
IBM InfoSphere Data Replication
Version 10.1.3

SQL Replication Guide and Reference

SC19-3638-00

���

IBM InfoSphere Data Replication
Version 10.1.3

SQL Replication Guide and Reference

SC19-3638-00

���

Note
Before using this information and the product that it supports, read the information in “Notices and trademarks” on page
469.

© Copyright IBM Corporation 1994, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Planning for SQL Replication 1
Migration planning 1
Memory planning 1

Memory used by the Capture program 1
Memory used by the Apply program 3

Storage planning 3
Log impact for DB2 source servers 3
Log impact for target servers 4
Storage requirements of target tables and control
tables 4
Space requirements for spill files for the Capture
program 6
Space requirements for spill files for the Apply
program 6
Space requirements for diagnostic log files (z/OS,
Linux, UNIX, Windows) 7

Conflict detection planning 7
Non-DB2 relational source planning 8

Transaction throughput rates for Capture triggers 8
Log impact for non-DB2 relational source servers 8
Coexistence of existing triggers with Capture
triggers 8
Locks for Oracle source servers 9
Required changes for Sybase triggers on
little-endian platforms 9

Code page conversion planning 9
Replication between databases with compatible
code pages 9
Code pages for SQL Replication 10

Replication planning for DB2 for z/OS 11
Performance tuning. 11

Chapter 2. Authorization requirements
for SQL Replication 13
Authentication requirements on Linux, UNIX, and
Windows 13
Authorization requirements for administration . . 13
Authorization requirements for the Capture
program 14
Authorization requirements for the Apply program 15
Authorization requirements for Capture triggers on
non-DB2 relational databases 17
Managing user IDs and passwords for remote
servers (Linux, UNIX, Windows) 17

Chapter 3. Configuring servers for SQL
Replication 19
Required: Setting DATA CAPTURE CHANGES on
DB2 source tables and DB2 for z/OS system tables . 19
Connectivity requirements for SQL Replication . . 20

Connecting to System i servers from Windows . 20
Connecting to non-DB2 relational servers . . . 21

Creating control tables for SQL Replication 21
Creating control tables for SQL Replication . . . 21
Creating control tables (System i) 22

Creating control tables for non-DB2 relational
sources 23
Creating multiple sets of Capture control tables 23
Creating control tables in a multiple-partitioned
database 24

Setting up the replication programs 25
Setting up the replication programs (Linux,
UNIX, Windows) 25
Creating SQL packages to use with remote
systems (System i) 27
Setting up the replication programs (z/OS) . . . 29
Capture for multiple database partitions 29
Replication of partitioned tables: Version 9.7 Fix
Pack 1 or earlier (Linux, UNIX, Windows) . . . 29
Replication of partitioned DB2 tables: Version 9.7
Fix Pack 2 or later (Linux, UNIX, Windows) . . 31
Running DB2 Query Patroller in a SQL
Replication environment 32
Setting up journals (System i) 33

Chapter 4. Registering tables and
views as SQL Replication sources . . . 39
Registering DB2 tables as sources 39
Registering non-DB2 relational tables as sources . . 41
Registration options for source tables 42

Registering a subset of columns (vertical
subsetting). 43
Change-capture replication and full-refresh
copying. 43
After-image columns and before-image columns 44
Before-image prefix 47
Stop the Capture program on error 47
Options for how the Capture program stores
updates. 48
Preventing the recapture of changes
(update-anywhere replication) 48
Options for conflict detection (update-anywhere
replication) 52
Registering tables that use remote journaling
(System i) 53
Referential integrity on the target table when the
source is System i 54
Using relative record numbers (RRN) instead of
primary keys (System i) 55

How views behave as replication sources 55
Views over a single table 55
Views over a join of two or more tables 56

Registering views of tables as sources 58
Maintaining CCD tables as sources 58

Chapter 5. Subscribing to sources for
SQL Replication. 61
Planning how to group sources and targets 61

Planning the number of subscription-set
members 61

© Copyright IBM Corp. 1994, 2012 iii

Planning the number of subscription sets per
Apply qualifier 62

Creating subscription sets 63
Processing options for subscription sets 65

Specifying whether the subscription set is active 65
Specifying how many minutes worth of data the
Apply program retrieves 66
Load options for target tables with referential
integrity 67
Specifying how the Apply program replicates
changes for subscription-set members 68
Defining SQL statements or stored procedures for
the subscription set 69
Options for scheduling replication of subscription
sets 69
Scheduling the subscription set 71
Creating subscription-set members 71
Target table types 73
Common properties for all target table types . . 85

Chapter 6. Replicating special data
types in SQL Replication 91
General data restrictions for SQL Replication . . . 91
Large object data types 92
Replication of new DB2 Version 9.7 data types
(Linux, UNIX, Windows) 93
Replication of tables with identity columns 94

Chapter 7. Subsetting data in an SQL
Replication environment 97
Subsetting data during registration 97

Subsetting source data using views 98
Defining triggers on CD tables to prevent specific
rows from being captured 98

Subsetting data during subscription 99

Chapter 8. Manipulating data in an
SQL Replication environment 101
Enhancing data by using stored procedures or SQL
statements 102
Mapping source and target columns that have
different names. 102
Creating computed columns 103

Chapter 9. Operating the Capture
program for SQL Replication. 105
Starting the Capture program (Linux, UNIX,
Windows, and z/OS) 105
Starting the Capture program from a known point
in the DB2 log 107
Starting the Capture program (System i) 107
Default operating parameters for the Capture
program 108
Descriptions of Capture operating parameters . . 110
Methods of changing Capture parameters 119
Altering the behavior of a running Capture
program 121
Changing saved operating parameters in the
IBMSNAP_CAPPARMS table 122

Stopping the Capture program 123
Reinitializing Capture 124
Suspending the Capture program (Linux, UNIX,
Windows, z/OS) 124
Resuming Capture (Linux, UNIX, Windows, z/OS) 125

Chapter 10. Operating the Apply
program for SQL Replication. 127
Starting the Apply program (Linux, UNIX,
Windows, z/OS) 127
Starting an Apply program (System i) 129
Default operating parameters for the Apply
program 130
Descriptions of Apply operating parameters . . . 131
Methods of changing Apply operating parameters 139
Changing saved Apply parameters in the
IBMSNAP_APPPARMS table (z/OS, Linux, UNIX,
Windows) 140
Stopping the Apply program 140
Where the Apply program stores details about
referential integrity failures 141
Modifying the ASNDONE exit routine (z/OS,
Linux, UNIX, Windows) 142
Modifying the ASNDONE exit routine (System i) 142
Refreshing target tables by using the ASNLOAD
exit routine 144

Refreshing target tables with the ASNLOAD exit
routine (Linux, UNIX, Windows) 144
Refreshing target tables with the ASNLOAD exit
routine (z/OS) 146
Customizing ASNLOAD exit behavior (z/OS,
Linux, UNIX, Windows) 147
Refreshing target tables with the ASNLOAD exit
routine (System i) 149
Refreshing one table in a multi-table
subscription set. 150
Ensuring that utilities used for full refresh wait
for committed data 150

Chapter 11. Operating the replication
programs (z/OS) 153
Using system-started tasks to operate the
replication programs 153
Using JCL to operate replication programs . . . 153
Starting the Apply program on z/OS with JCL . . 154
Working with running SQL replication programs
by using the MVS MODIFY command 155
Starting the Capture program on z/OS with JCL 157
Using Automatic Restart Manager (ARM) to
automatically restart replication and publishing
(z/OS). 158
Migrating your replication environment to
data-sharing mode (z/OS) 159

Chapter 12. Changing an SQL
Replication environment 161
Registering new objects 161
Changing registration attributes for registered
objects. 162
Adding columns to source tables 162

iv SQL Replication Guide and Reference

Handling of ALTER TABLE ALTER COLUMN SET
DATA TYPE operations 164
Stop capturing changes for registered objects . . . 164
Making registrations eligible for reactivation . . . 165
Removing registrations 166
Changing Capture schemas. 167
Creating new subscription sets 169
Adding new subscription-set members to existing
subscription sets 169
Disabling subscription-set members from existing
subscription sets 170
Enabling subscription-set members to existing
subscription sets 171
Changing properties of subscription sets 171
Changing subscription set names 172
Splitting a subscription set 174
Merging subscription sets 177
Changing Apply qualifiers of subscription sets . . 179
Deactivating subscription sets 181
Removing subscription sets. 182
Coordinating replication events with database
application events 183

Setting an event END_SYNCHPOINT by using
the USER type signal 183
When to use the Capture CMD STOP signal . . 184
Performing a CAPSTART handshake signal
outside of the Apply program 187
Performing a CAPSTOP signal 188

Adjusting for Daylight Savings Time (System i) 189
Options for promoting your replication
configuration to another system 190

Chapter 13. Maintaining an SQL
Replication environment 193
Maintaining source systems 193

Access to source tables and views 193
Source logs and journal receivers 193

Maintaining control tables 196
The RUNSTATS utility for SQL Replication
(Linux, UNIX, Windows, z/OS) 197
Rebinding packages and plans (z/OS, Linux,
UNIX, Windows) 197
Reorganizing your control tables 197
Pruning dynamic control tables maintained by
the Capture programs (Linux, UNIX, Windows,
z/OS) 198
CD and UOW table pruning 199
Recommendations for pruning other dynamic
control tables 200
Preventing replication failures and recovering
from errors 200

Maintaining target tables 202

Chapter 14. Comparing and repairing
tables. 205
Table compare utility (asntdiff) 205
Running the asntdiff utility in parallel mode
(z/OS). 210
Table repair utility (asntrep) 213

How the compare utility handles DB2 SQL
compatibility features. 213

Chapter 15. Scheduling SQL
Replication programs on various
operating systems 219
Scheduling programs on Linux and UNIX
operating systems 219
Scheduling programs on Windows operating
systems 219
Scheduling programs on z/OS operating systems 220
Scheduling programs on the System i operating
system 220

Chapter 16. Replication services
(Windows). 221
Description of Windows services for replication 221
Creating a replication service 222
Starting a replication service 222
Stopping a replication service 223
Viewing a list of replication services 223
Dropping a replication service 223

Chapter 17. How the SQL Replication
components communicate. 225
The Replication Center, ASNCLP, the Capture
program or triggers, and the Apply program . . . 225
The Capture program and the Apply program . . 226
The Capture triggers and the Apply program. . . 227
The administration tools and the Replication Alert
Monitor 228
The Replication Alert Monitor, the Capture
program, and the Apply program 229

Chapter 18. Checking the status of the
SQL Replication programs. 231
Checking the status of replication programs (z/OS,
Linux, UNIX, Windows) 231
Checking the status of the Capture and Apply
journal jobs (System i) 232
Monitoring the progress of the Capture program
(System i) 232

Chapter 19. Customizing and running
SQL scripts for replication. 235

Chapter 20. Naming rules for SQL
Replication objects 237

Chapter 21. System commands for
SQL Replication (Linux, UNIX,
Windows, z/OS) 239
asncap: Starting Capture. 239
asnccmd: Operating Capture 248
asnapply: Starting Apply 251
asnacmd: Operating Apply 257
asnanalyze: Operating the Analyzer 258

Contents v

asnpwd: Creating and maintaining password files 261
asnscrt: Creating a replication service 265
asnsdrop: Dropping a replication service 268
asnslist: Listing replication services 269
asntdiff: Comparing data in source and target
tables (Linux, UNIX, Windows) 270
asntdiff: Comparing data in source and target
tables (z/OS) 274
asntdiff –f (input file) command option. 281
asntrc: Operating the replication trace facility. . . 284
asntrep: Repairing differences between source and
target tables 291

Chapter 22. System commands for
SQL replication (System i) 295
ADDDPRREG: Adding a DPR registration (System
i) 295
ADDDPRSUB: Adding a DPR subscription set
(System i) 303
ADDDPRSUBM: Adding a DPR subscription-set
member (System i) 318
ANZDPR: Operating the Analyzer (System i). . . 328
CHGDPRCAPA: Changing DPR Capture attributes
(System i) 331
CRTDPRTBL: Creating the replication control tables
(System i) 336
ENDDPRAPY: Stopping Apply (System i) 337
ENDDPRCAP: Stopping Capture (System i) . . . 340
GRTDPRAUT: Authorizing users (System i) . . . 342
INZDPRCAP: Reinitializing DPR Capture (System
i) 350
OVRDPRCAPA: Overriding DPR Capture
attributes (System i) 351
RMVDPRREG: Removing a DPR registration
(System i) 356
RMVDPRSUB: Removing a DPR subscription set
(System i) 357
RMVDPRSUBM: Removing a DPR subscription-set
member (System i) 358
RVKDPRAUT: Revoking authority (System i) . . . 360
STRDPRAPY: Starting Apply (System i) 361
STRDPRCAP: Starting Capture (System i) 368
WRKDPRTRC: Using the DPR trace facility
(System i) 375

Chapter 23. SQL Replication table
structures 381
Tables at a glance 381
Tables at the Capture control server 388

IBMSNAP_AUTHTKN table (System i) 390
IBMSNAP_CAPENQ table (z/OS, Linux, UNIX,
Windows) 391
IBMSNAP_CAPMON table 391
IBMSNAP_CAPPARMS table 393
IBMSNAP_CAPSCHEMAS table 397
IBMQREP_COLVERSION table 397
IBMSNAP_CAPTRACE table 398
CCD table (non-DB2) 399
CD table 400
IBMQREP_IGNTRAN table. 401

IBMQREP_IGNTRANTRC table 402
IBMSNAP_PARTITIONINFO table 403
IBMSNAP_PRUNCNTL table 404
IBMSNAP_PRUNE_LOCK table 406
IBMSNAP_PRUNE_SET table 407
IBMSNAP_REG_EXT (System i) 407
IBMSNAP_REGISTER table. 409
IBMSNAP_REG_SYNCH table (non-DB2
relational) 415
IBMSNAP_RESTART table 416
IBMSNAP_SEQTABLE table (Informix) 418
IBMSNAP_SIGNAL table 418
IBMQREP_TABVERSION table 421
IBMSNAP_UOW table 422

Tables at the Apply control server 424
ASN.IBMSNAP_APPENQ table 425
ASN.IBMSNAP_APPLEVEL table 426
ASN.IBMSNAP_APPLY_JOB (System i). . . . 426
ASN.IBMSNAP_APPLYMON table 427
ASN.IBMSNAP_APPPARMS table 428
ASN.IBMSNAP_APPLYTRACE table 432
ASN.IBMSNAP_APPLYTRAIL table 432
ASN.IBMSNAP_FEEDETL table 438
ASN.IBMSNAP_SUBS_COLS table 439
ASN.IBMSNAP_SUBS_EVENT table. 440
ASN.IBMSNAP_SUBS_MEMBR table 441
ASN.IBMSNAP_SUBS_SET table 445
ASN.IBMSNAP_SUBS_STMTS table 450

Tables at the target server 452
Base aggregate table 452
Change aggregate table 453
CCD targets 453
Point-in-time table. 455
Replica table 456
User copy table. 456

Appendix A. UNICODE and ASCII
encoding schemes for SQL replication
(z/OS). 459
Rules for choosing an encoding scheme 459
Setting encoding schemes 459

Appendix B. Starting the SQL
Replication programs from within an
application (Linux, UNIX, Windows) . . 461

Appendix C. How the Capture
program processes journal entry
types for SQL replication (System i) . 463

Contacting IBM 465

How to read syntax diagrams 467

Notices and trademarks 469
Trademarks 472

Index 475

vi SQL Replication Guide and Reference

Chapter 1. Planning for SQL Replication

When planning for SQL Replication, you might need to consider planning for
migration, memory, storage, conflicts, source systems, code page conversion, and
performance.

Migration planning
Planning migration involves planning for issues that might arise while migrating
from one version of replication to another.

If you are migrating from an existing replication environment, certain migration
issues need to be considered. WebSphere Information Integration Migrating to
Replication Version 9 describes how to migrate to Version 9 replication. To migrate
to Version 9, your servers must first be at Version 8. WebSphere Information
Integration Migrating to SQL Replication Version 8 describes how to migrate to
Version 8 replication. It also describes how to migrate replication environments
that currently use DB2® DataJoiner to replicate data to or from non-DB2 relational
servers. These documents are available online at from the WebSphere® Information
Integration support site for your product.

Memory planning
Memory planning involves planning for the amount of memory required by
replication. Replication uses memory only as needed. The amount of memory
required is directly proportional to how much data is being replicated from the
source and the concurrency of the transactions. Basically, the more data that is
being replicated and the more concurrent transactions you have, the more memory
is required by replication.

Running the Capture and Apply programs can consume a significant amount of
memory.

Memory used by the Capture program
The Capture program uses memory when it reads the DB2 recovery log. It stores
individual transaction records in memory until it reads the associated commit or
abort record. Data associated with an aborted transaction is cleared from memory,
and data associated with a commit record is written to the CD table and the UOW
table. The committed transactions stay in memory until the Capture program
commits its work when it reaches its commit interval.

To monitor how much memory the Capture program is using, look in the
CURRENT_MEMORY column of the IBMSNAP_CAPMON table.

You can set the memory_limit parameter when you start the Capture program to
ensure that Capture uses a specified amount of memory for storage that is
associated with transactions. Other storage use is not limited by this parameter.
You can also change the memory_limit parameter while the Capture program is
running. If Capture reaches the memory limit, it writes some transactions to a spill
file. You need to consider the memory resources that are used by the Capture
program in relation to its storage space requirements.

© Copyright IBM Corp. 1994, 2012 1

You should also consider the size of user transactions and the commit interval
when planning for the Capture program's memory requirements. Long running
batch jobs without interim commits take a lot of memory when you run the
Capture program. Generally, the smaller the commit interval, the less memory
required by the Capture program.

Information about active registrations is read and stored in memory when you
start an instance of the Capture program and when you add registrations
dynamically while the Capture program is running.

When replication reads log records it uses a memory buffer. The default
size on the z/OS® operating system is sixty-six 1 KB pages, and it is ECSA
(extended common service area) storage. Replication uses ECSA only in
this situation. The default size of the buffer on Linux, UNIX and Windows
operating systems is fifty 4 KB pages.

CURRENT_MEMORY is the up-to-date account of extra memory allocated
for holding the transaction records beyond the memory used by standard
I/O buffers for the active CD tables. It is an indication of how much extra
memory is being used to hold the large number of transactions. It is not an
accurate sum of all the memory used by the specific journal job.

Information stored in the IBMSNAP_CAPMON table provides operational statistics
to help you tune memory usage. Note that the values in this table are for a
particular Capture monitor interval, they are not cumulative across monitor
intervals. The data in the CURRENT_MEMORY column does not contain an
additive count. It reflects the memory in use at the end of the monitor interval
when the record is created. The Capture monitor interval determines how
frequently the Capture program inserts data into this table. Use one of the
following methods to tune the amount of memory being used by the Capture
program:

Tuning memory limit to allow for spills:

1. When you start the Capture program, use the default memory limit.
2. Check if data spilled from memory to a temporary file by looking at the

TRANS_SPILLED column in the IBMSNAP_CAPMON table. This column
shows the number of source system transactions that spilled to disk due to
memory restrictions during a particular Capture monitor interval.

3. If data spilled from memory, either use a higher memory limit or a lower
commit interval.

Tuning memory limit to prevent spills:
1. When you start the Capture program, set a high memory limit. (How high

depends on your system resources.)
2. Check how much memory is being used by looking at the

CURRENT_MEMORY column in the IBMSNAP_CAPMON table. This column
shows the amount of memory (in bytes) that the Capture program used during
a particular Capture monitor interval.

3. If much less memory is being used than what you specified for the memory
limit, set a lower value for the memory limit.

2 SQL Replication Guide and Reference

Memory used by the Apply program
The Apply program uses memory when it fetches data. The amount of memory
used is proportional to the size of the table columns and the number of rows
fetched at one time. For example, if the Apply program is fetching a LOB column,
it could potentially use 2 GB of memory.

Information about active subscription sets is read and stored in memory when the
Apply program is running. The amount of memory used at one time by the Apply
program is generally proportional to the amount of memory required to process
the subscription set that has the most members.

Storage planning
Storage planning is important for log impact for DB2 source servers, log impact for
target servers, storage requirements of target tables and control tables, space
requirements for diagnostic log files (Linux, UNIX, Windows, z/OS), space
requirements for spill files for the Capture program, and space requirements for
the spill files for the Apply program.

In addition to the storage required for DB2, you must ensure that storage is
available for replication for the following topics. All of the sizes given in these
topics are estimates only. To prepare and design a production-ready system, you
must also account for such things as failure prevention. For example, the holding
period of data might need to be increased to account for potential network
outages.

Tip: If storage estimates seem unreasonably high, reexamine how frequently the
Apply program runs subscription sets and how frequently your replication tables
are pruned. You must consider trade-offs between storage usage, capacity for
failure tolerance, and CPU overhead.

Log impact for DB2 source servers
In general you need an additional three times the current log volume for all tables
involved in replication. Basically, you need log space for the source table as well as
the CD table and the replication control tables. This section provides other factors
that can help you make a more accurate estimate of the log impact that you can
expect in your replication environment.

Consider the updates made to the source database by your applications and the
replication requirements. For example, if an updating application typically updates
60 percent of the columns in a table, the replication requirements could cause the
log records to grow by more than half compared to a similar table that is not
replicated.

v DB2 logs full-row images for each UPDATE statement. This occurs
because, before you can replicate a table, you must create it (or alter it)
with the DATA CAPTURE CHANGES keywords.

v One of the replication requirements that adds the most to the log is the
capturing of before- and after-images (as for replica target tables in
update-anywhere replication scenarios). One way to reduce the log
volume is to reduce the number of columns defined for the replication
source. For example, do not capture before-images if they're not
required.

Chapter 1. Planning for SQL Replication 3

v DB2 logs full-row images for each UPDATE statement. One way to
reduce the log volume is to reduce the number of columns defined for
the replication source, for example, do not capture before-images if
they're not required.

v To minimize the amount of storage used for CD tables and UOW tables,
frequently reorganize these tables because pruning does not recover
DASD for you. You can use the keyword RGZCTLTBL (Reorganize
control tables) on the ENDDPRCAP command to reorganize control tables.
Observe the DASD usage patterns under normal operating conditions to
help you predict and manage DASD usage. If journaling is on, also take
into account that the log or journal volume increases as DB2 log
insertions to and deletions from the UOW table and CD tables.

v When the current receiver is full, the system switches to a new one; you
can optionally save and delete old ones no longer needed for replication.
When a system handles a large number of transactions, the Capture
program can occasionally lag behind. If Capture is frequently lagging
behind, you can separate your source tables into multiple journals to
distribute the workload to multiple instances of the Capture program.

Log impact for target servers
In addition to logging for the source database, there is also logging for the target
database, where the rows are applied. The impact to the log depends on the
commit mode that you choose for the Apply program.

Table mode
In table-mode processing, the Apply program issues a single commit after
all fetched data is applied. The Apply program does not issue interim
checkpoints. In this case, you should estimate the maximum amount of
data that the Apply program will process in one time interval and adjust
the log space to accommodate that amount of data.

Transaction mode
In transaction-mode processing, the Apply program copies every update in
the source transaction order to the target tables and commits these changes
on a transaction boundary at an interval. You set the interval for the
interim commits by setting the value of x in the subscription set option
commit_count(x). After the Apply program fetches all answer sets, it
applies the contents of the spill files in the order of commit sequence. This
type of processing allows all spill files to be open and processed at the
same time. For example, if you set commit count to 1, the Apply program
commits after each transaction, if you set commit count to 2, it commits
after each set of two transactions.

You also need to consider the log space (journal receivers
space) of the target tables. Because journal receivers for target tables on System i®

can be created with the MNGRCV(*SYSTEM) and DLTRCV(*YES) parameters, and
because you need to journal only the after-image columns, use the following
formula to estimate the volume of the journal receivers for the target tables:
journal_receiver_volume=target_table_row_length X journal_receiver_threshold

Storage requirements of target tables and control tables
You must estimate the volume of new target tables. The space required for a target
table is usually no greater than that of the source table, but can be much larger if
the target table is denormalized or includes before-images (in addition to

4 SQL Replication Guide and Reference

after-images) or history data. Target table size depends on what you choose to
replicate, for example, the percentage of the source table you are replicating, the
data type of columns you're replicating, whether you're replicating before- and
after-images, whether you're adding computed columns, whether you're subsetting
rows, whether any transformations are performed during replication.

The CD tables and some replication control tables (IBMSNAP_UOW,
IBMSNAP_CAPTRACE, IBMSNAP_APPLYTRACE, IBMSNAP_APPLYTRAIL,
IBMSNAP_CAPMON, IBMSNAP_ALERTS) also affect the disk space required for
DB2 source databases. These tables can grow very large depending on how you set
up your replication environment. The space required for the other replication
control tables is generally small and static.

The CD tables grow in size for every change made to a source table until the
Capture program prunes the CD table. To estimate the space required for the CD
tables, first determine how long you want to keep the data before pruning it, then
specify how often the Capture program should automatically prune these tables or
how often you prune the tables by using a command.

When calculating the number of bytes of data replicated, you need to include 21
bytes for overhead data for each row that is added to the CD tables by the Capture
program. Determine the period of time for which the Capture program should be
able to keep capturing data into CD tables, even when the data cannot be applied -
for example, in the case of a network outage. Estimate the number of inserts,
updates, and deletes that typically are captured for the source table within that
contingency time period.

To determine the recommended size for the CD table, use the following guideline:
recommended_CD_size =

((21 bytes) + sum(length of all registered columns)) X
(number of inserts, updates, and deletes to source table
during the contingency period)

Example

If the rows in the CD table are 100 bytes long (plus the 21 bytes for overhead), and
100,000 updates are captured during a 24-hour contingency period, the storage
required for the CD table is about 12 MB.

Registered columns in this formula include both before- and after-image columns.
If updates are being converted to pairs of INSERT and DELETE operations, then
take them into account when determining the total number of inserts, updates, and
deletes. For example, count each update to the source table as two rows in the CD
table.

The UOW table grows and shrinks based on the number of rows inserted by the
Capture program during a particular commit interval and on the number of rows
that are pruned. A row is inserted in the UOW table each time an application
transaction issues a COMMIT and the transaction executed an INSERT, DELETE,
or UPDATE operation against a registered replication source table. You should
initially over-estimate the space required by the table and monitor the space
actually used to determine if any space can be recovered.

Chapter 1. Planning for SQL Replication 5

Space requirements for spill files for the Capture program
If the Capture program does not have sufficient memory, it writes (or spills)
transactions to spill files. The Capture program writes the biggest transaction to
file; however, the biggest transaction is not necessarily the one that exceeded the
memory limit.

Spill files go to virtual I/O (VIO).

Spill files are always on disk. One file per transaction is created in the
capture_path directory.

Spill files are created in library QTEMP, one spill file for each registration
that needs a spill file.

The size of the Capture spill files depends on the following factors:

Memory limit
Use the memory_limit operational parameter to specify how much memory
can be used by the Capture program. The more memory you allow, the
less likely the Capture program will spill to files.

Size of transactions
Larger transactions might increase the need to spill to file.

Number of concurrent transactions
If the Capture program processes more transactions at the same time, or
processes interleaved transactions, the Capture program needs to store
more information in memory or on disk.

Commit interval
Typically the lower the commit interval the lower the need for storage
because Capture has to store information in memory for a shorter period
of time before committing it.

Space requirements for spill files for the Apply program
The Apply program requires temporary space to store data. (If you are using the
ASNLOAD utility, you might have a load input file instead of a load spill file.) The
Apply program uses spill files to hold the updates until it applies them to the
target tables. In general, the spill files are disk files; however, on z/OS operating
systems, you can specify that data be spilled to memory. Unless you have virtual
memory constraints, store the spill files in virtual memory rather than on disk.

The size of the spill file is proportional to the size of the data selected for
replication during each replication interval. Typically the spill file is approximately
two times the size of the data. You can estimate the size of the spill file by
comparing the frequency interval (or data-blocking value) planned for the Apply
program with the volume of changes in that same time period (or in a peak period
of change).

The row size of the spill file is the target
row size, including any replication overhead columns. The row size is not in DB2
packed internal format, but is in expanded, interpreted character format (as fetched
from the SELECT). The row also includes a row length and null terminators on
individual column strings. The following example estimates the size of the spill file

6 SQL Replication Guide and Reference

that is required for the data selected for replication and it does not take into
account the extra space needed for the other data that is stored in the spill file.

The row size of the spill file is a constant 32 KB.

Example

If change volume peaks at 12,000 updates per hour and the Apply program
frequency is planned for one-hour intervals, the spill file must hold one-hour's
worth of updates, or 12,000 updates. If each update represents 100 bytes of data,
the spill file will be approximately 1.2 MB at a minimum. Additional space is
required for the other data that is stored in the spill file.

Space requirements for diagnostic log files (z/OS, Linux,
UNIX, Windows)

Diagnostic log files store information about the activities of replication programs,
such as when the program started and stopped, and other informational or error
messages from the program. By default, the program appends messages to its log
file, even after the program is restarted. Ensure that the directories that contain
these log files have enough space to store the files.

The location of the diagnostic log files depends on the value that you set for the
capture_path, apply_path, and monitor_path start-up parameters when you started
the Capture program, Apply program, and Replication Alert Monitor program.

If you are concerned about storage, you have the option of reusing the program
logs so that each time the program starts it deletes its log and recreates it. You can
specify if you want to reuse the log when you start the program.

Conflict detection planning
If you use standard or enhanced conflict detection, you must store before-images in
the CD (or CCD) tables for the replica target tables. Also, the referential integrity
rules are restricted. In peer-to-peer and update-anywhere scenarios, or when the
Apply program uses transaction mode processing, you should define referential
integrity rules that are in keeping with the source rules. If you use peer-to-peer
replication or update-anywhere replication and you do not want to turn on conflict
detection, you should design your application environment to prevent update
conflicts. If conflicts cannot occur in your application environment, you can save
processing cycles by not using conflict detection.

Use either of the following methods to prevent conflicts in peer-to-peer and
update-anywhere replication:

Fragmentation by key
Design your application so that the replication source is updated by
replicas for key ranges at specific sites. For example, your New York site
can update sales records only for the Eastern United States (using ZIP
codes1 less than or equal to 49999 as the key range), but can read all sales
records.

Fragmentation by time
Design your application so that the table can be updated only during

1. United States postal codes.

Chapter 1. Planning for SQL Replication 7

specific time periods at specific sites. The time periods must be sufficiently
separated to allow for the replication of any pending changes to be made
to the site that is now becoming the master version. Remember to allow for
time changes, such as Daylight Savings Time or Summer Time, and for
time-zone differences.

Non-DB2 relational source planning
Capture triggers are used instead of the Capture program if you are replicating
from non-DB2 relational databases. These triggers capture changed data from a
non-DB2 relational source table and commit the changed data into CCD tables.

Capture triggers affect your transaction throughput rates and log space
requirements. Also, if you have existing triggers in your environment you might
need to merge them with the new Capture triggers. For more information, see the
following sections:

Transaction throughput rates for Capture triggers
The transaction workload for your source system will increase; trigger-based
change capture has an impact on transaction throughput rates.

Capture triggers increase the response time for updating transactions. The impact
is greatest for those transactions that heavily update application source tables that
are to be replicated.

Log impact for non-DB2 relational source servers
For non-DB2 relational source servers, your source applications will need more
active log space because the log volume approximately triples for replicated source
tables. Changes are captured by triggers on the source tables and are stored in
CCD tables, changed data is written within the same commit scope as the
changing source tables, and data is later deleted through a trigger-based pruning
mechanism.

Each source INSERT, UPDATE, or DELETE operation becomes an INSERT,
UPDATE, or DELETE operation, plus an INSERT operation, plus a DELETE
operation. The log volume increases even more if you change updates to pairs of
DELETE and INSERT operations.

If you run out of log space and the Capture trigger cannot insert a record into the
CCD table, the transaction attempted by the user or application program will not
complete successfully.

Coexistence of existing triggers with Capture triggers
The Capture trigger logic is in the SQL script generated by the Replication Center
when you register a source.

By default, an INSERT trigger, an UPDATE trigger, and a DELETE trigger are
created so that those types of changes (insert, update, delete) can be replicated
from the source table. The trigger name consists of the name of the CCD table
preceded by a letter describing the type of trigger: I for INSERT, U for UPDATE, D
for DELETE. For example, if the CCD table name is undjr02.ccd001, the name of
the generated DELETE trigger is undjr02.dccd001. You must not change the names
of the triggers that are generated in the script.

8 SQL Replication Guide and Reference

If a trigger already exists on the table that you want to register for replication and
that trigger has the same name as the one that is in the generated script, you'll
receive a warning when the script is generated. Do not run the generated script
because the RDBMS might overwrite the existing trigger. Determine how you want
to merge the preexisting triggers with the new triggers, and create a script that
merges your existing logic with the trigger logic generated by the Replication
Center.

If the type of trigger that you want to create already exists on the table that you
want to register for replication, and the RDBMS allows only one such trigger per
table, you must merge the logic before you run the generated script.

Locks for Oracle source servers
Any application currently updating the Oracle source must finish before the Apply
program can start applying data.

The Apply program must lock the CCD table so that it can process data and set its
synch point. The locks on the CCD tables are held only until the Apply program
sets its synch point, not through the entire Apply cycle. Applications that need to
update the source table must wait until the Apply program unlocks the CCD table.

Required changes for Sybase triggers on little-endian
platforms

When setting up Capture triggers from Sybase servers, you might need to change
the triggers if the operating system on which Sybase runs uses little-endian byte
order.

The Capture triggers rely on the @@dbts function in Sybase to update synchpoint
values. The function returns the value of the current timestamp for the database.
This value is not returned correctly if Sybase server is running on an operating
system that uses little-endian byte order, for example Windows NT32. In Sybase on
little-endian platforms, timestamp column values are displayed as big-endian
values, while the result of the @@dbts function is still displayed as a native
little-endian value.

Because of this issue, you must manually update the Capture trigger script that is
generated by the replication administration tools if your Sybase server is on this
type of operating system. In the script, change @@dbts to the following:
reverse(substring(@@dbts,1,2)) + 0x0000 + reverse(substring(@@dbts,5,4))

Code page conversion planning
Replication components are database applications that rely on the DB2 databases
on various operating systems to handle conversion of data that uses different code
pages.

Replication components work with data by using SQL SELECT, INSERT, UPDATE,
and DELETE statements.

Replication between databases with compatible code pages
If your replication configuration requires SQL statements and data to go between
systems with differing code pages, the underlying DB2 protocols such as DRDA®

handle code page conversion. Also, if data is passed between DB2 and non-DB2

Chapter 1. Planning for SQL Replication 9

relational databases, DB2 replication relies on the underlying database products to
handle any necessary code page conversion.

If you plan to replicate between databases with differing code pages, check the
IBM Information Management Software for z/OS Solutions Information Center or DB2
Information Center to determine if the code pages you have are compatible. For
example, if you are using DB2 for Linux, UNIX, and Windows, see the section on
the conversion of character data.

Once you have verified that your databases have compatible code pages,
determine if the databases use code pages differently. For example, assume that
one database product allows a different code page for each column in a table while
another database product requires the code page to be specified only at the
database level. A table with multiple code pages in the first product cannot be
replicated to a single database in the second product. Therefore, how the databases
handle code pages affects how you must set up replication to ensure that data is
successfully replicated between the various databases in your environment.

Code pages for SQL Replication
The code page configuration for replication is defined when you set up database
connectivity between systems. However, if you are running the Capture or Apply
programs on Linux, UNIX or Windows operating systems, some configuration
steps might be necessary.

On Linux, UNIX, and Windows, the Capture program must run in the same code
page as the database from which it is capturing the data. If the Capture program is
not run in the same code page, you must set a DB2 environment variable or
registry variable called DB2CODEPAGE so that Capture uses the same code page
as the database.

When running the Apply program on Linux, UNIX, or Windows, if any source
table is in UNICODE, the Apply application code should be in UNICODE. If the
data in the source table is in ASCII, the application code page can be in ASCII or
UNICODE. You can also set the DB2CODEPAGE variable for the Apply program.

Setting the code page variable
DB2 derives the code page for an application from the active environment
in which the application is running. Typically, when the DB2CODEPAGE
variable is not set, the code page is derived from the language ID that is
specified by the operating system. In most situations, this value is correct
for the Capture or Apply programs if you use the default code page when
you create your database. However, if you create your database with an
explicit code page that is something other than the default code page, you
must set the DB2CODEPAGE variable. Otherwise, data might not be
translated correctly. The value that you use for the DB2CODEPAGE
variable must be the same as what you specify on your CREATE
DATABASE statement. See the DB2 Information Center for details about
setting the DB2CODEPAGE variable.

Replicating from a code page
If you are replicating source data with a single-byte character set (SBCS)
code page to a target with Unicode UTF-8, some single-byte characters in
the source database might be translated by DB2 to two or more bytes in
the target database. All single-byte characters whose hexadecimal value is
0x80 to 0xff are translated to their two-byte 1208 equivalent. This means

10 SQL Replication Guide and Reference

that target columns might need to be larger than source columns,
otherwise the Apply program might receive SQL errors from DB2.

Some database products implement code page support differently from
others, which can impact your replication configuration. For example, DB2
on System i allows a code page to be specified at the column level, but
DB2 for Linux, UNIX, and Windows allows a code page to be specified
only at the database level. Therefore, if you have a System i table with
multiple columns using different code pages, those columns cannot be
replicated to a single DB2 for Linux, UNIX, and Windows database unless
all the code pages are compatible.

Setting the LANG variable
If you are running the Capture and Apply programs on a Linux or UNIX
system, you might need to set the LANG environment variable. The
Capture and Apply programs use the contents of this environment variable
to find their message library for your language. For example, if the LANG
environmental variable is set to en_US, the Capture program looks for its
English message library in the DB2 instance's /sqllib/msg/en_US
subdirectory. If Capture cannot find its message library, all messages
written to the IBMSNAP_CAPTRACE table are ASN0000S.

Replication planning for DB2 for z/OS
SQL replication for DB2 for z/OS supports schema and table names of up to 128
bytes.

To take advantage of the long-name support:
v Create your Capture, Apply, and Monitor control tables under DB2 for z/OS

Version 8 or later in new-function mode.
v Run the Capture, Apply, and Monitor servers under DB2 for z/OS Version 8 or

later in new-function mode

Restriction: If you want to replicate to or from DB2 for iSeries®, you must use
schema names that are 30 bytes or shorter. Replication among DB2 for z/OS and
DB2 for Linux, UNIX, and Windows platforms supports 128-byte schema names.

Performance tuning
Performance tuning involves tuning your replication environment for optimal
performance.

WebSphere Information Integration Tuning for SQL Replication Performance describes
how to tune the major components of a DB2 replication environment for maximum
performance. This document is available online the WebSphere Information
Integration support site for your product.

Chapter 1. Planning for SQL Replication 11

12 SQL Replication Guide and Reference

Chapter 2. Authorization requirements for SQL Replication

To use the SQL Replication programs, you need to ensure that user IDs that
operate the replication programs or use the replication tools have the correct
authorization on local and remote systems.

Authentication requirements on Linux, UNIX, and Windows
SQL Replication does not require you to use any specific type of authentication.
You should use the compatible authentication type that best meets your business
needs.

The following list provides more detail:
v SQL Replication is a database application program.
v The underlying DB2 client-server facilities are as transparent to SQL Replication

as they are to any database application.
v SQL Replication connects to DB2 databases using the traditional ID and

password combination. You can use any authentication type that is compatible
with this.

v SQL Replication has no requirement on authentication type other than this.

Authorization requirements for administration
To set up replication, you run generated SQL to create objects, and bind plans and
create SQL packages (System i). Authorities required for these tasks vary by
operating system.

To administer replication, you must have at least one user ID on all databases
involved in the replication configuration and that user ID must have the authority
to set up replication. Your user ID does not need to be the same on all systems,
although it would be easier for you if it was.

Ensure that the user IDs that you use to set up replication can perform the
following tasks:
v Connect to all the servers (source server, Capture control server, Apply

control server, Monitor control server, target server).
v Select from catalog tables on the source server, Capture control server,

Monitor control server, and target server.
v Create tables (including replication control tables), table spaces, and

views at the source server, Monitor control server, Capture control
server, and Apply control server.

v If you use the replication programs to create new target tables: Create
tables and table spaces on the target server. (Not required if you use
existing tables as targets).

v Bind plans or create packages on each DB2 database involved in
replication, including the source server, target server, Monitor control
server, and Apply control server.

v Create stored procedures by using a shared library and call stored
procedures (Linux, UNIX, Windows only).

© Copyright IBM Corp. 1994, 2012 13

For non-DB2 relational databases, the user ID must be able to do the
following actions:
v Create tables.
v Create Capture triggers on source tables and control tables.
v Create procedures.
v Create nicknames on the federated database.
v Create sequences (for Oracle databases only).
v Select from catalog tables.

Most replication administrators have DBADM or SYSADM privileges. On
DB2 for z/OS the replication administrator should be at least authorized to
select from the catalog and should have all privileges necessary to create
tables with the ASN schema and to create CD and target tables with the
characteristics of the source tables, including index creation privileges.

Ensure that the user IDs you use to set up replication can perform the
following tasks:
v Connect to all the servers (source server, Capture control server, Apply

control server, Monitor control server, target server).
v Select from catalog tables on the source server, Capture control server,

Monitor control server, and target server.
v Create tables (including replication control tables) and views at the

source server, Monitor control server, Capture control server, and Apply
control server.

v If you use the DB2 Replication programs to create new target tables:
Create tables on the target server. (Not required if you use existing tables
as targets.)

v Bind plans or create packages on each DB2 database involved in
replication, including the source server, target server, Monitor control
server, and Apply control server.

Most replication administrators have DBADM or SYSADM privileges.

Use the Grant DPR Authority (GRTDPRAUT) command to authorize a user to
register sources, subscribe to those sources, and create control tables. If you
are replicating only between System i systems, you should use the same
user ID for all servers.

If the Grant DPR Authority (GRTDPRAUT) command is not installed on a
machine, you must use the Grant Object Authority (GRTOBJAUT) command.

Authorization requirements for the Capture program
The user ID that runs the Capture program must be able to access the DB2 system
catalog, access and update all replication control tables on the Capture control
server, and execute the Capture program packages.

You can use the replication administrator user ID to run the Capture program, but
this is not a requirement.

The user ID used to run the Capture program must be registered with
access to USS. That means the user ID must be defined to use z/OS UNIX
or OS/390® UNIX (it must have an OMVS segment).

14 SQL Replication Guide and Reference

Also, ensure that the Capture load library is APF-authorized and that the
user ID that runs the Capture program has the following privileges:
v WRITE access to a temporary directory; either the /tmp directory or the

directory specified by the TMPDIR environment variable.
v SELECT, UPDATE, INSERT, and DELETE privileges for all replication

tables on the Capture control server.
v SELECT privilege for the DB2 catalog (SYSIBM.SYSTABLES,

SYSIBM.SYSCOLUMNS. and SYSIBM.SYSPLAN).
v TRACE privilege.
v MONITOR1 and MONITOR2 privilege.
v EXECUTE privilege for the Capture program packages.

Also, ensure that the user ID has WRITE access to the capture path
directory (USS) or high-level qualifier (z/OS). To run the Capture program
in the USS shell, the STEPLIB system variable must be set and it must
include the Capture load library. The HFS path, /usr/lpp/db2repl_10_01/
bin, must be in your PATH.

Ensure that the user IDs that run the Capture program have the following
authorities and privileges:
v DBADM or SYSADM authority.
v WRITE privilege on the directory specified by the capture_path

parameter. The Capture program creates diagnostic files in this directory.

The user ID that runs the Capture program must be authorized to create
global objects.

Use the Grant DPR Authority (GRTDPRAUT) command to authorize a user to
run the Capture program on a local system. If you are replicating between
only System i systems, you should use the same user ID for all servers. If
the GRTDPRAUT command is not installed on a machine, you must use the
Grant Object Authority (GRTOBJAUT) command.

Authorization requirements for the Apply program
The user ID that runs the Apply program must be able to access the DB2 system
catalog, access and update all replication control tables on the Capture control and
target server, and execute the Apply program packages.

You can use different user IDs at each server in your replication environment. You
can use the replication administrator user ID to run the Apply program, but this is
not a requirement.

Ensure that the user IDs that run the Apply program have the following
authorities and privileges:
v WRITE access to a temporary directory; either the /tmp directory or the

directory specified by the TMPDIR environment variable.
v SELECT, UPDATE, INSERT, and DELETE privileges for all replication

tables on the Apply control server.
v SELECT authority for the DB2 catalog (SYSIBM.SYSTABLES,

SYSIBM.SYSCOLUMNS. and SYSIBM.SYSPLAN).

Chapter 2. Authorization requirements for SQL Replication 15

Note: The user ID used to run the Apply program must be registered with
access to USS. That means the user ID must be defined to use z/OS UNIX
or OS/390 UNIX (it must have an OMVS segment). The load library must
be APF-authorized only if the Apply program is to be registered with
ARM. To run the Apply program in the USS shell, the STEPLIB system
variable must be set and it must include the apply load library. The HFS
path, /usr/lpp/db2repl_10_01/bin, must be in your PATH.

Ensure that the user IDs that run the Apply program have the following
authorities and privileges:
v WRITE privileges to the apply path directory
v Access privileges to the replication source tables (including associated

CD and CCD tables).
v Access and update privileges to the replication target tables.
v Access and update privileges to all control tables that are generated by

replication programs and built at the Capture control server and the
Apply control server.

v READ privileges for any password file used by the Apply program.

Note: If your source tables are on a non-DB2 relational database
management system: The user ID must have sufficient privileges in both
the federated database and in the non-DB2 relational database to access the
source tables through nicknames, which are defined on the federated
database.

The user ID that runs the Apply program must be authorized to create
global objects.

Use the Grant DPR Authority (GRTDPRAUT) command to authorize a user to
run the Apply program on a local system. If you are replicating only
between System i systems, you should use the same user ID for all servers.
If the GRTDPRAUT command is not installed on a machine, you must use the
Grant Object Authority (GRTOBJAUT) command.

non-DB2 databases
If your control tables are on non-DB2 databases, the user ID that is
pushing changed data to a non-DB2 relational target or pulling data from
it must have sufficient privileges in the federated database and in the
non-DB2 relational database.

For non-DB2 relational targets, the user ID running the Apply program
needs the privilege to WRITE to nicknames on the federated database and,
through user mappings, the privilege to WRITE to the actual non-DB2
target.

For non-DB2 relational sources, the ID running the Apply program needs
the following privileges:
v Privilege to READ from and WRITE to nicknames on the federated

database and, through user mappings, the privilege to READ from and
WRITE to the Capture control tables.

v Privilege to READ from nicknames on the federated database and,
through user mappings, the privilege to READ from the actual CCD
table on the non-DB2 server.

16 SQL Replication Guide and Reference

v Privilege to READ from nicknames on the federated database and,
through user mappings, the privilege to READ from the actual source
table on the non-DB2 server.

Authorization requirements for Capture triggers on non-DB2 relational
databases

If you are replicating from a non-DB2 database, Capture triggers are used to
capture changes from the source. Remote user IDs (for example, from user
applications) that change the remote source tables need authority to make inserts
into the CCD table.

In most cases, you do not need explicit authority to execute INSERT, UPDATE, or
DELETE triggers because, after the triggers are defined on a table, the execution of
the triggers is transparent to the application that is performing the INSERT,
UPDATE, or DELETE. In the case of Informix® databases, the remote user IDs that
perform INSERT, UPDATE, and DELETE actions against the registered source table
need EXECUTE PROCEDURE privilege.

For Oracle sources, you need to grant SELECT privilege on the
remote_schema.SEQUENCE002 sequence object, where remote_schema is the remote
schema under which the control tables are created on Oracle. The sequence object
is created as part of creating the Capture control tables for an Oracle source and is
used along with Capture triggers to populate the CCD table.

Managing user IDs and passwords for remote servers (Linux, UNIX,
Windows)

Replication and Event Publishing require a password file in some cases to store
user IDs and passwords for connecting to remote servers.

About this task

A password file is required in the following cases:
v The Apply program requires a password file to access data on remote servers

(the Capture program does not require a password file).
v The Q Apply program requires a password file to connect to the Q Capture

server for Q subscriptions that use the EXPORT utility to load targets.
v The Q Capture program requires a password file to connect to multiple-partition

databases.
v If the Q Capture program runs remotely from the source database or the Q

Apply program runs remotely from the target database, the programs require
password files to connect to the remote database.

v The asntdiff and asntrep commands require password files to connect to
databases where the utilities are comparing or repairing table differences.

v The Replication Alert Monitor requires a password file to connect to any Q
Capture, Capture, Q Apply, or Apply server that you want to monitor.

Important note about compatibility of password files: Password files that are
created by the asnpwd command starting with Version 9.5 Fix Pack 2 use a different
encryption method and cannot be read by older versions of the replication
programs and utilities. If you share a password file among programs and utilities
that are at a mixed level, with some older than these fix packs, do not recreate the

Chapter 2. Authorization requirements for SQL Replication 17

password file by using an asnpwd command that is at these fix packs or newer.
Replication programs and utilities at these fix packs or newer can continue to work
with older password files. Also, you cannot change an older password file to use
the later encryption method; you must create a new password file.

In general, replication and Event Publishing support the following scenarios:
v Creating a password file with one version and using it with a newer version. For

example, you can create a password file under V8.2 and use it with V9.1 and
V9.5.

v Creating a password file with one fix pack and using it with a newer fix pack
within the same version. For example, you can create a password file with V9.1
Fix Pack 3 and use it with V9.1 Fix Pack 5.

v Creating a password file on one system and using it on another system as long
as the following criteria are met:
– The systems use the same code page.
– The systems are all 32 bit or all 64 bit.

Encrypted password files are not supported for x64 Windows until 9.5 Fix Pack 2
or later.

Procedure

To manage user IDs and passwords for remote servers, follow these guidelines:
v Create an encrypted password file for replication and event publishing programs

that are running on Linux, UNIX, and Windows by using the asnpwd command.
The password file must be stored in the path that is set by the following
parameters:

Table 1. Password file requirements

Program Parameter

Apply apply_path

Q Apply apply_path

Q Capture capture_path

Replication Alert Monitor monitor_path

asntdiff or asntrep command DIFF_PATH

v If the Q Apply program and Replication Alert Monitor are running on the same
system, they can share the same password file. If you want the programs to
share a password file, specify the same path and file name for the programs, or
use symbolic links to share the same password file in the different directories.

v The Replication Center does not use the password file that is created with the
asnpwd command to connect to remote servers. The first time that the Replication
Center needs to access a database or subsystem, you are prompted for a user ID
and password, which is stored for future use. You can use the Manage
Passwords and Connectivity window to store user IDs for servers or systems, as
well as to change the IDs that you stored and to test connections. To open the
window, right-click the Replication Center folder and select Manage Passwords
for Replication Center.

18 SQL Replication Guide and Reference

Chapter 3. Configuring servers for SQL Replication

Before you can replicate data, you must create and configure your servers and
ensure that they can connect to each other.

For more detail about configuring servers on z/OS, see
Replication installation and customization for z/OS.

Required: Setting DATA CAPTURE CHANGES on DB2 source tables
and DB2 for z/OS system tables

You must set the DATA CAPTURE CHANGES attribute on any table that you
want to replicate. Also, on DB2 for z/OS Version 9 and later, you must set DATA
CAPTURE CHANGES on the SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, and
SYSIBM.SYSTABLEPART system catalog tables.

About this task

Setting DATA CAPTURE CHANGES on source tables prompts DB2 to log SQL
changes in an expanded format that is required for replication. The replication
administration tools will generate the DDL to alter the table if this option is not
set. However, you can set it when creating tables or alter the table yourself.

For DB2 for z/OS system tables, setting DATA CAPTURE CHANGES enables
detection and replication of changes to the structure of source tables such as
addition of new columns or changes in column data types.

Note: If the replication source is DB2 for z/OS Version 9 or later, the Capture
program stops if DATA CAPTURE CHANGES is not set on the
SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, and SYSIBM.SYSTABLEPART
system catalog tables.

Turning on DATA CAPTURE CHANGES for a table introduces a small amount of
extra logging. When this option is set for a table, DB2 logs both the full before and
after images of the row for each update. When the option is not set, DB2 logs only
the columns that changed because this amount of logging is all that is needed for
DB2 recovery. The amount of additional logging is proportional to row size, but
only for those tables for which DATA CAPTURE CHANGES is on.

Procedure

Use the CREATE TABLE or ALTER TABLE statement to set DATA CAPTURE
CHANGES on replication source tables. For DB2 for z/OS system catalog tables,
this step is performed for you when you create control tables using the Version 10
Replication Center or ASNCLP program. You can also use the following
statements:
ALTER TABLE SYSIBM.SYSTABLES DATA CAPTURE CHANGES;
ALTER TABLE SYSIBM.SYSCOLUMNS DATA CAPTURE CHANGES;
ALTER TABLE SYSIBM.SYSTABLEPART DATA CAPTURE CHANGES;

© Copyright IBM Corp. 1994, 2012 19

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.repl.zoscust.doc/topics/iiyrczoscncover.html

Connectivity requirements for SQL Replication
Any workstation that runs the Apply program, the Replication Center, or the
replication commands must be able to connect to the source server, Capture control
server, Apply control server, and target server databases.

If you use the Replication Alert Monitor, the workstation on which it runs must be
able to connect to the Monitor control server and to any server that it monitors. If
you want to use the Replication Center to set up monitoring, ensure that the
Replication Center can connect to the Monitor control server.

If your replication design involves staging data at a server that is different from
the source database, you must carefully consider the communications between the
various servers. Be sure to limit the layers of emulation, LAN bridges, and router
links required, because these can all affect replication performance.

When the databases are connected to a network, connectivity varies according to
the operating systems being connected.

The following topics provide detail about connectivity requirements.

Connecting to System i servers from Windows
You can administer replication on System i servers by connecting from a Windows
workstation.

Before you begin

v You must have a DB2 or DB2 Connect™ installed on your workstation.
v You must have TCP/IP set up on your workstation.

Procedure

To connect to a System i server from a DB2 for Windows workstation:
1. Log on to the System i server and locate the relational database:

a. Log on to the System i server to which you want to connect.
b. Submit a dsprdbdire command, then specify local for *LOCAL.
c. Locate the name of the relational database in the output. For example, in the

following output, the database is called DB2400E:
MYDBOS2 9.112.14.67
RCHASDPD RCHASDPD
DB2400E *LOCAL
RCHASLJN RCHASLJN

2. Catalog the System i database in DB2 for Windows:
a. From a Windows command prompt, enter db2cmd. The DB2 CLP command

window opens.
b. In the command window, type the following three commands in exact

order:
db2 catalog tcpip node server_name remote server_name server 446 system
server_name ostype OS400

db2 catalog dcs database rdb_name AS rdb_name

db2 catalog database rdb_name AS rdb_name at node server_name
authentication dcs

20 SQL Replication Guide and Reference

Where server_name is the TCP/IP host name of the System i system, and
rdb_name is the name of the System i relational database that you found in
Step 1.

3. In the command window, issue the following command:
db2 terminate

4. Ensure that the System i user profile that you will use to log on to your System
i system uses CCSID37:
a. Log on to the System i system.
b. Type the following command, where user is the user profile:

CHGUSRPRF USRPRF (user) CCSID(37)

c. Make sure that the DDM server is started on the System i system type:
STRTCPSVR SERVER(*DDM)

5. Make sure that DB2 for Windows and DB2 for System i are connected:
db2 connect to rdb_name user user_name using password

Connecting to non-DB2 relational servers
If you want to replicate data to or from a non-DB2 relational server, you must be
able to access the non-DB2 relational server and connect to it.

Before you attempt to replicate from non-DB2 relational source servers, you must
set up your federated server and database. There are three main setup steps:
1. Define a wrapper so that the DB2 database can access other non-DB2 relational

databases.
2. Define a non-DB2 relational database by using a server mapping.

Restriction: The Replication Center and ASNCLP command-line program do
not support creating control tables or target tables in Oracle databases if the
server mapping has two-phase commit enabled.

3. If the user ID and password combination that is used to connect to the DB2
database differs from the one used to access the non-DB2 relational database,
you must create a user mapping.

For more detail on configuring a federated environment, see the DB2 Information
Center or the WebSphere Information Integration Federated Systems Guide.

Creating control tables for SQL Replication
The replication programs use control tables to store information about registered
tables, subscription sets, operational parameters, and user preferences. You create
control tables before defining your sources and targets for replication.

Creating control tables for SQL Replication
You can use the ASNCLP command-line program or Replication Center to create
control tables for the Capture and Apply programs.

Restrictions

v The Replication Center or ASNCLP must be able to connect to the server where
you want to create the control tables.

Chapter 3. Configuring servers for SQL Replication 21

v In a multiple database partition environment, all of the table spaces that are
used by the control tables must be on the catalog partition. If you use an
existing table space, the table space must be non-partitioned and it must be on
the catalog partition.

About this task

If you do not customize the way that the control tables are created, two table
spaces are created, one for the UOW table and one for the other control tables. If
you do not want to use the default replication table spaces, you can specify
existing table spaces, create new table spaces, or use the current DB2 default table
space.

If Capture is started in a multiple database partition environment, Capture creates
an additional control table (IBMSNAP_PARTITIONINFO) in the same table space
as the IBMSNAP_RESTART table.

Both replication administration tools allow you to create a profile for to identify
the defaults to be used when you create control tables for a given operating system
or environment. After you set the profiles for these control tables, you do not have
to set them for every set of control tables that you create. You can override the
defaults when you create the control tables. You can also modify the profile at any
time, but the changes will affect only the control tables that you create after you
modified the profile.

Procedure

To create control tables, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE CONTROL TABLES FOR command to create a
new set of Capture or Apply control tables. For example, the
following commands set the environment and create Capture
control tables:

SET SERVER CAPTURE TO DB SAMPLE
SET OUTPUT CAPTURE SCRIPT "capctrl.sql";
SET LOG "capctrl.err";
SET RUN SCRIPT LATER;
CREATE CONTROL TABLES FOR CAPTURE SERVER
IN UW UOW TSUOW100 OTHERS TSASN100;

Replication Center Use either the Create Control Tables or Create Control Tables -
Quick windows for Capture and Apply. To open the windows,
right-click a Capture Control Servers or Apply Control Servers
folder in the object tree and click one of the following options:

v Create Capture Control Tables

v Create Capture Control Tables > Quick

v Create Apply Control Tables

v Create Apply Control Tables > Quick

Creating control tables (System i)
Replication control tables are created automatically when you install DB2
DataPropagator for System i. You can also use a command to create control tables.

About this task

22 SQL Replication Guide and Reference

During the installation, control tables are created in the DataPropagator default
schema (ASN), if they do not already exist. You can create additional sets of
control tables if your control tables are accidentally deleted or corrupted. For
Capture, you can create the new set of control tables with a different schema. You
can create a maximum of 25 schemas.

For a user-defined file system, you can create the replication control tables in the
base Auxiliary Storage Pool (ASP) or in Independent Auxiliary Storage Pool (IASP)
groups, but not in both. If you create control tables in an IASP group, you must
first remove all Capture and Apply control tables from the base ASP. Issue the
SETASPGRP command for the ASP group that contains the ASN library (or any other
library for a Capture schema) before you start the Capture or Apply programs.

Procedure

To create control tables on System i, use the Create DPR Tables (CRTDPRTBL)
command.

Restriction: Use only the CRTDPRTBL command to create control tables on System i.
The ASNCLP command-line program and Replication Center do not support the
creation of control tables for System i.

Creating control tables for non-DB2 relational sources
If you want to use a non-DB2 database such as Informix as a replication source,
you can use the Replication Center or ASNCLP command-line program to create
control tables.

About this task

For these types of sources, the Replication Center creates the following Capture
control tables in the non-DB2 relational database:
v IBMSNAP_PRUNCNTL
v IBMSNAP_PRUNE_SET
v IBMSNAP_REG_SYNCH
v IBMSNAP_REGISTER
v IBMSNAP_SEQTABLE on Informix only
v IBMSNAP_SIGNAL

Nicknames are created in a federated database for all but IBMSNAP_SEQTABLE.
(This table is used only by the Informix triggers. The Apply program does not use
it.) Triggers are created automatically on the IBMSNAP_SIGNAL table and the
IBMSNAP_REG_SYNCH table.

Important: Do not remove or modify the triggers that are created on the
IBMSNAP_SIGNAL and IBMSNAP_REG_SYNCH tables.

Creating multiple sets of Capture control tables
If you want to use more than one Capture program on a server you must create
more than one set of Capture control tables and ensure that each set of tables has a
unique Capture schema.

About this task

Chapter 3. Configuring servers for SQL Replication 23

This schema identifies the Capture program that uses a set of tables. Multiple
Capture schemas enable you to run multiple Capture programs concurrently.

You might want to run multiple Capture programs in the following situations:
v To optimize performance by treating low-latency tables differently from other

tables. If you have low latency tables, you might want to replicate those tables
with their own Capture program. That way, you can give them a different
run-time priority. Also, you can set the Capture program parameters, such as
pruning interval and monitor interval, to suit the low latency of these tables.

v To potentially provide higher Capture throughput. This can be a significant
benefit in a source environment with multiple CPUs. The trade-off for the higher
throughput is additional CPU overhead associated with multiple log readers.

If you want to replicate from multiple non-DB2 source databases within the same
federated database, you must create multiple sets of Capture control tables, with
each set having its own schema. Or, if you prefer, you can use separate federated
databases, in which case the Capture control tables on each server can use the
default ASN schema.

You can use multiple Capture schemas it you want to work
with UNICODE and EBCDIC encoding schemes separately or if you want to run
more than one instance of the Capture program on a subsystem.

Use the Create DPR Tables (CRTDPRTBL) command to create the
extra set of Capture control tables by using the CAPCTLLIB parameter to specify the
schema name.

