
IBM DB2 10.5
for Linux, UNIX, and Windows

Developing RDF Applications for IBM
Data Servers

SC27-5505-00

���





IBM DB2 10.5
for Linux, UNIX, and Windows

Developing RDF Applications for IBM
Data Servers

SC27-5505-00

���



Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 69.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/


Contents

Part 1. RDF application development
for IBM data servers . . . . . . . . 1

Chapter 1. RDF references and related
resources . . . . . . . . . . . . . . 3

Chapter 2. RDF store tables . . . . . . 5
RDF administrative database objects . . . . . . 5

Chapter 3. Access control for RDF
stores . . . . . . . . . . . . . . . 7

Chapter 4. Default and optimized RDF
stores . . . . . . . . . . . . . . . 9

Chapter 5. Central view of RDF stores 11

Chapter 6. Setting up an RDF
environment . . . . . . . . . . . . 13
RDF with DB2 Version 9.7 . . . . . . . . . 14

Chapter 7. Creating an RDF store . . . 15
Creating a default RDF store . . . . . . . . 15
Creating an optimized RDF store . . . . . . . 16

Creating an optimized RDF store by using APIs 16
Creating an optimized RDF store by using
commands. . . . . . . . . . . . . . 18
Creating an optimized RDF store with existing
data . . . . . . . . . . . . . . . . 18

Creating an RDF store using graph-level access
control . . . . . . . . . . . . . . . . 20

Chapter 8. Modifying data in an RDF
store . . . . . . . . . . . . . . . 23
Modifying data in an RDF store . . . . . . . 23
SPARQL UPDATE support . . . . . . . . . 25

SPARQL graph update . . . . . . . . . 25
SPARQL graph management. . . . . . . . 26
Modifying an RDF store by using SPARQL
UPDATE APIs . . . . . . . . . . . . 26

Chapter 9. Querying an RDF store . . . 29
RDF queries and API . . . . . . . . . . . 29

SPARQL query support . . . . . . . . . 29
JENA model API support . . . . . . . . . 30

Issuing SPARQL queries . . . . . . . . . . 31

Creating a union of all named graphs . . . . . 33
Registering custom DESCRIBE handlers . . . . . 34
Enforcing graph level access control using DB2
database server . . . . . . . . . . . . . 37
Enforcing graph level access control by using the
RDF store SQL generator . . . . . . . . . . 37

Chapter 10. Setting up SPARQL
Version 1.1 Graph Store Protocol and
SPARQL over HTTP . . . . . . . . . 41

Chapter 11. Maintaining an RDF store 43
Updating statistics in an RDF store . . . . . . 43
Converting a default store to an optimized RDF
store. . . . . . . . . . . . . . . . . 44

Verifying if an RDF store needs reorganizing . . 44
Creating reorganized tables for an RDF store . . 44
Switching to reorganized tables in an RDF store 45

Chapter 12. RDF commands . . . . . 47
createrdfstore command . . . . . . . . . . 47
createrdfstoreandloader command . . . . . . . 48
droprdfstore command . . . . . . . . . . 50
genpredicatemappings command . . . . . . . 51
loadrdfstore command. . . . . . . . . . . 52
queryrdfstore command . . . . . . . . . . 53
reorgcheckrdfstore command . . . . . . . . 54
reorgrdfstore command . . . . . . . . . . 55
reorgswitchrdfstore command . . . . . . . . 57
setstatsschedule command . . . . . . . . . 58
updaterdfstorestats command . . . . . . . . 59

Part 2. Appendixes. . . . . . . . . 61

Appendix A. Overview of the DB2
technical information . . . . . . . . 63
DB2 technical library in hardcopy or PDF format . . 63
Displaying SQL state help from the command line
processor . . . . . . . . . . . . . . . 66
Accessing different versions of the DB2 Information
Center . . . . . . . . . . . . . . . . 66
Terms and conditions . . . . . . . . . . . 66

Appendix B. Notices . . . . . . . . . 69

Index . . . . . . . . . . . . . . . 73

© Copyright IBM Corp. 2013 iii



iv Developing RDF Applications for IBM Data Servers



Part 1. RDF application development for IBM data servers

The Resource Description Framework (RDF) is a family of W3 specifications that
you can use as a standard data interchange framework for modeling information.
Applications can store and query RDF data in IBM® DB2® 10.5 Enterprise Server
Edition (DB2 Enterprise Server Edition) databases.

RDF employs Uniform Resource Identifiers (URIs) to create a relationship between
data as a triple, for example, in the form of subject-predicate-object expressions.
You can link, expose, and share structured and semi-structured data across
different applications by using this simple model.

An RDF store in the DB2 database server is a set of user tables within a database
schema that stores an RDF data set. A unique store name is associated with each
set of these tables. Each RDF store has a table that contains metadata for the store.
This table has the same name as the store.

You can load data into the user tables by using RDF utility commands or Java™

APIs. You must have the appropriate read and write permissions on these sets of
tables. The Java APIs that are supported are the JENA framework APIs. DB2 RDF
utility commands or APIs are supported for the DB2 software Version 9.7 and later.

RDF applications use the SPARQL query language to retrieve data in DB2
databases.

RDF is not supported in partitioned database environments.

© Copyright IBM Corp. 2013 1



2 Developing RDF Applications for IBM Data Servers



Chapter 1. RDF references and related resources

Many resources are available to help you develop RDF applications that access
IBM data servers.

Table 1. RDF references and related resources

RDF resource Reference Link

RDF Primer http://www.w3.org/TR/2004/REC-rdf-
primer-20040210/

SPARQL query language http://www.w3.org/TR/rdf-sparql-query/

JENA graph and model APIs http://jena.sourceforge.net/tutorial/
RDF_API/

IBM RDF Javadoc ../javadoc/index.html

RDF application development tutorial Part 1:
RDF store creation and maintenance

http://www.ibm.com/developerworks/
data/tutorials/dm-1205rdfdb210/index.html

© Copyright IBM Corp. 2013 3

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/rdf-sparql-query/
http://jena.sourceforge.net/tutorial/RDF_API/
http://jena.sourceforge.net/tutorial/RDF_API/
http://www.ibm.com/developerworks/data/tutorials/dm-1205rdfdb210/index.html
http://www.ibm.com/developerworks/data/tutorials/dm-1205rdfdb210/index.html


4 Developing RDF Applications for IBM Data Servers



Chapter 2. RDF store tables

An RDF store consists of multiple tables. These tables contain metadata about the
RDF store or user data.

Metadata tables

The following tables contain metadata about the RDF store:
v One metadata table, which has the same name as the RDF store.
v The System Predicates metadata table, which stores information about RDF

predicates that you can use for further filtering results of a SPARQL query.
v The Basic Statistics table, which stores statistics about the data in the RDF store.
v The Top K Statistics table, which stores information about the least selective RDF

data in the store.

Data tables

The following tables store RDF data if the value of the data does not exceed a
particular character length:
v The Direct Primary table stores RDF triples and the associated graph, indexed by

subject. Predicates and objects for a subject are stored in pair columns in this
table. A particular predicate can occur in any one of three columns in this table.
The object for that predicate is stored in the corresponding object column of the
predicate-object pair.

v The Direct Secondary table stores RDF triples that share the subject and
predicate within an RDF graph. Such triples have only a placeholder identifier in
the Direct Primary table.

v The Reverse Primary table stores RDF triples and the associated graph, indexed
by object. Predicates and subjects for an object are stored in pair columns in this
table. A particular predicate can occur in any one of three columns in this table
and the subject for that predicate can occur in the corresponding subject column
of that pair.

v The Reverse Secondary table stores RDF triples that share the object and
predicate within an RDF graph. Such triples have a placeholder identifier in the
Reverse Primary table.

v The Datatypes table stores the mapping of internal integer values for SPARQL
data types, user-defined data types, and language tags.

If the value of an RDF subject, predicate, object, or graph exceeds a particular
character length, the previously mentioned five tables store a placeholder identifier
only. The actual value is stored in the Long Strings table.

RDF administrative database objects
RDF has functions and a scheduler task object to manage an RDF store.

Administrative database objects

RDF for DB2 has administrative database objects, as follows:

© Copyright IBM Corp. 2013 5



v A Java based external UDF named <store_name>_RDF_REGEX supports the
regex operator in SPARQL. Appropriate permission must be granted to use this
UDF.
In DB2 Version 10.1 Fix Pack 2 and later fix packs, <store_name>_RDF_REGEX
UDF is no longer supported for regular expression functionality. Instead use the
pureXML® fn:matches() function for regular expression

v An SQL stored procedure named <store_name>_T3_STATS gathers the basic and
topK statistics for an RDF store.

v An administrative scheduler task named
<SCHEMANAME>_<STORENAME>_Scheduler is used to schedule the interval
for the updates of the stores basic and topK statistics.

6 Developing RDF Applications for IBM Data Servers



Chapter 3. Access control for RDF stores

Two types of access control are available for DB2 RDF stores.

Coarse grained access control

You can use DB2 database's table level permissions to control access to the entire
RDF store.

RDF graph level access control

RDF graph level access control provides more fine grained access control at the
level of RDF graphs. You can selectively control the RDF graphs to which users
will have access in the RDF store, rather than the whole RDF data set.

With RDF graph level access control, RDF triples within a graph are used to
determine whether a user has access to the RDF graph or not. At the time of RDF
store creation, the user needs to specify which RDF predicates will be used to
control access to the RDF Graph.

Enforcing access control during runtime (using SPARQL queries) can be delegated
to the DB2 engine. Alternatively, it can be used in the SQL generated by the DB2
RDF Store SQL generator.

If you chose that the access control is enforced by the DB2 engine, you need to use
the fine Grained access control feature of the DB2 software, to specify the access
control rules.

If you chose that the access control is enforced by the RDF Store SQL Generator,
the application needs to additionally pass in the constraints to be applied in the
QueryExecution context. In this case only a limited set of operators and operand
are supported:
v Creating an RDF Store with Graph level Access Control support
v Enforcing Graph level Access Control via the RDF Store SQL Generator
v Enforcing Graph level Access Control via the DB2 engine

© Copyright IBM Corp. 2013 7



8 Developing RDF Applications for IBM Data Servers



Chapter 4. Default and optimized RDF stores

Two kinds of RDF stores are used with DB2 databases. One is referred to as default
RDF store, while the other is referred to as an optimized RDF store.

Default RDF stores

This base schema is used when nothing is known about the RDF data being stored
or no appropriate sample is available. Default RDF stores use a default number of
columns in the Direct Primary and Reverse Primary tables. You use the default
store when starting with a new RDF data set, about which nothing is known. In
the default store hashing is used to determine the columns to which the predicates
and objects go to in the Direct Primary and Reverse Primary tables.

Create a default RDF store when you have no existing sample data of the RDF
data set on which predicate coexistence can be calculated by the DB2 software.

Optimized RDF stores

If sufficient representative data of the RDF data set is already available, then a
more optimized schema can be created for the Direct Primary and Reverse Primary
tables. This optimized schema is achieved by exploiting the fact that RDF
predicates correlate. For example age and social security number coexist as
predicates of Person, and headquarters and revenue coexist as predicates of
Company, but age and revenue never occur together in any entity.

Create a optimized RDF store when you have existing or sample data for the RDF
data set on which DB2 will calculate predicate correlation to assign predicates to
columns intelligently.

Advantages of optimized RDF stores

Predicate correlation is used to drastically, and in many cases completely, remove
the randomness of hashing used in default stores. So, in default stores predicate
collisions can occur because of lack of knowledge of predicate correlation and this
can cause more rows to used in the table than actually required. Extra rows could
cause joins between tables to be less efficient than they need be.

Indexing predicates can be more easily achieved since mostly a given predicate can
be confined to one single column. Also predicates that don't coexist can be
assigned to a single column, allowing a single DB2 index to index multiple
predicates.

© Copyright IBM Corp. 2013 9



10 Developing RDF Applications for IBM Data Servers



Chapter 5. Central view of RDF stores

Starting with DB2 Version 10.1 Fix Pack 2 and later fix packs, Resource Description
Framework (RDF) now lists all RDF stores that are present in a particular database
within one table. Query the SYSTOOLS.RDFSTORES table to view all the RDF
stores.

