.
References are aggregated within the list with the unique key of executable ID,
representing the section doing the reference, and the monitor interval ID at the
time of the reference. Each list entry keeps a count of section executions related
to that entry and a set of statistics outlining the affect that the section had on the
object across those executions.

v Usage list release time: A usage list is set to released when the CREATE USAGE
LIST statement is committed.

v Memory allocation: Memory is allocated the first time that the object for which
the usage list is defined is referenced by a section.

v Memory allocation in a partitioned database environment or DB2 pureScale
environment: If the state of a usage list for a partitioned table or index is set to
active, memory is allocated for each data partition when the data partition is
first referenced by the section. Similarly, in a partitioned database environment
or DB2 pureScale environment, memory is allocated at each active member. If a
member is unavailable at the time of activation, then the memory is allocated
when the member is next activated (if the state of the usage list is still set to
active). This also applies when a member is added to the cluster.

v State of the usage list when specifying WHEN FULL DEACTIVATE: If the usage
list was created with the clause WHEN FULL DEACTIVATE, then the state of
the usage list at each member is set to inactive independently. Similarly, for
partitioned tables and indexes, the state of the usage list for each data partition
is set to inactive independently.

v Implicit reactivation of an active usage list: If the state of an INACTIVE ON
START DATABASE usage list is set to active in a partitioned database
environment or DB2 pureScale environment, then its behavior is similar to the
ACTIVE ON START DATABASE clause until the state of the usage list is
explicitly set to inactive or the instance is recycled. That is, if the state of a usage
list is active when a database member is deactivated or offline, and that database
member is subsequently reactivated, the usage list for this member is also
implicitly reactivated.

CREATE USAGE LIST

Statements 879



v Inactive usage lists remain inactive upon database member reactivation: If the
state of an ACTIVE ON START DATABASE usage list is set to inactive in a
partitioned database environment or DB2 pureScale environment, then its
behavior is similar to the INACTIVE ON START DATABASE clause until the
state of the usage list is explicitly set to active or the instance is recycled. That is,
if the state of a usage list is inactive when a database member is deactivated or
offline, and that database member is subsequently reactivated, the state of the
usage list for this member will remain inactive.

v Multiple usage lists: Multiple usage lists can be created for the same table or
index, however, it is recommended that only one of them be activated.
Activating all of them affects database performance and memory usage.

v Activating and deactivating usage lists: See the Notes section for the SET
USAGE LIST STATE statement regarding activation and deactivation of the
usage list.

v Usage list size considerations: When the state of a usage list is set to active, the
memory for the usage list is allocated from the monitor heap. At the maximum
list size setting, the usage list is approximately 2MB. For partitioned tables or
indexes, memory is allocated for each data partition. For example, if a
partitioned table has three data partitions defined, approximately 6MB of
memory is allocated. Therefore, activating multiple usage lists imposes more
memory requirements on the monitor heap. It is therefore suggested that a
reasonable list size is selected, or that you set the mon_heap_sz configuration
parameter to AUTOMATIC so that the database manager manages the monitor
heap size.

v Performance considerations: To maintain high performance, create usage lists
such that they are limited to the amount required to gather the information you
need. Each usage list requires system memory; system performance can degrade
as additional usage lists are activated.

Examples
v Example 1: Create a usage list USL_ACC for table SAYYID.ACCOUNTS with a

default list size of 100 entries.
CREATE USAGE LIST USL_ACC FOR TABLE SAYYID.ACCOUNTS

v Example 2: Create a usage list USL_SHOPPING_IND for index
BIRD.SHOPPINGIND with a list of 50 entries that wraps when the list becomes
full.
CREATE USAGE LIST USL_SHOPPING_IND FOR INDEX BIRD.SHOPPINGIND

LISTSIZE 50
WHEN FULL WRAP

v Example 3: Create a usage list USL_PAYROLL for table MIKE.PAYROLL with a
list size of 200 entries which will deactivate when the list becomes full and will
automatically start collecting whenever the database is activated.
CREATE USAGE LIST USL_PAYROLL FOR TABLE MIKE.PAYROLL

LISTSIZE 200
WHEN FULL DEACTIVATE
ACTIVE ON START DATABASE

v Example 4: Create a usage list USL_EMP for partitioned table
JACOBO.EMPLOYEES with a list size of 500 entries which will deactivate when
the list becomes full.
CREATE USAGE LIST USL_EMP FOR TABLE JACOBO.EMPLOYEES

LIST SIZE 500
WHEN FULL DEACTIVATE

CREATE USAGE LIST

880 SQL Reference Volume 2



When the usage list is activated for monitoring, then a list of 500 entries will be
allocated for each data partition.

v Example 5: Create a usage list USL_PARTS for table SHAKTI.PARTS with a list
size of 20 entries that will be activated manually on database activation and will
wrap when it becomes full.
CREATE USAGE LIST USL_PARTS FOR TABLE SHAKTI.PARTS

LIST SIZE 20
INACTIVE ON START DATABASE
WHEN FULL WRAP

CREATE USAGE LIST

Statements 881



CREATE USER MAPPING
The CREATE USER MAPPING statement defines a mapping between an
authorization ID that uses a federated database and the authorization ID and
password to use at a specified data source.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

If the authorization ID of the statement is different from the authorization name
that is being mapped to the data source, the privileges held by the authorization
ID of the statement must include DBADM authority. Otherwise, if the
authorization ID and the authorization name match, no authorities or privileges
are required.

When creating a public user mapping, the privileges held by the authorization ID
of the statement must include DBADM authority.

Syntax

�� CREATE USER MAPPING FOR authorization-name
USER
PUBLIC

SERVER server-name �

� �

,

OPTIONS ( user-mapping-option-name string-constant ) ��

Description

authorization-name
Specifies the authorization name under which a user or application connects to
a federated database. The authorization_name is mapped to the
REMOTE_AUTHID user mapping option.

USER
The value in the USER special register. When USER is specified, the
authorization ID issuing the CREATE USER MAPPING statement is mapped to
the REMOTE_AUTHID user mapping option.

PUBLIC
Specifies that any valid authorization ID for the local federated database will
be mapped to the data source authorization ID that is specified in the
REMOTE_AUTHID user option.

SERVER server-name
Names the server object for the data source that the authorization-name can
access. The server-name is the local name for the remote server that is registered
with the federated database.

CREATE USER MAPPING

882 SQL Reference Volume 2



OPTIONS
Indicates the options that are enabled when the user mapping is created.

user-mapping-option-name
Specifies the name of the option.

string-constant
Specifies the setting for the user-mapping-option-name as a character string
constant.

Notes
v User mappings are required only for the following data sources: the DB2 family

of products, Documentum, Informix, Microsoft SQL Server, ODBC, Oracle,
Sybase, and Teradata.

v The REMOTE_PASSWORD option is always required for a user mapping.
v Public user mappings and non-public user mappings cannot coexist on the same

federated server. This means that if you have created public user mappings, you
will not be able to create non-public user mappings on the same federated
server. The reverse is also true, if you have created non-public user mappings,
you will not be able to create public user mappings on the same federated
server.

v Syntax alternatives: The following syntax is supported for compatibility with
previous versions of DB2:
– ADD can be specified before user-mapping-option-name string-constant.

Examples
1. Register a user mapping to the DB2 for z/OS data source server object

SERVER390. Map the authorization name for the local federated database to the
user ID and password for SERVER390. The authorization name is RSPALTEN.
The user ID for SERVER390 is SYSTEM. The password for SERVER390 is
MANAGER.

CREATE USER MAPPING FOR RSPALTEN
SERVER SERVER390
OPTIONS
(REMOTE_AUTHID ’SYSTEM’,
REMOTE_PASSWORD ’MANAGER’)

2. Register a user mapping to the Oracle data source server object ORACLE1.
MARCR is the authorization name for the local federated database and the user
ID for ORACLE1. Because the authorization name and the user ID are the
same, the REMOTE_AUTHID option does not need to be specified in the user
mapping. The password for MARCR on ORACLE1 is NZXCZY .

CREATE USER MAPPING FOR MARCR
SERVER ORACLE1
OPTIONS
(REMOTE_PASSWORD ’NZXCZY’)

3. Create a DRDA wrapper and a DB2 for z/OS data source server SERVER390.
Then register a public user mapping to the server object SERVER390. PUBLIC
indicates any valid authorization ID for the local federated database. The user
ID for SERVER390 is APP_USER. The password for SERVER390 is secret.

CREATE WRAPPER DRDA;
CREATE SERVER SERVER390

TYPE db2/udb VERSION 9.7 WRAPPER DRDA
AUTHORIZATION "APP_USER" PASSWORD "secret"
OPTIONS (DBNAME ’remotedb’);

CREATE USER MAPPING FOR PUBLIC SERVER SERVER390
OPTIONS (REMOTE_AUTHID ’APP_USER’, REMOTE_PASSWORD ’secret’);

CREATE USER MAPPING

Statements 883



CREATE VARIABLE
The CREATE VARIABLE statement defines a session global variable.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the variable does not exist
v CREATEIN privilege on the schema, if the schema name of the variable refers to

an existing schema
v DBADM authority

and any privileges that are necessary to execute the default expression.

To execute this statement with a cursor-value-constructor that uses a select-statement,
the privileges held by the authorization ID of the statement must include the
privileges necessary to execute the select-statement. See the Authorization section in
"SQL queries".

Group privileges are not considered when checking authorization for objects
referenced in the statement

To replace an existing variable, the authorization ID of the statement must be the
owner of the existing variable (SQLSTATE 42501).

Syntax

�� CREATE VARIABLE variable-name data-type1
OR REPLACE

�

�
DEFAULT NULL (1)

CONSTANT NULL
DEFAULT constant
CONSTANT special-register

global-variable
( cursor-value-constructor )
( expression )

��

CREATE VARIABLE

884 SQL Reference Volume 2



data-type1:

built-in-type
anchored-variable-data-type

array-type-name
cursor-type-name
distinct-type-name
REF (type-name)
row-type-name

built-in-type:

SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (2)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
(3)

XML
BOOLEAN
CURSOR

CREATE VARIABLE

Statements 885



anchored-variable-data-type:

DATA TYPE TO
ANCHOR variable-name2

table-name.column-name
OF

ROW table-name
view-name
cursor-variable-name

cursor-value-constructor:

�

ASENSITIVE
CURSOR

INSENSITIVE ,

( parameter-declaration )

�

� holdability FOR select-statement

parameter-declaration:

parameter-name data-type2

data-type2:

built-in-type
anchored-parameter-data-type

distinct-type-name

anchored-parameter-data-type:

DATA TYPE TO
ANCHOR variable-name

table-name.column-name

holdability:

WITHOUT HOLD

WITH HOLD

Notes:

1 If data-type1 specifies a CURSOR built-in type or cursor-type-name, only NULL
or cursor-value-constructor can be specified. Only DEFAULT NULL can be
explicitly specified for array-type-name or row-type-name.

2 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

3 For Version 10.1, you can use the XML data type only as a parameter data

CREATE VARIABLE

886 SQL Reference Volume 2



type in a cursor value constructor. For Version 10.1 Fix Pack 1 or later fix
pack releases, you can also use the XML data type to create global variables.

Description

OR REPLACE
Specifies to replace the definition for the variable if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the variable are not affected. This option is ignored if a definition for the
variable does not exist at the current server. This option can be specified only
by the owner of the object.

variable-name
Names the global variable. The name, including an implicit or explicit qualifier,
must not identify a global variable that already exists at the current server
(SQLSTATE 42710). If a qualifier is not specified, the current schema is
implicitly assigned. If the global variable name is explicitly qualified with a
schema name, the schema name must not begin with the characters 'SYS'
(SQLSTATE 42939).

data-type1
Specifies the data type of the global variable. A structured type cannot be
specified (SQLSTATE 42611).

built-in-type
Specifies a built-in data type. BOOLEAN and CURSOR cannot be specified
for a table. For Version 10.1, an XML data type cannot be specified
(SQLSTATE 42611). The XML data type support starts in Version 10.1 Fix
Pack 1. For a more complete description of each built-in data type, see
"CREATE TABLE".

FOR BIT DATA can be specified as part of character string data types.

BOOLEAN
For a Boolean.

CURSOR
For a reference to an underlying cursor.

anchored-variable-data-type
Identifies another object used to determine the data type of the global
variable. The data type of the anchor object has the same limitations that
apply to specifying the data type directly, or in the case of a row, to
creating a row type.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data type.

variable-name2
Identifies a global variable. The data type of the referenced variable
is used as the data type for the global variable.

table-name.column-name
Identifies a column name of an existing table or view. The data
type of the column is used as the data type for the global variable.

ROW OF table-name or view-name
Specifies that the global variable is a row of fields with names and
data types that are based on the column names and column data

CREATE VARIABLE

Statements 887



types of the table identified by table-name or the view identified by
view-name. The data type of the global variable is an unnamed row
type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based
on the field names and field data types of the cursor variable
identified by cursor-variable-name. The specified cursor variable
must be one of the following elements (SQLSTATE 428HS):
v A global variable with a strongly typed cursor data type
v A global variable with a weakly typed cursor data type that was

created or declared with a CONSTANT clause specifying a
select-statement where all the result columns are named.

If the cursor type of the cursor variable is not strongly-typed using
a named row type, the data type of the global variable is an
unnamed row type.

array-type-name
Specifies the name of a user-defined array type. If array-type-name is
specified without a schema name, the array type is resolved by searching
the schemas in the SQL path.

cursor-type-name
Specifies the name of a cursor type. If cursor-type-name is specified without
a schema name, the cursor type is resolved by searching the schemas in the
SQL path.

distinct-type-name
Specifies the name of a distinct type. The length, precision, and scale of the
declared variable are, respectively, the length, precision, and scale of the
source type of the distinct type. If distinct-type-name is specified without a
schema name, the distinct type is resolved by searching the schemas in the
SQL path.

REF (type-name)
Specifies a reference type. If a type name is specified without a schema
name, the type-name is resolved by searching the schemas in the SQL path.

row-type-name
Specifies the name of a user-defined row type. The fields of the variable
are the fields of the row type. If row-type-name is specified without a
schema name, the row type is resolved by searching the schemas in the
SQL path.

DEFAULT or CONSTANT
Specifies a value for the global variable when it is first referenced. The
DEFAULT or CONSTANT clause value is determined on this first reference. If
neither is specified, the default for the global variable is the null value. Only
DEFAULT NULL can be explicitly specified if array-type-name or row-type-name
is specified.

DEFAULT
Defines the default for the global variable. The default value must be
assignment-compatible with the data type of the variable.

CONSTANT
Specifies that the global variable has a fixed value that cannot be changed.
A global variable that is defined using CONSTANT cannot be used as the

CREATE VARIABLE

888 SQL Reference Volume 2



target of any assignment operation. The fixed value must be
assignment-compatible with the data type of the variable.

NULL
Specifies NULL as the default for the global variable. If row-type-name is
specified, the value for the global variable is a row where each field has
the null value.

constant
Specifies the value of a constant as the default for the global variable. If
data-type1 specifies a CURSOR built-in type or cursor-type-name, constant
cannot be specified (SQLSTATE 42601).

special-register
Specifies the value of a special register as the default for the global
variable. If data-type1 specifies a CURSOR built-in type or cursor-type-name,
special-register cannot be specified (SQLSTATE 42601).

global-variable
Specifies the value of a global variable as the default for the global
variable. If data-type1 specifies a CURSOR built-in type or cursor-type-name,
global-variable cannot be specified (SQLSTATE 42601).

cursor-value-constructor
A cursor-value-constructor specifies the select-statement that is associated with
the global variable. The assignment of a cursor-value-constructor to a cursor
variable defines the underlying cursor of that cursor variable.

ASENSITIVE or INSENSITIVE
Specifies whether the cursor is asensitive or insensitive to changes. See
"DECLARE CURSOR" for more information. The default is
ASENSITIVE.

ASENSITIVE
Specifies that the cursor should be as sensitive as possible to insert,
update, or delete operations made to the rows underlying the
result table, depending on how the select-statement is optimized.
This option is the default.

INSENSITIVE
Specifies that the cursor does not have sensitivity to insert, update,
or delete operations that are made to the rows underlying the
result table. If INSENSITIVE is specified, the cursor is read-only
and the result table is materialized when the cursor is opened. As a
result, the size of the result table, the order of the rows, and the
values for each row do not change after the cursor is opened. The
SELECT statement cannot contain a FOR UPDATE clause, and the
cursor cannot be used for positioned updates or deletes.

(parameter-declaration, ...)
Specifies the input parameters of the cursor, including the name and
the data type of each parameter.

parameter-name
Names the parameter for use as an SQL variable within
select-statement. The name cannot be the same as any other
parameter name for the cursor. Names should also be chosen to
avoid any column names that could be used in select-statement,
since column names are resolved before parameter names.

CREATE VARIABLE

Statements 889



data-type2
Specifies the data type of the cursor parameter used within
select-statement.

built-in-type
Specifies a built-in data type. For a more complete description
of each built-in data type, see "CREATE TABLE". The
BOOLEAN and CURSOR built-in types cannot be specified
(SQLSTATE 429BB).

anchored-parameter-data-type
Identifies another object used to determine the data type of the
cursor parameter. The data type of the anchor object is bound
by the same limitations that apply when specifying the data
type directly.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data
type.

variable-name
Identifies a global variable. The data type of the
referenced variable is used as the data type for the
cursor parameter.

table-name.column-name
Identifies a column name of an existing table or view.
The data type of the column is used as the data type
for the cursor parameter.

distinct-type-name
Specifies the name of a distinct type. If distinct-type-name is
specified without a schema name, the distinct type is resolved
by searching the schemas in the SQL path.

holdability
Specifies whether the cursor is prevented from being closed as a
consequence of a commit operation. See "DECLARE CURSOR" for
more information. The default is WITHOUT HOLD.

WITHOUT HOLD
Does not prevent the cursor from being closed as a consequence of
a commit operation.

WITH HOLD
Maintains resources across multiple units of work. Prevents the
cursor from being closed as a consequence of a commit operation.

select-statement
Specifies the SELECT statement of the cursor. See "select-statement" for
more information.

statement-name
Specifies the prepared select-statement of the cursor. See "PREPARE" for
an explanation of prepared statements. The target cursor variable must
not have a data type that is a strongly-typed user-defined cursor type
(SQLSTATE 428HU).

expression
Specifies the value of an expression as the default for the global variable.
The expression can be any expression of the type described in
"Expressions". The expression must be assignment-compatible with the

CREATE VARIABLE

890 SQL Reference Volume 2



data type of the variable. The maximum size of the expression is 64K. The
default expression must not modify SQL data (SQLSTATE 428FL) or
perform external action (SQLSTATE 42845). If data-type1 specifies a
CURSOR built-in type or cursor-type-name, expression cannot be specified
(SQLSTATE 42601).

Rules
v Use of anchored data types: An anchored data type cannot refer to the following

objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

Notes
v Session global variables have a session scope. This means that, although they are

available to all sessions that are active on the database, their value is private for
each session.

v Contexts for array, Boolean, cursor, and row global variables: Global variables
that are array variables, Boolean variables, or row variables can only be used in
compound SQL (compiled) statements or SET variable statements. Global
variables that are cursor variables can only be used in compound SQL
(compiled) statements.

v Create with errors: If an object referenced in the default expression does not
exist or is marked invalid, or the definer temporarily doesn't have privileges to
access the object, and if the database configuration parameter auto_reval is not
set to DISABLED, then the variable will still be created successfully. The variable
will be marked invalid and will be revalidated the next time it is invoked.

v Scope of global variable values: The values for session global variables persist
until they are updated in the current session, the global variable is dropped or
altered, or the application session ends. The value is unaffected by COMMIT or
ROLLBACK statements. The default value for a global variable can be not
deterministic and dependent on when the default value is calculated for the
global variable (for example, a reference to the time of day, or a reference to
some data stored in a table).
A technique commonly used, especially for performance, is for an application or
product to manage a set of connections and route transactions to an arbitrary
connection. In these situations, the non-default value of a global variable or the
not deterministic initial default value for a global variable should only be relied
on until the end of the transaction. Examples of where this type of situation can
occur include applications that: use XA protocols, use connection pooling, use
the connection concentrator, and use HADR to achieve failover.

v Privileges to use a global variable: An attempt to read from or to write to a
global variable created by this statement requires that the authorization ID
attempting this action hold the appropriate privilege on the global variable. The
definer of the variable is implicitly granted all privileges on the variable.

v Setting of the default value: A created global variable is instantiated to its
default value when it is first referenced within its given scope. Note that if a
global variable is referenced in a statement, it is instantiated independently of
the control flow for that statement.

v Using a newly created session global variable: If a global variable is created
within a session, it cannot be used by other sessions until the unit of work has
committed. However, the new global variable can be used within the session
that created the variable before the unit of work commits.

CREATE VARIABLE

Statements 891



Examples
v Example 1: Create a session global variable to indicate what printer to use for the

session.
CREATE VARIABLE MYSCHEMA.MYJOB_PRINTER VARCHAR(30)

DEFAULT ’Default printer’

v Example 2: Create a session global variable to indicate the department where an
employee works.

CREATE VARIABLE SCHEMA1.GV_DEPTNO INTEGER
DEFAULT ((SELECT DEPTNO FROM HR.EMPLOYEES

WHERE EMPUSER = SESSION_USER))

v Example 3: Create a session global variable to indicate the security level of the
current user.

CREATE VARIABLE SCHEMA2.GV_SECURITY_LEVEL INTEGER
DEFAULT (GET_SECURITY_LEVEL (SESSION_USER))

v Example 4: Create a session global variable as a cursor on the STAFF table that
returns the names of each employee for the specified job type. Order the results
by the department number.

CREATE VARIABLE STAFFJOBS CURSOR
CONSTANT (CURSOR (WHICHJOB CHAR(5))
FOR SELECT NAME, DEPT FROM STAFF WHERE JOB = WHICHJOB

ORDER BY DEPT)

v Example 5: Create a global variable of the XML data type:
CREATE VARIABLE MYSCHEMA.CUSTOMER_HISTORY_VAR XML

CREATE VARIABLE

892 SQL Reference Volume 2



CREATE VIEW
The CREATE VIEW statement defines a view on one or more tables, views or
nicknames.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the view does not exist
v CREATEIN privilege on the schema, if the schema name of the view refers to an

existing schema
v DBADM authority

and at least one of the following authorities for each table, view, or nickname
identified in any fullselect:
v CONTROL privilege on that table, view, or nickname
v SELECT privilege on that table, view, or nickname
v DATAACCESS authority

If creating a subview:
v The authorization ID of the statement must be the same as the definer of the

root table of the table hierarchy, or
v The privileges held by the authorization ID must include DBADM authority

and
v The authorization ID of the statement must have SELECT WITH GRANT

privilege on the underlying table of the subview, or the superview must not
have SELECT privilege granted to any user other than the view definer, or

v ACCESSCTRL authority and one of the following authorities:
– SELECT privilege on the underlying table of the subview
– DATAACCESS authority

If WITH ROW MOVEMENT is specified, the privileges held by the authorization
ID of the statement must include at least one of the following authorities:
v UPDATE privilege on that table or view
v DATAACCESS authority

Group privileges are not considered for any table or view specified in the CREATE
VIEW statement.

Privileges are not considered when defining a view on a federated database
nickname. Authorization requirements of the data source for the table or view
referenced by the nickname are applied when the query is processed. The
authorization ID of the statement can be mapped to a different remote
authorization ID.

CREATE VIEW

Statements 893



To replace an existing view, the authorization ID of the statement must be the
owner of the existing view (SQLSTATE 42501).

Syntax

�� CREATE VIEW view-name
OR REPLACE

�

�

�

,

( column-name )
OF type-name root-view-definition

subview-definition

AS �

�

�

fullselect
,

WITH common-table-expression

* �

�
CASCADED

WITH CHECK OPTION
LOCAL

*

WITH NO ROW MOVEMENT

WITH ROW MOVEMENT
* ��

root-view-definition:

MODE DB2SQL ( oid-column )
, with-options

subview-definition:

MODE DB2SQL under-clause
( with-options ) EXTEND

oid-column:

REF IS oid-column-name USER GENERATED
UNCHECKED

with-options:

� �

,
,

column-name WITH OPTIONS SCOPE typed-table-name
typed-view-name

READ ONLY

CREATE VIEW

894 SQL Reference Volume 2



under-clause:

UNDER superview-name INHERIT SELECT PRIVILEGES

Description

OR REPLACE
Specifies to replace the definition for the view if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog, with the exception that privileges that were granted
on the view are not affected. This option is ignored if a definition for the view
does not exist at the current server. This option can be specified only by the
owner of the object.

view-name
Names the view. The name, including the implicit or explicit qualifier, must
not identify a table, view, nickname or alias described in the catalog. The
qualifier must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE
42939).

The name can be the same as the name of an inoperative view (see Inoperative
views). In this case the new view specified in the CREATE VIEW statement
will replace the inoperative view. The user will get a warning (SQLSTATE
01595) when an inoperative view is replaced. No warning is returned if the
application was bound with the bind option SQLWARN set to NO.

column-name
Names the columns in the view. If a list of column names is specified, it must
consist of as many names as there are columns in the result table of the
fullselect. Each column-name must be unique and unqualified. If a list of
column names is not specified, the columns of the view inherit the names of
the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has
duplicate column names or an unnamed column (SQLSTATE 42908). An
unnamed column is a column derived from a constant, function, expression, or
set operation that is not named using the AS clause of the select list.

OF type-name
Specifies that the columns of the view are based on the attributes of the
structured type identified by type-name. If type-name is specified without a
schema name, the type name is resolved by searching the schemas on the SQL
path (defined by the FUNCPATH preprocessing option for static SQL and by
the CURRENT PATH register for dynamic SQL). The type name must be the
name of an existing user-defined type (SQLSTATE 42704) and it must be a
structured type that is instantiable (SQLSTATE 428DP).

MODE DB2SQL
This clause is used to specify the mode of the typed view. This is the only
valid mode currently supported.

UNDER superview-name
Indicates that the view is a subview of superview-name. The superview must be
an existing view (SQLSTATE 42704) and the view must be defined using a
structured type that is the immediate supertype of type-name (SQLSTATE
428DB). The schema name of view-name and superview-name must be the same
(SQLSTATE 428DQ). The view identified by superview-name must not have any
existing subview already defined using type-name (SQLSTATE 42742).

CREATE VIEW

Statements 895



The columns of the view include the object identifier column of the superview
with its type modified to be REF(type-name), followed by columns based on the
attributes of type-name (remember that the type includes the attributes of its
supertype).

INHERIT SELECT PRIVILEGES
Any user or group holding a SELECT privilege on the superview will be
granted an equivalent privilege on the newly created subview. The subview
definer is considered to be the grantor of this privilege.

OID-column
Defines the object identifier column for the typed view.

REF IS OID-column-name USER GENERATED
Specifies that an object identifier (OID) column is defined in the view as
the first column. An OID is required for the root view of a view hierarchy
(SQLSTATE 428DX). The view must be a typed view (the OF clause must
be present) that is not a subview (SQLSTATE 42613). The name for the
column is defined as OID-column-name and cannot be the same as the
name of any attribute of the structured type type-name (SQLSTATE 42711).
The first column specified in fullselect must be of type REF(type-name) (you
may need to cast it so that it has the appropriate type). If UNCHECKED is
not specified, it must be based on a not nullable column on which
uniqueness is enforced through an index (primary key, unique constraint,
unique index, or OID-column). This column will be referred to as the object
identifier column or OID column. The keywords USER GENERATED indicate
that the initial value for the OID column must be provided by the user
when inserting a row. Once a row is inserted, the OID column cannot be
updated (SQLSTATE 42808).

UNCHECKED
Defines the object identifier column of the typed view definition to assume
uniqueness even though the system can not prove this uniqueness. This is
intended for use with tables or views that are being defined into a typed
view hierarchy where the user knows that the data conforms to this
uniqueness rule but it does not comply with the rules that allow the
system to prove uniqueness. UNCHECKED option is mandatory for view
hierarchies that range over multiple hierarchies or legacy tables or views
By specifying UNCHECKED, the user takes responsibility for ensuring that
each row of the view has a unique OID. If the user fails to ensure this
property, and a view contains duplicate OID values, then a path-expression
or DEREF operator involving one of the non-unique OID values may result
in an error (SQLSTATE 21000).

with-options
Defines additional options that apply to columns of a typed view.

column-name WITH OPTIONS
Specifies the name of the column for which additional options are
specified. The column-name must correspond to the name of an attribute
defined in (not inherited by) the type-name of the view. The column must
be a reference type (SQLSTATE 42842). It cannot correspond to a column
that also exists in the superview (SQLSTATE 428DJ). A column name can
only appear in one WITH OPTIONS SCOPE clause in the statement
(SQLSTATE 42613).

SCOPE
Identifies the scope of the reference type column. A scope must be

CREATE VIEW

896 SQL Reference Volume 2



specified for any column that is intended to be used as the left operand of
a dereference operator or as the argument of the DEREF function.

Specifying the scope for a reference type column may be deferred to a
subsequent ALTER VIEW statement (if the scope is not inherited) to allow
the target table or view to be defined, usually in the case of mutually
referencing views and tables. If no scope is specified for a reference type
column of the view and the underlying table or view column was scoped,
then the underlying column's scope is inherited by the reference type
column. The column remains unscoped if the underlying table or view
column did not have a scope. See “Notes” on page 900 for more
information about scope and reference type columns.

typed-table-name
The name of a typed table. The table must already exist or be the same
as the name of the table being created (SQLSTATE 42704). The data
type of column-name must be REF(S), where S is the type of
typed-table-name (SQLSTATE 428DM). No checking is done of any
existing values in column-name to ensure that the values actually
reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The view must already exist or be the same
as the name of the view being created (SQLSTATE 42704). The data
type of column-name must be REF(S), where S is the type of
typed-view-name (SQLSTATE 428DM). No checking is done of any
existing values in column-name to ensure that the values actually
reference existing rows in typed-view-name.

READ ONLY
Identifies the column as a read-only column. This option is used to force a
column to be read-only so that subview definitions can specify an
expression for the same column that is implicitly read-only.

AS Identifies the view definition.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. A
common table expression cannot be specified when defining a typed view.

fullselect
Defines the view. At any time, the view consists of the rows that would result
if the SELECT statement were executed. The data type of the columns of the
view cannot be a distinct type with data type constraints, array type, cursor
type, or row type. The fullselect must not reference host variables, parameter
markers, or declared temporary tables. However, a parameterized view can be
created as an SQL table function.

The fullselect cannot include an SQL data change statement in the FROM
clause (SQLSTATE 428FL).

For Typed Views and Subviews: The fullselect must conform to the following
rules otherwise an error is returned (SQLSTATE 428EA unless otherwise
specified).
v The fullselect must not include references to the DBPARTITIONNUM or

HASHEDVALUE functions, non-deterministic functions, or functions defined
to have external action.

CREATE VIEW

Statements 897



v The body of the view must consist of a single subselect, or a UNION ALL of
two or more subselects. Let each of the subselects participating directly in
the view body be called a branch of the view. A view may have one or more
branches.

v The FROM-clause of each branch must consist of a single table or view (not
necessarily typed), called the underlying table or view of that branch.

v The underlying table or view of each branch must be in a separate hierarchy
(that is, a view cannot have multiple branches with their underlying tables
or views in the same hierarchy).

v None of the branches of a typed view definition may specify GROUP BY or
HAVING.

v If the view body contains UNION ALL, the root view in the hierarchy must
specify the UNCHECKED option for its OID column.

For a hierarchy of views and subviews: Let BR1 and BR2 be any branches that
appear in the definitions of views in the hierarchy. Let T1 be the underlying
table or view of BR1, and let T2 be the underlying table or view of BR2. Then:
v If T1 and T2 are not in the same hierarchy, then the root view in the view

hierarchy must specify the UNCHECKED option for its OID column.
v If T1 and T2 are in the same hierarchy, then BR1 and BR2 must contain

predicates or ONLY-clauses that are sufficient to guarantee that their
row-sets are disjoint.

For typed subviews defined using EXTEND AS: For every branch in the body
of the subview:
v The underlying table of each branch must be a (not necessarily proper)

subtable of some underlying table of the immediate superview.
v The expressions in the SELECT list must be assignable to the non-inherited

columns of the subview (SQLSTATE 42854).

For typed subviews defined using AS without EXTEND:
v For every branch in the body of the subview, the expressions in the

SELECT-list must be assignable to the declared types of the inherited and
non-inherited columns of the subview (SQLSTATE 42854).

v The OID-expression of each branch over a given hierarchy in the subview
must be equivalent (except for casting) to the OID-expression in the branch
over the same hierarchy in the root view.

v The expression for a column not defined (implicitly or explicitly) as READ
ONLY in a superview must be equivalent in all branches over the same
underlying hierarchy in its subviews.

WITH CHECK OPTION
Specifies the constraint that every row that is inserted or updated through the
view must conform to the definition of the view. A row that does not conform
to the definition of the view is a row that does not satisfy the search conditions
of the view.

WITH CHECK OPTION must not be specified if any of the following
conditions is true:
v The view is read-only (SQLSTATE 42813). If WITH CHECK OPTION is

specified for an updatable view that does not allow inserts, the constraint
applies to updates only.

v The view references the DBPARTITIONNUM or HASHEDVALUE function, a
non-deterministic function, or a function with external action (SQLSTATE
42997).

CREATE VIEW

898 SQL Reference Volume 2



v A nickname is the update target of the view.
v A view that has an INSTEAD OF trigger defined on it is the update target of

the view (SQLSTATE 428FQ).

If WITH CHECK OPTION is omitted, the definition of the view is not used in
the checking of any insert or update operations that use the view. Some
checking might still occur during insert or update operations if the view is
directly or indirectly dependent on another view that includes WITH CHECK
OPTION. Because the definition of the view is not used, rows might be
inserted or updated through the view that do not conform to the definition of
the view.

CASCADED
The WITH CASCADED CHECK OPTION constraint on a view V means
that V inherits the search conditions as constraints from any updatable
view on which V is dependent. Furthermore, every updatable view that is
dependent on V is also subject to these constraints. Thus, the search
conditions of V and each view on which V is dependent are ANDed
together to form a constraint that is applied for an insert or update of V or
of any view dependent on V.

LOCAL
The WITH LOCAL CHECK OPTION constraint on a view V means the
search condition of V is applied as a constraint for an insert or update of V
or of any view that is dependent on V.

The difference between CASCADED and LOCAL is shown in the following
example. Consider the following updatable views (substituting for Y from
column headings of the table that follows):

V1 defined on table T
V2 defined on V1 WITH Y CHECK OPTION
V3 defined on V2
V4 defined on V3 WITH Y CHECK OPTION
V5 defined on V4

The following table shows the search conditions against which inserted or
updated rows are checked:

Y is LOCAL Y is CASCADED
V1 checked against: no view no view
V2 checked against: V2 V2, V1
V3 checked against: V2 V2, V1
V4 checked against: V2, V4 V4, V3, V2, V1
V5 checked against: V2, V4 V4, V3, V2, V1

Consider the following updatable view which shows the impact of the WITH
CHECK OPTION using the default CASCADED option:

CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

The following INSERT statement using V1 will succeed because V1 does not
have a WITH CHECK OPTION and V1 is not dependent on any other view
that has a WITH CHECK OPTION.

INSERT INTO V1 VALUES(5)

CREATE VIEW

Statements 899



The following INSERT statement using V2 will result in an error because V2
has a WITH CHECK OPTION and the insert would produce a row that did
not conform to the definition of V2.

INSERT INTO V2 VALUES(5)

The following INSERT statement using V3 will result in an error even though
it does not have WITH CHECK OPTION because V3 is dependent on V2
which does have a WITH CHECK OPTION (SQLSTATE 44000).

INSERT INTO V3 VALUES(5)

The following INSERT statement using V3 will succeed even though it does
not conform to the definition of V3 (V3 does not have a WITH CHECK
OPTION); it does conform to the definition of V2 which does have a WITH
CHECK OPTION.

INSERT INTO V3 VALUES(200)

WITH NO ROW MOVEMENT or WITH ROW MOVEMENT
Specifies the action to take for an updatable UNION ALL view when a row is
updated in a way that violates a check constraint on the underlying table. The
default is WITH NO ROW MOVEMENT.

WITH NO ROW MOVEMENT
Specifies that an error (SQLSTATE 23513) is to be returned if a row is
updated in a way that violates a check constraint on the underlying table.

WITH ROW MOVEMENT
Specifies that an updated row is to be moved to the appropriate
underlying table, even if it violates a check constraint on that table.

Row movement involves deletion of the rows that violate the check
constraint, and insertion of those rows back into the view. The WITH ROW
MOVEMENT clause can only be specified for UNION ALL views whose
columns are all updatable (SQLSTATE 429BJ). If a row is inserted (perhaps
after trigger activation) into the same underlying table from which it was
deleted, an error is returned (SQLSTATE 23524). A view defined using the
WITH ROW MOVEMENT clause must not contain nested UNION ALL
operations, except in the outermost fullselect (SQLSTATE 429BJ). A view
defined using the WITH ROW MOVEMENT clause, cannot contain any
references to a system-period temporal table, application-period temporal
table, or bitemporal table.

Notes
v Creating a view with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

v View columns inherit the NOT NULL WITH DEFAULT attribute from the base
table or view except when columns are derived from an expression. When a row
is inserted or updated into an updatable view, it is checked against the
constraints (primary key, referential integrity, and check) if any are defined on
the base table.

v A new view cannot be created if it uses an inoperative view in its definition.
(SQLSTATE 51024).

v If an object referenced in the view body does not exist or is marked invalid, or
the definer temporarily doesn't have privileges to access the object, and if the
database configuration parameter auto_reval is not set to DISABLED, then the

CREATE VIEW

900 SQL Reference Volume 2



view will still be created successfully. The view will be marked invalid and will
be revalidated the next time it is referenced.

v This statement does not support declared temporary tables (SQLSTATE 42995).
v Views based on column-organized tables:

– Creating a typed view on column-organized tables is not supported.
– The WITH CHECK OPTION clause cannot be specified if a column-organized

table is part of the view definition.
v Deletable views: A view is deletable if an INSTEAD OF trigger for the delete

operation has been defined for the view, or if all of the following conditions are
true:
– Each FROM clause of the outer fullselect identifies only one base table (with

no OUTER clause), deletable view (with no OUTER clause), deletable nested
table expression, or deletable common table expression (cannot identify a
nickname). Also, any period-specification specified for the base table or
deletable view does not reference the SYSTEM_TIME period.

– The outer fullselect does not include a VALUES clause
– The outer fullselect does not include a GROUP BY clause or HAVING clause
– The outer fullselect does not include aggregate functions in the select list
– The outer fullselect does not include SET operations (UNION, EXCEPT or

INTERSECT) with the exception of UNION ALL
– The base tables in the operands of a UNION ALL must not be the same table

and each operand must be deletable
– The select list of the outer fullselect does not include DISTINCT

v Updatable views: A column of a view is updatable if an INSTEAD OF trigger for
the update operation has been defined for the view, or if all of the following
conditions are true:
– The view is deletable (independent of an INSTEAD OF trigger for delete), the

column resolves to a column of a base table (not using a dereference
operation), and the READ ONLY option is not specified

– All the corresponding columns of the operands of a UNION ALL have exactly
matching data types (including length or precision and scale) and matching
default values if the fullselect of the view includes a UNION ALL

A view is updatable if any column of the view is updatable.
v Insertable views:: A view is insertable if an INSTEAD OF trigger for the insert

operation has been defined for the view, or at least one column of the view is
updatable (independent of an INSTEAD OF trigger for update), and the
fullselect of the view does not include UNION ALL.
A given row can be inserted into a view (including a UNION ALL) if, and only
if, it fulfills the check constraints of exactly one of the underlying base tables.
To insert into a view that includes non-updatable columns, those columns must
be omitted from the column list.

v Read-only views: A view is read-only if it is not deletable, updatable, or
insertable.
The READONLY column in the SYSCAT.VIEWS catalog view indicates if a view
is read-only without considering period specifications or INSTEAD OF triggers.

v Common table expressions and nested table expressions follow the same set of
rules for determining whether they are deletable, updatable, insertable, or
read-only.

v Special registers for temporal support: The values of the CURRENT TEMPORAL
SYSTEM_TIME and CURRENT TEMPORAL BUSINESS_TIME special registers

CREATE VIEW

Statements 901



have no impact on the query expression that defines a view while it is being
defined. When a view is used in an SQL statement, the values of the CURRENT
TEMPORAL SYSTEM_TIME and CURRENT TEMPORAL BUSINESS_TIME
special registers for the session processing the SQL statement are applied to the
view.

v Inoperative views: An inoperative view is a view that is no longer available for
SQL statements. A view becomes inoperative if:
– A privilege, upon which the view definition is dependent, is revoked.
– An object such as a table, nickname, alias or function, upon which the view

definition is dependent, is dropped.
– A view, upon which the view definition is dependent, becomes inoperative.
– A view that is the superview of the view definition (the subview) becomes

inoperative.
In practical terms, an inoperative view is one in which the view definition has
been unintentionally dropped. For example, when an alias is dropped, any view
defined using that alias is made inoperative. All dependent views also become
inoperative and packages dependent on the view are no longer valid.
Until the inoperative view is explicitly re-created or dropped, a statement using
that inoperative view cannot be compiled (SQLSTATE 51024) with the exception
of the CREATE ALIAS, CREATE VIEW, DROP VIEW, and COMMENT ON
TABLE statements. Until the inoperative view has been explicitly dropped, its
qualified name cannot be used to create another table or alias (SQLSTATE
42710).
An inoperative view may be re-created by issuing a CREATE VIEW statement
using the definition text of the inoperative view. This view definition text is
stored in the TEXT column of the SYSCAT.VIEWS catalog. When recreating an
inoperative view, it is necessary to explicitly grant any privileges required on
that view by others, due to the fact that all authorization records on a view are
deleted if the view is marked inoperative. Note that there is no need to explicitly
drop the inoperative view in order to re-create it. Issuing a CREATE VIEW
statement with the same view-name as an inoperative view will cause that
inoperative view to be replaced, and the CREATE VIEW statement will return a
warning (SQLSTATE 01595).
Inoperative views are indicated by an X in the VALID column of the
SYSCAT.VIEWS catalog view and an X in the STATUS column of the
SYSCAT.TABLES catalog view.

v Privileges: The definer of a view always receives the SELECT privilege on the
view as well as the right to drop the view. The definer of a view will get
CONTROL privilege on the view only if the definer has CONTROL privilege on
every base table, view, or nickname identified in the fullselect, or if the definer
has each of the following authorities:
– ACCESSCTRL or SECADM
– DATAACCESS
– DBADM
The definer of the view is granted INSERT, UPDATE, column level UPDATE or
DELETE privileges on the view if the view is not read-only and the definer has
the corresponding privileges on the underlying objects.
For a view defined WITH ROW MOVEMENT, the definer acquires the UPDATE
privilege on the view only if the definer has the UPDATE privilege on all
columns of the view, as well as INSERT and DELETE privileges on all
underlying tables or views.

CREATE VIEW

902 SQL Reference Volume 2



The definer of a view only acquires privileges if the privileges from which they
are derived exist at the time the view is created. The definer must have these
privileges either directly or because PUBLIC has these privilege. Privileges are
not considered when defining a view on a federated server nickname. However,
when using a view on a nickname, the user's authorization ID must have valid
select privileges on the table or view that the nickname references at the data
source. Otherwise, an error is returned. Privileges held by groups of which the
view definer is a member, are not considered.
When a subview is created, the SELECT privileges held on the immediate
superview are automatically granted on the subview.

v Scope and REF columns: When selecting a reference type column in the fullselect
of a view definition, consider the target type and scope that is required.
– If the required target type and scope is the same as the underlying table or

view, the column can simply be selected.
– If the scope needs to be changed, use the WITH OPTIONS SCOPE clause to

define the required scope table or view.
– If the target type of the reference needs to be changed, the column must be

cast first to the representation type of the reference and then to the new
reference type. The scope in this case can be specified in the cast to the
reference type or using the WITH OPTIONS SCOPE clause. For example,
assume you select column Y defined as REF(TYP1) SCOPE TAB1. You want
this to be defined as REF(VTYP1) SCOPE VIEW1. The select list item would
be as follows:

CAST(CAST(Y AS VARCHAR(16) FOR BIT DATA) AS REF(VTYP1) SCOPE VIEW1)

v Identity columns: A column of a view is considered an identity column, if the
element of the corresponding column in the fullselect of the view definition is
the name of an identity column of a table, or the name of a column of a view
which directly or indirectly maps to the name of an identity column of a base
table.
In all other cases, the columns of a view will not get the identity property. For
example:
– the select-list of the view definition includes multiple instances of the name of

an identity column (that is, selecting the same column more than once)
– the view definition involves a join
– a column in the view definition includes an expression that refers to an

identity column
– the view definition includes a UNION
When inserting into a view for which the select list of the view definition
directly or indirectly includes the name of an identity column of a base table, the
same rules apply as if the INSERT statement directly referenced the identity
column of the base table.

v Federated views: A federated view is a view that includes a reference to a
nickname somewhere in the fullselect. The presence of such a nickname changes
the authorization model used for the view when the view is subsequently
referenced in a query.
When the view is created, no privilege checking is done to determine whether
the view definer has access to the underlying data source table or view of a
nickname. Privilege checking of references to tables or views at the federated
database are handled as usual, requiring the view definer to have at least
SELECT privilege on such objects.
When a federated view is subsequently referenced in a query, the nicknames
result in queries against the data source, and the authorization ID that issued the

CREATE VIEW

Statements 903



query (or the remote authorization ID to which it maps) must have the
necessary privileges to access the data source table or view. The authorization ID
that issues the query referencing the federated view is not required to have any
additional privileges on tables or views (non-federated) that exist at the
federated server.

v ROW MOVEMENT, triggers and constraints: When a view that is defined using
the WITH ROW MOVEMENT clause is updated, the sequence of trigger and
constraints operations is as follows:
1. BEFORE UPDATE triggers are activated for all rows being updated,

including rows that will eventually be moved.
2. The update operation is processed.
3. Constraints are processed for all updated rows.
4. AFTER UPDATE triggers (both row-level and statement-level) are activated

in creation order, for all rows that satisfy the constraints after the update
operation. Because this is an UPDATE statement, all UPDATE
statement-level triggers are activated for all underlying tables.

5. BEFORE DELETE triggers are activated for all rows that did not satisfy the
constraints after the update operation (these are the rows that are to be
moved).

6. The delete operation is processed.
7. Constraints are processed for all deleted rows.
8. AFTER DELETE triggers (both row-level and statement-level) are activated

in creation order, for all deleted rows. Statement-level triggers are activated
for only those tables that are involved in the delete operation.

9. BEFORE INSERT triggers are activated for all rows being inserted (that is,
the rows being moved). The new transition tables for the BEFORE INSERT
triggers contain the input data provided by the user. Such triggers cannot
contain an UPDATE, a DELETE, or an INSERT operation, or invoke any
routine containing such operations (SQLSTATE 42987).

10. The insert operation is processed.
11. Constraints are processed for all inserted rows.
12. AFTER INSERT triggers (both row-level and statement-level) are activated

in creation order, for all inserted rows. Statement-level triggers are activated
for only those tables that are involved in the insert operation.

v Nested UNION ALL views: A view defined with UNION ALL and based, either
directly or indirectly, on a view that is also defined with UNION ALL cannot be
updated if either view is defined using the WITH ROW MOVEMENT clause
(SQLSTATE 429BK).

v Considerations for implicitly hidden columns: It is possible that the result table
of the fullselect will include a column of the base table that is defined as
implicitly hidden. This can occur when the implicitly hidden column is explicitly
referenced in the fullselect of the view definition. However, the corresponding
column of the view does not inherit the implicitly hidden attribute. Columns of
a view cannot be defined as hidden.

v Subselect:: The isolation-clause cannot be specified in the fullselect (SQLSTATE
42601).

v Obfuscation: The CREATE VIEW statement can be submitted in obfuscated
form. In an obfuscated statement, only the view name is readable. The rest of
the statement is encoded in such a way that is not readable but can be decoded
by the database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

CREATE VIEW

904 SQL Reference Volume 2



v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
– The FEDERATED keyword can be specified between the keywords CREATE

and VIEW. The FEDERATED keyword is ignored, however, because a
warning is no longer returned if federated objects are used in the view
definition.

Examples
v Example 1: Create a view named MA_PROJ upon the PROJECT table that

contains only those rows with a project number (PROJNO) starting with the
letters 'MA'.

CREATE VIEW MA_PROJ AS SELECT *
FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

v Example 2: Create a view as in example 1, but select only the columns for
project number (PROJNO), project name (PROJNAME) and employee in charge
of the project (RESPEMP).

CREATE VIEW MA_PROJ
AS SELECTPROJNO, PROJNAME, RESPEMP
FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

v Example 3: Create a view as in example 2, but, in the view, call the column for
the employee in charge of the project IN_CHARGE.

CREATE VIEW MA_PROJ
(PROJNO, PROJNAME, IN_CHARGE)
AS SELECTPROJNO, PROJNAME, RESPEMP
FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Note: Even though only one of the column names is being changed, the names
of all three columns in the view must be listed in the parentheses that follow
MA_PROJ.

v Example 4: Create a view named PRJ_LEADER that contains the first four
columns (PROJNO, PROJNAME, DEPTNO, RESPEMP) from the PROJECT table
together with the last name (LASTNAME) of the person who is responsible for
the project (RESPEMP). Obtain the name from the EMPLOYEE table by
matching EMPNO in EMPLOYEE to RESPEMP in PROJECT.

CREATE VIEW PRJ_LEADER
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME
FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO

v Example 5: Create a view as in example 4, but in addition to the columns
PROJNO, PROJNAME, DEPTNO, RESPEMP, and LASTNAME, show the total
pay (SALARY + BONUS + COMM) of the employee who is responsible. Also
select only those projects with mean staffing (PRSTAFF) greater than one.

CREATE VIEW PRJ_LEADER
(PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY )
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM

FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO
AND PRSTAFF > 1

Specifying the column name list could be avoided by naming the expression
SALARY+BONUS+COMM as TOTAL_PAY in the fullselect.

CREATE VIEW

Statements 905



CREATE VIEW PRJ_LEADER
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP,

LASTNAME, SALARY+BONUS+COMM AS TOTAL_PAY
FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO AND PRSTAFF > 1

v Example 6: Given the set of tables and views shown in the following figure:
User ZORPIE (who does not have ACCESSCTRL, DATAACCESS, or DBADM

authority) has the privileges shown in parentheses for each object:
1. ZORPIE will get CONTROL privilege on the view that she creates with:

CREATE VIEW VA AS SELECT * FROM S1.V1

because she has CONTROL on S1.V1. (CONTROL on S1.V1 must have been
granted to ZORPIE by someone with ACCESSCTRL or SECADM authority.)
It does not matter which, if any, privileges she has on the underlying base
table.

2. ZORPIE will not be allowed to create the view:
CREATE VIEW VB AS SELECT * FROM S1.V2

because she has neither CONTROL nor SELECT on S1.V2. It does not matter
that she has CONTROL on the underlying base table (S1.T2).

3. ZORPIE will get CONTROL privilege on the view that she creates with:
CREATE VIEW VC (COLA, COLB, COLC, COLD)

AS SELECT * FROM S1.V1, S1.T2
WHERE COLA = COLC

because the fullselect of ZORPIE.VC references view S1.V1 and table S1.T2
and she has CONTROL on both of these. Note that the view VC is read-only,
so ZORPIE does not get INSERT, UPDATE or DELETE privileges.

4. ZORPIE will get SELECT privilege on the view that she creates with:
CREATE VIEW VD (COLA,COLB, COLE, COLF)

AS SELECT * FROM S1.V1, S1.V3
WHERE COLA = COLE

because the fullselect of ZORPIE.VD references the two views S1.V1 and
S1.V3, one on which she has only SELECT privilege, and one on which she
has CONTROL privilege. She is given the lesser of the two privileges,
SELECT, on ZORPIE.VD.

5. ZORPIE will get INSERT, UPDATE and DELETE privilege WITH GRANT
OPTION and SELECT privilege on the view VE in the following view
definition.

COLA COLB

INTEGERCHAR(5)

COLC COLD

INTEGERCHAR(5)

COLE COLF

INTEGERCHAR(5)

...SELECT * FROM S1.T1 ...SELECT * FROM S1.T2 ...SELECT * FROM S1.T3

table: S1.T1 table: S1.T2 table: S1.T3

view: S1.V1 view: S1.V2 view: S1.V3

(SELECT, INSERT) (CONTROL) (SELECT)

(CONTROL) (none) (SELECT)

Figure 1. Tables and Views for Example 6

CREATE VIEW

906 SQL Reference Volume 2



CREATE VIEW VE
AS SELECT * FROM S1.V1

WHERE COLA > ANY
(SELECT COLE FROM S1.V3)

ZORPIE's privileges on VE are determined primarily by her privileges on
S1.V1. Since S1.V3 is only referenced in a subquery, she only needs SELECT
privilege on S1.V3 to create the view VE. The definer of a view only gets
CONTROL on the view if they have CONTROL on all objects referenced in
the view definition. ZORPIE does not have CONTROL on S1.V3,
consequently she does not get CONTROL on VE.

CREATE VIEW

Statements 907



CREATE WORK ACTION SET
The CREATE WORK ACTION SET statement defines a work action set and work
actions within the work action set.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� CREATE WORK ACTION SET work-action-set-name �

� FOR DATABASE
SERVICE CLASS service-superclass-name
WORKLOAD workload-name

�

� USING WORK CLASS SET work-class-set-name �

�

�

,

( work-action-definition )

ENABLE

DISABLE
��

work-action-definition:

WORK ACTION work-action-name ON WORK CLASS work-class-name �

� action-types-clause histogram-template-clause
ENABLE

DISABLE

action-types-clause:

WITH NESTED
MAP ACTIVITY TO service-subclass-name

WITHOUT NESTED
WHEN threshold-types-clause threshold-exceeded-actions
PREVENT EXECUTION
COUNT ACTIVITY
COLLECT ACTIVITY DATA collect-activity-data-clause

BASE
COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

CREATE WORK ACTION SET

908 SQL Reference Volume 2



threshold-types-clause:

(1) AND QUEUEDACTIVITIES > 0
CONCURRENTDBCOORDACTIVITIES > integer

AND QUEUEDACTIVITIES > integer
AND QUEUEDACTIVITIES UNBOUNDED

SQLTEMPSPACE > integer K
M
G

SQLROWSRETURNED > integer
ESTIMATEDSQLCOST > bigint

CHECKING EVERY 60 SECONDS
CPUTIME > integer-value HOUR

HOURS CHECKING EVERY integer-value SECOND
MINUTE SECONDS
MINUTES

CHECKING EVERY 60 SECONDS
SQLROWSREAD > bigint-value

CHECKING EVERY integer-value SECOND
SECONDS

ACTIVITYTOTALTIME > integer DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECONDS

threshold-exceeded-actions:

COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-activity-data-clause
�

� STOP EXECUTION
CONTINUE

collect-activity-data-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

�

�

�

WITHOUT DETAILS

,
(2)

WITH DETAILS
SECTION AND VALUES

(3)
INCLUDE ACTUALS BASE

histogram-template-clause:

ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM
*

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
�

�
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

�

CREATE WORK ACTION SET

Statements 909



�
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

�

�
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

*
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

�

�
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

* *
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

Notes:

1 Only one work action of the same threshold type can be applied to a single
work class at a time.

2 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

3 This clause does not apply to thresholds.

Description

work-action-set-name
Names the work action set. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The work-action-set-name must not identify a
work action set that already exists at the current server (SQLSTATE 42710). The
name must not begin with the characters 'SYS' (SQLSTATE 42939).

FOR
Specifies the database manager object to which the actions in this work action
set will apply. Each database manager object can have only one work action set
defined for it (SQLSTATE 5U017).

DATABASE
The actions in this work action set are to apply to the database. If
DATABASE is specified, the MAP ACTIVITY action cannot be specified
(SQLSTATE 5U034).

SERVICE CLASS service-superclass-name
The actions in this work action set are to apply to service-superclass-name. If
SERVICE CLASS is specified, threshold actions cannot be specified
(SQLSTATE 5U034). The service-superclass-name must exist at the current
server (SQLSTATE 42704). The service-superclass-name must not be a service
subclass and cannot be any of the following classes (SQLSTATE 5U032):
v The system service class (SYSDEFAULTSYSTEMCLASS)
v The maintenance service class (SYSDEFAULTMAINTENANCECLASS)
v The default user service class (SYSDEFAULTUSERCLASS)

WORKLOAD workload-name
The actions in this work action set are to apply to workload workload-name.
If WORKLOAD is specified, the MAP ACTIVITY action cannot be specified
(SQLSTATE 5U034). The workload-name must exist at the current server
(SQLSTATE 42704). The workload-name cannot be the
SYSDEFAULTADMWORKLOAD (SQLSTATE 5U032).

USING WORK CLASS SET work-class-set-name
Specifies the work class set containing the work classes that will classify
database activities on which to perform actions. The work-class-set-name must
exist at the current server (SQLSTATE 42704).

CREATE WORK ACTION SET

910 SQL Reference Volume 2



work-action-definition
Specifies the definition of the work action.

WORK ACTION work-action-name
Names the work action. The work-action-name must not identify a work
action that already exists at the current server under this work action set
(SQLSTATE 42710). The work-action-name cannot begin with 'SYS'
(SQLSTATE 42939).

ON WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this
work action will apply. The work-class-name must exist in the
work-class-set-name at the current server (SQLSTATE 42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be
specified if the object for which this work action set is defined is a service
superclass (SQLSTATE 5U034).

WITH NESTED or WITHOUT NESTED
Specifies whether or not activities that are nested under this activity
are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED
All database activities that have a nesting level of zero that are
classified under the work class, and all database activities nested
under this activity, are mapped to the service subclass; that is,
activities with a nesting level greater than zero are run under the
same service class as activities with a nesting level of zero.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are
classified under the work class are mapped to the service subclass.
Database activities that are nested under this activity are handled
according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The
service-subclass-name must already exist in the service-superclass-name at
the current server (SQLSTATE 42704). The service-subclass-name cannot
be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE
5U018).

WHEN
Specifies the threshold that will be applied to the database activity that is
associated with the work class for which this work action is defined. A
threshold can only be specified if the database manager object for which
this work action set is defined is a database or a workload (SQLSTATE
5U034). None of these thresholds apply to internal database activities
initiated by the database manager or to database activities generated by
administrative SQL routines.

threshold-types-clause
For a description of valid threshold types, see “CREATE
THRESHOLD” statement.

threshold-exceeded-actions
For a description of valid threshold-exceeded actions, see “CREATE
THRESHOLD” statement.

CREATE WORK ACTION SET

Statements 911



PREVENT EXECUTION
Specifies that none of the database activities associated with the work
class for which this work action is defined will be allowed to run
(SQLSTATE 5U033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work
class for which this work action is defined are to be run and that each
time one is run, the counter for the work class will be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class
for which this work action is defined is to be sent to any active
activities event monitor when the activity completes. The default is
COLLECT ACTIVITY DATA WITHOUT DETAILS.

collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the
coordinator member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members
where the activity is processed. On remote members, a record
for the activity may be captured multiple times as the activity
comes and goes on those members. If the AND VALUES clause
is specified, activity input values will be collected only for the
members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the
service class should be sent to any active activities event
monitor, when the activity completes execution. Details about
statement, compilation environment, and section environment
data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data
is to be sent to any active activities event monitor, for those
activities that have them. Section environment data is not
sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any
active activities event monitor for those activities that have
them. DETAILS must be specified if SECTION is specified.
Section actuals will be collected on any member where the
activity data is collected.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected
on any partition where the activity data is collected.
For section actuals to be collected, either INCLUDE
ACTUALS clause must be specified or the
section_actuals database configuration parameter
must be set.

CREATE WORK ACTION SET

912 SQL Reference Volume 2



The effective setting for the collection of section actuals
is the combination of the INCLUDE ACTUALS clause,
the section_actuals database configuration parameter,
and the <collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if
INCLUDE ACTUALS BASE is specified, yet the
section_actuals database configuration parameter
value is NONE and <collectsectionactuals> is set to
NONE, then the effective setting for the collection of
section actuals is BASE.

BASE specifies that the following should be enabled
and collected during the activity's execution:
v Basic operator cardinality counts
v Statistics for each object referenced (DML statements

only)

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data is to be captured for activities that
are associated with the work class for which this work action is
defined and sent to the statistics event monitor, if one is active. This
information is collected periodically on an interval that is specified by
the wlm_collect_int database configuration parameter. The default is
COLLECT AGGREGATE ACTIVITY DATA BASE. This clause cannot
be specified for a work action defined in a work action set that is
applied to a database.

BASE
Specifies that basic aggregate activity data should be captured for
activities associated with the work class for which this work action
is defined and sent to the statistics event monitor, if one is active.
Basic aggregate activity data includes:
v Estimated activity cost high watermark
v Rows returned high watermark
v Temporary table space usage high watermark. Only activities

that have an SQLTEMPSPACE threshold applied to them
participate in this high watermark.

v Activity life time histogram
v Activity queue time histogram
v Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for
activities associated with the work class for which this work action
is defined and sent to the statistics event monitor, if one is active.
This includes all basic aggregate activity data plus:
v Activity data manipulation language (DML) estimated cost

histogram
v Activity DML inter-arrival time histogram

CREATE WORK ACTION SET

Statements 913



ENABLE or DISABLE
Specifies whether or not the work action is to be considered when
database activities are submitted. The default is ENABLE.

ENABLE
Specifies that the work action is enabled and will be considered
when database activities are submitted.

DISABLE
Specifies that the work action is disabled and will not be
considered when database activities are submitted.

ENABLE or DISABLE
Specifies whether or not the work action set is to be considered when
database activities are submitted. The default is ENABLE.

ENABLE
Specifies that the work action set is enabled and will be considered
when database activities are submitted.

DISABLE
Specifies that the work action set is disabled and will not be
considered when database activities are submitted.

histogram-template-clause
Specifies histogram templates to use when collecting aggregate activity data for
activities associated with the work class to which this work action is assigned.
Aggregate activity data is only collected for the work class when the work
action type is COLLECT AGGREGATE ACTIVITY DATA.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of database activities running
during a specific interval. The database activities are those associated with
the work class to which this work action is assigned. This time includes
both time queued and time executing. The default is
SYSDEFAULTHISTOGRAM. This information is only collected when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either
the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities are
queued during a specific interval. The database activities are those
associated with the work class to which this work action is assigned. The
default is SYSDEFAULTHISTOGRAM. This information is only collected
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified,
with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities are
executing during a specific interval. The database activities are those
associated with the work class to which this work action is assigned. This
time does not include the time spent queued. Activity execution time is
collected in this histogram at each member where the activity executes. On
the activity's coordinator member, this is the end-to-end execution time
(that is, the life time less the time spent queued). On non-coordinator
members, this is the time that these members spend working on behalf of
the activity. During the execution of a given activity, the database manager

CREATE WORK ACTION SET

914 SQL Reference Volume 2



might present work to a non-coordinator member more than once, and
each time the non-coordinator member will collect the execution time for
that occurrence of the activity. Therefore, the counts in the execution time
histogram might not represent the actual number of unique activities that
executed on a member. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE ACTIVITY
DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of DML activities associated
with the work class to which this work action is assigned. The default is
SYSDEFAULTHISTOGRAM. This information is only collected when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified with the
EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, between the arrival of one
DML activity and the arrival of the next DML activity, for any activity
associated with the work class to which this work action is assigned. The
default is SYSDEFAULTHISTOGRAM. This information is only collected
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified
with the EXTENDED option.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (histogram template)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work

action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work

class set)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– DATABASE PARTITION can be specified in place of MEMBER, except when

the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

CREATE WORK ACTION SET

Statements 915



– DATABASE PARTITIONS can be specified in place of MEMBERS, except
when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

v The enforcement scope is determined automatically based on the threshold type.
For CONCURRENTDBCOORDACTIVITIES type thresholds, the environment is
also used to determine the enforcement scope where it defaults to the
DATABASE enforcement scope in environments other than DB2 pureScale, and
the MEMBER enforcement scope in DB2 pureScale environments.

Examples
v Example 1: Create a work action set named DATABASE_ACTIONS to apply to all

database activities. Use the LARGE_QUERIES work class set and define the
following work actions. Work action ONE_CONCURRENT_QUERY has a
threshold action that allows one concurrent query to run on the system at a time
for queries that fall within the LARGE_ESTIMATED_COST work class. If that
threshold is exceeded, the database manager is to queue the activity, but is not
to allow more than one database activity to be queued at a time. If the queue
threshold is exceeded, the database activity is not to be allowed to run. Work
action TWO_CONCURRENT_QUERIES has a threshold action that allows two
concurrent queries to execute at the same time for queries that fall within the
LARGE_CARDINALITY work class, and allows no more than two to be queued.
If more than two queries are to be queued, the database activity is to continue
putting the queries in the queue and is to collect the database activity data in
the activities event monitor, if one is active.

CREATE WORK ACTION SET DATABASE_ACTIONS
FOR DATABASE USING WORK CLASS SET LARGE_QUERIES

(WORK ACTION ONE_CONCURRENT_QUERY ON WORK CLASS LARGE_ESTIMATED_COST
WHEN CONCURRENTDBCOORDACTIVITIES > 1 AND QUEUEDACTIVITIES > 1

STOP EXECUTION,
WORK ACTION TWO_CONCURRENT_QUERIES ON WORK CLASS LARGE_CARDINALITY
WHEN CONCURRENTDBCOORDACTIVITIES > 2 AND QUEUEDACTIVITIES > 2

COLLECT ACTIVITY DATA CONTINUE)

v Example 2: Create a work action set named ADMIN_APPS_ACTIONS with one
work action named MAP_SELECTS that is to apply to database activities that
run under service superclass ADMIN_APPS. The work action is to map all
database activity that falls within the SELECT_CLASS work class to service
subclass SELECTS_SERVICE_CLASS, which is in the DML_SELECTS work class
set.

CREATE WORK ACTION SET ADMIN_APPS_ACTIONS
FOR SERVICE CLASS ADMIN_APPS USING
WORK CLASS SET DML_SELECTS

(WORK ACTION MAP_SELECTS ON WORK CLASS SELECT_CLASS
MAP ACTIVITY TO SELECTS_SERVICE_CLASS)

CREATE WORK ACTION SET

916 SQL Reference Volume 2



CREATE WORK CLASS SET
The CREATE WORK CLASS SET statement defines a work class set.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� CREATE WORK CLASS SET work-class-set-name �

�

�

,

( work-class-definition )

��

work-class-definition:

WORK CLASS
work-class-name work-attributes position-clause

work-attributes:

WORK TYPE �

� READ
for-from-to-clause data-tag-clause

WRITE
for-from-to-clause data-tag-clause

CALL
schema-clause

DML
for-from-to-clause data-tag-clause

DDL
LOAD
ALL

for-from-to-clause schema-clause data-tag-clause

for-from-to-clause:

TO UNBOUNDED
FOR TIMERONCOST FROM from-value

CARDINALITY TO to-value

data-tag-clause:

DATA TAG LIST CONTAINSinteger-constant

CREATE WORK CLASS SET

Statements 917



schema-clause:

ROUTINES IN SCHEMA schema-name

position-clause:

POSITION LAST

POSITION BEFORE work-class-name
POSITION AFTER work-class-name
POSITION AT position

Description

work-class-set-name
Names the work class set. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The work-class-set-name must not identify a work
class set that already exists at the current server (SQLSTATE 42710). The name
must not begin with the characters 'SYS' (SQLSTATE 42939).

work-class-definition
Specifies the definition of the work class.

WORK CLASS work-class-name
Names the work class. The work-class-name must not identify a work class
that already exists within the work class set at the current server
(SQLSTATE 42710). The work-class-name cannot begin with 'SYS'
(SQLSTATE 42939).

work-attributes
The attributes of the database activity must match all of the attributes
specified in this work class if that activity is to be associated with this
work class.

WORK TYPE
Specifies the type of database activity.

READ
This activity includes the following statements:
v All SELECT or SELECT INTO statements that do not contain a

DELETE, INSERT, MERGE, or UPDATE statement, and all
VALUES INTO statements

v All XQuery statements

WRITE
This activity includes the following statements:
v UPDATE
v DELETE
v INSERT
v MERGE
v All SELECT statements that contain a DELETE, INSERT, or

UPDATE statement, and all VALUES INTO statements

CALL
Includes the CALL statement. A CALL statement is considered for
a work class with a work type of CALL or ALL.

CREATE WORK CLASS SET

918 SQL Reference Volume 2



DML
Includes the statements listed under READ and WRITE.

DDL
This activity includes the following statements:
v ALTER
v CREATE
v COMMENT
v DECLARE GLOBAL TEMPORARY TABLE
v DROP
v FLUSH PACKAGE CACHE
v GRANT
v REFRESH TABLE
v RENAME
v REVOKE
v SET INTEGRITY

LOAD
DB2 load operations.

ALL
All recognized workload management (WLM) activity that falls
under any one of the keywords previously listed within the
description for WORK TYPE.

FOR
Indicates the type of information that is being specified in the FROM
from-value TO to-value clause. The FOR clause is only used for the
following work types:
v ALL
v DML
v READ
v WRITE

TIMERONCOST
The estimated cost of the work, in timerons. This value is used to
determine whether the work falls within the range specified in the
FROM from-value TO to-value clause.

CARDINALITY
The estimated cardinality of the work. This value is used to
determine whether the work falls within the range specified in the
FROM from-value TO to-value clause.

FROM from-value TO UNBOUNDED or FROM from-value TO to-value
Specifies the range of either timeron value (for estimated cost) or
cardinality within which the database activity must fall if it is to be
part of this work class. The range is inclusive of from-value and to-value.
If this clause is not specified for the work class, all work that falls
within the specified work type will be included (that is, the default is
FROM 0 TO UNBOUNDED). This range is only used for the following
work types:
v ALL
v DML
v READ

CREATE WORK CLASS SET

Statements 919



v WRITE

FROM from-value TO UNBOUNDED
The from-value must be zero or a positive DOUBLE value
(SQLSTATE 5U019). The range has no upper bound.

FROM from-value TO to-value
The from-value must be zero or a positive DOUBLE value and the
to-value must be a positive DOUBLE value. The from-value must be
smaller than or equal to the to-value (SQLSTATE 5U019).

DATA TAG LIST CONTAINS integer-constant
Specifies the value of the tag given to any data which the database
activity might touch if it is to be part of this work class. If the clause is
not specified for the work class, all work that falls within the specified
work type, regardless of what data it might touch, will be included
(that is, the default is to ignore the data tag). This clause is used only if
the work type is READ, WRITE, DML, or ALL and the database
activity is a DML statement. Valid values for integer-constant are
integers from 1 to 9.

schema-clause

ROUTINES IN SCHEMA schema-name
Specifies the schema name of the procedure that the CALL
statement will be calling. This clause is only used if the work type
is CALL or ALL and the database activity is a CALL statement. If
no value is specified, all schemas are included.

position-clause

POSITION
Specifies where this work class is to be placed within the work class
set, which determines the order in which work classes are evaluated.
When performing work class assignment at run time, the database
manager first determines the work class set that is associated with the
object, either the database or a service superclass. The first matching
work class within that work class set is then selected. If this keyword
is not specified, the work class is placed in the last position.

LAST
Specifies that the work class is to be placed last in the ordered list
of work classes within the work class set. This is the default.

BEFORE work-class-name
Specifies that the work class is to be placed before work class
work-class-name in the list. The work-class-name must identify a work
class in the work class set that exists at the current server
(SQLSTATE 42704).

AFTER work-class-name
Specifies that the work class is to be placed after work class
work-class-name in the list. The work-class-name must identify a work
class in the work class set that exists at the current server
(SQLSTATE 42704).

AT position
Specifies the absolute position at which the work class is to be
placed within the work class set in the ordered list of work classes.
This value can be any positive integer (not zero) (SQLSTATE

CREATE WORK CLASS SET

920 SQL Reference Volume 2



42615). If position is greater than the number of existing work
classes plus one, the work class is placed at the last position within
the work class set.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

Examples
v Example 1: Create a work class set named LARGE_QUERIES that has a set of

work classes representing all DML with an estimated cost greater than 9999 and
an estimated cardinality greater than 1000.

CREATE WORK CLASS SET LARGE_QUERIES
(WORK CLASS LARGE_ESTIMATED_COST WORK TYPE DML
FOR TIMERONCOST FROM 9999 TO UNBOUNDED,
WORK CLASS LARGE_CARDINALITY WORK TYPE DML
FOR CARDINALITY FROM 1000 TO UNBOUNDED)

v Example 2: Create a work class set named DML_SELECTS that has a work class
representing all DML SELECT statements that do not contain a DELETE,
INSERT, MERGE, or UPDATE statement.

CREATE WORK CLASS SET DML_SELECTS
(WORK CLASS SELECT_CLASS WORK TYPE READ)

CREATE WORK CLASS SET

Statements 921



CREATE WORKLOAD
The CREATE WORKLOAD statement defines a workload.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

�� CREATE WORKLOAD workload-name � connection-attributes �

�
POSITION LAST

workload-attributes
POSITION BEFORE workload-name

AFTER workload-name
AT position

�

�
COLLECT ACTIVITY METRICS NONE

BASE
COLLECT ACTIVITY METRICS

EXTENDED

�

�
COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-on-clause collect-details-clause
�

�
COLLECT AGGREGATE ACTIVITY DATA NONE

BASE
COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

�

�
COLLECT AGGREGATE UNIT OF WORK DATA NONE

BASE
COLLECT AGGREGATE UNIT OF WORK DATA

�

�
COLLECT LOCK TIMEOUT DATA WITHOUT HISTORY

COLLECT LOCK TIMEOUT DATA NONE
WITH HISTORY

AND VALUES

�

�
COLLECT DEADLOCK DATA WITHOUT HISTORY

COLLECT DEADLOCK DATA WITH HISTORY
AND VALUES

�

CREATE WORKLOAD

922 SQL Reference Volume 2



�
COLLECT LOCK WAIT DATA NONE

COLLECT LOCK WAIT DATA collect-lock-wait-options
�

�

�

COLLECT UNIT OF WORK DATA NONE

BASE
COLLECT UNIT OF WORK DATA

BASE
,

INCLUDE PACKAGE LIST
EXECUTABLE LIST

�

� histogram-template-clause ��

connection-attributes:

�

�

�

�

�

�

�

�

�

�

(1)
ADDRESS ( 'address-value' )

APPLNAME ( 'application-name' )

SYSTEM_USER ( 'authorization-name' )

SESSION_USER ( 'authorization-name' )

SESSION_USER GROUP ( 'authorization-name' )

SESSION_USER ROLE ( 'authorization-name' )

CURRENT CLIENT_USERID ( 'user-id' )

CURRENT CLIENT_APPLNAME ( 'client-application-name' )

CURRENT CLIENT_WRKSTNNAME ( 'workstation-name' )

CURRENT CLIENT_ACCTNG ( 'accounting-string' )

workload-attributes:

ENABLE

DISABLE

ALLOW DB ACCESS

DISALLOW DB ACCESS

MAXIMUM DEGREE DEFAULT

MAXIMUM DEGREE degree
�

CREATE WORKLOAD

Statements 923



�
SERVICE CLASS SYSDEFAULTUSERCLASS

SERVICE CLASS service-class-name
UNDER service-superclass-name

collect-on-clause:

MEMBER
ON COORDINATOR

MEMBERS
ON ALL

collect-details-clause:

�

WITHOUT DETAILS

,
(2)

WITH DETAILS
SECTION AND VALUES

INCLUDE ACTUALS BASE

collect-lock-wait-options:

* FOR LOCKS WAITING MORE THAN wait-time SECONDS
MICROSECONDS

1 SECOND

* �

�
WITHOUT HISTORY

WITH HISTORY
AND VALUES

*

histogram-template-clause:

ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
�

�
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
�

�
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
�

�
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
�

CREATE WORKLOAD

924 SQL Reference Volume 2



�
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
�

�
UOW LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

UOW LIFETIME HISTOGRAM TEMPLATE template-name

Notes:

1 Each connection attribute clause can only be specified once.

2 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

workload-name
Names the workload. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The workload-name must not identify a workload that
already exists at the current server (SQLSTATE 42710). The name must not
begin with the characters 'SYS' (SQLSTATE 42939).

connection-attributes
The attributes of the connection must match all attributes specified in this
workload definition if it is to be associated with this workload when the
connection is established. If a list of values is specified for a connection
attribute in the workload definition, the corresponding attribute of the
connection must match at least one of the values in the list. If a connection
attribute is not specified in the workload definition, the connection can have
any value for the corresponding connection attribute.

Note: All connection attributes are case sensitive, except for ADDRESS.

ADDRESS ('address-value', ...)
Specifies one or more IPv4 addresses, IPv6 addresses, or secure domain
names for the ADDRESS connection attribute. An address value cannot
appear more than once in the list (SQLSTATE 42713). The only supported
protocol is TCP/IP. Each address value must be an IPv4 address, an IPv6
address, or a secure domain name.

An IPv4 address must not contain leading spaces and is represented as a
dotted decimal address. An example of an IPv4 address is 192.0.2.1. The
value localhost or its equivalent representation 127.0.0.1 will not result
in a match; the real IPv4 address of the host must be specified instead. An
IPv6 address must not contain leading spaces and is represented as a colon
hexadecimal address. An example of an IPv6 address is
2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6 addresses
(::ffff:192.0.2.1, for example) will not result in a match. Similarly,
localhost or its IPv6 short representation ::1 will not result in a match. A
domain name is converted to an IP address by the domain name server
where a resulting IPv4 or IPv6 address is determined. An example of a
domain name is corona.example.com. When a domain name is converted to
an IP address, the result of this conversion could be a set of one or more IP
addresses. In this case, an incoming connection is said to match the
ADDRESS attribute of a workload object if the IP address from which the
connection originates matches any of the IP addresses to which the domain
name was converted.

CREATE WORKLOAD

Statements 925



When creating a workload object, you should specify domain name values
for the ADDRESS attribute instead of static IP addresses, particularly in
Dynamic Host Configuration Protocol (DHCP) environments where a
device can have a different IP address each time it connects to the network.

APPLNAME ('application-name', ...)
Specifies one or more applications for the APPLNAME connection
attribute. An application name cannot appear more than once in the list
(SQLSTATE 42713). If application-name does not contain a single asterisk
character (*), is equivalent to the value shown in the “Application name”
field in system monitor output and in output from the LIST
APPLICATIONS command. If application-name does contain a single
asterisk character (*), the value is used as an expression to represent a set
of application names, where the asterisk (*) represents a string of zero or
more characters. If the expression needs to include an asterisk character in
the application name, use a sequence of two asterisk characters (**).

SYSTEM_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SYSTEM USER connection
attribute. An authorization ID cannot appear more than once in the list
(SQLSTATE 42713).

SESSION_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION USER connection
attribute. An authorization ID cannot appear more than once in the list
(SQLSTATE 42713).

SESSION_USER GROUP ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER GROUP
connection attribute. An authorization ID cannot appear more than once in
the list (SQLSTATE 42713).

SESSION_USER ROLE ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER ROLE
connection attribute. The roles of a session authorization ID in this context
refer to all the roles that are available to the session authorization ID,
regardless of how the roles were obtained. An authorization ID cannot
appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_USERID ('user-id', ...)
Specifies one or more client user IDs for the CURRENT CLIENT_USERID
connection attribute. A client user ID cannot appear more than once in the
list (SQLSTATE 42713). If user-id contains a single asterisk character (*), the
value is used as an expression to represent a set of user IDs, where the
asterisk (*) represents a string of zero or more characters. If the expression
needs to include an asterisk character in the user ID, use a sequence of two
asterisk characters (**).

CURRENT CLIENT_APPLNAME ('client-application-name', ...)
Specifies one or more applications for the CURRENT
CLIENT_APPLNAME connection attribute. An application name cannot
appear more than once in the list (SQLSTATE 42713). If
client-application-name does not contain a single asterisk character (*), is
equivalent to the value shown in the “TP Monitor client application name”
field in system monitor output. If client-application-name does contain a
single asterisk character (*), the value is used as an expression to represent
a set of application names, where the asterisk (*) represents a string of zero
or more characters. If the expression needs to include an asterisk character
in the application name, use a sequence of two asterisk characters (**).

CREATE WORKLOAD

926 SQL Reference Volume 2



CURRENT CLIENT_WRKSTNNAME ('workstation-name', ...)
Specifies one or more client workstation names for the CURRENT
CLIENT_WRKSTNNAME connection attribute. A client workstation name
cannot appear more than once in the list (SQLSTATE 42713). If
workstation-name contains a single asterisk character (*), the value is used as
an expression to represent a set of workstation names, where the asterisk
(*) represents a string of zero or more characters. If the expression needs to
include an asterisk character in the workstation name, use a sequence of
two asterisk characters (**).

CURRENT CLIENT_ACCTNG ('accounting-string', ...)
Specifies one or more client accounting strings for the CURRENT
CLIENT_ACCTNG connection attribute. A client accounting string cannot
appear more than once in the list (SQLSTATE 42713). If accounting-string
contains a single asterisk character (*), the value is used as an expression to
represent a set of accounting strings, where the asterisk (*) represents a
string of zero or more characters. If the expression needs to include an
asterisk character in the accounting string, use a sequence of two asterisk
characters (**).

workload-attributes
Specifies attributes of the workload.

ENABLE or DISABLE
Specifies whether or not this workload will be considered when a
workload is chosen. The default is ENABLE.

ENABLE
Specifies that the workload is enabled and will be considered when a
workload is chosen.

DISABLE
Specifies that the workload is disabled and will not be considered
when a workload is chosen.

ALLOW DB ACCESS or DISALLOW DB ACCESS
Specifies whether or not a workload occurrence associated with this
workload is allowed access to the database. The default is ALLOW DB
ACCESS.

ALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are
allowed access to the database.

DISALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are
not allowed access to the database. The next unit of work associated
with this workload will be rejected (SQLSTATE 5U020). Workload
occurrences that are already running are allowed to complete.

MAXIMUM DEGREE
Specifies the maximum runtime degree of parallelism for this workload.
The default is DEFAULT.

DEFAULT
If DB2_WORKLOAD=ANALYTICS, this setting enables intrapartition
parallelism for this workload. Otherwise, this setting specifies that this
workload inherits the intrapartition parallelism setting from the
database manager configuration parameter intra_parallel. When
intra_parallel is set to NO, this workload runs with intrapartition
parallelism disabled. When intra_parallel is set to YES, this workload

CREATE WORKLOAD

Statements 927



runs with intrapartition parallelism enabled. This workload does not
specify a maximum runtime degree for assigned applications.
Therefore, the actual runtime degree is determined as the lower of the
value of max_querydegree configuration parameter, the value set by
SET RUNTIME DEGREE command, and the SQL statement
compilation degree.

degree
Specifies the maximum degree of parallelism for this workload. Valid
values are 1 to 32,767. With value 1, the associated requests run with
intrapartition parallelism disabled. With value 2 to 32,767, the
associated requests run with intrapartition parallelism enabled. The
actual runtime degree is determined as the lower of this degree, the
value of max_querydegree configuration parameter, the value set by
SET RUNTIME DEGREE command and the SQL statement compilation
degree.

Note: A MAXIMUM DEGREE value greater than 1 will not enable
intrapartition parallelism unless the shared sort heap is available.

SERVICE CLASS service-class-name
Specifies that requests associated with this workload are to be executed in
the service class service-class-name. The service-class-name must identify a
service class that exists at the current server (SQLSTATE 42704). The
service-class-name cannot be 'SYSDEFAULTSUBCLASS',
'SYSDEFAULTSYSTEMCLASS', or 'SYSDEFAULTMAINTENANCECLASS'
(SQLSTATE 5U032). The default is SYSDEFAULTUSERCLASS.

UNDER service-superclass-name
This clause is used when specifying a service subclass. The
service-superclass-name identifies the service superclass of
service-class-name. The service-superclass-name must identify a service
superclass that exists at the current server (SQLSTATE 42704). The
service-superclass-name cannot be 'SYSDEFAULTSYSTEMCLASS' or
'SYSDEFAULTMAINTENANCECLASS' (SQLSTATE 5U032).

POSITION
Specifies where this workload is to be placed within the ordered list of
workloads. At run time, this list is searched in order for the first workload that
matches the required connection attributes. The default is LAST.

LAST
Specifies that the workload is to be last in the list, before the default
workloads SYSDEFAULTUSERWORKLOAD and
SYSDEFAULTADMWORKLOAD.

BEFORE relative-workload-name
Specifies that the workload is to be placed before workload
relative-workload-name in the list. The relative-workload-name must identify a
workload that exists at the current server (SQLSTATE 42704). The BEFORE
option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD'
(SQLSTATE 42832).

AFTER relative-workload-name
Specifies that the workload is to be placed after workload
relative-workload-name in the list. The relative-workload-name must identify a
workload that exists at the current server (SQLSTATE 42704). The AFTER

CREATE WORKLOAD

928 SQL Reference Volume 2



option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD'
(SQLSTATE 42832).

AT position
Specifies the absolute position at which the workload is to be placed in the
list. This value can be any positive integer (not zero) (SQLSTATE 42615). If
position is greater than the number of existing workloads plus one, the
workload is placed at the last position, just before
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

COLLECT ACTIVITY METRICS
Specifies that monitor metrics should be collected for an activity submitted by
an occurrence of the workload. The default is COLLECT ACTIVITY METRICS
NONE.

Note: The effective activity metrics collection setting is the combination of the
attribute specified by the COLLECT ACTIVITY METRICS clause on the
workload submitting the activity, and the mon_act_metrics database
configuration parameter. If either the workload attribute or the configuration
parameter has a value other than NONE, metrics will be collected for the
activity.

NONE
Specifies that no metrics will be collected for any activity submitted by an
occurrence of the workload.

BASE
Specifies that basic metrics will be collected for any activity submitted by
an occurrence of the workload.

EXTENDED
Specifies that basic metrics will be collected for any activity submitted by
an occurrence of the workload. In addition, specifies that the values for the
following monitor elements should be determined with additional
granularity:
v total_section_time

v total_section_proc_time

v total_routine_user_code_time

v total_routine_user_code_proc_time

v total_routine_time

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with this workload is to be
sent to any active activities event monitor when the activity completes. The
default is COLLECT ACTIVITY DATA NONE.

collect-on-clause
Specifies where the activity data is to be collected. The default is ON
COORDINATOR MEMBER.

ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator
member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the
activity is processed. On remote members, a record for the activity may
be captured multiple times as the activity comes and goes on those

CREATE WORKLOAD

Statements 929



members. If the AND VALUES clause is specified, activity input values
will be collected only for the members of the coordinator.

NONE
Specifies that activity data is not collected for each activity that is
associated with this workload.

collect-details-clause
Specifies what type of activity data is to be collected. The default is
WITHOUT DETAILS.

WITHOUT DETAILS
Specifies that data about each activity that is associated with this
workload is to be sent to any active activities event monitor, when the
activity completes execution. Details about statement, compilation
environment, and section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to be
sent to any active activities event monitor, for those activities that
have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any active
activities event monitor for those activities that have them.
DETAILS must be specified if SECTION is specified. Section
actuals will be collected on any member where the activity data is
collected.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on any
partition where the activity data is collected. For section actuals
to be collected, either INCLUDE ACTUALS clause must be
specified or the section_actuals database configuration
parameter must be set.

The effective setting for the collection of section actuals is the
combination of the INCLUDE ACTUALS clause, the
section_actuals database configuration parameter, and the
<collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if INCLUDE
ACTUALS BASE is specified, yet the section_actuals database
configuration parameter value is NONE and
<collectsectionactuals> is set to NONE, then the effective
setting for the collection of section actuals is BASE.

BASE specifies that the following should be enabled and
collected during the activity's execution:
v Basic operator cardinality counts
v Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data about the activities associated with this
workload is to be sent to the statistics event monitor, if one is active. This

CREATE WORKLOAD

930 SQL Reference Volume 2



information is collected periodically on an interval that is specified by the
wlm_collect_int database configuration parameter. The default when
COLLECT AGGREGATE ACTIVITY DATA is not specified is COLLECT
AGGREGATE ACTIVITY DATA NONE. The default when COLLECT
AGGREGATE ACTIVITY DATA is specified is COLLECT AGGREGATE
ACTIVITY DATA BASE.

BASE
Specifies that basic aggregate activity data about the activities associated
with this workload is to be sent to the statistics event monitor, if one is
active. Basic aggregate activity data includes:
v Activity CPU time high watermark
v Activity execution time histogram
v Activity life time histogram
v Activity queue time histogram
v Activity rows read high watermark
v Estimated activity cost high watermark
v Rows returned high watermark
v Temporary table space usage high watermark. Only activities that have

an SQLTEMPSPACE threshold applied to them participate in this high
watermark.

EXTENDED
Specifies that all aggregate activity data about the activities associated with
this workload is to be sent to the statistics event monitor, if one is active.
This includes all basic aggregate activity data plus:
v Activity data manipulation language (DML) estimated cost histogram
v Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data is to be collected for this
workload.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data about the units of work associated
with this workload is to be sent to the statistics event monitor, if one is active.
This information is collected periodically on an interval that is specified by the
wlm_collect_int database configuration parameter. The default when
COLLECT AGGREGATE UNIT OF WORK DATA is not specified is COLLECT
AGGREGATE UNIT OF WORK DATA NONE.

BASE
Specifies that basic aggregate unit of work data about the units of work
associated with this workload is to be sent to the statistics event monitor, if
one is active. Basic aggregate unit of work includes:
v Unit of work lifetime histogram

NONE
Specifies that no aggregate unit of work data is to be collected for this
workload.

COLLECT LOCK TIMEOUT DATA
Specifies that data about lock timeout events that occur within this workload is
sent to the applicable event monitor when the lock event occurs. The lock
timeout data is collected on all members. The default is COLLECT LOCK
TIMEOUT DATA WITHOUT HISTORY. This setting works in conjunction with

CREATE WORKLOAD

Statements 931



the mon_locktimeout database configuration parameter setting. The setting that
produces the most detailed output is honored.

WITHOUT HISTORY
Specifies that data about lock events that occur within this workload is
sent to any active locking event monitor when the lock event occurs. Past
activity history and input values are not sent to the event monitor.

NONE
Specifies that lock timeout data for the workload is not collected at any
member.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of
this type of lock events. The activity history buffer will wrap after the
maximum size limit is used.

The default limit on the number of past activities to be kept by any one
application is 250. If the number of past activities is greater than the limit,
only the newest activities are reported. This default value can be
overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit to
increase or reduce the amount of system monitor heap used for past
activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking
event monitor for those activities that have them. These data values
will not include LOB data, LONG VARCHAR data, LONG
VARGRAPHIC data, structured type data, or XML data. For SQL
statements compiled using the REOPT ALWAYS bind option, there will
be no REOPT compilation or statement execution data values provided
in the event information.

COLLECT DEADLOCK DATA
Specifies that data about deadlock events that occur within this workload is
sent to any active locking event monitor when the lock event occurs. The
deadlock data is collected on all members. The default is COLLECT
DEADLOCK DATA WITHOUT HISTORY. This setting is only honored if the
mon_deadlock database configuration parameter is not set to NONE.

WITHOUT HISTORY
Specifies that data about lock events that occur within this workload is
sent to any active locking event monitor when the lock event occurs. Past
activity history and input values are not sent to the event monitor.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of
this type of lock events. The activity history buffer will wrap after the
maximum size limit is used.

The default limit on the number of past activities to be kept by any one
application is 250. If the number of past activities is greater than the limit,
only the newest activities are reported. This default value can be
overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit to
increase or reduce the amount of system monitor heap used for past
activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking

CREATE WORKLOAD

932 SQL Reference Volume 2



event monitor for those activities that have them. These data values
will not include LOB data, LONG VARCHAR data, LONG
VARGRAPHIC data, structured type data, or XML data. For SQL
statements compiled using the REOPT ALWAYS bind option, there will
be no REOPT compilation or statement execution data values provided
in the event information.

COLLECT LOCK WAIT DATA
Specifies that data about lock wait events that occur within this workload is
sent to any active locking event monitor when the lock has not been acquired
within wait-time. The default is COLLECT LOCK WAIT DATA NONE with a
default wait-time value of 0 microseconds. This setting works in conjunction
with the mon_lockwait and mon_lw_thresh database configuration parameters.
The setting that produces the most detailed output is honored.

NONE
Specifies that the lock wait event for the workload is not collected at any
member.

FOR LOCKS WAITING MORE THAN wait-time (SECONDS | MICROSECONDS) | 1
SECOND

Specifies that data about lock wait events that occur within this workload
is sent to any active locking event monitor when the lock has not been
acquired within wait-time.

This value can be any non-negative integer. Use a valid duration keyword
to specify an appropriate unit of time for wait-time. The minimum valid
value for the wait-time parameter is 1000 microseconds.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of
this type of lock events. The activity history buffer will wrap after the
maximum size limit is used.

The default limit on the number of past activities to be kept by any one
application is 250. If the number of past activities is greater than the limit,
only the newest activities are reported. This default value can be
overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit to
increase or reduce the amount of system monitor heap used for past
activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking
event monitor for those activities that have them. These data values
will not include LOB data, LONG VARCHAR data, LONG
VARGRAPHIC data, structured type data, or XML data. For SQL
statements compiled using the REOPT ALWAYS bind option, there will
be no REOPT compilation or statement execution data values provided
in the event information.

COLLECT UNIT OF WORK DATA
Specifies that data about each transaction associated with this workload is to
be sent to the unit of work event monitor, if any are active, when the unit of
work ends. The default, when COLLECT UNIT OF WORK DATA is not
specified, is COLLECT UNIT OF WORK DATA NONE. The default, when
COLLECT UNIT OF WORK DATA is specified, is COLLECT UNIT OF WORK
DATA BASE. If the mon_uow_data database configuration parameter is set to
BASE, it takes precedence over the COLLECT UNIT OF WORK DATA

CREATE WORKLOAD

Statements 933



parameter. A value of NONE for the mon_uow_data indicates that the COLLECT
UNIT OF WORK DATA parameters of individual workloads is used.

NONE
Specifies that no unit of work data for transactions associated with this
workload is sent to the unit of work event monitor. The default is
COLLECT UNIT OF WORK DATA NONE.

BASE
Specifies that base level of data for transactions associated with this
workload is sent to the unit of work event monitors.

Some of the information reported in a unit of work event are system level
request metrics. The collection of these metrics is controlled independently
from the collection of the unit of work data. The request metrics are
controlled with the COLLECT REQUEST METRICS clause on superclass, or
using the mon_req_metrics database configuration parameter. The service
super class which the workload is associated with, or the service super
class of the service subclass which the workload is associated with, must
have the collection of request metrics enabled in order for the request
metrics to be present in the unit of work event. If the request metrics
collection is not enabled, the value of the request metrics will be zero.

INCLUDE PACKAGE LIST
Specifies that base level of data and the package list for transactions
associated with this workload are sent to the unit of work event monitor.

The size of the collected package list is determined by the value of the
mon_pkglist_sz database configuration parameter. If this value is 0, then
the package list is not collected even if the PACKAGE LIST option is
specified.

In a partitioned database environment, the package list is only available on
the coordinator member. The BASE level will be collected on remote
members.

Some of the information reported in a unit of work event are system level
request metrics. The collection of these metrics is controlled independently
from the collection of the unit of work data. The request metrics are
controlled with the COLLECT REQUEST METRICS clause on superclass, or
using the mon_req_metrics database configuration parameter. The service
super class which the workload is associated with, or the service super
class of the service subclass which the workload is associated with, must
have the collection of request metrics enabled in order for the request
metrics to be present in the unit of work event. If the request metrics
collection is not enabled, the value of the request metrics will be zero.

INCLUDE EXECUTABLE LIST
Specifies that executable ID list will be collected for a unit of work together
with base level of data and sent to the unit of work event monitor.

histogram-template-clause
Specifies the histogram templates to use when collecting aggregate activity
data for activities executing in the workload.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of database activities running in
the workload during a specific interval. This time includes both time
queued and time executing. The default is SYSDEFAULTHISTOGRAM.

CREATE WORKLOAD

934 SQL Reference Volume 2



This information is collected only when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED
option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities
running in the workload are queued during a specific interval. The default
is SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either
the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that database activities
running in the workload are executing during a specific interval. This time
does not include the time spent queued. Activity execution time is
collected in this histogram at the coordinator member only. The time does
not include idle time. Idle time is the time between the execution of
requests belonging to the same activity when no work is being done. An
example of idle time is the time between the end of opening a cursor and
the start of fetching from that cursor. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either
the BASE or EXTENDED option. Only activities at nesting level 0 are
considered for inclusion in the histogram.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of DML activities running in the
workload. The default is SYSDEFAULTHISTOGRAM. This information is
collected only when the COLLECT AGGREGATE ACTIVITY DATA clause
is specified with the EXTENDED option. Only activities at nesting level 0
are considered for inclusion in the histogram.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, between the arrival of one
DML activity into this workload and the arrival of the next DML activity
into this workload. The default is SYSDEFAULTHISTOGRAM. This
information is collected only when the COLLECT AGGREGATE ACTIVITY
DATA clause is specified with the EXTENDED option.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of units of work running in the
workload during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE UNIT OF WORK DATA clause is specified with
the BASE option.

Rules
v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

CREATE WORKLOAD

Statements 935



– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE
CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

v A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes
v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.
v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

v When a database connection is established, the database manager looks for a
matching workload based on the connection attributes that were specified in the
POSITION clause (in order of specification). If a matching workload is found,
the database manager checks whether the current session user has USAGE
privilege on that workload. If the session user does not have USAGE privilege
on the workload, the database manager looks for the next matching workload. If
the session user has USAGE privilege on this workload, the connection is
associated with the workload. If a matching workload is not found, the
connection is associated with the default user workload,
SYSDEFAULTUSERWORKLOAD. If the session user does not have USAGE
privilege on SYSDEFAULTUSERWORKLOAD, an error is returned (SQLSTATE
42501).

v The workload association is re-evaluated at the beginning of each new unit of
work if the database manager detects one of the following conditions.
– The connection attributes have changed. This can happen if any of the

following events has occurred:
- The set client information API (sqleseti) has been invoked and it changed

the connection attributes that were included in the workload definition.
Note that although the client information can be set by the end user so that
it could initiate a workload re-evaluation, the workload remapping itself
cannot happen if the session user does not have the USAGE privilege on
the workload.

- The SET SESSION AUTHORIZATION statement has been invoked and it
changed the current session user.

- The roles that are available to a session user have changed.
– A workload is created.
– A workload is dropped.
– A workload is altered.
– The USAGE privilege on a workload is granted to a user, group, or role.
– The USAGE privilege on a workload is revoked from a user, group, or role.

CREATE WORKLOAD

936 SQL Reference Volume 2



If the workload re-evaluation results in no workload reassignment, the current
workload occurrence continues to run; that is, a new workload occurrence will
not be started.

v A connection cannot be reassigned to a different workload when an activity is
still active. Examples of such activities are a load operation, an executing
procedure, or statements that maintain resources across multiple units of work,
such as an open WITH HOLD cursor. The current workload occurrence
continues to run until all executing activities complete. Workload reassignment
occurs at the beginning of the next unit of work.

v After a service class has been referenced by a workload, it cannot be dropped
until it is no longer referenced by any workload. Either of the following actions
can be taken to remove a service class reference from a workload:
– Alter the workload to change the service class name
– Drop the workload

v After a role has been referenced by a workload, it cannot be dropped until it is
no longer referenced by any workload. Either of the following actions can be
taken to remove a role reference from a workload:
– Alter the workload to remove the role
– Drop the workload

v Privileges: The USAGE privilege is not granted to any user, group, or role when
a workload is created. To enable use of a workload, grant USAGE privilege on
that workload to a user, a group, or a role using the GRANT USAGE ON
WORKLOAD statement.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– DATABASE PARTITION can be specified in place of MEMBER, except when

the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– DATABASE PARTITIONS can be specified in place of MEMBERS, except

when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.
– COLLECT UNIT OF WORK DATA PACKAGE LIST can be specified in place

of COLLECT UNIT OF WORK DATA BASE INCLUDE PACKAGE LIST.