Creating control tables in a multiple-partitioned database
When you create Capture control tables in a multiple partitioned database, the
control tables should be placed in a single-partition table space that is on the
catalog partition.

Typically, you first create a single-partition table space, and then specify that table
space when you use the Replication Center or ASNCLP command-line program to
create the control tables.

If you are starting the Capture program for the first time and select the WARMSI
start mode, the IBMSNAP_PARTITIONINFO table does not exist. The Capture
program creates this table and a unique index for it in the table space that the
IBMSNAP_RESTART table is located. After the IBMSNAP_PARTITIONINFO table
is created, the Capture program inserts a row into it for every database partition.

If this is not the first time that you started the Capture program and you select one
of the warm start modes, the IBMSNAP_PARTITIONINFO table already exists. In
the Replication Center, if you selected the One or more partitions have been
added since Capture was last run check box, the Capture program inserts a row
into the IBMSNAP_PARTITIONINFO table for every database partition that you
added since the Capture program last ran.

24 SQL Replication Guide and Reference

Setting up the replication programs
Before you can replicate, you need to set up the Capture program, Apply program,
and other replication programs for the servers in your environment.

The following topics describe required setup for the replication programs.

Setting up the replication programs (Linux, UNIX, Windows)
To set up the replication programs you need to set environment variables, prepare
the database for the Capture program, and optionally bind packages.

Setting environment variables for the replication programs
(Linux, UNIX, Windows)
You must set environment variables before you start and stop the Capture
program, the Apply program, or the Replication Alert Monitor program, and
before you use the Replication Center or replication system commands.

Procedure

To set the environment variables:
1. Set the environment variable for the DB2 instance name (DB2INSTANCE) as

shown:

Operating system Command

export DB2INSTANCE=db2_instance_name

SET DB2INSTANCE=db2_instance_name

2. If you created the source database with a code page other than the default code
page value, set the DB2CODEPAGE environment variable to that code page.
Note: Capture must be run in the same code page as the database for which it
is capturing data. DB2 derives the Capture code page from the active
environment where Capture is running. If DB2CODEPAGE is not set, DB2
derives the code page value from the operating system. The value derived from
the operating system is correct for Capture if you used the default code page
when creating the database.

3. Optional: Set environment variable DB2DBDFT to the source server.

4. Make sure the library path and executable path system
variables specific to your system include the directory where the replication
libraries and executables are installed.

Preparing the DB2 database to run the Capture program (Linux,
UNIX, Windows)
To prepare the DB2 database to run the Capture program, you enable archival
logging. You can also set other database configuration parameters.

Procedure

To prepare the DB2 database to run the Capture program:
1. Check the "Log retain for recovery status" value in the database configuration.

If it is set to NO, turn on archival logging by changing the LOGARCHMETH1
database configuration parameter value to a value other than OFF.

Chapter 3. Configuring servers for SQL Replication 25

For multiple database partition environments, every partition must be set up to
allow roll-forward recovery for every partition that the Capture will capture
changes from.

2. You might need to increase configuration values based on your installation
requirements.
v For transactions with a large number of rows or very large rows it is

recommended to increase the value of the Capture memory_limit parameter.
v The following database configuration values are adequate for many large

workstation scenarios: APPLHEAPSZ 1000, LOGFILSIZ 4000, LOGPRIMARY
8, LOGSECOND 40, DBHEAP 1000, LOGBUFSZ 16, MAXAPPLS 200.

Optional: Binding the Capture program packages (Linux, UNIX,
Windows)
The Capture program is bound automatically on Linux, UNIX, and Windows
during execution. You can bind packages manually if you want to specify bind
options, schedule binding, or check that all bind processes completed successfully.

Procedure

To bind the Capture program packages:
1. Connect to the Capture control server database by entering the following

command:
db2 connect to database

Where database is the Capture control server database.
2. Change to the directory where the Capture program bind files are located.

db2homedir/sqllib/bnd

Where db2homedir is the DB2 instance home directory.

drive:\...\sqllib\bnd

Where drive: is the drive where DB2 is installed.
3. Create and bind the Capture program package to the source server database by

entering the following command:
db2 bind @capture.lst isolation ur blocking all

Where ur specifies the list in uncommitted read format for greater performance.

These commands create packages, the names of which are in the file capture.lst.

Optional: Binding the Apply program packages (Linux, UNIX,
Windows)
The Apply program is bound automatically on Linux, UNIX, and Windows during
execution. You can bind packages manually if you want to specify bind options,
schedule binding, or check that all bind processes completed successfully.

Procedure

To bind the Apply program packages:
1. Change to the directory where the Apply program bind files are located.

26 SQL Replication Guide and Reference

db2homedir/sqllib/bnd

Where db2homedir is the DB2 instance home directory.

drive:\...\sqllib\bnd

Where drive: is the drive where DB2 is installed.
2. For each source server, target server, Capture control server, and Apply control

server to which the Apply program connects, do the following steps:
a. Connect to the database by entering the following command:

db2 connect to database

Where database is the source server, target server, Capture control server, or
Apply control server. If the database is cataloged as a remote database, you
might need to specify a user ID and password on the db2 connect to
command. For example:
db2 connect to database user userid using password

3. Create and bind the Apply program package to the database by entering the
following commands:
db2 bind @applycs.lst isolation cs blocking all grant public

db2 bind @applyur.lst isolation ur blocking all grant public

Where cs specifies the list in cursor stability format, and ur specifies the list in
uncommitted read format.

These commands create packages, the names of which are in the files applycs.lst
and applyur.lst.

Creating SQL packages to use with remote systems (System i)
You need to create packages using the CRTSQLPKG command in some cases on
System i.

About this task

Use this command to create packages in the following cases:
v When you use remote journaling. Run the CRTSQLPKG command on the system

where the Capture program is running and point to the system where the source
table is located.

v Before you use the ADDDPRSUB or ADDDPRSUBM command to add a subscription set
or subscription set member. Run the CRTSQLPKG command on the target server
and use the following guidelines:
– If the source table is on a different machine, point to the system where the

source table is located.
– If the Apply control server is on a different machine, point to the Apply

control server.

The SQL packages allow replication programs to operate in a distributed
replication environment, whether that environment is one in which you are
replicating between System i systems or between a System i system and some
other operating system (such as Linux, UNIX, or Windows).

Chapter 3. Configuring servers for SQL Replication 27

For information about using the CRTSQLPKG command, see DB2 for i5/OS SQL
Programming.

The packages are created by using the ASN qualifier. On System i they are created
in the ASN library. On other operating systems, they are created in the ASN
schema.

Creating SQL packages for the Apply program (System i)
You must create SQL packages for the Apply program on System i so it can
interact with all the remote servers to which it needs to connect.

Procedure

To create SQL packages for the Apply program:

Run this command on the system where Apply is running to enable it to connect
to a remote system:
CRTSQLPKG PGM(QDP4/QZSNAPV2) RDB(remote_system)

Where remote_system is the relational database entry name for the remote system to
which the Apply program needs to connect.

Creating SQL packages for the Replication Analyzer (System i)
You must create SQL packages for the Replication Analyzer on System i so it can
interact with the servers that you are analyzing, such as the Capture control server
or the target server.

Procedure

To create SQL packages for the Replication Analyzer:

Run this command on the system where the Replication Analyzer is running:
CRTSQLPKG PGM(QDP4/QZSNANZR) RDB(remote_system)

Where remote_system is the name of the system that you are analyzing.

Granting privileges to the SQL packages (System i)
After you create SQL packages on System i, you must grant *EXECUTE privileges
to all users who will be subscribing to files registered on the source database.

Procedure

To grant privileges for SQL packages:

Log on to the System i system where the source database resides and use one of
the following methods:

Method Description

GRTOBJAUT command Use the Grant Object Authority (GRTOBJAUT) command, for
example:

GRTOBJAUT OBJ(ASN/package_name) OBJTYPE(*SQLPKG)
USER(subscriber_name) AUT(*OBJOPR *EXECUTE)

28 SQL Replication Guide and Reference

Method Description

GRANT SQL
statement

Use SQL to connect to the source database and run the GRANT
SQL statement:

CONNECT TO data_server_RDB_name
GRANT EXECUTE ON PACKAGE ASN/package_name TO subscriber_name

GRTDPRAUT command Use the GRTDPRAUT command, if it is installed on the local system.

Setting up the replication programs (z/OS)
You must set up and customize the replication programs when you install SQL
replication on z/OS.

See the instructions in Replication installation and customization for z/OS.

Capture for multiple database partitions
If you are replicating data on the DB2 Enterprise Server Edition, you can capture
changes to source tables that are spread across multiple database partitions.

The Capture program keeps a list of database partitions belonging to its partition
group in the IBMSNAP_PARTITIONINFO table. This table is created by the
Capture program when the Capture program is started for the first time and finds
that there is more than one database partition in its partition group.

Whenever the Capture program is warm started, Capture reads the list of database
partitions for the partition group in which its control tables are located. Capture
compares the number of database partitions known to DB2 with the number of
database partitions listed in the IBMSNAP_PARTITIONINFO table. The number of
database partitions listed in the IBMSNAP_PARTITIONINFO table must match the
number known to DB2 or the Capture program will not run.

If you added one or more database partitions since the last time you ran the
Capture program, you must tell the Capture program about the new database
partitions. You can do this in the Replication Center by selecting the One or more
partitions have been added since Capture was last run check box when you set
the startmode parameter to any of the warm start modes on the Start Capture
window.

Replication of partitioned tables: Version 9.7 Fix Pack 1 or
earlier (Linux, UNIX, Windows)

SQL Replication supports DB2 tables that are partitioned by range (using the
PARTITION BY clause of the CREATE TABLE statement). These tables are
sometimes known as range-partitioned tables.

Version and fix pack requirements exist for the Capture program if a source table is
partitioned by range. This topic covers these requirements and support for
replication of partitioned tables when your replication programs are at Version 9.7
Fix Pack 1 or earlier. If only target tables (no source tables) are partitioned by
range, then SQL Replication has no version or fix pack requirements specific to
these tables.

To capture changed data for range-partitioned tables, your Capture program must
be at Version 9.7 or later. It can capture changes from range-partitioned tables on

Chapter 3. Configuring servers for SQL Replication 29

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.repl.zoscust.doc/topics/iiyrczoscncover.html

DB2 V9.1, V9.5, or V9.7. However, restrictions exist for range-partitioned tables
earlier than V9.7. The restrictions are also discussed in this topic.

Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table.

SQL Replication treats all data partitions of a source table as a single table. For
example, when you register a partitioned table, you specify the entire table rather
than one or more data partitions of the table. All row operations for the table,
regardless of the data partition at which they occur, are replicated.

You can perform several alterations on a partitioned table, including adding a data
partition, attaching a data partition, or detaching a data partition. These ALTER
operations on the source table are not replicated to the target. You must alter the
target table independently of the source table if you want to maintain an identical
partitioning scheme.

SQL Replication treats these ALTER operations differently:

ADD Adds a new, empty data partition to the source table. If you require the
new data partition at the target, you must manually add it. Capture
program behavior and the procedure that you need to follow depend on
the release of your DB2:

Version 9.7 or higher
Add the data partition at the target before adding it at the source.
Capture automatically begins replicating changes to the data
partition.

Version 9.5 or 9.1
Capture does not recognize the addition of the data partition until
the program is reinitialized or stopped and restarted. Add the data
partition at both the source and target before restarting Capture.
Do not change data in the source data partition until Capture is
restarted.

ATTACH
Creates a new data partition at the source by using an existing table. The
ATTACH operation is not replicated, and the data in the new data
partition is not replicated to the target. If you require the new data
partition at the target you must manually add it. If you require the
attached data at the target, you must manually load it into the target.

Note: If the Capture program is stopped when a data partition is attached,
rows that are inserted, updated, or deleted on the table before it is attached
as a data partition are replicated. If Capture is running when the data
partition is attached, these rows are not replicated.
To ensure consistent behavior, before you attach a table as a new data
partition, set the DATA CAPTURE CHANGES clause for the table to OFF
if you need to make any changes to the table. For example, the following
statements create a table, insert values into the table, and then attach the
table as a data partition to an existing partitioned table:
db2 create table temp1 like t1;
-- NOTE: data capture changes is off by default
db2 insert into temp1 values (44,44);
-- NOTE: Turn on data capture changes after insert/update/deletes
-- and before attach partition
db2 alter table temp1 data capture changes;

30 SQL Replication Guide and Reference

db2 alter table t1 attach partition part4 starting from 41
ending at 50 from temp1;
db2 set integrity for t1 allow write access immediate checked;

DETACH
Turns an existing data partition into a separate table. The DETACH
operation is not replicated. The data that is deleted from the source table
by the DETACH operation is not deleted from the target table. If you need
to change the target data partition into a separate table, you need to do so
manually.

Note: DB2 logs updates that cause rows to move across data partitions as
delete-insert pairs. The Capture program also treats these updates as deletes and
inserts in the CD table (similar to the behavior of CHG_UPD_TO_DEL_INS=Y in
the IBMSNAP_REGISTER table).

Replication of partitioned DB2 tables: Version 9.7 Fix Pack 2
or later (Linux, UNIX, Windows)

SQL Replication supports DB2 tables that are partitioned by range (using the
PARTITION BY clause of the CREATE TABLE statement). These tables are
sometimes known as range-partitioned tables.

Version and fix pack requirements exist for the Capture program if a source table is
partitioned by range. This topic covers these requirements and support for
replication of partitioned tables when your replication programs are at Version 9.7
Fix Pack 2 or later. If only target tables (no source tables) are partitioned by range,
then SQL Replication has no version or fix pack requirements specific to these
tables.

To capture changed data for range-partitioned tables, your Capture program must
be at Version 9.7 or later. It can capture changes from range-partitioned tables on
DB2 V9.1, V9.5, or V9.7. However, restrictions exist for range-partitioned tables
earlier than V9.7. The restrictions are also discussed in this topic.

Important: If your replication programs are at Version 9.7 Fix Pack 2 or later and
you plan to replicate range-partitioned tables, you must run the Version 9.7 Fix
Pack 2 migration script, asncapluwv97fp2.sql. The script adds a new control table,
IBMQREP_PART_HIST, to help the replication programs handle data partition
changes such as add, attach, or detach. The script is located in the
samples/repl/mig97/sql/ directory. The Capture program does not use the
IBMQREP_PART_HIST table for partitioned source tables on DB2 Version 9.5 or
Version 9.1.

Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table.

SQL Replication treats all data partitions of a source table as a single table. For
example, when you register a partitioned table, you specify the entire table rather
than one or more data partitions of the table. All row operations for the table,
regardless of the data partition at which they occur, are replicated.

You can perform several alterations on a partitioned table, including adding a data
partition, attaching a data partition, or detaching a data partition. These ALTER

Chapter 3. Configuring servers for SQL Replication 31

operations on the source table are not replicated to the target. You must alter the
target table independently of the source table if you want to maintain an identical
partitioning scheme.

SQL Replication treats these ALTER operations differently:

ADD Adds a new, empty data partition to the source table. If you require the
new data partition at the target, you must manually add it. Capture
program behavior and the procedure that you need to follow depend on
the release of your DB2:

Version 9.7 or higher
Add the data partition at the target before adding it at the source.
Capture automatically begins replicating changes to the data
partition.

Version 9.5 or 9.1
Capture does not recognize the addition of the data partition until
the program is reinitialized or stopped and restarted. Add the data
partition at both the source and target before restarting Capture.
Do not change data in the source data partition until Capture is
restarted.

ATTACH
Creates a new data partition at the source by using an existing table. The
ATTACH operation is not replicated, and the data in the new data
partition is not replicated to the target. If you require the new data
partition at the target you must manually add it. If you require the
attached data at the target, you must manually load it into the target.

DETACH
Turns an existing data partition into a separate table. The DETACH
operation is not replicated. The data that is deleted from the source table
by the DETACH operation is not deleted from the target table. If you need
to change the target data partition into a separate table, you need to do so
manually.

Note: DB2 logs updates that cause rows to move across data partitions as
delete-insert pairs. The Capture program also treats these updates as deletes and
inserts in the CD table (similar to the behavior of CHG_UPD_TO_DEL_INS=Y in
the IBMSNAP_REGISTER table).

Running DB2 Query Patroller in a SQL Replication
environment

If you set up replication in an environment that also runs DB2 Query Patroller, you
need to take special steps to ensure that replication activities are not compromised.

About this task

Query Patroller monitors the cost of dynamic queries that are issued against a
database. If you run the Query Patroller client and the cost of a query exceeds a
threshold set by the database administrator, the query is trapped and a message
issued.

The replication components can issue many dynamic queries. If Query Patroller is
enabled and the client is installed where the replication components are running,
these situations might occur:

32 SQL Replication Guide and Reference

v Dialog messages are issued on the client system when a dynamic query from
replication exceeds the defined threshold.

v If Query Patroller detects an error, the replication components can receive a
nonzero SQLCODE from Query Patroller. Most of these SQLCODEs are in the
range between SQL29000N and SQL29999N.

Procedure

To avoid these situations, take one of the following actions:
v Run the replication components from a DB2 client that does not have the Query

Patroller client enabled.
v Disable Query Patroller. For example, you can disable it for a given database by

setting the DYN_QUERY_MGMT parameter to 0 (DISABLE).
DYN_QUERY_MGMT is a database configuration parameter that determines
whether Query Patroller is enabled for a given database.

Setting up journals (System i)
DB2 DataPropagator for System i uses the information that it receives from the
journals about changes to the data to populate the CD and UOW tables for
replication.

DB2 DataPropagator for System i runs under commitment control for most
operations and therefore requires journaling on the control tables. (The QSQJRN
journal is created when the CRTDPRTBL command creates a collection.)

Administrators must make sure the libraries containing the source table, CD table,
and target table contain journals. They must also ensure that all the source tables
are journaled correctly.

Before you register a table for replication on System i, the table must be journaled
for both before-images and after-images.

The following topics describe the journal setup required for replication.

Setting up journals for source tables (System i)
To set up journaling for a source table, you create a journal receiver, create a
journal, and then start journaling.

Before you begin

You must have authority to create journals and journal receivers for the source
tables to be defined.

Restrictions

Use a different journal for the source tables than one of those created by DB2
DataPropagator for System i in the library for the ASN schema (or other Capture
schema).

Procedure

To create a source table journal:
1. Create a journal receiver in a library of your choice by using the Create Journal

Receiver (CRTJRNRCV) command. Place the journal receiver in a library that is
saved regularly. Choose a journal receiver name that can be used to create a

Chapter 3. Configuring servers for SQL Replication 33

naming convention for future journal receivers, such as RCV0001. You can use
the *GEN option to continue the naming convention when you change journal
receivers. This type of naming convention is also useful if you choose to let the
system manage the changing of your journal receivers. The following example
uses a library named JRNLIB for journal receivers.
CRTJRNRCV JRNRCV(JRNLIB/RCV0001)

THRESHOLD(100000)
TEXT(’DataPropagator Journal Receiver’)

2. Create the journal by using the Create Journal (CRTJRN) command, as in the
following example:
CRTJRN JRN(JRNLIB/DJRN1)

JRNRCV(JRNLIB/RCV0001)
MNGRCV(*SYSTEM) DLTRCV(*YES)
TEXT(’DataPropagator Journal’)

v Specify the name of the journal receiver that you created in Step 1.
v Use the Manage receiver (MNGRCV) parameter to have the system change

the journal receiver and attach a new one when the attached receiver
becomes too large. If you choose this option, you do not need to use the
CRTJRN command to detach receivers and create and attach new receivers
manually.

v Use the default attribute MINENTDTA(*NONE). Other values are not valid
for this keyword.

v Specify DLTRCV(*NO) only if you have overriding reasons to do so (for
example, if you need to save these journal receivers for recovery reasons). If
you specify DLTRCV(*YES), these receivers might be deleted before you have
a chance to save them.

You can use two values on the RCVSIZOPT parameter of the CRTJRN command
(*RMVINTENT and *MINFIXLEN) to optimize your storage availability and
system performance. See the System i Programming: Performance Tools Guide for
more information.

3. Start journaling the source table by using the Start Journal Physical File
(STRJRNPF) command, as in the following example:
STRJRNPF FILE(library/file)

JRN(JRNLIB/DJRN1)
OMTJRNE(*OPNCLO)
IMAGES(*BOTH)

Specify the name of the journal that you created in Step 2. The Capture
program requires a value of *BOTH for the IMAGES parameter.

4. Change the source table journaling setup:
a. Use IMAGES(*BOTH) to make sure that the source table is journaled for

both before- and after-images.
b. Make sure that the journal has the following attributes:

MNGRCV(*SYSTEM) and DLTRCV(*YES).
c. Make sure that the journal has the MINENTDTA(*NONE) attribute.
d. For journals on remote systems, specify the MNGRCV(*SYSTEM),

DLTRCV(*YES), and MINENTDTA(*NONE) attributes on the source journal.
To define the remote journal, specify the DLTRCV(*YES) attribute on the
ADDRMTJRN command.

Managing journals and journal receivers (System i)
The Capture program uses the Receive Journal Entry (RCVJRNE) command to
receive journals.

34 SQL Replication Guide and Reference

The following topics describe how to manage journals and journal receivers.

Specifying system management of journal receivers (System i):

You should let the System i system manage the changing of journal receivers. This
is called system change journal management.

Restrictions

When you use the RTVJRNE command to retrieve journal entries, no more than 299
source physical files can use the same journal and Capture schema. If you need to
register more than 299 files in the same journal, break your source registrations
into multiple Capture schemas.

Procedure

To specify system management of journal receivers, specify MNGRCV(*SYSTEM)
when you create the journal, or change the journal to that value. If you use system
change journal management support, you must create a journal receiver that
specifies the threshold at which you want the system to change journal receivers.
The threshold must be at least 5 000 KB, and should be based on the number of
transactions on your system. The system automatically detaches the receiver when
it reaches the threshold size and creates and attaches a new journal receiver if it
can.

Remote journaling with different system times (System i):

If the system time (QTIME) of the source and target systems do not match in a
replication environment that uses remote journaling, you need to take precautions
in the initial handshake between the Capture and Apply programs.

When replicating with remote journals, the Capture and Apply programs operate
as if the source system is local when it is not. If possible, make sure that the
QTIME of the source and target systems match.

If you cannot match system times, take the following precautions:
v If the source system time is ahead of the target system time, make sure that PTF

SE23500/SI21622 is installed.
v If the source system time is behind the target system time, the Capture program

starts receiving changes based on the target system time. Wait for the source
system time to become greater than the time of the full refresh. Then make
dummy changes and check to see if the changes are replicated before you allow
applications to update the source table.

In general, when the source and target system times are different, avoid operations
that will cause a full refresh again, such as CLRPFM and CPYF with *REPLACE.

After the Capture program has started processing changes for the source table, you
could set the column DISABLE_REFRESH in the IBMSNAP_REGISTER table to 1
for that table. If a full refresh is needed, the Apply program fails and you could
coordinate the full refresh when you are ready to perform the handshake in a
controlled manner by setting DISABLE_REFRESH to 0.

Avoiding unwanted full refreshes and other problems caused by a time
mismatch (System i):

Chapter 3. Configuring servers for SQL Replication 35

When the system times at the source and target servers do not match, unwanted
full refreshes can occur and journal entries might be missed. You can take steps to
avoid these problems.

Both problems have the same root cause. When the Apply program signals that a
full refresh has begun, a trigger on the system where Capture is running fills in the
FR_START_TIME value in the IBMSNAP_REG_EXT table (in the remote journal
case the trigger is on the target system). The time that the trigger uses is the
current timestamp of the machine where the trigger is running. The trigger does
not have the ability to get the timestamp from the source system.

The potential problems that are caused by time mismatches fall into two categories
and are described in the following sections:
v “Source system clock ahead of target system clock”
v “Source system clock behind target system clock”

Source system clock ahead of target system clock

When the source system clock is ahead of the target system clock, a Clear Physical
File Member (CLRPFM) command for the source table causes multiple full
refreshes.

When a CLRPFM (or similar journal entry) comes in, a full refresh is started. In
remote journaling, the timestamp of the target system is put into the
FR_START_TIME field. If the source system clock is ahead of the target system
clock, the FR_START_TIME value will be less than the time of the CLRPFM on the
source system.

Capture uses the FR_START_TIME as the time when journal entries should be
picked up. Because the target is behind the source, Capture will see the CLRPFM
again, and cause another full refresh to happen. This loop will continue until the
time of the full refresh on the target system is beyond the journal entry time of the
CLRPFM.

To avoid this problem, follow these steps:
1. Stop the Apply program but keep the Capture program running.
2. Issue the CLRPFM command at the source.
3. When the timestamp on the target system is later than the time that the

CLRPFM command was issued on the source system, start Apply.

Source system clock behind target system clock

When the target system clock is ahead of the source system clock, Capture uses the
FR_START_TIME to look for journal entries that are later than expected. Consider
this scenario where the target system is one hour ahead of the source system:
v The full refresh happens at 05:00 on the target system, which is 04:00 on the

source system.
v Because the FR_START_TIME is set to 05:00, Capture does not see any journal

entries from the source until the source system clock becomes 05:00.
v Capture does not see the journal entries between 04:00 and 05:00 on the source

system.

To avoid this problem, follow these steps:
1. Make sure that the Capture and Apply programs are stopped.

36 SQL Replication Guide and Reference

2. Start Capture. This step makes Capture aware of the new tables that are
waiting for a full refresh to occur.

3. Wait until the journal jobs start.
4. Stop Capture and wait for the program to completely end.
5. Start Apply and let the full refresh occur.
6. Take one of these steps:
v Make sure that no data goes into the source table between the time when the

full refresh is done and the time that the source system clock catches up to
the target system clock.

v Update the FR_START_TIME value to match the clock time on the source
system when the full refresh started.

7. Start Capture.

Changing definitions of work management objects (System i):

You can alter the default definitions for the three types of work management
objects that are created during installation of DB2 DataPropagator for System i, or
provide your own definitions.

About this task

The installation program creates an SQL journal, an SQL journal receiver for this
library, and work management objects.

Table 2 lists the objects that are created.

Table 2. Work management objects

Description Object type Name

Subsystem description *SBSD QDP4/QZSNDPR

Job queue *JOBQ QDP4/QZSNDPR

Job description *JOBD QDP4/QZSNDPR

If you create your own subsystem description, you must name the subsystem
QZSNDPR and create it in a library other than QDP4. See System i Work
Management Guide (SC41-5306) for more information about changing these
definitions.

Specifying user management of journal receivers (System i):

If you specify MNGRCV(*USER) when you create the journal (meaning you want
to manage changing your own journal receivers), a message is sent to the journal's
message queue when the journal receiver reaches a storage threshold, if one was
specified for the receiver.

About this task

Use the CHGJRN command to detach the old journal receiver and attach a new one.
This command prevents Entry not journaled error conditions and limits the
amount of storage space that the journal uses. To avoid affecting performance, do
this at a time when the system is not at maximum use.

Chapter 3. Configuring servers for SQL Replication 37

You can switch journal receiver management back to the system by specifying
CHGJRN MNGRCV(*SYSTEM).

You should regularly detach the current journal receiver and attach a new one for
two reasons:
v Analyzing journal entries is easier if each journal receiver contains the entries for

a specific, manageable time period.
v Large journal receivers can affect system performance and take up valuable

space on auxiliary storage.

The default message queue for a journal is QSYSOPR. If you have a large volume
of messages in the QSYSOPR message queue, you might want to associate a
different message queue, such as DPRUSRMSG, with the journal. You can use a
message handling program to monitor the DPRUSRMSG message queue. For an
explanation of messages that can be sent to the journal message queue, see System i
Backup and Recovery.

Delete journal receiver exit routine (System i):

The delete journal receiver exit routine (DLTJRNRCV) helps ensure that journal receivers
are not deleted if the Capture program has not processed all the entries they
contain.

When you install DB2 DataPropagator for System i, this exit routine is registered
automatically. It is called any time a journal receiver is deleted, whether or not it is
used for journaling the source tables. This exit routine determines whether or not a
journal receiver can be deleted.

To take advantage of the delete journal receiver exit routine and leave journal
management to the system, specify DLTRCV(*YES) and MNGRCV(*SYSTEM) on
the CHGJRN or CRTJRN command.

Attention: If you remove the registration for the delete journal receiver exit
routine, you must change all the journals used for source tables to have the
DLTRCV(*NO) attribute.

If the journal that is associated with the receiver is not associated with any of the
source tables, this exit routine approves the deletion of the receiver.

If the journal receiver is used by one or more source tables, this exit routine makes
sure that the receiver being deleted does not contain entries that have not been
processed by the Capture program. The exit routine disapproves the deletion of the
receiver if the Capture program still needs to process entries on that receiver.

If you must delete a journal receiver and the delete journal receiver exit routine
does not approve the deletion, specify DLTJRNRCV DLTOPT(*IGNEXITPGM) to override
the exit routine.

38 SQL Replication Guide and Reference

Chapter 4. Registering tables and views as SQL Replication
sources

With SQL Replication, you identify the tables and views that you want to use as
replication sources by registering them.

When you register a particular table or view for replication, you create a source of
available data that you can later use with different targets for various purposes.
The administration tasks in this section help you set up the control information
that defines how data is captured from each source based on your replication
goals.

When you register a source, you identify the table or view that you want to use as
a replication source, which table columns you want to make available for
replication, and the properties for how SQL replication captures data and changes
from the source.

For SQL Replication, you can register the following objects as sources:
v A DB2 table
v A non-DB2 relational table through a nickname
v A subset of the data in a table (DB2 or non-DB2 relational)
v A view over a single table (DB2)
v A view that represents an inner join of two or more tables (DB2)

Registering DB2 tables as sources
When you register a DB2 table as a replication source, you specify the source
server, source table name, and the Capture schema. A CD (change-data) table is
created for you.

Before you begin

v For all DB2 sources except for System i, the source table DDL requires the DATA
CAPTURE CHANGES option. Do not remove this option from your source.

v Capture control tables must already exist on the Capture control server that will
process the table that you want to register as a source.

Restrictions

v Because SQL statements are limited to a length of 32,000 characters, you
can register only approximately 2000 columns per table; the exact
number of columns depends on the length of the column names.

v For a single Capture schema, do not register more than 300 source tables
that use the same journal.

v Source tables, CD tables, and journals for the source tables must all be in
the same Auxiliary Storage Pool (ASP) as the Capture control tables that
contain the registration information for these source tables.

© Copyright IBM Corp. 1994, 2012 39

v Replication is supported from multiple-partition databases. There is no
limit to the number of partitions that replication supports.

About this task

SQL replication supports the following types of DB2 tables as sources:

v DB2 tables that your application maintains
v Catalog tables
v External CCD tables

v DB2 tables that your application maintains (locally or remotely
journaled)

v External CCD tables

v DB2 tables that your application maintains
v Catalog tables (for full-refresh-only replication)
v Materialized query tables
v External CCD tables
v Tables that are partitioned with the DISTRIBUTE BY clause of the

CREATE TABLE statement
v Tables that are partitioned by range (using the PARTITION BY clause of

the CREATE TABLE statement)
v Compressed tables

You can register the same table multiple times by using different Capture schemas.

Procedure

To register a DB2 table, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE REGISTRATION command to register a source table,
view, or nickname. For example, the following commands set the
environment and register the STAFF table in the DB2 SAMPLE
database.

SET SERVER CAPTURE TO DB SAMPLE;
SET OUTPUT CAPTURE SCRIPT "register.sql";
SET LOG "register.err";
SET RUN SCRIPT LATER;
CREATE REGISTRATION (DB2ADMIN.STAFF)
DIFFERENTIALREFRESH STAGE CDSTAFF;

Replication Center Use the Register Tables window. In the object tree, expand your
chosen Capture schema, right click the Registered Tables folder,
and click Register Tables. .
Tip: To save time when registering, you can set up a source object
profile ahead of time for the Capture control server. When you
register a table, the Replication Center then uses the defaults that
you defined in the source object profile instead of the Replication
Center defaults. This can save you time when registering because
you can overwrite the defaults once instead of having to select
each table one at a time and change the default settings manually.

40 SQL Replication Guide and Reference

Method Description

ADDDPRREG system
command

Use the ADDDPRREG command to register a table on System i.

For example, to register a source table named EMPLOYEE from the
HR library under the BSN Capture schema and to create a CD
table named CDEMPLOYEE under the HRCDLIB library:

ADDDPRREG SRCTBL(HR/EMPLOYEE) CAPCTLLIB(BSN)
CDLIB(HRCDLIB) CDNAME(CDEMPLOYEE)

When you register a table as a source, the Capture program that is associated with
the registered table reads the log for the source and stores inflight changes that
occur for registered columns in memory until the transaction commits or rolls
back. For a rollback, the changes are deleted from memory. For a commit, the
changes are inserted into the CD table as soon as the Capture program reads the
commit log record. Those changes are left in memory until the Capture program
commits the changes after each Capture cycle. The Capture program does not start
capturing data for a DB2 source table until a CAPSTART signal has been issued,
either by you or the Apply program.

For non-relational source tables: You can register DB2 tables that contain data
from non-relational database management systems, such as IMS™. To do this, you
need an application, such as IMS DataPropagator or Data Refresher, to populate a
CCD table with the data from the non-relational database. The application captures
changes to the non-relational segments in the IMS database and populates a CCD
table. The CCD table must be complete, but it can be either condensed or
non-condensed. Like other CCD sources, there is no Capture program that is
associated with a CCD source table because the table already stores changed data
from the non-relational source table. IMS DataPropagator and Data Refresher
products maintain the values in the IBMSNAP_REGISTER table so that the Apply
program can read from this source table correctly.

Registering non-DB2 relational tables as sources
When you register a non-DB2 relational table, you specify the nickname of the
source table that you want to register. A CCD (consistent-change data) table is
created for you.

Before you begin

Capture control tables must already exist on the Capture control server that will
process this source.

Restrictions

v If you are using a single federated database to access multiple non-DB2
relational source servers, you must use a different Capture schema for each
non-DB2 relational source server on that single federated database. No two
schemas can be the same. You can register a non-DB2 relational table under only
one Capture schema.

v You cannot register LOB columns in non-DB2 relational tables. If you register a
table that includes this data type, you must register a column subset.

About this task

Chapter 4. Registering tables and views as SQL Replication sources 41

By default, the CCD owner is derived from the schema name of the source table. If
you modify the CCD owner so that it does not match the schema name, make sure
that the source table owner is authorized to write to the CCD table. If the source
table owner cannot update the CCD table, triggers on the source table will not be
able to write changes to the CCD table.

Procedure

To register a non-DB2 relational table, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE REGISTRATION command to register a source table,
view, or nickname. For example, the following commands set the
environment and create a registration with the following
characteristics:

v Non-IBM server that contains the Oracle database V9ORA

v Federated server FEDORADB

v CCD table in the Oracle database undjr09.ccdtest

v CCD nickname in the federated server repldba.ccdtestnk

v Source nickname that is being registered repldba.tesnk

v All columns in repldba.tesnk are registered with after images

SET SERVER CAPTURE TO DB FEDORADB NONIBM SERVER V9ORA
ID repldba PASSWORD "passw0rd";
SET OUTPUT CAPTURE SCRIPT "ora_reg.sql";
SET CAPTURE SCHEMA SOURCE ASNORA;
SET LOG "orareg.out";
CREATE REGISTRATION (repldba.testnk)
DIFFERENTIALREFRESH STAGE repldba.ccdtestnk
CONDENSED OFF NONIBM undjr09.ccdtest
COLS ALL IMAGE AFTER;

The CONDENSED OFF option is required for federated sources.

Replication Center Use the Register Nicknames window. From the object tree, expand
the non-DB2 relational database that contains the nicknames that
you want to register. Right-click the Registered Nicknames folder
and select Register Nicknames. .
Tip: To save time when registering, you can set up a source object
profile ahead of time for the Capture control server. When you
register a table, the Replication Center then uses the defaults that
you defined in the source object profile for CCD tables and
nicknames for CCD tables instead of the Replication Center
defaults. This can save you time when registering because you can
overwrite the defaults once instead of having to select each table
one at a time and change the default settings manually.

When a change for a registered non-DB2 relational table occurs, the Capture
triggers simulate the Capture program and insert the change in the CCD table. The
Capture triggers start capturing changes for a non-DB2 relational source table at
the time you register the source.

Registration options for source tables
SQL Replication provides many options when you register a table as a replication
source. These options are part of the larger task of registering a table.

42 SQL Replication Guide and Reference

After you choose which table that you want to register, you can identify which
columns you want to make available for replication, and you can define properties
that determine how registered data from this source will be handled and stored.
You can also specify other registration options, such as how you want the Capture
program to store source data in the CD table (or how you want the Capture
triggers to store data in the CCD table).

Registering a subset of columns (vertical subsetting)
You can register a subset of the source table columns for replication, for example if
you do not want all of the columns available for targets to subscribe to or if target
tables do not support all data types that are defined for the source table.

By default, all columns are registered. To register a subset of the columns, select
only those columns that you want to make available for replication to a target
table.

Because CD and CCD tables must contain sufficient key data for some types of
target tables (such as point-in-time), make sure that your subset contains the
columns that will act as the key columns (primary key or unique index) for the
target.

Tip: Register a subset of the source columns only if you are sure that you will
never want to replicate the unregistered columns. If you later want to replicate
columns that you didn't register, you must alter your registrations to add
unregistered columns. (For non-DB2 relational sources, you must redefine your
registrations altogether to add new columns to a registration.) If you plan to have
an internal CCD associated with this source, it can be even more difficult to add
columns later because registering new columns adds them to the CD table but not
the internal CCD. To avoid these problems, you might want to register all columns
and use the Apply program to subset which columns are replicated to targets.

Change-capture replication and full-refresh copying
By default, only changes that occurred at the source table since the last replication
cycle are replicated (change-capture replication). You can also replicate all data in
the source table during each cycle (full-refresh-only replication).

Change-capture replication

During change-capture replication, only changed data is replicated to the target
table. Depending on the type of target table you choose for this source, you must
perform an initial load of the table. In most cases, the Apply program performs an
initial full refresh, and then continues with change-capture replication.

If you choose not to allow full refresh for target tables, you must manually reload
the table if the source and target tables need to be resynchronized. After the target
is loaded with the initial source data, the Capture program captures changes that
occur at the source and stores them in the CD table. In change-capture replication
for non-DB2 relational sources, the Capture triggers capture changes at the source
and store them in the CCD table. The Apply program reads the changes from the
CD or CCD table and applies the changes to the targets that subscribe to the
registered source.

When you define a DB2 source table for change-capture replication, you might not
want to store all changes that occur at the source in the CD table. You can register
a row (horizontal) subset that filters the changes so that fewer are captured in the

Chapter 4. Registering tables and views as SQL Replication sources 43

CD table than actually occur at the source. You can select from the following two
row-capture rules to determine which changed rows from the source table the
Capture program records in the CD table:
v Changes to all rows are captured.
v Changes are captured only if the change occurred in a registered column. (DB2

only)

By default, changes are captured whenever a row is updated for any column
(registered or unregistered) at the source table. If you register only a subset of the
columns, the Capture program records the row values for the registered columns
in the CD table every time a change occurs to the source table, even if the columns
that changed are different from the registered columns. Use this default option if
you want to keep a history of all changes to the source table. This is the only
option available for non-DB2 relational sources, the Capture triggers capture all
changed rows at the source, even if the change occurs in an unregistered column.

Example: Assume that you have 100 columns in your table and you register 50 of
those columns for replication. By default, any time a change is made to any of the
100 columns in your table, the Capture program will write a row to the CD table
(or the Capture triggers will write a row to the CCD table).

If you have a DB2 source, you might want the Capture program to capture
changes for registered columns only. In this case, the Capture program writes a
row to the CD table only when changes occur to registered columns.

Tip: Choose to capture changes for all rows if you need information for auditing
purposes, or if changes in the table almost always occur in registered columns
only. Choose to capture changes for only registered columns if changes frequently
occur that only affect unregistered columns. Use this option if you don't want to
keep a history of all changes to the source table.

Full-refresh-only replication

When targets subscribe to a source that is registered for full-refresh-only
replication, the Apply program deletes all data from the target table, copies the
data that is in the registered columns at the source, and populates the targets with
the source data during each replication cycle. The Capture program is not
involved, and there is no CD table; the Apply program reads data directly from the
source table.

Small tables
You might want to choose full-refresh only replication if you have a very
small source table that does not take much time or resources to copy.

Large tables
If you have larger tables and want to use full-refresh only replication, you
might want to use the ASNLOAD exit routine to load your tables faster.

Restriction: If you plan to have a condensed target table that subscribes to this
source and you cannot come up with a unique index for that target table, you
must register the source for full-refresh-only replication.

After-image columns and before-image columns
When you register a source for change-capture replication, by default only the
changed (after-image) value in a column is captured. You can also choose to
capture the previous (before-image) value.

44 SQL Replication Guide and Reference

You can select whether to capture before-image values for individual
columns in a table.

You can select whether to capture before images for all or none of the
columns in a table. You cannot select this option for each individual
column.

Sybase or Microsoft SQL Server
A table can contain only one column of type TIMESTAMP. When the data
source is Sybase or Microsoft SQL Server and the source table has a
column of type TIMESTAMP, select after images only for this column when
you define it as part of the replication source.

Restriction: You cannot include before-image values in the CD table for columns
with LOB data types.

The sections below discuss when you should choose each option.

Capturing after-image values only

For each column that you register for change-capture replication, you can choose
for the Capture program or triggers to record only the after-image value for each
change. When you select to capture after-image values only, the CD (or CCD) table
contains one column for each changed value, which stores the value of the source
column after the change occurred.

You do not need before images if you plan to use only base aggregate and change
aggregate target-table types for this source. Before-image columns do not make
sense if you plan to use your target table for computed values because there is no
before image for computed columns. All other target-table types can make use of
before-image columns.

Capturing before-image and after-image values

For each column that you register for change-capture replication, you can choose
for the Capture program or triggers to record both the before-image and
after-image value for each change. When you select to capture before-image and
after-image values, the CD (or CCD) table contains two columns for each changed
value: one for the value in source column before the change occurred, and one for
the value after the change occurred.

When you choose to store both the before and after images in the CD (or CCD)
table, the before-image columns and after-image columns have different values for
different actions performed on the source tables:

Insert The before-image column contains a NULL value. The after-image column
contains the inserted value.

Update
The before-image column contains the column value before the change
occurred. The after-image value contains the column value after the change
occurred.

When you choose to have updates captured as delete and insert pairs, the
delete row contains the before image from the update in both the

Chapter 4. Registering tables and views as SQL Replication sources 45

before-image and after-image columns of the row, and the insert row
contains NULL values in the before-image column and the after image in
the after-image column.

Delete The before-image and after-image columns contain the column value
before the change occurred.

For columns that have before-images defined, replication limits column names to
127 characters because the entire column name can have only 128 characters. If the
column name is longer, replication truncates the additional characters from the
right by default, unless you have set your profile to truncate from the left. Because
replication adds a before-image column identifier (the default is X) to target
columns and each column name must be unique, you cannot use column names
that are longer than 127 characters. For tables that you do not plan to replicate,
you can use longer column names, but consider using 127-character names in case
you might want to replicate these columns in the future.

The following list describes cases in which you might want to capture
before-image values:

For keeping a history of your source data
If you want to keep data for auditing purposes, you might want to select
both before and after images so that you have a record of how the data has
changed over a period of time. A set of before-image and after-image
copies is useful in some industries that require auditing or application
rollback capability.

For update-anywhere configurations with conflict detection
In update-anywhere configurations where conflicts are possible between
replica tables (where conflict detection is set to anything other than None),
you must register both after-image and before-image columns for the CD
table of the replicas so that changes can be rolled back if a conflict occurs.

When the key columns at the target are subject to update
When registering a source, consider the potential target tables that you
might define by using this table as the source. Typically target tables are
condensed and require a column or set of columns that make each row in
that target table unique. These unique columns make up what is called the
target key. If any of these target key columns might be updated at the
source, SQL Replication requires special handling to ensure that the correct
rows at the target table are updated. To ensure that SQL Replication
updates the correct rows in the target table with the new key value, you
can select to capture both after-images and before-images for the columns
that will make up the target key. The Apply program needs the
before-image values for these registered columns when it applies the
changes of non-key source columns to target key columns in the target
table. When applying the changes, the Apply program searches in the
target table for the row by looking for the target key values that match the
before-image value in the source's CD (or CCD) table, and then it updates
that target row with the after-image value in the source CD (or CCD) table.

Although you register these before-image values when you register the
source table or view, replication does not know that your application will
make updates to the target key. Later when you define which targets
subscribe to this source (by creating subscription sets), you can specify for
the Apply program to perform special updates when applying changes
from non-key columns at the source to key columns at the target.

46 SQL Replication Guide and Reference

Before-image prefix
If you capture after-image and before-image columns, the after-image column takes
the name of the column at the source table, and the before-image column takes the
name of the column at the source table with a one-character prefix.

The default before-image prefix assigned by the ASNCLP command-line program
and Replication Center is X. The default for the System i commands is @.

You can change the default prefix. The combination of the before-image prefix and
the CD (or CCD) column name cannot be the same as a current or potential
column name in the CD (or CCD) table.

Example: If you use X as your before-image prefix and you register a source
column named COL, you cannot register a column named XCOL because it is unclear
whether XCOL is an actual column name of another source column, or the name of
a before-image column with a column name of COL and a before-image prefix of X.

Restriction: You cannot use a blank character as the before-image prefix.

If you are not replicating any before-image columns for a table, you can choose not
to have a before-image prefix and set this property to null.

Stop the Capture program on error
When the Capture program detects certain problems while processing registrations,
by default it stops. You can choose to let the program keep running.

The following list provides detail to help you choose the best option for your
environment.

Stop Capture on error
With this option, the Capture program writes an error message in the
IBMSNAP_CAPTRACE table and terminates.

The Capture program stops when the following fatal errors occur:
v The CD table space is full.
v SQLCODE-911 error occurs 10 times in a row.
v Unexpected SQL errors occur.

The Capture program does not stop when certain non-fatal errors occur, for
example:
v SQLCODES indicate invalid length of data.

v The compression dictionary does not exist.

When those non-fatal errors occur, the Capture program invalidates the
registrations and keeps running.

Do not stop Capture on error
The Capture program continues to run when certain errors occur. If it
encounters errors during the first time trying to process the source, it does
not activate the registration. If the registered source was already active, it
stops processing the registration. The registration is stopped in either case.
A stopped registration has a value of "S" (stopped) in the STATE column of
the IBMSNAP_REGISTER control table.

This option does not stop the Capture program when the following
non-fatal errors occur:

Chapter 4. Registering tables and views as SQL Replication sources 47

v The registration is not defined correctly.
v The Capture program did not find the CD table when it tried to insert

rows of changed data.
v The DATA CAPTURE CHANGES option on the (non-System i) source

table was detected as being turned OFF when the Capture program was
started or reinitialized.

If the registered state of a subscription-set member is in the stopped state
due to an error, the Apply program will not be able to process the set.

Options for how the Capture program stores updates
By default updates to the source table are stored in a single row in the CD table. In
some cases you should instruct the Capture program or triggers to capture updates
as DELETE and INSERT pairs that are stored in two rows.

You must capture updates as DELETE and INSERT statements when your source
applications update one or more columns referenced by a predicate on the
subscription-set member.

Example: Suppose that you plan to define a target that subscribes only to source
data with a predicate based on a specific column value (for example, WHERE
DEPT = 'J35'). When you change that column (for example, to DEPT='FFK'), the
captured change will not be selected for replication to the target because it does
not meet the predicate criteria. That is, your new FFK department will not be
replicated because your subscription-set member is based on Department J35.
Converting the updates to a DELETE and INSERT pair ensures that the target-table
row is deleted.

Each captured update is converted to two rows in the CD (or CCD) table for all
columns. You might need to adjust the space allocation for the CD (or CCD) table
to accommodate this increase in captured data.

Preventing the recapture of changes (update-anywhere
replication)

For update-anywhere replication, you can use the recapture option to control
whether changes that are replicated from one site are recaptured at the second site
for replication to additional sites.

Restriction: Tables from non-DB2 relational databases cannot participate in
update-anywhere. This option is for only DB2 sources.

In update-anywhere replication, changes can originate at the master table or at the
associated replica tables. When you register a table that you plan to use in
update-anywhere replication, SQL Replication assumes that it will be the master
table in your configuration.

During registration, you set the recapture option for the master table. Later, when
you map the master source table with its replica targets, you can set whether
changes at the replica are recaptured and forwarded to other tables.

When you are registering the source table that will act as the master in your
update-anywhere configuration, you can choose from the following two options:

48 SQL Replication Guide and Reference

Recapture changes at master
Updates to the master that originated at a replica are recaptured at the
master and forwarded to other replicas.

Do not recapture changes at master
Updates to the master that originated at a replica are not recaptured at the
master and forwarded to other replicas.

When you are registering the replica table in your update-anywhere configuration,
you can choose from the following two options:

Recapture changes at replica
Updates to the replica that originated at the master are recaptured at the
replica and forwarded to other replicas that subscribe to this replica.

Do not recapture changes at replica
Updates to the replica that originated at the master are not recaptured at
the replica and forwarded to other replicas that subscribe to this replica.

Preventing changes from being recaptured can increase performance and reduce
storage costs because the Capture program is not capturing the same changes
again for each replica.

The following topics discuss how to decide whether to recapture changes based on
your update-anywhere configuration.

Masters with only one replica
If you plan to have only one replica in your update-anywhere configuration, create
your registration so that changes are not recaptured at either the master table or
the replica table.

This setting is optimal if the master table is not a source for other replica tables
and the replica is not a source for other replicas (in a multi-tier configuration). If
there are only these two tables involved, then a change that originates at the
replica does not need to be recaptured at the master, and any change that
originates at the master does not need to be recaptured at the single replica.

Multiple replicas that are mutually exclusive partitions of the
master
For multiple replicas that are mutually exclusive partitions of the master, create
your registration so that changes are not recaptured at either the master table or
the replica tables.

If you plan to have several replicas that are partitions of the master table, you
might want to prevent changes from being recaptured at both the master and each
replica. This setting is optimal if none of the replicas is a source for other replica
tables. When replicas are partitions of the master, no two replicas ever subscribe to
the same data at the master. Therefore, any change that originates at any replica
does not need to be recaptured at the master and forwarded on to the other
replicas because only the replica where the change occurred subscribes to that
source data.

Chapter 4. Registering tables and views as SQL Replication sources 49

Masters that replicate changes to multiple replicas
For masters that replicate changes to multiple replicas, create your registration so
that changes are recaptured at the master table but not recaptured at the replica
tables.

Changes that originate at a replica are then recaptured at the master and replicated
down to other replicas that subscribe to the updated master data.

Replicas that replicate changes to other replicas (multi-tier)
For replicas that replicate changes to other replicas (multi-tier), create your
registration so that changes are not recaptured at the master table but are
recaptured at the replica tables.

You can have a multi-tier configuration in which the master (tier 1) acts as a source
to a replica (tier 2), and then that replica also acts as a source to another replica

Figure 1. Recapture option for replicas that are mutually exclusive partitions of the master. When you have multiple
replicas that do not subscribe to the same data in the master, you do not need to use the recapture option for any of
the tables.

Figure 2. Recapture option for masters that replicate changes to multiple replicas. When you have multiple replicas
that subscribe to the same data in the master, you can use the recapture option at the master so that changes that
occur at one replica are recaptured at the master and forwarded to the other replica tables.

50 SQL Replication Guide and Reference

(tier 3). If you plan to have this type of configuration, you might want the Capture
program to recapture changes at the middle replica (tier 2) so that changes that
originated at the master are forwarded to the next replica (tier 3).

Also, when you have recapture set for the middle replica (tier 2), changes that
originate at the final replica (tier 3) are recaptured at the middle replica (tier 2) and
forwarded to the master (tier 1).

Figure 3. Recapture option at tier 2 allows changes at tier 1 to be replicated down to tier 3. When you have a replica
table that acts as a middle tier in a multi-tier configuration, you can use the recapture option at the replica so that
changes that occur at the master are recaptured at the replica in the middle tier and forwarded to the replica in the
subsequent tier.

Chapter 4. Registering tables and views as SQL Replication sources 51

Options for conflict detection (update-anywhere replication)
In update-anywhere configurations, conflicts can sometimes occur between the
master and its replicas. When you register a source, you can select among three
levels of conflict detection: none, standard, and enhanced.

Conflicts can happen when:
v An update is made to a row in the master table and a different update is made

to the same row in one or more replica tables, and the Apply program processes
the conflicting changes during the same cycle.

v Constraints are violated.

Although you set the conflict-detection level for individual replication sources, the
Apply program uses the highest conflict-detection level of any subscription-set
member as the level for all members of the set.

Restrictions:
v Tables from non-DB2 relational databases cannot participate in update-anywhere;

therefore, non-DB2 relational sources do not have conflict detection.
v If you have an update-anywhere configuration that includes LOB columns, you

must specify None for the conflict-detection level.

Based on your tolerance for lost or rejected transactions and performance
requirements, you can decide which type of detection to use:

Figure 4. Recapture option at tier 2 allows changes at tier 3 to be replicated up to tier 1. When you have a replica
table that acts as a middle tier in a multi-tier configuration, you can use the recapture option at the replica so that
changes that occur at the replica in the subsequent tier are recaptured at the replica in the middle tier and forwarded
to the master.

52 SQL Replication Guide and Reference

None No conflict detection. Conflicting updates between the master table and the
replica table will not be detected. This option is not recommended for
update-anywhere replication.

Standard
Moderate conflict detection.

During each Apply cycle, the Apply program compares the key values in
the master's CD table with those in the replica's CD table. If the same key
value exists in both CD tables, it is a conflict. In case of a conflict, the
Apply program will undo the transaction that was previously committed at
the replica by reading from the replica's CD table and keeping only the
changes that originated at the master.

Enhanced
Conflict detection that provides the best data integrity among the master
and its replicas.

Like with standard detection, the Apply program compares the key values
in the master's CD table with those in the replica's CD table during each
Apply cycle. If the same key value exists in both CD tables, it is a conflict.
However, with enhanced detection, the Apply program waits for all
inflight transactions to commit before checking for conflicts. To ensure that
it catches all inflight transactions, the Apply program locks all target tables
in the subscription set against further transactions and begins conflict
detection after all changes are captured in the CD table. In case of a
conflict, the Apply program will undo the transaction that was previously
committed at the replica by reading from the replica's CD and keeping
only the changes that originated at the master.

Restriction: Even if you specify enhanced conflict detection, when the
Apply program runs in an occasionally connected environment (started
with the COPYONCE keyword), the Apply program uses standard conflict
detection.

The Apply program cannot detect read dependencies. If, for example, an
application reads information that is subsequently removed (by a DELETE
statement or by a rolled back transaction), the Apply program cannot detect the
dependency.

If you set up a replication configuration where conflicts are possible (by selecting
either no detection or standard detection), you should include a method for
identifying and handling any conflicts that occur. Even though the replication
infrastructure has detected and backed out transaction updates that were in
conflict, the application designer must decide what to do about transactions that
were at one time committed and now have been backed out. Because the
ASNDONE exit routine runs at the end of each subscription cycle, the application
designer can use it as a launching point for such application-specific logic. The
information regarding conflicting updates that were backed out will remain in the
CD and UOW tables until they are eligible for retention limit pruning.

Registering tables that use remote journaling (System i)
When registering System i tables that use remote journaling, you can specify the
remote journal as the replication source instead of the local journal.

By selecting the remote journaling option for replication, you move the CD tables,
the Capture program, and the Capture control tables to a System i database server
that is separate from the System i server that the source table is on.

Chapter 4. Registering tables and views as SQL Replication sources 53

When you register tables on System i as sources, the default assumes that you do
not want to use remote journaling.

Recommendation: Whenever you are replicating data from one System i table to
another System i table and you have a remote journal set up, it is highly
recommended that you use the remote journaling function when registering. Using
remote journaling in replication greatly increases performance. Because the remote
journal function makes it possible to move the registration, the Capture program,
and the Capture control tables away from the system on which the source table
resides, more resources are left available on that system. This reduces processor
usage and saves disk space. Also, when you use a remote journal that resides at
the target server, the CD table is on the same system as the target table, which
allows the Apply program to apply changes directly from the CD table to the
target table without using a spill file. Not using a spill file reduces the amount of
resources used by the Apply program.

Recommendation: Register tables that use remote journals as sources only if the
registration resides on the same System i system as the replication target. SQL
replication allows you to register remote journals as sources even if the registration
does not reside on the same System i system as the target, but then you don't get
the performance advantages that you do from having the journal on the target
system.

Before you register a System i table that uses remote journaling, make sure that
your remote journal is in an active state.

Restrictions: The following restrictions apply to registered tables that use remote
journaling:
v Replica target table types are not supported in a remote journal configuration.
v The query option SQL_FAST_DELETE_ROW_COUNT (also known as fast

delete) causes journaling to end and should not be used for registered tables. To
avoid fast delete you could use a WHERE clause in the delete, or you could set
the SQL_FAST_DELETE_ROW_COUNT parameter in QAQQINI to none. Fast
delete does not log the individual deletes.

v Do not reorganize the source table by using RGZPFM with ALWCANCEL *YES.
RGZPFM with ALWCANCEL *YES will create a CE journal entry, which causes
the Capture program to signal a full refresh. Use RGZPFM with ALWCANCEL
*NO to reorganize a replication source table.

For more information about the remote journal function, see "Remote journal
management" in the i5/OS Information Center.

Referential integrity on the target table when the source is
System i

When you are replicating data from source tables on System i, you can have
referential integrity (RI) constraints on the target tables but some restrictions apply.

Replication supports RI constraints on the target when the source is on System i
and if the following conditions are met:
v The RI constraints at the source and target tables match.
v The source application uses explicit commitment control.
v The source application has a commit between the changes that are made to the

parent and child tables. That is, the parent transaction is separate from that of its
children.

54 SQL Replication Guide and Reference

v The parent and child tables are journalled to the same journal.
v The parent and child tables are in the same subscription set.
v The value of COMMIT_COUNT in the IBMSNAP_SUBS_SET table is not null for

the set, which forces the Apply program to process the changes in a
transactional order.

v Full refresh is done by dropping RI constraints on the target side during a time
when the application is quiesced. Then the RI is put back when the tables are in
synch. A test change is made and replicated before releasing the application.

Other factors might influence replication, such as whether a parent table exists that
is not part of replication. By default. the Apply program processes the tables in a
subscription set by table order and commits only after all the tables in the set have
been processed.

For user copy targets, it is preferred that you have RI constraints on the source but
not on the target and that all of the related tables are in the same subscription set.
A set is treated as a single unit so that if an error occurs in processing of any one
table the entire set fails. As a result, the subscription set could provide acceptable
results.

Using relative record numbers (RRN) instead of primary keys
(System i)

If you are registering a System i table that does not have a primary key, a unique
index, or a combination of columns that can be used as a unique index, you must
register the table by using the relative record numbers (RRN).

When you choose to replicate by using the RRN, both the CD table and the target
table have an extra column, IBMQSQ_RRN of type INTEGER, which contains a
unique value for each row. This column contains the RRN that corresponds to each
source table row.

The RRN is used as a primary key for the source table row as long as the source
table is not reorganized. When the source table is reorganized, the RRN of each
source table row changes; therefore, the RRN in the CD and target table rows no
longer has the correct value that reflects the row's new position in the source table.

Any time that you reorganize a source table (to compress deleted rows, for
example), DB2 DataPropagator for System i performs a full refresh of all the target
tables in the set of that source table. For this reason, place target tables that use
RRN as primary keys in subscription sets with other targets that use RRNs, and
not in sets with tables that use some other uniqueness factor.

How views behave as replication sources
When you register views for replication, they inherit the registration options of
their underlying tables, particularly the option of change-capture or full-refresh
replication.

The following topics describe how registered views behave in various scenarios.

Views over a single table
You can register a view over a single table if the underlying table is registered for
replication. The view inherits the type of replication from the underlying table.

Chapter 4. Registering tables and views as SQL Replication sources 55

Full refresh only
If the underlying table is registered for full-refresh-only replication, the
view has full-refresh-only replication. You cannot register the view for
change-capture replication because the underlying table does not have a
CD table associated with it to keep track of changes.

Change capture
If the underlying table is registered for change-capture replication, the
view has change-capture replication and cannot be registered for
full-refresh only.

When you register a view over a table that is registered for change-capture
replication, a view is created for you over the CD table of the underlying
table. This CD view contains only the columns referenced by the registered
view.

You cannot register a subset of columns in the view. All of the columns in
the view are automatically registered.

Views over a join of two or more tables
When you register a view over a join of two or more tables, at least one of the
underlying tables in the join must be registered. You can also have inner-joins of
CCD tables that are registered as sources.

When you register a join as a replication source, SQL Replication adds multiple
rows in the IBMSNAP_REGISTER table with identical SOURCE_OWNER and
SOURCE_TABLE values. These rows are distinguished by their
SOURCE_VIEW_QUAL values. Each of these entries identifies a component of the
join.

Restriction: If you define a join that includes a CCD table, all other tables in that
join must be CCD tables.

For a join view to be a viable replication source, you must create it by using a
correlation ID. (Views over single tables do not require a correlation ID.)

Example:
create view REGRES1.VW000 (c000,c1001,c2001,c2002,c1003) as

select a.c000,a.c001,b.c001,b.c002,a.c003
from REGRES1.SRC001 a, REGRES1.SRC005 b
where a.c000=b.c000;

VW000 is the name of the view. SRC001 and SRC005 are the tables that are part of
the view and C000, C001, C002, and C003 are the columns that are part of the view
under the condition that the C000 columns are equal in both tables (SRC001 and
SRC005).