The SYSTOOLS.RDFSTORES table is created the first time that the createrdfstore
or createrdfsoreandloader command and API is issued for a database.

Table 2. SYSTOOLS.RDFSTORES table schema

Column name Data type Nullable Description

STORENAME VARCHAR(256) NO Name of the RDF store

SCHEMANAME VARCHAR(256) NO Name of the schema
for the RDF store

STORETABLE VARCHAR(256) NO Name of the metadata
table for the RDF store

Primary key NO Primary key

To list all the RDF stores and their corresponding schema names in a database,
issue the following query:
SELECT storeName, schemaName FROM SYSTOOLS.RDFSTORES

The following sample output is returned:
STORENAME SCHEMANAME
---------------------------
STAFFING DB2ADMIN
SAMPLSTORE DB2ADMIN

2 record(s) selected.

© Copyright IBM Corp. 2013 11



12 Developing RDF Applications for IBM Data Servers



Chapter 6. Setting up an RDF environment

Set up your environment to use DB2 RDF command and APIs.

Issuing RDF commands by using command-line utilities

DB2 RDF command-line utilities can be found in the <install_path>/sqllib/rdf/
bin directory. Start the utilities from this directory with a DB2 Command Prompt.

After the DB2 database server is installed, complete the following tasks to use DB2
RDF command-line utilities:
1. Download ARQ package Version 2.8.5 from http://sourceforge.net/projects/

jena/files/ARQ/ARQ-2.8.5/“http://sourceforge.net/projects/jena/files/ARQ/
ARQ-2.8.5/”.
Copy the JAR files from the lib folder of the ARQ package to the
<install_path>/SQLLIB/rdf/lib directory.

Note: You can skip copying over the 'xxx-tests.jar', 'xxx-sources.jar',
'xxx-test-sources.jar' JAR files.
Starting with DB2 Version 10.1 Fix Pack 2, use the Apache JENA Version 2.7.3
package from http://archive.apache.org/dist/jena/binaries/“http://
www.apache.org/dist/jena/binaries/”.
Save the JAR files from the lib folder of the Apache JENA package to the
<install_path>/SQLLIB/rdf/lib directory.

2. Download the Commons-logging-1-0-3.jar from the Apache Commons project.
Place this JAR in the <install_path>/SQLLIB/rdf/lib directory.

3. Open a command prompt and go to the <install_path>/SQLLIB/rdf/bin
directory.
cd "<install_path>/SQLLIB/rdf/bin"

4. Add the db2jcc4.jar DB2 JCC driver in the <install_path>/SQLLIB/java
directory to the class path environmental variable, as shown:
set classpath=<install_path>\SQLLIB\java\db2jcc4.jar;%classpath%

Now you can run the DB2 RDF command-line utilities in this command prompt.

DB2 RDF in an application development environment

The DB2 RDF JAR files need to be added to the application class path, along with
the following JAR file:
v The JENA dependant JAR files
v Commons-logging-1-0-3.jar file
v The DB2 JCC driver (db2jcc4.jar)

The JAR files are in the <install_path>/sqllib/rdf/lib directory. They include the
following JAR files:
v rdfstore.jar
v antlr-3.3-java.jar
v wala.jar

© Copyright IBM Corp. 2013 13

http://sourceforge.net/projects/jena/files/ARQ/ARQ-2.8.5/
http://sourceforge.net/projects/jena/files/ARQ/ARQ-2.8.5/
http://archive.apache.org/dist/jena/binaries/


RDF with DB2 Version 9.7
You can install DB2 Version 10.1 client and use it with DB2 Version 9.7 database
server.

Register the external Java libraries that are required for RDF Support. Registration
is done by running the 'rdf/bin/registerrdfudf' script in the DB2 Version 10.1
client. This script must be issued for each DB2 Version 9.7 database in which RDF
stores are being created. For example, issue the following command:
registerrdfudf <dbname> <username>

where <dbname> is a cataloged database on the local DB2 client.

14 Developing RDF Applications for IBM Data Servers



Chapter 7. Creating an RDF store

Create a default or an optimized RDF store, based on your application
development requirements. You can choose to create an RDF store first, and then
load the data later.

Creating a default RDF store
You can create a RDF store without any existing RDF data. This is also known as a
default RDF store.

Before you begin

The following prerequisites are required:
v Ensure the database has a minimum page size of 32 KB.
v Ensure the LOGFILSIZ database configuration parameter is set to is greater than

or equal to 20000.
db2 UPDATE DATABASE CONFIGURATION FOR <DB_NAME>
USING LOGFILSIZ 20000

v Ensure that the SYSTOOLSPACE table space exists.
CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP
MANAGED BY AUTOMATIC STORAGE EXTENTSIZE 4

v Ensure that the authorization ID has the following privileges:
– CREATETAB authority for the selected database schema.
– CREATE EXTERNAL ROUTINES authority.
– Update privileges for table SYSTOOLS.ADMINTASKSTATUS.

In addition, also set up the following functionality:
v Set the Administrative Task Scheduler to "YES".

db2set DB2_ATS_ENABLE=YES

v Set the AUTORUNSTATS database configuration parameter to "ON".
db2 UPDATE DB CONFIG USING AUTO_MAINT ON AUTO_TBL_MAINT ON AUTO_RUNSTATS ON

v Set the bufferpool to "AUTOMATIC", and assign a good initial size.
db2 alter bufferpool IBMDEFAULTBP IMMEDIATE SIZE 15000 AUTOMATIC

Procedure

Use the following instructions to create a default RDF store:
1. Control the names of database tables and table spaces that will make up the

RDF store. Create an objectNames.props properties file, containing a list of RDF
store data tables and the corresponding names and table spaces your want to
assign to the tables.
The contents of a sample objectNames.props properties file are shown in the
following example:
direct_primary_hash=<user_table_name>, <tablespace>
direct_secondary=<user_table_name>, <tablespace>
reverse_primary_hash=<user_table_name>, <tablespace>
reverse_secondary=<user_table_name>, <tablespace>
long_strings=<user_table_name>, <tablespace>
basic_stats=<user_table_name>, <tablespace>

© Copyright IBM Corp. 2013 15



topk_stats=<user_table_name>, <tablespace>
system_predicate=<user_table_name>, <tablespace>
data_type=<user_table_name>, <tablespace>

Note: Using the objectNames.props file to set table names is optional.
However, if you choose not to use this properties file, then system generated
names will be used instead.

2. Issue the createrdfstore command. Determine the database instance and
schema in which you want to create the RDF store. Also, decide on a logical
name for the store. This name needs to be unique among all RDF stores within
the database schema.
For example, use the following command to create a store named rdfStore1 in
database DB1 and schema db2admin for host localhost and port 60000:
createrdfstore rdfStore1 -host localhost -port 60000 -db DB1
-user db2admin -password XXX -schema db2admin

Creating an optimized RDF store

Creating an optimized RDF store by using APIs
You need to have existing set of representative triple data to create an optimized
store. The data is required to ensure that predicate occurrence can be calculated
properly.

Before you begin

If you do not have a representative sample set of triple data, then create a default
store by using the createrdfstore command. Use the default RDF store until
sufficient representative triple data is collected based on which predicate
occurrence can be calculated.

When you have sufficient data, use the generatePredicateMappings method of the
StoreManager Java class to calculate predicate correlation of the triples in the
default RDF store. Save the PredicateMappings output for this API.

When creating an RDF store for a production environment, create a clean new
optimized RDF store by using the createStoreWithPredicateMappings method of
the StoreManager Java class. Provide the PredicateMappings output you obtained
earlier.

Procedure

To create an optimized RDF store, write a program that performs two key steps:
1. Calculates the predicate correlation of the triples in the RDF store that contains

the representative data. To calculate the predicate correlation, use
thegeneratePredicateMappings method of the StoreManager Java class. Save the
output of the PredicateMappings API.

2. Creates the optimized RDF store by using the
createStoreWithPredicateMappings method of the StoreManager Java class. As
input, provide the PredicateMappings output that you obtained earlier.

Example

The following Java program shows how you can create an optimized RDF store:

16 Developing RDF Applications for IBM Data Servers



import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

import com.ibm.rdf.store.StoreManager;

/**
* This program demonstrates how to create an optimized RDF store
* by using the predicate correlation information from an existing
* store. You can also create optimized RDF stores for production
* environments after a collecting enough representative data cycle
* on a default store.
*/
public class CreateOptimizedStore {

public static void main(String[] args) throws SQLException,
IOException {

String currentStoreName = "sample";
String currentStoreSchema = "db2admin";
Connection currentStoreConn = null;

/*
* Connect to the "currentStore" and generate the predicate

* correlation for the triples in it.
*/
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
currentStoreConn = DriverManager.getConnection(
"jdbc:db2://localhost:50000/dbrdf", "db2admin",
"db2admin");

currentStoreConn.setAutoCommit(false);
} catch (ClassNotFoundException e1) {
e1.printStackTrace();
}

/* Specify the file on disk where the predicate
* correlation will be stored.
*/

String file = "/predicateMappings.nq";
BufferedOutputStream predicateMappings = new

BufferedOutputStream(new FileOutputStream(file));

StoreManager.generatePredicateMappings(currentStoreConn,
currentStoreSchema, currentStoreName,

predicateMappings);

predicateMappings.close();

/**
* Create an optimized RDF store by using the previously

* generated predicate correlation information.
*/
String newOptimizedStoreName = "production";
String newStoreSchema = "db2admin";
Connection newOptimizedStoreConn =

DriverManager.getConnection(
"jdbc:db2://localhost:50000/dbrdf",

"db2admin","db2admin");
BufferedInputStream inputPredicateMappings =
new BufferedInputStream(

Chapter 7. Creating an RDF store 17



new FileInputStream(file));

StoreManager.createStoreWithPredicateMappings(
newOptimizedStoreConn, newStoreSchema,
newOptimizedStoreName, null, inputPredicateMappings);

}
}

Creating an optimized RDF store by using commands
In DB2 Version 10.1 Fix Pack 2 and later fix packs, you can create an optimized
store from a default RDF store by using the RDF commands.

Procedure

To create an optimized RDF store from the command prompt:
1. Create a default store by using the createrdfstore command.

createrdfstore rdfStore1 -db RDFSAMPL
-user db2admin -password XXX

2. Add data to this store using SPARQL UPDATE or JENA APIs. Use this default
store to collect a set of triple data that can be used to calculate predicate
occurrence.

3. Generate the predicate mappings by using thegenpredicatemappings command
.
genPredicateMappings MyStore -db RDFSAMPL -user db2admin
-password db2admin "C:\MyStore_predicate_mappings.txt"

4. Create an optimized store by using thecreaterdfstore command by passing
the -predicatemappings parameter.
Use the predicates generated in the preceding step as input for the
-predicatemappings parameter.
createrdfstore MyOptimizedStore -db RDFSAMPL
-user db2admin -password XXX
-predicatemappings "C:\MyStore_predicate_mappings.txt"

Results

The optimized stored is created.

Creating an optimized RDF store with existing data
You can create an RDF store using existing RDF data.

Before you begin

The following prerequisites are required:
v Ensure the database has a minimum page size of 32 KB.
v Ensure the LOGFILSIZ database configuration parameter is set to is greater than

or equal to 20000.
db2 UPDATE DATABASE CONFIGURATION FOR <DB_NAME>
USING LOGFILSIZ 20000

v Ensure that the SYSTOOLSPACE table space exists.
CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP
MANAGED BY AUTOMATIC STORAGE EXTENTSIZE 4

v Ensure that the authorization ID has the following privileges:
– CREATETAB authority for the selected database schema.

18 Developing RDF Applications for IBM Data Servers



– CREATE EXTERNAL ROUTINES authority.
– Update privileges for table SYSTOOLS.ADMINTASKSTATUS.