Examples
v Example 1: Create a workload named CAMPAIGN for requests that are

submitted by a session user belonging to group FINANCE. These requests are to
be executed in the default user service class SYSDEFAULTUSERCLASS.

CREATE WORKLOAD CAMPAIGN
SESSION_USER GROUP (’FINANCE’)

v Example 2: Create a workload named PAYROLL for a session user with role HR
that has the CURRENT CLIENT_APPLNAME special register set to
SALARYSYS. Units of work associated with this workload are to be executed in
service class MEDIUMSC that is under the service superclass HRSC. When a
workload is chosen at run time, this workload should be evaluated only after
the workload CAMPAIGN has been evaluated and determined to not match.

CREATE WORKLOAD PAYROLL
SESSION_USER ROLE (’HR’)
CURRENT CLIENT_APPLNAME (’SALARYSYS’) SERVICE CLASS MEDIUMSC
UNDER HRSC POSITION AFTER CAMPAIGN

v Example 3: An occurrence of workload CAMPAIGN (from example 1) is currently
running on the system. Create a workload named NEWCAMPAIGN, also for
requests that are submitted by a session user belonging to group FINANCE, but
only those requests submitted through application DB2BP.EXE. Requests

CREATE WORKLOAD

Statements 937



associated with this workload are to be executed in service class
MARKETINGSC. NEWCAMPAIGN should be evaluated before CAMPAIGN.

CREATE WORKLOAD NEWCAMPAIGN
SESSION_USER GROUP (’FINANCE’)
APPLNAME (’DB2BP.EXE’) SERVICE CLASS MARKETINGSC
POSITION BEFORE CAMPAIGN

The running workload occurrence of CAMPAIGN continues to run until the
current unit of work completes, at which time a workload re-evaluation takes
place, and the connection could then be remapped to workload
NEWCAMPAIGN.

v Example 4: Create a workload named REPORTS for requests that are submitted
through application appl1, appl2, or appl3 by system user BOB or MARY.

CREATE WORKLOAD REPORTS
APPLNAME (’appl1’, ’appl2’, ’appl3’)
SYSTEM_USER (’BOB’, ’MARY’)

v Example 5: Assuming a lock event monitor called PAYROLL exists and is active,
create lock event records with statement history for lock timeout events that
occur within the workload EMPLOYEES.

CREATE WORKLOAD EMPLOYEES
APPLNAME ("app1", "app2")
COLLECT LOCK TIMEOUT DATA WITH HISTORY

v Example 6: Assuming a lock event monitor called PAYROLL exists and is active,
create lock event records for only deadlock and lock timeout events that occur
within the workload FINANCE on all partitions.

CREATE WORKLOAD FINANCE
APPLNAME ("app1", "app2")
COLLECT DEADLOCK DATA
COLLECT LOCK TIMEOUT DATA

v Example 7: Assuming a lock event monitor called PAYROLL exists and is active,
create lock event records with statement history and values for deadlock events
that occur within the workload MANAGERS.

CREATE WORKLOAD MANAGERS
APPLNAME ("app1", "app2")
COLLECT DEADLOCK DATA WITH HISTORY AND VALUES

v Example 8: Assuming a lock event monitor called PAYROLL exists and is active,
create lock event records with statement history for locks that are acquired after
waiting 5000 milliseconds within the MANAGERS workload.

CREATE WORKLOAD MANAGERS
APPLNAME ("app1", "app2")
COLLECT LOCK WAIT DATA FOR LOCKS WAITING MORE THAN 5 SECONDS WITH HISTORY

v Example 9: Create a workload named ACCRECS for all accounts receivable
applications that share a similar name (accrec01, accrec02 ... accrec15) and assign
them to the service class ACCOUNTNGSC. Application names are identified
through the APPLNAME connection attribute with the help of a wild card (*)
and do not need to be specified individually.

CREATE WORKLOAD ACCRECS
SESSION_USER GROUP (’ACCOUNTING’)
APPLNAME (’accrec*’)
SERVICE CLASS ACCOUNTNGSC

v Example 10: Create a workload named CAMPAIGN for requests submitted
through the application appl1, and have unit of work data collected and sent to
any active unit of work event monitors.

CREATE WORKLOAD CAMPAIGN
APPLNAME (’appl1’)
COLLECT UNIT OF WORK DATA BASE

CREATE WORKLOAD

938 SQL Reference Volume 2



v Example 11: The following statements show how you can specify the different
address value formats supported by the ADDRESS connection attribute when
creating a workload.
– To specify a secure domain name:

CREATE WORKLOAD DOMAINWORKLOAD
ADDRESS (’aviator.example.com’)

– To specify a IPv4 address value:
CREATE WORKLOAD IPWORKLOAD1

ADDRESS (’192.0.2.11’)

– To specify a IPv6 address value (long format):
CREATE WORKLOAD IPWORKLOAD2

ADDRESS (’2001:db8:519:13:204:acff:fe57:6135’)

– To specify a IPv6 address value (short format):
CREATE WORKLOAD IPWORKLOAD3

ADDRESS (’2001:db8::202:55ff:fe9a:6eee’)

CREATE WORKLOAD

Statements 939



CREATE WRAPPER
The CREATE WRAPPER statement registers a wrapper with a federated server. A
wrapper is a mechanism by which a federated server can interact with certain
types of data sources.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
authority.

Syntax

�� CREATE WRAPPER wrapper-name
LIBRARY library-name

�

�

�

,

OPTIONS ( wrapper-option-name string-constant )

��

Description

wrapper-name
Names the wrapper. It can be:
v A predefined name. If a predefined name is specified, the federated server

automatically assigns a default value to library-name.
v A user-supplied name. If a user-supplied name is provided, it is necessary to

also specify the appropriate library-name to be used with that wrapper and
operating system.

LIBRARY library-name
Names the file that contains the wrapper library module.

The library name can be specified as an absolute path name or simply the base
name (without the path). If only the base name is specified, the library should
reside in the following subdirectory of your database's installation path:

Operating system
Subdirectory for the wrapper library
module

Linux
AIX
Solaris
HP-UX

lib

Windows bin

The library-name must be enclosed in single quotation marks.

CREATE WRAPPER

940 SQL Reference Volume 2



The LIBRARY option is only necessary when a user-supplied wrapper-name is
used. This option should not be used when a predefined wrapper-name is given.

OPTIONS
Indicates what wrapper options are to be enabled or reset.

wrapper-option-name
Names a wrapper option that is to be enabled or reset.

string-constant
Specifies the setting for wrapper-option-name as a character string constant.
The string-constant must be enclosed in single quotation marks. Some
wrapper options can be used by all wrappers and some options are
specific to a particular wrapper.

Notes
v Syntax alternatives: The following syntax is supported for compatibility with

previous versions of DB2:
– ADD can be specified before wrapper-option-name string-constant.

Examples
1. Register the NET8 wrapper on a federated server to access Oracle data sources.

NET8 is the predefined name for the wrapper that you can use to access Oracle
data sources.

CREATE WRAPPER NET8

2. Register a wrapper on a DB2 federated server that uses the Linux operating
system to access ODBC data sources. Assign the name odbc to the wrapper that
is being registered in the federated database. The full path of the library that
contains the ODBC Driver Manager is defined in the wrapper option MODULE
'/usr/lib/odbc.so'.

CREATE WRAPPER odbc OPTIONS (MODULE ’/usr/lib/odbc.so’)

3. Register a wrapper on a DB2 federated server that uses the Windows operating
system to access ODBC data sources. The library name for the ODBC wrapper
is 'db2rcodbc.dll'.

CREATE WRAPPER odbc LIBRARY ’db2rcodbc.dll’

CREATE WRAPPER

Statements 941



DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is not an executable statement and cannot be
dynamically prepared.

When invoked using the command line processor, additional options can be
specified.

For more information, refer to “Using command line SQL statements and XQuery
statements” in Command Reference.

Authorization

The term “SELECT statement of the cursor” is used to specify the authorization
rules. The SELECT statement of the cursor is one of the following statements:
v The prepared select-statement identified by statement-name

v The specified select-statement

The privileges held by the authorization ID of the statement must include the
privileges necessary to execute the select-statement. See the Authorization section in
"SQL queries".

If statement-name is specified:
v The authorization ID of the statement is the runtime authorization ID.
v The authorization check is performed when the SELECT-statement is prepared.
v The cursor cannot be opened unless the SELECT-statement is in a prepared state.

If select-statement is specified:
v GROUP privileges are not checked.
v The authorization ID of the statement is the authorization ID specified during

program preparation.

Syntax

�� DECLARE cursor-name CURSOR * holdability * returnability * �

� FOR select-statement
statement-name

��

holdability:

WITHOUT HOLD

WITH HOLD

DECLARE CURSOR

942 SQL Reference Volume 2



returnability:

WITHOUT RETURN

TO CALLER
WITH RETURN

TO CLIENT

Description

cursor-name
Specifies the name of the cursor created when the source program is run. The
name must not be the same as the name of another cursor declared in the
source program. The cursor must be opened before use.

WITHOUT HOLD or WITH HOLD
Specifies whether or not the cursor should be prevented from being closed as a
consequence of a commit operation.

WITHOUT HOLD
Does not prevent the cursor from being closed as a consequence of a
commit operation. This is the default.

WITH HOLD
Maintains resources across multiple units of work. The effect of the WITH
HOLD cursor attribute is as follows:
v For units of work ending with COMMIT:

– Open cursors defined WITH HOLD remain open. The cursor is
positioned before the next logical row of the results table.
If a DISCONNECT statement is issued after a COMMIT statement for
a connection with WITH HOLD cursors, the held cursors must be
explicitly closed or the connection will be assumed to have performed
work (simply by having open WITH HELD cursors even though no
SQL statements were issued) and the DISCONNECT statement will
fail.

– All locks are released, except locks protecting the current cursor
position of open WITH HOLD cursors. The locks held include the
locks on the table, and for parallel environments, the locks on rows
where the cursors are currently positioned. Locks on packages and
dynamic SQL sections (if any) are held.

– Valid operations on cursors defined WITH HOLD immediately
following a COMMIT request are:
- FETCH: Fetches the next row of the cursor.
- CLOSE: Closes the cursor.

– UPDATE and DELETE CURRENT OF CURSOR are valid only for
rows that are fetched within the same unit of work.

– LOB locators are freed.
– The set of rows modified by:

- A data change statement
- Routines that modify SQL data embedded within open WITH

HOLD cursors

is committed.
v For units of work ending with ROLLBACK:

DECLARE CURSOR

Statements 943



– All open cursors are closed.
– All locks acquired during the unit of work are released.
– LOB locators are freed.

v For special COMMIT case:
– Packages can be recreated either explicitly, by binding the package, or

implicitly, because the package has been invalidated and then
dynamically recreated the first time it is referenced. All held cursors
are closed during package rebind. This might result in errors during
subsequent execution.

WITHOUT RETURN or WITH RETURN
Specifies whether or not the result table of the cursor is intended to be used as
a result set that will be returned from a procedure.

WITHOUT RETURN
Specifies that the result table of the cursor is not intended to be used as a
result set that will be returned from a procedure.

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a
result set that will be returned from a procedure. WITH RETURN is
relevant only if the DECLARE CURSOR statement is contained with the
source code for a procedure. In other cases, the precompiler might accept
the clause, but it has no effect.

Within an SQL procedure, cursors declared using the WITH RETURN
clause that are still open when the SQL procedure ends, define the result
sets from the SQL procedure. All other open cursors in an SQL procedure
are closed when the SQL procedure ends. Within an external procedure
(one not defined using LANGUAGE SQL), the default for all cursors is
WITH RETURN TO CALLER. Therefore, all cursors that are open when
the procedure ends will be considered result sets. Cursors that are returned
from a procedure cannot be declared as scrollable cursors.

TO CALLER
Specifies that the cursor can return a result set to the caller. For
example, if the caller is another procedure, the result set is
returned to that procedure. If the caller is a client application, the
result set is returned to the client application.

TO CLIENT
Specifies that the cursor can return a result set to the client
application. This cursor is invisible to any intermediate nested
procedures. If a function, method, or trigger called the procedure
either directly or indirectly, result sets cannot be returned to the
client and the cursor will be closed after the procedure finishes.

select-statement
Identifies the SELECT statement of the cursor. The select-statement must not
include parameter markers, but can include references to host variables. The
declarations of the host variables must precede the DECLARE CURSOR
statement in the source program.

statement-name
The SELECT statement of the cursor is the prepared SELECT statement
identified by the statement-name when the cursor is opened. The statement-name
must not be identical to a statement-name specified in another DECLARE
CURSOR statement of the source program.

DECLARE CURSOR

944 SQL Reference Volume 2



For an explanation of prepared SELECT statements, see “PREPARE”.

Notes
v A program called from another program, or from a different source file within

the same program, cannot use the cursor that was opened by the calling
program.

v Unnested procedures, with LANGUAGE other than SQL, will have WITH
RETURN TO CALLER as the default behavior if DECLARE CURSOR is
specified without a WITH RETURN clause, and the cursor is left open in the
procedure. This provides compatibility with procedures from previous versions
that allow procedures to return result sets to applicable client applications. To
avoid this behavior, close all cursors opened in the procedure.

v If the SELECT statement of a cursor contains CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP, all references to these special registers will
yield the same respective datetime value on each FETCH. This value is
determined when the cursor is opened.

v For more efficient processing of data, the database manager can block data for
read-only cursors when retrieving data from a remote server. The use of the FOR
UPDATE clause helps the database manager decide whether a cursor is
updatable or not. Updatability is also used to determine the access path selection
as well. If a cursor is not going to be used in a Positioned UPDATE or DELETE
statement, it should be declared as FOR READ ONLY.

v A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT
statement of the cursor.

v A cursor is deletable if each of the following conditions is true:
– Each FROM clause of the outer fullselect identifies only one base table or

deletable view (cannot identify a nested or common table expression or a
nickname) without use of the OUTER clause

– The outer fullselect does not include a VALUES clause
– The outer fullselect does not include a GROUP BY clause or HAVING clause
– The outer fullselect does not include column functions in the select list
– The outer fullselect does not include SET operations (UNION, EXCEPT, or

INTERSECT) with the exception of UNION ALL
– The outer fullselect does not contain a FOR SYSTEM_TIME period

specification.
– The select list of the outer fullselect does not include DISTINCT
– The outer fullselect does not include an ORDER BY clause (even if the

ORDER BY clause is nested in a view), and the FOR UPDATE clause has not
been specified

– The select-statement does not include a FOR READ ONLY clause
– The FROM clause of the outer fullselect does not include a

data-change-table-reference

– One or more of the following conditions is true:
- The FOR UPDATE clause is specified
- The cursor is statically defined, unless the STATICREADONLY bind option

is YES
- The LANGLEVEL bind option is MIA or SQL92E

A column in the select list of the outer fullselect associated with a cursor is
updatable if each of the following conditions is true:

DECLARE CURSOR

Statements 945



– The cursor is deletable
– The column resolves to a column of the base table
– The LANGLEVEL bind option is MIA, SQL92E or the select-statement

includes the FOR UPDATE clause (the column must be specified explicitly or
implicitly in the FOR UPDATE clause)

A cursor is read-only if it is not deletable.
A cursor is ambiguous if each of the following conditions is true:
– The select-statement is dynamically prepared
– The select-statement does not include either the FOR READ ONLY clause or

the FOR UPDATE clause
– The LANGLEVEL bind option is SAA1
– The cursor otherwise satisfies the conditions of a deletable cursor
An ambiguous cursor is considered read-only if the BLOCKING bind option is
ALL, otherwise it is considered updatable.

v Cursors in procedures that are called by application programs written using CLI
can be used to define result sets that are returned directly to the client
application. Cursors in SQL procedures can also be returned to a calling SQL
procedure only if they are defined using the WITH RETURN clause.

v Cursors declared in routines that are invoked directly or indirectly from a cursor
declared WITH HOLD, do not inherit the WITH HOLD option. Thus, unless the
cursor in the routine is explicitly defined WITH HOLD, a COMMIT in the
application will close it.
Consider the following application and two UDFs:
Application:

DECLARE APPCUR CURSOR WITH HOLD FOR SELECT UDF1() ...
OPEN APPCUR
FETCH APPCUR ...
COMMIT

UDF1:

DECLARE UDF1CUR CURSOR FOR SELECT UDF2() ...
OPEN UDF1CUR
FETCH UDF1CUR ...

UDF2:

DECLARE UDF2CUR CURSOR WITH HOLD FOR SELECT UDF2() ...
OPEN UDF2CUR
FETCH UDF2CUR ...

After the application fetches cursor APPCUR, all three cursors are open. When
the application issues the COMMIT statement, APPCUR remains open, because
it was declared WITH HOLD. In UDF1, however, the cursor UDF1CUR is
closed, because it was not defined with the WITH HOLD option. When the
cursor UDF1CUR is closed, all routine invocations in the corresponding
select-statement complete (receiving a final call, if so defined). UDF2 completes,
which causes UDF2CUR to close.

Examples

Example 1: The DECLARE CURSOR statement associates the cursor name C1 with
the results of the SELECT.

DECLARE CURSOR

946 SQL Reference Volume 2



EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPARTMENT
WHERE ADMRDEPT = ’A00’;

Example 2: Assume that the EMPLOYEE table has been altered to add a generated
column, WEEKLYPAY, that calculates the weekly pay based on the yearly salary.
Declare a cursor to retrieve the system-generated column value from a row to be
inserted.

EXEC SQL DECLARE C2 CURSOR FOR
SELECT E.WEEKLYPAY
FROM NEW TABLE

(INSERT INTO EMPLOYEE
(EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL, SALARY)
VALUES(’000420’, ’Peter’, ’U’, ’Bender’, 16, 31842) AS E;

DECLARE CURSOR

Statements 947



DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary
table for the current session.

The declared temporary table description does not appear in the system catalog. It
is not persistent and cannot be shared with other sessions. Each session that
defines a declared global temporary table of the same name has its own unique
description of the temporary table. When the session terminates, the rows of the
table are deleted, and the description of the temporary table is dropped.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v USE privilege on the USER TEMPORARY table space
v DBADM authority
v SYSADM authority
v SYSCTRL authority

When defining a table using LIKE or a fullselect, the privileges held by the
authorization ID of the statement must also include at least one of the following
authorities on each identified table or view:
v SELECT privilege on the table or view
v CONTROL privilege on the table or view
v DATAACCESS authority

Syntax

�� DECLARE GLOBAL TEMPORARY TABLE table-name �

� �

,

( column-definition )
LIKE table-name1

view-name copy-options
AS ( fullselect ) WITH NO DATA

copy-options

�

�
ON COMMIT DELETE ROWS

*

ON COMMIT PRESERVE ROWS
* �

DECLARE GLOBAL TEMPORARY TABLE

948 SQL Reference Volume 2



�
LOGGED

*

ON ROLLBACK DELETE ROWS
NOT LOGGED

ON ROLLBACK PRESERVE ROWS

*

WITH REPLACE
�

�
IN tablespace-name

* *

distribution-clause
��

column-definition:

column-name data-type
column-options

data-type:

built-in-type

built-in-type:

DECLARE GLOBAL TEMPORARY TABLE

Statements 949



SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (1)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB
CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1)
NCHAR
NATIONAL CHAR (integer)

CHARACTER
NVARCHAR (integer)
NCHAR VARYING
NATIONAL CHAR VARYING

CHARACTER
(1M)

NCLOB
NCHAR LARGE OBJECT (integer )
NATIONAL CHARACTER LARGE OBJECT K

M
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

column-options:

* * *
NOT NULL default-clause

GENERATED ALWAYS AS IDENTITY
BY DEFAULT identity-options

DECLARE GLOBAL TEMPORARY TABLE

950 SQL Reference Volume 2



default-clause:

WITH
DEFAULT

default-values

default-values:

constant
datetime-special-register
user-special-register
CURRENT SCHEMA
NULL
cast-function ( constant )

datetime-special-register
user-special-register
CURRENT SCHEMA

EMPTY_CLOB()
EMPTY_DBCLOB()
EMPTY_NCLOB()
EMPTY_BLOB()

copy-options:

COLUMN ATTRIBUTES
EXCLUDING IDENTITY

* * *

COLUMN COLUMN ATTRIBUTES
INCLUDING DEFAULTS INCLUDING IDENTITY
EXCLUDING

distribution-clause:

�

,
HASH

DISTRIBUTE BY ( column-name )

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

Description

table-name
Names the temporary table. The qualifier, if specified explicitly, must be
SESSION, otherwise an error is returned (SQLSTATE 428EK). If the qualifier is
not specified, SESSION is implicitly assigned.

Each session that defines a declared temporary table with the same table-name
has its own unique description of that declared temporary table. The WITH
REPLACE clause must be specified if table-name identifies a declared temporary
table that already exists in the session (SQLSTATE 42710).

It is possible that a table, view, alias, or nickname already exists in the catalog,
with the same name and the schema name SESSION. In this case:

DECLARE GLOBAL TEMPORARY TABLE

Statements 951



v A declared temporary table table-name may still be defined without any error
or warning

v Any references to SESSION.table-name will resolve to the declared temporary
table rather than the SESSION.table-name already defined in the catalog.

column-definition
Defines the attributes of a column of the temporary table.

column-name
Names a column of the table. The name cannot be qualified, and the same
name cannot be used for more than one column of the table (SQLSTATE
42711).

A table may have the following attributes:
v A 4K page size with a maximum of 500 columns, where the byte counts

of the columns must not be greater than 4 005.
v An 8K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 8 101.
v A 16K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 16 293.
v A 32K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 32 677.

A created temporary table cannot have a row-begin column, row-end
column, or a transaction-start-ID column.

For more details, see “Row Size” in “CREATE TABLE” on page 680.

data-type
Specifies the data type of the column

built-in-type
Specifies a built-in data type. See “CREATE TABLE” for a description
of built-in-type.

A SYSPROC.DB2SECURITYLABEL data type cannot be specified for a
declared temporary table.

column-options
Defines additional options related to the columns of the table.

NOT NULL
Prevents the column from containing null values. For specification of
null values, see NOT NULL in “CREATE TABLE” on page 680.

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on
INSERT or is specified as DEFAULT on INSERT or UPDATE. If a
default value is not specified following the DEFAULT keyword, the
default value depends on the data type of the column as shown in
“ALTER TABLE”.

If the column is based on a column of a typed table, a specific
default value must be specified when defining a default. A default
value cannot be specified for the object identifier column of a
typed table (SQLSTATE 42997).

DECLARE GLOBAL TEMPORARY TABLE

952 SQL Reference Volume 2



If a column is defined using a distinct type, then the default value
of the column is the default value of the source data type cast to
the distinct type.

If a column is defined using a structured type, the default-clause
cannot be specified (SQLSTATE 42842).

Omission of DEFAULT from a column-definition results in the use of
the null value as the default for the column. If such a column is
defined NOT NULL, then the column does not have a valid
default.

default-values
Specific types of default values that can be specified are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:
v represent a value that could be assigned to the column in

accordance with the rules of assignment
v not be a floating-point constant unless the column is defined

with a floating-point data type
v be a numeric constant or a decimal floating-point special

value if the data type of the column is a decimal
floating-point. Floating-point constants are first interpreted
as DOUBLE and then converted to decimal floating-point if
the target column is DECFLOAT. For DECFLOAT(16)
columns, decimal constants having precision greater than 16
digits will be rounded using the rounding modes specified
by the CURRENT DECFLOAT ROUNDING MODE special
register.

v not have nonzero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

v be expressed with no more than 254 bytes including the
quote characters, any introducer character such as the X for
a hexadecimal constant, and characters from the fully
qualified function name and parentheses when the constant
is the argument of a cast-function

datetime-special-register
Specifies the value of the datetime special register (CURRENT
DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the
time of INSERT, UPDATE, or LOAD as the default for the
column. The data type of the column must be the data type
that corresponds to the special register specified (for example,
data type must be DATE when CURRENT DATE is specified).

user-special-register
Specifies the value of the user special register (CURRENT
USER, SESSION_USER, SYSTEM_USER) at the time of INSERT,
UPDATE, or LOAD as the default for the column. The data
type of the column must be a character string with a length not
less than the length attribute of a user special register. Note
that USER can be specified in place of SESSION_USER and
CURRENT_USER can be specified in place of CURRENT
USER.

DECLARE GLOBAL TEMPORARY TABLE

Statements 953



CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register
at the time of INSERT, UPDATE, or LOAD as the default for
the column. If CURRENT SCHEMA is specified, the data type
of the column must be a character string with a length greater
than or equal to the length attribute of the CURRENT
SCHEMA special register.

NULL
Specifies NULL as the default for the column. If NOT NULL
was specified, DEFAULT NULL may be specified within the
same column definition but will result in an error on any
attempt to set the column to the default value.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception
of distinct types based on BLOB or datetime types, the name of
the function must match the name of the distinct type for the
column. If qualified with a schema name, it must be the same
as the schema name for the distinct type. If not qualified, the
schema name from function resolution must be the same as the
schema name for the distinct type. For a distinct type based on
a datetime type, where the default value is a constant, a
function must be used and the name of the function must
match the name of the source type of the distinct type with an
implicit or explicit schema name of SYSIBM. For other
datetime columns, the corresponding datetime function may
also be used. For a BLOB or a distinct type based on BLOB, a
function must be used and the name of the function must be
BLOB with an implicit or explicit schema name of SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of
the distinct type or for the data type if not a distinct type.
If the cast-function is BLOB, the constant must be a string
constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP. The source type of the distinct
type of the column must be the data type that corresponds
to the specified special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or
SYSTEM_USER. The data type of the source type of the
distinct type of the column must be a string data type with
a length of at least 8 bytes. If the cast-function is BLOB, the
length attribute must be at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special
register. The data type of the source type of the distinct
type of the column must be a character string with a length
greater than or equal to the length attribute of the

DECLARE GLOBAL TEMPORARY TABLE

954 SQL Reference Volume 2



CURRENT SCHEMA special register. If the cast-function is
BLOB, the length attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The
column must have the data type that corresponds to the result
data type of the function.

If the value specified is not valid, an error is returned (SQLSTATE
42894).

IDENTITY and identity-options
For specification of identity columns, see IDENTITY and identity-options
in “CREATE TABLE”.

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-name1), view
(view-name), or nickname (nickname). The name specified after LIKE must
identify a table, view, or nickname that exists in the catalog or a declared
temporary table. A typed table or typed view cannot be specified (SQLSTATE
428EC). A protected table cannot be specified (SQLSTATE 42962).A table that
has a column defined as IMPLICITLY HIDDEN cannot be specified
(SQLSTATE 560AE).

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table (including implicitly hidden columns), view,
or nickname. The implicit definition depends on what is identified after LIKE.
v If a table is identified, then the implicit definition includes the column name,

data type and nullability characteristic of each of the columns of table-name1.
If EXCLUDING COLUMN DEFAULTS is not specified, then the column
default is also included.

v If a view is identified, then the implicit definition includes the column name,
data type, and nullability characteristic of each of the result columns of the
fullselect defined in view-name. The data types of the view columns must be
data types that are valid for columns of a table.

v If a nickname is identified, then the implicit definition includes the column
name, data type, and nullability characteristic of each column of nickname.

Column default and identity column attributes may be included or excluded,
based on the copy-attributes clauses. The implicit definition does not include
any other attributes of the identified table, view, or nickname. Thus the new
table does not have any unique constraints, foreign key constraints, triggers,
indexes, table partitioning keys, or distribution keys. The table is created in the
table space implicitly or explicitly specified by the IN clause, and the table has
any other optional clause only if the optional clause is specified.

When a table is identified in the LIKE clause and that table contains a ROW
CHANGE TIMESTAMP column, the corresponding column of the new table
inherits only the data type of the ROW CHANGE TIMESTAMP column. The
new column is not considered to be a generated column.

If row or column level access control (RCAC) is enforced for table-name1,
RCAC is not inherited by the new table.

AS (fullselect) WITH NO DATA
Specifies that the columns of the table have the same name and description as
the columns that would appear in the derived result table of the fullselect if
the fullselect were to be executed. The use of AS (fullselect) is an implicit

DECLARE GLOBAL TEMPORARY TABLE

Statements 955



definition of n columns for the declared temporary table, where n is the
number of columns that would result from the fullselect.

The implicit definition includes the following attributes of the n columns (if
applicable to the data type):
v Column name
v Data type, length, precision, and scale
v Nullability

The following attributes are not included (the default value and identity
attributes can be included by using the copy-options):
v Default value
v Identity attributes
v Hidden attribute
v ROW CHANGE TIMESTAMP

The implicit definition does not include any other optional attributes of the
tables or views referenced in the fullselect.

Every select list element must have a unique name (SQLSTATE 42711). The AS
clause can be used in the select clause to provide unique names. The fullselect
must not refer to host variables or include parameter markers. The data types
of the result columns of the fullselect must be data types that are valid for
columns of a table.

If row or column level access control (RCAC) is enforced for any table that is
specified in fullselect, RCAC is not cascaded to the new table.

copy-options
These options specify whether to copy additional attributes of the source result
table definition (table, view, or fullselect).

INCLUDING COLUMN DEFAULTS
Column defaults for each updatable column of the source result table
definition are copied. Columns that are not updatable will not have a
default defined in the corresponding column of the created table.

If LIKE table-name1 is specified, and table-name1 identifies a base table,
created temporary table, or declared temporary table, then INCLUDING
COLUMN DEFAULTS is the default.

EXCLUDING COLUMN DEFAULTS
Column defaults are not copied from the source result table definition.

This clause is the default, except when LIKE table-name is specified and
table-name identifies a base table, created temporary table, or declared
temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES
If available, identity column attributes (START WITH, INCREMENT BY,
and CACHE values) are copied from the source's result table definition. It
is possible to copy these attributes if the element of the corresponding
column in the table, view, or fullselect is the name of a column of a table,
or the name of a column of a view which directly or indirectly maps to the
column name of a base table or created temporary table with the identity
property. In all other cases, the columns of the new temporary table will
not get the identity property. For example:
v The select list of the fullselect includes multiple instances of the name of

an identity column (that is, selecting the same column more than once)

DECLARE GLOBAL TEMPORARY TABLE

956 SQL Reference Volume 2



v The select list of the fullselect includes multiple identity columns (that is,
it involves a join)

v The identity column is included in an expression in the select list
v The fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table
definition.

ON COMMIT
Specifies the action taken on the global temporary table when a COMMIT
operation is performed. The default is DELETE ROWS.

DELETE ROWS
All rows of the table will be deleted if no WITH HOLD cursor is open on
the table.

PRESERVE ROWS
Rows of the table will be preserved.

LOGGED or NOT LOGGED
Specifies whether operations for the table are logged. The default is LOGGED.

LOGGED
Specifies that insert, update, or delete operations against the table as well
as the creation or dropping of the table are to be logged.

NOT LOGGED
Specifies that insert, update, or delete operations against the table are not
to be logged, but that the creation or dropping of the table is to be logged.
During a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation:
v If the table had been created within a unit of work (or savepoint), the

table is dropped
v If the table had been dropped within a unit of work (or savepoint), the

table is recreated, but without any data

ON ROLLBACK
Specifies the action that is to be taken on the not logged global temporary
table when a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed. The default is DELETE ROWS.

DELETE ROWS
If the table data has been changed, all the rows will be deleted.

PRESERVE ROWS
Rows of the table will be preserved.

WITH REPLACE
Indicates that, in the case that a declared temporary table already exists with
the specified name, the existing table is replaced with the temporary table
defined by this statement (and all rows of the existing table are deleted).

When WITH REPLACE is not specified, then the name specified must not
identify a declared temporary table that already exists in the current session
(SQLSTATE 42710).

IN tablespace-name
Identifies the table space in which the declared temporary table will be
instantiated. The table space must exist and be a USER TEMPORARY table
space (SQLSTATE 42838), over which the authorization ID of the statement has
USE privilege (SQLSTATE 42501). If this clause is not specified, a table space

DECLARE GLOBAL TEMPORARY TABLE

Statements 957



for the table is determined by choosing the USER TEMPORARY table space
with the smallest sufficient page size over which the authorization ID of the
statement has USE privilege. When more than one table space qualifies,
preference is given according to who was granted the USE privilege:
1. The authorization ID
2. A group to which the authorization ID belongs
3. PUBLIC

If more than one table space still qualifies, the final choice is made by the
database manager. When no USER TEMPORARY table space qualifies, an error
is raised (SQLSTATE 42727).

Determination of the table space can change when:
v Table spaces are dropped or created
v USE privileges are granted or revoked

The sufficient page size of a table is determined by either the byte count of the
row or the number of columns. For more details, see “Row Size” in “CREATE
TABLE” on page 680.

distribution-clause
Specifies the database partitioning or the way the data is distributed across
multiple database partitions.

DISTRIBUTE BY HASH (column-name, ...)
Specifies the use of the default hashing function on the specified columns,
called a distribution key, as the distribution method across database
partitions. The column-name must be an unqualified name that identifies a
column of the table (SQLSTATE 42703). The same column must not be
identified more than once (SQLSTATE 42709). No column whose data type
is BLOB, CLOB, DBCLOB, XML, distinct type based on any of these types,
or structured type can be used as part of a distribution key (SQLSTATE
42962).

If this clause is not specified, and the table resides in a multiple partition
database partition group with multiple database partitions, the distribution
key is defined as the first column whose data type is valid for a
distribution key.

If none of the columns satisfies the requirements for a default distribution
key, the table is created without one. Such tables are allowed only in table
spaces that are defined on single-partition database partition groups.

For tables in table spaces that are defined on single-partition database
partition groups, any collection of columns with data types that are valid
for a distribution key can be used to define the distribution key. If this
clause is not specified, no distribution key is created.

Notes
v A user temporary table space must exist before a declared temporary table can

be declared (SQLSTATE 42727).
v Referencing a declared temporary table: The description of a declared temporary

table does not appear in the database catalog (SYSCAT.TABLES); therefore, it is
not persistent and is not shareable across database connections. This means that
each session that defines a declared temporary table called table-name has its
own possibly unique description of that declared global temporary table.
In order to reference the declared temporary table in an SQL statement (other
than the DECLARE GLOBAL TEMPORARY TABLE statement), the table must

DECLARE GLOBAL TEMPORARY TABLE

958 SQL Reference Volume 2



be explicitly or implicitly qualified by the schema name SESSION. If table-name is
not qualified by SESSION, declared temporary tables are not considered when
resolving the reference.
A reference to SESSION.table-name in a connection that has not declared a
declared temporary table by that name will attempt to resolve from persistent
objects in the catalog. If no such object exists, an error occurs (SQLSTATE 42704).

v When binding a package that has static SQL statements that refer to tables
implicitly or explicitly qualified by SESSION, those statements will not be bound
statically. When these statements are invoked, they will be incrementally bound,
regardless of the VALIDATE option chosen while binding the package. At
runtime, each table reference will be resolved to a declared temporary table, if it
exists, or a created temporary table, or permanent table. If none exist, an error
will be raised (SQLSTATE 42704).

v Privileges: When a declared temporary table is defined, the definer of the table
is granted all table privileges on the table, including the ability to drop the table.
Additionally, these privileges are granted to PUBLIC. (None of the privileges are
granted with the GRANT option, and none of the privileges appear in the
catalog table.) This enables any SQL statement in the session to reference a
declared temporary table that has already been defined in that session.

v Instantiation and termination: For the following explanations, P denotes a
session and T is a declared temporary table in the session P:
– An empty instance of T is created as a result of the DECLARE GLOBAL

TEMPORARY TABLE statement that is executed in P.
– Any SQL statement in P can make reference to T and any reference to T in P

is a reference to that same instance of T.
– If a DECLARE GLOBAL TEMPORARY TABLE statement is specified within

the SQL procedure compound statement (defined by BEGIN and END), the
scope of the declared temporary table is the connection, not just the
compound statement, and the table is known outside of the compound
statement. The table is not implicitly dropped at the END of the compound
statement. A declared temporary table cannot be defined multiple times by
the same name in other compound statements in that session, unless the table
has been explicitly dropped.

– Assuming that the ON COMMIT DELETE ROWS clause was specified
implicitly or explicitly, then when a commit operation terminates a unit of
work in P, and there is no open WITH HOLD cursor in P that is dependent
on T, the commit includes the operation DELETE FROM SESSION.T.

– When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes a modification to SESSION.T:
- If NOT LOGGED was specified, all rows from SESSION.T are deleted

unless ON ROLLBACK PRESERVE ROWS was also specified
- If NOT LOGGED was not specified, the changes to T are undone

– If NOT LOGGED was specified and an INSERT, UPDATE or DELETE
statement fails during execution (as opposed to a compilation error), all rows
from SESSION.T are deleted.

– When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes the declaration of SESSION.T, then
the rollback includes the operation DROP SESSION.T.

– If a rollback operation terminates a unit of work or a savepoint in P, and that
unit of work or savepoint includes the drop of a declared temporary table
SESSION.T, then the rollback will undo the drop of the table. If NOT
LOGGED was specified, then the table will also have been emptied.

DECLARE GLOBAL TEMPORARY TABLE

Statements 959



– When the application process that declared T terminates or disconnects from
the database, T is dropped and its instantiated rows are destroyed.

– When the connection to the server at which T was declared terminates, T is
dropped and its instantiated rows are destroyed.

v Restrictions on the use of declared temporary tables: Declared temporary tables
cannot:
– Be specified in an ALTER, COMMENT, GRANT, LOCK, RENAME or

REVOKE statement (SQLSTATE 42995).
– Be referenced in an AUDIT, CREATE ALIAS, or CREATE VIEW statement

(SQLSTATE 42995).
– Be specified in referential constraints (SQLSTATE 42995).

v Data row compression is enabled for a declared temporary table. When the
database manager determines that there is a performance gain, table row data
including XML documents stored inline in the base table object will be
compressed. However, data compression of the XML storage object of a declared
temporary table is not supported.

v Index compression is enabled for indexes that are created on declared temporary
tables.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– DEFINITION ONLY can be specified in place of WITH NO DATA
– The PARTITIONING KEY clause can be specified in place of the DISTRIBUTE

BY clause
The following syntax is accepted as the default behavior:
– CCSID ASCII
– CCSID UNICODE

Examples
v Example 1: Define a declared temporary table with column definitions for an

employee number, salary, bonus, and commission.
DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP

(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9, 2),
BONUS DECIMAL(9, 2),
COMM DECIMAL(9, 2)) ON COMMIT PRESERVE ROWS

v Example 2: Assume that base table USER1.EMPTAB exists and that it contains
three columns, one of which is an identity column. Declare a temporary table
that has the same column names and attributes (including identity attributes) as
the base table.
DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1

LIKE USER1.EMPTAB
INCLUDING IDENTITY
ON COMMIT PRESERVE ROWS

In this example, SESSION is used as the implicit qualifier for TEMPTAB1.

DECLARE GLOBAL TEMPORARY TABLE

960 SQL Reference Volume 2



DELETE
The DELETE statement deletes rows from a table, nickname, or view, or the
underlying tables, nicknames, or views of the specified fullselect.

Deleting a row from a nickname deletes the row from the data source object to
which the nickname refers. Deleting a row from a view deletes the row from the
table on which the view is based if no INSTEAD OF trigger is defined for the
delete operation on this view. If such a trigger is defined, the trigger will be
executed instead.

There are two forms of this statement:
v The Searched DELETE form is used to delete one or more rows (optionally

determined by a search condition).
v The Positioned DELETE form is used to delete exactly one row (as determined by

the current position of a cursor).

Invocation

A DELETE statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that can
be dynamically prepared.

Authorization

To execute either form of this statement, the privileges held by the authorization
ID of the statement must include at least one of the following authorities:
v DELETE privilege on the table, view, or nickname from which rows are to be

deleted
v CONTROL privilege on the table, view, or nickname from which rows are to be

deleted
v DATAACCESS authority

To execute a Searched DELETE statement, the privileges held by the authorization
ID of the statement must also include at least one of the following authorities for
each table, view, or nickname referenced by a subquery:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules
(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of a
DELETE statement includes a reference to a column of the table or view in the
search-condition, the privileges held by the authorization ID of the statement must
also include at least one of the following authorities:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If the specified table or view is preceded by the ONLY keyword, the privileges
held by the authorization ID of the statement must also include the SELECT
privilege for every subtable or subview of the specified table or view.

DELETE

Statements 961



Group privileges are not checked for static DELETE statements.

If the target of the delete operation is a nickname, the privileges on the object at
the data source are not considered until the statement is executed at the data
source. At this time, the authorization ID that is used to connect to the data source
must have the privileges required for the operation on the object at the data
source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax (searched-delete)

�� DELETE FROM table-name
view-name period-clause

nickname
ONLY ( table-name )

view-name
( fullselect )

�

�
correlation-clause include-columns

�

�
assignment-clause WHERE search-condition WITH RR

RS
CS
UR

��

period-clause:

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

include-columns:

INCLUDE �

,

( column-name data-type )

Syntax (positioned-delete)

�� DELETE FROM table-name
view-name
nickname
ONLY ( table-name )

view-name

correlation-clause
�

� WHERE CURRENT OF cursor-name ��

correlation-clause:

AS
correlation-name

( column-name )

DELETE

962 SQL Reference Volume 2



Description

FROM table-name, view-name, nickname, or (fullselect)
Identifies the object of the delete operation. The name must identify one of the
following objects:
v A table or view that exists in the catalog at the current server
v A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a catalog view, a system-maintained
materialized query table, or a read-only view.

If table-name is a typed table, rows of the table or any of its proper subtables
may get deleted by the statement.

If view-name is a typed view, rows of the underlying table or underlying tables
of the view's proper subviews may get deleted by the statement. If view-name is
a regular view with an underlying table that is a typed table, rows of the
typed table or any of its proper subtables may get deleted by the statement.

If the object of the delete operation is a fullselect, the fullselect must be
deletable, as defined in the “Deletable views” Notes item in the description of
the CREATE VIEW statement.

For additional restrictions related to temporal tables and use of a view or
fullselect as the target of the delete operation, see "Considerations for a
system-period temporal table" and "Considerations for an application-period
temporal table" in the Notes section.

Only the columns of the specified table can be referenced in the WHERE
clause. For a positioned DELETE, the associated cursor must also have
specified the table or view in the FROM clause without using ONLY.

FROM ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement
should apply only to data of the specified table and rows of proper subtables
cannot be deleted by the statement. For a positioned DELETE, the associated
cursor must also have specified the table in the FROM clause using ONLY. If
table-name is not a typed table, the ONLY keyword has no effect on the
statement.

FROM ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement
should apply only to data of the specified view and rows of proper subviews
cannot be deleted by the statement. For a positioned DELETE, the associated
cursor must also have specified the view in the FROM clause using ONLY. If
view-name is not a typed view, the ONLY keyword has no effect on the
statement.

period-clause
Specifies that a period clause applies to the target of the delete operation.

If the target of the delete operation is a view, the following conditions apply to
the view:
v The FROM clause of the outer fullselect of the view definition must include

a reference, directly or indirectly, to an application-period temporal table
(SQLSTATE 42724M).

v An INSTEAD OF DELETE trigger must not be defined for the view
(SQLSTATE 428HY).

FOR PORTION OF BUSINESS_TIME
Specifies that the delete only applies to row values for the portion of the

DELETE

Statements 963



period in the row that is specified by the period clause. The
BUSINESS_TIME period must exist in the table (SQLSTATE 4274M). FOR
PORTION OF BUSINESS_TIME must not be specified if the value of the
CURRENT TEMPORAL BUSINESS_TIME special register is not NULL
when the BUSTIMESENSITIVE bind option is set to YES (SQLSTATE
428HY).

FROM value1 TO value2
Specifies that the delete applies to rows for the period specified from
value1 up to value2. No rows are deleted if value1 is greater than or
equal to value2, or if value1 or value2 is the null value (SQLSTATE
02000).

For the period specified with FROM value1 TO value2, the
BUSINESS_TIME period in a row in the target of the delete is in any of
the following states:
v Overlaps the beginning of the specified period if the value of the

begin column is less than value1 and the value of the end column is
greater than value1.

v Overlaps the endof the specified period if the value of the end
column is greater than or equal to value2 and the value of the begin
column is less than value2.

v Is fully contained within the specified period if the value for the
begin column for BUSINESS_TIME is greater than or equal to value1
and the value for the corresponding end column is less than or
equal to value2.

v Is partially contained in the specified period if the row overlaps the
beginning of the specified period or the end of the specified period,
but not both.

v Fully overlaps the specified period if the period in the row overlaps
the beginning and end of the specified period.

v Is not contained in the period if both columns of BUSINESS_TIME
are less than or equal to value1 or greater than or equal to value2.

If the BUSINESS_TIME period in a row is not contained in the
specified period, the row is not deleted. Otherwise, the delete is
applied based on how the values in the columns of the
BUSINESS_TIME period overlap the specified period as follows:
v If the BUSINESS_TIME period in a row is fully contained within the

specified period, the row is deleted.
v If the BUSINESS_TIME period in a row is partially contained in the

specified period and overlaps the beginning of the specified period:
– The row is deleted.
– A row is inserted using the original values from the row, except

that the end column is set to value1.
v If the BUSINESS_TIME period in a row is partially contained in the

specified period and overlaps the end of the specified period:
– The row is deleted.
– A row is inserted using the original values from the row, except

that the begin column is set to value2.
v If the BUSINESS_TIME period in a row fully overlaps the specified

period:
– The row is deleted.

DELETE

964 SQL Reference Volume 2



– A row is inserted using the original values from the row, except
that the end column is set to value1.

– An additional row is inserted using the original values from the
row, except that the begin column is set to value2.

value1 and value2
Each expression must return a value that has a date data type,
timestamp data type, or a valid data type for a string
representation of a date or timestamp (SQLSTATE 428HY). The
result of each expression must be comparable to the data type of
the columns of the specified period (SQLSTATE 42884). See the
comparison rules described in “Assignments and comparisons”.

Each expression can contain any of the following supported
operands (SQLSTATE 428HY):
v Constant
v Special register
v Variable
v Scalar function whose arguments are supported operands

(though user-defined functions and non-deterministic functions
cannot be used)

v CAST specification where the cast operand is a supported
operand

v Expression using arithmetic operators and operands

correlation-clause
Can be used within the search-condition to designate a table, view, nickname, or
fullselect. For a description of correlation-clause, see “table-reference” in the
description of “Subselect”.

include-columns
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the intermediate result table of the DELETE
statement when it is nested in the FROM clause of a fullselect. The
include-columns are appended at the end of the list of columns that are
specified for table-name or view-name.

INCLUDE
Specifies a list of columns to be included in the intermediate result table of
the DELETE statement.

column-name
Specifies a column of the intermediate result table of the DELETE
statement. The name cannot be the same as the name of another include
column or a column in table-name or view-name (SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one
that is supported by the CREATE TABLE statement.

assignment-clause
See the description of assignment-clause under the UPDATE statement. The
same rules apply. The include-columns are the only columns that can be set
using the assignment-clause (SQLSTATE 42703).

WHERE
Specifies a condition that selects the rows to be deleted. The clause can be
omitted, a search condition specified, or a cursor named. If the clause is
omitted, all rows of the table or view are deleted.

DELETE

Statements 965



search-condition
Each column-name in the search condition, other than in a subquery must
identify a column of the table or view.

The search-condition is applied to each row of the table, view, or nickname,
and the deleted rows are those for which the result of the search-condition is
true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and the
results used in applying the search condition. In actuality, a subquery with
no correlated references is executed once, whereas a subquery with a
correlated reference may have to be executed once for each row. If a
subquery refers to the object table of a DELETE statement or a dependent
table with a delete rule of CASCADE or SET NULL, the subquery is
completely evaluated before any rows are deleted.

CURRENT OF cursor-name
Identifies a cursor that is defined in a DECLARE CURSOR statement of the
program. The DECLARE CURSOR statement must precede the DELETE
statement.

The table, view, or nickname named must also be named in the FROM
clause of the SELECT statement of the cursor, and the result table of the
cursor must not be read-only. (For an explanation of read-only result
tables, see “DECLARE CURSOR”.)

When the DELETE statement is executed, the cursor must be positioned on
a row: that row is the one deleted. After the deletion, the cursor is
positioned before the next row of its result table. If there is no next row,
the cursor is positioned after the last row.

WITH
Specifies the isolation level used when locating the rows to be deleted.

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound. The WITH clause has no effect on nicknames,
which always use the default isolation level of the statement.

Rules
v Triggers: DELETE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on
the deleted rows. If a DELETE statement on a view causes an INSTEAD OF
trigger to fire, referential integrity will be checked against the updates
performed in the trigger, and not against the underlying tables of the view that
caused the trigger to fire.

v Referential integrity: If the identified table or the base table of the identified
view is a parent, the rows selected for delete must not have any dependents in a
relationship with a delete rule of RESTRICT, and the DELETE must not cascade
to descendent rows that have dependents in a relationship with a delete rule of
RESTRICT.

DELETE

966 SQL Reference Volume 2



If the delete operation is not prevented by a RESTRICT delete rule, the selected
rows are deleted. Any rows that are dependents of the selected rows are also
affected:
– The nullable columns of the foreign keys of any rows that are their

dependents in a relationship with a delete rule of SET NULL are set to the
null value.

– Any rows that are their dependents in a relationship with a delete rule of
CASCADE are also deleted, and the preceding rules apply, in turn, to those
rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign
key refers to an existing parent row after the other referential constraints have
been enforced.

v Security policy: If the identified table or the base table of the identified view is
protected with a security policy, the session authorization ID must have the
label-based access control (LBAC) credentials that allow:
– Write access to all protected columns (SQLSTATE 42512)
– Read and write access to all of the rows that are selected for deletion

(SQLSTATE 42519)

Notes
v If an error occurs during the execution of a multiple row DELETE, no changes

are made to the database.
v Unless appropriate locks already exist, one or more exclusive locks are acquired

during the execution of a successful DELETE statement. Issuing a COMMIT or
ROLLBACK statement will release the locks. Until the locks are released by a
commit or rollback operation, the effect of the delete operation can only be
perceived by:
– The application process that performed the deletion
– Another application process using isolation level UR.

The locks can prevent other application processes from performing operations on
the table.

v If an application process deletes a row on which any of its cursors are
positioned, those cursors are positioned before the next row of their result table.
Let C be a cursor that is positioned before row R (as a result of an OPEN, a
DELETE through C, a DELETE through some other cursor, or a searched
DELETE). In the presence of INSERT, UPDATE, and DELETE operations that
affect the base table from which R is derived, the next FETCH operation
referencing C does not necessarily position C on R. For example, the operation
can position C on R', where R' is a new row that is now the next row of the
result table.

v SQLERRD(3) in the SQLCA shows the number of rows that qualified for the
delete operation. In the context of an SQL procedure statement, the value can be
retrieved using the ROW_COUNT variable of the GET DIAGNOSTICS
statement. SQLERRD(5) in the SQLCA shows the number of rows affected by
referential constraints and by triggered statements. It includes rows that were
deleted as a result of a CASCADE delete rule and rows in which foreign keys
were set to the null value as the result of a SET NULL delete rule. With regards
to triggered statements, it includes the number of rows that were inserted,
updated, or deleted.

v If an error occurs that prevents deleting all rows matching the search condition
and all operations required by existing referential constraints, no changes are
made to the table and the error is returned.

DELETE

Statements 967



v For nicknames, the external server option iud_app_svpt_enforce poses an
additional limitation. Refer to the Federated documentation for more
information.

v For some data sources, the SQLCODE -20190 may be returned on a delete
against a nickname because of potential data inconsistency. Refer to the
Federated documentation for more information.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– The FROM keyword can be omitted.

v Considerations for a system-period temporal table: The target of the DELETE
statement must not be a fullselect that references a view in the FROM clause
followed by a period specification for SYSTEM_TIME if the view is defined with
the WITH CHECK OPTION and the view definition includes a WHERE clause
containing one of the following syntax elements (SQLSTATE 51046):
– A subquery that references a system-period temporal table (directly or

indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than

NO SQL
If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null
value, an underlying target of the UPDATE statement must not be a
system-period temporal table (SQLSTATE 51046), and the target of the DELETE
statement must not be a view defined with the WITH CHECK OPTION if the
view definition includes a WHERE clause containing one of the following syntax
elements (SQLSTATE 51046):
– A subquery that references a system-period temporal table (directly or

indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than

NO SQL
If the DELETE statement has a search condition containing a correlated
subquery that references historical rows (explicitly referencing the name of the
history table name or implicitly through the use of a period specification in the
FROM clause), the deleted rows that are stored as historical rows are potentially
visible for delete operations for the rows subsequently processed for the
statement.
The mass delete algorithm is not used for a DELETE statement for a table
defined as a system-period temporal table that does not contain a search
condition.

v Considerations for a history table: When a row of a system-period temporal
table is deleted, a historical copy of the row is inserted into the corresponding
history table and the end timestamp of the historical row is captured in the form
of a system determined value that corresponds to the time of the data change
operation. The database manager assigns the value that is generated using a
reading of the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to the row begin
or transaction start-ID column in a table, or a row in a system-period temporal
table is deleted. The database manager ensures uniqueness of the generated
values for an end column in a history table across transactions. The timestamp
value might be adjusted to ensure that rows inserted into the history table have
the end timestamp value greater than the begin timestamp value which can

DELETE

968 SQL Reference Volume 2



happen when a conflicting transaction is updating the same row in the
system-period temporal table (SQLSTATE 01695). The database configuration
parameter systime_period_adj must be set to Yes for this adjustment in the
timestamp value to occur otherwise and error is returned (SQLSTATE 57062).
For a delete operation, the adjustment only affects the value for the end column
in the history table that corresponds to the row-end column in the associated
system-period temporal table. Take these adjustments into consideration on
subsequent references to the table when there is a search for the transaction start
time in the row-begin column and row-end column for the SYSTEM_TIME
period of the associated system-period temporal table.

v Considerations for an application-period temporal table: The target of the
DELETE statement must not be a fullselect that references a view in the FROM
clause followed by a period specification for BUSINESS_TIME if the view is
defined with the WITH CHECK OPTION and the view definition includes a
WHERE clause containing one of the following syntax elements (SQLSTATE
51046):
– A subquery that references an application-period temporal table (directly or

indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than

NO SQL
If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
non-null value, the target of the DELETE statement must not be a view defined
with the WITH CHECK option if the view definition includes a WHERE clause
containing one of the following syntax elements (SQLSTATE 51046):
– A subquery that references an application-period temporal table (directly or

indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than

NO SQL
A DELETE statement for an application-period temporal table that contains a
FOR PORTION OF BUSINESS_TIME clause indicates between which two points
in time that the deletes are effective. When FOR PORTION OF BUSINESS_TIME
is specified and the period value for a row, specified by the values of the
row-begin column and row-end column, is only partially contained in the period
specified from value1 up to value2, the row is deleted and one or two rows are
automatically inserted to represent the portion of the row that is not deleted.
New values are generated for each generated column in an application-period
temporal table for each row that is automatically inserted as a result of a delete
operation on the table. If a generated column is defined as part of a unique or
primary key, parent key in a referential constraint, or unique index, it is possible
that an automatic insert will violate a constraint or index in which case an error
is returned.
When an application-period temporal table is the target of an DELETE
statement, the value in effect for the CURRENT TEMPORAL BUSINESS_TIME
special register is not the null value, and the BUSTIMESENSITIVE bind option is
set to YES, the following additional predicates are implicit:

bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

where bt_begin and bt_end are the begin and end columns of the
BUSINESS_TIME period of the target table of the DELETE statement.

DELETE

Statements 969



v Considerations for application-period temporal tables and triggers: When a
row is deleted and the FOR PORTION OF BUSINESS_TIME clause is specified,
additional rows may be implicitly inserted to reflect any portion of the row that
was not deleted. Any existing delete triggers are activated for the rows deleted,
and any existing insert triggers are activated for rows that are implicitly
inserted.

Examples
v Example 1: Delete department (DEPTNO) 'D11' from the DEPARTMENT table.

DELETE FROM DEPARTMENT
WHERE DEPTNO = ’D11’

v Example 2: Delete all the departments from the DEPARTMENT table (that is,
empty the table).

DELETE FROM DEPARTMENT

v Example 3: Delete from the EMPLOYEE table any sales rep or field rep who
didn't make a sale in 1995.

DELETE FROM EMPLOYEE
WHERE LASTNAME NOT IN

(SELECT SALES_PERSON
FROM SALES
WHERE YEAR(SALES_DATE)=1995)
AND JOB IN (’SALESREP’,’FIELDREP’)

v

v Example 4: Delete all the duplicate employee rows from the EMPLOYEE table.
An employee row is considered to be a duplicate if the last names match. Keep
the employee row with the smallest first name in lexical order.

DELETE FROM
(SELECT ROWNUMBER() OVER (PARTITION BY LASTNAME ORDER BY FIRSTNME)

FROM EMPLOYEE) AS E(RN)
WHERE RN > 1

DELETE

970 SQL Reference Volume 2



DESCRIBE
The DESCRIBE statement obtains information about an object.

There are two types of information that can be obtained with this statement. Each
of these is described separately.
v Input parameter markers of a prepared statement. Gets information about the

input parameter markers in a prepared statement. This information is put into a
descriptor.

v The output of a prepared statement. Gets information about a prepared
statement or information about the select list columns in a prepared SELECT
statement. This information is put into a descriptor.

DESCRIBE

Statements 971



DESCRIBE INPUT
The DESCRIBE INPUT statement obtains information about the input parameter
markers of a prepared statement.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� DESCRIBE INPUT statement-name INTO descriptor-name ��

Description

statement-name
Identifies the prepared statement. When the DESCRIBE INPUT statement is
executed, the name must identify a statement that has been prepared by the
application process at the current server.

For a CALL statement, the information returned describes the input
parameters, defined as IN or INOUT, of the procedure. Input parameter
markers are always considered nullable, regardless of usage.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). Before the DESCRIBE INPUT
statement is executed, the following variable in the SQLDA must be set:

SQLN Specifies the number of SQLVAR occurrences provided in the SQLDA.
SQLN must be set to a value greater than or equal to zero before the
DESCRIBE INPUT statement is executed.

When the DESCRIBE INPUT statement is executed, the database manager assigns
values to the variables of the SQLDA as follows:

SQLDAID
The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the space
character).

The seventh byte, defined as SQLDOUBLED, is set based on the parameter
markers described:
v If the SQLDA contains two SQLVAR entries for every input parameter,

the seventh byte is set to '2'. This technique is used to accommodate
LOB or structured type input parameters.

v Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room
in the SQLDA to contain the description of all input parameter markers.

The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA in bytes.

DESCRIBE INPUT

972 SQL Reference Volume 2



SQLD The number of IN and INOUT parameters of the procedure.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are
assigned to occurrences of SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal
to the value of SQLN, values are assigned to the first n occurrences of
SQLVAR. The values describe parameter markers for the input parameters
of the procedure. The first occurrence of SQLVAR describes the first input
parameter marker, the second occurrence of SQLVAR describes the second
input parameter marker, and so on.

Base SQLVAR

SQLTYPE
A code showing the data type of the parameter and whether or
not it can contain null values.

SQLLEN
A length value depending on the data type of the parameter.
SQLLEN is 0 for LOB data types.

SQLNAME
The sqlname is derived as follows:
v If the SQLVAR corresponds to a parameter marker that is in

the parameter list of a procedure and is not part of an
expression, sqlname contains the name of the parameter if
one was specified on the CREATE PROCEDURE statement.

v If the SQLVAR corresponds to a named parameter marker,
sqlname contains the name of the parameter marker.

v Otherwise, sqlname contains an ASCII numeric literal value
that represents the SQLVAR's position within the SQLDA.

Secondary SQLVAR
These variables are only used if the number of SQLVAR entries are
doubled to accommodate LOB, distinct type, structured type, or
reference type parameters.

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB parameter.

SQLDATATYPE_NAME
For any user-defined type (distinct or structured) parameter,
the database manager sets this to the fully qualified
user-defined type name. For a reference type parameter, the
database manager sets this to the fully qualified user-defined
type name of the target type of the reference. Otherwise,
schema name is SYSIBM and the type name is the name in the
TYPENAME column of the SYSCAT.DATATYPES catalog view.

Notes
v Preparing the SQLDA: Before the DESCRIBE INPUT statement is executed, the

SQLDA must be allocated and the value of SQLN must be set to a value greater
than or equal to zero to indicate how many occurrences of SQLVAR are
provided in the SQLDA. Enough storage must be allocated to contain SQLN
occurrences. To obtain the description of the input parameter markers in the
prepared statement, the number of occurrences of SQLVAR must not be less than
the number of input parameter markers. Furthermore, if the input parameter

DESCRIBE INPUT

Statements 973



markers include LOBs or structured types, the number of occurrences of
SQLVAR should be two times the number of input parameter markers.

v Code page conversions between extended UNIX code (EUC) code pages and
DBCS code pages, or between Unicode and non-Unicode code pages, can result
in expansion or contraction of character lengths.

v If a structured type is being selected, but no FROM SQL transform is defined
(either because no TRANSFORM GROUP was specified using the CURRENT
DEFAULT TRANSFORM GROUP special register (SQLSTATE 428EM), or
because the named group does not have a FROM SQL transform function
defined (SQLSTATE 42744), an error is returned.

v Allocating the SQLDA: Three of the possible ways to allocate the SQLDA are
as follows:
First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. If the table
contains any LOB, distinct type, structured type, or reference type columns, the
number of SQLVARs should be double the maximum number of columns;
otherwise the number should be the same as the maximum number of columns.
Having done the allocation, the application can use this SQLDA repeatedly.
This technique uses a large amount of storage that is never deallocated, even
when most of this storage is not used for a particular select list.
Second Technique: Repeat the following two steps for every processed select list:
1. Execute a DESCRIBE INPUT statement with an SQLDA that has no

occurrences of SQLVAR; that is, an SQLDA for which SQLN is zero. The
value returned for SQLD is the number of columns in the result table. This is
either the required number of occurrences of SQLVAR or half the required
number. Because there were no SQLVAR entries, a warning with SQLSTATE
01005 will be issued. If the SQLCODE accompanying that warning is equal
to one of +237, +238 or +239, the number of SQLVAR entries should be
double the value returned in SQLD. (The return of these positive SQLCODEs
assumes that the SQLWARN bind option setting was YES (return positive
SQLCODEs). If SQLWARN was set to NO, +238 is still returned to indicate
that the number of SQLVAR entries must be double the value returned in
SQLD.)

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute the
DESCRIBE statement again, using this new SQLDA.

This technique allows better storage management than the first technique, but it
doubles the number of DESCRIBE INPUT statements.
Third Technique: Allocate an SQLDA that is large enough to handle most, and
perhaps all, select lists but is also reasonably small. Execute DESCRIBE INPUT
and check the SQLD value. Use the SQLD value for the number of occurrences
of SQLVAR to allocate a larger SQLDA, if necessary.
This technique is a compromise between the first two techniques. Its
effectiveness depends on a good choice of size for the original SQLDA.

Example

Execute a DESCRIBE INPUT statement with an SQLDA that has enough SQLVAR
occurrences to describe any number of input parameters a prepared statement
might have. Assume that five parameter markers at most will need to be described
and that the input data does not contain LOBs.

/* STMT1_STR contains INSERT statement with VALUES clause */
EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;
... /* code to set SQLN to 5 and to allocate the SQLDA */

DESCRIBE INPUT

974 SQL Reference Volume 2



EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;
.
.
.

This example uses the first technique described under “Allocating the SQLDA” in
“DESCRIBE OUTPUT”.

DESCRIBE INPUT

Statements 975



DESCRIBE OUTPUT
The DESCRIBE OUTPUT statement obtains information about a prepared
statement.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

��
OUTPUT

DESCRIBE statement-name INTO descriptor-name ��

Description

statement-name
Identifies the prepared statement. When the DESCRIBE OUTPUT statement is
executed, the name must identify a statement that has been prepared by the
application process at the current server.

If the prepared statement is a SELECT or VALUES INTO statement, the
information returned describes the columns in its result table. If the prepared
statement is a CALL statement, the information returned describes the output
parameters, defined as OUT or INOUT, of the procedure.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). Before the DESCRIBE OUTPUT
statement is executed, the following variable in the SQLDA must be set:

SQLN Specifies the number of SQLVAR occurrences provided in the SQLDA.
SQLN must be set to a value greater than or equal to zero before the
DESCRIBE OUTPUT statement is executed.

When the DESCRIBE OUTPUT statement is executed, the database manager
assigns values to the variables of the SQLDA as follows:

SQLDAID
The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the space
character).

The seventh byte, defined as SQLDOUBLED, is set based on the results
columns or parameter markers described:
v If the SQLDA contains two SQLVAR entries for every column or output

parameter, the seventh byte is set to '2'. This technique is used to
accommodate LOB, distinct type, structured type, or reference type
columns, or output parameters.

v Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room
in the SQLDA to contain the description of all result columns or output
parameter markers.

DESCRIBE OUTPUT

976 SQL Reference Volume 2



The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA in bytes.

SQLD If the prepared statement is a SELECT, SQLD is set to the number of
columns in its result table. If the prepared statement is a CALL statement,
SQLD is set to the number of OUT and INOUT parameters of the
procedure. Otherwise, SQLD is set to 0.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are
assigned to occurrences of SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal
to the value of SQLN, values are assigned to SQLTYPE, SQLLEN,
SQLNAME, SQLLONGLEN, and SQLDATATYPE_NAME for the first n
occurrences of SQLVAR. These values describe either columns of the result
table or parameter markers for the output parameters of the procedure.
The first occurrence of SQLVAR describes the first column or output
parameter marker, the second occurrence of SQLVAR describes the second
column or output parameter marker, and so on.

Base SQLVAR

SQLTYPE
A code showing the data type of the column or parameter and
whether or not it can contain null values.

SQLLEN
A length value depending on the data type of the column or
parameter. SQLLEN is 0 for LOB data types.

SQLNAME
The sqlname is derived as follows:
v If the SQLVAR corresponds to a derived column for a simple

column reference in the select list of a select-statement,
sqlname is the name of the column.

v If the SQLVAR corresponds to a parameter marker that is in
the parameter list of a procedure and is not part of an
expression, sqlname contains the name of the parameter if
one was specified on CREATE PROCEDURE.

v Otherwise sqlname contains an ASCII numeric literal value
that represents the SQLVAR's position within the SQLDA.

Secondary SQLVAR
These variables are only used if the number of SQLVAR entries is
doubled to accommodate LOB, distinct type, structured type, or
reference type columns or parameters.

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB column or
parameter.

SQLDATATYPE_NAME
For any user-defined type (distinct or structured) column or
parameter, the database manager sets this to the fully qualified
user-defined type name. For a reference type column or
parameter, the database manager sets this to the fully qualified
user-defined type name of the target type of the reference.

DESCRIBE OUTPUT

Statements 977



Otherwise, schema name is SYSIBM and the type name is the
name in the TYPENAME column of the SYSCAT.DATATYPES
catalog view.

Notes
v Before the DESCRIBE OUTPUT statement is executed, the value of SQLN must

be set to indicate how many occurrences of SQLVAR are provided in the SQLDA
and enough storage must be allocated to contain SQLN occurrences. For
example, to obtain the description of the columns of the result table of a
prepared SELECT statement, the number of occurrences of SQLVAR must not be
less than the number of columns.

v If a LOB of a large size is expected, then remember that manipulating this large
object will affect application memory. Given this condition, consider using
locators or file reference variables. Modify the SQLDA after the DESCRIBE
OUTPUT statement is executed but before allocating storage so that an
SQLTYPE of SQL_TYP_xLOB is changed to SQL_TYP_xLOB_LOCATOR or
SQL_TYP_xLOB_FILE with corresponding changes to other fields such as
SQLLEN. Then allocate storage based on SQLTYPE and continue.

v Code page conversions between extended UNIX code (EUC) code pages and
DBCS code pages, or between Unicode and non-Unicode code pages, can result
in the expansion and contraction of character lengths.

v If a structured type is being selected, but no FROM SQL transform is defined
(either because no TRANSFORM GROUP was specified using the CURRENT
DEFAULT TRANSFORM GROUP special register (SQLSTATE 428EM), or
because the named group does not have a FROM SQL transform function
defined (SQLSTATE 42744), an error is returned.

v Allocating the SQLDA: Three of the possible ways to allocate the SQLDA are
as follows:
First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. If the table
contains any LOB, distinct type, structured type, or reference type columns, the
number of SQLVARs should be double the maximum number of columns;
otherwise the number should be the same as the maximum number of columns.
Having done the allocation, the application can use this SQLDA repeatedly.
This technique uses a large amount of storage that is never deallocated, even
when most of this storage is not used for a particular select list.
Second Technique: Repeat the following two steps for every processed select list:
1. Execute a DESCRIBE OUTPUT statement with an SQLDA that has no

occurrences of SQLVAR; that is, an SQLDA for which SQLN is zero. The
value returned for SQLD is the number of columns in the result table. This is
either the required number of occurrences of SQLVAR or half the required
number. Because there were no SQLVAR entries, a warning with SQLSTATE
01005 will be issued. If the SQLCODE accompanying that warning is equal
to one of +237, +238 or +239, the number of SQLVAR entries should be
double the value returned in SQLD. (The return of these positive SQLCODEs
assumes that the SQLWARN bind option setting was YES (return positive
SQLCODEs). If SQLWARN was set to NO, +238 is still returned to indicate
that the number of SQLVAR entries must be double the value returned in
SQLD.)

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute the
DESCRIBE OUTPUT statement again, using this new SQLDA.

This technique allows better storage management than the first technique, but it
doubles the number of DESCRIBE OUTPUT statements.

DESCRIBE OUTPUT

978 SQL Reference Volume 2



Third Technique: Allocate an SQLDA that is large enough to handle most, and
perhaps all, select lists but is also reasonably small. Execute DESCRIBE and
check the SQLD value. Use the SQLD value for the number of occurrences of
SQLVAR to allocate a larger SQLDA, if necessary.
This technique is a compromise between the first two techniques. Its
effectiveness depends on a good choice of size for the original SQLDA.

v Considerations for implicitly hidden columns: A DESCRIBE OUTPUT statement
returns only information about an implicitly hidden column if the column is
explicitly specified as part of the SELECT list of the final result table of the
query being described. If implicitly hidden columns are not part of the result
table of a query, a DESCRIBE OUTPUT statement that returns information about
that query will not contain information about any implicitly hidden columns.

Example

In a C program, execute a DESCRIBE OUTPUT statement with an SQLDA that has
no occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate
an SQLDA with the necessary number of occurrences of SQLVAR and then execute
a DESCRIBE statement using that SQLDA.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

... /* code to prompt user for a query, then to generate */
/* a select-statement in the stmt1_str */

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

... /* code to set SQLN to zero and to allocate the SQLDA */
EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to check that SQLD is greater than zero, to set */
/* SQLN to SQLD, then to re-allocate the SQLDA */

EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to prepare for the use of the SQLDA */
/* and allocate buffers to receive the data */

EXEC SQL OPEN DYN_CURSOR;

... /* loop to fetch rows from result table */
EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :sqlda;
.
.
.

DESCRIBE OUTPUT

Statements 979



DISCONNECT
The DISCONNECT statement destroys one or more connections when there is no
active unit of work (that is, after a commit or rollback operation).

If a single connection is the target of the DISCONNECT statement, the connection
is destroyed only if the database has participated in an existing unit of work,
regardless of whether there is an active unit of work. For example, if several other
databases have done work, but the target in question has not, it can still be
disconnected without destroying the connection.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared.

Authorization

None required.

Syntax

�� DISCONNECT
(1)

server-name
host-variable
CURRENT

SQL
ALL

��

Notes:

1 Note that an application server named CURRENT or ALL can only be
identified by a host variable.

Description

server-name or host-variable
Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator
variable. The server-name that is contained within the host-variable must be
left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.
It must be listed in the application requester's local directory.

The specified database-alias or the database-alias contained in the host variable
must identify an existing connection of the application process. If the
database-alias does not identify an existing connection, an error (SQLSTATE
08003) is raised.

CURRENT
Identifies the current connection of the application process. The application
process must be in the connected state. If not, an error (SQLSTATE 08003) is
raised.

DISCONNECT

980 SQL Reference Volume 2



ALL
Indicates that all existing connections of the application process are to be
destroyed. An error or warning does not occur if no connections exist when
the statement is executed. The optional keyword SQL is included to be
consistent with the syntax of the RELEASE statement.

Rules
v Generally, the DISCONNECT statement cannot be executed while within a unit

of work. If attempted, an error (SQLSTATE 25000) is raised. The exception to this
rule is if a single connection is specified to be disconnected and the database has
not participated in an existing unit of work. In this case, it does not matter if
there is an active unit of work when the DISCONNECT statement is issued.

v The DISCONNECT statement cannot be executed at all in the Transaction
Processing (TP) Monitor environment (SQLSTATE 25000). It is used when the
SYNCPOINT precompiler option is set to TWOPHASE.

Notes
v If the DISCONNECT statement is successful, each identified connection is

destroyed.
If the DISCONNECT statement is unsuccessful, the connection state of the
application process and the states of its connections are unchanged.

v If DISCONNECT is used to destroy the current connection, the next executed
SQL statement should be CONNECT or SET CONNECTION.

v Type 1 CONNECT semantics do not preclude the use of DISCONNECT.
However, though DISCONNECT CURRENT and DISCONNECT ALL can be
used, they will not result in a commit operation like a CONNECT RESET
statement would do.
If server-name or host-variable is specified in the DISCONNECT statement, it must
identify the current connection because Type 1 CONNECT only supports one
connection at a time. Generally, DISCONNECT will fail if within a unit of work
with the exception noted in "Rules".

v Resources are required to create and maintain remote connections. Thus, a
remote connection that is not going to be reused should be destroyed as soon as
possible.

v Connections can also be destroyed during a commit operation because the
connection option is in effect. The connection option could be AUTOMATIC,
CONDITIONAL, or EXPLICIT, which can be set as a precompiler option or
through the SET CLIENT API at run time. For information about the
specification of the DISCONNECT option, see “Distributed relational databases”.

Examples
v Example 1: The SQL connection to IBMSTHDB is no longer needed by the

application. The following statement should be executed after a commit or
rollback operation to destroy the connection.

EXEC SQL DISCONNECT IBMSTHDB;

v Example 2: The current connection is no longer needed by the application. The
following statement should be executed after a commit or rollback operation to
destroy the connection.

EXEC SQL DISCONNECT CURRENT;

v Example 3: The existing connections are no longer needed by the application.
The following statement should be executed after a commit or rollback operation
to destroy all the connections.

DISCONNECT

Statements 981



EXEC SQL DISCONNECT ALL;

DISCONNECT

982 SQL Reference Volume 2



DROP
The DROP statement deletes an object. Any objects that are directly or indirectly
dependent on that object are either deleted or made inoperative. Whenever an
object is deleted, its description is deleted from the catalog, and any packages that
reference the object are invalidated.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

When dropping objects that allow two-part names, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities:
v DROPIN privilege on the schema for the object
v Owner of the object, as recorded in the OWNER column of the catalog view for

the object
v CONTROL privilege on the object (applicable only to indexes, index

specifications, nicknames, packages, tables, and views)
v Owner of the user-defined type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view (applicable only when dropping a method
that is associated with a user-defined type)

v DBADM authority

When dropping a table or view hierarchy, the privileges held by the authorization
ID of the statement must include one of the previously mentioned privileges for
each of the tables or views in the hierarchy.

When dropping an audit policy, the privileges held by the authorization ID of the
statement must include SECADM authority.

When dropping a buffer pool, database partition group, storage group, or table
space, the privileges held by the authorization ID of the statement must include
SYSADM or SYSCTRL authority.

When dropping a data type mapping, function mapping, server definition, or
wrapper, the privileges held by the authorization ID of the statement must include
DBADM authority.

When dropping an event monitor the privilege held by the authorization ID of the
statement must include SQLADM or DBADM authority.

When dropping a role, the privileges held by the authorization ID of the statement
must include SECADM authority.

When dropping a row permission or a column mask, the privileges held by the
authorization ID of the statement must include SECADM authority.

DROP

Statements 983



When dropping a schema, the privileges held by the authorization ID of the
statement must include DBADM authority, or be the schema owner, as recorded in
the OWNER column of the SYSCAT.SCHEMATA catalog view.

When dropping a security label, a security label component, or a security policy,
the privileges held by the authorization ID of the statement must include SECADM
authority.

When dropping a service class, work action set, work class set, workload,
threshold, or histogram template, the privileges held by the authorization ID of the
statement must include WLMADM or DBADM authority.

When dropping a system-period temporal table, the privileges held by the
authorization ID of the statement must also include at least one of the following
authorities:
v Privileges to drop the associated history table
v Administrative authority

When dropping a transform, the privileges held by the authorization ID of the
statement must include DBADM authority, or must be the owner of type-name.

When dropping a trusted context, the privileges held by the authorization ID of
the statement must include SECADM authority.

When dropping an event monitor or usage list the privilege held by the
authorization ID of the statement must include SQLADM or DBADM authority.

When dropping a user mapping, the privileges held by the authorization ID of the
statement must include DBADM authority, if this authorization ID is different from
the federated database authorization name within the mapping. Otherwise, if the
authorization ID and the authorization name match, no authorities or privileges
are required.

Syntax

DROP

984 SQL Reference Volume 2



�� DROP

�

alias-designator
AUDIT POLICY policy-name
BUFFERPOOL bufferpool-name
DATABASE PARTITION GROUP db-partition-group-name
EVENT MONITOR event-monitor-name

function-designator
RESTRICT

FUNCTION MAPPING function-mapping-name
HISTOGRAM TEMPLATE template-name

(1)
INDEX index-name
INDEX EXTENSION index-extension-name RESTRICT
MASK mask-name

method-designator
RESTRICT

MODULE module-name
NICKNAME nickname
PACKAGE package-id

schema-name. VERSION
version-id

PERMISSION permission-name
procedure-designator

RESTRICT
ROLE role-name
SCHEMA schema-name RESTRICT

RESTRICT
SECURITY LABEL security-label-name

RESTRICT
SECURITY LABEL COMPONENT sec-label-comp-name

RESTRICT
SECURITY POLICY security-policy-name
SEQUENCE sequence-name

RESTRICT
SERVER server-name

RESTRICT
service-class-designator

RESTRICT
STOGROUP storagegroup-name
TABLE table-name
TABLE HIERARCHY root-table-name

,

TABLESPACE tablespace-name
TABLESPACES
TRANSFORM ALL FOR type-name
TRANSFORMS group-name

THRESHOLD threshold-name
TRIGGER trigger-name
TRUSTED CONTEXT context-name
TYPE type-name

RESTRICT
TYPE MAPPING type-mapping-name
USAGE LIST usage-list-name
USER MAPPING FOR authorization-name SERVER server-name

USER
VARIABLE variable-name

RESTRICT
VIEW view-name
VIEW HIERARCHY root-view-name
WORK ACTION SET work-action-set-name
WORK CLASS SET work-class-set-name
WORKLOAD workload-name
WRAPPER wrapper-name
XSROBJECT xsrobject-name

��

DROP

Statements 985



alias-designator:

FOR TABLE
ALIAS alias-name

PUBLIC FOR MODULE
FOR SEQUENCE

function-designator:

�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

method-designator:

�

METHOD method-name FOR type-name
( )

,

data-type
SPECIFIC METHOD specific-name

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

service-class-designator:

SERVICE CLASS service-class-name
UNDER service-superclass-name

Notes:

1 Index-name can be the name of either an index or an index specification.

Description

alias-designator

ALIAS alias-name
Identifies the alias that is to be dropped. The alias-name must identify an
alias that is described in the catalog (SQLSTATE 42704). The specified alias
is deleted.

FOR TABLE, FOR MODULE, or FOR SEQUENCE
Specifies the object type for the alias.

FOR TABLE
The alias is for a table, view, or nickname.

DROP

986 SQL Reference Volume 2



FOR MODULE
The alias is for a module.

FOR SEQUENCE
The alias is for a sequence.

All views and triggers that reference the alias are made inoperative. This
includes alias references in both the ON clause of the CREATE TRIGGER
statement and within the triggered SQL statements. Any materialized
query table or staging table that references the alias is dropped.

If PUBLIC is specified, the alias-name must identify a public alias
(SQLSTATE 428EK) that exists at the current server (SQLSTATE 42704).

If the alias is referenced in the definition of a row permission or a column
mask, the alias cannot be dropped (SQLSTATE 42893).

AUDIT POLICY policy-name
Identifies the audit policy that is to be dropped. The policy-name must identify
an audit policy that exists at the current server (SQLSTATE 42704). The audit
policy must not be associated with any database objects (SQLSTATE 42893).
The specified audit policy is deleted from the catalog.

BUFFERPOOL bufferpool-name
Identifies the buffer pool that is to be dropped. The bufferpool-name must
identify a buffer pool that is described in the catalog (SQLSTATE 42704). There
can be no table spaces assigned to the buffer pool (SQLSTATE 42893). The
IBMDEFAULTBP buffer pool cannot be dropped (SQLSTATE 42832).

Buffer pool memory is released immediately, to be used by DB2. Disk storage
may not be released until the next connection to the database.

DATABASE PARTITION GROUP db-partition-group-name
Identifies the database partition group that is to be dropped. The
db-partition-group-name parameter must identify a database partition group that
is described in the catalog (SQLSTATE 42704). This is a one-part name.

Dropping a database partition group drops all table spaces defined in the
database partition group. All existing database objects with dependencies on
the tables in the table spaces (such as packages, referential constraints, and so
on) are dropped or invalidated (as appropriate), and dependent views and
triggers are made inoperative.

IBMCATGROUP, IBMDEFAULTGROUP, and IBMTEMPGROUP database
partition groups cannot be dropped (SQLSTATE 42832).

If a DROP DATABASE PARTITION GROUP statement is issued against a
database partition group that is currently undergoing a data redistribution, the
drop database partition group operation fails, and an error is returned
(SQLSTATE 55038). However, a partially redistributed database partition group
can be dropped. A database partition group can become partially redistributed
if a REDISTRIBUTE DATABASE PARTITION GROUP command does not
execute to completion. This can happen if it is interrupted by either an error or
a FORCE APPLICATION ALL command. (For a partially redistributed
database partition group, the REDISTRIBUTE_PMAP_ID in the
SYSCAT.DBPARTITIONGROUPS catalog is not -1.)

EVENT MONITOR event-monitor-name
Identifies the event monitor that is to be dropped. The event-monitor-name must
identify an event monitor that is described in the catalog (SQLSTATE 42704).

DROP

Statements 987



If the identified event monitor is active, an error is returned (SQLSTATE
55034); otherwise, the event monitor is deleted. Note that if an event monitor
has been previously activated using the SET EVENT MONITOR STATE
statement, and the database has been deactivated and subsequently reactivated,
use the SET EVENT MONITOR STATE statement to deactivate the event
monitor before issuing the DROP statement.

If there are event files in the target path of a WRITE TO FILE event monitor
that is being dropped, the event files are not deleted. However, if a new event
monitor that specifies the same target path is created, the event files are
deleted.

When dropping WRITE TO TABLE event monitors, table information is
removed from the SYSCAT.EVENTTABLES catalog view, but the tables
themselves are not dropped.

function-designator
Identifies an instance of a user-defined function (either a complete function or
a function template) that is to be dropped. For more information, see
“Function, method, and procedure designators” on page 20.

The function instance specified must be a user-defined function described in
the catalog. The following functions cannot be dropped:
v A function implicitly generated by a CREATE TYPE statement (SQLSTATE

42917)
v A function that is in the SYSIBM, SYSFUN, SYSIBMADM, or the SYSPROC

schema (SQLSTATE 42832)
v A function that is referenced in the definition of a row permission or a

column mask (SQLSTATE 42893)
v A function that is referenced in a generated column expression or a check

constraint (SQLSTATE 42893)

RESTRICT
The RESTRICT keyword enforces the rule that the function is not to be
dropped if any of the following dependencies exists:
v Another function is sourced on the function.
v Another routine uses the function.
v A view uses the function.
v A trigger uses the function.
v A materialized query table uses the function in its definition.

The restrict rule is enforced by default for the same dependencies as in
version 9.5 if the auto_reval database configuration parameter is set to
disabled.

In this case, the following considerations apply:
v Other objects can be dependent upon a function. All such dependencies

must be removed before the function can be dropped, with the exception of
packages which are marked inoperative. An attempt to drop a function with
such dependencies will result in an error (SQLSTATE 42893). See the “Rules”
section for a list of these dependencies. If the function can be dropped, it is
dropped.

v Any package dependent on the specific function being dropped is marked as
inoperative. Such a package is not implicitly rebound. It must either be
rebound by use of the BIND or REBIND command, or it must be
re-prepared by use of the PREP command.

DROP

988 SQL Reference Volume 2



FUNCTION MAPPING function-mapping-name
Identifies the function mapping that is to be dropped. The
function-mapping-name must identify a user-defined function mapping that is
described in the catalog (SQLSTATE 42704). The function mapping is deleted
from the database.

Default function mappings cannot be dropped, but can be disabled by using
the CREATE FUNCTION MAPPING statement. Dropping a user-defined
function mapping that was created to override a default function mapping
reinstates the default function mapping.

Packages having a dependency on a dropped function mapping are
invalidated.

HISTOGRAM TEMPLATE template-name
Identifies the histogram template that is to be dropped. The template-name must
identify a histogram template that exists at the current server (SQLSTATE
42704). The template-name cannot be SYSDEFAULTHISTOGRAM (SQLSTATE
42832). The histogram template cannot be dropped if a service class or a work
action is dependent on it (SQLSTATE 42893). The specified histogram template
is deleted from the catalog.

INDEX index-name
Identifies the index or index specification that is to be dropped. The index-name
must identify an index or index specification that is described in the catalog
(SQLSTATE 42704). It cannot be an index that is required by the system for a
primary key or unique constraint, for a replicated materialized query table, or
for an XML column (SQLSTATE 42917). The specified index or index
specification is deleted.

Packages having a dependency on a dropped index or index specification are
invalidated.

INDEX EXTENSION index-extension-name RESTRICT
Identifies the index extension that is to be dropped. The index-extension-name
must identify an index extension that is described in the catalog (SQLSTATE
42704). The RESTRICT keyword enforces the rule that no index can be defined
that depends on this index extension definition (SQLSTATE 42893).

MASK mask-name
Identifies the column mask to drop. The name must identify a column mask
that exists at the current server (SQLSTATE 42704).

method-designator
Identifies a method body that is to be dropped. For more information, see
“Function, method, and procedure designators” on page 20. The method body
specified must be a method described in the catalog (SQLSTATE 42704).
Method bodies that are implicitly generated by the CREATE TYPE statement
cannot be dropped.

DROP METHOD deletes the body of a method, but the method specification
(signature) remains as a part of the definition of the subject type. After
dropping the body of a method, the method specification can be removed from
the subject type definition by ALTER TYPE DROP METHOD.

RESTRICT
The RESTRICT keyword enforces the rule that the method is not to be
dropped if any of the following dependencies exists:
v A function is sourced on the method.
v Another routine uses the method.

DROP

Statements 989



v A view uses the method.
v A trigger uses the method.
v A materialized query table uses the method in its definition.

The restrict rule is enforced by default for the same dependencies as in
version 9.5 if the auto_reval database configuration parameter is set to
disabled.

In this case, the following considerations apply:
v Other objects can be dependent upon a method. All such dependencies must

be removed before the method can be dropped, with the exception of
packages which will be marked inoperative if the drop is successful. An
attempt to drop a method with such dependencies will result in an error
(SQLSTATE 42893). If the method can be dropped, it will be dropped.

v Any package dependent on the specific method being dropped is marked as
inoperative. Such a package is not implicitly re-bound. Either it must be
re-bound by use of the BIND or REBIND command, or it must be
re-prepared by use of the PREP command.

If the specific method being dropped overrides another method, all packages
dependent on the overridden method - and on methods that override this
method in supertypes of the specific method being dropped - are invalidated.

MODULE module-name
Identifies the module that is to be dropped. The module-name must identify a
module that exists at the current server (SQLSTATE 42704). The specified
module is dropped from the schema, including all module objects. All
privileges on the module are also dropped.

If the module is referenced in the definition of a row permission or a column
mask, the module cannot be dropped (SQLSTATE 42893).

NICKNAME nickname
Identifies the nickname that is to be dropped. The nickname must be listed in
the catalog (SQLSTATE 42704). The nickname is deleted from the database.

All information about the columns and indexes associated with the nickname
is deleted from the catalog. Any materialized query tables that are dependent
on the nickname are dropped. Any index specifications that are dependent on
the nickname are dropped. Any views that are dependent on the nickname are
marked inoperative. Any packages that are dependent on the dropped index
specifications or inoperative views are invalidated. The data source table that
the nickname references is not affected.

If an SQL function or method is dependent on a nickname, that nickname
cannot be dropped (SQLSTATE 42893).

PACKAGE schema-name.package-id
Identifies the package that is to be dropped. If a schema name is not specified,
the package identifier is implicitly qualified by the default schema. The schema
name and package identifier, together with the implicitly or explicitly specified
version identifier, must identify a package that is described in the catalog
(SQLSTATE 42704). The specified package is deleted. If the package being
dropped is the only package identified by schema-name.package-id (that is, there
are no other versions), all privileges on the package are also deleted.

VERSION version-id
Identifies which package version is to be dropped. If a value is not
specified, the version defaults to the empty string. If multiple packages

DROP

990 SQL Reference Volume 2



with the same package name but different versions exist, only one package
version can be dropped in one invocation of the DROP statement. Delimit
the version identifier with double quotation marks when it:
v Is generated by the VERSION(AUTO) precompiler option
v Begins with a digit
v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,
precede each double quotation mark delimiter with a back slash character
to ensure that the operating system does not strip the delimiters.

PERMISSION permission-name
Identifies the row permission to drop. The name must identify a row
permission that exists at the current server (SQLSTATE 42704). The name must
not identify the default row permission that was created implicitly by the
database manager (SQLSTATE 42917).

procedure-designator
Identifies an instance of a procedure that is to be dropped. For more
information, see “Function, method, and procedure designators” on page 20.
The procedure instance specified must be a procedure described in the catalog.
It is not possible to drop a procedure that is in the SYSIBM, SYSFUN,
SYSIBMADM, or the SYSPROC schema (SQLSTATE 42832).

RESTRICT
The RESTRICT keyword prevents the procedure from being dropped if a
trigger definition or an SQL routine definition contains a CALL identifying
the procedure.

The restrict rule is enforced by default for the same dependencies as in
version 9.5 if the following conditions are met:
v The auto_reval database configuration parameter is set to disabled
v An inlined trigger definition, inlined SQL function definition, or inlined

SQL method definition contains a CALL statement identifying the
procedure

It is not possible to drop a procedure that is in the SYSIBM, SYSFUN, or the
SYSPROC schema (SQLSTATE 42832).

ROLE role-name
Identifies the role that is to be dropped. The role-name must identify a role that
already exists at the current server (SQLSTATE 42704). The role-name must not
identify a role, or a role that contains role-name, if the role has either EXECUTE
privilege on a routine or USAGE privilege on a sequence, and an SQL object
other than a package is dependent on the routine or sequence (SQLSTATE
42893). The owner of the SQL object is either authorization-name or any user
who is a member of authorization-name, where authorization-name is a role.

A DROP ROLE statement fails (SQLSTATE 42893) if any of the following
conditions are true for the role to be dropped:
v A workload exists such that one of the values for the connection attribute

SESSION_USER ROLE is role-name

v A trusted context using role-name exists

The specified role is deleted from the catalog.

SCHEMA schema-name RESTRICT
Identifies the particular schema to be dropped. The schema-name must identify
a schema that is described in the catalog (SQLSTATE 42704). The RESTRICT

DROP

Statements 991



keyword enforces the rule that no objects can be defined in the specified
schema for the schema to be deleted from the database (SQLSTATE 42893).

SECURITY LABEL security-label-name
Identifies the security label to be dropped. The name must be qualified with a
security policy (SQLSTATE 42704) and must identify a security label that exists
at the current server (SQLSTATE 42704).

RESTRICT
This option, which is the default, prevents the security label from being
dropped if any of the following dependencies exist (SQLSTATE 42893):
v One or more authorization IDs currently hold the security label for read

access
v One or more authorization IDs currently hold the security label for write

access
v The security label is currently being used to protect one or more

columns

SECURITY LABEL COMPONENT sec-label-comp-name
Identifies the security label component to be dropped. The sec-label-comp-name
must identify a security label component that is described in the catalog
(SQLSTATE 42704).

RESTRICT
This option, which is the default, prevents the security label component
from being dropped if any of the following dependencies exist (SQLSTATE
42893):
v One or more security policies that include the security label component

are currently defined

SECURITY POLICY security-policy-name
Identifies the security policy to be dropped. The security-policy-name must
identify a security policy that exists at the current server (SQLSTATE 42704).

RESTRICT
This option, which is the default, prevents the security policy from being
dropped if any of the following dependencies exist (SQLSTATE 42893):
v One or more tables are associated with this security policy
v One or more authorization IDs hold an exemption on one of the rules in

this security policy
v One or more security labels are defined for this security policy

SEQUENCE sequence-name
Identifies the particular sequence that is to be dropped. The sequence-name,
along with the implicit or explicit schema name, must identify an existing
sequence at the current server. If no sequence by this name exists in the
explicitly or implicitly specified schema, an error is returned (SQLSTATE
42704).

RESTRICT
The RESTRICT keyword prevents the sequence from being dropped if any
of the following dependencies exist:
v A trigger exists such that a NEXT VALUE or PREVIOUS VALUE

expression in the trigger body specifies the sequence (SQLSTATE 42893).
v An SQL routine exists such that a NEXT VALUE expression in the

routine body specifies the sequence (SQLSTATE 42893).

DROP

992 SQL Reference Volume 2



The restrict rule is enforced by default for the same dependencies as in
version 9.5 if the following conditions are met:
v The auto_reval database configuration parameter is set to disabled
v An inlined trigger definition, inlined SQL function definition, or inlined

SQL method definition references the sequence

SERVER server-name
Identifies the data source whose definition is to be dropped from the catalog.
The server-name must identify a data source that is described in the catalog
(SQLSTATE 42704). The definition of the data source is deleted.

All nicknames for tables and views residing at the data source are dropped.
Any index specifications dependent on these nicknames are dropped. Any
user-defined function mappings, user-defined type mappings, and user
mappings that are dependent on the dropped server definition are also
dropped. All packages dependent on the dropped server definition, function
mappings, nicknames, and index specifications are invalidated. All federated
procedures that are dependent on the server definition are also dropped.

service-class-designator

SERVICE CLASS service-class-name
Identifies the service class to be dropped. The service-class-name must
identify a service class that is described in the catalog (SQLSTATE 42704).
To drop a service subclass, the service-superclass-name must be specified
using the UNDER clause.

UNDER service-superclass-name
Specifies the service superclass of the service subclass when dropping a
service subclass. The service-superclass-name must identify a service
superclass that is described in the catalog (SQLSTATE 42704).

RESTRICT
This keyword enforces the rule that the service class is not to be dropped if
any of the following dependencies exists:
v The service class is a service superclass and there is a user defined

service subclass under the service class (SQLSTATE 5U031). The service
subclass must first be dropped.

v The service class is a service superclass and there is a work action set
mapping to the service class (SQLSTATE 5U031). The work action set
must first be dropped.

v The service class is a service subclass and there is a work action
mapping to the service class (SQLSTATE 5U031). The work action must
first be dropped.

v The service class has a workload mapping (SQLSTATE 5U031). The
workload mapping must first be removed. Remove the workload
mapping by dropping the workload or altering the workload to not map
to the service class.

v The service class has an associated threshold (SQLSTATE 5U031). The
threshold must first be dropped.

v The service class is the target of a REMAP ACTIVITY action in a
threshold (SQLSTATE 5U031). Alter the threshold to set a different
service subclass as the target of the REMAP ACTIVITY action or drop
the threshold.

v The service class is not disabled (SQLSTATE 5U031). The service class
must first be disabled.

DROP

Statements 993



RESTRICT is the default behavior.

STOGROUP storagegroup-name

Identifies the storage group that is to be dropped; storagegroup-name must
identify a storage group that exists at the current server (SQLSTATE 42704).
This is a one-part name.

RESTRICT
The RESTRICT keyword prevents the storage group from being dropped if
a table space exists that uses the storage group (SQLSTATE 42893).
RESTRICT is the default behavior.

The current default storage group cannot be dropped (SQLSTATE 42893). A
new default can be designated using the ALTER STOGROUP statement.

The DROP STOGROUP statement cannot be executed while a database
partition server is being added (SQLSTATE 55071).

TABLE table-name

Identifies the base table, created temporary table, or declared temporary table
that is to be dropped. The table-name must identify a table that is described in
the catalog or, if it is a declared temporary table, the table-name must be
qualified by the schema name SESSION and exist in the application
(SQLSTATE 42704). The subtables of a typed table are dependent on their
supertables. All subtables must be dropped before a supertable can be dropped
(SQLSTATE 42893). The table-name must not identify a catalog table (SQLSTATE
42832), or a history table associated with a system-period temporal table
(SQLSTATE 42893). The specified table is deleted from the database.

All indexes, primary keys, foreign keys, row permissions (including the default
row permission), column masks, check constraints, materialized query tables,
and staging tables that are defined on the table are dropped. All views and
triggers that reference the table are made inoperative, including both the table
referenced in the ON clause of the CREATE TRIGGER statement and all tables
referenced within the triggered SQL statements. All packages which depend on
any object dropped or marked inoperative will be invalidated. This includes
packages dependent on any supertables above the subtable in the hierarchy.
Any referenced columns for which the dropped table is defined as the scope of
the reference become unscoped.

Packages are not dependent on declared temporary tables, and therefore are
not invalidated when such a table is dropped. Packages are, however,
dependent on created temporary tables, and are invalidated when such a table
is dropped.

In a federated system, a remote table that was created using transparent DDL
can be dropped. Dropping a remote table also drops the nickname associated
with that table, and invalidates any packages that are dependent on that
nickname.

When a subtable is dropped from a table hierarchy, the columns associated
with the subtable are no longer accessible although they continue to be
considered with respect to limits on the number of columns and size of the
row. Dropping a subtable has the effect of deleting all the rows of the subtable
from the supertables. This may result in activation of triggers or referential
integrity constraints defined on the supertables.

When a created temporary table or declared temporary table is dropped, and
its creation preceded the active unit of work or savepoint, then the table will

DROP

994 SQL Reference Volume 2



be functionally dropped and the application will not be able to access the table.
However, the table will still reserve some space in its table space and will
prevent that USER TEMPORARY table space from being dropped or the
database partition group of the USER TEMPORARY table space from being
redistributed until the unit of work is committed or savepoint is ended.
Dropping a created temporary table or declared temporary table causes the
data in the table to be destroyed, regardless of whether DROP is committed or
rolled back.

If table-name is a system-period temporal table, any associated history table and
any indexes defined on the history table are also dropped. To drop a
system-period temporal table, the privilege set must also contain the
authorization required to drop the history table (SQLSTATE 42501).

A history table associated with a system-period temporal table cannot be
explicitly dropped using the DROP statement (SQLSTATE 42893). A history
table is implicitly dropped when the associated system-period temporal table is
dropped.

A table cannot be dropped if it has the RESTRICT ON DROP attribute.

A newly detached table is initially inaccessible. This prevents the table from
being read, modified, or dropped until the SET INTEGRITY statement can be
run to incrementally refresh MQTs or to complete any processing for foreign
key constraints. After the SET INTEGRITY statement executes against all
dependent tables, the table is fully accessible, its detached attribute is reset,
and it can be dropped.

When a table is dropped, all row permissions, including the default row
permission, and column masks that are created for the table are also dropped.

If the table is referenced in the definition of a row permission or a column
mask, the table cannot be dropped (SQLSTATE 42893).

TABLE HIERARCHY root-table-name
Identifies the typed table hierarchy that is to be dropped. The root-table-name
must identify a typed table that is the root table in the typed table hierarchy
(SQLSTATE 428DR). The typed table identified by root-table-name and all of its
subtables are deleted from the database.