The type of replication that the view inherits depends on the combination of its
underlying tables, each of which can be:
v Registered for change-capture replication
v Registered for full-refresh-only replication
v Not registered

Table 3 on page 57 shows the various combinations of underlying tables and what
type of source view and CD view results from each combination.

56 SQL Replication Guide and Reference

Table 3. Combinations of underlying tables for views

Table 1 Table 2 Description of join view and CD view

Registered for change
capture

Registered for change
capture

The view is registered for change-capture replication. The CD
views contain the referenced columns from Table 1's CD table
and from Table 2's CD table.

Registered for change
capture

Registered for full-refresh
only

The view is registered for change-capture replication. The CD
view contains the referenced columns from Table 1's CD table
and the referenced columns from Table 2. Only changes to
columns that are in Table 1 will be replicated to the registered
view's target during each replication cycle.

Registered for full-refresh
only

Registered for full-refresh
only

The view is registered for full-refresh-only replication. There
is no CD view.

Registered for full-refresh
only

Not registered The view is registered for full-refresh-only replication. There
is no CD view.

Registered for change
capture

Not registered The view is registered for change-capture replication. The CD
view contains referenced columns from Table 1's CD table
and the referenced columns from Table 2. Only changes to
columns that are in Table 1 will be replicated to the registered
view's target during each replication cycle.

Not registered Not registered The view is not a valid replication source and cannot be
registered.

Avoiding double deletes

When you define a view that includes two or more source tables as a replication
source, you must take care to avoid double deletes. A double-delete occurs when
you delete a row during the same replication cycle from both tables that are part of
a view. For example, suppose that you create a view that contains the
CUSTOMERS table and the CONTRACTS table. A double-delete occurs if you
delete a row from the CUSTOMERS table and also delete the corresponding row
(from the join point of view) from the CONTRACTS table during the same
replication cycle. The problem is that, because the row was deleted from the two
source tables of the join, the row does not appear in the views (neither base views
nor CD-table views), and thus the double-delete cannot be replicated to the target.

To avoid double-deletes, you must define a CCD table for one of the source tables
in the join. This CCD table should be condensed and non-complete and should be
located on the target server. Defining a condensed and non-complete CCD table for
one of the source tables in the join solves the double-delete problem in most
situations because the IBMSNAP_OPERATION column in the CCD table allows
you to detect the deletes. Simply add an SQL statement to the definition of the
subscription set that should run after the subscription cycle. This SQL statement
removes all the rows from the target table for which the IBMSNAP_OPERATION
is equal to “D” in the CCD table.

Problems with updates and deletes can still occur if, during the same Apply cycle,
a row is updated on the source table that has the CCD while the corresponding
row is deleted on the other table in the join. As a result, the Apply program is
unable to find the corresponding row in the joined table and cannot replicate the
updated value.

Chapter 4. Registering tables and views as SQL Replication sources 57

Registering views of tables as sources
When you register a view as a source for replication, the view inherits the
registration options of the source table on which the view is based.

Before you begin

v Capture control tables must already exist on the Capture control server that will
process the view that you want to register as a source.

v The name of the source views must follow the DB2 table naming conventions.
v You must register at least one of the view's underlying base tables as a source.

When you register the base table, use the same Capture schema that you plan to
use when you register the view.

Restrictions

v You cannot register views of non-DB2 relational tables.
v You cannot register a view that is over another view.
v All CCD tables that have views defined over them must be complete and

condensed to be registered as a replication source.

v Because SQL statements are limited to a length of 32,000
characters, you can register only approximately 2000 columns per view; the exact
number of columns depends on the length of the column names.

Procedure

Use one of the following methods to register a view:

Method Description

ASNCLP
command-line
program

Use the CREATE REGISTRATION command and specify the view
name for the objowner (object owner) and objname (object name).

For views, the command decides whether the source can be
registered as differential or full refresh.

Replication Center Use the Register Views window. Expand the Capture schema
under which you want to register views. Right-click the Registered
Views folder and click Register Views. .

ADDDPRREG system
command

Use the ADDDPRREG command to register a view on System i.

Maintaining CCD tables as sources
If you have externally populated CCD tables that are maintained by a program
such as IMS DataPropagator or DataRefresher™, you must maintain these tables so
that the Apply program can read the CCD tables as sources.

Procedure

To maintain a CCD table that is populated by an external tool:

Update three columns in the IBMSNAP_REGISTER table
(CCD_OLD_SYNCHPOINT, SYNCHPOINT, and SYNCHTIME) for each of the
following types of events:

58 SQL Replication Guide and Reference

Event Required updates

Initial full refresh or
load of the CCD
table

v Set CCD_OLD_SYNCHPOINT to a value that represents the
minimum value of IBMSNAP_COMMITSEQ from the CCD
table.

v Set SYNCHPOINT to a value that represents the maximum
value of IBMSNAP_COMMITSEQ from the CCD table. Do not
set SYNCHPOINT to 0. If you are creating your own values for
sequencing, start with a SYNCHPOINT value of 1.

v Set SYNCHTIME to a value that represents the maximum
timestamp value of IBMSNAP_LOGMARKER from the CCD
table.

Any update to the
CCD table after the
full refresh or load

v Do not change the CCD_OLD_SYNCHPOINT value.

v Set SYNCHPOINT to a value that represents the new maximum
value of IBMSNAP_COMMITSEQ from the CCD table.

v Set SYNCHTIME to a value that represents the new maximum
timestamp value of IBMSNAP_LOGMARKER from the CCD
table.

Any subsequent full
refresh or load of the
CCD table

v Set CCD_OLD_SYNCHPOINT to a value that represents the
minimum value of IBMSNAP_COMMITSEQ from the CCD
table.

v Set SYNCHPOINT to a value that represents the maximum
value of IBMSNAP_COMMITSEQ from the CCD table.

v Set SYNCHTIME to a value that represents the maximum
timestamp value of IBMSNAP_LOGMARKER from the CCD
table.

Important: This assumes that the values that are used in the CCD table for
IBMSNAP_COMMITSEQ and IBMSNAP_LOGMARKER are always increasing
values. The Apply program will not detect that a full refresh has been performed
on the source CCD table unless the CCD_OLD_SYNCHOINT value is larger than
the most recently applied SYNCHPOINT value.

Chapter 4. Registering tables and views as SQL Replication sources 59

60 SQL Replication Guide and Reference

Chapter 5. Subscribing to sources for SQL Replication

After you register tables or views as replication sources, you can define a
subscription for your target tables or views so that they receive the initial source
data and subsequent changes.

The administration tasks described in this section help you set up the control
information that the Capture and Apply programs use to copy source data or to
capture changed data and replicate it to the target tables at the appropriate
interval.

The following topics provide details on subscribing to sources.

Planning how to group sources and targets
Before you define which targets subscribe to which sources, you need to plan how
you want to group your sources and targets.

SQL Replication processes source-to-target mappings in groups. These groups
consist of one or more sources that are processed by the same Capture program
and one or more targets that subscribe to all or part of the source data, which are
processed by the same Apply program. These groups are called subscription sets,
and the source-to-target mappings are called subscription-set members.

When planning for subscription sets, be aware of the following rules and
constraints:
v A subscription set maps a source server with a target server. A subscription-set

member maps a source table or view with a target table or view. Subscription
sets and subscription-set members are stored in the Apply control server.

v The Apply program processes all members in a subscription set as a single
group. Because of this, if any member of the subscription set requires full-refresh
copying for any reason, all members for the entire set are refreshed.

v All source tables and views in the members of a set must have the same Capture
schema.

v On System i, all source tables in the members of a subscription set must be
journaled to the same journal.

v All external CCD tables created by IMS DataPropagator that are members of a
subscription set must have the same Capture schema.

A single Apply program, which has a unique Apply qualifier, can process one or
many subscription sets. A single subscription set can contain one or many
subscription-set members.

The following topics discuss the trade-offs in grouping subscription sets per Apply
program and subscription-set members per subscription set.

Planning the number of subscription-set members
When you add members to a subscription set, you must decide whether to group
all of your source-target pairs (subscription-set members) into one subscription set,
create separate subscription sets for each pair, or create a small number of
subscription sets, each with a number of pairs.

© Copyright IBM Corp. 1994, 2012 61

Because the Apply program replicates the members of a subscription set in one
(logical) transaction, you should group multiple members into one subscription set
in either of the following situations:
v If the source tables are logically related to one another.
v If the target tables have referential integrity constraints.

By grouping multiple members into one subscription set, you can ensure that
replication for all members begins at the same time. Also, you reduce the number
of database connections needed to process the subscription sets and you reduce the
administration overhead for maintaining your replication environment. If the
subscription set contains SQL statements or stored procedures, you can use those
statements or procedures to process all of the members of the subscription set.

If there are no logical or referential integrity relationship between the tables in a
subscription set, you can group them into one subscription set or into several
subscription sets. The main reason for limiting the number of subscription sets is
to make administration of the replication environment simpler. But by increasing
the number of subscription sets, you minimize the affect of replication failures.

If you want to be able to more easily locate any errors that cause the Apply
program to fail, add only a small number of members to a subscription set. With
fewer members, you will likely find the source of the problem more quickly than if
the set contains a large number of members. If one member of a subscription set
fails, all of the data that has been applied to other members of the set is rolled
back; so that no member can complete the cycle successfully unless all members
do. The Apply program rolls back a failed subscription set to its last successful
commit point, which could be within the current Apply cycle if you specified the
commit_count keyword when you started the Apply program.

Planning the number of subscription sets per Apply qualifier
When you define a subscription set, you specify the Apply qualifier for that
subscription set. The Apply qualifier associates an instance of the Apply program
with one or more subscription sets.

Each subscription set is processed by only one Apply program, but each Apply
program can process one or more subscription sets during each Apply cycle.

You can run as many instances of the Apply program (each with its own Apply
qualifier) as you need, and each Apply program can process as many subscription
sets as you need. You have two basic options:

Associate each Apply qualifier with one subscription set
Each Apply program processes exactly one subscription set.

If speed is important, you can spread your sets among several Apply
qualifiers, which allows you to run several instances of the Apply program
at the same time.

If you decide to have an Apply-program instance process one subscription
set, you can use the Apply program OPT4ONE startup option, which loads
the control-table information for the subscription set into memory.

If you use this option, the Apply program does not read the control tables
for the subscription-set information for every Apply cycle. Therefore, the
Apply program performs better. However, the more Apply-program
instances that you run, the more system resources they will use, and the
slower their overall performance might be.

62 SQL Replication Guide and Reference

Associate each Apply qualifier with multiple subscription sets
Each Apply program processes many subscription sets.

By using more than one Apply qualifier, you can run more than one
instance of the Apply program from a single user ID.

The Apply program tries to keep all sets for a given Apply qualifier as
current as possible. When an Apply cycle starts, the Apply program
determines which of the subscription sets contains the least current data
and starts processing that set first.

If speed is not your main goal, you might want to replicate a large number
of subscription sets with one Apply qualifier. For example, this could be a
very good option if you wait until after business hours before replicating.

One disadvantage of having one Apply program process multiple
subscription sets is that the Apply program processes the subscription sets
sequentially; thus, your overall replication latency can increase.

If you have specific requirements for certain subscription sets, you can combine
these two options. For example, you could have one Apply program process most
of your subscription sets and thus take advantage of using one Apply program to
process related subscription sets together, and you can have another Apply
program process a single subscription set and thus ensure minimum replication
latency for that subscription set. And by using two instances of the Apply
program, you increase the overall parallelism for your subscription sets.

Creating subscription sets
Before you replicate data from a registered source, you must create subscription
sets, which are collections of subscription-set members (source-to-target mappings)
that the Apply program processes as a set.

Before you begin

v Create the Apply control tables in the Apply control server for the subscription
set.

v Before you add subscription-set members to subscription sets, register the tables
or views that you want to use as sources. You should also consider how you
want to group your sets.

About this task

When you create a subscription set, you specify the source and target servers,
which Capture and Apply programs you want to use, and when and how you
want the Apply program to process the set.

You don't have to add subscription-set members to a subscription set. You can
create an empty set that doesn't contain any source-to-target mappings. You might
want to create an empty set for the following reasons:
v You plan to add members to a set later and don't plan to activate the

subscription set until you add members.
v You want the Apply program to process the empty subscription set in order to

call an SQL statement or a stored procedure whenever the set is eligible for
processing.

Procedure

Chapter 5. Subscribing to sources for SQL Replication 63

To create a subscription set, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE SUBSCRIPTION SET command. This command
can create only empty subscription sets, whereas the Replication
Center allows you to add members to the set while creating it.

The following commands set the environment and create a
subscription set named SET00 with an Apply qualifier of AQ00.

SET SERVER CAPTURE TO DB SAMPLE;
SET SERVER CONTROL TO DB TARGET;
SET OUTPUT CAPTURE SCRIPT "capsubset.sql"
CONTROLSCRIPT "appsubset.sql";
SET LOG "subset.err";
SET RUN SCRIPT LATER;
CREATE SUBSCRIPTION SET SETNAME SET00 APPLYQUAL AQ00
ACTIVATE YES TIMING INTERVAL 1 START DATE "2006-10-22"
TIME "09:00:00.000000";

Replication Center Use the Create Subscription Set notebook. To open the notebook,
expand the Apply control server where the set will be defined,
right click the Subscription Sets folder and click Create.

ADDDPRSUB system
command

Use the Add DPR subscription set (ADDDPRSUB) command to
create a subscription set with either one member or no members.

For example, to create a subscription set named SETHR under the
AQHR Apply qualifier:

ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)
TGTTBL(TGTLIB/TGTEMPL)

This subscription set, which contains one subscription-set member,
replicates data from the registered source table named EMPLOYEE
under the HR library to the target table named TGTEMPL under
the TGTLIB library.

You provide these basic characteristics:

Apply control server alias

The local alias of the server containing the control tables for the Apply
program that will process the subscription set. Define the same alias for
the Apply control server in every database from which you run the
Replication Center, ASNCLP, or the Apply program so that the
administration tools populate the Apply control tables correctly and so that
every Apply program connects to the correct server by using a standard
alias name.

Subscription set name

The name of the subscription set. At the Apply control server that
processes this subscription set, the set name must be unique for a given
Apply qualifier. The name can be up to 18 characters long.

Apply qualifier

The name of a new or existing Apply qualifier, which identifies which
Apply program will process this subscription set. You can use the same
Apply qualifier to process multiple subscription sets. Subscription sets that
have the same Apply qualifier must be defined in the same Apply control
server.

Capture control server alias

64 SQL Replication Guide and Reference

The alias of the server containing the control tables for the Capture
program that will process the registered sources for the subscription set.
Define the same alias for the Capture control server in every database from
which you run the Replication Center, ASNCLP, or the Apply program so
that the administration tools populate the Capture and Apply control
tables correctly and so that every Apply program connects to the correct
server by using a standard alias name.

Capture schema

The name of the Capture schema that identifies the set of Capture control
tables that define the registered sources for the subscription set. All of the
source tables in a subscription set must reside on the same server, and only
one Capture program can be capturing the changes for them.

Target server alias

The name of the target server that contains the tables or views to which
the Apply program will replicate changes from the source. Define the same
alias for the target server in every database from which you run the
Replication Center, ASNCLP, or the Apply program so that the
administration tools populate the Apply control tables correctly and so that
every Apply program connects to the correct server by using a standard
alias name.

When you create a subscription set, you can use the default settings for how the
Apply program processes the set, or you can modify the subscription properties to
meet your replication needs.

Processing options for subscription sets
When you create a subscription set, you define options for how the Apply program
processes the set.

The following topics help you to decide which settings to select based on your
replication needs.

Specifying whether the subscription set is active
You can specify whether you want the Apply program to begin processing the
subscription set. When you activate a subscription set, the Apply program initiates
a full refresh for that set.

You have three activation levels to choose from:

Active The Apply program processes the set during its next cycle. Activate the set
if you want the Apply program to process the set the next time it runs.
You can still add members to the set later. When you activate the set, it
remains active and the Apply program continues to process it until you
deactivate it.

Inactive
The Apply program does not process the set. Leave the set inactive if you
are not ready for the Apply program to process it.

Active only once
The Apply program processes the set during its next cycle and then
deactivates the set. Specify this option if you want the set to run only once.
Make sure that you add all the subscription-set members before selecting

Chapter 5. Subscribing to sources for SQL Replication 65

this option because the Apply program will not process members that you
add later, unless you reactivate the subscription set.

Specifying how many minutes worth of data the Apply
program retrieves

You can specify an approximate number of minutes worth of data for the Apply
program to retrieve from the replication source during each Apply cycle.

This option is useful in several situations:
v When the amount of data to be processed within one subscription-set cycle is

large.
Subscription sets that replicate large blocks of changes in one Apply cycle can
cause the spill files or logs (for the target database) to overflow. For example,
batch-Apply scenarios can produce a large backlog of enqueued transactions that
need to be replicated.

v An extended outage of the network can cause a large block of data to
accumulate in the CD tables, which can cause the Apply program's spill file and
the target's log to overflow.

The number of minutes that you specify is called the data block. The data-blocking
value that you specify is stored in the MAX_SYNCH_MINUTES column of the
IBMSNAP_SUBS_SET table. If the accumulation of data is greater than the size of
the data block, then the Apply program converts a single Apply cycle into several
mini-cycles. If resources are still not sufficient to handle the blocking factor
provided, the Apply program reduces the size of the data block to match available
system resources. By retrieving smaller sets of data, the Apply program can lessen
both the network load and the temporary space required for the retrieved data.

During each Apply cycle, if a subscription set's MAX_SYNCH_MINUTES value is
NULL, or is set to a numeric value less than 1, the Apply program processes all
eligible data for that set in a single Apply cycle. If your CD and UOW tables
contain large volumes of data, this situation can lead to such problems as the
database transaction log becoming full or a spill file overflowing. You can change
MAX_SYNCH_MINUTES to a non-NULL value by using the following guidelines:
v If the SLEEP_MINUTES column of the ASN.IBMSNAP_SUBS_SET table is set to

5 minutes (or less) for a given subscription set, set MAX_SYNCH_MINUTES to 5
minutes.

v If SLEEP_MINUTES is set to 30 minutes (or more) for a given subscription set,
set MAX_SYNCH_MINUTES to 60 minutes.

v For SLEEP_MINUTES between 5 and 30 minutes, set MAX_SYNCH_MINUTES
equal to SLEEP_MINUTES.

Monitor your replication environment and adjust the MAX_SYNCH_MINUTES as
needed. Ensure that the numeric value for MAX_SYNCH_MINUTES is greater
than zero.

Example: If you specify that the Apply program should retrieve at most 10
minutes' worth of data per mini-cycle, the Apply program will retrieve an amount
of committed data from the CD table at the source that is within approximately 10
minutes of the last mini-cycle.

In addition to preventing the logs and spill files from overflowing, these
mini-cycles have several other benefits. If there is an error during the replication
cycle, the Apply program must roll back only the changes that it made during the

66 SQL Replication Guide and Reference

mini-cycle that failed. If replication fails during a mini-cycle, the Apply program
tries to process the subscription set from the last successful mini-cycle, which can
save a significant amount of time if a large amount of changed data is available to
be processed.Figure 5 shows how the changed data is broken down into subsets of
changes.

The number of minutes that you set should be small enough so that all
transactions for the subscription set that occur during the interval can be copied
without causing the spill files or log to overflow during the mini-cycle.

When processing data, the Apply program does not take any of the following
actions:
v Split a unit of work (meaning that a long running batch job without commits

cannot be broken up by the data blocking factor).
v Roll back previously committed mini-subscription cycles.
v Use the data blocking factor during a full refresh.

Load options for target tables with referential integrity
In some cases you might want to postpone adding referential integrity constraints
between target tables until after these tables are loaded with source data.

You decide how targets will be loaded when you set startup parameters for the
Apply program. Consider these alternatives for creating referential integrity
relationships between the target tables:

Before target tables are loaded
This requires that no changes are made at the source table during the
entire extract and load stage of the target table. Also, you must start the
Apply program by using the LOADX startup option to bypass referential
constraint checking during the load. If you do not use the LOADX option,
the inserts into the target table could fail. A full refresh is typically much
faster when you use the LOADX startup option.

Figure 5. Data blocking. You can reduce the amount of network traffic by specifying a data-blocking value.

Chapter 5. Subscribing to sources for SQL Replication 67

After the load completes and Apply has completed one cycle of applying
changes to the targets

With this option, changes can be made at the source table while the target
tables are being loaded. You can start the Apply program with or without
the LOADX startup option, because there are no constraints that need to be
bypassed. During the initial population of the target tables, the targets
might be out of synch with each other regarding their referential integrity
relationships. As the tables are loaded, all changes are being captured for
the set. After the Apply program replicates the first set of changes, all
target tables will contain the same transactions and will have referential
integrity. At this point, you can deactivate the set, add the referential
integrity constraints, and then reactivate the set.

Specifying how the Apply program replicates changes for
subscription-set members

When a subscription set has change-capture replication, you can decide whether
the Apply program commits changes to the target table or view once for each
subscription-set member or after applying a number of transactions.

After target tables are initially loaded, the Apply program starts to read the CD (or
CCD) tables and collects the changes into spill files. The program then applies
changes in one of two ways:

Table mode
The Apply program commits changes once for each subscription-set
member.

The Apply program reads all changes from a spill file for a CD (or CCD)
table, applies the changes to the corresponding target tables, and then
begins to process the spill file for the next CD (or CCD) table. When it is
done reading and applying changes from all the CD (or CCD) tables in the
set, it then issues a DB2 commit to commit all of the changes to all of the
target tables in the subscription set.

Transaction mode
The Apply program commits changes after applying a number of
transactions that you specify. Use transaction-mode processing when you
have referential integrity constraints on target tables in the subscription set.

In this mode, the Apply program opens all of the spill files at once and
processes the changes at the same time. Changes are applied in the order
in which they took place at the source tables. The COMMIT_COUNT
column in the IBMSNAP_SUBS_SET table controls how changes are
applied and committed to all target tables for that subscription set.

Transaction-mode processing only changes the Apply program's behavior
for sets with user-copy, point-in-time, and CCD target tables. Sets
containing replica tables are always processed in transaction mode.

Having one commit can reduce the latency for the subscription set, but having
multiple commits allows the Apply program to apply the data in the original
commit sequence.

You can also use a mixture of table-mode and transaction-mode processing,
depending on the target-table types in the subscription set.

68 SQL Replication Guide and Reference

Defining SQL statements or stored procedures for the
subscription set

You can define SQL statements or stored procedures that run each time the Apply
program processes the subscription set. These statements can be useful for pruning
CCD tables or manipulating source data before it is applied to targets.

You can specify when and where the SQL statements or stored procedures should
run:
v At the Capture control server before the Apply program applies the data.
v At the target server before the Apply program applies the data.
v At the target server after the Apply program applies the data.

When you use the Replication Center to add SQL statements to a subscription set,
you can click Prepare statement in the Add SQL Statement or Procedure Call
window to verify the syntax.

Options for scheduling replication of subscription sets
You can specify how often the Apply program processes a subscription set to
control the currency of data in your target tables. You can use time-based
scheduling, event-based scheduling, or a combination of these options.

For example, you can set an interval of one day between apply cycles, and also
specify an event that triggers the cycle. If you use both of these scheduling options,
the subscription set will be eligible for processing at both the scheduled time and
when the event occurs.

In update-anywhere replication, you can use the same or different timing for the
master-to-replica and replica-to-master subscription sets.

If there is a large amount of data to be replicated during an interval or between
events, the Apply program might not be able to process a subscription set until it
finishes applying data for all sets in the prior interval or for the prior event. In this
case, you might not get the expected replication latency, but you won't lose any
data.

Time-based scheduling

The simplest method of controlling when the set is processed is to use time-based
scheduling (also known as relative timing or interval timing). You determine a
specific start date, time, and interval. The interval can be specific (from one minute
to one year) or continuous, but time intervals are approximate.

The Apply program begins processing a subscription set as soon as it is able, based
on its workload and the availability of resources. Choosing a timing interval does
not guarantee that the frequency of replication will be exactly at that interval. If
you specify continuous timing, the Apply program replicates data as frequently as
it is able.

Event-based scheduling

To replicate data by using event-based scheduling (also known as event timing),
you specify an event name when you define the subscription set. You must also
populate the IBMSNAP_SUBS_EVENT table with a timestamp for the event name.
When the Apply program detects the event, it begins replication.

Chapter 5. Subscribing to sources for SQL Replication 69

The IBMSNAP_SUBS_EVENT table has four columns, as shown in Table 4.

Table 4. Example of data stored in the IBMSNAP_SUBS_EVENT table

EVENT_NAME EVENT_TIME END_OF_PERIOD END_SYNCHPOINT

END_OF_DAY 2002-05-01-
17.00.00.000000

2002-05-01-
15.00.00.000000

The EVENT_NAME column stores the name of the event that you specify while
defining the subscription set. EVENT_TIME is the timestamp for when the Apply
program begins to process the set. END_OF_PERIOD is an optional value that
indicates that updates that occur after the specified time should be deferred until a
future event or time. END_SYNCHPOINT is also an optional value that indicates
that updates that occur after the specified log-sequence number should be deferred
until a future event or time. If you specify values for both END_OF_PERIOD and
END_SYNCHPOINT, the value for END_SYNCHPOINT takes precedence. Set the
EVENT_TIME value by using the clock at the Apply control server, and set the
END_OF_PERIOD value by using the clock at the source server. This distinction is
important if the two servers are in different time zones.

In Table 4, for the event named END_OF_DAY, the timestamp value for
EVENT_TIME (2002-05-01-17.00.00.000000) is the time when the Apply program
should begin processing the subscription set. The END_OF_PERIOD timestamp
value (2000-05-01-15.00.00.000000) is the time after which updates are not replicated
and will be replicated on the next day's cycle. That is, the event replicates all
outstanding updates made before this time, and defers all subsequent updates.

You or your applications must post events to the IBMSNAP_SUBS_EVENT table by
using an SQL INSERT statement to insert a row into the table to activate the event.
For example, use the current timestamp plus one minute to trigger the event
named by EVENT_NAME. Any subscription set tied to this event becomes eligible
to run in one minute. You must manually post events for both full refresh and
change-capture replication.

You can post events in advance, such as next week, next year, or every Saturday. If
the Apply program is running, it starts at approximately the time that you specify.
If the Apply program is stopped at the time that you specify, when it restarts, it
checks the subscription events table and begins processing the subscription set for
the posted event.

The Apply program does not prune the table. You must populate and maintain this
table. Also, you cannot use the Replication Center to update the subscription
events table. You must issue SQL statements or define automated procedures to
add events to this table.

Example:
INSERT INTO ASN.IBMSNAP_SUBS_EVENT

(EVENT_NAME, EVENT_TIME)
VALUES (’EVENT01’, CURRENT TIMESTAMP + 1 MINUTES)

Any event that occurs prior to the most recent time that the Apply program
processed the subscription set (as specified by the value in the LASTRUN column
of the subscription-set control table) is considered to be an expired event and is
ignored. Therefore, if the Apply program is running, you should post events that
are slightly in the future to avoid posting an expired event.

70 SQL Replication Guide and Reference

Scheduling the subscription set
Define subscription-set timing information after you map sources to targets (or
create an empty subscription set).

After you map sources to targets (or create an empty subscription set), define
subscription-set timing information. On the Schedule page of the Create
Subscription Set window, specify when the subscription set should first be eligible
for processing; the default is the current date and time of the local machine. Also,
specify the timing for how often the subscription set should be eligible for
processing:
v Time-based replication

The Apply program processes this subscription set by using a regular time
interval.

v Event-based replication
The Apply program processes this subscription set whenever an event occurs.

v Both time-based and event-based replication
The Apply program process this subscription set by using both a regular time
interval and whenever an event occurs. In this case, the subscription set is
eligible for processing at both the scheduled time and when the event occurs.

Creating subscription-set members
Within a subscription set, you can add source-to-target mappings for the Apply
program to process as a group. These source-to-target mappings are called
subscription-set members.

Before you begin

Before you set up targets that subscribe to changes at sources, you must register
the tables or views that you want to use as sources. You should also create a
subscription set and plan for how many members you want to add in a set.

Restrictions

v SQL Replication does not support views of non-DB2 relational tables as sources.
v If you define a target view, that view must be an insertable view. That is, all of

the columns in the view must be updateable and the full select for the view
cannot include the keywords UNION ALL.

v If you are using the Replication Center, you cannot add a column to a
subscription-set member if that column does not already exist in the target table.

v z/OS: Do not select ROWID columns for replication except when the ROWID
column is the only unique index that is specified for replication.

Recommendation: Use an IDENTITY column rather than a ROWID column as
the unique index for replication.

v You can define a maximum of 200
members for each subscription set.

v You can define a maximum of 78 members for each
subscription set.

About this task

Chapter 5. Subscribing to sources for SQL Replication 71

When defining a subscription-set member, you specify which target table or view
subscribes to the source data, and you can define how you want the replicated
data to appear at the target.

Procedure

To add a subscription-set member, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE MEMBER command to add a subscription-set
member to an existing subscription set. For example, the following
commands:

v Set the environment.

v Create a profile, TBSPROFILE, to store options for the table
space that is used by the target table.

v Specify the SET00 subscription set, AQ00 Apply qualifier, and
the STAFF source table.

v Specify that a new target table, TRGSTAFF, is created as a user
copy with all columns registered.

SET SERVER CAPTURE TO DB SAMPLE;
SET SERVER CONTROL TO DB TARGET;
SET SERVER TARGET TO DB TARGET;
SET OUTPUT CAPTURE SCRIPT "capmember.sql"
CONTROLSCRIPT "appmember.sql"
SET LOG "member.err";
SET RUN SCRIPT LATER;
SET PROFILE TBSPROFILE FOR OBJECT TARGET TABLESPACE
OPTIONS UW USING FILE "/tmp/db/ts/TSTRG.TS" SIZE 700 PAGES;
CREATE MEMBER IN SETNAME SET00 APPLYQUAL AQ00
ACTIVATE YES SOURCE STAFF TARGET NAME TRGSTAFF
DEFINITION IN TSTRG00 CREATE USING PROFILE TBSPROFILE
TYPE USERCOPY COLSALL REGISTERED;

Replication Center Use one of the following notebooks:

v Create Subscription Set. Use this notebook when you create the
subscription set. Expand the Apply control server where the set
will be defined, right click the Subscription Sets folder and click
Create.

v Subscription Set Properties. Use this notebook if you have
already created the subscription set and want to add one or
more subscription-set members to it. Right-click the subscription
set and select Properties.

v Add Members to Subscription Sets. Use this notebook to add
one member to multiple subscription sets. Each member must
use the same source. Right-click the subscription sets to which
you want to add a member and select Add Member.

ADDDPRSUBM system
command

Use the ADDDPRSUBM command to add a member to a subscription
set. For example, to add a subscription-set member to a
subscription set named SETHR under the AQHR Apply qualifier:

ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX)
TGTTBL(TGTHR/TGTTAX)

To map a source with a target, specify the following information about the
registered table or view that you want to use as the source:
v The source table or view and a target table or view (including a table space and

index for the target table).
v The type of target table.

72 SQL Replication Guide and Reference

v The registered columns from the source table that you want to replicate to the
target table.
When you use the Replication Center to map a source with a target, LOB
columns are not automatically included in the column mapping. You must
explicitly select those columns.

v The rows from the source table that you want to replicate to the target table
(you include a WHERE clause to specify the rows).

To map the chosen source to a DB2 target
Specify the following information about the target table or view:
v The schema.
v The name of the table or view you want to use as the target.

Default: The default name comes from the target object profile for the
target server, if there is one. If you have not set this profile, the default
is TG followed by the name of the source table or view. (For example, if
the name of your source table is EMPLOYEE, the name of your target
table defaults to TGEMPLOYEE.)

v The type of target table
Default: user copy

If the specified target table does not exist, the administration tools or the
ADDDPRSUBM system command creates it.

To map the chosen source to a non-DB2 relational target
Specify the following information about the target table:
v The nickname schema
v The nickname
v The remote schema
v The name of the remote table

Default: The default name comes from the target object profile for the
target server, if there is one. If you have not set this profile, the default
is TG followed by the name of the source table or view. (For example, if
the name of your source table is EMPLOYEE, the name of your target
table defaults to TGEMPLOYEE.)

v The type of target table
Default: user copy

When you add a subscription-set member, you can use the default target table type
of user copy, or you can select another target table type to meet your replication
needs.
When you add a subscription-set member for a target table that does not yet exist,
you can use the default settings, or you can modify the member properties to meet
your replication needs. You can first pick the type of target table that you want to
use, and you can then set properties for how the Apply program replicates data to
that target.

Target table types
The type of target table depends on how you want your data to appear and on
your replication configuration. You can use an existing table as your target, or you
can create a new table.

Chapter 5. Subscribing to sources for SQL Replication 73

Restrictions
v The null attributes of after-image target columns must be compatible with the

null attributes for those columns of the source table or view. Use the SQL
COALESCE expression to provide compatibility with existing columns.

v For source tables on non-DB2 relational databases, you can define only the
following types of target tables:
– User copy tables
– Point-in-time tables
– External CCD tables

v The names of all non-DB2 relational target tables and indexes must follow the
DB2 table and index naming conventions.

v For source tables on System i that use RRN columns as their
key columns, you can define only the following types of target tables:
– Point-in-time tables
– External CCD tables

v For source tables in a z/OS subsystem, the encoding scheme
for the CD and UOW tables must be the same if the Apply program will join
these tables to satisfy a subscription-set WHERE clause for a user-copy table.

Target types

You can select from the following types of target tables:

User copy
Read-only target table that includes only those columns defined in the
subscription-set member. A user-copy table can have the same structure as
the source table or it can have a subset of source columns, with or without
before images or calculated columns. SQL Replication assumes that it is the
only application writing to user-copy target tables. Direct changes to
user-copy tables by end-users or applications can be overwritten by SQL
Replication and can cause the data in the source and target tables to not
match. If you need to update both the source and target tables, consider
using update-anywhere replication.

Point-in-time
Read-only target table that includes the columns defined in the
subscription-set member and a timestamp column. A point-in-time table
can have the same structure as the source table or it can have a subset of
source columns, with or without before images or calculated columns.

Base aggregate
Read-only target table that uses SQL column functions (such as SUM and
AVG) to compute summaries of the entire contents of the source table.

A base-aggregate table summarizes the contents of a source table. A
base-aggregate table also includes a timestamp of when the Apply program
performed the aggregation. Use a base-aggregate table to track the state of
a source table on a regular basis.

Change aggregate
Read-only target table that uses SQL column functions (such as SUM and
AVG) to compute summaries of the entire contents of recent changes made
to the source table, which are stored in the CD table or in an internal CCD
table.

74 SQL Replication Guide and Reference

A change-aggregate table summarizes the contents of a CD table or in an
internal CCD table, rather than the source table. A change-aggregate table
also includes two timestamps to mark the time interval for when the
changes were captured (written to the CD or CCD table). Use a
change-aggregate table to track the changes (UPDATE, INSERT, and
DELETE operations) made between replication cycles.

CCD (consistent-change data)
Read-only target table with additional columns for replication control
information. These columns include: a log-record number (or
journal-record number), an indicator of whether the source table was
changed by using an SQL INSERT, DELETE, or UPDATE statement, and
the log record number and timestamp of the commit statement associated
with the insert, delete, or update. You can also optionally include
before-image columns and columns from the UOW table.

Replica
Read/write target table for update-anywhere replication. A replica table is
the only type of target table that your application programs and users can
update directly. Thus, a replica table receives changes from the master table
and from local application programs or users. Replica tables can have the
same structure as the source table or they can have a subset of source
columns, but they do not include any additional replication control
columns (such as timestamps). Replica tables are supported only for DB2
databases.

The following topics describe uses for each target type and how you can set the
target-table properties to meet your replication needs:

Read-only target tables
Depending on how you want the source data to appear at your target, you can
define read-only target tables to contain a copy of the source table or view, a
history of changes, or a computed summary.

The following topics provide more detail on these types of read-only targets.

User copy and point-in-time targets:

By default, a user copy table will be created as your target type when you define a
subscription-set member. Select point-in-time as your target type to keep track of
the time at which changes were applied to the target.

User copy
Use this default type if you want the target table to match the source table
at the time the copy is made. User copy tables do not contain any
additional replication-control columns, but they can contain a subset of the
rows or columns in the source table or additional columns that are not
replicated.

Point in time
Select point-in-time as your target type if you want to keep track of the
time at which changes were applied to the target. A point-in-time target
contains the same data as your source table, with an additional timestamp
column added to let you know when the Apply program committed each
row to the target. The timestamp column is originally null. Point-in-time
tables can contain a subset of the rows or columns in the source table or
additional columns that are not replicated.

Chapter 5. Subscribing to sources for SQL Replication 75

Restriction: DB2 prevents values from being inserted in columns of a DB2 table
that are defined AS IDENTITY GENERATED ALWAYS. To avoid this restriction,
you can:
v Create the target table without the IDENTITY CLAUSE
v Create the target table with the column AS IDENTITY GENERATED BY

DEFAULT

Base aggregate or change aggregate targets:

You can create target tables that contain summaries of the entire contents of the
source tables or of the most recent changes made to the source table data.

For aggregate target-table types, you can define target columns by using aggregate
SQL column functions such as COUNT, SUM, MIN, MAX, and AVG. These
columns do not contain the original source data; they contain the computed values
of the SQL function that you define. The Apply program doesn't create
aggregations during full refresh; rows are appended over time as the Apply
program processes the set. An advantage of using an aggregate table is that SQL
Replication can replicate summary information only rather than each individual
row, thus saving both network bandwidth and space in the target table.

Base-aggregate targets

Use a base-aggregate target table to track the state of a source table during each
replication cycle. For a base-aggregate target table, the Apply program aggregates
(reads and performs calculations) from the source table. A base-aggregate table also
includes a timestamp of when the Apply program performed the aggregation.

If a registered source table has only a base-aggregate table as its target, you do not
need to capture changes for the source table.

Example: Suppose that you want to know the average number of customers that
you have each week. If your source table has a row for each customer, the Apply
program can calculate the sum of the number of rows in your source table on a
weekly basis and store the results in a base aggregate table. If you perform the
aggregation every week, the target table will have 52 entries that show the number
of customers you had for each week for the year.

Change-aggregate targets

Use a change-aggregate target table to track the changes (UPDATE, INSERT, and
DELETE operations) made between replication cycles at the source table. For a
change-aggregate target table, the Apply program aggregates (reads and performs
calculations) from the CD or internal CCD table. A change-aggregate table also
includes two timestamps to mark the time interval for when the Capture program
inserted changes into the CD or CCD table.

Example: Suppose that you want to know how many new customers you gained
each week (INSERTs) and how many existing customers you lost (DELETEs). You
can count the number of inserted rows and deleted rows in the CD table on a
weekly basis and store that number in a change-aggregate table.

Important: If the source table for a subscription-set member is registered for
full-refresh only replication, then you cannot have a change aggregate target table,
which requires a CD or CCD table at the source.

76 SQL Replication Guide and Reference

CCD targets:

Consistent-change-data (CCD) target tables provide committed transactional data
that can be read and used by other applications, for example InfoSphere®

DataStage®. You might also use a CCD table to audit the source data or keep a
history of how the data is used.

For example, you can track before and after comparisons of the data, when
changes occurred, and which user ID made the update to the source table.

To define a read-only target table that keeps a history of your source table, define
the target CCD table to include the following attributes:

Noncondensed
To keep a record of all of the source changes, define the CCD table to be
noncondensed, so it stores one row for every change that occurs. Because
noncondensed tables contain multiple rows with the same key value, do
not define a unique index. A noncondensed CCD table holds one row per
UPDATE, INSERT, or DELETE operation, thus maintaining a history of the
operations performed on the source table. If you capture UPDATE
operations as INSERT and DELETE operations (for partitioning key
columns), the CCD table will have two rows for each update, a row for the
DELETE and a row for the INSERT.

Complete or noncomplete
You can choose whether you want the CCD table to be complete or
noncomplete. Because noncomplete CCD tables do not contain a complete
set of source rows initially, create a noncomplete CCD table to keep a
history of updates to a source table (the updates since the Apply program
began to populate the CCD table).

Include UOW columns
For improved auditing capability, include the extra columns from the UOW
table. If you need more user-oriented identification, columns for the DB2
for z/OS correlation ID and primary authorization ID or the System i job
name and user profile are available in the UOW table.

Important for Version 10.1 on Linux, UNIX, and Windows: If the source database
is DB2 10.1 for Linux, UNIX, and Windows with multiple DB2 pureScale®

members, CCD targets are supported only if both the Capture and Apply
programs are at Version 10.1 and the Capture compatibility parameter is set to
1001. With only a single DB2 pureScale member and compatibility set to 0801,
CCD targets are supported even if the Apply program is at a version lower than
10.1.

By definition, a CCD table always includes the following columns in addition to
the replicated columns from the source table:

Chapter 5. Subscribing to sources for SQL Replication 77

Column Description

IBMSNAP_INTENTSEQ Data type: VARCHAR(16) FOR BIT DATA;
Nullable: No

A sequence number that uniquely identifies
a change. This value is ascending in a
transaction.

The log sequence
number (LRSN or RBA) of each update,
delete, and insert.

IBMSNAP_OPERATION Data type: CHAR(1); Nullable: No

A flag that indicates the type of operation: I
(INSERT), U (UPDATE), or D (DELETE).

IBMSNAP_COMMITSEQ Data type: VARCHAR(16) FOR BIT DATA;
Nullable: No

A sequence number for each row within a
transaction.

The log sequence
number (LRSN or RBA) of the source
commit record.

IBMSNAP_LOGMARKER Data type: TIMESTAMP; Nullable: No

The approximate time that the data was
committed.

When you create a noncomplete (COMPLETE=N) CCD table with the ASNCLP
command-line program or Replication Center, you can specify additional auditing
columns. The following table describes these columns:

Column Description

IBMSNAP_AUTHID Data type: VARCHAR(30); Nullable: Yes

The user ID that updated the source table.

This column is the
primary authorization ID.

IBMSNAP_AUTHTKN Data type: VARCHAR(30); Nullable: Yes

The authorization token that is associated
with the transaction.

The correlation ID
(normally a job name) that ran the source
update.

IBMSNAP_PLANID Data type: VARCHAR(8); Nullable: Yes

The plan name that is
associated with the transaction. This column
will be null for DB2 for Linux, UNIX, and
Windows.

78 SQL Replication Guide and Reference

Column Description

IBMSNAP_UOWID Data type: VARCHAR(16) FOR BIT DATA;
Nullable: Yes

The unit-of-work (UOW) identifier from the
log record for a row.

The unit-of-work
identifier, sometimes called the
unit-of-recovery ID (URID) of the
transaction.

Internal CCD targets:

If changes occur frequently at a source table, you can create an internal CCD table
to summarize the committed changes that occurred at the source since the last
Apply cycle.

Because the CD table is constantly in flux when the Capture program appends
changes from the log, the local cache of source changes in the CCD acts as a more
stable source for your targets.

When the original source table is updated, the Capture program reads the frequent
changes in the source's log and adds them to the source's CD table. From that CD
table, an Apply program reads the changes in the CD table and populates the
internal CCD table. You can define the internal CCD table to contain only the most
recent change for each row in the CD table that occurred during the last cycle.
Therefore, the CCD table is static between Apply cycles (for the Apply program
replicating from the CD table to the CCD table) and thus makes a more stable
source for targets. By condensing changes from the source, you can improve
overall replication performance by not replicating many updates for the same row
to the target table.

Because the Capture program is constantly adding new changes to the CD table, a
second Apply program reads changes from the internal CCD table, instead of the
CD table, so that it doesn't replicate different changes to different targets and can
keep the targets in synch with one another. The second Apply program uses the
original source table for full refreshes, and it uses the internal CCD table for
change-capture replication.

Important for update-anywhere: If you define an internal CCD table, the Apply
program ignores it when processing a subscription set with a replica as a target,
and it applies changes to the replica from the master source's CD table.

Recommendations

v Define a subscription-set member between the source table and the internal CCD
table before defining other subscription-set members between the source table
and other target tables. That way, the Apply program will use the internal CCD
table rather than the CD table for replicating changes from the source table. If
you define other subscription-set members and begin replication using those
members before you define the internal CCD table for the source table, you
might have to perform a full refresh for all targets of the source table.

v Combine all internal CCD tables into one subscription set to ensure that all
target tables for the source database are in synch with one another.

Chapter 5. Subscribing to sources for SQL Replication 79

v Even if you only want a subset of the frequently changing source columns to be
applied to other targets, use the default that all registered source columns are
replicated to the internal CCD. That way, you can use the internal CCD table as
a source for future target tables that might need data from the other registered
columns in the original source table. Only columns in the internal CCD table
will be available for change-capture replication for any future target.

Attributes of internal CCD tables

You use an internal CCD table as an implicit source for replication; you cannot
explicitly define it as a replication source. When you add a subscription-set
member, you map the original source table (not the internal CCD table) to the
target table. An internal CCD table has the following attributes:

Internal
The CCD table acts as an alternative to the source's CD table. Information
about the internal CCD table is stored in the same row as its source table
in the IBMSNAP_REGISTER table. An internal CCD table does not have its
own row in the register table. The Apply program automatically replicates
changes from an internal CCD table, if one exists, rather than from CD
tables. Only one internal CCD table can exist for each replication source.

Restriction: The user table does not include computed columns; therefore,
do not include computed columns in the CCD subscriptions.

Local The CCD table is in the same database as the source table.

Noncomplete
Because the Apply program uses the original source table for full refreshes
and not the internal CCD, the CCD is noncomplete because the subsequent
target will already have an initial copy of all the source rows.

Condensed
The internal CCD is condensed, meaning that table contains one row for
every key value, so that the Apply program applies the most recent change
for each row in the CCD table, instead of applying a row for every change.

No UOW columns
Internal CCD tables do not support additional UOW table columns. You
cannot use an internal CCD table if you already defined a target CCD table
that includes UOW columns.

Defining middle tiers in a multi-tier configuration
The basic replication model is a two-tier model, with a single source and one or
more targets. You can also set up configurations with three or more tiers.

Restrictions

The middle tier in multi-tier configurations must be a DB2 table.

About this task

A multi-tier configuration has a source table and a target table, and then that target
table acts as a source to other target tables.

One reason to set up a multi-tier replication environment is to move the overhead
of distribution from the source system to a second system. You can also avoid
many of the database connections to your source system, thus moving the
connection cost to the second tier. Also, because you can collect changes from tier 1

80 SQL Replication Guide and Reference

in CCD tables at tier 2, you can control how often you replicate changes to each
tier and reduce the number of changes replicated to the target (tier 3).

For example, in a three-tier model, the first tier (tier 1) is the source database, the
second tier (tier 2) is the target for tier 1. Tier 2 is also a source for a third tier of
targets (tier 3), and can distribute changes to one or many tier-3 databases. When
you have more than two tiers in your replication configuration, the middle tiers,
which act as both sources and targets, are CCD tables.

This procedure also applies for replica tables. CCD tables are usually used for
read-only replication, but replica tables are used for update-anywhere replication.

Procedure

To set up multi-tier replication so that your target table acts as a source to
subsequent targets:
1. Register the source table (tier 1) for replication. The Capture program for this

source captures changes that occur at tier 1 and stores them in tier 1's CD table.
2. Create a subscription set between the source server and the target server (for

tier 2). The Apply program for this subscription set applies changes from tier 1
to the CCD table at tier 2.

3. Define a subscription-set member that maps the source table (tier 1) and a CCD
target table (tier 2).
When defining the target table for this member, select for the target table to be
a CCD table with the following attributes:

External registered source
You must define the source as an external target table and register the
table so that it can act as a source for the subsequent tier. Like other
registered sources, an external CCD table has its own row in the
IBMSNAP_REGISTER table. External CCD tables that also act as
sources can be populated only by a single source table.

You must register all external CCD tables in a subscription set with the
same Capture schema.

You can replicate to an external CCD table without joining the
change-data (CD) table and the IBMSNAP_UOW table. The new table
type is specified with a value of 9 in the TARGET_STRUCTURE
column of the IBMSNAP_SUBS_MEMBR table. Although the type 9
CCD table includes the IBMSNAP_LOGMARKER column, the Apply
program does not require a join of the CD table and IBMSNAP_UOW
table to obtain the source commit timestamp for this column. Instead,
the Apply program generates the same value in the
IBMSNAP_LOGMARKER column for all of the rows in the same cycle.

Figure 6. Three-tier replication model. You can replicate data from a source table to a target table, and then from that
table to another target table.

Chapter 5. Subscribing to sources for SQL Replication 81

The new CCD table type has the same structure as a type 3 CCD table.
The table contains four mandatory IBM® columns in addition to the
user columns:
IBMSNAP_COMMITSEQ
IBMSNAP_INTENTSEQ
IBMSNAP_OPERATION
IBMSNAP_LOGMARKER
user_columns

This target table type can be registered as a source table for a three-tier
replication configuration.

Important: For type 9 CCD tables, the data blocking factor
(MAX_SYNCH_MINUTES in the IBMSNAP_SUBS_SET control table)
should be unset (NULL).

Complete
You must use a complete CCD table because the Apply program will
use this table to perform both full refresh and change-capture
replication for the subsequent tier.

Condensed
Use a condensed CCD, meaning that table contains one row for every
key value, to ensure that only the most recent changes are replicated to
the subsequent tier. The Apply program applies the most recent change
for each row in the CCD table, instead of applying a row for every
change. Because condensed tables require unique key values for each
row, you must define a unique index.

Note: With a condensed and complete CCD source table, if the same
row is updated multiple times within an Apply cycle, an extra,
duplicate row with the oldest key value might remain in the target
table. This situation can occur because in condensed CCD sources, only
the last update of the multiple key updates remains in the source CCD
table. The Apply program cannot tell what the original value was and
thus cannot remove the row with the oldest key value from the target
table.

4. Because the CCD table is registered, create the Capture control tables in the
middle-tier database, if they do not already exist.

5. Create a subscription set between the tier 2 server that contains registered CCD
table and the subsequent target server (for tier 3). The Apply program for this
set applies changes from the CCD table to the target tables in the subsequent
tier. The Apply program uses the CCD table for both full refresh and
change-capture replication. Usually, you use a different Apply qualifier than the
one used to populate the CCD, but you can use the same one.

6. Define a subscription-set member mapping the CCD source table (tier 2) and
the subsequent target table (tier 3). You can set up multiple members with
target tables that subscribe to this CCD source table. If this is the final tier in
your multi-tier configuration, then the target table can be any type. However, if
you plan to have more than three tiers, define the tier-3 target table as specified
in step 3, and repeat steps 4 through 5 to add subsequent tiers.

Note: If a full refresh occurs on the external CCD (the middle tier), then the Apply
programs for all subsequent tiers that use that external CCD as a source will
perform full refreshes. This is called a cascade full refresh.

82 SQL Replication Guide and Reference

Defining read-write targets (update-anywhere)
In update-anywhere replication, changes at the master source table are replicated
to dependent target tables, and changes at the replica tables can be replicated back
to the master source table.

Before you begin

v You must use declarative referential-integrity constraints because no single
application program updates both master and replica tables. Referential-integrity
violations cannot be detected in application logic.

v You must include all referential constraints that exist among the master tables in
the replica tables to prevent referential-integrity violations. If you omit some
referential constraints, an update made to a replica table could cause an
referential-integrity violation when it is replicated to the master table. The
administration tools do not copy referential-constraint definitions from a source
table to target tables, nor can they generate new constraints.

v To bypass referential-integrity checking during full refresh, you must use the
ASNLOAD exit routine.

Restrictions

v Replica target table types are not supported in a remote journal configuration.
v You cannot use CCD tables as sources or targets in update-anywhere replication.
v To allow columns of LOB data type to participate in update-anywhere

replication, the CONFLICT_LEVEL in the register table must be set to 0.
v Non-DB2 databases cannot have replica target-table types and, therefore, cannot

participate in update-anywhere replication.

About this task

In update-anywhere replication, the master table and its replicas are read-write
tables that all act as both sources and targets.

Procedure

To set up an update-anywhere configuration between a master table and one or
more replica tables (where each replica table is in a separate database):
1. Create the Capture control tables in each database that will contain a replica

table, if they do not already exist.
2. Register the source table (the master table) for replication.
3. Create a subscription set between the master database and the target database

that will contain the one or more replicas.
If all replica tables are in the same database and all master tables are in another
database, you need only one subscription set. If the replica tables are in
multiple databases, you need as many subscription sets as you have replica
databases.

4. Define a subscription-set member for each mapping between each master table
and its associated replica table.
In this configuration, there is only one Apply program, which typically runs at
the server that contains the replica tables. The Apply program for this set pulls
the changes from the master's CD table and applies them to the replica tables.
The Apply program also pushes changes from the replica table's CD table and
applies them to the master table.

Chapter 5. Subscribing to sources for SQL Replication 83

Important: Because the master table and replica tables in update-anywhere
configurations replicate data back and forth to one another, replica target tables
should contain the same columns as the source table. You can create a replica
target that contains a subset of the columns in the master table only if the
missing columns are defined as nullable or NOT NULL WITH DEFAULT at the
master site, but you should not add new columns or rename columns at the
replica.

5. Define source properties for the replica table. When you create a
subscription-set member with a replica table, SQL Replication automatically
registers the replica table as a replication source. Because replica target tables
act as sources, they have properties that you can set in addition to the common
target table properties, which determine how the Capture program handles
changes to the replica. There are two properties, however, that are inherited
from the master table and cannot be changed for the replica table: the
conflict-detection level and whether full refreshes are disabled. The Capture
program for this source captures changes at the replica table and stores them in
the replica's CD table.

Important: Even though the master and replica act as both sources and targets,
full-refresh copying occurs only from the master to the replica, not from replica
to master.
To prevent conflicts, you must make the target key for the replica tables the
same as the master source table's primary key or unique index. Because the
master table can update the replicas and the replicas can update the master,
there is a potential for conflicts to occur if an update is made to a row in the
master table and a different update is made to the same row in one or more
replica tables between Apply cycles (so that the changes are in the master CD
table and the replica CD table). A replica table inherits the level of conflict
detection from the master source table or view. It is best to design your
application so that a conflict can never occur when data is replicated from the
master to all of the replica tables. When you registered the master source, you
had three levels of conflict detection to choose from.
If you defined referential integrity constraints for the source table, you must
define the same referential integrity constraints for the replica table to prevent
integrity violations. If a referential-integrity violation occurs, the subscription
cycle is automatically retried.

Using an existing table as the target table
You can define a subscription-set member to include an existing target table that
you defined outside of SQL Replication.

Such a user-defined target table can be any of the valid target-table types for
replication (user copy, point in time, base or change aggregate, CCD, or replica) as
long as the structure of the table is valid. For example, a user-defined point-in-time
table must include a column of type TIMESTAMP called
IBMSNAP_LOGMARKER.

Requirements
v If the subscription-set member definition contains fewer columns than are in the

existing target table, the target-table columns that are not involved in replication
must allow nulls or be defined as NOT NULL WITH DEFAULT.

v There must be a unique index for point-in-time, user copy, replica, and
condensed CCD tables. When you define the subscription-set member by using
the existing target table, you can use the existing unique index or specify a new
one.

84 SQL Replication Guide and Reference

Restrictions
v A subscription-set member definition cannot contain more columns than are in

the existing target table.
v If you are using the Replication Center, you cannot add a column to a

subscription-set member if that column does not already exist in the target table.

Replication checks for inconsistencies between your existing target table and the
subscription-set member definition.

Important for multi-tier: If you want to set up a multi-tier configuration with a
source table as tier 1, a CCD table as tier 2, and an existing table as tier 3, define
the CCD table to match the attributes specified for the existing target table when
defining the subscription-set member between tier 1 and tier 2. Then define a
subscription-set member for the existing target table in which the CCD table is the
source table.

Common properties for all target table types
You can set properties when creating a target table, regardless of type, based on
the replication environment that you want.

The following topics explain the common characteristics that you can define for
how the source data maps to the target tables.

Replicating a subset of source columns
By default, the target table contains all registered source columns except LOB
columns. You might not want to replicate all columns, or the target table might not
support all data types defined at the source.

In this case, select only those source columns that you want to replicate to the
target table. The registered columns in the source table that you do not select are
still available for other subscription-set members, but are not included for the
current source-to-target mapping.

You can also add calculated columns to a target table. These columns can be
defined by SQL scalar functions, such as SUBSTR, or they can be derived columns,
such as the division of the value of column A by the value of column B
(colA/colB). These calculated columns can refer to any columns from the source
table.

Replicating a subset of source rows
By default, the target table contains all the rows in the source table. You might not
want to replicate all rows, or you might want to replicate rows containing different
sorts of data to different target tables.

You can define a row (horizontal) subset in the subscription-set member that
contains rows matching a certain condition (an SQL WHERE clause).

The SQL predicate can contain ordinary or delimited identifiers. See the DB2 SQL
Reference for more information about WHERE clauses.

For example, you could define a WHERE clause to replicate all rows for one
division of a company. Or you could define a WHERE clause in one
subscription-set member to replicate all LOB columns (plus the primary-key
column) to one target table, and a WHERE clause in another subscription-set
member to replicate all other columns to a separate target table. Thus, your target

Chapter 5. Subscribing to sources for SQL Replication 85

database can have all of the data from the source table, but denormalize the source
table in the target database to adjust query performance for a data warehouse.

Row predicate restrictions
v Do not type WHERE in the clause; it is implied. Type WHERE in the clause only for

subselect statements.
v Do not end the clause with a semicolon (;).
v If your WHERE clause contains the Boolean expression OR, enclose the predicate

in parentheses; for example, (COL1=X OR COL2=Y).
v If the target table is a change aggregate table and contains before-image

columns, you must include the before-image columns in a GROUP BY clause.

Examples

The following examples show WHERE clauses that you can use to filter rows of
the target table. These examples are very general and are designed for you to use
as a model.

WHERE clause specifying rows with specific values
To copy only the rows that contain a specific value, such as MGR for
employees that are managers, use a WHERE clause like:
EMPLOYEE = ’MGR’

WHERE clause specifying rows with a range of values
To copy only the rows within a range, such as employee numbers between
5000 and 7000 to the target table, use a WHERE clause like:
EMPID BETWEEN 5000 AND 7000

How source columns map to target columns
By default, column names in a target table that is created by SQL Replication
match the column names in the source table. You can change the names and data
lengths of most target columns and still map them to source columns.

You can change the names of all columns in your target tables except the
replication control columns (which begin with IBMSNAP or IBMQSQ). If the target
table exists, the Replication Center will map the columns by name.

Target table columns can have different lengths than source columns. If the target
column is shorter than the source column, you can use an expression in the
subscription-set member to map the characters from the longer column to the
shorter column, or register a view that includes the expression. For example, if the
source column is char(12) and the target column is char(4), you can use the
following expression to truncate the values from COL1 during replication:
substr(col1, 1,4)

If the target column name is longer, pad the target column name with blanks.

Note: Some restrictions exist for mapping LONG VARCHAR columns in DB2 for
Linux, UNIX, and Windows to both DB2 for z/OS and DB2 for i5/OS®.

Using the Replication Center

When you are creating a target table by using the Replication Center, you can
rename columns at the target regardless of the target-table type. Also, you can
change column attributes (data type, length, scale, precision, and whether it is
nullable) where the attributes are compatible.

86 SQL Replication Guide and Reference

You cannot use the Replication Center to rename columns of existing target tables.
If the source and target columns do not match, you can either use the Replication
Center to map the columns from the source to the target, or you can create a view
of the target table that contains a match to the source column names.

Mapping to non-DB2 relational tables

If you are mapping a DB2 table to a non-DB2 relational table with an existing
nickname for the non-DB2 relational table, the data types of some columns might
not be compatible. If the data types of the source columns are not compatible with
the data types in the target columns, you can modify the data type at the target to
make it compatible with the source:
v You can add calculated columns to adjust the data types from the source to

match the required data type for the target.
v You can alter the nickname for a non-DB2 relational target table to change the

data-type conversions.

Example: You want to replicate data from a DB2 source table with a DB2 column
of data type DATE to an Oracle target table with an Oracle column of data type
DATE.

Table 5. Mapping a DB2 DATE column to an Oracle DATE column

DB2 Column Nickname Data Mapping Oracle Column

A_DATE DATE A_DATE TIMESTAMP A_DATE DATE
A_DATE DATE

The Oracle target table is created with an Oracle data type of DATE (which can
contain both date and timestamp data). The initial nickname for an Oracle DATE
data type in a federated database maps the DB2 data type as a TIMESTAMP. The
DB2 Replication Center and the System i commands for replication alter the
nickname data type to DATE, so that a DATE is replicated to Oracle and not a
TIMESTAMP.

Target key
When a condensed target table is involved in change-capture replication, the Apply
program requires it to have a primary key or unique index, which is called the
target key.

You can choose which columns you want to use as the unique index for your
target table. The following types of target tables are condensed and require a target
key:
v User copy
v Point-in-time
v Replica
v Condensed CCD

If you are creating a new target table, you can use the default index name and
schema or change the defaults to match your naming conventions.

The default name comes from the target object profile for the target server, if there
is one. If you have not set this profile, the default is IX plus the name of target
table. For example, if the name of your target table is TGEMPLOYEE, the name of
your target table index defaults to IXTGEMPLOYEE.

Chapter 5. Subscribing to sources for SQL Replication 87

Options for unique indexes

Your options for creating unique indexes depend on whether you are creating a
new target table or using an existing target table.

New target table
To create a unique index for a new target table, you have two options:
v Specify the columns that you want as the unique index for the target

table.
v Have SQL Replication select a unique index for you.

If you do not select columns for the unique index, SQL Replication
checks the source table for one of the following definitions, in the
following order:
1. A primary key
2. A unique constraint
3. A unique index

If SQL Replication finds one of these definitions for the source table, and
the associated columns are registered and part of the target table, SQL
Replication uses the source table's primary key (or unique index or
RRN) as the target key. In the case of a unique constraint, SQL
Replication creates a unique index for the target table by using the
constraint columns.