In addition, also set up the following functionality:
v Set the Administrative Task Scheduler to "YES".

db2set DB2_ATS_ENABLE=YES

v Set the AUTORUNSTATS database configuration parameter to "ON".
db2 UPDATE DB CONFIG USING AUTO_MAINT ON AUTO_TBL_MAINT ON AUTO_RUNSTATS ON

v Set the bufferpool to "AUTOMATIC", and assign a good initial size.
db2 alter bufferpool IBMDEFAULTBP IMMEDIATE SIZE 15000 AUTOMATIC

On Windows platforms, the createrdfStoreAndLoader command requires the
CygWin application. The Gawk utility required for this command is Versions 4.0 or
later. The Core utility required for this command is Version 8.14 or later. After
installing CygWin add <CgyWin_install_directory>/bin to the PATH environment
variable. If you don't have CygWin on the path, you will see the following error
message displayed when you run the command:
’Cannot run program "sh": CreateProcess error=2, The system cannot find the
specified file.’

On Windows platforms, the createrdfStoreAndLoader command can be invoked
either from a CygWin command prompt or default command prompt. When using
a CygWin command prompt, all file paths (-rdfdata, -storeloadfile, -storeschemafile,
-objectnames) must not include the 'cygdrive' prefix. Instead use normal windows
path like 'C:\....'.

If any paths specified contain space in the folder or file name, the whole string
should be enclosed within double quotes

Procedure
1. Export the existing data into a n-Quad file.
2. Control the names of database tables and table spaces that will make up the

RDF store. Create an objectNames.props properties file, containing a list of RDF
store data tables, and the corresponding names and table spaces your want to
assign to the tables.
The contents of a sample objectNames.props file are shown in the following
example:
direct_primary_hash=<user_table_name>,<tablespace>
direct_secondary=<user_table_name>,<tablespace>
reverse_primary_hash=<user_table_name>,<tablespace>
reverse_secondary=<user_table_name>,<tablespace>
long_strings=<user_table_name>,<tablespace>
basic_stats=<user_table_name>,<tablespace>
topk_stats=<user_table_name>,<tablespace>
system_predicate=<user_table_name>,<tablespace>
data_type=<user_table_name>,<tablespace>

Note: Using the objectNames.props file to set table names is optional.
However, if you choose not to use this properties file, then system generated
names will be used instead.

3. Issue the createrdfstoreandloader command.
On Windows this command requires CygWin. Also, the Gawk utility required
for this command is version 4.0, while the Core utility is version 8.14 or later.

Chapter 7. Creating an RDF store 19



Determine the database instance and schema in which you want to create the
RDF store. Also, decide on a logical name for the RDF store. This name must
be unique among all RDF stores within the database schema.
Specify the objectnames parameter in your command. If you do not specify the
objectNames parameter, then system generated object names are used for the
tables of the RDF store instead. Ensure the output directory already exists on
the file system.
This command creates an optimized RDF store using existing data and also
generates DB2 database load files that should be used to load the data into the
newly created RDF store. The load files are created based on the output of the
storeloadfile parameter.
For example, issue the following command to create a store named rdfStore2 in
database DB1 and schema db2admin for host localhost and port 60000. Specify
myRdfData.nq for the RDF data file, and specify load.sql as the name of the
generated store loader file.
createrdfstoreandloader rdfStore2 -host localhost -port 60000 -db DB1
-user db2admin -password XXX -schema db2admin
-rdfdatafile ./myRdfData.nq -storeloadfile ./rdfLoader/load.sql

4. Open a CLP enabled DB2 command prompt window and connect to the
database instance and schema in which the RDF store was created.

5. Run the ./rdfLoader/load.sql file.
This will load the data from this generated file into the RDF store.

Note: Do not use the -t argument when running the SQL script, since the SQL
script is generated with newline as the command separator.

Creating an RDF store using graph-level access control
You can create an RDF store that uses graph-level access control.

Before you begin

Determine the RDF predicates whose triples are used to control access to the RDF
graph. For example, you can use the ContextId (http://myapp.net/xmlns/
CONTEXTID) and AppId (http://myapp.net/xmlns/APPID) predicates. The filters
that you use to control access to the graph are also known as filter predicates.

Determine the DB2 data types for the RDF object values for these predicates.
Currently, only the DB2 VARCHAR data type is supported.

Procedure

To creating an RDF store that uses graph-level access control, write a program that
uses the createStore() method of the StoreManager class. This method takes a
properties argument. Specify the filter predicates by using the following properties
format: <RDF_PREDICATE> = <DB2_DATATYPE>.

Example

The following Java program demonstrates how you can use the StoreManager class
to create an RDF store with graph-level access control:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Properties;

20 Developing RDF Applications for IBM Data Servers



import com.ibm.rdf.store.StoreManager;

public class CreateStoreGraphAccessControl {

/* Access to the graph is controlled based on the
* following two RDF predicates.
*/

private final static String APPID =
"http://myapp.net/xmlns/APPID";
private final static String CONTEXTID =
"http://myapp.net/xmlns/CONTEXTID";

/**
* The DB2 data type for these predicates is assigned.
*/
private final static String APPID_DATATYPE = "VARCHAR(60)";
private final static String CONTEXTID_DATATYPE = "VARCHAR(60)";

/*
* Create a java.util.properties file that lists these two
* properties and their data types, where
* propertyName is the RDF predicate and
* propertyValue is the data type for the RDF predicate.
*/
private static Properties filterPredicateProps = new
Properties();
static {
filterPredicateProps.setProperty(APPID, APPID_DATATYPE);
filterPredicateProps.setProperty(CONTEXTID,

CONTEXTID_DATATYPE);
}

public static void main(String[] args) throws SQLException {

Connection conn = null;

// Get a connection to the DB2 database.
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
conn = DriverManager.getConnection(

"jdbc:db2://localhost:50000/dbrdf",
"db2admin", "db2admin");

} catch (ClassNotFoundException e1) {
e1.printStackTrace();
}

/*
* Create the store with the access control predicates.
*/
StoreManager.createStore(conn, "db2admin",

"SampleAccessControl", null,
filterPredicateProps);

}
}

Chapter 7. Creating an RDF store 21



22 Developing RDF Applications for IBM Data Servers



Chapter 8. Modifying data in an RDF store

Data in an RDF store can be modified either by using JENA APIs or SPARQL
Update operations.

Modifying data in an RDF store
Work with the data in an RDF store using JENA APIs.

Procedure

To modify data in an RDF store, you can use the following sample program.

Modify triples and graphs in an RDF store by using JENA APIs as shown in the
following example.

Example

The following program demonstrates how to modify triples and graphs in an RDF
store by using JENA APIs:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

import com.hp.hpl.jena.graph.Graph;
import com.hp.hpl.jena.graph.Node;
import com.hp.hpl.jena.graph.Triple;
import com.hp.hpl.jena.query.Dataset;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.rdf.model.Resource;
import com.hp.hpl.jena.vocabulary.VCARD;

import com.ibm.rdf.store.Store;
import com.ibm.rdf.store.StoreManager;
import com.ibm.rdf.store.jena.RdfStoreFactory;

public class RDFStoreSampleInsert {

public static void main(String[] args) throws SQLException {

Connection conn = null;
Store store = null;
String storeName = "sample";
String schema = "db2admin";

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
conn = DriverManager.getConnection(

"jdbc:db2://localhost:50000/dbrdf", "db2admin",
"db2admin");

conn.setAutoCommit(false);
} catch (ClassNotFoundException e1) {
e1.printStackTrace();
}

// Create a store or dataset.
store = StoreManager.createStore(conn, schema, storeName, null);

© Copyright IBM Corp. 2013 23



// If the store exists, connect to it.
//store = StoreManager.connectStore(conn, schema, storeName);

// Delete the store if required.
//StoreManager.deleteStore(conn, schema, storeName);

/*
* Generally, retain the "store" object. Otherwise, you require

* a query to know which set of tables you must
* work with. The Store object does not keep a reference to the connection
* that is passed to the StoreManager methods. Therefore, in the API,
* you must pass a connection again in RDFStoreFactory’s methods. You
* can use all other objects (such as a dataset, graph, or model)
* as lightweight. That is, create an object for each request.

*/

// Add a entire named graph to the store.
addNamedGraph(store, conn);

// Remove an entire named graph.
removeNamedGraph(store, conn);

// Add a triple to the default graph.
addTripleToDefaultGraph(store, conn);

// Add a triple by using the JENA Graph interface.
addTripleViaGraphInterface(store, conn);

// Delete a store.
StoreManager.deleteStore(conn, schema, storeName);

conn.commit();
}

public static void addNamedGraph(Store store, Connection conn) {

// Connect to a NamedModel in the store.
Model storeModel = RdfStoreFactory.connectNamedModel(store, conn,

"http://graph1");

// Create a in-memory model with some data.
Model m = getMemModelWithSomeTriples();

// Add the whole graph to rdfstore.
storeModel.begin();
storeModel.add(m);
storeModel.commit();

storeModel.close();

}

public static void removeNamedGraph(Store store, Connection conn) {

Model storeModel = RdfStoreFactory.connectNamedModel(store, conn,
"http://graph1");

storeModel.begin();
storeModel.removeAll();
storeModel.commit();

}

24 Developing RDF Applications for IBM Data Servers



public static void addTripleToDefaultGraph(Store store, Connection conn) {

Dataset ds = RdfStoreFactory.connectDataset(store, conn);
Model m = ds.getDefaultModel();

// Add information by using thye model object.
m.begin();

String personURI = "http://somewhere/JohnSmith";
String fullName = "John Smith";
Resource johnSmith = m.createResource(personURI);
johnSmith.addProperty(VCARD.FN, fullName);

m.commit();
m.close();
}

public static void addTripleViaGraphInterface(Store store, Connection conn) {

Graph g = RdfStoreFactory.connectNamedGraph(store, conn,
"http://graph2");

Node s = Node.createURI("http://sub1");
Node p = Node.createURI("http://pred1");
Node v = Node.createLiteral("val1");

g.add(new Triple(s, p, v));
g.close();
}

private static Model getMemModelWithSomeTriples() {

Model m = ModelFactory.createDefaultModel();

Node s = Node.createURI("somesubject");
Node p = Node.createURI("somepredicate");
Node v = Node.createURI("AnObject");
Triple t = Triple.create(s, p, v);
m.add(m.asStatement(t));

s = Node.createURI("someothersubject");
p = Node.createURI("someotherpredicate");
v = Node.createURI("AnotherObject");
t = Triple.create(s, p, v);
m.add(m.asStatement(t));

return m;
}
}

SPARQL UPDATE support
Starting with DB2 Version 10.1 Fix Pack 2 and later fix packs, SPARQL Version 1.1
UPDATE is supported. SPARQL UPDATE Version 1.1 supports two categories of
update operations on a graph store.

SPARQL graph update
In DB2 Version 10.1 Fix Pack 2 and later fix packs, SPARQL graph update
commands are supported. These commands facilitate the addition and removal of
triples from graphs in a graph store.

The following graph update commands are supported:

Chapter 8. Modifying data in an RDF store 25



INSERT DATA
Adds triples that are specified in the query to the destination graph.
Creates a destination graph if it does not exist.

INSERT WHERE
Adds triples by matching the pattern of the WHERE condition in the query to
the destination graph. Creates a destination graph if it does not exist.

DELETE DATA
Removes triples that are specified in the query. Deleting triples that are not
present in an RDF store or a graph has no effect and results in success.

DELETE WHERE
Removes triples by matching the pattern that is specified in the WHERE
clause of the query. Deleting triples that are not present in an RDF store or
a graph has no effect and results in success.

LOAD
Reads an RDF document from an Internationalized Resource Identifier
(IRI). and inserts its triples into a specified graph. Creates a destination
graph if it does not exist.

CLEAR
Removes all the triples in a specified graph.

SPARQL graph management
In DB2 Version 10.1 Fix Pack 2 and later fix packs, SPARQL graph management
commands that create and delete graphs in a graph store are supported. The
commands also provide shortcuts for graph update operations, often used during
graph management to add, move, and copy graphs.

The following graph management commands are supported:

CREATE
Creates a graph in the graph store. The graph is not persisted because DB2
RDF does not save empty graphs.

DROP Removes specified graphs from the graph store.

COPY Inserts all data from an input graph into a destination graph. Data from
the input graph is not affected. Data from the destination graph, if any, is
removed before insertion.

MOVE
Moves all data from an input graph into a destination graph. The input
graph is removed after insertion. Data from the destination graph, if any, is
removed before insertion.