All indexes, materialized query tables, staging tables, primary keys, foreign
keys, and check constraints referencing the dropped tables are dropped. All
views and triggers that reference the dropped tables are made inoperative. All
packages depending on any object dropped or marked inoperative will be
invalidated. Any reference columns for which one of the dropped tables is
defined as the scope of the reference become unscoped.

Unlike dropping a single subtable, dropping the table hierarchy does not result
in the activation of delete triggers of any tables in the hierarchy nor does it log
the deleted rows.

TABLESPACE or TABLESPACES tablespace-name
Identifies the table spaces that are to be dropped; tablespace-name must identify
a table space that is described in the catalog (SQLSTATE 42704). This is a
one-part name. tablespace-name must not identify a table space that contains a
history table unless the system-period temporal table with which it is
associated is also being dropped (SQLSTATE 42893).

The table spaces will not be dropped (SQLSTATE 55024) if there is any table
that stores at least one of its parts in a table space being dropped, and has one
or more of its parts in another table space that is not being dropped (these

DROP

Statements 995



tables would need to be dropped first), or if any table that resides in the table
space has the RESTRICT ON DROP attribute.

Objects whose names are prefixed with 'SYS' are built-in objects and, with the
exception of the SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces,
cannot be dropped (SQLSTATE 42832).

A SYSTEM TEMPORARY table space cannot be dropped (SQLSTATE 55026) if
it is the only temporary table space that exists in the database. A USER
TEMPORARY table space cannot be dropped if there is an instance of a created
temporary table or a declared temporary table created in it (SQLSTATE 55039).
Even if a created temporary table has been dropped, the USER TEMPORARY
table space will still be considered to be in used until all instances of the
created temporary table are dropped. Instances of a created temporary table
are dropped when the session terminates or when the created temporary table
is referenced in the session. Even if a declared temporary table has been
dropped, the USER TEMPORARY table space will still be considered to be in
use until the unit of work containing the DROP TABLE statement has been
committed.

Dropping a table space drops all objects that are defined in the table space. All
existing database objects with dependencies on the table space, such as
packages, referential constraints, and so on, are dropped or invalidated (as
appropriate), and dependent views and triggers are made inoperative.

Containers that were created by a user are not deleted. Any directories in the
path of the container name that were created by the database manager during
CREATE TABLESPACE execution are deleted. All containers that are below the
database directory are deleted. When the DROP TABLESPACE statement is
committed, the DMS file containers or SMS containers for the specified table
space are deleted, if possible. If the containers cannot be deleted (because they
are being kept open by another agent, for example), the files are truncated to
zero length. After all connections are terminated, or the DEACTIVATE
DATABASE command is issued, these zero-length files are deleted.

THRESHOLD threshold-name
Identifies the threshold that is to be dropped. The threshold-name must identify
a threshold that exists at the current server (SQLSTATE 42704). This is a
one-part name. Thresholds with a queue, for example
TOTALSCPARTITIONCONNECTIONS and
CONCURRENTDBCOORDACTIVITIES, must be disabled before they can be
dropped (SQLSTATE 5U025). The specified threshold is deleted from the
catalog.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify a
trigger that is described in the catalog (SQLSTATE 42704). The specified trigger
is deleted.

Dropping triggers causes certain packages to be marked invalid.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may
depend on that trigger through an update against the view.

TRANSFORM ALL FOR type-name
Indicates that all transforms groups defined for the user-defined data type
type-name are to be dropped. The transform functions referenced in these
groups are not dropped. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static
SQL statements, the QUALIFIER precompile/bind option implicitly specifies

DROP

996 SQL Reference Volume 2



the qualifier for unqualified object names. The type-name must identify a
user-defined type described in the catalog (SQLSTATE 42704).

If there are not transforms defined for type-name, an error is returned
(SQLSTATE 42740).

DROP TRANSFORM is the inverse of CREATE TRANSFORM. It causes the
transform functions associated with certain groups, for a given data type, to
become undefined. The functions formerly associated with these groups still
exist and can still be called explicitly, but they no longer have the transform
property, and are no longer invoked implicitly for exchanging values with the
host language environment.

The transform group is not dropped if there is a user-defined function (or
method) written in a language other than SQL that has a dependency on one
of the group's transform functions defined for the user-defined type type-name
(SQLSTATE 42893). Such a function has a dependency on the transform
function associated with the referenced transform group defined for type
type-name. Packages that depend on a transform function associated with the
named transform group are marked inoperative.

TRANSFORMS group-name FOR type-name
Indicates that the specified transform group for the user-defined data type
type-name is to be dropped. The transform functions referenced in this group
are not dropped. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names. The type-name must identify a
user-defined type described in the catalog (SQLSTATE 42704), and the
group-name must identify an existing transform group for type-name.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify a
trigger that is described in the catalog (SQLSTATE 42704). The specified trigger
is deleted.

Dropping triggers causes certain packages to be marked invalid.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may
depend on that trigger through an update against the view.

TRUSTED CONTEXT context-name
Identifies the trusted context that is to be dropped. The context-name must
identify a trusted context that exists at the current server (SQLSTATE 42704). If
the trusted context is dropped while trusted connections for this context are
active, those connections remain trusted until they terminate or until the next
reuse attempt. If an attempt is made to switch the user on these trusted
connections, an error is returned (SQLSTATE 42517). The specified trusted
context is deleted from the catalog.

TYPE type-name
Identifies the user-defined type to be dropped. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names. For a structured
type, the associated reference type is also dropped. The type-name must identify
a user-defined type described in the catalog.

RESTRICT
The type is not dropped (SQLSTATE 42893) if any of the following
conditions are true:

DROP

Statements 997



v The type is used as the type of a column of a table or view.
v The type has a subtype.
v The type is a structured type used as the data type of a typed table or a

typed view.
v The type is an attribute of another structured type.
v There exists a column of a table whose type might contain an instance of

type-name. This can occur if type-name is the type of the column or is
used elsewhere in the column's associated type hierarchy. More formally,
for any type T, T cannot be dropped if there exists a column of a table
whose type directly or indirectly uses type-name.

v The type is the target type of a reference-type column of a table or view,
or a reference-type attribute of another structured type.

v The type, or a reference to the type, is a parameter type or a return
value type of a function or method.

v The type is a parameter type or is used in the body of an SQL
procedure.

v The type, or a reference to the type, is used in the body of an SQL
function or method, but it is not a parameter type or a return value
type.

v The type is used in a check constraint, trigger, view definition, or index
extension.

If RESTRICT is not specified, the behavior is the same as RESTRICT, except for
functions and methods that use the type.

The restrict rule is enforced by default for the same dependencies as in version
9.5 if the auto_reval database configuration parameter is set to disabled.

Functions that use the type: If the user-defined type can be dropped, then for
every function, F (with specific name SF), that has parameters or a return value
of the type being dropped or a reference to the type being dropped, the
following DROP FUNCTION statement is effectively executed:

DROP SPECIFIC FUNCTION SF

It is possible that this statement also would cascade to drop dependent
functions. If all of these functions are also in the list to be dropped because of
a dependency on the user-defined type, the drop of the user-defined type will
succeed (otherwise it fails with SQLSTATE 42893).

Methods that use the type: If the user-defined type can be dropped, then for
every method, M of type T1 (with specific name SM), that has parameters or a
return value of the type being dropped or a reference to the type being
dropped, the following statements are effectively executed:

DROP SPECIFIC METHOD SM
ALTER TYPE T1 DROP SPECIFIC METHOD SM

The existence of objects that are dependent on these methods may cause the
DROP TYPE operation to fail.

All packages that are dependent on methods defined in supertypes of the type
being dropped, and that are eligible for overriding, are invalidated.

If the type is referenced in the definition of a row permission or a column
mask, the type cannot be dropped (SQLSTATE 42893).

TYPE MAPPING type-mapping-name
Identifies the user-defined data type mapping to be dropped. The

DROP

998 SQL Reference Volume 2



type-mapping-name must identify a data type mapping that is described in the
catalog (SQLSTATE 42704). The data type mapping is deleted from the
database.

No additional objects are dropped.

USAGE LIST usage-list-name
Identifies the usage list that is to be dropped. The usage-list-name, including the
implicit or explicit qualifier, must identify a usage list that is described in the
catalog (SQLSTATE 42704). Memory allocated for the usage list is released and
is not under transactional control.

USER MAPPING FOR authorization-name | USER SERVER server-name
Identifies the user mapping to be dropped. This mapping associates an
authorization name that is used to access the federated database with an
authorization name that is used to access a data source. The first of these two
authorization names is either identified by the authorization-name or referenced
by the special register USER. The server-name identifies the data source that the
second authorization name is used to access.

The authorization-name must be listed in the catalog (SQLSTATE 42704). The
server-name must identify a data source that is described in the catalog
(SQLSTATE 42704). The user mapping is deleted.

No additional objects are dropped.

VARIABLE variable-name
Identifies the global variable that is to be dropped. The variable-name must
identify a global variable that exists at the current server (SQLSTATE 42704).

If the variable is referenced in the definition of a row permission or a column
mask, the variable cannot be dropped (SQLSTATE 42893).

RESTRICT
The RESTRICT keyword prevents the global variable from being dropped
if it is referenced in an SQL routine definition, trigger definition, or view
definition (SQLSTATE 42893).

The restrict rule is enforced by default for the same dependencies as in
version 9.5 if the following conditions are met:
v The auto_reval database configuration parameter is set to disabled
v An inlined trigger definition, inlined SQL function definition, inlined

SQL method definition, or view references the variable

VIEW view-name
Identifies the view that is to be dropped. The view-name must identify a view
that is described in the catalog (SQLSTATE 42704). The subviews of a typed
view are dependent on their superviews. All subviews must be dropped before
a superview can be dropped (SQLSTATE 42893).

The specified view is deleted. The definition of any view or trigger that is
directly or indirectly dependent on that view is marked inoperative. Any
materialized query table or staging table that is dependent on any view that is
marked inoperative is dropped. Any packages dependent on a view that is
dropped or marked inoperative will be invalidated. This includes packages
dependent on any superviews above the subview in the hierarchy. Any
reference columns for which the dropped view is defined as the scope of the
reference become unscoped.

If the view is referenced in the definition of a row permission or a column
mask, the view cannot be dropped (SQLSTATE 42893).

DROP

Statements 999



VIEW HIERARCHY root-view-name
Identifies the typed view hierarchy that is to be dropped. The root-view-name
must identify a typed view that is the root view in the typed view hierarchy
(SQLSTATE 428DR). The typed view identified by root-view-name and all of its
subviews are deleted from the database.

The definition of any view or trigger that is directly or indirectly dependent on
any of the dropped views is marked inoperative. Any packages dependent on
any view or trigger that is dropped or marked inoperative will be invalidated.
Any reference columns for which a dropped view or view marked inoperative
is defined as the scope of the reference become unscoped.

WORK ACTION SET work-action-set-name
Identifies the work action set that is to be dropped. The work-action-set-name
must identify a work action set that exists at the current server (SQLSTATE
42704). All work actions that are contained by the work-action-set-name are also
dropped.

WORK CLASS SET work-class-set-name
Identifies the work class set that is to be dropped. The work-class-set-name must
identify a work class set that exists at the current server (SQLSTATE 42704). All
work classes that are contained by the work-class-set-name are also dropped.

WORKLOAD workload-name
Identifies the workload that is to be dropped. This is a one-part name. The
workload-name must identify a workload that exists at the current server
(SQLSTATE 42704). SYSDEFAULTUSERWORKLOAD or
SYSDEFAULTADMWORKLOAD cannot be dropped (SQLSTATE 42832). A
workload must be disabled and must not have active workload occurrences
associated with it before it can be dropped (SQLSTATE 5U023). To drop a
workload with an associated threshold (SQLSTATE 5U031), you must drop the
threshold first. The specified workload is deleted from the catalog.

WRAPPER wrapper-name
Identifies the wrapper to be dropped. The wrapper-name must identify a
wrapper that is described in the catalog (SQLSTATE 42704). The wrapper is
deleted.

All server definitions, user-defined function mappings, and user-defined data
type mappings that are dependent on the wrapper are dropped. All
user-defined function mappings, nicknames, user-defined data type mappings,
and user mappings that are dependent on the dropped server definitions are
also dropped. Any index specifications dependent on the dropped nicknames
are dropped, and any views dependent on these nicknames are marked
inoperative. All packages dependent on the dropped objects and inoperative
views are invalidated. All federated procedures that are dependent on the
dropped server definitions are also dropped.

XSROBJECT xsrobject-name
Identifies the XSR object to be dropped. The xsrobject-name must identify an
XSR object that is described in the catalog (SQLSTATE 42704).

Check constraints that reference the XSR object are dropped. All triggers and
views referencing the XSR object are marked inoperative. Packages having a
dependency on a dropped XSR object are invalidated.

In a partitioned database environment, you can issue this statement against an
XSR object by connecting to any partition.

DROP

1000 SQL Reference Volume 2



Rules

Dependencies: Table 31 on page 1002 shows the dependencies that objects have on
each other. Not all dependencies are explicitly recorded in the catalog. For
example, there is no record of the constraints on which a package has
dependencies. Four different types of dependencies are shown:

R Restrict semantics. The underlying object cannot be dropped as long as the
object that depends on it exists.

C Cascade semantics. Dropping the underlying object causes the object that
depends on it (the depending object) to be dropped as well. However, if
the depending object cannot be dropped because it has a Restrict
dependency on some other object, the drop of the underlying object will
fail.

X Inoperative semantics. Dropping the underlying object causes the object
that depends on it to become inoperative. It remains inoperative until a
user takes some explicit action.

A Automatic invalidation and revalidation semantics. Dropping the
underlying object causes the object that depends on it to become invalid.
The database manager attempts to revalidate the invalid object.

A package used by a function or a method, or by a procedure that is called
directly or indirectly from a function or method, will only be automatically
revalidated if the routine is defined as MODIFIES SQL DATA. If the
routine is not MODIFIES SQL DATA, an error is returned (SQLSTATE
56098).

In general, the database manager attempts to revalidate the invalid objects
the next time the object is used. However, in situations when auto_reval is
set to IMMEDIATE, the impacted dependent objects will be revalidated
immediately after they become invalid. Those situations are:
v ALTER TABLE ... ALTER COLUMN
v ALTER TABLE ... DROP COLUMN
v ALTER TABLE ... RENAME COLUMN
v ALTER TYPE ... ADD ATTRIBUTE
v ALTER TYPE ... DROP ATTRIBUTE
v Any CREATE statement that specifies “OR REPLACE”

Some of the dependencies shown in Table 31 on page 1002 change to “A”
(Automatic Invalidation/Revalidation semantics) when the database configuration
parameter auto_reval is set to IMMEDIATE or DEFERRED. Table 32 on page 1008
summarizes the dependent objects that are impacted. Objects listed in the
“Impacted Dependent Objects” column will be invalidated when the corresponding
statement listed in the “Statement” column is executed.

Some DROP statement parameters and objects are not shown in Table 31 on page
1002 because they would result in blank rows or columns:
v EVENT MONITOR, PACKAGE, PROCEDURE, SCHEMA, TYPE MAPPING, and

USER MAPPING DROP statements do not have object dependencies.
v Alias, buffer pool, distribution key, privilege, and procedure object types do not

have DROP statement dependencies.
v A DROP SERVER, DROP FUNCTION MAPPING, or DROP TYPE MAPPING

statement in a given unit of work (UOW) cannot be processed under either of
the following conditions:

DROP

Statements 1001



– The statement references a single data source, and the UOW already includes
a SELECT statement that references a nickname for a table or view within this
data source (SQLSTATE 55006).

– The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes a
SELECT statement that references a nickname for a table or view within one
of these data sources (SQLSTATE 55006).

Table 31. Dependencies

Statement

Object Type

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C
T
I
O
N

M
A
P
P
I
N
G

G
L
O
B
A
L

V
A
R
I
A
B
L
E

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
A
S
K

M
E
T
H
O
D

N
I
C
K
N
A
M
E

D
B

P
A
R
T
I
T
I
O
N

G
R
O
U
P

P
A
C
K
A
G
E
31

P
E
R
M
I
S
S
I
O
N

S
E
R
V
E
R

S
E
R
V
I
C
E

C
L
A
S
S

T
A
B
L
E

T
A
B
L
E

S
P
A
C
E

T
H
R
E
S
H
O
L
D

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
A
G
R

L
I
S
T

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

W
O
R
K

A
C
T
I
O
N

W
O
R
K

A
C
T
I
O
N

S
E
T

W
O
R
K
L
O
A
D

X
S
R
O
B
J
E
C
T

ALTER
FUNCTION

- - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER METHOD - - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER
NICKNAME,
altering the local
name or the local
type

R
33

R - - - - - R - - A - - - R - - - - - - - R - - - -

ALTER
NICKNAME,
altering a column
option or a
nickname option

- - - - - - - - - - A - - - R - - - - - - - - - - - -

ALTER
NICKNAME,
adding, altering,
or dropping a
constraint

- - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER
PROCEDURE

- - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER SERVER - - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER TABLE
ALTER COLUMN

- A - A - - R - - - A - - - - - - A - - - - A - - - X
34

ALTER TABLE
DROP COLUMN

C C - C C - R - - - - R - - - - - C - - - - C - - - X
34

ALTER TABLE
DROP
CONSTRAINT

C - - - - - - - - - A
1

- - - - - - - - - - - - - - - -

ALTER TABLE
DROP
PARTITIONING
KEY

- - - - - - - - - R
20

A
1

- - - - - - - - - - - - - - - -

ALTER TYPE
ADD ATTRIBUTE

- - - - - R - - - - A
23

- - - R
24

- - - - - - - R
14

- - - -

ALTER TYPE
ALTER METHOD

- - - - - - - - - - A - - - - - - - - - - - - - - - -

DROP

1002 SQL Reference Volume 2



Table 31. Dependencies (continued)

Statement

Object Type

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C
T
I
O
N

M
A
P
P
I
N
G

G
L
O
B
A
L

V
A
R
I
A
B
L
E

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
A
S
K

M
E
T
H
O
D

N
I
C
K
N
A
M
E

D
B

P
A
R
T
I
T
I
O
N

G
R
O
U
P

P
A
C
K
A
G
E
31

P
E
R
M
I
S
S
I
O
N

S
E
R
V
E
R

S
E
R
V
I
C
E

C
L
A
S
S

T
A
B
L
E

T
A
B
L
E

S
P
A
C
E

T
H
R
E
S
H
O
L
D

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
A
G
R

L
I
S
T

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

W
O
R
K

A
C
T
I
O
N

W
O
R
K

A
C
T
I
O
N

S
E
T

W
O
R
K
L
O
A
D

X
S
R
O
B
J
E
C
T

ALTER TYPE
DROP
ATTRIBUTE

- - - - - R - - - - A
23

- - - R
24

- - - - - - - R
14

- - - -

ALTER TYPE
ADD METHOD

- - - - - - - - - - - - - - - - - - - - - - - - - - -

ALTER TYPE
DROP METHOD

- - - - - - - R
27

- - - - - - - - - - - - - - - - - - -

CREATE
METHOD

- - - - - - - - - - A
28

- - - - - - - - - - - - - - - -

CREATE TYPE - - - - - - - - - - A
29

- - - - - - - - - - - - - - - -

DROP ALIAS - R - R - - R - - - A
3

R - - C
3

- - X
3

- - - - X
3

- - - -

DROP
BUFFERPOOL

- - - - - - - - - - - - - - - R - - - - - - - - - - -

DROP
DATABASE
PARTITION
GROUP

- - - - - - - - - - - - - - - C - - - - - - - - - - -

DROP
FUNCTION

R R
7

R R - R R R
7

- - X R - - R - - R - - - - R - - - -

DROP
FUNCTION
MAPPING

- - - - - - - - - - A - - - - - - - - - - - - - - - -

DROP INDEX R - - - - - - - - - A - - - - - - - - - C
37

- R
17

- - - -

DROP INDEX
EXTENSION

- R - R R - - - - - - - - - - - - - - - - - - - - - -

DROP MASK - - - - - - - - - - A
39

- - - - - - - - - - - - - - - -

DROP METHOD R R
7

R R - R - R - - X,
A
30

- - - R - - R - - - - R - - - -

DROP
NICKNAME

- R - R C - - R - - A - - - C
11

- - - - - - - X
16

- - - -

DROP
PERMISSION

- - - - - - - - - - A
40

- - - - - - - - - - - - - - - -

DROP
PROCEDURE

- R
7

- R - - - R
7

- - A - - - - - - R - - - - - - - - -

DROP
SEQUENCE

- R - - - - - R - - A - - - - - - R - - - - - - - - -

DROP SERVER - C
21

C
19

- - - - - C - A - - - - - - - - C
19

- C - - - - -

DROP SERVICE
CLASS

- - - - - - - - - - - - - R
35

- - R
35

- - - - - - R
35

- R
35

-

DROP

Statements 1003



Table 31. Dependencies (continued)

Statement

Object Type

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C
T
I
O
N

M
A
P
P
I
N
G

G
L
O
B
A
L

V
A
R
I
A
B
L
E

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
A
S
K

M
E
T
H
O
D

N
I
C
K
N
A
M
E

D
B

P
A
R
T
I
T
I
O
N

G
R
O
U
P

P
A
C
K
A
G
E
31

P
E
R
M
I
S
S
I
O
N

S
E
R
V
E
R

S
E
R
V
I
C
E

C
L
A
S
S

T
A
B
L
E

T
A
B
L
E

S
P
A
C
E

T
H
R
E
S
H
O
L
D

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
A
G
R

L
I
S
T

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

W
O
R
K

A
C
T
I
O
N

W
O
R
K

A
C
T
I
O
N

S
E
T

W
O
R
K
L
O
A
D

X
S
R
O
B
J
E
C
T

DROP
STOGROUP

- - - - - - - - - - - - - - - R - - - - - - - - - - -

DROP TABLE32 C R - R C - R - - - A
9

R - - R,
C
11

- - X
16

- - C
37

- X
16

- - - X
34

DROP TABLE
HIERARCHY

C R - R C - - - - - A
9

- - - R,
C
11

- - X
16

- - - - X
16

- - - -

DROP
TABLESPACE

- - - - C
6

- - - - - - - - - C,
R
6

- - - - - - - - - - - -

DROP
TRANSFORM

- R - - - - - - - - X - - - - - - - - - - - - - - - -

DROP TRIGGER - - - - - - - - - - A
1

- - - - - - X
26

- - - - - - - - -

DROP TYPE R
13

R
5

- R - R - - - - A
12

- - - R
18

- - R
13

R
4

- - - R
14

- - - -

DROP VARIABLE - - R R - - R R - - A R - - - - - R - - - - R - - - -

DROP VIEW - R - R - - R - - - A
2

R - - - - - X
16

- - - - X
15

- - - -

DROP VIEW
HIERARCHY

- R - R - - - - - - A
2

- - - - - - X
16

- - - - X
16

- - - -

DROP WORK
CLASS SET

- - - - - - - - - - - - - - - - - - - - - - - - R
36

- -

DROP WRAPPER - - C - - - - - - - - - C - - - - - - C - - - - - - -

DROP
XSROBJECT

C - - - - - - - - - A - - - - - - X - - - - X - - - -

REVOKE a
privilege10

- C,
R
25

- - - - R
38

C,
R
25

- - A
1

R
38

- - C,
X
8

- - X - - - - X
8

- - - -

1 This dependency is implicit in depending on a table with these constraints,
triggers, or a distribution key.

2 If a package has an INSERT, UPDATE, or DELETE statement acting upon a
view, then the package has an insert, update or delete usage on the
underlying base table of the view. In the case of UPDATE, the package has
an update usage on each column of the underlying base table that is
modified by the UPDATE.

If a package has a statement acting on a typed view, creating or dropping
any view in the same view hierarchy will invalidate the package.

3 If a package, materialized query table, staging table, view, or trigger uses

DROP

1004 SQL Reference Volume 2



an alias, it becomes dependent both on the alias and the object that the
alias references. If the alias is in a chain, a dependency is created on each
alias in the chain.

Aliases themselves are not dependent on anything. It is possible for an
alias to be defined on an object that does not exist.

4 A user-defined type T can depend on another user-defined type B, if T:
v names B as the data type of an attribute
v has an attribute of REF(B)
v has B as a supertype.

5 If the user-defined type is referenced as a function parameter type or
return type, then the type will be dropped and its catalog data will be
maintained due to the routine parameter dependency. A value 'X' in the
VALID column of the SYSCAT.DATATYPES catalog view indicates this
dropped type. Its catalog data will be deleted by a DROP FUNCTION
statement if the DROP FUNCTION statement also dropped the last routine
parameter dependency on this type, or will be deleted by a CREATE TYPE
statement with the same schema name, module name, and type name. If
the user-defined type is a structured type, any methods that are associated
with the type are also dropped.

6 Dropping a table space or a list of table spaces causes all the tables that are
completely contained within the given table space or list to be dropped.
However, if a table spans table spaces (indexes, long columns, or data
partitions in different table spaces) and those table spaces are not in the list
being dropped, the table spaces cannot be dropped as long as the table
exists.

7 A function can depend on another specific function if the depending
function names the base function in a SOURCE clause. A function or
method can also depend on another specific function or method if the
depending routine is written in SQL and uses the base routine in its body.
An external method, or an external function with a structured type
parameter or returns type will also depend on one or more transform
functions.

8 Only loss of SELECT privilege will cause a materialized query table to be
dropped or a view to become inoperative. If the view that is made
inoperative is included in a typed view hierarchy, all of its subviews also
become inoperative.

9 If a package has an INSERT, UPDATE, or DELETE statement acting on
table T, then the package has an insert, update or delete usage on T. In the
case of UPDATE, the package has an update usage on each column of T
that is modified by the UPDATE.

If a package has a statement acting on a typed table, creating or dropping
any table in the same table hierarchy will invalidate the package.

10 Dependencies do not exist at the column level because privileges on
columns cannot be revoked individually.

If a package, trigger or view includes the use of OUTER(Z) in the FROM
clause, there is a dependency on the SELECT privilege on every subtable
or subview of Z. Similarly, if a package, trigger, or view includes the use of
DEREF(Y) where Y is a reference type with a target table or view Z, there
is a dependency on the SELECT privilege on every subtable or subview of
Z.

DROP

Statements 1005



11 A materialized query table is dependent on the underlying tables or
nicknames specified in the fullselect of the table definition.

Cascade semantics apply to dependent materialized query tables.

A subtable is dependent on its supertables up to the root table. A
supertable cannot be dropped until all of its subtables are dropped.

A history table is dependent on the system-period temporal table with
which it is associated. Cascade semantics apply to the history table when
the system-period temporary table on which depends is dropped.

12 A package can depend on structured types as a result of using the TYPE
predicate or the subtype-treatment expression (TREAT expression AS
data-type). The package has a dependency on the subtypes of each
structured type specified in the right side of the TYPE predicate, or the
right side of the TREAT expression. Dropping or creating a structured type
that alters the subtypes on which the package is dependent causes
invalidation.

All packages that are dependent on methods defined in supertypes of the
type being dropped, and that are eligible for overriding, are invalidated.

13 A check constraint or trigger is dependent on a type if the type is used
anywhere in the constraint or trigger. There is no dependency on the
subtypes of a structured type used in a TYPE predicate within a check
constraint or trigger.

14 A view is dependent on a type if the type is used anywhere in the view
definition (this includes the type of typed view). There is no dependency
on the subtypes of a structured type used in a TYPE predicate within a
view definition.

15 A subview is dependent on its superview up to the root view. A superview
cannot be dropped until all its subviews are dropped. Refer to 16 for
additional view dependencies.

16 A trigger or view is also dependent on the target table or target view of a
dereference operation or DEREF function. A trigger or view with a FROM
clause that includes OUTER(Z) is dependent on all the subtables or
subviews of Z that existed at the time the trigger or view was created.

17 A typed view can depend on the existence of a unique index to ensure the
uniqueness of the object identifier column.

18 A table may depend on a user defined data type (distinct or structured)
because the type is:
v used as the type of a column
v used as the type of the table
v used as an attribute of the type of the table
v used as the target type of a reference type that is the type of a column of

the table or an attribute of the type of the table
v directly or indirectly used by a type that is the column of the table.

19 Dropping a server cascades to drop the function mappings and type
mappings created for that named server.

20 If the distribution key is defined on a table in a multiple partition database
partition group, the distribution key is required.

21 If a dependent OLE DB table function has "R" dependent objects (see
DROP FUNCTION), then the server cannot be dropped.

DROP

1006 SQL Reference Volume 2



22 An SQL function or method can depend on the objects referenced by its
body.

23 When an attribute A of type TA of type-name T is dropped, the following
DROP statements are effectively executed:

Mutator method: DROP METHOD A (TA) FOR T
Observer method: DROP METHOD A () FOR T
ALTER TYPE T

DROP METHOD A(TA)
DROP METHOD A()

24 A table may depend on an attribute of a user-defined structured data type
in the following cases:
1. The table is a typed table that is based on type-name or any of its

subtypes.
2. The table has an existing column of a type that directly or indirectly

refers to type-name.
25 A REVOKE of SELECT privilege on a table or view that is used in the

body of an SQL function or method body causes an attempt to drop the
function or method body, if the function or method body defined no longer
has the SELECT privilege. If such a function or method body is used in a
view, trigger, function, or method body, it cannot be dropped, and the
REVOKE is restricted as a result. Otherwise, the REVOKE cascades and
drops such functions.

26 A trigger depends on an INSTEAD OF trigger when it modifies the view
on which the INSTEAD OF trigger is defined, and the INSTEAD OF
trigger fires.

27 A method declaration of an original method that is overridden by other
methods cannot be dropped (SQLSTATE 42893).

28 If the method of the method body being created is declared to override
another method, all packages dependent on the overridden method, and
on methods that override this method in supertypes of the method being
created, are invalidated.

29 When a new subtype of an existing type is created, all packages dependent
on methods that are defined in supertypes of the type being created, and
that are eligible for overriding (for example, no mutators or observers), are
invalidated.

30 If the specific method of the method body being dropped is declared to
override another method, all packages dependent on the overridden
method, and on methods that override this method in supertypes of the
specific method being dropped, are invalidated.

31 Cached dynamic SQL has the same semantics as packages.
32 When a remote base table is dropped using the DROP TABLE statement,

both the nickname and the remote base table are dropped.
33 A primary key or unique keys that are not referenced by a foreign key do

not restrict the altering of a nickname local name or local type.
34 An XSROBJECT can become inoperative for decomposition as a result of

changes to a table that is associated with the XML schema for
decomposition. Changes that could impact decomposition are: dropping
the table or dropping a column of the table, or changing a column of the

DROP

Statements 1007



table. The decomposition status of the XML schema can be reset by issuing
an ALTER XSROBJECT statement to enable or disable decomposition for
the XML schema.

35

v A service class cannot be dropped if any threshold is mapped to it
(SQLSTATE 5U031).

v A service class cannot be dropped if any workload is mapped to it
(SQLSTATE 5U031).

v A service superclass cannot be dropped until all of its user-defined
service subclasses have been dropped (SQLSTATE 5U031).

v A service superclass cannot be dropped if any work action set is mapped
to it (SQLSTATE 5U031).

v A service subclass cannot be dropped if any work action is mapped to it
(SQLSTATE 5U031).

36 A work class set cannot be dropped until the work action set that is
defined on it has been dropped.

37 Once the index or table is dropped, its usage list will be invalidated in the
catalog. Revalidation will take place on the next activation of the list or it
can be explicitly revalidated using the procedure
ADMIN_REVALIDATE_DB_OBJECTS.

38 Revoking a privilege is restricted if it causes an object to be dropped or
invalidated, and a permission or mask depends on it. For example, if you
have a view which depends on a table, and a permission or mask that
references the view, REVOKE SELECT on the table invalidates the view,
but causes an error.

39 Packages are invalidated when a table on which the enabled permission is
defined has row level access control activated on the table. Packages are
not affected when dropping a permission that is disabled or is defined on
a table with row access control deactivated.

40 Packages are invalidated when a table on which the enabled permission is
defined has row level access control activated on the table. Packages are
not affected when dropping a permission that is disabled or is defined on
a table with row access control deactivated.

Table 32. Dependent Objects Impacted by auto_reval

Statement Impacted Dependent Objects

ALTER NICKNAME (altering the local name or the local
type)

Anchor Type, Function, Method, Procedure, User Defined
Type, Variable, View

ALTER TABLE ALTER COLUMN Anchor Type, Function, Method, Procedure, Trigger4, User
Defined Type, Variable, View, XSROBJECT

ALTER TABLE DROP COLUMN2 Anchor Type, Function, Method, Index, Procedure,
Trigger4, User Defined Type, Variable, View, XSROBJECT

ALTER TABLE RENAME COLUMN1, 3 Anchor Type, Function, Method, Index, Procedure,
Trigger4, User Defined Type, Variable, View, XSROBJECT

ALTER TYPE ADD ATTRIBUTE View

ALTER TYPE DROP ATTRIBUTE View

DROP ALIAS Anchor Type, Function, Method, Procedure, Trigger, User
Defined Type, Variable, View

DROP

1008 SQL Reference Volume 2



Table 32. Dependent Objects Impacted by auto_reval (continued)

Statement Impacted Dependent Objects

DROP FUNCTION (ALTER MODULE DROP
FUNCTION)

Function, Function Mapping, Index Extension, Method,
Procedure, Trigger, Variable, View

DROP METHOD Function, Function Mapping, Index Extension, Method,
Procedure, Trigger, Variable, View

DROP NICKNAME Anchor Type, Function, Method, Procedure, Trigger, User
Defined Type, Variable, View

DROP PROCEDURE (ALTER MODULE DROP
PROCEDURE)

Function, Method, Procedure, Trigger

DROP SEQUENCE Function, Method, Procedure, Trigger, Variable, View

DROP TABLE Anchor Type, Function, Method, Procedure, Trigger4, User
Defined Type, Variable, View, XSROBJECT

DROP TABLE HIERARCHY Function, Method, Procedure, Trigger, Variable, View

DROP TRIGGER Trigger

DROP TYPE (ALTER MODULE DROP TYPE) Anchor Type, Cursor Type, Function, Method, Procedure,
Index Extension, Trigger, User Defined Type, Variable,
View

DROP VARIABLE (ALTER MODULE DROP VARIABLE) Anchor Type, Function, Function Mapping, Method,
Procedure, Trigger, User Defined Type, Variable, View

DROP VIEW Anchor Type, Function, Method, Procedure, Trigger4, User
Defined Type, Variable, View

DROP VIEW HIERARCHY Function, Procedure, Trigger, Variable, View

DROP XSROBJECT Trigger, View

RENAME TABLE Anchor Type, Function, Method, Procedure, Trigger4, User
Defined Type, Variable, View, XSROBJECT

REVOKE a privilege Function, Method, Procedure, Trigger, Variable, View

CREATE OR REPLACE ALIAS1 Function, Trigger, Procedure, Variable, View

CREATE OR REPLACE VIEW1 Anchor Type, Function, Method, Procedure, Trigger4, User
Defined Type, Variable, View

CREATE OR REPLACE FUNCTION1 Function, Function Mapping, Index Extension, method,
Procedure, Variable, View

CREATE OR REPLACE PROCEDURE1 Function, Method, Procedure, Trigger

CREATE OR REPLACE NICKNAME1 Function, method, Procedure, Variable, View

CREATE OR REPLACE SEQUENCE1 Function, Method, Procedure, Trigger, Variable, View

CREATE OR REPLACE VARIABLE1 Function, Method, Procedure, Trigger, User Defined Type,
Variable, View

CREATE OR REPLACE TRIGGER1 Trigger

1 Immediate revalidation semantics apply for these statements (for the
CREATE statements, only if OR REPLACE is specified) regardless of the
setting of the auto_reval database configuration parameter.

2 The dependent objects listed will be revalidated the next time the object is
used, except for the following objects, which will be revalidated
immediately as part of the statement:
v ANCHOR TYPE
v CURSOR TYPE

DROP

Statements 1009



v VIEW (where the select list consists only of SELECT *, and does not
contain any explicitly defined view columns).

For an immediate view revalidation, the list of column names for the select
list will be re-established during revalidation.

3 The dependent objects listed will be revalidated the next time the object is
used except for the following objects, which will be revalidated
immediately as part of the statement:
v User Defined Type
v VIEW (where the select list consists only of SELECT *, and does not

contain any explicitly defined view columns).

For an immediate view revalidation, the list of column names for the select
list will be re-established during revalidation.

4 If the dependency is because the trigger is defined on the table or view,
then the inoperative semantics from Table 1 continue to apply. If the
dependency is because the trigger body references the table or view, then
automatic invalidation and revalidation semantics apply.

The DROP DATABASE PARTITION GROUP statement might fail (SQLSTATE
55071) if an add database partition server request is either pending or in progress.
This statement might also fail (SQLSTATE 55077) if a new database partition server
is added online to the instance and not all applications are aware of the new
database partition server.

Notes
v It is valid to drop a user-defined function while it is in use. Also, a cursor can be

open over a statement which contains a reference to a user-defined function, and
while this cursor is open the function can be dropped without causing the
cursor fetches to fail.

v If a package which depends on a user-defined function is executing, it is not
possible for another authorization ID to drop the function until the package
completes its current unit of work. At that point, the function is dropped and
the package becomes inoperative. The next request for this package results in an
error indicating that the package must be explicitly rebound.

v The removal of a function body (this is very different from dropping the
function) can occur while an application which needs the function body is
executing. This may or may not cause the statement to fail, depending on
whether the function body still needs to be loaded into storage by the database
manager on behalf of the statement.

v In addition to the dependencies recorded for any explicitly specified UDF, the
following dependencies are recorded when transforms are implicitly required:
1. When the structured type parameter or result of a function or method

requires a transform, a dependency is recorded for the function or method
on the required TO SQL or FROM SQL transform function.

2. When an SQL statement included in a package requires a transform function,
a dependency is recorded for the package on the designated TO SQL or
FROM SQL transform function.

Since these describe the only circumstances under which dependencies are
recorded due to implicit invocation of transforms, no objects other than
functions, methods, or packages can have a dependency on implicitly invoked
transform functions. On the other hand, explicit calls to transform functions (in
views and triggers, for example) do result in the usual dependencies of these
other types of objects on transform functions. As a result, a DROP TRANSFORM

DROP

1010 SQL Reference Volume 2



statement may also fail due to these "explicit" type dependencies of objects on
the transform(s) being dropped (SQLSTATE 42893).

v Since the dependency catalogs do not distinguish between depending on a
function as a transform versus depending on a function by explicit function call,
it is suggested that explicit calls to transform functions are not written. In such
an instance, the transform property on the function cannot be dropped, or
packages will be marked inoperative, simply because they contain explicit
invocations in an SQL expression.

v System created sequences for IDENTITY columns cannot be dropped using the
DROP SEQUENCE statement.

v When a sequence is dropped, all privileges on the sequence are also dropped
and any packages that refer to the sequence are invalidated.

v For relational nicknames, the DROP NICKNAME statement within a given unit
of work (UOW) cannot be processed under either of the following conditions
(SQLSTATE 55007):
– A nickname referenced in this statement has a cursor open on it in the same

UOW
– Either an INSERT, DELETE, or UPDATE statement is already issued in the

same UOW against the nickname that is referenced in this statement
v For non-relational nicknames, the DROP NICKNAME statement within a given

unit of work (UOW) cannot be processed under any of the following conditions
(SQLSTATE 55007):
– A nickname referenced in this statement has a cursor open on it in the same

UOW
– A nickname referenced in this statement is already referenced by a SELECT

statement in the same UOW
– Either an INSERT, DELETE, or UPDATE statement has already been issued in

the same UOW against the nickname that is referenced in this statement
v A DROP SERVER statement (SQLSTATE 55006), or a DROP FUNCTION

MAPPING or DROP TYPE MAPPING statement (SQLSTATE 55007) within a
given unit of work (UOW) cannot be processed under either of the following
conditions:
– The statement references a single data source, and the UOW already includes

one of the following items:
- A SELECT statement that references a nickname for a table or view within

this data source
- An open cursor on a nickname for a table or view within this data source
- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of
the following items:
- A SELECT statement that references a nickname for a table or view within

one of these data sources
- An open cursor on a nickname for a table or view within one of these data

sources
- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v The DROP WORKLOAD statement does not take effect until it is committed,

even for the connection that issues the statement.

DROP

Statements 1011



v Only one of these statements can be issued by any application at a time, and
only one of these statements is allowed within any one unit of work. Each
statement must be followed by a COMMIT or a ROLLBACK statement before
another one of these statements can be issued (SQLSTATE 5U021).
– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK

ACTION)
– CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

v Soft invalidation: After the drop or change of a database object done by the
following statements, active access to the dropped or changed object continues
until the access is complete.
– ALTER FUNCTION
– ALTER MODULE ... DROP FUNCTION
– ALTER MODULE ... DROP VARIABLE
– ALTER TABLE ... DETACH PARTITION
– ALTER VIEW
– DROP ALIAS
– DROP FUNCTION
– DROP TRIGGER
– DROP VARIABLE
– DROP VIEW
– All of the CREATE OR REPLACE statements except CREATE OR REPLACE

SEQUENCE.

This is the case when the database registry variable DB2_DLL_SOFT_INVALID is
set to ON. When it is set to OFF, the drop or change of these objects will only
complete after all active access to the object to be dropped or changed is
complete.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– DISTINCT TYPE type-name can be specified in place of TYPE type-name

– DATA TYPE type-name can be specified in place of TYPE type-name

– SYNONYM can be specified in place of ALIAS
– PROGRAM can be specified in place of PACKAGE

v Invalidation of packages and dynamically cached statements after dropping
row permissions or column masks: If row level access control is activated on
the table, dropping an enabled row permission defined for that table invalidates
all packages and dynamically cached statements that reference that same table. If
column level access control is activated on the table, dropping an enabled
column mask defined for that table invalidates all packages and dynamically
cached statements that reference that same table. There is no invalidation for
dropping disabled masks or permissions.

DROP

1012 SQL Reference Volume 2



v Circular dependency: Circular dependency exists in the following example:
CREATE PERMISSION RP1 ON T1 FOR ROWS

WHERE C1>(SELECT MAX(C1) FROM T2)
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE PERMISSION RP2 ON T2 FOR ROWS
WHERE C1>(SELECT MAX(C1) FROM T1)

ENFORCED FOR ALL ACCESS
ENABLE

The DROP TABLE T1 and DROP TABLE T2 statements fail because RP1 depends on
T2 and RP2 depends on T1. The user with the SECADM authority should drop
one of the row permissions first then issue the DROP TABLE statement.

Examples
v Example 1: Drop table TDEPT.

DROP TABLE TDEPT

v Example 2: Drop the view VDEPT.
DROP VIEW VDEPT

v Example 3: The authorization ID HEDGES attempts to drop an alias.
DROP ALIAS A1

The alias HEDGES.A1 is removed from the catalogs.
v Example 4: Hedges attempts to drop an alias, but specifies T1 as the alias-name,

where T1 is the name of an existing table (not the name of an alias).
DROP ALIAS T1

This statement fails (SQLSTATE 42809).
v Example 5: Drop the BUSINESS_OPS database partition group. To drop the

database partition group, the two table spaces (ACCOUNTING and PLANS) in
the database partition group must first be dropped.

DROP TABLESPACE ACCOUNTING
DROP TABLESPACE PLANS
DROP DATABASE PARTITION GROUP BUSINESS_OPS

v Example 6: Pellow wants to drop the CENTRE function, which he created in his
PELLOW schema, using the signature to identify the function instance to be
dropped.

DROP FUNCTION CENTRE (INT,FLOAT)

v Example 7: McBride wants to drop the FOCUS92 function, which she created in
the PELLOW schema, using the specific name to identify the function instance to
be dropped.

DROP SPECIFIC FUNCTION PELLOW.FOCUS92

v Example 8: Drop the function ATOMIC_WEIGHT from the CHEM schema,
where it is known that there is only one function with that name.

DROP FUNCTION CHEM.ATOMIC_WEIGHT

v Example 9: Drop the trigger SALARY_BONUS, which caused employees under
a specified condition to receive a bonus to their salary.

DROP TRIGGER SALARY_BONUS

v Example 10: Drop the distinct data type named shoesize, if it is not currently in
use.

DROP TYPE SHOESIZE

v Example 11: Drop the SMITHPAY event monitor.

DROP

Statements 1013



DROP EVENT MONITOR SMITHPAY

v Example 12: Drop the schema from Example 2 under CREATE SCHEMA using
RESTRICT. Notice that the table called PART must be dropped first.

DROP TABLE PART
DROP SCHEMA INVENTRY RESTRICT

v Example 13: Macdonald wants to drop the DESTROY procedure, which he
created in the EIGLER schema, using the specific name found in the system
catalog to identify the procedure to be dropped.

DROP SPECIFIC PROCEDURE EIGLER.SQL100506102825100

v Example 14: Drop the procedure OSMOSIS from the BIOLOGY schema, where it
is known that there is only one procedure with that name.

DROP PROCEDURE BIOLOGY.OSMOSIS

v Example 15: User SHAWN used one authorization ID to access the federated
database and another to access the database at an Oracle data source called
ORACLE1. A mapping was created between the two authorizations, but
SHAWN no longer needs to access the data source. Drop the mapping.

DROP USER MAPPING FOR SHAWN SERVER ORACLE1

v Example 16: An index of a data source table that a nickname references has been
deleted. Drop the index specification that was created to let the optimizer know
about this index.

DROP INDEX INDEXSPEC

v Example 17: Drop the MYSTRUCT1 transform group.
DROP TRANSFORM MYSTRUCT1 FOR POLYGON

v Example 18: Drop the method BONUS for the EMP data type in the
PERSONNEL schema.

DROP METHOD BONUS (SALARY DECIMAL(10,2)) FOR PERSONNEL.EMP

v Example 19: Drop the sequence ORG_SEQ, with restrictions.
DROP SEQUENCE ORG_SEQ

v Example 20: A remote table EMPLOYEE was created in a federated system
using transparent DDL. Access to the table is no longer needed. Drop the remote
table EMPLOYEE.

DROP TABLE EMPLOYEE

v Example 21: Drop the function mapping BONUS_CALC and reinstate the default
function mapping (if one exists).

DROP FUNCTION MAPPING BONUS_CALC

v Example 22: Drop the security label component LEVEL.
DROP SECURITY LABEL COMPONENT LEVEL

v Example 23: Drop the security label EMPLOYEESECLABEL of the security policy
DATA_ACCESS.

DROP SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

v Example 24: Drop the security policy DATA_ACCESS.
DROP SECURITY POLICY DATA_ACCESS

v Example 25: Drop the security label component GROUPS.
DROP SECURITY LABEL COMPONENT GROUPS

v Example 26: Drop the XML schema EMPLOYEE located in the SQL schema HR.
DROP XSROBJECT HR.EMPLOYEE

v Example 27: Drop service subclass DOGSALES under service superclass
PETSALES.

DROP SERVICE CLASS DOGSALES UNDER PETSALES

DROP

1014 SQL Reference Volume 2



v Example 28: Drop service superclass PETSALES, which has no user-defined
service subclasses. The default subclass for service class PETSALES is
automatically dropped.

DROP SERVICE CLASS PETSALES

v Example 29: DROP permission P1.
DROP PERMISSION P1

v Example 30: DROP mask M1.
DROP MASK M1

v Example 31: Drop a storage group named TEST_SG.
DROP STOGROUP TEST_SG

v Example 32: Drop the usage list MON_PAYROLL
DROP USAGE LIST MON_PAYROLL

DROP

Statements 1015



END DECLARE SECTION
The END DECLARE SECTION statement marks the end of a host variable declare
section.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in REXX.

Authorization

None required.

Syntax

�� END DECLARE SECTION ��

Description

The END DECLARE SECTION statement can be coded in the application program
wherever declarations can appear according to the rules of the host language. It
indicates the end of a host variable declaration section. A host variable section
starts with a BEGIN DECLARE SECTION statement.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and may not be nested.

Host variable declarations can be specified by using the SQL INCLUDE statement.
Otherwise, a host variable declaration section must not contain any statements
other than host variable declarations.

Host variables referenced in SQL statements must be declared in a host variable
declare section in all host languages, other than REXX. Furthermore, the
declaration of each variable must appear before the first reference to the variable.

Variables declared outside a declare section should not have the same name as
variables declared within a declare section.

END DECLARE SECTION

1016 SQL Reference Volume 2



EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

For each global variable used as an expression in the USING clause or in the
expression for an array-index, the privileges held by the authorization ID of the
statement must include one of the following authorities:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For each global variable used as an assignment-target, the privileges held by the
authorization ID of the statement must include one of the following authorities:
v WRITE privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For statements where authorization checking is performed at statement execution
time (DDL, GRANT, and REVOKE statements), the privileges held by the
authorization ID of the statement must include those required to execute the SQL
statement specified by the PREPARE statement. The authorization ID of the
statement might be affected by the DYNAMICRULES bind option.

For statements where authorization checking is performed at statement preparation
time (DML), no further authorization checking is performed on the SQL statement
specified by the PREPARE statement.

Syntax

�� EXECUTE statement-name

�

,

INTO assignment-target
DESCRIPTOR result-descriptor-name

�

�

�

,

USING input-host-variable
(1)

expression
DESCRIPTOR input-descriptor-name

��

assignment-target:

EXECUTE

Statements 1017



global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name
transition-variable-name
array-variable-name [ array-index ]
field-reference

Notes:

1 An expression other than host-variable can only be used when the EXECUTE
statement is used within a compound SQL (compiled) statement.

Description

statement-name
Identifies the prepared statement to be executed. The statement-name must
identify a statement that was previously prepared, and the prepared statement
cannot be a SELECT statement.

INTO
Introduces a list of targets which are used to receive values from output
parameter markers in the prepared statement. Each assignment to a target is
made in sequence through the list. If an error occurs on any assignment, the
value is not assigned to the target, and no more values are assigned to targets.
Any values that have already been assigned to targets remain assigned.

For a dynamic CALL statement, parameter markers appearing in OUT and
INOUT arguments to the procedure are output parameter markers. If any
output parameter markers appear in the statement, the INTO clause must be
specified (SQLSTATE 07007).

assignment-target
Identifies one or more targets for the assignment of output values. The first
value in the result row is assigned to the first target in the list, the second
value to the second target, and so on.

If the data type of an assignment-target is a row type, then there must be
exactly one assignment-target specified (SQLSTATE 428HR), the number of
columns must match the number of fields in the row type, and the data
types of the columns of the fetched row must be assignable to the
corresponding fields of the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must
be exactly one assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB
output values, the target can be a regular host variable (if it is large
enough), a LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the routine parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

EXECUTE

1018 SQL Reference Volume 2



transition-variable-name
Identifies the column to be updated in the transition row. A
transition-variable-name must identify a column in the subject table of a
trigger, optionally qualified by a correlation name that identifies the
new value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an
array type.

array-index
An expression that specifies which element in the array will be the
target of the assignment. For an ordinary array, the array-index
expression must be assignable to INTEGER (SQLSTATE 428H1)
and cannot be the null value. Its value must be between 1 and the
maximum cardinality defined for the array (SQLSTATE 2202E). For
an associative array, the array-index expression must be assignable
to the index data type of the associative array (SQLSTATE 428H1)
and cannot be the null value.

field-reference
Identifies the field within a row type value that is the assignment
target. The field-reference must be specified as a qualified field-name
where the qualifier identifies the row value in which the field is
defined.

DESCRIPTOR result-descriptor-name
Identifies an output SQLDA that must contain a valid description of host
variables.

Before the EXECUTE statement is processed, the user must set the
following fields in the input SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB or structured data type output data must be accommodated, there
must be two SQLVAR entries for every output parameter marker.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN.

USING
Introduces a list of variables or expressions for which values are substituted for
the input parameter markers in the prepared statement.

For a dynamic CALL statement, parameter markers appearing in IN and
INOUT arguments to the procedure are input parameter markers. For all other
dynamic statements, all the parameter markers are input parameter markers. If
any input parameter markers appear in the statement, the USING clause must
be specified (SQLSTATE 07004).

EXECUTE

Statements 1019



input-host-variable, ...
Identifies a host variable that is declared in the program in accordance
with the rules for declaring host variables. The number of variables must
be the same as the number of input parameter markers in the prepared
statement. The nth variable corresponds to the nth parameter marker in the
prepared statement. Locator variables and file reference variables, where
appropriate, can be provided as the source of values for parameter
markers.

expression
Identifies an expression to be used as the input for the corresponding input
parameter marker in the prepared statement. An expression other than a
host-variable can only be specified when the EXECUTE statement is issued
within a compound SQL (compiled) statement.

DESCRIPTOR input-descriptor-name
Identifies an input SQLDA that must contain a valid description of host
variables.

Before the EXECUTE statement is processed, the user must set the
following fields in the input SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB or structured data type input data must be accommodated, there
must be two SQLVAR entries for every parameter marker.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN.

Notes
v Before the prepared statement is executed, each input parameter marker is

effectively replaced by the value of its corresponding variable or expression. For
a typed parameter marker, the attributes of the target variable or expression are
those specified by the CAST specification. For an untyped parameter marker, the
attributes of the target variable or expression are determined according to the
context of the parameter marker.
Let V denote an input variable or expression that corresponds to parameter
marker P. The value of V is assigned to the target variable for P in accordance
with the rules for assigning a value to a column. Thus:
– V must be compatible with the target.
– If V is a string, its length must not be greater than the length attribute of the

target.
– If V is a number, the absolute value of its integral part must not be greater

than the maximum absolute value of the integral part of the target.
– If the attributes of V are not identical to the attributes of the target, the value

is converted to conform to the attributes of the target.

EXECUTE

1020 SQL Reference Volume 2



When the prepared statement is executed, the value used in place of P is the
value of the target variable for P or the result of the target expression for P. For
example, if V is CHAR(6) and the target is CHAR(8), the value used in place of
P is the value of V padded with two blanks.

v For a dynamic CALL statement, after the prepared statement is executed, the
returned value of each OUT and INOUT argument is assigned to the assignment
target corresponding to the output parameter marker used for the argument. For
a typed parameter marker, the attributes of the target variable are those specified
by the CAST specification. For an untyped parameter marker, the attributes of
the target variable are those specified by the definition of the parameter of the
procedure.
Let V denote an output assignment target that corresponds to parameter marker
P, which is used for argument A of a procedure. The value of A is assigned to V
in accordance with the rules for retrieving a value from a column. Thus:
– V must be compatible with A.
– If V is a string, its length must not be less than the length of A, or the value

of A will be truncated.
– If V is a number, the maximum absolute value of its integral part must not be

less than the absolute value of the integral part of A.
– If the attributes of V are not identical to the attributes of A, the value of A is

converted to conform to the attributes of V.
v Dynamic SQL statement caching: The information required to execute dynamic

and static SQL statements is placed in the database package cache when static
SQL statements are first referenced or when dynamic SQL statements are first
prepared. This information stays in the package cache until it becomes invalid,
the cache space is required for another statement, or the database is shut down.
When an SQL statement is executed or prepared, the package information
relevant to the application issuing the request is loaded from the system catalog
into the package cache. The actual executable section for the individual SQL
statement is also placed into the cache: static SQL sections are read in from the
system catalog and placed in the package cache when the statement is first
referenced; dynamic SQL sections are placed directly in the cache after they have
been created. Dynamic SQL sections can be created by an explicit statement,
such as PREPARE or EXECUTE IMMEDIATE. Once created, sections for
dynamic SQL statements may be recreated by an implicit prepare of the
statement by the system if the original section has been deleted for space
management reasons, or has become invalid due to changes in the environment.
Each SQL statement is cached at the database level and can be shared among
applications. Static SQL statements are shared among applications using the
same package; dynamic SQL statements are shared among applications using the
same compilation environment, and the exact same statement text. The text of
each SQL statement issued by an application is cached locally within the
application for use if an implicit prepare is required. Each PREPARE statement
in the application program can cache one statement. All EXECUTE IMMEDIATE
statements in an application program share the same space, and only one cached
statement exists for all these EXECUTE IMMEDIATE statements at a time. If the
same PREPARE or any EXECUTE IMMEDIATE statement is issued multiple
times with a different SQL statement each time, only the last statement will be
cached for reuse. The optimal use of the cache is to issue a number of different
PREPARE statements once at the start of the application, and then to issue an
EXECUTE or OPEN statement as required.
When dynamic SQL statements are cached, a statement can be reused over
multiple units of work without needing to prepare the statement again, unless

EXECUTE

Statements 1021



the SQL statements prepared in a package are bound with the KEEPDYNAMIC NO
option. The system recompiles the statement if necessary when environment
changes occur.
The following events are examples of environment or data object changes that
can cause cached dynamic statements to be implicitly prepared on the next
PREPARE, EXECUTE, EXECUTE IMMEDIATE, or OPEN request:
– ALTER FUNCTION
– ALTER METHOD
– ALTER NICKNAME
– ALTER PROCEDURE
– ALTER SERVER
– ALTER TABLE
– ALTER TABLESPACE
– ALTER TYPE
– CREATE FUNCTION
– CREATE FUNCTION MAPPING
– CREATE INDEX
– CREATE METHOD
– CREATE PROCEDURE
– CREATE TABLE
– CREATE TEMPORARY TABLESPACE
– CREATE TRIGGER
– CREATE TYPE
– DROP (all objects)
– RUNSTATS on any table or index
– Any action that causes a view to become inoperative
– UPDATE of statistics in any system catalog table
– SET CURRENT DEGREE
– SET PATH
– SET QUERY OPTIMIZATION
– SET SCHEMA
– SET SERVER OPTION
The following list outlines the behavior that can be expected from cached
dynamic SQL statements:
– PREPARE Requests: Subsequent preparations of the same statement do not

incur the cost of compiling the statement if the section is still valid. The cost
and cardinality estimates for the current cached section are returned. These
values might differ from the values returned from any previous PREPARE for
the same SQL statement. You do not need to issue a PREPARE statement
subsequent to a COMMIT or ROLLBACK statement, unless the statement is
associated with a package that was bound with KEEPDYNAMIC NO.

– EXECUTE Requests: EXECUTE statements may occasionally incur the cost of
implicitly preparing the statement if it has become invalid since the original
PREPARE. If a section is implicitly prepared, it will use the current
environment and not the environment of the original PREPARE statement.

– EXECUTE IMMEDIATE Requests: Subsequent EXECUTE IMMEDIATE
statements for the same statement will not incur the cost of compiling the
statement if the section is still valid.

EXECUTE

1022 SQL Reference Volume 2



– OPEN Requests: OPEN requests for dynamically defined cursors may
occasionally incur the cost of implicitly preparing the statement if it has
become invalid since the original PREPARE statement. If a section is
implicitly prepared, it will use the current environment and not the
environment of the original PREPARE statement.

– FETCH Requests: No behavior changes should be expected.
– ROLLBACK: Only those dynamic SQL statements prepared or implicitly

prepared during the unit of work affected by the rollback operation are
invalidated. Inactive dynamic SQL statements associated with a package
bound with KEEPDYNAMIC NO are removed from the application SQL context
after a ROLLBACK opeation and must be explicitly prepared again before the
application can execute them. Dynamic SQL statements are still cached at the
database level, so a subsequent PREPARE request does not incur the cost of
compiling the statement if the section is still valid.

– COMMIT: Dynamic SQL statements are not be invalidated, but any acquired
locks are be freed. Cursors not defined with the WITH HOLD option are closed
and their locks freed. Open cusors defined with the WITH HOLD option hold
onto their package and section locks to protect the active section both during
and after commit processing. Dynamic SQL statements bound with the
KEEPDYNAMIC NO option are not in a prepared state after a transaction
boundary and must be explicitly prepared again before the application can
execute them. SELECT statements prepared for an open cursor defined with
the WITH HOLD option remain in a prepared state until a transaction boundary
is hit where the cursor is closed. Inactive dynamic SQL statements associated
with a package bound with KEEPDYNAMIC NO are removed from the application
SQL context after a commit operation and must be explicitly prepared again
before the application can execute them.

If an error occurs during an implicit prepare, an error will be returned for the
request causing the implicit prepare (SQLSTATE 56098).

Examples

Example 1: In this C example, an INSERT statement with parameter markers is
prepared and executed. Host variables h1 - h4 correspond to the format of TDEPT.

strcpy (s,"INSERT INTO TDEPT VALUES(?,?,?,?)");
EXEC SQL PREPARE DEPT_INSERT FROM :s;

.

.
(Check for successful execution and put values into :h1, :h2, :h3, :h4)

.

.
EXEC SQL EXECUTE DEPT_INSERT USING :h1, :h2,
:h3, :h4;

Example 2: This EXECUTE statement uses an SQLDA.
EXECUTE S3 USING DESCRIPTOR :sqlda3

Example 3: Given a procedure to award an employee a bonus:
CREATE PROCEDURE GIVE_BONUS (IN EMPNO INTEGER,

IN DEPTNO INTEGER,
OUT CHEQUE INTEGER,
INOUT BONUS DEC(6,0))

...

Dynamically call the procedure from a C application. The procedure takes the
following host variables as input:

EXECUTE

Statements 1023



v employee, the ID number of the employee
v dept, the department number
v bonus, the bonus to be awarded to the employee

The procedure returns the following values to the host variables:
v cheque_no, the ID number from the cheque
v bonus, the actual bonus amount (after any adjustments)

strcpy (s, "CALL GIVE_BONUS(?, ?, ?, ?)");
EXEC SQL PREPARE DO_BONUS FROM :s;

.

.
/* Check for successful execution and put values into

:employee, :dept, and :bonus */
.
.

EXEC SQL EXECUTE DO_BONUS INTO :cheque_no, :bonus
USING :employee, :dept, :bonus;

.

.
/* Check for successful execution and process the

values returned in :cheque_no and :bonus */

EXECUTE

1024 SQL Reference Volume 2



EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement prepares an executable form of an SQL
statement from a character string form of the statement, and executes the SQL
statement.

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and
EXECUTE statements. It can be used to prepare and execute SQL statements that
contain neither host variables nor parameter markers.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

The authorization rules are those defined for the specified SQL statement.

The authorization ID of the statement might be affected by the DYNAMICRULES
bind option.

Syntax

�� EXECUTE IMMEDIATE expression ��

Description

expression
An expression returning the statement string to be executed. The expression
must return a character-string type that is less than the maximum statement
size of 2 097 152 bytes. Note that a CLOB(2097152) can contain a maximum
size statement, but a VARCHAR cannot.

The statement string must be one of the following SQL statements:
v ALTER
v CALL
v COMMENT
v COMMIT
v Compound SQL (compiled)
v Compound SQL (inlined)
v CREATE
v DECLARE GLOBAL TEMPORARY TABLE
v DELETE
v DROP
v EXPLAIN
v FLUSH EVENT MONITOR
v FLUSH PACKAGE CACHE
v GRANT
v INSERT
v LOCK TABLE
v MERGE

EXECUTE IMMEDIATE

Statements 1025



v REFRESH TABLE
v RELEASE SAVEPOINT
v RENAME
v REVOKE
v ROLLBACK
v SAVEPOINT
v SET COMPILATION ENVIRONMENT
v SET CURRENT DECFLOAT ROUNDING MODE
v SET CURRENT DEFAULT TRANSFORM GROUP
v SET CURRENT DEGREE
v SET CURRENT EXPLAIN MODE
v SET CURRENT EXPLAIN SNAPSHOT
v SET CURRENT FEDERATED ASYNCHRONY
v SET CURRENT IMPLICIT XMLPARSE OPTION
v SET CURRENT ISOLATION
v SET CURRENT LOCALE LC_MESSAGES
v SET CURRENT LOCALE LC_TIME
v SET CURRENT LOCK TIMEOUT
v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
v SET CURRENT MDC ROLLOUT MODE
v SET CURRENT OPTIMIZATION PROFILE
v SET CURRENT QUERY OPTIMIZATION
v SET CURRENT REFRESH AGE
v SET CURRENT TEMPORAL BUSINESS_TIME
v SET CURRENT TEMPORAL SYSTEM_TIME
v SET ENCRYPTION PASSWORD
v SET EVENT MONITOR STATE (only if DYNAMICRULES run behavior is in

effect for the package)
v SET INTEGRITY
v SET PASSTHRU
v SET PATH
v SET ROLE (only if DYNAMICRULES run behavior is in effect for the

package)
v SET SCHEMA
v SET SERVER OPTION
v SET SESSION AUTHORIZATION
v SET SQL_CCFLAGS
v SET USAGE LIST STATE (only if DYNAMICRULES run behavior is in effect

for the package)
v SET variable
v TRANSFER OWNERSHIP (only if DYNAMICRULES run behavior is in

effect for the package)
v TRUNCATE (only if DYNAMICRULES run behavior is in effect for the

package)
v UPDATE

EXECUTE IMMEDIATE

1026 SQL Reference Volume 2



The statement string must not include parameter markers or references to host
variables, and must not begin with EXEC SQL. It must not contain a statement
terminator, with the exception of compound SQL statements which can contain
semi-colons (;) to separate statements within the compound block. A
compound SQL statement is used within some CREATE and ALTER statements
which, therefore, can also contain semi-colons.

When an EXECUTE IMMEDIATE statement is executed, the specified
statement string is parsed and checked for errors. If the SQL statement is
invalid, it is not executed, and the error condition that prevents its execution is
reported in the SQLCA. If the SQL statement is valid, but an error occurs
during its execution, that error condition is reported in the SQLCA.

Notes
v Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

Example

Use C program statements to move an SQL statement to the host variable qstring
(char[80]), and prepare and execute whatever SQL statement is in the host variable
qstring.

if ( strcmp(accounts,"BIG") == 0 )
strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *
FROM EMP_ACT WHERE ACTNO < 100");

else
strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *
FROM EMP_ACT WHERE ACTNO >= 100");

.

.

.
EXEC SQL EXECUTE IMMEDIATE :qstring;

EXECUTE IMMEDIATE

Statements 1027



EXPLAIN
The EXPLAIN statement captures information about the access plan chosen for the
supplied explainable statement and places this information into the explain tables.

An explainable statement can either be a valid XQuery statement or one of the
following SQL statements: CALL, Compound SQL (Dynamic), DELETE, INSERT,
MERGE, REFRESH, SELECT, SELECT INTO, SET INTEGRITY, UPDATE, VALUES,
or VALUES INTO.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The statement to be explained is not executed.

Authorization

The authorization ID of the statement must hold at least one of the following
authorizations:
v DATAACCESS authority which allows an INSERT, UPDATE, DELETE, or

SELECT statement.
v INSERT privilege on the explain tables and at least one of the following

authorizations:
– All the privileges that are necessary to execute the explainable statement that

is specified in the EXPLAIN statement (for example, if a DELETE statement is
used as the explainable statement, the authorization rules for the DELETE
statement are applied when the DELETE statement is explained)

– EXPLAIN authority
– SQLADM authority
– DBADM authority

Syntax

�� EXPLAIN PLAN SELECTION
ALL

(1)
PLAN

FOR SNAPSHOT
WITH

WITH REOPT ONCE
�

�
SET QUERYNO = integer SET QUERYTAG = string-constant

�

� FOR explainable-sql-statement
XQUERY 'explainable-xquery-statement'

��

Notes:

1 The PLAN option is supported only for syntax toleration of existing DB2 for
z/OS EXPLAIN statements. There is no PLAN table. Specifying PLAN is
equivalent to specifying PLAN SELECTION.

EXPLAIN

1028 SQL Reference Volume 2



Description

PLAN SELECTION
Indicates that the information from the plan selection phase of query
compilation is to be inserted into the explain tables.

ALL
Specifying ALL is equivalent to specifying PLAN SELECTION.

PLAN
The PLAN option provides syntax toleration for existing database applications
from other systems. Specifying PLAN is equivalent to specifying PLAN
SELECTION.

FOR SNAPSHOT
This clause indicates that only an explain snapshot is to be taken and placed
into the SNAPSHOT column of the EXPLAIN_STATEMENT table. No other
explain information is captured other than that present in the
EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

WITH SNAPSHOT
This clause indicates that, in addition to the regular explain information, an
explain snapshot is to be taken.

The default behavior of the EXPLAIN statement is to only gather regular
explain information and not the explain snapshot.

default (neither FOR SNAPSHOT nor WITH SNAPSHOT specified)
Puts explain information into the explain tables.

WITH REOPT ONCE
This clause indicates that the specified explainable statement is to be reoptimized
using the values for host variables, parameter markers, special registers, or
global variables that were previously used to reoptimize this statement with
REOPT ONCE. The explain tables will be populated with the new access plan.
If the user has DBADM authority, or the database registry variable
DB2_VIEW_REOPT_VALUES is set to YES, the EXPLAIN_PREDICATE table
will also be populated with the values if they are used to reoptimize the
statement.

SET QUERYNO = integer
Associates integer, via the QUERYNO column in the EXPLAIN_STATEMENT
table, with the explainable statement. The integer value supplied must be a
positive value.

If this clause is not specified for a dynamic EXPLAIN statement, a default
value of one (1) is assigned. For a static EXPLAIN statement, the default value
assigned is the statement number assigned by the precompiler.

SET QUERYTAG = string-constant
Associates string-constant, via the QUERYTAG column in the
EXPLAIN_STATEMENT table, with the explainable statement. string-constant can
be any character string up to 20 bytes in length. If the value supplied is less
than 20 bytes in length, the value is padded on the right with blanks to the
required length.

If this clause is not specified for an EXPLAIN statement, blanks are used as the
default value.

FOR explainable-sql-statement
Specifies the SQL statement to be explained. This statement can be any valid
CALL, Compound SQL (Dynamic), DELETE, INSERT, MERGE, REFRESH,

EXPLAIN

Statements 1029



SELECT, SELECT INTO, SET INTEGRITY, UPDATE, VALUES, or VALUES
INTO SQL statement. If the EXPLAIN statement is embedded in a program,
the explainable-sql-statement can contain references to host variables (these
variables must be defined in the program). Similarly, if EXPLAIN is being
dynamically prepared, the explainable-sql-statement can contain parameter
markers.

The explainable-sql-statement must be a valid SQL statement that could be
prepared and executed independently of the EXPLAIN statement. It cannot be
a statement name or host variable. SQL statements referring to cursors defined
through CLP are not valid for use with this statement.

To explain dynamic SQL within an application, the entire EXPLAIN statement
must be dynamically prepared.

FOR XQUERY 'explainable-xquery-statement'
Specifies the XQUERY statement to be explained. This statement can be any
valid XQUERY statement.

If the EXPLAIN statement is embedded in a program, the
'explainable-xquery-statement' can contain references to host variables, provided
that the host variables are not used in the top level XQUERY statement, but are
passed in through an XMLQUERY function, by an XMLEXISTS predicate, or by
an XMLTABLE function. The host variables must be defined in the program.

Similarly, if EXPLAIN is being dynamically prepared, the 'explainable-xquery-
statement' can contain parameter markers, provided that the same restrictions
as for passing host variables are followed.

Alternatively, the DB2 XQUERY function db2-fn:sqlquery can be used to
embed SQL statements with references to host variables and parameter
markers.

The 'explainable-xquery-statement' must be a valid XQUERY statement that could
be prepared and executed independently of the EXPLAIN statement. Query
statements referring to cursors defined through CLP are not valid for use with
this statement.

Notes
v The Explain facility uses the following IDs as the schema when qualifying

explain tables that it is populating:
– The session authorization ID for dynamic SQL
– The statement authorization ID for static SQL

The schema can be associated with a set of explain tables, or aliases that point to
a set of explain tables under a different schema. If no explain tables are found
under the schema, the Explain facility checks for explain tables under the
SYSTOOLS schema and attempts to use those tables.

v The following table shows the interaction of the snapshot keywords and the
explain information.

Keyword Specified Capture Explain Information?

none Yes

FOR SNAPSHOT No

WITH SNAPSHOT Yes

If neither the FOR SNAPSHOT nor the WITH SNAPSHOT clause is specified, an
explain snapshot is not taken.

EXPLAIN

1030 SQL Reference Volume 2



v The explain tables must be created by the user before invocation of the
EXPLAIN statement. The information generated by this statement is stored in
the explain tables, in the schema that is designated at the time the statement is
compiled.

v If any errors occur during the compilation of the explainable statement supplied,
then no information is stored in the explain tables.

v The access plan generated for the explainable statement is not saved and thus,
cannot be invoked at a later time. The explain information for the explainable
statement is inserted when the EXPLAIN statement itself is compiled.

v For a static EXPLAIN query statement, the information is inserted into the
explain tables at bind time and during an explicit rebind. During
precompilation, the static EXPLAIN statements are commented out in the
modified application source file. At bind time, the EXPLAIN statements are
stored in the SYSCAT.STATEMENTS catalog. When the package is run, the
EXPLAIN statement is not executed. Note that the section numbers for all
statements in the application will be sequential and will include the EXPLAIN
statements. An alternative to using a static EXPLAIN statement is to use a
combination of the EXPLAIN and EXPLSNAP BIND or PREP options. Static
EXPLAIN statements can be used to cause the explain tables to be populated for
one specific static query statement out of many; simply prefix the target
statement with the appropriate EXPLAIN statement syntax and bind the
application without using either of the explain BIND or PREP options. The
EXPLAIN statement can also be used when it is advantageous to set the
QUERYNO or QUERYTAG field at the time of the actual explain invocation.

v Static EXPLAIN statements in an SQL procedure are evaluated when the
procedure is compiled.

v For an incremental bind EXPLAIN query statement, the explain tables are
populated when the EXPLAIN statement is submitted for compilation. When the
package is run, the EXPLAIN statement performs no processing (though the
statement will be successful). When populating the explain tables, the explain
table qualifier and authorization ID used during population will be those of the
package owner. The EXPLAIN statement can also be used when it is
advantageous to set the QUERYNO or QUERYTAG field at the time of the actual
explain invocation.

v For dynamic EXPLAIN statements, the explain tables are populated at the time
the EXPLAIN statement is submitted for compilation. An EXPLAIN statement
can be prepared with the PREPARE statement but, if executed, will perform no
processing (though the statement will be successful). An alternative to issuing
dynamic EXPLAIN statements is to use a combination of the CURRENT
EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special registers to
explain dynamic query statements. The EXPLAIN statement should be used
when it is advantageous to set the QUERYNO or QUERYTAG field at the time
of the actual EXPLAIN invocation.

v If the REOPT bind option is set to ONCE, and either the CURRENT EXPLAIN
MODE or the CURRENT EXPLAIN SNAPSHOT special register is set to REOPT,
the execution of static and dynamic query statements containing host variables,
special registers, parameter markers, or global variables will cause explain
information to be captured for the statement only when the statement is
reoptimized. Alternatively, if the REOPT bind option is set to ALWAYS, explain
information will be captured every time these statements are executed.

Examples
v Example 1: Explain a simple SELECT statement and tag with QUERYNO = 13.

EXPLAIN

Statements 1031



EXPLAIN PLAN SET QUERYNO = 13
FOR SELECT C1
FROM T1

v Example 2: Explain a simple SELECT statement and tag with QUERYTAG =
'TEST13'.

EXPLAIN PLAN SELECTION SET QUERYTAG = ’TEST13’
FOR SELECT C1
FROM T1

v Example 3: Explain a simple SELECT statement and tag with QUERYNO = 13
and QUERYTAG = 'TEST13'.

EXPLAIN PLAN SELECTION SET QUERYNO = 13 SET QUERYTAG = ’TEST13’
FOR SELECT C1
FROM T1

v Example 4: Attempt to get explain information when explain tables do not exist.
EXPLAIN ALL FOR SELECT C1

FROM T1

This statement will fail because the explain tables have not been defined
(SQLSTATE 42704).

v Example 5: The following statement will succeed if it is found in the package
cache and has already been compiled using REOPT ONCE.

EXPLAIN ALL WITH REOPT ONCE FOR SELECT C1
FROM T1
WHERE C1 = :<host variable>

v Example 6: The following example uses the db2-fn:xmlcolumn function, which
takes the case- sensitive name of an XML column as an argument and returns an
XML sequence that is the concatenation of XML column values.
Consider a table called BUSINESS.CUSTOMER with an XML column called
INFO. A simple XQuery that returns all documents from the INFO column is :

EXPLAIN PLAN SELECTION
FOR XQUERY ’db2-fn:xmlcolumn ("BUSINESS.CUSTOMER.INFO")’

If a column value is null, then the resulting return sequence for that row will be
empty.

EXPLAIN

1032 SQL Reference Volume 2



FETCH
The FETCH statement positions a cursor on the next row of its result table and
assigns the values of that row to target variables.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. When invoked using the command line processor, the syntax following
cursor-name is optional and different from the SQL syntax.

For more information, refer to “Using command line SQL statements and XQuery
statements” in Command Reference.

Authorization

For each global variable used as a cursor-variable-name or in the expression for an
array-index, the privileges held by the authorization ID of the statement must
include one of the following:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For each global variable used as an assignment-target, the privileges held by the
authorization ID of the statement must include one of the following:
v WRITE privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For the authorization required to use a cursor, see “DECLARE CURSOR”.

Syntax

�� FETCH cursor-name
FROM cursor-variable-name

�

� �

,

INTO assignment-target
USING DESCRIPTOR descriptor-name

��

assignment-target

�� global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name
transition-variable-name
array-variable-name [ array-index ]
field-reference

��

FETCH

Statements 1033



Description

cursor-variable-name
Identifies the cursor to be used in the fetch operation. The
cursor-variable-name must identify a cursor variable that is in scope. When the
FETCH statement is executed, the underlying cursor of the cursor-variable-name
must be in the open state. A FETCH statement using a cursor-variable-name can
only be used within a compound SQL (compiled) statement.

INTO assignment-target

Identifies one or more targets for the assignment of output values. The first
value in the result row is assigned to the first target in the list, the second
value to the second target, and so on. Each assignment to an assignment-target
is made in sequence through the list. If an error occurs on any assignment, the
value is not assigned to the target, and no more values are assigned to targets.
Any values that have already been assigned to targets remain assigned.

When the data type of every assignment-target is not a row type, then the value
'W' is assigned to the SQLWARN3 field of the SQLCA if the number of
assignment-targets is less than the number of result column values.

If the data type of an assignment-target is a row type, then there must be exactly
one assignment-target specified (SQLSTATE 428HR), the number of columns
must match the number of fields in the row type, and the data types of the
columns of the fetched row must be assignable to the corresponding fields of
the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must be
exactly one assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output
values, the target can be a regular host variable (if it is large enough), a
LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A
transition-variable-name must identify a column in the subject table of a
trigger, optionally qualified by a correlation name that identifies the new
value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array
type.

[array-index]
An expression that specifies which element in the array will be the
target of the assignment. For an ordinary array, the array-index
expression must be assignable to INTEGER (SQLSTATE 428H1) and
cannot be the null value. Its value must be between 1 and the
maximum cardinality defined for the array (SQLSTATE 2202E). For an

FETCH

1034 SQL Reference Volume 2



associative array, the array-index expression must be assignable to the
index data type of the associative array (SQLSTATE 428H1) and cannot
be the null value.

field-reference
Identifies the field within a row type value that is the assignment target.
The field-reference must be specified as a qualified field-name where the
qualifier identifies the row value in which the field is defined.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more host
variables.

Before the FETCH statement is processed, the user must set the following
fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA.
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement.
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB or structured type result columns need to be accommodated, there must
be two SQLVAR entries for every select-list item (or column of the result table).

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN.

The nth variable described in the SQLDA corresponds to the nth column of the
result table of the cursor. The data type of each variable must be compatible with
its corresponding column.

Each assignment to a variable is made according to specific rules. If the number of
variables is less than the number of values in the row, the SQLWARN3 field of the
SQLDA is set to 'W'. Note that there is no warning if there are more variables than
the number of result columns. If an assignment error occurs, the value is not
assigned to the variable, and no more values are assigned to variables. Any values
that have already been assigned to variables remain assigned.

Notes
v Cursor position: An open cursor has three possible positions:

– Before a row
– On a row
– After the last row.

A cursor can only be on a row as a result of a FETCH statement. If the cursor is
currently positioned on or after the last row of the result table:
– SQLCODE is set to +100, and SQLSTATE is set to '02000'.
– The cursor is positioned after the last row.
– Values are not assigned to assignment targets.

FETCH

Statements 1035



If the cursor is currently positioned before a row, it will be repositioned on that
row, and values will be assigned to targets as specified by the INTO or USING
clause.
If the cursor is currently positioned on a row other than the last row, it will be
repositioned on the next row and values of that row will be assigned to targets
as specified by the INTO or USING clause.
If a cursor is on a row, that row is called the current row of the cursor. A cursor
referenced in an UPDATE or DELETE statement must be positioned on a row.
It is possible for an error to occur that makes the state of the cursor
unpredictable.

v When retrieving into LOB locators in situations where it is not necessary to
retain the locator across FETCH statements, it is good practice to issue a FREE
LOCATOR statement before issuing the next FETCH statement, as locator
resources are limited.

v It is possible that a warning may not be returned on a FETCH. It is also possible
that the returned warning applies to a previously fetched row. This occurs as a
result of optimizations such as the use of system temporary tables or pushdown
operators.

v Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.
v DB2 CLI supports additional fetching capabilities. For instance, when a cursor's

result table is read-only, the SQLFetchScroll() function can be used to position
the cursor at any spot within that result table.

v For an updatable cursor, a lock is obtained on a row when it is fetched.
v If the cursor definition contains an SQL data change statement or invokes a

routine that modifies SQL data, an error during the fetch operation does not
cause the modified rows to be rolled back, even if the error results in the cursor
being closed.

Examples
v Example 1: In this C example, the FETCH statement fetches the results of the

SELECT statement into the program variables dnum, dname, and mnum. When no
more rows remain to be fetched, the not found condition is returned.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;

while (SQLCODE==0) {
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

}

EXEC SQL CLOSE C1;

v Example 2: This FETCH statement uses an SQLDA.
FETCH CURS USING DESCRIPTOR :sqlda3

FETCH

1036 SQL Reference Volume 2



FLUSH BUFFERPOOLS
The FLUSH BUFFERPOOLS statement writes the dirty pages from all the local
buffer pools for a particular database synchronously to disk.

In DB2 pureScale environments, the dirty pages in the group buffer pool are also
written synchronously to disk.

This statement is not under transaction control.

The FLUSH BUFFERPOOLS statement can be used in the following ways:
v To reduce the recovery window of a database in the event of a failure
v To reduce the size of logs written to a backup image before database operations

such as online backups
v To minimize the recovery time of a split-mirror database

Invocation

The statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include
SQLADM, DBADM, SYSMAINT, SYSCTRL, or SYSADM authority.

Syntax

�� FLUSH BUFFERPOOL ALL
BUFFERPOOLS

��

Description

ALL
Flushes the dirty pages from all the buffer pools (local and group).

Notes
v Dirty pages processing: Only the dirty pages that are in the buffer pools when

the statement begins processing are written to disk. Any dirty pages that are
added to the buffer pools before the statement finishes processing are not
written to disk.

v Syntax alternatives: BUFFERPOOL can be specified in place of BUFFERPOOLS.

FLUSH BUFFERPOOLS

Statements 1037



FLUSH EVENT MONITOR
The FLUSH EVENT MONITOR statement writes current database monitor values
for all active monitor types associated with event monitor event-monitor-name to the
event monitor I/O target.

A partial event record is available at any time for event monitors that have low
record generation frequency (such as a database event monitor). Such records are
noted in the event monitor log with a partial record identifier.

When an event monitor is flushed, its active internal buffers are written to the
event monitor output object.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include
SQLADM or DBADM authority.

Syntax

�� FLUSH EVENT MONITOR event-monitor-name
BUFFER

��

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an ordinary identifier.

BUFFER
Indicates that the event monitor buffers are to be written out. If BUFFER is
specified, then a partial record is not generated. Only the data already present
in the event monitor buffers are written out.

Notes
v Flushing out the event monitor will not cause the event monitor values to be

reset. This means that the event monitor record that would have been generated
if no flush was performed, will still be generated when the normal monitor
event is triggered.

v The FLUSH EVENT MONITOR statement does not cause events to be generated
and written for the UNIT OF WORK event monitor.

FLUSH EVENT MONITOR

1038 SQL Reference Volume 2



FLUSH FEDERATED CACHE
The FLUSH FEDERATED CACHE statement flushes the federated cache, allowing
fresh metadata to be obtained the next time an SQL statement is issued against the
remote table or view using a federated three part name.

When an SQL statement is issued against a remote table or view using a federated
three part name, if the remote table or view is being referenced for the first time,
the metadata and statistics for the remote object are retrieved and stored in a
federated cache.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include either
SQLADM or DBADM authority.

Syntax

��
FOR ALL

FLUSH FEDERATED CACHE
FOR remote-object-name

data-source-name.schema-name.*
data-source-name.*.*
SERVER data-source-name

��

Description

FOR ALL
Flushes the federated cache information for all objects from all data sources.
This is the default.

FOR remote-object-name
Flushes the federated cache information for a specific remote table or view.

FOR data-source-name.schema-name.*
Flushes the federated cache information for all objects in the schema identified
by schema-name from the specific data source identified by data-source-name.

FOR data-source-name.*.*
Flushes the federated cache information for all objects from the specific data
source identified by data-source-name.

FOR SERVER data-source-name
Flushes the federated cache information for all objects from the specific data
source identified by data-source-name.

Notes
v Package invalidation: Flushing the federated cache causes packages with a

dependency on the three-part name to be invalidated. This action could have a
performance impact since the invalidated packages need to be recompiled
whenever statements from the package are executed.

FLUSH FEDERATED CACHE

Statements 1039



v View invalidation: Flushing the federated cache will not cause the views
depending on the three part name to be invalidated. The next time the view is
used, it will implicitly revalidate the view. If there are changes to the remote
object, it is possible that the statement using the view could return an error.

Examples
v Example 1: Flush the federated cache information for the remote-table-name t1 in

the remote-schema-name rschema on the data source rudb.
FLUSH FEDERATED CACHE FOR rudb.rschema.t1

v Example 2: Flush the federated cache information for all objects in the
remote-schema-name rschema on the data source rudb.
FLUSH FEDERATED CACHE FOR rudb.rschema.*

v Example 3: Flush the federated cache information for all objects from the data
source rudb.
FLUSH FEDERATED CACHE FOR rudb.*.*

An alternative to this syntax is as follows:
FLUSH FEDERATED CACHE FOR SERVER rudb

FLUSH FEDERATED CACHE

1040 SQL Reference Volume 2



FLUSH OPTIMIZATION PROFILE CACHE
Multiple statements can be compiled using the same optimization profile.

To make optimization profile processing more efficient, the optimization profile is
processed the first time it is used to optimize a statement, and the output is stored
in the optimization profile cache. Subsequent references to the optimization profile
use the processed version in the optimization profile cache.

An optimization profile should be removed from the optimization profile cache
when the version stored in SYSTOOLS.OPT_PROFILE has been updated. When the
old version is removed from the cache, the new version will be used upon
optimization of subsequent statements that use the optimization profile.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include either
SQLADM or DBADM authority (SQLSTATE 42502).

Syntax

��
ALL

FLUSH OPTIMIZATION PROFILE CACHE
optimization-profile-name

��

Description

optimization-profile-name
Specifies the name of the optimization profile to be flushed from the
optimization profile cache. If the name specified is unqualified, the value of the
CURRENT DEFAULT SCHEMA register is used as the implicit qualifier.

ALL
Specifies that all profiles on all active database partitions be flushed from the
optimization profile cache.

Notes
v The FLUSH OPTIMIZATION PROFILE CACHE statement removes all or a

single optimization profile from the optimization profile cache. It also causes the
logical invalidation of any cached dynamic SQL statements that were prepared
with that optimization profile.

v New access plans for any invalidated dynamic plans are regenerated when the
next request for the same SQL statement is made.

v Packages that reference an optimization profile removed from the optimization
profile cache by this statement must be explicitly bound again to allow new
access plans to be generated.

FLUSH OPTIMIZATION PROFILE CACHE

Statements 1041



Examples
v Example 1: The optimization profile "Rick"."Foo" is flushed from the

optimization profile cache.
SET CURRENT SCHEMA = ’"Rick"’
FLUSH OPTIMIZATION PROFILE CACHE "Foo"

v Example 2: The optimization profile JOHN.ALL is removed from the
optimization profile cache.

SET CURRENT SCHEMA = ’"Rick"’
FLUSH OPTIMIZATION PROFILE CACHE JOHN.ALL

Messages
v No errors are issued if the optimization profile cache is empty or if the specified

optimization profiles (specified explicitly or implicitly) do not exist in the
optimization profile cache.

FLUSH OPTIMIZATION PROFILE CACHE

1042 SQL Reference Volume 2



FLUSH PACKAGE CACHE
The FLUSH PACKAGE CACHE statement invalidates all cached dynamic SQL
statements in the package cache. This invalidation causes the next request for any
SQL statement that matches an invalidated cached dynamic SQL statement to be
compiled instead of reused from the package cache.

Invocation

This statement can be embedded in an application program or issued by using
dynamic SQL statements. It is an executable statement that can be dynamically
prepared.

Authorization

The privileges that are held by the authorization ID of the statement must include
SQLADM or DBADM authority.

Syntax

�� FLUSH PACKAGE CACHE DYNAMIC ��

Notes
v This statement affects all cached dynamic SQL entries in the package cache on

all active database partitions.
v As cached dynamic SQL statements are invalidated, the package cache memory

that is used for the cached entry is freed if the entry is not in use when the
FLUSH PACKAGE CACHE statement runs.

v Any cached dynamic SQL statement currently in use is allowed to continue to
exist in the package cache until it is no longer needed by the current user. The
next new user of the same statement will force an implicit prepare of the
statement, and the new user will run the new version of the cached dynamic
SQL statement.

FLUSH PACKAGE CACHE

Statements 1043



FOR
The FOR statement executes a statement or group of statements for each row of a
table.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

No privileges are required to invoke the FOR statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded in the FOR statement. For the authorization
required to use a cursor, see “DECLARE CURSOR”.

Syntax

��
label:

FOR for-loop-name AS �

�
ASENSITIVE WITHOUT HOLD (1)

cursor-name CURSOR FOR
INSENSITIVE WITH HOLD

�

� select-statement DO SQL-routine-statement END FOR
label

��

SQL-routine-statement:

�

�

SQL-procedure-statement ;

SQL-function-statement ;

SQL-function-statement:

FOR

1044 SQL Reference Volume 2



�

CALL
FOR

fullselect
,

WITH common-table-expression
GET DIAGNOSTICS
IF
INSERT
ITERATE
LEAVE
MERGE
searched-delete
searched-update
SET Variable
SIGNAL
WHILE

Notes:

1 This option can only be used in the context of an SQL procedure or a
compound SQL (compiled) statement.

Description

label
Specifies the label for the FOR statement. If the beginning label is specified,
that label can be used in LEAVE and ITERATE statements. If the ending label
is specified, it must be the same as the beginning label.

for-loop-name
Specifies a label for the implicit compound statement generated to implement
the FOR statement. It follows the rules for the label of a compound statement
except that it cannot be used with an ITERATE or LEAVE statement within the
FOR statement. The for-loop-name is used to qualify the column names returned
by the specified select-statement.

cursor-name
Names the cursor that is used to select rows from the result table of the
SELECT statement. If not specified, the database manager generates a unique
cursor name. For a description of ASENSITIVE, INSENSITIVE, WITHOUT
HOLD, or WITH HOLD, see “DECLARE CURSOR”.

select-statement
Specifies the SELECT statement of the cursor. All columns in the select list
must have a name and there cannot be two columns with the same name.

In a trigger, function, method, or compound SQL (inlined) statement, the
select-statement must consist of only a fullselect with optional common table
expressions.

SQL-procedure-statement
Specifies one or more statements to be invoked for each row of the table.
SQL-procedure-statement is only applicable when in the context of an SQL
procedure or within a compound SQL (compiled) statement. See
SQL-procedure-statement in “Compound SQL (compiled)” statement.

SQL-function-statement
Specifies one or more statements to be invoked for each row of the table. A

FOR

Statements 1045



searched-update, searched-delete, or INSERT operation on nicknames is not
supported. SQL-function-statement is only applicable when in the context of an
SQL function or SQL method.

Rules
v The select list must consist of unique column names and the objects specified in

the select-statement must exist when the procedure is created, or the object must
be created in a previous SQL procedure statement.

v The cursor specified in a for-statement cannot be referenced outside the
for-statement and cannot be specified in an OPEN, FETCH, or CLOSE statement.

Example

In the following example, the for-statement is used to iterate over the entire
employee table. For each row in the table, the SQL variable fullname is set to the
last name of the employee, followed by a comma, the first name, a blank space,
and the middle initial. Each value for fullname is inserted into table tnames.

BEGIN ATOMIC
DECLARE fullname CHAR(40);
FOR vl AS
SELECT firstnme, midinit, lastname FROM employee

DO
SET fullname = lastname CONCAT ’,’
CONCAT firstnme CONCAT ’ ’ CONCAT midinit;

INSERT INTO tnames VALUES (fullname);
END FOR;

END

FOR

1046 SQL Reference Volume 2



FREE LOCATOR
The FREE LOCATOR statement removes the association between a locator variable
and its value.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

�� FREE LOCATOR �

,

variable-name ��

Description

LOCATOR variable-name, ...
Identifies one or more locator variables that must be declared in accordance
with the rules for declaring locator variables.

The locator-variable must currently have a locator assigned to it. That is, a
locator must have been assigned during this unit of work (by a CALL, FETCH,
SELECT INTO, or VALUES INTO statement) and must not subsequently have
been freed (by a FREE LOCATOR statement); otherwise, an error is returned
(SQLSTATE 0F001).

If more than one locator is specified, all locators that can be freed will be freed,
regardless of errors detected in other locators in the list.

Example

In a COBOL program, free the BLOB locator variables TKN-VIDEO and TKN-BUF
and the CLOB locator variable LIFE-STORY-LOCATOR.

EXEC SQL
FREE LOCATOR :TKN-VIDEO, :TKN-BUF, :LIFE-STORY-LOCATOR
END-EXEC.

FREE LOCATOR

Statements 1047



GET DIAGNOSTICS
The GET DIAGNOSTICS statement is used to obtain current execution
environment information including information about the previous SQL statement
(other than a GET DIAGNOSTICS statement) that was executed. Some of the
information available through the GET DIAGNOSTICS statement is also available
in the SQLCA.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

None required.

Syntax

�� GET DIAGNOSTICS statement-information
condition-information

��

statement-information:

SQL-variable-1 = DB2_RETURN_STATUS
DB2_SQL_NESTING_LEVEL
ROW_COUNT

condition-information:

EXCEPTION 1 �

,

SQL-variable-2 = DB2_TOKEN_STRING
MESSAGE_TEXT

Description

statement-information
Returns information about the last SQL statement executed.

SQL-variable-1
Identifies the variable that is the assignment target. The variable must not
be a global variable. SQL variables can be defined in a compound
statement. The data type of the variable must be compatible with the data
type as specified in Table 33 on page 1050.

DB2_RETURN_STATUS
Identifies the status value returned from the procedure associated with the
previously executed SQL statement, provided that the statement was a

GET DIAGNOSTICS

1048 SQL Reference Volume 2



CALL statement invoking a procedure that returns a status. If the previous
statement is not such a statement, then the value returned has no meaning
and could be any integer.

DB2_SQL_NESTING_LEVEL
Identifies the current level of nesting or recursion in effect when the GET
DIAGNOSTICS statement was executed. Each level of nesting corresponds
to a nested or recursive invocation of a compiled SQL function, compiled
SQL procedure, compiled trigger, or dynamically prepared compound SQL
(compiled) statement. If the GET DIAGNOSTICS statement is executed
outside of a level of nesting, the value zero is returned. This option can be
specified only in the context of a compiled SQL function, compiled SQL
procedure, compiled trigger, or compound SQL (compiled) statement
(SQLSTATE 42601).

ROW_COUNT
Identifies the number of rows associated with the previous SQL statement.
If the previous SQL statement is a DELETE, INSERT, or UPDATE
statement, ROW_COUNT identifies the number of rows that qualified for
the operation. If the previous statement is a PREPARE statement,
ROW_COUNT identifies the estimated number of result rows in the
prepared statement.

condition-information
Specifies that the error or warning information for the previously executed
SQL statement is to be returned. If information about an error is needed, the
GET DIAGNOSTICS statement must be the first statement specified in the
handler that will handle the error. If information about a warning is needed,
and if the handler will get control of the warning condition, the GET
DIAGNOSTICS statement must be the first statement specified in that handler.
If the handler will not get control of the warning condition, the GET
DIAGNOSTICS statement must be the next statement executed. This option
can only be specified in the context of an SQL Procedure (SQLSTATE 42601).

SQL-variable-2
Identifies the variable that is the assignment target. The variable must not
be a global variable. SQL variables can be defined in a compound
statement. The data type of the variable must be compatible with the data
type as specified in Table 33 on page 1050.

DB2_TOKEN_STRING
Identifies any error or warning message tokens returned from the
previously executed SQL statement. If the statement completed with an
SQLCODE of zero, or if the SQLCODE had no tokens, an empty string is
returned for a VARCHAR variable or blanks are returned for a CHAR
variable.

MESSAGE_TEXT
Identifies any error or warning message text returned from the previously
executed SQL statement. The message text is returned in the language of
the database server where the statement is processed. If the statement
completed with an SQLCODE of zero, an empty string is returned for a
VARCHAR variable or blanks are returned for a CHAR variable.

Notes
v The GET DIAGNOSTICS statement does not change the contents of the

diagnostics area (SQLCA). If an SQLSTATE or SQLCODE special variable is
declared in the SQL procedure, these are set to the SQLSTATE or SQLCODE
returned from issuing the GET DIAGNOSTICS statement.

GET DIAGNOSTICS

Statements 1049



v Data types for items: The following table shows the SQL data type for each
diagnostic item. When a diagnostic item is assigned to a variable, the data type
of the variable must be compatible with the data type of the requested
diagnostic item.

Table 33. Data types for GET DIAGNOSTICS items

Type of information Item Data type

Statement information DB2_RETURN_STATUS INTEGER

Statement information DB2_SQL_NESTING_LEVEL INTEGER

Statement information ROW_COUNT DECIMAL(31,0)

Condition information DB2_TOKEN_STRING VARCHAR(1000)

Condition information MESSAGE_TEXT VARCHAR(32672)

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– RETURN_STATUS can be specified in place of DB2_RETURN_STATUS.

Examples
v Example 1: In an SQL procedure, execute a GET DIAGNOSTICS statement to

determine how many rows were updated.
CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3))

LANGUAGE SQL
BEGIN

DECLARE SQLSTATE CHAR(5);
DECLARE rcount INTEGER;
UPDATE CORPDATA.PROJECT

SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = deptnbr;

GET DIAGNOSTICS rcount = ROW_COUNT;
-- At this point, rcount contains the number of rows that were updated.
...

END

v Example 2: Within an SQL procedure, handle the returned status value from the
invocation of a procedure called TRYIT that could either explicitly RETURN a
positive value indicating a user failure, or encounter SQL errors that would
result in a negative return status value. If the procedure is successful, it returns a
value of zero.
CREATE PROCEDURE TESTIT ()

LANGUAGE SQL
A1:BEGIN

DECLARE RETVAL INTEGER DEFAULT 0;
...
CALL TRYIT;
GET DIAGNOSTICS RETVAL = DB2_RETURN_STATUS;
IF RETVAL <> 0 THEN

...
LEAVE A1;

ELSE
...

END IF;
END A1

GET DIAGNOSTICS

1050 SQL Reference Volume 2



GOTO
The GOTO statement is used to branch to a user-defined label within an SQL
procedure.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable
statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� GOTO label ��

Description

label
Specifies a labelled statement where processing is to continue. The labelled
statement and the GOTO statement must be in the same scope:
v If the GOTO statement is defined in a FOR statement, label must be defined

inside the same FOR statement, excluding a nested FOR statement or nested
compound statement

v If the GOTO statement is defined in a compound statement, label must be
defined inside the same compound statement, excluding a nested FOR
statement or nested compound statement

v If the GOTO statement is defined in a handler, label must be defined in the
same handler, following the other scope rules

v If the GOTO statement is defined outside of a handler, label must not be
defined within a handler.

If label is not defined within a scope that the GOTO statement can reach, an
error is returned (SQLSTATE 42736).