For a System i source table that does not have a
primary key or unique index, modify the registration for that table to
use the relative record number (RRN) as a uniqueness factor. When you
define the subscription-set member, specify the RRN column as the
unique index for the target table.

For target tables on System i that use the RRN as the
target key, you should run the Apply program on System i to replicate
to these target tables.

Existing target table
For existing target tables, you must select the unique index. You can select
one of the following options:
v Use an index that already exists for the target table.

To use an existing index, select the columns that represent the index in
the Replication Center. If the Replication Center finds an exact match
then it only sets a target key for the Apply program to use, otherwise it
creates the unique index and sets a target key for the Apply program to
use.

v Create another index for the target table.
The unique index will be created if it does not already exist, and the
target key will be set for the Apply program to use.

Important: If you select a key for the target table that includes columns that can
be updated at the source table, you must instruct the Apply program to make
special updates to the target key columns.

How the Apply program updates the target key columns with the
target-key change option
If you choose the target-key change option when you define a subscription-set
member, the Apply program makes special updates to the target key columns
when the target key changes.

88 SQL Replication Guide and Reference

Prerequisite

In order for the Apply program to update target key columns, the source columns
that are part of the target key must be registered with the before-image columns in
the CD (or CCD) table. If you did not define the source registration to capture the
before-image values of the columns that make up the target key, then you must
alter your registration to include them before subscribing to a target table with a
different key.

Restrictions
v You cannot use the target-key-change option for source tables that are registered

to capture updates as delete/insert pairs.
v You cannot map an expression in a source table to a key column in a target table

if the Apply program updates the target table based on the before images of the
target key column (that is, if the TARGET_KEY_CHG column of the
IBMSNAP_SUBS_MEMBR table has a value of Y for that target table).

After you ensure that the before-image values of the target key columns are in the
CD (or CCD) table, select the subscription-set member option for the Apply
program to use the before-image values when updating target key columns.

If you do not specify for the Apply program to use the before-image values when
updating target key columns, SQL Replication will not replicate data correctly
when you update the columns in the source table that are part of the target key.

The Apply program tries to update the row in the target table with the new value,
but it does not find the new key value in the target table to update it. The Apply
program then converts the update to an INSERT and inserts the new key value in
the target table. In this case, the old row with the old key value remains in the
target table (and is unnecessary).

When you specify that you want changes to target key columns to be processed by
using before-image values, the Apply program is able to find the row with the old
key value, and update the row by using the new values. For example, if the
target_key_chg variable is set to N, the SQL statement for the update operation is:
UPDATE targettable SET <non-key columns>= after-image values
WHERE <key columns> = after-image values

If the target_key_chg variable is set to Y, the SQL statement for the update operation
is:
UPDATE targettable SET <all columns> = after-image values
WHERE <key columns> = before-image values

Chapter 5. Subscribing to sources for SQL Replication 89

90 SQL Replication Guide and Reference

Chapter 6. Replicating special data types in SQL Replication

When you replicate special data types, such as LOB, ROWID, or non-DB2 data
types, you should be aware of certain conditions and restrictions. In some cases,
you might have to perform additional setup steps to get SQL Replication to work
with these data types.

The following topics provide information on replicating special data types:

General data restrictions for SQL Replication
SQL Replication has specific restrictions for certain data types including data
encryption restrictions and data type restrictions.

Data encryption restrictions
SQL Replication can replicate some types of encrypted data.

EDITPROC
SQL Replication supports DB2 for z/OS source tables that are
defined with an edit routine (EDITPROC) to provide additional
data security. To use these tables as sources for replication, the DB2
subsystem that contains the tables must be at Version 8 or higher
with APAR PK13542 or higher.

Encrypt scalar function in DB2 for Linux, UNIX, and Windows
Column data can be encrypted and decrypted by using the encrypt
scalar function in DB2 for Linux, UNIX, and Windows. To use this
with replication, the data type must be VARCHAR FOR BIT DATA
at the source. This data replicates successfully as long as the source
and target use the same code page and the decrypt functions are
available. Replication of columns with encrypted data should only
be used with servers that support the DECRYPT_BIN or
DECRYPT_CHAR function.

FIELDPROC
SQL Replication supports columns that are defined on DB2 for z/OS tables
with field procedures (FIELDPROC) to transform values. The DB2
subsystem that contains the tables with FIELDPROC columns must be at
APAR PK75340 or higher.

If possible, you should create the following index on your
SYSIBM.SYSFIELDS table to improve performance:
CREATE INDEX "SYSIBM"."FIELDSX"
ON "SYSIBM"."SYSFIELDS"
(TBCREATOR ASC,
TBNAME ASC,
NAME ASC)
USING STOGROUP SYSDEFLT PRIQTY 100 SECQTY 100
CLOSE NO;
COMMIT;

Data type restrictions
SQL Replication cannot replicate the following data types:
v DB2 XML
v LOB columns from non-DB2 relational sources
v Any column on which a VALIDPROC is defined.

© Copyright IBM Corp. 1994, 2012 91

v You can replicate BINARY or VARBINARY data types when the source
and target are on z/OS. Replication of these data types from a z/OS
source to a DB2 for Linux, UNIX, and Windows target or federated
target is not supported. BINARY and VARBINARY data types are
supported as targets of source expressions only if the source datatype is
CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, or ROWID.

SQL Replication can replicate the following data types under certain
circumstances:
v Long variable graphic (LONG VARGRAPHIC) data if the source and

target tables reside in DB2 for z/OS.
v Long variable character (LONG VARCHAR and LONG VARGRAPHIC)

data requires either that the source database tables be in DB2 for z/OS
or both the source and target tables be in DB2 for Linux, UNIX, and
Windows. When you specify DATA CAPTURE CHANGES for a source
table when the table is created, any LONG VARCHAR and LONG
VARGRAPHIC columns are automatically enabled for replication. If you
add LONG VARCHAR columns to the table after it is registered as a
source and the table previously had no LONG columns, you must use
the ALTER TABLE statement to enable DATA CAPTURE CHANGES
INCLUDE LONGVAR COLUMNS for the new LONG VARCHAR or
LONG VARGRAPHIC columns.

SQL Replication cannot replicate a table that contains abstract data types.

SQL Replication can replicate tables with spatial data type columns but
cannot replicate the actual spatial data type columns.

User-defined data types (distinct data types in DB2) are converted to the
base data type in the change-data (CD) table before replication. In addition,
if SQL Replication creates the target table as part of the subscription-set
member definition, user-defined types are converted to the base data type
in the target table as well as in the CD table.

Large object data types
SQL Replication supports large object (LOB) data types, including binary LOB
(BLOB), character LOB (CLOB), and double-byte character LOB (DBCLOB).

This topic refers to BLOB, CLOB, and DBCLOB data types as LOB data

The Capture program reads the LOB descriptor in the log records to determine if
any data in the LOB column has changed and thus should be replicated, but does
not copy the LOB data to the change-data (CD) tables. When a LOB column
changes, the Capture program sets an indicator in the CD table. When the Apply
program reads this indicator, the Apply program then copies the entire LOB
column (not just the changed portions of LOB columns) directly from the source
table to the target table.

Because a LOB column can contain up to two gigabytes of data, you must ensure
that you have sufficient network bandwidth for the Apply program. Likewise, your
target tables must have sufficient disk space to accommodate LOB data.

Restrictions:

v The Apply program always copies the most current version of a LOB column
directly from the source table (not the CD table), even if that column is more
current than other columns in the CD table. Therefore, if the LOB column in the

92 SQL Replication Guide and Reference

target row changes, it is possible that this LOB column could be inconsistent
with the rest of the data in that target row. To reduce this possibility of
inconsistent data in the target row, ensure that the interval between the Apply
cycles is as short as practical for your application.

v You can replicate 15 LOB columns or fewer per table. If you register a table with
more than 15 LOB columns, the Apply program returns an error message. The
Replication Center returns an error message if you attempt to register more than
15 LOB columns per table.

v You can copy LOB data to replica tables provided that conflict detection is
disabled.

v To copy LOB data between DB2 for OS/390 Version 6 (or later) and DB2 for
Linux, UNIX, and Windows, you need DB2 Connect Version 7 or later.

v You cannot refer to LOB data by using nicknames.
v Before-image values for LOB or ROWID columns are not supported.
v Replication is not supported for DB2 Extenders™ for Text, Audio, Video, Image,

or other extenders where additional control files associated with the extender's
LOB column data are maintained outside of the database.

v SQL Replication can replicate a full LOB only. It cannot replicate parts of a LOB.
v You cannot replicate LOB columns if you use a remote journal setup in your

replication environment on System i.
v When you use LOBs in update-anywhere replication, you must set the conflict

level to 0.

Replication of new DB2 Version 9.7 data types (Linux, UNIX, Windows)
SQL Replication supports new data types that were introduced with DB2 for
Linux, UNIX, and Windows Version 9.7 to make it easier to migrate applications to
DB2.

Some of the new data types require special considerations for a replication
environment. The following sections provide details:
v “TIMESTAMP with extended precision”
v “DATE with compatibility option” on page 94
v “NUMBER” on page 94

TIMESTAMP with extended precision

SQL replication supports replication of TIMESTAMP data with extended precision
that ranges from TIMESTAMP(0) to TIMESTAMP(12). You can map columns of
non-matching precision. If both the source and target databases and Capture and
Apply are Version 9.7 or newer, the source data is padded or truncated at the
target database.

In a mixed-level environment where only the source DB2 is at Version 9.7,
TIMESTAMP columns might also require padding or truncation. Replication of
such columns can occur only when both Capture and Apply are at Version 9.7 or
later. For example, if you replicated a source at V9.7 to a target at V9.5 and a
registered table included a TIMESTAMP(12) column, the V9.7 Apply would
truncate six-digits from the fractional seconds portion of the TIMESTAMP value.
The truncation is necessary because DB2 Version 9.5 does not support extended
precision, and so for V9.5 databases TIMESTAMP values have a fractional seconds
portion that equates to the default V9.7 precision of TIMESTAMP(6). Table 6 on
page 94 shows the value at the source and resulting truncated value at the target.

Chapter 6. Replicating special data types in SQL Replication 93

Note: When handling these new data types, SQL replication
treats a DB2 for z/OS source or target the same as DB2 for Linux, UNIX, and
Windows Version 9.5 or older.

Table 6. Truncation of TIMESTAMP(12) during replication

Source value in TIMESTAMP(12) Target value in TIMESTAMP(6)

2009-07-10-10.33.42.458499823012 2009-07-10-10.33.42.458499

If the target database is older than V9.7, TIMESTAMP values of lower precision
than the default TIMESTAMP(6) are padded automatically by DB2 so the fractional
seconds portion contains six places.

DATE with compatibility option

The date compatibility option stores the DATE type with an additional time
portion (HH:MM:SS). This format conforms to the date representation by other
relational database management systems such as Oracle, where the DATE data
type includes YYYY-MM-DD HH:MM:SS.

SQL Replication treats databases without date compatibility the same as DB2
databases prior to V9.7, and the same as DB2 for z/OS subsystems. When date
compatibility is enabled, DB2 handles columns that are defined as DATE in the
same way that it handles columns defined as TIMESTAMP(0).

Enable the DATE as TIMESTAMP(0) support by setting bit position number 7
(0x40) of the DB2_COMPATIBILITY_VECTOR registry variable before you create a
database. With SQL Replication you can create the following column mappings
between DATE and TIMESTAMP(0):

DATE to TIMESTAMP(0)
If the source database does not have date compatibility enabled, the target
value is padded to YYYY-MM-DD-00:00:00.

TIMESTAMP(0) to DATE
If the target database does not have date compatibility enabled, the
TIMESTAMP(0) value is truncated to YYYY-MM-DD.

NUMBER

The NUMBER data type supports applications that use the Oracle NUMBER data
type. DB2 treats NUMBER data internally as DECFLOAT if no precision or scale
are specified, and as DECIMAL with precision or scale if these attributes are
specified.

Because SQL Replication already supports DECFLOAT and DECIMAL, you can
map columns defined with any of these three numeric types to each other:
NUMBER to DECFLOAT or DECIMAL, DECFLOAT to NUMBER or DECIMAL,
and DECIMAL to NUMBER or DECFLOAT.

Replication of tables with identity columns
SQL Replication allows identity columns in both source and target tables, but
because of DB2 restrictions you might need to take extra steps if your source table
has columns that are defined with the AS IDENTITY GENERATED ALWAYS
clause.

94 SQL Replication Guide and Reference

Identity columns are handled differently by replication depending on whether they
are in the source or target table:

Source table
If you have an identity column in a source table and you want to replicate
it to a target table, register and subscribe to the source table as usual. The
CD and target tables are created with numeric columns to hold the values.
For example, a source column that is defined as GENERATE ALWAYS
might be replicated to a BIGINT column at the target. The columns in the
CD and target table cannot be identity columns themselves, so you cannot
replicate an identity column in a source table to an identity column in a
target table.

Target table
If you have an identity column in a target table, do not include that
column in your replication configuration when defining the
subscription-set member. The column is populated automatically when
replication inserts into or updates the target table. The behavior of the
identity column is the same as for inserts and updates by any other
application. If you replicate the same source table to multiple target tables
that have identity columns, the identity values in those target tables are
independent of each another.

DB2 does not allow inserts into columns that are defined with the AS IDENTITY
GENERATED ALWAYS clause, and so this clause is not supported for SQL
Replication target tables. However, options exist for replicating these columns:
v Create the target table without the IDENTITY clause.
v Create the target table with a column that is defined with AS IDENTITY

GENERATED BY DEFAULT.

For columns that are defined with AS IDENTITY GENERATED BY DEFAULT, the
range of values must be distinct between the source and the target because DB2
does not guarantee uniqueness of identity columns between two different DB2
databases.

For example, the identity column at one site could be set to even numbers (START
WITH 2, INCREMENT BY 2) and at the other site the identity column could be set
to odd numbers (START WITH 1, INCREMENT BY 2). You could also assign
ranges to sites (for example, 1 to 10,000 at one site and 20,000 to 40,000 at the
other). The odd-even approach ensures that in a conflict situation, two different
rows that accidentally have the same generated identity key do not overwrite one
another when the conflict action is to force the change.

The data type of the identity column (SMALLINT, INTEGER, or BIGINT) should
be determined by application needs, for example the largest number that you
expect in the column.

The identity columns should be NO CYCLE if numbers cannot be reused. Put a
plan in place for what to do when the maximum value is reached (SQLSTATE
23522). If you use CYCLE, make sure that a new use of a number does not cause
problems for any existing use of the number, including what happens during
replication.

Chapter 6. Replicating special data types in SQL Replication 95

96 SQL Replication Guide and Reference

Chapter 7. Subsetting data in an SQL Replication environment

Replication usually involves subsetting. It might involve the choice of certain
columns and rows to replicate from a source table when you register a replication
source. It might involve the choice of certain registered columns to replicate to
each target table when you create subscription sets.

Depending on your replication requirements, you can subset data at the source
during registration or at the target during subscription:
v If you have only one target for a source, or if multiple targets need exactly the

same data, then it is possible to subset or manipulate data at registration
because you do not need to consider potentially different needs of different
targets.

v If you have one source and multiple targets, and the multiple targets have
different requirements regarding the data to be applied, then it might not be
possible to subset at registration. In this case, you subset data at subscription.

Views are used to subset data at registration time, while query predicates are used
to subset data at subscription time. In many situations, it depends on your
preference whether to use subscription predicates or registered views. A few
factors might influence you:
v Views might already exist and meet the qualifications to be a registered view for

replication.
v You might find views to be an easier approach to verify the subsetting that you

defined for replication.
v Subscription predicates are stored in replication control tables, which eliminates

the need to create and manage views.

Do not use any of these techniques if you are replicating to replica target tables.
The master table and replica tables in update-anywhere configurations replicate
data back and forth to one another. Replica tables can have a subset of the source
table columns as long as the columns that are not used are nullable. Otherwise,
replica tables must contain the same columns as the source table so you cannot
subset columns, add new columns, or rename columns.

Subsetting data during registration
Certain advanced techniques are useful when subsetting your data before or after
it is captured from a registered source. These techniques are especially useful if
you want to capture the same subset of data once and replicate that subset to
many target tables.

You can choose to subset data either before or after it is captured from a registered
source. The techniques in this section can be used in all replication configurations
except update-anywhere or peer-to-peer replication.

Subsetting data during registration can improve replication performance because it
reduces the amount of data that the Capture program adds to the CD table and the
amount that the Apply program reads. It also reduces storage because there are
fewer rows in the CD table.

© Copyright IBM Corp. 1994, 2012 97

Subsetting source data using views
When you register a source, you choose the columns that you want to make
available for replication. The columns that you select are captured for replication.
In some cases, after you register a source for change replication, you might want to
register a view of the source.

For example, assume that the Human Resources department maintains a table that
contains personnel data, including salary information. To maintain a backup
database, the whole personnel table is registered and subscribed to at the backup
site. However, if another target site wants to subscribe to the personnel table, you
might want to hide the salary information from this second subscriber. The
solution is to register a view over the personnel table, and allow access privileges
on only the registered view for the second subscriber, so that the salary
information is protected from access. A subscription can be created on this
registered view.

You can also register views that include two or more source tables. For example, if
you have a customer table and a branch table, the only way to adequately subset
the customers to the target correctly might be by joining the two tables so that only
the customers for a certain branch are replicated to a certain target. In this case,
you must take care to avoid double-deletes.

Defining triggers on CD tables to prevent specific rows from
being captured

In some replication scenarios, you might want to prevent certain changes in rows
from being captured and replicated to the target tables. To suppress certain
changes from being captured, define triggers on your CD tables.

When you register a source, the administration tools let you select which columns
you want captured, but they does not let you prevent certain changes in those
rows from being replicated. In some replication scenarios, you might want to
prevent certain changes in rows from being captured and replicated to the target
tables. For example, if you want your target tables to contain all rows and you
never want any rows deleted from them, you do not want to replicate deletions
from the source.

To suppress capture of certain changes, define triggers on your CD tables. These
triggers specify what changes the Capture program should ignore, preventing the
addition of rows corresponding to changes made in the CD table. You cannot
create these triggers by using the Replication Center, but you can manually create
these triggers for an existing CD table (that is, after the source is registered). The
Capture program ignores any trigger failure that shows an SQLSTATE of 99999
and the row is not inserted into the CD table.

For example, suppose that you want all source table DELETE operations to be
suppressed during replication from the table SAMPLE.TABLE, where the CD table
is SAMPLE.CD_TABLE. The following trigger suppresses any rows that are
DELETE operations from being inserted into the CD table:
CREATE TRIGGER SAMPLE.CD_TABLE_TRIGGER
NO CASCADE BEFORE INSERT ON SAMPLE.CD_TABLE
REFERENCING NEW AS CD
FOR EACH ROW MODE DB2SQL
WHEN (CD.IBMSNAP_OPERATION = ’D’)
SIGNAL SQLSTATE ’99999’ (’CD INSERT FILTER’)

98 SQL Replication Guide and Reference

You might want to add the create trigger statement to the SQL that was generated
during registration. You must run the modified SQL to complete the registration
and to create the triggers on the CD tables.

These triggers execute every time the Capture program tries to insert a row in the
CD table, so you need to consider if using triggers here gives you the best
performance in your replication configuration. You can increase or decrease data
throughput by adding triggers to CD tables. Use triggers on the CD table to
suppress a significant number of changes at the source. If you plan to capture most
of the changes, but want to suppress some of them from being replicated, you
might want to suppress the unwanted rows during subscription.

Subsetting data during subscription
Subsetting data during subscription can improve replication performance by
reducing the amount of data that the Apply program fetches. Fewer rows in the
target tables also reduces storage requirements.

The Apply program uses predicates to determine what data to copy during full
refresh and change-capture replication. The Replication Center and ASNCLP allow
you to specify predicate values for full refresh and change-capture replication. You
might want to add additional predicate information to use only for change-capture
replication because that information is not available during full refresh. You must
add this additional predicate information to the IBMSNAP_SUBS_MEMBR table in
the UOW_CD_PREDICATES column through SQL that you provide.

For example, suppose that you have a registered table called ALL.CUSTOMERS,
and its associated CD table is called ALL.CD_CUSTOMERS. Assume that you want
the subscription target to contain only a subset of ALL.CUSTOMERS where the
ACCT_BALANCE column is greater than 50000, and you want to maintain
historical data in the target table (that is, you do not want any data deleted from
the target table). You can create the subscription-set member with a PREDICATES
value of 'ACCT_BALANCE > 50000'.

You cannot use the Replication Center or ASNCLP to prevent deletes at the target
table, because the information about the type of operation is stored in the CD table
and is not available at the source table or view. Therefore, you must generate the
additional change-capture predicate by using an SQL statement that includes the
following information. Depending on your scenario, you might need to add
columns to the update statement to ensure that you update a single row in the
IBMSNAP_SUBS_MEMBR table:
UPDATE ASN.IBMSNAP_SUBS_MEMBR SET UOW_CD_PREDICATES = ’IBMSNAP_OPERATION <>’’D’’’

WHERE APPLY_QUAL = ’apply_qual’ AND SET_NAME = ’set_name’ AND
SOURCE_OWNER = ’ALL’ AND SOURCE_TABLE = ’CUSTOMERS’

You must set up the UOW_CD_PREDICATES column manually for any
subscription-set member predicate that references any column that is not available
during full refresh, including the before-image columns in the CD table, any
overhead columns from the CD table, or any column from the UOW table.

By default, the Apply program does not join the UOW table and the CD table for
user-copy target tables; it fetches and applies data directly from the CD table. If the
predicate has to reference the UOW table, and the target table is a user copy, you
must set the value of the JOIN_UOW_CD column to Y in the
IBMSNAP_SUBS_MEMBR table. Setting this flag ensures that the Apply program
joins the UOW and CD tables.

Chapter 7. Subsetting data in an SQL Replication environment 99

If you want to specify predicates that exceed 1024 bytes (the capacity of the
PREDICATES column of the IBMSNAP_SUBS_MEMBR table) for a row subset, you
must use a source view.

If you are using complex predicate statements for a subscription set, enclose the
entire expression in parentheses. For example, when using the AND and OR
clauses in a predicate statement, enclose the expression as follows:
((TOSOURCE = 101 AND STATUS IN (202,108,109,180,21,29,32,42))
OR (SOURCE = 101))

100 SQL Replication Guide and Reference

Chapter 8. Manipulating data in an SQL Replication
environment

You can transform or enhance your source data before it is replicated to the target
tables.

For example, you might want to manipulate your data in any of the following
ways:
v Perform data cleansing
v Perform data aggregation
v Populate columns at the target table that do not exist at the source

Use the Apply program to manipulate data, either before or after it applies data to
the target, in any of the following ways:
v Using stored procedures or SQL statements
v “Mapping source and target columns that have different names” on page 102
v “Creating computed columns” on page 103

You can manipulate data either before or after it is captured. Manipulate your data
at registration instead of at subscription if you want to manipulate the data once
and replicate transformed data to many target tables. Manipulate your data during
subscription instead of registration if you want to capture all of the source data
and selectively apply transformed data to individual targets.

In some replication scenarios, you might want to manipulate the content of the
source data that is stored in the CD table. A trigger, an expression through the
subscription, or a source view can all be used to get the same job done. Each
method has its pros and cons. A trigger might be too costly in terms of CPU cycles
used. A view lets you set up the function once rather than in multiple
subscriptions.

For example, if a particular value is missing in the source table, you might not
want the Capture program to capture null values.

You can use triggers on your CD table to specify conditions for the Capture
program to enhance the data when inserting data to the CD table. In this case, you
can specify that the Capture program should insert a default value in the CD table
when it encounters a null value in the source. You can use the following code to
create a trigger that supplies an unambiguous default if data is missing from the
source table update:
CREATE TRIGGER ENHANCECD
NO CASCADE BEFORE INSERT ON CD_TABLE
REFERENCING NEW AS CD
FOR EACH ROW MODE DB2SQL
WHEN (CD.COL1 IS NULL)
SET CD.COL1 =’MISSING DATA’
END

Instead of the trigger, you can use the COALESCE scalar function of DB2 in a
registered source view or in a subscription expression. In a registered view, the
coalesce function returns the first non-null value.

© Copyright IBM Corp. 1994, 2012 101

Partial sample that uses a source view
CREATE VIEW SAMPLE.SRCVIEW (columns) AS SELECT

... COALESCE(A.COL1, ’MISSING DATA’) ...
FROM SAMPLE.TABLE A

Partial sample using an expression
COALESCE(CD.COL1, ’MISSING DATA’)

Enhancing data by using stored procedures or SQL statements
When you define subscription set information, you can also define run-time
processing statements by using SQL statements or stored procedures that you want
the Apply program to run every time it processes a specific set. These run-time
processes enable data manipulation during replication.

Such statements are useful for pruning CCD tables and controlling the sequence in
which subscription sets are processed. You can run the run-time processing
statements at the Capture control server before a subscription set is processed, or
at the target server before or after a subscription set is processed. For example, you
can execute SQL statements before retrieving the data, after replicating it to the
target tables, or both.

Restriction for nicknames: Federated DB2 tables (which use nicknames) are
usually updated within a single unit of work. When you add an SQL statement to
a subscription set that runs after the Apply program applies all data to the targets,
you must precede that SQL statement with an SQL COMMIT statement in either of
the following two situations:
v The SQL statement inserts into, updates, or deletes from a nickname on a server

other than the server where the target tables or target nicknames for the
subscription set are located.

v The SQL statement inserts into, updates, or deletes from a table local to the
Apply control server, but the target nicknames for the subscription set are
located on a remote server.

The extra COMMIT statement commits the Apply program's work before it
processes your added SQL statement.

Stored procedures use the SQL CALL statement without parameters. The
procedure name must be 18 characters or less in length (for System i, the
maximum is 128). If the source or target table is in a non-DB2 relational database,
the SQL statements are executed against the federated DB2 database. The SQL
statements are never executed against a non-DB2 database. The run-time
procedures of each type are executed together as a single transaction. You can also
define acceptable SQLSTATEs for each statement.

Use the ASNDONE exit routine if you want to manipulate data after processing of
each set completes (rather than after processing of a specific set completes).

Mapping source and target columns that have different names
When you use the Replication Center or ASNCLP command-line program to define
a subscription-set member and the target table that is being referenced does not
exist, you can rename columns at the target, regardless of the target-table type. You
can also change compatible column attributes.

102 SQL Replication Guide and Reference

Also, you can change column attributes (data type, length, scale, precision, and
nullability) where they are compatible. You cannot use the replication
administration tools to rename columns of existing target tables.

The administration tools try to map columns by name if the target table that is
referenced by the subscription-set member exists. If the source and target columns
do not match, you can either use the tools to map the columns from the source to
the target, or you can create a view of the target table that contains a match to the
source column names.

Creating computed columns
Although you cannot change the names of columns in existing target tables, you
can modify the expressions of the source columns so that they map correctly to, or
are compatible with, the columns in existing target tables.

Before you begin

When you create expressions that reference source table columns, prefix the source
column name with a colon (:) and after the column name add a space. For
example, :COL1 .

Using SQL expressions, you can derive new columns from existing source columns.
For aggregate target-table types, you can define new columns by using aggregate
functions such as COUNT or SUM. For other types of target tables, you can define
new columns by using scalar functions in expressions. If the columns in source and
target tables only differ by name but are otherwise compatible, you can use the
Replication Center or ASNCLP to map one column to the other.

For example, assume that you have existing source table (SRC.TABLE) and target
table (TGT.TABLE):
CREATE TABLE SRC.TABLE (SRC_COL1 CHAR(12) NOT NULL, SRC_COL2 INTEGER,

SRC_COL3 DATE, SRC_COL4 TIME, SRC_COL5 VARCHAR(25))

CREATE TABLE TGT.TABLE (TGT_COL1 CHAR(12) NOT NULL,
TGT_COL2 INTEGER NOT NULL, TGT_COL3 TIMESTAMP, TGT_COL4 CHAR(5))

Use the following steps to map the desired target table by using computed
columns during subscription:
1. Use the Replication Center to map SRC_COL1 from the source table to

TGT_COL1 in the target table. Since these columns are compatible, you do not
have to use an expression to map one to the other.

2. Use the expression COALESCE(:SRC_COL2, 0) to compute the column values and
map to provide TGT_COL2. Because SRC_COL2 is nullable and TGT_COL2 is
NOT NULL, you must perform this step to ensure that a NOT NULL value is
provided for TGT_COL2.

3. Use the expression TIMESTAMP(CHAR(:SRC_COL3) CONCAT CHAR(:SRC_COL4)) to
compute the column values and map to provide TGT_COL3. This column
expression provides data to map to the timestamp column in the target
database.

4. Use the expression SUBSTR(:SRC_COL5,1,5) to compute the column values and
map the result so that it is applied to the target column TGT_COL2.

Chapter 8. Manipulating data in an SQL Replication environment 103

104 SQL Replication Guide and Reference

Chapter 9. Operating the Capture program for SQL
Replication

This section pertains to log-based capture for DB2 databases. If you are using
trigger-based capture, the triggers are created at registration, and you do not
perform the operations described in this section.

Starting the Capture program (Linux, UNIX, Windows, and z/OS)
Start the Capture program to begin capturing data from the log for DB2 databases.
If you are using trigger-based capture for a non-DB2 relational source, triggers are
created at registration and you do not need to start the Capture program.

Before you begin

v Configure connections to the source server and the Capture control server.
v Ensure that you have the proper authorization.
v Create control tables for the appropriate Capture schema.
v Define registrations.
v Configure the Capture and Apply programs.

About this task

Note: The Capture program does not capture any changes made by DB2 utilities,
because the utilities do not log changes in a way that is visible to the Capture
program.

When you start the Capture program, you can also specify startup parameters.

After you start the Capture program, the Capture program might not start
capturing data right away. It will start capturing data only after the Apply
program signals the Capture program that it has refreshed a target table fully. Then
the Capture program starts capturing changes from the log for a given source
table.

Procedure

To start the Capture program on Linux, UNIX, Windows, and z/OS, use one of the
following methods:

Method Description

Replication Center Use the Start Capture window. To open the window, click the
Capture Control Servers folder in the Operations branch of the
object tree, and in the contents pane right-click the Capture control
server on which the Capture program that you want to start is
located. Select Start Capture.

asncap system
command

Use this command to start the Capture program and optionally
specify startup parameters.

© Copyright IBM Corp. 1994, 2012 105

Method Description

z/OS console or TSO

On z/OS, you can start the Capture program by using JCL or as a
system-started task. You can specify new invocation parameter
values when you start a Capture program with JCL.

z/OS has a 100-byte limit for the total length of parameters that
you can specify in the PARMS= field. To overcome this limitation,
replication programs now allow you to specify as many additional
parameters as needed in the SYSIN data set.

When the SYSIN DD statement is included in the invocation JCL,
the Capture program automatically concatenates what is specified
in the SYSIN dataset to the PARMS= parameters. You can only
specify Capture parameters in the SYSIN data set. Any LE
parameters must be specified in the PARMS= field or in LE
_CEE_ENVFILE=DD, followed by a slash(/).

Example:

//* asterisk indicates a comment line
// CAP EXEC PGM=ASNCAP,PARMS=’LE/Capture parameters’
//* Parameters can be any or no LE parameters and any or
//* no Capture parameters
//SYSIN DD *
//* additional Capture parameters, one or more
//* parameters on each line

CAPTURE_SERVER=DSN!! CAPTURE_SCHEMA=CAPCAT
DEBUG=Y LOGSTDOUT=N

Windows services

You can create a DB2 replication service on Windows operating
systems to start the Capture program automatically when the
system is started.

To verify whether a Capture program started, use one of the following methods:

v If you are running in batch mode, examine the z/OS console
or z/OS job log for messages that indicate that the program started.

v Examine the Capture diagnostic log file (capture_server.capture_schema.CAP.log on
z/OS and db2instance.capture_server.capture_schema.CAP.log on Linux, UNIX, and
Windows) for a message that indicates that the program is capturing changes.
For example:
ASN0104I Change capture has been started for the source
table "REGRESS.TABLE1" for changes found in the log beginning
with log sequence number "0000:0275:6048".

v Check the IBMSNAP_CAPTRACE table for a message that indicates that the
program is capturing changes.

v Use the Capture Messages window in the Replication Center to see a message
that indicates that the program started. To open the window, right-click the
Capture server that contains the Capture program whose messages you want to
view and select Reports > Capture Messages.

v Use the Check Status window in the Replication Center or the asnccmd status
command to view the status of all Capture threads. To open the window,
right-click the Capture server where the Capture program that you want to
check is located and select Check Status.

106 SQL Replication Guide and Reference

Starting the Capture program from a known point in the DB2 log
You can prompt the Capture program to reread the DB2 recovery log from a
known point and reprocess log records that were already captured and applied.

About this task

Important: This procedure should only be used when the target table is a user
copy.

Procedure

1. Stop the Capture and Apply programs.
2. Set the Capture RETENTION_LIMIT and LAG_LIMIT values to their

maximum, as shown in the following SQL statement:
UPDATE ASN.IBMSNAP_CAPPARMS SET RETENTION_LIMIT=99999,LAG_LIMIT=99999;

3. If the SYNCHPOINT values in the IBMSNAP_UOW, CD,
IBMSNAP_REGISTER, and IBMSNAP_PRUNCNTL tables are higher than the
LSN value from which you want to start Capture, use SQL to set the value to
the point from which you want to start recapturing transactions. In the
following example, 00000006F5638E60000 is the log sequence number and
2009-09-05-09.55.43.316970 is the timestamp from which you send the Capture
program back to start reading the log.
UPDATE ASN.IBMSNAP_REGISTER SET SYNCHPOINT = x’00000006F5638E600000’,
SYNCHTIME=TIMESTAMP(’2009-05-05-09.55.43.316970’);

UPDATE ASN.IBMSNAP_REGISTER SET CD_OLD_SYNCHPOINT=x’00000006F5638E600000’,
CD_NEW_SYNCHPOINT=x’00000006F5638E600000’,
CCD_OLD_SYNCHPOINT=x’00000006F5638E600000’
WHERE GLOBAL_RECORD=’N’;

UPDATE ASN.IBMSNAP_SUBS_SET SET
LASTRUN=TIMESTAMP(’2009-09-05-09.55.43.316970’),
LASTSUCCESS=TIMESTAMP(’2009-05-05-09.55.43.316970’),
SYNCHPOINT=x’00000006F5638E600000’,
SYNCHTIME=TIMESTAMP(’2009-05-05-09.55.43.316970’)
WHERE WHOS_ON_FIRST=’S’ AND SET_NAME=’BACK1’;

UPDATE ASN.IBMSNAP_PRUNCNTL SET SYNCHPOINT =x’00000006F5638E600000’,
SYNCHTIME=TIMESTAMP(’2009-05-05-09.55.43.316970’);

UPDATE ASN.IBMSNAP_PRUNE_SET SET SYNCHPOINT =x’00000006F5638E600000’,
SYNCHTIME=TIMESTAMP(’2009-05-05-09.55.43.316970’);

DELETE FROM ASN.IBMSNAP_UOW;

INSERT INTO ASN.IBMSNAP_RESTART (MAX_COMMITSEQ, MIN_INFLIGHTSEQ,
MAX_COMMIT_TIME,CURR_COMMIT_TIME,CAPTURE_FIRST_SEQ)
values (,x’00000006F5638E600000’,
’2009-05-05-09.55.43.316970’,’2009-05-05-09.55.43.316970’,
x’00000006F5638E600000’);

4. Start the Capture program in WARMNS mode, and start the Apply program
with your typical startup parameters.

Starting the Capture program (System i)
Start the Capture program to begin capturing data from the journal.

Before you begin

Chapter 9. Operating the Capture program for SQL Replication 107

Before you start the Capture program, ensure that the following prerequisites are
met:
v You have the proper authorization.
v The control tables are created for the appropriate Capture schema, and

registrations are defined.
v The replication programs are configured if the Capture program is reading a

remote journal.

About this task

After you start the Capture program, the Capture program might not start
capturing data right away. It will start capturing data only after the Apply
program signals the Capture program to start capturing changes from the log for a
given source table.

Procedure

To start the Capture program on System i, use one of the following methods:

Method Description

STRDPRCAP system
command (System i)

Use the Start DPR Capture (STRDPRCAP) command to start
capturing changes.

Replication Center Use the Start Capture window. To open the window, click the
Capture Control Servers folder in the Operations branch of the
object tree, and in the contents pane right-click the Capture control
server on which the Capture program that you want to start is
located. Select Start Capture.

Default operating parameters for the Capture program
When you create the Capture control tables, default values for the Capture
program's operating parameters are saved in the IBMSNAP_CAPPARMS table.

The default values are shown in Table 7 and Table 8 on page 109.

Table 7. Default settings for Capture operational parameters (Linux, UNIX, Windows, z/OS)

Operational parameter Default value Column name in
IBMSNAP_CAPPARMS table

capture_server DB2DBDFT1 not applicable

capture_schema ASN2 not applicable

add_partition n4 not applicable

asynchlogrd n4 not applicable

retention_limit 10080 minutes RETENTION_LIMIT

lag_limit 10080 minutes LAG_LIMIT

commit_interval 30 seconds COMMIT_INTERVAL

prune_interval 300 seconds PRUNE_INTERVAL

trace_limit 10080 minutes TRACE_LIMIT

monitor_limit 10080 minutes MONITOR_LIMIT

108 SQL Replication Guide and Reference

Table 7. Default settings for Capture operational parameters (Linux, UNIX, Windows,
z/OS) (continued)

Operational parameter Default value Column name in
IBMSNAP_CAPPARMS table

monitor_interval 300 seconds MONITOR_INTERVAL

memory_limit 32 MB MEMORY_LIMIT

autoprune y3 AUTOPRUNE

term y3 TERM

autostop n4 AUTOSTOP

caf n4 not applicable

logread_prefetch Y 3 for partitioned
databases; N 4 for
nonpartitioned databases

not applicable

logreuse n4 LOGREUSE

logstdout n4 LOGSTDOUT

sleep_interval 5 seconds SLEEP

capture_path Directory where Capture
was started5

CAPTURE_PATH

startmode warmsi6 STARTMODE

Note:

1. The Capture control server is the value of the DB2DBDFT environment variable for
Windows, Linux, and UNIX, if that variable is specified. There is no default value for
z/OS.

2. You cannot change the default for the Capture schema. To use another Capture schema,
use the capture_schema startup parameter.

3. Yes

4. No

5. If Capture starts as a Windows service, its capture path is \sqllib\bin.

6. The Capture program warm starts. It switches to cold start only if this is the first time
that the program is starting.

Table 8. Default settings for Capture operational parameters (System i)

Operational parameter Default value Column name in
IBMSNAP_CAPPARMS table

CAPCTLLIB ASN1 not applicable

JOBD *LIBL/QZSNDPR not applicable

JRN *ALL not applicable

RETAIN 10080 minutes RETENTION_LIMIT

LAG 10080 minutes LAG_LIMIT

FRCFRQ 30 seconds COMMIT_INTERVAL

CLNUPITV *IMMED 2 not applicable

CLNUPITV 86400 seconds2 PRUNE_INTERVAL

CLNUPITV *IMMED 2 not applicable

TRCLMT 10080 minutes TRACE_LIMIT

MONLMT 10080 minutes MONITOR_LIMIT

Chapter 9. Operating the Capture program for SQL Replication 109

Table 8. Default settings for Capture operational parameters (System i) (continued)

Operational parameter Default value Column name in
IBMSNAP_CAPPARMS table

MONITV 300 seconds MONITOR_INTERVAL

MEMLMT 32 MB MEMORY_LIMIT

WAIT 120 seconds not applicable

RESTART *YES3 not applicable

Note:

1. You cannot change the default for the Capture schema. To use another Capture schema,
specify the CAPCTLLIB parameter when you start the Capture program. The default
values for most other operational parameters are stored in the IBMSNAP_CAPPARMS
table.

2. CLNUPITV has two sub-parameters. By default, the Capture program prunes soon after it
starts running and again after every prune interval is reached (which, by default, is
every 24 hours).

3. By default, the Capture program warm starts.

Descriptions of Capture operating parameters
When you start the Capture program, you can optionally select startup parameters.
Here are the startup parameters and recommendations for when to choose one
value over another for each parameter.

All parameters apply to z/OS, Linux, UNIX, and Windows, unless otherwise
noted.
v “add_partition (Linux, UNIX, Windows)” on page 111
v “asynchlogrd” on page 111
v “autoprune” on page 111
v “autostop” on page 111
v “caf (z/OS)” on page 112
v “capture_path” on page 112
v “capture_schema” on page 113
v “capture_server” on page 113
v “commit_interval” on page 114
v “hs (z/OS)” on page 114
v “ignore_transid” on page 114
v “lag_limit” on page 115
v “logreuse” on page 115
v “logstdout” on page 116
v “memory_limit” on page 116
v “monitor_interval” on page 116
v “prune_interval” on page 117
v “retention_limit” on page 117
v “sleep_interval” on page 118
v “startmode” on page 118
v “term” on page 119
v “trace_limit” on page 119

110 SQL Replication Guide and Reference

add_partition (Linux, UNIX, Windows)

Default: add_partition=n

The add_partition parameter specifies whether the Capture program starts reading
the log file for the newly added partitions since the last time the Capture program
was restarted.

Set add_partition=y to have the Capture program read the log files. On each new
partition, when the Capture program is started in the warm start mode, Capture
will read the log file starting from the first log sequence number (LSN) that DB2
used after the first database CONNECT statement is issued for the DB2 instance.

asynchlogrd

Default: asynchlogrd=n

The asynchlogrd parameter specifies that you want the Capture program to use a
dedicated thread for capturing transactions from the DB2 recovery log. The
transaction reader thread prefetches committed transactions in a memory buffer,
from which another thread gets the transactions and processes them into SQL
statements for insertion into the CD table. This asynchronous mode can improve
Capture throughput in all environments with particular benefits for partitioned
databases and z/OS data-sharing.

On systems with very high activity levels, this prefetching might lead to more
memory usage. Adjust the memory_limit parameter accordingly. If you have a low
volume of changes, you might prefer the default value of N to reduce CPU
consumption.

autoprune

Default: autoprune=y

The autoprune parameter specifies whether or not the Capture program
automatically prunes some of its control tables. By default, with autoprune=y, the
Capture program automatically prunes the rows in the CD and UOW tables as
well as IBMSNAP_CAPTRACE, IBMSNAP_CAPMON, and IBMSNAP_SIGNAL
tables. If you set autoprune=n, you must use the prune command to prune these
tables.

If you start Capture with autopruning on, set the prune interval to optimize the
pruning frequency for your replication environment. The Capture program uses
the following parameters to determine which rows are old enough to prune:
v retention_limit for CD, UOW, and signal tables
v monitor_limit for monitor tables
v trace_limit for the Capture trace table

autostop

Default: autostop=n

The autostop parameter controls whether the Capture program stays up or
terminates after it reaches the end of the log.

Chapter 9. Operating the Capture program for SQL Replication 111

By default (autostop=n) the Capture program does not terminate after retrieving
the transactions.

Use the autostop=y option if you are replicating in a mobile or an occasionally
connected environment. Autostop ensures that the Capture program retrieves all
eligible transactions and stops when it reaches the end of the log. You need to start
Capture again to retrieve more transactions. You might want to use the autostop=y
option in a test environment, too.

Recommendation: In most cases you should not use autostop=y because it adds
overhead to the administration of replication (for example, you need to keep
restarting the Capture program).

caf (z/OS)

Default: n

The default option is caf =n. You can override this default and prompt the
Capture program to use the Call Attach Facility (CAF) by specifying the caf =y
option. The caf =y option specifies that the replication program overrides the
default Recoverable Resource Manager Services (RRS) connect and runs with CAF
connect.

If RRS is not available you will get a message and the replication program
switches to CAF. The message warns that the program was not able to initialize a
connection because RRS is not started. The program attempts to use CAF instead.
The program runs correctly with CAF connect.

capture_path

The Capture path is the directory where the Capture program stores its work files
and log file. By default, the Capture path is the directory where you start the
program.

Because the Capture program is a POSIX application, the default Capture
path depends on how you start the program:

USS command prompt
The directory where you started the program.

Started task or through JCL
The home directory in the USS file system of the user ID that is
associated with the started task or job.

You can specify either a path name or a high-level qualifier (HLQ), such as
//CAPV9. When you use a HLQ, sequential files are created that conform
to the file naming conventions for z/OS sequential data set file names. The
sequential data sets are relative to the user ID that is running the program.
Otherwise these file names are similar to those that are stored in an
explicitly named directory path, with the HLQ concatenated as the first
part of the file name. For example, sysadm.CAPV8.filename. Using an HLQ
might be convenient if you want to have the Capture log and LOADMSG
files be system-managed (SMS).

If you want the Capture started task to write to a .log data set with a user
ID other than the ID that is executing the task (for example TSOUSER),

112 SQL Replication Guide and Reference

you must specify a single quotation mark (‘) as an escape character when
using the SYSIN format for input parameters to the started task. For
example, if you wanted to use the high-level qualifier JOESMITH, then the
user ID TSOUSER that is running the Capture program must have RACF
authority to write data sets by using the high-level qualifier JOESMITH, as
in the following example:
//SYSIN DD *
CAPTURE_PATH=//’JOESMITH
/*

You can change the Capture path to specify where you want the Capture
program to store its files. You can specify a path name, for example:
/home/db2inst/capture_files. If you start the Capture program as a
Windows service, by default the Capture program starts in the \sqllib\bin
directory.

capture_schema

Default: capture_schema=ASN

The capture_schema parameter identifies which Capture program you want to
start. By default, the Capture schema is ASN.

If you already set up another schema, you can start the Capture program by
specifying that schema with the capture_schema parameter.

You might use multiple Capture schemas in the following situations:

Achieving application independence
Create multiple Capture schemas so that you can have one Capture
program for application A and another Capture program for application B.
Each Capture program uses its own control tables. If one of the Capture
programs is down, only one application is affected. The other application is
not affected because it is being serviced by another Capture program.

Meeting different application requirements
Create multiple Capture schemas if you have different applications that use
the same source tables but have different data requirements. For example,
a payroll application needs sensitive employee data while an internal
employee registry does not. You can register the confidential information in
one Capture schema, but not in the other Capture schema. Similarly, you
can register a table more than once if some applications need the Capture
program to behave differently. For example, perhaps some applications
require that the Capture program saves updates as delete and insert pairs.

Isolating problems with registrations
If you have a problem with one registration, you can create another
Capture schema and move the working registrations to it. That way you
can debug the problem registration in the original schema and run the
unaffected registrations by using the other schema.

capture_server

Default: capture_server=None

Chapter 9. Operating the Capture program for SQL Replication 113

Default: capture_server=value of DB2DBDFT environment
variable, if it is set

The capture_server parameter specifies the Capture control server.

You must specify the capture_server parameter. The Capture
control tables are located at the DB2 subsystem name. Because the Capture
program reads the DB2 log, the Capture program must run at the same server as
the source database.

The Capture control tables (such as the register table) contain
the registration information for the source tables and are located at the capture
control server.

commit_interval

Default: commit_interval=30

The commit_interval parameter specifies how often, in seconds, the Capture
program commits data to the Capture control tables, including the UOW and CD
tables. By default, the Capture program waits 30 seconds before committing data
to the CD and UOW tables. Locks are held on the tables updated within the
commit interval. Higher values for the commit_interval parameter reduce CPU
usage for the Capture program but also might increase the latency for frequently
running subscription sets because the Apply program can fetch only committed
data.

hs (z/OS)

Default: hs=n

The hs parameter specifies whether the Capture program creates one or more spill
files in hiperspace (high performance data space) if Capture exceeds its memory
limit during an attempt to write a row in memory. By default (hs=n) Capture
creates the spill file on disk or virtual input/output (VIO).

Recommendation: Allocate enough memory to the Capture job to avoid the need
for spill files.

ignore_transid

Default: None

The ignore_transid=transaction_ID parameter specifies that the Capture program
ignores the transaction that is identified by transaction_ID. The transactions are not
replicated or published. You can use this parameter if you want to ignore a very
large transaction that does not need to be replicated, for example a large batch job.
The value for transaction_ID is a 10-byte hexadecimal identifier in the following
format:

0000:xxxx:xxxx:xxxx:mmmm

114 SQL Replication Guide and Reference

Where xxxx:xxxx:xxxx is the transaction ID, and mmmm is the data-sharing
member ID. You can find the member ID in the last 2 bytes of the log
record header in the LOGP output. The member ID is 0000 if data-sharing
is not enabled.

nnnn:0000:xxxx:xxxx:xxxx

Where xxxx:xxxx:xxxx is the transaction ID, and nnnn is the partition
identifier for partitioned databases (this value is 0000 if for non-partitioned
databases).

Tip: The shortened version transid is also acceptable for this parameter.

lag_limit

Default: lag_limit=10 080

The lag_limit parameter represents the number of minutes that the Capture
program can lag in processing records from the DB2 log.

By default, if log records are older than 10 080 minutes (seven days), the Capture
program will not start unless you specify a value for the startmode parameter that
allows the Capture program to switch to a cold start.

If the Capture program will not start because the lag limit is reached, you should
determine why the Capture program is behind in reading the log. If you are in a
test environment, where you have no practical use for the lag limit parameter, you
might want to set the lag limit higher and try starting the Capture program again.
Alternatively, if you have very little data in the source table in your test
environment, you might want to use a cold start and fully refresh the data in all
the target tables.

logreuse

Default: logreuse=n

The Capture program stores operational information in a log file.

The log file name does not contain a DB2 instance name. For
example, SRCDB1.ASN.CAP.log. This file is stored in the directory that is specified
by the capture_path parameter. If the capture_path parameter is specified as a
High Level Qualifier (HLQ), the file naming conventions of z/OS sequential data
set files apply; therefore, the capture_schema name that is used to build the log file
name is truncated to the first 8 characters of the name.

The name of the log file is
db2instance.capture_server.capture_schema.CAP.log. For example,
DB2INST.SRCDB1.ASN.CAP.log.

By default (logreuse=n), the Capture program appends messages to the log file,
even after the Capture program is restarted. Keep the default if you want the
history of the messages. In the following situations you might want the Capture
program to delete the log and re-create it when it restarts (logreuse=y):
v The log is getting large and you want to clean out the log.
v You don't need the history that is stored in the log.

Chapter 9. Operating the Capture program for SQL Replication 115

v You want to save space.

logstdout

Default: logstdout=n

The logstdout parameter is available only if you use the asncap command, it is not
available in the Replication Center.

By default, the Capture program sends some warning and informational messages
only to the log file. You might choose to send such messages to standard output
(logstdout=y) if you are troubleshooting or if you are monitoring how your
Capture program is operating in a test environment.

memory_limit

Default: memory_limit=32

The memory_limit parameter specifies the amount of memory, in megabytes, that
the Capture program can use.

By default, the Capture program uses 32 megabytes of memory to store transaction
information before it spills to a file located in the capture_path directory. You can
modify the memory limit based on your performance needs. Setting the memory
limit higher can improve the performance of Capture but decreases the memory
available for other uses on your system. Setting the memory limit lower frees
memory for other uses. If you set the memory limit too low and the Capture
program spills to a file, you will use more space on your system and the I/O will
slow down your system.

You can monitor the memory limit by using the Replication Alert Monitor. You can
also use the data in the CAPMON table to determine the number of source system
transactions spilled to disk due to memory restrictions. Sum the values in the
TRANS_SPILLED column of the CAPMON table.

monitor_interval

Default: monitor_interval=300

The monitor_interval parameter specifies how often the Capture program writes
information to the IBMSNAP_CAPMON table.

By default, the Capture program inserts rows into the Capture monitor table every
300 seconds (5 minutes). This operational parameter works in conjunction with the
commit interval. If you are interested in monitoring data at a granular level, use a
monitor interval that is closer to the commit interval.

monitor_limit

Default: monitor_limit=10080

The monitor_limit parameter specifies how old the rows must be in the monitor
table before they can be pruned.

By default, rows in the IBMSNAP_CAPMON table that are older than 10 080
minutes (seven days) are pruned. The IBMSNAP_CAPMON table contains

116 SQL Replication Guide and Reference

operational statistics for the Capture program. Use the default monitor limit if you
need less than one week of statistics. If you monitor the statistics frequently, you
probably do not need to keep one week of statistics and can set a lower monitor
limit so that the Capture monitor table is pruned more frequently and older
statistics are removed. If you want to use the statistics for historical analysis and
you need more than one week of statistics, increase the monitor limit.

prune_interval

Default: prune_interval=300

The prune_interval parameter specifies how often the Capture program tries to
prune old rows from some of its control tables. This parameter is valid only if
autoprune=y.

By default, the Capture program prunes the CD and UOW tables every 300
seconds (five minutes). If the tables are not pruned often enough, the table space
that they are in can run out of space, which forces the Capture program to stop. If
they are pruned too often or during peak times, the pruning can interfere with
application programs running on the same system. You can set the optimal
pruning frequency for your replication environment. Performance will generally be
best when the tables are kept small.

Before you lower the prune interval, ensure that data is being applied frequently
so that pruning can occur. If the Apply program is not applying data frequently, it
is useless to set the prune interval lower because the Apply program must
replicate the data to all targets before the CD and UOW tables can be pruned.

The prune interval determines how often the Capture program tries to prune the
tables. It works in conjunction with the following parameters, which determine
when data is old enough to prune: trace_limit, monitor_limit, retention_limit.
For example, if the prune_interval is 300 seconds and the trace_limit is 10080
seconds, the Capture program will try to prune every 300 seconds. If it finds any
rows in the trace table that are older than 10080 minutes (7 days), it will prune
them.

retention_limit

Default: retention_limit=10 080

The retention_limit parameter determines how long old data remains in the CD,
UOW, and IBMSNAP_SIGNAL tables before becoming eligible for retention limit
pruning.

If the normal pruning process is inhibited due to deactivated or infrequently run
subscription sets, data remains in the CD and UOW tables for long periods of time.
If this data becomes older than the current DB2 timestamp minus the retention
limit value, the retention limit pruning process deletes this data from the tables. If
you run your subscription sets very infrequently or stop your Apply programs,
your CD and UOW tables can grow very large and become eligible for retention
limit pruning.

Your target tables must be refreshed to synchronize them with the source if any of
the rows that are pruned are candidates for replication but for some reason they

Chapter 9. Operating the Capture program for SQL Replication 117

were not yet applied to the target table. You can avoid a full refresh from
happening by using higher retention limits; however, your CD and UOW tables
will grow and use space on your system.

If you are doing update-anywhere replication, retention limit pruning ensures that
rejected transactions are deleted. Rejected transactions result if you use conflict
detection with replica target tables and conflicting transactions are detected. The
rows in the CD and UOW tables that pertain to those rejected transactions are not
replicated and they are pruned when the retention limit is reached. A full refresh is
not required if all the old rows that were deleted pertained to rejected transactions.

Retention pruning also ensures that signal information that is no longer required is
deleted from the IBMSNAP_SIGNAL table.

sleep_interval

Default: sleep_interval=5

The sleep interval is the number of seconds that the Capture program waits before
it reads the log again after it reaches the end of the log and the buffer is empty.
For data sharing on the z/OS operating system, the sleep interval represents the
number of seconds that the Capture program sleeps after the buffer returns less
than half full.

By default, the Capture program sleeps 5 seconds. Change the sleep interval if you
want to reduce the overhead of the Capture program reading the log. A smaller
sleep interval means there is less chance of delay. A larger sleep interval gives you
potential CPU savings in a system that is not updated frequently.

startmode

Default: startmode=warmsi

You can start Capture by using one of the following start modes:

warmsi (warm start, switch initially to cold start)
The Capture program warm starts; except if this is the first time you're
starting the Capture program then it switches to cold start. Use this start
mode if you want to ensure that cold starts only happen when you start
the Capture program initially.

warmns (warm start, never switch to cold start)
The Capture program warm starts. If it can't warm start, it does not switch
to cold start. When you use warmns in your day-to-day replication
environment, you have an opportunity to repair any problems (such as
unavailable databases or table spaces) that are preventing a warm start
from occurring. Use this start mode to prevent a cold start from occurring
unexpectedly. When the Capture program warm starts, it resumes
processing where it ended. If errors occur after the Capture program
started, the Capture program terminates and leaves all tables intact.

Tip: You cannot use warmns to start the Capture program for the first time
because there is no warm start information when you initially start the
Capture program. Use the cold startmode the first time you start the
Capture program, then use the warmns startmode. If you do not want to
switch startmodes, you can use warmsi instead.

cold During cold start, the Capture program deletes all rows in its CD tables

118 SQL Replication Guide and Reference

and UOW table during initialization. All subscription sets to these
replication sources are fully refreshed during the next Apply processing
cycle (that is, all data is copied from the source tables to the target tables).
If the Capture program tries to cold start but you disabled full refresh, the
Capture program will start, but the Apply program will fail and will issue
an error message.

You rarely want to explicitly request that the Capture program performs a
cold start. Cold start is necessary only the first time the Capture program
starts, and warmsi is the recommended start mode.

Important: Do not cold start the Capture program if you want to maintain
accurate histories of change data. A gap might occur if the Apply program
cannot replicate changes before the Capture program shuts down. Also,
because you want to avoid cold starts, do not put cold start as the default
for STARTMODE in the IBMSNAP_CAPPARMS table.

term

Default: term=y

The term parameter determines how the status of DB2 affects the operation of the
Capture program.

By default, the Capture program terminates if DB2 terminates.

Use term=n if you want the Capture program to wait for DB2 to start if DB2 is not
active. If DB2 quiesces, Capture does not terminate; it remains active but it does
not use the database.

trace_limit

Default: trace_limit10080

The trace_limit specifies how old the rows must be in the IBMSNAP_CAPTRACE
table before they are pruned.

When Capture prunes, by default, the rows in the IBMSNAP_CAPTRACE table are
eligible to be pruned every 10080 minutes (seven days). The CAPTRACE table
contains the audit trail information for the Capture program. Everything that
Capture does is recorded in this table; therefore this table can grow very quickly if
the Capture program is very active. Modify the trace limit depending on your need
for audit information.

Methods of changing Capture parameters
You can change the saved values of Capture operating parameters, and you can
also temporarily override these values when you start the program or while the
program is running.

Setting new default values in the IBMSNAP_CAPPARMS table

The IBMSNAP_CAPPARMS table contains parameters that you can modify
to control the operation of the Capture program. The schema name of the
table is the Capture schema. After the table is created, it contains the
default values that are shipped for the Capture program. If the column
value in the IBMSNAP_CAPPARMS table is not set, the default values are
used.

Chapter 9. Operating the Capture program for SQL Replication 119

Specifying values for parameters when you start the Capture program
You can specify values for the Capture program when you start it. The
values that you set during startup control the behavior of Capture for the
current session, they override the default operational parameter values and
any values that might exist in the Capture parameters table. They do not
update the values in the Capture parameters table. If you do not modify
the Capture parameters table before you start the Capture program, and
you do not specify any parameters when you start the Capture program,
default values are used for the operational parameters.

Changing parameter values while the Capture program is running
While Capture is running, you can change its operational parameters
temporarily. The Capture program will use the new values until you
change the values again, or until you stop and restart the Capture
program. You can change the Capture parameters as often as you like
during the session.

Example 1

Assume that you do not want to use the default settings for the Capture commit
interval for Capture schema ASNPROD.
1. Update the Capture parameters table for the ASNPROD Capture schema. Set

the commit interval to 60 seconds; therefore, when you start the Capture
program in the future, the commit interval will default to 60 seconds.
update asnprod.ibmsnap_capparms set commit_interval=60;

2. Eventually you might want to do some performance tuning so you decide to
try starting Capture by using a lower commit interval. Instead of changing the
value in the Capture parameters table, you simply start the Capture program
with the commit interval parameter set to 20 seconds. While the Capture
program runs with a 20-second commit interval, you monitor its performance.
asncap capture_server=srcdb1 capture_schema=asnprod commit_interval=20

3. You decide that you want to try an even lower commit interval. Instead of
stopping the Capture program, you submit a change parameters request that
sets the commit interval to 15 seconds. The Capture program continues to run,
only now it commits data every 15 seconds.
asnccmd capture_server=srcdb1 capture_schema=asnprod chgparms
commit_interval=15

Important: The parameter that you are changing must immediately follow the
chgparms.

4. You can continue monitoring the performance and changing the commit
interval parameter without stopping the Capture program. Eventually, when
you find the commit interval that meets your needs, you can update the
Capture parameters tables (as described in Step 1) so that the next time you
start the Capture program it uses the new value as the default commit interval.

Example 2

Assume that you do not want to use the default settings for the Capture commit
interval for Capture schema ASNPROD.

120 SQL Replication Guide and Reference

1. Update the Capture parameters table for the ASNPROD Capture schema. Set
the commit interval to 90 seconds; therefore, when you start the Capture
program in the future the commit interval will default to 90 seconds.
CHGDPRCAPA CAPCTLLIB(ASNPROD) FRCFRQ(90)

2. Eventually you might want to do some performance tuning so you decide to
try starting Capture by using a lower commit interval. Instead of changing the
value in the Capture parameters table, you simply start the Capture program
with the commit interval parameter set to 45 seconds. As the Capture program
runs with a 45-second commit interval, you monitor its performance.
STRDPRCAP CAPCTLLIB(ASNPROD) FRCFRQ(45)

3. You decide that you want to try an even lower commit interval. Instead of
stopping the Capture program, you submit a change parameters request that
sets the commit interval to 30 seconds. The Capture program continues to run,
only now it commits data every 30 seconds. (Note: On System i, you cannot set
the commit interval to less than 30 seconds.)
OVRDPRCAPA CAPCTLLIB(ASNPROD) FRCFRQ(30)

4. Eventually, when you find the commit interval that meets your needs, you can
update the Capture parameters tables (as described in Step 1) so that the next
time you start the Capture program it will use the new value as the default
commit interval.