ADD Inserts all data from an input graph into a destination graph. Data from
the input graph is not affected. Initial data from the destination graph, if
any, is kept intact.

Modifying an RDF store by using SPARQL UPDATE APIs
In DB2 Version 10.1 Fix Pack 2 and later fix packs, you can update data in an RDF
data store by using supported UPDATE APIs in SPARQL Version 1.1.

The following program demonstrates how to modify an RDF store by using
SPARQL UPDATE APIs.

26 Developing RDF Applications for IBM Data Servers



import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import com.hp.hpl.jena.graph.Node;
import com.hp.hpl.jena.query.Dataset;
import com.hp.hpl.jena.sparql.core.Quad;
import com.hp.hpl.jena.sparql.modify.request.QuadDataAcc;
import com.hp.hpl.jena.sparql.modify.request.UpdateDataInsert;
import com.hp.hpl.jena.sparql.util.NodeFactory;
import com.hp.hpl.jena.update.UpdateAction;
import com.ibm.rdf.store.Store;
import com.ibm.rdf.store.StoreManager;
import com.ibm.rdf.store.jena.RdfStoreFactory;
/**
* Sample program for using SPARQL Updates
*/
public class RDFStoreUpdateSample {
public static void main(String[] args) throws SQLException
// Create the connection
Connection conn = null;
Store store = null;
String storeName = "staffing";
String schema = "db2admin";
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
conn = DriverManager.getConnection( "jdbc:db2://localhost:50000/RDFDB",

"db2admin", "db2admin");
conn.setAutoCommit(false); }
catch (ClassNotFoundException e1) {
e1.printStackTrace();
}
// Connect to the store
store = StoreManager.connectStore(conn, schema, storeName);

// Create the dataset
Dataset ds = RdfStoreFactory.connectDataset(store, conn);
// Update dataset by parsing the SPARQL UPDATE statement
// updateByParsingSPARQLUpdates(ds);
// Update dataset by building Update objects
// updateByBuildingUpdateObjects(ds);
ds.close();
conn.commit();

}

/**
* Update by Parsing SPARQL Update
*
* @param ds
* @param graphNode
*/
private static void updateByParsingSPARQLUpdates(Dataset ds) {
String update = "INSERT DATA
{ GRAPH <http://example/bookStore>
{ <http://example/book1> <http://example.org/ns#price> 100 } }";
//Execute update via UpdateAction
UpdateAction.parseExecute(update, ds);
}
/**
* Update by creating Update objects
*
* @param ds
* @param graphNode
*/
private static void updateByBuildingUpdateObjects(Dataset ds) {
// Graph node
Node graphNode = NodeFactory.parseNode("http://example/book2>");
Node p = NodeFactory.parseNode("<http://example.org/ns#price>");

Chapter 8. Modifying data in an RDF store 27



Node o = NodeFactory.parseNode("1000");
Quad quad = new Quad(graphNode, s, p, o);
Node s2 = NodeFactory.parseNode("<http://example/book3>");
Node o2 = NodeFactory.parseNode("2000");
Quad quad2 = new Quad(graphNode, s2, p, o2);
//Create quad data to be added to the store
QuadDataAcc acc = new QuadDataAcc();
acc.addQuad(quad);
acc.addQuad(quad2);
//Create the Update object
UpdateDataInsert insert = new UpdateDataInsert(acc);
//Execute the Update via UpdateAction
UpdateAction.execute(insert, ds);
}
}

28 Developing RDF Applications for IBM Data Servers



Chapter 9. Querying an RDF store

Use SPARQL to query data in DB2 Resource Description Framework (RDF) stores.

SPARQL for RDF Version 1.0 is supported. In addition, the following subset of
features from SPARQL Version 1.1 are supported:
v AVG

v COALESCE

v COUNT

v GROUP BY

v HAVING

v MAX

v MIN

v SELECT expressions
v STRSTARTS

v STRENDS

v SubQueries

v SUM

Starting with DB2 Version 10.1 Fix Pack 2, the following features from SPARQL
Version 1.1 are also supported:
v UPDATE support for SPARQL query language.
v Graph store HTTP protocol support for SPARQL query language.

RDF queries and API
The SPARQL query language is used to modify data in DB2 databases, while the
JENA framework APIs provide the programming interface. There are some
limitations for DB2 RDF stores.

SPARQL query support
There are various syntactic or semantic restrictions and limitations for SPARQL to
consider when you work with RDF data.

Limits on lengths of URIs
An RDF implementation of DB2 database can store URIs of any length.
However, only the first 2000 characters are used for comparison operations.

Limits on lengths of literals
An RDF implementation of a DB2 database stores literals of any length.
However, only the first 2000 characters are used for comparison operations,
and other operations such as STRSTARTS and STRENDS.

DATATYPE operator in a FILTER expression
Support is extended for the SPARQL DATATYPE operator in a FILTER
expression.

Constants in a FILTER expression
Support is extended for constants in a FILTER expression.

Unary minus in a FILTER expression
A filter expression with a unary minus on variables is not supported.

© Copyright IBM Corp. 2013 29



FILTER ( -?v = -10 )

The expression returns an RdfStoreException, with error identifier
DB255001E and SQL error code -104.

DISTINCT * or REDUCED * operators in a SELECT expression
Support is extended for DISTINCT * or REDUCED * operators in a SELECT
expression.

Data type operator in a SELECT expression
support is extended for the SPARQL data type operator in a SELECT
expression.

Dot escape sequence in regular expression
The dot escape sequence in regular expression pattern matches has
limitations, where the expression does not properly match the dot
character.
FILTER regex(?val, "example\\.com")

The preceding code sample does not match the string "example.com" as
expected.

Double backslash escape sequence limitation
Escape sequences with double backslash in strings do not get interpreted
correctly. A workaround is not available.

Cygwin and createrdfstoreandloader command (Windows)
When you issue the createrdfstoreandloader command by using Cygwin
on Windows platforms, Cygwin hangs instead of displaying any errors or
warning messages. Therefore, issue the createrdfstoreandloader
command only on Linux or UNIX platforms. Then use the generated DB2
load files and SQL files to load to a DB2 server on the Windows platform.

JENA model API support
The DB2 implementation of JENA model API is limited in how you can use the
Model.read() and Model.add(Model) APIs.

Duplicate triples when using the Model.read() API
If the input source contains duplicate triples, it is possible that duplicates
are not removed, because the JENA library implementation of the
Model.read() API uses bulk loading in batches of 1000 triples. The DB2
RDF store does not filter duplicate triples across these batches.

As a workaround, always read the input source into an in-memory JENA
model and then add the in-memory model to the DB2 store by using the
Model.add(model) API.

Duplicate triples when using the Model.add(Model) API
The Model.add(Model) API assumes the graph that is being added does not
exist in the data set. If the graph exists and you are adding duplicate
triples, the duplicate triple is not removed.

The suggested approach for a DB2 RDF store is listed here:
1. The first time you add a graph, use the Model.add(Model) method.
2. If you want to add or update triples to that existing graph, use the

following functions:
v model.add(s,p,v)

v model.add(statement)

v graph.add(Triple)

30 Developing RDF Applications for IBM Data Servers



v Resource.addXX()

Remember: If you are adding a triple that exists, an error message is
returned.

In DB2 Version 10.1 Fix Pack 2 and later fix packs, both of the preceding
limitations are now removed in the DB2 product implementation of the JENA API.

Issuing SPARQL queries
You can query data stored in an RDF store.

Example

The following program demonstrates how to query data in an RDF store by using
the SPARQL query language.
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

import com.hp.hpl.jena.query.Dataset;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QuerySolution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.rdf.model.Model;
import com.ibm.rdf.store.Store;
import com.ibm.rdf.store.StoreManager;
import com.ibm.rdf.store.exception.RdfStoreException;
import com.ibm.rdf.store.jena.RdfStoreFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryExecutionFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryFactory;

public class RDFStoreSampleQuery {

public static void main(String[] args) throws SQLException, IOException {

Connection conn = null;
Store store = null;
String storeName = "sample";
String schema = "db2admin";

// Get a connection to the DB2 database.
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
conn = DriverManager.getConnection(

"jdbc:db2://localhost:50000/dbrdf", "db2admin",
"db2admin");

} catch (ClassNotFoundException e1) {
e1.printStackTrace();
}

try {

/* Connect to required RDF store in the specified schema. */
store = StoreManager.connectStore(conn, schema, storeName);

/* This is going to be our SPARQL query i.e. select triples
in the default graph where object is <ibm.com>
*/

String query = "SELECT * WHERE { ?s ?p

Chapter 9. Querying an RDF store 31



<https://www.ibm.com> }";

/* Create the Query object for the SPARQL string. */
Query q = RdfStoreQueryFactory.create(query);

/* Get the Dataset interface of the RDF store. */
Dataset ds = RdfStoreFactory.connectDataset(store, conn);

/* Create a QueryExecution object, by providing the query to execute
and the dataset against which it to be executed. */
QueryExecution qe = RdfStoreQueryExecutionFactory.create(q, ds);

long rows = 0;
Model m = null;

/* Based on the SPARQL query type, call the proper execution
method. */

if (q.isSelectType()) {
ResultSet rs = qe.execSelect();
while (rs.hasNext()) {
QuerySolution qs = rs.next();
System.out.println(qs);
System.out.println();
rows++;
}
}
else if ( q.isDescribeType() ) {

m = qe.execDescribe();
m.write(System.out, "N-TRIPLE");

}
else if ( q.isAskType() ) {
System.out.println(qe.execAsk());

}
else if (q.isConstructType()) {
m = qe.execConstruct();
m.write(System.out, "N-TRIPLE");
}

/* Close the QueryExecution object. This is required to ensure
no JDBC statement leaks. */
qe.close();

// Display the # of rows returned
if ( m != null ) {
System.out.println("Number of Rows : " + m.size());
m.close();
}
else {
System.out.println("Number of Rows : " + rows);

}

}
catch(RdfStoreException e) {

e.printStackTrace();
}
catch(Exception e) {
e.printStackTrace();
}

}

}

32 Developing RDF Applications for IBM Data Servers



Creating a union of all named graphs
You can set the default graph to be the union of all named graphs in the data set
for a SPARQL query. This feature applies to queries only. It does not affect the
storage nor does it change loading.

The following two programs demonstrate how to set the default graph as the
union of all named graphs in the data set for a SPARQL query.

Example
1. The following sample Java program sets the default graph for all queries from

a store object:
import java.sql.Connection;

import com.hp.hpl.jena.query.Dataset;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.QueryExecution;
import com.ibm.rdf.store.Store;
import com.ibm.rdf.store.StoreManager;
import com.ibm.rdf.store.Symbols;
import com.ibm.rdf.store.jena.RdfStoreFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryExecutionFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryFactory;

public class UnionDefaultGraph {

public static void setPerQuery() {

Connection conn = null;
Store store = null;

// get a connection to the DB2 database
//conn = DriverManager.getConnection(...);

store = StoreManager.connectStore(conn, "db2admin", "Sample");

//Set the default graph as the union of all named graphs in the data set
// for all queries on the store object
store.getContext().set(Symbols.unionDefaultGraph, true);

// create the query
String query = "SELECT * WHERE { ?s ?p <https://www.ibm.com> }";
Query q = RdfStoreQueryFactory.create(query);
Dataset ds = RdfStoreFactory.connectDataset(store, conn);
QueryExecution qe = RdfStoreQueryExecutionFactory.create(q, ds);

// proceed to execute the query

}

}

2. The following sample Java program sets the default graph on a per query basis:
import java.sql.Connection;

import com.hp.hpl.jena.query.Dataset;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.QueryExecution;
import com.ibm.rdf.store.Store;
import com.ibm.rdf.store.StoreManager;
import com.ibm.rdf.store.Symbols;
import com.ibm.rdf.store.jena.RdfStoreFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryExecutionFactory;

Chapter 9. Querying an RDF store 33



import com.ibm.rdf.store.jena.RdfStoreQueryFactory;

public class UnionDefaultGraph {

public static void setPerQuery() {

Connection conn = null;
Store store = null;

// get a connection to the DB2 database
//conn = DriverManager.getConnection(...);

store = StoreManager.connectStore(conn, "db2admin",
"Sample");

String query = "SELECT * WHERE { ?s ?p <https://www.ibm.com> }";
Query q = RdfStoreQueryFactory.create(query);
Dataset ds = RdfStoreFactory.connectDataset(store, conn);
QueryExecution qe = RdfStoreQueryExecutionFactory.create(q,

ds);

/* Set the default graph as the union of all named graphs
* in the data set just for this query.
*/
qe.getContext().set(Symbols.unionDefaultGraph, true);

// Proceed to run the query.