Notes
v It is recommended that the GOTO statement be used sparingly. This statement

interferes with normal processing sequences, thus making a routine more
difficult to read and maintain. Before using a GOTO statement, determine
whether another statement, such as IF or LEAVE, can be used in place, to
eliminate the need for a GOTO statement.

Example

In the following compound statement, the parameters rating and v_empno are
passed into the procedure, which then returns the output parameter return_parm as
a date duration. If the employee's time in service with the company is less than 6
months, the GOTO statement transfers control to the end of the procedure, and
new_salary is left unchanged.

CREATE PROCEDURE adjust_salary
(IN v_empno CHAR(6),
IN rating INTEGER,
OUT return_parm DECIMAL (8,2))

GOTO

Statements 1051



MODIFIES SQL DATA
LANGUAGE SQL
BEGIN

DECLARE new_salary DECIMAL (9,2);
DECLARE service DECIMAL (8,2);

SELECT SALARY, CURRENT_DATE - HIREDATE
INTO new_salary, service
FROM EMPLOYEE
WHERE EMPNO = v_empno;

IF service < 600
THEN GOTO EXIT;

END IF;
IF rating = 1

THEN SET new_salary = new_salary + (new_salary * .10);
ELSEIF rating = 2

THEN SET new_salary = new_salary + (new_salary * .05);
END IF;
UPDATE EMPLOYEE

SET SALARY = new_salary
WHERE EMPNO = v_empno;

EXIT: SET return_parm = service;
END

GOTO

1052 SQL Reference Volume 2



GRANT (database authorities)
This form of the GRANT statement grants authorities that apply to the entire
database (rather than privileges that apply to specific objects within the database).

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

To grant ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, or
SECADM authority, SECADM authority is required. To grant other authorities
ACCESSCTRL or SECADM authority is required.

Syntax

�� GRANT �

� �

,

ACCESSCTRL
BINDADD
CONNECT
CREATETAB
CREATE_EXTERNAL_ROUTINE
CREATE_NOT_FENCED_ROUTINE
CREATE_SECURE_OBJECT
DATAACCESS

WITH DATAACCESS WITH ACCESSCTRL
DBADM • • •

WITHOUT DATAACCESS WITHOUT ACCESSCTRL
EXPLAIN
IMPLICIT_SCHEMA
LOAD
QUIESCE_CONNECT
SECADM
SQLADM
WLMADM

�

� ON DATABASE �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

ACCESSCTRL
Grants the access control authority. The ACCESSCTRL authority allows the
holder to:

GRANT (database authorities)

Statements 1053



v Grant and revoke the following database authorities: BINDADD, CONNECT,
CREATETAB, CREATE_EXTERNAL_ROUTINE,
CREATE_NOT_FENCED_ROUTINE, EXPLAIN, IMPLICIT_SCHEMA,
LOAD, QUIESE_CONNECT, SQLADM, WLMADM

v Grant and revoke all object level privileges

The ACCESSCTRL authority cannot be granted to PUBLIC (SQLSTATE 42508).

BINDADD
Grants the authority to create packages. The creator of a package automatically
has the CONTROL privilege on that package and retains this privilege even if
the BINDADD authority is subsequently revoked.

CONNECT
Grants the authority to access the database.

CREATETAB
Grants the authority to create base tables. The creator of a base table
automatically has the CONTROL privilege on that table. The creator retains
this privilege even if the CREATETAB authority is subsequently revoked.

There is no explicit authority required for view creation. A view can be created
at any time if the authorization ID of the statement used to create the view has
either CONTROL or SELECT privilege on each base table of the view.

CREATE_EXTERNAL_ROUTINE
Grants the authority to register external routines. Care must be taken that
routines so registered will not have adverse side effects. (For more information,
see the description of the THREADSAFE clause in “CREATE PROCEDURE
(external)” on page 613.)

Once an external routine has been registered, it continues to exist, even if
CREATE_EXTERNAL_ROUTINE is subsequently revoked.

CREATE_NOT_FENCED_ROUTINE
Grants the authority to register routines that execute in the database manager's
process. Care must be taken that routines so registered will not have adverse
side effects. (For more information, see the description of the FENCED clause
on the “CREATE PROCEDURE (external)” on page 613.)

Once a routine has been registered as not fenced, it continues to run in this
manner, even if CREATE_NOT_FENCED_ROUTINE is subsequently revoked.

CREATE_EXTERNAL_ROUTINE is automatically granted to an
authorization-name that is granted CREATE_NOT_FENCED_ROUTINE
authority.

CREATE_SECURE_OBJECT
Grants the authority to create secure triggers and secure functions. Grants the
authority to alter the secure attribute of such objects as well.

DATAACCESS
Grants the authority to access data. The DATAACCESS authority allows the
holder to:
v Select, insert, update, delete, and load data
v Execute any package
v Execute any routine (except audit routines)

The DATAACCESS authority cannot be granted to PUBLIC (SQLSTATE 42508).

DBADM
Grants the database administrator authority. A database administrator holds

GRANT (database authorities)

1054 SQL Reference Volume 2



nearly all privileges on nearly all objects in the database. The only exceptions
are those privileges that are part of the access control, data access, and security
administrator authorities. DBADM cannot be granted to PUBLIC.

EXPLAIN
Grants the authority to explain statements. The EXPLAIN authority allows the
holder to explain, prepare, and describe dynamic and static SQL statements
without requiring access to data.

IMPLICIT_SCHEMA
Grants the authority to implicitly create a schema.

LOAD
Grants the authority to load in this database. This authority gives a user the
right to use the LOAD utility in this database. DATAACCESS and DBADM
also have this authority by default. However, if a user only has LOAD
authority (not DATAACCESS), the user is also required to have table-level
privileges. In addition to LOAD privilege, the user is required to have:
v INSERT privilege on the table for LOAD with mode INSERT, TERMINATE

(to terminate a previous LOAD INSERT), or RESTART (to restart a previous
LOAD INSERT)

v INSERT and DELETE privilege on the table for LOAD with mode
REPLACE, TERMINATE (to terminate a previous LOAD REPLACE), or
RESTART (to restart a previous LOAD REPLACE)

v INSERT privilege on the exception table, if such a table is used as part of
LOAD

QUIESCE_CONNECT
Grants the authority to access the database while it is quiesced.

SECADM
Grants the security administrator authority. The authority allows the holder to:
v Create and drop security objects such as audit policies, roles, security labels,

security label components, security policies, and trusted contexts
v Grant and revoke authorities, exemptions, privileges, roles, and security

labels
v Grant and revoke the SETSESSIONUSER privilege
v Execute TRANSFER OWNERSHIP on objects owned by others

The SECADM authority cannot be granted to PUBLIC (SQLSTATE 42508).

SQLADM
Grants the authority to manage SQL statement execution. The SQLADM
authority allows the holder to:
v Create, drop, flush, and set event monitors
v Explain, prepare, and describe dynamic and static SQL statements without

requiring access to data
v Flush optimization profile cache
v Flush package cache
v Execute the runstats utility
v Create, alter, drop, and set usage lists

WLMADM
Grants the authority to manage workloads. The WLMADM authority allows
the holder to:

GRANT (database authorities)

Statements 1055



v Create, drop, and alter service classes, work action sets, work class sets, or
workloads.

TO Specifies to whom the authorities are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the authorities to a set of users (authorization IDs).

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

Notes
v ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, or

SECADM authorities cannot be granted to the special group PUBLIC. Therefore,
granting ACCESSCTRL, CREATE_SECURE_OBJECT, DBADM, DATAACCESS,
or SECADM authority to a role role-name fails if role-name is granted to PUBLIC
either directly or indirectly (SQLSTATE 42508).
– Role role-name is granted directly to PUBLIC if the following statement has

been issued:
GRANT ROLE role-name TO PUBLIC

– Role role-name is granted indirectly to PUBLIC if the following statements
have been issued:

GRANT ROLE role-name TO ROLE role-name2
GRANT ROLE role-name2 TO PUBLIC

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products.

GRANT (database authorities)

1056 SQL Reference Volume 2



– CREATE_NOT_FENCED can be specified in place of
CREATE_NOT_FENCED_ROUTINE

– SYSTEM can be specified in place of DATABASE
v Privileges granted to a group: A privilege that is granted to a group is not used

for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Examples
v Example 1: Give the users WINKEN, BLINKEN, and NOD the authority to

connect to the database.
GRANT CONNECT ON DATABASE TO USER WINKEN, USER BLINKEN, USER NOD

v Example 2: Grant BINDADD authority on the database to a group named D024.
There is both a group and a user called D024 in the system.

GRANT BINDADD ON DATABASE TO GROUP D024

Observe that, the GROUP keyword must be specified; otherwise, an error will
occur since both a user and a group named D024 exist. Any member of the D024
group will be allowed to bind packages in the database, but the D024 user will
not be allowed (unless this user is also a member of the group D024, had been
granted BINDADD authority previously, or BINDADD authority had been
granted to another group of which D024 was a member).

v Example 3: Give user Walid security administrator authority.
GRANT SECADM ON DATABASE TO USER Walid

v Example 4: A user with SECADM authority grants the
CREATE_SECURE_OBJECT authority to user Haytham.

GRANT CREATE_SECURE_OBJECT ON DATABASE TO USER HAYTHAM

GRANT (database authorities)

Statements 1057



GRANT (exemption)
This form of the GRANT statement grants to a user, group, or role an exemption
on an access rule for a specified label-based access control (LBAC) security policy.

When the user holding the exemption accesses data in a table protected by that
security policy the indicated rule will not be enforced when deciding if they can
access the data.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� GRANT EXEMPTION ON RULE DB2LBACREADARRAY
DB2LBACREADSET
DB2LBACREADTREE
DB2LBACWRITEARRAY WRITEDOWN

WRITEUP
DB2LBACWRITESET
DB2LBACWRITETREE
ALL

�

� FOR policy-name �

,

TO authorization-name
USER
GROUP
ROLE

��

Description

EXEMPTION ON RULE
Grants an exemption on an access rule.

DB2LBACREADARRAY
Grants an exemption on the predefined DB2LBACREADARRAY rule.

DB2LBACREADSET
Grants an exemption on the predefined DB2LBACREADSET rule.

DB2LBACREADTREE
Grants an exemption on the predefined DB2LBACREADTREE rule.

DB2LBACWRITEARRAY
Grants an exemption on the predefined DB2LBACWRITEARRAY rule.

GRANT (exemption)

1058 SQL Reference Volume 2



WRITEDOWN
Specifies that the exemption only applies to write down.

WRITEUP
Specifies that the exemption only applies to write up.

DB2LBACWRITESET
Grants an exemption on the predefined DB2LBACWRITESET rule.

DB2LBACWRITETREE
Grants an exemption on the predefined DB2LBACWRITETREE rule.

ALL
Grants an exemption on all of the predefined rules.

FOR policy-name
Identifies the security policy for which the exemption is being granted. The
exemption will only be effective for tables that are protected by this security
policy. The name must identify a security policy already described in the
catalog (SQLSTATE 42704).

TO Specifies to whom the exemption is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

v If the security policy is not defined to consider access through groups or roles,
any exemption granted to a group or role is ignored when access is attempted.

Notes
v By default when a security policy is created, only exemptions granted to an

individual user are considered. To have groups or roles considered for the

GRANT (exemption)

Statements 1059



security policy, you must issue the ALTER SECURITY POLICY statement and
specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION as
applicable.

Examples
v Example 1: Grant an exemption on access rule DB2LBACREADSET for security

policy DATA_ACCESS to user WALID.
GRANT EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS TO USER WALID

v Example 2: Grant an exemption on access rule DB2LBACWRITEARRAY with the
WRITEDOWN option for security policy DATA_ACCESS to user BOBBY.

GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN
FOR DATA_ACCESS TO USER BOBBY

v Example 3: Grant an exemption on access rule DB2LBACWRITEARRAY with the
WRITEUP option for security policy DATA_ACCESS to user BOBBY.

GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP
FOR DATA_ACCESS TO USER BOBBY

GRANT (exemption)

1060 SQL Reference Volume 2



GRANT (global variable privileges)
This form of the GRANT statement grants one or more privileges on a created
global variable.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH GRANT OPTION for each identified privilege on the global variable
v ACCESSCTRL or SECADM authority

Syntax

��

�

PRIVILEGES
GRANT ALL ON VARIABLE variable-name

,

READ
WRITE

�

� �

,

TO authorization-name
USER WITH GRANT OPTION
GROUP
ROLE

PUBLIC

��

Description

ALL PRIVILEGES
Grants all privileges on the specified global variable.

READ
Grants the privilege to read the value of the specified global variable.

WRITE
Grants the privilege to assign a value to the specified global variable.

ON VARIABLE variable-name
Identifies the global variable on which one or more privileges are to be
granted. The variable-name, including an implicit or explicit qualifier, must
identify a global variable that exists at the current server and is not a module
variable (SQLSTATE 42704).

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group.

GRANT (global variable privileges)

Statements 1061



ROLE
Specifies that the authorization-name identifies an existing role at the current
server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list
of authorization IDs cannot include the authorization ID of the user issuing
the statement (SQLSTATE 42502).

PUBLIC
Grants the specified privileges to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-name to grant the privileges to others. If the
WITH GRANT OPTION clause is omitted, the specified authorization-name
cannot grant the privileges to others unless that authority has been received
from some other source.

Rules
v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database and as either

GROUP or USER in the operating system, an error is returned (SQLSTATE
56092).

– If the authorization-name is defined as both USER and GROUP according to
the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security
plug-in in effect, or if it is undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security
plug-in in effect, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

Notes
v Privileges granted to a group: A privilege that is granted to a group is not used

for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Example

Grant the READ and WRITE privilege on global variable
MYSCHEMA.MYJOB_PRINTER to user ZUBIRI.

GRANT READ, WRITE ON VARIABLE MYSCHEMA.MYJOB_PRINTER TO ZUBIRI

GRANT (global variable privileges)

1062 SQL Reference Volume 2



GRANT (index privileges)
This form of the GRANT statement grants the CONTROL privilege on indexes.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� GRANT CONTROL ON INDEX index-name �

� �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

CONTROL
Grants the privilege to drop the index. This is the CONTROL authority for
indexes, which is automatically granted to creators of indexes.

ON INDEX index-name
Identifies the index for which the CONTROL privilege is to be granted.

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership”.

GRANT (index privileges)

Statements 1063



Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

Notes
v Privileges granted to a group: A privilege that is granted to a group is not used

for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Example

Grant CONTROL privilege on the DEPTIDX index to the user whose ID is
KIESLER:

GRANT CONTROL ON INDEX DEPTIDX TO USER KIESLER

GRANT (index privileges)

1064 SQL Reference Volume 2



GRANT (module privileges)
This form of the GRANT statement grants privileges on a module.

Invocation

This statement can be embedded in an application program or issued issued
through the use of dynamic SQL statements. It is an executable statement that can
be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH GRANT OPTION for EXECUTE on the module.
v ACCESSCTRL or SECADM authority.

Syntax

�� GRANT EXECUTE ON MODULE module-name �

� �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

WITH GRANT OPTION
��

Description

EXECUTE
Grants the privilege to reference published module objects. This includes the
privilege to:
v Execute any published routines defined in the module.
v Read from and write to any published global variables defined in the

module.
v Reference any published user-defined types defined in the module.
v Reference any published conditions defined in the module.

ON MODULE module-name
Identifies the module on which the privilege is granted. The module-name
must identify a module that exists at the current server (SQLSTATE 42704).

TO Indicates to whom the privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name

GRANT (module privileges)

Statements 1065



ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists one or more authorization IDs.

PUBLIC
Grants the privilege to a set of users (authorization IDs). For more
information, see "Authorization, privileges and object ownership".

WITH GRANT OPTION
Allows the specified authorization-names to grant the EXECUTE privilege to
other users. If WITH GRANT OPTION is omitted, the specified
authorization-names cannot grant the EXECUTE privilege to others unless they
have received that authority from some other source.

Notes
v Privileges granted to a group: A privilege that is granted to a group is not used

for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Example

Grant the EXECUTE privilege on module MYMODA to user JONES:
GRANT EXECUTE

ON MODULE MYMODA
TO JONES

GRANT (module privileges)

1066 SQL Reference Volume 2



GRANT (package privileges)
This form of the GRANT statement grants privileges on a package.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the referenced package
v The WITH GRANT OPTION for each identified privilege on package-name

v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to grant the CONTROL privilege.

Syntax

�� GRANT �

,

BIND
CONTROL

(1)
EXECUTE

�

�
(2)

ON PACKAGE package-id
schema-name.

�

� �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

WITH GRANT OPTION
��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND
Grants the privilege to bind a package. The BIND privilege allows a user to
re-issue the BIND command against that package, or to issue the REBIND
command. It also allows a user to create a new version of an existing package.

GRANT (package privileges)

Statements 1067



In addition to the BIND privilege, a user must hold the necessary privileges on
each table referenced by static DML statements contained in a program. This is
necessary, because authorization on static DML statements is checked at bind
time.

CONTROL
Grants the privilege to rebind, drop, or execute the package, and extend
package privileges to other users. The CONTROL privilege for packages is
automatically granted to creators of packages. A package owner is the package
binder, or the ID specified with the OWNER option at bind/precompile time.

BIND and EXECUTE are automatically granted to an authorization-name that is
granted CONTROL privilege.

CONTROL grants the ability to grant the previously mentioned privileges
(except for CONTROL) to others.

EXECUTE
Grants the privilege to execute the package.

ON PACKAGE schema-name.package-id
Specifies the name of the package on which privileges are to be granted. If a
schema name is not specified, the package ID is implicitly qualified by the
default schema. The granting of a package privilege applies to all versions of
the package (that is, to all packages that share the same package ID and
package schema).

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION
Allows the specified authorization-name to GRANT the privileges to others.

If the specified privileges include CONTROL, the WITH GRANT OPTION
applies to all of the applicable privileges except for CONTROL (SQLSTATE
01516).

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

GRANT (package privileges)

1068 SQL Reference Volume 2



– If the authorization-name is defined as ROLE in the database, and as either
GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

Notes
v Package privileges apply to all versions of a package (that is, all packages that

share the same package ID and package schema). It is not possible to restrict
access to only one version. Because CONTROL privilege is implicitly granted to
the binder of a package, if two different users bind two versions of a package,
then both users will implicitly be granted access to each other's package.

v Privileges granted to a group: A privilege that is granted to a group is not used
for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Examples
v Example 1: Grant the EXECUTE privilege on PACKAGE CORPDATA.PKGA to

PUBLIC.
GRANT EXECUTE

ON PACKAGE CORPDATA.PKGA
TO PUBLIC

v Example 2: GRANT EXECUTE privilege on package CORPDATA.PKGA to a
user named EMPLOYEE. There is neither a group nor a user called EMPLOYEE.

GRANT EXECUTE ON PACKAGE
CORPDATA.PKGA TO EMPLOYEE

or
GRANT EXECUTE ON PACKAGE

CORPDATA.PKGA TO USER EMPLOYEE

GRANT (package privileges)

Statements 1069



GRANT (role)
This form of the GRANT statement grants roles to users, groups, or to other roles.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH ADMIN OPTION on the role
v SECADM authority

SECADM authority is required to grant the WITH ADMIN OPTION to an
authorization-name.

Syntax

�� �

,
ROLE

GRANT role-name �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

�

�
WITH ADMIN OPTION

��

Description

ROLE role-name,...
Identifies one or more roles to be granted. Each role-name must identify an
existing role at the current server (SQLSTATE 42704).

TO Specifies to whom the role is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group.

ROLE
Specifies that the authorization-name identifies an existing role at the current
server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list
of authorization IDs cannot include the authorization ID of the user issuing
the statement (SQLSTATE 42502).

GRANT (role)

1070 SQL Reference Volume 2



PUBLIC
Grants the specified roles to a set of users (authorization IDs).

WITH ADMIN OPTION
Allows the specified authorization-name to grant or revoke the role-name to or
from others, or to associate a comment with the role. It does not allow the
specified authorization-name to drop the role.

Rules
v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database and as either

GROUP or USER in the operating system, an error is returned (SQLSTATE
56092).

– If the authorization-name is defined as both USER and GROUP according to
the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security
plug-in in effect, or if it is undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security
plug-in in effect, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

v Hierarchies of roles can be built by granting one role to another role. However,
cycles are not allowed (SQLSTATE 428GF). For example, if role R1 is granted to
another role R2, then role R2 (or some other role Rn that contains R2) cannot be
granted back to R1, because this would produce a cycle.

Notes
v When role R1 is granted to another role R2, then R2 contains R1.
v DBADM authority cannot be granted to PUBLIC. Therefore:

– Granting role R1 to PUBLIC fails (SQLSTATE 42508) if role R1 holds DBADM
authority either directly or indirectly.
- Role R1 holds DBADM authority directly if the following statement has

been issued:
GRANT DBADM ON DATABASE TO ROLE R1

- Role R1 holds DBADM authority indirectly if the following statements have
been issued:
GRANT DBADM ON DATABASE TO ROLE R2

GRANT ROLE R2 TO ROLE R1

– Granting role R1, which holds DBADM authority, to role R2 fails (SQLSTATE
42508) if role R2 is granted to PUBLIC either directly or indirectly.
- Role R2 is granted to PUBLIC directly if the following statement has been

issued:
GRANT ROLE R2 TO PUBLIC

- Role R2 is granted to PUBLIC indirectly if the following statements have
been issued:
GRANT ROLE R2 TO ROLE R3

GRANT ROLE R3 TO PUBLIC

GRANT (role)

Statements 1071



v Privileges granted to a group: A privilege that is granted to a group is not used
for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Examples
v Example 1: Grant role INTERN to role DOCTOR and role DOCTOR to role

SPECIALIST.
GRANT ROLE INTERN TO ROLE DOCTOR

GRANT ROLE DOCTOR TO ROLE SPECIALIST

v Example 2: Grant role INTERN to PUBLIC.
GRANT ROLE INTERN TO PUBLIC

v Example 3: Grant role SPECIALIST to user BOB and group TORONTO.
GRANT ROLE SPECIALIST TO USER BOB, GROUP TORONTO

GRANT (role)

1072 SQL Reference Volume 2



GRANT (routine privileges)
This form of the GRANT statement grants privileges on a routine (function,
method, or procedure) that is not defined in a module.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH GRANT OPTION for EXECUTE on the routine
v ACCESSCTRL or SECADM authority

To grant all routine EXECUTE privileges in the schema or type, the privileges held
by the authorization ID of the statement must include at least one of the following
authorities:
v The WITH GRANT OPTION for EXECUTE on all existing and future routines

(of the specified type) in the specified schema
v ACCESSCTRL or SECADM authority

SECADM authority is required to grant EXECUTE privilege on audit routines and
the SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY procedure.
EXECUTE privilege WITH GRANT OPTION cannot be granted for these routines
(SQLSTATE 42501). EXECUTE privilege cannot be granted to PUBLIC on the
SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY procedure (SQLSTATE
42501).

Syntax

�� GRANT EXECUTE ON function-designator
FUNCTION *

schema.
method-designator

METHOD * FOR type-name
*

schema.
procedure-designator

PROCEDURE *
schema.

�

GRANT (routine privileges)

Statements 1073



� �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

WITH GRANT OPTION
��

function-designator:

�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

method-designator:

�

METHOD method-name FOR type-name
( )

,

data-type
SPECIFIC METHOD specific-name

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

Description

EXECUTE
Grants the privilege to run the identified user-defined function, method, or
procedure.

function-designator
Uniquely identifies the function on which the privilege is granted. For more
information, see “Function, method, and procedure designators” on page 20.

FUNCTION schema.*
Identifies all the functions in the schema, including any functions that may be
created in the future. In dynamic SQL statements, if a schema is not specified,
the schema in the CURRENT SCHEMA special register will be used. In static
SQL statements, if a schema is not specified, the schema in the QUALIFIER
precompile/bind option will be used.

method-designator
Uniquely identifies the method on which the privilege is granted. For more
information, see “Function, method, and procedure designators” on page 20.

GRANT (routine privileges)

1074 SQL Reference Volume 2



METHOD *
Identifies all the methods for the type type-name, including any methods that
may be created in the future.

FOR type-name
Names the type in which the specified method is found. The name must
identify a type already described in the catalog (SQLSTATE 42704). In
dynamic SQL statements, the value of the CURRENT SCHEMA special
register is used as a qualifier for an unqualified type name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified type names. An asterisk (*) can be used in place of
type-name to identify all types in the schema, including any types that may
be created in the future.

procedure-designator
Uniquely identifies the procedure on which the privilege is granted. For more
information, see “Function, method, and procedure designators” on page 20.

PROCEDURE schema.*
Identifies all the procedures in the schema, including any procedures that may
be created in the future. In dynamic SQL statements, if a schema is not
specified, the schema in the CURRENT SCHEMA special register will be used.
In static SQL statements, if a schema is not specified, the schema in the
QUALIFIER precompile/bind option will be used.

TO Specifies to whom the EXECUTE privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

PUBLIC
Grants the EXECUTE privilege to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the EXECUTE privilege to
others.

If the WITH GRANT OPTION is omitted, the specified authorization-name can
only grant the EXECUTE privilege to others if they:
v have SYSADM or DBADM authority or
v received the ability to grant the EXECUTE privilege from some other source.

Rules
v It is not possible to grant the EXECUTE privilege on a function or method

defined with schema 'SYSIBM' or 'SYSFUN' (SQLSTATE 42832).
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

GRANT (routine privileges)

Statements 1075



– If the authorization-name is defined as ROLE in the database, and as either
GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

v In general, the GRANT statement will process the granting of privileges that the
authorization ID of the statement is allowed to grant, returning a warning
(SQLSTATE 01007) if one or more privileges was not granted. If the package
used for processing the statement was precompiled with LANGLEVEL set to
SQL92E or MIA, and no privileges were granted, a warning is returned
(SQLSTATE 01007). If the grantor has no privileges on the object of the grant
operation, an error is returned (SQLSTATE 42501).

Notes
v Privileges for a routine defined in a module are granted at the module level

using the GRANT (module privileges) statement. The EXECUTE privilege on the
module allows access to all objects in the module.

v Privileges granted to a group: A privilege that is granted to a group is not used
for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Examples
v Example 1: Grant the EXECUTE privilege on function CALC_SALARY to user

JONES. Assume that there is only one function in the schema with function
name CALC_SALARY.

GRANT EXECUTE ON FUNCTION CALC_SALARY TO JONES

v Example 2: Grant the EXECUTE privilege on procedure VACATION_ACCR to all
users at the current server.

GRANT EXECUTE ON PROCEDURE VACATION_ACCR TO PUBLIC

v Example 3: Grant the EXECUTE privilege on function DEPT_TOTALS to the
administrative assistant and give the assistant the ability to grant the EXECUTE
privilege on this function to others. The function has the specific name
DEPT85_TOT. Assume that the schema has more than one function named
DEPT_TOTALS.

GRANT EXECUTE ON SPECIFIC FUNCTION DEPT85_TOT
TO ADMIN_A WITH GRANT OPTION

v Example 4: Grant the EXECUTE privilege on function NEW_DEPT_HIRES to HR
(Human Resources). The function has two input parameters of type INTEGER
and CHAR(10), respectively. Assume that the schema has more than one
function named NEW_DEPT_HIRES.

GRANT (routine privileges)

1076 SQL Reference Volume 2



GRANT EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10)) TO HR

v Example 5: Grant the EXECUTE privilege on method SET_SALARY of type
EMPLOYEE to user JONES.

GRANT EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE TO JONES

GRANT (routine privileges)

Statements 1077



GRANT (schema privileges)
This form of the GRANT statement grants privileges on a schema.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH GRANT OPTION for each identified privilege on schema-name

v ACCESSCTRL or SECADM authority

No user can grant privileges on schema names starting with SYSIBM, SYSCAT,
SYSFUN, or SYSSTAT (SQLSTATE 42501).

Syntax

�� GRANT �

,

ALTERIN
CREATEIN
DROPIN

ON SCHEMA schema-name �

� �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

WITH GRANT OPTION
��

Description

ALTERIN
Grants the privilege to alter or comment on all objects in the schema. The
owner of an explicitly created schema automatically receives ALTERIN
privilege.

CREATEIN
Grants the privilege to create objects in the schema. Other authorities or
privileges required to create the object (such as CREATETAB) are still required.
The owner of an explicitly created schema automatically receives CREATEIN
privilege. An implicitly created schema has CREATEIN privilege automatically
granted to PUBLIC.

DROPIN
Grants the privilege to drop all objects in the schema. The owner of an
explicitly created schema automatically receives DROPIN privilege.

ON SCHEMA schema-name
Identifies the schema on which the privileges are to be granted.

GRANT (schema privileges)

1078 SQL Reference Volume 2



TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to others.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

v In general, the GRANT statement will process the granting of privileges that the
authorization ID of the statement is allowed to grant, returning a warning
(SQLSTATE 01007) if one or more privileges was not granted. If no privileges
were granted, an error is returned (SQLSTATE 42501). (If the package used for
processing the statement was precompiled with LANGLEVEL set to SQL92E for
MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no
privileges on the object of the grant operation.)

Notes
v Grant on SYSPUBLIC: Privileges can be granted on the reserved schema

SYSPUBLIC. Granting CREATEIN privilege allows the user to create a public
alias and granting DROPIN privilege allows the user to drop any public alias.

v Privileges granted to a group: A privilege that is granted to a group is not used
for authorization checking on:
– Static DML statements in a package

GRANT (schema privileges)

Statements 1079



– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Examples
v Example 1: Grant user JSINGLETON to the ability to create objects in schema

CORPDATA.
GRANT CREATEIN ON SCHEMA CORPDATA TO JSINGLETON

v Example 2: Grant user IHAKES the ability to create and drop objects in schema
CORPDATA.

GRANT CREATEIN, DROPIN ON SCHEMA CORPDATA TO IHAKES

GRANT (schema privileges)

1080 SQL Reference Volume 2



GRANT (security label)
This form of the GRANT statement grants a label-based access control (LBAC)
security label to a user, group, or role for read access, write access, or for both read
and write access.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� GRANT SECURITY LABEL security-label-name �

� �

,

TO authorization-name
USER
GROUP
ROLE

FOR ALL ACCESS

FOR READ ACCESS
FOR WRITE ACCESS

��

Description

SECURITY LABEL security-label-name
Grants the security label security-label-name. The name must be qualified with a
security policy (SQLSTATE 42704) and must identify a security label that exists
at the current server (SQLSTATE 42704).

TO Specifies to whom the specified security label is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

FOR ALL ACCESS
Indicates that the security label is to be granted for both read access and write
access.

FOR READ ACCESS
Indicates that the security label is to be granted for read access only.

GRANT (security label)

Statements 1081



FOR WRITE ACCESS
Indicates that the security label is to be granted for write access only.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

v For any given security policy, an authorization-name can be granted at most one
security label from that policy for read access and one for write access. If the
grantee already holds a security label for the type of access (read or write)
indicated and that is part of the security policy that qualifies security-label-name,
an error is returned (SQLSTATE 428GR).

v If the security policy is not defined to consider access through groups or roles,
any security label granted to a group or role is ignored when access is
attempted.

v If an authorization-name holds different security labels for read access and write
access, the security labels must meet the following criteria (SQLSTATE 428GQ):
– If any component in the security labels is of type ARRAY then the value for

that component must be the same in both security labels.
– If any component in the security labels is of type SET then every element in

the value for that component in the write security label must also be part of
the value for that component in the read security label.

– If any component in the security labels is of type TREE then every element in
the value for that component in the write security label must be the same as
or a descendent of one of the elements in the value for that same component
in the read security label.

Notes
v By default when a security policy is created, only security labels granted to an

individual user are considered. To have groups or roles considered for the
security policy, you must issue the ALTER SECURITY POLICY statement and
specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION as
applicable.

Example

The following statement grants two security labels to user GUYLAINE. The
security label EMPLOYEESECLABELREAD is granted for read access and the
security label EMPLOYEESECLABELWRITE is granted for write access. Both
security labels are part of the security policy DATA_ACCESS.

GRANT (security label)

1082 SQL Reference Volume 2



GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD
TO USER GUYLAINE FOR READ ACCESS

GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE
TO USER GUYLAINE FOR WRITE ACCESS

The same user is now granted the security label BEGINNER for both read and
write access. This does not cause an error, because BEGINNER is part of the
security policy CLASSPOLICY, and the security labels already held are part of the
security policy DATA_ACCESS.

GRANT SECURITY LABEL CLASSPOLICY.BEGINNER
TO USER GUYLAINE FOR ALL ACCESS

GRANT (security label)

Statements 1083



GRANT (sequence privileges)
This form of the GRANT statement grants privileges on a sequence.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH GRANT OPTION for each identified privilege on sequence-name

v ACCESSCTRL or SECADM authority

Syntax

�� GRANT �

,

USAGE
ALTER

ON SEQUENCE sequence-name �

� �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

WITH GRANT OPTION
��

Description

USAGE
Grants the privilege to reference a sequence using nextval-expression or
prevval-expression.

ALTER
Grants the privilege to alter sequence properties using the ALTER SEQUENCE
statement.

ON SEQUENCE sequence-name
Identifies the sequence on which the specified privileges are to be granted. The
sequence name, including an implicit or explicit schema qualifier, must
uniquely identify an existing sequence at the current server. If no sequence by
this name exists, an error (SQLSTATE 42704) is returned.

TO Specifies to whom the specified privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

GRANT (sequence privileges)

1084 SQL Reference Volume 2



ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

PUBLIC
Grants the specified privileges to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-name to grant the specified privileges to
others.

If the WITH GRANT OPTION is omitted, the specified authorization-name can
only grant the specified privileges to others if they:
v have SYSADM or DBADM authority or
v received the ability to grant the specified privileges from some other source.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

v In general, the GRANT statement will process the granting of privileges that the
authorization ID of the statement is allowed to grant, returning a warning
(SQLSTATE 01007) if one or more privileges is not granted. If no privileges are
granted, an error is returned (SQLSTATE 42501). (If the package used for
processing the statement was precompiled with LANGLEVEL set to SQL92E or
MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no
privileges on the object of the grant operation.)

Notes
v Privileges granted to a group: A privilege that is granted to a group is not used

for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

GRANT (sequence privileges)

Statements 1085



Examples
v Example 1: Grant any user the USAGE privilege on a sequence called ORG_SEQ.

GRANT USAGE ON SEQUENCE ORG_SEQ TO PUBLIC

v Example 2: Grant user BOBBY the ability to alter a sequence called
GENERATE_ID, and to grant this privilege to others.

GRANT ALTER ON SEQUENCE GENERATE_ID TO BOBBY WITH GRANT OPTION

GRANT (sequence privileges)

1086 SQL Reference Volume 2



GRANT (server privileges)
This form of the GRANT statement grants the privilege to access and use a
specified data source in pass-through mode.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� GRANT PASSTHRU ON SERVER server-name TO �

� �

,

authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

server-name
Names the data source for which the privilege to use in pass-through mode is
being granted. server-name must identify a data source that is described in the
catalog.

TO Specifies to whom the privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants to a set of users (authorization IDs) the privilege to pass through to
server-name. For more information, see “Authorization, privileges and
object ownership”.

GRANT (server privileges)

Statements 1087



Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

Examples
v Example 1: Give R. Smith and J. Jones the privilege to pass through to data

source SERVALL. Their authorization IDs are RSMITH and JJONES.
GRANT PASSTHRU ON SERVER SERVALL

TO USER RSMITH,
USER JJONES

v Example 2: Grant the privilege to pass through to data source EASTWING to a
group whose authorization ID is D024. There is a user whose authorization ID is
also D024.

GRANT PASSTHRU ON SERVER EASTWING TO GROUP D024

The GROUP keyword must be specified; otherwise, an error will occur because
D024 is a user's ID as well as the specified group's ID (SQLSTATE 56092). Any
member of group D024 will be allowed to pass through to EASTWING.
Therefore, if user D024 belongs to the group, this user will be able to pass
through to EASTWING.

GRANT (server privileges)

1088 SQL Reference Volume 2



GRANT (SETSESSIONUSER privilege)
This form of the GRANT statement grants the SETSESSIONUSER privilege to one
or more authorization IDs. The privilege allows the holder to use the SET SESSION
AUTHORIZATION statement to set the session authorization to one of a set of
specified authorization IDs.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� �

,

GRANT SETSESSIONUSER ON USER session-authorization-name TO
PUBLIC

�

� �

,

USER authorization-name
GROUP

��

Description

SETSESSIONUSER ON
Grants the privilege to assume the identity of a new authorization ID.

USER session-authorization-name
Specifies the authorization ID that the authorization-name will be able to
assume, using the SET SESSION AUTHORIZATION statement. The
session-authorization-name must identify a user, not a group.

PUBLIC
Specifies that the grantee will be able to assume any valid authorization ID,
using the SET SESSION AUTHORIZATION statement.

TO Specifies to whom the privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

GRANT (SETSESSIONUSER privilege)

Statements 1089



Rules
v For each authorization-name specified, if neither USER nor GROUP is specified,

then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.
– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

Notes
v Privileges granted to a group: A privilege that is granted to a group is not used

for authorization checking on:
– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized

query table
– Create SQL routine
– Create trigger

Examples
v Example 1: The following statement grants user PAUL the ability to set the

session authorization to user WALID and therefore to execute statements as
WALID.

GRANT SETSESSIONUSER ON USER WALID
TO USER PAUL

v Example 2: The following statement grants user GUYLAINE the ability to set the
session authorization to user BOBBY. It also grants her the ability to set the
session authorization to users RICK and KEVIN.

GRANT SETSESSIONUSER ON USER BOBBY, USER RICK, USER KEVIN
TO USER GUYLAINE

v Example 3: The following statement grants user WALID and everyone in the
groups ADMINS and ACCTG the ability to set the session authorization to any
user.

GRANT SETSESSIONUSER ON PUBLIC TO USER WALID, GROUP ADMINS, ACCTG

GRANT (SETSESSIONUSER privilege)

1090 SQL Reference Volume 2



GRANT (table space privileges)
This form of the GRANT statement grants privileges on a table space.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH GRANT OPTION for use of the table space
v ACCESSCTRL, SECADM, SYSADM, or SYSCTRL authority

Syntax

�� GRANT USE OF TABLESPACE tablespace-name TO �

� �

,

authorization-name
USER
GROUP
ROLE

PUBLIC

WITH GRANT OPTION
��

Description

USE
Grants the privilege to specify or default to the table space when creating a
table. The creator of a table space automatically receives USE privilege with
grant option.

OF TABLESPACE tablespace-name
Identifies the table space on which the USE privilege is to be granted. The
table space cannot be SYSCATSPACE (SQLSTATE 42838) or a system
temporary table space (SQLSTATE 42809).

TO Specifies to whom the USE privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name
Lists the authorization IDs of one or more users, groups, or roles.

GRANT (table space privileges)

Statements 1091



The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the USE privilege to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-name to GRANT the USE privilege to others.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

Example

Grant user BOBBY the ability to create tables in table space PLANS and to grant
this privilege to others.

GRANT USE OF TABLESPACE PLANS TO BOBBY WITH GRANT OPTION

GRANT (table space privileges)

1092 SQL Reference Volume 2



GRANT (table, view, or nickname privileges)
This form of the GRANT statement grants privileges on a table, view, or nickname.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the referenced table, view, or nickname
v The WITH GRANT OPTION for each identified privilege. If ALL is specified,

the authorization ID must have some grantable privilege on the identified table,
view, or nickname.

v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to grant the CONTROL privilege,
or to grant privileges on catalog tables and views.

Syntax

�� GRANT

�

�

�

PRIVILEGES
ALL

,

ALTER
CONTROL
DELETE
INDEX
INSERT
REFERENCES

,

( column-name )
SELECT
UPDATE

,

( column-name )

�

�
TABLE

ON table-name
(1)

view-name
nickname

�

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

�

GRANT (table, view, or nickname privileges)

Statements 1093



�
WITH GRANT OPTION

��

Notes:

1 ALTER, INDEX, and REFERENCES privileges are not applicable to views.

Description

ALL or ALL PRIVILEGES
Grants all the appropriate privileges, except CONTROL, on the base table,
view, or nickname named in the ON clause.

If the authorization ID of the statement has CONTROL privilege on the table,
view, or nickname, or ACCESSCTRL or SECADM authority, then all the
privileges applicable to the object (except CONTROL) are granted. Otherwise,
the privileges granted are all those grantable privileges that the authorization
ID of the statement has on the identified table, view, or nickname.

If ALL is not specified, one or more of the keywords in the list of privileges
must be specified.

ALTER
Grants the privilege to:
v Add columns to a base table definition.
v Create or drop a primary key or unique constraint on a base table.
v Create or drop a foreign key on a base table.

The REFERENCES privilege on each column of the parent table is also
required.

v Create or drop a check constraint on a base table.
v Create a trigger on a base table.
v Add, reset, or drop a column option for a nickname.
v Change a nickname column name or data type.
v Add or change a comment on a base table or a nickname.

CONTROL
Grants:
v All of the appropriate privileges in the list, that is:

– ALTER, CONTROL, DELETE, INSERT, INDEX, REFERENCES, SELECT,
and UPDATE to base tables

– CONTROL, DELETE, INSERT, SELECT, and UPDATE to views
– ALTER, CONTROL, INDEX, and REFERENCES to nicknames

v The ability to grant the previously mentioned privileges (except for
CONTROL) to others.

v The ability to drop the base table, view, or nickname.
This ability cannot be extended to others on the basis of holding CONTROL
privilege. The only way that it can be extended is by granting the
CONTROL privilege itself and that can only be done by an authorization ID
with ACCESSCTRL or SECADM authority.

v The ability to execute the RUNSTATS utility on the table and indexes.
v The ability to execute the REORG utility on the table.

GRANT (table, view, or nickname privileges)

1094 SQL Reference Volume 2



v The ability to issue the SET INTEGRITY statement against a base table,
materialized query table, or staging table.

The definer of a base table, materialized query table, staging table, or nickname
automatically receives the CONTROL privilege.

The definer of a view automatically receives the CONTROL privilege if the
definer holds the CONTROL privilege on all tables, views, and nicknames
identified in the fullselect.

DELETE
Grants the privilege to delete rows from the table or updatable view.

INDEX
Grants the privilege to create an index on a table, or an index specification on
a nickname. This privilege cannot be granted on a view. The creator of an
index or index specification automatically has the CONTROL privilege on the
index or index specification (authorizing the creator to drop the index or index
specification). In addition, the creator retains the CONTROL privilege even if
the INDEX privilege is revoked.

INSERT
Grants the privilege to insert rows into the table or updatable view and to run
the IMPORT utility.

REFERENCES
Grants the privilege to create and drop a foreign key referencing the table as
the parent.

If the authorization ID of the statement has one of:
v ACCESSCTRL or SECADM authority
v CONTROL privilege on the table
v REFERENCES WITH GRANT OPTION on the table

then the grantee(s) can create referential constraints using all columns of the
table as parent key, even those added later using the ALTER TABLE statement.
Otherwise, the privileges granted are all those grantable column REFERENCES
privileges that the authorization ID of the statement has on the identified table.

The privilege can be granted on a nickname, although foreign keys cannot be
defined to reference nicknames.

REFERENCES (column-name,...)
Grants the privilege to create and drop a foreign key using only those columns
specified in the column list as a parent key. Each column-name must be an
unqualified name that identifies a column of the table identified in the ON
clause. Column level REFERENCES privilege cannot be granted on typed
tables, typed views, or nicknames (SQLSTATE 42997).

SELECT
Grants the privilege to:
v Retrieve rows from the table or view.
v Create views on the table.
v Run the EXPORT utility against the table or view.

UPDATE
Grants the privilege to use the UPDATE statement on the table or updatable
view identified in the ON clause.

If the authorization ID of the statement has one of:
v ACCESSCTRL or SECADM authority

GRANT (table, view, or nickname privileges)

Statements 1095



v CONTROL privilege on the table or view
v UPDATE WITH GRANT OPTION on the table or view

then the grantee(s) can update all updatable columns of the table or view on
which the grantor has with grant privilege as well as those columns added
later using the ALTER TABLE statement. Otherwise, the privileges granted are
all those grantable column UPDATE privileges that the authorization ID of the
statement has on the identified table or view.

UPDATE (column-name,...)
Grants the privilege to use the UPDATE statement to update only those
columns specified in the column list. Each column-name must be an unqualified
name that identifies a column of the table or view identified in the ON clause.
Column level UPDATE privilege cannot be granted on typed tables, typed
views, or nicknames (SQLSTATE 42997).

ON TABLE table-name or view-name or nickname
Specifies the table, view, or nickname on which privileges are to be granted.

No privileges may be granted on an inoperative view or an inoperative
materialized query table (SQLSTATE 51024). No privileges may be granted on
a declared temporary table (SQLSTATE 42995).

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

A privilege that is granted to a group is not used for authorization
checking:
v On static DML statements in a package
v On a base table while processing a CREATE VIEW statement
v On a base table while processing a CREATE TABLE statement for a

materialized query table

Table privileges granted to groups only apply to statements that are
dynamically prepared. For example, if the INSERT privilege on the
PROJECT table has been granted to group D204 but not UBIQUITY (a
member of D204) UBIQUITY could issue the statement:

EXEC SQL EXECUTE IMMEDIATE :INSERT_STRING;

where the content of the string is:
INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
VALUES (’AD3114’, ’TOOL PROGRAMMING’, ’D21’, ’000260’);

but could not precompile or bind a program with the statement:
EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
VALUES (’AD3114’, ’TOOL PROGRAMMING’, ’D21’, ’000260’);

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more

GRANT (table, view, or nickname privileges)

1096 SQL Reference Volume 2



information, see “Authorization, privileges and object ownership”.
(Previous restrictions on the use of privileges granted to PUBLIC for static
SQL statements and the CREATE VIEW statement have been removed.)

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to others.

If the specified privileges include CONTROL, the WITH GRANT OPTION
applies to all the applicable privileges except for CONTROL (SQLSTATE
01516).

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is
returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect
as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect
as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

v In general, the GRANT statement will process the granting of privileges that the
authorization ID of the statement is allowed to grant, returning a warning
(SQLSTATE 01007) if one or more privileges was not granted. If no privileges
were granted, an error is returned (SQLSTATE 42501). (If the package used for
processing the statement was precompiled with LANGLEVEL set to SQL92E or
MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no
privileges on the object of the grant operation.) If CONTROL privilege is
specified, privileges will only be granted if the authorization ID of the statement
has ACCESSCTRL or SECADM authority (SQLSTATE 42501).

Notes
v Privileges may be granted independently at every level of a table hierarchy. A

user with a privilege on a supertable may affect the subtables. For example, an
update specifying the supertable T may show up as a change to a row in the
subtable S of T done by a user with UPDATE privilege on T but without
UPDATE privilege on S. A user can only operate directly on the subtable if the
necessary privilege is held on the subtable.

v Granting nickname privileges has no effect on data source object (table or view)
privileges. Typically, data source privileges are required for the table or view
that a nickname references when attempting to retrieve data.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
The following syntax is tolerated and ignored:
– PUBLIC AT ALL LOCATIONS

Examples
1. Grant all privileges on the table WESTERN_CR to PUBLIC.

GRANT (table, view, or nickname privileges)

Statements 1097



GRANT ALL ON WESTERN_CR
TO PUBLIC

2. Grant the appropriate privileges on the CALENDAR table so that users PHIL
and CLAIRE can read it and insert new entries into it. Do not allow them to
change or remove any existing entries.

GRANT SELECT, INSERT ON CALENDAR
TO USER PHIL, USER CLAIRE

3. Grant all privileges on the COUNCIL table to user FRANK and the ability to
extend all privileges to others.

GRANT ALL ON COUNCIL
TO USER FRANK WITH GRANT OPTION

4. GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a user named
JOHN. There is a user called JOHN and no group called JOHN.

GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or
GRANT SELECT

ON CORPDATA.EMPLOYEE TO USER JOHN

5. GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a group named
JOHN. There is a group called JOHN and no user called JOHN.

GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or
GRANT SELECT ON CORPDATA.EMPLOYEE TO GROUP JOHN

6. GRANT INSERT and SELECT on table T1 to both a group named D024 and a
user named D024.

GRANT INSERT, SELECT ON TABLE T1
TO GROUP D024, USER D024

In this case, both the members of the D024 group and the user D024 would be
allowed to INSERT into and SELECT from the table T1. Also, there would be
two rows added to the SYSCAT.TABAUTH catalog view.

7. GRANT INSERT, SELECT, and CONTROL on the CALENDAR table to user
FRANK. FRANK must be able to pass the privileges on to others.

GRANT CONTROL ON TABLE CALENDAR
TO FRANK WITH GRANT OPTION

The result of this statement is a warning (SQLSTATE 01516) that CONTROL
was not given the WITH GRANT OPTION. Frank now has the ability to grant
any privilege on CALENDAR including INSERT and SELECT as required.
FRANK cannot grant CONTROL on CALENDAR to other users unless he has
ACCESSCTRL or SECADM authority.

8. User JON created a nickname for an Oracle table that had no index. The
nickname is ORAREM1. Later, the Oracle DBA defined an index for this table.
User SHAWN now wants DB2 to know that this index exists, so that the
optimizer can devise strategies to access the table more efficiently. SHAWN can
inform DB2 of the index by creating an index specification for ORAREM1. Give
SHAWN the index privilege on this nickname, so that he can create the index
specification.

GRANT INDEX ON NICKNAME ORAREM1
TO USER SHAWN

GRANT (table, view, or nickname privileges)

1098 SQL Reference Volume 2



GRANT (workload privileges)
This form of the GRANT statement grants the USAGE privilege on a workload.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL, SECADM, or WLMADM authority.

Syntax

�� GRANT USAGE ON WORKLOAD workload-name �

� �

,

TO authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

USAGE
Grants the privilege to use a workload. Units of work that are submitted by a
user will only be mapped to a workload on which the user has USAGE
privilege. A user with SYSADM or DBADM authority automatically has
USAGE privilege on any workload that exists at the current server.

ON WORKLOAD workload-name
Identifies the workload on which the USAGE privilege is to be granted. This is
a one-part name. The workload-name must identify a workload that exists at the
current server (SQLSTATE 42704). The name cannot be
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

TO Specifies to whom the USAGE privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group.

ROLE
Specifies that the authorization-name identifies an existing role at the current
server (SQLSTATE 42704).

GRANT (workload privileges)

Statements 1099



authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list
of authorization IDs cannot include the authorization ID of the user issuing
the statement (SQLSTATE 42502).

PUBLIC
Grants the USAGE privilege to a set of users (authorization IDs).

Rules
v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified:
– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).
– If the authorization-name is defined as ROLE in the database and as either

GROUP or USER in the operating system, an error is returned (SQLSTATE
56092).

– If the authorization-name is defined as both USER and GROUP according to
the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security
plug-in in effect, or if it is undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security
plug-in in effect, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is
assumed.

Notes
v The GRANT statement does not take effect until it is committed, even for the

connection that issues the statement.
v If the database is created with the RESTRICT option, the USAGE privilege of the

default user workload, SYSDEFAULTUSERWORKLOAD, must be granted
explicitly by a user that has DBADM authority. If the database is created without
the RESTRICT option, the USAGE privilege of SYSDEFAULTUSERWORKLOAD
is granted to PUBLIC at database creation time.

Example

Grant user LISA the ability to use the workload CAMPAIGN.
GRANT USAGE ON WORKLOAD CAMPAIGN TO USER LISA

GRANT (workload privileges)

1100 SQL Reference Volume 2



GRANT (XSR object privileges)
This form of the GRANT statement grants USAGE privilege on an XSR object.

Invocation

The GRANT statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that can
be dynamically prepared only if the DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization

One of the following authorities is required:
v ACCESSCTRL or SECADM authority
v Owner of the XSR object, as recorded in the OWNER column of the

SYSCAT.XSROBJECTS catalog view

Syntax

�� GRANT USAGE ON XSROBJECT xsrobject-name TO PUBLIC ��

Description

ON XSROBJECT xsrobject-name
This name identifies the XSR object for which the USAGE privilege is granted.
The xsrobject-name, including the implicit or explicit schema qualifier, must
uniquely identify an existing XSR object at the current server. If no XSR object
by this name exists, an error is returned (SQLSTATE 42704).

TO PUBLIC
Grants the USAGE privilege to a set of users (authorization IDs).

Example

Grant every user the usage privilege on the XML schema MYSCHEMA:
GRANT USAGE ON XSROBJECT MYSCHEMA TO PUBLIC

GRANT (XSR object privileges)

Statements 1101



IF
The IF statement selects an execution path based on the evaluation of a condition.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

Group privileges are not considered because this statement cannot be dynamically
prepared.

Syntax

�� IF search-condition THEN SQL-routine-statement �

� �

ELSEIF search-condition THEN SQL-routine-statement
�

�
ELSE SQL-routine-statement

END IF ��

SQL-routine-statement:

�

�

SQL-procedure-statement ;

SQL-function-statement ;

Description

search-condition
Specifies the condition for which an SQL statement should be invoked. If the
condition is unknown or false, processing continues to the next search
condition, until either a condition is true or processing reaches the ELSE
clause.

SQL-procedure-statement
Specifies the statement to be invoked if the preceding search-condition is true.
SQL-procedure-statement is only applicable when in the context of an SQL

IF

1102 SQL Reference Volume 2



procedure or a compound SQL (compiled) statement. See SQL-procedure-
statement in “Compound SQL (compiled)” statement.

SQL-function-statement
Specifies the statement to be invoked if the preceding search-condition is true.
SQL-function-statement is only applicable when in the context of a compound
SQL (inlined) statement, an SQL trigger, an SQL function, or an SQL method.
See SQL-function-statement in “FOR”.

Example

The following SQL procedure accepts two IN parameters: an employee number
employee_number and an employee rating rating. Depending on the value of rating,
the employee table is updated with new values in the salary and bonus columns.

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), INOUT rating SMALLINT)
LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE EXIT HANDLER FOR not_found

SET rating = -1;
IF rating = 1

THEN UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF rating = 2
THEN UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

IF

Statements 1103



INCLUDE
The INCLUDE statement inserts declarations into a source program.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement.

Authorization

None required.

Syntax

�� INCLUDE SQLCA
SQLDA
name

��

Description

SQLCA
Indicates the description of an SQL communication area (SQLCA) is to be
included.

SQLDA
Indicates the description of an SQL descriptor area (SQLDA) is to be included.

name
Identifies an external file containing text that is to be included in the source
program being precompiled. It can be an SQL identifier without a file name
extension or a literal enclosed by single quotation marks (' '). An SQL identifier
assumes the filename extension of the source file being precompiled. If a file
name extension is not provided by a literal enclosed by quotation marks, none
is assumed.

Notes
v When a program is precompiled, the INCLUDE statement is replaced by source

statements. Thus, the INCLUDE statement should be specified at a point in the
program such that the resulting source statements are acceptable to the compiler.

v The external source file must be written in the host language specified by name.
If it is greater than 18 bytes or contains characters that are not allowed in an
SQL identifier, it must be enclosed by single quotation marks. INCLUDE name
statements may be nested though not cyclical (for example, if A and B are
modules and A contains an INCLUDE name statement, then it is not valid for A
to call B and then B to call A).

v When the LANGLEVEL precompile option is specified with the SQL92E value,
INCLUDE SQLCA should not be specified. SQLSTATE and SQLCODE variables
may be defined within the host variable declare section.

Example

Include an SQLCA in a C program.
EXEC SQL INCLUDE SQLCA;

EXEC SQL DECLARE C1 CURSOR FOR

INCLUDE

1104 SQL Reference Volume 2



SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT
WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;

while (SQLCODE==0) {
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

(Print results)

}

EXEC SQL CLOSE C1;

INCLUDE

Statements 1105



INSERT
The INSERT statement inserts rows into a table, nickname, or view, or the
underlying tables, nicknames, or views of the specified fullselect.

Inserting a row into a nickname inserts the row into the data source object to
which the nickname refers. Inserting a row into a view also inserts the row into the
table on which the view is based, if no INSTEAD OF trigger is defined for the
insert operation on this view. If such a trigger is defined, the trigger will be
executed instead.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v INSERT privilege on the target table, view, or nickname
v CONTROL privilege on the target table, view, or nickname
v DATAACCESS authority

In addition, for each table, view, or nickname referenced in any fullselect used in
the INSERT statement, the privileges held by the authorization ID of the statement
must include at least one of the following authorities:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

GROUP privileges are not checked for static INSERT statements.

If the target of the insert operation is a nickname, the privileges on the object at
the data source are not considered until the statement is executed at the data
source. At this time, the authorization ID that is used to connect to the data source
must have the privileges required for the operation on the object at the data
source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax

�� INSERT INTO table-name
view-name
nickname
( fullselect ) �

,

( column-name )

�

INSERT

1106 SQL Reference Volume 2



�
include-columns

�

� �

�

�

,

VALUES expression
NULL
DEFAULT

,

( expression )
NULL
DEFAULT

row-expression
fullselect

,

WITH common-table-expression

WITH RR
RS
CS
UR

��

include-columns:

INCLUDE �

,

( column-name data-type )

Description

INTO table-name, view-name, nickname, or (fullselect)
Identifies the object of the insert operation. The name must identify one of the
following objects:
v A table, view or nickname that exists at the application server
v A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a system-maintained materialized query
table, a view of a catalog table, or a read-only view, unless an INSTEAD OF
trigger is defined for the insert operation on the subject view. Rows inserted
into a nickname are placed in the data source object to which the nickname
refers.

If the object of the insert operation is a fullselect, the fullselect must be
insertable, as defined in the “Insertable views” Notes item in the description of
the CREATE VIEW statement.

If the object of the insert operation is a nickname, the extended indicator
variable values of DEFAULT and UNASSIGNED must not be used (SQLSTATE
22539).

If no INSTEAD OF trigger exists for the insert operation on this view, a value
cannot be inserted into a view column that is derived from the following
elements:
v A constant, expression, or scalar function
v The same base table column as some other column of the view

If the object of the insert operation is a view with such columns, a list of
column names must be specified, and the list must not identify these columns.

INSERT

Statements 1107



A row can be inserted into a view or a fullselect that is defined using a
UNION ALL if the row satisfies the check constraints of exactly one of the
underlying base tables. If a row satisfies the check constraints of more than one
table, or no table at all, an error is returned (SQLSTATE 23513).

A row cannot be inserted into a view or a fullselect that is defined using a
UNION ALL if any base table of the view contains a before trigger and the
before trigger contains an UPDATE, a DELETE, or an INSERT operation, or
invokes any routine containing such operations (SQLSTATE 42987).

(column-name,...)
Specifies the columns for which insert values are provided. Each name must
identify a column of the specified table, view, or nickname, or a column in the
fullselect. The same column must not be identified more than once. If extended
indicator variables are not enabled, a column that cannot accept inserted
values (for example, a column based on an expression) must not be identified.

Omission of the column list is an implicit specification of a list in which every
column of the table (that is not implicitly hidden) or view, or every item in the
select-list of the fullselect is identified in left-to-right order. This list is
established when the statement is prepared and, therefore, does not include
columns that were added to a table after the statement was prepared.

include-columns
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the intermediate result table of the INSERT
statement when it is nested in the FROM clause of a fullselect. The
include-columns are appended at the end of the list of columns that are
specified for table-name or view-name.

INCLUDE
Specifies a list of columns to be included in the intermediate result table of
the INSERT statement. This clause can only be specified if the INSERT
statement is nested in the FROM clause of a fullselect.

column-name
Specifies a column of the intermediate result table of the INSERT
statement. The name cannot be the same as the name of another include
column or a column in table-name or view-name (SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one
that is supported by the CREATE TABLE statement.

VALUES
Introduces one or more rows of values to be inserted.

Each row specified in the VALUES clause must be assignable to the implicit or
explicit column list and the columns identified in the INCLUDE clause, unless
a row variable is used. When a row value list in parentheses is specified, the
first value is inserted into the first column in the list, the second value into the
second column, and so on. When a row expression is specified, the number of
fields in the row type must match the number of names in the implicit or
explicit column list.

expression
An expression can be any expression defined in the “Expressions” topic. If
expression is a row type, it must not appear in parentheses. If expression is a
variable, the host variable can include an indicator variable or in the case
of a host structure, an indicator array, enabled for extended indicator
variables. If extended indicator variables are enabled, the extended

INSERT

1108 SQL Reference Volume 2



indicator variable values of default (-5) or unassigned (-7) must not be
used (SQLSTATE 22539) if either of the following statements is true:
v The expression is more complex than a single host variable with explicit

casts
v The target column has data type of structured type

NULL
Specifies the null value and should only be specified for nullable columns.

DEFAULT
Specifies that the default value is to be used. The result of specifying
DEFAULT depends on how the column was defined, as follows:
v If the column was defined as a generated column based on an

expression, the column value is generated by the system, based on that
expression.

v If the IDENTITY clause is used, the value is generated by the database
manager.

v If the ROW CHANGE TIMESTAMP clause is used, the value for each
inserted row is generated by the database manager as a timestamp that
is unique for the table partition within the database partition.

v If the WITH DEFAULT clause is used, the value inserted is as defined
for the column (see default-clause in “CREATE TABLE”).

v If the NOT NULL clause is used and the GENERATED clause is not
used, or the WITH DEFAULT clause is not used or DEFAULT NULL is
used, the DEFAULT keyword cannot be specified for that column
(SQLSTATE 23502).

v When inserting into a nickname, the DEFAULT keyword will be passed
through the INSERT statement to the data source only if the data source
supports the DEFAULT keyword in its query language syntax.

row-expression
Specifies any row expression of the type described in "Row expressions"
that does not include a column name. The number of fields in the row
must match the target of the insert and each field must be assignable to the
corresponding column.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. There
may be one, more than one, or none. If the result table is empty, SQLCODE is
set to +100 and SQLSTATE is set to '02000'.

When the base object of the INSERT and the base object of the fullselect or any
subquery of the fullselect, are the same table, the fullselect is completely
evaluated before any rows are inserted.

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the
first column in the list, the second value in the second column, and so on.

If the expression that specifies the value of a result column is a variable, the
host variable can include an indicator variable enabled for extended indicator
variables. If extended indicator variables are enabled, and the expression is
more than a single host variable, or a host variable being explicitly cast, then
the extended indicator variable values of default or unassigned must not be

INSERT

Statements 1109



used (SQLSTATE 22539). The effects of default or unassigned values apply to
the corresponding target columns of the fullselect.

WITH
Specifies the isolation level at which the fullselect is executed.

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound. The WITH clause has no effect on nicknames,
which always use the default isolation level of the statement.

Rules
v Triggers: INSERT statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on
the inserted values. If an insert operation into a view causes an INSTEAD OF
trigger to fire, validity, referential integrity, and constraints will be checked
against the updates that are performed in the trigger, and not against the view
that caused the trigger to fire, or its underlying tables.

v Default values: The value inserted in any column that is not in the column list is
either the default value of the column or null. Columns that do not allow null
values and are not defined with NOT NULL WITH DEFAULT must be included
in the column list. Similarly, if you insert into a view, the value inserted into any
column of the base table that is not in the view is either the default value of the
column or null. Hence, all columns of the base table that are not in the view
must have either a default value or allow null values. The only value that can be
inserted into a generated column defined with the GENERATED ALWAYS clause
is DEFAULT (SQLSTATE 428C9).

v Length: If the insert value of a column is a number, the column must be a
numeric column with the capacity to represent the integral part of the number. If
the insert value of a column is a string, the column must either be a string
column with a length attribute at least as great as the length of the string, or a
datetime column if the string represents a date, time, or timestamp.

v Assignment: Insert values are assigned to columns in accordance with specific
assignment rules.

v Validity: If the table named, or the base table of the view named, has one or
more unique indexes, each row inserted into the table must conform to the
constraints imposed by those indexes. If a view whose definition includes WITH
CHECK OPTION is named, each row inserted into the view must conform to
the definition of the view. For an explanation of the rules governing this
situation, see “CREATE VIEW”.

v Referential integrity: For each constraint defined on a table, each non-null insert
value of the foreign key must be equal to a primary key value of the parent
table.

v Check constraint: Insert values must satisfy the check conditions of the check
constraints defined on the table. An INSERT to a table with check constraints
defined has the constraint conditions evaluated once for each row that is
inserted.

v XML values: A value that is inserted into an XML column must be a
well-formed XML document (SQLSTATE 2200M).

INSERT

1110 SQL Reference Volume 2



v Security policy: If the identified table or the base table of the identified view is
protected with a security policy, the session authorization ID must have the
label-based access control (LBAC) credentials that allow:
– Write access to all protected columns for which a data value is explicitly

provided (SQLSTATE 42512)
– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

The session authorization ID must also have been granted a security label for
write access for the security policy if an implicit value is used for a
DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:
– A value for the DB2SECURITYLABEL column is not explicitly provided
– A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the
security policy is created with the OVERRIDE NOT AUTHORIZED WRITE
SECURITY LABEL option

v Extended indicator variable usage: If enabled, negative indicator variable values
outside the range of -1 through -7 must not be input (SQLSTATE 22010). Also, if
enabled, the default and unassigned extended indicator variable values must not
appear in contexts in which they are not supported (SQLSTATE 22539).

v Extended indicator variables: In an INSERT statement, a value of unassigned
has the effect of setting the column to its default value.
If the target column is a column defined as GENERATED ALWAYS, then it must
be assigned the DEFAULT keyword, or the extended indicator variable-based
values of default or unassigned (SQLSTATE 428C9).

Notes
v After execution of an INSERT statement, the value of the third variable of the

SQLERRD(3) portion of the SQLCA indicates the number of rows that were
passed to the insert operation. In the context of an SQL procedure statement, the
value can be retrieved using the ROW_COUNT variable of the GET
DIAGNOSTICS statement. SQLERRD(5) contains the count of all triggered insert,
update and delete operations.

v Unless appropriate locks already exist, one or more exclusive locks are acquired
at the execution of a successful INSERT statement. Until the locks are released,
an inserted row can only be accessed by:
– The application process that performed the insert.
– Another application process using isolation level UR through a read-only

cursor, SELECT INTO statement, or subselect used in a subquery.
v For further information about locking, see the description of the COMMIT,

ROLLBACK, and LOCK TABLE statements.
v If an application is running against a partitioned database, and it is bound with

option INSERT BUF, then INSERT with VALUES statements which are not
processed using EXECUTE IMMEDIATE may be buffered. It is assumed that
such an INSERT statement is being processed inside a loop in the application's
logic. Rather than execute the statement to completion, it attempts to buffer the
new row values in one or more buffers. As a result the actual insertions of the
rows into the table are performed later, asynchronous with the application's
INSERT logic. Be aware that this asynchronous insertion may cause an error
related to an INSERT to be returned on some other SQL statement that follows
the INSERT in the application.

INSERT

Statements 1111



This has the potential to dramatically improve INSERT performance, but is best
used with clean data, due to the asynchronous nature of the error handling.

v When a row is inserted into a table that has an identity column, a value is
generated for the identity column.
– For a GENERATED ALWAYS identity column, the value is always generated.
– For a GENERATED BY DEFAULT column, if a value is not explicitly specified

(with a VALUES clause, or subselect), a value is generated.

The first value generated is the value of the START WITH specification for the
identity column.

v When a value is inserted for a user-defined distinct type identity column, the
entire computation is done in the source type, and the result is cast to the
distinct type before the value is actually assigned to the column. (There is no
casting of the previous value to the source type before the computation.)

v When inserting into a GENERATED ALWAYS identity column, a value is always
generated for the column, and users must not specify a value at insertion time.
If a GENERATED ALWAYS identity column is listed in the column-list of the
INSERT statement, with a non-DEFAULT value in the VALUES clause, an error
occurs (SQLSTATE 428C9).
For example, assuming that EMPID is defined as an identity column that is
GENERATED ALWAYS, then the command:

INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)
VALUES (:hv_valid_emp_id, :hv_name, :hv_addr)

will result in an error.
v When inserting into a GENERATED ALWAYS ROW CHANGE TIMESTAMP

column, a value is always generated for the column, and users must not specify
a value at insertion time (SQLSTATE 428C9) . The value generated is unique for
each row inserted on the database partition.

v When inserting into a GENERATED BY DEFAULT column, you can specify an
actual value for the column within the VALUES clause, or from a subselect.
However, when a value is specified in the VALUES clause, the database
manager does not perform any verification of the value. To guarantee
uniqueness of IDENTITY column values, a unique index on the identity column
must be created.
When inserting into a table with a GENERATED BY DEFAULT identity column,
without specifying a column list, the VALUES clause can specify the DEFAULT
keyword to represent the value for the identity column. In such cases, the value
for the identity column will be generated.

INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)
VALUES (DEFAULT, :hv_name, :hv_addr)

In this example, EMPID is defined as an identity column, and thus the value
inserted into this column is generated by the database manager.

v The rules for inserting into an identity column with a subselect are similar to
those for an insert with a VALUES clause. A value for an identity column may
only be specified if the identity column is defined as GENERATED BY
DEFAULT.
For example, assume T1 and T2 are tables with the same definition, both
containing columns intcol1 and identcol2 (both are type INTEGER and the second
column has the identity attribute). Consider the following insert:

INSERT INTO T2
SELECT *
FROM T1

INSERT

1112 SQL Reference Volume 2



This example is logically equivalent to:
INSERT INTO T2 (intcol1,identcol2)

SELECT intcol1, identcol2
FROM T1

In both cases, the INSERT statement is providing an explicit value for the
identity column of T2. This explicit specification can be given a value for the
identity column, but the identity column in T2 must be defined as GENERATED
BY DEFAULT. Otherwise, an error will result (SQLSTATE 428C9).
If there is a table with a column defined as a GENERATED ALWAYS identity, it
is still possible to propagate all other columns from a table with the same
definition. For example, given the example tables T1 and T2 described
previously, the intcol1 values from T1 to T2 can be propagated with the
following SQL:

INSERT INTO T2 (intcol1)
SELECT intcol1
FROM T1

Note that, because identcol2 is not specified in the column-list, it will be filled in
with its default (generated) value.

v When inserting a row into a single column table where the column is defined as
a GENERATED ALWAYS identity column or a ROW CHANGE TIMESTAMP
column, it is possible to specify a VALUES clause with the DEFAULT keyword.
In this case, the application does not provide any value for the table, and the
database manager generates the value for the identity or ROW CHANGE
TIMESTAMP column.

INSERT INTO IDTABLE
VALUES(DEFAULT)

Assuming the same single column table for which the column has the identity
attribute, to insert multiple rows with a single INSERT statement, the following
INSERT statement could be used:

INSERT INTO IDTABLE
VALUES (DEFAULT), (DEFAULT), (DEFAULT), (DEFAULT)

v When a value for an identity column is generated, that generated value is
consumed; the next time that a value is needed, a new value is generated. This
is true even when an INSERT statement involving an identity column fails or is
rolled back.
For example, assume that a unique index has been created on the identity
column. If a duplicate key violation is detected in generating a value for an
identity column, an error occurs (SQLSTATE 23505) and the value generated for
the identity column is considered to be consumed. This can occur when the
identity column is defined as GENERATED BY DEFAULT and the system tries
to generate a new value, but the user has explicitly specified values for the
identity column in previous INSERT statements. Reissuing the same INSERT
statement in this case can lead to success. The next value for the identity column
will be generated, and it is possible that this next value will be unique, and that
this INSERT statement will be successful.

v If the maximum value for the identity column is exceeded (or minimum value
for a descending sequence) in generating a value for an identity column, an
error occurs (SQLSTATE 23522). In this situation, the user would have to DROP
and CREATE a new table with an identity column having a larger range (that is,
change the data type or increment value for the column to allow for a larger
range of values).

INSERT

Statements 1113



For example, an identity column may have been defined with a data type of
SMALLINT, and eventually the column runs out of assignable values. To
redefine the identity column as INTEGER, the data would need to be unloaded,
the table would have to be dropped and recreated with a new definition for the
column, and then the data would be reloaded. When the table is redefined, it
needs to specify a START WITH value for the identity column such that the next
value generated will be the next value in the original sequence. To determine the
end value, issue a query using MAX of the identity column (for an ascending
sequence), or MIN of the identity column (for a descending sequence), before
unloading the data.

v Extended indicator variables and insert triggers: No change in the activation of
insert triggers results from use of extended indicator variables. If all columns in
the implicit or explicit column list have been assigned to an extended indicator
variable-based value of unassigned or default, an insert where all columns have
their respective default values is attempted, and if successful, the insert trigger is
activated.

v Extended indicator variables and deferred error checks: When extended
indicator variables are enabled, validation that would otherwise be done in
statement preparation, to recognize an insert into a non-updatable column, is
deferred until statement execution. Whether an error should be reported can be
determined only during execution.

v Inserting into tables with row-begin, row-end, or transaction start-ID columns:
When a row is inserted into a table with these generated columns (for instance,
a system-period temporal table), the database manager assigns values to the
following columns:
– A row-begin column is assigned a value that is generated using a reading of

the time-of-day clock during execution of the first data change statement in
the transaction that requires a value to be assigned to the row-begin or
transaction start-ID column in a table, or a row in a system-period temporal
table is deleted. The database manager ensures uniqueness of the generated
values for a row-begin column across transactions. If multiple rows are
inserted within a single SQL transaction, the values for the row-begin column
are the same for all the rows and are unique from the values generated for
the column for another transaction.

– A row-end column is assigned the maximum value for the data type of the
column (9999-12-30-00.00.00.000000000000).

– A transaction start-ID column is assigned a unique timestamp value per
transaction or the null value. The null value is assigned to the transaction
start-ID column if the column is nullable. Otherwise, the value is generated
using a reading of the time-of-day clock during execution of the first data
change statement in the transaction that requires a value to be assigned to the
row-begin or transaction start-ID column in a table, or a row in a
system-period temporal table is deleted. If multiple rows are inserted within a
single SQL transaction, the values for the transaction start-ID column are the
same for all the rows and are unique from the values generated for the
column for another transaction.

v Inserting into a system-period temporal table: When a row is inserted into a
system-period temporal table, the database manager assigns values to columns
as indicated for tables with row-begin, row-end, or transaction start-ID columns.
Also, when a row is inserted, no rows are added to the history table associated
with the system-period temporal table.

v Inserting into application-period temporal tables: An error is returned when a
row is inserted into an application-period temporal table and the following
conditions are met:

INSERT

1114 SQL Reference Volume 2



– The application-period temporal table has either a primary key or unique
constraint with the BUSINESS_TIME WITHOUT OVERLAPS clause defined,
or a unique index with the BUSINESS_TIME WITHOUT OVERLAPS clause
defined.

– The period defined by the begin and end columns of the BUSINESS_TIME
period overlap the period defined by the begin and end columns of the
BUSINESS_TIME period for another row that matches the other columns of
the same unique constraint or unique index.

v Considerations for an INSERT without a column list: An INSERT statement
without a column list does not include implicitly hidden columns. Columns that
are defined as implicitly hidden and not null must have a defined default value.

Examples
v Example 1: Insert a new department with the following specifications into the

DEPARTMENT table:
– Department number (DEPTNO) is 'E31'
– Department name (DEPTNAME) is 'ARCHITECTURE'
– Managed by (MGRNO) a person with number '00390'
– Reports to (ADMRDEPT) department 'E01'.

INSERT INTO DEPARTMENT
VALUES (’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

v Example 2: Insert a new department into the DEPARTMENT table as in example
1, but do not assign a manager to the new department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT )
VALUES (’E31’, ’ARCHITECTURE’, ’E01’)

v Example 3: Insert two new departments using one statement into the
DEPARTMENT table as in example 2, but do not assign a manager to the new
department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
VALUES (’B11’, ’PURCHASING’, ’B01’),

(’E41’, ’DATABASE ADMINISTRATION’, ’E01’)

v Example 4: Create a temporary table MA_EMP_ACT with the same columns as
the EMP_ACT table. Load MA_EMP_ACT with the rows from the EMP_ACT
table with a project number (PROJNO) starting with the letters 'MA'.

CREATE TABLE MA_EMP_ACT
( EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DEC(5,2),
EMSTDATE DATE,
EMENDATE DATE )

INSERT INTO MA_EMP_ACT
SELECT * FROM EMP_ACT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

v Example 5: Use a C program statement to add a skeleton project to the
PROJECT table. Obtain the project number (PROJNO), project name
(PROJNAME), department number (DEPTNO), and responsible employee
(RESPEMP) from host variables. Use the current date as the project start date
(PRSTDATE). Assign a null value to the remaining columns in the table.

EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)
VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

INSERT

Statements 1115



v Example 6: Specify an INSERT statement as the data-change-table-reference within
a SELECT statement. Define an extra include column whose values are specified
in the VALUES clause, which is then used as an ordering column for the
inserted rows.

SELECT INORDER.ORDERNUM
FROM NEW TABLE (INSERT INTO ORDERS(CUSTNO)INCLUDE (INSERTNUM INTEGER)
VALUES(:CNUM1, 1), (:CNUM2, 2)) InsertedOrders

ORDER BY INSERTNUM;

v Example 7: Use a C program statement to add a document to the DOCUMENTS
table. Obtain values for the document ID (DOCID) column and the document
data (XMLDOC) column from a host variable that binds to an SQL TYPE IS
XML AS BLOB_FILE.

EXEC SQL INSERT INTO DOCUMENTS
(DOCID, XMLDOC) VALUES (:docid, :xmldoc)

v Example 8: For the following INSERT statements, assume that table
SALARY_INFO is defined with three columns, and that the last column is an
implicitly hidden ROW CHANGE TIMESTAMP column. In the following
statement, the implicitly hidden column is explicitly referenced in the column
list and a value is provided for it in the VALUES clause.

INSERT INTO SALARY_INFO (LEVEL, SALARY, UPDATE_TIME)
VALUES (2, 30000, CURRENT TIMESTAMP)

The following INSERT statement uses an implicit column list. An implicit
column list does not include implicitly hidden columns, so the VALUES clause
only contains values for the other two columns.

INSERT INTO SALARY_INFO VALUES (2, 30000)

In this case, the UPDATE_TIME column must be defined to have a default
value, and that default value is used for the row that is inserted.

INSERT

1116 SQL Reference Volume 2



ITERATE
The ITERATE statement causes the flow of control to return to the beginning of a
labelled loop.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

None required.

Syntax

�� ITERATE label ��

Description

label
Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to which
the database server passes the flow of control.

Example

This example uses a cursor to return information for a new department. If the
not_found condition handler was invoked, the flow of control passes out of the
loop. If the value of v_dept is 'D11', an ITERATE statement passes the flow of
control back to the top of the LOOP statement. Otherwise, a new row is inserted
into the DEPARTMENT table.

CREATE PROCEDURE ITERATOR()
LANGUAGE SQL
BEGIN

DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
DECLARE v_admdept CHAR(3);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT deptno, deptname, admrdept
FROM department
ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
ins_loop:
LOOP

FETCH c1 INTO v_dept, v_deptname, v_admdept;
IF at_end = 1 THEN

LEAVE ins_loop;
ELSEIF v_dept = ’D11’ THEN

ITERATE

Statements 1117



ITERATE ins_loop;
END IF;
INSERT INTO department (deptno, deptname, admrdept)
VALUES (’NEW’, v_deptname, v_admdept);

END LOOP;
CLOSE c1;

END

ITERATE

1118 SQL Reference Volume 2



LEAVE
The LEAVE statement transfers program control out of a loop or a compound
statement.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

None required.

Syntax

�� LEAVE label ��

Description

label
Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE
statement to exit.

Notes
v When a LEAVE statement transfers control out of a compound statement, all

open cursors in the compound statement, except cursors that are used to return
result sets, are closed.

Example

This example contains a loop that fetches data for cursor c1. If the value of SQL
variable at_end is not zero, the LEAVE statement transfers control out of the loop.

CREATE PROCEDURE LEAVE_LOOP(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER for not_found
SET at_end = 1;

SET v_counter = 0;
OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;

LEAVE

Statements 1119



IF at_end <> 0 THEN LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LEAVE

1120 SQL Reference Volume 2



LOCK TABLE
The LOCK TABLE statement prevents concurrent application processes from using
or changing a table. The lock is released when the unit of work issuing the LOCK
TABLE statement either commits or terminates.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v SELECT privilege on the table
v CONTROL privilege on the table
v DATAACCESS authority

Syntax

�� LOCK TABLE table-name
nickname

IN SHARE MODE
EXCLUSIVE

��

Description

table-name or nickname
Identifies the table or nickname. The table-name must identify a table that exists
at the application server, but it must not identify a catalog table, a created
temporary table, or a declared temporary table (SQLSTATE 42995). If the
table-name is a typed table, it must be the root table of the table hierarchy
(SQLSTATE 428DR). When a nickname is specified, the database manager will
lock the underlying object (that is, a table or view) of the data source to which
the nickname refers.

IN SHARE MODE
Prevents concurrent application processes from executing any but read-only
operations on the table.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations on
the table. Note that EXCLUSIVE MODE does not prevent concurrent
application processes that are running at isolation level Uncommitted Read
(UR) from executing read-only operations on the table.

Notes
v Locking is used to prevent concurrent operations. A lock is not necessarily

acquired during execution of the LOCK TABLE statement if a suitable lock
already exists. The lock that prevents concurrent operations is held at least until
termination of the unit of work.

v In a partitioned database, a table lock is first acquired at the first database
partition in the database partition group (the database partition with the lowest
number) and then at other database partitions. If the LOCK TABLE statement is
interrupted, the table may be locked on some database partitions but not on

LOCK TABLE

Statements 1121



others. If this occurs, either issue another LOCK TABLE statement to complete
the locking on all database partitions, or issue a COMMIT or ROLLBACK
statement to release the current locks.

v This statement affects all database partitions in the database partition group.
v For partitioned tables, the only lock acquired for the LOCK TABLE statement is

at the table level; no data partition locks are acquired.

Example

Obtain a lock on the table EMP. Do not allow other programs to read or update the
table.

LOCK TABLE EMP IN EXCLUSIVE MODE

LOCK TABLE

1122 SQL Reference Volume 2



LOOP
The LOOP statement repeats the execution of a statement or a group of statements.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

No privileges are required to invoke the LOOP statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded in the LOOP statement.

Syntax

�� LOOP SQL-routine-statement END LOOP
label: label

��

SQL-routine-statement:

�

�

SQL-procedure-statement ;

SQL-function-statement ;

Description

label
Specifies the label for the LOOP statement. If the beginning label is specified,
that label can be specified on LEAVE and ITERATE statements. If the ending
label is specified, a matching beginning label must be specified.

SQL-procedure-statement
Specifies the SQL statements that are to be invoked in the loop.
SQL-procedure-statement is only applicable when in the context of an SQL
procedure or Compound SQL (compiled) statement. See SQL-procedure-
statement in “Compound SQL (compiled)” statement.

SQL-function-statement
Specifies the SQL statements that are to be invoked in the loop.
SQL-function-statement is only applicable when in the context of an SQL
function, SQL method, or Compound SQL (inlined) statement. See
SQL-function-statement in “FOR”.

LOOP

Statements 1123



Example

This procedure uses a LOOP statement to fetch values from the employee table.
Each time the loop iterates, the OUT parameter counter is incremented and the
value of v_midinit is checked to ensure that the value is not a single space (' '). If
v_midinit is a single space, the LEAVE statement passes the flow of control outside
of the loop.

CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET counter = -1;

OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF v_midinit = ’ ’ THEN

LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LOOP

1124 SQL Reference Volume 2



MERGE
The MERGE statement updates a target (a table or view, or the underlying tables
or views of a fullselect) using data from a source (result of a table reference).

Rows in the target that match the source can be deleted or updated as specified,
and rows that do not exist in the target can be inserted. Updating, deleting or
inserting a row in a view updates, deletes or inserts the row in the tables on which
the view is based.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v If an insert operation is specified, INSERT privilege on the table or view; if a

delete operation is specified, DELETE privilege on the table or view; and if an
update operation is specified, either:
– UPDATE privilege on the table or view
– UPDATE privilege on each column that is to be updated

v CONTROL privilege on the table
v DATAACCESS authority

The privileges held by the authorization ID of the statement must also include at
least one of the following authorities:
v SELECT privilege on every table or view identified in the table-reference

v CONTROL privilege on the tables or views identified in the table-reference

v DATAACCESS authority

If search-condition, insert-operation, or assignment-clause includes a subquery, the
privileges held by the authorization ID of the statement must also include at least
one of the following authorities:
v SELECT privilege on every table or view identified in the subquery
v CONTROL privilege on the tables or views identified in the subquery
v DATAACCESS authority

If a row-fullselect is included in the assignment, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities for each referenced table, view, or nickname:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If an expression that refers to a function is specified, the privilege set must include
any authority that is necessary to execute the function.

MERGE

Statements 1125



Syntax

�� MERGE INTO table-name
view-name
( fullselect )

correlation-clause
�

� USING table-reference ON search-condition �

� � WHEN matching-condition THEN modification-operation
signal-statement

�

�
ELSE IGNORE

WITH RR
RS
CS
UR

��

correlation-clause:

AS
correlation-name

�

,

( column-name )

matching-condition:

MATCHED
NOT AND search-condition

modification-operation:

update-operation
delete-operation
insert-operation

update-operation:

UPDATE SET assignment-clause
period-clause

assignment-clause:

MERGE

1126 SQL Reference Volume 2



�

� �

,

column-name = expression
DEFAULT
NULL

, ,
(1)

( column-name ) = ( expression )
DEFAULT
NULL

(2)
row-fullselect

delete-operation:

DELETE
period-clause

insert-operation:

�

INSERT
,

( column-name )

�

VALUES expression
DEFAULT
NULL

,

( expression )
DEFAULT
NULL

period-clause:

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

Notes:

1 The number of expressions, NULLs, and DEFAULTs must match the number
of column names.

2 The number of columns in the select list must match the number of column
names.

Description

table-name, view-name, or (fullselect)
Identifies the target of the update, delete, or insert operations of the merge.
The name must identify a table or view that exists at the current server, but it
must not identify a catalog table, a system-maintained materialized query
table, a view of a catalog table, a read-only view, or a view that directly or
indirectly contains a WHERE clause that references a subquery or a routine
defined with NOT DETERMINISTIC or EXTERNAL ACTION (SQLSTATE
42807).

If the target of the merge operation is a fullselect, the fullselect must be
updatable, deletable, or insertable as defined in the “Updatable views”,
“Deletable views”, or “Insertable views” Notes items in the description of the
CREATE VIEW statement.

MERGE

Statements 1127



You cannot use a period-clause in an update-operation or a delete-operation if
the target of the merge operation is a union-all view or a fullselect.

You cannot use a nickname (a reference to a remote, federated table) as the
target table.

correlation-clause
Can be used within search-condition or on the right side of an assignment-clause
to designate a table, view, or fullselect. For a description of correlation-clause,
see “table-reference” in the description of “Subselect”.

USING table-reference
Specifies a set of rows as a result table to be merged into the target. If the
result table is empty, a warning is returned (SQLSTATE 02000).

ON search-condition
Specifies which rows from table-reference are to be used in the update and
delete operation of the merge, and which rows are to be used in the insert
operation of the merge. The search-condition is applied to each row of the target
table and result table of the table-reference. For those rows of the result table of
the table-reference where the result of the search-condition is true, the specified
update or delete operation is performed. For those rows of the result table of
the table-reference where the result of the search-condition is not true, the
specified insert operation is performed.

The search-condition has the following restrictions (SQLSTATE 42972 unless
otherwise noted):
v It cannot contain any subqueries, scalar or otherwise
v It cannot include any dereference operations or the DEREF function where

the reference value is other than the object identifier column
v It cannot include an SQL function
v It cannot include an XMLQUERY or XMLEXISTS expression
v Any column that is referenced in an expression of the search-condition must

be a column of the target table, view, or table-reference

v Any function that is referenced in an expression of the join-condition of a full
outer join must be deterministic and have no external action

v It cannot be include an aggregate function (SQLSTATE 42903)

If the search-condition is false or unknown for every row in table-reference, a
warning is returned (SQLSTATE 02000).

WHEN matching-condition
Specifies the condition under which the modification-operation or the
signal-statement is executed. Each matching-condition is evaluated in order of
specification. Rows for which the matching-condition evaluates to true are not
considered in subsequent matching conditions.

MATCHED
Indicates the operation to be performed on the rows where the ON search
condition is true. Only UPDATE, DELETE, or signal-statement can be
specified after THEN.

AND search-condition
Specifies a further search condition to be applied against the rows that
matched the ON search condition for the operation to be performed
after THEN.

MERGE

1128 SQL Reference Volume 2



NOT MATCHED
Indicates the operation to be performed on the rows where the ON search
condition is false or unknown. Only INSERT or signal-statement can be
specified after THEN.

AND search-condition
Specifies a further search condition to be applied against the rows that
did not match the ON search condition for the operation to be
performed after THEN.

THEN modification-operation
Specifies the operation to execute when the matching-condition evaluates to true.

update-operation
Specifies the update operation to be executed for the rows where the
matching-condition evaluates to true.

UPDATE
Introduces the update operation.

period-clause
Specifies that a period clause is applied to the update operation in
the MERGE statement. For more information about the effects of a
period clause specified in the context of an update operation, see
the UPDATE statement topic.

SET
Introduces the assignment of values to column names.

assignment-clause
Specifies a list of column updates.

column-name
Identifies a column to be updated. The column-name must
identify a column of the specified table or view, but not a
view column derived from a scalar function, constant, or
expression. A column must not be specified more than once
(SQLSTATE 42701).

A view column derived from the same column as another
column of the view can be updated, but both columns
cannot be updated in the same MERGE statement
(SQLSTATE 42701).

expression
Indicates the new value of the column. The expression must
not include an aggregate function except when it occurs
within a scalar fullselect (SQLSTATE 42903).

An expression can contain references to columns of the
table-name or view-name. For each row that is updated, the
value of such a column in an expression is the value of the
column in the row before the row is updated.

If expression is a reference to a single column of the source
table, the source table column value may have been
specified with an extended indicator variable value. The
effects of such indicator variables apply to the
corresponding target columns of the assignment-clause.

MERGE

Statements 1129



If expression is a single host variable, or a host variable
being explicitly cast, the host variable can include an
indicator variable that is enabled for extended indicator
variables.

When extended indicator variables are enabled, the
extended indicator variable values of default (-5) or
unassigned (-7) must not be used (SQLSTATE 22539) if
either of the following statements is true:
v The expression is more complex than a single host

variable with explicit casts
v The target column has data type of structured type

DEFAULT
The default value assigned to the column. DEFAULT can
be specified only for columns that have a default value.
For information about default values of data types, see the
description of the DEFAULT clause in the “CREATE
TABLE” statement.

DEFAULT must be specified for a column that was defined
as GENERATED ALWAYS. A valid value can be specified
for a column that was defined as GENERATED BY
DEFAULT.

NULL
Specifies the null value as the new value of the column.
Specify NULL only for nullable columns (SQLSTATE
23502).

row-fullselect
Specifies a fullselect that returns a single row. The result
column values are assigned to each corresponding
column-name. If the fullselect returns no rows, the null
value is assigned to each column; an error occurs if any
column to be updated is not nullable. An error also occurs
if there is more than one row in the result.

A row-fullselect can contain references to columns of the
target table of the MERGE statement. For each row that is
updated, the value of such a column in an expression is
the value of the column in the row before the row is
updated. An error is returned if there is more than one row
in the result (SQLSTATE 21000).

delete-operation
Specifies the delete operation to be executed for the rows where the
matching-condition evaluates to true.

DELETE
Introduces the delete operation.

period-clause
Specifies that a period clause is applied to the delete operation in
the MERGE statement. For more information about the effects of a
period clause specified in the context of a delete operation, see the
DELETE statement topic.

MERGE

1130 SQL Reference Volume 2



insert-operation
Specifies the insert operation to be executed for the rows where the
matching-condition evaluates to true.

INSERT
Introduces a list of column names and row value expressions to be
used for the insert operation.

The number of values for the row in the row value expression must
equal the number of names in the insert column list. The first value is
inserted in the first column in the list, the second value in the second
column, and so on.

(column-name,...)
Specifies the columns for which the insert values are provided.
Each name must identify a column of the table or view. The same
column must not be identified more than once (SQLSTATE 42701).
A view column that cannot accept insert values must not be
identified. A value cannot be inserted into a view column that is
derived from:
v A constant, expression, or scalar function
v The same base table column as some other column of the view

If the object of the operation is a view with such columns, a list of
column names must be specified, and the list must not identify
these columns.

Omission of the column list is an implicit specification of a list in
which every column of the table (that is not defined as implicitly
hidden) or view is identified in left-to-right order. This list is
established when the statement is prepared, and therefore does not
include columns that were added to a table after the statement was
prepared.

VALUES
Introduces one or more rows of values to be inserted.

expression
Any expression that does not include a column name (SQLSTATE
42703).

If expression is a reference to a single column of the source table,
the source table column value may have been specified with an
extended indicator variable value. The effects of such indicator
variables apply to the corresponding target columns of the
insert-operation.

If expression is a single host variable, or a host variable being
explicitly cast, the host variable can include an indicator variable
(or in the case of a host structure, an indicator array) that is
enabled for extended indicator variables.

When extended indicator variables are enabled, the extended
indicator variable values of default (-5) or unassigned (-7) must not
be used (SQLSTATE 22539) if either of the following statements is
true:
v The expression is more complex than a single host variable with

explicit casts
v The target column has data type of structured type

MERGE

Statements 1131



DEFAULT
The default value assigned to the column. DEFAULT can be
specified only for columns that have a default value. For
information about default values of data types, see the description
of the DEFAULT clause in the “CREATE TABLE” statement.

DEFAULT must be specified for a column that was defined as
GENERATED ALWAYS. A valid value can be specified for a
column that was defined as GENERATED BY DEFAULT.

NULL
Specifies the null value as the value of the column. Specify NULL
only for nullable columns (SQLSTATE 23502).

signal-statement
Specifies the SIGNAL statement that is to be executed to return an error when
the matching-condition evaluates to true.

ELSE IGNORE
Specifies that no action is to be taken for the rows where no matching-condition
evaluates to true. If all rows of table-reference are ignored, a warning is returned
(SQLSTATE 02000).

WITH
Specifies the isolation level at which the MERGE statement is executed.

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound.

Rules
v More than one modification-operation (UPDATE SET, DELETE, or insert-operation),

or signal-statement can be specified in a single MERGE statement.
v Each row in the target can only be operated on once. A row in the target can

only be identified as MATCHED with one row in the result table of the
table-reference (SQLSTATE 21506). A nested SQL operation (RI or trigger except
INSTEAD OF trigger) cannot specify the target table (or a table within the same
table hierarchy) as a target of an UPDATE, DELETE, INSERT, or MERGE
statement (SQLSTATE 27000).

v Security policy: If the identified target table or the base table of the identified
target view is protected with a security policy, the session authorization ID must
have the label-based access control (LBAC) credentials that allow the following
types of access.
– For the update operation:

- Write access to all protected columns that are being updated (SQLSTATE
42512)

- Write access for any explicit value provided for a DB2SECURITYLABEL
column for security policies that were created with the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

- Read and write access to all rows that are being updated (SQLSTATE
42519)

MERGE

1132 SQL Reference Volume 2



The session authorization ID must also have been granted a security label for
write access for the security policy if an implicit value is used for a
DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:
- The DB2SECURITYLABEL column is not included in the list of columns

that are to be updated (and so it will be implicitly updated to the security
label for write access of the session authorization ID)

- A value for the DB2SECURITYLABEL column is explicitly provided but the
session authorization ID does not have write access for that value, and the
security policy is created with the OVERRIDE NOT AUTHORIZED WRITE
SECURITY LABEL option

– For the delete operation:
- Write access to all protected columns (SQLSTATE 42512)
- Read and write access to all of the rows that are selected for deletion

(SQLSTATE 42519)
– For the insert operation:

- Write access to all protected columns for which a data value is explicitly
provided (SQLSTATE 42512)

- Write access for any explicit value provided for a DB2SECURITYLABEL
column for security policies that were created with the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

The session authorization ID must also have been granted a security label for
write access for the security policy if an implicit value is used for a
DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:
- A value for the DB2SECURITYLABEL column is not explicitly provided
- A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the
security policy is created with the OVERRIDE NOT AUTHORIZED WRITE
SECURITY LABEL option

v INSTEAD OF triggers: If a view is specified as the target of the MERGE
statement, either no INSTEAD OF triggers should be defined for the view, or an
INSTEAD OF trigger should be defined for each of the update, delete, and insert
operations (SQLSTATE 428FZ).

v Extended indicator variable usage: If enabled, negative indicator variable values
outside the range of -1 through -7 must not be input (SQLSTATE 22010). Also, if
enabled, the default and unassigned extended indicator variable values must not
appear in contexts in which they are not supported (SQLSTATE 22539).

v Extended indicator variables in the assignment-clause: An expression that is a
reference to a single column of the source table, a single host variable, or a host
variable being explicitly cast can result in assigning an extended indicator
variable-based value. Assigning the extended indicator variable-based value of
unassigned has the effect of leaving the target column set to its current value, as
if it had not been specified in the statement. Assigning the extended indicator
variable-based value of default assigns the default value of the column. For
information on default values of data types, see the description of the DEFAULT
clause in “CREATE TABLE” on page 680.
If a target column is not updatable (for example, a column in a view that is
defined as an expression), then it must be assigned the extended indicator
variable-based value of unassigned (SQLSTATE 42808).
If the target column is a column defined as GENERATED ALWAYS, then it must
be assigned the DEFAULT keyword, or the extended indicator variable-based
values of default or unassigned (SQLSTATE 428C9).

MERGE

Statements 1133



The assignment-clause must not assign all target columns to an extended indicator
variable-based value of unassigned (SQLSTATE 22540).

v Extended indicator variables in the insert-operation: An expression that is a
reference to a single column of the source table, a single host variable, or a host
variable being explicitly cast can result in inserting an extended indicator
variable-based value. In insert-operation, a value of unassigned has the effect of
setting the column to its default value.
If a target column is not updatable, then it must be assigned the extended
indicator variable-based value of unassigned (SQLSTATE 42808), unless it is a
column defined as GENERATED ALWAYS. If the target column is a column
defined as GENERATED ALWAYS, then it must be assigned the DEFAULT
keyword, or the extended indicator variable-based values of default or
unassigned (SQLSTATE 428C9).

For other rules that affect the update, insert, or delete operation portion of the
MERGE statement, see the "Rules" section of the corresponding statement
description.

Notes
v Order of processing:

1. Determine the set of rows to be processed from the source and target. If
CURRENT TIMESTAMP is used in this statement, only one clock reading is
done for the whole statement.

2. Use the ON clause to classify these rows as either MATCHED or NOT
MATCHED.

3. Evaluate any matching-condition in the WHEN clauses.
4. Evaluate any expression in any assignment-clause and insert-operation.
5. Execute each signal-statement.
6. Apply each modification-operation to the applicable rows in the order of

specification. The constraints and triggers activated by each
modification-operation are executed for the modification-operation.
Statement-level triggers are activated even if no rows satisfy the
modification-operation. Each modification-operation can affect the triggers and
referential constraints of each subsequent modification-operation.

v Statement level atomicity: If an error occurs during execution of the MERGE
statement, the whole statement is rolled back.

v Number of rows updated: When a MERGE statement completes execution, the
value of the ROW_COUNT item for GET DIAGNOSTICS and SQLERRD(3) in
the SQLCA is the number of rows operated on by the MERGE statement,
excluding rows identified by the ELSE IGNORE clause. The value in
SQLERRD(3) does not include the number of rows that were operated on as a
result of constraints or triggers. The value in SQLERRD(5) includes the number
of these rows.

v Inserted row cannot also be updated: No attempt is made to update a row in the
target that did not already exist before the MERGE statement was executed; that
is, there are no updates of rows that were inserted by the MERGE statement.

v Extended indicator variables and update triggers: If a target column has been
assigned with an extended indicator variable-based value of unassigned, that
column is not considered to have been updated. That column is treated as if it
had not been specified in the OF column-name list of any update trigger defined
on the target table.