Altering the behavior of a running Capture program
You can dynamically change the value of one or more Capture operating
parameters. The changes are not saved in the IBMSNAP_CAPPARMS table, but are
used until you stop the Capture program or supply new values.

About this task

You can change the following Capture
parameters while the Capture program is running:
v autoprune

v autostop

v commit_interval

v lag_limit

v logreuse

v logstdout

v memory_limit

v monitor_interval
v monitor_limit

v prune_interval

v retention_limit

v sleep_interval

v term

v trace_limit

Restriction: The amount of memory that the Capture program
can use to build messages is determined when the Capture program starts, based
on the value of the memory_limit parameter and the REGION size that is specified
in the JCL. The value of memory_limit cannot be altered with the Capture program
is running. To change the value you must first stop the Capture program.

Chapter 9. Operating the Capture program for SQL Replication 121

You can override the values for the following operational
parameters for a given Capture schema:
v CLNUPITV

v FRCFRQ

v MEMLMT

v MONLMT

v MONITV

v PRUNE

v RETAIN

v TRCLMT

When you change the values, the effects might not be immediate for all
parameters.

Procedure

To alter the behavior of a running Capture program, use one of the following
methods:

Method Description

Replication Center Use the Change Parameters for Running Capture Program window.
This method allows you to see the current values of the parameters
before changing them. To open the window, open the Operations
branch of the object tree, click Capture Control Servers, right click
a Capture control server in the contents pane, and click Change
Parameters > Running Capture Program.

asnccmd chgparms
system command

This method does not show the current values of the parameters.

OVRDPRCAPA system
command

Use the Override DPR Capture attributes (OVRDPRCAPA)
command to alter the behavior of a running Capture program.

Changing saved operating parameters in the IBMSNAP_CAPPARMS
table

The IBMSNAP_CAPPARMS table contains the saved operating parameters for the
Capture program. When you start the Capture program, it uses values from this
table unless you temporarily override these values by using startup parameters or
while the program is running.

About this task

Only one row is allowed in the IBMSNAP_CAPPARMS table, and the row is
required. If you want to change one or more of the default values, you can update
columns instead of inserting rows.

122 SQL Replication Guide and Reference

The Capture program reads this table only during startup. Changing the Capture
parameters table while the Capture program is running and reinitializing the
Capture program will not change the operation of the Capture program.

Procedure

To change the parameters saved in the IBMSNAP_CAPPARMS table, use one of
the following methods:

Method Description

Replication Center Use the Change Parameters - Saved window. To open the window,
open the Operations branch of the object tree, click Capture
Control Servers, right click a Capture control server in the contents
pane, and click Change Parameters > Saved.

CHGDPRCAPA system
command

Use the Change DPR Capture Attributes (CHGDPRCAPA)
command to change the global operating parameters that are used
by the Capture program and are stored in the
IBMSNAP_CAPPARMS table.

The parameter changes take effect only after you stop and start the Capture
program.

Stopping the Capture program
You can stop the Capture program for a particular Capture schema. When you
stop the Capture program, it no longer captures data from the source.

About this task

If you choose to reorganize the UOW table and all the CD
tables that were open at the time that the Capture program stopped, the Capture
program needs time to shut down (it does not shut down immediately).

Procedure

To stop the Capture program, use one of the following methods:

Method Description

Replication Center Use the Stop Capture window. To open the window, open the
Operations branch of the object tree, click Capture Control
Servers, right click a Capture control server in the contents pane,
and click Stop Capture.

asnccmd stop system
command

Use this command to stop Capture.

ENDDPRCAP system
command

Use the End DPR Capture (ENDDPRCAP) command to stop the
Capture program.

Chapter 9. Operating the Capture program for SQL Replication 123

If you stop or suspend the Capture program during pruning, pruning is also
suspended. When you resume or restart the Capture program, pruning resumes
based on the autoprune parameter.

You do not need to stop the Capture program to drop a registration. Always
deactivate the registration before you drop it.

Reinitializing Capture
Reinitialize the Capture program if you change any attributes of existing registered
objects while the Capture program is running.

About this task

For example, you must reinitialize the Capture program if you change the
CONFLICT_LEVEL, CHGONLY, RECAPTURE, CHG_UPD_TO_DEL_INS values in
the IBMSNAP_REGISTER table.

For Capture on System i, reinitialize is also needed to start capturing data for a
journal that was not being captured previously.

Procedure

To reinitialize the Capture program, use one of the following methods:

Method Description

Replication Center Use the Reinitialize Capture window. To open the window, open
the Operations branch of the object tree, click Capture Control
Servers, right click a Capture control server in the contents pane,
and click Reinitialize Capture.

asnccmd reinit
system command

Use this command to reinitialize Capture.

INZDPRCAP system
command

Use the Initialize DPR Capture (INZDPRCAP) command to
initialize the Capture program.

Suspending the Capture program (Linux, UNIX, Windows, z/OS)
You can suspend the Capture program to free operating system resources during
peak periods without destroying the Capture program environment.

Before you begin

The Capture program with the specific Capture schema must be started.

About this task

124 SQL Replication Guide and Reference

You can also suspend the Capture program instead of stopping it if you do not
want the Capture program to shut down after it finishes work in progress. When
you tell the Capture to resume, you do not require the overhead of Capture
starting again.

Important: Do not suspend the Capture program before you remove a replication
source. Instead, deactivate then remove the replication source.

Procedure

To suspend the Capture program, use one of the following methods:

Method Description

Replication Center Use the Suspend Capture window. To open the window, open the
Operations branch of the object tree, click Capture Control
Servers, right click a Capture control server in the contents pane,
and click Suspend Capture.

asnccmd suspend
system command

Use this command to suspend Capture.

If you stop or suspend the Capture program during pruning, pruning is also
suspended. When you resume or restart the Capture program, pruning resumes
based on the autoprune parameter.

Resuming Capture (Linux, UNIX, Windows, z/OS)
You must resume a suspended Capture program if you want it to start capturing
data again.

Procedure

To resume a suspended Capture program, use one of the following methods:

Method Description

Replication Center Use the Resume Capture window. To open the window, open the
Operations branch of the object tree, click Capture Control
Servers, right click a Capture control server in the contents pane,
and click Resume Capture.

asnccmd resume
system command

Use this command to resume Capture.

If you stop or suspend the Capture program during pruning, pruning is also
suspended. When you resume or restart the Capture program, pruning resumes
based on the autoprune parameter.

Chapter 9. Operating the Capture program for SQL Replication 125

126 SQL Replication Guide and Reference

Chapter 10. Operating the Apply program for SQL Replication

Operating the Apply program includes such tasks as starting and stopping and
using the ASNDONE and ASNLOAD exit routines.

Starting the Apply program (Linux, UNIX, Windows, z/OS)
You can start an instance of the Apply program to begin applying data to your
targets.

Before you begin

Ensure that:
v Connections are configured to all necessary replication servers.
v You have the proper authorization.
v The control tables that contain the source and control data for the desired Apply

qualifier are created.
v The replication programs are configured.

v You manually bound the Apply program to all necessary
servers.

v A password file exists for end-user authentication for remote
servers.

Also, make sure that the following conditions are met:
v At least one active subscription set exists for the Apply qualifier and that the

subscription set contains one or more of the following items:
– Subscription-set member
– SQL statement
– Procedure

v All condensed target tables must have a target key, which is a set of unique
columns, either a primary key or unique index, that the Apply program uses to
track which changes it replicates during each Apply cycle. (Non-condensed CCD
tables do not have primary keys or unique indexes.)

About this task

When you start the Apply program, you can also specify startup parameters.

Procedure

To start the Apply program:

Use one of the following methods:

© Copyright IBM Corp. 1994, 2012 127

Option Description

Replication Center Use the Start Apply window. To open the window, open the Apply
Control Servers folder in the Operations branch of the object tree
and click the Apply Qualifiers folder. In the contents pane,
right-click the Apply qualifier that represents the Apply program
that you want to start and click Start Apply.

asnapply system
command

Use this command to start Apply.

z/OS console or TSO

On z/OS, you can start the Apply program by using JCL or as a
system-started task. You can specify new invocation parameter
values when you start an Apply program with JCL.

z/OS has a 100-byte limit for the total length of parameters that
you can specify in the PARMS= field. To overcome this limitation,
replication programs now allow you to specify as many additional
parameters as needed in the SYSIN data set.

When the SYSIN DD statement is included in the invocation JCL,
the Apply program automatically concatenates what is specified in
the SYSIN data set to the PARMS= parameters. You can only
specify Apply parameters in the SYSIN data set. Any LE
parameters must be specified in the PARMS= field or in LE
_CEE_ENVFILE=DD, followed by a slash(/).

Example:

//* asterisk indicates a comment line
// APP EXEC PGM=ASNAPP,PARMS=’LE/Apply parameters’
//* Parameters can be any or no LE parameters and any or
//* no Apply parameters
//SYSIN DD *
//* additional Apply parameters, one or more
//* parameters on each line

APPLY_SERVER=DSN!! APPLY_SCHEMA=APPCAT
DEBUG=Y LOGSTDOUT=N

Windows services

You can create a DB2 replication service on the Windows operating
system to start the Q Apply program automatically when the
system starts.

After you start the Apply program, it runs continuously (unless you used the
copyonce startup parameter) until one of the following events occurs:
v You stop the Apply program by using the Replication Center or a command.
v The Apply program cannot connect to the Apply control server.
v The Apply program cannot allocate memory for processing.

To verify whether an Apply program started, use one of the following methods:

v If you are running in batch mode, examine the z/OS console
or z/OS job log for messages that indicate that the program started.

v Examine the Apply diagnostic log file (apply_server.apply_qualifier.APP.log on
z/OS and db2instance.apply_server.apply_qualifier.APP.log on Linux, UNIX, and
Windows) for a message that indicates that the program is capturing changes.

v Check the IBMSNAP_APPLYTRACE table for a message that indicates that the
program is applying changes.

128 SQL Replication Guide and Reference

v Use the Apply Messages window in the Replication Center to see a message that
indicates that the program started. To open the window, right-click the Apply
qualifier in the contents pane that identifies the Apply program whose messages
you want to view and select Reports > Apply Messages.

v Use the Check Status window in the Replication Center or the asnacmd status
command to view the status of all Apply threads. To open the window,
right-click the Apply qualifier in the contents pane that identifies the Apply
program that you want to check and select Check Status.

Starting an Apply program (System i)
You can start an instance of the Apply program to begin applying data to your
targets.

Before you begin

Ensure that your system is set up correctly:
v Connections are configured to all replication servers.
v You have the proper authorization.
v The control tables are created.
v The replication programs are configured.

Also, make sure that the following conditions are met:
v At least one active subscription set exists for the Apply qualifier and that

subscription set contains one or more of the following items:
– Subscription-set member
– SQL statement
– Procedure

v All condensed target tables must have a target key, which is a set of unique
columns, either a primary key or unique index, that the Apply program uses to
track which changes it replicates during each Apply cycle. (Non-condensed CCD
tables do not have primary keys or unique indexes.)

Procedure

To start an Apply program, use one of the following methods:

Method Description

STRDPRAPY system
command

Use the Start DPR Apply (STRDPRAPY) command to start an
Apply program on your local system.

Replication Center Use the Start Apply window. To open the window, open the Apply
Control Servers folder in the Operations branch of the object tree
and click the Apply Qualifiers folder. In the contents pane,
right-click the Apply qualifier that represents the Apply program
that you want to start and click Start Apply.

After you start the Apply program, it runs continuously unless one of the
following conditions are true:
v You started the program with the COPYONCE(*YES) startup parameter.
v You specified ALWINACT(*NO) and there is no data to be processed.
v You stop the Apply program by using the Replication Center or a command.

Chapter 10. Operating the Apply program for SQL Replication 129

v The Apply program cannot connect to the Apply control server.
v The Apply program cannot allocate memory for processing.

Default operating parameters for the Apply program
When you create the Apply control tables, default values for the Apply operating
parameters are saved in the IBMSNAP_APPPARMS table.

The default values are shown in Table 9 and Table 10 on page 131.

Table 9. Default settings for Apply operational parameters (z/OS, Linux, UNIX, Windows)

Operational parameter Default value Column name in
IBMSNAP_APPPARMS table

apply_qual No default APPLY_QUAL

apply_path Directory where Apply was
started1

APPLY_PATH

caf y5 not applicable

control_server DB2DBDFT2 not applicable

copyonce n3 COPYONCE

db2_subsystem No default4 not applicable

delay 6 seconds DELAY

errwait 300 seconds ERRWAIT

inamsg y5 INAMSG

loadxit n3 LOADXIT

logreuse n3 LOGREUSE

logstdout n3 LOGSTDOUT

notify n3 NOTIFY

opt4one n3 OPT4ONE

pwdfile asnpwd.aut not applicable

spillfile disk6 SPILLFILE

sleep y5 SLEEP

sqlerrcontinue n3 SQLERRCONTINUE

term y5 TERM

trlreuse n3 TRLREUSE

Note:

1. If Apply starts as a Windows service, its path is sqllib\bin

2. The Apply control server is the value of the DB2DBDFT environment variable, if
specified. For Linux, UNIX, and Windows operating systems only.

3. no

4. The DB2 subsystem name can be a maximum of four characters. This parameter is
required. The DB2 subsystem name is only applicable to z/OS operating systems.

5. yes

6. On z/OS operating systems, the default is MEM.

130 SQL Replication Guide and Reference

Table 10. Default settings for Apply operational parameters (System i)

Operational parameter Description of (*value)

USER (*CURRENT) The user who signed on to the system.

JOBD (*LIBL/QZSNDPR) Product library name / job description.

APYQUAL (*USER) Current user name (from above).

CTLSVR (*LOCAL) Local RDB server name.

TRACE (*NONE) Do not generate a trace.

FULLREFPGM (*NONE) Do not run the ASNLOAD exit routine.

SUBNFYPGM (*NONE) Do not run the ASNDONE exit routine.

INACTMSG (*YES) When the Apply program begins an inactive period, it
generates message ASN1044, which describes how long
the program will be inactive.

ALWINACT (*YES) Sleep if there is nothing to process.

DELAY (6) Wait 6 seconds after an Apply cycle before processing
again.

RTYWAIT (300) Wait 300 seconds before retrying a failed operation.

COPYONCE (*NO) Do not terminate after completing one copy cycle,
continue processing.

TRLREUSE (*NO) Do not empty the IBMSNAP_APPLYTRAIL table when
the Apply program starts.

OPTSNGSET (*NO) Do not optimize performance of the Apply program for
processing a single subscription set.

Descriptions of Apply operating parameters
When you start the Apply program, you can optionally select startup parameters.
Here are the startup parameters and recommendations for when to choose one
value over another for each parameter.

These parameters apply to z/OS, Linux, UNIX, and Windows unless otherwise
specified.
v “apply_path” on page 132
v “apply_qual” on page 133
v caf
v “control_server” on page 133
v “copyonce” on page 134
v “db2_subsystem (z/OS)” on page 134
v “delay” on page 134
v “errwait” on page 135
v “inamsg” on page 135
v “loadxit” on page 135
v “logreuse” on page 136
v “logstdout” on page 136
v “notify” on page 136
v “opt4one” on page 136
v “pwdfile” on page 137

Chapter 10. Operating the Apply program for SQL Replication 131

v “sleep” on page 137
v “spillfile” on page 138
v “sqlerrcontinue” on page 138
v “term” on page 139
v “trlreuse” on page 139

apply_path

Default: apply_path=current_directory

Default (service on Windows): apply_path sqllib\bin

The Apply path is the directory where the Apply program stores its log and work
files. By default, the Apply path is the directory where you start the program. You
can change the Apply path to store the log and work files elsewhere (for example
/home/db2inst/apply_files on an AIX® system). Keep track of what directory you
choose because you might need to go to this directory to access the Apply log file.

You can specify either a path name or a high-level Qualifier (HLQ), such as
//APPV9. When you use a HLQ, sequential files are created that conform to the
file-naming conventions for z/OS sequential data set file names. The sequential
data sets are relative to the user ID that is running the program. Otherwise these
file names are similar to the names that are stored in an explicitly named directory
path, with the HLQ concatenated as the first part of the file name. For example,
sysadm.APPV9.filename. Using an HLQ might be convenient if you want to have
the Apply log and LOADMSG files be system-managed (SMS).

If you want the Apply started task to write to a .log data set with a user ID other
than the ID that is executing the task (for example TSOUSER), you must specify a
single quotation mark (‘) as an escape character when using the SYSIN format for
input parameters to the started task. For example, if you wanted to use the
high-level qualifier JOESMITH, then the user ID TSOUSER that is running the
Apply program must have RACF authority to write data sets by using the
high-level qualifier JOESMITH, as in the following example:
//SYSIN DD *
APPLY_PATH=//’JOESMITH
/*

See the SASNSAMP(ASNSTRA) job for information on how
you can change the Apply path.

Important: Make sure that the directory that you choose has enough space for the
temporary files used by the Apply program.

Starting instances of Apply on one Windows system: When
you start the Apply program by using either the Replication Center or the
asnapply command, you must specify the Apply path if you have two or more
Apply qualifiers that are identical except for their capitalization. File names on
Windows systems are not case-sensitive. For example, assume that you have three
Apply qualifiers: APPLYQUAL1, ApplyQual1, applyqual1. Each of these Apply
instances must be started with a different apply_path to prevent file name conflicts
of the log files for each instance of the Apply program.

132 SQL Replication Guide and Reference

apply_qual

You must specify the Apply qualifier for the subscription sets that you want to
process. (You defined the Apply qualifier when you created your subscription set.)
You can specify only one Apply qualifier per start command.

Important: The Apply qualifier is case-sensitive and the value that you enter must
match the value of the APPLY_QUAL column in the IBMSNAP_SUBS_SET table.

If you have more than one Apply qualifier defined, you can start another instance
of the Apply program. Each instance of the Apply program that you start will
process different subscription sets that are represented in the same Apply control
server. For example, assume that you have two subscription sets defined and each
set has a unique Apply qualifier: APPLY1 and APPLY2. You can start two instances
of the Apply program (one for each Apply qualifier), and each instance uses the
control tables on the Apply control server called CNTRLSVR. Each instance of
Apply processes its own subscription sets independently, providing better
performance than if a single instance of Apply processes all the sets.

caf

Default: y

The runtime parameter caf =y specifies whether the Apply program overrides the
Recoverable Resource Manager Services (RRS) connect and runs with Call Attach
Facility (CAF) connect. The caf =y option is the default for the Apply program.

control_server

Default: None

Default: The value of the DB2DBDFT environment variable, if
available

The Apply control server is the server on which the Apply control tables and
subscription definitions reside. Specify only one control server per Apply qualifier.
If you do not specify a value, the Apply program starts on the default server. The
default depends on your operating system.

On z/OS, you must specify the control server parameter.

If the Apply program cannot connect to the control server, it follows the action set
by the term parameter:

term=y (default)
The Apply program terminates.

term=n
Apply waits for the amount of time set by the errwait parameter, then
retries the connection.

The Apply worker thread sets its state to "waiting for database" if it cannot connect
to its Apply control server and if the Apply program was started with the term=n

Chapter 10. Operating the Apply program for SQL Replication 133

parameter. You can run the status command in asnacmd or MODIFY on z/OS to
check whether the Apply worker thread is running but unable to connect to the
control server.

If the Apply program cannot connect to other servers, it issues an error message
and continues processing.

copyonce

Default: copyonce=n

The copyonce parameter determines the copy cycle for the Apply program.

When you start the Apply program by using copyonce=y, it processes each eligible
subscription set only once, and then it terminates. In this case, a subscription set is
eligible to be processed if one of the following conditions is met:
v The subscription set uses relative timing, the time has elapsed, and the

subscription set is activated.
v The subscription set uses event-based timing, it is activated, and the event has

occurred but the Apply program hasn't processed the subscription set yet.

Typically you want to start the Apply program by using copyonce=n because you
want the Apply program to continue running and processing eligible subscriptions.

If you are running the Apply program from a dial-in environment that is
occasionally connected to the network, use copyonce=y instead of copyonce=n. You
might also want to use copyonce=y if you are running the Apply program in a test
environment.

Tip: Use sleep=ninstead of copyonce=y if you want the Apply program to process
each subscription set multiple times, as long as the set is eligible and data is
available for replication. copyonce=y processes each set only once even if there is
more data to replicate.

db2_subsystem (z/OS)

The db2_subsystem parameter specifies the name of the DB2 subsystem, if you are
running Apply on z/OS. The DB2 subsystem name that you enter can be a
maximum of four characters. There is no default for this parameter. This parameter
is required.

delay

Default: delay=6 seconds

The delay parameter sets an amount of time in seconds that the Apply program
waits at the end of the Apply cycle.

By default, during continuous replication (that is, when your subscription set uses
sleep=0 minutes), the Apply program waits 6 seconds after a subscription set is
processed successfully before retrying the subscription set. Use a non-zero delay
value to save CPU cycles when there is no database activity to be replicated. Use a
lower delay value for low latency.

Note: The delay parameter is ignored if copyonce is specified.

134 SQL Replication Guide and Reference

errwait

Default: errwait=300 seconds (5 minutes)

The errwait parameter specifies the number of seconds that the Apply program
waits before retrying a subscription set after a subscription cycle failed

By default, the Apply program waits 300 seconds before it retries a subscription set
after a subscription cycle failed. You might want to use a smaller value in a test
environment. The minimum value is 1 second. In a production environment,
consider the trade-offs before you change the default for this parameter:
v If you use a smaller value, you might waste CPU cycles if the Apply program

keeps retrying hard errors. For example, you will use CPU cycles unnecessarily
if the Apply program keeps retrying to process a subscription set when there is
a problem with a target table. You might get a large number of messages in the
log file and, if the Apply program runs on z/OS, on the operator console.

v If you use a larger value, you might increase latency if the Apply program must
wait to retry transient error conditions. For example, you will increase latency if
you use a larger value for the errwait parameter because the Apply program
waits unnecessarily after it encounters a network error that might be corrected
quickly.

Note: The errwait parameter is ignored if copyonce is specified.

inamsg

Default: inamsg=y

The inamsg parameter specifies whether or not the Apply program issues a
message when it becomes inactive.

By default, the Apply program issues a message when it becomes inactive. You
might not want the Apply program to issue a message when it becomes inactive
because the messages will take up a lot of space in the Apply log file, especially if
the Apply program is not waiting long between processing subscription sets. To
turn off these messages, use inamsg=n.

loadxit

Default: loadxit=n

The loadxit parameter specifies whether or not the Apply program should refresh
target tables by using the ASNLOAD exit routine.

By default, the Apply program does not use the ASNLOAD exit routine to refresh
target tables (loadxit=n). Use loadxit=y if you want the Apply program to invoke
the ASNLOAD exit routine to refresh target tables. Consider using the ASNLOAD
exit if there is a large amount of data to be copied to the target tables during a full
refresh.

On z/OS, the ASNLOAD exit routine uses the DSNUTILS
stored procedure to call DB2 utilities that are required to load the target table.

Chapter 10. Operating the Apply program for SQL Replication 135

logreuse

Default: logreuse=n

The Apply program stores operational information in a log file. The parameter
specifies whether to append to the log file or to overwrite it.

The name of the log file is control_server.apply_qualifier.APP.log.

The name of the log file is
db2instance.control_server.apply_qualifier.APP.log.

By default, the Apply program appends messages to the log file (logreuse=n) each
time that you start the Apply program. Keep the default if you want the history of
the messages that are issued by the Apply program. In the following situations you
might want to use logreuse=y, where the Apply program deletes the log and
re-creates the log when it starts:
v The log is getting large, and you want to clean out the log to save space.
v You don't need the history that is stored in the log.

logstdout

Default: logstdout=n

The logstdout parameter is available only if you use the asnapply command;
logstdout is not available in the Replication Center.

The logstdout parameter specifies whether the Apply program sends completion
messages (ASN10251) to both the log file and to standard output.

By default, the Apply program does not send completion messages to standard
output (STDOUT). If you specify logstdout=y, the Apply program will send
completion messages to both the log file and to standard output (STDOUT). You
might choose to send messages to standard output if you are troubleshooting or
monitoring how your Apply program is operating.

notify

Default: notify=n

The notify parameter specifies whether the Apply program notifies the ASNDONE
exit routine after it processes a subscription.

By default, the Apply program does not notify the ASNDONE exit routine after
subscription processing completes. If you specify notify=y, after the Apply
program completes a subscription cycle it invokes ASNDONE to perform
additional processing, such as examining the Apply control tables or sending
e-mail messages.

opt4one

Default: opt4one=n

136 SQL Replication Guide and Reference

The opt4one parameter specifies whether or not the Apply program processing is
optimized for one subscription set.

Note: The opt4one parameter is ignored if copyonce is specified.

By default, the Apply program is optimized for many subscription sets. The Apply
program reads the information from the replication control tables at the beginning
of each copy cycle. If you have one subscription set for the Apply qualifier, start
the Apply program by using opt4one=y so that the Apply program caches in
memory information about the subscription set members and columns and reuses
it. When you optimize the Apply program for one subscription set, the Apply
program uses less CPU, and you improve throughput rates.

Important: When you use opt4one=y and you add a member to a set or otherwise
modify a set, you must stop the Apply program and start it again so that the
Apply program picks up the changes in the control tables.

pwdfile

Default: pwdfile=asnpwd.aut

If your data is distributed across servers, you can store user IDs and passwords in
an encrypted password file so that the Apply program can access data on remote
servers.

sleep

Default: sleep=y

The sleep parameter specifies whether the Apply program continues running in
sleep mode or terminates after it processes eligible subscription sets.

By default, the Apply program starts with sleep=y. It checks for eligible
subscription sets. If it finds an eligible subscription set, it processes it and
continues looking for another eligible set. Apply continues to process eligible sets if
it finds them. When it cannot find any more eligible sets, the Apply program
continues running in sleep mode and it "wakes up" periodically to check if any
subscription sets are eligible. Usually you want to start the Apply program in this
way because you want updates applied over time and you expect the Apply
program to be up and running.

Note: The sleep parameter is ignored if copyonce is specified.

When you start the Apply program with sleep=n, the Apply program checks for
eligible subscription sets and processes them. It continues processing eligible
subscription sets until it can't find any more eligible sets, and it repeats the process
for eligible sets until there is no more data to replicate; then, the Apply program
terminates. Typically you want to use sleep=n in a mobile environment or in a test
environment where you want the Apply program to run only if it finds eligible
subscription sets, and then you want it to terminate. You don't want the Apply
program to wait in sleep mode and wake up periodically to check for more eligible
sets. In these environments you want to control when Apply runs rather than have
it run endlessly.

Tip: Use copyonce=y instead of sleep=n if you want to process each subscription
set only once.

Chapter 10. Operating the Apply program for SQL Replication 137

spillfile

Default: spillfile=MEM

Default: spillfile=disk

Apply retrieves data from the source tables and places it in a spill file on the
system where the Apply program is running.

On z/OS, the spill file is stored in memory by default. If you
specify to store the spill file on disk, the Apply program uses the specifications on
the ASNASPL DD statement to allocate spill files. If the ASNASPL DD statement is
not specified, it uses VIO. You can also specify spillfile=hs and Apply will use
high performance data space (hiperspace) for spilling.

The only valid setting for spillfile is disk because spill files
are always on disk in the location specified by the apply_path parameter.

sqlerrcontinue

Default: sqlerrcontinue=n

The sqlerrcontinue parameter specifies how the Apply program should react to
certain SQL errors.

By default, when the Apply program encounters any SQL error, it stops processing
that subscription set and generates an error message. Typically you would use the
default in your production environment.

If you are in a test environment, you can expect certain SQL errors to occur when
inserting data into target tables. Sometimes those errors are acceptable to you, but
they would cause the current subscription cycle to stop. In those situations, you
can start the Apply program by using sqlerrcontinue=y so that it ignores those
errors and does not rollback replicated data from that cycle. If the Apply program
receives an SQL error when inserting data into a target table, it checks the values
in the apply_qualifier.sqs file. If it finds a match, it writes the details about the
error to an error file, apply_qualifier.err, and it continues processing. If the
Apply program encounters an SQL error that is not listed in the
apply_qualifier.sqs file, it stops processing the set and goes on to the next set.

Before you start the Apply program by using the sqlerrcontinue=y option, you
must create the apply_qualifier.sqs file and store it in the directory from which
you invoke the Apply program. List up to 20 five-byte values, one after the other,
in the file. If you change the contents of this file when the Apply program is
running, stop the Apply program and start it again so that it recognizes the new
values.

Example: Assume that you want the Apply program to continue processing a
subscription set if a target table gets the following error (sqlstate/code):

23505/-803
Duplicate index violation

You would create an SQL state file that contains the following SQL state:
23505

138 SQL Replication Guide and Reference

If the SQL state is returned when updating the target table, the Apply program
applies the changes to the other target tables within the set and creates an error file
indicating both the error and the rejected rows.

Tip: Check the STATUS column of the IBMSNAP_APPLYTRAIL table. A value of
16 indicates that the Apply program processed the subscription set successfully, but
some of the allowable errors, which you defined in the apply_qualifier.sqs file,
occurred.

term

Default: term=y

The term parameter determines what the Apply program does if it cannot connect
to its control server.

By default, the Apply program terminates if it cannot connect.

Use term=n if you want the Apply program to keep running. Apply logs an error,
waits for the amount of time set by the errwait parameter, then retries the
connection to its control server.

The term parameter is ignored if copyonce is specified.

trlreuse

Default: trlreuse=n

The trlreuse parameter specifies whether or not the IBMSNAP_APPLYTRAIL
table should be reused (appended to) or overwritten when the Apply program
starts.

By default, when the Apply program starts, it appends entries to the Apply trail
table. This table contains the history of operations for all Apply instances at the
Apply control server. It is a repository of diagnostic and performance statistics.
Keep the default if you want the history of updates. In the following situations
you might want the Apply program to empty the Apply trail table when it starts
instead of appending to it (trlreuse=y):
v The Apply trail table is getting too large, and you want to clean it out to save

space.
v You don't need the history that is stored in the table.

Tip: Instead of using trlreuse=y, you can use SQL processing after the Apply
program successfully completes a subscription set (where status=0) to delete rows
from the Apply trail table.

Methods of changing Apply operating parameters
You can change the default values for the operational parameters to values that
you typically use in your environment. You can also override these default values
when you start the Apply program.

Setting new default values in the IBMSNAP_APPPARMS table

Chapter 10. Operating the Apply program for SQL Replication 139

The IBMSNAP_APPPARMS table contains parameters that you can modify
to control the operation of the Apply program. After the table is created, it
contains the default values for the Apply program.

Specifying values for parameters when you start the Apply program
You can specify values for the Apply program when you start it. The
values that you set during startup control the behavior of Apply for the
current session, they override the default operational parameter values and
any values that might exist in the Apply parameters table. They do not
update the values in the Apply parameters table. If you do not modify the
Apply parameters table before you start the Apply program, and you do
not specify any of the optional parameters when you start the Apply
program, default values are used for the operational parameters.

Example

Assume that you do not want to use the default settings for errwait for the Apply
qualifier ASNPROD. Update the Apply parameters table for the ASNPROD Apply
qualifier. Set the errwait interval to 600 seconds.
update asn.ibmsnap_appparms set errwait=600 where apply_qual=’ASNPROD’

Changing saved Apply parameters in the IBMSNAP_APPPARMS table
(z/OS, Linux, UNIX, Windows)

The IBMSNAP_APPPARMS table contains the saved operating parameters for the
Apply program. When you start the Apply program, it uses values from this table
unless you temporarily override these values by using startup parameters.

About this task

Only one row is allowed for each Apply qualifier. If you want to change one or
more of the default values, you can update columns instead of inserting rows. If
you delete the row, the Apply program still starts using the shipped defaults,
unless those defaults are overridden by the startup parameters.

The Apply program reads this table only during startup; therefore, you should stop
and start the Apply program if you want the Apply program to run with the new
settings. Changing the Apply parameters table while the Apply program is running
does not change the operation of the Apply program.

Stopping the Apply program
When you stop the Apply program, it no longer copies data to the target tables,
and it updates the control tables to ensure that the program starts cleanly the next
time that you start it.

Procedure

To stop the Apply program:

Use one of the following methods:

140 SQL Replication Guide and Reference

Option Description

Replication Center Use the Stop Apply window. To open the window, open the Apply
Control Servers folder in the Operations branch of the object tree
and click the Apply Qualifiers folder. In the contents pane,
right-click the Apply qualifier that represents the Apply program
that you want to start and click Stop Apply.

asnacmd stop system
command

Use this command to stop Apply.

ENDDPRAPY system
command

Use the End DPR Apply (ENDDPRAPY) command to stop an
Apply program on your local system.

Where the Apply program stores details about referential integrity
failures

You can find details about rows that were not applied to target tables because of
referential integrity (RI) violations. The Apply program in SQL Replication writes
these details to a file.

When you start the Apply program, it creates a file with the following name in the
path that is specified by the apply_path parameter: apply_qualifier.RI. If the file
exists when the Apply program starts, it clears the file and begins writing to the
empty file if necessary.

If an INSERT, UPDATE, or DELETE operation on a target table fails with
SQLCODE SQL0530, SQL0531, or SQL0532 because of an RI constraint, the Apply
program writes the row information to the file.

Apply also writes the following information to the file for each row that received
an error:
v Subscription set name
v SQLCA and SQLDA for the failing statement
v SQL statement that failed
v Values of the IBMSNAP_COMMITSEQ and IBMSNAP_INTENTSEQ columns

from the CD table row that caused the error

When a row operation at the target table fails, the Apply writes the failing row to a
separate retry file and continues to try the operation. Sometimes an RI violation
can be resolved in this way and you do not need to take any action. If Apply
continues to get RI errors for all the rows in the retry file, Apply issues the
ASN0999E message and the current Apply cycle fails. In this situation, you might
need to check the RI file to identify the cause of the errors.

Chapter 10. Operating the Apply program for SQL Replication 141

Modifying the ASNDONE exit routine (z/OS, Linux, UNIX, Windows)
You can customize the ASNDONE exit routine on Linux, UNIX, Windows, and
z/OS operating systems to modify the behavior of the Apply program after it
finishes processing subscriptions.

About this task

If you start the Apply program with the notify=y parameter, the Apply program
calls the ASNDONE exit routine after it finishes processing subscriptions,
regardless of whether the subscriptions were processed successfully. The following
list describes some examples of how you might modify the ASNDONE exit routine
to use it in your replication environment:
v Use the exit routine to examine the UOW table for rejected transactions and

initiate further actions (for example, send e-mail automatically to the replication
operator, issue a message, or generate an alert) if a rejected transaction is
detected.

v Use the exit routine to deactivate a failed subscription set so that the Apply
program avoids retrying that subscription set until it is fixed. To detect a failed
subscription set, modify the exit routine to look for STATUS= -1 in the
IBMSNAP_APPLYTRAIL table. To deactivate the subscription set, configure the
exit routine so that it sets ACTIVATE=0 in the IBMSNAP_SUBS_SET table.

v Use the exit routine to manipulate data after it is applied for each subscription
set. (Alternatively, you can define run-time processing statements by using SQL
statements or stored procedures that run before or after the Apply program
processes a specific subscription set.)

Procedure

To use a modified version of the ASNDONE sample exit routine:
1. Modify the ASNDONE routine to meet your requirements.

v See the PROLOG section of the sample program
SASNSAMP(ASNDONE).

v See the PROLOG section of the sample program
(\sqllib\samples\repl\asndone.smp) for information about how to modify
this exit routine.

2. Compile, link, and bind the program and place the executable in the
appropriate directory.

3. Start the Apply program with the notify=y parameter to call the ASNDONE
exit routine.

Modifying the ASNDONE exit routine (System i)
You can customize the ASNDONE exit routine on System i operating systems to
modify the behavior of the Apply program after it finishes processing
subscriptions.

About this task

If you start the Apply program with the SUBNFYPGM parameter set to the name
of the ASNDONE exit routine, the Apply program calls the ASNDONE exit routine
after it finishes processing subscriptions, regardless of whether the subscriptions

142 SQL Replication Guide and Reference

were processed successfully. The following list describes some examples of how
you might modify the ASNDONE exit routine to use it in your replication
environment:
v Use the exit routine to examine the UOW table for rejected transactions and

initiate further actions (for example, send e-mail automatically to the replication
operator, issue a message, or generate an alert) if a rejected transaction is
detected.

v Use the exit routine to deactivate a failed subscription set so that the Apply
program avoids retrying that subscription set until it is fixed. To detect a failed
subscription set, modify the exit routine to look for STATUS= -1 in the
IBMSNAP_APPLYTRAIL table. To deactivate the subscription set, configure the
exit routine so that it sets ACTIVATE=0 in the IBMSNAP_SUBS_SET table.

v Use the exit routine to manipulate data after it is applied for each subscription
set. (You can also can define run-time processing statements by using SQL
statements or stored procedures that run before or after the Apply program
processes a specific subscription set.)

Procedure

To use a modified version of the ASNDONE sample exit routine:
1. Modify the ASNDONE exit routine to meet your requirements. Table 11

indicates where you can find the source code for this routine in C, COBOL, and
RPG languages:

Table 11. Source code for ASNDONE

Compiler language Library name Source file name Member name

C QDP4 QCSRC ASNDONE

COBOL QDP4 QCBLLESRC ASNDONE

RPG QDP4 QRPGLESRC ASNDONE

When modifying the program, consider these activation group concerns:

If the program is created to run with a new activation group
The Apply program and the ASNLOAD program will not share SQL
resources, such as relational database connections and open cursors.
The activation handling code in the System i operating system frees
any resources allocated by the ASNLOAD program before control is
returned to the Apply program. Additional resource is used every time
that the Apply program calls the ASNLOAD program.

If the program is created to run in the caller's activation group
It shares SQL resources with the Apply program. Design the program
so that you minimize its impact on the Apply program. For example,
the program might cause unexpected Apply program processing if it
changes the current relational database connection.

If the program is created to run in a named activation group
It does not share resources with the Apply program. Use a named
activation group to avoid the activation group overhead every time the
ASNLOAD program is called. Run-time data structures and SQL
resources can be shared between invocations. Application clean-up
processing is not performed until the Apply program is ended, so
design the subscription notify program to ensure that it does not cause
lock contention with the Apply program by leaving source tables, target
tables, or control tables locked when control is returned to the Apply
program.

Chapter 10. Operating the Apply program for SQL Replication 143

2. Compile, link, and bind the program, and place the executable in the
appropriate directory.

3. Start the Apply program and specify the name of the ASNDONE program by
using the parameter SUBNFYPGM on the STRDPRAPY command.

For example, if the program is named ASNDONE_1 and resides in library APPLIB,
use the following command:
SUBNFYPGM(APPLIB/ASNDONE_1)

Refreshing target tables by using the ASNLOAD exit routine
You can use the ASNLOAD exit routine to perform a full refresh of target tables
more efficiently than the Apply program's normal method of loading data into
targets.

By default, the Apply program does not use the ASNLOAD exit routine when it
performs a full refresh for each target table in a subscription set. It does a full
select against the source table, brings the data to a spill file on the server where the
Apply program is running, and uses INSERT statements to populate the target
table. If you have large source tables, you might want to use the ASNLOAD exit
routine instead.

The sample exit routine differs on each DB2 platform to take advantage of the
utility options offered on that platform:

The ASNLOAD exit routine is shipped as a sample exit routine in both a
source format and a compiled format.

ASNLOAD is shipped in a source format only.

If an error occurs when the Apply program calls the ASNLOAD exit routine, the
Apply program issues a message, stops processing the current subscription set, and
processes the next subscription set.

Refreshing target tables with the ASNLOAD exit routine
(Linux, UNIX, Windows)

You can use the ASNLOAD exit routine to refresh target tables more efficiently on
Linux, UNIX, and Windows operating systems. You can also modify the routine
before you use it.

Before you begin

v The target table must contain only columns that are part of the replication
mapping.

v The user ID that runs Apply must be the user ID for the DB2 instance where
ASNLOAD runs. For example, on Linux and UNIX, make sure that both the
DB2 instance and Apply user ID are members of a common group. Next, set the
permission bits for the Apply starting directory to provide write access for the
DB2 instance by using the chmod 775 command.

Restrictions

The ASNLOAD exit routine works with the EXPORT, IMPORT, and LOAD utilities,
including the LOAD FROM CURSOR function. LOAD FROM CURSOR is the

144 SQL Replication Guide and Reference

default option used by the ASNLOAD exit if the source for a subscription-set
member is a nickname, or if the target database is the same as the source database.
LOAD FROM CURSOR can also be used with DB2 data sources if the following
actions have been performed:
v A nickname for the source table was created in the target database.
v Columns in the IBMSNAP_SUBS_MEMBR table for the subscription-set member

were set to indicate that the LOAD FROM CURSOR function is to be used. The
value of these columns can be set by using the Replication Center:
– The LOADX_TYPE column must be set to indicate the LOAD FROM

CURSOR function will be used.
– The LOADX_SRC_N_OWNER and LOADX_SRC_N_TABLE columns must

specify the source nickname information for the subscription-set member that
includes the source table.

About this task

When you invoke the sample exit routine, by default it chooses which utility to use
based on the source server, target server, and run-time environment. The routine
can use the DB2 EXPORT utility with either the DB2 IMPORT utility or the DB2
LOAD utility, or it can use the LOAD FROM CURSOR utility.

You can use the compiled exit routine, you can configure its behavior by
customizing the replication configuration, or you can customize the exit code itself.
You can customize the replication configuration by either updating columns in the
IBMSNAP_SUBS_MEMBR table or by updating a sample configuration file
(asnload.ini).

To use the ASNLOAD routine as provided, start the Apply program by using the
loadxit=y parameter.

Procedure

To use a modified version of the ASNLOAD exit routine:
1. Modify the ASNLOAD routine to meet your site's requirements. See the

PROLOG section of the sample program (\sqllib\samples\repl\asnload.smp)
for information about how to modify this exit routine.
Important: The sample source uses user ID and password combinations from
the asnload.ini file. If the asnload.ini file does not have a user ID and password
for a particular server, or if the asnload.ini file is not available, the exit will
attempt to connect without the user or using parameters.

2. Compile, link, and bind the program and place the executable in the
appropriate directory.

3. Set LOADX_TYPE to 2 for members that are populated by using the code you
provide.

4. Start the Apply program with the loadxit=y parameter to call the ASNLOAD
exit routine.

The ASNLOAD exit routine generates the following files in the apply_path
directory for the Apply instance that invoked the ASNLOAD exit routine:

asnload apply_qualifier.trc
This file contains trace information if the trace is turned on. The
ASNLOAD exit routine creates this file. If the file exists, information is
appended to the file.

Chapter 10. Operating the Apply program for SQL Replication 145

asnload apply_qualifier.msg
This file contains general exit failure, warning, and informational messages,
including load statistics. The ASNLOAD exit routine creates this file. If the
file exists, information is appended to the file.

asnaEXPT apply_qualifier.msg
This file contains error, warning, or informational messages issued by the
DB2 EXPORT utility. The ASNLOAD exit routine creates this file. If the file
exists, information is appended to the file.

asnaIMPT apply_qualifier.msg
This file contains error, warning, or informational messages issued by the
DB2 IMPORT utility. The ASNLOAD exit routine creates this file. If the file
exists, information is appended to the file.

asnaLOAD apply_qualifier.msg
This file contains error, warning, or informational messages issued by the
DB2 LOAD utility. The ASNLOAD exit routine creates this file. If the file
exists, information is appended to the file.

Refreshing target tables with the ASNLOAD exit routine (z/OS)
You can use the ASNLOAD exit routine to refresh target tables more efficiently on
z/OS operating systems. You can also modify the routine before you use it.

Before you begin

The target table must contain only columns that are part of the replication
mapping.

About this task

The ASNLOAD exit routine calls the LOAD FROM CURSOR utility that is
available with the DB2 V7 (or higher) Utilities Suite. The utility does cursor-based
fetches to get data from the source and loads the data to the target.

The ASNLOAD exit routine uses LOAD with LOG NO and resets the COPYPEND
status of the table space. You can modify the sample ASNLOAD source code to
change the load options. The source consists of two header files and three C++
programs.

To use the ASNLOAD routine as provided, start the Apply program with the
loadxit=y parameter.

Procedure

To use a modified version of the ASNLOAD exit routine:
1. Modify the routine to meet your site's requirements. See the PROLOG section

of the sample program SASNSAMP(ASNLOAD) for information about how to
modify this exit routine.

2. Compile, link, and bind the program and place the executable in the
appropriate directory.
a. Make sure that the following conditions are met:
v DB2 Universal Database™ for z/OS and OS/390 Version 7 or later, with

utility support, is installed.

146 SQL Replication Guide and Reference

v DSNUTILS stored procedure is running. DSNUTILS must run in a WLM
environment. For more information about using DSNUTILS, see the DB2
for z/OS V8 Utility Guide and Reference.

b. Use the sample zmak file (SASNSAMP(ASNCMPLD)) to compile and
linkedit the ASNLOAD user exit program in USS.

c. Bind the ASNLOAD exit routine with DSNUTILS and the Apply package.
The sample ASNLOAD runs load with LOG NO and then repairs the table
space to set nocopypend. It does not back up the table spaces. By default,
ASNLOAD creates two temporary files under the user ID that is running
the instance of the Apply program, unless the apply_path parameter with
the APPLY_PATH=// option is specified for that Apply instance. If this is
the case, then two temporary files will be created under the high level
qualifier specified in APPLY_PATH. The routine also creates a file that
contains all the information regarding the load.

3. Set loadx_type = 2 for members that will be populated by using the code that
you provided.

4. Start the Apply program with the loadxit=y parameter to call the ASNLOAD
exit routine.

The ASNLOAD exit routine generates the following files in the apply_path
directory or HLQ for the Apply instance that invoked the ASNLOAD exit routine:

userid.apply_qual.LOADMSG
This file contains failure, warning, and informational messages, including
load statistics. The ASNLOAD exit routine creates this file. If the file exists,
information is appended to the file.

userid.apply_qual.LOADTRC
This file contains trace information if the trace is turned on. The
ASNLOAD exit routine creates this file. If the file exists, information is
appended to the file.

Customizing ASNLOAD exit behavior (z/OS, Linux, UNIX,
Windows)

In addition to customizing the exit code itself, you can customize the behavior of
the ASNLOAD exit routine by either updating columns in the
IBMSNAP_SUBS_MEMBR table or by updating a configuration file.

Using the IBMSNAP_SUBS_MEMBR table to set ASNLOAD
options
You can use columns in the IBMSNAP_SUBS_MEMBR table to customize the
behavior of the ASNLOAD exit routine.

About this task

Use the LOADX_TYPE column to specify a load option. The valid values for
LOADX_TYPE are:

null (default)

Use the LOAD from CURSOR utility.

The ASNLOAD exit routine determines the most
appropriate utility (option 3, 4, or 5).

1 Do not call ASNLOAD exit routine for this member.

Chapter 10. Operating the Apply program for SQL Replication 147

Set LOADX_TYPE to 1 if you do not want the ASNLOAD exit routine to
be called for that member.

2 Provide your own exit logic.

If you want to provide your own logic in the ASNLOAD exit routine, set
LOADX_TYPE to 2 for those subscription set members that you want
populated by the ASNLOAD exit routine. If you set LOADX_TYPE to 2
but you do not provide exit logic, the exit will fail.

3 Use the LOAD from CURSOR utility.

The LOAD from CURSOR function requires a SELECT
statement to fetch the data that is to be loaded to the target table (the
target table must reside in a local database). This statement can refer either
to a DB2 table or to a nickname, and the setup must be as follows:

If you are replicating from a non-IBM source to a DB2 table where the
registered source nickname is on a different database from the target
database or if you are replicating from a DB2 table to another DB2 table
and the source database is different from the target database, you need to
do the following steps:
1. Create a nickname for the source table(s) in the target server database.
2. Update the nickname owner and the table name columns

(LOADX_SRC_N_OWNER and LOADX_SRC_N_TABLE) of the
IBMSNAP_SUBS_MEMBR table.

If you are replicating from a DB2 table to another DB2 table and the source
and target database are the same, or if you are replicating from a non-IBM
source to a DB2 table where the registered source nickname is on the same
database as the target database, no additional actions are needed to use the
LOAD from CURSOR utility.

4
Use a combination of the EXPORT utility and the LOAD utility.

5
Use a combination of the EXPORT utility and the IMPORT utility.

Using the configuration file for ASNLOAD (Linux, UNIX,
Windows)
You can use an optional configuration file to configure input to the ASNLOAD exit
routine. This file is not required for ASNLOAD to run.

About this task

The configuration file must have the file name asnload.ini. The ASNLOAD exit
routine looks for this optional configuration file in the directory specified by the
apply_path parameter.

Procedure

To use the ASNLOAD configuration file:
1. Edit the sample file sqllib/samples/repl/asnload.ini.
2. Store the file in the directory specified by the apply_path parameter for the

Apply instance that invoked the ASNLOAD exit routine.

148 SQL Replication Guide and Reference

Refreshing target tables with the ASNLOAD exit routine
(System i)

You can use the ASNLOAD exit routine to refresh target tables more efficiently on
System i. You can also modify the routine before using it.

Before you begin

v The target-table columns must match both the order and data type of the source
tables.

v The target table can only contain columns that are part of the replication
mapping.

About this task

For example, if you are copying every row and every column from a source table
to a target table, you can design a full-refresh exit routine that uses a Distributed
Data Management (DDM) file and the Copy File (CPYF) CL command to copy the
entire file from the source table to the target table.

To use the ASNLOAD exit routine as provided, start the Apply program and
specify the FULLREFPGM parameter.

Procedure

To use a modified version of the ASNLOAD exit routine:
1. Modify the ASNLOAD exit routine to meet your site's requirements. See the

PROLOG section of the sample program for information about how to modify
this exit routine. The source is available in C, COBOL, and RPG languages, as
shown in Table 12.

Table 12. Source code for ASNLOAD

Compiler language Library name Source file name Member name

C QDP4 QCSRC ASNLOAD

COBOL QDP4 QCBLLESRC ASNLOAD

RPG QDP4 QRPGLESRC ASNLOAD

2. Compile, link, and bind the program and place the executable in the
appropriate directory. To avoid interference with the Apply program, compile
the exit routine so that it uses a new activation group (not the activation group
of the caller).
You can compile the exit routine with a named activation group or with a new
activation group. To get better performance, use a named activation group.
With a named activation group, the exit routine must commit or roll back
changes as needed. The Apply program will not cause changes to be committed
or rolled back (unless it ends). The exit routine should either explicitly commit
changes, or it should be compiled to implicitly commit changes when it
completes. Any uncommitted changes when the exit routine completes are not
committed until either:
v The Apply program calls another exit routine with the same activation

group.
v The job started for the Apply program ends.

3. Start the Apply program with the FULLREFPGM parameter set to the name of
the ASNLOAD program. When you start the Apply program, it uses the

Chapter 10. Operating the Apply program for SQL Replication 149

ASNLOAD exit routine that you specified. If you want it to use another
ASNLOAD exit routine, end the Apply program and start it again.

When you run the ASNLOAD exit routine, it refreshes all the target tables, table by
table.

Refreshing one table in a multi-table subscription set
You can prompt the replication programs to reload one table in a subscription set
that contains multiple tables. To do this, you use SQL to update values in the
IBMSNAP_SUBS_MEMBR table.

To refresh a single table in a multi-table set, run the following SQL update
statement at the Apply control server. The SQL resets the value of the
MEMBER_STATE column to N, prompting a full refresh of the table.
UPDATE ASN.IBMSNAP_SUBS_MEMBR
SET MEMBER_STATE=’N’
WHERE APPLY_QUAL= apply_qual AND
SET_NAME = set_name AND
WHOS_ON_FIRST = whos_on_first AND
SOURCE_OWNER = source_owner AND
SOURCE_TABLE = source_table AND
TARGET_OWNER = target_owner AND
TARGET_TABLE = target_table

Note: Any tables that you do not want to refresh should have a value of L or S in
the MEMBER_STATE column.

In the next cycle, the Apply program performs a full refresh for any members with
a value of N and changes the value of MEMBER_STATE to L after the target table is
loaded. For subsequent cycles, differential refresh is resumed for all members in
the subscription set from the synchpoint where the set was stopped.

Ensuring that utilities used for full refresh wait for committed
data

If you specify that the Apply program use the ASNLOAD exit routine with a DB2
for Linux, UNIX, and Windows Version 9.7 and newer source, you must ensure
that the utilities that are used for the full refresh wait for committed data.

About this task

Starting with Version 9.7, DB2 by default uses currently committed semantics, in
which applications such as load utilities that read table data do not wait for
writing applications to release row locks. Instead, reading applications return data
that is based on the currently committed version; that is, data prior to the start of
the write operation.

Because a full refresh of the target table requires the latest committed data from
the source table, you must ensure that the utilities wait until all in-progress
transactions that modify the source table are completed before beginning the load.
This behavior is known as "wait for outcome."

If you specify the LOAD from CURSOR utility for ASNLOAD, you must use a
new federated server option, CONCURRENT_ACCESS_RESOLUTION=W, to
enforce wait for outcome behavior on the nickname that is used for the full refresh.

150 SQL Replication Guide and Reference

Restriction: You can only set this option for a registered server of type DB2/UDB
Version 9.7 or newer.

Note these considerations:
v The procedures for setting concurrent access for the LOAD from CURSOR utility

are different if the Apply control server is at Version 9.7 or newer, or pre-Version
9.7.

v There is currently no solution to enforce wait for outcome
behavior when the Apply program on z/OS uses LOAD from CURSOR to
perform the full refresh from a DB2 V9.7 source database. In this case, the best
solution is to suspend any applications that update the source table from the
time the registration is activated until the full refresh begins.

Procedure

To ensure that utilities used for full refresh wait for committed data, use one of the
following procedures depending on the utility:

Utility used with
ASNLOAD Procedure

LOAD from
CURSOR Apply is Version 9.7 or newer

Issue the following command at the Apply control server:

db2 alter server server_name
OPTIONS(ADD CONCURRENT_ACCESS_RESOLUTION ’W’);

This command is required even if DB2 is Version 9.7 or
newer.

Apply is pre-Version 9.7
Note: If you are unable to follow this procedure, suspend
any applications that update the source table during the
beginning of the load.

1. From the Apply control server, connect to the source
database.

2. Bind the SQL packages that are used for Call Level
Interface (CLI) connections with a generic bind option
into a specific package by using the following
command:

db2 bind @db2cli.lst generic
"CONCURRENTACCESSRESOLUTION WAIT_FOR_OUTCOME"
COLLECTION ASN

3. Add the following name-value pair to the db2cli.ini
file at the federated database, below the stanza that
declares the options for the server definition to which
the nickname belongs:

[data_source_name]
CURRENTPACKAGESET=ASN

Where data_source_name is the source database that the
db2cli.bnd packages were bound against.

Recommendation: If you use a federated server for both
replication and other purposes, create a new dedicated server for
use by replication that has the
CONCURRENT_ACCESS_RESOLUTION=W option set, and allow
other applications to use the existing server name.

Chapter 10. Operating the Apply program for SQL Replication 151

Utility used with
ASNLOAD Procedure

EXPORT/IMPORT
EXPORT/LOAD

If you plan to use the DB2 EXPORT utility to refresh target tables
from a DB2 source that is at Version 9.7 or newer, and the user ID
that starts the Apply program does not have BINDADD authority,
you must perform the following bind before Apply starts:

db2 bind @db2ubind.lst CONCURRENTACCESSRESOLUTION
WAIT FOR OUTCOME COLLECTION ASN

152 SQL Replication Guide and Reference

Chapter 11. Operating the replication programs (z/OS)

The following topics describe operating the replication programs on the z/OS
operating system.

Using system-started tasks to operate the replication programs

You can use system-started tasks to operate the Capture program, Apply program,
and the Replication Alert Monitor.

Procedure

To use system started tasks to operate the replication programs, use this example
from the Capture program:
1. Create a procedure procname in your PROCLIB.
2. Create an entry in the RACF® STARTED class for the procname. This entry

associates the procname with the RACF user ID to be used to start the Capture
program. Make sure that the necessary DB2 authorization is granted to this
user ID before you start the Capture program.

3. From the MVS™ system console, run the command start procname.

The following sample procedure is for the Capture program:
//CAPJAYC PROC
//ASNCAP EXEC PGM=ASNCAP,REGION=M,
//PARM=’V71A autostop LOGSTDOUT startmode=COLD
//capture_schema=JAY logreuse’
//STEPLIB DD DISP=SHR,DSN=DPROPR.ASN81 .SASNLOAD
//DD DISP=SHR,DSN=SYS1.SCEERUN
//DD DISP=SHR,DSN=DSN7.SDSNLOAD
//CEEDUMP DD SYSOUT=
//SYSPRINT DD SYSOUT=
//SYSTERM DD DUMMY
//

Using JCL to operate replication programs
On z/OS, you can use JCL to start, stop, and modify running replication programs.
This allows you to save scripts if you will perform the operation repeatedly.

About this task

The SQL replication samples library contains sample JCL and scripts.

Recommendation: Copy the jobs from the SASNSAMP library to a different
library before making changes. See the Program Directory for a complete list of the
sample jobs found in the SASNSAMP library.

Procedure

To operate the replication programs with JCL:
1. Start the replication programs.

© Copyright IBM Corp. 1994, 2012 153

Option Description

Start the Capture
program with a batch
job.

Prepare the JCL for z/OS by specifying the appropriate optional
invocation parameters in the PARM field of the ASNSTRC batch
job. Run the job from TSO or the z/OS console. You can find the
job in the SASNSAMP sample library.

Start the Apply
program with a batch
job.

Prepare the JCL for z/OS by specifying the appropriate optional
invocation parameters in the PARM field of the ASNSTRA batch
job. Run the job from TSO or the z/OS console. You can find the
job in the SASNSAMP sample library.

Start the Replication
Alert Monitor with a
batch job.

Prepare the JCL for z/OS by specifying the appropriate optional
invocation parameters in the PARM field of the ASNSTRM batch
job. Run the job from TSO or the z/OS console. You can find the
job in the SASNSAMP sample library.

Start the Replication
Alert Monitor with
JCL.

Prepare the JCL for z/OS by specifying the appropriate invocation
parameters in the PARM field of the Replication Alert Monitor job.
Customize the JCL to meet your site's requirements. A sample of
invocation JCL in library SASNSAMP(ASNMON#) is included with
the Replication Alert Monitor for z/OS.

An example of this line in the invocation JCL is:

//monasn EXEC PGM=ASNMON,PARM=’monitor_server=DSN
monitor_qual=monqual’

where DSN is a subsystem name and monqual is the monitor
qualifier.

2. Optional: Modify replication programs that have already started.
After you start the Capture program, the Apply program, or the Replication
Alert Monitor program, you can use the MODIFY command to stop the
program or to perform related tasks. You must run the MODIFY command
from an MVS console. You can use the abbreviation F, as shown in the
following syntax example:

�� F jobname , Parameters ��

Basically, F jobname , replaces the actual command name: asnacmd, asnccmd, or
asnmcmd. For example, to stop the Capture program you use the following
command:
F capjfa,stop

For information about MODIFY, see z/OS MVS System Commands.

Starting the Apply program on z/OS with JCL
You can start the Apply program on z/OS by modifying and running a prepared
sample script from your samples directory.

Procedure

To start the Apply program on z/OS with JCL:
1. Prepare the JCL for z/OS by specifying the appropriate invocation parameters

in the PARM field of the Apply job.
2. Customize the JCL to meet your site's requirements.

For z/OS operating systems, an example of this line in the invocation JCL is:

154 SQL Replication Guide and Reference

//apyasn EXEC PGM=ASNAPPLY,PARM=’control_server=CTLDB1
DB2_SUBSYSTEM=DSN
apply_qual=myqual spillfile=disk’

For UNIX and Window operating systems, an example of this line in the
invocation JCL is:
//apyasn EXEC PGM=ASNAPPLY,PARM=’control_server=CTLDB1

apply_qual=myqual spillfile=disk’

3. Submit the JCL from TSO or from the MVS console.

Working with running SQL replication programs by using the MVS
MODIFY command

After you start the Capture program, Apply program, or Replication Alert Monitor
program, you can use the MODIFY command to stop the program or to perform
related tasks.

Procedure

To work with running programs on z/OS:

Run the MODIFY command from the z/OS console. You can use the abbreviation f,
as shown in the following syntax example:

�� f jobname , Parameters ��

f jobname , replaces the actual command name: asnccmd, asnacmd, or asnmcmd. The
operational parameters that apply to each of the commands can be used with the f
keyword.

For example, to stop an Apply program that uses the PLS job name, you use the
following command:
F PLS,stop

Table 13 list the Capture commands that you can run with the f keyword. In all
examples, the job name is mycap.

Table 13. Sample MODIFY commands for the Capture program

Parameter Sample command that usesf keyword

prune f mycap,prune

qryparms f mycap,qryparms

reinit f mycap,reinit

suspend f mycap,suspend

resume f mycap,resume

status f mycap,status

stop f mycap,stop

Chapter 11. Operating the replication programs (z/OS) 155

Table 13. Sample MODIFY commands for the Capture program (continued)

Parameter Sample command that usesf keyword

chgparms f mycap,chgparms autostop=y
f mycap,chgparms commit_interval=n
f mycap,chgparms logreuse=y
f mycap,chgparms logstdout=y
f mycap,chgparms memory_limit=n
f mycap,chgparms monitor_interval=n
f mycap,chgparms monitor_limit=n
f mycap,chgparms prune_interval=n
f mycap,chgparms retention_limit=n
f mycap,chgparms signal_limit=n
f mycap,chgparms sleep_interval=n
f mycap,chgparms term=y
f mycap,chgparms trace_limit=n

Table 14 list the Apply commands that you can run with the f keyword. In all
examples, the job name is myapp.