}

}

Registering custom DESCRIBE handlers
Use the ARQ defined mechanism to customize how DESCRIBE queries are
handled.

A default DESCRIBE handler already comes registered with a DB2 RDF store. It
provides a one level depth description of selected resources.

When you implement your own DESCRIBE handlers, ensure that you minimize
the number of calls made to the DB2 database server.

Example

The following program demonstrates how to register and implement your own
DESCRIBE handler for the DB2 RDF store.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

import com.hp.hpl.jena.graph.Node;
import com.hp.hpl.jena.graph.Triple;
import com.hp.hpl.jena.query.Dataset;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.rdf.model.AnonId;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.rdf.model.Property;

34 Developing RDF Applications for IBM Data Servers



import com.hp.hpl.jena.rdf.model.Resource;
import com.hp.hpl.jena.rdf.model.ResourceFactory;
import com.hp.hpl.jena.sparql.core.describe.DescribeHandler;
import com.hp.hpl.jena.sparql.core.describe.DescribeHandlerFactory;
import com.hp.hpl.jena.sparql.core.describe.DescribeHandlerRegistry;
import com.hp.hpl.jena.sparql.util.Context;
import com.ibm.rdf.store.Store;
import com.ibm.rdf.store.StoreManager;
import com.ibm.rdf.store.jena.RdfStoreFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryExecutionFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryFactory;

public class DescribeTest {

/**
* @param args
* @throws ClassNotFoundException
* @throws SQLException
*/

public static void main(String[] args) throws ClassNotFoundException,
SQLException {
if (args.length != 5) {
System.err.print("Invalid arguments.\n");
printUsage();
System.exit(0);
}

/* Note: ensure that the DB2 default describe handler is also removed.
* Use the ARQ API’s to remove the default registered describe handlers.
* If you don’t do this, every resource runs through multiple describe
* handlers, causing unnecessarily high overhead.
*/

/*
* Now Register a new DescribeHandler (MyDescribeHandler)
*/
DescribeHandlerRegistry.get().add(new DescribeHandlerFactory() {
public DescribeHandler create() {
return new MyDescribeHandler();
}
});

/*
* Creating database connection and store object.
*/
Store store = null;
Connection conn = null;

Class.forName("com.ibm.db2.jcc.DB2Driver");

String datasetName = args[0];
String url = args[1];
String schema = args[2];
String username = args[3];
String passwd = args[4];

conn = DriverManager.getConnection(url, username, passwd);

if (StoreManager.checkStoreExists(conn, schema, datasetName)) {
store = StoreManager.connectStore(conn, schema, datasetName);
} else {
store = StoreManager.createStore(conn, schema, datasetName, null);
}

/*
* Creating dataset with test data.

Chapter 9. Querying an RDF store 35



*/
Dataset ds = RdfStoreFactory.connectDataset(store, conn);

ds.getDefaultModel().removeAll();
ds.getDefaultModel().add(getInputData());

/*
* Executing a DESCRIBE SPARQL query.
*/
String sparql = "DESCRIBE <http://example.com/x>";

Query query = RdfStoreQueryFactory.create(sparql);

QueryExecution qe = RdfStoreQueryExecutionFactory.create(query, ds);

Model m = qe.execDescribe();

m.write(System.out, "N-TRIPLES");

qe.close();

conn.close();
}

private static void printUsage() {
System.out.println("Correct usage: ");
System.out.println("java DescribeTest <DATASET_NAME>");
System.out.println(" <URL> <SCHEMA> <USERNAME> <PASSWORD>");
}

// Creating input data.
private static Model getInputData() {
Model input = ModelFactory.createDefaultModel();

Resource iris[] = {
ResourceFactory.createResource("http://example.com/w"),
ResourceFactory.createResource("http://example.com/x"),
ResourceFactory.createResource("http://example.com/y"),
ResourceFactory.createResource("http://example.com/z") };

Property p = ResourceFactory.createProperty("http://example.com/p");
Node o = Node.createAnon(new AnonId("AnonID"));

for (int i = 0; i < iris.length - 1; i++) {
input.add(input.asStatement(Triple.create(iris[i].asNode(), p

.asNode(), iris[i + 1].asNode())));
}

input.add(input.asStatement(Triple.create(iris[iris.length - 1]
.asNode(), p.asNode(), o)));

return input;
}
}

/*
* Sample implementation of DescribeHandler.
*/

class MyDescribeHandler implements DescribeHandler {

/*
* Set to keep track of all unique resource which are
* required to DESCRIBE.
*/
private Set <Resource> resources;

private Model accumulator;

36 Developing RDF Applications for IBM Data Servers



// Remaining field variables

public void start(Model accumulator, Context ctx) {
resources = new HashSet <Resource>();
this.accumulator = accumulator;
// Other object declaration as needed.
}

public void describe(Resource resource) {
resources.add(resource);
}

public void finish() {
/*
* Implement your own describe logic.

* Add the new triples to ’accumulator’ model object.
* It is best to avoid multiple calls to the database, hence

* structure your logic accordingly.
* If you need FullClosure, use the

* com.ibm.rdf.store.internal.jena.impl.DB2Closure.closure() APIs,
* instead of com.hp.hpl.jena.sparql.util.Closure.closure().
*/

}
}

Enforcing graph level access control using DB2 database server
You can ensure that a SPARQL query can access only specific RDF graphs by
having the DB2 engine enforce the access control.

Procedure

The system predicates metadata table contains the RDF predicates. This metadata
is specified to enforce graph level access control during store creation. It also stores
the names of the columns on the Direct Primary and Reverse Primary tables which
contain the values for these predicates.

Issue the following query:
"select * from System_predicates_table>"

The sample output:
ENTRY_ID COLNAME MAPNAME
=======================================================
1 SYSPRED_0 http://myapp.net/xmlns/APPID
1 SYSPRED_1 http://myapp.net/xmlns/CONTEXTID

Here SYSPRED_0 is the column for predicate http://myapp.net/xmlns/APPID and
SYSPRED_1 the column for predicate http://myapp.net/xmlns/CONTEXTID on the
Direct Primary and Reverse Primary tables.
You can use the features of DB2 software's fine grained access control to define ROW
LEVEL constraints as per your requirements on the Direct Primary and Reverse
Primary tables using these columns.

Enforcing graph level access control by using the RDF store SQL
generator

You can control access to specific RDF graphs. You can control access by having
the RDF store SQL generator apply the right filters in the SQL it generates.

Chapter 9. Querying an RDF store 37



Determine the values of RDF predicates based on RDF graphs that contain triples.
The values determine which graphs are accessed.

Decide whether the access control check is for a single value or any value in a set
of values. If the access control check is for a single value, create a
QueryFilterPredicateEquals object that returns this value. If the access control
check is for any one value in a set of values, create a QueryFilterPredicateMember
object that returns set of values. Repeat this process for each access control filter
predicate.

Set the objects into the QueryExecution context for the SPARQL query that is
issued.

Example

The following Java program demonstrates how graph access is controlled by using
the RDF store SQL generator.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.hp.hpl.jena.query.Dataset;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QuerySolution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.rdf.model.Literal;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.rdf.model.Property;
import com.hp.hpl.jena.rdf.model.Resource;
import com.hp.hpl.jena.rdf.model.ResourceFactory;
import com.ibm.rdf.store.Store;
import com.ibm.rdf.store.StoreManager;
import com.ibm.rdf.store.Symbols;
import com.ibm.rdf.store.jena.RdfStoreFactory;
import com.ibm.rdf.store.jena.RdfStoreQueryExecutionFactory;
import com.ibm.rdf.store.query.filter.QueryFilterPredicate;
import com.ibm.rdf.store.query.filter.QueryFilterPredicateEquals;
import com.ibm.rdf.store.query.filter.QueryFilterPredicateMember;
import com.ibm.rdf.store.query.filter.QueryFilterPredicateProvider;

public class QueryStoreGraphAccessControl {

/* Property objects for the two RDF predicates based on whose triples
* access to the graph is controlled.
*/
private final static Property APPID =
ModelFactory.createDefaultModel()
.createProperty("http://myapp.net/xmlns/APPID");

private final static Property CONTEXTID =
ModelFactory.createDefaultModel()

.createProperty("http://myapp.net/xmlns/CONTEXTID");

public static void main(String[] args) throws SQLException {

Connection conn = null;
Store store = null;

38 Developing RDF Applications for IBM Data Servers



// get a connection to the DB2 database
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
conn = DriverManager.getConnection(

"jdbc:db2://localhost:50000/dbrdf",
"db2admin","db2admin");

} catch (ClassNotFoundException e1) {
e1.printStackTrace();
}

/* Connect to the access controlled store. */
store = StoreManager.connectStore(conn, "db2admin",

"SampleAccessControl");
Dataset ds = RdfStoreFactory.connectDataset(store, conn);

// Insert some data for querying
insertDataForQuerying(ds);

// Query and ensure access control is enforced
QueryWithGraphAccessControl(ds);

}

private static void QueryWithGraphAccessControl(Dataset ds) {

//Create the filter value for APPID.
final QueryFilterPredicateEquals appIdFilter =
new QueryFilterPredicateEquals() {
public Literal getValue() {
return ModelFactory.createDefaultModel()

.createLiteral("App1");
}
};

//Create the filter value set for contextID.
final QueryFilterPredicateMember ctxIdFilter = new

QueryFilterPredicateMember() {
public List <> getValues() {

List<Literal> a = new ArrayList<Literal>();
a.add(ModelFactory.createDefaultModel()
.createLiteral("Context1"));
a.add(ModelFactory.createDefaultModel()
.createLiteral("Context2"));
return a;

}
};

// Create the QueryExecution object.
QueryExecution qe = RdfStoreQueryExecutionFactory.create(
"select ?who where { ?who <http://pre/test.3> ?x }",

ds);

// Set the access control filter values for this query.
qe.getContext().set(Symbols. queryFilterPredicates,

new QueryFilterPredicateProvider() {
public QueryFilterPredicate getQueryFilterPredicate(
Property filterProperty) {
if (filterProperty.equals(APPID) ) {
return appIdFilter;
}
else if ( filterProperty.equals(CONTEXTID)) {
return ctxIdFilter;
}
else
return null;

Chapter 9. Querying an RDF store 39



}

});

// Set the default graph as a union of all named graphs.
qe.getContext().set(Symbols.unionDefaultGraph, true);

/* Execute SPARQL. Note only Model1 will match and Model2
* triples are not returned */

ResultSet rs = qe.execSelect();
while (rs.hasNext()) {
QuerySolution qs = rs.next();
System.out.println(qs.toString());
}
qe.close();

}

private static void insertDataForQuerying(Dataset ds) {

// Adding triples to graph1.
ds.getNamedModel("Model1").add(getMemModel());

// Adding filter predicate triples in the existing graph.
ds.getNamedModel("Model1").add(

ResourceFactory.createResource(
"http://res1"), APPID, "App1");

ds.getNamedModel("Model1").add(
ResourceFactory.createResource(

"http://res1"), CONTEXTID, "Context1");

// Adding triples to graph2.
ds.getNamedModel("Model2").add(getMemModel());

// Adding filter predicate triples in the existing graph.
ds.getNamedModel("Model2").add(

ResourceFactory.createResource(
"http://res2"), APPID, "App2");

ds.getNamedModel("Model2").add(
ResourceFactory.createResource(

"http://res2"), CONTEXTID, "Context2");

}

private static Model getMemModel() {private static Model getMemModel() {
String sub = "http://sub/";
String pre = "http://pre/test.";
String obj = "http://obj/";

Model m = ModelFactory.createDefaultModel();

long TRIPLE_COUNT = 12;
for (int i = 0; m.size() < TRIPLE_COUNT; i++) {
Resource s = ResourceFactory.createResource(sub + (i % 3));
Property p = ResourceFactory.createProperty(pre + (i % 9));
Literal o = ResourceFactory.createPlainLiteral(obj + (i % 4));
m.add(ResourceFactory.createStatement(s, p, o));
}

return m;
}

}

40 Developing RDF Applications for IBM Data Servers



Chapter 10. Setting up SPARQL Version 1.1 Graph Store
Protocol and SPARQL over HTTP

In DB2 Version 10.1 Fix Pack 2 and later fix packs, DB2 RDF supports the SPARQL
Version 1.1 graph store HTTP protocol. This protocol requires Apache JENA Fuseki
Version 0.2.4. You need to set up the Fuseki environment to use the SPARQL REST
API.