MERGE

1134 SQL Reference Volume 2



v Extended indicator variables and insert triggers: No change in the activation of
insert triggers results from the use of extended indicator variables. If all columns
in the implicit or explicit column list have been assigned to an extended
indicator variable-based value of unassigned or default, an insert where all
columns have their respective default values is attempted. If the insert is
successful, the insert trigger is activated.

v Extended indicator variables and deferred error checks: When extended
indicator variables are enabled, validation that would otherwise be done in
statement preparation to recognize an insert into, or update of, a non-updatable
column, is deferred until statement execution. Whether an error should be
reported can be determined only during execution.

v Considerations for system-period temporal tables: When MERGE is processed
for a system-period temporal table, the rows are impacted in the same way as if
the specific data change operations had been invoked. See UPDATE statement,
DELETE statement, and INSERT statement topics for more information.

v Considerations for application-period temporal tables and triggers; When a
row is deleted and the FOR PORTION OF BUSINESS_TIME clause is specified,
additional rows may be implicitly inserted to reflect any portion of the row that
was not deleted. Any existing delete triggers are activated for the rows deleted,
and any existing insert triggers are activated for rows that are implicitly
inserted. When a row is updated and the FOR PORTION OF BUSINESS_TIME
clause is specified, additional rows may be implicitly inserted to reflect any
portion of the row that was not updated. Any existing update triggers are
activated for the rows updated, and any existing insert triggers are activated for
rows that are implicitly inserted.

v Considerations for a MERGE without a column list in the insert-operation: A
MERGE statement without a column list specified as part of the insert-operation
does not include implicitly hidden columns. Columns that are defined as
implicitly hidden and not null must have a defined default value.

Examples
v Example 1: For activities whose description has been changed, update the

description in the archive table. For new activities, insert into the archive table.
The archive and activities table both have activity as a primary key.

MERGE INTO archive ar
USING (SELECT activity, description FROM activities) ac
ON (ar.activity = ac.activity)
WHEN MATCHED THEN

UPDATE SET
description = ac.description

WHEN NOT MATCHED THEN
INSERT

(activity, description)
VALUES (ac.activity, ac.description)

v Example 2: Using the shipment table, merge rows into the inventory table,
increasing the quantity by part count in the shipment table for rows that match;
else insert the new partno into the inventory table.

MERGE INTO inventory AS in
USING (SELECT partno, description, count FROM shipment

WHERE shipment.partno IS NOT NULL) AS sh
ON (in.partno = sh.partno)
WHEN MATCHED THEN

UPDATE SET
description = sh.description,
quantity = in.quantity + sh.count

WHEN NOT MATCHED THEN

MERGE

Statements 1135



INSERT
(partno, description, quantity)
VALUES (sh.partno, sh.description, sh.count)

v Example 3: Using the transaction table, merge rows into the account table,
updating the balance from the set of transactions against an account ID and
inserting new accounts from the consolidated transactions where they do not
already exist.

MERGE INTO account AS a
USING (SELECT id, sum(amount) sum_amount FROM transaction

GROUP BY id) AS t
ON a.id = t.id
WHEN MATCHED THEN

UPDATE SET
balance = a.balance + t.sum_amount

WHEN NOT MATCHED THEN
INSERT

(id, balance)
VALUES (t.id, t.sum_amount)

v Example 4: Using the transaction_log table, merge rows into the employee_file
table, updating the phone and office with the latest transaction_log row based
on the transaction time, and inserting the latest new employee_file row where
the row does not already exist.

MERGE INTO employee_file AS e
USING (SELECT empid, phone, office

FROM (SELECT empid, phone, office,
ROW_NUMBER() OVER (PARTITION BY empid
ORDER BY transaction_time DESC) rn
FROM transaction_log) AS nt
WHERE rn = 1) AS t

ON e.empid = t.empid
WHEN MATCHED THEN

UPDATE SET
(phone, office) =
(t.phone, t.office)

WHEN NOT MATCHED THEN
INSERT

(empid, phone, office)
VALUES (t.empid, t.phone, t.office)

v Example 5: Using dynamically supplied values for an employee row, update the
master employee table if the data corresponds to an existing employee, or insert
the row if the data is for a new employee. The following example is a fragment
of code from a C program.

hv1 =
"MERGE INTO employee AS t
USING TABLE(VALUES(CAST (? AS CHAR(6)), CAST (? AS VARCHAR(12)),

CAST (? AS CHAR(1)), CAST (? AS VARCHAR(15)),
CAST (? AS SMALLINT), CAST (? AS INTEGER)))
s(empno, firstnme, midinit, lastname, edlevel, salary)

ON t.empno = s.empno
WHEN MATCHED THEN

UPDATE SET
salary = s.salary

WHEN NOT MATCHED THEN
INSERT

(empno, firstnme, midinit, lastname, edlevel, salary)
VALUES (s.empno, s.firstnme, s.midinit, s.lastname, s.edlevel,

s.salary)";
EXEC SQL PREPARE s1 FROM :hv1;
EXEC SQL EXECUTE s1 USING ’000420’, ’SERGE’, ’K’, ’FIELDING’, 18, 39580;

v Example 6: Update the list of activities organised by Group A in the archive table.
Delete all outdated activities and update the activities information (description
and date) in the archive table if they have been changed. For new upcoming

MERGE

1136 SQL Reference Volume 2



activities, insert into the archive. Signal an error if the date of the activity is not
known. The date of the activities in the archive table must be specified. Each
group has an activities table. For example, activities_groupA contains all
activities that they organize, and the archive table contains all upcoming
activities organized by different groups in a company. The archive table has
(group, activity) as the primary key, and date is not nullable. All activities tables
have activity as the primary key. The last_modified column in the archive is
defined with CURRENT TIMESTAMP as the default value.

MERGE INTO archive ar
USING (SELECT activity, description, date, last_modified

FROM activities_groupA) ac
ON (ar.activity = ac.activity) AND ar.group = ’A’
WHEN MATCHED AND ac.date IS NULL THEN

SIGNAL SQLSTATE ’70001’
SET MESSAGE_TEXT =

ac.activity CONCAT ’ cannot be modified. Reason: Date is not known’
WHEN MATCHED AND ac.date < CURRENT DATE THEN

DELETE
WHEN MATCHED AND ar.last_modified < ac.last_modified THEN

UPDATE SET
(description, date, last_modified) = (ac.description, ac.date, DEFAULT)

WHEN NOT MATCHED AND ac.date IS NULL THEN
SIGNAL SQLSTATE ’70002’

SET MESSAGE_TEXT =
ac.activity CONCAT ’ cannot be inserted. Reason: Date is not known’

WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN
INSERT

(group, activity, description, date)
VALUES (’A’, ac.activity, ac.description, ac.date)

ELSE IGNORE

MERGE

Statements 1137



OPEN
The OPEN statement opens a cursor so that it can be used to fetch rows from its
result table.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. When invoked using the command line processor, some options cannot
be specified.

For more information, refer to “Using command line SQL statements and XQuery
statements” in Command Reference.

Authorization

If a global variable is referenced, the privileges held by the authorization ID of the
statement must include one of the following authorities:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

Group privileges are not considered because this statement cannot be dynamically
prepared.

Syntax

��

�

OPEN cursor-name
cursor-variable-name

( )
expression

�

�

�

,

USING variable
(1)

expression
USING DESCRIPTOR descriptor-name

��

Notes:

1 An expression other than a variable can only be used in compiled compound
statements.

Description

cursor-name
Names a cursor that is defined in a DECLARE CURSOR statement that was
stated earlier in the program. If cursor-name identifies a cursor in an SQL
procedure declared as WITH RETURN TO CLIENT that is already in the open
state, the existing open cursor becomes a result set cursor that is no longer
accessible using cursor-name and a new cursor is opened that becomes

OPEN

1138 SQL Reference Volume 2



accessible using cursor-name. Otherwise, when the OPEN statement is
executed, the cursor identified by cursor-name must be in the closed state.

The DECLARE CURSOR statement must identify a SELECT statement, in one
of the following ways:
v Including the SELECT statement in the DECLARE CURSOR statement
v Including a statement-name that names a prepared SELECT statement.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers, global variables,
or PREVIOUS VALUE expressions specified in the SELECT statement, and the
current values of any host variables specified in the SELECT statement or the
USING clause of the OPEN statement. The rows of the result table may be
derived during the execution of the OPEN statement, and a temporary table
may be created to hold them; or they may be derived during the execution of
subsequent FETCH statements. In either case, the cursor is placed in the open
state and positioned before the first row of its result table. If the table is empty,
the state of the cursor is effectively "after the last row".

cursor-variable-name

Names a cursor variable. The value of the cursor variable must not be null
(SQLSTATE 34000). A cursor variable that is directly or indirectly assigned a
cursor value constructor can be used only in an OPEN statement that is in the
same scope as the assignment (SQLSTATE 51044). If the cursor value
constructor assigned to the cursor variable specified a statement-name, the
OPEN statement must be in the same scope where that statement-name was
explicitly or implicitly declared (SQLSTATE 51044).

When the OPEN statement is executed, the underlying cursor of the cursor
variable must be in the closed state. The result table of the underlying cursor is
derived by evaluating the SELECT statement or dynamic statement associated
with the cursor variable. The evaluation uses the current values of any special
registers, global variables, or PREVIOUS VALUE expressions specified in the
SELECT statement, and the current values of any variables specified in the
SELECT statement or the USING clause of the OPEN statement. The rows of
the result table may be derived during the execution of the OPEN statement,
and a temporary table may be created to hold them; or they may be derived
during the execution of subsequent FETCH statements. In either case, the
cursor is placed in the open state and positioned before the first row of its
result table. If the table is empty, the state of the cursor is effectively "after the
last row".

An OPEN statement using a cursor-variable-name can only be used within a
compound SQL (compiled) statement.

( expression, ... )
Specifies the arguments associated with the named parameters of a
parameterized cursor variable. The cursor-value-constructor assigned to the
cursor variable must include a list of parameters with the same number of
parameters as the number of arguments specified (SQLSTATE 07006 or 07004).
The data type and value of the nth expression must be assignable to the nth
parameter (SQLSTATE 07006 or 22018).

USING

Introduces the values that are substituted for the parameter markers or
variables in the statement of the cursor. For an explanation of parameter
markers, see “PREPARE”.

OPEN

Statements 1139



If a statement-name is specified in the DECLARE CURSOR statement or the
cursor value constructor associated with the cursor variable that includes
parameter markers, USING must be used. If the prepared statement does not
include parameter markers, USING is ignored.

If a select-statement is specified in the DECLARE CURSOR statement or the
non-parameterized cursor value constructor associated with the cursor
variable, USING may be used to override the variable values.

variable

Identifies a variable or a host structure declared in the program in accordance
with the rules for declaring variables and host variables. The number of
variables must be the same as the number of parameter markers in the
prepared statement. The nth variable corresponds to the nth parameter marker
in the prepared statement. Where appropriate, locator variables and file
reference variables can be provided as the source of values for parameter
markers.

expression
Specifies values to associate with parameter markers using expressions. An
OPEN statement that specifies expressions in the USING clause can only be
used within a compound SQL (compiled) statement (SQLSTATE 42601). The
number of expressions must be the same as the number of parameter markers
in the prepared statement (SQLSTATE 07001). The nth expression corresponds
to the nth parameter marker in the prepared statement. The data type and
value of the nth expression must be assignable to the type associated with the
nth parameter marker (SQLSTATE 07006).

Rules
v When the SELECT statement of the cursor is evaluated, each parameter marker

in the statement is effectively replaced by its corresponding host variable. For a
typed parameter marker, the attributes of the target variable are those specified
by the CAST specification. For an untyped parameter marker, the attributes of
the target variable are determined according to the context of the parameter
marker.

v Let V denote a host variable that corresponds to parameter marker P. The value
of V is assigned to the target variable for P in accordance with the rules for
assigning a value to a column. Thus:
– V must be compatible with the target.
– If V is a string, its length (excluding trailing blanks for strings that are not

long strings) must not be greater than the length attribute of the target.
– If V is a number, the absolute value of its integral part must not be greater

than the maximum absolute value of the integral part of the target.
– If the attributes of V are not identical to the attributes of the target, the value

is converted to conform to the attributes of the target.
When the SELECT statement of the cursor is evaluated, the value used in place
of P is the value of the target variable for P. For example, if V is CHAR(6), and
the target is CHAR(8), the value used in place of P is the value of V padded
with two blanks.

v The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of
the cursor is part of the DECLARE CURSOR statement or the non-parameterized
cursor value constructor associated with the cursor variable. In this case the
OPEN statement is executed as if each host variable in the SELECT statement
were a parameter marker, except that the attributes of the target variables are the

OPEN

1140 SQL Reference Volume 2



same as the attributes of the host variables in the SELECT statement. The effect
is to override the values of the host variables in the SELECT statement of the
cursor with the values of the host variables specified in the USING clause. A
variable value override must not be used when opening a parameterized cursor
variable since the SELECT statement will not include any other variables.

v SQL data change statements and routines that modify SQL data embedded in
the cursor definition are completely executed, and the result set is stored in a
temporary table when the cursor opens. If statement execution is successful, the
SQLERRD(3) field contains the sum of the number of rows that qualified for
insert, update, and delete operations. If an error occurs during execution of an
OPEN statement involving a cursor that contains a data change statement within
a fullselect, the results of that data change statement are rolled back.
Explicit rollback of an OPEN statement, or rollback to a savepoint before an
OPEN statement, closes the cursor. If the cursor definition contains a data
change statement within the FROM clause of a fullselect, the results of the data
change statement are rolled back.
Changes to rows in a table that is targeted by a data change statement nested
within a SELECT statement or a SELECT INTO statement are processed when
the cursor opens, and are not undone if an error occurs during a fetch operation
against that cursor.

Notes
v Closed state of cursors: All cursors in a program are in the closed state when

the program is initiated and when it initiates a ROLLBACK statement.
All cursors, except open cursors declared WITH HOLD, are in a closed state
when a program issues a COMMIT statement.
A cursor can also be in the closed state because a CLOSE statement was
executed or an error was detected that made the position of the cursor
unpredictable.
The underlying cursor of a cursor variable is closed if the cursor variable goes
out of scope and there are no other cursor variables that referenced that
underlying cursor.

v To retrieve rows from the result table of a cursor, execute a FETCH statement
when the cursor is open. The only way to change the state of a cursor from
closed to open is to execute an OPEN statement.

v Effect of materalized result tables: In some cases, such as when the cursor is
not read only, the result rows of a cursor are derived during the execution of
FETCH statements. In other cases, the materialized result table method is used
instead. With the materialized result table method the entire result table is
transferred to a temporary buffer during the execution of the OPEN statement.
When a temporary buffer is used, the results of a program can differ in these
ways:
– An error can occur during OPEN that would otherwise not occur until some

later FETCH statement.
– INSERT, UPDATE, and DELETE statements executed in the same transaction

while the cursor is open cannot affect the result table.
– Any NEXT VALUE expressions in the SELECT statement are evaluated for

every row of the result table during OPEN.
Conversely, if a temporary buffer is not used, INSERT, UPDATE, and DELETE
statements executed while the cursor is open can affect the result table if issued
from the same unit of work, and any NEXT VALUE expressions in the SELECT
statement are evaluated as each row is fetched. This result table can also be
affected by operations executed by the same unit of work, and the effect of such

OPEN

Statements 1141



operations is not always predictable. For example, if cursor C is positioned on a
row of its result table defined as SELECT * FROM T, and a new row is inserted
into T, the effect of that insert on the result table is not predictable because its
rows are not ordered. Thus a subsequent FETCH C may or may not retrieve the
new row of T.

v Statement caching affects cursors declared open by the OPEN statement.
v Opening the same cursor multiple times: A cursor in an SQL procedure declared

as WITH RETURN TO CLIENT can be opened even when a cursor with the
same name is already in the open state. In this case, the existing open cursor
becomes a result set cursor and is no longer accessible by its cursor name. A
new cursor is opened and becomes accessible by the cursor name. Closing the
new cursor does not make the cursor that was previously accessible by that
name accessible by the cursor name again. The cursors that become result set
cursors in this way cannot be accessed at the server and can be processed only
at the client.

Examples

Example 1: Write the embedded statements in a COBOL program that will:
1. Define a cursor C1 that is to be used to retrieve all rows from the

DEPARTMENT table for departments that are administered by (ADMRDEPT)
department 'A00'.

2. Place the cursor C1 before the first row to be fetched.
EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPARTMENT
WHERE ADMRDEPT = ’A00’

END-EXEC.

EXEC SQL OPEN C1
END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR with a
dynamically defined select-statement in a C program. Assuming two parameter
markers are used in the predicate of the select-statement, two host variable
references are supplied with the OPEN statement to pass integer and varchar(64)
values between the application and the database. (The related host variable
definitions, PREPARE statement, and DECLARE CURSOR statement are also
shown in this example.)

EXEC SQL BEGIN DECLARE SECTION;
static short hv_int;
char hv_vchar64[65];
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 2, but in this case the number
and data types of the parameter markers in the WHERE clause are not known.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;

OPEN

1142 SQL Reference Volume 2



EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

Example 4: Create a procedure that does the following operations:
1. Assigns a cursor to the output cursor variable
2. Opens the cursor
CREATE PROCEDURE PROC1 (OUT P1 CURSOR)LANGUAGE SQL
BEGIN
SET P1=CURSOR FOR SELECT DEPTNO, DEPTNAME, MGRNO FROM DEPARTMENT WHERE ADMRDEPT=’A00’; --
OPEN P1; --
END;

OPEN

Statements 1143



PIPE
The PIPE statement is used to return a row from a compiled table function.

Invocation

This statement can be embedded in a compound SQL (compiled) statement of an
SQL table function. It is not an executable statement and cannot be dynamically
prepared.

Authorization

No privileges are required to invoke the PIPE statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke any
expression that is embedded in the PIPE statement.

Syntax

�� �

,

PIPE ( expression )
NULL

( row-fullselect )
row-expression
expression
NULL

��

Description

( expression, ... )
Specifies a row value is returned from the function. The number of expressions
(or NULL keywords) in the list must match the RETURNS data type of the
function and the value of each expression must be assignable to the
corresponding column or field in the RETURNS data type of the function.

row-fullselect
Specifies a fullselect that returns a single row with the number of columns
corresponding to the number of columns or fields in the RETURNS data type
of the function. The value in each column of the row returned by the fullselect
must be assignable to the corresponding column or field in the RETURNS data
type of the function. If the result of the row fullselect is no rows, null values
are returned.

row-expression
Specifies the row value is returned from the function. The number of fields in
the row must match the RETURNS data type of the function and each field in
the row must be assignable to the corresponding field in the RETURNS data
type of the function. If the row-expression and the RETURNS data type are
user-defined row types, the type names must be the same (SQLSTATE 42821).

expression
Specifies a scalar value is returned from the function. The RETURNS data type
of the table function must have a single column and the expression value must
be assignable to that column.

NULL
Specifies that a null value is returned from the function. A null value is
returned for each column or row field.

PIPE

1144 SQL Reference Volume 2



Notes
v Locally declared procedures: The PIPE statement cannot be used within a

procedure that is locally declared in the compound SQL (compiled) statement of
an SQL table function.

v Similar terms: An SQL table function that uses a PIPE statement is sometimes
referred to as a pipelined function.

PIPE

Statements 1145



PREPARE
The PREPARE statement is used by application programs to dynamically prepare
an SQL statement for execution. The PREPARE statement creates an executable
SQL statement, called a prepared statement, from a character string form of the
statement, called a statement string.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

For statements where authorization checking is performed at statement preparation
time (DML), the privileges held by the authorization ID of the statement must
include those required to execute the SQL statement specified by the PREPARE
statement. The authorization ID of the statement might be affected by the
DYNAMICRULES bind option.

For statements where authorization checking is performed at statement execution
time (DDL, GRANT, and REVOKE statements), no authorization is required to use
this statement; however, the authorization is checked when the prepared statement
is executed.

For statements involving tables that are protected with a security policy, the rules
associated with the security policy are always evaluated at statement execution
time.

If the authorization ID of the statement holds EXPLAIN, SQLADM, or DBADM
authority, the user may prepare any statement; however, the ability to execute the
statement is re-checked at statement execution time.

Syntax

�� PREPARE statement-name
OUTPUT

INTO result-descriptor-name

�

�
INPUT INTO input-descriptor-name

FROM host-variable
expression

��

Description

statement-name
Names the prepared statement. If the name identifies an existing prepared
statement, that previously prepared statement is destroyed. The name must not
identify a prepared statement that is the SELECT statement of an open cursor.

OUTPUT INTO
If OUTPUT INTO is used, and the PREPARE statement executes successfully,
information about the output parameter markers in the prepared statement is
placed in the SQLDA specified by result-descriptor-name.

result-descriptor-name
Specifies the name of an SQLDA. (The DESCRIBE statement may be used
as an alternative to this clause.)

PREPARE

1146 SQL Reference Volume 2



INPUT INTO
If INPUT INTO is used, and the PREPARE statement executes successfully,
information about the input parameter markers in the prepared statement is
placed in the SQLDA specified by input-descriptor-name. Input parameter
markers are always considered nullable, regardless of usage.

input-descriptor-name
Specifies the name of an SQLDA. (The DESCRIBE statement may be used
as an alternative to this clause.)

FROM
Introduces the statement string. The statement string is the value of the
specified host variable.

host-variable
Specifies a host variable that is described in the program in accordance
with the rules for declaring character string variables. It must be a
fixed-length or varying-length character-string variable that is less than the
maximum statement size of 2 097 152 bytes. Note that a CLOB(2097152)
can contain a maximum size statement, but a VARCHAR cannot.

expression
An expression specifying the statement string. The expression must return a
fixed-length or varying-length character-string type that is less than the
maximum statement size of 2 097 152 bytes.

Rules
v Rules for statement strings: The statement string must be an executable

statement that can be dynamically prepared. It must be one of the following SQL
statements:
– ALTER
– CALL
– COMMENT
– COMMIT
– Compound SQL (compiled)
– Compound SQL (inlined)
– CREATE
– DECLARE GLOBAL TEMPORARY TABLE
– DELETE
– DROP
– EXPLAIN
– FLUSH EVENT MONITOR
– FLUSH PACKAGE CACHE
– GRANT
– INSERT
– LOCK TABLE
– MERGE
– REFRESH TABLE
– RELEASE SAVEPOINT
– RENAME
– REVOKE
– ROLLBACK

PREPARE

Statements 1147



– SAVEPOINT
– select-statement
– SET COMPILATION ENVIRONMENT
– SET CURRENT DECFLOAT ROUNDING MODE
– SET CURRENT DEFAULT TRANSFORM GROUP
– SET CURRENT DEGREE
– SET CURRENT EXPLAIN MODE
– SET CURRENT EXPLAIN SNAPSHOT
– SET CURRENT FEDERATED ASYNCHRONY
– SET CURRENT IMPLICIT XMLPARSE OPTION
– SET CURRENT ISOLATION
– SET CURRENT LOCALE LC_MESSAGES
– SET CURRENT LOCALE LC_TIME
– SET CURRENT LOCK TIMEOUT
– SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
– SET CURRENT MDC ROLLOUT MODE
– SET CURRENT OPTIMIZATION PROFILE
– SET CURRENT QUERY OPTIMIZATION
– SET CURRENT REFRESH AGE
– SET CURRENT TEMPORAL BUSINESS_TIME
– SET CURRENT TEMPORAL SYSTEM_TIME
– SET ENCRYPTION PASSWORD
– SET EVENT MONITOR STATE (only if DYNAMICRULES run behavior is in

effect for the package)
– SET INTEGRITY
– SET PASSTHRU
– SET PATH
– SET ROLE (only if DYNAMICRULES run behavior is in effect for the

package)
– SET SCHEMA
– SET SERVER OPTION
– SET SESSION AUTHORIZATION
– SET SQL_CCFLAGS
– SET USAGE LIST STATE (only if DYNAMICRULES run behavior is in effect

for the package)
– SET variable
– TRANSFER OWNERSHIP (only if DYNAMICRULES run behavior is in effect

for the package)
– TRUNCATE (only if DYNAMICRULES run behavior is in effect for the

package)
– UPDATE

Notes
v Parameter markers: Although a statement string cannot include references to

host variables, it can include parameter markers. These can be replaced by the
values of host variables when the prepared statement is executed. In the case of
a CALL statement, a parameter marker can also be used for OUT and INOUT

PREPARE

1148 SQL Reference Volume 2



arguments to the procedure. After the CALL is executed, the returned value for
the argument will be assigned to the host variable corresponding to the
parameter marker.
A parameter marker is a question mark (?) or a colon followed by a name
(:name) that is used where a host variable could be used if the statement string
were a static SQL statement. For an explanation of how parameter markers are
replaced by values, see “OPEN” and “EXECUTE”.
If the parameter marker is named, the name can include letters, numbers, and
the symbols @, #, $, and _. The name is not folded to upper case.
Named parameter markers have the same syntax as host variables, but the two
are not interchangeable. A host variable has a value and is used directly in a
static SQL statement. A named parameter marker is a placeholder for a value in
a dynamic SQL statement and the value is provided when the statement is
executed.
There are two types of parameter markers:

Typed parameter marker
A parameter marker that is specified along with its target data type. It has
the general form:

CAST(? AS data-type)

This notation is not a function call, but a "promise" that the type of the
parameter at run time will be of the data type specified or some data type
that can be converted to the specified data type. For example, in:

UPDATE EMPLOYEE
SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
WHERE EMPNO = ?

the value of the argument of the TRANSLATE function will be provided at
run time. The data type of that value will either be VARCHAR(12), or some
type that can be converted to VARCHAR(12).

Untyped parameter marker
A parameter marker that is specified without its target data type. It has the
form of a single question mark. The data type of an untyped parameter
marker is provided by context. For example, the untyped parameter marker
in the predicate of the previous update statement is the same as the data
type of the EMPNO column.

Typed parameter markers can be used in dynamic SQL statements wherever a
host variable is supported and the data type is based on the promise made in
the CAST function.
Untyped parameter markers can be used in dynamic SQL statements as long as
the data type of the parameter marker can be derived based on the context in
the SQL statement (SQLSTATE 42610).
The following example results in an error since in the first context, c1 would
resolve to a string data type, but in the second context, c1 would resolve to a
numeric data type:
SELECT ’Hello’ || c1, 5 + c1 FROM (VALUES(?)) AS T(c1)

However, the following statement is successful since the parameter marker
associated with the derived column, c1, would resolve to a numeric data type
for both contexts:
SELECT 7 + c1, 5 + c1 FROM (VALUES(?)) AS T(c1)

See “Determining data types of untyped expressions” for the rules for typing an
untyped parameter marker.

PREPARE

Statements 1149



v When a PREPARE statement is executed, the statement string is parsed and
checked for errors. If the statement string is invalid, the error condition is
reported in the SQLCA. Any subsequent EXECUTE or OPEN statement that
references this statement will also receive the same error (due to an implicit
prepare done by the system) unless the error has been corrected.

v Prepared statements can be referred to in the following kinds of statements, with
the restrictions shown:

In... The prepared statement...

DESCRIBE
can be any statement

DECLARE CURSOR
must be SELECT

EXECUTE
must not be SELECT

v A prepared statement can be executed many times. Indeed, if a prepared
statement is not executed more than once and does not contain parameter
markers, it is more efficient to use the EXECUTE IMMEDIATE statement rather
than the PREPARE and EXECUTE statements.

v All prepared statements created by a unit of work remain in a prepared state
until the application terminates, with the following exceptions:
– A statement that is prepared within a package bound with KEEPDYNAMC NO and

which is not used by an open cursor declared with the WITH HOLD option
is no longer in a prepared state when the unit of work ends.

– A dynamic statement that is bound with KEEPDYNAMIC NO and which is used
by an open cursor declared with the WITH HOLD option is in a prepared
state until the next unit of work boundary where the cursor is closed.

Examples

Example 1: Prepare and execute a non-select-statement in a COBOL program.
Assume the statement is contained in a host variable HOLDER and that the
program will place a statement string into the host variable based on some
instructions from the user. The statement to be prepared does not have any
parameter markers.
EXEC SQL PREPARE STMT_NAME FROM :HOLDER
END-EXEC.
EXEC SQL EXECUTE STMT_NAME
END-EXEC.

Example 2: Prepare and execute a non-select-statement as in example 1, except
code it for a C program. Also assume the statement to be prepared can contain any
number of parameter markers.
EXEC SQL PREPARE STMT_NAME FROM :holder;
EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :insert_da;

Assume that the following statement is to be prepared:
INSERT INTO DEPT VALUES(?, ?, ?, ?)

The columns in the DEPT table are defined as follows:
DEPT_NO CHAR(3) NOT NULL, -- department number
DEPTNAME VARCHAR(29), -- department name
MGRNO CHAR(6), -- manager number
ADMRDEPT CHAR(3) -- admin department number

PREPARE

1150 SQL Reference Volume 2



To insert department number G01 named COMPLAINTS, which has no manager
and reports to department A00, the structure INSERT_DA should have the values
in Table 34 before issuing the EXECUTE statement.

Table 34. Required values for the INSERT_DA structure

SQLDA field Value

SQLDAID SQLDA

SQLDABC 192 (See note 1.)

SQLN 4

SQLD 4

SQLTYPE 452

SQLLEN 3

SQLDATA pointer to G01

SQLIND (See note 2.)

SQLNAME

SQLTYPE 449

SQLLEN 29

SQLDATA pointer to COMPLAINTS

SQLIND pointer to 0

SQLNAME

SQLTYPE 453

SQLLEN 6

SQLDATA (See note 3.)

SQLIND pointer to -1

SQLNAME

SQLTYPE 453

SQLLEN 3

SQLDATA pointer to A00

SQLIND pointer to 0

SQLNAME

Note:

1. This value is for a PREPARE done from a 32-bit application. If the PREPARE was done
in a 64-bit application, then SQLDABC would have the value 240.

2. The value in SQLIND for this SQLVAR is ignored because the SQLTYPE identifies a
non-nullable data type.

3. The value in SQLDATA for this SQLVAR is ignored because the value of SQLIND
indicates this is a null value.

PREPARE

Statements 1151



REFRESH TABLE
The REFRESH TABLE statement refreshes the data in a materialized query table.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the table
v DATAACCESS authority

Syntax

�� �

,

REFRESH TABLE table-name online-options query-optimization-options �

�
INCREMENTAL
NOT INCREMENTAL

��

online-options:

ALLOW NO ACCESS

ALLOW READ ACCESS
ALLOW WRITE ACCESS

query-optimization-options:

ALLOW QUERY OPTIMIZATION WITH REFRESH AGE ANY
USING REFRESH DEFERRED TABLES

Description

table-name
Identifies the table to be refreshed.

The name, including the implicit or explicit schema, must identify a table that
already exists at the current server. The table must allow the REFRESH TABLE
statement (SQLSTATE 42809). This includes materialized query tables defined
with:
v REFRESH IMMEDIATE
v REFRESH DEFERRED

online-options
Specifies the accessibility of the table while it is being processed.

REFRESH TABLE

1152 SQL Reference Volume 2



ALLOW NO ACCESS
Specifies that no other users can access the table while it is being refreshed,
except if they are using the Uncommitted Read isolation level.

ALLOW READ ACCESS
Specifies that other users have read-only access to the table while it is
being refreshed.

ALLOW WRITE ACCESS
Specifies that other users have read and write access to the table while it is
being refreshed.

To prevent a rollback of the entire statement because of a lock timeout when
using the ALLOW READ ACCESS or the ALLOW WRITE ACCESS option, it is
recommended that you issue a SET CURRENT LOCK TIMEOUT statement
(specifying the WAIT option) before executing the REFRESH TABLE statement,
and to reset the special register to its previous value afterwards. Note,
however, that the CURRENT LOCK TIMEOUT register only impacts a specific
set of lock types, not all lock types.

query-optimization-options
Specifies the query optimization options for the refresh of REFRESH
DEFERRED materialized query tables.

ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES WITH REFRESH AGE
ANY

Specifies that when the CURRENT REFRESH AGE special register is set to
'ANY', the refresh of table-name will allow REFRESH DEFERRED
materialized query tables to be used to optimize the query that is used to
refresh table-name. If table-name is not a REFRESH DEFERRED materialized
query table, an error is returned (SQLSTATE 428FH). REFRESH
IMMEDIATE materialized query tables are always considered for query
optimization.

INCREMENTAL
Specifies an incremental refresh for the table by considering only the delta
portion (if any) of its underlying tables or the content of an associated staging
table (if one exists and its contents are consistent). If such a request cannot be
satisfied (that is, the system detects that the materialized query table definition
needs to be fully recomputed), an error (SQLSTATE 55019) is returned.

NOT INCREMENTAL
Specifies a full refresh for the table by recomputing the materialized query
table definition.

If neither INCREMENTAL nor NOT INCREMENTAL is specified, the system will
determine whether incremental processing is possible; if not, full refresh will be
performed. If a staging table is present for the materialized query table that is to be
refreshed, and incremental processing is not possible because the staging table is in
a pending state, an error is returned (SQLSTATE 428A8). Full refresh will be
performed if the staging table or the materialized query table is in an inconsistent
state; otherwise, the contents of the staging table will be used for incremental
processing.

Rules
v If REFRESH TABLE is issued on a materialized query table that references one

or more nicknames, the authorization ID of the statement must have authority to
select from the tables at the data source (SQLSTATE 42501).

REFRESH TABLE

Statements 1153



Notes
v When the statement is used to refresh a REFRESH IMMEDIATE materialized

query table whose underlying tables have been loaded, attached, or detached,
the system might choose to incrementally refresh the materialized query table
with the delta portions of its underlying tables. When the statement is used to
refresh a REFRESH DEFERRED materialized query table with a supporting
staging table, the system might choose to incrementally refresh the materialized
query table with the delta portions of its underlying tables that have been
captured in the staging table. However, there are some situations in which this
optimization is not possible, and a full refresh (that is, a recomputation of the
materialized query table definition) is necessary to ensure data integrity. You can
explicitly request incremental maintenance by specifying the INCREMENTAL
option; if this optimization is not possible, the system returns an error
(SQLSTATE 55019).

v If the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES
WITH REFRESH AGE ANY option is used, ensure that the refresh order is
correct for REFRESH DEFERRED materialized query tables. For example,
consider two materialized query tables, MQT1 and MQT2, whose materialized
queries share the same underlying tables. The materialized query for MQT2 can
be calculated using MQT1, instead of the underlying tables. If separate
statements are used to refresh these two materialized query tables, and MQT2 is
refreshed first, the system might choose to use the contents of MQT1, which
have not yet been refreshed, to refresh MQT2. In this case, MQT1 would contain
current data, but MQT2 could still contain stale data, even though both were
refreshed at almost the same time. The correct refresh order, if two REFRESH
statements are used instead of one, is to refresh MQT1 first.

v If the materialized query table has an associated staging table, the staging table
is pruned when the refresh is successfully performed.

v Any label-based access control on the base tables or on the materialized query
table does not interfere with the refresh process. The refresh happens as if
label-based access control were not present. The automatic protection that is
associated with the materialized query table when it is created ensures that the
data from the base tables remains protected when it is passed into the
materialized query table.

v For materialized query table only, SET INTEGRITY FOR mqt_name IMMEDIATE
CHECKED is the same as REFRESH TABLE mqt_name.

v Refresh use of materialized query tables: Materialized query tables are not
used to evaluate the select-statement during the processing of the REFRESH
TABLE statement.

v Refresh isolation level: The isolation level used to evaluate the select-statement is
the isolation level specified on the isolation-level clause of the select-statement. Or,
if the isolation-level clause was not specified, the isolation level of the
materialized query table recorded when CREATE TABLE or ALTER TABLE was
issued is used to evaluate the select-statement.

v Consider the statement:
SET INTEGRITY FOR T IMMEDIATE CHECKED

In the following scenarios, neither the INCREMENTAL check option for T nor
an incremental refresh of T---if T is a materialized query table (MQT) or a
staging table---is supported:
– New constraints have been added to T while it is in set integrity pending

state

REFRESH TABLE

1154 SQL Reference Volume 2



– When a LOAD REPLACE operation against T, it parents, or its underlying
tables has taken place

– When the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been
activated after the last integrity check on T, its parents, or its underlying
tables

– The cascading effect of full processing, when any parent of T (or underlying
table, if T is a materialized query table or a staging table) has been checked
for integrity non-incrementally

– If the table space containing the table or its parent (or underlying table of a
materialized query table or a staging table) has been rolled forward to a point
in time, and the table and its parent (or underlying table if the table is a
materialized query table or a staging table) reside in different table spaces

– T is an MQT, and a LOAD REPLACE or LOAD INSERT operation directly
into T has taken place after the last refresh

v Incremental processing will be used whenever the situation allows it, because it
is more efficient. The INCREMENTAL option is not needed in most cases. It is
needed, however, to ensure that integrity checks are indeed processed
incrementally. If the system detects that full processing is needed to ensure data
integrity, an error is returned (SQLSTATE 55019).

v If the conditions for full processing described in the previous bullet are not
satisfied, the system will perform an incremental refresh (if it is a materialized
query table) when the user does not specify the NOT INCREMENTAL option for
the statement SET INTEGRITY FOR T IMMEDIATE CHECKED.

REFRESH TABLE

Statements 1155



RELEASE (connection)
The RELEASE (Connection) statement places one or more connections in the
release-pending state.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared.

Authorization

None required.

Syntax

�� RELEASE
(1)

server-name
host-variable
CURRENT

SQL
ALL

��

Notes:

1 Note that an application server named CURRENT or ALL can only be
identified by a host variable or a delimited identifier.

Description

server-name or host-variable
Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator
variable. The server-name that is contained within the host-variable must be
left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.
It must be listed in the application requester's local directory.

The specified database-alias or the database-alias contained in the host variable
must identify an existing connection of the application process. If the
database-alias does not identify an existing connection, an error (SQLSTATE
08003) is raised.

CURRENT
Identifies the current connection of the application process. The application
process must be in the connected state. If not, an error (SQLSTATE 08003) is
raised.

ALL or ALL SQL
Identifies all existing connections of the application process. This form of the
RELEASE statement places all existing connections of the application process
in the release-pending state. All connections will therefore be destroyed during

RELEASE (connection)

1156 SQL Reference Volume 2



the next commit operation. An error or warning does not occur if no
connections exist when the statement is executed.

Examples
v Example 1: The SQL connection to IBMSTHDB is no longer needed by the

application. The following statement will cause it to be destroyed during the
next commit operation:

EXEC SQL RELEASE IBMSTHDB;

v Example 2: The current connection is no longer needed by the application. The
following statement will cause it to be destroyed during the next commit
operation:

EXEC SQL RELEASE CURRENT;

v Example 3: If an application has no need to access the databases after a commit
but will continue to run for a while, then it is better not to tie up those
connections unnecessarily. The following statement can be executed before the
commit to ensure all connections will be destroyed at the commit:

EXEC SQL RELEASE ALL;

RELEASE (connection)

Statements 1157



RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement is used to indicate that the application no
longer wishes to have the named savepoint maintained. After this statement has
been invoked, rollback to the savepoint is no longer possible.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
TO

RELEASE SAVEPOINT savepoint-name ��

Description

savepoint-name
Specifies the savepoint that is to be released. Any savepoints nested within the
named savepoint are also released. Rollback to that savepoint, or any savepoint
nested within it, is no longer possible. If the named savepoint does not exist in
the current savepoint level (see the “Rules” section in the description of the
SAVEPOINT statement), an error is returned (SQLSTATE 3B001). The specified
savepoint-name cannot begin with 'SYS' (SQLSTATE 42939).

Notes
v The name of the savepoint that was released can now be reused in another

SAVEPOINT statement, regardless of whether the UNIQUE keyword was
specified on an earlier SAVEPOINT statement specifying this same savepoint
name.

Example

Release a savepoint named SAVEPOINT1.
RELEASE SAVEPOINT SAVEPOINT1

RELEASE SAVEPOINT

1158 SQL Reference Volume 2



RENAME
The RENAME statement renames an existing table or index.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the table or index
v Ownership of the table or index, as recorded in the OWNER column of the

SYSCAT.TABLES catalog view for a table, and the SYSCAT.INDEXES catalog
view for an index

v ALTERIN privilege on the schema
v DBADM authority

Syntax

��
TABLE

RENAME source-table-name TO target-identifier
INDEX source-index-name

��

Description

TABLE source-table-name
Names the existing table that is to be renamed. The name, including the
schema name, must identify a table that already exists in the database
(SQLSTATE 42704). It must not be the name of a catalog table (SQLSTATE
42832), a materialized query table, a typed table (SQLSTATE 42997), a created
temporary table, a declared global temporary table (SQLSTATE 42995), a
nickname, or an object other than a table or an alias (SQLSTATE 42809). The
TABLE keyword is optional.

The name must not identify a table that is referenced in a row permission
definition or a column mask definition (SQLSTATE 42917).

INDEX source-index-name
Names the existing index that is to be renamed. The name, including the
schema name, must identify an index that already exists in the database
(SQLSTATE 42704). It must not be the name of an index on a created
temporary table or a declared global temporary table (SQLSTATE 42995). The
schema name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE
42832).

target-identifier
Specifies the new name for the table or index without a schema name. The
schema name of the source object is used to qualify the new name for the
object. The qualified name must not identify a table, view, alias, or index that
already exists in the database (SQLSTATE 42710).

RENAME

Statements 1159



Rules

When renaming a table, the source table must not:
v Be referenced in any existing materialized query table definitions
v Be referenced in any existing statistical view definition. This includes the

system-generated statistical view that is created as part of index creation which
includes an expression-based key

v Be the subject table of an existing trigger
v Be a parent or dependent table in any referential integrity constraints
v Be the scope of any existing reference column
v Be referenced by an XSR object that has been enabled for decomposition

An error (SQLSTATE 42986) is returned if the source table violates one or more of
these conditions.

When renaming an index:
v The source index must not be a system-generated index for an implementation

table on which a typed table is based (SQLSTATE 42858).

Notes
v Catalog entries are updated to reflect the new table or index name.
v All authorizations associated with the source table or index name are transferred

to the new table or index name (the authorization catalog tables are updated
appropriately).

v Indexes defined over the source table are transferred to the new table (the index
catalog tables are updated appropriately).

v RENAME TABLE invalidates any packages that are dependent on the source
table. RENAME INDEX invalidates any packages that are dependent on the
source index.

v If an alias is used for the source-table-name, it must resolve to a table name. The
table is renamed within the schema of this table. The alias is not changed by the
RENAME statement and continues to refer to the old table name.

v A table with primary key or unique constraints can be renamed if none of the
primary key or unique constraints are referenced by any foreign key.

Examples
v Example 1: Change the name of the EMP table to EMPLOYEE.

RENAME TABLE EMP TO EMPLOYEE
RENAME TABLE ABC.EMP TO EMPLOYEE

v Example 2: Change the name of the index NEW-IND to IND.
RENAME INDEX NEW-IND TO IND
RENAME INDEX ABC.NEW-IND TO IND

RENAME

1160 SQL Reference Volume 2



RENAME STOGROUP
The RENAME STOGROUP statement renames an existing storage group.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either
SYSCTRL or SYSADM authority.

Syntax

�� RENAME STOGROUP source-storagegroup-name TO target-storagegroup-name ��

Description

source-storagegroup-name
Identifies the storage group to rename; source-storagegroup-name must identify a
storage group that exists at the current server (SQLSTATE 42704). This is a
one-part name.

target-storagegroup-name
Names the storage group. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The target-storagegroup-name must not identify a
storage group that already exists in the catalog (SQLSTATE 42710). The
target-storagegroup-name must not begin with the characters 'SYS' (SQLSTATE
42939).

Rules
v The RENAME STOGROUP statement cannot be executed while a database

partition server is being added (SQLSTATE 55071).

RENAME STOGROUP

Statements 1161



RENAME TABLESPACE
The RENAME TABLESPACE statement renames an existing table space.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either
SYSCTRL or SYSADM authority.

Syntax

�� RENAME TABLESPACE source-tablespace-name TO target-tablespace-name ��

Description

source-tablespace-name
Specifies the existing table space that is to be renamed, as a one-part name. It
is an SQL identifier (either ordinary or delimited). The table space name must
identify a table space that already exists in the catalog (SQLSTATE 42704).

target-tablespace-name
Specifies the new name for the table space, as a one-part name. It is an SQL
identifier (either ordinary or delimited). The new table space name must not
identify a table space that already exists in the catalog (SQLSTATE 42710), and
it cannot start with 'SYS' (SQLSTATE 42939).

Rules
v The SYSCATSPACE table space cannot be renamed (SQLSTATE 42832).
v Any table spaces with "rollforward pending" or "rollforward in progress" states

cannot be renamed (SQLSTATE 55039)

Notes
v Renaming a table space will update the minimum recovery time of a table space

to the point in time when the rename took place. This implies that a roll forward
at the table space level must be to at least this point in time.

v The new table space name must be used when restoring a table space from a
backup image, where the rename was done after the backup was created.

Example

Change the name of the table space USERSPACE1 to DATA2000:
RENAME TABLESPACE USERSPACE1 TO DATA2000

RENAME TABLESPACE

1162 SQL Reference Volume 2



REPEAT
The REPEAT statement executes a statement or group of statements until a search
condition is true.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

No privileges are required to invoke the REPEAT statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements and search condition that are embedded in the REPEAT statement.

Syntax

��
label:

REPEAT SQL-routine-statement UNTIL search-condition �

� END REPEAT
label

��

SQL-routine-statement:

�

�

SQL-procedure-statement ;

SQL-function-statement ;

Description

label
Specifies the label for the REPEAT statement. If the beginning label is specified,
that label can be specified on LEAVE and ITERATE statements. If an ending
label is specified, a matching beginning label also must be specified.

SQL-procedure-statement
Specifies the SQL statements to execute within the loop. SQL-procedure-
statement is only applicable when in the context of an SQL procedure or a
compound SQL (compiled) statement. See SQL-procedure-statement in
“Compound SQL (compiled)” statement.

SQL-function-statement
Specifies the SQL statements to execute within the loop. SQL-function-statement
is only applicable when in the context of an SQL trigger, SQL function, or SQL
method. See SQL-function-statement in “FOR”.

REPEAT

Statements 1163



search-condition
The search-condition is evaluated after each execution of the REPEAT loop. If
the condition is true, the loop will exit. If the condition is unknown or false,
the looping continues.

Example

A REPEAT statement fetches rows from a table until the not_found condition
handler is invoked.

CREATE PROCEDURE REPEAT_STMT(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
fetch_loop:
REPEAT

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
SET v_counter = v_counter + 1;
UNTIL at_end > 0

END REPEAT fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

REPEAT

1164 SQL Reference Volume 2



RESIGNAL
The RESIGNAL statement is used within a condition handler to resignal the
condition that activated the handler, or to raise an alternate condition so that it can
be processed at a higher level. It causes an exception, warning, or not found
condition to be returned, along with optional message text.

Invocation

This statement can only be embedded in a condition handler within a compound
SQL (compiled) statement. The compound SQL (compiled) statement can be
embedded in an SQL procedure definition, SQL function definition, or SQL trigger
definition.

Authorization

If a module condition is referenced, the privileges held by the authorization ID of
the statement must include EXECUTE privilege on the module.

Syntax

�� RESIGNAL �

�
VALUE

SQLSTATE sqlstate-string-constant
sqlstate-string-variable signal-information

condition-name

��

signal-information:

SET MESSAGE_TEXT = SQL-variable-name
SQL-parameter-name
diagnostic-string-constant

Description

SQLSTATE VALUE sqlstate-string-constant
The specified string constant represents an SQLSTATE. It must be a character
string constant with exactly 5 characters that follow the rules for SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or non-accented

upper case letters ('A' through 'Z')
v The SQLSTATE class (first two characters) cannot be '00', since this

represents successful completion.

If the SQLSTATE does not conform to these rules, an error is raised
(SQLSTATE 428B3).

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can
be used. The specified value must follow the rules for SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or upper case

letters ('A' through 'Z') without diacritical marks
v The SQLSTATE class (first two characters) cannot be '00', since this

represents successful completion.

If the SQLSTATE does not conform to these rules, an error is returned.

RESIGNAL

Statements 1165



sqlstate-string-constant
The sqlstate-string-constant must be a character string constant with exactly
5 characters.

sqlstate-string-variable
The specified SQL variable or SQL parameter must be of data type
CHAR(5) and must not be the null value.

condition-name
Specifies the name of a condition that will be returned. The condition-name
must be declared within the compound-statement or identify a condition that
exists at the current server.

SET MESSAGE_TEXT =
Specifies a string that describes the error or warning. The string is returned in
the sqlerrmc field of the SQLCA. If the actual string is longer than 70 bytes, it
is truncated without warning.

SQL-variable-name
Identifies an SQL variable, declared within the compound statement, that
contains the message text.

SQL-parameter-name
Identifies an SQL parameter, defined for the routine, that contains the
message text. The SQL parameter must be defined as a CHAR or
VARCHAR data type.

diagnostic-string-constant
Specifies a character string constant that contains the message text.

Notes
v If a RESIGNAL statement is issued without specifying an SQLSTATE clause or a

condition-name, the identical condition that invoked the handler is returned. The
SQLSTATE, SQLCODE and the SQLCA associated with the condition are
unchanged.

v If a RESIGNAL statement is issued using a condition-name that has no associated
SQLSTATE value and the condition is not handled, SQLSTATE 45000 is returned
and the SQLCODE is set to -438. Note that such a condition will not be handled
by a condition handler for SQLSTATE 45000 that is within the scope of the
routine issuing the RESIGNAL statement.

v If a RESIGNAL statement is issued using an SQLSTATE value or a
condition-name with an associated SQLSTATE value, the SQLCODE returned is
based on the SQLSTATE value as follows:
– If the specified SQLSTATE class is either '01' or '02', a warning or not found

condition is returned and the SQLCODE is set to +438.
– Otherwise, an exception condition is returned and the SQLCODE is set to

-438.
v A RESIGNAL statement has the indicated fields of the SQLCA set as follows:

– sqlerrd fields are set to zero
– sqlwarn fields are set to blank
– sqlerrmc is set to the first 70 bytes of MESSAGE_TEXT
– sqlerrml is set to the length of sqlerrmc, or to zero if no SET

MESSAGE_TEXT clause is specified
– sqlerrp is set to ROUTINE

v Refer to the "Notes" section under "SIGNAL statement" for further information
about SQLSTATE values.

RESIGNAL

1166 SQL Reference Volume 2



Example

This example detects a division by zero error. The IF statement uses a SIGNAL
statement to invoke the overflow condition handler. The condition handler uses a
RESIGNAL statement to return a different SQLSTATE value to the client
application.

CREATE PROCEDURE divide ( IN numerator INTEGER,
IN denominator INTEGER,
OUT result INTEGER)

LANGUAGE SQL
BEGIN

DECLARE overflow CONDITION FOR SQLSTATE ’22003’;
DECLARE CONTINUE HANDLER FOR overflow

RESIGNAL SQLSTATE ’22375’;
IF denominator = 0 THEN

SIGNAL overflow;
ELSE

SET result = numerator / denominator;
END IF;

END

RESIGNAL

Statements 1167



RETURN
The RETURN statement is used to return from a routine. For SQL functions or
methods, it returns the result of the function or method. For an SQL procedure, it
optionally returns an integer status value.

Invocation

This statement can be embedded in an SQL function, SQL method, or SQL
procedure. It is not an executable statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the RETURN statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke any
expression or fullselect that is embedded in the RETURN statement.

Syntax

��

�

RETURN
expression
NULL

fullselect
,

WITH common-table-expression

��

Description

expression
Specifies a value that is returned from the routine:
v If the routine is a function or method other than a compiled table function,

one of expression, NULL, or fullselect must be specified (SQLSTATE 42631)
and the data type of the result must be assignable to the RETURNS type of
the routine (SQLSTATE 42866).

v If the routine is an inlined table function, a scalar expression (other than a
scalar fullselect) cannot be specified (SQLSTATE 428F1). If the routine is a
compiled table function, an expression cannot be specified.

v If the routine is a procedure, the data type of expression must be INTEGER
(SQLSTATE 428F2). A procedure cannot return NULL or a fullselect.

NULL
Specifies that the function or method returns a null value of the data type
defined in the RETURNS clause. NULL cannot be specified for a RETURN
from a table function, row function, or procedure.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows.

fullselect
Specifies the row or rows to be returned for the function. The number of
columns in the fullselect must match the number of columns in the function
result (SQLSTATE 42811). In addition, the static column types of the
fullselect must be assignable to the declared column types of the function
result, using the rules for assignment to columns (SQLSTATE 42866).

RETURN

1168 SQL Reference Volume 2



The fullselect cannot be specified for a RETURN from a procedure or a
compiled table function.

If the routine is a scalar function or method, then the fullselect must return
one column (SQLSTATE 42823) and, at most, one row (SQLSTATE 21000).

If the routine is a row function, it must return, at most, one row
(SQLSTATE 21505). However, one or more columns can be returned.

If the routine is an inlined table function, it can return zero or more rows
with one or more columns. If the fullselect has zero result rows, no row is
returned to the result table by the RETURN statement.

Rules
v The execution of an SQL function or method must end with a RETURN

statement (SQLSTATE 42632).
v In an SQL table function using a compound SQL (compiled) statement, an

expression, NULL, or fullselectcannot be specified. Rows are returned from the
function using the PIPE statement and the RETURN statement is required as the
last statement to execute when the function exits (SQLSTATE 2F005).

v In an SQL table or row function using a compound SQL (inlined) statement, the
only RETURN statement allowed is the one at the end of the compound
statement. (SQLSTATE 429BD).

Notes
v When a value is returned from a procedure, the caller can access the value:

– using the GET DIAGNOSTICS statement to retrieve the
DB2_RETURN_STATUS when the SQL procedure was called from another
SQL procedure

– using the parameter bound for the return value parameter marker in the
escape clause CALL syntax (?=CALL...) in a CLI application

– directly from the sqlerrd[0] field of the SQLCA, after processing the CALL
of an SQL procedure. This field is only valid if the SQLCODE is zero or
positive (assume a value of -1 otherwise).

Example

Use a RETURN statement to return from an SQL procedure with a status value of
zero if successful, and -200 if not.

BEGIN
...

GOTO FAIL;
...

SUCCESS: RETURN 0;
FAIL: RETURN -200;

END

RETURN

Statements 1169



REVOKE (database authorities)
This form of the REVOKE statement revokes authorities that apply to the entire
database.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

To revoke ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, or
SECADM authority, SECADM authority is required. To revoke other authorities,
ACCESSCTRL or SECADM authority is required.

Syntax

�� REVOKE �

,

ACCESSCTRL
BINDADD
CONNECT
CREATETAB
CREATE_EXTERNAL_ROUTINE
CREATE_NOT_FENCED_ROUTINE
CREATE_SECURE_OBJECT
DBADM
DATAACCESS
EXPLAIN
IMPLICIT_SCHEMA
LOAD
QUIESCE_CONNECT
SECADM
SQLADM
WLMADM

ON DATABASE �

� �

,

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
��

Description

ACCESSCTRL
Revokes the authority to grant and revoke most database authorities and object
privileges.

BINDADD
Revokes the authority to create packages. The creator of a package
automatically has the CONTROL privilege on that package and retains this
privilege even if his BINDADD authority is subsequently revoked.

REVOKE (database authorities)

1170 SQL Reference Volume 2



The BINDADD authority cannot be revoked from an authorization-name holding
DBADM authority without also revoking the DBADM authority.

CONNECT
Revokes the authority to access the database.

Revoking the CONNECT authority from a user does not affect any privileges
that were granted to that user on objects in the database. If the user is
subsequently granted the CONNECT authority again, all previously held
privileges are still valid (assuming they were not explicitly revoked).

The CONNECT authority cannot be revoked from an authorization-name
holding DBADM authority without also revoking the DBADM authority
(SQLSTATE 42504).

CREATETAB
Revokes the authority to create tables. The creator of a table automatically has
the CONTROL privilege on that table, and retains this privilege even if his
CREATETAB authority is subsequently revoked.

The CREATETAB authority cannot be revoked from an authorization-name
holding DBADM authority without also revoking the DBADM authority
(SQLSTATE 42504).

CREATE_EXTERNAL_ROUTINE
Revokes the authority to register external routines. Once an external routine
has been registered, it continues to exist, even if
CREATE_EXTERNAL_ROUTINE is subsequently revoked from the
authorization ID that registered the routine.

CREATE_EXTERNAL_ROUTINE authority cannot be revoked from an
authorization-name holding DBADM or CREATE_NOT_FENCED_ROUTINE
authority without also revoking DBADM or
CREATE_NOT_FENCED_ROUTINE authority (SQLSTATE 42504).

CREATE_NOT_FENCED_ROUTINE
Revokes the authority to register routines that execute in the database
manager's process. Once a routine has been registered as not fenced, it
continues to run in this manner, even if CREATE_NOT_FENCED_ROUTINE is
subsequently revoked from the authorization ID that registered the routine.

CREATE_NOT_FENCED_ROUTINE authority cannot be revoked from an
authorization-name holding DBADM authority without also revoking the
DBADM authority (SQLSTATE 42504).

CREATE_SECURE_OBJECT
Revokes the authority to create secure triggers and secure functions. Revokes
the authority to alter the secure attribute of such objects as well.

DATAACCESS
Revokes the authority to access data.

DBADM
Revokes the DBADM authority.

DBADM authority cannot be revoked from PUBLIC (because it cannot be
granted to PUBLIC).

CAUTION:
Revoking DBADM authority does not automatically revoke any privileges
that were held by the authorization-name on objects in the database.

REVOKE (database authorities)

Statements 1171



EXPLAIN
Revokes the authority to explain, prepare, and describe static and dynamic
statements without requiring access to data.

IMPLICIT_SCHEMA
Revokes the authority to implicitly create a schema. It does not affect the
ability to create objects in existing schemas or to process a CREATE SCHEMA
statement.

IMPLICIT_SCHEMA authority cannot be revoked from an authorization-name
holding DBADM authority without also revoking the DBADM authority
(SQLSTATE 42504).

LOAD
Revokes the authority to LOAD in this database.

QUIESCE_CONNECT
Revokes the authority to access the database while it is quiesced.

SECADM
Revokes the authority to administer database security.

SQLADM
Revokes the authority to monitor and tune SQL statements.

WLMADM
Revokes the authority to manage workload manager objects.

FROM
Indicates from whom the authorities are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the authorities from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly
granted those privileges, regardless of who granted them. This is the default
behavior.

Rules

Security administrator mandatory: The database must have at least one
authorization ID of type USER with the SECADM authority. The SECADM
authority cannot be revoked from every user authorization ID (SQLSTATE 42523).
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.DBAUTH catalog view

where the grantee is authorization-name:

REVOKE (database authorities)

1172 SQL Reference Volume 2



- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes
v Revoking a specific privilege does not necessarily revoke the ability to perform

an action. A user can proceed with a task if other privileges are held by PUBLIC,
a group, or a role, or if the user holds a higher level authority, such as DBADM.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
– CREATE_NOT_FENCED can be specified in place of

CREATE_NOT_FENCED_ROUTINE
– SYSTEM can be specified in place of DATABASE
– NOT INCLUDING DEPENDENT PRIVILEGES may be specified as a syntax

alternative

Examples
v Example 1: Given that USER6 is only a user and not a group, revoke the

privilege to create tables from the user USER6.
REVOKE CREATETAB ON DATABASE FROM USER6

v Example 2: Revoke BINDADD authority on the database from a group named
D024. There are two rows in the SYSCAT.DBAUTH catalog view for this grantee;
one with a GRANTEETYPE of U and one with a GRANTEETYPE of G.

REVOKE BINDADD ON DATABASE FROM GROUP D024

In this case, the GROUP keyword must be specified; otherwise an error will
occur (SQLSTATE 56092).

v Example 3: Revoke security administrator authority from user Walid.
REVOKE SECADM ON DATABASE FROM USER Walid

v Example 4: A user with SECADM authority revokes the
CREATE_SECURE_OBJECT authority from user Haytham.

REVOKE CREATE_SECURE_OBJECT ON DATABASE FROM USER HAYTHAM

REVOKE (database authorities)

Statements 1173



REVOKE (exemption)
This form of the REVOKE statement revokes an exemption to a label-based access
control (LBAC) access rule.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� REVOKE EXEMPTION ON RULE DB2LBACREADARRAY
DB2LBACREADSET
DB2LBACREADTREE
DB2LBACWRITEARRAY WRITEDOWN

WRITEUP
DB2LBACWRITESET
DB2LBACWRITETREE
ALL

�

� FOR policy-name �

,

FROM authorization-name
USER
GROUP
ROLE

��

Description

EXEMPTION ON RULE
Revokes the exemption on an access rule.

DB2LBACREADARRAY
Revokes an exemption on the predefined DB2LBACREADARRAY rule.

DB2LBACREADSET
Revokes an exemption on the predefined DB2LBACREADSET rule.

DB2LBACREADTREE
Revokes an exemption on the predefined DB2LBACREADTREE rule.

DB2LBACWRITEARRAY
Revokes an exemption on the predefined DB2LBACWRITEARRAY rule.

WRITEDOWN
Specifies that the exemption only applies to write down.

WRITEUP
Specifies that the exemption only applies to write up.

REVOKE (exemption)

1174 SQL Reference Volume 2



DB2LBACWRITESET
Revokes an exemption on the predefined DB2LBACWRITESET rule.

DB2LBACWRITETREE
Revokes an exemption on the predefined DB2LBACWRITETREE rule.

ALL
Revokes the exemptions on all of the predefined rules.

FOR policy-name
Specifies the name of the security policy on which exemptions are to be
revoked.

FROM
Specifies from whom the exemption is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the

SYSCAT.SECURITYPOLICYEXEMPTIONS catalog view where the grantee is
authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples
v Example 1: Revoke the exemption on access rule DB2LBACREADSET for security

policy DATA_ACCESS from user WALID.
REVOKE EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS

FROM USER WALID

v Example 2: Revoke an exemption on access rule DB2LBACWRITEARRAY with
the WRITEDOWN option for security policy DATA_ACCESS from user BOBBY.

REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN
FOR DATA_ACCESS FROM USER BOBBY

v Example 3: Revoke an exemption on access rule DB2LBACWRITEARRAY with
the WRITEUP option for security policy DATA_ACCESS from user BOBBY.

REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP
FOR DATA_ACCESS FROM USER BOBBY

REVOKE (exemption)

Statements 1175



REVOKE (global variable privileges)
This form of the REVOKE statement revokes one or more privileges on a created
global variable.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

��

�

PRIVILEGES
REVOKE ALL ON VARIABLE variable-name

,

READ
WRITE

�

� �

,
BY ALL RESTRICT

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

ALL PRIVILEGES
Revokes all privileges held by an authorization-name for the specified global
variable. If ALL is not specified, READ or WRITE must be specified. READ or
WRITE must not be specified more than once.

READ
Revokes the privilege to read the value of the specified global variable.

WRITE
Revokes the privilege to assign a value to the specified global variable.

ON VARIABLE variable-name
Identifies the global variable on which one or more privileges are to be
revoked. The variable-name must identify a global variable that exists at the
current server and is not a module variable (SQLSTATE 42704).

FROM
Specifies from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

REVOKE (global variable privileges)

1176 SQL Reference Volume 2



GROUP
Specifies that the authorization-name identifies a group.

ROLE
Specifies that the authorization-name identifies an existing role at the current
server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list
of authorization IDs cannot include the authorization ID of the user issuing
the statement (SQLSTATE 42502).

PUBLIC
Revokes the specified privileges from PUBLIC.

BY ALL
Revokes each specified privilege from all named users who were explicitly
granted those privileges, regardless of who granted them. This is the default
behavior.

RESTRICT
Specifies that the statement is to fail if any objects depend on the privileges
being revoked. This is the default behavior.

Rules
v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified, then for all rows for the specified object in the
SYSCAT.VARIABLEAUTH catalog view where the grantee is authorization-name:
– If GRANTEETYPE is 'U', USER is assumed.
– If GRANTEETYPE is 'G', GROUP is assumed.
– If GRANTEETYPE is 'R', ROLE is assumed.
– If GRANTEETYPE does not have the same value, an error is returned

(SQLSTATE 56092.
v If any SQL function, SQL method, procedure, view, trigger, or another global

variable contains a global variable and depends on the privilege being revoked,
the revoke operation will fail (SQLSTATE 42893).

Notes
v If the READ privilege on a global variable is revoked, packages with a

dependency to write the value of the global variable (for example, by the SET
statement) are not affected, because writing to a global variable is controlled by
the WRITE privilege on that global variable.

v If the WRITE privilege on a global variable is revoked, packages with a
dependency to read the value of the global variable are not affected, because
reading from a global variable is controlled by the READ privilege on that
global variable.

v Revoking a privilege does not necessarily impair the ability to perform the
action. A user might be able to proceed if the required privilege is held through
membership in a different group or role, or by PUBLIC.

Example

Revoke the WRITE privilege on global variable MYSCHEMA.MYJOB_PRINTER
from user ZUBIRI.

REVOKE WRITE ON VARIABLE MYSCHEMA.MYJOB_PRINTER FROM ZUBIRI

REVOKE (global variable privileges)

Statements 1177



REVOKE (index privileges)
This form of the REVOKE statement revokes the CONTROL privilege on an index.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE CONTROL ON INDEX index-name �

� �

,

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
��

Description

CONTROL
Revokes the privilege to drop the index. This is the CONTROL privilege for
indexes, which is automatically granted to creators of indexes.

ON INDEX index-name
Specifies the name of the index on which the CONTROL privilege is to be
revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the privileges from PUBLIC.

REVOKE (index privileges)

1178 SQL Reference Volume 2



BY ALL
Revokes the privilege from all named users who were explicitly granted that
privilege, regardless of who granted it. This is the default behavior.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.INDEXAUTH catalog view

where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes
v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by
PUBLIC, a group, or a role, or if the user holds authorities such as ALTERIN on
the schema of an index.

Examples
v Example 1: Given that USER4 is only a user and not a group, revoke the

privilege to drop an index DEPTIDX from the user USER4.
REVOKE CONTROL ON INDEX DEPTIDX FROM KIESLER

v Example 2: Revoke the privilege to drop an index LUNCHITEMS from the user
CHEF and the group WAITERS.

REVOKE CONTROL ON INDEX LUNCHITEMS
FROM USER CHEF, GROUP WAITERS

REVOKE (index privileges)

Statements 1179



REVOKE (module privileges)
This form of the REVOKE statement revokes the privilege on a module.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE EXECUTE ON MODULE module-name �

� �FROM authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

EXECUTE
Revokes the privilege to reference published module objects. This includes
revoking the privilege to:
v Execute any published routine defined in the module.
v Read from and write to any published global variables defined in the

module.
v Reference any published user-defined types defined in the module.
v Reference any published conditions defined in the module.

ON MODULE module-name
Identifies the module on which the privilege is revoked. The module-name must
identify a module that exists at the current server (SQLSTATE 42704).

FROM
Indicates from whom the privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

REVOKE (module privileges)

1180 SQL Reference Volume 2



authorization-name
Lists one or more authorization IDs. The same authorization-name must not
be specified more than once

PUBLIC
Grants the privilege to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership”.

Example

The following example demonstrate how to revoke the EXECUTE privilege from a
module named myModa from user jones

REVOKE EXECUTE ON MODULE MYMODA FROM JONES

REVOKE (module privileges)

Statements 1181



REVOKE (package privileges)
This form of the REVOKE statement revokes CONTROL, BIND, and EXECUTE
privileges against a package.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the referenced package
v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to revoke the CONTROL
privilege.

Syntax

�� REVOKE �

,

BIND
CONTROL

(1)
EXECUTE

�

�
(2)

ON PACKAGE package-id
schema-name.

�

� �

,

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND
Revokes the privilege to execute BIND or REBIND on-or to add a new version
of- the referenced package.

REVOKE (package privileges)

1182 SQL Reference Volume 2



The BIND privilege cannot be revoked from an authorization-name that holds
CONTROL privilege on the package, without also revoking the CONTROL
privilege.

CONTROL
Revokes the privilege to drop the package and to extend package privileges to
other users.

Revoking CONTROL does not revoke the other package privileges.

EXECUTE
Revokes the privilege to execute the package.

The EXECUTE privilege cannot be revoked from an authorization-name that
holds CONTROL privilege on the package without also revoking the
CONTROL privilege.

ON PACKAGE schema-name.package-id
Specifies the name of the package on which privileges are to be revoked. If a
schema name is not specified, the package ID is implicitly qualified by the
default schema. The revoking of a package privilege applies to all versions of
the package.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the privileges from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly
granted those privileges, regardless of who granted them. This is the default
behavior.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.PACKAGEAUTH catalog

view where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

REVOKE (package privileges)

Statements 1183



Notes
v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by
PUBLIC, a group, or a role, or if the user holds privileges such as ALTERIN on
the schema of a package.

Examples
v Example 1: Revoke the EXECUTE privilege on package CORPDATA.PKGA from

PUBLIC.
REVOKE EXECUTE

ON PACKAGE CORPDATA.PKGA
FROM PUBLIC

v Example 2: Revoke CONTROL authority on the RRSP_PKG package for the user
FRANK and for PUBLIC.

REVOKE CONTROL
ON PACKAGE RRSP_PKG
FROM USER FRANK, PUBLIC

REVOKE (package privileges)

1184 SQL Reference Volume 2



REVOKE (role)
This form of the REVOKE statement revokes roles from users, groups, or other
roles.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v The WITH ADMIN OPTION on the role
v SECADM authority

SECADM authority is required to revoke the ADMIN OPTION FOR role-name from
an authorization-name or to revoke a role-name from an authorization-name that has
the WITH ADMIN OPTION on that role.

Syntax

�� �

,
ROLE

REVOKE role-name
ADMIN OPTION FOR

�

� �

,
BY ALL

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

ADMIN OPTION FOR
Revokes the WITH ADMIN OPTION on role-name. The WITH ADMIN
OPTION on role-name must be held by authorization-name or by PUBLIC, if
PUBLIC is specified (SQLSTATE 42504). If the ADMIN OPTION FOR clause is
specified, only the WITH ADMIN OPTION on ROLE role-name is revoked, not
the role itself.

ROLE role-name
Specifies the role that is to be revoked. The role-name must identify an existing
role at the current server (SQLSTATE 42704) that has been granted to
authorization-name or to PUBLIC, if PUBLIC is specified (SQLSTATE 42504).

FROM
Specifies from whom the role is revoked.

USER
Specifies that the authorization-name identifies a user.

REVOKE (role)

Statements 1185



GROUP
Specifies that the authorization-name identifies a group.

ROLE
Specifies that the authorization-name identifies an existing role at the current
server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list
of authorization IDs cannot include the authorization ID of the user issuing
the statement (SQLSTATE 42502).

PUBLIC
Revokes the specified roles from PUBLIC.

BY ALL
Revokes the role-name from each specified authorization-name that was explicitly
granted that role, regardless of who granted it. This is the default behavior.

Rules
v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified, then for all rows for the specified object in the
SYSCAT.ROLEAUTH catalog view where the grantee is authorization-name:
– If GRANTEETYPE is 'U', USER is assumed.
– If GRANTEETYPE is 'G', GROUP is assumed.
– If GRANTEETYPE is 'R', ROLE is assumed.
– If GRANTEETYPE does not have the same value, an error is returned

(SQLSTATE 56092.
v The role-name must not identify a role, or a role that contains role-name, if the

role has either EXECUTE privilege on a routine or USAGE privilege on a
sequence, and an SQL object other than a package is dependent on the routine
or sequence (SQLSTATE 42893). The owner of the SQL object is either
authorization-name or any user that is a member of authorization-name, where
authorization-name is a role.

Notes
v If a role is revoked from an authorization-name or from PUBLIC, all privileges

that the role held are no longer available to the authorization-name or to PUBLIC
through that role.

v Revoking a role does not necessarily revoke the ability to perform a particular
action by way of a privilege that was granted to that role. A user might still be
able to proceed if other privileges are held by PUBLIC, by a group to which the
user belongs, by another role granted to the user, or if the user has a higher
level authority, such as DBADM.

Examples
v Example 1: Revoke the role INTERN from the role DOCTOR and the role

DOCTOR from the role SPECIALIST.
REVOKE ROLE INTERN FROM ROLE DOCTOR

REVOKE ROLE DOCTOR FROM ROLE SPECIALIST

v Example 2: Revoke the role INTERN from PUBLIC.
REVOKE ROLE INTERN FROM PUBLIC

v Example 3: Revoke the role SPECIALIST from user BOB and group TORONTO.
REVOKE ROLE SPECIALIST FROM USER BOB, GROUP TORONTO BY ALL

REVOKE (role)

1186 SQL Reference Volume 2



REVOKE (routine privileges)
This form of the REVOKE statement revokes privileges on a routine (function,
method, or procedure) that is not defined in a module.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE EXECUTE ON function-designator
FUNCTION *

schema.
method-designator

METHOD * FOR type-name
*

schema.
procedure-designator

PROCEDURE *
schema.

�

� �

,

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
RESTRICT ��

function-designator:

�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

REVOKE (routine privileges)

Statements 1187



method-designator:

�

METHOD method-name FOR type-name
( )

,

data-type
SPECIFIC METHOD specific-name

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

Description

EXECUTE
Revokes the privilege to run the identified user-defined function, method, or
procedure.

function-designator
Uniquely identifies the function from which the privilege is revoked. For more
information, see “Function, method, and procedure designators” on page 20.

FUNCTION schema.*
Identifies the explicit grant for all the existing and future functions in the
schema. Revoking the schema.* privilege does not revoke any privileges that
were granted on a specific function. In dynamic SQL statements, if a schema is
not specified, the schema in the CURRENT SCHEMA special register will be
used. In static SQL statements, if a schema is not specified, the schema in the
QUALIFIER precompile/bind option will be used.

method-designator
Uniquely identifies the method from which the privilege is revoked. For more
information, see “Function, method, and procedure designators” on page 20.

METHOD *
Identifies the explicit grant for all the existing and future methods for the type
type-name. Revoking the * privilege does not revoke any privileges that were
granted on a specific method.

FOR type-name
Names the type in which the specified method is found. The name must
identify a type already described in the catalog (SQLSTATE 42704). In
dynamic SQL statements, the value of the CURRENT SCHEMA special
register is used as a qualifier for an unqualified type name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified type names. An asterisk (*) can be used in place of
type-name to identify the explicit grant on all existing and future methods
for all existing and future types in the schema. Revoking the privilege
using an asterisk for method and type-name does not revoke any privileges
that were granted on a specific method or on all methods for a specific
type.

REVOKE (routine privileges)

1188 SQL Reference Volume 2



procedure-designator
Uniquely identifies the procedure from which the privilege is revoked. For
more information, see “Function, method, and procedure designators” on page
20.

PROCEDURE schema.*
Identifies the explicit grant for all the existing and future procedures in the
schema. Revoking the schema.* privilege does not revoke any privileges that
were granted on a specific procedure. In dynamic SQL statements, if a schema
is not specified, the schema in the CURRENT SCHEMA special register will be
used. In static SQL statements, if a schema is not specified, the schema in the
QUALIFIER precompile/bind option will be used.

FROM
Specifies from whom the EXECUTE privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the EXECUTE privilege from PUBLIC.

BY ALL
Revokes the EXECUTE privilege from all named users who were explicitly
granted the privilege, regardless of who granted it. This is the default behavior.

RESTRICT
Specifies that the EXECUTE privilege cannot be revoked if both of the
following conditions are true (SQLSTATE 42893):
v The specified routine is used in a view, trigger, constraint, index extension,

SQL function, SQL method, transform group, or is referenced as the
SOURCE of a sourced function.

v The loss of the EXECUTE privilege would cause the owner of the view,
trigger, constraint, index extension, SQL function, SQL method, transform
group, or sourced function to no longer be able to execute the specified
routine.

Rules
v It is not possible to revoke the EXECUTE privilege on a function or method

defined with schema 'SYSIBM' or 'SYSFUN' (SQLSTATE 42832).
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.ROUTINEAUTH catalog

view where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.

REVOKE (routine privileges)

Statements 1189



- If all rows do not have the same value for GRANTEETYPE, an error is
returned (SQLSTATE 56092).

Notes
v If a package depends on a routine (function, method, or procedure), and the

EXECUTE privilege on that routine is revoked from PUBLIC, a user, or a role,
the package becomes inoperative if the routine is a function or a method, and
the package becomes invalid if the routine is a procedure, unless the package
owner still holds the EXECUTE privilege on the routine. The package owner can
still hold the EXECUTE privilege if:
– The package owner was explicitly granted the EXECUTE privilege
– The package owner is a member of a role that holds the EXECUTE privilege
– The EXECUTE privilege was granted to PUBLIC

Because group privileges are not considered for static packages, the package
becomes inoperative (in the case of a function or a method) or invalid (in the
case of a procedure) even if a group to which the package owner belongs holds
the EXECUTE privilege.

Examples
v Example 1: Revoke the EXECUTE privilege on function CALC_SALARY from

user JONES. Assume that there is only one function in the schema with function
name CALC_SALARY.

REVOKE EXECUTE ON FUNCTION CALC_SALARY FROM JONES RESTRICT

v Example 2: Revoke the EXECUTE privilege on procedure VACATION_ACCR
from all users at the current server.

REVOKE EXECUTE ON PROCEDURE VACATION_ACCR FROM PUBLIC RESTRICT

v Example 3: Revoke the EXECUTE privilege on function NEW_DEPT_HIRES from
HR (Human Resources). The function has two input parameters of type
INTEGER and CHAR(10), respectively. Assume that the schema has more than
one function named NEW_DEPT_HIRES.

REVOKE EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
FROM HR RESTRICT

v Example 4: Revoke the EXECUTE privilege on method SET_SALARY for type
EMPLOYEE from user Jones.

REVOKE EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE FROM JONES RESTRICT

REVOKE (routine privileges)

1190 SQL Reference Volume 2



REVOKE (schema privileges)
This form of the REVOKE statement revokes the privileges on a schema.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE �

,

ALTERIN
CREATEIN
DROPIN

ON SCHEMA schema-name �

� �

,

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
��

Description

ALTERIN
Revokes the privilege to alter or comment on objects in the schema.

CREATEIN
Revokes the privilege to create objects in the schema.

DROPIN
Revokes the privilege to drop objects in the schema.

ON SCHEMA schema-name
Specifies the name of the schema on which privileges are to be revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

REVOKE (schema privileges)

Statements 1191



The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the privileges from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly
granted those privileges, regardless of who granted them. This is the default
behavior.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.SCHEMAAUTH catalog

view where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes
v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by
PUBLIC, a group, or a role, or if the user holds a higher level authority such as
DBADM.

Examples
v Example 1: Given that USER4 is only a user and not a group, revoke the

privilege to create objects in schema DEPTIDX from the user USER4.
REVOKE CREATEIN ON SCHEMA DEPTIDX FROM USER4

v Example 2: Revoke the privilege to drop objects in schema LUNCH from the
user CHEF and the group WAITERS.

REVOKE DROPIN ON SCHEMA LUNCH
FROM USER CHEF, GROUP WAITERS

REVOKE (schema privileges)

1192 SQL Reference Volume 2



REVOKE (security label)
This form of the REVOKE statement revokes a label-based access control (LBAC)
security label.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� REVOKE SECURITY LABEL security-label-name �

� �

,

FROM authorization-name
USER
GROUP
ROLE

��

Description

SECURITY LABEL security-label-name
Revokes the security label security-label-name. The name must be qualified with
a security policy (SQLSTATE 42704) and must identify a security label that
exists at the current server (SQLSTATE 42704), and that is held by
authorization-name (SQLSTATE 42504).

FROM
Specifies from whom the specified security label is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name
must exist at the current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

REVOKE (security label)

Statements 1193



– For all rows for the specified object in the SYSCAT.SECURITYLABELACCESS
catalog view where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Example

Revoke the security label EMPLOYEESECLABEL, which is part of the security
policy DATA_ACCESS, from user WALID.

REVOKE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL
FROM USER WALID

REVOKE (security label)

1194 SQL Reference Volume 2



REVOKE (sequence privileges)
This form of the REVOKE statement revokes privileges on a sequence.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE �

,

ALTER
USAGE

ON SEQUENCE sequence-name �

� �

,
BY ALL RESTRICT

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

ALTER
Revokes the privilege to change the properties of a sequence or to restart
sequence number generation using the ALTER SEQUENCE statement.

USAGE
Revokes the privilege to reference a sequence using nextval-expression or
prevval-expression.

ON SEQUENCE sequence-name
Identifies the sequence on which the specified privileges are to be revoked. The
sequence name, including an implicit or explicit schema qualifier, must
uniquely identify an existing sequence at the current server. If no sequence by
this name exists, an error is returned (SQLSTATE 42704).

FROM
Specifies from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

REVOKE (sequence privileges)

Statements 1195



authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the specified privileges from PUBLIC.

BY ALL
Revokes each specified privilege from all named users who were explicitly
granted those privileges, regardless of who granted them. This is the default
behavior.

RESTRICT
This optional keyword indicates that the statement will fail if any objects
depend on the privilege being revoked.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.SEQUENCEAUTH catalog

view where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes
v Revoking a privilege on a sequence from the authorization ID under which a

package was bound will cause the package to become invalid if the
authorization ID does not continue to hold the privilege on the sequence
through different means; for example, through membership in a role that holds
the privilege.

v Revoking a specific privilege does not necessarily remove the ability to perform
an action. A user can proceed if other privileges are held by PUBLIC or by a
group to which the user belongs, or if the user has a higher level of authority,
such as DBADM.

Examples
v Example 1: Revoke the USAGE privilege on a sequence called GENERATE_ID

from user ENGLES. There is one row in the SYSCAT.SEQUENCEAUTH catalog
view for this sequence and grantee, and the GRANTEETYPE value is U.

REVOKE USAGE ON SEQUENCE GENERATE_ID FROM ENGLES

v Example 2: Revoke alter privileges on sequence GENERATE_ID that were
previously granted to all local users. (Grants to specific users are not affected.)

REVOKE ALTER ON SEQUENCE GENERATE_ID FROM PUBLIC

v Example 3: Revoke all privileges on sequence GENERATE_ID from users
PELLOW and MLI, and from group PLANNERS.

REVOKE ALTER, USAGE ON SEQUENCE GENERATE_ID
FROM USER PELLOW, USER MLI, GROUP PLANNERS

REVOKE (sequence privileges)

1196 SQL Reference Volume 2



REVOKE (server privileges)
This form of the REVOKE statement revokes the privilege to access and use a
specified data source in pass-through mode.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE PASSTHRU ON SERVER server-name FROM �

� �

,

authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
��

Description

SERVER server-name
Names the data source for which the privilege to use in pass-through mode is
being revoked. server-name must identify a data source that is described in the
catalog.

FROM
Specifies from whom the privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes from PUBLIC the privilege to pass through to server-name.

REVOKE (server privileges)

Statements 1197



BY ALL
Revokes the privilege from all named users who were explicitly granted that
privilege, regardless of who granted it. This is the default behavior.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.PASSTHRUAUTH catalog

view where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples
v Example 1: Revoke USER6's privilege to pass through to data source

MOUNTAIN.
REVOKE PASSTHRU ON SERVER MOUNTAIN FROM USER USER6

v Example 2: Revoke group D024's privilege to pass through to data source
EASTWING.

REVOKE PASSTHRU ON SERVER EASTWING FROM GROUP D024

The members of group D024 will no longer be able to use their group ID to pass
through to EASTWING. But if any members have the privilege to pass through
to EASTWING under their own user IDs, they will retain this privilege.

REVOKE (server privileges)

1198 SQL Reference Volume 2



REVOKE (SETSESSIONUSER privilege)
This form of the REVOKE statement revokes one or more SETSESSIONUSER
privileges from one or more authorization IDs.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

�� �

,

REVOKE SETSESSIONUSER ON USER session-authorization-name FROM
PUBLIC

�

� �

,

USER authorization-name
GROUP

��

Description

SETSESSIONUSER ON
Revokes the privilege to assume the identity of a new authorization ID.

USER session-authorization-name
Specifies the authorization ID that the authorization-name is able to assume,
using the SET SESSION AUTHORIZATION statement. The
session-authorization-name must identify a user that the authorization-name can
assume, not a group (SQLSTATE 42504).

PUBLIC
Specifies that all privileges to set the session authorization will be revoked.

FROM
Specifies from whom the privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

REVOKE (SETSESSIONUSER privilege)

Statements 1199



Examples
v Example 1: User PAUL holds the privilege to set the session authorization to

WALID and therefore to execute SQL statements as user WALID. The following
statement revokes that privilege.

REVOKE SETSESSIONUSER ON USER WALID
FROM USER PAUL

v Example 2: User GUYLAINE holds the privilege to set the session authorization
to BOBBY, RICK, or KEVIN and therefore to execute SQL statements as BOBBY,
RICK, or KEVIN. The following statement revokes the privilege to use two of
those authorization IDs. After this statement executes, GUYLAINE will only be
able to set the session authorization to KEVIN.

REVOKE SETSESSIONUSER ON USER BOBBY, USER RICK
FROM USER GUYLAINE

v Example 3: The group ACCTG and user WALID can set session authorization to
any authorization ID. The following statement revokes that privilege from both
ACCTG and WALID.

REVOKE SETSESSIONUSER ON PUBLIC
FROM USER WALID, GROUP ACCTG

REVOKE (SETSESSIONUSER privilege)

1200 SQL Reference Volume 2



REVOKE (table space privileges)
This form of the REVOKE statement revokes the USE privilege on a table space.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL, SECADM, SYSCTRL, or SYSADM authority.

Syntax

�� REVOKE USE OF TABLESPACE tablespace-name FROM �

� �

,

authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
��

Description

USE
Revokes the privilege to specify or default to the table space when creating a
table.

OF TABLESPACE tablespace-name
Specifies the table space on which the USE privilege is to be revoked. The table
space cannot be SYSCATSPACE (SQLSTATE 42838) or a SYSTEM
TEMPORARY table space (SQLSTATE 42809).

FROM
Indicates from whom the USE privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

REVOKE (table space privileges)

Statements 1201



PUBLIC
Revokes the USE privilege from PUBLIC.

BY ALL
Revokes the privilege from all named users who were explicitly granted that
privilege, regardless of who granted it. This is the default behavior.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.TBSPACEAUTH catalog

view where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes
v Revoking the USE privilege does not necessarily revoke the ability to create

tables in that table space. A user may still be able to create tables in that table
space if the USE privilege is held by PUBLIC or a group, or if the user has a
higher level authority, such as DBADM.

Example

Revoke the privilege to create tables in table space PLANS from the user BOBBY.

REVOKE USE OF TABLESPACE PLANS FROM USER BOBBY

REVOKE (table space privileges)

1202 SQL Reference Volume 2



REVOKE (table, view, or nickname privileges)
This form of the REVOKE statement revokes privileges on a table, view, or
nickname.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the referenced table, view, or nickname
v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to revoke the CONTROL
privilege, or to revoke privileges on catalog tables and views.

Syntax

�� REVOKE

�

PRIVILEGES
ALL

,

ALTER
CONTROL
DELETE
INDEX
INSERT
REFERENCES
SELECT
UPDATE

ON
TABLE

table-name
view-name
nickname

�

� �

,

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

BY ALL
��

Description

ALL or ALL PRIVILEGES
Revokes all privileges (except CONTROL) held by an authorization-name for
the specified tables, views, or nicknames.

If ALL is not used, one or more of the keywords listed in the option stack
(ALTER through UPDATE) must be used. Each keyword revokes the privilege
described, but only as it applies to the tables, views, or nicknames named in
the ON clause. The same keyword must not be specified more than once.

REVOKE (table, view, or nickname privileges)

Statements 1203



ALTER
Revokes the privilege to add columns to the base table definition; create or
drop a primary key or unique constraint on the table; create or drop a foreign
key on the table; add/change a comment on the table, view, or nickname;
create or drop a check constraint; create a trigger; add, reset, or drop a column
option for a nickname; or, change nickname column names or data types.

CONTROL
Revokes the ability to drop the table, view, or nickname, and the ability to
execute the RUNSTATS utility on the table and indexes.

Revoking CONTROL privilege from an authorization-name does not revoke
other privileges granted to the user on that object.

DELETE
Revokes the privilege to delete rows from the table, updatable view, or
nickname.

INDEX
Revokes the privilege to create an index on the table or an index specification
on the nickname. The creator of an index or index specification automatically
has the CONTROL privilege over the index or index specification (authorizing
the creator to drop the index or index specification). In addition, the creator
retains this privilege even if the INDEX privilege is revoked.

INSERT
Revokes the privileges to insert rows into the table, updatable view, or
nickname, and to run the IMPORT utility.

REFERENCES
Revokes the privilege to create or drop a foreign key referencing the table as
the parent. Any column level REFERENCES privileges are also revoked.

SELECT
Revokes the privilege to retrieve rows from the table or view, to create a view
on a table, and to run the EXPORT utility against the table or view.

Revoking SELECT privilege may cause some views to be marked inoperative.
(For information about inoperative views, see “CREATE VIEW”.)

UPDATE
Revokes the privilege to update rows in the table, updatable view, or
nickname. Any column level UPDATE privileges are also revoked.

ON TABLE table-name or view-name or nickname
Specifies the table, view, or nickname on which privileges are to be revoked.
The table-name cannot be a declared temporary table (SQLSTATE 42995).

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

REVOKE (table, view, or nickname privileges)

1204 SQL Reference Volume 2



The list of authorization IDs cannot include the authorization ID of the
user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the privileges from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly
granted those privileges, regardless of who granted them. This is the default
behavior.

Rules
v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:
– For all rows for the specified object in the SYSCAT.TABAUTH and

SYSCAT.COLAUTH catalog views where the grantee is authorization-name:
- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes
v If a privilege is revoked from the authorization-name that is the owner of the view

(as recorded in the OWNER column in SYSCAT.VIEWS), that privilege is also
revoked from any dependent views.

v If the owner of the view loses a SELECT privilege on some object on which the
view definition depends (or an object upon which the view definition depends is
dropped, or made inoperative in the case of another view), the view will be
made inoperative.
However, if a user who holds ACCESSCTRL or SECADM authority explicitly
revokes all privileges on the view from the owner, then the record of the
OWNER will not appear in SYSCAT.TABAUTH but nothing will happen to the
view - it remains operative.

v Privileges on inoperative views cannot be revoked.
v A package might become invalid when the authorization ID under which the

package was bound loses a privilege on an object on which the package
depends. The privilege can be lost in one of the following ways:
– The privilege is revoked from the authorization ID
– The privilege is revoked from a role of which the authorization ID is a

member
– The privilege is revoked from PUBLIC

A package remains invalid until a bind or rebind operation on the application is
successfully executed, or the application is executed and the database manager
successfully rebinds the application (using information stored in the catalogs).
Packages marked invalid due to a revoke may be successfully rebound without
any additional grants.
For example, if a package owned by USER1 contains a SELECT from table T1,
and the SELECT privilege on table T1 is revoked from USER1, the package will
be marked invalid. If SELECT authority is granted again, or if the user holds
DBADM authority, the package is successfully rebound when executed.

REVOKE (table, view, or nickname privileges)

Statements 1205



Another example is a package owned by USER1, who is a member of role R1.
The package contains a SELECT from table T1, and the SELECT privilege on
table T1 is revoked from role R1. The package will be marked invalid, assuming
USER1 does not hold the SELECT privilege on table T1 by other means.

v Packages, triggers or views that include the use of OUTER(Z) in the FROM
clause, are dependent on having SELECT privilege on every subtable or subview
of Z. Similarly, packages, triggers, or views that include the use of DEREF(Y)
where Y is a reference type with a target table or view Z, are dependent on
having SELECT privilege on every subtable or subview of Z. Such packages
might become invalid, and such triggers or views made inoperative when the
authorization ID under which the packages were bound, or the owner of the
triggers or views loses the SELECT privilege. The SELECT privilege can be lost
in one of the following ways:
– SELECT privilege is revoked from the authorization ID
– SELECT privilege is revoked from a role of which the authorization ID is a

member
– SELECT privilege is revoked from PUBLIC

v Table, view, or nickname privileges cannot be revoked from an authorization-name
with CONTROL on the object without also revoking the CONTROL privilege
(SQLSTATE 42504).

v Revoking a specific privilege does not necessarily revoke the ability to perform
the action. A user can proceed with a task if other privileges are held by
PUBLIC, a group, or a role, or if the user holds privileges such as ALTERIN on
the schema of a table or a view.

v If the owner of the materialized query table loses a SELECT privilege on a table
on which the materialized query table definition depends (or a table upon which
the materialized query table definition depends is dropped), the materialized
query table will be dropped.
However, if a user who holds SECADM or ACCESSCTRL authority explicitly
revokes all privileges on the materialized query table from the owner, then the
record in SYSTABAUTH for the OWNER will be deleted, but nothing will
happen to the materialized query table - it remains operative.

v Revoking nickname privileges has no affect on data source object (table or view)
privileges.

v Revoking the SELECT privilege for a table or view that is directly or indirectly
referenced in an SQL function or method body may fail if the SQL function or
method body cannot be dropped because some other object is dependent on it
(SQLSTATE 42893).

v Revoking the SELECT privilege causes an SQL function or method body to be
dropped when:
– The owner of the SQL function or method body loses the SELECT privilege

on some object on which the SQL function or method body definition
depends; note that the privilege can be lost because of a revoke from PUBLIC
or from a role of which the owner is a member

– An object on which the SQL function or method body definition depends is
dropped

However, the revoke fails if another object depends on the function or method
(SQLSTATE 42893).

v Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT
OPTION is to revoke the privilege itself and then grant it again without
specifying WITH GRANT OPTION.

REVOKE (table, view, or nickname privileges)

1206 SQL Reference Volume 2



v Revoking column privileges: The only way to revoke column privileges is to
revoke the privilege from the entire table itself and then grant it again for each
column.

Examples
v Example 1: Revoke SELECT privilege on table EMPLOYEE from user ENGLES.

There is one row in the SYSCAT.TABAUTH catalog view for this table and
grantee and the GRANTEETYPE value is U.

REVOKE SELECT
ON TABLE EMPLOYEE
FROM ENGLES

v Example 2: Revoke update privileges on table EMPLOYEE previously granted to
all local users. Note that grants to specific users are not affected.

REVOKE UPDATE
ON EMPLOYEE
FROM PUBLIC

v Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW and
MLI and from group PLANNERS.

REVOKE ALL
ON EMPLOYEE
FROM USER PELLOW, USER MLI, GROUP PLANNERS

v Example 4: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a
user named JOHN. There is one row in the SYSCAT.TABAUTH catalog view for
this table and grantee and the GRANTEETYPE value is U.

REVOKE SELECT
ON CORPDATA.EMPLOYEE FROM JOHN

or
REVOKE SELECT

ON CORPDATA.EMPLOYEE FROM USER JOHN

Note that an attempt to revoke the privilege from GROUP JOHN would result
in an error, since the privilege was not previously granted to GROUP JOHN.

v Example 5: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a
group named JOHN. There is one row in the SYSCAT.TABAUTH catalog view
for this table and grantee and the GRANTEETYPE value is G.

REVOKE SELECT
ON CORPDATA.EMPLOYEE FROM JOHN

or
REVOKE SELECT

ON CORPDATA.EMPLOYEE FROM GROUP JOHN

v Example 6: Revoke user SHAWN's privilege to create an index specification on
nickname ORAREM1.

REVOKE INDEX
ON ORAREM1 FROM USER SHAWN

REVOKE (table, view, or nickname privileges)

Statements 1207



REVOKE (workload privileges)
This form of the REVOKE statement revokes the USAGE privilege on a workload.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ACCESSCTRL, SECADM, or WLMADM authority.

Syntax

�� REVOKE USAGE ON WORKLOAD workload-name �

� �

,
BY ALL

FROM authorization-name
USER
GROUP
ROLE

PUBLIC

��

Description

USAGE
Revokes the privilege to use a workload.

ON WORKLOAD workload-name
Identifies the workload on which the USAGE privilege is to be revoked. This is
a one-part name. The workload-name must identify a workload that exists at the
current server (SQLSTATE 42704). The name cannot be
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

FROM
Specifies from whom the USAGE privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group.

ROLE
Specifies that the authorization-name identifies an existing role at the current
server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list
of authorization IDs cannot include the authorization ID of the user issuing
the statement (SQLSTATE 42502).

REVOKE (workload privileges)

1208 SQL Reference Volume 2



PUBLIC
Revokes the USAGE privilege from PUBLIC.

BY ALL
Revokes the USAGE privilege from all named users who were explicitly
granted that privilege, regardless of who granted it. This is the default
behavior.

Rules
v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified, then for all rows for the specified object in the
SYSCAT.WORKLOADAUTH catalog view where the grantee is
authorization-name:
– If GRANTEETYPE is 'U', USER is assumed.
– If GRANTEETYPE is 'G', GROUP is assumed.
– If GRANTEETYPE is 'R', ROLE is assumed.
– If GRANTEETYPE does not have the same value, an error is returned

(SQLSTATE 56092.

Notes
v The REVOKE statement does not take effect until it is committed, even for the

connection that issues the statement.

Example

Revoke the privilege to use the workload CAMPAIGN from user LISA.
REVOKE USAGE ON WORKLOAD CAMPAIGN FROM USER LISA

REVOKE (workload privileges)

Statements 1209



REVOKE (XSR object privileges)
This form of the REVOKE statement revokes USAGE privilege on an XSR object.

Invocation

The REVOKE statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that can
be dynamically prepared only if the DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization

One of the following authorities is required:
v ACCESSCTRL or SECADM authority

Syntax

�� REVOKE USAGE ON XSROBJECT xsrobject-name FROM PUBLIC
BY ALL

��

Description

ON XSROBJECT xsrobject-name
This name identifies the XSR object for which the USAGE privilege is revoked.
The xsrobject-name, including the implicit or explicit schema qualifier, must
uniquely identify an existing XSR object at the current server. If no XSR object
by this name exists in the specified schema, an error is raised (SQLSTATE
42704).

FROM PUBLIC
Revokes the USAGE privilege from PUBLIC.

BY ALL
Revokes each named privilege from all users who were explicitly granted those
privileges, regardless of who granted them. This is the default behavior.

Example

Revoke usage privileges on the XML schema MYSCHEMA from PUBLIC:
REVOKE USAGE ON XSROBJECT MYSCHEMA FROM PUBLIC

REVOKE (XSR object privileges)

1210 SQL Reference Volume 2



ROLLBACK
The ROLLBACK statement is used to back out of the database changes that were
made within a unit of work or a savepoint.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
WORK

ROLLBACK
TO SAVEPOINT

savepoint-name

��

Description

The unit of work in which the ROLLBACK statement is executed is terminated and
a new unit of work is initiated. All changes made to the database during the unit
of work are backed out.

The following statements, however, are not under transaction control, and changes
made by them are independent of the ROLLBACK statement:
v SET CONNECTION
v SET ENCRYPTION PASSWORD
v SET EVENT MONITOR STATE
v SET PASSTHRU (Although the SET PASSTHRU statement is not under

transaction control, the passthru session initiated by the statement is under
transaction control.)

v SET SERVER OPTION
v A SET statement that sets an updatable special register

The generation of sequence and identity values is not under transaction control.
Values generated and consumed by the nextval-expression or by inserting rows into
a table that has an identity column are independent of issuing the ROLLBACK
statement. Also, issuing the ROLLBACK statement does not affect the value
returned by the prevval-expression, nor the IDENTITY_VAL_LOCAL function.

Modification of the values of global variables is not under transaction control.
ROLLBACK statements do not affect the values assigned to global variables.

TO SAVEPOINT
Specifies that a partial rollback (ROLLBACK TO SAVEPOINT) is to be
performed. If no savepoint is active in the current savepoint level (see the
“Rules” section in the description of the SAVEPOINT statement), an error is
returned (SQLSTATE 3B502). After a successful rollback, the savepoint
continues to exist, but any nested savepoints are released and no longer exist.

ROLLBACK

Statements 1211



The nested savepoints, if any, are considered to have been rolled back and then
released as part of the rollback to the current savepoint. If a savepoint-name is
not provided, rollback occurs to the most recently set savepoint within the
current savepoint level.