Table 14. Sample MODIFY commands for the Apply program

Parameter Sample command that uses f keyword

status f myapp,status

stop f myapp,stop

Table 15 lists asntrc program commands that you can run with the f keyword. In
all examples, the job name is mycap.

Table 15. Sample MODIFY commands for the asntrc program

Task Sample command that uses f keyword

Start a program trace with the asntrc
command

f mycap,asntrc on
f mycap,asntrc statlong

Format an asntrc fmt report and direct the
output to a z/OS data set

F mycap, asntrc fmt -ofn
//’USRT001.TRCFMT’

Format an asntrc flw report and direct the
output to a z/OS data set

F mycap, asntrc flw -ofn
//’USRT001.TRCFLW’

Stop a program trace F mycap, asntrc off

Recommendation: Preallocate asntrc flw and fmt output files so that they are large
enough to contain the asntrc reports. Use these attributes:
v Data set name: USRT001.TRCFMT or USRT001.TRCFLW

v Primary allocated cylinders: 2
v Normal allocated extents: 1
v Data class: None (Current utilization)
v Used cylinders: 2
v Record format: VB used extents: 1
v Record length: 1028
v Block size: 6144
v 1st extent cylinders: 2
v Secondary cylinders: 1

156 SQL Replication Guide and Reference

v SMS compressible: NO

Table 16 list the Replication Alert Monitor commands that you can run with the f
keyword. In all examples, the job name is mymon.

Table 16. Sample MODIFY commands for the Replication Alert Monitor program

Parameter Sample command that uses f keyword

reinit f mymon,reinit

status f mymon,status

qryparms f mymon,qryparms

suspend f mymon,suspend

resume f mymon,resume

stop f mymon,stop

chgparms f mymon,chgparms monitor_interval=n
f mymon,chgparms autoprune=y
f mymon,chgparms trace_limit=n
f mymon,chgparms alert_prune_limit=n
f mymon,chgparms max_notifications_per_alert=n
f mymon,chgparms max_notifications_minutes=n

For information about MODIFY, see z/OS MVS System Commands.

Starting the Capture program on z/OS with JCL
You can start the Capture program on z/OS by modifying and running a prepared
sample script from your samples directory.

Procedure

To start the Capture program on z/OS with JCL:
1. Prepare the JCL for z/OS.

a. Specify the appropriate optional invocation parameters in the PARM field of
the Capture job.

b. If you did not set the TZ environment variable in either the system-wide
/etc/profile file or in the .profile file in the home directory of the user
running the replication program, you must set the TZ and language
environment variables in the JCL. For more information about setting the
TZ variable, see Specifying your time zone.

The following example of this line in the invocation JCL includes setting the TZ
and LANG variables:
//CAPJFA EXEC PGM=ASNCAP, PARM=’ENVAR(’TZ=PST8PDT’,’LANG=en_US’)/

DSN6 cold capture_schema=JFA autostop’

2. Submit the JCL from TSO or from the MVS console.

Chapter 11. Operating the replication programs (z/OS) 157

Using Automatic Restart Manager (ARM) to automatically restart
replication and publishing (z/OS)

You can use the Automatic Restart Manager (ARM) recovery system on z/OS to
restart the Q Capture, Q Apply, Capture, Apply, and Replication Alert Monitor
programs.

Before you begin

Ensure that ARM is installed and that the replication programs are set up correctly.
To use ARM with a replication program, ensure that the program is APF
authorized. For example, to use ARM with the Q Apply, Apply, or Replication
Alert Monitor program, you must copy the appropriate load module into an APF
authorized library. (The Q Capture and Capture programs must be APF authorized
regardless of whether or not you are using ARM.)

About this task

ARM is a z/OS recovery function that can improve the availability of specific
batch jobs or started tasks. When a job or task fails, or the system on which it is
running fails, ARM can restart the job or task without operator intervention.

ARM uses element names to identify the applications with which it works. Each
ARM-enabled application generates a unique element name for itself that it uses in
all communication with ARM. ARM tracks the element name and has its restart
policy defined in terms of element names. For details about setting up ARM, see
z/OS MVS Sysplex Services Guide.

Procedure

To use ARM to automatically restart replication and publishing programs:
1. Specify one of the following element names when you configure ARM:

Program Element name

Q Capture ASNQCxxxxyyyy

Q Apply ASNQAxxxxyyyy

Capture ASNTC xxxxyyyy

Apply ASNTA xxxxyyyy

Replication Alert Monitor ASNAM xxxxyyyy

Where xxxx is the DB2 subsystem name and yyyy is the data-sharing member
name (the latter is needed only for data-sharing configurations). The element
name is always 16 characters long, padded with blanks.

2. Optional: If you have more than one instance of a replication or publishing
program running within a data-sharing member, specify the arm parameter
when you start the programs to create a unique ARM element name for each
program instance.
The arm parameter takes a three-character value that is appended to the
element names that are listed in the previous table. The syntax is arm=zzz,
where zzz can be any length of alphanumeric string. The replication program,
however, will concatenate only up to three characters to the current name and
pad with blanks, if necessary, to make a unique 16-byte name.

158 SQL Replication Guide and Reference

The replication programs use the element name to register with ARM during
initialization. They do not provide ARM with an event exit when they register. The
event exit is not needed because the replication programs do not run as a z/OS
subsystem. ARM restarts registered programs if they terminate abnormally (for
example, if a segment violation occurs). A registered replication program
de-registers if it terminates normally (for example, due to a STOP command) or if
it encounters an invalid registration.

Tip: If you start the Q Capture, Q Apply, Capture, Apply, or Replication Alert
Monitor program with the parameter term=n, the program does not stop when
DB2 is quiesced or stopped. In this case, the program does not de-register from
ARM. It continues to run but does not perform its actual work until DB2 is
unquiesced or started.

Migrating your replication environment to data-sharing mode (z/OS)
If the Capture program is running in non-data sharing mode but you migrate your
installation to data-sharing mode, you must prepare your systems to run in a
Sysplex by running the ASNPLXFY utility once.

Before you begin

Use either the same user ID that you use to run the Capture program, or one that
has the same privileges. Ensure that the ASNPLXFY utility is APF authorized. The
ASNPLXFY plan must be bound to the subsystem. Also, the subsystem must be
running in data sharing mode. For details about binding this utility, see the
Program Directory.

About this task

Run this utility on the data sharing configuration before warm-starting the Capture
program so that the Capture program starts at the correct LRSN. This utility
migrates the data in the IBMSNAP_RESTART table. It converts the non-data
sharing log sequence numbers (RBA) to the equivalent sequence numbers (LRSN)
in a data-sharing environment.

Procedure

To run the ASNPLXFY utility in the USS data-sharing environment:
1. Stop the Capture program.
2. Issue the ASNPLXFY command from a command line. Here is an example:

ASNPLXFY yoursubsystem captureschema

where the name of the subsystem is required and the Capture schema is
optional. The default Capture schema is ASN.

3. Warm-start the Capture program.

Chapter 11. Operating the replication programs (z/OS) 159

160 SQL Replication Guide and Reference

Chapter 12. Changing an SQL Replication environment

The following topics explain procedures and issues and for making day-to-day
changes to a Q Replication environment.

Registering new objects
You can register a new table, view, or nickname in your replication environment at
any time. You do not need to reinitialize the Capture program.

About this task

A new registered object is automatically initialized by the Capture program the
first time that the Apply program processes a subscription set that refers to that
object. The Apply program signals the Capture program to begin capturing
changes for this new object.

Procedure

To register new objects:

Use one of the following methods to register new objects:

Method Desrcription

ASNCLP
command-line
program

Use the CREATE REGISTRATION command to register a source table,
view, or nickname. For example, the following commands set the
environment and register the DEPARTMENT table in the DB2
SAMPLE database for full refresh replication.

SET SERVER CAPTURE TO DB SAMPLE;
SET OUTPUT CAPTURE SCRIPT "registernew.sql";
SET LOG "registernew.err";
SET RUN SCRIPT LATER;
CREATE REGISTRATION (DB2ADMIN.DEPARTMENT) FULL REFRESH ONLY;

Replication Center Use one of the following windows:

v Registered Table Properties notebook

v Registered View Properties notebook

v Registered Nickname Properties notebook

To open the windows, click the Registered Tables, Registered
Views, or Registered Nicknames folder in the object tree under a
Capture control server, right-click the registered object in the
contents pane, and select Properties.

ADDDPRREG system
command

Use the Add DPR registration (ADDDPRREG) command to register
a new table on System i.

© Copyright IBM Corp. 1994, 2012 161

Changing registration attributes for registered objects
You can change the registration attributes of existing registered objects at any time.

Procedure

To change registration attributes for registered objects:
1. Change the attributes by using one of the following methods.

Method Description

ASNCLP
command-line
program

Use the ALTER REGISTRATION command to change the
properties of a registered object. For example, the following
commands set the environment and change the registration for the
STAFF table in the DB2 SAMPLE database so that updates are
captured as delete-insert pairs:

SET SERVER CAPTURE TO DB SAMPLE;
SET OUTPUT CAPTURE SCRIPT "register.sql";
SET LOG "register.err";
SET RUN SCRIPT LATER;
ALTER REGISTRATION (DB2ADMIN.STAFF)
UPDATE AS DELETE INSERT ON;

Replication Center Use one of the following windows:

v Registered Table Properties notebook

v Registered View Properties notebook

v Registered Nickname Properties notebook

To open the windows, click the Registered Tables, Registered
Views, or Registered Nicknames folder in the object tree under a
Capture control server, right-click the registered object in the
contents pane, and select Properties.

2. After you change the attributes, reinitialize the Capture program.

Adding columns to source tables
If you need to add columns to a registered source table, first consider how DB2
replication uses this table. If you need to replicate the new columns in this source
table, you must ensure that the existing Capture and Apply programs recognize
the new columns and continue processing without interruption.

Before you begin

Before you use this procedure, familiarize yourself with the structures of your
source, change-data (CD), and target tables and with the registrations and
subscription sets defined on your system.

Restrictions

v Altering a registered source table on System i to add a new
column is not supported. System i creates an EJ (end journaling) journal entry
before making the change to the source table on the ALTER operation. When
you add a new column to a source table, you must drop and recreate the
registration and subscription for the table. When you add columns to a System i
table that uses a relative record number (RRN) as the primary key, remove the
registration, add the column to the source table, and then add this table again as
a new registration. Specify that the RRN will be captured.

162 SQL Replication Guide and Reference

v You cannot use these steps to add columns to registered sources on non-DB2
relational databases. A registration for a non-DB2 relational source includes a set
of triggers used for capturing changes. You cannot alter these triggers. Therefore,
if you need to add new columns to this source table and need to replicate the
data in these columns, you must drop and recreate the existing registered source.

About this task

You might need to perform special processing steps depending on whether or not
you want to replicate the data in the new columns.

Not replicated
If you do not want to replicate the data in the new columns, you do not
need to perform any special processing steps. The Capture program
immediately recognizes the changes and continues running.

Replicated
If you want to replicate the data in these new columns, follow these steps
to ensure that the new column data is captured and that the Capture and
Apply programs continue to run without errors.

Procedure

To add columns to source tables:
1. Quiesce all activity against the source table that you want to alter.
2. Stop the Capture program.
3. Optional: If you need to keep the Capture program active during this

procedure, insert a USER signal in the IBMSNAP_SIGNAL table after stopping
activity against the source table. Wait for the Capture program to process the
USER signal. After the Capture program processes the USER signal, the
Capture program has no more activity to process against the associated CD
table and no longer requires access to this CD table.

4. Deactivate all subscription sets that subscribe to this source table from the
Replication Center.

Note: If you do not want to deactivate the subscription sets during this
process, verify that no Apply programs associated with these subscriptions
sets will be running against this source table when you are adding the new
columns. Alternatively, ensure that these Apply programs have processed data
up to the signal log sequence number (LSN) that is associated with the prior
USER signal.
The methods in this step ensure exclusive access to the CD table so that you
can alter the table.

5. Submit an ALTER TABLE ADD statement in SQL to add the new columns to
the source table.

6. Add the new columns to the CD table by using the ALTER REGISTRATION
command in the ASNCLP command-line program or the Registered Table
Properties notebook in the Replication Center. The Capture program
automatically reinitializes the registration and captures the changes to these
new columns when the Capture program first reads log data with the new
columns.

7. Submit an ALTER TABLE ADD statement in SQL to add the new columns to
the target table.

8. Deactivate any associated subscription sets that you did not already deactivate
from the Replication Center. If absolutely necessary, you can now resume

Chapter 12. Changing an SQL Replication environment 163

activity against this source table. However, because the associated
subscriptions sets have not yet been changed, you must keep these
subscription sets deactivated so that you do not lose any changes made to
these new columns.

9. Add the new columns to the associated subscription-set members by using the
ALTER MEMBER ADD COLS command in the ASNCLP command-line
program or the Add Column to Target Table window in the Replication
Center.

10. Optional: If any of the columns that you added have default values, run the
REORG utility on the source table.

11. If you are running the Apply program
with opt4one set to y, stop and then restart the Apply program.

12. Reactivate the subscription sets.

Handling of ALTER TABLE ALTER COLUMN SET DATA TYPE
operations

Starting with Version 10.1 on z/OS and Linux, UNIX, and Windows, SQL
Replication handles ALTER TABLE ALTER COLUMN SET DATA TYPE operations
at the source table by changing the data type of the corresponding CD table
column. You must still alter the target table column.

Prerequisites:

v The Capture server must be at Version 10.1 or newer on both z/OS and Linux,
UNIX, and Windows. The exception is extending a VARCHAR/VARGRAPHIC
column. This operation is supported on older versions.

v Some configurations steps are required on z/OS. See
Enabling replication of ADD COLUMN and SET DATA TYPE operations.

Capture also alters any before-image columns in the CD table to the new data
type.

On z/OS, after the CD table is altered, DB2 puts the table into
REORG PENDING state, which requires a REORG operation before the table can
be used. The Capture program calls the DB2 stored procedure
ADMIN_REVALIDATE_DB_OBJECTS to remove the table from REORG PENDING
state. The exceptions to this REORG requirement are extending the length of
VARCHAR or VARGRAPHIC columns.

Stop capturing changes for registered objects
You should deactivate a registered object before you delete it to ensure that the
Capture programs finish any necessary processing of the object. Also, you can
deactivate a registered object if you want to stop capturing changes for this object
temporarily but need to keep your Capture programs running for other registered
objects.

Restrictions

You can deactivate only DB2 registered objects that are defined as Capture
program sources.

164 SQL Replication Guide and Reference

You cannot deactivate non-DB2 relational database objects that are used by
Capture triggers.

About this task

The Capture program stops capturing changes for the source objects that have been
deactivated; however, the change-data (CD) tables, registration attributes, and
subscription sets that are associated with these source objects remain on the
system.

Before you deactivate a registered object, you should deactivate all of the
subscriptions sets that are associated with this registered object. This ensures that
your Apply programs will not interfere with the deactivation process by
automatically reactivating the object before you delete it or before you are ready to
reactivate it.

All subscription sets that are associated with the registered object are affected
when the object is deactivated and when SQL Replication stops capturing changes
for that object. If you want to continue running these subscription sets, you must
remove the subscription-set members that use this registered object as a source
from the deactivated subscription sets.

Procedure

To deactivate a registered object:
1. Deactivate all associated subscription sets by using the Replication Center. Click

the Subscription Sets folder, right-click the active subscription sets in the
contents pane and select Deactivate.

2. Deactivate the registered object by using one of the following methods:

Method Description

Replication Center Click the Registered Tables folder, right-click the registered table
in the contents pane and select Stop Capturing Changes.

SQL Manually insert a CAPSTOP signal into the IBMSNAP_SIGNAL
table.

Making registrations eligible for reactivation
When you reactivate a registration, the Capture program reactivates the
registration after the Apply program sends a CAPSTART signal. If, however, the
Capture program deactivates a registration because of an unexpected error, you
must take special action to reactivate the registration.

Before you begin

Read the error messages that were generated by the Capture program regarding
any deactivated registrations.

Familiarize yourself with the structure of the Capture control tables and with the
Capture programs running on your system.

About this task

Chapter 12. Changing an SQL Replication environment 165

Unexpected errors can cause the Capture program to set the value of the STATE
column to S (Stopped) in the IBMSNAP_REGISTER table if the STOP_ON_ERROR
column value for this registration is set to N. This STATE column value indicates
that the Capture program stopped processing this registration and that the
registration must be repaired. The Apply program does not issue a CAPSTART
signal for any registration that is in a stopped state.

Procedure

To correct unexpected errors and make registration eligible for reactivation:
1. Change your registration by using the information contained in the error

messages.
2. From the Capture control server, run the following SQL script to reset the

STATE column in the IBMSNAP_REGISTER table:
UPDATE schema.IBMSNAP_REGISTER

SET STATE = ’I’
WHERE

SOURCE_OWNER = ’SrcSchema’ AND
SOURCE_TABLE = ’SrcTbl’ AND
SOURCE_VIEW_QUAL = SrcVwQual AND
STATE = ’S’;

where schema is the name of the Capture schema, SrcSchema is the registered
source table schema, SrcTbl is the name of the registered source table, and
SrcVwQual is the source-view qualifier for this source table. After the STATE
column is set to I (Inactive), the Capture program is ready to begin capturing
data as soon as a CAPSTART signal is received, usually from the Apply
program.

Suppose that the source table for an active registration was inadvertently altered to
DATA CAPTURE NONE (and should be DATA CAPTURE CHANGES). Also,
suppose that this registration was defined with STOP_ON_ERROR = 'N', which
specifies that the Capture program will not stop when it encounters errors. At the
next restart or reinitialization of the Capture program, the Capture program will
recognize this incorrect condition of the source table and will set the STATE
column to S (Stopped) in the IBMSNAP_REGISTER table for this registration. You
will receive an error message when the Apply program tries to process the
corresponding subscription set, because the registration will be in a stopped state.
You must:
v Correct the setting of the source table through SQL by submitting an ALTER

TABLE statement that resets the table option to DATA CAPTURE CHANGES.
v Manually reset the registration from a stopped state to an inactive state, using

the above SQL script.

The Apply program will then perform a full refresh of the entire subscription set.

Removing registrations
If you remove a registration, SQL Replication removes the registration of the object,
drops the associated change-data (CD) or consistent-change data (CCD) tables, and
drops the CCD object nickname and any Capture triggers for non-DB2 relational
database sources. The actual source table or view remains in the database.

About this task

166 SQL Replication Guide and Reference

Important: Deactivation is an asynchronous process. Be sure that the deactivation
process finishes before you remove the object.

If you make changes while the Capture program is running, these changes are not
recognized until you either reinitialize or stop and restart the Capture program.

Procedure

To remove registrations by using the Replication Center:
1. Deactivate the subscription set to which the registered object belongs, or stop

the Apply program. In the Replication Center, right-click the subscription set in
the contents pane and click Deactivate.

2. Deactivate the registration that you want to delete to ensure that the Capture
program finishes any current processing of this object, or stop the Capture
program. To deactivate, right-click the registered object in the contents pane
and click Stop Capturing Changes.

3. Remove the subscription-set member for the registered object. Right-click the
subscription set in the navigation tree and click Delete Members. Then use the
Delete Members from Subscription Sets notebook to remove the member and, if
wanted, the target table.

4. Remove the registration. Right-click the registered object in the contents pane,
and select Delete.

5. Reinitialize the Capture program so that it picks up the changes. Right-click the
Capture control server in the navigation tree and click Reinitialize Capture.

6. Activate the subscription set. Right-click the set in the contents pane and click
Activate Indefinitely.

7. Start the Capture program, Apply program, or both if you stopped them.

On System i, use the RMVDPRREG (remove DPR registration)
command to remove a single source table from the IBMSNAP_REGISTER table.

Changing Capture schemas
You can change an existing Capture schema.

Before you begin

v Familiarize yourself with the SQL Replication control tables and with the
subscription sets that are defined on your system.

v Determine the new Capture schema name.
v Verify that your Capture control server and all of the Apply control servers that

are associated with this Capture control server have been migrated to Version 8
or later.

Restrictions

You should not use this procedure if your source server is a non-DB2 relational
database.

About this task

Tip: If you set up monitoring definitions or started Replication Alert Monitor
programs under the Capture schema that you are going to change, drop these
monitoring definitions. After you change the Capture schema, recreate the

Chapter 12. Changing an SQL Replication environment 167

monitoring definitions with the new Capture schema name. Then, you can
reinitialize the associated monitors by using the asnmcmd reinit system command.
You can also stop the monitors by using the asnmcmd stop system command and
then restart the programs by using the asnmon system command.

Procedure

To change capture schemas:
1. Create control tables for a new Capture schema.
2. Stop the Capture program.
3. Deactivate all associated subscription sets by using the Replication Center.
4. From the Apply control server, run the following SQL statement to change the

Capture schema names for the associated subscription sets with source tables
that belong to this Capture schema:
UPDATE ASN.IBMSNAP_SUBS_SET

SET CAPTURE_SCHEMA = ’NewSchema’
WHERE

CAPTURE_SCHEMA = ’ExistingSchema’;

where NewSchema is the new Capture schema name, and ExistingSchema is the
name of the Capture schema that you are changing.

5. If you created subscription sets with target tables (for example, CCD or replica
type tables) that are registered in this Capture schema, run the following SQL
statement from the Apply control server to change the target schema name of
these subscription sets:
UPDATE ASN.IBMSNAP_SUBS_SET

SET TGT_CAPTURE_SCHEMA = ’NewSchema’
WHERE

TGT_CAPTURE_SCHEMA = ’ExistingSchema’;

where NewSchema is the new Capture schema name, and ExistingSchema is the
name of the Capture schema that you are changing.

6. From the Capture control server, run an SQL statement to copy the active
information from each existing Capture control table to each new
corresponding Capture control table that you created in step 1. For example, to
copy the active information to the IBMSNAP_REGISTER table:
INSERT INTO NewSchema.IBMSNAP_REGISTER

SELECT * FROM
ExistingSchema.IBMSNAP_REGISTER;

where NewSchema is the new Capture schema name, and ExistingSchema is the
name of the Capture schema that you are changing.
Repeat this step for each existing Capture control table, including some or all of
the following tables:
v IBMSNAP_CAPMON
v IBMSNAP_CAPPARMS
v IBMSNAP_CAPTRACE
v IBMSNAP_PRUNCNTL
v IBMSNAP_PRUNE_SET
v IBMSNAP_REG_EXT (System i only)
v IBMSNAP_REGISTER
v IBMSNAP_RESTART
v IBMSNAP_SIGNAL

168 SQL Replication Guide and Reference

v IBMSNAP_UOW
You do not need to repeat this step for the IBMSNAP_CAPENQ (on UNIX,
Windows, z/OS) or the IBMSNAP_PRUNE_LOCK control table, because there
are no rows in these tables.Do not change the CD tables.

7. Drop the existing schema and its associated Capture control tables by using the
Replication Center or ASNCLP.

8. Restart the Capture program with the new schema name.
9. Reactivate the associated subscription sets by using the Replication Center.

Creating new subscription sets
You can create new subscription sets and add new subscription-set members to
sets at any time for an existing registered object.

Before you begin

Before you create a new subscription set, register the tables or views that you want
to use as sources.

Restrictions

If the corresponding Apply program is active, do not activate the new subscription
set until the subscription set is fully defined.

About this task

This procedure addresses the addition of a new subscription set, with or without
subscription-set members.

Procedure

To create a new subscription set, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE SUBSCRIPTION SET command to create an
empty set.

Replication Center Use the Create Subscription Set notebook to create a set and add a
member or to create an empty set.

To open the notebook, expand the Apply control server where the
set will be defined, right click the Subscription Sets folder and
click Create.

ADDDPRSUB system
command

Use the Add DPR subscription set (ADDDPRSUB) command to
create a subscription set with either one member or no members.

Adding new subscription-set members to existing subscription sets
You can add one or more members that each use the same source table to one or
more existing subscription sets. For example, if you select three subscription sets,
you can add one member to each of those subscription sets, all of them using the
same replication source.

Chapter 12. Changing an SQL Replication environment 169

About this task

When you add a member to a subscription set, you are inserting information about
the new member into the Apply control tables. In most cases, the Apply program
will read this information at the beginning of the next Apply cycle.

However, if you add a member to a subscription set that is being processed with
the OPT4ONE option on Linux, UNIX, Windows, or z/OS or with the
OPTSNGSET option on System i, you must stop the Apply program for the
subscription set and then restart it. If you process a set with the OPT4ONE option,
the Apply program reads into memory the control table information for the set so
that it does not need to go to the control tables to read the information for the set
at the beginning of each Apply cycle.

If the source table for the member is registered for differential replication and the
Capture program is already running, you do not need to stop or reinitialize the
Capture program before you add the member. Because the added member must
use a registered table as its source, the Capture program will already be capturing
changes for it.

Procedure

To add new subscription-set members to existing subscription sets, use one of the
following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE MEMBER command to add a subscription-set
member to an existing subscription set.

Replication Center Use the Add Member to Subscription Set notebook.

To open the notebook, click the Registered Tables folder. In the
contents pane, right-click a registered table that you want to use
and click Add Member.

ADDDPRSUBM system
command

Use the Add DPR subscription-set member (ADDDPRSUBM)
command to add a member to an existing subscription set.

Disabling subscription-set members from existing subscription sets
If you want the Apply program to ignore a failing subscription-set member and
continue processing the rest of the subscription set, you must disable the failing
subscription-set member.

About this task

If there is a problem replicating to a table in the subscription set, the Apply
program inserts an error messages into the IBMSNAP_APPLYTRAIL table and
continues processing other members in the Apply cycle.

Procedure

To disable a subscription-set member, issue the following SQL UPDATE statement:

170 SQL Replication Guide and Reference

UPDATE ASN.IBMSNAP_SUBS_MEMBR
SET MEMBER_STATE = ’D’
WHERE APPLY_QUAL= apply_qualifier

SET_NAME = set_name
WHOS_ON_FIRST = whos_on_first
SOURCE_OWNER = source_owner

SOURCE_TABLE = source_table
SOURCE_VIEW_QUAL = source_view_qualifier
TARGET_OWNER = target_owner
TARGET_TABLE = target_table

The Apply program will not process this member until the member is re-enabled.

Enabling subscription-set members to existing subscription sets
You can add or re-enable disabled members in a subscription set by changing the
MEMBER_STATE to N (new).

Procedure

To re-enable a subscription-set member, issue the following SQL UPDATE
statement:
UPDATE ASN.IBMSNAP_SUBS_MEMBR
SET MEMBER_STATE = ’N’
WHERE APPLY_QUAL= apply_qualifier

SET_NAME = set_name
WHOS_ON_FIRST = whos_on_first
SOURCE_OWNER = source_owner

SOURCE_TABLE = source_table
SOURCE_VIEW_QUAL = source_view_qualifier
TARGET_OWNER = target_owner
TARGET_TABLE = target_table

Changing properties of subscription sets
You can change the properties of a subscription set while Apply continues to run
and process other sets, and then reactivate the set before the next Apply cycle.

About this task

The following list describes attributes that you might need to change:
v Schedules for applying updates (time-based replication or event-based

replication)
v Subscription statements
v WHERE clause predicates of subscription-set members
v Commit count
v Data blocking value (MAX_SYNCH_MINUTES)

By first deactivating the subscription set, you prevent the Apply program from
processing the set while you enter your changes. The Apply program recognizes
your subscription set changes during the next Apply cycle after you reactivate the
set.

Procedure

To change the properties of a subscription set:
1. Deactivate the subscription set by using the Replication Center.

Chapter 12. Changing an SQL Replication environment 171

2. Use one of the following methods to change the subscription set:

Method Description

ASNCLP
command-line
program

Use the ALTER SUBSCRIPTION SET command.

The following commands set the environment and change the
subscription set SET00 to lower the timing interval to 15 minutes:

SET SERVER CAPTURE TO DB SAMPLE;
SET SERVER CONTROL TO DB TARGET;
SET OUTPUT CAPTURE SCRIPT "capsubsetchg.sql"
CONTROLSCRIPT "appsubsetchg.sql";
SET LOG "subsetchg.err";
SET RUN SCRIPT LATER;
ALTER SUBSCRIPTION SET SETNAME SET00
APPLYQUAL AQ00 SETTYPE R ACTIVATE YES
TIMING INTERVAL 15 COMMIT COUNT NULL;

Replication Center Use the Subscription Set Properties notebook. To open the
notebook, click the Subscription Sets folder within an Apply
control server, right-click the subscription set in the contents pane
and click Properties.

3. Reactivate the subscription set.

If you set the opt4one Apply program
parameter to y, stop and then restart the Apply program or your changes will not
be recognized.

Changing subscription set names
You can change the name of a subscription set without having to drop and recreate
the subscription set and all of its members.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the
SQL Replication control tables and with the subscription sets defined on your
system.

Tip: If you set up monitoring definitions or started Replication Alert Monitor
programs to detect alert conditions for the subscription set, drop these definitions.
After you change the subscription-set name, re-create the monitoring definitions
through the Replication Center or ASNCLP. Then, you can reinitialize the monitors
by using the asnmcmd reinit system command. You can also stop the monitors by
using the asnmcmd stop command and then restart the programs by using the
asnmon command.

Procedure

To change the name of a subscription set:
1. Use the Replication Center to deactivate the subscription set.
2. From the Apply control server, run the following SQL statements to change the

name of the subscription set in the IBMSNAP_SUBS_SET,
IBMSNAP_SUBS_MEMBR, and IBMSNAP_SUBS_COLS tables:

172 SQL Replication Guide and Reference

UPDATE ASN.IBMSNAP_SUBS_SET
SET SET_NAME = ’NewSetName’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistSetName’ AND
WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_MEMBR
SET SET_NAME = ’NewSetName’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistSetName’ AND
WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_COLS
SET SET_NAME = ’NewSetName’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistSetName’ AND
WHOS_ON_FIRST = ’Val’;

Where NewSetName is the new subscription set name, ApplyQual is the Apply
qualifier, ExistSetName is the existing name of the subscription set, and Val is
either F or S.

3. If this subscription set uses before or after SQL statements or procedure calls,
run the following SQL script from the Apply control server to change the
subscription set name in the IBMSNAP_SUBS_STMTS table:
UPDATE ASN.IBMSNAP_SUBS_STMTS

SET SET_NAME = ’NewSetName’
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistSetName’ AND
WHOS_ON_FIRST = ’Val’;

where NewSetName is the new subscription set name, ApplyQual is the Apply
qualifier, ExistSetName is the existing name of the subscription set, and Val is
either F or S.

4. From the Capture control server, run the following SQL statements to change
the subscription set name in the IBMSNAP_PRUNE_SET and
IBMSNAP_PRUNCNTL tables:
UPDATE Schema.IBMSNAP_PRUNE_SET

SET SET_NAME = ’NewSetName’
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistSetName’ AND
TARGET_SERVER = ’Target_Server’;

UPDATE Schema.IBMSNAP_PRUNCNTL
SET SET_NAME = ’NewSetName’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistSetName’ AND
TARGET_SERVER = ’Target_Server’;

where Schema is the name of the Capture schema, NewSetName is the new
subscription set name, ApplyQual is the Apply qualifier, ExistSetName is the
existing name of the subscription set, and Target_Server is the database location
of the target tables.

5. If you are running the Apply program on Linux, UNIX, Windows, or z/OS,
with opt4one set to y, stop and then restart the Apply program.

6. Reactivate the subscription set from the Replication Center.

Chapter 12. Changing an SQL Replication environment 173

Splitting a subscription set
You can split a subscription set into two or more sets without having to remove
and re-create subscription set information.

Before you begin

v Before running these SQL statements, familiarize yourself with the structure of
the SQL Replication control tables and with the subscription sets defined on
your system.

v Identify the subscription-set members of the subscription set that you want to
split, and determine the source and target tables associated with these
subscription-set members.

v Identify the Capture control server, target server, and Apply control server of the
subscription set that you want to split. You must use these Capture control
server, target server, and Apply control server locations for the new subscription
set that you want to create with this procedure.

About this task

Tip: If you set up monitoring definitions or started Replication Alert Monitor
programs to detect alert conditions for the subscription set, drop these definitions.
After you split the subscription-set, re-create the monitoring definitions through
the Replication Center or ASNCLP. Then, you can reinitialize the monitors by
using the asnmcmd reinit system command. You can also stop the monitors by
using the asnmcmd stop command and then restart the programs by using the
asnmon command.

Procedure

To split a subscription set:
1. Deactivate the subscription set that you want to split from the Replication

Center. From the Subscription Sets folder, right-click the active subscription set
in the contents pane and select Deactivate.

2. Create a new subscription set. The new set is represented by a new row in the
IBMSNAP_SUBS_SET table. Leave this new subscription set inactive.

3. From the Apply control server, run the following SQL statement to copy
information from the existing subscription set into the new subscription set
row in the IBMSNAP_SUBS_SET table:
UPDATE ASN.IBMSNAP_SUBS_SET

SET STATUS =
(SELECT STATUS FROM ASN.IBMSNAP_SUBS_SET B

WHERE APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’),

LASTRUN =
(SELECT LASTRUN FROM ASN.IBMSNAP_SUBS_SET B

WHERE APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’),

SYNCHPOINT =
(SELECT SYNCHPOINT FROM ASN.IBMSNAP_SUBS_SET B
WHERE APPLY_QUAL = ’ApplyQual’ AND

SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’),

SYNCHTIME =
(SELECT SYNCHTIME FROM ASN.IBMSNAP_SUBS_SET B
WHERE APPLY_QUAL = ’ApplyQual’ AND

174 SQL Replication Guide and Reference

SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’),

LASTSUCCESS =
(SELECT LASTSUCCESS FROM ASN.IBMSNAP_SUBS_SET B
WHERE APPLY_QUAL = ’ApplyQual’ AND

SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’)

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’NewName’ AND
WHOS_ON_FIRST = ’Val’;

where ApplyQual is the Apply qualifier, ExistName is the name of the existing
subscription set that is being split, Val is either F or S, and NewName is the
name of the new subscription set that you are creating.

4. From the Capture control server, run the following SQL statement to insert a
new row for the new subscription set into the IBMSNAP_PRUNE_SET table:
INSERT INTO Schema.IBMSNAP_PRUNE_SET

(APPLY_QUALIFIER,
SET_NAME,
TARGET_SERVER,
SYNCHTIME,
SYNCHPOINT

VALUES (’ApplyQual’,
’NewName’,
’Target_Server’,
NULL,
x’00000000000000000000’);

where Schema is the name of the Capture schema, ApplyQual is the Apply
qualifier, NewName is the name of the new subscription set that you are
creating, and Target_Server is the database location of the target tables.

5. From the Capture control server, run the following SQL statement to copy
information from the existing subscription set row to the new subscription set
row in the IBMSNAP_PRUNE_SET table:
UPDATE Schema.IBMSNAP_PRUNE_SET

SET SYNCHPOINT =
(SELECT SYNCHPOINT FROM Schema.IBMSNAP_PRUNE_SET B

WHERE APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
TARGET_SERVER = ’Target_Server’),

SYNCHTIME =
(SELECT SYNCHTIME FROM Schema.IBMSNAP_PRUNE_SET B

WHERE APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
TARGET_SERVER = ’Target_Server’)

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’NewName’ AND
TARGET_SERVER = ’Target_Server’;

where Schema is the name of the Capture schema, ApplyQual is the Apply
qualifier, ExistName is the name of the existing subscription set that is being
split, Target_Server is the database location of the target tables, and NewName
is the name of the new subscription set that you are creating.

6. From the Apply control server, run the following SQL statements to change
the subscription set name in the IBMSNAP_SUBS_MEMBR table and the
IBMSNAP_SUBS_COLS tables for each subscription-set member that you are
moving into the new subscription set:

Chapter 12. Changing an SQL Replication environment 175

UPDATE ASN.IBMSNAP_SUBS_MEMBR
SET SET_NAME = ’NewName’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’ AND
SOURCE_OWNER = ’SrcSchema’ AND
SOURCE_TABLE = ’SrcTbl’ AND
SOURCE_VIEW_QUAL = SrcVwQual AND
TARGET_OWNER = ’TgtSchema’ AND
TARGET_TABLE = ’TgtTbl’;

UPDATE ASN.IBMSNAP_SUBS_COLS
SET SET_NAME = ’NewName’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’ AND
TARGET_OWNER = ’TgtSchema’ AND
TARGET_TABLE = ’TgtTbl’;

where NewName is the name of the new subscription set that you are creating,
ApplyQual is the Apply qualifier, ExistName is the name of the existing
subscription set being split, Val is either F or S, SrcSchema is the source table
schema, SrcTbl is the source table name, SrcVwQual is the source-view
qualifier for this source table, TgtSchema is the schema of the target table, and
TgtTbl is the target table name.
Repeat this step for each subscription-set member that you want to move to
the new subscription set.

7. If the subscription set that you are splitting uses before or after SQL
statements or procedure calls, move the applicable statements to the new
subscription set in the IBMSNAP_SUBS_STMTS table:
a. Run the following SQL script from the Apply control server to move the

statements:
UPDATE ASN.IBMSNAP_SUBS_STMTS

SET SET_NAME = ’NewName’
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
WHOS_ON_FIRST = ’Val’ AND
STMT_NUMBER in (Stmt1,Stmt2,..Stmtn);

where NewName is the name of the new subscription set that you are
creating, ApplyQual is the Apply qualifier, ExistName is the name of the
existing subscription set being split, Val is either F or S, and Stmt1, Stmt2,
and Stmtn correspond to the numbers of the statements that you are
moving to the new subscription set.

b. Adjust the AUX_STMTS column values in the IBMSNAP_SUBS_SET table
to reflect the new count of statements for both subscription sets. Renumber
the statements to eliminate any duplicates, if necessary.

8. From the Capture control server, run the following SQL statement to change
the name of the subscription set in the IBMSNAP_PRUNCNTL table for each
subscription-set member that you moved:
UPDATE Schema.IBMSNAP_PRUNCNTL

SET SET_NAME = ’NewName’
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’ExistName’ AND
TARGET_SERVER = ’Target_Server’ AND
SOURCE_OWNER = ’SrcSchema’ AND

176 SQL Replication Guide and Reference

SOURCE_TABLE = ’SrcTbl’ AND
SOURCE_VIEW_QUAL = SrcVwQual AND
TARGET_OWNER = ’TgtSchema’ AND
TARGET_TABLE = ’TgtTbl’;

where Schema is the name of the Capture schema, NewName is the name of the
new subscription set that you created in step 2, ApplyQual is the Apply
qualifier, ExistName is the name of the existing subscription set that was split,
Target_Server is the database location of the target tables, SrcSchema is the
source table schema, SrcTbl is the source table name, SrcVwQual is the
source-view qualifier for this replication source table, TgtSchema is the target
table schema, and TgtTbl is the target table name.
Repeat this step for each subscription-set member that you moved to the new
subscription set.

9. If you are running the Apply program
with opt4one set to y, stop and then restart the Apply program.

10. Reactivate both subscription sets from the Replication Center.

Merging subscription sets
You can merge two subscriptions sets into one. You might want to merge
subscription sets if you want the target tables within these two subscription sets to
have the same transaction consistency but you do not want to delete and then
recreate subscription set information.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the
SQL Replication control tables and with the subscription sets defined on your
system.

Identify the Capture control server, target server, and Apply control server of each
subscription set that you want to merge. Verify that all of the subscription sets that
you want to merge were created with the same Capture control server, target
server, and Apply control server.

Restrictions

The two subscription sets that you want to merge must derive their source data
from the same Capture server and through the same Capture schema.

Important: The two subscription sets must have processed the source data up to
the identical synch point value to prevent a loss of data when the subscription sets
are merged.

Procedure

To merge subscription sets:
1. Stop the associated Capture program. Wait until both subscription sets reach

the same synch point and synchtime as indicated in the IBMSNAP_SUBS_SET
table.

Tip: If you do not want to stop the Capture program, insert a USER signal in
the IBMSNAP_SIGNAL table, and generate an event with the

Chapter 12. Changing an SQL Replication environment 177

END_SYNCHPOINT (in the IBMSNAP_SUBS_EVENT table) set to the value of
the SIGNAL_LSN column in the IBMSNAP_SIGNAL table so that only the data
up to that end point is applied.

2. Deactivate both subscription sets from the Replication Center.
3. From the Apply control server, run the following SQL statement to delete the

row from the IBMSNAP_SUBS_SET table that corresponds to the subscription
set that you are moving into the other subscription set:
DELETE FROM ASN.IBMSNAP_SUBS_SET
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Subset_To_Move’ AND
WHOS_ON_FIRST = ’Val’;

where ApplyQual is the Apply qualifier, Subset_To_Move is the name of the
subscription set that you are moving into another existing subscription set, and
Val is either F or S.

4. From the Capture control server, run the following SQL statement to delete the
row from the IBMSNAP_PRUNE_SET table that corresponds to the subscription
set that you are moving into the other subscription set:
DELETE FROM Schema.IBMSNAP_PRUNE_SET
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Subset_To_Move’ AND
TARGET_SERVER = ’Target_Server’ ;

where Schema is the name of the Capture schema, ApplyQual is the Apply
qualifier, Subset_To_Move is the name of the subscription set that you are
moving into another existing subscription set, and Target_Server is the database
location of the target tables.

5. From the Apply control server, run the following SQL statements to change the
name of the subscription set that you are moving to the name of the other
subscription set in the IBMSNAP_SUBS_MEMBR and IBMSNAP_SUBS_COLS
tables:
UPDATE ASN.IBMSNAP_SUBS_MEMBR

SET SET_NAME = ’Existing_Merged_Subset’
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Subset_To_Move’ AND
WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_COLS
SET SET_NAME = ’Existing_Merged_Subset’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Subset_To_Move’ AND
WHOS_ON_FIRST = ’Val’;

where Existing_Merged_Subset is the name of the existing subscription set being
merged with the subscription set that you are moving, ApplyQual is the Apply
qualifier, Subset_To_Move is the name of the subscription set that you are
moving into the existing subscription set, and Val is either F or S.

6. If the subscription set that you are moving uses before or after SQL statements
or procedure calls, change the name of the subscription set in the
IBMSNAP_SUBS_STMTS table:
a. Run the following SQL script from the Apply control server to change the

name of the subscription set:

178 SQL Replication Guide and Reference

UPDATE ASN.IBMSNAP_SUBS_STMTS
SET SET_NAME = ’Existing_Merged_Subset’

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Subset_To_Move’ AND
WHOS_ON_FIRST = ’Val’;

where Existing_Merged_Subset is the name of the existing subscription set
that is being merged with the subscription set that you are moving,
ApplyQual is the Apply qualifier, Subset_To_Move is the name of the
subscription set that you are moving into the existing subscription set, and
Val is either F or S.

b. Adjust the AUX_STMTS column value in the IBMSNAP_SUBS_SET table to
reflect the new count of statements in the existing merged subscription set.
Renumber the statements to eliminate any duplicates, if necessary.

7. From the Capture control server, run the following SQL statement to change the
name of the subscription set that was moved to the name of the merged
subscription set in the IBMSNAP_PRUNCNTL table:
UPDATE Schema.IBMSNAP_PRUNCNTL

SET SET_NAME = ’Existing_Merged_Subset’
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Subset_To_Move’ AND
TARGET_SERVER = ’Target_Server’ ;

where Schema is the name of the Capture schema, Existing_Merged_Subset is the
name of the existing subscription set being merged with the subscription set
that you are moving, ApplyQual is the Apply qualifier, Subset_To_Move is the
name of the subscription set that you are moving into another existing
subscription set, and Target_Server is the database location of the target tables.

8. If you are running the Apply program
with opt4one set to y, stop and then restart the Apply program.

9. Reactivate the merged subscription set from the Replication Center.

Changing Apply qualifiers of subscription sets
If you need to change the Apply qualifier of a subscription set, you can use SQL to
make the change without deleting and recreating the subscription set.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the
SQL Replication control tables and with the subscription sets defined on your
system.

You must also determine the following information:
v The name of the new Apply qualifier.
v The subscription sets that you want to move from the existing Apply qualifier to

the new Apply qualifier.
v Any before or after SQL statements or procedure calls that are defined for these

subscription sets.

About this task

Chapter 12. Changing an SQL Replication environment 179

If you have several subscription sets that use the same Apply qualifier, you might
want to move some of the subscription sets to a new Apply qualifier to balance the
workloads of the Apply programs.

Tip: If you set up monitoring definitions or started Replication Alert Monitor
programs to detect alert conditions for the Apply qualifier, drop these definitions.
After you change the qualifier, re-create the monitoring definitions through the
Replication Center or ASNCLP. Then, you can reinitialize the monitors by using
the asnmcmd reinit system command. You can also stop the monitors by using the
asnmcmd stop command and then restart the programs by using the asnmon
command.

You must run the SQL statements in this procedure for each subscription set that
you want to move.

Procedure

To change Apply qualifiers of subscription sets:
1. Deactivate the subscription sets that you want to change by using the

Replication Center.
2. From the Apply control server, run the following SQL statements to change the

Apply qualifier of the subscription set in the IBMSNAP_SUBS_SET,
IBMSNAP_SUBS_MEMBR, and IBMSNAP_SUBS_COLS tables:
UPDATE ASN.IBMSNAP_SUBS_SET

SET APPLY_QUAL = ’NewApplyQual’
WHERE

APPLY_QUAL = ’ExistApplyQual’ AND
SET_NAME = ’Name’ AND
WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_MEMBR
SET APPLY_QUAL = ’NewApplyQual’

WHERE
APPLY_QUAL = ’ExistApplyQual’ AND
SET_NAME = ’Name’ AND
WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_COLS
SET APPLY_QUAL = ’NewApplyQual’

WHERE
APPLY_QUAL = ’ExistApplyQual’ AND
SET_NAME = ’Name’ AND
WHOS_ON_FIRST = ’Val’;

where NewApplyQual is the new Apply qualifier, ExistApplyQual is the existing
Apply qualifier, Name is the name of the subscription set, and Val is either F or
S.

3. If this subscription set uses before or after SQL statements or procedure calls,
run the following SQL statements at the Apply control server to change the
Apply qualifier of the subscription set in the IBMSNAP_SUBS_STMTS table:
UPDATE ASN.IBMSNAP_SUBS_STMTS

SET APPLY_QUAL = ’NewApplyQual’
WHERE

APPLY_QUAL = ’ExistApplyQual’ AND
SET_NAME = ’Name’ AND
WHOS_ON_FIRST = ’Val’;

where NewApplyQual is the new Apply qualifier, ExistApplyQual is the existing
Apply qualifier, Name is the name of the subscription set, and Val is either F or
S.

180 SQL Replication Guide and Reference

4. From the Capture control server, run the following SQL statements to change
the Apply qualifier of the subscription set in the IBMSNAP_PRUNE_SET and
IBMSNAP_PRUNCNTL tables:
UPDATE Schema.IBMSNAP_PRUNE_SET

SET APPLY_QUAL = ’NewApplyQual’
WHERE

APPLY_QUAL = ’ExistApplyQual’ AND
SET_NAME = ’Name’ AND
TARGET_SERVER = ’Target_Server’;

UPDATE Schema.IBMSNAP_PRUNCNTL
SET APPLY_QUAL = ’NewApplyQual’

WHERE
APPLY_QUAL = ’ExistApplyQual’ AND
SET_NAME = ’Name’ AND
TARGET_SERVER = ’Target_Server’;

where Schema is the name of the Capture schema, NewApplyQual is the new
Apply qualifier, ExistApplyQual is the existing Apply qualifier, Name is the
name of the subscription set, and Target_Server is the database location of the
target tables.

5. Repeat steps 2 through 4 for each remaining subscription set that you want to
move.

6. If you are running the Apply program with opt4one set to y on Linux, UNIX,
Windows or z/OS, stop and then restart the Apply program.

7. Reactivate the subscription sets by using the Replication Center.

Deactivating subscription sets
You can deactivate a subscription set without removing it. When you deactivate a
subscription set, the Apply program completes its current processing cycle and
then suspends operations for that subscription set.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the
SQL Replication control tables and with the subscription sets defined on your
system.

About this task

You might need to perform special maintenance on these deactivated subscription
sets depending on how long they must remain deactivated:

Short time-period
There are no special processing requirements for subscription sets that you
temporarily deactivate. You should temporarily deactivate a subscription
set while changing its attributes or while fixing failures on target tables.

Use the Replication Center to deactivate, change, and then reactivate a
subscription set.

Longer time-period
You can deactivate a subscription set that you do not currently need but
might want to use in the future. However, you must take additional action
if this subscription set needs to remain deactivated for a time period that is
long enough for changed data to accumulate and to affect the performance
of the Capture and Apply programs.

Chapter 12. Changing an SQL Replication environment 181

The Capture program uses information from active Apply programs during
the pruning process. If the Apply programs are inactive or the
subscriptions sets are deactivated for long periods of time, the pruning
information becomes stale and the unit-of-work (UOW) and possibly the
change-data (CD) tables cannot be pruned quickly and efficiently if active
registrations that are associated with the deactivated subscription sets
remain. This stale information can seriously degrade the performance of
the remaining active Apply programs and cause unnecessary and costly
CPU consumption by the pruning process. The UOW and CD tables are
eventually pruned based on the retention limit (with a default value of
seven days) of the Capture program. However, large amounts of data
might accumulate during this time depending on the size of your
replication environment.

To prevent these pruning problems, you can use SQL to reset the pruning
information for a subscription set that must remain deactivated for a
longer time-period.

If you deactivated all the subscription sets associated with a registered object, you
should also deactivate the registered object to prevent the Capture program from
capturing data unnecessarily.

Procedure

1. From the Replication Center, deactivate the set. Click the Subscription Sets
folder, right-click the active subscription set in the contents pane and select
Deactivate.

2. From the Capture control server, run the following SQL statements to reset the
pruning information in the IBMSNAP_PRUNE_SET and
IBMSNAP_PRUNCNTL tables for the deactivated subscription set:
UPDATE Schema.IBMSNAP_PRUNE_SET

SET SYNCHPOINT = x’00000000000000000000’ AND
SYNCHTIME = NULL

WHERE
APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Name’ AND
TARGET_SERVER = ’Target_Server’;

UPDATE Schema.IBMSNAP_PRUNCNTL
SET SYNCHPOINT = NULL AND

SYNCHTIME = NULL
WHERE

APPLY_QUAL = ’ApplyQual’ AND
SET_NAME = ’Name’ AND
TARGET_SERVER = ’Target_Server’;

where Schema is the name of the Capture schema, ApplyQual is the Apply
qualifier, Name is the name of the subscription set, and Target_Server is the
database location of the target tables.

Removing subscription sets
If you no longer need to replicate the data in a particular subscription set, you can
remove the subscription set. However, if your Apply program is processing the
subscription set that you remove, your Apply program job abends and any other
subscription sets in that job are not processed until you restart the job.

Procedure

To remove subscriptions sets:

182 SQL Replication Guide and Reference

1. To ensure that the Apply program has completed any current processing for the
subscription set, deactivate the subscription set before you remove it, from the
Replication Center Click the Subscription Sets folder, right-click the active
subscription set in the contents pane and select Deactivate.

2. Use one of the following methods to remove a deactivated subscription set:

Method Description

ASNCLP
command-line
program

Use the DROP SUBSCRIPTION SET command.

The following commands set the environment and drop a
subscription set named SET00 with an Apply qualifier of AQ00.

SET SERVER CAPTURE TO DB SAMPLE;
SET SERVER CONTROL TO DB TARGET;
SET OUTPUT CAPTURE SCRIPT "drpcapsubset.sql"
CONTROLSCRIPT "drpappsubset.sql";
SET LOG "drpsubset.err";
SET RUN SCRIPT LATER;
DROP SUBSCRIPTION SET SETNAME SET00 APPLYQUAL AQ00;

Replication Center Use the Delete Subscription Set window. To open the window, click
the Subscription Sets folder, right-click the active subscription set
in the contents pane and select Delete.

RMVDPRSUB system
command

Use the Remove DPR subscription set (RMVDPRSUB) command to
remove a subscription set.

The Capture program continues capturing data and writing rows to the
change-data (CD) table even if you remove all subscription sets for the registered
object. To prevent this continued processing by the Capture program, deactivate or
remove the registered object after removing its subscription sets.

Coordinating replication events with database application events
You can coordinate database and replication events by manually inserting rows
into the IBMSNAP_SIGNAL table. These rows, known as signals, instruct running
Capture programs to take specific actions.

Setting an event END_SYNCHPOINT by using the USER type
signal

You can set the SIGNAL_TYPE column value to USER to establish a precise point
on the DB2 recovery log and to coordinate a replication event with a database
application event.

About this task

For example, if you are replicating online transaction processing (OLTP) data to a
separately maintained data warehouse, you might want to keep the warehouse
data fairly stable for ad hoc query processing. So you update the warehouse data
with only the changes that occurred up to a specific point in time in the OLTP
application business day. In this case, the database application event is the logical
end of the business day. The replication event would be the application of the
changes from the close of business on one specific day to the close of business on
the following day. Assume that the subscription sets are configured for event
processing only.

Chapter 12. Changing an SQL Replication environment 183

Procedure

To create a USER type signal:
1. Create a Capture USER type signal by inserting the following row into the

IBMSNAP_SIGNAL table:
INSERT INTO Schema.IBMSNAP_SIGNAL

(signal_type,
signal_subtype,
signal_state)

VALUES(’USER’,
’USER APPLY EVENT SIGNAL’,
’P’);

Run this SQL INSERT statement when the database application event occurs (in
this case at the end of the application business day).
The Capture program acts on this signal table log record after the Capture
program finds this record on the database recovery log and only when the
Capture program finds the corresponding commit record for this insert,
verifying that this event was committed.
When a USER type signal is committed, the Capture program updates the
following IBMSNAP_SIGNAL column values that correspond to the insert log
record being processed:
v SIGNAL_STATE = 'R' (received by the Capture program)
v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert
2. Use the value that is now in the SIGNAL_LSN column of the inserted signal

row to insert an END_SYNCHPOINT value in the IBMSNAP_SUBS_EVENT
control table. This new value alerts the Apply program that all the data for the
new business day has been collected by the Capture program and that the
Apply program should fetch and apply data only up to the value of the
SIGNAL_LSN column.
You can automate the insert into the IBMSNAP_SUBS_EVENT table by creating
an update trigger on the IBMSNAP_SIGNAL table:
CREATE TRIGGER EVENT_TRIG

NO CASCADE AFTER UPDATE ON Schema.IBMSNAP_SIGNAL
REFERENCING NEW AS N

FOR EACH ROW MODE DB2SQL
WHEN (N.SIGNAL_SUBTYPE = ’USER APPLY EVENT SIGNAL’)

INSERT INTO ASN.IBMSNAP_SUBS_EVENT VALUES
(’WH_APPLY_EVENT’,
(CURRENT TIMESTAMP + 2 MINUTES),
N.SIGNAL_LSN,
null);

This trigger fires each time that the IBMSNAP_SIGNAL table is updated by the
Capture program. When a SIGNAL_SUBTYPE column is updated to USER
APPLY EVENT SIGNAL', the trigger inserts a row into the
IBMSNAP_SUBS_EVENT table. This row indicates to the Apply program that it
must fetch and apply the work from the latest business day (which has been
committed prior to the SIGNAL_LSN value as computed by the Capture
program) after two minutes have elapsed.

When to use the Capture CMD STOP signal
You can set the SIGNAL_TYPE column value to CMD and the SIGNAL_SUBTYPE
column value to STOP to stop a Capture program process at a precise point on the
DB2 recovery log.

184 SQL Replication Guide and Reference

You can use the Capture CMD STOP signal in the following situations:
v To coordinate the Capture program with any source table changes that render

previous log records unreadable. This could occur if you dropped and then
re-created a table or if you reorganized a table without setting the
KEEPDICTIONARY option to YES.

v To coordinate a common recovery point between replicated distributed database
systems.

Coordinating a source table change with the Capture program
You can use a Capture CMD type STOP subtype signal to shut down a Capture
program and to coordinate source table changes.

Procedure

To coordinate source table changes:
1. Create a Capture CMD type STOP subtype signal by inserting a row into the

IBMSNAP_SIGNAL table with the following SQL statement:
INSERT INTO Schema.IBMSNAP_SIGNAL

(signal_type,
signal_subtype,
signal_state)

VALUES(’CMD’,
’STOP’,
’P’);

You should insert this row when the database application event occurs, after
the source table activity has been quiesced but prior to the activity that causes
problematic log record changes.
The Capture program acts on this signal table log record after the Capture
program finds this record on the database recovery log and only when the
Capture program finds the corresponding commit record for this insert,
verifying that this event was committed.
The Capture program shuts down all Capture threads in an orderly manner
after committing all captured data from the transactions on the log that are
prior to the commit log record for the DB2 unit of work that contains this
inserted IBMSNAP_SIGNAL row. Before terminating, the Capture program also
updates the following values in the IBMSNAP_SIGNAL table row that
corresponds to the insert log record being processed:
v SIGNAL_STATE = 'R' (received by the Capture program)
v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert
All log records for the changing source table are processed by the Capture
program when it terminates.

2. Depending on your scenario, drop and recreate your source table, or reorganize
and compress your source table without setting the KEEPDICTIONARY option
to YES.

3. If you dropped or altered replicated columns, you should now alter the
corresponding registrations and subscription sets that you created for this
source table. Such changes, if necessary, can be further coordinated with the
Apply program by waiting for the affected subscription sets to catch up to the
currently stopped Capture program. A subscription set is in synch with the
Capture program when the SYNCHPOINT column value in the
IBMSNAP_SUBS_SET table is equal to the MAX_COMMITSEQ column value in
the Schema.IBMSNAP_RESTART table.

Chapter 12. Changing an SQL Replication environment 185

Setting a distributed recovery point
You can use a Capture CMD type STOP subtype signal to set your source and
target databases to equivalent recovery points and recover the databases at a
common point of consistency.

Before you begin

Before you use this procedure, verify that your Apply control tables have been
created in the target database.

Also, verify that all activity against the source database has been quiesced before
inserting the row into the IBMSNAP_SIGNAL table. However, do not create the
backup or image copy of the database tables until after you insert the row into the
IBMSNAP_SIGNAL table.

If your subscription sets are not typically configured for event processing, then you
must temporarily set your subscription sets to event-based timing. Use the
following SQL statement to insert a row into the subscription events
IBMSNAP_SUBS_EVENT table:
INSERT INTO ASN.IBMSNAP_SUBS_EVENT

VALUES(’RECOVERY_EVENT’,
CURRENT TIMESTAMP + 2 MINUTES,
SIGNAL_LSN_value,
NULL);

where SIGNAL_LSN_value is the log sequence number set by the Capture program
and stored in the IBMSNAP_SIGNAL table.

Procedure

To set a distributed recovery point:
1. Create a Capture CMD type STOP subtype signal by inserting a row into the

IBMSNAP_SIGNAL table by using the following SQL statement:
INSERT INTO Schema.IBMSNAP_SIGNAL

(signal_type,
signal_subtype,
signal_state)

VALUES(’CMD’,
’STOP’,
’P’);

The Capture program acts on this signal table log record after the Capture
program finds this record on the database recovery log and only when the
Capture program finds the corresponding commit record for this insert,
verifying that this event was committed.
The Capture program shuts down all Capture threads in an orderly manner
after committing all captured data from the transactions on the log that is prior
to the commit log record for the DB2 unit of work that contains this inserted
IBMSNAP_SIGNAL row. Before terminating, the Capture program also updates
the following values in the IBMSNAP_SIGNAL table row that corresponds to
the insert log record being processed:
v SIGNAL_STATE = 'R' (received by the Capture program)
v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert
All log records for the source database are processed by the Capture program
when it terminates.

186 SQL Replication Guide and Reference

2. Run the source database backup or image copy utilities.
3. Use the value in the SIGNAL_LSN column from the IBMSNAP_SIGNAL table

row that you inserted as an END_SYNCHPOINT value in the
IBMSNAP_SUBS_EVENT table. This value alerts the Apply program that all the
data committed prior to the backup point has been collected by the Capture
program and that the Apply program should fetch and apply data only up to
the value of the SIGNAL_LSN column. The subscription sets process all data
up to the SIGNAL_LSN value.

4. Run the target database backup or image copy utilities. The source and target
databases now have equivalent recovery points, and you can recover both
databases at a common point of consistency.

You can resume all source database activity as soon as the Apply events have been
set and the source database backup or image copy utility activity is complete. You
can also start the Capture program. After the target database backup or image
copy utility activity is complete, you can change the scheduling options of your
subscription sets back to their original settings (time-based, event-based, or both).

You can send the STOP signal to stop a single journal job or to
stop all the journal jobs. To stop a single journal job, insert the signal into the
signal table designated for that journal (the IBMSNAP_SIGNAL_xxxx_yyyy table,
where xxxx is the journal library and yyyy is the journal name. To stop all the
journal jobs, insert the signal into the schema.IBMSNAP_SIGNAL table. To stop a
single journal job in a remote journal configuration, insert the signal into the
journal signal table on the source server. See for a description of how to create
journal signal tables in a remote journal configuration.

Performing a CAPSTART handshake signal outside of the
Apply program

Before any subscription set can be used by the Apply program to fetch and apply
changes from the CD tables, there must be a "handshake" (synchronized
communication) between the Capture and Apply programs of each subscription-set
member in that subscription set.

About this task

The Apply program initiates the handshake by inserting a CMD type CAPSTART
subtype signal into the IBMSNAP_SIGNAL table. The Apply program inserts this
signal before performing a full refresh of any subscription-set member with a
target table that is defined as complete.