Before you begin

To set up the Fuseki environment:
1. Download the jena-fuseki-0.2.4-distribution.zip file from

http://archive.apache.org/dist/jena/binaries/“http://archive.apache.org/dist/
jena/binaries/”.

2. Extract the file on your local system.

Procedure
1. Open a command prompt window and go to the <Fuseki install

dir>/jena-fuseki-0.2.4 directory.
2. Open the config.ttl file and add db2rdf as a prefix

@prefix : <#> .
@prefix fuseki: <http://jena.apache.org/fuseki#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix tdb: <http://jena.hpl.hp.com/2008/tdb#> .
@prefix ja: <http://jena.hpl.hp.com/2005/11/Assembler#> .

@prefix db2rdf: <http://rdfstore.ibm.com/IM/fuseki/configuration#>

3. Add the DB2 RDF service to the config.ttl file. Add this service to the section
of the file where all the other services are registered.
fuseki:services (

<#service1>
<#service2>
<#serviceDB2RDF_staffing>

) .

You can register multiple services. Each service queries different DB2 RDF data
sets.

4. Add the following configuration to the config.ttl file to initialize the RDF
namespace. This configuration registers the assembler that creates the
DB2Dataset. The configuration also registers the DB2QueryEngine and
DB2UpdateEngine engines.
# DB2
[] ja:loadClass "com.ibm.rdf.store.jena.DB2" .
db2rdf:DB2Dataset rdfs:subClassOf ja:RDFDataset .

5. Add details about the DB2 RDF service to the end of config.ttl file.
# Service DB2 Staffing store
<#serviceDB2RDF_staffing>
rdf:type fuseki:Service ;
rdfs:label "SPARQL against DB2 RDF store" ;
fuseki:name "staffing" ;
fuseki:serviceQuery "sparql" ;
fuseki:serviceQuery "query" ;
fuseki:serviceUpdate "update" ;
fuseki:serviceUpload "upload" ;

© Copyright IBM Corp. 2013 41

http://archive.apache.org/dist/jena/binaries/


fuseki:serviceReadWriteGraphStore "data" ;
fuseki:serviceReadGraphStore "get" ;
fuseki:serviceReadGraphStore "" ;
fuseki:dataset <#db2_dataset_read> ;
.

<#db2_dataset_read> rdf:type db2rdf:DB2Dataset ;

# specify the RDF store/dataset and schema
db2rdf:store "staffing" ;
db2rdf:schema "db2admin" ;

# Database details. Specify either a jdbcConnectString
# with username and password or specify a jndiDataSource
db2rdf:jdbcConnectString "jdbc:db2://localhost:50000/RDFSAMPL" ;
db2rdf:user "db2admin" ;
db2rdf:password "db2admin" .

#db2rdf:jndiDataSource "jdbc/DB2RDFDS" .

6. Issue the following commands from the command line:
SET CLASSPATH=./fuseki-server.jar;<DB2_FOLDER>/rdf/lib/rdfstore.jar;
<DB2_FOLDER>/rdf/lib/wala.jar;<DB2_FOLDER>/rdf/lib/antlr-3.3-java.jar;
<DB2_FOLDER>/rdf/lib/commons-logging-1-0-3.jar;<DB2_FOLDER>/java/db2jcc4.jar;
%CLASSPATH%;

java org.apache.jena.fuseki.FusekiCmd --config config.ttl

Results
1. Start your browser and load the localhost:3030 URL. The Fuseki page loads in

the browser window.
2. Click the Control Panel hyperlink in the browser window and select Dataset

from the drop-down list. The drop-down list contains all the data sets that are
listed in the config.ttl file. Select the data set that you configured.

3. Issue a SPARQL query by using the options from the GUI. The first section is
for querying the data set with the SPARQL query language. The second section
is for modifying the data set with SPARQL updates. The third section is for
loading data into the graphs in the data set.

42 Developing RDF Applications for IBM Data Servers



Chapter 11. Maintaining an RDF store

Create either a default or an optimized DB2 RDF store and load RDF data into it.
Perform maintenance on your RDF store to achieve optimal performance query
performance.

Updating statistics in an RDF store
You can update the statistics for an RDF store.

About this task

To ensure optimal performance query performance in an RDF store, a combination
of DB2 database statistics and RDF store specific statistics are maintained for an
RDF store.

As part of the RDF store creation process, DB2 RUNSTATS command profiles are
created for the data tables of the RDF store. By you ensuring that AUTORUNSTATS
parameter is enabled, DB2 automatically updates distribution statistics on the
tables.

In case you have specifically performed operations that have updated significant
amounts of data in the RDF store, it is best if you manually invoke DB2 statistics
gathering rather than wait for automatic updates. To manually invoke DB2
statistics gathering, invoke the following command for each of the data tables in
the RDF store:
db2 RUNSTATS ON <table_name> USE PROFILE

The data tables are direct_primary, direct_secondary, reverse_primary,
reverse_secondary and long_strings tables.

To help ensure that SPARQL queries generate efficient SQL queries, it is important
that the most common RDF triples by RDF subject, object and predicate are stored
in the Topk_Stats table of the RDF store. To automatically gather information about
the most common RDF triples, as part of RDF store creation, a DB2 administrative
task is created and registered with the DB2 Administrative Task Scheduler.

However, the interval of this task is not set automatically and therefore will not
run until you set it. Use the schedule parameter of the SETSTATSSCHEDULE
command. This parameter accepts a standard CRON format string to represent the
interval at which statistics gathering should be invoked. Generally, you don't need
to set the frequency of this task to anything smaller than an hour.

Procedure
v Use the following command to set the statistics gathering schedule to every 1

hour on the hour for store rdfStore2 on database DB1.
setstatsschedule rdfStore2 -host localhost -port 60000
-db DB1 -user db2admin -password XXX
-schema db2admin -schedule "*/59 * * * *"

v In case you have specifically performed operations that have updated significant
amounts of data in the RDF store, manually gather these statistics instead of
waiting for the scheduler. To manually invoke this run the updaterdfstorestats
command.

© Copyright IBM Corp. 2013 43



For example, use the following command to update statistics for store rdfstore2
on database DB1 and schema db2admin for host localhost and port 60000:
updaterdfstorestats rdfstore2 -host localhost -port 60000 -db DB1
-user db2admin -password XXX
-schema db2admin

Converting a default store to an optimized RDF store
If you started with a default RDF store, you can use the reorgcheckrdfstore
command to verify if the store should be optimized. You can also do this for an
optimized store in which the predicate correlation has significantly changed. Then
use the reorgrdfstore and reorgswitchrdfstore commands to move to an
optimized RDF store.

First, verify if an RDF store needs reorganizing. Then create reorganized tables for
an RDF store. Finally, switch to the reorganized tables.

Verifying if an RDF store needs reorganizing
If the predicate correlation of the RDF data has changed and significant amounts of
data has been inserted with this change, the number and length of columns for
tables in the store as well as assignment of predicates to columns might no longer
be optimal for your data.

If these values are no longer optimal, query and insert performance for the RDF
store might be negatively affected.

Procedure

To determine whether a store requires reorganization, issue the
reorgcheckrdfstore command. For example, for a store myRdfStore in database
DB1, issue the following command:
reorgcheckrdfstore myRdfStore -db DB1
-user db2admin -password db2admin

If the tables do not require reorganization, the following message is displayed:
No reorganization is required for store myRdfStore.

If any tables require reorganization, the output lists the tables, as shown in the
following example:
TABLENAME REORG ColsRequired ColSize
------------------------------------------------------------
direct_primary_hash true 5 118
reverse_primary_hash true 3 118
------------------------------------------------------------

What to do next

Use the reorgrdfstore command to create reorganized tables. For details, see topic
about creating reorganized tables for an RDF store.

Creating reorganized tables for an RDF store
If the reorgcheckrdfstore command indicates that you must reorganize tables, use
the reorgrdfstore command to create and populate reorganized tables.

44 Developing RDF Applications for IBM Data Servers



Before you begin

Ensure that no updates are made to the RDF store while the reorgrdfstore
command is in progress by changing all the tables of the RDF store to read-only
mode.

Procedure

To reorganize tables in an RDF store, issue the reorgrdfstore command. For
example, for store myRdfStore in database DB1, issue the following command to
create a new reorganized table for table direct_primary_hash:
reorgrdfstore myRdfStore -db DB1
-user db2admin -password db2admin
-table direct_primary_hash -newtablenamesprefix reorgd

The name of the new table is reorgd_original_table_name because you specified
reorgd as the prefix for the new table name for the command. The
original_table_name value represents the name that was set for the
direct_primary_hash table in the objectNames.props properties file.

Results

The time to reorganize tables depends on the amount of data in the store.

If no reorganization is required for a table that you specify for the table parameter,
a message indicates that.

What to do next

Change the store to use the new reorganized tables. For details, see topic about
switching to reorganized tables in an RDF store.

Switching to reorganized tables in an RDF store
The reorgrdfstore command creates reorganized tables, but the RDF store does
not use those new tables until you issue the reorgswitchrdfstore command.

Before you begin

Ensure that all clients of the RDF store are disconnected.

Procedure

To update an RDF store with reorganized tables, issue the reorgswitchrdfstore
command. For example, for store myRdfStore in database DB1, issue the command
as follows:
reorgswitchrdfstore myRdfStore -db DB1
-user db2admin -password db2admin

Results

The reorgswitchrdfstore command renames the original tables to
old_original_table_name, and the reorganized tables use the original names.

When the RDF store is switched to a reorganized store, the tables are not renamed.
The store will be modified to start using the new tables, and the old tables will
remain as is.

Chapter 11. Maintaining an RDF store 45



What to do next

Reconnect clients to the store.

Drop the old tables if required.

46 Developing RDF Applications for IBM Data Servers



Chapter 12. RDF commands

RDF commands provide extensive user control, customization, and personalization.
You can use these commands to perform a variety of store creation, administration
and query related tasks.

createrdfstore command
The createrdfstore command creates an empty RDF store without any data.

To create an optimized RDF store that is uses existing data, use the
createrdfstoreandloader command instead.

Command syntax

�� createrdfstore storeName
-objectnames objNames -host hostName

�

�
-port portNumber

-db dbName -user userName -password password �

�
-schema schemaName -predicatemappings predicateMappingsFileName

�

�
-systempredicates systemPredicatesFileName

��

Command parameters

-storename storeName
Specifies a name for the RDF store. Ensure that the name satisfies the rules for
DB2 database table names.

-objectnames objNames
Specifies a Java properties file that lists the names of the RDF store tables. This
file can be any valid file name, but it must have the extension ".properties".

If you do not specify the objectNames parameter, system generated table names
are used instead.

-host hostNames
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established. The minimum
database page size is 32 KB.

-user userName
Specifies the authorization name that is used to establish the connection.

-password password
Specifies the password that is used to establish the connection.

© Copyright IBM Corp. 2013 47



-schema schemaName
Specifies the database schema in which to create the RDF store.

-predicatemappings predicateMappingsFileName
In DB2 Version 10.1 Fix Pack 2 and later fix packs, specifies the path of the file
that contains the predicate mappings that are to be used in the store. The
mappings occur between the predicates and their assigned columns. The
mappings are computed based on predicate occurrence.

-systempredicates systemPredicatesFileName
In DB2 Version 10.1 Fix Pack 2 and later fix packs, specifies the properties file
that contains the filter predicates that are to be applied to the query. These
system predicates are stored in an RDF store to help enable graph level access
control.