If this clause is omitted, the ROLLBACK statement rolls back the entire
transaction. Furthermore, savepoints within the transaction are released.

savepoint-name
Specifies the savepoint that is to be used in the rollback operation. The
specified savepoint-name cannot begin with 'SYS' (SQLSTATE 42939). After a
successful rollback operation, the named savepoint continues to exist. If the
savepoint name does not exist, an error (SQLSTATE 3B001) is returned. Data
and schema changes made since the savepoint was set are undone.

Notes
v All locks held are released on a ROLLBACK of the unit of work. All open

cursors are closed. All LOB locators are freed.
v Executing a ROLLBACK statement does not affect either the SET statements that

change special register values or the RELEASE statement.
v If the program terminates abnormally, the unit of work is implicitly rolled back.
v Statement caching is affected by the rollback operation.
v The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends

on the statements within the savepoint
– If the savepoint contains DDL on which a cursor is dependent, the cursor is

marked invalid. Attempts to use such a cursor results in an error (SQLSTATE
57007).

– Otherwise:
- If the cursor is referenced in the savepoint, the cursor remains open and is

positioned before the next logical row of the result table. (A FETCH must
be performed before a positioned UPDATE or DELETE statement is issued.)

- Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it
remains open and positioned).

v Dynamic SQL statements prepared in a package bound with the KEEPDYNAMIC
YES option are kept in the SQL context after a ROLLBACK statement. The
statement might be implicitly prepared again, as a result of DDL operations that
are rolled back within the unit of work.

v Inactive dynamic SQL statements prepared in a package bound with
KEEPDYNAMIC NO are removed from the SQL context after a rollback operation.
The statement must be prepared again before it can be executed in a new
transaction.

v The following dynamic SQL statements may be active during ROLLBACK:
– ROLLBACK statement
– CALL statements under which the ROLLBACK statement was executed

v A ROLLBACK TO SAVEPOINT operation will drop any created temporary
tables created within the savepoint. If a created temporary table is modified
within the savepoint and that table has been defined as not logged, then all
rows in the table are deleted.

v A ROLLBACK TO SAVEPOINT operation will drop any declared temporary
tables declared within the savepoint. If a declared temporary table is modified
within the savepoint and that table has been defined as not logged, then all
rows in the table are deleted.

v All locks are retained after a ROLLBACK TO SAVEPOINT statement.

ROLLBACK

1212 SQL Reference Volume 2



v All LOB locators are preserved following a ROLLBACK TO SAVEPOINT
operation.

Example

Delete the alterations made since the last commit point or rollback.
ROLLBACK WORK

ROLLBACK

Statements 1213



SAVEPOINT
Use the SAVEPOINT statement to set a savepoint within a transaction.

Invocation

This statement can be imbedded in an application program (including a procedure)
or issued interactively. It is an executable statement that can be dynamically
prepared.

Authorization

None required.

Syntax

�� SAVEPOINT savepoint-name
UNIQUE

ON ROLLBACK RETAIN CURSORS �

�
ON ROLLBACK RETAIN LOCKS

��

Description

savepoint-name
Specifies the name of a savepoint. The specified savepoint-name cannot begin
with 'SYS' (SQLSTATE 42939). If a savepoint by this name has already been
defined as UNIQUE within this savepoint level, an error is returned
(SQLSTATE 3B501).

UNIQUE
Specifies that the application does not intend to reuse this savepoint name
while the savepoint is active within the current savepoint level. If
savepoint-name already exists within this savepoint level, an error is returned
(SQLSTATE 3B501).

ON ROLLBACK RETAIN CURSORS
Specifies system behavior upon rollback to this savepoint with respect to open
cursor statements processed after the SAVEPOINT statement. This clause
indicates that, whenever possible, the cursors are unaffected by a rollback to
savepoint operation. For situations where the cursors are affected by the
rollback to savepoint, see “ROLLBACK”.

ON ROLLBACK RETAIN LOCKS
Specifies system behavior upon rollback to this savepoint with respect to locks
acquired after the setting of the savepoint. Locks acquired since the savepoint
are not tracked, and are not rolled back (released) upon rollback to the
savepoint.

Rules
v Savepoint-related statements must not be used within trigger definitions

(SQLSTATE 42987).
v A new savepoint level starts when one of the following events occurs:

– A new unit of work (UOW) starts.
– A procedure defined with the NEW SAVEPOINT LEVEL clause is called.

SAVEPOINT

1214 SQL Reference Volume 2



– An atomic compound SQL statement starts.
v A savepoint level ends when the event that caused its creation is finished or

removed. When a savepoint level ends, all savepoints contained within it are
released. Any open cursors, DDL actions, or data modifications are inherited by
the parent savepoint level (that is, the savepoint level within which the one that
just ended was created), and are subject to any savepoint-related statements
issued against the parent savepoint level.

v The following rules apply to actions within a savepoint level:
– Savepoints can only be referenced within the savepoint level in which they

are established. You cannot release, destroy, or roll back to a savepoint
established outside of the current savepoint level.

– All active savepoints established within the current savepoint level are
automatically released when the savepoint level ends.

– The uniqueness of savepoint names is only enforced within the current
savepoint level. The names of savepoints that are active in other savepoint
levels can be reused in the current savepoint level without affecting those
savepoints in other savepoint levels.

Notes
v Once a SAVEPOINT statement has been issued, insert, update, or delete

operations on nicknames are not allowed.
v Omitting the UNIQUE clause specifies that savepoint-name can be reused within

the savepoint level by another savepoint. If a savepoint of the same name
already exists within the savepoint level, the existing savepoint is destroyed and
a new savepoint with the same name is created at the current point in
processing. The new savepoint is considered to be the last savepoint established
by the application. Note that the destruction of a savepoint through the reuse of
its name by another savepoint simply destroys that one savepoint and does not
release any savepoints established after the destroyed savepoint. These
subsequent savepoints can only be released by means of the RELEASE
SAVEPOINT statement, which releases the named savepoint and all savepoints
established after the named savepoint.

v If the UNIQUE clause is specified, savepoint-name can only be reused after an
existing savepoint with the same name has been released.

v Within a savepoint, if a utility, SQL statement, or database command performs
intermittent commits during processing, the savepoint will be implicitly released.

v If the SET INTEGRITY statement is rolled back within the savepoint,
dynamically prepared statement names are still valid, although the statement
might be implicitly prepared again.

v If inserts are buffered (that is, the application was precompiled with the INSERT
BUF option), the buffer will be flushed when SAVEPOINT, ROLLBACK, or
RELEASE TO SAVEPOINT statements are issued.

Example

Perform a rollback operation for nested savepoints. First, create a table named
DEPARTMENT. Insert a row before starting SAVEPOINT1; insert another row and
start SAVEPOINT2; then, insert a third row and start SAVEPOINT3.

CREATE TABLE DEPARTMENT (
DEPTNO CHAR(6),
DEPTNAME VARCHAR(20),
MGRNO INTEGER)

INSERT INTO DEPARTMENT VALUES (’A20’, ’MARKETING’, 301)

SAVEPOINT

Statements 1215



SAVEPOINT SAVEPOINT1 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’B30’, ’FINANCE’, 520)

SAVEPOINT SAVEPOINT2 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’C40’, ’IT SUPPORT’, 430)

SAVEPOINT SAVEPOINT3 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’R50’, ’RESEARCH’, 150)

At this point, the DEPARTMENT table exists with rows A20, B30, C40, and R50. If
you now issue:

ROLLBACK TO SAVEPOINT SAVEPOINT3

row R50 is no longer in the DEPARTMENT table. If you then issue:
ROLLBACK TO SAVEPOINT SAVEPOINT1

the DEPARTMENT table still exists, but the rows inserted since SAVEPOINT1 was
established (B30 and C40) are no longer in the table.

SAVEPOINT

1216 SQL Reference Volume 2



SELECT
The SELECT statement is a form of query

The SELECT statement can be embedded in an application program or issued
interactively.

SELECT

Statements 1217



SELECT INTO
The SELECT INTO statement produces a result table consisting of at most one row,
and assigns the values in that row to host variables.

If the table is empty, the statement assigns +100 to SQLCODE and '02000' to
SQLSTATE and does not assign values to the host variables. If more than one row
satisfies the search condition, statement processing is terminated, and an error
occurs (SQLSTATE 21000).

Invocation

This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v SELECT privilege on the table, view, or nickname
v CONTROL privilege on the table, view, or nickname
v DATAACCESS authority

For each global variable used as an assignment target, the privileges held by the
authorization ID of the statement must include one of the following authorities:
v WRITE privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

GROUP privileges are not checked for static SELECT INTO statements.

If the target of the SELECT INTO statement is a nickname, privileges on the object
at the data source are not considered until the statement is executed at the data
source. At this time, the authorization ID that is used to connect to the data source
must have the privileges that are required for the operation on the object at the
data source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax

�� select-clause INTO �

,

assignment-target from-clause �

�
where-clause group-by-clause having-clause

�

�
order-by-clause fetch-first-clause

�

SELECT INTO

1218 SQL Reference Volume 2



�

�

FOR READ ONLY
* *

FOR UPDATE
,

OF column-name

*

isolation-clause
��

assignment-target

�� global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name
transition-variable-name
array-variable-name [ array-index ]
field-reference

��

Description

For a description of the select-clause, from-clause, where-clause, group-by-clause,
having-clause, order-by-clause, fetch-first-clause, and isolation-clause, see “Queries” in
the SQL Reference Volume 1.

INTO assignment-target
Identifies one or more targets for the assignment of output values.

The first value in the result row is assigned to the first target in the list, the
second value to the second target, and so on. Each assignment to an
assignment-target is made in sequence through the list. If an error occurs on any
assignment, no value is assigned to any assignment-target.

When the data type of every assignment-target is not a row type, then the value
'W' is assigned to the SQLWARN3 field of the SQLCA if the number of
assignment-targets is less than the number of result column values.

If the data type of an assignment-target is a row type, then there must be exactly
one assignment-target specified (SQLSTATE 428HR), the number of columns
must match the number of fields in the row type, and the data types of the
columns of the fetched row must be assignable to the corresponding fields of
the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must be
exactly one assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output
values, the target can be a regular host variable (if it is large enough), a
LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

SELECT INTO

Statements 1219



transition-variable-name
Identifies the column to be updated in the transition row. A
transition-variable-name must identify a column in the subject table of a
trigger, optionally qualified by a correlation name that identifies the new
value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array
type.

[array-index]
An expression that specifies which element in the array will be the
target of the assignment. For an ordinary array, the array-index
expression must be assignable to INTEGER (SQLSTATE 428H1) and
cannot be the null value. Its value must be between 1 and the
maximum cardinality defined for the array (SQLSTATE 2202E). For an
associative array, the array-index expression must be assignable to the
index data type of the associative array (SQLSTATE 428H1) and cannot
be the null value.

field-reference
Identifies the field within a row type value that is the assignment target.
The field-reference must be specified as a qualified field-name where the
qualifier identifies the row value in which the field is defined.

FOR READ ONLY or FOR UPDATE
Indicates the intended use for the selected row. The default is FOR READ
ONLY.

FOR READ ONLY
Specifies that the selected row will not be locked for update.

FOR UPDATE
Specifies that the selected row from the underlying table will be locked to
facilitate updating the row later on in the transaction, similar to the locking
done for the select statement of a cursor which includes the FOR UPDATE
clause.

FOR UPDATE must not be specified if the result table of the SELECT
INTO statement is read-only (SQLSTATE 42829).
If column-name values are listed, these columns must be updatable
(SQLSTATE 42829).
Note that listing columns has only documentary effect and does not limit
subsequent searched update statements from modifying other columns.

Rules
v Global variables cannot be assigned inside triggers that are not defined using a

compound SQL (compiled) statement, functions that are not defined using a
compound SQL (compiled) statement, methods, or compound SQL (inlined)
statements (SQLSTATE 428GX).

Notes
v Syntax alternatives: For consistency with SQL queries:

– FOR FETCH ONLY can be specified in place of FOR READ ONLY

Examples
v Example 1: This C example puts the maximum salary in the EMP table into the

host variable MAXSALARY.

SELECT INTO

1220 SQL Reference Volume 2



EXEC SQL SELECT MAX(SALARY)
INTO :MAXSALARY
FROM EMP;

v Example 2: This C example puts the row for employee 528671 (from the EMP
table) into host variables.

EXEC SQL SELECT * INTO :h1, :h2, :h3, :h4
FROM EMP
WHERE EMPNO = ’528671’;

v Example 3: This SQLJ example puts the row for employee 528671 (from the EMP
table) into host variables. That row will later be updated using a searched
update, and should be locked when the query executes.

#sql { SELECT * INTO :FIRSTNAME, :LASTNAME, :EMPNO, :SALARY
FROM EMP
WHERE EMPNO = ’528671’
FOR UPDATE };

v Example 4: This C example puts the maximum salary in the EMP table into the
global variable GV_MAXSALARY.

EXEC SQL SELECT MAX(SALARY)
INTO GV_MAXSALARY
FROM EMP;

SELECT INTO

Statements 1221



SET COMPILATION ENVIRONMENT
The SET COMPILATION ENVIRONMENT statement changes the current
compilation environment in the connection to match the values contained in the
compilation environment provided by an event monitor.

This statement changes the values of one or more special registers; these changes,
in turn, will affect the compilation of any subsequent dynamic SQL statement.

This statement is not under transaction control.

Invocation

The statement can be embedded in an application program. It is an executable
statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET COMPILATION ENVIRONMENT host-variable ��

Description

host-variable
A variable of type BLOB containing a compilation environment provided by an
event monitor. It cannot be set to null. If host-variable has an associated
indicator variable, the value of that indicator variable must not indicate a null
value (SQLSTATE 42815). If the format of the compilation environment is
incorrect, an error is returned, and the connection settings remain unmodified
(SQLSTATE 51040).

Notes
v To reset the compilation environment to the original default values, terminate

and then restart the connection. You can achieve the same effect by issuing this
statement within an SQL routine, so that any special register changes are not
reflected in the connection upon return from that routine.

v Use the COMPILATION_ENV table function to look at the individual elements
that are contained within the compilation environment.

Example

Set the current session's compilation environment to the values contained in a
compilation environment that was previously captured by a deadlock event
monitor. A deadlock event monitor that is created specifying the WITH DETAILS
HISTORY option will capture the compilation environment for dynamic SQL
statements. This captured environment is what is accepted as input to the
statement.

SET COMPILATION ENVIRONMENT = :hv1

SET COMPILATION ENVIRONMENT

1222 SQL Reference Volume 2



SET CONNECTION
The SET CONNECTION statement changes the state of a connection from dormant
to current, making the specified location the current server.

This statement is not under transaction control.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared.

Authorization

None required.

Syntax

�� SET CONNECTION server-name
host-variable

��

Description

server-name or host-variable
Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator
variable. The server-name that is contained within the host-variable must be
left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.
It must be listed in the application requester's local directory.

The server-name or the host-variable must identify an existing connection of the
application process. If they do not identify an existing connection, an error
(SQLSTATE 08003) is raised.

If SET CONNECTION is to the current connection, the states of all connections
of the application process are unchanged.

Successful Connection
If the SET CONNECTION statement executes successfully:
v No connection is made. The CURRENT SERVER special register is

updated with the specified server-name.
v The previously current connection, if any, is placed into the dormant

state (assuming a different server-name is specified).
v The CURRENT SERVER special register and the SQLCA are updated

in the same way as documented under “CONNECT (Type 1)”.

Unsuccessful Connection
If the SET CONNECTION statement fails:
v No matter what the reason for failure, the connection state of the

application process and the states of its connections are unchanged.

SET CONNECTION

Statements 1223



v As with an unsuccessful Type 1 CONNECT, the SQLERRP field of
the SQLCA is set to the name of the module that detected the error.

Notes
v The use of type 1 CONNECT statements does not preclude the use of SET

CONNECTION, but the statement will always fail (SQLSTATE 08003), unless the
SET CONNECTION statement specifies the current connection, because dormant
connections cannot exist.

v The SQLRULES(DB2) connection option (see “Options that Govern Distributed
Unit of Work Semantics”) does not preclude the use of SET CONNECTION, but
the statement is unnecessary, because type 2 CONNECT statements can be used
instead.

v When a connection is used, made dormant, and then restored to the current
state in the same unit of work, that connection reflects its last use by the
application process with regard to the status of locks, cursors, and prepared
statements.

Example

Execute SQL statements at IBMSTHDB, execute SQL statements at IBMTOKDB,
and then execute more SQL statements at IBMSTHDB.

EXEC SQL CONNECT TO IBMSTHDB;
/* Execute statements referencing objects at IBMSTHDB */

EXEC SQL CONNECT TO IBMTOKDB;
/* Execute statements referencing objects at IBMTOKDB */

EXEC SQL SET CONNECTION IBMSTHDB;
/* Execute statements referencing objects at IBMSTHDB */

Note that the first CONNECT statement creates the IBMSTHDB connection, the
second CONNECT statement places it in the dormant state, and the SET
CONNECTION statement returns it to the current state.

SET CONNECTION

1224 SQL Reference Volume 2



SET CURRENT DECFLOAT ROUNDING MODE
The SET CURRENT DECFLOAT ROUNDING MODE statement verifies that the
specified rounding mode is the value that is currently set for the CURRENT
DECFLOAT ROUNDING MODE special register.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT DECFLOAT ROUNDING MODE ROUND_CEILING
ROUND_DOWN
ROUND_FLOOR
ROUND_HALF_EVEN
ROUND_HALF_UP
string-constant
host-variable

��

Description

ROUND_CEILING
Round the value toward positive infinity. If all of the discarded digits are zero
or if the sign is negative, the result is unchanged (except for the removal of the
discarded digits). Otherwise, the result coefficient is incremented by 1.

ROUND_DOWN
Round the value toward 0 (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round the value toward negative infinity. If all of the discarded digits are zero
or if the sign is positive, the result is unchanged (except for the removal of the
discarded digits). Otherwise, the sign is negative and the result coefficient is
incremented by 1.

ROUND_HALF_EVEN
Round the value to the nearest value. If the values are equidistant, round the
value so that the final digit is even. If the discarded digits represent more than
half of the value of a number in the next left position, the result coefficient is
incremented by 1. If they represent less than half, the result coefficient is not
adjusted (that is, the discarded digits are ignored). Otherwise, the result
coefficient is unaltered if its rightmost digit is even, or incremented by 1 if its
rightmost digit is odd (to make an even digit).

ROUND_HALF_UP
Round the value to the nearest value. If the values are equidistant, round the
value up. If the discarded digits represent half or more than half of the value
of a number in the next left position, the result coefficient is incremented by 1.
Otherwise, the discarded digits are ignored.

SET CURRENT DECFLOAT ROUNDING MODE

Statements 1225



string-constant
A character string constant with a maximum length of 15 bytes, after trailing
blanks have been removed. The value must be a left-aligned string that
specifies one of the five rounding mode keywords (case insensitive).

host-variable
A variable of type CHAR or VARCHAR. The value of the host variable must
be a left-aligned string that specifies one of the five rounding mode keywords
(case insensitive). The actual length of the contents of host-variable must not be
greater than 15 bytes, after trailing blanks have been removed. The value must
be padded on the right with blanks when using a fixed-length character host
variable. The host variable cannot be set to the null value.

Rules
v The specified rounding mode value must be the same as the value of the

CURRENT DECFLOAT ROUNDING MODE special register (SQLSTATE 42815).

Notes
v This statement does not change the value of the CURRENT DECFLOAT

ROUNDING MODE special register on a DB2 for Linux, UNIX, and Windows
server. However, when the statement is processed by a DB2 for z/OS server or a
DB2 for i server, it can be used to change the value of the CURRENT
DECFLOAT ROUNDING MODE special register on that server.

Example

The following statement verifies whether the specified rounding mode value for
the client matches the rounding mode value that is currently set on the server.

SET CURRENT DECFLOAT ROUNDING MODE = ROUND_CEILING

SET CURRENT DECFLOAT ROUNDING MODE

1226 SQL Reference Volume 2



SET CURRENT DEFAULT TRANSFORM GROUP
The SET CURRENT DEFAULT TRANSFORM GROUP statement changes the value
of the CURRENT DEFAULT TRANSFORM GROUP special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
CURRENT

SET DEFAULT TRANSFORM GROUP
=

group-name ��

Description

group-name
Specifies a one-part name that identifies a transform group defined for all
structured types. This name can be referenced in subsequent statements (or
until the special register value is changed again using another SET CURRENT
DEFAULT TRANSFORM GROUP statement).

The name must be an SQL identifier (either ordinary or delimited). No
validation that the group-name is defined for any structured type is made when
the special register is set. Only when a structured type is specifically referenced
is the definition of the named transform group checked for validity.

Rules
v If the value specified does not conform to the rules for a group-name, an error is

raised (SQLSTATE 42815)
v The TO SQL and FROM SQL functions defined in the group-name transform

group are used for exchanging user-defined structured type data with a host
program.

Usage notes
v The initial value of the CURRENT DEFAULT TRANSFORM GROUP special

register is the empty string.

Example

Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL
functions defined in the MYSTRUCT1 transform group will be used for exchanging
user-defined structured type variables with the current host program.

SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

SET CURRENT DEFAULT TRANSFORM GROUP

Statements 1227



SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE
special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT DEGREE string-constant
host-variable

��

Description

The value of CURRENT DEGREE is replaced by the value of the string constant or
host variable. The value must be a character string that is not longer than 5 bytes.
The value must be the character string representation of an integer between 1 and
32 767 inclusive or 'ANY'.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL
statement is dynamically prepared, the execution of that statement will not use
intrapartition parallelism.

If the value of CURRENT DEGREE is a number when an SQL statement is
dynamically prepared, the execution of that statement can involve intrapartition
parallelism with the specified degree.

If the value of CURRENT DEGREE is 'ANY' when an SQL statement is
dynamically prepared, the execution of that statement can involve intrapartition
parallelism using a degree determined by the database manager.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length
must not exceed 5. If a longer field is provided, an error will be returned
(SQLSTATE 42815). If the actual value provided is larger than the replacement
value specified, the input must be padded on the right with blanks. Leading
blanks are not allowed (SQLSTATE 42815). All input values are treated as
being case-insensitive. If a host-variable has an associated indicator variable, the
value of that indicator variable must not indicate a null value (SQLSTATE
42815).

string-constant
The string-constant length must not exceed 5.

SET CURRENT DEGREE

1228 SQL Reference Volume 2



Notes
v The degree of intrapartition parallelism for static SQL statements can be

controlled using the DEGREE option of the PREP or BIND command.
v The actual runtime degree of intrapartition parallelism will be the lower of:

– Maximum query degree (max_querydegree) configuration parameter
– Application runtime degree
– SQL statement compilation degree

v The intra_parallel database manager configuration parameter must be on to
use intrapartition parallelism. If it is set to off, the value of this register will be
ignored and the statement will not use intrapartition parallelism for the purpose
of optimization (SQLSTATE 01623).

v The value in the CURRENT DEGREE special register and the intra_parallel
setting can be overridden in a workload by setting the MAXIMUM DEGREE
workload attribute.

v Some SQL statements cannot use intrapartition parallelism.

Examples
v Example 1: The following statement sets the CURRENT DEGREE to inhibit

intrapartition parallelism.
SET CURRENT DEGREE = ’1’

v Example 2: The following statement sets the CURRENT DEGREE to allow
intrapartition parallelism.

SET CURRENT DEGREE = ’ANY’

SET CURRENT DEGREE

Statements 1229



SET CURRENT EXPLAIN MODE
The SET CURRENT EXPLAIN MODE statement changes the value of the
CURRENT EXPLAIN MODE special register. It is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT EXPLAIN MODE NO
YES
EXPLAIN

NORCAC
REOPT
RECOMMEND INDEXES
EVALUATE INDEXES
RECOMMEND PARTITIONINGS
EVALUATE PARTITIONINGS
host-variable

��

Description

NO Disables the Explain facility. No Explain information is captured. NO is the
initial value of the special register.

YES
Enables the Explain facility and causes Explain information to be inserted into
the Explain tables for eligible dynamic SQL statements. All dynamic SQL
statements are compiled and executed normally.

EXPLAIN
Enables the Explain facility and causes Explain information to be captured for
any eligible dynamic SQL statement that is prepared. However, dynamic
statements are not executed.

EXPLAIN NORCAC
Enables the Explain facility and causes Explain information to be captured for
any eligible dynamic SQL statement that is prepared as if row or column
access control (RCAC) was not activated. Dynamic statements are not executed.
When this explain mode is set, explain facility would explain the plan as if
RCAC was not present.

REOPT
Enables the Explain facility and causes Explain information to be captured for
a static or dynamic SQL statement during statement reoptimization at
execution time; that is, when actual values for the host variables, special
registers, global variables, or parameter markers are available.

RECOMMEND INDEXES
Enables the SQL compiler to recommend indexes. All queries that are executed
in this explain mode will populate the ADVISE_INDEX table with

SET CURRENT EXPLAIN MODE

1230 SQL Reference Volume 2



recommended indexes. In addition, Explain information will be captured in the
Explain tables to reveal how the recommended indexes are used, but the
statements are neither compiled nor executed.

EVALUATE INDEXES
Enables the SQL compiler to evaluate virtual recommended indexes for
dynamic queries. Queries executed in this explain mode will be compiled and
optimized using fabricated statistics based on the virtual indexes. The
statements are not executed. The indexes to be evaluated are read from the
ADVISE_INDEX table if the USE_INDEX column contains 'Y'. Existing
non-unique indexes can also be ignored by setting the USE_INDEX column to
'I' and the EXISTS column to 'Y'. If a combination of USE_INDEX='I' and
EXISTS='N' is given then index evaluation for the query will continue normally
but the index in question will not be ignored.

RECOMMEND PARTITIONINGS
Specifies that the compiler is to recommend the best database partition for each
table that is accessed by a specific query. The best database partitions are then
written to an ADVISE_PARTITION table. The query is not executed.

EVALUATE PARTITIONINGS
Specifies that the compiler is to obtain the estimated performance of a query
using the virtual database partitions specified in the ADVISE_PARTITION
table.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length
must not exceed 254. If a longer field is provided, an error will be returned
(SQLSTATE 42815). The value specified must be NO, YES, EXPLAIN,
RECOMMEND INDEXES, or EVALUATE INDEXES. If the actual value
provided is larger than the replacement value specified, the input must be
padded on the right with blanks. Leading blanks are not allowed (SQLSTATE
42815). All input values are treated as being case-insensitive. If a host-variable
has an associated indicator variable, the value of that indicator variable must
not indicate a null value (SQLSTATE 42815).

Notes
v The Explain facility uses the following IDs as the schema when qualifying

Explain tables that it is populating:
– The session authorization ID for dynamic SQL
– The statement authorization ID for static SQL

The schema can be associated with a set of Explain tables, or aliases that point
to a set of Explain tables under a different schema. If no Explain tables are
found under the schema, the Explain facility checks for Explain tables under the
SYSTOOLS schema and attempts to use those tables.

v Explain information for static SQL statements can be captured by using the
EXPLAIN option of the PREP or BIND command. If the ALL value of the EXPLAIN
option is specified, and the CURRENT EXPLAIN MODE register value is NO,
explain information will be captured for dynamic SQL statements at run time. If
the value of the CURRENT EXPLAIN MODE register is not NO, the value of the
EXPLAIN bind option is ignored.

v RECOMMEND INDEXES and EVALUATE INDEXES are special modes which
can only be set with the SET CURRENT EXPLAIN MODE statement. These
modes cannot be set using PREP or BIND options, and they do not work with the
SET CURRENT EXPLAIN SNAPSHOT statement.

SET CURRENT EXPLAIN MODE

Statements 1231



v If the Explain facility is activated, the current authorization ID must have
INSERT privilege for the Explain tables, or an error (SQLSTATE 42501) is raised.

v When SQL statements are explained from a routine, the routine must be defined
with an SQL data access indicator of MODIFIES SQL DATA (SQLSTATE 42985).

v If the special register is set to REOPT, and the SQL statement does not qualify
for reoptimization at execution time (that is, if the statement does not have input
variables, or if the REOPT bind option is set to NONE), then no Explain information
will be captured. If the REOPT bind option is set to ONCE, Explain information will
be captured only once when the statement is initially reoptimized. After the
statement is cached, no further Explain information will be acquired for this
statement on subsequent executions.

v If the Explain facility is enabled, the REOPT bind option is set to ONCE, and you
attempt to execute an SQL statement that is already cached, the statement will
be compiled and reoptimized with the current values of the input variables, and
the Explain tables will be populated accordingly. The newly generated access
plan for this statement will not be cached or executed. Other applications that
are concurrently executing this cached statement will continue to execute, and
new requests to execute this statement will pick up the already cached access
plan.

v A value of REOPT for the CURRENT EXPLAIN MODE and CURRENT
EXPLAIN SNAPSHOT special registers will override the value of the EXPLAIN
and EXPLSNAP bind options at bind time if a static or dynamic SQL statement has
input variables, and the REOPT bind option is set to ONCE or ALWAYS.

v Row and column level access control (RCAC) defined on the EXPLAIN tables is
enforced for user access to these tables just like any other regular tables.
However, row and column level access control on the EXPLAIN tables is not
enforced when the database itself is populating those EXPLAIN tables. This is
considered internal housekeeping and is not subject to RCAC, much like internal
SQL.

Example

The following statement sets the CURRENT EXPLAIN MODE special register, so
that Explain information will be captured for any subsequent eligible dynamic SQL
statements and the statement will not be executed.

SET CURRENT EXPLAIN MODE = EXPLAIN

SET CURRENT EXPLAIN MODE

1232 SQL Reference Volume 2



SET CURRENT EXPLAIN SNAPSHOT
The SET CURRENT EXPLAIN SNAPSHOT statement changes the value of the
CURRENT EXPLAIN SNAPSHOT special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT EXPLAIN SNAPSHOT NO
YES
EXPLAIN
REOPT
host-variable

��

Description

NO Disables the Explain snapshot facility. No snapshot is taken. NO is the initial
value of the special register.

YES
Enables the Explain snapshot facility, creating a snapshot of the internal
representation for each eligible dynamic SQL statement. This information is
inserted in the SNAPSHOT column of the EXPLAIN_STATEMENT table.

EXPLAIN
Enables the Explain snapshot facility, creating a snapshot of the internal
representation for each eligible dynamic SQL statement that is prepared.
However, dynamic statements are not executed.

REOPT
Enables the Explain facility and causes Explain information to be captured for
a static or dynamic SQL statement during statement reoptimization at
execution time; that is, when actual values for the host variables, special
registers, global variables, or parameter markers are available.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length of
its contents must not exceed 8. If a longer field is provided, an error will be
returned (SQLSTATE 42815). The value contained in this register must be either
NO, YES, or EXPLAIN. If the actual value provided is larger than the
replacement value specified, the input must be padded on the right with
blanks. Leading blanks are not allowed (SQLSTATE 42815). All input values are
treated as being case-insensitive. If host-variable has an associated indicator
variable, the value of that indicator variable must not indicate a null value
(SQLSTATE 42815).

SET CURRENT EXPLAIN SNAPSHOT

Statements 1233



Notes
v The Explain facility uses the following IDs as the schema when qualifying

Explain tables that it is populating:
– The session authorization ID for dynamic SQL
– The statement authorization ID for static SQL

The schema can be associated with a set of Explain tables, or aliases that point
to a set of Explain tables under a different schema. If no Explain tables are
found under the schema, the Explain facility checks for Explain tables under the
SYSTOOLS schema and attempts to use those tables.

v Explain snapshots for static SQL statements can be captured by using the
EXPLSNAP option of the PREP or BIND command. If the ALL value of the
EXPLSNAP option is specified, and the CURRENT EXPLAIN SNAPSHOT
register value is NO, Explain snapshots will be captured for dynamic SQL
statements at run time. If the value of the CURRENT EXPLAIN SNAPSHOT
register is not NO, the EXPLSNAP option is ignored.

v If the Explain snapshot facility is activated, the current authorization ID must
have INSERT privilege for the Explain tables or an error (SQLSTATE 42501) is
raised.

v When SQL statements are explained from a routine, the routine must be defined
with an SQL data access indicator of MODIFIES SQL DATA (SQLSTATE 42985).

v If the special register is set to REOPT, and the SQL statement does not qualify
for reoptimization at execution time (that is, if the statement does not have input
variables, or if the REOPT bind option is set to NONE), then no Explain
information will be captured. If the REOPT bind option is set to ONCE, Explain
snapshot information will be captured only once when the statement is initially
reoptimized. After the statement is cached, no further Explain information will
be acquired for this statement on subsequent executions.

v If the Explain facility is enabled, the REOPT bind option is set to ONCE, and
you attempt to execute a reoptimizable SQL statement that is already cached, the
statement will be compiled and reoptimized with the current values of the input
variables, and the Explain snapshot will be captured accordingly. The newly
generated access plan for this statement will not be cached or executed. Other
applications that are concurrently executing this cached statement will continue
to execute, and new requests to execute this statement will pick up the already
cached access plan.

v The value REOPT for the CURRENT EXPLAIN MODE and CURRENT
EXPLAIN SNAPSHOT special registers will override the value of the EXPLAIN
and EXPLSNAP bind options at bind time if a static or dynamic SQL statement
has input variables, and the REOPT bind option is set to ONCE or ALWAYS.

Examples
v Example 1: The following statement sets the CURRENT EXPLAIN SNAPSHOT

special register, so that an Explain snapshot will be taken for any subsequent
eligible dynamic SQL statements and the statement will be executed.

SET CURRENT EXPLAIN SNAPSHOT = YES

v Example 2: The following example retrieves the current value of the CURRENT
EXPLAIN SNAPSHOT special register into the host variable called SNAP.

EXEC SQL VALUES (CURRENT EXPLAIN SNAPSHOT) INTO :SNAP;

SET CURRENT EXPLAIN SNAPSHOT

1234 SQL Reference Volume 2



SET CURRENT FEDERATED ASYNCHRONY
The SET CURRENT FEDERATED ASYNCHRONY statement assigns a value to the
CURRENT FEDERATED ASYNCHRONY special register.

This statement is not under transaction control.

Invocation

The statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT FEDERATED ASYNCHRONY ANY
integer-constant
host-variable

��

Description

ANY
Specifies a CURRENT FEDERATED ASYNCHRONY value of -1, which means
that the execution of statements can involve asynchrony using a degree that is
determined by the database manager.

integer-constant
Specifies an integer value between 0 and 32 767, inclusive. The execution of
statements can involve asynchrony using the specified degree. If the value is 0
when an SQL statement is dynamically prepared, the execution of that
statement will not use asynchrony.

host-variable
A variable of type INTEGER. The value must be between 0 and 32 767,
inclusive, or -1 (representing ANY). If host-variable has an associated indicator
variable, the value of that indicator variable must not indicate a null value
(SQLSTATE 42815).

Notes
v The degree of asynchrony for static SQL statements can be controlled using the

FEDERATED_ASYNCHRONY option of the PREP or BIND command.
v The initial value of the CURRENT FEDERATED ASYNCHRONY special register

is determined by the federated_async database manager configuration
parameter if the dynamic statement is issued through the command line
processor (CLP). The initial value is determined by the
FEDERATED_ASYNCHRONY bind option if the dynamic statement is part of an
application that is being bound.

Examples
v Example 1: The following statement disables asynchrony by setting the value of

the CURRENT FEDERATED ASYNCHRONY special register to 0.

SET CURRENT FEDERATED ASYNCHRONY

Statements 1235



SET CURRENT FEDERATED ASYNCHRONY = 0

v Example 2: The following statement sets the degree of asynchrony to 5.
SET CURRENT FEDERATED ASYNCHRONY 5

v Example 3: The following statement sets the value of the CURRENT
FEDERATED ASYNCHRONY special register to -1, which specifies that the
database manager is to determine the degree of asynchrony.

SET CURRENT FEDERATED ASYNCHRONY ANY

SET CURRENT FEDERATED ASYNCHRONY

1236 SQL Reference Volume 2



SET CURRENT IMPLICIT XMLPARSE OPTION
The SET CURRENT IMPLICIT XMLPARSE OPTION statement changes the value
of the CURRENT IMPLICIT XMLPARSE OPTION special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT IMPLICIT XMLPARSE OPTION string-constant
host-variable

��

Description

string-constant
A character string constant. The value must be a left-aligned string that is
either 'PRESERVE WHITESPACE' or 'STRIP WHITESPACE' (case insensitive)
with no additional blank characters between the keywords.

host-variable
A variable of type CHAR or VARCHAR. The value of the host variable must
be a left-aligned string that is either 'PRESERVE WHITESPACE' or 'STRIP
WHITESPACE' (case insensitive) with no additional blank characters between
the keywords. The value must be padded on the right with blanks when using
a fixed-length character host-variable. The host variable cannot be set to null.

Notes
v The initial value of the CURRENT IMPLICIT XMLPARSE OPTION special

register is 'STRIP WHITESPACE'.
v Both dynamic and static SQL statements are affected by this special register.

Example

Set the value of the CURRENT IMPLICIT XMLPARSE OPTION special register to
'PRESERVE WHITESPACE'.

SET CURRENT IMPLICIT XMLPARSE OPTION = ’PRESERVE WHITESPACE’

SET CURRENT IMPLICIT XMLPARSE OPTION

Statements 1237



SET CURRENT ISOLATION
The SET CURRENT ISOLATION statement assigns a value to the CURRENT
ISOLATION special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
CURRENT =

SET ISOLATION UR
CS
RR
RS
RESET

��

Description

The value of the CURRENT ISOLATION special register is replaced by the
specified value or set to blanks if RESET is specified.

Notes
v Syntax alternatives: The following syntax alternatives are supported for

compatibility with previous versions of DB2 and with other database products.
– TO can be specified in place of the equal sign (=)
– DIRTY READ can be specified in place of UR
– READ UNCOMMITTED can be specified in place of UR
– READ COMMITTED is recognized and upgraded to CS
– CURSOR STABILITY can be specified in place of CS
– REPEATABLE READ can be specified in place of RR
– SERIALIZABLE can be specified in place of RR

SET CURRENT ISOLATION

1238 SQL Reference Volume 2



SET CURRENT LOCALE LC_MESSAGES
The SET CURRENT LOCALE LC_MESSAGES statement changes the value of the
CURRENT LOCALE LC_MESSAGES special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT LOCALE LC_MESSAGES host-variable
string-constant

��

Description

The CURRENT LOCALE LC_MESSAGES special register identifies the locale that
is used by EVMON_UPGRADE_TABLES, as well as monitoring routines in the
monreport module. EVMON_UPGRADE_TABLES and the monitoring routines use
the value of CURRENT LOCALE LC_MESSAGES to determine in which language
the result set text output should be returned. User-defined routines that are coded
to return messages could also use the value of CURRENT LOCALE
LC_MESSAGES to determine what language to use for message text.

host-variable
A variable of type CHAR or VARCHAR. It cannot be set to null.

string-constant
A character string constant.

Notes
v Initial value: The initial value of the CURRENT LOCALE LC_MESSAGES

special register is 'en_US'.
v Language availability: If the language for the locale is not available to the

database manager, messages will be returned in English.
v Code page compatibility: The language for the locale specified must be

supported by the code page of the output parameter or returns type of a routine
that uses the special register to determine what language to return message text
information in. If the database is not a Unicode database (and the routine was
not created with PARAMETER CCSID UNICODE) and some characters in the
language for the locale cannot be represented in the database code page,
substitution characters will be returned as a result of code page conversion.

v Potential future use: In a future release, the value of the CURRENT LOCALE
LC_MESSAGES special register might be used for other areas of the database
environment that involve messages.

v Valid locales and naming: For information about valid locales and their naming,
see "Locale names for SQL and XQuery" in the Globalization Guide

SET CURRENT LOCALE LC_MESSAGES

Statements 1239



Examples
v Example 1: The following statement sets the CURRENT LOCALE LC_MESSAGES

special register to the English (Canada) locale using the latest version of
Common Locale Data Repository (CLDR) available in the database manager.

SET CURRENT LOCALE LC_MESSAGES = ’en_CA’

v Example 2: The following statement sets the CURRENT LOCALE LC_MESSAGES
special register to the French (France) locale using Common Locale Data
Repository (CLDR) version 1.5. The CONNECTION routine in the monreport
module is then invoked to have its output returned in French.

SET CURRENT LOCALE LC_MESSAGES = ’CLDR 1.5:fr_FR’
CALL MONREPORT.CONNECTION

v Example 3: Assume that the user-defined procedure XYZ.STORELOCATOR takes
a zip code or postal code input. It returns a result set of stores of the XYZ
company within a 30 minute drive from the zip code or postal code given as
input. If the zip code or postal code is not in the correct format, an error
message is returned that indicates what the problem is with the format. The
procedure is coded to be able to return the error message in the language
determined from the value of the CURRENT LOCALE LC_MESSAGES special
register. The following statement sets the CURRENT LOCALE LC_MESSAGES
special register to the Spanish (Mexico) locale. The store locator user-defined
procedure is then invoked and any error messages will be returned in Spanish.

SET CURRENT LOCALE LC_MESSAGES = ’es_MX’
CALL XYZ.STORELOCATOR(:ZIP, :STATUSMSG)

SET CURRENT LOCALE LC_MESSAGES

1240 SQL Reference Volume 2



SET CURRENT LOCALE LC_TIME
The SET CURRENT LOCALE LC_TIME statement changes the value of the
CURRENT LOCALE LC_TIME special register. It is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT LOCALE LC_TIME host-variable
string-constant

��

Description

The CURRENT LOCALE LC_TIME special register is used by the DAYNAME,
MONTHNAME, NEXT_DAY, ROUND, ROUND_TIMESTAMP,
TIMESTAMP_FORMAT, TRUNCATE, TRUNC_TIMESTAMP and
VARCHAR_FORMAT functions when the locale-name argument is not explicitly
specified.

host-variable
A variable of type CHAR or VARCHAR. It cannot be set to null.

string-constant
A character string constant.

Notes
v Initial Value: The initial value of the CURRENT LOCALE LC_TIME special

register is 'en_US'.
v Potential future use: In a future release the value of the CURRENT LOCALE

LC_TIME special register might be used by other scalar functions and for other
areas of the database environment that involve datetime values.

v Valid locales and naming: For information on valid locales and their naming,,
see “Locale names for SQL and XQuery” in the Globalization Guide .

Examples
v Example 1: The following statement sets the CURRENT LOCALE LC_TIME

special register to the English (Canada) locale using the latest version of
Common Locale Data Repository (CLDR) available in the database manager.
SET CURRENT LOCALE LC_TIME = ’en_CA’

v Example 2: The following statement sets the CURRENT LOCALE LC_TIME
special register to the French (France) locale using Common Locale Data
Repository (CLDR) version 1.8.1. The MONTHNAME scalar function is then
invoked with a single argument of '2008-11-10-00.00.00.000000'.
SET CURRENT LOCALE LC_TIME = ’CLDR181_fr_FR’
VALUES MONTHNAME( ’2008-11-10-00.00.00.000000’ )

SET CURRENT LOCALE LC_TIME

Statements 1241



returns:
’novembre’

SET CURRENT LOCALE LC_TIME

1242 SQL Reference Volume 2



SET CURRENT LOCK TIMEOUT
The SET CURRENT LOCK TIMEOUT statement changes the value of the
CURRENT LOCK TIMEOUT special register.

This statement is not under transaction control.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
CURRENT =

SET LOCK TIMEOUT WAIT
NOT WAIT
NULL

WAIT
integer-constant

host-variable

��

Description

The specified value must be an integer between -1 and 32767, inclusive (SQLSTATE
428B7), or the null value.

WAIT
Specifies a CURRENT LOCK TIMEOUT value of -1, which means that the
database manager is to wait until a lock is released, or a deadlock is detected
(SQLSTATE 40001 or 57033).

NOT WAIT
Specifies a CURRENT LOCK TIMEOUT value of 0, which means that the
database manager is not to wait for locks that cannot be obtained, and an error
(SQLSTATE 40001 or 57033) will be returned.

NULL
Specifies that the CURRENT LOCK TIMEOUT value is to be unset, and that
the value of the locktimeout database configuration parameter is to be used
when waiting for a lock. The value that is returned for the special register will
change as the value of locktimeout changes.

WAIT integer-constant
Specifies an integer value between -1 and 32767. A value of -1 is equivalent to
specifying the WAIT keyword without an integer value. A value of 0 is
equivalent to specifying the NOT WAIT clause. If the value is between 1 and
32767, the database manager will wait that number of seconds (if a lock cannot
be obtained) before an error (SQLSTATE 40001 or 57033) is returned.

host-variable
A variable of type INTEGER. The value must be between -1 and 32767. If
host-variable has an associated indicator variable, and the value of that indicator

SET CURRENT LOCK TIMEOUT

Statements 1243



variable specifies a null value, the CURRENT LOCK TIMEOUT value is unset.
This is equivalent to specifying the NULL keyword.

Notes
v An updated value of the special register takes effect immediately upon

successful execution of this statement. Because the special register value that is
to be used during statement execution is fixed at the beginning of statement
execution, an updated value of the CURRENT LOCK TIMEOUT special register
will only be returned by statements that start execution after the SET LOCK
TIMEOUT statement has completed successfully.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with Informix database products. These alternatives are
non-standard and should not be used.
– MODE can be specified in place of TIMEOUT.
– TO can be specified in place of the equals (=) operator.

Examples
v Example 1: Set the lock timeout value to wait for 30 seconds before returning an

error.
SET CURRENT LOCK TIMEOUT 30

v Example 2: Unset the lock timeout value, so that the locktimeout database
configuration parameter value will be used instead.
SET CURRENT LOCK TIMEOUT NULL

SET CURRENT LOCK TIMEOUT

1244 SQL Reference Volume 2



SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement
changes the value of the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT MAINTAINED
TABLE

TYPES
FOR OPTIMIZATION =

�

�

�

ALL
NONE
host-variable

,

FEDERATED_TOOL
SYSTEM
USER
REPLICATION

TABLE FOR OPTIMIZATION
CURRENT MAINTAINED TYPES

��

Description

ALL
Specifies that all possible types of maintained tables controlled by this special
register, now and in the future, are to be considered when optimizing the
processing of dynamic SQL queries.

NONE
Specifies that none of the object types that are controlled by this special
register are to be considered when optimizing the processing of dynamic SQL
queries.

FEDERATED_TOOL
Specifies that refresh-deferred materialized query tables that are maintained by
a federated tool can be considered to optimize the processing of dynamic SQL
queries, provided the value of the CURRENT QUERY OPTIMIZATION special
register is 2 or greater than 5.

SYSTEM
Specifies that system-maintained refresh-deferred materialized query tables can
be considered to optimize the processing of dynamic SQL queries. (Immediate
materialized query tables are always available.)

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

Statements 1245



USER
Specifies that user-maintained refresh-deferred materialized query tables can be
considered to optimize the processing of dynamic SQL queries.

REPLICATION
Specifies that shadow tables can be considered to optimize the processing of
dynamic SQL queries.

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The value of the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register before this statement executes.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the host
variable must not exceed 254 bytes (SQLSTATE 42815). It cannot be set to null.
If host-variable has an associated indicator variable, the value of that indicator
variable must not indicate a null value (SQLSTATE 42815).

The characters of host-variable must be left-aligned. The contents of host-variable
must be a string that is a comma-separated list of keywords matching what
can be specified as keywords for the special register. These keywords must be
specified in the exact case intended, because there is no conversion to
uppercase characters. The value must be padded on the right with blanks if its
length is less than that of the host variable.

Notes
v The initial value of the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register is determined by the dft_mttb_types database
configuration parameter which has a default of SYSTEM.

v The CURRENT REFRESH AGE special register must be set to a value other than
zero for the specified table types to be considered when optimizing the
processing of dynamic SQL queries.

v When you set the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register, if the value includes anything other than
REPLICATION or NONE, the CURRENT REFRESH AGE special register must
be either 0 or 99 999 999 999 999 (ANY).

Examples
v Example 1: Set the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register.
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = SYSTEM, USER

v Example 2: Retrieve the current value of the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register into a host variable called
CURMAINTYPES.

EXEC SQL VALUES (CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION)
INTO :CURMAINTYPES

v Example 3: Set the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register to have no value.

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = NONE

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

1246 SQL Reference Volume 2



SET CURRENT MDC ROLLOUT MODE
The SET CURRENT MDC ROLLOUT MODE statement assigns a value to the
CURRENT MDC ROLLOUT MODE special register. The value specifies the type of
rollout cleanup that is to be performed on qualifying DELETE statements for
multidimensional clustering (MDC) tables.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT MDC ROLLOUT MODE NONE
IMMEDIATE
DEFERRED
host-variable

��

Description

NONE
Specifies that MDC rollout optimization during delete operations is not to be
used. The DELETE statement is processed in the same way as a DELETE
statement that does not qualify for rollout.

IMMEDIATE
Specifies that MDC rollout optimization is to be used if the DELETE statement
qualifies. If the table has RID indexes, the indexes are updated immediately
during delete processing. The deleted blocks are available for reuse after the
transaction commits.

DEFERRED
Specifies that MDC rollout optimization is to be used if the DELETE statement
qualifies. If the table has RID indexes, index updates are deferred until after
the transactions commits. With this option, delete processing is faster and uses
less log space, but the deleted blocks are not available for reuse until after the
index updates are complete.

host-variable
A variable of type VARCHAR. The length of host-variable must be less than or
equal to 17 bytes (SQLSTATE 42815). The value of the host variable must be a
left-aligned string that is one of 'NONE', 'IMMEDIATE', or 'DEFERRED' (case
insensitive). If host-variable has an associated indicator variable, the value of
that indicator variable must not indicate a null value (SQLSTATE 42815).

Notes
v Subsequent DELETE statements that are eligible for rollout processing respect

the setting of the CURRENT MDC ROLLOUT MODE special register. Currently
executing sections are not affected by a change to this special register.

SET CURRENT MDC ROLLOUT MODE

Statements 1247



v The effects of executing the SET CURRENT MDC ROLLOUT MODE statement
are not rolled back if the unit of work in which the statement is executed is
rolled back.

v The DEFERRED mode is not supported on a data partitioned MDC table with
partitioned RID indexes. Only the NONE and IMMEDIATE modes are
supported. The cleanup rollout type will be IMMEDIATE if the DB2_MDC_ROLLOUT
registry variable is set to DEFER, or if the CURRENT MDC ROLLOUT MODE
special register is set to DEFERRED to override the DB2_MDC_ROLLOUT setting.
If only nonpartitioned RID indexes exist on the MDC table, deferred index
cleanup rollout is supported.

Example

Specify deferred cleanup behavior for the next DELETE statement that qualifies for
rollout processing.

SET CURRENT MDC ROLLOUT MODE IMMEDIATE

SET CURRENT MDC ROLLOUT MODE

1248 SQL Reference Volume 2



SET CURRENT OPTIMIZATION PROFILE
The SET CURRENT OPTIMIZATION PROFILE statement assigns a value to the
CURRENT OPTIMIZATION PROFILE special register. The value specifies the
optimization profile the optimizer should use when preparing dynamic DML
statements.

This statement is not under transaction control.

When the statement is evaluated, the name of the optimization profile is checked
for validity, but the profile is not processed until the optimizer encounters a
dynamic DML statement.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT OPTIMIZATION PROFILE optimization-profile-name
host-variable
string-constant
NULL

��

Description

optimization-profile-name
The two-part name of the optimization profile. The name can be specified with
a literal, host variable, or special register. The name specified is the name
entered into the CURRENT OPTIMIZATION PROFILE special register.

If the specified optimization-profile-name is unqualified, the value of the
CURRENT DEFAULT SCHEMA register is used as the implicit qualifier. The
default value of the special register is null.

host-variable
A variable of type CHAR or VARCHAR that includes the name of the
optimization profile. A host variable that includes a null indicator indicates
that the value of the OPTPROFILE bind option is to be used if that value is
specified for the current package. A host variable of zero length, or of white
space only, indicates that no optimization profile is to be used.

The host variable must meet the following characteristics:
v The content of the string is a single or two-part identifier (separated by a

period), with no leading blanks.
v The identifier or identifiers can be delimited or non-delimited.
v The content of the string is not folded to upper case.
v Lower case and special characters cannot be used in non-delimited strings.

SET CURRENT OPTIMIZATION PROFILE

Statements 1249



v If the first character is a double quotation mark, a closing double quotation
mark must either precede a period or be the last non-blank character in the
string.

v If the first character following a period is a double quotation mark, then a
double quotation mark must be the last non-blank character in the string.

v If the identifier is delimited, then to include double quotation marks in the
identifier, specify the character twice.

v Any period that is not inside a delimited identifier is treated as a separator,
and only one period separator can exist in the string.

string-constant
Specifies a constant as a character string that is the name of the optimization
profile. The content of a string constant must meet the same characteristics as a
host variable.

NULL
Sets the CURRENT OPTIMIZATION PROFILE register to null.

Table 35 provides examples of string literals and identifiers that might be used to
assign the register as per the optimization profile naming rules. The value in the
SCHEMA and NAME column represent an optimization profile name as it might
appear in the OPT_PROFILE table. The valid string literals column shows string
literals that match the optimization profile named by the corresponding SCHEMA
and NAME column values. The valid identifiers column shows identifiers that
would identify that same optimization profile.

Table 35. Examples of string literals and identifiers

SCHEMA NAME Valid string literals Valid identifiers

SIMMEN BIG_PROF 'BIG_PROF'

'SIMMEN.BIG_PROF'

'"BIG_PROF"'

'"SIMMEN"."BIG_PROF"'

BIG_PROF

SIMMEN.BIG_PROF

"BIG_PROF"

"SIMMEN"."BIG_PROF"

SIMMEN low_profile '"low_profile"'

'SIMMEN."low_profile"'

'"SIMMEN"."low_profile"'

"low_profile"

SIMMEN."low_profile"

"SIMMEN"."low_profile"

eliaz DBA3 'DBA3'

'"DBA3"'

'"eliaz".DBA3'

'"eliaz"."DBA3"'

DBA3

"eliaz".DBA3

"eliaz"."DBA3"

SNOW PROFILE1.0 '"PROFILE1.0"'

'SNOW."PROFILE1.0"'

'"SNOW"."PROFILE1.0"'

"PROFILE1.0"

SNOW."PROFILE1.0"

"SNOW"."PROFILE1.0"

Notes
v If the value of the register specifies the name of an existing optimization profile,

the specified optimization profile is used when preparing subsequent dynamic
DML statements.

SET CURRENT OPTIMIZATION PROFILE

1250 SQL Reference Volume 2



v If the value of the register is null, the optimization profile specified by the
OPTPROFILE bind option, if any, is used when preparing subsequent dynamic
DML statements.

v If the value of the register is null, and the OPTPROFILE bind option is not set,
no optimization profile is used when preparing subsequent dynamic DML
statements.

v If the value of the register is the empty string, then no optimization profile is
used when preparing subsequent dynamic DML statements, regardless of
whether the OPTPROFILE bind option is set.

v Subsequent changes to CURRENT DEFAULT SCHEMA do not have any effect
on the optimization profile. The CURRENT OPTIMIZATION PROFILE register
value is set with the two part name that is in effect at the time SET CURRENT
OPTIMIZATION PROFILE statement is evaluated. Only another SET CURRENT
OPTIMIZATION PROFILE statement can change the optimization profile that is
used.

Examples
v Example 1: The optimization profile RICK.FOO is used for statements 1, 2, and

3. TOM.FOO is used for statement 4.
SET CURRENT SCHEMA = ’RICK’
SET CURRENT OPTIMIZATION PROFILE = ’FOO’

statement 1
statement 2

SET CURRENT SCHEMA = ’TOM’
statement 3

SET CURRENT OPTIMIZATION PROFILE = ’FOO’
statement 4

v Example 2: An application with the following statements was bound with the
options OPTPROFILE("Foo") and QUALIFIER("John"). The optimization profile
KAAREL.BAR is used for statement 1 and optimization profile "John"."Foo" is
used for statement 2.

SET CURRENT SCHEMA = ’KAAREL’
SET CURRENT OPTIMIZATION PROFILE = ’BAR’

statement 1
SET CURRENT SCHEMA = "Tom"
SET CURRENT OPTIMIZATION PROFILE NULL

statement 2

v Example 3: The empty string is a special value that indicates that no
optimization profile is to be used. Optimization profile "Hamid"."Foo" is used for
statement 1 and no optimization profile is used for statement 2.

SET CURRENT OPTIMIZATION PROFILE = ’"Hamid"."Foo"’
statement 1

SET CURRENT OPTIMIZATION PROFILE = ’’
statement 2

SET CURRENT OPTIMIZATION PROFILE

Statements 1251



SET CURRENT PACKAGE PATH
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT
PACKAGE PATH special register.

This statement is not under transaction control.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT PACKAGE PATH �

,

schema-name
CURRENT PACKAGE PATH

CURRENT PATH
CURRENT_PATH
CURRENT USER
CURRENT_USER

SESSION_USER
SYSTEM_USER
USER
host-variable
string-constant

��

Description

schema-name
Identifies a schema. The name must not be a delimited identifier that is empty
or that contains only blanks (SQLSTATE 42815).

CURRENT PACKAGE PATH
The value of the CURRENT PACKAGE PATH special register before this
statement executes.

CURRENT PATH
The value of the CURRENT PATH special register.

CURRENT USER
The value of the CURRENT USER special register.

SESSION_USER
The value of the SESSION_USER special register.

SYSTEM_USER
The value of the SYSTEM_USER special register.

USER
The value of the USER special register.

host-variable
Contains one or more schema names, separated by commas. The host variable
must:

SET CURRENT PACKAGE PATH

1252 SQL Reference Volume 2



v Be a character-string variable (CHAR or VARCHAR). The actual length of
the contents of the host variable must not exceed the length of the
CURRENT PACKAGE PATH special register.

v Not be the null value. If an indicator variable is provided, its value must not
indicate a null value.

v Contain an empty or blank string, or one or more schema names separated
by commas.

v Be padded on the right with blanks if the actual length of the host variable
is greater than the content.

v Not contain CURRENT PACKAGE PATH, CURRENT PATH,
CURRENT_PATH, CURRENT USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, PATH, or USER.

v Not contain a delimited identifier that is empty or that contains only blanks.

string-constant
Specifies a character string constant that contains zero, one, or more schema
names that are separated by commas. The string constant must:
v Have a length that does not exceed the maximum length of the CURRENT

PACKAGE PATH special register.
v Not contain CURRENT PACKAGE PATH, CURRENT PATH,

CURRENT_PATH, CURRENT USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, PATH, or USER.

v Not contain a delimited identifier that is empty or that contains only blanks.

Rules
v If the same schema appears more than once in the list, the first occurrence of the

schema is used (SQLSTATE 01625).
v The number of schemas that can be specified is limited by the total length of the

CURRENT PACKAGE PATH special register. The special register string is built
by taking each specified schema name and removing trailing blanks, delimiting
the name with double quotation marks, and separating the schema names with
commas. The length of the resulting list cannot exceed the maximum length of
the special register (SQLSTATE 0E000).

v A schema name that does not conform to the rules for an ordinary identifier (for
example, a schema name that contains lowercase characters or characters that
cannot be specified in an ordinary identifier), must be specified as a delimited
schema name, and must not be specified within a host variable or string
constant.

v To indicate that the current value of a special register (specified as a single
keyword) is to be used in the package path, specify the name of the special
register as a keyword. If the name of the special register is specified as a
delimited identifier instead (for example, "USER"), it is interpreted as a schema
name of that value ('USER').

v The following rules are used to determine whether a value specified in a SET
CURRENT PACKAGE PATH statement is a variable or a schema name:
– If name is the same as a parameter or SQL variable in the SQL procedure,

name is interpreted as a parameter or SQL variable, and the value in name is
assigned to the package path.

– If name is not the same as a parameter or SQL variable in the SQL procedure,
name is interpreted as a schema name, and the value in name is assigned to
the package path.

SET CURRENT PACKAGE PATH

Statements 1253



Notes
v Transaction considerations: The SET CURRENT PACKAGE PATH statement is

not a commitable operation. ROLLBACK has no effect on the CURRENT
PACKAGE PATH special register.

v Existence checking of schemas: No validation that the specified schemas exist is
made at the time that the CURRENT PACKAGE PATH special register is set. For
example, a schema that is misspelled is not detected, which could affect the way
subsequent SQL operates. At package execution time, authorization to a
matching package is checked, and if this authorization check fails, an error is
returned (SQLSTATE 42501).

v Contents of host variable or string constant: The contents of a host variable or a
string constant are interpreted as a list of schema names. If multiple schema
names are specified, they must be separated by commas. Each schema name in
the list must conform to the rules for forming an ordinary identifier, or be
specified as a delimited identifier. The contents of the host variable or string
constant are not folded to uppercase.

v Restrictions specific to embedded SQL for COBOL applications: A maximum of
ten literal (non-host variable) values can appear on the right side of a SET
CURRENT PACKAGE PATH statement. Such values can have a maximum
length of 130 (non-delimited) or 128 (delimited).

Examples
v Example 1: Set the CURRENT PACKAGE PATH special register to the following

list of schemas: MYPKGS, 'ABC E', SYSIBM
SET CURRENT PACKAGE PATH = MYPKGS, ’ABC E’, SYSIBM

The following statement sets a host variable to the value of the resulting list:
SET :hvpklist = CURRENT PACKAGE PATH

The value of the host variable is: "MYPKGS", "ABC E", "SYSIBM".
v Example 2: Set the CURRENT PACKAGE PATH special register to the following

list of schemas: "SCH4","SCH5", where :hvar1 contains 'SCH4,SCH5'.
SET CURRENT PACKAGE PATH :hvar1

The value of the CURRENT PACKAGE PATH special register after this
statement executes is: "SCH4","SCH5".

v Example 3: Set the CURRENT PACKAGE PATH special register to the following
list of schemas: "SCH1","SCH#2","SCH3","SCH4","SCH5", where :hvar1 contains
'SCH4,SCH5'.

SET CURRENT PACKAGE PATH = SCH1,’SCH#2’,"SCH3",:hvar1

The value of the CURRENT PACKAGE PATH special register after this
statement executes is: "SCH1","SCH#2","SCH3","SCH4","SCH5".

v Example 4: Clear the CURRENT PACKAGE PATH special register.
SET CURRENT PACKAGE PATH = ’’

v Example 5: Temporarily append the "SCH_PROD" schema (contained in the
:prodschema host variable) and the "SCH_PROD2" schema (contained in the
:prod2schema host variable) to the end of the CURRENT PACKAGE PATH
special register for execution of the SUMMARIZE procedure. Then, switch the
CURRENT PACKAGE PATH special register back to its previous value.

SET :oldCPP = CURRENT PACKAGE PATH

SET CURRENT PACKAGE PATH = CURRENT PACKAGE PATH,:prodschema,:prod2schema

SET CURRENT PACKAGE PATH

1254 SQL Reference Volume 2



CALL SUMMARIZE(:V1,:V2)

SET CURRENT PACKAGE PATH = :oldCPP

v Example 6: Set the CURRENT PACKAGE PATH special register to a list of
delimited schema names: "MY.SCHEMA" (imbedded period), "OLD SCHEMA"
(imbedded blank). Use a single host variable containing both delimited
identifiers:

hv = ’"MY.SCHEMA", "OLD SCHEMA"’

SET CURRENT PACKAGE PATH = :hv

or use a single string constant containing both delimited identifiers:
SET CURRENT PACKAGE PATH = ’"MY.SCHEMA", "OLD SCHEMA"’

or use a list of delimited schemas:
SET CURRENT PACKAGE PATH = ’MY.SCHEMA’, ’OLD SCHEMA’

SET CURRENT PACKAGE PATH

Statements 1255



SET CURRENT PACKAGESET
The SET CURRENT PACKAGESET statement sets the schema name (collection
identifier) that will be used to select the package to use for subsequent SQL
statements.

This statement is not under transaction control.

Invocation

This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared. This statement is not
supported in REXX.

Authorization

None required.

Syntax

��
=

SET CURRENT PACKAGESET string-constant
host-variable

��

Description

string-constant
A character string constant. If the value exceeds 128 bytes, only the first 128
bytes are used.

host-variable
A variable of type CHAR or VARCHAR. It cannot be set to null. If the value
exceeds 128 bytes, only the first 128 bytes are used.

Notes
v This statement allows an application to specify the schema name used when

selecting a package for an executable SQL statement. The statement is processed
at the client and does not flow to the application server.

v The COLLECTION bind option can be used to create a package with a specified
schema name.

v Unlike DB2 for z/OS, the SET CURRENT PACKAGESET statement is
implemented without support for a special register called CURRENT
PACKAGESET.

Examples
v Example 1: Assume an application called TRYIT is precompiled by user ID

PRODUSA, making 'PRODUSA' the default schema name in the bind file. The
application is then bound twice with different bind options. The following
command line processor commands were used:

CONNECT TO SAMPLE USER PRODUSA
BIND TRYIT.BND DATETIME USA
CONNECT TO SAMPLE USER PRODEUR
BIND TRYIT.BND DATETIME EUR COLLECTION ’PRODEUR’

SET CURRENT PACKAGESET

1256 SQL Reference Volume 2



This creates two packages called TRYIT. The first bind command created the
package in the schema named 'PRODUSA'. The second bind command created
the package in the schema named 'PRODEUR' based on the COLLECTION
option.

v Example 2: Assume the application TRYIT contains the following statements:
EXEC SQL CONNECT TO SAMPLE;
.
.
EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO=’000010’; 1
.
.
EXEC SQL SET CURRENT PACKAGESET ’PRODEUR’; 2
.
.
EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO=’000010’; 3

1 This statement will run using the PRODUSA.TRYIT package because it
is the default package for the application. The date is therefore returned
in USA format.

2 This statement sets the schema name to 'PRODEUR' for package
selection.

3 This statement will run using the PRODEUR.TRYIT package as a result
of the SET CURRENT PACKAGESET statement. The date is therefore
returned in EUR format.

SET CURRENT PACKAGESET

Statements 1257



SET CURRENT QUERY OPTIMIZATION
The SET CURRENT QUERY OPTIMIZATION statement assigns a value to the
CURRENT QUERY OPTIMIZATION special register. The value specifies the
current class of optimization techniques enabled when preparing dynamic SQL
statements.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT QUERY OPTIMIZATION 0
1
2
3
5
7
9
host-variable

��

Description

optimization-class
optimization-class can be specified either as an integer constant or as the name
of a host variable that will contain the appropriate value at run time. An
overview of the classes follows.

0 Specifies that a minimal amount of optimization is performed to
generate an access plan. This class is most suitable for simple dynamic
SQL access to well-indexed tables.

1 Specifies that optimization roughly comparable to DB2 Version 1 is
performed to generate an access plan.

2 Specifies a level of optimization higher than that of DB2 Version 1, but
at significantly less optimization cost than levels 3 and higher,
especially for very complex queries.

3 Specifies that a moderate amount of optimization is performed to
generate an access plan.

5 Specifies a significant amount of optimization is performed to generate
an access plan. For complex dynamic SQL queries, heuristic rules are
used to limit the amount of time spent selecting an access plan. Where
possible, queries will use materialized query tables instead of the
underlying base tables.

SET CURRENT QUERY OPTIMIZATION

1258 SQL Reference Volume 2



7 Specifies a significant amount of optimization is performed to generate
an access plan. Similar to 5 but without the heuristic rules.

9 Specifies a maximal amount of optimization is performed to generate
an access plan. This can greatly expand the number of possible access
plans that are evaluated. This class should be used to determine if a
better access plan can be generated for very complex and very
long-running queries using large tables. Explain and performance
measurements can be used to verify that a better plan has been
generated.

host-variable
The data type is INTEGER. The value must be in the range 0 to 9
(SQLSTATE 42815) but should be 0, 1, 2, 3, 5, 7, or 9. If host-variable has
an associated indicator variable, the value of that indicator variable
must not indicate a null value (SQLSTATE 42815).

Notes
v When the CURRENT QUERY OPTIMIZATION register is set to a particular

value, a set of query rewrite rules are enabled, and certain optimization
variables take on particular values. This class of optimization techniques is then
used during preparation of dynamic SQL statements.

v In general, changing the optimization class impacts the execution time of the
application, the compilation time, and resources required. Most statements will
be adequately optimized using the default query optimization class. Lower
query optimization classes, especially classes 1 and 2, may be appropriate for
dynamic SQL statements for which the resources consumed by the dynamic
PREPARE are a significant portion of those required to execute the query. Higher
optimization classes should be chosen only after considering the additional
resources that may be consumed and verifying that a better access plan has been
generated.

v Query optimization classes must be in the range 0 to 9. Classes outside this
range will return an error (SQLSTATE 42815). Unsupported classes within this
range will return a warning (SQLSTATE 01608) and will be replaced with the
next lowest query optimization class. For example, a query optimization class of
6 will be replaced by 5.

v Dynamically prepared statements use the class of optimization that was set by
the most recently executed SET CURRENT QUERY OPTIMIZATION statement.
In cases where a SET CURRENT QUERY OPTIMIZATION statement has not yet
been executed, the query optimization class is determined by the value of the
dft_queryopt database configuration parameter.

v Statically bound statements do not use the CURRENT QUERY OPTIMIZATION
special register; therefore this statement has no effect on them. The QUERYOPT
option is used during preprocessing or binding to specify the required class of
optimization for statically bound statements. If QUERYOPT is not specified then,
the default value specified by the dft_queryopt database configuration
parameter is used.

v The results of executing the SET CURRENT QUERY OPTIMIZATION statement
are not rolled back if the unit of work in which it is executed is rolled back.

Examples
v Example 1: This example shows how the highest degree of optimization can be

selected.
SET CURRENT QUERY OPTIMIZATION 9

SET CURRENT QUERY OPTIMIZATION

Statements 1259



v Example 2: The following example shows how the CURRENT QUERY
OPTIMIZATION special register can be used within a query.
Using the SYSCAT.PACKAGES catalog view, find all plans that were bound with
the same setting as the current value of the CURRENT QUERY OPTIMIZATION
special register.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

SET CURRENT QUERY OPTIMIZATION

1260 SQL Reference Volume 2



SET CURRENT REFRESH AGE
The SET CURRENT REFRESH AGE statement changes the value of the CURRENT
REFRESH AGE special register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT REFRESH AGE numeric-constant
ANY
host-variable

��

Description

numeric-constant
A DECIMAL(20,6) value that represents a timestamp duration. The value must
be 0, 99 999 999 999 999 or a valid timestamp duration between that range.
The valid format for the range is yyyymmddhhmmss.nnnnnn, where:
v yyyy is the number of years and can have values in the range of 0 - 9999

(inclusive)
v mm is the number of months and can have values in the range of 0 - 11

(inclusive)
v dd is the number of days and can have values in the range of 0 - 30

(inclusive)
v hh is the number of hours and can have values in the range of 0 - 23

(inclusive)
v mm is the number of minutes and can have values in the range of 0 - 59

(inclusive)
v ss is the number of seconds and can have values in the range of 0 - 59

(inclusive)
v nnnnnn is the number of fractional seconds (the fractional seconds portion of

the value is ignored and therefore can be any value)

The leading zeros for the entire value and the trailing fractional seconds do not
need to be included. However, individual elements that have another element
to the left must include the zeros, such as using 10705 to represent 1 hour, 7
minutes, and 5 seconds.

If materialized query tables that are affected by the CURRENT REFRESH AGE
special register are maintained by USER, SYSTEM, or FEDERATED_TOOL, the
only valid numeric values are 0 and 99 999 999 999 999. See notes below for
further details.

SET CURRENT REFRESH AGE

Statements 1261



ANY
This is a shorthand for 99 999 999 999 999.

host-variable
A variable of type DECIMAL(20,6) or another type that is assignable to
DECIMAL(20,6). It cannot be set to null. If host-variable has an associated
indicator variable, the value of that indicator variable must not indicate a null
value (SQLSTATE 42815). The value of the host-variable must conform to the
same constraints as the numeric-constant.

Notes
v The initial value of the CURRENT REFRESH AGE special register is determined

by the dft_refresh_age database configuration parameter, which has a default of
zero.

v If the value of CURRENT REFRESH AGE is 0, the materialized query tables that
are affected by this special register will not be used to optimize the processing of
a query. If the value of CURRENT REFRESH AGE is 99 999 999 999 999, the
materialized query tables that are affected by this special register can be used to
optimize the processing of a query, but only if the value of CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION special register includes
them, and the CURRENT QUERY OPTIMIZATION special register is set to 2 or
a value greater than or equal to 5. The materialized query tables that are affected
by this special register are REFRESH DEFERRED MAINTAINED BY USER,
REFRESH DEFERRED MAINTAINED BY REPLICATION, and REFRESH
DEFERRED MAINTAINED BY SYSTEM.
If the value of CURRENT REFRESH AGE is a value other than 0 or
99 999 999 999 999, only shadow tables are affected by this special register
setting and can be used to optimize the processing of a query, but only if the
value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register is set to REPLICATION, and the CURRENT QUERY
OPTIMIZATION special register is set to 2 or a value greater than or equal to 5.
The CURRENT REFRESH AGE special register has no effect on whether
REFRESH IMMEDIATE MAINTAINED BY SYSTEM materialized query tables
are used to optimize the processing of a query. REFRESH IMMEDIATE
MAINTAINED BY SYSTEM materialized query tables can always be used to
optimize the processing of a query if the CURRENT QUERY OPTIMIZATION
special register is set to 2 or a value greater than or equal to 5.
The CURRENT REFRESH AGE special register has no effect on whether
MAINTAINED BY FEDERATED_TOOL materialized query tables are used to
optimize the processing of a query. REFRESH DEFERRED MAINTAINED BY
FEDERATED_TOOL materialized query tables are used for optimization if the
CURRENT QUERY OPTIMIZATION special register is set to 2 or a value greater
than or equal to 5, and the value of the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register is set to ALL or includes
FEDERATED_TOOL.

v Setting the CURRENT REFRESH AGE special register to a value other than zero
should be done with caution. A table type specified by the CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION special register might not
represent the values of the underlying base table. If such a table is used to
optimize the processing of a query, the query result might not accurately
represent the data in the underlying table. This might be reasonable if you know
that the underlying data has not changed, or if you are willing to accept a
degree of error in the results, based on your knowledge of the cached data.

SET CURRENT REFRESH AGE

1262 SQL Reference Volume 2



v The CURRENT REFRESH AGE value of 99 999 999 999 999 cannot be used in
timestamp arithmetic operations, because the result would be outside of the
valid range for dates (SQLSTATE 22008).

Examples
v Example 1: The following statement sets the CURRENT REFRESH AGE special

register.
SET CURRENT REFRESH AGE ANY

v Example 2: The following example retrieves the value of the CURRENT
REFRESH AGE special register into a host variable called CURMAXAGE. The
value, set by the previous example, is 99999999999999.000000.

EXEC SQL VALUES (CURRENT REFRESH AGE) INTO :CURMAXAGE;

SET CURRENT REFRESH AGE

Statements 1263



SET CURRENT SQL_CCFLAGS
The SET CURRENT SQL_CCFLAGS statement changes the value of the CURRENT
SQL_CCFLAGS special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT SQL_CCFLAGS variable
string-constant

��

Description

variable
Specifies a variable that contains one or more name and value pairs that are
separated by commas.

The variable must have the following characteristics (SQLSTATE 42815):
v The data type must be CHAR or VARCHAR. The actual length of the

contents of the variable must not exceed the maximum length of the special
register.

v It must be a string of blanks, an empty string, or include one or more name
and value pairs where the name is separated from the value by the colon
character. The name must be a valid ordinary identifier. The value associated
with a name must be a BOOLEAN constant, an INTEGER constant, or the
keyword NULL.

v It must be padded on the right with blanks if using a fixed-length character
variable.

v It can include extra blanks at the beginning or ending of the string, around
the comma character, or around the colon character. The blanks are ignored.

v It must not be the null value.

string-constant
Specifies a character string constant that contains one or more name and value
pairs that are separated by commas.

The string constant must have the following characteristics (SQLSTATE 42815):
v It must be a character string constant. The length of the constant must not

exceed the maximum length of the special register.
v It must be a string of blanks, an empty string or include one or more name

and value pairs where the name is separated from the value by the colon
character. The name must be a valid ordinary identifier. The value associated
with a name must be a BOOLEAN constant, an INTEGER constant, or the
keyword NULL.

v It can include extra blanks at the beginning or ending of the string, around
the comma character, or around the colon character. The blanks are ignored.

SET CURRENT SQL_CCFLAGS

1264 SQL Reference Volume 2



Notes
v If a duplicate name appears in the content for the CURRENT SQL_FLAGS

special register, then only the last (furthest to the right) value is used. The
special register value will include only a single occurrence of the duplicated
name with the value that is used. Concatenating a duplicated name with a
different value to the CURRENT SQL_CCFLAGS value can be used to override
some conditional compilation values while retaining other values.

v When the CURRENT SQL_CCFLAGS is retrieved, the returned string includes
the unique name and value pairs in uppercase characters with multiple pairs
separated by a comma and a blank. The pairs are in the order they were
specified, with a duplicate name appearing only where it first occurred, but
reflecting the value from where it last occurred.

v The CURRENT SQL_CCFLAGS special register can be set to the default defined
for the database by retrieving the VALUE column from SYSIBMADM.DBCFG
where NAME='sql_ccflags' into a variable and then assigning that variable to the
special register.

v Transaction considerations: The SET SQL_CCFLAGS statement is not a
committable operation. ROLLBACK has no effect on CURRENT SQL_CCFLAGS.

Examples
v Example 1: Define a conditional compilation value for the session to indicate that

the server is DB2 9.7 and that debug is false.
SET CURRENT SQL_CCFLAGS ’db2v97:true, debug:false’

v Example 2: Extend the existing CURRENT SQL_CCFLAGS to set debug to true
and define the tracing level.

BEGIN
DECLARE LIST VARCHAR(1024);
SET LIST = CASE WHEN (CURRENT SQL_CCFLAGS = ’ ’)

THEN ’tracelvl:3,debug:true’
ELSE CURRENT SQL_CCFLAGS

concat ’,tracelvl:3,debug:true’
END;

SET CURRENT SQL_CCFLAGS = LIST;
END

A CASE expression is used in the assignment to handle the possibility that the
CURRENT SQL_CCFLAGS special register does not include any conditional
compilation values, resulting in a leading comma in the value of the variable
LIST.
A query of the CURRENT SQL_CCFLAGS special register after the execution of
the statement in Example 1 and the compound statement in this example would
return:
DB2V97:TRUE, DEBUG:TRUE, TRACELVL:3

Even though the conditional compilation value for DEBUG appeared twice in
the variable LIST, it appears only once in the special register value where it
would have first appeared.

SET CURRENT SQL_CCFLAGS

Statements 1265



SET CURRENT TEMPORAL BUSINESS_TIME
The SET CURRENT TEMPORAL BUSINESS_TIME statement changes the value of
the CURRENT TEMPORAL BUSINESS_TIME special register.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT TEMPORAL BUSINESS_TIME NULL
expression

��

Description

NULL
Specifies the null value.

expression
Each expression can contain any of the following supported operands
(SQLSTATE 428HY):
v Constant
v Special register
v Variable (host variable, SQL variable, SQL parameter, transition variable,

global variable)
v Built-in scalar function whose arguments are supported operands.

User-defined functions and non-deterministic functions are not supported in
this context.

v CAST specification where the cast operand is a supported operand
v Expression using arithmetic operator and operands

Notes
v Transaction considerations: The SET CURRENT TEMPORAL BUSINESS_TIME

statement is not a committable operation. ROLLBACK has no effect on
CURRENT TEMPORAL BUSINESS_TIME.

v Effects on other special registers: The setting of the CURRENT TEMPORAL
BUSINESS_TIME special register does not have any effect on the values of other
special registers, specifically the CURRENT DATE and CURRENT TIMESTAMP
special registers.

Examples
v Example 1: Set the CURRENT TEMPORAL BUSINESS_TIME special register to

the previous month.
SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 MONTH

SET CURRENT TEMPORAL BUSINESS_TIME

1266 SQL Reference Volume 2



v Example 2: Set the CURRENT TEMPORAL BUSINESS_TIME special register to
the null value.

SET CURRENT TEMPORAL BUSINESS_TIME = NULL

SET CURRENT TEMPORAL BUSINESS_TIME

Statements 1267



SET CURRENT TEMPORAL SYSTEM_TIME
The SET CURRENT TEMPORAL SYSTEM_TIME statement changes the value of
the CURRENT TEMPORAL SYSTEM_TIME special register.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT TEMPORAL SYSTEM_TIME NULL
expression

��

Description

NULL
Specifies the null value.

expression
Each expression can contain any of the following supported operands
(SQLSTATE 428HY):
v Constant
v Special register
v Variable (host variable, SQL variable, SQL parameter, transition variable,

global variable)
v Built-in scalar function whose arguments are supported operands.

User-defined functions and non-deterministic functions are not supported in
this context.

v CAST specification where the cast operand is a supported operand
v Expression using arithmetic operator and operands

Notes
v Transaction considerations: The SET CURRENT TEMPORAL SYSTEM_TIME

statement is not a committable operation. ROLLBACK has no effect on
CURRENT TEMPORAL SYSTEM_TIME.

v Effects on other special registers: The setting of the CURRENT TEMPORAL
SYSTEM_TIME special register does not have any effect on the values of other
special registers, specifically the CURRENT DATE and CURRENT TIMESTAMP
special registers.

Examples
v Example 1: Set the CURRENT TEMPORAL SYSTEM_TIME special register to

the previous month.
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 MONTH

SET CURRENT TEMPORAL SYSTEM_TIME

1268 SQL Reference Volume 2



v Example 2: Set the CURRENT TEMPORAL SYSTEM_TIME special register to
the null value.

SET CURRENT TEMPORAL SYSTEM_TIME = NULL

SET CURRENT TEMPORAL SYSTEM_TIME

Statements 1269



SET ENCRYPTION PASSWORD
The SET ENCRYPTION PASSWORD statement sets the password to be used by the
ENCRYPT, DECRYPT_BIN and DECRYPT_CHAR functions. The password is not
tied to database authentication, and is used for data encryption and decryption
only.

This statement is not under transaction control.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET ENCRYPTION PASSWORD host-variable
string-constant

��

Description

The encryption password can be used by the ENCRYPT, DECRYPT_BIN, and
DECRYPT_CHAR built-in functions for password-based encryption. The length of
the password must be between 6 and 127 bytes and all characters must be
specified in the exact case intended, because there is no automatic conversion to
uppercase characters. To maintain the best level of security on your system, it is
recommended that you use a host variable or dynamic parameter markers to
specify the password, rather than using a literal string in your SET ENCRYPTION
PASSWORD statement.

host-variable
A variable of type CHAR or VARCHAR. The length of the host-variable must be
between 6 and 127 bytes (SQLSTATE 428FC). It cannot be set to null. All
characters are specified in the exact case intended, as there is no conversion to
uppercase characters.

string-constant
A character string constant. The length must be between 6 and 127 bytes
(SQLSTATE 428FC).

Notes
v The initial value of the ENCRYPTION PASSWORD is the empty string.
v The host-variable or string-constant is transmitted to the database server using

normal database mechanisms.

SET ENCRYPTION PASSWORD

1270 SQL Reference Volume 2



Example

The following example shows how you can set the ENCRYPTION PASSWORD
special register in an embedded SQL application using parameter markers. It is
strongly recommended that this special register is always set up using parameter
markers in your applications.
EXEC SQL BEGIN DECLARE SECTION;

char hostVarSetEncPassStmt[200];
char hostVarPassword[128];

EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker */
strcpy(hostVarSetEncPassStmt, "SET ENCRYPTION PASSWORD = ?");
EXEC SQL PREPARE hostVarSetEncPassStmt FROM :hostVarSetEncPassStmt;

/* execute the statement for hostVarPassword = ’Gre89Ea’ */
strcpy(hostVarPassword, "Gre89Ea");
EXEC SQL EXECUTE hostVarSetEncPassStmt USING :hostVarPassword;

SET ENCRYPTION PASSWORD

Statements 1271



SET EVENT MONITOR STATE
The SET EVENT MONITOR STATE statement activates or deactivates an event
monitor. The current state of an event monitor (active or inactive) is determined by
using the EVENT_MON_STATE built-in function.

The SET EVENT MONITOR STATE statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
or SQLADM authority.

Syntax

�� SET EVENT MONITOR event-monitor-name STATE
=

0
1
host-variable

��

Description

event-monitor-name
Identifies the event monitor to activate or deactivate. The name must identify
an event monitor that exists in the catalog (SQLSTATE 42704).

new-state
new-state can be specified either as an integer constant or as the name of a host
variable that will contain the appropriate value at run time. The following
values can be specified:

0 Indicates that the specified event monitor should be deactivated.

1 Indicates that the specified event monitor should be activated. The
event monitor should not already be active; otherwise a warning
(SQLSTATE 01598) is issued.

host-variable
The data type is INTEGER. The value specified must be 0 or 1
(SQLSTATE 42815). If host-variable has an associated indicator variable,
the value of that indicator variable must not indicate a null value
(SQLSTATE 42815).

Rules
v Although an unlimited number of event monitors may be defined, a maximum

of 128 event monitors can be active simultaneously on each database partition.
In a multiple partition database environment, a maximum of 32 GLOBAL event
monitors can be active simultaneously on each database.

SET EVENT MONITOR STATE

1272 SQL Reference Volume 2



v In order to activate an event monitor, the transaction in which the event monitor
was created must have been committed (SQLSTATE 55033). This rule prevents
(in one unit of work) creating an event monitor, activating the monitor, then
rolling back the transaction.

v If the number or size of the event monitor files exceeds the values specified for
MAXFILES or MAXFILESIZE on the CREATE EVENT MONITOR statement, an
error (SQLSTATE 54031) is raised.

v If the target path of the event monitor (that was specified on the CREATE
EVENT MONITOR statement) is already in use by another event monitor, an
error (SQLSTATE 51026) is raised.

Notes
v Activating a non-WLM event monitor performs a reset of any counters

associated with it. The reset of counters does not occur when activating WLM,
locking, and unit of work event monitors.

v When a WRITE TO TABLE event monitor is started using SET EVENT
MONITOR STATE, it updates the EVMON_ACTIVATES column of the
SYSCAT.EVENTMONITORS catalog view. If the unit of work in which the set
operation was performed is rolled back for any reason, that catalog update is
lost. When the event monitor is restarted, it will reuse the EVMON_ACTIVATES
value that was rolled back.

v If the database partition on which the event monitor is to run is not active, event
monitor activation occurs when that database partition next activates.

v After an event monitor is activated, it behaves like an autostart event monitor
until that event monitor is explicitly deactivated or the instance is recycled. That
is, if an event monitor is active when a database partition is deactivated, and
that database partition is subsequently reactivated, the event monitor is also
explicitly reactivated.

v If an activity event monitor is active when the database deactivates, any
backlogged activity records in the queue are discarded. To ensure that you
obtain all activity event monitor records and that none are discarded, explicitly
deactivate the activity event monitor first before deactivating the database. When
an activity event monitor is explicitly deactivated, all backlogged activity records
in the queue are processed before the event monitor deactivates.

Examples
v Example 1: Activate an event monitor named SMITHPAY.

SET EVENT MONITOR SMITHPAY STATE = 1

v Example 2: Assume that MYSAMPLE is a multiple partition database with two
database partitions, 0 and 2. Partition 2 is not yet active.
On database partition 0:

CONNECT TO MYSAMPLE;
CREATE EVENT MONITOR MYEVMON ON DBPARTITIONNUM 2;
SET EVENT MONITOR MYEVMON STATE 1;

MYEVMON automatically activates whenever MYSAMPLE activates on database
partition 2. This occurs until SET EVENT MONITOR MYEVMON STATE 0 is issued, or
partition 2 is stopped.

SET EVENT MONITOR STATE

Statements 1273



SET INTEGRITY
The SET INTEGRITY statement is used to set the integrity pending state on tables,
place tables into full access state, and prune the contents of one or more staging
tables.

The following operations can be performed with the SET INTEGRITY statement:
v Bring one or more tables out of set integrity pending state (previously known as

"check pending state") by performing required integrity processing on those
tables.

v Bring one or more tables out of set integrity pending state without performing
required integrity processing on those tables.

v Place one or more tables in set integrity pending state.
v Place one or more tables into full access state.
v Prune the contents of one or more staging tables.

When the statement is used to perform integrity processing for a table after it has
been loaded or attached, the system can incrementally process the table by
checking only the appended portion for constraints violations. If the subject table is
a materialized query table or a staging table, and load, attach, or detach operations
are performed on its underlying tables, the system can incrementally refresh the
materialized query table or incrementally propagate to the staging table with only
the delta portions of its underlying tables. However, there are some situations in
which the system will not be able to perform such optimizations and will instead
perform full integrity processing to ensure data integrity. Full integrity processing
is done by checking the entire table for constraints violations, recomputing a
materialized query table's definition, or marking a staging table as inconsistent.
The latter implies that a full refresh of its associated materialized query table is
required. There is also a situation in which you might want to explicitly request
incremental processing by specifying the INCREMENTAL option.

The SET INTEGRITY statement is under transaction control.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges required to execute the SET INTEGRITY statement depend on the
purpose, as outlined in the following list.
v Bringing tables out of set integrity pending state and performing the required

integrity processing.
The privileges held by the authorization ID of the statement must include at
least one of the following:
– CONTROL privilege on:

- The tables on which integrity processing is performed and, if exception
tables are provided for one or more of those tables, INSERT privilege on
the exception tables

SET INTEGRITY

1274 SQL Reference Volume 2



- All descendent foreign key tables, descendent immediate materialized
query tables, and descendent immediate staging tables that will implicitly
be placed in set integrity pending state by the statement

– LOAD authority (with conditions). The following conditions must all be met
before LOAD authority can be considered as providing valid privileges:
- The required integrity processing does not involve the following actions:

v Refreshing a materialized query table
v Propagating to a staging table
v Updating a generated or identity column

- If exception tables are provided for one or more tables, the required access
is granted for the duration of the integrity processing to the tables on
which integrity processing is performed, and to the associated exception
tables. That is:
v SELECT and DELETE privilege on each table on which integrity

processing is performed, and
v INSERT privilege on the exception tables

– DATAACCESS authority
v Bringing tables out of set integrity pending state without performing the

required integrity processing.
The privileges held by the authorization ID of the statement must include at
least one of the following:
– CONTROL privilege on the tables that are being processed; CONTROL

privilege on each descendent foreign key table, descendent immediate
materialized query table, and descendent immediate staging table that will
implicitly be placed in set integrity pending state by the statement

– LOAD authority
– DATAACCESS authority
– DBADM authority

v Placing tables in set integrity pending state.
The privileges held by the authorization ID of the statement must include at
least one of the following:
– CONTROL privilege on:

- The specified tables, and
- The descendent foreign key tables that will be placed in set integrity

pending state by the statement, and
- The descendent immediate materialized query tables that will be placed in

set integrity pending state by the statement, and
- The descendent immediate staging tables that will be placed in set integrity

pending state by the statement
– LOAD authority
– DATAACCESS authority
– DBADM authority

v Place a table into the full access state.
The privileges held by the authorization ID of the statement must include at
least one of the following:
– CONTROL privilege on the tables that are placed into the full access state
– LOAD authority
– DATAACCESS authority

SET INTEGRITY

Statements 1275



– DBADM authority
v Prune a staging table.

The privileges held by the authorization ID of the statement must include at
least one of the following:
– CONTROL privilege on the table being pruned
– DATAACCESS authority

Syntax

�� SET INTEGRITY �

� �

�

�

,

FOR table-name OFF access-mode-clause cascade-clause
FULL ACCESS
PRUNE

,

FOR table-name table-checked-options IMMEDIATE CHECKED
check-options

,

FOR table-name table-unchecked-options IMMEDIATE UNCHECKED

��

access-mode-clause:

NO ACCESS

READ ACCESS

cascade-clause:

CASCADE IMMEDIATE to-descendent-types

CASCADE DEFERRED

to-descendent-types:

�

TO ALL TABLES

,

TO MATERIALIZED QUERY TABLES
FOREIGN KEY TABLES
STAGING TABLES

table-checked-options:

�

,

online-options
GENERATE IDENTITY

query-optimization-options

SET INTEGRITY

1276 SQL Reference Volume 2



online-options:

ALLOW NO ACCESS

ALLOW READ ACCESS
ALLOW WRITE ACCESS

query-optimization-options:

ALLOW QUERY OPTIMIZATION WITH REFRESH AGE ANY
USING REFRESH DEFERRED TABLES

check-options:

* incremental-options *

FORCE GENERATED
*

PRUNE
�

� *

FULL ACCESS
*

exception-clause

incremental-options:

INCREMENTAL
NOT INCREMENTAL

exception-clause:

FOR EXCEPTION �

,

in-table-use-clause

in-table-use-clause:

IN table-name USE table-name

table-unchecked-options:

�

,

integrity-options
FULL ACCESS

integrity-options:

SET INTEGRITY

Statements 1277



�

ALL
,

FOREIGN KEY
CHECK
MATERIALIZED QUERY
GENERATED COLUMN
STAGING

Description

FOR table-name
Identifies one or more tables for integrity processing. It must be a table
described in the catalog and must not be a view, catalog table, or typed table.

OFF
Specifies that the tables are placed in set integrity pending state. Only very
limited activity is allowed on a table that is in set integrity pending state.

access-mode-clause
Specifies the readability of the table while it is in set integrity pending state.

NO ACCESS
Specifies that the table is to be put in set integrity pending no access state,
which does not allow read or write access to the table.

READ ACCESS
Specifies that the table is to be put in set integrity pending read access
state, which allows read access to the non-appended portion of the table.
This option is not allowed on a table that is in set integrity pending no
access state (SQLSTATE 428FH).

cascade-clause
Specifies whether the set integrity pending state of the table referenced in the
SET INTEGRITY statement is to be immediately cascaded to descendent tables.

CASCADE IMMEDIATE
Specifies that the set integrity pending state is to be immediately extended
to descendent tables.

to-descendent-types
Specifies the type of descendent tables to which the set integrity pending
state is immediately cascaded.

TO ALL TABLES
Specifies that the set integrity pending state is to be immediately
cascaded to all descendent tables of the tables in the invocation list.
Descendent tables include all descendent foreign key tables, immediate
staging tables, and immediate materialized query tables that are
descendants of the tables in the invocation list, or descendants of
descendent foreign key tables.

Specifying TO ALL TABLES is equivalent to specifying TO FOREIGN
KEY TABLES, TO MATERIALIZED QUERY TABLES, and TO
STAGING TABLES, all in the same statement.

TO MATERIALIZED QUERY TABLES
If only TO MATERIALIZED QUERY TABLES is specified, the set
integrity pending state is to be immediately cascaded only to
descendent immediate materialized query tables. Other descendent
tables might later be put in set integrity pending state, if necessary,

SET INTEGRITY

1278 SQL Reference Volume 2



when the table is brought out of set integrity pending state. If both TO
FOREIGN KEY TABLES and TO MATERIALIZED QUERY TABLES are
specified, the set integrity pending state will be immediately cascaded
to all descendent foreign key tables, all descendent immediate
materialized query tables of the tables in the invocation list, and to all
immediate materialized query tables that are descendants of the
descendent foreign key tables.

TO FOREIGN KEY TABLES
Specifies that the set integrity pending state is to be immediately
cascaded to descendent foreign key tables. Other descendent tables
might later be put in set integrity pending state, if necessary, when the
table is brought out of set integrity pending state.

TO STAGING TABLES
Specifies that the set integrity pending state is to be immediately
cascaded to descendent staging tables. Other descendent tables might
later be put in set integrity pending state, if necessary, when the table
is brought out of set integrity pending state. If both TO FOREIGN KEY
TABLES and TO STAGING TABLES are specified, the set integrity
pending state will be immediately cascaded to all descendent foreign
key tables, all descendent immediate staging tables of the tables in the
invocation list, and to all immediate staging tables that are descendants
of the descendent foreign key tables.

CASCADE DEFERRED
Specifies that only the tables in the invocation list are to be put in set
integrity pending state. The states of the descendent tables will remain
unchanged. Descendent foreign key tables might later be implicitly put in
set integrity pending state when their parent tables are checked for
constraints violations. Descendent immediate materialized query tables and
descendent immediate staging tables might be implicitly put in set
integrity pending state when one of their underlying tables is checked for
integrity violations. A query of a table that is in the set integrity pending
state might succeed if an eligible materialized query table that is not in the
set integrity pending state is accessed by the query instead of the specified
table.

If cascade-clause is not specified, the set integrity pending state is immediately
cascaded to all descendent tables.

IMMEDIATE CHECKED
Specifies that the table is to be taken out of set integrity pending state by
performing required integrity processing on the table. This is done in
accordance with the information set in the STATUS and CONST_CHECKED
columns of the SYSCAT.TABLES catalog view. That is:
v The value in the STATUS column must be 'C' (the table is in set integrity

pending state), or an error is returned (SQLSTATE 51027), unless the table is
a descendent foreign key table, descendent materialized query table, or
descendent staging table of a table that is specified in the list, is in set
integrity pending state, and whose intermediate ancestors are also in the list.

v If the table being checked is in set integrity pending state, the value in
CONST_CHECKED indicates which integrity options are to be checked.

When the table is taken out of set integrity pending state, its descendent tables
are, if necessary, put in set integrity pending state. A warning to indicate that
descendent tables have been put in set integrity pending state is returned
(SQLSTATE 01586).

SET INTEGRITY

Statements 1279



If the table is a system-maintained materialized query table, the data is
checked against the query and refreshed as necessary. (IMMEDIATE
CHECKED cannot be used for user-maintained materialized query tables or
shadow tables.) If the table is a staging table, the data is checked against its
query definition and propagated as necessary.

When the integrity of a child table is checked:
v None of its parents can be in set integrity pending state, or
v Each of its parents must be checked for constraints violations in the same

SET INTEGRITY statement

When an immediate materialized query table is refreshed, or deltas are
propagated to a staging table:
v None of its underlying tables can be in set integrity pending state, or
v Each of its underlying tables must be checked in the same SET INTEGRITY

statement

Otherwise, an error is returned (SQLSTATE 428A8).

table-checked-options

online-options
Specifies the accessibility of the table while it is being processed.

ALLOW NO ACCESS
Specifies that no other users can access the table while it is being
processed, except if they are using the Uncommitted Read isolation
level.

ALLOW READ ACCESS
Specifies that other users have read-only access to the table while it
is being processed.

ALLOW WRITE ACCESS
Specifies that other users have read and write access to the table
while it is being processed.

GENERATE IDENTITY
Specifies that if the table includes an identity column, the values are
generated by the SET INTEGRITY statement. By default, when the
GENERATE IDENTITY option is specified, only attached rows will
have their identity column values generated by the SET INTEGRITY
statement. The NOT INCREMENTAL option must be specified in
conjunction with the GENERATE IDENTITY option to have the SET
INTEGRITY statement generate identity column values for all rows in
the table, including attached rows, loaded rows, and existing rows. If
the GENERATE IDENTITY option is not specified, the current identity
column values for all rows in the table are left unchanged. When the
table is a system-period temporal table, GENERATE IDENTITY with
the NOT INCREMENTAL option is allowed only if you first issue an
ALTER TABLE statement with the DROP VERSIONING clause
(SQLSTATE 428FH).

query-optimization-options
Specifies the query optimization options for the maintenance of
REFRESH DEFERRED materialized query tables.

ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES WITH
REFRESH AGE ANY

Specifies that when the CURRENT REFRESH AGE special register

SET INTEGRITY

1280 SQL Reference Volume 2



is set to 'ANY', the maintenance of table-name will allow REFRESH
DEFERRED materialized query tables to be used to optimize the
query that maintains table-name. If table-name is not a REFRESH
DEFERRED materialized query table, an error is returned
(SQLSTATE 428FH). REFRESH IMMEDIATE materialized query
tables are always considered during query optimization.

check-options

incremental-options

INCREMENTAL
Specifies the application of integrity processing on the appended
portion (if any) of the table. If such a request cannot be satisfied
(that is, the system detects that the whole table needs to be
checked for data integrity), an error is returned (SQLSTATE 55019).

NOT INCREMENTAL
Specifies the application of integrity processing on the whole table.
If the table is a materialized query table, the materialized query
table definition is recomputed. If the table has at least one
constraint defined on it, this option causes full processing of
descendent foreign key tables and descendent immediate
materialized query tables. If the table is a staging table, it is set to
an inconsistent state.