Procedure

To perform a CAPSTART handshake signal outside the Apply program:

Create a Capture CMD type CAPSTART subtype signal by inserting a row into the
IBMSNAP_SIGNAL table by using the following SQL statement:
INSERT INTO Schema.IBMSNAP_SIGNAL

(signal_type,
signal_subtype,
signal_input_in,
signal_state)

VALUES(’CMD’,
’CAPSTART’,
mapid,
’P’);

Chapter 12. Changing an SQL Replication environment 187

where mapid is the MAP_ID column value of the Schema.IBMSNAP_PRUNCNTL
table and corresponds to the row for the subscription-set member requiring the
handshake.

Note: Run this SQL INSERT statement before performing a full refresh of the
subscription-set member, if necessary.
The Capture program acts on this signal table log record after the Capture program
finds this record on the database recovery log and only when the Capture program
finds the corresponding commit record for this insert, verifying that this event was
committed.
The Capture program checks if it already placed the associated registration into
memory based on prior use of the registered table. If the registered table is not in
use, the Capture program reads the associated registration information into
memory and sets values in the IBMSNAP_REGISTER table to show that this
registered table is now active and in use.
Regardless of whether or not the registered table is in use, the Capture program
sets the values of the SYNCHPOINT and SYNCHTIME columns in the associated
row in the Schema.IBMSNAP_PRUNCNTL table to the log sequence number from
the commit log record for the DB2 unit of work that contains this inserted signal
row and to the timestamp from that same commit log record, respectively.
The Capture program updates the following values in the IBMSNAP_SIGNAL
table row that corresponds to the insert log record being processed:
v SIGNAL_STATE = 'C' (received and completed by the Capture program)
v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert

Performing a CAPSTOP signal
You can initiate a CAPSTOP signal if you want to manually stop capturing changes
for a registration. You can use this signal when deactivating a registration or before
you remove a registration.

Procedure

To perform a CAPSTOP signal:
1. Create a Capture CMD type CAPSTOP subtype signal by inserting a row into

the IBMSNAP_SIGNAL table by using the following SQL statement:
INSERT INTO Schema.IBMSNAP_SIGNAL

(signal_type,
signal_subtype,
signal_input_in,
signal_state)

VALUES(’CMD’,
’CAPSTOP’,
source_owner.source_table,

’P’);

where Schema is the name of the Capture schema and source_owner.source_table
is the fully qualified name of the table that no longer requires captured
changes.
The Capture program acts on this signal table log record after the Capture
program finds this record on the database recovery log and only when the
Capture program finds the corresponding commit record for this insert,
verifying that this event was committed.

188 SQL Replication Guide and Reference

The Capture program checks if it has already placed the associated registration
into memory based on prior use of the registered table. If the registered table is
not currently in use, the Capture program ignores the CAPSTOP signal.
If the registered table is in use, the Capture program clears the memory
associated with this registration and inactivates the registration (by setting the
STATE column in the IBMSNAP_REGISTER table to 'I'). The Capture program
then stops capturing changes for this registered table.
The Capture program updates the following column values in the
IBMSNAP_SIGNAL table row that corresponds to the insert log record being
processed:
v SIGNAL_STATE = 'C' (received and completed by the Capture program)
v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert
2. Optional: Optional: Remove the registration.

3. Optional: You can also send a CAPSTOP signal to stop
capturing changes for a registration by inserting the signal into the
IBMSNAP_SIGNAL_xxxx_yyyy table, where xxxx is the journal library and yyyy
is the journal name of the subject journal. To stop capturing changes for a
registration in a remote journal configuration, insert the CAPSTOP signal on
the source server.

Adjusting for Daylight Savings Time (System i)
On System i, the Capture program uses a timestamp and the journal sequence
number when reading changes from a journal. This process can create problems
when it is necessary to adjust the system clock for U.S. Daylight Savings Time in
the autumn and spring.

About this task

System i systems provide two methods for adjusting to Daylight Savings Time:

V5R3 The system either slows down its clock (autumn) or speeds up (spring) to
avoid skipping or duplicating any timestamps. If you are running the
Capture program on System i V5R3 and use this new method to make the
time change, you do not need to use the procedure below.

Before V5R3
You must stop all activity on the system for one hour and then move the
clock back one hour in autumn. With this method, you need to use the
procedure below.

Procedure

To do adjust for Daylight Savings Time:
1. Follow these steps when you must turn back the clock by one hour in autumn:

a. Stop the Capture program and any applications that update the source
tables.

b. Wait for the system time to move forward by at least an hour without any
new journal entries to the source journal.

c. Set the system time back by an hour.
d. Restart the Capture program.
The following example demonstrates the use of this procedure:

Chapter 12. Changing an SQL Replication environment 189

a. At 12:00 you stop the Capture program and all applications.
b. You wait until 13:00 so that the journal entry timestamps only have values

up to 12:00.
c. You set the system time back to 12:00.
d. You make a change. The journal entry timestamp for the change will be

12:01.
e. You restart Capture. Capture will start from 12:00 and therefore will capture

the change that came at 12:01 (Daylight Savings Time), which is 13.01 in
Standard time.

The Capture program restarts with a timestamp that is lower than the current
system time. No journal entries will be added until the new system time is
greater than the system time just before the time change, so there is no
possibility of missing any data.

Recommendation: Although the time change has no effect on the Apply
program, stop and restart the Apply program during the time change also.

2. Follow this procedure when you must move the clock forward by one hour in
spring:
a. Stop the Capture program and make the time change. The Capture program

responds as though an hour passed with no changes to the source tables.

Options for promoting your replication configuration to another
system

When you define registered objects or subscription sets on one system (a test
system, for example), and you need to copy the replication environment to another
system (a production system, for example), you can use the promote functions of
the Replication Center.

The promote functions reverse engineer your registered objects or subscription sets
to create script files with appropriate data definition language (DDL) and data
manipulation language (DML). You can copy the replication definitions to another
database without having to re-register the sources or re-create the subscription sets.

For example, use the promote functions to define subscription sets for remote
target databases. After you define a model target system in your test environment,
you can create subscription-set scripts (and modify which Apply qualifier is used
and so on) for your remote target systems, which are not otherwise supported
from a central control point.

Important: The promote functions do not connect to the destination target system
and do not validate the replication configuration parameters of that system.

The following list describes the three options for promoting your replication
configuration to another system.

Promote registered tables
This function promotes registration information for specified tables. This
function optionally promotes base table, index and table space definitions.
You can specify a different Capture schema and a different server name for
the tables that you promote. Also, you can change the schema name for the
change-data (CD) tables associated with the promoted source tables.

190 SQL Replication Guide and Reference

You can promote multiple registered tables at one time. The new schema
names that you provide are applied to all the promoted tables.

This function promotes tables that are registered under DB2 Version 8 or
later only.

Promote registered views
This function promotes registration information for specified views. This
function optionally promotes base view, unregistered base table (on which
a view is based), index, and table space definitions. You can specify a
different Capture schema and a different server name for the views that
you promote. Also, you can change the schema name for the CD views
that are associated with the promoted source views and the CD tables on
which these CD views are based.

You can promote multiple registered views at one time. The new schema
names that you provide are applied to all the promoted views.

Important: If the view that you are promoting is based on a registered
source table, you must promote the registered source table separately by
using the promote registered tables function. These registered source tables
are not automatically promoted by the promote registered view function.
However, the unregistered base tables, upon which this view is based, are
promoted by this function, if required.

Promote subscription sets
This function promotes subscriptions sets. This function enables you to
copy a subscription set (with all of its subscription-set members) from one
database to another.

You should use the promote subscription sets function with the promote
registered tables function.

Important: You can use the promote functions to promote registered objects and
subscription sets that reside on all supported operating systems. The promote
functions copy replication definitions between like systems only, for example from
one DB2 for z/OS system to another DB2 for z/OS system.

You cannot use the promote functions to copy replication definitions to or from
non-DB2 relational databases. Additionally, you cannot use the promote functions
to copy replication definitions that include System i remote journals.

Chapter 12. Changing an SQL Replication environment 191

192 SQL Replication Guide and Reference

Chapter 13. Maintaining an SQL Replication environment

You should maintain the source systems, control tables, and target tables that
reside on your database and are used by SQL Replication.

SQL Replication works with your database system and requires limited changes to
your existing database activities. However, to ensure that your entire system
continues to run smoothly and to avoid potential problems, you should determine
the processing requirements of your replication environment and the potential
impact of these requirements on your database system.

The following topics discuss the maintenance requirements of source systems,
control tables, and target tables.

Maintaining source systems
The replication source system contains the change-capture mechanism, the source
tables that you want to replicate (including any remote journals used on System i),
the log data used by the Capture program, and any Capture triggers that are used
on non-DB2 relational database sources.

These topics explain how to maintain your source tables and log files properly and
how to ensure that these tables and files are always accessible to SQL replication.

Access to source tables and views
You need to consider the availability of source tables to SQL Replication so that the
Capture and Apply programs are always able to proceed.

Replication source objects are database tables and views that require the same
maintenance as other database tables and views on your system. Continue to run
your existing utilities and maintenance routines on these objects.

SQL Replication does not require direct access to source tables during most
replication processing. However, SQL Replication must access your source tables or
table spaces directly when the Apply program performs a full refresh.

Source logs and journal receivers
Your DB2 recovery logs serve two purposes: to provide DB2 recovery capabilities
and to provide information to your running Capture programs.

You need to retain log data for both DB2 recovery and for SQL Replication, and
you must be absolutely certain that the Capture programs and DB2 are completely
finished with a set of logs or journal receivers before you delete this data.

Note: SQL Replication does not use log data from non-DB2 relational databases.

Retaining log data (Linux, UNIX, Windows)
Log data resides in log buffers, active logs, or archive logs. Each time the Capture
program warm starts it requires all the DB2 logs created since it stopped as well as
any DB2 logs that it did not completely process.

Before you begin

© Copyright IBM Corp. 1994, 2012 193

Note: You must configure your database to use user-exit archiving for your
Capture programs to retrieve data from archived logs.

About this task

If you run the Capture program whenever DB2 is running, the Capture program is
typically up to date with the recovery logs of DB2. If you run Capture programs
whenever DB2 is up or you retain log records for a week or longer, you can
continue to use your existing log retention procedures. However, you should
change your log retention procedures to accommodate SQL Replication if:
v You typically delete log records as soon as DB2 completes a backup, and these

log records are no longer needed for forward recovery.
v You face storage constraints and need to delete your archived recovery logs

frequently.

Procedure

To determine which log records must be retained for use by the Capture program
and which log records can be deleted:
1. Run the following SQL statement to obtain the MIN_INFLIGHTSEQ value from

the IBMSNAP_RESTART table:

For partitioned databases: In a multi-partitioned environment, this procedure
must be extended to each partition because each partition maintains its own set
of log files. Use the SEQUENCE column from the IBMSNAP_PARTITIONINFO
table to determine this information for each partition.
SELECT MIN_INFLIGHTSEQ
FROM ASN.IBMSNAP_RESTART
WITH UR;

The MIN_INFLIGHTSEQ value appears. The MIN_INFLIGHTSEQ value is a
CHAR(10) FOR BIT DATA column, which looks like 20 hexadecimal characters.
For example:
00000000123456123456

Make note of the last 12 characters of the MIN_INFLIGHTSEQ value. In the
example:
123456123456

Attention: The Capture program updates the IBMSNAP_RESTART each time
it commits data, based on the value of the commit_interval parameter. Because
the SELECT statement that is used in this procedure specifies an uncommitted
read (UR), you might receive an uncommitted value for MIN_INFLIGHTSEQ.
To ensure that you have the most accurate value, run the SELECT statement,
wait for the commit interval to elapse, and then run the SELECT again. Use the
lower value for MIN_INFLIGHTSEQ for the rest of this procedure.

2. From a command line, type the db2 get db cfg command to obtain the path
for the active log files. For example:
db2 get db cfg for yourdbname

where yourdbname is the database name. From the output displayed on the
screen, note the path for the active log files. For example:
Path to log files =C:\DB2\NODE0000\SQL00001\SQLOGDIR\

3. From a DB2 command line, type the db2flsn command and enter the last 12
characters of the MIN_INFLIGHTSEQ value. For example:

194 SQL Replication Guide and Reference

C:\DB2\NODE0000\SQL00001\>db2flsn 123456123456

To run the db2flsn command, you must have access to the either the
SQLOGCTL.LFH.1 file or its mirror copy, SQLOGCTL.LFH.2. Both files are located in
the database directory. The system retrieves and displays the name of the file
that contains the log record that is identified by the log sequence number. For
example:
Given LSN is contained in the log file S000123.LOG

Access to journal receivers (System i)
It is important to retain all journal receivers that are required by the Capture
program.

When you restart the Capture program with the RESTART(*YES) parameter, the
Capture program continues processing from where it ended previously and
requires all the journal receivers used by one or more of the source tables.

To make certain your Capture program can access all required journal receivers,
use the delete journal receiver exit program, which was registered automatically
when you installed DB2 DataPropagator for System i. This exit program is invoked
any time you or one of your applications programs attempts to delete a journal
receiver. This exit program then determines whether or not a journal receiver can
be deleted.

Recommendation: Specify DLTRCV(*YES) and MNGRCV(*SYSTEM) on the CHGJRN
or CRTJRN command to use the delete journal receiver exit program and leave
journal management to the system.

If the journal receiver is used by one or more source tables, the delete journal
receiver exit program checks that the receiver being deleted does not contain
entries that have not been processed by the Capture program. The exit program
disapproves the deletion of the receiver if the Capture program still needs to process
entries on that receiver.

Considerations for managing compression dictionaries (z/OS)
If you are using DB2 compression dictionary utilities, you must coordinate the use
of these utilities with your Capture programs.

Updating DB2 compression dictionaries (z/OS)

When the Capture program requests log records, DB2 must decompress the
log records of any table that is stored in a compressed table space. DB2
uses the current compression dictionary for decompression. In some cases
the compression dictionary might be unavailable. The Capture program
takes different actions in each case:

If the compression dictionary is temporarily unavailable
DB2 returns an error to the Capture program. The Capture
program makes several attempts to continue processing. If the
dictionary remains unavailable, the Capture program issues an
ASN0011E message and terminates.

If the compression dictionary is permanently unavailable
A compression dictionary might be lost if you use the REORG
utility without specifying KEEPDICTIONARY=YES. In this case,
the Capture program follows the error action that is specified by
the STOP_ON_ERROR option for the registration. If
STOP_ON_ERROR=N (no), Capture deactivates the registration. If

Chapter 13. Maintaining an SQL Replication environment 195

STOP_ON_ERROR=Y (yes), the Capture program issues an
ASN0011E message and terminates.

With APAR PK19539 (DB2 for z/OS Version 8), DB2 will keep one backup
of the compression dictionary in memory when you use the REORG utility
without specifying KEEPDICTIONARY=YES. So you do not need to
specify KEEPDICTIONARY=YES unless:
v You restart DB2.
v You use the REORG utility twice for the same tablespace before the

Capture program reads all of the old log records for that table.

To avoid these situations in DB2 for z/OS Version 7, let the Capture
program process all log records for a table before performing any activity
that affects the compression dictionary for that table. Some of the following
activities can affect compression dictionaries:
v Altering a table space to change its compression setting
v Using DSN1COPY to copy compressed table spaces from one subsystem

to another, including from data sharing to non-data-sharing
environments

v Running the REORG utility on the table space

Latching DB2 compression dictionaries (z/OS)

You should also consider the availability of your compression directory.
When the Capture program reads compressed log records, DB2 takes a
latch on the source compressed table space to access the dictionary. The
Capture program stops if the compressed table space on the source system
is in the STOPPED state when the DB2 Log Read Interface needs this latch.
Conversely, a utility that requires complete access to the source table space
or that requires the table space to be in a STOPPED state can be locked out
by the latch held by the Capture program while it is reading the dictionary.

To prevent any temporary lockout due to an unavailable latch, suspend the
Capture program when a source compressed table space needs to be used
exclusively by a DB2 (or vendor) utility.

Maintaining control tables
SQL Replication uses control tables to store source definitions, subscription-set
definitions, and other replication-specific control information. Although the size of
some control tables remains static, other control tables can grow (and later shrink)
dynamically depending on the size of your database and your replication
requirements.

The size of the following tables changes frequently during normal processing:

v IBMSNAP_APPLY_JOB
v IBMSNAP_APPLYTRACE
v IBMSNAP_APPLYTRAIL
v IBMSNAP_CAPMON
v IBMSNAP_CAPTRACE
v CD tables
v CCD tables
v IBMSNAP_ALERTS
v IBMSNAP_MONTRACE

196 SQL Replication Guide and Reference

v IBMSNAP_MONTRAIL
v IBMSNAP_SIGNAL
v BMSNAP_SUBS_EVENT
v IBMSNAP_UOW

The size and growth of these dynamic control tables can affect the performance of
your system.

The RUNSTATS utility for SQL Replication (Linux, UNIX,
Windows, z/OS)

The RUNSTATS utility updates statistics about the physical characteristics of your
tables and associated indexes.

You should continue to run the RUNSTATS utility on your existing tables at the
same frequency as before you used SQL Replication. However, you should run the
RUNSTATS utility on your change-data (CD), IBMSNAP_UOW, and other dynamic
control tables only one time when these tables contain substantial amounts of data.
RUNSTATS reports meaningful information about these dynamic tables when these
tables are at their maximum production-level size, and the optimizer gains the
necessary statistics to determine the best strategy for accessing data.

Rebinding packages and plans (z/OS, Linux, UNIX, Windows)
Binding your packages and plans with the isolation level set to UR (uncommitted
reads) ensures optimal system performance.

Many of the SQL Replication packages and plans are bound with isolation UR. If
you must rebind your packages and plans, note that your internal maintenance
programs used for automatic rebinding of these packages and plans can cause
contention problems between Capture and Apply if these programs rebind the
replication packages with standard options such as cursor stability. SQL Replication
packages must remain bound with isolation UR to maintain optimal system
performance.

Reorganizing your control tables
You should regularly reorganize dynamic control tables that are frequently
updated.

About this task

Your CD and IBMSNAP_UOW tables receive many INSERTS during change
capture and many DELETES during pruning. The size of the IBMSNAP_CAPMON,
IBMSNAP_CAPTRACE, and IBMSNAP_APPLYTRAIL tables can change
dramatically depending on the update rates of your replication source tables.

Recommendation: Reorganize the following dynamic control tables once a week:
v CD tables
v IBMSNAP_ALERTS
v IBMSNAP_APPLYTRACE
v IBMSNAP_APPLYTRAIL
v IBMSNAP_CAPMON
v IBMSNAP_CAPTRACE
v IBMSNAP_MONTRAIL

Chapter 13. Maintaining an SQL Replication environment 197

v IBMSNAP_MONTRACE
v IBMSNAP_UOW

You do not need to run any utilities that reclaim unused space or generate
frequently updated optimizer statistics on the other control tables.

Procedure

To reorganize your control tables, use one of the following methods:

Method Description

REORG utility with
the PREFORMAT
option

The PREFORMAT option of this utility speeds up the insert
processing of the Capture program.

RGZPFM
(Reorganize Physical
File Member)
command

You can reorganize the UOW table and active CD tables when the
Capture program ends by specifying the RGZCTLTBL(*YES)
parameter on the ENDDPRCAP command.

REORG command

Use this command to eliminate fragmented data and reclaim space.

Pruning dynamic control tables maintained by the Capture
programs (Linux, UNIX, Windows, z/OS)

You can manually or automatically prune tables that fluctuate in size.

About this task

You should monitor the growth of and consider the various pruning methods
available for the following dynamic control tables:
v CD tables
v IBMSNAP_UOW
v IBMSNAP_CAPMON
v IBMSNAP_CAPTRACE
v IBMSNAP_SIGNAL

v IBMSNAP_AUTHTKN

You can set your Capture programs to prune these tables automatically at regular
intervals. Or you can prune on demand by launching the pruning process once; the
Capture program does not prune again until you enter the next prune command.

Procedure

To prune dynamic control tables that are maintained by the Capture program:
1. If you want to prune the dynamic control tables automatically, set the

autoprune parameter to yes by using one of the following methods:

198 SQL Replication Guide and Reference

Method Description

Start a Capture
program with
automatic pruning.

Issue the asncap system command with autoprune=y. Set the
prune_interval parameter to specify how frequently the automatic
pruning process occurs.

Enable automatic
pruning for a
running Capture
program.

Issue the asnccmd chgparms command with autoprune=y. Set the
prune_interval parameter to specify how frequently the automatic
pruning process occurs.

2. If you want to prune the dynamic control tables once, use one of the following
methods:

Method Description

Replication Center Use the Prune Capture Control Tables window to prune the tables
once. To open the window, click the Capture Control Servers
folder in the Operations branch of the object tree, right-click a
server in the contents pane, and click Prune Capture.

Initiate pruning once
from a running
Capture program.

Issue the asnccmd system command with the prune parameter.

CD and UOW table pruning
During each pruning cycle, whether invoked automatically or on demand, the
Capture program prunes the CD and UOW tables based on the progress reported
by the Apply programs.

Pruning progress is indicated by the SYNCHPOINT column value in the
IBMSNAP_PRUNE_SET table. This normal pruning is based on the minimum
synch point value over all Apply programs that subscribe to each CD table and on
the minimum overall synch point value for the UOW table.

Normal pruning, however, does not prune the CD and UOW tables effectively if
the associated subscriptions sets run very infrequently. Keep pruning effectiveness
in mind when deciding how often to run the associated Apply programs, when
stopping these Apply programs, and when deactivating the subscription sets for
more than a brief period of time.

If you run your subscription sets very infrequently or stop your Apply programs,
your CD and UOW tables can grow very large and become eligible for retention
limit pruning. The retention limit is an operational parameter of the Capture
program, with a default value of one week. It determines how long old data
remains in the tables before becoming eligible for retention limit pruning.

If the normal pruning process is inhibited due to deactivated or infrequently run
subscription sets, data can remain in the table for long periods of time. If this data
becomes older than the current DB2 timestamp minus the retention limit value, the
retention limit pruning process prunes this data from the tables.

Try to avoid conditions that require retention limit pruning, because the
accumulation of old data can lead to storage overflows and performance
degradation.

Recommendation: Run your Apply programs at least once per day for all of your
subscription sets.

Chapter 13. Maintaining an SQL Replication environment 199

If the source server is supplying changed data to a variety of target systems, each
with very different requirements and some with infrequently running Apply
programs for few registered sources, consider the use of multiple Capture
programs. You can use multiple Capture programs and manage the various
processing requirements with different Capture schemas, using one Capture
schema to isolate those tables that are infrequently pruned due to specific
subscription-set timing requirements and using another Capture schema for the
remaining source tables.

Recommendations for pruning other dynamic control tables
You should regularly prune your replication control tables to remove obsolete data
and to improve system performance.

The Capture program performs pruning operations for only the tables that it
maintains. The Apply program maintains consistent-change data (CCD) tables;
therefore, the Capture program does not automatically prune these tables. Some
types of CCD tables do not require pruning. Complete condensed CCD tables are
updated in place.

The only records that you might want to remove from complete condensed CCD
tables are those with an IBMSNAP_OPERATION column value of D (Delete) that
have already been replicated to the dependent target tables. Noncondensed CCD
tables contain historical data and can grow very large. Because you should
preserve this data for auditing purposes, you should not perform pruning
operations on noncondensed CCD tables.

You should, however, consider pruning your internal CCD tables. These tables can
grow quickly if there is heavy update activity on your system. Only the most
recent changes are fetched from internal CCD tables, so you do not need to retain
the older rows.

To enable pruning for internal CCD tables, consider adding after-SQL statements to
associated subscription sets to prune change data that has already been applied to
all dependent targets. Alternatively, you can also add the necessary SQL DELETE
statements to your automatic scheduling facilities to delete rows from these tables.

You should also manually prune the IBMSNAP_APPLYTRAIL and
IBMSNAP_APPLYTRACE tables. If you define and use multiple subscription sets
with frequently run Apply programs, the IBMSNAP_APPLYTRAIL table grows
rapidly and requires frequent pruning. The best way to manage the growth of
these tables is to add an after-SQL statement or procedure call to one of your
subscription sets. Alternatively, you can add an SQL DELETE statement to your
automatic scheduling facilities.

Preventing replication failures and recovering from errors
These topics describe methods to prevent and recover from replication failures that
can affect your control tables and replication data.

Preventing cold starts of the Capture program
You should perform a cold start of the Capture program only if you are starting
the program for the first time or you need to refresh your control and target tables.
If you cold start the Capture program, all of the target tables in your replication
environment are refreshed.

200 SQL Replication Guide and Reference

When a Capture program starts with the
warmns or warmsi option, the program attempts to retrieve log records based on
the restart point in the IBMSNAP_RESTART table. If the Capture program cannot
find the log, the Capture warm start fails.

To prevent a cold start of the Capture program, consider the following
recommendations.

v Start the capture program with the RESTART(*YES)
parameter. The Capture program continues processing from the point where it
was when it ended previously. Retain sufficient DB2 log data or journal receivers
on your system and that this data is available to SQL Replication.

v Use the Replication Alert Monitor or other mechanism to check the status of the
historical data from your Capture programs. You can then use this information
to verify that the Capture programs are always running if DB2 is active.

v Make sure that you retain sufficient DB2 log data or journal receivers on your
system and that this data is available to SQL Replication.

Recovering from I/O errors and connectivity failures on your
control tables
If replication loses connectivity to a control table, you can recover the table, for
other errors the replication programs will shut down.

About this task

If the Capture program detects an I/O error or connectivity failure, the program
issues an appropriate error message and shuts down.

The Apply program shuts down if it detects catastrophic errors on the control
tables. If the Apply program detects errors on target tables or errors with network
connectivity, the program writes the error to the IBMSNAP_APPLYTRAIL table
and then continues processing.

Procedure

To recover from errors and connectivity failures to your control tables:
1. If you experience an I/O error or connectivity failure on any control table, use

a standard DB2 recovery procedure to forward recover the table. The table will
not lose any data.

2. If the programs shut down, restart the Capture program from the point of
failure and restart the Apply program.

Retrieving lost source data
If you lose source you can possibly retrieve it through a recovery point method or
a full refresh.

About this task

If a source table is forward recovered to the point of failure, SQL Replication
proceeds normally. After the table is recovered, the Capture program continues
collecting data changes for the table.

However, the Capture and Apply programs do not detect a point-in-time recovery
of a read-only target table. If you recover a source table, the Apply program might
have replicated changes to the target tables that no longer exist at the source,

Chapter 13. Maintaining an SQL Replication environment 201

leaving inconsistencies between your source tables and target tables if you cannot
take the target tables back to the same logical point in time.

This scenario becomes even more complex when there are multiple levels of
replication. You must either develop a mechanism that provides matching recovery
points among the various levels or use a full refresh as your recovery method of
choice.

Procedure

Recover your source data by using one of the following methods:

Method Description

Recovery point
mechanism

Develop a mechanism that provides matching recovery points
among the various levels of replication.

Full refresh Use a full refresh as your recovery method of choice

IBMSNAP_CAPMON and IBMSNAP_CAPTRACE table pruning
Your operating parameter values determine pruning of the IBMSNAP_CAPMON
and IBMSNAP_CAPTRACE tables.

During each pruning cycle, the Capture program prunes the IBMSNAP_CAPMON
and the IBMSNAP_CAPTRACE tables based on the values of the following
operational parameters of the Capture program:
v The monitor_limit parameter (Linux, UNIX, Windows, z/OS) and the MONLMT

parameter (System i) determine how long rows remain in the
IBMSNAP_CAPMON table

v The trace_limit parameter (Linux, UNIX, Windows, z/OS) and the TRCLMT
parameter (System i) determine how long rows remain in the
IBMSNAP_CAPTRACE table

Both the monitor limit and the trace limit parameters have a default value of one
week. You can change these values depending on how long you need to preserve
the historical Capture latency and throughput information in the
IBMSNAP_CAPMON table and the auditing and troubleshooting data from the
IBMSNAP_CAPTRACE table.

IBMSNAP_SIGNAL table pruning
Because, rows are constantly being added during replication, the
IBMSNAP_SIGNAL table is pruned automatically.

The IBMSNAP_SIGNAL table is also pruned during each pruning cycle. A signal
row is eligible for pruning if the SIGNAL_STATE column value is equal to C. A
value of C indicates that the signal information is complete and is no longer
required by the Capture program or for any user processing and is eligible for
pruning. A signal row with a SIGNAL_TIME column value that is older than the
current DB2 timestamp minus the retention limit parameter value is eligible for
retention limit pruning.

Maintaining target tables
Maintain the tables on the target server in the same way that you maintain other
tables on your database system.

202 SQL Replication Guide and Reference

Use your current backup and maintenance routines on these target tables, whether
the target tables are existing database tables or tables that you specified to be
automatically generated by SQL Replication.

Note: Deactivate your Apply programs before taking a target table offline to run
any utility.

Chapter 13. Maintaining an SQL Replication environment 203

204 SQL Replication Guide and Reference

Chapter 14. Comparing and repairing tables

The asntdiff and asntrep commands detect and repair differences between tables.
In Q Replication and SQL Replication, the commands enable you to find
differences quickly and synchronize tables without performing a full refresh, or
load, of the target table.

About this task

Source and target tables can lose synchronization, for example if a target table is
unexpectedly changed by a user or application, or if you experienced an extended
network or target system outage.

The asntdiff and asntrep commands run independently of the Q Capture, Q
Apply, Capture, and Apply programs. They use DB2 SQL to fetch data from the
source table and the target table and do not use WebSphere MQ queues. The
compare and repair utilities do not depend on logs, triggers, or isolation level.

Procedure

To compare and repair tables, run the asntdiff command, and then run the
asntrep command.

Table compare utility (asntdiff)
The asntdiff command compares the columns in one table to their corresponding
columns in another table and generates a list of differences between the two in the
form of a DB2 table.

To use the compare utility, you run the asntdiff command and specify the name
of a Q subscription (Q Replication) or subscription set member (SQL Replication)
that contains the source and target tables that you want to compare. You can also
use SQL statements in an input file to specify the tables to compare.

The following sections explain how to use the asntdiff command:
v “Overview of the asntdiff command”
v “When to use the compare utility” on page 206
v “Where differences are stored” on page 206
v “Required authorizations” on page 207
v “Restrictions for key columns at source and target” on page 208
v “Data type considerations” on page 208
v “Effects of filtering” on page 209
v “Comparisons based on queries instead of subscriptions” on page 210
v “Comparing a subset of table rows” on page 210

Overview of the asntdiff command

You can run the asntdiff command on Linux, UNIX, Windows, and z/OS
operating systems. The command compares tables on Linux, UNIX, Windows,

© Copyright IBM Corp. 1994, 2012 205

z/OS, or System i operating systems. The asntdiff command can be used with
federated sources and targets if the corresponding columns in the two tables have
the same data types.

The ASNTDIFF sample job in the SASNSAMP data set
provides further information that is specific to the z/OS platform.

For Q Replication, the target must be a user copy table or a consistent-change-data
(CCD) table that is condensed and complete. Stored procedure targets are not
supported. For SQL Replication, the target must be a user table, point-in-time table,
replica table, user-copy table, or consistent-change-data (CCD) table that is
condensed and complete.

When you run the command, you specify an SQL WHERE clause that uniquely
identifies the Q subscription or subscription set member:

Q Replication
The WHERE clause identifies a row in the IBMQREP_SUBS control table at
the Q Capture server, based on the value of the SUBNAME column. For
example:
where="subname = ’my_qsub’"

SQL Replication
The WHERE clause identifies a row in the IBMSNAP_SUBS_MEMBR table
at the Apply control server, based on the value of the SET_NAME column.
For example:
where="set_name = ’my_set’ and source_table=’EMPLOYEE’"

You might need to use more predicates in the WHERE clause to uniquely
identify the subscription set member. For example, you might need to add
the APPLY_QUAL, the SOURCE_OWNER, the TARGET_OWNER, or the
TARGET_TABLE column from the IBMSNAP_SUBS_MEMBR table to the
clause.

When to use the compare utility

The best time to use the utility is when the source and target tables are stable. You
might want to run the utility when the Q Capture and Q Apply programs or
Capture and Apply programs are idle. For example, you could run the utility when
the Q Capture program reached the end of the DB2 recovery log and all changes
are applied at the target. If applications are still updating the source, the
comparison might not be accurate.

If the replication programs are running, you might need to run the asntdiff
command more than once to get a complete picture of evolving differences
between the source and target tables.

Where differences are stored

The asntdiff command creates a difference table in the source database or
subsystem to store differences that it finds.

The difference table is named schema.ASNTDIFF, where schema is the value
specified in the DIFF_SCHEMA parameter. If the schema is not specified, it
defaults to ASN. You can also use the DIFF parameter to specify a table name.

206 SQL Replication Guide and Reference

By default, the difference table is created in the default DB2 user table space. You
can specify a different, existing table space by using the DIFF_TABLESPACE
parameter.

The difference table has two or more columns. One column is named DIFF, with a
blank space at the end on Linux, UNIX, and Windows. The value in the DIFF
column is a character that indicates an insert, update, or delete operation followed
by a numeric value that indicates which table contains a row with differences. The
other columns contain the value of replication key columns. There is one row in
the difference table for each unmatched row in the target table.

The difference table uses three identifiers that indicate the operation that is needed
to change the target table so that it matches the source table:

D (delete)
Indicates that a row with the key value exists only at the target and not at
the source.

U (update)
Indicates that rows with the same key value exist at both the source and
target, but at least one non-key column is different at the target.

I (insert)
Indicates that a row with the key value exists only at the source and not at
the target.

A value of ? 1 indicates that there is an invalid character in one or more source
columns.

A value of ? 2 indicates that there is an invalid character in one or more target
columns.

Example:

The following list of values is returned by comparing an EMPLOYEE table at the
source with a target copy of the same table. The key column for replication is the
employee number, EMPNO:
DIFF EMPNO
U 2 000010
I 2 000020
I 2 000040
D 2 000045
I 2 000050
D 2 000055

The first row in the example shows that a row with the key value 000010 exists at
both the source and target tables, but at least one non-key column at the target has
a different value. The next two rows show that rows with the key values 000020
and 000040 exist only at the source. The fourth row shows that a row with the key
value 000045 exists only at the target.

The values ? 1 and ? 2 are not shown in the example.

Required authorizations

These database authorizations are required for the compare utility:
v Access privileges to the tables that are being compared, and to the replication

control tables unless the -f (file) option is used

Chapter 14. Comparing and repairing tables 207

v Read privileges for the password file if the PWDFILE
keyword is used

v WRITE privileges for the directory that is specified by the DIFF_PATH keyword
v To create the difference table, CREATETAB authority on the source database and

USE privilege on the table space. In addition, one of the following privileges is
needed:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on an existing schema if the table is created in this

schema

On z/OS, if the user ID that runs asntdiff does not have authority to create
tables, you can use the SQLID keyword to specify an authorization ID that can
be used to create the difference table.

v DROPIN privilege on the schema to drop the difference table unless
DIFF_DROP=N is used

v SELECT, DELETE, and INSERT privileges on the difference table (at the source).
The default schema name is ASN and the default table name is ASNTDIFF.

Restrictions for key columns at source and target

The asntdiff utility supports multiple-byte character sets when the database is
defined with SYSTEM or IDENTITY. However, the columns that are used as keys
for replication at the source and target tables must use single-byte characters for
the utility to compare the tables.

In a Linux, UNIX, or Windows database that uses Unicode, the characters in key
data cannot be greater than the base U.S. English ASCII subset (first 256 ASCII
characters) or the asntdiff utility cannot compare the tables.

Data type considerations

You need to consider the data types of the tables that you are comparing when
using asntdiff.

Different data types in sources and targets
The compare utility can build two SELECT SQL statements that are based
on the description of a subscription. To obtain the differences between the
source and target tables, the utility compares the data that result from
executing both statements. The data types and lengths of the columns for
both SQL statements must be the same.

SQL Replication
The utility builds the SQL statement for the source by using the
EXPRESSION column in the IBMSNAP_SUBS_COLS table.

Q Replication
The data types for both the source and the target must be the
same.

Unsupported data types
The compare utility does not support comparisons between the following
data types:

Nonkey columns
DECFLOAT, BLOB_FILE, CLOB_FILE, DBCLOB_FILE

208 SQL Replication Guide and Reference

Key columns
DECFLOAT, BLOB, CLOB, DBCLOB, VARGRAPHIC, GRAPHIC,
LONG_VARGRAPHIC, BLOB_FILE, CLOB_FILE, DBCLOB_FILE,
XML

Comparing the GRAPHIC data type
Columns with the GRAPHIC data type at the source and target might not
match when you use the utility to compare the source and target tables.
DB2 columns with the GRAPHIC data type have blank padding after the
graphic data. This padding might be single-byte or double-byte spaces,
depending on the code page that the database was created in. This
padding might cause data to not match between the source and the target
tables, especially if the source and target tables are in different code pages.
This padding applies only to GRAPHIC data types and not other graphic
data types such as VARGRAPHIC or LONG VARGRAPHIC.

To compare columns with GRAPHIC data types, you must remove the
blank padding in the data before you compare the source and target tables
by using the DB2 scalar function rtrim(<column>. This function eliminates
the code page differences for single-byte or double-byte spaces and ensures
that the utility compares the GRAPHIC data in a consistent manner.

TIMESTAMP WITH TIMEZONE restriction
The compare utility does not support comparisons that involved the
TIMESTAMP WITH TIMEZONE data type that was introduced in DB2 for
z/OS Version 10.

Effects of filtering

In some cases, differences between source and target tables are intentional, for
example, if you use a search condition in Q Replication to filter which rows are
replicated. The utility will not show differences between source and target tables
that are a result of predicates or suppressed deletes.

Row filtering
The compare utility uses information from the replication control tables to
avoid showing intentional differences:

SQL Replication
The utility uses the PREDICATES column in the
IBMSNAP_SUBS_MEMBR table to select rows from the source
tables. The value of the UOW_CD_PREDICATES column is ignored
(asntdiff looks directly at the source table, where the Apply
program looks at the CD table).

Q Replication
The utility uses the value of the SEARCH_CONDITION column in
the IBMQREP_SUBS table to build the WHERE clause for the
SELECT statement.

Suppressed delete operations
In Q Replication, you can choose to suppress replication of delete
operations from the source table. If you do not replicate delete operations,
rows that exist in the target table might not exist in the source table. When
the SUPPRESS_DELETES value for a Q subscription is Y, the asntdiff utility
ignores the rows that are unique to the target and reports no differences. A
warning is issued to indicate how many rows were suppressed.

Chapter 14. Comparing and repairing tables 209

The asntdiff -f (input file) option does not support SUPPRESS_DELETES
because it bases the table comparison on a SQL SELECT statement rather
than the Q subscription definition.

Comparisons based on queries instead of subscriptions

The asntdiff -f command option enables you to do differencing by using SQL
SELECT statements that are read from an input file. This option provides greater
flexibility to do differencing between two generic tables. The asntdiff -f option
does not use replication definitions to determine which tables and rows to compare
as the standard asntdiff command does.

The asntdiff -f option works for all tables on Linux, UNIX, Windows, and z/OS.
For details on this option, see “asntdiff –f (input file) command option” on page
281.

In addition to the SELECT statements, the input file contains the source and target
database information, the difference table information, and optional parameters
that specify methods for processing the differences. You can use a password file
that is created by the asnpwd command to specify a user ID and password for
connecting to the source and target databases.

Note: To compare DB2 XML columns by using the asntdiff -f option, you need
to serialize the XML column as a character large-object (CLOB) data type by using
the XMLSERIALIZE scalar function. For example, this SELECT statement in the
input file compares the XMLColumn column in the source table Table 1 to the
same column in another database table (the TARGET_SELECT would use the same
function):
SOURCE_SELECT="select ID, XMLSERIALIZE(XMLColumn AS CLOB) AS XMLColumn
from Table1 order by 1"

Comparing a subset of table rows

You can use the asntdiff RANGECOL parameter to compare only some of the
rows in the two tables. This parameter specifies a range of rows from the source
table that are bounded by two timestamps. You provide the name of a DATE,
TIME, or TIMESTAMP column in the source table, and then use one of three
different clauses for specifying the range. When you compare tables that are
involved in peer-to-peer replication, you can use the IBM-generated
IBMQREPVERTIME column for the source column in the range clause.

The RANGECOL parameter is not valid for the asntdiff -f (input file) option.
You can use a SQL WHERE clause in the input file to achieve similar results.

Running the asntdiff utility in parallel mode (z/OS)
By using the PARALLEL=Y option with the asntdiff command, you can run the
table compare utility in a parallel mode that provides optimal performance when
comparing very large tables.

In parallel mode, the asntdiff utility uses as many as 21 threads to compare the
data in two specified tables, significantly decreasing processing time while
maintaining the accuracy of the comparison. With this mode:
v The utility internally partitions the two tables and compares these partitions in

parallel.

210 SQL Replication Guide and Reference

v Row retrieval for each partition pair occurs in parallel.
v The differences that are found in each partition pair are then combined to obtain

the overall result.

Using this method reduces processing time and reduces memory use because it
avoids materializing large intermediate results. The parallel mode also minimizes
network traffic because the checksum calculations are pushed down to each
database.

To use asntdiff in parallel mode, it is recommended but optional that the two
tables have date, time, or timestamp columns and a unique index or primary key.
Both tables must be on DB2 for z/OS and must use the same code page and
collation sequence.

The following sections provide more detail about the use of parallel mode.
v “Installation requirements”
v “Required authorizations”
v “Restrictions” on page 212
v “Usage tips” on page 212

Installation requirements

To use the asntdiff utility in parallel mode, you must install a stored procedure
(ASNTDSP) at the systems that contain any table to be compared. The ASNTDSP
sample job is included in the SASNSAMP dataset. For best results, use an
application environment with NUMTCB = 8 - 15.

The following code defines ASNTDSP:
CREATE PROCEDURE ASN.TDIFF
(IN SELECTSTMT VARCHAR(32700),

IN GTTNAME VARCHAR(128),
IN OPTIONS VARCHAR(1331),
OUT RETURN_BLOCK_CRC VARCHAR(21),
OUT RETURN_NUM_ROWS INTEGER,
OUT RETURN_CODE INTEGER,
OUT RETURN_MESSAGE VARCHAR(30000))

PARAMETER CCSID EBCDIC
EXTERNAL NAME ASNTDSP
LANGUAGE C
PARAMETER STYLE GENERAL WITH NULLS
COLLID ASNTDIFF
WLM ENVIRONMENT !!WLMENV4!!
MODIFIES SQL DATA
ASUTIME NO LIMIT
STAY RESIDENT YES
PROGRAM TYPE MAIN
SECURITY USER
RUN OPTIONS ’TRAP(OFF),STACK(,,ANY,),POSIX(ON)’
COMMIT ON RETURN NO;

Required authorizations

These database authorizations and privileges or higher are required to run asntdiff
in parallel mode:
v SELECT on the tables that are being compared.
v These privileges for the difference table:

Chapter 14. Comparing and repairing tables 211

– CREATEIN and DROPIN on an existing schema if the table is created in this
schema

– If the parameter DIFF_TABLESPACE is not specified, CREATETAB and
CREATETS authority on the default database DSNDB04. Note that on DB2 for
z/OS Version 10, if the IN clause is not specified with CREATE TABLE,
CREATETAB privilege on database DSNDB04 is required.

– If the parameter DIFF_TABLESPACE is explicitly specified, CREATETAB
authority on the database that contains the DIFF_TABLESPACE and USE
privilege on the table space that is specified by DIFF_TABLESPACE

v To create the created global temporary tables in the work file databases,
CREATETMTAB privileges at any databases that are involved

v SELECT, DELETE, and INSERT privileges on the database where the difference
table is created. The default schema name is ASN and the default table name is
ASNTDIFF.

v SELECT privileges on the catalog tables SYSIBM.SYSDUMMY1,
SYSIBM.SYSTABLES, SYSIBM.SYSKEYS, and SYSIBM.SYSINDEXES

v EXECUTE privileges on procedure ASN.TDIFF
v EXECUTE privileges on package ASNTDIFF.ASNTDSP
v EXECUTE privileges on plan ASNRD101

Make sure that the necessary DB2 authorizations are granted to the user ID that
runs asntdiff before you start the utility. You can use the TARGET_SQLID and
SOURCE_SQLID parameters to change the value of CURRENT SQLID to an
authorization ID that has sufficient authorities.

Restrictions
v The two tables that are being compared must have the same code page and

collation sequence. Otherwise, use the PARALLEL=N option (the default) to
compare the tables.

v When used in parallel mode, the asntdiff utility should be run from z/OS as a
batch job that uses JCL.

v The tables that are being compared must reside on z/OS.
v Only the -F PARM option is supported when asntdiff runs in parallel mode.
v The supported SELECT statements that you use with the SOURCE_SELECT and

TARGET_SELECT parameters must use this strucure:
SELECT xxx FROM yyy (WHERE zzz) ORDER BY aaa

The WHERE clause is optional.
v Supported data types for nonkey columns are DATE, TIME, TIMESTAMP,

VARCHAR, CHAR, LONG VARCHAR, FLOAT, REAL, DECIMAL, NUMERIC,
BIGINT, INTEGER, SMALLINT, ROWID, VARBINARY, BINARY, VARGRAPH,
GRAPHIC, LONGRAPH.

v Supported data types for key columns are DATE, TIME, TIMESTAMP,
VARCHAR, CHAR, LONG VARCHAR, FLOAT, REAL, DECIMAL, NUMERIC,
BIGINT, INTEGER, SMALLINT, ROWID, VARBINARY, BINARY.

For other restrictions, see “asntdiff –f (input file) command option” on page 281.

Usage tips
v Columns that are used in WHERE clauses and ORDER BY clauses should use an

index. The columns that you specify in the ORDER BY clause must follow the

212 SQL Replication Guide and Reference

same index column order and ascending/descending attributes. Use the
RUNSTATS and REORG utilities to keep table access information current.

v In parallel mode, the asntdiff utility does support a mix of ascending and
descending order in the ORDER BY clause. The mix should be same as in the
index. However, the utility might not give you optimal performance when the
index uses this mixture. Results will still be correct.

v For optimal performance:
– Increase the system resource limit for application threads and set

NUMTHREADS to 21.
– Do not use column alias and expressions against the key columns in

SOURCE_SELECT and TARGET_SELECT.

Table repair utility (asntrep)
The asntrep command repairs differences between source and target tables on all
DB2 servers by deleting, inserting, and updating rows. The command runs on
Linux, UNIX, or Windows operating systems.

The asntrep command uses the difference table that is generated by the asntdiff
command to take the following actions:
v Delete rows from the target table that have no matching key in the source table
v Insert rows that are in the source table but have no matching key in the target

table
v Update target rows that have matching keys in the source but different non-key

data

For Q Replication, the target must be a table; it cannot be a stored procedure. For
SQL Replication, the target must be a user table, a point-in-time table, a replica
table, or a user-copy table. If you use the asntrep utility with a Q subscription for
peer-to-peer replication, you must repair all of the copies of a logical table two
copies at a time.

You run the asntrep command after you run the asntdiff command. The asntrep
command copies the difference table from the source database or subsystem to the
target, and then uses the copy to repair the target table.

To use the asntrep command, you provide the same WHERE clause that you used
for the asntdiff command to identify the Q subscription or subscription set
member that contains the source and target tables that you want to synchronize.
The repair utility does not support the use of an input file as does the compare
utility.

During the repair process, referential integrity constraints on the target table are
not dropped. An attempt to insert or delete a row from a target table can fail if the
insert or delete operation violates a referential integrity constraint. Also, a
duplicate source row might be impossible to repair at the target if the target has a
unique index.

How the compare utility handles DB2 SQL compatibility features
DB2 for Linux, UNIX, and Windows Version 9.7 introduced SQL compatibility
enhancements such as variable-length timestamps, the VARCHAR2 data type with
special character string processing, and DATE-TIMESTAMP compatibility. Some
considerations are required to use the asntdiff command with these new features.

Chapter 14. Comparing and repairing tables 213

The following sections describe these considerations:
v “Comparing TIMESTAMP non-key columns with different precisions ”
v “Comparing TIMESTAMP key columns with different precision”
v “Considerations when using the DATE data type as TIMESTAMP(0)” on page

216
v “Behavior when using the rangecol parameter ” on page 215
v “Compatibility option for text based strings ” on page 216
v “asntdiff file option (asntdiff –f) ” on page 217

Comparing TIMESTAMP non-key columns with different
precisions

When asntdiff compares two tables that have TIMESTAMP columns of different
precision, it creates a truncated version of the longer TIMESTAMP column and
then compares the two equal-length values.

In the following example, Table A and Table B have TIMESTAMP columns of
different lengths:

Table A Table B

Col1 - TIMESTAMP(6)
2009-02-05-12.46.01.126412

Col1 - TIMESTAMP(12)
2009-02-05-12.46.01.126412000000

In this situation, asntdiff compares 2009-02-05-12.46.01.126412 from Table A with
the truncated value of 2009-02-05-12.46.01.126412 from Table B, and reports
matching values.

In the next example, Table A has a longer TIMESTAMP column than Table B
because the target value was truncated as a result of replication (typically this
occurs when the target database is pre-Version 9.7 and only supports the default
TIMESTAMP precision of six-digits):

Table A Table B

Col1 - TIMESTAMP(12)
2009-02-05-12.46.01.126412123456

Col1 - TIMESTAMP(6)
2009-02-05-12.46.01.126412

Here, asntdiff compares a truncated version of the source value,
2009-02-05-12.46.01.126412, with the target value of 2009-02-05-12.46.01.126412 and
reports a match. Whenever asntdiff truncates a TIMESTAMP column, the utility
issues warning message ASN4034W.

Comparing TIMESTAMP key columns with different precision

When asntdiff compares key columns with different TIMESTAMP precision, the
same basic concepts hold: A version of the longer timestamp column is truncated
to the length of the shorter timestamp column for the purpose of comparing.

In the following example, Table A has a TIMESTAMP(6) key column and a
character column, and Table B has a TIMESTAMP(12) key column and a character
column.

214 SQL Replication Guide and Reference

Table A Table B

KEYCol1 - TIMESTAMP(6)
2009-02-05-12.46.01.126412

KEYCol1 - TIMESTAMP(12)
2009-02-05-12.46.01.126412000000

Col2 CHAR(12)
"test String"

Col2 CHAR(12)
"String test"

The utility compares the Table A key value of 2009-02-05-12.46.01.126412 with a
truncated version of the Table B key value, 2009 -02-05-12.46.01.126412, and reports
a match. It then compares the nonkey column values "test String" and "String test"
and reports a "U 2" (update needed) in the difference table to signify that rows
with the same key value exist at both the source and target, but at least one
non-key column is different at the target:

DIFF Col1 TIMESTAMP(6)

U 2 2009-02-05-12.46.01.126412

The second column in the difference table always contains the key value. Because
the difference table DDL is based on the source table, asntdiff uses the source
TIMESTAMP(6) value. If the source table had the longer TIMESTAMP column, for
example a TIMESTAMP(12), the utility would truncate the TIMESTAMP(12) to a
TIMESTAMP(6) in order to compare the keys. However, it would use the source
table's TIMESTAMP(12) definition to create the difference table. The key value that
is written to the difference table is, however, the key value that has been used
during comparison: TIMESTAMP(6). This value is then padded to a
TIMESTAMP(12).

In this situation, when you use the asntrep utility to repair differences between the
source and target tables, asntrep assumes that the target key-column value is a
result of replication, and thus if DB2 pads with 0s, a matching key on the target
side is found and can be updated.

Behavior when using the rangecol parameter

The asntdiff rangecol invocation parameter, which enables you to compare a
subset of rows in two tables based on a specified timestamp column, also requires
special attention when the timestamp column is variable length and also a key
column.

Table A

KEYCol1 - TIMESTAMP(12) Col2 CHAR(12)

2009-02-05-12.46.01.126412123456 "test String"

2009-02-05-12.46.02.126412123456 "test String"

2009-02-05-12.46.03.126412123456 "test String"

Table B

KEYCol1 - TIMESTAMP(6) Col2 CHAR(12)

2009-02-05-12.46.01.126412 "String test"

2009-02-05-12.46.02.126412 "String test"

Chapter 14. Comparing and repairing tables 215

KEYCol1 - TIMESTAMP(6) Col2 CHAR(12)

2009-02-05-12.46.03.126412 "String test"

Using Table A and Table B above as examples, consider the following rangecol
portion of an asntdiff invocation in which the TIMESTAMP(6) is used to specify
which rows to compare:
RANGECOL="'KEYCol1’ FROM: ’2009-02-05-12.46.01.126412’
TO: ’2009-02-05-12.46.03.126412’"

The range clause is rewritten by asntdiff into a SQL SELECT statement with a
BETWEEN clause:
WHERE ("KEYCol1" BETWEEN ’2009-02-05-12.46.01.126412’
AND ’2009-02-05-12.46.03.126412’)

To include all rows in the above scenario, use the source key values in the range
clause. As a general rule, always use the longer TIMESTAMP column value in the
range clause. For example, the following statement considers all six rows on both
target and source side:
RANGECOL="'KEYCol1’ FROM: ’2009-02-05-12.46.01.126412123456’
TO: ’2009-02-05-12.46.03.126412123456’"

Note: The scenarios described are only valid when the target table content has
exclusively been populated by the Q Apply or Apply program. Any manual
interaction with the target table could result in unexpected asntdiff results. As
always, a thorough analysis of the results in the differencing table is required
before you use the asntrep command to repair differences.

Considerations when using the DATE data type as
TIMESTAMP(0)

The asntdiff utility does not support comparison of DATE and TIMESTAMP(0)
data types. If the DATE data type compatibility feature is not enabled for the
database that features the table with the DATE column, asntdiff gives the following
message and terminates abnormally: "ASN4003E The data type or the length ... are
not compatible."

The following example shows two databases, the second of which is enabled to use
TIMESTAMP(0) columns for dates:

Database 1, Table A
Database 2
(compatibility vector 0x40), Table B

DATE
02/05/2009

TIMESTAMP(0)
2009-02-05-12.46.01

To compare these two tables, you must use the asntdiff file option and manually
cast either of the two data types to a compatible data type.

Compatibility option for text based strings

With the compatibility option for character data enabled, an insert of an empty
string into a text-based column results in a null value.

216 SQL Replication Guide and Reference

Database 1, Table A
KEYCol1 - TIMESTAMP(6)

Database 1, Table A
Col2 VARCHAR(12)

2009-02-05-12.46.01.126412 ""

Database 2
(compatibility vector 0x20), Table B
KEYCol1 - TIMESTAMP(6)

Database 2
(compatibility vector 0x20), Table B
Col2 VARCHAR(12)

2009-02-05-12.46.01.126412 NULL

By default asntdiff flags a difference in Col2 and reports an update needed in the
difference table. If you do not want asntdiff to report this as a difference, you can
use the asntdiff file option with the following SQL statement in the
SOURCE_SELECT parameter:
SELECT Col2 CASE WHEN Col2 = \’\’ THEN NULL ELSE Col2 END FROM Database1

In any case, the warning message ASN4035W is issued once to make you aware of
this scenario.

asntdiff file option (asntdiff –f)

To override any of the default behaviors mentioned above, it is recommended to
employ the asntdiff file option that was introduced in Version 9.7.

The option allows you to use any SQL expression, for example you could use a
CAST statement to avoid the truncation when comparing different length
timestamp columns.

The following example pads the TIMESTAMP(6) to a TIMESTAMP(12):
SOURCE_SELECT= "SELECT CAST(KEYCol1 AS TIMESTAMP(12)) AS KEYCol1, Col2
FROM TABLE_A ORDER BY 1"
TARGET_SELECT= "SELECT KEYCol1, Col2 FROM TABLE_B ORDER BY 1"

Chapter 14. Comparing and repairing tables 217

218 SQL Replication Guide and Reference

Chapter 15. Scheduling SQL Replication programs on various
operating systems

You might want to schedule the Capture program, the Apply program, or the
Replication Alert Monitor program to start at a prescribed time by using the
commands that are available on your operating system.

Scheduling programs on Linux and UNIX operating systems
You can schedule when to start the replication programs on the Linux and UNIX
operating system.

Procedure

To schedule replication programs on Linux and UNIX

Use the at command to start a replication program at a specific time. Table 17
shows commands that are used to start the replication programs at 3:00 p.m. on
Friday:

Table 17. Scheduling commands for the replication programs (Linux, UNIX)

Replication program Linux or UNIX command

Capture at 3pm Friday asncap autoprune=n

Apply at 3pm Friday asnapply applyqual=myqual

Replication Alert Monitor at 3pm Friday asnmon
monitor_server=db2srv1
monitor_qualifier=mymon

Scheduling programs on Windows operating systems
You can schedule when to start the replication programs on the Windows
operating system.

Procedure

If you are not using the Windows Service Control Manager, use the AT command
to start the programs at a specific time. Before you enter the AT command, start the
Windows Schedule Service.Table 18 shows commands that are used to start the
replication programs at 3:00 p.m. on Friday:

Table 18. Scheduling commands for the replication programs (Windows)

Replication program Windows command

Capture c:\>at 15:00/interactive"c:\SQLLIB\BIN\
db2cmd.exe c:\CAPTURE\asncap.exe"

Apply c:\>AT 15:00 /interactive
"c:\SQLLIB\BIN\db2cmd.exe
c:\SQLLIB\BIN\asnapply.exe
control_server=cntldb apply_qual=qualid1"

© Copyright IBM Corp. 1994, 2012 219

Table 18. Scheduling commands for the replication programs (Windows) (continued)

Replication program Windows command

Replication Alert Monitor c:\>AT 15:00 /interactive
"c:\SQLLIB\BIN\db2cmd.exe
c:\CAPTURE\asnmon.exe
monitor_server=db2srv1
monitor_qualifier=mymon"

Scheduling programs on z/OS operating systems
You can schedule when to start the replication programs on the z/OS operating
system by using two different commands.

Procedure

To schedule programs on the z/OS operating system, use the following methods:
1. Create a procedure that calls the program for z/OS in the PROCLIB.
2. Modify the ICHRIN03 RACF module (or appropriate definitions for your MVS

security package) to associate the procedure with a user ID.
3. Link-edit the module in SYS1.LPALIB.
4. Use either the $TA JES2 command or the AT NetView command to start the

Capture program or the Apply program at a specific time. See MVS/ESA JES2
Commands for more information about using the $TA JES2 command. See the
NetView for MVS Command Reference for more information about using the AT
NetView command.

Scheduling programs on the System i operating system
You can schedule when to start the replication programs on the System i operating
system.

Procedure

1. If you want to start the Apply program, issue the ADDJOBSCDE command.
2. If you want to start the Capture program, issue the SBMJOB command. For

example:
SBMJOB CMD(’STRDPRCAP...’)SCDDATE(...)SCDTIME(...)

220 SQL Replication Guide and Reference

Chapter 16. Replication services (Windows)

You can run the replication programs as a system service on the Windows
operating system by using the Windows Service Control Manager (SCM).

Description of Windows services for replication
On the Windows operating system, a replication service is a program that starts
and stops the Q Capture, Q Apply, Capture, Apply, or Replication Alert Monitor
programs.

When you create a replication service, it is added to the SCM in Automatic mode
and the service is started. Windows registers the service under a unique service
name and display name.

The following terms describe naming rules for replication services:

Replication service name

The replication service name uniquely identifies each service and is used to
stop and start a service. It has the following format:
DB2.instance.alias.program.qualifier_or_schema

Table 19 describes the inputs for the replication service name.

Table 19. Inputs for the replication service name

Input Description

instance The name of the DB2 instance.

alias The database alias of the Q Capture server, Q Apply
server, Capture control server, Apply control server, or
Monitor control server.

program One of the following values: QCAP (for Q Capture
program), QAPP (for Q Apply program), CAP (for
Capture program), APP (for Apply program), or MON
(for Replication Alert Monitor program).

qualifier_or_schema One of the following identifiers: Q Capture schema, Q
Apply schema, Capture schema, Apply qualifier, or
Monitor qualifier.

Example: The following service name is for a Q Apply program that has
the schema ASN and is working with database DB1 under the instance
called INST1:
DB2.INST1.DB1.QAPP.ASN

Display name for the replication service

The display name is a text string that you see in the Services window and
it is a more readable form of the service name. For example:
DB2 - INST1 DB1 QAPPLY ASN

If you want to add a description for the service, use the Service Control Manager
(SCM) after you create a replication service. You can also use the SCM to specify a
user name and a password for a service.

© Copyright IBM Corp. 1994, 2012 221

Creating a replication service
You can create a replication service to start a Q Capture program, Q Apply
program, Capture program, Apply program, and the Replication Alert Monitor
program on Windows operating systems.

Before you begin

v Before you create a replication service, make sure that the DB2 instance service
is running. If the DB2 instance service is not running when you create the
replication service, the replication service is created but it is not started
automatically.

v After you install DB2, you must restart your Windows server before you start a
replication service.

About this task

When you create a service, you must specify the account name that you use to log
on to Windows and the password for that account name.

You can add more than one replication service to your system. You can add one
service for each schema on every Q Capture, Q Apply, or Capture control server,
and for each qualifier on every Apply control server and Monitor control server,
respectively. For example, if you have five databases and each database is an Q
Apply control server and a Monitor control server, you can create ten replication
services. If you have multiple schemas or qualifiers on each server, you could
create more services.

Procedure

To create a replication service:

Use the asnscrt command.
When you create a service, you must specify the account name that you use to log
on to Windows and the password for that account name.

Tip: If your replication service is set up correctly, the service name is sent to
stdout after the service is started successfully. If the service does not start, check
the log files for the program that you were trying to start. By default, the log files
are in the directory specified by the DB2PATH environment variable. You can
override this default by specifying the path parameter
(capture_path,apply_path,monitor_path) for the program that is started as a
service. Also, you can use the Windows Service Control Manager (SCM) to view
the status of the service.

Starting a replication service
After you create a replication service, you can stop it and start it again.

About this task

Important: If you started a replication program from a service, you will get an
error if you try to start the program by using the same schema or qualifier.