Example

Example 1: The following command creates a store named rdfStore1 in database
DB1 with port 60000 and schema db2admin on host localhost:
createrdfstore rdfStore1 -host localhost -port 60000 -db DB1
-user db2admin -password XXX -schema db2admin

Example 2: The following command creates a store named rdfstore2 in database
DB1 with port 60000 and schema db2admin by using system predicates from the
syspreds.props file and predicate mappings from the predicatemappings.nq file.
createrdfstore rdfStore1 -host localhost -port 60000 -db DB1
-user db2admin -password XXX -schema db2admin
-predicatemappings predicatemappings.nq -systempredicates syspreds.props

Usage notes

You must issue command and parameter names in lowercase.

createrdfstoreandloader command
The createrdfstoreandloader command analyzes RDF data and creates an empty
RDF store whose schema is optimized for the existing RDF data. This command
also generates the load files and the commands to load the store from these loader
files.

Command syntax

�� createrdfstoreandloader storeName
-objectnames objNames

�

�
-host hostName -port portNumber

-db dbName -user userName �

� -password password
-schema schemaName

-rdfdata rdfDataFile �

�
-storeloadfile loadCommandFile -storeschemafile ddlFile

�

�
-systempredicates systemPredicatesFileName

��

48 Developing RDF Applications for IBM Data Servers



Command parameters

-storename storeName
Specifies a name for the RDF store. Ensure that the name satisfies the rules for
DB2 database server table names and is unique within the database schema.

-objectnames objNames
Specifies a Java properties file that lists the names of the RDF store tables. This
file can be any valid file name, but it must have the extension ".properties".

If you do not specify the objectNames parameter, system generated table names
are used instead.

-host hostNames
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established. The minimum
database page size is 32 KB.

-user userName
Specifies the authorization name that is used to establish the connection.

-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema in which to create the RDF store.

-rdfdata rdfDataFile
Specifies a file with the RDF data from which the optimized RDF store schema
is created. Also, load files are created based on the RDF data in this file.

-storeloadfile loadCommandFile
Specifies the output path of the file with the commands to load data into the
RDF store. You can run this file by using the DB2 command line processor
(CLP).

If you do not specify the -storeloadfile parameter, a file with the name
loadCommands.sql is created in the current folder.

The load files are created in the folder where the file with the commands is
created.

-storeschemafile ddlFile
Specifies the output path and file where the DDL scripts are generated for the
store.

If you do not specify the -storeschemafile parameter, the DDL scripts file is
not created.

-systempredicates systemPredicatesFileName
In DB2 Version 10.1 Fix Pack 2 and later fix packs, specifies the properties file
that contains the filter predicates to be applied to the query. These system
predicates are stored in a DB2 RDF store to help enable graph level access
control.

Chapter 12. RDF commands 49



Example

The following command creates a store named rdfStore1 in database DB1 with port
60000 and schema db2admin on host localhost. The input RDF data file is
myRdfData.nq, and the name of the generated store loader file is load.sql in the
./rdfLoader/ directory.
createrdfstoreandloader rdfStore1 -host localhost -port 60000 -db DB1
-user db2admin -password XXX -schema db2admin
-rdfdatafile ./myRdfData.nq -storeloadfile ./rdfLoader/load.sql

Usage notes

You must issue the command and parameter names in lowercase.

The directory from which the command is issued must not have a space in its
path. The storeloadfile and storeschemafile parameters must not have a space
in their path either. On Windows platforms, if any paths that are specified contain
a space in the folder or file name, the whole string must be enclosed within double
quotation marks.

On Windows platforms, the createrdfStoreAndLoader command requires the
CygWin application. The Gawk utility required for this command is Versions 4.0 or
later. The Core utility required for this command is Version 8.14 or later. After
installing CygWin, add <CgyWin_install_directory>/bin to the PATH environment
variable. If you do not have CygWin on the path, the following error message is
displayed when you run the command:
’Cannot run program "sh": CreateProcess error=2, The system cannot find
the specified file.’

On Windows platforms, you can start the createrdfStoreAndLoader command
either from a CygWin command prompt or default command prompt. When using
a CygWin command prompt, all file paths (-rdfdata, -storeloadfile, -storeschemafile,
-objectnames) must not include the 'cygdrive' prefix. Instead use a Windows path
such as C:\.....

droprdfstore command
The droprdfstore command removes an existing RDF store.

Command syntax

�� droprdfstore storename
-host hostName -port portNumber

�

�
-db dbName -user userName -password password

�

�
-schema schemaName

��

Command parameters

-storename
Specifies a name identifying the tripleStore within a database or schema.

-host hostNames
Specifies the host where the database is located.

50 Developing RDF Applications for IBM Data Servers



-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection,

-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema in which the RDF is located.

Example

Issue the droprdfstore command to remove a store named rdfStore4 in database
DB1 and schema db2admin for host localhost and port 60000.
droprdfstore rdfStore4 -host localhost -port 60000 -db DB1
-user db2admin -password XXX
-schema db2admin

Usage notes
v Command and parameter names must be issued in lowercase.

genpredicatemappings command
In DB2 Version 10.1 Fix Pack 2 and later fix packs, the genpredicatemappings
command generates predicate mappings based on predicate correlation for an RDF
store.

Command syntax

�� genpredicatemappings storeName
-host hostName

�

�
-port portNumber

-db dbName -user userName -password password �

� -schema schema outputFile ��

Command parameters

storeName
Specifies the RDF store.

-host hostName
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

Chapter 12. RDF commands 51



-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema for the RDF store.

outputFile
Specifies the path and name of the file to which the mappings are written. If
an output file is not specified, the output is written to the console.

Example

The following command generates predicate mappings for an RDF store named
MyStore and writes the output to a file:
genpredicatemappings MyStore -db RDFSAMPL -user db2admin
-password db2admin "C:\MyStore_predicate_mappings.txt"

Usage notes

You must issue the command and parameter names in lowercase.

loadrdfstore command
In DB2 Version 10.1 Fix Pack 2 and later fix packs, the loadrdfstore command
loads triples to an existing RDF store.

Command syntax

�� loadrdfstore storeName
-host hostName -port portNumber

�

� -db dbName -user userName -password password
-schema schema

�

�
loadFile

��

Command parameters

storeName
Specifies the RDF store to be queried.

-host hostNames
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema for the RDF store.

52 Developing RDF Applications for IBM Data Servers



loadFile
Specifies the file that contains the triples to be loaded. The file can be of type
nquad, ntriple, or rdfxml. Ntriple and rdfxml files are loaded to the default
graph only.
v The extension for nquad files is .nq.
v The extension for ntriples files is .nt.
v The extension for rdfxml files is .rdf or .xml.

Example

The following command loads a file that contains triples for an RDF store named
myStore in the RDFSAMPL database.
loadrdfstore myStore -db RDFSAMPL -user db2admin
-password db2admin -schema db2admin c:\simple.nq

Usage notes

You must issue the command and parameter names in lowercase.

queryrdfstore command
In DB2 Version 10.1 Fix Pack 2 and later fix packs, you can use the queryrdfstore
command to query an RDF store from the command line. You can run this query
from a file or by specifying it inline as an argument to the queryrdfstore
command.

Command syntax

�� queryrdfstore storeName
-host hostName -port portNumber

�

� -db dbName -user userName -password password
-schema schema

�

�
-uniondefaultgraph unionDefaultGraphValue -reopt reoptValue

�

�
-file queryFile queryStringValue

��

Command parameters

storeName
Specifies the RDF store to be queried.

-host hostNames
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

Chapter 12. RDF commands 53



-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema for the RDF store.

-uniondefaultgraphunionDefaultGraphValue
Specifies whether a union default graph is being used. The value can be true
or false.

-reoptreoptValue
Specifies the repeat options for running the query. The options are once,
always, or none. The default value is none.

-filequeryFile
Specifies the file that contains the SPARQL query.

queryStringValue
Specifies the SPARQL query issued as a string.

Example

Example 1: The following command specifies a query for triples in an RDF store
named myStore and in the RDFSAMPL database on a local system, with the
unionDefaultGraph parameter set to trueYou can query all the triples in an RDF
store name myStore in the RDFSAMPL database on the local system, with the
unionDefaultGraph parameter set to true.
queryrdfstore myStore -db RDFSAMPL -user db2admin
-password db2admin -schema db2admin
-uniondefaultgraph true "select * where {?s ?p ?v}"

Example 2: The following command specifies query usage within in a text file.
queryrdfstore myStore -db RDFSAMPL -user db2admin
-password db2admin -schema db2admin
-uniondefaultgraph true -file "C:\query.txt"

Usage notes

You must issue the command and parameter names in lowercase.

You can specify the query either within a file or as a parameter for the command,
but not both.

reorgcheckrdfstore command
The reorgcheckrdfstore command checks whether you must reorganize an RDF
store.

The reorgcheckrdfstore command identifies whether the number of columns or
the column lengths in one or more RDF store tables are not optimal. After running
the reorgcheckrdfstore command, issue the reorgrdfstore command to
reorganize the identified tables to help improve query performance.

Command syntax

�� reorgcheckrdfstore -storename
-host hostName -port portNumber

�

54 Developing RDF Applications for IBM Data Servers



� -db dbName -user userName -password password
-schema schemaName

��

Command parameters

-storename
"Specifies the name of a tripleStore within a database or schema.

-host hostName
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema in which the RDF store is located.

Example

The following command checks whether a store named rdfStore3 must be
reorganized. The store is in database DB1 with port 60000 and schema db2admin
on host localhost.
reorgcheckrdfstore rdfStore3 -host localhost -port 60000 -db DB1
-user db2admin -password XXX
-schema db2admin

Only tables requiring reorganization are listed in the output of the
reorgcheckrdfstore command. The output contains the following columns of data:

tablename
Logical name of the RDF store table.

reorg A true or false value indicating whether the table requires reorganization.

colsrequired
Required number of columns.

colsize
Optimal column length.

Usage notes

You must issue the command and parameter names in lowercase.

reorgrdfstore command
The reorgrdfstore command creates new reorganized tables with the optimal
number and length of columns for an RDF store based on the existing data in the
store. The command also optionally generates files with the new tables' DDL and
the load commands to load data into the reorganized tables.

Chapter 12. RDF commands 55



This command can take some time to complete based on the amount of data that
needs to be unloaded, creation of load files, and loading the data into reorganized
tables. While the command is running, the RDF store data tables should be made
read-only.

Command syntax

�� reorgrdfstore -storename
-host hostName -port portNumber

�

� -db dbName -user userName -password password
-schema schemaName

�

� -table tableNameList -newtablenamesprefix prefix �

�
-tablesloadfile loadCommandFile

��

Command parameters

-storename
Specifies the name of the tripleStore within a database or schema.

-host hostName
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema in which the RDF store is located.

-table tableNameList
Specifies the list of logical names of the tables to reorganize. Use the pipe
character to separate multiple table names. The list must be contained within
double quotation marks.

-newtablenamesprefix prefix
Specifies a prefix for the new tables.

-tablesloadfile loadCommandFile
Specifies the output path for the file containing the new tables' DDL and
commands to load data into the reorganized tables.

If you do not specify the -tablesloadfile parameter, a file with the name
loadCommands.sql is created in the current folder.

The load files are created in the folder where the load command file is created.
These files can be run using a CLP window.

56 Developing RDF Applications for IBM Data Servers



Example

The following command reorganizes the tables for a store named rdfStore3 in
database DB1 with port 60000 and schema db2admin on host localhost for tables
direct_primary_hash and reverse_primary_hash using newtablenames prefixed
with reorg:
reorgrdfstore rdfStore3 -host localhost -port 60000
-db DB1 -user db2admin -password XXX
-schema db2admin -table "direct_primary_hash|reverse_primary_hash"
-newtablenamesprefix reorg

Usage notes
v You mustissue the reorgrdfstore command on the machine where the DB2

database server and the RDF store are located.
v You must issue the command and parameter names in lowercase.
v After the successful completion of this command, tables will be automatically

loaded. This file can be run using a CLP window.
v After this command completes, the store will continue to use the old tables and

must be switched to start using the new tables. To use the reorganized tables
issue the reorgswitchrdfstore command.

reorgswitchrdfstore command
The reorgswitchrdfstore command switches a RDF Store to use newly
reorganized tables that were created using the reorgrdfstore command.