If the incremental-options clause is not specified, the system determines
whether incremental processing is possible; if not, the whole table is
checked.

FORCE GENERATED
If the table includes generated by expression columns, the values are
computed on the basis of the expression and stored in the column. If
this option is not specified, the current values are compared to the
computed value of the expression, as though an equality check
constraint were in effect. If the table is processed for integrity
incrementally, generated columns are computed only for the appended
portion. When the table is a system-period temporal table, the FORCE
GENERATED option is allowed only if you first issue an ALTER
TABLE statement with the DROP VERSIONING clause (SQLSTATE
428FH).

PRUNE
This option can be specified for staging tables only. Specifies that the
content of the staging table is to be pruned, and that the staging table
is to be set to an inconsistent state. If any table in the table-name list is
not a staging table, an error is returned (SQLSTATE 428FH). If the
INCREMENTAL check option is also specified, an error is returned
(SQLSTATE 428FH).

FULL ACCESS
Specifies that the table is to become fully accessible after the SET
INTEGRITY statement executes.

When an underlying table (that has dependent immediate materialized
query tables or dependent immediate staging tables) in the invocation
list is incrementally processed, the underlying table is put in no data
movement state, as required, after the SET INTEGRITY statement
executes. When all incrementally refreshable dependent immediate
materialized query tables and staging tables are taken out of set

SET INTEGRITY

Statements 1281



integrity pending state, the underlying table is automatically brought
out of the no data movement state into the full access state. If the
FULL ACCESS option is specified with the IMMEDIATE CHECKED
option, the underlying table is put directly in full access state
(bypassing the no data movement state). In DB2 Version 9.7. Fix Pack 1
and later, specifying the FULL ACCESS option only removes the
dependency between the dependent tables and underlying table. The
underlying table continues to be unavailable until the data partition
detach process is completed by the asynchronous partition detach task.

Dependent immediate materialized query tables that have not been
refreshed might undergo a full recomputation in the subsequent
REFRESH TABLE statement, and dependent immediate staging tables
that have not had the appended portions of the table propagated to
them might be flagged as inconsistent.

When an underlying table in the invocation list requires full
processing, or does not have dependent immediate materialized query
tables, or dependent immediate staging tables, the underlying table is
put directly into full access state after the SET INTEGRITY statement
executes, regardless of whether the FULL ACCESS option was
specified.

exception-clause

FOR EXCEPTION
Specifies that any row that is in violation of a constraint being
checked is to be moved to an exception table. Even if errors are
detected, the table is taken out of set integrity pending state. A
warning to indicate that one or more rows have been moved to the
exception tables is returned (SQLSTATE 01603).

If the FOR EXCEPTION option is not specified and any constraints
are violated, only the first detected violation is returned
(SQLSTATE 23514). If there is a violation in any table, all of the
tables are left in set integrity pending state.

It is recommended to always use the FOR EXCEPTION option
when checking for constraints violations to prevent a rollback of
the SET INTEGRITY statement if a violation is found.

When the table specified after the IN keyword is a system-period
temporal table, the FOR EXCEPTION option is allowed only if you
first issue an ALTER TABLE statement with the DROP
VERSIONING clause (SQLSTATE 428FH).

IN table-name
Specifies the table from which rows that violate constraints are to
be moved. There must be one exception table specified for each
table being checked. This clause cannot be specified for a
materialized query table or a staging table (SQLSTATE 428A7).

USE table-name
Specifies the exception table into which error rows are to be
moved.

FULL ACCESS
If the FULL ACCESS option is specified as the only operation of the statement,
the table is placed into the full access state without being rechecked for
integrity violations. However, dependent immediate materialized query tables
that have not been refreshed might require a full recomputation in subsequent

SET INTEGRITY

1282 SQL Reference Volume 2



REFRESH TABLE statements, and dependent immediate staging tables that
have not had the delta portions of the table propagated to them might be
changed to incomplete state. This option can only be specified for a table that
is in the no data movement state or the no access state, but not in the set
integrity pending state (SQLSTATE 428FH).

PRUNE
This option can be specified for staging tables only. Specifies that the content of
the staging table is to be pruned, and that the staging table is to be set to an
inconsistent state. If any table in the table-name list is not a staging table, an
error is returned (SQLSTATE 428FH).

table-unchecked-options

integrity-options
Used to define the types of required integrity processing that are to be
bypassed when the table is taken out of the set integrity pending state.

ALL
The table will be immediately taken out of set integrity pending state
without any of its required integrity processing being performed.

FOREIGN KEY
Required foreign key constraints checking will not be performed when
the table is brought out of set integrity pending state.

CHECK
Required check constraints checking will not be performed when the
table is brought out of set integrity pending state.

MATERIALIZED QUERY
Required refreshing of a materialized query table will not be
performed when the table is brought out of set integrity pending state.

GENERATED COLUMN
Required generated column constraints checking will not be performed
when the table is brought out of set integrity pending state.

STAGING
Required propagation of data to a staging table will not be performed
when the table is brought out of set integrity pending state.

If no other types of integrity processing are required on the table after a
specific type of integrity processing has been marked as bypassed, the
table is immediately taken out of set integrity pending state.

FULL ACCESS
Specifies that the tables are to become fully accessible after the SET
INTEGRITY statement executes.

When an underlying table in the invocation list is incrementally processed,
and it has dependent immediate materialized query tables or dependent
immediate staging tables, the underlying table is placed, as required, in the
no data movement state after the SET INTEGRITY statement executes.
When all incrementally refreshable dependent immediate materialized
query tables and staging tables have been taken out of set integrity
pending state, the underlying table is automatically brought out of the no
data movement state into the full access state. If the FULL ACCESS option
is specified with the IMMEDIATE UNCHECKED option, the underlying
table is placed directly in full access state (it bypasses the no data
movement state). Dependent immediate materialized query tables that

SET INTEGRITY

Statements 1283



have not been refreshed might undergo a full recomputation in the
subsequent REFRESH TABLE statement, and dependent immediate staging
tables that have not had the appended portions of the table propagated to
them might be flagged as inconsistent.

In DB2 V9.7. Fix Pack 1 and later, specifyingSpecifying the FULL ACCESS
option only removes the dependency between the dependent tables and
underlying table. The underlying table continues to be unavailable until
the data partition detach process is completed by the asynchronous
partition detach task.

When an underlying table in the invocation list requires full processing, or
does not have dependent immediate materialized query tables, or
dependent immediate staging tables, the underlying table is placed directly
in full access state after the SET INTEGRITY statement executes, regardless
of whether the FULL ACCESS option has been specified.

If the FULL ACCESS option has been specified with the IMMEDIATE
UNCHECKED option, and the statement does not bring the table out of set
integrity pending state, an error is returned (SQLSTATE 428FH).

IMMEDIATE UNCHECKED
Specifies one of the following:
v The table is to be brought out of set integrity pending state immediately

without any required integrity processing.
v The table is to have one or more types of required integrity processing

bypassed when the table is brought out of set integrity pending state by a
subsequent SET INTEGRITY statement using the IMMEDIATE CHECKED
option.

Consider the data integrity implications of this option before using it. See the
“Notes” section.

Notes
v Effects on tables in one of the restricted set integrity-related states:

– Use of INSERT, UPDATE, or DELETE is disallowed on a table that is in read
access state or in no access state. Furthermore, any statement that requires
this type of modification to a table that is in such a state will be rejected. For
example, deletion of a row in a parent table that cascades to a dependent
table that is in the no access state is not allowed.

– Use of SELECT is disallowed on a table that is in the no access state.
Furthermore, any statement that requires read access to a table that is in the
no access state will be rejected.

– New constraints added to a table are normally enforced immediately.
However, if the table is in set integrity pending state, the checking of any
new constraints is deferred until the table is taken out of set integrity pending
state. If the table is in set integrity pending state, addition of a new constraint
places the table into set integrity pending no access state, because validity of
data is at risk.

– The CREATE INDEX statement cannot reference any table that is in read
access state or in no access state. Similarly, an ALTER TABLE statement to
add a primary key or a unique constraint cannot reference any table that is in
read access state or in no access state.

– The import utility is not allowed to operate on a table that is in read access
state or in no access state.

SET INTEGRITY

1284 SQL Reference Volume 2



– The export utility is not allowed to operate on a table that is in no access
state, but is allowed to operate on a table that is in read access state. If a table
is in read access state, the export utility will only export the data that is in the
non-appended portion.

– Operations (like REORG, REDISTRIBUTE, update distribution key, update
multidimensional clustering key, update range clustering key, update table
partitioning key, and so on) that might involve data movement within a table
are not allowed on a table that is in any of the following states: read access,
no access, or no data movement.

– The load, backup, restore, update statistics, runstats, reorgchk, list history, and
rollforward utilities are allowed on a table that is in any of the following
states: full access, read access, no access, or no data movement.

– The ALTER TABLE, COMMENT, DROP TABLE, CREATE ALIAS, CREATE
TRIGGER, CREATE VIEW, GRANT, REVOKE, and SET INTEGRITY
statements can reference a table that is in any of the following states: full
access, read access, no access, or no data movement. However, they might
cause the table to be put into no access state.

– Packages, views, and any other objects that depend on a table that is in no
access state will return an error when the table is accessed at run time.
Packages that depend on a table that is in read access state will return an
error when an insert, update, or delete operation is attempted on the table at
run time.

– The ALL or GENERATED COLUMN option cannot be specified with the
IMMEDIATE UNCHECKED option if the table's database partitioning key,
table-partitioning key, multidimensional clustering key, or range-clustering
key references a generated column whose expression was altered through an
ALTER TABLE statement, or the table contains attached data partitions.

The removal of violating rows by the SET INTEGRITY statement is not a delete
event. Therefore, triggers are never activated by a SET INTEGRITY statement.
Similarly, updating generated columns using the FORCE GENERATED option
does not activate triggers.

v Warning about the use of the IMMEDIATE UNCHECKED clause:
– This clause is intended to be used by utility programs, and its use by

application programs is not recommended. If there is data in the table that
does not meet the integrity specifications that were defined for the table, and
the IMMEDIATE UNCHECKED option is used, incorrect query results might
be returned.
The fact that the table was taken out of the set integrity pending state without
performing the required integrity processing will be recorded in the catalog
(the respective byte in the CONST_CHECKED column in the
SYSCAT.TABLES view will be set to 'U'). This indicates that the user has
assumed responsibility for data integrity with respect to the specific
constraints. This value remains unchanged until either:
- The table is put back into set integrity pending state (by referencing the

table in a SET INTEGRITY statement with the OFF option), at which time
'U' values in the CONST_CHECKED column are changed to 'W' values,
indicating that the user had previously assumed responsibility for data
integrity, and the system needs to verify the data.

- All unchecked constraints for the table are dropped.
The 'W' state differs from the 'N' state in that it records the fact that integrity
was previously checked by the user, but not yet by the system. If the user
issues the SET INTEGRITY ... IMMEDIATE CHECKED statement with the
NOT INCREMENTAL option, the system rechecks the whole table for data

SET INTEGRITY

Statements 1285



integrity (or performs a full refresh on a materialized query table), and then
changes the 'W' state to the 'Y' state. If IMMEDIATE UNCHECKED is
specified, or if NOT INCREMENTAL is not specified, the 'W' state is changed
back to the 'U' state to record the fact that some data has still not been
verified by the system. In the latter case (when the NOT INCREMENTAL is
not specified), a warning is returned (SQLSTATE 01636).
If an underlying table's integrity has been checked using the IMMEDIATE
UNCHECKED clause, the 'U' values in the CONST_CHECKED column of the
underlying table will be propagated to the corresponding CONST_CHECKED
column of:
- Dependent immediate materialized query tables
- Dependent deferred materialized query tables
- Dependent staging tables
For a dependent immediate materialized query table, this propagation is done
whenever the underlying table is brought out of set integrity pending state,
and whenever the materialized query table is refreshed. For a dependent
deferred materialized query table, this propagation is done whenever the
materialized query table is refreshed. For dependent staging tables, this
propagation is done whenever the underlying table is brought out of set
integrity pending state. These propagated 'U' values in the
CONST_CHECKED columns of dependent materialized query tables and
staging tables record the fact that these materialized query tables and staging
tables depend on some underlying table whose required integrity processing
has been bypassed using the IMMEDIATE UNCHECKED option.
For a materialized query table, the 'U' value in the CONST_CHECKED
column that was propagated by the underlying table will remain until the
materialized query table is fully refreshed and none of its underlying tables
have a 'U' value in their corresponding CONST_CHECKED column. After
such a refresh, the 'U' value in the CONST_CHECKED column for the
materialized query table will be changed to 'Y'.
For a staging table, the 'U' value in the CONST_CHECKED column that was
propagated by the underlying table will remain until the corresponding
deferred materialized query table of the staging table is refreshed. After such
a refresh, the 'U' value in the CONST_CHECKED column for the staging table
will be changed to 'Y'.

– If a child table and its parent table are checked in the same SET INTEGRITY
statement with the IMMEDIATE CHECKED option, and the parent table
requires full checking of its constraints, the child table will have its foreign
key constraints checked, independently of whether or not the child table has a
'U' value in the CONST_CHECKED column for foreign key constraints.

v If the table is data partitioned and there are nonpartitioned indexes (except the
XML column path index) to maintain, IMMEDIATE UNCHECKED behavior
when a single target table is specified is the same as IMMEDIATE CHECKED
behavior with the ALLOW WRITE ACCESS option: all integrity processing is
performed and any resulting errors are returned. If the statement references
more than one target table, an error is returned (SQLSTATE 428FH).

v After appending data using LOAD INSERT or ALTER TABLE ATTACH, the SET
INTEGRITY statement with the IMMEDIATE CHECKED option checks the table
for constraints violations. The system determines whether incremental
processing on the table is possible. If so, only the appended portion is checked
for integrity violations. If not, the system checks the whole table for integrity
violations.

v Consider the statement:

SET INTEGRITY

1286 SQL Reference Volume 2



SET INTEGRITY FOR T IMMEDIATE CHECKED

In the following scenarios, neither the INCREMENTAL check option for T nor
an incremental refresh of T---if T is a materialized query table (MQT) or a
staging table---is supported:
– New constraints have been added to T while it is in set integrity pending

state
– When a LOAD REPLACE operation against T, it parents, or its underlying

tables has taken place
– When the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been

activated after the last integrity check on T, its parents, or its underlying
tables

– The cascading effect of full processing, when any parent of T (or underlying
table, if T is a materialized query table or a staging table) has been checked
for integrity non-incrementally

– If the table space containing the table or its parent (or underlying table of a
materialized query table or a staging table) has been rolled forward to a point
in time, and the table and its parent (or underlying table if the table is a
materialized query table or a staging table) reside in different table spaces

– T is an MQT, and a LOAD REPLACE or LOAD INSERT operation directly
into T has taken place after the last refresh

v Incremental processing will be used whenever the situation allows it, because it
is more efficient. The INCREMENTAL option is not needed in most cases. It is
needed, however, to ensure that integrity checks are indeed processed
incrementally. If the system detects that full processing is needed to ensure data
integrity, an error is returned (SQLSTATE 55019).

v If the conditions for full processing described in the previous bullet are not
satisfied, the system will attempt to check only the appended portion for
integrity, or perform an incremental refresh (if it is a materialized query table)
when the user does not specify the NOT INCREMENTAL option for the
statement SET INTEGRITY FOR T IMMEDIATE CHECKED.

v If an error occurs during integrity processing, all the effects of the processing
(including deleting from the original and inserting into the exception tables) will
be rolled back.

v If a SET INTEGRITY statement issued with the FORCE GENERATED option
fails because of a lack of log space, increase available active log space and
reissue the SET INTEGRITY statement. Alternatively, use the SET INTEGRITY
statement with the GENERATED COLUMN and IMMEDIATE UNCHECKED
options to bypass generated column checking for the table. Then, issue a SET
INTEGRITY statement with the IMMEDIATE CHECKED option and without the
FORCE GENERATED option to check the table for other integrity violations (if
applicable) and to bring it out of set integrity pending state. After the table is
out of the set integrity pending state, the generated columns can be updated to
their default (generated) values by assigning them to the keyword DEFAULT in
an UPDATE statement. This is accomplished by using either multiple searched
update statements based on ranges (each followed by a commit), or a
cursor-based approach using intermittent commits. A “with hold” cursor should
be used if locks are to be retained after intermittent commits using the
cursor-based approach.

v A table that was put into set integrity pending state using the CASCADE
DEFERRED option of the SET INTEGRITY statement or the LOAD command, or
through the ALTER TABLE statement with the ATTACH clause, and that is
checked for integrity violations using the IMMEDIATE CHECKED option of the

SET INTEGRITY

Statements 1287



SET INTEGRITY statement, will have its descendent foreign key tables,
descendent immediate materialized query tables, and descendent immediate
staging tables put in set integrity pending state, as required:
– If the entire table is checked for integrity violations, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent
immediate staging tables will be put in set integrity pending state.

– If the table is checked for integrity violations incrementally, its descendent
immediate materialized query tables and staging tables will be put in set
integrity pending state, and its descendent foreign key tables will remain in
their original states.

– If the table requires no checking at all, its descendent immediate materialized
query tables, descendent staging tables, and descendent foreign key tables
will remain in their original states.

v A table that was put in set integrity pending state using the CASCADE
DEFERRED option (of the SET INTEGRITY statement or the LOAD command),
and that is brought out of set integrity pending state using the IMMEDIATE
UNCHECKED option of the SET INTEGRITY statement, will have its descendent
foreign key tables, descendent immediate materialized query tables, and
descendent immediate staging tables put in set integrity pending state, as
required:
– If the table has been loaded using the REPLACE mode, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent
immediate staging tables will be put in set integrity pending state.

– If the table has been loaded using the INSERT mode, its descendent
immediate materialized query tables and staging tables will be put in set
integrity pending state, and its descendent foreign key tables will remain in
their original states.

– If the table has not been loaded, its descendent immediate materialized query
tables, descendent staging tables, and its descendent foreign key tables will
remain in their original states.

v SET INTEGRITY is usually a long running statement. In light of this, to reduce
the risk of a rollback of the entire statement because of a lock timeout, you can
issue the SET CURRENT LOCK TIMEOUT statement with the WAIT option
before executing the SET INTEGRITY statement, and then reset the special
register to its previous value after the transaction commits. Note, however, that
the CURRENT LOCK TIMEOUT special register only impacts a specific set of
lock types.

v If you use the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED
TABLES WITH REFRESH AGE ANY option, ensure that the maintenance order
is correct for REFRESH DEFERRED materialized query tables. For example,
consider two materialized query tables, MQT1 and MQT2, whose materialized
queries share the same underlying tables. The materialized query for MQT2 can
be calculated using MQT1, instead of the underlying tables. If separate
statements are used to maintain these two materialized query tables, and MQT2
is maintained first, the system might choose to use the contents of MQT1, which
has not yet been maintained, to maintain MQT2. In this case, MQT1 would
contain current data, but MQT2 could still contain stale data, even though both
were maintained at almost the same time. The correct maintenance order, if two
SET INTEGRITY statements are used instead of one, is to maintain MQT1 first.

v When using the SET INTEGRITY statement to perform integrity processing on a
base table that has been loaded or attached, it is recommended that you process
its dependent REFRESH IMMEDIATE materialized query tables and its
PROPAGATE IMMEDIATE staging tables in the same SET INTEGRITY

SET INTEGRITY

1288 SQL Reference Volume 2



statement to avoid putting these dependent tables in set integrity pending no
access state at the end of SET INTEGRITY processing. Note that for base tables
that have a large number of dependent REFRESH IMMEDIATE materialized
query tables and PROPAGATE IMMEDIATE staging tables, memory constraints
might make it impossible to process all of the dependents in the same statement
as the base table.

v If the FORCE GENERATED or the GENERATE IDENTITY option is specified,
and the column that is generated is part of a unique index, the SET INTEGRITY
statement returns an error (SQLSTATE 23505) and rolls back if it detects
duplicate keys in the unique index. This error is returned even if there is an
exception table for the table being processed.
This scenario can occur under the following circumstances:
– The SET INTEGRITY statement runs after a LOAD command against the

table, and the GENERATEDOVERRIDE or the IDENTITYOVERRIDE file type
modifier is specified during the load operation. To prevent this scenario, it is
recommended that you use the GENERATEDIGNORE or the
GENERATEDMISSING file type modifier instead of GENERATEDOVERRIDE,
and that you use the IDENTITYIGNORE or the IDENTITYMISSING modifier
instead of IDENTITYOVERRIDE. Using the recommended modifiers will
prevent the need for any generated by expression column or identity column
processing during SET INTEGRITY statement execution.

– The SET INTEGRITY statement is run after an ALTER TABLE statement that
alters the expression of a generated by expression column.

To bring a table out of the set integrity pending state after encountering such a
scenario:
– Do not use the FORCE GENERATED or the GENERATE IDENTITY option to

regenerate the column values. Instead, use the IMMEDIATE CHECKED
option in conjunction with the FOR EXCEPTION option to move any rows
that violate the generated column expression to an exception table. Then,
re-insert the rows into the table from the exception table, which will generate
the correct expression and perform unique key checking. This prevents
having to reprocess the entire table, because only those rows that violated the
generated column expression will need to be processed again.

– If the table being processed has attached partitions, detach those partitions
before performing the actions that are described in the previous bullet. Then,
re-attach the partitions and execute a SET INTEGRITY statement to process
integrity on the attached partitions separately.

v If a protected table is specified for the SET INTEGRITY statement along with an
exception table, all of the following table criteria must be met; otherwise, an
error is returned (SQLSTATE 428A5):
– The tables must be protected by the same security policy.
– If a column in the protected table has data type DB2SECURITYLABEL, the

corresponding column in the exception table must also have data type
DB2SECURITYLABEL.

– If a column in the protected table is protected by a security label, the
corresponding column in the exception table must also be protected by the
same security label.

v Rows that violate the integrity being checked in a system-period temporal table
cannot be moved to an exception table. If the violating rows must be moved to
an exception table, the table must be altered to drop versioning before issuing
the SET INTEGRITY statement with the FOR EXCEPTION clause.

SET INTEGRITY

Statements 1289



v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– SET CONSTRAINTS can be specified in place of SET INTEGRITY
– SUMMARY can be specified in place of MATERIALIZED QUERY

Examples
v Example 1: The following is an example of a query that provides information

about the set integrity pending state and the set integrity-related access
restriction states of tables. SUBSTR is used to extract individual bytes of the
CONST_CHECKED column of SYSCAT.TABLES. The first byte represents
foreign key constraints; the second byte represents check constraints; the fifth
byte represents materialized query table integrity; the sixth byte represents
generated column constraints; the seventh byte represents staging table integrity;
and the eighth byte represents data partitioning constraints. STATUS gives the
set integrity pending state, and ACCESS_MODE gives the set integrity-related
access restriction state.

SELECT TABNAME, STATUS, ACCESS_MODE,
SUBSTR(CONST_CHECKED,1,1) AS FK_CHECKED,
SUBSTR(CONST_CHECKED,2,1) AS CC_CHECKED,
SUBSTR(CONST_CHECKED,5,1) AS MQT_CHECKED,
SUBSTR(CONST_CHECKED,6,1) AS GC_CHECKED,
SUBSTR(CONST_CHECKED,7,1) AS STG_CHECKED,
SUBSTR(CONST_CHECKED,8,1) AS DP_CHECKED

FROM SYSCAT.TABLES

v Example 2: Put the PARENT table in set integrity pending no access state, and
immediately cascade the set integrity pending state to its descendants.

SET INTEGRITY FOR PARENT OFF
NO ACCESS CASCADE IMMEDIATE

v Example 3: Put the PARENT table in set integrity pending read access state
without immediately cascading the set integrity pending state to its descendants.

SET INTEGRITY FOR PARENT OFF
READ ACCESS CASCADE DEFERRED

v Example 4: Check integrity for a table named FACT_TABLE. If there are no
integrity violations detected, the table is brought out of set integrity pending
state. If any integrity violations are detected, the entire statement is rolled back,
and the table remains in set integrity pending state.

SET INTEGRITY FOR FACT_TABLE IMMEDIATE CHECKED

v Example 5: Check integrity for the SALES and PRODUCTS tables, and move the
rows that violate integrity into exception tables named SALES_EXCEPTIONS
and PRODUCTS_EXCEPTIONS. Both the SALES and PRODUCTS tables are
brought out of set integrity pending state, whether or not there are any integrity
violations.

SET INTEGRITY FOR SALES, PRODUCTS IMMEDIATE CHECKED
FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS,
IN PRODUCTS USE PRODUCTS_EXCEPTIONS

v Example 6: Enable FOREIGN KEY constraint checking in the MANAGER table,
and CHECK constraint checking in the EMPLOYEE table, to be bypassed with
the IMMEDIATE UNCHECKED option.

SET INTEGRITY FOR MANAGER FOREIGN KEY,
EMPLOYEE CHECK IMMEDIATE UNCHECKED

v Example 7: Add a check constraint and a foreign key to the EMP_ACT table,
using two ALTER TABLE statements. The SET INTEGRITY statement with the
OFF option is used to put the table in set integrity pending state, so that the
constraints are not checked immediately upon execution of the two ALTER

SET INTEGRITY

1290 SQL Reference Volume 2



TABLE statements. The single SET INTEGRITY statement with the IMMEDIATE
CHECKED option is used to check both of the added constraints during a single
pass through the table.

SET INTEGRITY FOR EMP_ACT OFF;
ALTER TABLE EMP_ACT ADD CHECK

(EMSTDATE <= EMENDATE);
ALTER TABLE EMP_ACT ADD FOREIGN KEY

(EMPNO) REFERENCES EMPLOYEE;
SET INTEGRITY FOR EMP_ACT IMMEDIATE CHECKED

FOR EXCEPTION IN EMP_ACT USE EMP_ACT_EXCEPTIONS

v Example 8: Update generated columns with the correct values.
SET INTEGRITY FOR SALES IMMEDIATE CHECKED

FORCE GENERATED

v Example 9: Append (using LOAD INSERT) from different sources into an
underlying table (SALES) of a REFRESH IMMEDIATE materialized query table
(SALES_SUMMARY). Check SALES incrementally for data integrity, and refresh
SALES_SUMMARY incrementally. In this scenario, integrity checking for SALES
and refreshing of SALES_SUMMARY are incremental, because the system
chooses incremental processing. The ALLOW READ ACCESS option is used on
the SALES table to allow concurrent reads of existing data while integrity
checking of the loaded portion of the table is taking place.

LOAD FROM 2000_DATA.DEL OF DEL
INSERT INTO SALES ALLOW READ ACCESS;

LOAD FROM 2001_DATA.DEL OF DEL
INSERT INTO SALES ALLOW READ ACCESS;

SET INTEGRITY FOR SALES ALLOW READ ACCESS IMMEDIATE CHECKED
FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS;

REFRESH TABLE SALES_SUMMARY;

v Example 10: Attach a new partition to a data partitioned table named SALES.
Incrementally check for constraints violations in the attached data of the SALES
table and incrementally refresh the dependent SALES_SUMMARY table. The
ALLOW WRITE ACCESS option is used on both tables to allow concurrent
updates while integrity checking is taking place.

ALTER TABLE SALES
ATTACH PARTITION STARTING (100) ENDING (200)
FROM SOURCE;

SET INTEGRITY FOR SALES ALLOW WRITE ACCESS, SALES_SUMMARY ALLOW WRITE ACCESS
IMMEDIATE CHECKED FOR EXCEPTION IN SALES
USE SALES_EXCEPTIONS;

v Example 11: Detach a partition from a data partitioned table named SALES.
Incrementally refresh the dependent SALES_SUMMARY table.

ALTER TABLE SALES
DETACH PARTITION 2000_PART INTO ARCHIVE_TABLE;

SET INTEGRITY FOR SALES_SUMMARY
IMMEDIATE CHECKED;

v Example 12: Bring a new user-maintained materialized query table out of set
integrity pending state.

CREATE TABLE YEARLY_SALES
AS (SELECT YEAR, SUM(SALES)AS SALES
FROM FACT_TABLE GROUP BY YEAR)
DATA INITIALLY DEFERRED REFRESH DEFERRED MAINTAINED BY USER

SET INTEGRITY FOR YEARLY_SALES
ALL IMMEDIATE UNCHECKED

v Example 13: Attach a new partition to a data partitioned table named SALES.
Assume that this table has no nonpartitioned user indexes. Assume also that
data integrity checking, including range validation and other constraints
checking, has already been done (through application logic that is independent

SET INTEGRITY

Statements 1291



of the data server). Optimize the data roll-in process by using the SET
INTEGRITY ... ALL IMMEDIATE UNCHECKED statement to skip range and
constraints violation checking.

ALTER TABLE SALES
ATTACH PARTITION STARTING (300) ENDING (400)
FROM SOURCE_TABLE;

SET INTEGRITY FOR SALES ALL IMMEDIATE UNCHECKED;

The SALES table is brought out of SET INTEGRITY pending state, and the new
data is available for applications to use immediately.

SET INTEGRITY

1292 SQL Reference Volume 2



SET PASSTHRU
The SET PASSTHRU statement opens and closes a session for submitting a data
source's native SQL directly to that data source.

The statement is not under transaction control.

Invocation

This statement can be issued interactively. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must provide
authorization to:
v Pass through to the data source
v Satisfy security measures at the data source

Syntax

�� SET PASSTHRU server-name
RESET

��

Description

server-name
Names the data source for which a pass-through session is to be opened.
server-name must identify a data source that is described in the catalog.

RESET
Closes a pass-through session.

Notes
v The following restrictions apply to Microsoft SQL Server, Sybase, and Oracle

data sources:
– User-defined transactions cannot be used for Microsoft SQL Server and

Sybase data sources in pass-through mode, because Microsoft SQL Server and
Sybase restrict which SQL statements can be specified within a user-defined
transaction. Because SQL statements that are processed in pass-through mode
are not parsed by the database manager, it is not possible to detect whether
the user specified an SQL statement that is permitted within a user-defined
transaction.

– The COMPUTE clause is not supported on Microsoft SQL Server and Sybase
data sources.

– DDL statements are not subject to transaction semantics on Microsoft SQL
Server, Oracle and Sybase data sources. The operation, when complete, is
automatically committed by Microsoft SQL Server, Oracle or Sybase. If a
rollback occurs, the DDL is not rolled back.

Examples
v Example 1: Start a pass-through session to data source BACKEND.

strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;

SET PASSTHRU

Statements 1293



v Example 2: Start a pass-through session with a PREPARE statement.
strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL PREPARE STMT FROM :PASS_THRU;
EXEC SQL EXECUTE STMT;

v Example 3: End a pass-through session.
strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

v Example 4: Use the PREPARE and EXECUTE statements to end a pass-through
session.

strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL PREPARE STMT FROM :PASS_THRU_RESET;
EXEC SQL EXECUTE STMT;

v Example 5: Open a session to pass through to a data source, create a clustered
index for a table at this data source, and close the pass-through session.

strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;
EXEC SQL PREPARE STMT pass-through mode

FROM "CREATE UNIQUE
CLUSTERED INDEX TABLE_INDEX
ON USER2.TABLE table is not an
WITH IGNORE DUP KEY"; alias

EXEC SQL EXECUTE STMT;
strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

SET PASSTHRU

1294 SQL Reference Volume 2



SET PATH
The SET PATH statement changes the value of the CURRENT PATH special
register.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET
CURRENT

PATH
CURRENT_PATH

=
�

,

schema-name
SYSTEM PATH
USER

CURRENT PATH
CURRENT_PATH

CURRENT PACKAGE PATH
host-variable
string-constant

��

Description

schema-name
This one-part name identifies a schema that exists at the application server. No
validation that the schema exists is made at the time that the path is set. If a
schema-name is, for example, misspelled, the error will not be caught, and it
could affect the way subsequent SQL operates.

SYSTEM PATH
This value is the same as specifying the schema names
"SYSIBM","SYSFUN","SYSPROC","SYSIBMADM".

USER
The value of the USER special register.

CURRENT PATH
The value of the CURRENT PATH special register before this statement
executes.

CURRENT PACKAGE PATH
The value of the CURRENT PACKAGE PATH special register.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the
host-variable must not exceed 128 bytes (SQLSTATE 42815). It cannot be set to
null. If host-variable has an associated indicator variable, the value of that
indicator variable must not indicate a null value (SQLSTATE 42815).

SET PATH

Statements 1295



The characters of the host-variable must be left-aligned. When specifying the
schema-name with a host-variable, all characters must be specified in the exact
case intended as there is no conversion to uppercase characters.

string-constant
A character string constant with a maximum length of 128 bytes.

Rules
v A schema name cannot appear more than once in the SQL path (SQLSTATE

42732).
v The schema name SYSPUBLIC cannot be specified in the SQL path (SQLSTATE

42815).
v The number of schemas that can be specified is limited by the total length of the

CURRENT PATH special register. The special register string is built by taking
each schema name specified and removing trailing blanks, delimiting with
double quotation marks, doubling quotation marks within the schema name as
necessary, and then separating each schema name by a comma. The length of the
resulting string cannot exceed 2048 bytes (SQLSTATE 42907).

Notes
v The initial value of the CURRENT PATH special register is

"SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","X" where X is the value of the
USER special register.

v The schema SYSIBM does not need to be specified. If it is not included in the
SQL path, it is implicitly assumed as the first schema (in this case, it is not
included in the CURRENT PATH special register).

v The CURRENT PATH special register specifies the SQL path used to resolve
function names, procedure names, data type names, global variable names, and
module object names in dynamic SQL statements. The FUNCPATH bind option
specifies the SQL path to be used for resolving function names, procedure
names, data type names, global variable names, and module object names in
static SQL statements.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– CURRENT FUNCTION PATH can be specified in place of CURRENT PATH

Examples
v Example 1: The following statement sets the CURRENT PATH special register.

SET PATH = FERMAT, "McDrw #8", SYSIBM

v Example 2: The following example retrieves the current value of the CURRENT
PATH special register into the host variable called CURPATH.

EXEC SQL VALUES (CURRENT PATH) INTO :CURPATH;

The value would be "FERMAT","McDrw #8","SYSIBM" if set by the previous
example.

SET PATH

1296 SQL Reference Volume 2



SET ROLE
The SET ROLE statement verifies that the authorization ID of the session is a
member of a specific role. An authorization ID acquires membership in a role
when the role is granted to the authorization ID, or to a group or role in which the
authorization ID is a member.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

None required.

Syntax

��
=

SET ROLE role-name ��

Description

role-name
Specifies a role in whose membership the authorization ID of the session is to
be verified. The role-name must identify an existing role at the current server
(SQLSTATE 42704). If the authorization ID of the session is not a member of
role-name, an error is returned (SQLSTATE 42501).

Notes
v All roles that have been granted to an authorization ID are used for

authorization checking. The SET ROLE statement does not affect which roles are
used for this authorization checking. Use the GRANT ROLE and REVOKE
ROLE statements to change the roles in which an authorization ID has
membership.

Examples
v Example 1: User WALID has been granted the role EDITOR, but not the role

AUTHOR. Verify that WALID is a member of the EDITOR role.
SET ROLE EDITOR

v Example 2: Verify that WALID is not a member of the AUTHOR role. The
following statement returns an error (SQLSTATE 42501).

SET ROLE AUTHOR

SET ROLE

Statements 1297



SET SCHEMA
The SET SCHEMA statement changes the value of the CURRENT SCHEMA special
register.

This statement is not under transaction control. If the package is bound with the
DYNAMICRULES BIND option, this statement does not affect the qualifier used
for unqualified database object references.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
CURRENT =

SET SCHEMA schema-name
USER
SESSION_USER
SYSTEM_USER
CURRENT_USER
host-variable
string-constant

��

Description

schema-name
This one-part name identifies a schema that exists at the application server. The
length must not exceed 128 bytes (SQLSTATE 42815). No validation that the
schema exists is made at the time that the schema is set. If a schema-name is
misspelled, the error will not be caught, and that could affect the way that
subsequent SQL statements execute.

USER
The value in the USER special register.

SESSION_USER
The value in the SESSION_USER special register.

SYSTEM_USER
The value in the SYSTEM_USER special register.

CURRENT_USER
The value in the CURRENT_USER special register.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the
host-variable must not exceed 128 bytes (SQLSTATE 42815). It cannot be set to
null. If host-variable has an associated indicator variable, the value of that
indicator variable must not indicate a null value (SQLSTATE 42815).

The characters of the host-variable must be left-aligned. When specifying the
schema-name with a host-variable, all characters must be specified in the exact
case intended as there is no conversion to uppercase characters.

SET SCHEMA

1298 SQL Reference Volume 2



string-constant
A character string constant with a maximum length of 128 bytes.

Rules
v If the value specified does not conform to the rules for a schema-name, an error

(SQLSTATE 3F000) is raised.
v The value of the CURRENT SCHEMA special register is used as the schema

name in all dynamic SQL statements, with the exception of the CREATE
SCHEMA statement, where an unqualified reference to a database object exists.

v The QUALIFIER bind option specifies the schema name for use as the qualifier
for unqualified database object names in static SQL statements.

Notes
v The initial value of the CURRENT SCHEMA special register is equivalent to

USER.
v Setting the CURRENT SCHEMA special register does not effect the CURRENT

PATH special register. Hence, the CURRENT SCHEMA will not be included in
the SQL path and functions, procedures and user-defined type resolution may
not find these objects. To include the current schema value in the SQL path,
whenever the SET SCHEMA statement is issued, also issue the SET PATH
statement including the schema name from the SET SCHEMA statement.

v CURRENT SQLID is accepted as a synonym for CURRENT SCHEMA and the
effect of a SET CURRENT SQLID statement will be identical to that of a SET
CURRENT SCHEMA statement. No other effects, such as statement
authorization changes, will occur.

Examples
v Example 1: The following statement sets the CURRENT SCHEMA special

register.
SET SCHEMA RICK

v Example 2: The following example retrieves the current value of the CURRENT
SCHEMA special register into the host variable called CURSCHEMA.

v EXEC SQL VALUES (CURRENT SCHEMA) INTO :CURSCHEMA;

The value would be RICK, set by the previous example.

SET SCHEMA

Statements 1299



SET SERVER OPTION
The SET SERVER OPTION statement specifies a server option setting that is to
remain in effect while a user or application is connected to the federated database.
When the connection ends, this server option's previous setting is reinstated.

This statement is not under transaction control.

Invocation

This statement can be issued interactively. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

�� SET SERVER OPTION server-option-name TO string-constant �

� FOR SERVER server-name ��

Description

server-option-name
Names the server option that is to be set.

TO string-constant
Specifies the setting for server-option-name as a character string constant.

SERVER server-name
Names the data source to which server-option-name applies. It must be a server
described in the catalog.

Notes
v Server option names can be entered in uppercase or lowercase.
v One or more SET SERVER OPTION statements can be submitted when a user or

application connects to the federated database. The statement (or statements)
must be specified at the start of the first unit of work that is processed after the
connection is established.

v SYSCAT.SERVEROPTIONS will not be updated based on a SET SERVER
OPTION statement, because this change only affects the current connection.

v For static SQL, using the SET SERVER OPTION statement affects only the
execution of the static SQL statement. Using the SET SERVER OPTION
statement has no effect on the plans that are generated by the optimizer.

Examples
v Example 1: An Oracle data source called ORASERV is defined to a federated

database called DJDB. ORASERV is configured to disallow plan hints. However,
the DBA would like plan hints to be enabled for a test run of a new application.
When the run is over, plan hints will be disallowed again.

CONNECT TO DJDB;
strcpy(stmt,"set server option plan_hints to ’Y’ for server oraserv");
EXEC SQL EXECUTE IMMEDIATE :stmt;
strcpy(stmt,"select c1 from ora_t1 where c1 > 100"); /*Generate plan hints*/

SET SERVER OPTION

1300 SQL Reference Volume 2



EXEC SQL PREPARE s1 FROM :stmt;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO :hv;

v Example 2: You have set the server option PASSWORD to 'Y' (validating
passwords at the data source) for all Oracle 8 data sources. However, for a
particular session in which an application is connected to the federated database
in order to access a specific Oracle 8 data source-one defined to the federated
database DJDB as ORA8A-passwords will not need to be validated.

CONNECT TO DJDB;
strcpy(stmt,"set server option password to ’N’ for server ora8a");
EXEC SQL PREPARE STMT_NAME FROM :stmt;
EXEC SQL EXECUTE STMT_NAME FROM :stmt;
strcpy(stmt,"select max(c1) from ora8a_t1");
EXEC SQL PREPARE STMT_NAME FROM :stmt;
EXEC SQL DECLARE c1 CURSOR FOR STMT_NAME;
EXEC SQL OPEN c1; /*Does not validate password at ora8a*/
EXEC SQL FETCH c1 INTO :hv;

SET SERVER OPTION

Statements 1301



SET SESSION AUTHORIZATION
The SET SESSION AUTHORIZATION statement changes the value of the
SESSION_USER special register.

The statement is not under transaction control. The SET SESSION
AUTHORIZATION statement is intended to provide support for a single user
assuming different authorization IDs on the same connection, and should not be
used for scenarios in which different users reuse the same connection, commonly
referred to as connection pooling.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include
SETSESSIONUSER on the authorization ID value to which the special register is
being set.

Syntax

��
=

SET SESSION AUTHORIZATION
SESSION_USER

authorization-name
USER
CURRENT_USER
SYSTEM_USER
host-variable
string-constant

�

�
ALLOW ADMINISTRATION

��

Description

authorization-name
Specifies the authorization ID that is to be used as the new value for the
SESSION_USER special register.

USER
The value in the USER special register.

CURRENT_USER
The value in the CURRENT USER special register.

SYSTEM_USER
The value in the SYSTEM_USER special register.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of
host-variable must not exceed 128 bytes (SQLSTATE 28000). It cannot be set to
null. If host-variable has an associated indicator variable, the value of that
indicator variable must not indicate a null value (SQLSTATE 28000).

SET SESSION AUTHORIZATION

1302 SQL Reference Volume 2



The characters of host-variable must be left-aligned. When specifying
authorization-name with a host variable, all characters must be specified in
uppercase, because there is no conversion to uppercase characters.

string-constant
A character string constant with a maximum length of 128 bytes.

ALLOW ADMINISTRATION
Specifies that SQL schema statements can be specified before this statement in
the same unit of work.

Rules
v The value specified for the SESSION_USER special register must conform to the

rules for an authorization ID of type USER (SQLSTATE 42602).
v The OWNER bind option specifies the authorization ID that is to be used for

static SQL statements.
v This statement can only be issued as the first statement (other than a SET special

register statement) in a new unit of work without any open WITH HOLD
cursors (SQLSTATE 25001). This restriction includes any PREPARE request for a
statement other than a SET special register statement.

v The value of the SESSION_USER special register is used as the authorization ID
for all dynamic SQL statements in a package bound with the
DYNAMICRULES(RUN) bind option. (This includes INVOKERUN and
DEFINERUN when the package is not used by a routine). If a package is using
owner, invoker, or definer authorization based on the DYNAMICRULES option,
this statement has no effect on dynamic SQL statements issued from within that
package.

Notes
v The SET SESSION AUTHORIZATION statement lets you change the session

authorization ID. The session authorization ID represents the current user of the
connection and is the authorization ID that the database manager considers for
all authorization checking relative to dynamic SQL within a DYNAMICRULES
run package. The SESSION_USER special register can be used to see the current
value of this session authorization ID.

v The initial value of the SESSION_USER special register for a new connection is
the same as the value of the SYSTEM_USER special register.

v The group information for the session authorization ID specified in this
statement is acquired at the time of statement execution.

v Setting the SESSION_USER special register does not effect either the CURRENT
SCHEMA or the CURRENT PATH special register.

v If any error occurs during the setting of the SESSION_USER special register, the
register reverts to its previous value.

v This statement should not be used to allow multiple, different users to reuse the
same connection, because each user will inherit the ability to change the value of
the SESSION_USER special register that the original connection owner had. This
statement is dependent upon the value of SYSTEM_USER for privileges
checking, and the initial connection authorization ID is not changed by the SET
SESSION AUTHORIZATION statement. Moreover, the following behaviors
impacting connection reuse are not addressed by this statement:
– The CONNECT privilege is not checked for the new authorization ID
– The content of any updatable special register is not reset; in particular, the

content of the ENCRYPTION PASSWORD special register is not modified and
is available to the new authorization ID for encryption or decryption

SET SESSION AUTHORIZATION

Statements 1303



– The content of any declared global temporary table is not affected, and is
accessible to the new authorization ID

– Any existing links to remote servers are not reset
v If the ALLOW ADMINISTRATION clause is specified, the following types of

statements or operations can precede the SET SESSION AUTHORIZATION
statement:
– Data definition language (DDL), including the definition of savepoints and

the declaration of global temporary tables, but not including SET INTEGRITY
– GRANT and REVOKE statements
– LOCK TABLE statement
– COMMIT and ROLLBACK statements
– SET of special registers
– SET of global variables

Examples
v Example 1: The following statement sets the SESSION_USER special register.

SET SESSION_USER = RAJIV

v Example 2: Set the session authorization ID (the SESSION_USER special register)
to be the value of the system authorization ID, which is the ID that established
the connection on which the statement has been issued.

SET SESSION AUTHORIZATION SYSTEM_USER

SET SESSION AUTHORIZATION

1304 SQL Reference Volume 2



SET USAGE LIST STATE
The SET USAGE LIST STATE statement manages the state of a usage list and the
associated data and memory.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM
or SQLADM authority.

Syntax

�� SET USAGE LIST usage-list-name STATE
=

ACTIVE
INACTIVE
RELEASED
host-variable

��

Description

usage-list-name
Identifies the usage list. The usage-list-name, including the implicit or explicit
qualifier, must identify a usage list that is described in the catalog (SQLSTATE
42704).

ACTIVE
Indicates that the usage list is activated for monitoring. Memory for the usage
list is allocated when the table or index is first referenced by a section. If the
usage list is for a partitioned table or index then the memory is allocated when
the data partition is first referenced by a section. In a partitioned database
environment or DB2 pureScale environment, memory is allocated at each
member. If the usage list is already in the ACTIVE state then a warning is
returned (SQLSTATE 01598).

On activation, the data in the usage list is removed and collection starts from
the beginning of the list.

INACTIVE
Indicates that the usage list is deactivated for monitoring. If the state of a
usage list is already set to INACTIVE then this keyword is ignored. If the state
of the usage list for a partitioned table or index is set to INACTIVE, then the
state of the usage list for each data partition is set to INACTIVE. If the state is
already INACTIVE then this keyword is ignored. Similarly, in a partitioned
database environment or DB2 pureScale environment, the state of the usage list
for each member is set to INACTIVE. If the state is already INACTIVE then
this keyword is ignored.

Data collected in the list is not removed when the state of the usage list is set
to INACTIVE.

SET USAGE LIST STATE

Statements 1305



RELEASED
Indicates that the memory associated with a usage list is released. If the state
of the usage list for a partitioned table or index is set to RELEASED, then the
memory associated with each data partition is released. In a partitioned
database environment or DB2 pureScale environment, the memory associated
with each member is released.

Notes
v Determining current state: The current state of a usage list is determined by

using the MON_GET_USAGE_LIST_STATUS built-in function.
v Considerations for DB2 pureScale or partitioned database environments: If a

usage list for a partitioned table or index is activated, memory is allocated for
each data partition. Similarly, in a partitioned database environment or DB2
pureScale environment, memory is allocated at each active member.

v Memory allocation for unavailable members: If a member is unavailable at the
time of activation, then the memory associated with the usage list for this
member is allocated when the member is next activated (if the state of the usage
list is still active). This also applies when a member is added to the cluster.

v Memory allocation for data partitions that are being added or attached: For
data partitions that are being added or attached, the memory associated with the
usage list for this newly added or attached data partition is allocated when the
next section that references the partitioned table or index is executed.

v Setting INACTIVE independently: If the usage list was created with the property,
WHEN FULL DEACTIVATE, then the state of the usage list for each data
partition or member is set to INACTIVE independently.

v Implicit reactivation of an active usage list: If the state of an INACTIVE ON
START DATABASE usage list is set to ACTIVE in a partitioned database
environment or DB2 pureScale environment, then its behavior is similar to
ACTIVE ON START DATABASE until the usage list is explicitly deactivated or
the instance is recycled. That is, if state of the usage list is active when a
database member is deactivated or offline, and that database member is
subsequently reactivated, the usage list for this member is implicitly reactivated.

v Definition of released state: A usage list is considered to be in the released state
if it is defined and has not been activated (explicitly or automatically) or has
been released using the SET USAGE LIST STATE statement. Usage lists in the
state released are not returned by the MON_GET_USAGE_LIST_STATUS table
function.

v Activation pending, active, and failed states: If a usage list is activated
(explicitly or automatically) then the state of the usage list is set to activation
pending and the memory is allocated when the table or index is first referenced
by the section. At this point the state of the usage list is set to active. If the
memory for the usage list cannot be allocated, then the state of the usage list is
set to failed and it must be explicitly activated using the SET USAGE LIST
STATE statement.

v Inactive usage lists remain inactive upon database member reactivation: If the
state of an ACTIVE ON START DATABASE usage list is set to INACTIVE in a
partitioned database environment or DB2 pureScale environment, then its
behavior is similar to INACTIVE ON START DATABASE until the usage list is
explicitly activated or the instance is recycled. That is, if the state of a usage list
is inactive when a database member is deactivated or offline, and that database
member is subsequently reactivated, the state of the usage list for this member
will remain inactive.

SET USAGE LIST STATE

1306 SQL Reference Volume 2



v Activating, deactivating, or releasing a usage list for a partitioned table or
index: If a usage list for a partitioned table or index is activated, deactivated, or
released then the state change applies to each data partition. Similarly, in a
partitioned database environment or DB2 pureScale environment, the state
change applies to each member.

v Usage list size considerations: When activated, the memory associated with the
usage list is allocated from the monitor heap. At the maximum list size setting,
the usage list is approximately 2MB. For partitioned tables or indexes, memory
is allocated for each data partition. For example, if a partitioned table has three
data partitions defined, the total memory allocated is approximately 6MB.
Therefore, activating multiple usage lists imposes more memory requirements on
the monitor heap. It is therefore suggested that a reasonable list size is selected
or that you set the mon_heap_sz configuration parameter to AUTOMATIC so that
the database manager manages the monitor heap size.

v Data collection when a usage list is set to INACTIVE: Data collected in the list
is not removed when the state of the usage list is set to INACTIVE.

v Data access and memory: The data in the list is still accessible (using
MON_GET_TABLE_USAGE_LIST and MON_GET_INDEX_USAGE_LIST table
functions) provided that the memory for the list is allocated.

v Releasing memory: The memory associated with the usage list is released when
one of the following events occurs:
– The usage list is dropped.
– The table or index on which the usage list is defined is dropped. The memory

that is associated with the usage is released for all data partitions. In a
partitioned database environment or DB2 pureScale environment, the memory
that is associated with the usage list is released for all active members.

– When a data partition is detached from a partitioned table or index. Only the
memory associated with the data partition is released.

– When a database member is deactivated. Only the memory associated with
the member is released.

– When the entire instance or database is deactivated. Usage list data does not
persist when the database is deactivated and restarted.

– When memory associated with the usage list is explicitly released using the
SET USAGE LIST STATE statement.

SET USAGE LIST STATE

Statements 1307



SET variable
The SET variable statement assigns values to variables.

This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

To reference a transition variable, the privileges held by the authorization ID of the
trigger creator must include at least one of the following authorities:
v UPDATE privilege on any columns referenced on the left side of the assignment,

and SELECT privilege on any columns referenced on the right side
v CONTROL privilege on the table (subject table of the trigger)
v DATAACCESS authority

If a global variable is referenced in the right side of the assignment statement, the
privileges held by the authorization ID of the statement must include one of the
following authorities:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

If a global variable is assigned a value in the left side of the assignment statement,
the privileges held by the authorization ID of the statement must include one of
the following authorities:
v WRITE privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

To execute this statement with a row-fullselect as the right side of the assignment,
the privileges held by the authorization ID of the statement must include the
privileges necessary to execute the row-fullselect. See the Authorization section in
"SQL queries".

To execute this statement with a cursor-value-constructor that uses a select-statement,
the privileges held by the authorization ID of the statement must include the
privileges necessary to execute the select-statement. See the Authorization section in
"SQL queries".

Syntax

�� SET �

SET variable

1308 SQL Reference Volume 2



� �

� �

�

,

target-variable = expression
NULL
DEFAULT

, ,

( target-variable ) = ( expression )
NULL
DEFAULT

( row-fullselect )
boolean-variable-name = search-condition

TRUE
FALSE
NULL

array-variable-name [ array-index ] = expression
NULL

target-cursor-variable = cursor-variable-name
cursor-value-constructor

NULL
,

target-row-variable = ( expression )
NULL

( row-fullselect )
row-expression
NULL

��

target-variable:

�

global-variable-name
host-variable
parameter marker
SQL-parameter-name

field-reference
SQL-variable-name
transition-variable-name

..attribute-name

field-reference:

row-variable-name.field-name

cursor-value-constructor:

�

ASENSITIVE
CURSOR

INSENSITIVE ,

( parameter-declaration )

�

� holdability FOR select-statement
(1)

statement-name

SET variable

Statements 1309



parameter-declaration:

parameter-name data-type

data-type:

built-in-type
anchored-parameter-data-type

distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0
NUMERIC (integer )
NUM ,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer ) (2)

OCTETS FOR BIT DATA
CODEUNITS32

VARCHAR (integer )
CHARACTER VARYING OCTETS
CHAR CODEUNITS32

(1M)
CLOB

CHARACTER LARGE OBJECT (integer )
CHAR K OCTETS

M CODEUNITS32
G

(1)
GRAPHIC

(integer )
CODEUNITS16
CODEUNITS32

VARGRAPHIC (integer )
CODEUNITS16
CODEUNITS32

(1M)
DBCLOB

(integer )
K CODEUNITS16
M CODEUNITS32
G

(1M)
BLOB
BINARY LARGE OBJECT (integer )

K
M
G

DATE
TIME

( 6 )
TIMESTAMP

( integer )
XML

SET variable

1310 SQL Reference Volume 2



anchored-parameter-data-type:

DATA TYPE TO
ANCHOR variable-name

table-name.column-name

holdability:

WITHOUT HOLD

WITH HOLD

target-row-variable:

(3)
global-variable-name
parameter marker
SQL-parameter-name
SQL-variable-name
row-array-element-specification
row-field-reference

Notes:

1 statement-name cannot be specified if parameter-declaration is specified.

2 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow. The FOR BIT DATA clause cannot be specified
with string units CODEUNITS32 (SQLSTATE 42613).

3 The data type must be a row type.

Description

target-variable
Identifies the target variable of the assignment. A target-variable representing
the same variable must not be specified more than once (SQLSTATE 42701).

global-variable-name
Identifies the global variable that is the assignment target. The
global-variable-name must identify a global variable that exists at the current
server (SQLSTATE 42704).

host-variable
Identifies the host variable that is the assignment target.

parameter-marker
Identifies the parameter marker that is the assignment target.

SQL-parameter-name
Identifies the parameter that is the assignment target. The parameter must
be specified in parameter-declaration in the CREATE PROCEDURE
statement.

field-reference
Identifies the field within a row type value that is the assignment target.

row-variable-name
The name of a variable with a data type that is a row type.

SET variable

Statements 1311



field-name
The name of a field within the row type.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A
transition-variable-name must identify a column in the subject table of a
trigger, optionally qualified by a correlation name that identifies the new
value (SQLSTATE 42703).

..attribute-name
Specifies the attribute of a structured type that is set (referred to as an
attribute assignment). The SQL-variable-name or transition-variable-name
specified must be defined with a user-defined structured type (SQLSTATE
428DP). The ..attribute-name must be an attribute of the structured type
(SQLSTATE 42703). An assignment that does not involve the ..attribute-name
clause is referred to as a conventional assignment.

expression
Indicates the new value of the target of the assignment. The expression is any
expression of the type described in "Expressions". The expression cannot
include an aggregate function except when it occurs within a scalar fullselect
(SQLSTATE 42903). In the context of a CREATE TRIGGER statement, an
expression can contain references to OLD and NEW transition variables. The
transition variables must be qualified by the correlation-name (SQLSTATE
42702).

NULL
Specifies the null value. If the target of the assignment is a row variable, each
field is assigned the null value. NULL cannot be the value in an attribute
assignment unless it was specifically cast to the data type of the attribute
(SQLSTATE 429B9).

DEFAULT
Specifies that the default value should be used.

In SQL procedures, the DEFAULT clause can be specified only for static SQL
statements. The exception is that the DEFAULT clause can be specified when
target-variable is a global variable in a dynamic SQL statement.

If target-variable is a column, the value inserted depends on how the column
was defined in the table.
v If the column was defined using the WITH DEFAULT clause, the value is set

to the default defined for the column (see default-clause in "ALTER TABLE").
v If the column was defined using the IDENTITY clause, the value is

generated by the database manager.
v If the column was defined without specifying the WITH DEFAULT clause,

the IDENTITY clause, or the NOT NULL clause, the value is NULL.
v If the column was defined using the NOT NULL clause and:

– The IDENTITY clause is not used or
– The WITH DEFAULT clause was not used or
– DEFAULT NULL was used

the DEFAULT keyword cannot be specified for that column (SQLSTATE
23502).

SET variable

1312 SQL Reference Volume 2



If target-variable is an SQL variable, the value inserted is the default, as
specified or implied in the variable declaration.

If target-variable is a global variable, the value inserted is the default, as
specified in the variable creation.

If target-variable is an SQL variable or an SQL parameter in an SQL procedure,
a host variable, or a parameter marker, the DEFAULT keyword cannot be
specified (SQLSTATE 42608).

row-fullselect
A fullselect that returns a single row with the number of columns
corresponding to the number of target variables or fields in the row variable
specified for assignment. The values are assigned to each corresponding target
variable or field. If the result of the row fullselect is no rows, null values are
assigned to the target variables in the list or, in an assignment to a row
variable, a single null is assigned. In the context of a CREATE TRIGGER
statement, a row-fullselect can contain references to OLD and NEW transition
variables, which must be qualified by their correlation-name to specify which
transition variable is to be used (SQLSTATE 42702). An error is returned if
there is more than one row in the result (SQLSTATE 21000).

boolean-variable-name
Identifies an SQL variable or parameter or a global variable. The variable or
parameter must be of Boolean type (SQLSTATE 428H0). The SET statement
must be issued within a compound SQL (compiled) statement (SQLSTATE
428H2).

search-condition
A search condition whose result is true, false, or unknown. A result of
unknown is returned as the Boolean value NULL.

TRUE
Specifies the Boolean value TRUE.

FALSE
Specifies the Boolean value FALSE.

NULL
Specifies the Boolean value NULL.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array type
(SQLSTATE 428H0).

[array-index]
An expression that specifies which element in the array will be the target
of the assignment. For an ordinary array, the array-index must be
assignable to INTEGER (SQLSTATE 22018 or 428H1). Its value must be
between 1 and the maximum cardinality defined for the array and cannot
be the null value (SQLSTATE 2202E).

For an associative array, the array index expression must be assignable to
the index data type of the associative array (SQLSTATE 22018 or 428H1)
and cannot be the null value (SQLSTATE 2202E).

target-cursor-variable
Identifies a cursor variable. The data type of target-cursor-variable must be a
cursor type (SQLSTATE 42821).

cursor-variable-name
Identifies a cursor variable of the same cursor type as target-cursor-variable.

SET variable

Statements 1313



cursor-value-constructor
A cursor-value-constructor specifies the select-statement that is associated with the
target variable. The assignment of a cursor-value-constructor to a cursor variable
defines the underlying cursor of that cursor variable.

ASENSITIVE or INSENSITIVE
Specifies whether the cursor is asensitive or insensitive to changes. See
"DECLARE CURSOR" for more information. The default is ASENSITIVE.

ASENSITIVE
Specifies that the cursor should be as sensitive as possible to inserts,
updates, or deletes made to the rows underlying the result table,
depending on how the select-statement is optimized. ASENSITIVE is the
default.

INSENSITIVE
Specifies that the cursor does not have sensitivity to inserts, updates,
or deletes that are made to the rows underlying the result table. If
INSENSITIVE is specified, the cursor is read-only and the result table
is materialized when the cursor is opened. As a result, the size of the
result table, the order of the rows, and the values for each row do not
change after the cursor is opened. The SELECT statement cannot
contain a FOR UPDATE clause, and the cursor cannot be used for
positioned updates or deletes.

(parameter-declaration, ...)
Specifies the input parameters of the cursor, including the name and the
data type of each parameter. Named input parameters can be specified
only if select-statement is also specified in cursor-value-constructor
(SQLSTATE 428HU).

parameter-name
Names the cursor parameter for use as an SQL variable within
select-statement. The name cannot be the same as any other parameter
name for the cursor. Names should also be chosen to avoid any
column names that could be used in select-statement, since column
names are resolved before parameter names.

data-type
Specifies the data type of the cursor parameter used within
select-statement. Structured types, and reference types cannot be
specified (SQLSTATE 429BB).

built-in-type
Specifies a built-in data type. For a more complete description of
each built-in data type, see "CREATE TABLE".

anchored-parameter-data-type
Identifies another object used to determine the data type of the
cursor parameter. The data type of the anchor object is bound by
the same limitations that apply when specifying the data type
directly.

ANCHOR DATA TYPE TO
Indicates an anchored data type is used to specify the data
type.

variable-name
Identifies a local SQL variable, an SQL parameter, or a
global variable. The data type of the referenced variable is
used as the data type for the cursor parameter.

SET variable

1314 SQL Reference Volume 2



table-name.column-name
Identifies a column name of an existing table or view. The
data type of the column is used as the data type for the
cursor parameter.

distinct-type-name
Specifies the name of a distinct type. If distinct-type-name is
specified without a schema name, the distinct type is resolved by
searching the schemas in the SQL path.

holdability
Specifies whether the cursor is prevented from being closed as a
consequence of a commit operation. See "DECLARE CURSOR" for more
information. The default is WITHOUT HOLD.

WITHOUT HOLD
Does not prevent the cursor from being closed as a consequence of a
commit operation.

WITH HOLD
Maintains resources across multiple units of work. Prevents the cursor
from being closed as a consequence of a commit operation.

select-statement
Specifies the SELECT statement of the cursor. See "select-statement" for
more information. If parameter-declaration is included in
cursor-value-constructor, then select-statement must not include any local SQL
variables or routine SQL parameters (SQLSTATE 42704).

statement-name
Specifies the prepared select-statement of the cursor. See "PREPARE" for an
explanation of prepared statements. The target cursor variable must not
have a data type that is a strongly-typed user-defined cursor type
(SQLSTATE 428HU). Named input parameters must not be specified in
cursor-value-constructor if statement-name is specified (SQLSTATE 428HU).

target-row-variable
Identifies the target row variable of the assignment. The data type must be of a
row type.

row-expression
Specifies the new row value for the target of the assignment. It can be any row
expression of the type described in "Row expression". The number of fields in
the row must match the target of the assignment and each field in the row
must be assignable to the corresponding field in the target of the assignment. If
the source and the target values are a user-defined row type, the type names
must be the same (SQLSTATE 42821).

Rules
v The number of values to be assigned from expressions, NULLs, DEFAULTs, or

the row-fullselect must match the number of target-variables specified for
assignment (SQLSTATE 42802).

v A SET variable statement cannot assign an SQL variable and a transition variable
in one statement (SQLSTATE 42997).

v Global variables cannot be assigned inside triggers that are not defined using a
compound SQL (compiled) statement, functions that are not defined using a
compound SQL (compiled) statement, methods, or compound SQL (inlined)
statements (SQLSTATE 428GX).

SET variable

Statements 1315



v If the value being assigned is an array resulting from an array constructor or
from ARRAY_AGG, the base types of the array and of the target variable must
be identical (SQLSTATE 42821).

v Use of anchored data types: An anchored data type cannot refer to the following
objects (SQLSTATE 428HS): a nickname, typed table, typed view, statistical view
that is associated with an expression-based index, declared temporary table, row
definition that is associated with a weakly typed cursor, object with a code page
or collation that is different from the database code page or database collation.

v Assignments involving cursor variables: Assignments that reference a cursor
variable that set it to the value of a cursor value constructor can only be used in
compound SQL (compiled) statements. Any OPEN statement using a cursor
variable must occur within the same scope as the assignment (SQLSTATE 51044).

Notes
v Values are assigned to target variables according to specific assignment rules.
v Assignment statement in SQL procedures: Assignment statements in SQL

procedures must conform to the SQL assignment rules. String assignments use
retrieval assignment rules.

v Assignments of array elements: If the assignment is of the form SET A[idx] =
rhs, where A is an array variable name, idx is an expression used as the
array-index, and rhs is an expression of the same type as the array element,
then:
1. If array A is the null value, set A to the empty array.
2. Let C be the cardinality of array A.
3. If A is an ordinary array:

– If idx is less than or equal to C, the value in the position identified by idx
is replaced by the value of rhs.

– If idx is greater than C, then:
- The value in position i, for i greater than C and less than idx, is set to

the null value.
- The value in position idx is set to the value of rhs.
- The cardinality of A is set to idx.

4. If A is an associative array:
– If idx matches an existing array index value, the element value with array

index idx is replaced by the value of rhs.
– If idx does not match any existing array index value, then:

- The cardinality of A is incremented by 1
- The new element value is set to rhs with associated array index value

idx.
5. If idx is less than or equal to C, the value in the position identified by idx is

replaced by the value of rhs.
6. If idx is greater than C, then:

a. The value in position i, for i greater than C and less than idx, is set to the
null value.

b. The value in position idx is set to the value of rhs.
c. The cardinality of A is set to idx.

v If a variable has been declared with an identifier that matches the name of a
special register (such as PATH), the variable must be delimited to prevent
unintentional assignment to the special register (for example, SET "PATH" = 1;
for a variable called PATH that has been declared as an integer).

SET variable

1316 SQL Reference Volume 2



v If more than one assignment is included, each expression and row-fullselect is
evaluated before the assignments are performed. Thus, references to target
variables in an expression or row fullselect are always the value of the target
variable before any assignment in the single SET statement.

v When an identity column defined as a distinct type is updated, the entire
computation is done in the source type, and the result is cast to the distinct type
before the value is actually assigned to the column. (There is no casting of the
previous value to the source type before the computation.)

v To have the database manager generate a value on a SET statement for an
identity column, use the DEFAULT keyword:

SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the value
used to update this column is generated by the database manager.

v For more information about consuming values of a generated sequence for an
identity column, and for information about exceeding the maximum value for an
identity column, see "INSERT".

Examples
v Example 1: Set the salary column of the row for which the trigger action is

currently executing to 50000.
SET NEW_VAR.SALARY = 50000;

Or:
SET (NEW_VAR.SALARY) = (50000);

v Example 2: Set the salary and the commission column of the row for which the
trigger action is currently executing to 50000 and 8000, respectively.

SET NEW_VAR.SALARY = 50000, NEW_VAR.COMM = 8000;

Or:
SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (50000, 8000);

v Example 3: Set the salary and the commission column of the row for which the
trigger action is currently executing to the average salary and commission of
employees in the department that is associated with the updated row.

SET (NEW_VAR.SALARY, NEW_VAR.COMM)
= (SELECT AVG(SALARY), AVG(COMM)

FROM EMPLOYEE E
WHERE E.WORKDEPT = NEW_VAR.WORKDEPT);

v Example 4: Set the salary and the commission column of the row for which the
trigger action is currently executing to 10000 and the original value of salary
(that is, before the SET statement was executed), respectively.

SET NEW_VAR.SALARY = 10000, NEW_VAR.COMM = NEW_VAR.SALARY;

Or:
SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (10000, NEW_VAR.SALARY);

v Example 5: Increase the SQL variable P_SALARY by 10 percent.
SET P_SALARY = P_SALARY + (P_SALARY * .10)

v Example 6: Set the SQL variable P_SALARY to the null value.
SET P_SALARY = NULL

v Example 7: Assign numbers 2.71828183 and 3.1415926 to the first and tenth
elements of the array variable SPECIALNUMBERS. After the first assignment, the

SET variable

Statements 1317



cardinality of P_PHONENUMBERS is 1. After the second assignment, the cardinality is
10, and elements 2 to 9 have been implicitly assigned the null value.

SET SPECIALNUMBERS[1] = 2.71828183;

SET SPECIALNUMBERS[10] = 3.14159265;

v Example 8: Given a table named SECURITY.USERS, which has a row for every
user that could connect to the database, assign the current time and the
authorization level to the global variables USERINFO.GV_CONNECT_TIME and
USERINFO.GV_AUTH_LEVEL, respectively.

SET USERINFO.GV_CONNECT_TIME = CURRENT TIMESTAMP,
USERINFO.GV_AUTH_LEVEL = (

SELECT AUTHLEVEL FROM SECURITY.USERS
WHERE USERID = CURRENT USER)

v Example 9: Assign values to associative array variable, CAPITALS, which has been
declared as the array type CAPITALSARRAY.

SET CAPITALS[’British Columbia’] = ’Victoria’;
SET CAPITALS[’Alberta’] = ’Edmonton’;
SET CAPITALS[’Manitoba’] = ’Winnipeg’;
SET CAPITALS[’Canada’] = ’Ottawa’;

When populating the CAPITALS array, the array indexes are province, territory,
and country names specified by strings and the associated array elements are
capital cities, also specified by strings.

v Example 10: Assign easy to remember names as indexes for personal phone
numbers stored in the array variable PHONELIST of array type
PERSONAL_PHONENUMBERS.

SET PHONELIST[’Home’] = ’4163053745’;
SET PHONELIST[’Work’] = ’4163053746’;
SET PHONELIST[’Mom’] = ’4164789683’;

SET variable

1318 SQL Reference Volume 2



SIGNAL
The SIGNAL statement is used to signal an error or warning condition. It causes
an error or warning to be returned with the specified SQLSTATE, along with
optional message text.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

If a module condition is referenced, the privileges held by the authorization ID of
the statement must include EXECUTE privilege on the module.

Syntax

�� SIGNAL
VALUE

SQLSTATE sqlstate-string-constant
sqlstate-string-variable

condition-name

�

�
signal-information

��

signal-information:

SET MESSAGE_TEXT = diagnostic-string-expression
( diagnostic-string-expression )

Description

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can
be used. The specified value must follow the rules for SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or upper case

letters ('A' through 'Z') without diacritical marks
v The SQLSTATE class (first two characters) cannot be '00', since this

represents successful completion.

In the context of a compound SQL (inlined) statement, a MERGE statement, or
as the only statement in a trigger body, the following rules must also be
applied:
v The SQLSTATE class (first two characters) cannot be '01' or '02', since these

are not error classes.

SIGNAL

Statements 1319



v If the SQLSTATE class starts with the numbers '0' through '6' or the letters
'A' through 'H', then the subclass (the last three characters) must start with a
letter in the range of 'I' through 'Z'.

v If the SQLSTATE class starts with the numbers '7', '8', '9', or the letters 'I'
through 'Z', then the subclass can be any of '0' through '9' or 'A' through 'Z'.

If the SQLSTATE does not conform to these rules, an error is returned.

sqlstate-string-constant
The sqlstate-string-constant must be a character string constant with exactly
5 characters.

sqlstate-string-variable
The specified SQL variable or SQL parameter must be of data type
CHAR(5) and must not be the null value.

condition-name
Specifies the name of a condition that will be returned. The condition-name
must be declared within the compound-statement or identify a condition that
exists at the current server (SQLSTATE 42373).

SET MESSAGE_TEXT =
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA. If the actual string is longer than 70 bytes,
it is truncated without warning.

diagnostic-string-expression
A literal string, or a local variable or parameter that describes the error
condition. If the string is longer than 70 bytes, it is truncated.

(diagnostic-string-expression)
An expression of type CHAR or VARCHAR that returns a character string of
up to 70 bytes to describe the error condition. If the string is longer than 70
bytes, it is truncated. This option is only provided within the scope of a
CREATE TRIGGER statement for compatibility with previous versions of DB2.
Regular use of this option is not recommended.

Notes
v If a SIGNAL statement is issued using a condition-name that has no associated

SQLSTATE value and the condition is not handled, SQLSTATE 45000 is returned
and the SQLCODE is set to -438. Note that such a condition will not be handled
by a condition handler for SQLSTATE 45000 that is within the scope of the
routine issuing the SIGNAL statement.

v If a SIGNAL statement is issued using an SQLSTATE value or a condition-name
with an associated SQLSTATE value, the SQLCODE returned is based on the
SQLSTATE value as follows:
– If the specified SQLSTATE class is either '01' or '02', a warning or not found

condition is returned and the SQLCODE is set to +438.
– Otherwise, an exception condition is returned and the SQLCODE is set to

-438.
v A SIGNAL statement has the indicated fields of the SQLCA set as follows:

– sqlerrd fields are set to zero
– sqlwarn fields are set to blank
– sqlerrmc is set to the first 70 bytes of MESSAGE_TEXT
– sqlerrml is set to the length of sqlerrmc, or to zero if no SET

MESSAGE_TEXT clause is specified
– sqlerrp is set to ROUTINE

SIGNAL

1320 SQL Reference Volume 2



v SQLSTATE values are composed of a two-character class code value, followed by
a three-character subclass code value. Class code values represent classes of
successful and unsuccessful execution conditions.
Any valid SQLSTATE value can be used in the SIGNAL statement. However, it
is recommended that programmers define new SQLSTATEs based on ranges
reserved for applications. This prevents the unintentional use of an SQLSTATE
value that might be defined by the database manager in a future release.
– SQLSTATE classes that begin with the characters '7' through '9', or 'I' through

'Z' may be defined. Within these classes, any subclass may be defined.
– SQLSTATE classes that begin with the characters '0' through '6', or 'A' through

'H' are reserved for the database manager. Within these classes, subclasses
that begin with the characters '0' through 'H' are reserved for the database
manager. Subclasses that begin with the characters 'I' through 'Z' may be
defined.

Example

An SQL procedure for an order system that signals an application error when a
customer number is not known to the application. The ORDERS table includes a
foreign key to the CUSTOMER table, requiring that the CUSTNO exist before an
order can be inserted.

CREATE PROCEDURE SUBMIT_ORDER
(IN ONUM INTEGER, IN CNUM INTEGER,
IN PNUM INTEGER, IN QNUM INTEGER)
SPECIFIC SUBMIT_ORDER
MODIFIES SQL DATA
LANGUAGE SQL
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’23503’
SIGNAL SQLSTATE ’75002’

SET MESSAGE_TEXT = ’Customer number is not known’;
INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)

VALUES (ONUM, CNUM, PNUM, QNUM);
END

SIGNAL

Statements 1321



TRANSFER OWNERSHIP
The TRANSFER OWNERSHIP statement transfers ownership of a database object.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v Ownership of the object
v SECADM authority

Syntax

�� TRANSFER OWNERSHIP OF objects TO new-owner PRESERVE PRIVILEGES ��

objects:

alias-designator
CONSTRAINT table-name.constraint-name
DATABASE PARTITION GROUP db-partition-group-name
EVENT MONITOR event-monitor-name

function-designator
FUNCTION MAPPING function-mapping-name
INDEX index-name
INDEX EXTENSION index-extension-name

method-designator
NICKNAME nickname
PACKAGE package-id

schema-name. VERSION
version-id

procedure-designator
SCHEMA schema-name
SEQUENCE sequence-name
TABLE table-name
TABLE HIERARCHY root-table-name
TABLESPACE tablespace-name
TRIGGER trigger-name

TYPE type-name
DISTINCT

TYPE MAPPING type-mapping-name
VARIABLE variable-name
VIEW view-name
VIEW HIERARCHY root-view-name
XSROBJECT xsrobject-name

alias-designator:

TRANSFER OWNERSHIP

1322 SQL Reference Volume 2



FOR TABLE
ALIAS alias-name

PUBLIC FOR SEQUENCE

function-designator:

�

FUNCTION function-name
( )

,

data-type
SPECIFIC FUNCTION specific-name

method-designator:

�

METHOD method-name FOR type-name
( )

,

data-type
SPECIFIC METHOD specific-name

procedure-designator:

�

PROCEDURE procedure-name
( )

,

data-type
SPECIFIC PROCEDURE specific-name

new-owner:

USER authorization-name
SESSION_USER
SYSTEM_USER

Description

alias-designator

ALIAS alias-name
Identifies the alias that is to have its ownership transferred. The alias-name
must identify an alias that is described in the catalog (SQLSTATE 42704). If
PUBLIC is specified, the alias-name must identify a public alias that exists
at the current server (SQLSTATE 42704).

FOR TABLE, or FOR SEQUENCE
Specifies the object type for the alias.

FOR TABLE
The alias is for a table, view, or nickname. When ownership of the
alias is transferred, the value in the OWNER column for the alias
in the SYSCAT.TABLES catalog view is replaced with the
authorization ID of the new owner.

TRANSFER OWNERSHIP

Statements 1323



FOR SEQUENCE
The alias is for a sequence. When ownership of the alias is
transferred, the value in the OWNER column for the alias in the
SYSCAT.SEQUENCES catalog view is replaced with the
authorization ID of the new owner.

CONSTRAINT table-name.constraint-name
Identifies the constraint that is to have its ownership transferred. The
table-name.constraint-name combination must identify a constraint and the table
that it constrains. The constraint-name must identify a constraint that is
described in the catalog (SQLSTATE 42704).

When ownership of the constraint is transferred, the value in the OWNER
column for the constraint in the SYSCAT.TABCONST catalog view is replaced
with the authorization ID of the new owner.
v If the constraint is a FOREIGN KEY constraint, the OWNER column in the

SYSCAT.REFERENCES catalog view is replaced with the authorization ID of
the new owner.

v If the constraint is a PRIMARY KEY or UNIQUE constraint, the OWNER
column in the SYSCAT.INDEXES catalog view for the index that was created
implicitly for this constraint is replaced with the authorization ID of the new
owner. If the index existed, and it is reused in this case, the owner of the
index is not changed.

DATABASE PARTITION GROUP db-partition-group-name
Identifies the database partition group that is to have its ownership
transferred. The db-partition-group-name must identify a database partition
group that is described in the catalog (SQLSTATE 42704).

When ownership of the database partition group is transferred, the value in
the OWNER column for the database partition group in the
SYSCAT.DBPARTITIONGROUPS catalog view is replaced with the
authorization ID of the new owner.

EVENT MONITOR event-monitor-name
Identifies the event monitor that is to have its ownership transferred. The
event-monitor-name must identify an event monitor that is described in the
catalog (SQLSTATE 42704).

When ownership of the event monitor is transferred, the value in the OWNER
column for the event monitor in the SYSCAT.EVENTMONITORS catalog view
is replaced with the authorization ID of the new owner.

If the identified event monitor is active, an error is returned (SQLSTATE
429BT).

If there are event files in the target path of a WRITE TO FILE event monitor
whose ownership is being transferred, the event files are not deleted.

When ownership of WRITE TO TABLE event monitors is transferred, table
information in the SYSCAT.EVENTTABLES catalog view is retained.

function-designator
Identifies the function that is to have its ownership transferred. For more
information, see “Function, method, and procedure designators” on page 20.
The specified function instance must be a user-defined function or function
template that is described in the catalog. Ownership of functions that are
implicitly generated by CREATE TYPE statements cannot be transferred
(SQLSTATE 429BT).

TRANSFER OWNERSHIP

1324 SQL Reference Volume 2



When ownership of the function is transferred, the value in the OWNER
column for the function in the SYSCAT.ROUTINES catalog view is replaced
with the authorization ID of the new owner. Transferring ownership of an SQL
function that has an associated package also implicitly transfers ownership of
the package to the new owner.

SPECIFIC FUNCTION specific-name
Identifies the particular user-defined function that is to have its ownership
transferred, using the specific name either specified or defaulted to at
function creation time. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements, the QUALIFIER precompile or bind option
implicitly specifies the qualifier for unqualified object names. The
specific-name must identify a specific function instance in the named or
implied schema; otherwise, an error is returned (SQLSTATE 42704).

When ownership of the specific function is transferred, the value in the
OWNER column for the specific function in the SYSCAT.ROUTINES
catalog view is replaced with the authorization ID of the new owner.

FUNCTION MAPPING function-mapping-name
Identifies the function mapping that is to have its ownership transferred. The
function-mapping-name must identify a function mapping that is described in
the catalog (SQLSTATE 42704).

When ownership of the function mapping is transferred, the value in the
OWNER column for the function mapping in the SYSCAT.FUNCMAPPINGS
catalog view is replaced with the authorization ID of the new owner.

INDEX index-name
Identifies the index or index specification that is to have its ownership
transferred. The index-name must identify an index or index specification that is
described in the catalog (SQLSTATE 42704).

When ownership of the index is transferred, the value in the OWNER column
for the index in the SYSCAT.INDEXES catalog view is replaced with the
authorization ID of the new owner.

Ownership of an index cannot be transferred if the table on which the index is
defined is a global temporary table (SQLSTATE 429BT).

INDEX EXTENSION index-extension-name
Identifies the index extension that is to have its ownership transferred. The
index-extension-name must identify an index extension that is described in the
catalog (SQLSTATE 42704).

When ownership of the index extension is transferred, the value in the
OWNER column for the index extension in the SYSCAT.INDEXEXTENSIONS
catalog view is replaced with the authorization ID of the new owner.

method-designator
Identifies the method that is to have its ownership transferred. For more
information, see “Function, method, and procedure designators” on page 20.
The method body specified must be a method that is described in the catalog
(SQLSTATE 42704). The ownership of methods that are implicitly generated by
the CREATE TYPE statement cannot be transferred (SQLSTATE 429BT).

When ownership of the method is transferred, the value in the OWNER
column for the method in the SYSCAT.ROUTINES catalog view is replaced
with the authorization ID of the new owner.

TRANSFER OWNERSHIP

Statements 1325



NICKNAME nickname
Identifies the nickname that is to have its ownership transferred. The nickname
must be a nickname that is described in the catalog (SQLSTATE 42704).

When ownership of the nickname is transferred, the value in the OWNER
column for the nickname in the SYSCAT.TABLES catalog view is replaced with
the authorization ID of the new owner.

PACKAGE schema-name.package-id
Identifies the package that is to have its ownership transferred. If a schema
name is not specified, the package identifier is implicitly qualified by the
default schema. The schema name and package identifier, together with the
implicitly or explicitly specified version identifier, must identify a package that
is described in the catalog (SQLSTATE 42704).

VERSION version-id
Identifies which package version is to have its ownership transferred. If a
value is not specified, the version defaults to the empty string, and the
ownership of this package is transferred. If multiple packages with the
same package name but different versions exist, only the ownership of the
package whose version-id is specified in the TRANSFER OWNERSHIP
statement is transferred. Delimit the version identifier with double
quotation marks when it:
v Is generated by the VERSION(AUTO) precompiler option
v Begins with a digit
v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,
precede each double quotation mark delimiter with a back slash character
to ensure that the operating system does not strip the delimiters.

When ownership of the package is transferred, the value in the BOUNDBY
column for the package in the SYSCAT.PACKAGES catalog view is replaced
with the authorization ID of the new owner.

The ownership of packages that are associated with SQL procedures, compiled
SQL functions or compiled triggers cannot be transferred (SQLSTATE 429BT).

procedure-designator
Identifies the procedure that is to have its ownership transferred. For more
information, see “Function, method, and procedure designators” on page 20.
The procedure instance specified must be a procedure that is described in the
catalog.

When ownership of the procedure is transferred, the value in the OWNER
column for the procedure in the SYSCAT.ROUTINES catalog view is replaced
with the authorization ID of the new owner.

Transferring ownership of an SQL procedure that has an associated package
also implicitly transfers ownership of the package to the new owner.

SPECIFIC PROCEDURE specific-name
Identifies the particular procedure that is to have its ownership transferred,
using the specific name either specified or defaulted to at procedure
creation time. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile or bind option implicitly specifies
the qualifier for unqualified object names. The specific-name must identify a
specific procedure instance in the named or implied schema; otherwise, an
error is returned (SQLSTATE 42704).

TRANSFER OWNERSHIP

1326 SQL Reference Volume 2



When ownership of the specific procedure is transferred, the value in the
OWNER column for the specific procedure in the SYSCAT.ROUTINES
catalog view is replaced with the authorization ID of the new owner.

SCHEMA schema-name
Identifies the schema that is to have its ownership transferred. The schema-name
must identify a schema that is described in the catalog (SQLSTATE 42704).

When ownership of the schema is transferred, the value in the OWNER
column and the DEFINER column for the schema in the SYSCAT.SCHEMATA
catalog view is replaced with the authorization ID of the new owner.

Ownership of built-in schemas (where the definer is SYSIBM) cannot be
transferred (SQLSTATE 42832).

SEQUENCE sequence-name
Identifies the sequence that is to have its ownership transferred. The
sequence-name must identify a sequence that is described in the catalog
(SQLSTATE 42704).

When ownership of the sequence is transferred, the value in the OWNER
column for the schema in the SYSCAT.SEQUENCES catalog view is replaced
with the authorization ID of the new owner.

TABLE table-name
Identifies the table that is to have its ownership transferred. The table-name
must identify a table that exists in the database (SQLSTATE 42704) and must
not identify a declared temporary table (SQLSTATE 42995).

When ownership of the table is transferred:
v The value in the OWNER column for the table in the SYSCAT.TABLES

catalog view is replaced with the authorization ID of the new owner.
v The value in the OWNER column for all dependent objects on the table in

the SYSCAT.TABDEP catalog view is replaced with the authorization ID of
the new owner.

Ownership of subtables in a table hierarchy cannot be transferred (SQLSTATE
429BT).

In a federated system, ownership of a remote table that was created using
transparent DDL can be transferred. Transferring the ownership of a remote
table will not transfer ownership of the nickname that is associated with the
table. Ownership of such a nickname can be transferred explicitly using the
TRANSFER OWNERSHIP statement.

TABLE HIERARCHY root-table-name
Identifies the typed table that is the root table in a typed table hierarchy that is
to have its ownership transferred. The root-table-name must identify a typed
table that is the root table in the typed table hierarchy (SQLSTATE 428DR), and
must refer to a typed table that exists in the database (SQLSTATE 42704).

When ownership of the table hierarchy is transferred:
v The value in the OWNER column for the root table and all of its subtables

in the SYSCAT.TABLES catalog view is replaced with the authorization ID of
the new owner.

v The value in the OWNER column for all dependent objects on the table and
all of its subtables in the SYSCAT.TABDEP catalog view is replaced with the
authorization ID of the new owner.

TRANSFER OWNERSHIP

Statements 1327



TABLESPACE tablespace-name
Identifies the table space that is to have its ownership transferred. The
tablespace-name must identify a table space that is described in the catalog
(SQLSTATE 42704).

When ownership of the table space is transferred, the value in the OWNER
column for the table space in the SYSCAT.TABLESPACES catalog view is
replaced with the authorization ID of the new owner.

TRIGGER trigger-name
Identifies the trigger that is to have its ownership transferred. The trigger-name
must identify a trigger that is described in the catalog (SQLSTATE 42704).

When ownership of the trigger is transferred, the value in the OWNER column
for the trigger in the SYSCAT.TRIGGERS catalog view is replaced with the
authorization ID of the new owner. Transferring ownership of a compiled
trigger also implicitly transfers ownership of the associated package to the new
owner.

TYPE type-name
Identifies the user-defined type that is to have its ownership transferred. The
type-name must identify a type that is described in the catalog (SQLSTATE
42704). If DISTINCT is specified, type-name must identify a distinct type that is
described in the catalog (SQLSTATE 42704).

In dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile or bind option implicitly specifies the qualifier for
unqualified object names.

When ownership of the type is transferred, the value in the OWNER column
for the type in the SYSCAT.DATATYPES catalog view is replaced with the
authorization ID of the new owner.

TYPE MAPPING type-mapping-name
Identifies the user-defined data type mapping that is to have its ownership
transferred. The type-mapping-name must identify a data type mapping that is
described in the catalog (SQLSTATE 42704).

When ownership of the type mapping is transferred, the value in the OWNER
column for the type mapping in the SYSCAT.TYPEMAPPINGS catalog view is
replaced with the authorization ID of the new owner.

VARIABLE variable-name
Indicates that the object whose ownership is to be transferred is a created
global variable. The variable-name must identify a global variable that exists at
the current server (SQLSTATE 42704).

When the global variable is transferred, the value in the OWNER column for
the global variable in the SYSCAT.VARIABLES catalog view is replaced with
the authorization ID of the new owner.

VIEW view-name
Identifies the view that is to have its ownership transferred. The view-name
must identify a view that exists in the database (SQLSTATE 42704).

When ownership of the view is transferred:
v The value in the OWNER column for the view in the SYSCAT.VIEWS

catalog view is replaced with the authorization ID of the new owner.

TRANSFER OWNERSHIP

1328 SQL Reference Volume 2



v The value in the OWNER column for all dependent objects on the view in
the SYSCAT.TABDEP catalog view is replaced with the authorization ID of
the new owner.

The ownership of a subview in a view hierarchy cannot be transferred
(SQLSTATE 429BT).

VIEW HIERARCHY root-view-name
Identifies the typed view that is the root view in a typed view hierarchy that is
to have its ownership transferred. The root-view-name must identify a typed
view that is the root view in the typed view hierarchy (SQLSTATE 428DR), and
must refer to a typed view that exists in the database (SQLSTATE 42704).

When ownership of the view hierarchy is transferred:
v The value in the OWNER column for the root view and all of its subviews

in the SYSCAT.VIEWS catalog view is replaced with the authorization ID of
the new owner.

v The value in the OWNER column for all dependent objects on the view and
all of its subviews in the SYSCAT.TABDEP catalog view is replaced with the
authorization ID of the new owner.

XSROBJECT xsrobject-name
Identifies the XSR object that is to have its ownership transferred. The
xsrobject-name must identify an XSR object that is described in the catalog
(SQLSTATE 42704).

When ownership of the XSR object is transferred, the value in the OWNER
column for the XSR object in the SYSCAT.XSROBJECTS catalog view is
replaced with the authorization ID of the new owner.

USER authorization-name
Specifies the authorization ID to which ownership of the object is being
transferred.

SESSION_USER
Specifies that the value of the SESSION_USER special register is to be used as
the authorization ID to which ownership of the object is being transferred.

SYSTEM_USER
Specifies that the value of the SYSTEM_USER special register is to be used as
the authorization ID to which ownership of the object is being transferred.

PRESERVE PRIVILEGES
Specifies that the current owner of an object that is to have its ownership
transferred will continue to hold any existing privileges on the object after the
transfer. For example, any privileges that were granted to the creator of a view
when that view was created continue to be held by the original owner even
after ownership has been transferred to another user.

Rules
v Ownership of most built-in objects (where the owner is SYSIBM) cannot be

transferred (SQLSTATE 42832). However, you can transfer ownership of
implicitly created schema objects that have SYSIBM in the OWNER column and
do not have SYSIBM in the DEFINER column.

v Ownership of schemas whose name starts with 'SYS' cannot be transferred
(SQLSTATE 42832).

v Ownership of the following objects cannot be explicitly transferred (SQLSTATE
429BT):

TRANSFER OWNERSHIP

Statements 1329



– Subtables in a table hierarchy (they are transferred with the root hierarchy
table)

– Subviews in a view hierarchy (they are transferred with the root hierarchy
view)

– Indexes that are defined on global temporary tables
– Methods or functions that are implicitly generated when a user-defined type

is created
– Module aliases and modules
– Packages that depend on SQL procedures (they are transferred with the SQL

procedure)
– Event monitors that are active (they can be transferred when they are not

active)
v An authorization ID that has SECADM authority cannot transfer the ownership

of an object to itself, if it is not already the owner of the object (SQLSTATE
42502).

Notes
v All privileges that the current owner has that were granted as part of the

creation of the object are transferred to the new owner. If the current owner has
had a privilege on the object revoked, and that privilege was subsequently
granted back, the privilege is not transferred. For implicitly created schema
objects that have not already been transferred, the new owner is granted
CREATEIN, DROPIN, and ALTERIN privileges on the schema and can also
grant these privileges to other users.

v When the ownership of a database object is transferred, the new owner must
have the set of privileges on the base objects, as indicated by the object's
dependencies, that are required to maintain the object's existence unchanged.
The new owner does not need the privileges required to create the object if those
privileges are not required to maintain the object's existence.
For example:
– Consider a view with SELECT and INSERT dependencies on an underlying

table. The privileges held by the new owner of the view must include at least
SELECT (with or without the GRANT OPTION) and INSERT (with or
without the GRANT OPTION) for the ownership transfer to be successful. If
the dependencies were SELECT WITH GRANT OPTION and INSERT WITH
GRANT OPTION, the privileges held by the new owner of the view must
include at least SELECT WITH GRANT OPTION and INSERT WITH GRANT
OPTION.

– Consider a view with a dependency on a routine. The privileges held by the
new owner of the view must include at least EXECUTE on the dependent
routine.

– Consider a trigger with a dependency on a table. The privileges held by the
new owner of the trigger must include the same set of privileges on the table
that are indicated by the trigger's dependencies. ALTER privilege on the table
on which the trigger is defined is not required.

The following table lists the catalog views that describe the objects on which
other database objects depend.

Table 36. Catalog Views that Describe Objects on which Other Objects Depend

Database Object Catalog View

CONSTRAINT SYSCAT.CONSTDEP

TRANSFER OWNERSHIP

1330 SQL Reference Volume 2



Table 36. Catalog Views that Describe Objects on which Other Objects Depend (continued)

Database Object Catalog View

FUNCTION SYSCAT.ROUTINEDEP; SYSCAT.ROUTINES
(for a sourced function)

INDEX SYSCAT.INDEXDEP

INDEX EXTENSION SYSCAT.INDEXEXTENSIONDEP

METHOD SYSCAT.ROUTINEDEP

PACKAGE SYSCAT.PACKAGEDEP

PROCEDURE SYSCAT.ROUTINEDEP

TABLE SYSCAT.TABDEP

TRIGGER SYSCAT.TRIGDEP

VIEW SYSCAT.TABDEP

XSROBJECT SYSCAT.XSROBJECTDEP

If ownership of a database object that depends on another object is to be
transferred successfully, the new owner of the database object must hold certain
privileges on the dependent object of that dependency:
– If the dependent object is a sequence, the new owner must have the USAGE

privilege on that sequence.
– If the dependent object is a function, method, or procedure, the new owner

must have the EXECUTE privilege on that function, method, or procedure.
– If the dependent object is a package, the new owner must have the EXECUTE

privilege on that package.
– If the dependent object is an XSR object, the new owner must have the

USAGE privilege on that XSR object.

For any other dependent object of a dependency, use the TABAUTH column in
the appropriate catalog view to determine what privileges the new owner must
hold.

v If an attempt is made to transfer ownership of an object to its owner, a warning
is returned (SQLSTATE 01676).

v Ownership of the following database objects cannot be transferred, because these
objects have no owner: audit policies, buffer pools, roles, security labels, security
label components, security policies, servers, transformation functions, trusted
contexts, user mappings, and wrappers. Note that there is no OWNER column
in the SYSCAT.AUDITPOLICIES, SYSCAT.BUFFERPOOLS, SYSCAT.CONTEXTS,
SYSCAT.ROLES, SYSCAT.SECURITYLABELS,
SYSCAT.SECURITYLABELCOMPONENTS, SYSCAT.SECURITYPOLICIES,
SYSCAT.SERVERS, SYSCAT.TRANSFORMS, SYSCAT.USEROPTIONS, and
SYSCAT.WRAPPERS catalog views.

v The schema name of an object whose ownership was transferred does not
automatically change.

v Syntax alternatives: For consistency with other SQL statements:
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– SYNONYM can be specified in place of ALIAS

Examples
v Example 1: Transfer ownership of table T1 to PAUL.

TRANSFER OWNERSHIP OF TABLE WALID.T1
TO USER PAUL PRESERVE PRIVILEGES

TRANSFER OWNERSHIP

Statements 1331



The value in the OWNER column for the table WALID.T1 in the
SYSCAT.TABLES catalog view is replaced with 'PAUL'. Paul is implicitly granted
the following privileges on table WALID.T1 (assuming that the previous owner
of the table did not lose any privileges on it): CONTROL and ALTER, DELETE,
INDEX, INSERT, SELECT, UPDATE, REFERENCE (WITH GRANT OPTION).

v Example 2: Assume that JOHN creates tables T1 and T2, and that MIKE holds
SELECT privilege on tables JOHN.T1 and JOHN.T2. MIKE creates view V1 that
depends on tables JOHN.T1 and JOHN.T2. Transfer ownership of view V1 to
HENRY, who has DBADM authority.

TRANSFER OWNERSHIP OF VIEW V1
TO USER HENRY PRESERVE PRIVILEGES

The value in the OWNER column for the view V1 in the SYSCAT.VIEWS catalog
view is replaced with 'HENRY'. A new row is added to SYSCAT.TABAUTH with
the following values: GRANTOR = 'SYSIBM', GRANTEE = 'HENRY', and
TABNAME = 'V1'.

v Example 3: Assume that HENRY, who holds DBADM authority, creates a trigger
TR1 that depends on table T1. Transfer ownership of trigger TR1 to WALID,
who does not hold DBADM authority.

TRANSFER OWNERSHIP OF TRIGGER TR1
TO USER WALID PRESERVE PRIVILEGES

Ownership of the trigger is transferred successfully, even though Walid does not
hold DBADM authority.

v Example 4: Assume that JOHN creates tables T1 and T2, and that MIKE holds
SELECT privilege on table JOHN.T1 and CONTROL privilege on table JOHN.T2.
PAUL holds SELECT privilege on tables JOHN.T1 and JOHN.T2. MIKE creates
view V1 that depends on tables JOHN.T1 and JOHN.T2. The view has an entry
for the SELECT privilege in SYSCAT.TABAUTH and two SELECT dependencies
in SYSCAT.TABDEP for tables JOHN.T1 and JOHN.T2. Transfer ownership of
view V1 to PAUL, who is a regular user.

TRANSFER OWNERSHIP OF VIEW V1
TO USER PAUL PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, even though Paul does not
hold CONTROL privilege on table JOHN.T2. Paul only needs SELECT privilege
on tables JOHN.T1 and JOHN.T2 to maintain the view's existence. (The view
only has SELECT privilege because Paul did not hold CONTROL privilege on
both tables when the view was created and, as a result, he was not granted
CONTROL on the view.) The value in the OWNER column for the view V1 in
the SYSCAT.VIEWS catalog view is replaced with 'PAUL'. The value in the
OWNER column for the view V1 in the SYSCAT.TABDEP catalog view is
replaced with 'PAUL'. A new row is added to SYSCAT.TABAUTH with the
following values: GRANTOR = 'SYSIBM', GRANTEE = 'PAUL', and TABNAME
= 'V1'.

v Example 5: Assume that JOHN creates table T1, and that PUBLIC holds SELECT
privilege on JOHN.T1. PAUL holds SELECT privilege on JOHN.T1 explicitly, and
creates view V1 that depends on table JOHN.T1. Transfer ownership of view V1
to MIKE, who is not a DBADM, but who holds the required privileges to
acquire view ownership through the special group PUBLIC.

TRANSFER OWNERSHIP OF VIEW V1
TO USER MIKE PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, because Mike holds SELECT
privilege on table JOHN.T1 through PUBLIC. The value in the OWNER column

TRANSFER OWNERSHIP

1332 SQL Reference Volume 2



for the view V1 in the SYSCAT.VIEWS catalog view is replaced with 'MIKE'. The
value in the OWNER column for the view V1 in the SYSCAT.TABDEP catalog
view is replaced with 'MIKE'. A new row is added to SYSCAT.TABAUTH with
the following values: GRANTOR = 'SYSIBM', GRANTEE = 'MIKE', and
TABNAME = 'V1'.

v Example 6: Similar to example 5, assume that JOHN creates table T1, and that
role R1 holds SELECT privilege on JOHN.T1. PAUL holds SELECT privilege on
JOHN.T1 explicitly, and creates view V1 that depends on table JOHN.T1.
Transfer ownership of view V1 to MIKE, who is not a DBADM, but who holds
the required privileges through membership in role R1 to acquire view
ownership.

TRANSFER OWNERSHIP OF VIEW V1
TO USER MIKE PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, because Mike holds SELECT
privilege on table JOHN.T1 through membership in role R1. The value in the
OWNER column for the view V1 in the SYSCAT.VIEWS catalog view is replaced
with 'MIKE'. The value in the OWNER column for the view V1 in the
SYSCAT.TABDEP catalog view is replaced with 'MIKE'. A new row is added to
SYSCAT.TABAUTH with the following values: GRANTOR = 'SYSIBM',
GRANTEE = 'MIKE', and TABNAME = 'V1'.

TRANSFER OWNERSHIP

Statements 1333



TRUNCATE
The TRUNCATE statement deletes all of the rows from a table.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities for the table, and all subtables of a table hierarchy:
v DELETE privilege on the table to be truncated
v CONTROL privilege on the table to be truncated
v DATAACCESS authority

To ignore any DELETE triggers that are defined on the table, the privileges held by
the authorization ID of the statement must include at least one of the following
authorities for the table, and all subtables of a table hierarchy:
v ALTER privilege on the table
v CONTROL privilege on the table
v DBADM authority

To truncate a table that is protected by a security policy, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities:
v CONTROL privilege on the table
v DBADM authority

To truncate a table that has row access control activated, the authorization ID of
the statement must include at least one of the following authorities:
v CONTROL privilege on the table
v DBADM authority

Syntax

�� TRUNCATE
TABLE

table-name
DROP STORAGE

REUSE STORAGE
�

�
IGNORE DELETE TRIGGERS

RESTRICT WHEN DELETE TRIGGERS

CONTINUE IDENTITY
IMMEDIATE ��

Description

table-name
Identifies the table to be truncated. The name must identify a table that exists
at the current server (SQLSTATE 42704), but it cannot be a catalog table
(SQLSTATE 42832), a nickname (SQLSTATE 42809), a view, a subtable, a

TRUNCATE

1334 SQL Reference Volume 2



staging table, a system-maintained materialized query table, a system-period
temporal table (SQLSTATE 428HZ), or a range-clustered table (SQLSTATE
42807).

If table-name is the root table of a table hierarchy, all tables in the table
hierarchy will be truncated.

DROP STORAGE or REUSE STORAGE
Specifies whether to drop or reuse the existing storage that is allocated for the
table. The default is DROP STORAGE.

DROP STORAGE
All storage allocated for the table is released and made available. If this
option is specified (implicitly or explicitly), an online backup would be
blocked.

REUSE STORAGE
All storage allocated for the table will continue to be allocated for the
table, but the storage will be considered empty. This option is only
applicable to tables in DMS table spaces and is ignored otherwise.

IGNORE DELETE TRIGGERS or RESTRICT WHEN DELETE TRIGGERS
Specifies what to do when delete triggers are defined on the table. The default
is IGNORE DELETE TRIGGERS.

IGNORE DELETE TRIGGERS
Any delete triggers that are defined for the table are not activated by the
truncation operation.

RESTRICT WHEN DELETE TRIGGERS
An error is returned if delete triggers are defined on the table (SQLSTATE
428GJ).

CONTINUE IDENTITY
If an identity column exists for the table, the next identity column value
generated continues with the next value that would have been generated if the
TRUNCATE statement had not been executed.

IMMEDIATE
Specifies that the truncate operation is processed immediately and cannot be
undone. The statement must be the first statement in a transaction (SQLSTATE
25001).

The truncated table is immediately available for use in the same unit of work.
Although a ROLLBACK statement is allowed to execute after a TRUNCATE
statement, the truncate operation is not undone, and the table remains in a
truncated state. For example, if another data change operation is done on the
table after the TRUNCATE IMMEDIATE statement and then the ROLLBACK
statement is executed, the truncate operation will not be undone, but all other
data change operations are undone.

Rules
v Referential Integrity: The table, and all tables in a table hierarchy, must not be a

parent table in an enforced referential constraint (SQLSTATE 428GJ). A
self-referencing RI constraint is permitted.

v Partitioned tables: The table must not be in set integrity pending state due to
being altered to attach a data partition (SQLSTATE 55019). The table needs to be
checked for integrity before executing the TRUNCATE statement. The table must
not have any logically detached partitions (SQLSTATE 55057). The asynchronous
partition detach task must complete before executing the TRUNCATE statement.

TRUNCATE

Statements 1335



v Exclusive Access: No other session can have a cursor open on the table, or a lock
held on the table (SQLSTATE 25001).

v WITH HOLD cursors: The current session cannot have a WITH HOLD cursor
open on the table (SQLSTATE 25001).

Notes
v Table statistics: The statistics for the table are not changed by the TRUNCATE

statement.
v Number of rows deleted: SQLERRD(3) in the SQLCA is set to -1 for the truncate

operation. The number of rows that were deleted from the table is not returned.

Examples
v Example 1: Empty an unused inventory table regardless of any existing triggers

and return its allocated space.
TRUNCATE TABLE INVENTORY

IGNORE DELETE TRIGGERS
DROP STORAGE
IMMEDIATE

v Example 2: Empty an unused inventory table regardless of any existing delete
triggers but preserve its allocated space for later reuse.

TRUNCATE TABLE INVENTORY
REUSE STORAGE
IGNORE DELETE TRIGGERS
IMMEDIATE

TRUNCATE

1336 SQL Reference Volume 2



UPDATE
The UPDATE statement updates the values of specified columns in rows of a table,
view or nickname, or the underlying tables, nicknames, or views of the specified
fullselect.

Updating a row of a view updates a row of its base table, if no INSTEAD OF
trigger is defined for the update operation on this view. If such a trigger is defined,
the trigger will be executed instead. Updating a row using a nickname updates a
row in the data source object to which the nickname refers.

The forms of this statement are:
v The Searched UPDATE form is used to update one or more rows (optionally

determined by a search condition).
v The Positioned UPDATE form is used to update exactly one row (as determined

by the current position of a cursor).

Invocation

An UPDATE statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that can
be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v UPDATE privilege on the target table, view, or nickname
v UPDATE privilege on each of the columns that are to be updated, including the

columns of the BUSINESS_TIME period if a period-clause is specified
v CONTROL privilege on the target table, view, or nickname
v DATAACCESS authority

If a row-fullselect is included in the assignment, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities for each referenced table, view, or nickname:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

For each table, view, or nickname referenced by a subquery, the privileges held by
the authorization ID of the statement must also include at least one of the
following authorities:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules
(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of
an UPDATE statement includes a reference to a column of the table, view, or
nickname in the right side of the assignment-clause, or anywhere in the
search-condition, the privileges held by the authorization ID of the statement must
also include at least one of the following authorities:

UPDATE

Statements 1337



v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If the specified table or view is preceded by the ONLY keyword, the privileges
held by the authorization ID of the statement must also include the SELECT
privilege for every subtable or subview of the specified table or view.

GROUP privileges are not checked for static UPDATE statements.

If the target of the update operation is a nickname, privileges on the object at the
data source are not considered until the statement is executed at the data source.
At this time, the authorization ID that is used to connect to the data source must
have the privileges that are required for the operation on the object at the data
source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax (searched-update)

�� UPDATE table-name
view-name period-clause

nickname
ONLY ( table-name )

view-name
( fullselect )

�

�
correlation-clause include-columns

�

� SET assignment-clause
WHERE search-condition WITH RR

RS
CS
UR

��

period-clause:

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

Syntax (positioned-update)

�� UPDATE table-name
view-name
nickname
ONLY ( table-name )

view-name

correlation-clause
�

� SET assignment-clause WHERE CURRENT OF cursor-name ��

correlation-clause:

UPDATE

1338 SQL Reference Volume 2



AS
correlation-name

�

,

( column-name )

include-columns:

INCLUDE �

,

( column-name data-type )

assignment-clause:

�

�

� �

�

,

column-name = expression
NULL
DEFAULT

..attribute-name
, ,

(1)
( column-name ) = ( expression )

NULL
DEFAULT

..attribute-name (2)
row-fullselect

Notes:

1 The number of expressions, NULLs and DEFAULTs must match the number
of column names.

2 The number of columns in the select list must match the number of column
names.

Description

table-name, view-name, nickname, or (fullselect)
Identifies the object of the update operation. The name must identify one of
the following objects:
v A table, view, or nickname described in the catalog at the current server
v A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a view of a catalog table (unless it is
one of the updatable SYSSTAT views), a system-maintained materialized query
table, or a read-only view that has no INSTEAD OF trigger defined for its
update operations.

If table-name is a typed table, rows of the table or any of its proper subtables
may get updated by the statement. Only the columns of the specified table
may be set or referenced in the WHERE clause. For a positioned UPDATE, the
associated cursor must also have specified the same table, view or nickname in
the FROM clause without using ONLY.

If the object of the update operation is a fullselect, the fullselect must be
updatable, as defined in the “Updatable views” Notes item in the description
of the CREATE VIEW statement.

If the object of the update operation is a nickname, the extended indicator
variable values of DEFAULT and UNASSIGNED must not be used (SQLSTATE
22539).

UPDATE

Statements 1339



For additional restrictions related to temporal tables and use of a view or
fullselect as the target of the update operation, see “Considerations for a
system-period temporal table” and “Considerations for an application-period
temporal table” in the Notes section of this topic.

ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement
should apply only to data of the specified table and rows of proper subtables
cannot be updated by the statement. For a positioned UPDATE, the associated
cursor must also have specified the table in the FROM clause using ONLY. If
table-name is not a typed table, the ONLY keyword has no effect on the
statement.

ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement
should apply only to data of the specified view and rows of proper subviews
cannot be updated by the statement. For a positioned UPDATE, the associated
cursor must also have specified the view in the FROM clause using ONLY. If
view-name is not a typed view, the ONLY keyword has no effect on the
statement.

period-clause
Specifies that a period clause applies to the target of the update operation. If
the target of the update operation is a view, the following conditions apply to
the view:
v The FROM clause of the outer fullselect of the view definition must include

a reference, directly or indirectly, to an application-period temporal table
(SQLSTATE 42724M).

v An INSTEAD OF UPDATE trigger must not be defined for the view
(SQLSTATE 428HY).

FOR PORTION OF BUSINESS_TIME
Specifies that the update only applies to row values for the portion of the
period in the row that is specified by the period clause. The
BUSINESS_TIME period must exist in the table (SQLSTATE 4274M).

FROM value1 TO value2
Specifies that the update applies to rows for the period specified from
value1 up to value2. No rows are updated if value1 is greater than or
equal to value2, or if value1 or value2 is the null value (SQLSTATE
02000).

For the period specified with FROM value1 TO value2, the
BUSINESS_TIME period in a row in the target of the update is in any
of the following states:
v Overlaps the beginning of the specified period if the value of the

begin column is less than value1 and the value of the end column is
greater than value1.

v Overlaps the end of the specified period if the value of the end
column is greater than or equal to value2 and the value of the begin
column is less than value2.

v Is fully contained within the specified period if the value for the
begin column for BUSINESS_TIME is greater than or equal to value1
and the value for the corresponding end column is less than or
equal to value2.

UPDATE

1340 SQL Reference Volume 2



v Is partially contained in the specified period if the row overlaps the
beginning of the specified period or the end of the specified period,
but not both.

v Fully overlaps the specified period if the period in the row overlaps
the beginning and end of the specified period.

v Is not contained in the period if both columns of BUSINESS_TIME
are less than or equal to value1 or greater than or equal to value2.

If the BUSINESS_TIME period in a row is not contained in the
specified period, the row is not updated. Otherwise, the update is
applied based on how the values in the columns of the
BUSINESS_TIME period overlap the specified period as follows:
v If the BUSINESS_TIME period in a row is fully contained within the

specified period, the row is updated and the values of the begin
column and end column of BUSINESS_TIME are unchanged.

v If the BUSINESS_TIME period in a row is partially contained in the
specified period and overlaps the beginning of the specified period:
– The row is updated. In the updated row, the value of the begin

column is set to value1 and the value of the end column is the
original value of the end column.

– A row is inserted using the original values from the row, except
that the end column is set to value1.

v If the BUSINESS_TIME period in a row is partially contained in the
specified period and overlaps the end of the specified period:
– The row is updated. In the updated row, the value of the begin

column is the original value of the begin column and the end
column is set to value2.

– A row is inserted using the original values from the row, except
that the begin column is set to value2.

v If the BUSINESS_TIME period in a row fully overlaps the specified
period:
– The row is updated. In the updated row the value of the begin

column is set to value1 and the value of the end column is set to
value2.

– A row is inserted using the original values from the row, except
that the end column is set to value1.

– An additional row is inserted using the original values from the
row, except that the begin column is set to value2.

value1 and value2
Each expression must return a value that has a date data type,
timestamp data type, or a valid data type for a string
representation of a date or timestamp (SQLSTATE 428HY). The
result of each expression must be comparable to the data type of
the columns of the specified period (SQLSTATE 42884). See the
comparison rules described in “Assignments and comparisons”.

Each expression can contain any of the following supported
operands (SQLSTATE 428HY):
v Constant
v Special register
v Variable

UPDATE

Statements 1341



v Scalar function whose arguments are supported operands
(though user-defined functions and non-deterministic functions
cannot be used)

v CAST specification where the cast operand is a supported
operand

v Expression using arithmetic operators and operands

correlation-clause
Can be used within search-condition or assignment-clause to designate a table,
view, nickname, or fullselect. For a description of correlation-clause, see
“table-reference” in the description of “Subselect”.

include-columns
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the intermediate result table of the UPDATE
statement when it is nested in the FROM clause of a fullselect. The
include-columns are appended at the end of the list of columns that are
specified for table-name or view-name.

INCLUDE
Specifies a list of columns to be included in the intermediate result table of
the UPDATE statement.

column-name
Specifies a column of the intermediate result table of the UPDATE
statement. The name cannot be the same as the name of another include
column or a column in table-name or view-name (SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one
that is supported by the CREATE TABLE statement.

SET
Introduces the assignment of values to column names.

assignment-clause

column-name
Identifies a column to be updated. If extended indicator variables are not
enabled, the column-name must identify an updatable column of the
specified table, view, or nickname, or identify an INCLUDE column. The
object ID column of a typed table is not updatable (SQLSTATE 428DZ). A
column must not be specified more than once, unless it is followed by
..attribute-name (SQLSTATE 42701).

If it specifies an INCLUDE column, the column name cannot be qualified.

For a Positioned UPDATE:
v If the update-clause was specified in the select-statement of the cursor, each

column name in the assignment-clause must also appear in the
update-clause.

v If the update-clause was not specified in the select-statement of the cursor
and LANGLEVEL MIA or SQL92E was specified when the application
was precompiled, the name of any updatable column may be specified.

v If the update-clause was not specified in the select-statement of the cursor
and LANGLEVEL SAA1 was specified either explicitly or by default
when the application was precompiled, no columns may be updated.

..attribute-name
Specifies the attribute of a structured type that is set (referred to as an

UPDATE

1342 SQL Reference Volume 2



attribute assignment. The column-name specified must be defined with a
user-defined structured type (SQLSTATE 428DP). The attribute-name must
be an attribute of the structured type of column-name (SQLSTATE 42703).
An assignment that does not involve the ..attribute-name clause is referred
to as a conventional assignment.

expression
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions”. The expression cannot include an
aggregate function except when it occurs within a scalar fullselect
(SQLSTATE 42903).

An expression may contain references to columns of the target table of the
UPDATE statement. For each row that is updated, the value of such a
column in an expression is the value of the column in the row before the
row is updated.

An expression cannot contain references to an INCLUDE column. If
expression is a single host variable, the host variable can include an
indicator variable that is enabled for extended indicator variables. If
extended indicator variables are enabled, the extended indicator variable
values of default (-5) or unassigned (-7) must not be used (SQLSTATE
22539) if either of the following statements is true:
v The expression is more complex than a single host variable with explicit

casts
v The target column has data type of structured type

NULL
Specifies the null value and can only be specified for nullable columns
(SQLSTATE 23502). NULL cannot be the value in an attribute assignment
(SQLSTATE 429B9) unless it is specifically cast to the data type of the
attribute.

DEFAULT
Specifies that the default value should be used based on how the
corresponding column is defined in the table. The value that is inserted
depends on how the column was defined.
v If the column was defined as a generated column based on an

expression, the column value will be generated by the system, based on
the expression.

v If the column was defined using the IDENTITY clause, the value is
generated by the database manager.

v If the column was defined using the WITH DEFAULT clause, the value
is set to the default defined for the column (see default-clause in “ALTER
TABLE”).

v If the column was defined using the NOT NULL clause and the
GENERATED clause was not used, or the WITH DEFAULT clause was
not used, or DEFAULT NULL was used, the DEFAULT keyword cannot
be specified for that column (SQLSTATE 23502).

v If the column was defined using the ROW CHANGE TIMESTAMP
clause, the value is generated by the database manager.

The only value that a generated column defined with the GENERATED
ALWAYS clause can be set to is DEFAULT (SQLSTATE 428C9).

The DEFAULT keyword cannot be used as the value in an attribute
assignment (SQLSTATE 429B9).

UPDATE

Statements 1343



The DEFAULT keyword cannot be used as the value in an assignment for
update on a nickname where the data source does not support DEFAULT
syntax.

row-fullselect
Specifies a fullselect that returns a single row. The result column values are
assigned to each corresponding column-name. If the fullselect returns no
rows, the null value is assigned to each column; an error occurs if any
column to be updated is not nullable. An error also occurs if there is more
than one row in the result.

A row-fullselect may contain references to columns of the target table of the
UPDATE statement. For each row that is updated, the value of such a
column in an expression is the value of the column in the row before the
row is updated. An error is returned if there is more than one row in the
result (SQLSTATE 21000).

WHERE
Introduces a condition that indicates what rows are updated. You can omit the
clause, give a search condition, or name a cursor. If the clause is omitted, all
rows of the table, view or nickname are updated.

search-condition
Each column-name in the search condition, other than in a subquery, must
name a column of the table, view or nickname. When the search condition
includes a subquery in which the same table is the base object of both the
UPDATE and the subquery, the subquery is completely evaluated before
any rows are updated.

The search-condition is applied to each row of the table, view or nickname
and the updated rows are those for which the result of the
search-condition is true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed only once, whereas a subquery
with a correlated reference may have to be executed once for each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name
must identify a declared cursor, explained in “DECLARE CURSOR”. The
DECLARE CURSOR statement must precede the UPDATE statement in the
program.

The specified table, view, or nickname must also be named in the FROM
clause of the SELECT statement of the cursor, and the result table of the
cursor must not be read-only. (For an explanation of read-only result
tables, see “DECLARE CURSOR”.)

When the UPDATE statement is executed, the cursor must be positioned
on a row; that row is updated.

This form of UPDATE cannot be used (SQLSTATE 42828) if the cursor
references:
v A view on which an INSTEAD OF UPDATE trigger is defined
v A view that includes an OLAP function in the select list of the fullselect

that defines the view
v A view that is defined, either directly or indirectly, using the WITH

ROW MOVEMENT clause

UPDATE

1344 SQL Reference Volume 2



WITH
Specifies the isolation level at which the UPDATE statement is executed.

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound. The WITH clause has no effect on nicknames,
which always use the default isolation level of the statement.

Rules
v Triggers: UPDATE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on
the update values. If an update operation on a view causes an INSTEAD OF
trigger to fire, validity, referential integrity, and constraints will be checked
against the updates that are performed in the trigger, and not against the view
that caused the trigger to fire, or its underlying tables.

v Assignment: Update values are assigned to columns according to specific
assignment rules.

v Validity: The updated row must conform to any constraints imposed on the
table (or on the base table of the view) by any unique index on an updated
column.
If a view is used that is not defined using WITH CHECK OPTION, rows can be
changed so that they no longer conform to the definition of the view. Such rows
are updated in the base table of the view and no longer appear in the view.
If a view is used that is defined using WITH CHECK OPTION, an updated row
must conform to the definition of the view. For an explanation of the rules
governing this situation, see “CREATE VIEW”.

v Check constraint: Update value must satisfy the check-conditions of the check
constraints defined on the table.
An UPDATE to a table with check constraints defined has the constraint
conditions for each column updated evaluated once for each row that is
updated. When processing an UPDATE statement, only the check constraints
referring to the updated columns are checked.

v Referential integrity: The value of the parent unique keys cannot be changed if
the update rule is RESTRICT and there are one or more dependent rows.
However, if the update rule is NO ACTION, parent unique keys can be updated
as long as every child has a parent key by the time the update statement
completes. A non-null update value of a foreign key must be equal to a value of
the primary key of the parent table of the relationship.

v XML values: When an XML column value is updated, the new value must be a
well-formed XML document (SQLSTATE 2200M).

v Security policy: If the identified table or the base table of the identified view is
protected with a security policy, the session authorization ID must have the
label-based access control (LBAC) credentials that allow:
– Write access to all protected columns that are being updated (SQLSTATE

42512)
– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

UPDATE

Statements 1345



– Read and write access to all rows that are being updated (SQLSTATE 42519)
The session authorization ID must also have been granted a security label for
write access for the security policy if an implicit value is used for a
DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:
– The DB2SECURITYLABEL column is not included in the list of columns that

are to be updated (and so it will be implicitly updated to the security label
for write access of the session authorization ID)

– A value for the DB2SECURITYLABEL column is explicitly provided but the
session authorization ID does not have write access for that value, and the
security policy is created with the OVERRIDE NOT AUTHORIZED WRITE
SECURITY LABEL option

v Extended indicator variable usage: If enabled, indicator variable values other
than 0 (zero) through -7 must not be input (SQLSTATE 22010). Also, if enabled,
the default and unassigned extended indicator variable values must not appear
in contexts in which they are not supported (SQLSTATE 22539).

v Extended indicator variables: In the assignment-clause of an UPDATE statement,
an expression that is a reference to a single host variable, or a host variable being
explicitly cast can result in assigning an extended indicator variable value.
Assigning an extended indicator variable-based value of unassigned has the
effect of leaving the target column set to its current value, as if it had not been
specified in the statement. Assigning an extended indicator variable-based value
of default assigns the default value of the column. For information about default
values of data types, see the description of the DEFAULT clause in “CREATE
TABLE” on page 680.
If a target column is not updatable (for example, a column in a view that is
defined as an expression), then it must be assigned the extended indicator
variable-based value of unassigned (SQLSTATE 42808).
If the target column is a column defined as GENERATED ALWAYS, then it must
be assigned the DEFAULT keyword, or the extended indicator variable-based
values of default or unassigned (SQLSTATE 428C9).
The UPDATE statement must not assign all target columns to an extended
indicator variable-based value of unassigned (SQLSTATE 22540).

Notes
v If an update value violates any constraints, or if any other error occurs during

the execution of the UPDATE statement, no rows are updated. The order in
which multiple rows are updated is undefined.

v An update to a view defined using the WITH ROW MOVEMENT clause could
cause a delete operation and an insert operation against the underlying tables of
the view. For details, see the description of the CREATE VIEW statement.

v When an UPDATE statement completes execution, the value of SQLERRD(3) in
the SQLCA is the number of rows that qualified for the update operation. In the
context of an SQL procedure statement, the value can be retrieved using the
ROW_COUNT variable of the GET DIAGNOSTICS statement. The SQLERRD(5)
field contains the number of rows inserted, deleted, or updated by all activated
triggers.

v Unless appropriate locks already exist, one or more exclusive locks are acquired
by the execution of a successful UPDATE statement. Until the locks are released,
the updated row can only be accessed by the application process that performed
the update (except for applications using the Uncommitted Read isolation level).
For further information on locking, see the descriptions of the COMMIT,
ROLLBACK, and LOCK TABLE statements.

UPDATE

1346 SQL Reference Volume 2



v When updating the column distribution statistics for a typed table, the subtable
that first introduced the column must be specified.

v Multiple attribute assignments on the same structured type column occur in the
order specified in the SET clause and, within a parenthesized set clause, in
left-to-right order.

v An attribute assignment invokes the mutator method for the attribute of the
user-defined structured type. For example, the assignment st..a1=x has the
same effect as using the mutator method in the assignment st = st..a1(x).

v While a given column may be a target column in only one conventional
assignment, a column may be a target column in multiple attribute assignments
(but only if it is not also a target column in a conventional assignment).

v When an identity column defined as a distinct type is updated, the entire
computation is done in the source type, and the result is cast to the distinct type
before the value is actually assigned to the column. (There is no casting of the
previous value to the source type before the computation.)

v To have a generated value on a SET statement for an identity column, use the
DEFAULT keyword:

SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the value
used to update this column is generated.

v For more information about consuming values of a generated sequence for an
identity column, or about exceeding the maximum value for an identity column,
see “INSERT”.

v With partitioned tables, an UPDATE WHERE CURRENT OF cursor-name
operation can move a row from one data partition to another. After this occurs,
the cursor is no longer positioned on the row, and no further UPDATE WHERE
CURRENT OF cursor-name modifications to that row are possible. The next row
in the cursor can be fetched, however.

v For a column defined using the ROW CHANGE TIMESTAMP clause, the value
is always changed on update of the row. If the column is not specified in the
SET list explicitly, the database manager still generates a value for that row. The
value is unique for each table partition within the database partition and is set
to the approximate timestamp corresponding to the row update.

v Extended indicator variables and update triggers: If a target column has been
assigned with an extended indicator variable-based value of unassigned, that
column is not considered to have been updated. That column is treated as if it
had not been specified in the OF column-name list of any update trigger defined
on the target table.

v Extended indicator variables and deferred error checks: When extended
indicator variables are enabled, validation that would otherwise be done in
statement preparation, to recognize an update of a non-updatable column, is
deferred until statement execution, except for column level update privilege
checking of static UPDATE statements. Whether an error should be reported can
be determined only during execution based on the indicator value. The checking
of column level update privilege for static UPDATE statements continues to be
performed during bind processing even when extended indicator variables are
enabled.

v Considerations for a system-period temporal table: The target of the UPDATE
statement must not be a fullselect that references a view in the FROM clause
followed by a period specification for SYSTEM_TIME if the view is defined with
the WITH CHECK OPTION and the view definition includes a WHERE clause
containing one of the following syntax elements (SQLSTATE 51046):

UPDATE

Statements 1347



– A subquery that references a system-period temporal table (directly or
indirectly)

– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than

NO SQL
If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null
value, an underlying target of the UPDATE statement must not be a
system-period temporal table (SQLSTATE 51046), and the target of the UPDATE
statement must not be a view defined with the WITH CHECK OPTION if the
view definition includes a WHERE clause containing one of the following syntax
elements (SQLSTATE 51046):
– A subquery that references a system-period temporal table (directly or

indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than

NO SQL
When a row of a system-period temporal table is updated, the database manager
updates the values of the row-begin and transaction-start-ID columns as follows:
– A row-begin column is assigned a value that is generated using a reading of

the time-of-day clock during execution of the first data change statement in
the transaction that requires a value to be assigned to the row begin or
transaction start-ID column in a table, or a row in a system-period temporal
table is deleted. The database manager ensures uniqueness of the generated
values for a row-begin column across transactions. The timestamp value
might be adjusted to ensure that rows inserted into an associated history table
have the end timestamp value greater than the begin timestamp value which
can happen when a conflicting transaction is updating the same row in the
system-period temporal table. The database configuration parameter
systime_period_adj must be set to Yes for this adjustment in the timestamp
value to occur. If multiple rows are updated within a single SQL transaction
and an adjustment is not needed, the values for the row-begin column are the
same for all the rows and are unique from the values generated for the
column for another transaction.

– A transaction start-ID column is assigned a unique timestamp value per
transaction or the null value The null value is assigned to the transaction
start-ID column if the column is nullable and there is a row-begin column in
the table for which the value did not need to be adjusted. Otherwise, the
value is generated using a reading of the time-of-day clock during execution
of the first data change statement in the transaction that requires a value to be
assigned to the row begin or transaction start-ID column in a table, or a row
in a system-period temporal table is deleted. If multiple rows are updated
within a single SQL transaction, the values for the transaction start-ID column
are the same for all the rows and are unique from the values generated for
the column for another transaction.

If the UPDATE statement has a search condition containing a correlated
subquery that references historical rows (explicitly referencing the name of the
history table name or implicitly through the use of a period specification in the
FROM clause), the old version of the updated rows that are inserted as historical
rows (into the history table if any) are potentially visible to update operations
for the rows subsequently processed for the statement.
The target of an UPDATE statement cannot be a fullselect that references a view
in the FROM clause followed by a period specification for SYSTEM_TIME if
both of the following conditions are true (SQLSTATE 51046):

UPDATE

1348 SQL Reference Volume 2



– The view is defined with the WITH CHECK OPTION.
– The view definition includes a WHERE clause containing one of the following

syntax elements:
- A subquery that references a system-period temporal table (directly or

indirectly).
- An invocation of an SQL routine that has a package associated with it.
- An invocation of an external routine with a data access indication other

than NO SQL.
If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null
value, the underlying target (direct or indirect) of the UPDATE statement cannot
be a system-period temporal table (SQLSTATE 51046).
If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null
value, the target of an UPDATE statement cannot be a view defined with the
WITH CHECK OPTION if the view definition includes a WHERE clause
containing one of the following syntax elements (SQLSTATE 51046):
– A subquery that references a system-period temporal table (directly or

indirectly).
– An invocation of an SQL routine that has a package associated with it.
– An invocation of an external routine with a data access indication other than

NO SQL.
v Considerations for a history table: When a row of a system-period temporal

table is updated, a historical copy of the row is inserted into the corresponding
history table and the end timestamp of the historical row is captured in the form
of a system determined value that corresponds to the time of the data change
operation. The database manager assigns the value that is generated using a
reading of the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to the row begin
or transaction start-ID column in a table, or a row in a system-period temporal
table is deleted. The database manager ensures uniqueness of the generated
values for an end column in a history table across transactions. The timestamp
value might be adjusted to ensure that rows inserted into the history table have
the end timestamp value greater than the begin timestamp value which can
happen when a conflicting transaction is updating the same row in the
system-period temporal table (SQLSTATE 01695). The database configuration
parameter systime_period_adj must be set to Yes for this adjustment in the
timestamp value to occur.
For an update operation, the adjustment only affects the value for the end
column corresponding to the row-end column in the history table associated
with the system-period temporal table. Take these adjustments into consideration
on subsequent references to the table whether there is a search for the
transaction start time in the values for the columns corresponding to the
row-begin and row-end columns of the period in the associated system-period
temporal table.

v Considerations for an application-period temporal table: The target of the
UPDATE statement must not be a fullselect that references a view in the FROM
clause followed by a period specification for BUSINESS_TIME if the view is
defined with the WITH CHECK OPTION and the view definition includes a
WHERE clause containing one of the following syntax elements (SQLSTATE
51046):
– A subquery that references an application-period temporal table (directly or

indirectly)
– An invocation of an SQL routine that has a package associated with it

UPDATE

Statements 1349



– An invocation of an external routine with a data access indication other than
NO SQL

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
non-null value, the target of the UPDATE statement must not be a view defined
with the WITH CHECK option if the view definition includes a WHERE clause
containing one of the following syntax elements (SQLSTATE 51046):
– A subquery that references an application-period temporal table (directly or

indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than

NO SQL
An UPDATE statement for an application-period temporal table that contains a
FOR PORTION OF BUSINESS_TIME clause indicates between which two points
in time that the specified updates are effective. When FOR PORTION OF
BUSINESS_TIME is specified and the period value for a row, specified by the
values of the row-begin column and row-end column, is only partially contained
in the period specified from value1 up to value2, the row is updated and one or
two rows are automatically inserted to represent the portion of the row that is
not changed. New values are generated for each generated column in an
application-period temporal table for each row that is automatically inserted as a
result of an update operation on the table. If a generated column is defined as
part of a unique or primary key, parent key in a referential constraint, or unique
index, it is possible that an automatic insert will violate a constraint or index in
which case an error is returned.
When a row is inserted into an application-period temporal table that has either
a primary key or unique constraint with the BUSINESS_TIME WITHOUT
OVERLAPS clause defined, or a unique index with the BUSINESS_TIME
WITHOUT OVERLAPS clause defined, if the period defined by the begin and
end columns of the BUSINESS_TIME period overlap the period defined by the
begin and end columns of the BUSINESS_TIME period for another row with the
same unique constraint or unique index in the table, an error is returned.
The target of an UPDATE statement cannot be a fullselect that references a view
in the FROM clause followed by a period specification for BUSINESS_TIME if
both of the following conditions are true (SQLSTATE 51046):
– The view is defined with the WITH CHECK OPTION.
– The view definition includes a WHERE clause containing one of the following

syntax elements:
- A subquery that references an application-period temporal table (directly or

indirectly).
- An invocation of an SQL routine that has a package associated with it.
- An invocation of an external routine with a data access indication other

than NO SQL.
If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
non-null value, the target of an UPDATE statement cannot be a view defined
with the WITH CHECK OPTION if the view definition includes a WHERE
clause containing one of the following syntax elements (SQLSTATE 51046):
– A subquery that references an application-period temporal table (directly or

indirectly).
– An invocation of an SQL routine that has a package associated with it.
– An invocation of an external routine with a data access indication other than

NO SQL.

UPDATE

1350 SQL Reference Volume 2



When an application-period temporal table is the target of an UPDATE
statement, the value in effect for the CURRENT TEMPORAL BUSINESS_TIME
special register is not the null value, and the BUSTIMESENSITIVE bind option is
set to YES, the following additional predicates are implicit:

bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

where bt_begin and bt_end are the begin and end columns of the
BUSINESS_TIME period of the target table of the UPDATE statement.

v Considerations for application-period temporal tables and triggers: When a
row is updated and the FOR PORTION OF BUSINESS_TIME clause is specified,
additional rows may be implicitly inserted to reflect any portion of the row that
was not updated. Any existing update triggers are activated for the rows
updated, and any existing insert triggers are activated for rows that are
implicitly inserted.

Examples
v Example 1: Change the job (JOB) of employee number (EMPNO) '000290' in the

EMPLOYEE table to 'LABORER'.
UPDATE EMPLOYEE

SET JOB = ’LABORER’
WHERE EMPNO = ’000290’

v Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that
department (DEPTNO) 'D21' is responsible for in the PROJECT table.

UPDATE PROJECT
SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = ’D21’

v Example 3: All the employees except the manager of department (WORKDEPT)
'E21' have been temporarily reassigned. Indicate this by changing their job (JOB)
to the null value and their pay (SALARY, BONUS, COMM) values to zero in the
EMPLOYEE table.

UPDATE EMPLOYEE
SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

This statement could also be written as follows.
UPDATE EMPLOYEE

SET (JOB, SALARY, BONUS, COMM) = (NULL, 0, 0, 0)
WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

v Example 4: Update the salary and the commission column of the employee with
employee number 000120 to the average of the salary and of the commission of
the employees of the updated row's department, respectively.

UPDATE (SELECT EMPNO, SALARY, COMM,
AVG(SALARY) OVER (PARTITION BY WORKDEPT),
AVG(COMM) OVER (PARTITION BY WORKDEPT)
FROM EMPLOYEE E) AS E(EMPNO, SALARY, COMM, AVGSAL, AVGCOMM)

SET (SALARY, COMM) = (AVGSAL, AVGCOMM)
WHERE EMPNO = ’000120’

The previous statement is semantically equivalent to the following statement,
but requires only one access to the EMPLOYEE table, whereas the following
statement specifies the EMPLOYEE table twice.

UPDATE EMPLOYEE EU
SET (EU.SALARY, EU.COMM)
=

UPDATE

Statements 1351



(SELECT AVG(ES.SALARY), AVG(ES.COMM)
FROM EMPLOYEE ES
WHERE ES.WORKDEPT = EU.WORKDEPT)
WHERE EU.EMPNO = ’000120’

v Example 5: In a C program display the rows from the EMPLOYEE table and
then, if requested to do so, change the job (JOB) of certain employees to the new
job keyed in.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT *

FROM EMPLOYEE
FOR UPDATE OF JOB;

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 INTO ... ;
if ( strcmp (change, "YES") == 0 )

EXEC SQL UPDATE EMPLOYEE
SET JOB = :newjob
WHERE CURRENT OF C1;

EXEC SQL CLOSE C1;

v Example 6: These examples mutate attributes of column objects.
Assume that the following types and tables exist:

CREATE TYPE POINT AS (X INTEGER, Y INTEGER)
NOT FINAL WITHOUT COMPARISONS
MODE DB2SQL

CREATE TYPE CIRCLE AS (RADIUS INTEGER, CENTER POINT)
NOT FINAL WITHOUT COMPARISONS
MODE DB2SQL

CREATE TABLE CIRCLES (ID INTEGER, OWNER VARCHAR(50), C CIRCLE

The following example updates the CIRCLES table by changing the OWNER
column and the RADIUS attribute of the CIRCLE column where the ID is 999:

UPDATE CIRCLES
SET OWNER = ’Bruce’

C..RADIUS = 5
WHERE ID = 999

The following example transposes the X and Y coordinates of the center of the
circle identified by 999:

UPDATE CIRCLES
SET C..CENTER..X = C..CENTER..Y,

C..CENTER..Y = C..CENTER..X
WHERE ID = 999

The following example is another way of writing both of the previous
statements. This example combines the effects of both of the previous examples:

UPDATE CIRCLES
SET (OWNER,C..RADIUS,C..CENTER..X,C..CENTER..Y) =

(’Bruce’,5,C..CENTER..Y,C..CENTER..X)
WHERE ID = 999

v Example 7: Update the XMLDOC column of the DOCUMENTS table with
DOCID '001' to the character string that is selected and parsed from the
XMLTEXT table.

UPDATE DOCUMENTS SET XMLDOC =
(SELECT XMLPARSE(DOCUMENT C1 STRIP WHITESPACE)
FROM XMLTEXT WHERE TEXTID = ’001’)

WHERE DOCID = ’001’

UPDATE

1352 SQL Reference Volume 2



VALUES
The VALUES statement is a form of query.

The VALUES statement can be embedded in an application program or issued
interactively.

VALUES

Statements 1353



VALUES INTO
The VALUES INTO statement produces a result table consisting of at most one
row, and assigns the values in that row to host variables.

Invocation

This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include any
privileges that are necessary to execute each expression and row-expression.

For each global variable used as an assignment-target, the privileges held by the
authorization ID of the statement must include one of the following authorities:
v WRITE privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

Syntax

�� VALUES

�

expression
,

( expression )
row-expression

INTO �

,

assignment-target ��

assignment-target

�� global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name
transition-variable-name
array-variable-name [ array-index ]
field-reference

��

Description

VALUES
Introduces a single row consisting of one or more columns.

expression
An expression that defines a single value of a one column result table.

(expression,...)
One or more expressions that define the values for one or more columns of
the result table.

VALUES INTO

1354 SQL Reference Volume 2



row-expression
Specifies the new row of values. The row-expression is any row expression
of the type described in “Row expressions”. The row-expression must not
include a column name.

INTO assignment-target
Identifies one or more targets for the assignment of output values.

The first value in the result row is assigned to the first target in the list, the
second value to the second target, and so on. Each assignment to an
assignment-target is made in sequence through the list. If an error occurs on any
assignment, no value is assigned to any assignment-target.

When the data type of every assignment-target is not a row type, then the value
'W' is assigned to the SQLWARN3 field of the SQLCA if the number of
assignment-targets is less than the number of result column values.

If the data type of an assignment-target is a row type, then there must be exactly
one assignment-target specified (SQLSTATE 428HR), the number of columns
must match the number of fields in the row type, and the data types of the
columns of the fetched row must be assignable to the corresponding fields of
the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must be
exactly one assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output
values, the target can be a regular host variable (if it is large enough), a
LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the name parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A
transition-variable-name must identify a column in the subject table of a
trigger, optionally qualified by a correlation name that identifies the new
value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array
type.

[array-index]
An expression that specifies which element in the array will be the
target of the assignment. For an ordinary array, the array-index
expression must be assignable to INTEGER (SQLSTATE 428H1) and
cannot be the null value. Its value must be between 1 and the
maximum cardinality defined for the array (SQLSTATE 2202E). For an
associative array, the array-index expression must be assignable to the
index data type of the associative array (SQLSTATE 428H1) and cannot
be the null value.

VALUES INTO

Statements 1355



field-reference
Identifies the field within a row type value that is the assignment target.
The field-reference must be specified as a qualified field-name where the
qualifier identifies the row value in which the field is defined.

Rules
v Global variables cannot be assigned inside triggers that are not defined using a

compound SQL (compiled) statement, functions that are not defined using a
compound SQL (compiled) statement, methods, or compound SQL (inlined)
statements (SQLSTATE 428GX).

Examples
v Example 1: This C example retrieves the value of the CURRENT PATH special

register into a host variable.
EXEC SQL VALUES(CURRENT PATH)

INTO :hvl;

v Example 2: This C example retrieves a portion of a LOB field into a host
variable, exploiting the LOB locator for deferred retrieval.

EXEC SQL VALUES (substr(:locator1,35))
INTO :details;

v Example 3: This C example retrieves the value of the SESSION_USER special
register into a global variable.

EXEC SQL VALUES(SESSION_USER)
INTO GV_SESS_USER;

VALUES INTO

1356 SQL Reference Volume 2



WHENEVER
The WHENEVER statement specifies the action to be taken when a specified
exception condition occurs.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. The statement is not supported in REXX.

Authorization

None required.

Syntax

�� WHENEVER NOT FOUND
SQLERROR
SQLWARNING

CONTINUE
GOTO host-label
GO TO :

DO function-name()
BREAK
CONTINUE

��

Description

The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 or an SQLSTATE
of '02000'.

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0 is
'W'), or that results in a positive SQL return code other than +100.

The CONTINUE or GO TO clause is used to specify what is to happen when the
identified type of exception condition exists.

CONTINUE
Causes the next sequential instruction of the source program to be executed.

GOTO or GO TO host-label
Causes control to pass to the statement identified by host-label. For host-label,
substitute a single token, optionally preceded by a colon. The form of the
token depends on the host language.

DO Causes additional action in the form of a function call, break statement, or
continue statement to take place.

function-name()
Specifies the C function that is to be called. The function must have a
void return value and cannot accept any arguments. The function
name must end with set of parentheses "(" and ")". The name of the
function is limited to 255 bytes.

WHENEVER

Statements 1357



The function name resolution takes place during the compilation of the
C and C++ embedded SQL application. The database precompiler does
not resolve the function name.

BREAK
Specifies the C break statement. The C break statement exits thedo, for,
switch, or while statement block.

CONTINUE
Specifies the C continue statement. The C continue statement passes
control to the next iteration of the do, for, switch, or while statement
block.

Notes

There are three types of WHENEVER statements:
v WHENEVER NOT FOUND
v WHENEVER SQLERROR
v WHENEVER SQLWARNING

Every executable SQL statement in a program is within the scope of one implicit or
explicit WHENEVER statement of each type. The scope of a WHENEVER
statement is related to the listing sequence of the statements in the program, not
their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that
type in which CONTINUE is specified.

If the WHENEVER statement is not used, the default action is to continue
processing if an error, warning, or exception condition occurs during execution.

The WHENEVER statement must be used before the SQL statements that you want
to affect. Otherwise, the precompiler does not know that additional error-handling
code is required for the executable SQL statements. You can have any combination
of the three basic forms active at any time. The order in which you declare the
three forms is not significant.

To avoid an infinite looping situation, ensure that you undo the WHENEVER
handling before any SQL statements are executed inside the handler. You can undo
the WHENEVER handling by using the WHENEVER SQLERROR CONTINUE
statement.

The WHENEVER statement support for use of the DO function-name(), DO BREAK,
or DO CONTINUE syntax is available in Version 9.7 Fix Pack 6 and later.

Example

In the following C example, if an error is produced, go to HANDLERR. If a
warning code is produced, continue with the normal flow of the program. If no
data is returned, go to ENDDATA.

EXEC SQL WHENEVER SQLERROR GOTO HANDLERR;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA;

WHENEVER

1358 SQL Reference Volume 2



The C example for use of the DO function-name(), DO BREAK, or DO CONTINUE
syntax are:
/* DO function_name */
EXEC SQL WHENEVER SQLERROR DO perform_error_action();
EXEC SQL WHENEVER SQLWARNING DO perform_warning_action();
EXEC SQL WHENEVER NOT FOUND DO perform_notfound_action();

/* DO BREAK */
EXEC SQL WHENEVER SQLERROR DO BREAK;
EXEC SQL WHENEVER SQLWARNING DO BREAK;
EXEC SQL WHENEVER NOT FOUND DO BREAK;

/* DO CONTINUE */
EXEC SQL WHENEVER SQLERROR DO CONTINUE;
EXEC SQL WHENEVER SQLWARNING DO CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO CONTINUE;

WHENEVER

Statements 1359



WHILE
The WHILE statement repeats the execution of a statement or group of statements
while a specified condition is true.

Invocation

This statement can be embedded in an:
v SQL procedure definition
v Compound SQL (compiled) statement
v Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL
function definition, or SQL trigger definition. It is not an executable statement and
cannot be dynamically prepared.

Authorization

No privileges are required to invoke the WHILE statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements and search condition that are embedded in the WHILE statement.

Syntax

�� WHILE search-condition DO SQL-routine-statement END WHILE
label: label

��

SQL-routine-statement:

�

�

SQL-procedure-statement ;

SQL-function-statement ;

Description

label
Specifies the label for the WHILE statement. If the beginning label is specified,
it can be specified in LEAVE and ITERATE statements. If the ending label is
specified, it must be the same as the beginning label.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the
condition is true, the SQL-procedure-statements in the loop are processed.

SQL-procedure-statement
Specifies the SQL statements to execute within the loop. SQL-procedure-
statement is only applicable when in the context of an SQL procedure or
compound SQL (compiled) statement. See SQL-procedure-statement in
“Compound SQL (compiled)” statement.

SQL-function-statement
Specifies the SQL statements to execute within the loop. SQL-function-statement

WHILE

1360 SQL Reference Volume 2



is only applicable in an SQL function or a compound SQL (inlined) statement
which can be embedded in an SQL trigger, SQL function or SQL method. See
SQL-function-statement in “FOR”.

Example

This example uses a WHILE statement to iterate through FETCH and SET
statements. While the value of SQL variable v_counter is less than half of number
of employees in the department identified by the IN parameter deptNumber, the
WHILE statement continues to perform the FETCH and SET statements. When the
condition is no longer true, the flow of control leaves the WHILE statement and
closes the cursor.

CREATE PROCEDURE DEPT_MEDIAN
(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)
LANGUAGE SQL
BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT CAST(salary AS DOUBLE)
FROM staff
WHERE DEPT = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords

FROM staff
WHERE DEPT = deptNumber;

OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

END

WHILE

Statements 1361



1362 SQL Reference Volume 2



Appendix A. DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v Online DB2 documentation in IBM Knowledge Center:

– Topics (task, concept, and reference topics)
– Sample programs
– Tutorials

v Locally installed DB2 Information Center:
– Topics (task, concept, and reference topics)
– Sample programs
– Tutorials

v DB2 books:
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– Printed books

v Command-line help:
– Command help
– Message help

Important: The documentation in IBM Knowledge Center and the DB2
Information Center is updated more frequently than either the PDF or the
hardcopy books. To get the most current information, install the documentation
updates as they become available, or refer to the DB2 documentation in IBM
Knowledge Center.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

The DB2 Information Development team values your feedback on the DB2
documentation. If you have suggestions for how to improve the DB2
documentation, send an email to db2docs@ca.ibm.com. The DB2 Information
Development team reads all of your feedback but cannot respond to you directly.
Provide specific examples wherever possible to better understand your concerns. If
you are providing feedback on a specific topic or help file, include the topic title
and URL.

Do not use the db2docs@ca.ibm.com email address to contact DB2 Customer
Support. If you have a DB2 technical issue that you cannot resolve by using the
documentation, contact your local IBM service center for assistance.

© Copyright IBM Corp. 1993, 2014 1363

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/


DB2 technical library in hardcopy or PDF format
You can download the DB2 technical library in PDF format or you can order in
hardcopy from the IBM Publications Center.

English and translated DB2 Version 10.5 manuals in PDF format can be
downloaded from DB2 database product documentation at www.ibm.com/
support/docview.wss?rs=71&uid=swg27009474.

The following tables describe the DB2 library available from the IBM Publications
Center at http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
Although the tables identify books that are available in print, the books might not
be available in your country or region.

The form number increases each time that a manual is updated. Ensure that you
are reading the most recent version of the manuals, as listed in the following
tables.

The DB2 documentation online in IBM Knowledge Center is updated more
frequently than either the PDF or the hardcopy books.

Table 37. DB2 technical information

Name Form number Available in print Availability date

Administrative API
Reference

SC27-5506-00 Yes 28 July 2013

Administrative Routines
and Views

SC27-5507-01 No 1 October 2014

Call Level Interface
Guide and Reference
Volume 1

SC27-5511-01 Yes 1 October 2014

Call Level Interface
Guide and Reference
Volume 2

SC27-5512-01 No 1 October 2014

Command Reference SC27-5508-01 No 1 October 2014

Database Administration
Concepts and
Configuration Reference

SC27-4546-01 Yes 1 October 2014

Data Movement Utilities
Guide and Reference

SC27-5528-01 Yes 1 October 2014

Database Monitoring
Guide and Reference

SC27-4547-01 Yes 1 October 2014

Data Recovery and High
Availability Guide and
Reference

SC27-5529-01 No 1 October 2014

Database Security Guide SC27-5530-01 No 1 October 2014

DB2 Workload
Management Guide and
Reference

SC27-5520-01 No 1 October 2014

Developing ADO.NET
and OLE DB
Applications

SC27-4549-01 Yes 1 October 2014

Developing Embedded
SQL Applications

SC27-4550-00 Yes 28 July 2013

DB2 technical library in hardcopy or PDF format

1364 SQL Reference Volume 2

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss


Table 37. DB2 technical information (continued)

Name Form number Available in print Availability date

Developing Java
Applications

SC27-5503-01 No 1 October 2014

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-5504-01 No 1 October 2014

Developing RDF
Applications for IBM
Data Servers

SC27-5505-00 Yes 28 July 2013

Developing User-defined
Routines (SQL and
External)

SC27-5501-00 Yes 28 July 2013

Getting Started with
Database Application
Development

GI13-2084-01 Yes 1 October 2014

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2085-01 Yes 1 October 2014

Globalization Guide SC27-5531-00 No 28 July 2013

Installing DB2 Servers GC27-5514-01 No 1 October 2014

Installing IBM Data
Server Clients

GC27-5515-01 No 1 October 2014

Message Reference
Volume 1

SC27-5523-00 No 28 July 2013

Message Reference
Volume 2

SC27-5524-00 No 28 July 2013

Net Search Extender
Administration and
User's Guide

SC27-5526-01 No 1 October 2014

Partitioning and
Clustering Guide

SC27-5532-01 No 1 October 2014

pureXML Guide SC27-5521-00 No 28 July 2013

Spatial Extender User's
Guide and Reference

SC27-5525-00 No 28 July 2013

SQL Procedural
Languages: Application
Enablement and Support

SC27-5502-00 No 28 July 2013

SQL Reference Volume 1 SC27-5509-01 No 1 October 2014

SQL Reference Volume 2 SC27-5510-01 No 1 October 2014

Text Search Guide SC27-5527-01 Yes 1 October 2014

Troubleshooting and
Tuning Database
Performance

SC27-4548-01 Yes 1 October 2014

Upgrading to DB2
Version 10.5

SC27-5513-01 Yes 1 October 2014

What's New for DB2
Version 10.5

SC27-5519-01 Yes 1 October 2014

XQuery Reference SC27-5522-01 No 1 October 2014

DB2 technical library in hardcopy or PDF format

Appendix A. DB2 technical information 1365



Table 38. DB2 Connect technical information

Name Form number Available in print Availability date

Installing and
Configuring DB2
Connect Servers

SC27-5517-00 Yes 28 July 2013

DB2 Connect User's
Guide

SC27-5518-01 Yes 1 October 2014

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing DB2 documentation online for different DB2 versions
You can access online the documentation for all the versions of DB2 products in
IBM Knowledge Center.

About this task

All the DB2 documentation by version is available in IBM Knowledge Center at
http://www.ibm.com/support/knowledgecenter/SSEPGG/welcome. However,
you can access a specific version by using the associated URL for that version.

Procedure

To access online the DB2 documentation for a specific DB2 version:
v To access the DB2 Version 10.5 documentation, follow this URL:

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/
com.ibm.db2.luw.kc.doc/welcome.html.

v To access the DB2 Version 10.1 documentation, follow this URL:
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/
com.ibm.db2.luw.kc.doc/welcome.html.

v To access the DB2 Version 9.8 documentation, follow this URL:
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.8.0/
com.ibm.db2.luw.kc.doc/welcome.html.

v To access the DB2 Version 9.7 documentation, follow this URL:
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/
com.ibm.db2.luw.kc.doc/welcome.html.

DB2 technical library in hardcopy or PDF format

1366 SQL Reference Volume 2

http://www.ibm.com/support/knowledgecenter/SSEPGG/welcome
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.8.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.8.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.kc.doc/welcome.html


v To access the DB2 Version 9.5 documentation, follow this URL:
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.5.0/
com.ibm.db2.luw.kc.doc/welcome.html.

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the previous instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com® are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Accessing DB2 documentation online for different DB2 versions

Appendix A. DB2 technical information 1367

http://www.ibm.com/support/knowledgecenter/SSEPGG_9.5.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.5.0/com.ibm.db2.luw.kc.doc/welcome.html
http://www.ibm.com/legal/copytrade.shtml


1368 SQL Reference Volume 2



Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1993, 2014 1369



websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

Notices

1370 SQL Reference Volume 2



platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices

Appendix B. Notices 1371

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html


1372 SQL Reference Volume 2



Index

A
aliases

adding comments to catalog 292
CREATE ALIAS statement 346
dropping 983

ALLOCATE CURSOR statement 24
ALTER AUDIT POLICY statement 26
ALTER BUFFERPOOL statement 29
ALTER DATABASE PARTITION GROUP statement 32
ALTER DATABASE statement

details 36
ALTER EVENT MONITOR statement

details 41
ALTER FUNCTION statement 46
ALTER HISTOGRAM TEMPLATE statement 50
ALTER INDEX statement 52
ALTER MASK statement 53
ALTER METHOD statement 54
ALTER NICKNAME statement 64
ALTER NODEGROUP statement

See ALTER DATABASE PARTITION GROUP statement 32
ALTER PACKAGE statement 73
ALTER PERMISSION statement 76
ALTER PROCEDURE (External) statement 77
ALTER PROCEDURE (Sourced) statement 80
ALTER PROCEDURE (SQL) statement 82
ALTER SCHEMA statement 84
ALTER SECURITY LABEL COMPONENT statement 86
ALTER SECURITY POLICY statement 89
ALTER SEQUENCE statement 93
ALTER SERVER statement 97
ALTER SERVICE CLASS statement 100
ALTER STOGROUP statement

details 109
ALTER TABLE statement

details 114
ALTER TABLESPACE statement

details 181
ALTER THRESHOLD statement 197
ALTER TRIGGER statement 210
ALTER TRUSTED CONTEXT statement 211
ALTER TYPE (Structured) statement 219
ALTER USAGE LIST statement 226
ALTER USER MAPPING statement 228
ALTER VIEW statement

details 230
ALTER WORK ACTION SET statement 232
ALTER WORK CLASS SET statement 246
ALTER WORKLOAD statement

details 252
ALTER WRAPPER statement 268
ALTER XSROBJECT statement 270
ambiguous cursors 942
arithmetic

parameter markers 1146
assembler application host variables 1025
ASSOCIATE LOCATORS statement 271
ASUTIME

CREATE FUNCTION (external scalar) statement 440
CREATE FUNCTION (external table) statement 468
CREATE PROCEDURE (external) statement 613

ASUTIME (continued)
CREATE PROCEDURE (SQL) statement 635

AUDIT statement 273
authorization IDs

granting control
database operations 1053
indexes 1063

granting schema privileges 1078
public control on index 1063
revoking authorities 1170

B
BEGIN DECLARE SECTION statement 277
BIGINT data type

CREATE TABLE statement 680
binary large objects (BLOBs)

tables 680
binding

GRANT statement 1067
revoking BIND privilege 1182

BLOB data type
CREATE TABLE statement 680

buffer pools
creating 353
dropping 983
page size 353
setting size 29, 353

C
caching

EXECUTE statement 1017
CALL statement

details 279
CASCADE delete rule 680
CASE statement

details 287
catalogs

COMMENT statement 292
CHAR VARYING data type 680
CHARACTER data type 680
character strings

SQL statement creation 1025
CHARACTER VARYING data type 680
check constraints

ALTER TABLE statement 114
CREATE TABLE statement 680
INSERT statement 1106

CLOB data type
columns 680

CLOSE statement
details 290

closed state
cursors 1138

coded character set identifier (CCSID)
CREATE TABLE statement 680
DECLARE GLOBAL TEMPORARY TABLE statement 948

COLLID
CREATE FUNCTION (external scalar) statement 440

© Copyright IBM Corp. 1993, 2014 1373



COLLID (continued)
CREATE FUNCTION (external table) statement 468
CREATE PROCEDURE (external) statement 613
CREATE PROCEDURE (SQL) statement 635

columns
adding

ALTER TABLE statement 114
comment additions in catalog 292
constraints

names 680
granting add privileges 1093
index keys 551
names

INSERT statement 1106
null values

ALTER TABLE statement 114
updating 1337
values

inserting 1106
COMMENT statement 292
comments

catalog table 292
SQL

static statements 10
SQL static statements 13

COMMIT statement
details 303

compilation
conditional (SQL) 14

compiled compound statement
details 315

compound SQL statements
embedded 311
inlined 306
overview 305

concurrency
LOCK TABLE statement 1121

condition handlers
declaring 315

conditional compilation
SQL 14

CONNECT statement
type 1 332
type 2 339

constraints
adding comments to catalog 292
adding with ALTER TABLE statement 114
dropping 114

containers
CREATE TABLESPACE statement 765

conventions
highlighting x

conversion
character string to executable SQL 1025

CREATE ALIAS statement 346
CREATE AUDIT POLICY statement 350
CREATE BUFFERPOOL statement 353
CREATE DATABASE PARTITION GROUP statement 357
CREATE DISTINCT TYPE statement

see CREATE TYPE statement, distinct type 834
CREATE EVENT MONITOR (activities) statement 379
CREATE EVENT MONITOR (change history) statement 390
CREATE EVENT MONITOR (locking) statement 397
CREATE EVENT MONITOR (package cache) statement 403
CREATE EVENT MONITOR (statistics) statement 410
CREATE EVENT MONITOR (threshold violations)

statement 422

CREATE EVENT MONITOR (unit of work) statement 434
CREATE EVENT MONITOR statement 359
CREATE FUNCTION MAPPING statement 532
CREATE FUNCTION statement

external scalar 440
external table 468
OLE external table 489
overview 439
sourced 500
SQL row 514
SQL scalar 514
SQL table 514
template 500

CREATE GLOBAL TEMPORARY TABLE statement
details 536

CREATE HISTOGRAM TEMPLATE statement 549
CREATE INDEX EXTENSION statement 575
CREATE INDEX statement

details 551
CREATE MASK statement 581
CREATE METHOD statement

details 587
CREATE MODULE statement 593
CREATE NICKNAME statement

details 595
CREATE NODEGROUP statement 357
CREATE PERMISSION statement 608
CREATE PROCEDURE statement

CASE statement 287
compound SQL 315
compound SQL (inlined) statement 306
condition handlers 315
DECLARE statement 315
external 613
FOR statement 1044
GET DIAGNOSTICS statement 1048
GOTO statement 1051
handler statement 315
IF statement 1102
ITERATE statement 1117
LEAVE statement 1119
LOOP statement 1123
overview 612
REPEAT statement 1163
RETURN statement 1168
SIGNAL statement 1319
sourced 629
SQL 635
variables 315
WHILE statement 1360

CREATE ROLE statement
details 645

CREATE SCHEMA statement 646
CREATE SECURITY LABEL COMPONENT statement 649
CREATE SECURITY LABEL statement 652
CREATE SECURITY POLICY statement 654
CREATE SEQUENCE statement 656
CREATE SERVER statement 672
CREATE SERVICE CLASS statement 662
CREATE STOGROUP statement

details 676
CREATE SYNONYM statement 679
CREATE TABLE statement

details 680
CREATE TABLESPACE statement

details 765

1374 SQL Reference Volume 2



CREATE THRESHOLD statement
details 780

CREATE TRANSFORM statement
details 797

CREATE TRIGGER statement 801
CREATE TRUSTED CONTEXT statement

details 817
CREATE TYPE MAPPING statement

details 871
CREATE TYPE statement

array type 825
details 824
distinct type 834
row type 842
structured type 847

CREATE USAGE LIST statement 878
CREATE USER MAPPING statement

details 882
CREATE VARIABLE statement 884
CREATE VIEW statement 893
CREATE WORK ACTION SET statement 908
CREATE WORK CLASS SET statement 917
CREATE WORKLOAD statement

details 922
CREATE WRAPPER statement

details 940
CURRENT DECFLOAT ROUNDING MODE special register

SET CURRENT DECFLOAT ROUNDING MODE
statement 1225

CURRENT DEGREE special register
SET CURRENT DEGREE statement 1228

CURRENT EXPLAIN MODE special register
SET CURRENT EXPLAIN MODE statement 1230

CURRENT EXPLAIN SNAPSHOT special register
SET CURRENT EXPLAIN SNAPSHOT statement 1233

CURRENT FUNCTION PATH special register
SET CURRENT FUNCTION PATH statement 1295
SET CURRENT PATH statement 1295
SET PATH statement 1295

CURRENT IMPLICIT XMLPARSE OPTION special register
SET CURRENT IMPLICIT XMLPARSE OPTION

statement 1237
CURRENT ISOLATION special register

SET CURRENT ISOLATION statement 1238
CURRENT OPTIMIZATION PROFILE special register

SET CURRENT OPTIMIZATION PROFILE
statement 1249

SET CURRENT TEMPORAL BUSINESS_TIME
statement 1266

SET CURRENT TEMPORAL SYSTEM_TIME
statement 1268

CURRENT PATH special register
SET CURRENT FUNCTION PATH statement 1295
SET CURRENT PATH statement 1295
SET PATH statement 1295

CURRENT QUERY OPTIMIZATION special register
SET CURRENT QUERY OPTIMIZATION statement 1258

CURRENT REFRESH AGE special register
SET CURRENT REFRESH AGE statement 1261

cursors
active set association 1138
ambiguous 942
closed state 1138
current row 1033
DECLARE CURSOR statement 942
declaring

SQL statement syntax 942

cursors (continued)
deleting 961
location in table as result of FETCH statement 1033
moving position using FETCH 1033
names

allocating 24
opening 1138
preparing for application use 1138
read-only

conditions 942
result table relationship 942
units of work

conditional states 942
terminating for 1211

updatable
determining 942

WITH HOLD
lock clause of COMMIT statement 303

D
data

integrity
locks 1121

data types
abstract 219, 847
ALTER TYPE statement 219
CREATE TYPE (structured) statement 847
declared 315
distinct

CREATE TYPE (distinct) statement 834
structured

ALTER TYPE (structured) statement 219
CREATE TYPE (structured) statement 847

user-defined
CREATE TYPE (distinct) statement 834

database authorities
granting

GRANT (database authorities) statement 1053
database partition groups

adding comments to catalog 292
adding partitions 32
creating 357
distribution map creation 357
dropping partitions 32

database-managed space (DMS)
table spaces

CREATE TABLESPACE statement 765
databases

accessing
granting authority 1053

CREATE TABLESPACE statement 765
DB2 documentation

available formats 1363
DB2 documentation versions

IBM Knowledge Center 1366
db2nodes.cfg file

ALTER DATABASE PARTITION GROUP statement 32
CONNECT (type 1) statement 332
CREATE DATABASE PARTITION GROUP statement 357

DB2SECURITYLABEL data type
CREATE TABLE statement 680

DBADM (database administration) authority
granting 1053

DBCLOB data type
CREATE TABLE statement 680

Index 1375



declarations
inserting into program 1104

DECLARE CURSOR statement
details 942

DECLARE GLOBAL TEMPORARY TABLE statement
details 948

DECLARE statements
BEGIN DECLARE SECTION statement 277
compound SQL 315
END DECLARE SECTION statement 1016

deletable views
overview 893

DELETE statement
details 961

dependent objects
DROP statement 983

deprecated functionality
SQL statements

ALTER DATABASE 36
DESCRIBE INPUT statement 972
DESCRIBE OUTPUT statement 976
DESCRIBE statement

details 971
prepared statements

DESCRIBE INPUT statement 972
DESCRIBE OUTPUT statement 976

DISCONNECT statement 980
distinct types

CREATE TYPE (distinct) statement 834
DROP statement 983

documentation
PDF files 1364
printed 1364
terms and conditions of use 1367

DROP statement
details 983
transforms 983

dynamic SQL
compound statements 306
cursors

DECLARE CURSOR statement 10, 11
DESCRIBE INPUT statement 972
DESCRIBE OUTPUT statement 976
EXECUTE IMMEDIATE statement

details 1025
EXECUTE statement

details 1017
invoking SQL statements 10, 11

FETCH statement
details 1033
invoking SQL statements 10, 11

invoking statements 10, 11
OPEN statement 10, 11
PREPARE statement

details 1146
invoking SQL statements 10, 11
using DESCRIBE 972, 976

E
embedded SQL applications

character string format statements 1025
EXECUTE IMMEDIATE statement 1025
overview 10

END DECLARE SECTION statement 1016
error conditions x

error messages
column masks 53, 581
return codes 10, 12
row permissions 76, 608
triggers

execution 801
typed tables 210

errors
cursors 1138
FETCH statement 1033
UPDATE statement 1337

event monitors
CREATE EVENT MONITOR statement 359
DROP statement 983
FLUSH EVENT MONITOR statement 1038
SET EVENT MONITOR STATE statement 1272

exception tables
SET INTEGRITY statement 1274

EXCLUSIVE MODE connection 332
executable SQL statements 10, 11, 12
EXECUTE IMMEDIATE statement

details 1025
embedded 10, 11

EXECUTE statement
details 1017
embedded 10, 11

EXPLAIN statement
details 1028

F
FETCH statement

cursor prerequisites for executing 1033
details 1033

FLOAT data type
CREATE TABLE statement 680

FLUSH BUFFERPOOLS statement 1037
FLUSH EVENT MONITOR statement 1038
FLUSH FEDERATED CACHE statement 1039
FLUSH OPTIMIZATION PROFILE CACHE statement 1041
FLUSH PACKAGE CACHE statement 1043
FOR statement 1044
foreign keys

adding 114
constraint names 680
dropping 114

FREE LOCATOR statement 1047
FROM clause

DELETE statement 961
fullselect

CREATE VIEW statement 893
function designator syntax element 20
functions

adding comments to catalog 292
templates

details 532
transformation 797

G
generated columns

CREATE TABLE statement 680
GET DIAGNOSTICS statement 1048
global variables

references 17

1376 SQL Reference Volume 2



GOTO statement
details 1051

GRANT statement
database authorities 1053
exemptions 1058
global variable privileges 1061
index privileges 1063
nickname privileges 1093
package privileges 1067
roles 1070
routine privileges 1073
schema privileges 1078
security labels 1081
sequence privileges 1084
server privileges 1087
SETSESSIONUSER privilege 1089
table privileges 1093
table space privileges 1091
view privileges 1093
workload privileges 1099
XSR object privileges 1101

GRAPHIC data type
CREATE TABLE statement 680

H
hashing on partition keys 680
help

SQL statements 1366
host variables

assigning values from a row
SELECT INTO statement 1218
VALUES INTO statement 1354

BEGIN DECLARE SECTION statement 277
declaring

BEGIN DECLARE SECTION statement 277
cursors 942
END DECLARE SECTION statement 1016

embedded SQL statements 10, 12
END DECLARE SECTION statement 1016
EXECUTE IMMEDIATE statement 1025
FETCH statement 1033
inserting in rows 1106
linking active set with cursor 1138
parameter marker substitution 1017
REXX applications 277
statement strings 1146

I
IBM Knowledge Center

DB2 documentation versions 1366
identity columns

CREATE TABLE statement 680
IF statement

SQL 1102
implicit connections

CONNECT statement 332
implicit schemas

GRANT (database authorities) statement 1053
REVOKE (database authorities) statement 1170

INCLUDE statement
details 1104

index over XML data
CREATE INDEX statement

details 551

indexes
catalog specification comments 292
correspondence to inserted row values 1106
dropping 983
granting control 1063, 1093
names

primary key constraint 680
unique constraint 680

primary key 114
privileges

revoking 1178
renaming 1159
unique key 114

inoperative triggers 210, 801
inoperative views 893
INSERT statement 1106
insertable views

creating 893
INTEGER data type

CREATE TABLE statement 680
integrity constraints 292
isolation levels

DELETE statement 961
INSERT statement 1106
SELECT statement 1218
UPDATE statement 1337

ITERATE statement
details 1117

J
joins

CREATE TABLE statement 680

L
labels

GOTO statement 1051
SQL procedures 18

LBAC
ALTER SECURITY LABEL COMPONENT statement 86
ALTER SECURITY POLICY statement 89
CREATE SECURITY LABEL COMPONENT statement 649
CREATE SECURITY LABEL statement 652
CREATE SECURITY POLICY statement 654
GRANT (exemption) statement 1058
GRANT (security label) statement 1081
REVOKE (exemption) statement 1174
REVOKE (security label) statement 1193
rule exemptions

GRANT (exemption) statement 1058
REVOKE (exemption) statement 1174

security label components
ALTER SECURITY LABEL COMPONENT

statement 86
CREATE SECURITY LABEL COMPONENT

statement 649
security labels

ALTER SECURITY LABEL COMPONENT
statement 86

CREATE SECURITY LABEL COMPONENT
statement 649

CREATE SECURITY LABEL statement 652
GRANT (security label) statement 1081
REVOKE (security label) statement 1193

Index 1377



LBAC (continued)
security policies

ALTER SECURITY POLICY statement 89
CREATE SECURITY POLICY statement 654

LEAVE statement
details 1119

loads
granting database authority 1053

locators
ASSOCIATE LOCATORS statement 271
FREE LOCATOR statement 1047

LOCK TABLE statement
details 1121

locks
COMMIT statement 303
INSERT statement 1106
LOCK TABLE statement 1121
restricting access 1121
terminating for unit of work 1211
UPDATE statement 1337

logs
creating tables without initial logging 680

LOOP statement
SQL 1123

M
masks

ALTER MASK statement 53
CREATE MASK statement 581

MERGE statement 1125
method designator syntax element 20
MODE keyword 1121
modules

altering 56
creating 593

MQTs
defining 680
REFRESH TABLE statement 1152

N
nicknames

creating 595
privileges

granting 1093
revoking 1203

NO ACTION delete rule 680
non-executable SQL statements

invoking 10
precompiler requirements 10

notices 1369

O
object identifiers

See OIDs 680
OIDs

columns
overview 680

CREATE TABLE statement 680
CREATE VIEW statement 893

online DB2 documentation
IBM Knowledge Center 1366

OPEN statement
details 1138

P
packages

ALTER TABLE statement 114
authority to create 1053
catalog comments 292
COMMIT statement effect on cursors 303
deleting 983
privileges

granting 1067
revoking using REVOKE (package privileges)

statement 1182
revoking using REVOKE (table, view, or nickname

privileges) statement 1203
parameter markers

EXECUTE statement 1017
OPEN statement 1138
password rules 1146
PREPARE statement 1146
typed 1146
untyped 1146

partitioning keys
adding 114
defining when creating tables 680
dropping 114

partitioning maps
creating for database partition groups 357

performance
partitioning key recommendation 680

permissions
ALTER PERMISSION statement 76
CREATE PERMISSION statement 608

PIPE statement 1144
positional updating of columns by row 1337
precompilation

external text files 1104
INCLUDE statement 1104
non-executable SQL statements 10
SQLCA 1104
SQLDA 1104

PREPARE statement
details 1146
dynamically declaring 1146
embedded 10, 11
variable substitution in OPEN statement 1138

prepared SQL statements
executing 1017
host variable substitution 1017
obtaining information

DESCRIBE INPUT statement 972
DESCRIBE OUTPUT statement 976

primary keys
adding

ALTER TABLE statement 114
CREATE TABLE statement 680

dropping by using ALTER TABLE statement 114
privileges required 1093

privileges
databases

revoking 1191
indexes

revoking 1178
packages

revoking 1182, 1203
revoking

REVOKE statement 1203
procedure designator syntax element 20

1378 SQL Reference Volume 2



procedures
authorization for creating

CREATE PROCEDURE (external) statement 613
CREATE PROCEDURE (SQL) statement 635

CALL statement 279
CREATE PROCEDURE statement 612
creating 613, 635

PROGRAM option for DB2 for z/OS compatibility
DROP statement 983

PROGRAM TYPE
CREATE FUNCTION (external scalar) statement 440
CREATE FUNCTION (external table) statement 468

PUBLIC AT ALL LOCATIONS 1093

Q
question mark

parameter markers 1017

R
read-only cursors

ambiguous 942
read-only views

creating 893
REAL SQL data type

CREATE TABLE statement 680
records

locks on row data 1106
references

labels 18
SQL condition names 18
SQL cursor names 19
SQL statement names 19

referential constraints
adding comments to catalog 292

REFRESH TABLE statement 1152
RELEASE (connection) statement 1156
RELEASE SAVEPOINT statement 1158
remote access

CONNECT statement 332
successful connections 332
unsuccessful connections 332

RENAME statement 1159
RENAME STOGROUP statement

details 1161
RENAME TABLESPACE statement 1162
REPEAT statement

details 1163
RESIGNAL statement 1165
RESTRICT delete rule 680
result sets

returning
SQL procedures 315

return codes
embedded statements 10, 12
executable SQL statements 10, 12

RETURN statement
details 1168

REVOKE statement
database authorities 1170
exemptions 1174
global variable privileges 1176
index privileges 1178
module privileges 1180
nickname privileges 1203

REVOKE statement (continued)
package privileges 1182
roles 1185
routine privileges 1187
schema privileges 1191
security labels 1193
sequence privileges 1195
server privileges 1197
SETSESSIONUSER privilege 1199
table privileges 1203
table space privileges 1201
view privileges 1203
workload privileges 1208
XSR object privileges 1210

REXX language
END DECLARE SECTION statement 1016

ROLLBACK statement
details 1211

row data types
CREATE TYPE (cursor) statement 831

row fullselect
UPDATE statement 1337

rows
assigning values to host variables

SELECT INTO statement 1218
VALUES INTO statement 1354

cursors
effect of closing on FETCH statement 290
FETCH statement 1138
location in result tables 942

deleting
DELETE statement 961

FETCH request 942
granting privileges 1093
index keys with UNIQUE clause 551
indexes 551
inserting

INSERT statement 1106
locks

effect on cursor of WITH HOLD 942
INSERT statement 1106

restrictions leading to failure 1106
updating

column values by using UPDATE statement 1337

S
SAVEPOINT statement 1214
savepoints

releasing 1158
ROLLBACK statement with TO SAVEPOINT clause 1211

schemas
adding comments to catalog 292
CREATE SCHEMA statement 646
implicit

granting authority 1053
revoking authority 1170

scope
adding

ALTER TABLE statement 114
ALTER VIEW statement 230

defining
added columns 114
CREATE TABLE statement 680
CREATE VIEW statement 893

search conditions
DELETE statement 961

Index 1379



search conditions (continued)
UPDATE statement 1337

SECADM (security administrator) authority
granting 1053
revoking 1170

security
CONNECT statement 332

security labels (LBAC)
ALTER SECURITY LABEL COMPONENT statement 86
CREATE SECURITY LABEL COMPONENT statement 649
CREATE SECURITY LABEL statement 652
GRANT (security label) statement 1081
policies

ALTER SECURITY POLICY statement 89
CREATE SECURITY POLICY statement 654

REVOKE (security label) statement 1193
SELECT INTO statement

details 1218
SELECT statement

cursors 942
evaluating for result table of OPEN statement cursor 1138
overview 1217

select-statement SQL statement construct
definition 12
invoking

dynamically 12
overview 10
statically 11

sequences
dropping 983

servers
granting privileges 1087

SET COMPILATION ENVIRONMENT statement 1222
SET CONNECTION statement 1223
SET CONSTRAINTS statement 1274
SET CURRENT DECFLOAT ROUNDING MODE

statement 1225
SET CURRENT DEFAULT TRANSFORM GROUP

statement 1227
SET CURRENT DEGREE statement 1228
SET CURRENT EXPLAIN MODE statement 1230
SET CURRENT EXPLAIN SNAPSHOT statement 1233
SET CURRENT FEDERATED ASYNCHRONY statement 1235
SET CURRENT FUNCTION PATH statement 1295
SET CURRENT IMPLICIT XMLPARSE OPTION

statement 1237
SET CURRENT ISOLATION statement 1238
SET CURRENT LOCALE LC_MESSAGES statement 1239
SET CURRENT LOCALE LC_TIME statement 1241
SET CURRENT LOCK TIMEOUT statement 1243
SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION statement 1245
SET CURRENT MDC ROLLOUT MODE statement 1247
SET CURRENT OPTIMIZATION PROFILE statement 1249
SET CURRENT PACKAGE PATH statement 1252
SET CURRENT PACKAGESET statement 1256
SET CURRENT PATH statement 1295
SET CURRENT QUERY OPTIMIZATION statement

details 1258
SET CURRENT REFRESH AGE statement 1261
SET CURRENT SQL_CCFLAGS statement 1264
SET CURRENT SQLID statement 1298
SET CURRENT TEMPORAL BUSINESS_TIME

statement 1266
SET CURRENT TEMPORAL SYSTEM_TIME statement 1268
SET ENCRYPTION PASSWORD statement

details 1270

SET EVENT MONITOR STATE statement 1272
set integrity pending state

SET INTEGRITY statement 1274
SET INTEGRITY statement

details 1274
SET NULL delete rule 680
SET PASSTHRU statement

details 1293
independence from COMMIT statement 303
independence from ROLLBACK statement 1211

SET PATH statement 1295
SET ROLE statement 1297
SET SCHEMA statement 1298
SET SERVER OPTION statement

details 1300
independence from COMMIT statement 303
independence from ROLLBACK statement 1211

SET SESSION AUTHORIZATION statement 1302
SET USAGE LIST STATE statement 1305
SET variable statement 1308
SETSESSIONUSER privilege

GRANT (SETSESSIONUSER privilege) statement 1089
required for SET SESSION AUTHORIZATION

statement 1302
REVOKE (SETSESSIONUSER privilege) statement 1199

SHARE MODE connection 332
SIGNAL statement 1319
single-precision floating-point data type 680
SMALLINT data type

CREATE TABLE statement 680
SMS table spaces

creating 765
SQL

objects
deleting 983

parameters 17
return codes 10
variables

compound SQL (compiled) statement 315
compound SQL (inlined) statement 306
references 17

SQL comments
bracketed 13
simple 13

SQL condition names
references 18

SQL cursor names
references 19

SQL procedures
CASE statement 287
compiled compound statement 315
compound SQL (inlined) statement 306
condition handlers

declaring 315
DECLARE statement 306, 315
FOR statement 1044
GET DIAGNOSTICS statement 1048
GOTO statement 1051
IF statement 1102
ITERATE statement 1117
LEAVE statement 1119
LOOP statement 1123
REPEAT statement 1163
RETURN statement 1168
SIGNAL statement 1319
variables 306, 315
WHILE statement 1360

1380 SQL Reference Volume 2



SQL return codes 12
SQL statement names

references 19
SQL statements

ALLOCATE CURSOR 24
ALTER AUDIT POLICY 26
ALTER BUFFERPOOL 29
ALTER DATABASE 36
ALTER DATABASE PARTITION GROUP 32
ALTER EVENT MONITOR 41
ALTER FUNCTION 46
ALTER HISTOGRAM TEMPLATE 50
ALTER INDEX 52
ALTER MASK 53
ALTER METHOD 54
ALTER MODULE 56
ALTER NICKNAME 64
ALTER NODEGROUP

See SQL statements, ALTER DATABASE PARTITION
GROUP 32

ALTER PACKAGE 73
ALTER PERMISSION 76
ALTER PROCEDURE (external) 77
ALTER PROCEDURE (sourced) 80
ALTER PROCEDURE (SQL) 82
ALTER SCHEMA 84
ALTER SECURITY LABEL COMPONENT 86
ALTER SECURITY POLICY 89
ALTER SEQUENCE 93
ALTER SERVER 97
ALTER SERVICE CLASS 100
ALTER STOGROUP 109
ALTER TABLE 114
ALTER TABLESPACE 181
ALTER THRESHOLD 197
ALTER TRIGGER 210
ALTER TRUSTED CONTEXT 211
ALTER TYPE (structured) 219
ALTER USAGE LIST 226
ALTER USER MAPPING 228
ALTER VIEW 230
ALTER WORK ACTION SET 232
ALTER WORK CLASS SET 246
ALTER WORKLOAD 252
ALTER WRAPPER 268
ALTER XSROBJECT 270
ASSOCIATE LOCATORS 271
AUDIT 273
BEGIN DECLARE SECTION 277
CALL 279
CLOSE 290
COMMENT 292
COMMIT 303
compound (embedded) 311
compound SQL 305
CONNECT

type 1 332
type 2 339

control 17
CREATE ALIAS 346
CREATE AUDIT POLICY 350
CREATE BUFFERPOOL 353
CREATE DATABASE PARTITION GROUP 357
CREATE EVENT MONITOR 359
CREATE EVENT MONITOR (activities) 379
CREATE EVENT MONITOR (change history) 390
CREATE EVENT MONITOR (package cache) 403

SQL statements (continued)
CREATE EVENT MONITOR (statistics) 410
CREATE EVENT MONITOR (threshold violations) 422
CREATE FUNCTION

external scalar 440
external table 468
OLE DB external table 489
overview 439
sourced 500
SQL row 514
SQL scalar 514
SQL table 514
template 500

CREATE FUNCTION MAPPING 532
CREATE GLOBAL TEMPORARY TABLE 536
CREATE HISTOGRAM TEMPLATE 549
CREATE INDEX 551
CREATE INDEX EXTENSION 575
CREATE MASK 581
CREATE METHOD 587
CREATE MODULE 593
CREATE NICKNAME 595
CREATE NODEGROUP

See SQL statements, CREATE DATABASE PARTITION
GROUP 357

CREATE PERMISSION 608
CREATE PROCEDURE

external 613
overview 612
sourced 629
SQL 635

CREATE ROLE 645
CREATE SCHEMA 646
CREATE SECURITY LABEL 652
CREATE SECURITY LABEL COMPONENT 649
CREATE SECURITY POLICY 654
CREATE SEQUENCE 656
CREATE SERVER 672
CREATE SERVICE CLASS 662
CREATE STOGROUP 676
CREATE TABLE 680
CREATE TABLESPACE 765
CREATE THRESHOLD 780
CREATE TRANSFORM 797
CREATE TRIGGER 801
CREATE TRUSTED CONTEXT 817
CREATE TYPE

array 825
distinct 834
overview 824
row 842
structured 847

CREATE TYPE MAPPING 871
CREATE USAGE LIST 878
CREATE USER MAPPING 882
CREATE VARIABLE 884
CREATE VIEW 893
CREATE WORK ACTION SET 908
CREATE WORK CLASS SET 917
CREATE WORKLOAD 922
CREATE WRAPPER 940
DECLARE CURSOR 942
DECLARE GLOBAL TEMPORARY TABLE 948
DELETE 961
DESCRIBE 971
DESCRIBE INPUT 972
DESCRIBE OUTPUT 976

Index 1381



SQL statements (continued)
DISCONNECT 980
DROP 983
embedded 10
END DECLARE SECTION 1016
EXECUTE 1017
EXECUTE IMMEDIATE 1025
EXPLAIN 1028
FETCH 1033
FLUSH BUFFERPOOLS 1037
FLUSH EVENT MONITOR 1038
FLUSH FEDERATED CACHE 1039
FLUSH OPTIMIZATION PROFILE CACHE 1041
FLUSH PACKAGE CACHE 1043
FREE LOCATOR 1047
GRANT

database authorities 1053
exemption 1058
global variable privileges 1061
index privileges 1063
module privileges 1065
nickname privileges 1093
package privileges 1067
role 1070
routine privileges 1073
schema privileges 1078
security label 1081
sequence privileges 1084
server privileges 1087
SETSESSIONUSER privilege 1089
table privileges 1093
table space privileges 1091
view privileges 1093
workload privileges 1099
XSR object privileges 1101

help
displaying 1366

INCLUDE 1104
INSERT 1106
interactive entry 10, 12
invoking 10
LOCK TABLE 1121
MERGE 1125
OPEN 1138
overview 1
PIPE 1144
PREPARE 1146
REFRESH TABLE 1152
RELEASE (connection) 1156
RELEASE SAVEPOINT 1158
RENAME 1159
RENAME STOGROUP 1161
RENAME TABLESPACE 1162
RESIGNAL 1165
REVOKE

database authorities 1170
exemption 1174
global variable privileges 1176
index privileges 1178
nickname privileges 1203
package privileges 1182
role 1185
routine privileges 1187
schema privileges 1191
security label 1193
sequence privileges 1195
server privileges 1197

SQL statements (continued)
REVOKE (continued)

SETSESSIONUSER privilege 1199
table privileges 1203
table space privileges 1201
view privileges 1203
workload privileges 1208
XSR object privileges 1210

ROLLBACK 1211
SAVEPOINT 1214
SELECT 1217
SELECT INTO 1218
SET COMPILATION ENVIRONMENT 1222
SET CONNECTION 1223
SET CONSTRAINTS 1274
SET CURRENT DECFLOAT ROUNDING MODE 1225
SET CURRENT DEFAULT TRANSFORM GROUP 1227
SET CURRENT DEGREE 1228
SET CURRENT EXPLAIN MODE 1230
SET CURRENT EXPLAIN SNAPSHOT 1233
SET CURRENT FEDERATED ASYNCHRONY 1235
SET CURRENT FUNCTION PATH 1295
SET CURRENT IMPLICIT XMLPARSE OPTION 1237
SET CURRENT ISOLATION 1238
SET CURRENT LOCALE LC_MESSAGES 1239
SET CURRENT LOCK TIMEOUT 1243
SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 1245
SET CURRENT MDC ROLLOUT MODE 1247
SET CURRENT OPTIMIZATION PROFILE 1249
SET CURRENT PACKAGE PATH 1252
SET CURRENT PACKAGESET 1256
SET CURRENT PATH 1295
SET CURRENT QUERY OPTIMIZATION 1258
SET CURRENT REFRESH AGE 1261
SET CURRENT SQL_CCFLAGS 1264
SET CURRENT TEMPORAL BUSINESS_TIME 1266
SET CURRENT TEMPORAL SYSTEM_TIME 1268
SET ENCRYPTION PASSWORD 1270
SET EVENT MONITOR STATE 1272
SET INTEGRITY 1274
SET PASSTHRU 1293
SET PATH 1295
SET ROLE 1297
SET SCHEMA 1298
SET SERVER OPTION 1300
SET SESSION AUTHORIZATION 1302
SET USAGE LIST STATE 1305
SET variable 1308
strings

creating 1025
PREPARE statement 1146

TRANSFER OWNERSHIP 1322
TRUNCATE 1334
UPDATE 1337
VALUES 1353
VALUES INTO 1354
WHENEVER 1357
WITH HOLD cursor attribute 942

SQLCA structure
overview 12
UPDATE statement 1337

SQLCODE
details 12

SQLDA
DESCRIBE INPUT statement 972
DESCRIBE OUTPUT statement 976

1382 SQL Reference Volume 2



SQLDA (continued)
FETCH statement 1033

SQLSTATE
overview 12

start key values 575
static SQL

DECLARE CURSOR statement 10, 11
FETCH statement 10
invoking 10, 11
OPEN statement 10
select-statement 10, 11
statements 10, 11

STAY RESIDENT
CREATE FUNCTION (external scalar) statement 440
CREATE FUNCTION (external table) statement 468
CREATE PROCEDURE statement 613, 635

stop key values 575
storage structures

ALTER BUFFERPOOL statement 29
ALTER TABLESPACE statement 181
CREATE BUFFERPOOL statement 353
CREATE TABLESPACE statement 765

structured types
CREATE TRANSFORM statement 797
DROP statement 983

summary tables
overview 680

synonyms
CREATE ALIAS statement 346
DROP ALIAS statement 983

syntax diagrams
reading viii

T
table spaces

adding comments to catalog 292
buffer pools 353
creating

CREATE TABLESPACE statement 765
deleting

DROP statement 983
dropping

DROP statement 983
granting privileges 1091
identifying 680
indexes 680
page sizes 765
renaming 1162
revoking privileges 1201

tables
adding columns 114
adding comments to catalog 292
aliases 346, 983
altering

ALTER TABLE statement 114
authorization for creating 680
creating

CREATE TABLE statement 680
granting authority 1053

deleting 983
dropping 983
exception 1274
generated columns 114
granting privileges 1093
indexes 551
inserting rows 1106

tables (continued)
joining

CREATE TABLE statement 680
names

ALTER TABLE statement 114
CREATE TABLE statement 680
LOCK TABLE statement 1121

renaming 1159
restricting shared access 1121
revoking privileges 1203
schemas 646
temporary

OPEN statement 1138
typed

triggers 801
updating by row and column 1337

temporary tables
OPEN statement 1138

termination
units of work 303, 1211

terms and conditions
publications 1367

TIME data types
CREATE TABLE statement 680

TIMESTAMP data type
CREATE TABLE statement 680

TRANSFER OWNERSHIP statement 1322
transform functions

CREATE TRANSFORM statement 797
transformations

DROP statement 983
triggered SQL statements

SET variable 1308
triggers

adding comments to catalog 292
ALTER TRIGGER statement 210
CREATE TRIGGER statement 801
dropping 983
error messages 801
inoperative 210, 801
INSERT statement 1106
typed tables 801
UPDATE statement 1337

TRUNCATE statement
details 1334

typed views
creating 893
defining subviews 893

U
UDFs

CREATE FUNCTION statement
external scalar 440
external table 468
OLE DB external table 489
overview 439
sourced 500
SQL scalar, table, or row 514
template 500

DROP statement 983
REVOKE (database authorities) statement 1170

UDTs
adding comments to catalog 292
CREATE TRANSFORM statement 797
CREATE TYPE (distinct) statement 834

Index 1383



UDTs (continued)
distinct types

CREATE TABLE statement 680
structured types 680

unique constraints
adding with ALTER TABLE statement 114
creating with CREATE TABLE statement 680
dropping with ALTER TABLE statement 114

unique keys
ALTER TABLE statement 114
CREATE TABLE statement 680

units of work
cancelling changes 1211
COMMIT statement 303
initiation closes cursors 1138
prepared statements 1146
ROLLBACK statement 1211
terminating

commits 303
destroys prepared statements 1146
without saving changes 1211

UPDATE statement 1337
updates

updatable views 893
usage lists

creating 878
deleting using DROP statement 983

V
VALUES clause

loading one row 1106
rules for number of values 1106

VALUES INTO statement 1354
VALUES statement 1353
VARCHAR data type

CREATE TABLE statement 680
views

adding comments to catalog 292
aliases 346, 983
column names 893
CONTROL privilege 1093
creating 893
deletable 893
dropping 983
granting privileges 1093
inoperative 893
insertable 893
inserting rows 1106
names

ALTER VIEW statement 230
preventing view definition loss with WITH CHECK

OPTION 1337
read-only 893
revoking privileges 1203
schemas 646
updatable 893
updating rows by columns 1337
WITH CHECK OPTION 1337

W
WHENEVER statement

changing flow of control 10
details 1357

WHERE clause
DELETE statement 961
UPDATE statement 1337

WHILE statement
details 1360

X
XML

CREATE INDEX statement 551
XML data

CREATE INDEX statement 551
XML indexes

CREATE INDEX statement 551

1384 SQL Reference Volume 2





����

Printed in USA

SC27-5510-01



Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.5

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

SQ
L

Re
fe

re
nc

e
Vo

lu
m

e
2

�
�

�


	Contents
	About this book
	Who should use this book
	How this book is structured
	How to read the syntax diagrams
	Conventions used in this manual
	Error conditions
	Highlighting conventions

	Related documentation

	SQL statements
	How SQL statements are invoked
	Embedding a statement in an application program
	Dynamic preparation and execution
	Static invocation of a select-statement
	Dynamic invocation of a select-statement
	Interactive invocation
	SQL use with other host systems

	Detecting and processing error and warning conditions in host language applications
	SQL comments
	Conditional compilation in SQL
	About SQL control statements
	References to SQL parameters, SQL variables, and global variables
	References to SQL labels
	References to SQL condition names
	References to SQL statement names
	References to SQL cursor names

	Function, method, and procedure designators
	ALLOCATE CURSOR
	ALTER AUDIT POLICY
	ALTER BUFFERPOOL
	ALTER DATABASE PARTITION GROUP
	ALTER DATABASE
	ALTER EVENT MONITOR
	ALTER FUNCTION
	ALTER HISTOGRAM TEMPLATE
	ALTER INDEX
	ALTER MASK
	ALTER METHOD
	ALTER MODULE
	ALTER NICKNAME
	ALTER PACKAGE
	ALTER PERMISSION
	ALTER PROCEDURE (external)
	ALTER PROCEDURE (sourced)
	ALTER PROCEDURE (SQL)
	ALTER SCHEMA
	ALTER SECURITY LABEL COMPONENT
	ALTER SECURITY POLICY
	ALTER SEQUENCE
	ALTER SERVER
	ALTER SERVICE CLASS
	ALTER STOGROUP
	ALTER TABLE
	ALTER TABLESPACE
	ALTER THRESHOLD
	ALTER TRIGGER
	ALTER TRUSTED CONTEXT
	ALTER TYPE (structured)
	ALTER USAGE LIST
	ALTER USER MAPPING
	ALTER VIEW
	ALTER WORK ACTION SET
	ALTER WORK CLASS SET
	ALTER WORKLOAD
	ALTER WRAPPER
	ALTER XSROBJECT
	ASSOCIATE LOCATORS
	AUDIT
	BEGIN DECLARE SECTION
	CALL
	CASE
	CLOSE
	COMMENT
	COMMIT
	Compound SQL
	Compound SQL (inlined)
	Compound SQL (embedded)
	Compound SQL (compiled)
	CONNECT (type 1)
	CONNECT (type 2)
	CREATE ALIAS
	CREATE AUDIT POLICY
	CREATE BUFFERPOOL
	CREATE DATABASE PARTITION GROUP
	CREATE EVENT MONITOR
	CREATE EVENT MONITOR (activities)
	CREATE EVENT MONITOR (change history)
	CREATE EVENT MONITOR (locking)
	CREATE EVENT MONITOR (package cache) statement
	CREATE EVENT MONITOR (statistics)
	CREATE EVENT MONITOR (threshold violations)
	CREATE EVENT MONITOR (unit of work)
	CREATE FUNCTION
	CREATE FUNCTION (external scalar)
	CREATE FUNCTION (external table)
	CREATE FUNCTION (OLE DB external table)
	CREATE FUNCTION (sourced or template)
	CREATE FUNCTION (SQL scalar, table, or row)
	CREATE FUNCTION MAPPING
	CREATE GLOBAL TEMPORARY TABLE
	CREATE HISTOGRAM TEMPLATE
	CREATE INDEX
	CREATE INDEX EXTENSION
	CREATE MASK
	CREATE METHOD
	CREATE MODULE
	CREATE NICKNAME
	CREATE PERMISSION
	CREATE PROCEDURE
	CREATE PROCEDURE (external)
	CREATE PROCEDURE (sourced)
	CREATE PROCEDURE (SQL)
	CREATE ROLE
	CREATE SCHEMA
	CREATE SECURITY LABEL COMPONENT
	CREATE SECURITY LABEL
	CREATE SECURITY POLICY
	CREATE SEQUENCE
	CREATE SERVICE CLASS
	CREATE SERVER
	CREATE STOGROUP
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE THRESHOLD
	CREATE TRANSFORM
	CREATE TRIGGER
	CREATE TRUSTED CONTEXT
	CREATE TYPE
	CREATE TYPE (array)
	CREATE TYPE (cursor)
	CREATE TYPE (distinct)
	CREATE TYPE (row)
	CREATE TYPE (structurxxxxxxxxxxxxxxxxxxxxxxed)
	CREATE TYPE MAPPING
	CREATE USAGE LIST
	CREATE USER MAPPING
	CREATE VARIABLE
	CREATE VIEW
	CREATE WORK ACTION SET
	CREATE WORK CLASS SET
	CREATE WORKLOAD
	CREATE WRAPPER
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DELETE
	DESCRIBE
	DESCRIBE INPUT
	DESCRIBE OUTPUT
	DISCONNECT
	DROP
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	EXPLAIN
	FETCH
	FLUSH BUFFERPOOLS
	FLUSH EVENT MONITOR
	FLUSH FEDERATED CACHE
	FLUSH OPTIMIZATION PROFILE CACHE
	FLUSH PACKAGE CACHE
	FOR
	FREE LOCATOR
	GET DIAGNOSTICS
	GOTO
	GRANT (database authorities)
	GRANT (exemption)
	GRANT (global variable privileges)
	GRANT (index privileges)
	GRANT (module privileges)
	GRANT (package privileges)
	GRANT (role)
	GRANT (routine privileges)
	GRANT (schema privileges)
	GRANT (security label)
	GRANT (sequence privileges)
	GRANT (server privileges)
	GRANT (SETSESSIONUSER privilege)
	GRANT (table space privileges)
	GRANT (table, view, or nickname privileges)
	GRANT (workload privileges)
	GRANT (XSR object privileges)
	IF
	INCLUDE
	INSERT
	ITERATE
	LEAVE
	LOCK TABLE
	LOOP
	MERGE
	OPEN
	PIPE
	PREPARE
	REFRESH TABLE
	RELEASE (connection)
	RELEASE SAVEPOINT
	RENAME
	RENAME STOGROUP
	RENAME TABLESPACE
	REPEAT
	RESIGNAL
	RETURN
	REVOKE (database authorities)
	REVOKE (exemption)
	REVOKE (global variable privileges)
	REVOKE (index privileges)
	REVOKE (module privileges)
	REVOKE (package privileges)
	REVOKE (role)
	REVOKE (routine privileges)
	REVOKE (schema privileges)
	REVOKE (security label)
	REVOKE (sequence privileges)
	REVOKE (server privileges)
	REVOKE (SETSESSIONUSER privilege)
	REVOKE (table space privileges)
	REVOKE (table, view, or nickname privileges)
	REVOKE (workload privileges)
	REVOKE (XSR object privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT INTO
	SET COMPILATION ENVIRONMENT
	SET CONNECTION
	SET CURRENT DECFLOAT ROUNDING MODE
	SET CURRENT DEFAULT TRANSFORM GROUP
	SET CURRENT DEGREE
	SET CURRENT EXPLAIN MODE
	SET CURRENT EXPLAIN SNAPSHOT
	SET CURRENT FEDERATED ASYNCHRONY
	SET CURRENT IMPLICIT XMLPARSE OPTION
	SET CURRENT ISOLATION
	SET CURRENT LOCALE LC_MESSAGES
	SET CURRENT LOCALE LC_TIME
	SET CURRENT LOCK TIMEOUT
	SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	SET CURRENT MDC ROLLOUT MODE
	SET CURRENT OPTIMIZATION PROFILE
	SET CURRENT PACKAGE PATH
	SET CURRENT PACKAGESET
	SET CURRENT QUERY OPTIMIZATION
	SET CURRENT REFRESH AGE
	SET CURRENT SQL_CCFLAGS
	SET CURRENT TEMPORAL BUSINESS_TIME
	SET CURRENT TEMPORAL SYSTEM_TIME
	SET ENCRYPTION PASSWORD
	SET EVENT MONITOR STATE
	SET INTEGRITY
	SET PASSTHRU
	SET PATH
	SET ROLE
	SET SCHEMA
	SET SERVER OPTION
	SET SESSION AUTHORIZATION
	SET USAGE LIST STATE
	SET variable
	SIGNAL
	TRANSFER OWNERSHIP
	TRUNCATE
	UPDATE
	VALUES
	VALUES INTO
	WHENEVER
	WHILE

	Appendix A. DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing DB2 documentation online for different DB2 versions
	Terms and conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