All clients of this RDF Store should disconnect before this operation and reconnect
back after the command is complete.

The completion time does not depend on the amount of data in the store.

Command syntax

�� reorgswitchrdfstore storename
-host hostName -port portNumber

�

� -db dbName -user userName -password password
-schema schemaName

��

Command parameters

-storename
Specifies a name identifying the tripleStore within a database or schema.

-host hostNames
Specifies the host where a store is created.

-port portNumber
Specifies the port number.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

Chapter 12. RDF commands 57



-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema in which the RDF store is located.

Example

Issue the reorgswitchrdfstore command to switch to reorg'd tables for the store
named rdfStore3 in database DB1 and schema db2admin for host localhost and
port 60000.
reorgswitchrdfstore rdfStore3 -host localhost -port 60000 -db DB1
-user db2admin -password XXX
-schema db2admin

Usage notes
v Command and parameter names must be issued in lowercase.

setstatsschedule command
The setstatsschedule command schedules the automatic update of RDF store
statistics.

Command syntax

�� reorgrdfstore -storename
-host hostName -port portNumber

�

�
-db dbName -user userName -password password

�

�
-schema schemaName

-schedule schedule ��

Command parameters

-storename
Specifies the name of the tripleStore within a database or schema.

-host hostName
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema in which the RDF store is located.

-schedule schedule
Specifies the schedule for statistics updates in UNIX CRON format. This
parameter must be specified within double quotation marks.

58 Developing RDF Applications for IBM Data Servers



Example

The following command schedules the auto updates of statistics to run at 15th
minute of every hour for a store named RDFStore in database RDFDB, port 60000
and schema db2admin on host localhost:
setStatsSchedule RDFStore -host localhost -port 60000
-db RDFDB -user db2admin -password XXX
-schema db2admin -schedule "15 * * * *"

Usage notes
v You must issue the command and parameter names in lowercase.

updaterdfstorestats command
The updaterdfstorestats command updates the statistics to reflect current data in
an RDF store.

Command syntax

�� updaterdfstorestats storeName
-host hostName -port portNumber

�

�
-db dbName -user userName -password password

�

�
-schema schemaName

��

Command parameters

-storename
Specifies a name for the store. The name must be unique within a database or
schema.

-host hostNames
Specifies the host where the database is located.

-port portNumber
Specifies the port number of the database.

-db dbName
Specifies the database to which a connection is established.

-user userName
Specifies the authorization name that is used to establish the connection.

-password password
Specifies the password that is used to establish the connection.

-schema schemaName
Specifies the database schema in which the RDF store is located.

Example

The following command updates statistics for a store named rdfStore3 in database
DB1 with port 60000 and schema db2admin on host localhost:
updaterdfstorestats rdfStore3 -host localhost -port 60000 -db DB1
-user db2admin -password XXX
-schema db2admin

Chapter 12. RDF commands 59



Usage notes
v You must issue the command and parameter names in lowercase.

60 Developing RDF Applications for IBM Data Servers



Part 2. Appendixes

© Copyright IBM Corp. 2013 61



62 Developing RDF Applications for IBM Data Servers



Appendix A. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format
The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg27009474.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2013 63

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals


The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 3. DB2 technical information

Name Form Number Available in print Availability date

Administrative API
Reference

SC27-5506-00 Yes July 28, 2013

Administrative Routines
and Views

SC27-5507-00 No July 28, 2013

Call Level Interface
Guide and Reference
Volume 1

SC27-5511-00 Yes July 28, 2013

Call Level Interface
Guide and Reference
Volume 2

SC27-5512-00 Yes July 28, 2013

Command Reference SC27-5508-00 Yes July 28, 2013

Database Administration
Concepts and
Configuration Reference

SC27-4546-00 Yes July 28, 2013

Data Movement Utilities
Guide and Reference

SC27-5528-00 Yes July 28, 2013

Database Monitoring
Guide and Reference

SC27-4547-00 Yes July 28, 2013

Data Recovery and High
Availability Guide and
Reference

SC27-5529-00 Yes July 28, 2013

Database Security Guide SC27-5530-00 Yes July 28, 2013

DB2 Workload
Management Guide and
Reference

SC27-5520-00 Yes July 28, 2013

Developing ADO.NET
and OLE DB
Applications

SC27-4549-00 Yes July 28, 2013

Developing Embedded
SQL Applications

SC27-4550-00 Yes July 28, 2013

Developing Java
Applications

SC27-5503-00 Yes July 28, 2013

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-5504-00 No July 28, 2013

Developing RDF
Applications for IBM
Data Servers

SC27-5505-00 Yes July 28, 2013

Developing User-defined
Routines (SQL and
External)

SC27-5501-00 Yes July 28, 2013

Getting Started with
Database Application
Development

GI13-2084-00 Yes July 28, 2013

64 Developing RDF Applications for IBM Data Servers



Table 3. DB2 technical information (continued)

Name Form Number Available in print Availability date

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2085-00 Yes July 28, 2013

Globalization Guide SC27-5531-00 Yes July 28, 2013

Installing DB2 Servers GC27-5514-00 Yes July 28, 2013

Installing IBM Data
Server Clients

GC27-5515-00 No July 28, 2013

Message Reference
Volume 1

SC27-5523-00 No July 28, 2013

Message Reference
Volume 2

SC27-5524-00 No July 28, 2013

Net Search Extender
Administration and
User's Guide

SC27-5526-00 No July 28, 2013

Partitioning and
Clustering Guide

SC27-5532-00 Yes July 28, 2013

pureXML Guide SC27-5521-00 Yes July 28, 2013

Spatial Extender User's
Guide and Reference

SC27-5525-00 No July 28, 2013

SQL Procedural
Languages: Application
Enablement and Support

SC27-5502-00 Yes July 28, 2013

SQL Reference Volume 1 SC27-5509-00 Yes July 28, 2013

SQL Reference Volume 2 SC27-5510-00 Yes July 28, 2013

Text Search Guide SC27-5527-00 Yes July 28, 2013

Troubleshooting and
Tuning Database
Performance

SC27-4548-00 Yes July 28, 2013

Upgrading to DB2
Version 10.5

SC27-5513-00 Yes July 28, 2013

What's New for DB2
Version 10.5

SC27-5519-00 Yes July 28, 2013

XQuery Reference SC27-5522-00 No July 28, 2013

Table 4. DB2 Connect-specific technical information

Name Form Number Available in print Availability date

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-5516-00 Yes July 28, 2013

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-5517-00 Yes July 28, 2013

DB2 Connect User's
Guide

SC27-5518-00 Yes July 28, 2013

Appendix A. Overview of the DB2 technical information 65



Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
pic.dhe.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
pic.dhe.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

66 Developing RDF Applications for IBM Data Servers

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1
http://pic.dhe.ibm.com/infocenter/db2luw/v9r8/
http://pic.dhe.ibm.com/infocenter/db2luw/v9r8/
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5


Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the previous instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix A. Overview of the DB2 technical information 67

http://www.ibm.com/legal/copytrade.shtml


68 Developing RDF Applications for IBM Data Servers



Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2013 69



websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

70 Developing RDF Applications for IBM Data Servers



platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 71

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html


72 Developing RDF Applications for IBM Data Servers



Index

C
commands

RDF
createrdfstore 47
createrdfstoreandloader 48
genPredicateMappings 51
loadrdfstore 52
queryrdfstore 53
reorgcheckrdfstore 54
reorgrdfstore 56
updaterdfstorestats 59

createrdfstore command 47

D
DB2 Information Center

versions 66
documentation

overview 63
PDF files 63
printed 63
terms and conditions of use 66

droprdfstore command 50

G
genpredicatemappings command 51

H
help

SQL statements 66

J
JENA model API support 30

L
loadrdfstore command 52

N
notices 69

Q
queryrdfstore command 53

R
RDF

access control for RDF stores 7
administrative database objects 5
APIs 26, 29, 30
checking whether to reorganize RDF store 44

RDF (continued)
commands

createrdfstore 47
createrdfstoreandloader 48
droprdfstore 50
genpredicatemappings 51
loadrdfstore 52
overview 47
queryrdfstore 53
reorgcheckrdfstore 54
reorgrdfstore 56
reorgswitchrdfstore 57
setstatsschedule command 58
updaterdfstorestats 59

converting default store to optimized RDF store 44
creating RDF stores

default store 15
optimized stores 16, 18
overview 15

DB2 Version 9.7 14
default RDF store 9
downloads and resources 3
enforcing graph-level access control

DB2 database server 37
RDF store SQL generator 38

environment 13
graphs

creating 26
creating union of all named graphs 33
deleting 26
updating 25, 26

JENA APIs 30
maintaining RDF stores 43
modifying RDF stores

overview 23
SPARQL UPDATE APIs 26

optimized RDF stores
creating 16
overview 9

overview 1
queries

issuing SPARQL queries 31
overview 29
restrictions 29

RDF store tables
overview 5
reorganized 45
reorganizing 45

RDF stores that use graph-level access control
creating 20

registering custom DESCRIBE handlers 34
SPARQL 1.1 graph store HTTP protocol 41
SPARQL UPDATE support 25
stores

modifying data 23
updating an RDF store 23
updating RDF stores

overview 23
SPARQL UPDATE APIs 26
statistics 43

viewing RDF stores 11

© Copyright IBM Corp. 2013 73



reorgcheckrdfstore command 54
reorgrdfstore command 56
reorgswitchrdfstore command 57
Resource Description Framework

See RDF 1

S
SQL statements

help
displaying 66

T
terms and conditions

publications 66

U
updaterdfstorestats command 59

74 Developing RDF Applications for IBM Data Servers





����

Printed in USA

SC27-5505-00



Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.5

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

De
ve

lo
pi

ng
RD

F
Ap

pl
ic

at
io

ns
fo

rI
BM

Da
ta

Se
rv

er
s

�
�

�


	Contents
	Part 1. RDF application development for IBM data servers
	Chapter 1. RDF references and related resources
	Chapter 2. RDF store tables
	RDF administrative database objects

	Chapter 3. Access control for RDF stores
	Chapter 4. Default and optimized RDF stores
	Chapter 5. Central view of RDF stores
	Chapter 6. Setting up an RDF environment
	RDF with DB2 Version 9.7

	Chapter 7. Creating an RDF store
	Creating a default RDF store
	Creating an optimized RDF store
	Creating an optimized RDF store by using APIs
	Creating an optimized RDF store by using commands
	Creating an optimized RDF store with existing data

	Creating an RDF store using graph-level access control

	Chapter 8. Modifying data in an RDF store
	Modifying data in an RDF store
	SPARQL UPDATE support
	SPARQL graph update
	SPARQL graph management
	Modifying an RDF store by using SPARQL UPDATE APIs


	Chapter 9. Querying an RDF store
	RDF queries and API
	SPARQL query support
	JENA model API support

	Issuing SPARQL queries
	Creating a union of all named graphs
	Registering custom DESCRIBE handlers
	Enforcing graph level access control using DB2 database server
	Enforcing graph level access control by using the RDF store SQL generator

	Chapter 10. Setting up SPARQL Version 1.1 Graph Store Protocol and SPARQL over HTTP
	Chapter 11. Maintaining an RDF store
	Updating statistics in an RDF store
	Converting a default store to an optimized RDF store
	Verifying if an RDF store needs reorganizing
	Creating reorganized tables for an RDF store
	Switching to reorganized tables in an RDF store


	Chapter 12. RDF commands
	createrdfstore command
	createrdfstoreandloader command
	droprdfstore command
	genpredicatemappings command
	loadrdfstore command
	queryrdfstore command
	reorgcheckrdfstore command
	reorgrdfstore command
	reorgswitchrdfstore command
	setstatsschedule command
	updaterdfstorestats command

	Part 2. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Terms and conditions

	Appendix B. Notices
	Index
	C
	D
	G
	H
	J
	L
	N
	Q
	R
	S
	T
	U