Procedure

222 SQL Replication Guide and Reference

To start a replication service, use one of the following methods.
v The Windows Service Control Manager (SCM)
v net stop command

Stopping a replication service
After you create a replication service, you can stop it and start it again.

About this task

When you stop a replication service, the program associated with that service stops
automatically. However, if you stop a program by using a replication system
command (asnqacmd, asnqccmd, asnccmd, asnacmd, or asnmcmd), the service that
started the program continues to run. You must stop it explicitly.

Procedure

To stop a replication service, use one of the following methods.
v The Windows Service Control Manager (SCM)
v net stop command

Viewing a list of replication services
You can view a list of all your replication services and their properties by using the
asnlist command.

Procedure

To view a list of replication services, use the asnlist command. You can optionally
use the details parameter to view a list of replication services and descriptions of
each service.

Dropping a replication service
If you no longer need a replication service you can drop it so that it is removed
from the Windows Service Control Manager (SCM).

About this task

If you want to change the start-up parameters for a program that is started by a
service, you must drop the service and then create a new one using new start-up
parameters.

Procedure

To drop a service for replication commands, use the asnsdrop command.

Chapter 16. Replication services (Windows) 223

224 SQL Replication Guide and Reference

Chapter 17. How the SQL Replication components
communicate

The various replication components run independently of one another, but rely on
one another for information that each stores in the replication control tables to
communicate with one another.

The administration tools
The Replication Center or ASNCLP command-line program creates SQL
scripts that insert the initial information about registered sources,
subscription sets, and alert conditions in the control tables.

The Capture program or triggers
The Capture program and the Capture triggers update the control tables to
indicate the progress of replication and to coordinate the processing of
changes.

The Apply program
The Apply program updates the control tables to indicate the progress of
replication and to coordinate the processing of changes.

The Replication Alert Monitor
The Replication Alert Monitor reads the control tables that have been
updated by the Capture program, Apply program, and the Capture
triggers to understand any problems and progress at a server.

The Replication Center, ASNCLP, the Capture program or triggers, and
the Apply program

When you register a table, view, or nickname as a replication source, the
Replication Center or ASNCLP command-line program creates an SQL script that
stores the information for this source in the replication control table that contains
all registration information, the IBMSNAP_REGISTER table. The SQL script
generated by the administration tools also creates the CD tables for the registered
sources.

The IBMSNAP_REGISTER table contains one row for every registered source table,
and one row for every underlying table in a registered view. This table contains the
following kinds of information about each registered source:
v The schema name and name of the source table
v The structure type of each registered source table
v The schema name and name of the CD table
v The names of the CD tables for the underlying tables in this view (only for

registered views, and only if the underlying tables are registered)
v The schema name and name of the internal CCD table (where one exists)
v The conflict-detection level for update-anywhere sources

The Capture and Apply programs use the information in the IBMSNAP_REGISTER
table to communicate their respective status to one another. This table has several
more columns for related information.

© Copyright IBM Corp. 1994, 2012 225

For System i sources, including tables that are journaled remotely, there is also an
extension to the IBMSNAP_REGISTER table, IBMSNAP_REG_EXT, which contains
extra information that is unique to System i, for example, the journal library and
the journal name.

When you create a subscription set and add members to it, the Replication Center
creates an SQL script that stores the information for this subscription set in the
replication control tables that contain all subscription-set information as follows:
v IBMSNAP_SUBS_SET table
v IBMSNAP_SUBS_MEMBR table
v IBMSNAP_SUBS_COLS table
v IBMSNAP_SUBS_STMTS table

If the target tables do not already exist, the SQL script generated by the Replication
Center also creates them.

The main subscription-set table, IBMSNAP_SUBS_SET, contains one row for every
subscription set. This table contains the following kinds of information about each
subscription set:
v The Apply qualifier
v The name of the subscription set
v The type of subscription set: read only or read/write (update anywhere)
v The names and aliases of the source and target databases
v The timing for processing the subscription set
v The current status for the subscription set

This table also has several more columns for related information.

The other subscription-set tables contain information about the subscription-set
members, columns, and SQL statements (or stored procedures) that are processed
with the set.

The Capture program and the Apply program
The Capture program uses some of the replication control tables to indicate what
changes have been made to the source database, and the Apply program uses
these control-table values to detect what needs to be copied to the target database.

The Capture program does not capture any information until the Apply program
signals it to do so, and the Apply program does not signal the Capture program to
start capturing changes until you define a replication source and associated
subscription sets.

The following lists describe how the Apply and Capture programs communicate in
a typical replication scenario to ensure data integrity:

Capturing data from a source database

1. The Capture program reads the IBMSNAP_REGISTER table during
startup to identify those registered replication sources for which it must
capture changes. Having done so, it holds their registration information
in memory.

2. The Capture program reads the DB2 log or journal continuously to
detect change records (INSERT, UPDATE, and DELETE) for registered
source tables or views. It also detects inserts to the IBMSNAP_SIGNAL

226 SQL Replication Guide and Reference

table in order to pick up signal actions that have been initialized by the
Apply program or a user. When the Apply program inserts a
CAPSTART signal in the IBMSNAP_SIGNAL table and the Capture
program detects the committed signal, the Capture program initializes
the registration and starts capturing changes for the associated source.

3. Once the Capture program has started capturing changes for a
registered source, the program writes one row (or two rows if you
specified that updates should be saved as DELETE and INSERT
statements) to the CD table for each committed change that it finds in
the DB2 log or journal. The Capture program keeps uncommitted
changes in memory until the changes are committed or aborted. Each
registered replication source that is not an external CCD table has an
associated CD table.

4. At each commit interval, the Capture program commits the data that it
has written to the CD and UOW tables, and also updates the
IBMSNAP_REGISTER table to flag which CD tables have new
committed changes.

Applying data to a target database

1. For all newly defined subscription sets, the Apply program first signals
the Capture program to start capturing changes. Then, a full refresh is
performed for each member of the set (unless it is not a complete target
table).

2. When any subscription set is eligible for replication, the Apply program
checks the IBMSNAP_REGISTER table to determine whether there are
changes that need to be replicated.

3. The Apply program copies any changes from the CD table to the target
table.

4. The Apply program updates the IBMSNAP_SUBS_SET table to record
how much data the Apply program copied for each subscription set.

5. The Apply program updates the IBMSNAP_PRUNE_SET table with a
value that indicates the point to which it has read changes from the CD
table.

Pruning the CD tables
When the Capture program prunes the CD tables, it uses the information
located in the IBMSNAP_PRUNE_SET table to determine which changes
were applied, and deletes those changes already replicated from the CD
table.

The Capture triggers and the Apply program
The Capture triggers use some of the replication control tables to indicate what
changes have been made to the source database, and the Apply program uses
these control-table values to detect what needs to be copied to the target database.

The Capture triggers start capturing information immediately. Unlike the Capture
program, they do not wait for a signal from the Apply program.

The following lists describe how the Capture triggers and the Apply program
communicate, in a typical replication scenario, to ensure data integrity:

Capturing data from a source

1.

Chapter 17. How the SQL Replication components communicate 227

Whenever a DELETE, UPDATE, or INSERT operation occurs at the
registered replication source table, a Capture trigger records the change
in the CCD table for that source table.

Applying data to a target

1. For all newly defined subscription sets, the Apply program first signals
the Capture triggers to mark a valid starting point within the CCD
table from which to start fetching changed data. Then a full refresh is
performed for each member of the set (unless it is not a complete target
table).

2. When the Apply program processes a subscription set for a non-DB2
relational source, it updates the IBMSNAP_REG_SYNCH table, which
causes an UPDATE trigger on that table to fire. The trigger updates the
SYNCHPOINT value in the IBMSNAP_REGISTER table to mark the
highest SYNCHPOINT value in the CCD tables that it copied to the
targets. During the next cycle, the Apply program will process new
data in the CCD table that has a SYNCHPOINT value that is less than
or equal to this SYNCHPOINT. Because the IBMSNAP_REG_SYNCH
table is in the non-DB2 database, the Apply program writes to the table
by using the nickname for it that was created by the Replication Center.

3. The Apply program checks the IBMSNAP_REGISTER table to
determine whether there are changes that need to be replicated.

4. The Apply program copies the changes from the CCD table to the
target table.

5. The Apply program updates the IBMSNAP_SUBS_SET table to record
how much data the Apply program copied for each subscription set.

6. The Apply program updates the IBMSNAP_PRUNCNTL table for each
registered source with a value that indicates the point to which it has
read changes from the CCD table.

Pruning the CCD tables
The UPDATE trigger on the IBMSNAP_PRUNCNTL table checks all of the
CCD tables in the source database, and deletes the already-replicated
changes from the CCD table.

The administration tools and the Replication Alert Monitor
When you define an alert condition with contacts who will be notified when the
condition occurs, the Replication Center or ASNCLP command-line programs
create an SQL script that stores the information for this alert condition and its
contacts in the replication control tables that contain all alert-condition and
notification information.

The following control tables are updated:
v IBMSNAP_CONDITIONS table
v IBMSNAP_CONTACTS table
v IBMSNAP_GROUPS table
v IBMSNAP_CONTACTGRP table

The IBMSNAP_CONDITIONS tables contains one row for each condition that you
want to be monitored. The table contains the following kinds of information about
each alert condition:
v The Monitor qualifier
v The name and aliases of the Capture server or Apply server you want monitored

228 SQL Replication Guide and Reference

v The component that you want monitored (the Capture program or the Apply
program)

v The Capture schema or Apply qualifier
v The name of the subscription set (if you want to monitor a set)
v The alert condition that you want monitored
v The contact to be notified if the condition occurs

This table has several more columns for related information.

The other tables for the Replication Alert Monitor contain information about who
will be notified if the alert condition occurs (either an individual contact, a group
of contacts, or the z/OS console), how that contact will be notified (through e-mail
or pager), and how often the contact will be notified should the condition persist.

The Replication Alert Monitor, the Capture program, and the Apply
program

The Replication Alert Monitor uses some of the Capture control tables to monitor
the Capture program, and uses some of the Apply control tables to monitor the
Apply program. It reads from different replication control tables at each Capture
control server or Apply control server, depending on what it is monitoring.

The Replication Alert Monitor does not interfere or communicate with the Capture
or Apply program.

The following steps describe how the Replication Alert Monitor monitors
conditions for the Capture or Apply program and notifies contacts when an alert
condition occurs:
1. The Replication Alert Monitor reads the alert conditions and the contact for

each condition (for a Monitor qualifier) in the IBMSNAP_CONDITIONS table.
2. For each Capture control server or Apply control server that has a defined alert

condition, the Replication Alert Monitor performs the following tasks:
a. The Replication Alert Monitor connects to the server and reads the

replication control tables associated with each alert condition for that server
to see if any of the conditions are met.

b. If any condition is met, the Replication Alert Monitor stores the data that is
related to that condition in memory and continues processing the remaining
alert conditions for that server.

c. When it is finished processing all the alert conditions for that server, the
Replication Alert Monitor disconnects from the Capture control or Apply
control server, inserts the alerts in the IBMSNAP_ALERTS table, and notifies
the contacts for that condition.

Chapter 17. How the SQL Replication components communicate 229

230 SQL Replication Guide and Reference

Chapter 18. Checking the status of the SQL Replication
programs

The following topics describe methods you can use to check the status of your
replication environment.

Checking the status of replication programs (z/OS, Linux, UNIX,
Windows)

You can quickly assess the current status of the Capture program, Apply program,
or Replication Alert Monitor program.

Use one of the following commands to check the status of the replication
programs:

Capture program
asnccmd system command, status parameter

Apply program
asnacmd system command, status parameter

Replication Alert Monitor
asnmcmd system command, status parameter

When you query the status of a program, you receive messages that describe the
state of each thread that is associated with that program:
v The Capture program has the following threads:

Worker thread
Administration thread
Pruning thread
Serialization thread
Transaction reader thread (if the asynchlogrd startup parameter is set to yes)

v The Apply program has the following threads:
Administration thread (depending on your maintenance level, this might not
be a separate thread)
Worker thread
Serialization thread
Monitor thread (if the MONITOR_ENABLED column in the
IBMSNAP_APPPARMS table is set to Y)

v The Replication Alert Monitor program has the following three threads:
Administration thread
Worker thread
Serialization thread

Use the messages you receive to determine if your programs are working correctly.
Typically, worker threads, administration threads, and pruning threads are in a
working state and are performing the tasks that they were designed to perform.
Serialization threads, global signal handlers, are typically in the waiting state and
usually waiting for signals.

© Copyright IBM Corp. 1994, 2012 231

The pruning thread prunes the CD tables and the following replication control
tables.
v IBMSNAP_UOW table
v IBMSNAP_CAPTRACE table
v IBMSNAP_CAPMON table
v IBMSNAP_SIGNAL table

The Apply worker thread sets its state to "waiting for database" if it cannot connect
to its Apply control server and if the Apply program was started with the term=n
parameter. You can run the status command in asnacmd or MODIFY on z/OS to
check whether the Apply worker thread is running but unable to connect to the
control server.

If the messages that you receive indicate that a program is functioning, but you
find evidence in your environment to the contrary, you must investigate further.
For example, if you query the status of the Apply program and you find that the
worker thread is working, but you notice that data is not being applied to the
target tables as you expected, examine the IBMSNAP_APPLYTRAIL table for
messages that might explain why the data is not being applied. System resource
problems might prevent the program from working properly.

Checking the status of the Capture and Apply journal jobs (System i)
On DB2 for System i, use the Work with Subsystem Jobs (WRKSBSJOB) system
command to check the status of the journal jobs for the Capture and Apply
programs.

Procedure

To check the status of the journal jobs for the Capture and Apply programs:

Use the Work with Subsystem Jobs (WRKSBSJOB) system command as follows:
1. Enter the command:

WRKSBSJOB subsystem

Where subsystem is the subsystem name. In most cases, the subsystem is
QZSNDPR, unless you created your own subsystem description

2. Identify jobs of interest from among those listed as running.
The journal job is named after the journal to which it was assigned. If no job is
listed there, use the Work with Submitted Jobs (WRKSBMJOB) system command or
the Work with Job (WRKJOB) system command to locate the job. Find the job's
joblog to verify that it completed successfully or to identify why it failed.

Monitoring the progress of the Capture program (System i)
If the Capture program has terminated, you can inspect the IBMSNAP_RESTART
table to determine how much progress the Capture program made before
termination. There is one row for each journal used by the source tables. The
LOGMARKER column provides the timestamp of the last journal entry processed
successfully. The SEQNBR column provides the sequence number of that journal
entry.

About this task

232 SQL Replication Guide and Reference

If the Capture program has terminated, you can inspect the IBMSNAP_RESTART
table to determine how much progress the Capture program made before
termination. There is one row for each journal used by the source tables. The
LOGMARKER column provides the timestamp of the last journal entry processed
successfully. The SEQNBR column provides the sequence number of that journal
entry.

Procedure

To determine progress of the Capture program while it is running:
1. Open the CD table for each source table being captured.
2. In the last row of each CD table, note the hex value in the COMMITSEQ

column.
3. Identify a row in the IBMSNAP_UOW table with the same COMMITSEQ hex

value. If no matching COMMITSEQ value exists in the IBMSNAP_UOW table,
repeat the process with the second-to-last row in the CD table. Proceed
backward through the CD table until you identify a matching hex value.

4. When you find a matching COMMITSEQ hex value, note the value in the
LOGMARKER column of the UOW row. This is the timestamp of the last
journal entry processed. All changes to the source table up to that time are
ready to be applied.

5. Use the Display Journal (DSPJRN) system command to determine how many
journal entries remain to be processed by the Capture program. Direct the
output to an output file (or printer) to preserve the report, as shown in the
following example:

DSPJRN FILE(JRNLIB/DJRN1)
RCVRNG(*CURCHAIN)
FROMTIME(timestamp)
TOTIME(*LAST)
JRNCDE(J F R C)
OUTPUT(*OUTFILE)
ENTDTALEN(1) OUTFILE(library/outfile)

where timestamp is the timestamp that you identified in 4.

The number of records in the output file is the approximate number of journal
entries that remain to be processed by the Capture program.

Chapter 18. Checking the status of the SQL Replication programs 233

234 SQL Replication Guide and Reference

Chapter 19. Customizing and running SQL scripts for
replication

To create control tables, register source tables, and create subscription sets and
members, you must run SQL scripts that are generated by the Replication Center
and ASNCLP command-line program. You can run the SQL scripts by using the
Replication Center or you can run them from a DB2 command line. If necessary,
you can modify the SQL scripts to meet your needs.

Before you begin

If you run the SQL scripts from a DB2 command line, you must connect to servers
manually when you run the SQL script, edit the SQL statements to specify the user
ID and password for the server to which you are connecting. For example, look for
a line that resembles the following example and add your information by typing
over the placeholders (XXXX):
CONNECT TO srcdb USER XXXX USING XXXX ;

About this task

You have the option in the ASNCLP and Replication Center to run a generated
SQL script immediately or to save the generated SQL script to run later. Even if
you choose to run the SQL now, you might also want to save it for future
reference. For example, if you save the definitions of a large replication
subscription set in an SQL file, you can rerun the definitions as necessary.

When editing the generated SQL scripts, be careful not to change the termination
characters. Also, do not change the script separators if there are multiple scripts
saved to a file.

You might want to customize the SQL scripts for your environment to perform the
following tasks:
v Create multiple copies of the same replication action, customized for multiple

servers.
v Set the size of the table spaces or databases of the CD tables.
v Define site-specific standards.
v Combine definitions together and run as a batch job.
v Defer the replication action until a specified time.
v Create libraries of SQL scripts for backup, site-specific customization, or to run

standalone at distributed sites, such as for an occasionally connected
environment.

v Edit create table and index statements to represent database objects.
v For Informix and other non-DB2 relational databases, ensure that tables are

created in the dbspaces or table spaces that you want.
v For Microsoft SQL Server, create control tables on an existing segment.
v Review and edit subscription-set member predicates as a way of defining

multiple subscription sets at one time. You can use substitution variables in your
predicates and resolve the variables with programming logic.

Procedure

© Copyright IBM Corp. 1994, 2012 235

Use one of the following methods to run the files containing SQL scripts from a
DB2 command line:
v Use this command if the SQL script has a semicolon (;) as a termination

character: db2 -tvf filename

v Use this command if the SQL script has some other character as the delimiter (in
this example, as in heterogeneous replication, the pound sign (#) is the
termination character): db2 -td# -vf filename

236 SQL Replication Guide and Reference

Chapter 20. Naming rules for SQL Replication objects

The following table lists the limits for names of replication objects.

Table 20. Name limits for replication objects

Object Name limits

Source and target tables Follow the naming rules for your database
management system.

Names cannot include blanks, asterisks
(*), question marks (?), single quotation marks ('), double
quotation marks ("), or a slash (/).

Source and target columns Follow the naming rules for your database management system.
(Note that all before-image columns have a one-character prefix
added to them. To avoid ambiguous before-image column
names, ensure that source column names are unique to 127
characters and that the before-image column names will not
conflict with existing column names when the before-image
character prefix is added to the column name.)

Subscription set A subscription-set name can include any characters allowed by
DB2 for varying-character (VARCHAR) columns.
Recommendation: Follow the naming rules for DB2 table and
column names. Because DB2 replication stores the
subscription-set name in each replication control server, be sure
that the name is compatible for all three servers' code pages.

Capture schema The Capture schema can be a string of 128 or fewer characters.1

Subsystems that are running Version 8
compatibility mode or earlier: 18 or fewer characters

The Capture schema (CAPCTLLIB) can be
a string of 10 or fewer alphanumeric characters1.

Apply qualifier The Apply qualifier
can be a string of 18 or fewer characters1.

The Apply qualifier can be a string of 18
or fewer characters but, because Apply jobs can be only up to
10 characters long, the first 10 characters must be unique for a
given Apply qualifier1.

Monitor qualifier
The Monitor

qualifier can be a string of 18 or fewer characters1.

© Copyright IBM Corp. 1994, 2012 237

Table 20. Name limits for replication objects (continued)

Object Name limits

Note:

1. For Capture schemas, Apply qualifiers, and Monitor qualifiers, ensure that you use only
the following valid characters in the names of these objects:

v A through Z (uppercase letters)

v a through z (lowercase letters)

v Numerals (0 through 9)

v The underscore character "_"

Blanks are not allowed; neither are other special characters such as the colon ":" and the
plus sign "+".

Replication system commands and the Replication Center, by default, convert all
names that you provide to uppercase. Enclose a mixed-case character name in
double quotation marks (or whatever character the target system is configured to
use) to preserve the case and save the name exactly as you typed it. For example,
if you type myqual or MyQual or MYQUAL, the name is saved as MYQUAL. If you type
those same names and enclose them in double quotation marks, they are saved as
myqual or MyQual or MYQUAL, respectively. Some operating systems don't recognize
double quotation marks and you might have to use an escape character, typically a
backslash (\).

On Windows operating systems, you must use a unique path
to differentiate between names that are otherwise identical. For example, assume
that you have three Apply qualifiers: myqual , MyQual, and MYQUAL. The three names
use the same characters but different case. If these three qualifiers are in the same
Apply path, they will cause name conflicts.

Important: When setting up Windows services for Capture, Apply, or the
Replication Alert Monitor, you must use unique names for the Capture schema,
Apply qualifier, and Monitor qualifier. You cannot use case to differentiate names.

238 SQL Replication Guide and Reference

Chapter 21. System commands for SQL Replication (Linux,
UNIX, Windows, z/OS)

This section describes commands for Linux, UNIX, Windows, and UNIX System
Services (USS) on z/OS that let you start, operate, modify, and monitor SQL
Replication programs.

All of these commands have a prefix of asn and are entered at an operating system
command prompt or in a shell script. One of the commands, asnanalyze, also
works with remote data residing on System i.

asncap: Starting Capture
Use the asncap command to start the Capture program on Linux, UNIX, Windows,
and UNIX System Services (USS) on z/OS. Run this command at an operating
system prompt or in a shell script.

After you start the Capture program, it runs continuously until you stop it or it
detects an unrecoverable error.

Syntax

�� asncap
capture_server=db_name capture_schema=schema

�

�
capture_path=path n

asynchlogrd= y
y

autoprune= n

�

�
n

autostop= y
n

caf= y

commit_interval=n n
hs= y

�

�
ignore_transid=transaction_ID lag_limit=n n

logreuse= y

�

�
n

logstdout= y
memory_limit=n monitor_interval=n

�

�
y

migrate= n
monitor_limit=n part_hist_limit=n

�

�
asnpwd.aut

pwdfile= filename
prune_interval=n y

prunemsg= n

�

�
retention_limit=n sleep_interval=n stale=n

�

© Copyright IBM Corp. 1994, 2012 239

�
warmsi

startmode= warmns
cold

y
term= n

trace_limit=n
�

�
Optional z/OS parameter
Optional Linux, UNIX, Windows parameter

�

� Optional z/OS parameter:
arm=identifier

��

Optional Linux, UNIX, Windows parameter:

n
add_partition= y

Parameters

Table 21 defines the invocation parameters.

Table 21. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems

Parameter Definition

capture_server=db_name Specifies the name of the Capture control server.

Specifies the name of the DB2
subsystem where the Capture program will run. For data
sharing, do not use the group attach name. Instead, specify
a member subsystem name.

If you do not specify a Capture
control server, this parameter defaults to the value from the
DB2DBDFT environment variable.

add_partition=y/n
Specifies whether the Capture

program starts reading the log file for the newly added
partitions since the last time the Capture program was
restarted.

n (default)
No new partitions have been added since the last
time the Capture program was restarted.

y The Capture program starts reading the log file on
one or more of the new partitions. On each
partition, the Capture program starts reading the
log from the log sequence number (LSN) that was
initially used the last time the database was started.

240 SQL Replication Guide and Reference

Table 21. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

arm=identifier Specifies a three-character
alphanumeric string that is used to identify a single instance
of the Capture program to the Automatic Restart Manager.
The value that you supply is appended to the ARM element
name that Capture generates for itself: ASNTCxxxxyyyy
(where xxxx is the data-sharing group attach name, and yyyy
is the DB2 member name). You can specify any length of
string for the arm parameter, but the Capture program will
concatenate only up to three characters to the current name.
If necessary, the Capture program will pad the name with
blanks to make a unique 16-byte name.

asynchlogrd=y/n
n (default)

Specifies that you want the Capture program to use
the same thread for reading the DB2 recovery log
and processing transactions that were captured
from the log.

y Specifies that you want the Capture program to use
a dedicated thread for capturing transactions from
the DB2 recovery log. The transaction reader thread
prefetches committed transactions in a memory
buffer, from which another thread gets the
transactions and processes them into SQL
statements for insertion into the CD table. This
asynchronous mode can improve Capture
throughput in all environments with particular
benefits for partitioned databases and z/OS
data-sharing. On systems with very high activity
levels, this prefetching might lead to more memory
usage. Adjust the memory_limit parameter
accordingly. If you have a low volume of changes,
you might prefer the default value of N to reduce
CPU consumption.

capture_schema=schema Specifies the name of the Capture schema that is used to
identify a particular Capture program. The schema name
that you enter must be 1 to 128 characters in length. The
default is ASN.

capture_path=path Specifies the location of the work files used by the Capture
program. The default is the directory where the asncap
command was invoked.

autoprune=y/n Specifies whether automatic pruning of the rows in the
change-data (CD), unit-of-work (UOW),
IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and
IBMSNAP_SIGNAL tables is enabled.

y (default)
The Capture program automatically prunes the
eligible rows at the interval specified in the
IBMSNAP_CAPPARMS table. The Capture program
prunes the CD, UOW, and IBMSNAP_SIGNAL
rows that are older than the retention limit,
regardless of whether the rows have been
replicated.

n Automatic pruning is disabled.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 241

Table 21. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

autostop=y/n Specifies whether the Capture program terminates after
retrieving all the transactions that were logged before the
Capture program started.

n (default)
The Capture program does not terminate after
retrieving the transactions.

y The Capture program terminates after retrieving
the transactions.

caf=n/y The Capture program runs with the
default of Recoverable Resource Manager Services (RRS)
connect (CAF=n). You can override this default and prompt
the Capture program to use the Call Attach Facility (CAF)
by specifying the caf=y option. The caf=y option specifies
that the replication program overrides the default RRS
connect and runs with CAF connect.

n (default)
The Capture program uses Recoverable Resource
Manager Services (RRS) connect (CAF=n).

y Specifies the replication program overrides the
default RRS connect and runs with CAF connect.

If RRS is not available you receive a message and the
replication program switches to CAF. The message warns
that the program was not able to connect because RRS is not
started. The program attempts to use CAF instead. The
program runs correctly with CAF connect.

commit_interval=n Specifies the number of seconds that the Capture program
waits before committing rows to the unit-of-work (UOW)
and change-data (CD) tables. The default is 30 seconds.

ignore_transid=transaction_ID Specifies that the Capture program will not capture the
transaction that is identified by transaction_ID.

The value for transaction_ID is a 10-byte hexadecimal
identifier in the following format:

0000:xxxx:xxxx:xxxx:mmmm

Where xxxx:xxxx:xxxx is the transaction ID, and
mmmm is the data-sharing member ID. You can find
the member ID in the last 2 bytes of the log record
header in the LOGP output. The member ID is 0000
if data-sharing is not enabled.

nnnn:0000:xxxx:xxxx:xxxx

Where xxxx:xxxx:xxxx is the transaction ID, and
nnnn is the partition identifier for partitioned
databases (this value is 0000 if for non-partitioned
databases).

242 SQL Replication Guide and Reference

Table 21. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

lag_limit=n Specifies the number of minutes that the Capture program is
allowed to lag in processing log records. The default is
10080 minutes (seven days). The Capture program checks
the value of this parameter only during a warm start. If this
limit is exceeded, the Capture program will not start.

logrdbufsz=n Specifies the size of the buffer that the Capture program
passes to DB2 when Capture retrieves log records. DB2 fills
the buffer with available log records that Capture has not
retrieved. The default value for DB2 for z/OS is 66KB; for
DB2 for Linux, UNIX, and Windows the default is 256KB.
For partitioned databases, Capture allocates a buffer of the
size that is specified by logrdbufsz for each partition.

logread_prefetch=y/n Specifies whether the Capture
program uses separate threads to prefetch log records from
each partition in a partitioned database.

n (default for nonpartitioned databases)
A single Capture log reader thread connects to all
partitions.

y (default for partitioned databases)
A separate log reader thread connects to each
partition. Using separate threads can increase
Capture throughput but might increase CPU usage.

logreuse=y/n Specifies whether the Capture program reuses or appends
messages to the log file.

n (default)
The Capture program appends messages to the log
file, even after the Capture program is restarted.

y The Capture program reuses the log file by first
truncating the current log file and then starting a
new log when the Capture program is restarted.

The log file name does not contain the
DB2 instance name:
capture_server.capture_schema.CAP.log.

The log file name includes the DB2
instance name:
db2instance.capture_server.capture_schema.CAP.log.

logstdout=y/n Specifies where the Capture program directs the log file
messages:

n (default)
The Capture program directs most log file messages
to the log file only. Initialization messages go to
both the log file and the standard output
(STDOUT).

y The Capture program directs log file messages to
both the log file and the standard output
(STDOUT).

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 243

Table 21. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

memory_limit=n Specifies the maximum size (in megabytes) of memory that
the Capture program can use to build transactions. After
reaching this memory limit, the Capture program spills
transactions to a file. The default is 32 megabytes.

If you specify memory_limit=0, the
Capture program determines the amount of memory to use
from the region size parameter of the Capture job. The
memory allocation is 80 percent of the region size.

migrate=y/n Specifies that the Capture program
starts from the beginning of the log after DB2 is migrated.
Important: Use this option only the first time that Capture
is started and specify startmode=warmns. Also, do not use
the migrate parameter when you are migrating to Version
10.1 or later.

monitor_interval=n Specifies how frequently (in seconds) the Capture program
inserts rows into the IBMSNAP_CAPMON table. The
default is 300 seconds (five minutes).

monitor_limit=n Specifies how long (in minutes) a row can remain in the
IBMSNAP_CAPMON table before it becomes eligible for
pruning. All IBMSNAP_CAPMON rows that are older than
the value of the monitor_limit parameter are pruned at the
next pruning cycle. The default is 10 080 minutes (seven
days).

part_hist_limit=n Specifies how long you want old data to remain in the
IBMQREP_PART_HIST table before it becomes eligible for
pruning. The default is 10080 minutes (seven days). This
parameter also controls how far back in the log you can
restart the Capture program because Capture uses
IBMQREP_PART_HIST to determine what log records to
read for a partitioned source table.

pwdfile=filename Specifies the name of the password file. If you do not
specify a password file, the default is asnpwd.aut.

This command searches for the password file in the
directory specified by the capture_path parameter. If no
capture_path parameter is specified, this command searches
for the password file in the directory where the command
was invoked.

prune_interval=n Specifies how frequently (in seconds) the change-data (CD),
unit-of-work (UOW), IBMSNAP_CAPMON,
IBMSNAP_CAPTRACE, and IBMSNAP_SIGNAL tables are
pruned. This parameter is ignored if you set the autoprune
parameter to n. The default is 300 seconds (five minutes).

prunemsg=y/n Specifies whether the Capture program issues informational
messages about the status of pruning.

y (default)
Capture issues informational messages about
pruning status.

n Capture does not issue informational messages
about pruning status.

244 SQL Replication Guide and Reference

Table 21. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

retention_limit=n Specifies how long (in minutes) a row can remain in the
change-data (CD), unit-of-work (UOW), or
IBMSNAP_SIGNAL table before it becomes eligible for
pruning. Each row that is older than the value of the
retention_limit parameter is pruned at the next pruning
cycle. The default is 10 080 minutes (seven days).

sleep_interval=n Specifies the number of seconds that the Capture program
sleeps when it finishes processing the active log and
determines that the buffer is empty. The default is five
seconds.

Specifies the number of seconds that
the Capture program sleeps after the buffer returns less than
half full.

stale=n Specifies the number of seconds that the Capture program
waits to issue a warning message or take other action after
it detects a long-running transaction with no commit or
rollback log record. The program behavior depends on the
platform of the source. On z/OS, Capture issues warning
messages if has not seen a commit or rollback record for one
hour (stale=3600). On both z/OS and Linux, UNIX, and
Windows, if a transaction has been running for the number
of seconds that are specified by stale and Capture did not
see any row operations in the log for the transaction, it
issues warning messages, does not replicate the transaction,
and advances the log sequence number that it considers to
be the oldest "in-flight" transaction that was not committed
or rolled back. If some rows were captured for the
transaction, only warning messages are issued.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 245

Table 21. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

startmode=mode Specifies the processing procedure used by the Capture
program during a Capture startup.

warmsi (default)
The Capture program resumes processing where it
ended in its previous run if warm start information
is available. If this is the first time that you are
starting the Capture program, it automatically
switches to a cold start.

During a warm start, the Capture program leaves
the IBMSNAP_CAPTRACE, change-data (CD),
unit-of-work (UOW), and IBMSNAP_RESTART
tables intact. If errors occur after the Capture
program started, the Capture program terminates.

warmns
The Capture program resumes processing where it
ended in its previous run if warm start information
is available. If errors occur after the Capture
program started, the Capture program terminates.
If the Capture program cannot warm start, it does
not switch to a cold start.

cold The Capture program starts by deleting all rows in
its CD and UOW tables. Most registrations are reset
so that all subscriptions to those sources are fully
refreshed during the next Apply processing cycle.
Registrations for external CCDs and those
subscriptions whose targets are noncomplete CCDs
are not fully refreshed.

term=y/n Specifies whether the Capture program terminates if DB2 is
quiesced or stopped.

y (default)
The Capture program terminates if DB2 is quiesced
or stopped.

n The Capture program continues running if DB2 is
quiesced or stopped. When DB2 initializes, the
Capture program starts capturing at the point
where it left off when DB2 was quiesced or
stopped.

If DB2 terminates through FORCE or abnormally terminates,
the Capture program terminates even if you set this
parameter to n.

If you set this parameter to n and start DB2 with restricted
access (ACCESS MAINT), the Capture program cannot
connect and subsequently terminates.

trace_limit=n Specifies how long (in minutes) a row can remain in the
IBMSNAP_CAPTRACE table before it becomes eligible for
pruning. All IBMSNAP_CAPTRACE rows that are older
than the value of the trace_limit parameter are pruned at
the next pruning cycle. The default is 10 080 minutes (seven
days).

246 SQL Replication Guide and Reference

Return codes

The asncap command returns a zero return code upon successful completion. A
nonzero return code is returned if the command is unsuccessful.

Examples for asncap

The following examples illustrate how to use the asncap command.

Example 1

To start a Capture program for the first time that uses a Capture control server
named db and a Capture schema of ASN with work files located in the
/home/files/capture/logs/ directory:
asncap capture_server=db capture_schema=ASN

capture_path=/home/files/capture/logs/ startmode=cold

Example 2

To restart a Capture program without pruning after the Capture program was
stopped:
asncap capture_server=db autoprune=n sleep_interval=10 startmode=warmsi

The Capture program in this example retains all rows in the corresponding control
tables and sleeps for ten seconds after it finishes processing the active log and
determines that the buffer is empty. The Capture program resumes processing
where it ended in its previous run and switches to a cold start if warm start
information is unavailable.

Example 3

To restart a Capture program with the warmns startmode and changed parameter
settings:
asncap capture_server=db autoprune=y prune_interval=60 retention_limit=1440

startmode=warmns

This command restarts the Capture program and uses new parameter settings to
decrease the amount of time before the CD, UOW, and IBMSNAP_SIGNAL tables
become eligible for pruning and to increase the frequency of pruning from the
default parameter settings. The Capture program resumes processing where it
ended in its previous run but does not automatically switch to a cold start if warm
start information is unavailable.

Example 4

To start a Capture program that sends all of its work files to a new subdirectory
called capture_files:
1. Go to the appropriate directory, and then create a new subdirectory called

capture_files:
cd /home/db2inst

mkdir capture_files

2. Start the Capture program, and specify a Capture path that is located in the
new subdirectory that you just created:
asncap capture_server=db capture_schema=ASN

capture_path=/home/db2inst/capture_files startmode=warmsi

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 247

asnccmd: Operating Capture
Use the asnccmd command to send a command to a running Capture program on
Linux, UNIX, Windows, and UNIX System Services (USS) on z/OS. Run this
command at an operating system prompt or in a shell script.

Syntax

For information on using the MVS MODIFY command to send commands to a
running Capture program on z/OS, see Working with running SQL Replication
programs by using the MVS MODIFY command.

�� asnccmd
capture_server=db_name capture_schema=schema

�

� chgparms parameters
prune
qryparms
reinit
suspend
resume
status
stop

��

Parameters:

y
autoprune= n

n
autostop= y

commit_interval=n
�

�
n

logreuse= y
n

logstdout= y
memory_limit=n

�

�
monitor_interval=n monitor_limit=n prune_interval=n

�

�
retention_limit=n sleep_interval=n y

term= n

�

�
trace_limit=n

248 SQL Replication Guide and Reference

Parameters

Table 22 defines the invocation parameters for the asnccmd command.

Table 22. Definitions for asnccmd invocation parameters

Parameter Definition

capture_server=y/n Specifies the name of the Capture control server.

The name of the database server that connects to
the control server. For data sharing, use either the
group attach name or a member subsystem name.

If you do not specify a Capture control server, this
parameter defaults to the value from the
DB2DBDFT environment variable.

capture_schema=schema Specifies the name of the Capture schema that is used to
identify a particular Capture program. The schema name
must be 1 to 128 characters in length. The default is ASN.

chgparms Specify to change one or more of the following operational
parameters of a Capture program while it is running:

v autostop

v commit_interval

v logreuse

v logstdout

v memory_limit

v monitor_interval

v monitor_limit

v prune_interval

v retention_limit

v signal_limit

v sleep_interval

v term

v trace_limit

Restriction: The value of
memory_limit cannot be altered with the Capture program is
running. To change the value you must first stop the
Capture program.

You can specify multiple parameters in one asnccmd
chgparms command, and you can change these parameter
values as often as you want. The changes temporarily
override the values in the IBMSNAP_CAPPARMS table, but
they are not written to the table. When you stop and restart
the Capture program, it uses the values in
IBMSNAP_CAPPARMS. “asncap: Starting Capture” on page
239 includes descriptions of the parameters that you can
override with this command.

prune Specify this parameter if you want to prune the change-data
(CD), unit-of-work (UOW), IBMSNAP_CAPMON,
IBMSNAP_CAPTRACE, and IBMSNAP_SIGNAL tables
once. The Capture program issues a message when the
command is successfully queued.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 249

Table 22. Definitions for asnccmd invocation parameters (continued)

Parameter Definition

qryparms Specify if you want the current operational parameter values
written to the standard output (stdout).

reinit Specify to have the Capture program obtain newly added
replication sources from the IBMSNAP_REGISTER table. For
example, use this parameter if you add a new replication
source or if you use the ALTER ADD statement to add a
column to a replication source and change-data (CD) table
while the Capture program is running.

suspend Specify to relinquish operating system resources to
operational transactions during peak periods without
destroying the Capture program environment.

Attention: Do not suspend Capture to cancel a replication
source. Instead, stop the Capture program.

resume Specify to have a suspended Capture program resume
capturing data.

status Specify to receive messages that indicate the state of each
Capture thread (administration, pruning, serialization, and
worker).

stop Specify to stop the Capture program in an orderly way and
commit the log records processed up to that point.

Examples for asnccmd

The following examples illustrate how to use the asnccmd command.

Example 1

To enable a running Capture program to recognize newly added replication sources:
asnccmd capture_server=db capture_schema=ASN reinit

Example 2

To prune the CD, UOW, IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and IBMSNAP_SIGNAL tables
once:
asnccmd capture_server=db capture_schema=ASN prune

Example 3

To receive messages about the state of each Capture thread:
asnccmd capture_server=db capture_schema=ASN status

Example 4

To send the current operational values of a Capture program to the standard output:
asnccmd capture_server=db capture_schema=ASN qryparms

Example 5

To disable the automatic pruning in a running Capture program:
asnccmd capture_server=db capture_schema=ASN chgparms autoprune=n

250 SQL Replication Guide and Reference

Example 6

To stop a running Capture program:
asnccmd capture_server=db capture_schema=ASN stop

asnapply: Starting Apply
Use the asnapply command to start the Apply program on Linux, UNIX, Windows,
and UNIX System Services (USS) on z/OS. Run this command at an operating
system prompt or in a shell script.

After you start the Apply program, it runs continuously until you stop it or it
detects an unrecoverable error.

Syntax

�� asnapply Required z/OS parameters
Required Linux, UNIX and Windows parameter

�

�
control_server=db_name apply_path=pathname

�

�
asnpwd.aut

pwdfile= filename
n

logreuse= y
n

logstdout= y

�

�
n

loadxit= y
y

inamsg= n
n

notify= y

�

�
n

copyonce= y
y

sleep= n
n

trlreuse= y

�

�
n

opt4one= y
delay=n errwait=n

�

�
y

term= n
refresh_commit_cnt=n

�

�
Optional z/OS parameters
Optional Linux, UNIX and Windows parameters

��

Required z/OS parameters:

apply_qual=apply_qualifier db2_subsystem=name

Required Linux, UNIX and Windows parameter:

apply_qual=apply_qualifier

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 251

Optional z/OS parameters:

mem
spillfile= disk

arm=identifier

Optional Linux, UNIX and Windows parameters:

n
sqlerrcontinue= y

y
caf= n

disk
spillfile=

Parameters

Table 23 defines the invocation parameters.

Table 23. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems

Parameter Definition

apply_qual=apply_qualifier Specifies the Apply qualifier that the Apply program uses to
identify the subscriptions sets to be served.

The value that you enter must match the value of the
APPLY_QUAL column in the IBMSNAP_SUBS_SET table.
The Apply qualifier name is case sensitive and can be a
maximum of 18 characters.

db2_subsystem=name Specifies the name of the DB2
subsystem where the Apply program will run. The
subsystem name that you enter can be a maximum of four
characters. There is no default for this parameter. This
parameter is required.

control_server=db_name Specifies the name of the Apply control server on which the
subscription definitions and Apply program control tables
reside.

Specifies the location name of the
Apply control server.

If you do not specify an Apply control
server, this parameter defaults to the value from the
DB2DBDFT environment variable.

apply_path=pathname Specifies the location of the work files used by the Apply
program. The default is the directory where the asnapply
command was invoked.

pwdfile=filename Specifies the name of the password file. If you do not
specify a password file, the default is asnpwd.aut.

This command searches for the password file in the
directory specified by the apply_path parameter. If no
apply_path parameter is specified, this command searches
for the password file in the directory where the command
was invoked.

252 SQL Replication Guide and Reference

Table 23. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

logreuse=y/n Specifies whether the Apply program reuses or appends
messages to the log file.

n (default)
The Apply program appends messages to the log
file, even after the Apply program is restarted.

y The Apply program reuses the log file by deleting
it and then re-creating it when the Apply program
is restarted.

The log file name does not contain the
DB2 instance name:
control_server.apply_qualifier.APP.log.

The log file name contains the DB2
instance name:
db2instance.control_server.apply_qualifier.APP.log.

logstdout=y/n Specifies where the Apply program directs the log file
messages:

n (default)
The Apply program directs most log file messages
to the log file only. Initialization messages go to
both the log file and the standard output
(STDOUT).

y The Apply program directs log file messages to
both the log file and the standard output
(STDOUT).

loadxit=y/n Specifies whether the Apply program invokes ASNLOAD.
ASNLOAD is an IBM-supplied exit routine that uses the
export and load utilities to refresh target tables.

n (default)
The Apply program does not invoke ASNLOAD.

y The Apply program invokes ASNLOAD.

inamsg=y/n Specifies whether the Apply program issues a message
when the Apply program is inactive.

y (default)
The Apply program issues a message when
inactive.

n The Apply program does not issue a message when
inactive.

notify=y/n Specifies whether the Apply program should invoke
ASNDONE. ASNDONE is an exit routine that returns
control to you when the Apply program finishes copying a
subscription set.

n (default)
The Apply program does not invoke ASNDONE.

y The Apply program invokes ASNDONE.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 253

Table 23. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

copyonce=y/n Specifies whether the Apply program executes one copy
cycle for each subscription set that is eligible at the time the
Apply program is invoked. Then the Apply program
terminates. An eligible subscription set meets the following
criteria:

v (ACTIVATE > 0) in the IBMSNAP_SUBS_SET table. When
the ACTIVATE column value is greater than zero, the
subscription set is active indefinitely or is used for a
one-time-only subscription processing.

v (REFRESH_TYPE = R or B) or (REFRESH_TYPE = E and
the specified event occurred). The REFRESH_TYPE
column value is stored in the IBMSNAP_SUBS_SET table.

The MAX_SYNCH_MINUTES limit from the subscription
sets table and the END_OF_PERIOD timestamp from the
IBMSNAP_SUBS_EVENT table are honored if specified.

n (default)
The Apply program does not execute one copy
cycle for each eligible subscription set.

y The Apply program executes one copy cycle for
each eligible subscription set.

sleep=y/n Specifies how the Apply program is to proceed if no new
subscription sets are eligible for processing.

y (default)
The Apply program sleeps.

n The Apply program stops.

trlreuse=y/n Specifies whether the Apply program empties the
IBMSNAP_APPLYTRAIL table when the Apply program
starts.

n (default)
The Apply program appends entries to the
IBMSNAP_APPLYTRAIL table. The Apply program
does not empty the table.

y The Apply program empties the
IBMSNAP_APPLYTRAIL table during program
startup.

opt4one=y/n Specifies whether the performance of the Apply program is
optimized if only one subscription set is defined for the
Apply program.

n (default)
The performance of the Apply program is not
optimized for one subscription set.

y The performance of the Apply program is
optimized for one subscription set. If you set
optimization to y, the Apply program caches and
reuses the information about the subscription-set
members. This reuse of subscription-set member
information reduces CPU usage and improves
throughput rates.

254 SQL Replication Guide and Reference

Table 23. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

delay=n Specifies the delay time (in seconds) at the end of each
Apply cycle when continuous replication is used, where
n=0, 1, 2, 3, 4, 5, or 6. The default is 6, and is used during
continuous replication (that is, when the subscription set
uses sleep=0 minutes). This parameter is ignored if copyonce
is specified.

errwait=n Specifies the number of seconds (1 to 65535) that the Apply
program waits before retrying after the program encounters
an error condition. The default value is 300 seconds (five
minutes).
Note: Do not specify too small a number, because the Apply
program runs almost continuously and generates many rows
in the IBMSNAP_APPLYTRAIL table.

term=y/n Specifies whether the Apply program continues to run if it
cannot connect to its control server.

y (default)
By default, the Apply program terminates if it
cannot connect to its control server.

n The Apply program does not terminate. Instead,
Apply logs an error, waits for the amount of time
set by the errwait parameter, then retries the
connection.

This parameter is ignored if copyonce is specified.

spillfile=filetype Specifies where the fetched answer set is stored.

Valid values are:

mem (default)
A memory file. If there is insufficient memory for
the answer set, the Apply program uses a disk file.

disk A disk file.

hs High-performance data space (hiperspace)

Valid values are:

disk (default)
A disk file.

arm=identifier
Specifies a three-character

alphanumeric string that is used to identify a single instance
of the Apply program to the Automatic Restart Manager.
The value that you supply is appended to the ARM element
name that Apply generates for itself: ASNTAxxxxyyyy
(where xxxx is the data-sharing group attach name, and yyyy
is the DB2 member name). You can specify any length of
string for the arm parameter, but the Apply program will
concatenate only up to three characters to the current name.
If necessary, the Apply program will pad the name with
blanks to make a unique 16-byte name.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 255

Table 23. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

caf=y/n Specifies whether the Apply program
runs with Recoverable Resource Manager Services (RRS)
connect (CAF=n). The runtime parameter Call Attach
Facility (CAF) caf =y option specifies whether the
replication program overrides RRS connect and runs with
CAF connect. The caf =y option is the default for the Apply
program.

y (default)
Specifies that the Apply program runs with CAF
connect.

n The Apply program uses Recoverable Resource
Manager Services (RRS) connect (caf =n).

sqlerrcontinue=y/n Specifies whether the Apply program continues processing
when it encounters certain SQL errors.

The Apply program checks the failing SQLSTATE against
the values specified in the SQLSTATE file, which you create
before running the Apply program. If a match is found, the
Apply program writes the information about the failing row
to an error file (apply_qualifier.ERR) and continues
processing. The SQLSTATE file can contain up to 20
five-byte values.

n (default)
The Apply program does not check the SQLSTATE
file.

y The Apply program checks the SQLSTATE file
during processing.

refresh_commit_cnt=n During full refresh, Apply issues a COMMIT statement after
the specified number of rows are inserted into the target
table. Values can range from 0 to 134217727. A default value
of 0 means that only one commit is issued after all rows
have been inserted; no intermediate commits are issued.

Return codes

The asnapply command returns a zero return code upon successful completion. A
nonzero return code is returned if the command is unsuccessful.

Examples for asnapply

The following examples illustrate how to use the asnapply command.

Example 1

To start an Apply program with an Apply qualifier named AQ1, a control server
named dbx with work files located in the /home/files/apply/ directory:
asnapply apply_qual=AQ1 control_server=dbx apply_path=/home/files/apply/

pwdfile=pass1.txt

The Apply program searches the /home/files/apply/ directory for the password
file named pass1.txt.

256 SQL Replication Guide and Reference

Example 2

To start an Apply program that invokes the ASNLOAD exit routine:
asnapply apply_qual=AQ1 control_server=dbx pwdfile=pass1.txt loadxit=y

In this example, the Apply program searches the current directory for the
password file named pass1.txt.

Example 3

To start an Apply program that executes one copy cycle for each eligible
subscription set:
asnapply apply_qual=AQ1 control_server=dbx apply_path=/home/files/apply/

copyonce=y

In this example, the Apply program searches the /home/files/apply/ directory for
the default password file named asnpwd.aut.

asnacmd: Operating Apply
Use the asnacmd command to operate the Apply program on Linux, UNIX,
Windows, and UNIX System Services (USS) on z/OS. Run this command at an
operating system prompt or in a shell script.

For information on using the MVS MODIFY command to send commands to a
running Apply program on z/OS, see Working with running SQL Replication
programs by using the MVS MODIFY command.

Syntax

�� asnacmd apply_qual=apply_qualifier
control_server=db_name

�

� status
stop

��

Parameters

Table 24 defines the invocation parameters.

Table 24. asnacmd invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems

Parameter Definition

apply_qual=apply_qualifier Specifies the Apply qualifier that the Apply program uses to
identify the subscriptions sets to be served.

You must specify an Apply qualifier. The value that you
enter must match the value of the APPLY_QUAL column in
the IBMSNAP_SUBS_SET table. The Apply qualifier name is
case sensitive and can be a maximum of 18 characters.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 257

Table 24. asnacmd invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

control_server=db_name Specifies the name of the Apply control server on which the
subscription definitions and Apply control tables reside.

The control server parameter is the
name of the database server that connects to the control
server.

If you do not specify an Apply control
server, this parameter defaults to the value from the
DB2DBDFT environment variable.

status Specify to receive messages that indicate the state of each
thread (administration and worker) in Apply.

stop Specify to stop the Apply program in an orderly way.

Examples for asnacmd

The following examples illustrate how to use the asnacmd command.

Example 1

To receive messages about the state of each Apply thread:
asnacmd apply_qual=AQ1 control_server=dbx status

Example 2

To stop the Apply program:
asnacmd apply_qual=AQ1 control_server=dbx stop

asnanalyze: Operating the Analyzer
Use the asnanalyze command to generate reports about the state of the replication
control tables. This command analyzes replication control tables that reside on any
operating system, including System i; however, you must invoke the command
from Linux, UNIX or Windows.

You must type a space between the asnanalyze command and the first parameter
to invoke the command. If you issue the command without any parameters, you
receive command help on the screen.

Syntax

�� asnanalyze �-db db_alias
standard

-la detailed
simple

-tl n
�

258 SQL Replication Guide and Reference

�
-at n -ct n -cm n -sg n

�-aq apply_qualifier

�

�
-cs capture_schema -od output_directory -fn output_filename

�

�
-pw password_filepath

��

Parameters

Table 25 defines the invocation parameters.

Table 25. asnanalyze invocation parameter definitions for Linux, UNIX and Windows
operating systems

Parameter Definition

-db db_alias Specifies the Capture control server, target server, and Apply
control server.

You must provide at least one database alias. If there is
more than one database alias, use blank spaces to separate
the values.

-la level_of_analysis Specifies the level of analysis to be reported:

standard (default)
Generates a report that includes the contents of the
control tables and status information from the
Capture and Apply programs.

detailed
Generates the information in the standard report
and:

v Change-data (CD) and unit-of-work (UOW) table
pruning information

v DB2 for z/OS table space partitioning and
compression information

v Analysis of target indexes for subscription keys

simple Generates the information in the standard report,
but excludes the detailed information from the
IBMSNAP_SUBS_COLS table.

-tl n Specifies the date range (0 to 30 days) of entries to be
retrieved from the IBMSNAP_APPLYTRAIL table. The
default is 3 days.

-at n Specifies the date range (0 to 30 days) of entries to be
retrieved from the Apply trace IBMSNAP_APPLYTRACE
table. The default is 3 days.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 259

Table 25. asnanalyze invocation parameter definitions for Linux, UNIX and Windows
operating systems (continued)

Parameter Definition

-ct n Specifies the date range (0 to 30 days) of entries to be
retrieved from the IBMSNAP_CAPTRACE table. The default
is 3 days.

-cm n Specifies the date range (0 to 30 days) of entries to be
retrieved from the IBMSNAP_CAPMON table. The default
is 3 days.

-sg n Specifies the date range (0 to 30 days) of entries to be
retrieved from the IBMSNAP_SIGNAL table. The default is 3
days.

-aq apply_qualifier Specifies the Apply qualifier that identifies the specific
subscription sets to be analyzed.

You can specify more than one Apply qualifier. If there is
more than one Apply qualifier, use blank spaces to separate
the values. If no Apply qualifier is specified, all subscription
sets for the specified database aliases are analyzed.

-cs capture_schema Specifies the name of the Capture schema that you want to
analyze.

If you use this parameter, you can specify only one Capture
schema.

-od output_directory Specifies the directory in which you want to store the
Analyzer report. The default is the current directory.

-fn output_filename Specifies the name of the file that will contain the Analyzer
report output.

Use the file naming conventions of the operating system
that you are using to run the Analyzer. If the file name
already exists, the file is overwritten. The default file name
is asnanalyze.htm.

-pw password_filepath Specifies the name and path of the password file. If you do
not specify this parameter, the Analyzer checks the current
directory for the asnpwd.aut file.

Examples for asnanalyze

The following examples illustrate how to use the asnanalyze command.

Example 1

To analyze the replication control tables on a database called proddb1:
asnanalyze -db proddb1

Example 2

To obtain a detailed level of analysis about the replication control tables on the
proddb1 and proddb2 databases:
asnanalyze -db proddb1 proddb2 -la detailed

Example 3

260 SQL Replication Guide and Reference

To analyze the last two days of information from the IBMSNAP_APPLYTRAIL,
IBMSNAP_APPLYTRACE, IBMSNAP_CAPTRACE, IBMSNAP_CAPMON, and
IBMSNAP_SIGNAL tables on the proddb1 and proddb2 databases:
asnanalyze -db proddb1 proddb2 -tl 2 -at 2 -ct 2 -cm 2 -sg 2

Example 4

To obtain a simple level of analysis about the last two days of information from
the IBMSNAP_APPLYTRAIL, IBMSNAP_APPLYTRACE, IBMSNAP_CAPTRACE,
IBMSNAP_CAPMON, and IBMSNAP_SIGNAL tables on the proddb1 and proddb2
databases for only the qual1 and qual2 Apply qualifiers:
asnanalyze -db proddb1 proddb2 -la simple -tl 2 -at 2 -ct 2 -cm 2 -sg 2

-aq qual1 qual2 -od c:\mydir -fn anzout -pw c:\SQLLIB

This command example writes the analyzer output to a file named anzout under
the c:\mydir directory and uses the password information from the c:\SQLLIB
directory.

Example 5

To analyze a specific Capture schema:
asnanalyze -db proddb1 proddb2 -cs BSN

Example 6

To display command help:
asnanalyze

asnpwd: Creating and maintaining password files
Use the asnpwd command to create and change password files on Linux, UNIX,
and Windows. Run this command at the command line or in a shell script.

Command help appears if you enter the asnpwd command without any parameters,
followed by a ?, or followed by incorrect parameters.

Syntax

�� asnpwd init Init parameters
add Add parameters
modify Modify parameters
delete Delete parameters
list List parameters

��

Init parameters:

encrypt all
password

asnpwd.aut
using filepath_name

Add parameters:

alias db_alias id userid password password �

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 261

�
asnpwd.aut

using filepath_name

Modify parameters:

alias db_alias id userid password password �

�
asnpwd.aut

using filepath_name

Delete parameters:

alias db_alias
asnpwd.aut

using filepath_name

List parameters:

asnpwd.aut
using filepath_name

Parameters

Table 26 defines the invocation parameters for the asnpwd command.

Important note about compatibility of password files: Password files that are
created by the asnpwd command starting with Version 9.5 Fix Pack 2 use a new
encryption method and cannot be read by older versions of the replication
programs and utilities. If you share a password file among programs and utilities
that are at mixed level, with some older than these fix packs, do not recreate the
password file by using an asnpwd utility that is at these fix packs or newer.
Replication programs and utilities at these fix packs or newer can continue to work
with older password files. Also, you cannot change an older password file to use
the new encryption method; you must create a new password file.

Usage note: On 64-bit Windows operating systems, the ADD, MODIFY, DELETE,
and LIST options are not supported for password files that were created by using
the asnpwd command before Version 9.5 Fix Pack 2.

Table 26. asnpwd invocation parameter definitions for Linux, UNIX, and Windows operating
systems

Parameter Definition

init Specify to create an empty password file. This command
will fail if you specify the init parameter with a password
file that already exists.

add Specify to add an entry to the password file. There can only
be one entry in the password file per db_alias. This
command will fail if you specify the add parameter with an
entry that already exists in the password file. Use the modify
parameter to change an existing entry in the password file.

262 SQL Replication Guide and Reference

Table 26. asnpwd invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

modify Specify to modify the password or user ID for an entry in
the password file.

delete Specify to delete an entry from the password file.

list Specify to list the aliases and user ID entries in a password
file. This parameter can be used only if the password file
was created by using the encrypt password parameter.
Passwords are never displayed by the list command.

encrypt Specifies which entries in a file to encrypt.

all (default)
Encrypt all entries in the specified file such that you
cannot list the database aliases, user names, and
passwords that are in the file. This option reduces the
exposure of information in password files.

password
Encrypt the password entry in the specified file. This
option allows users to list the database aliases and user
names stored in their password file. Passwords can
never be displayed.

using filepath Specifies the path and name of the password file. Follow the
file naming conventions of your operating system. An
example of a valid password file on Windows is
C:\sqllib\mypwd.aut.

If you specify the path and name of the password file, the
path and the password file must already exist. If you are
using the init parameter and you specify the path and
name of the password file, the path must already exist and
the command will create the password file for you.

If you do not specify this parameter, the default file name is
asnpwd.aut and the default file path is the current directory.

alias db_alias Specifies the alias of the database to which the user ID has
access. The alias is always folded to uppercase, regardless of
how it is entered.

id userid Specifies the user ID that has access to the database.

password password Specifies the password for the specified user ID. This
password is case sensitive and is encrypted in the password
file.

Return Codes

The asnpwd command returns a zero return code upon successful completion. A
nonzero return code is returned if the command is unsuccessful.

Examples for asnpwd

The following examples illustrate how to use the asnpwd command.

Example 1

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 263

To create a password file with the default name of asnpwd.aut in the current
directory:
asnpwd INIT

Example 2

To create a password file named pass1.aut in the c:\myfiles directory:
asnpwd INIT USING c:\myfiles\pass1.aut

Example 3

To create a password file named mypwd.aut with the encrypt all parameter:
asnpwd INIT ENCRYPT ALL USING mypwd.aut

Example 4

To create a password file named mypwd.aut with the encrypt password parameter:
asnpwd INIT ENCRYPT PASSWORD USING mypwd.aut

Example 5

To create a default password file with the encrypt password parameter:
asnpwd INIT ENCRYPT PASSWORD

Example 6

To add a user ID called oneuser and its password to the password file named
pass1.aut in the c:\myfiles directory and to grant this user ID access to the db1
database:
asnpwd ADD ALIAS db1 ID oneuser PASSWORD mypwd using c:\myfiles\pass1.aut

Example 7

To modify the user ID or password of an entry in the password file named
pass1.aut in the c:\myfiles directory:
asnpwd MODIFY AliaS sample ID chglocalid PASSWORD chgmajorpwd

USING c:\myfiles\pass1.aut

Example 8

To delete the database alias called sample from the password file named pass1.aut
in the c:\myfiles directory:
asnpwd delete alias sample USING c:\myfiles\pass1.aut

Example 9

To see command help:
asnpwd

Example 10

To list the entries in a default password file:
asnpwd LIST

264 SQL Replication Guide and Reference

Example 11

To list the entries in a password file named pass1.aut:
asnpwd LIST USING pass1.aut

The output from this command depends on how the password file was initialized:
v If it was initialized by using the encrypt all parameter, the following message

is issued:
ASN1986E "Asnpwd" : "". The password file "pass1.aut" contains
encrypted information that cannot be listed.

v If it was not initialized by using the encrypt all parameter, the following details
are listed:
asnpwd LIST USING pass1.aut
Alias: SAMPLE ID: chglocalid
Number of Entries: 1

asnscrt: Creating a replication service
Use the asnscrt command to create a replication service in the Windows Service
Control Manager (SCM) and invoke the asnqcap, asnqapp, asnmon, asncap, and
asnapply commands. Run the asnscrt command on the Windows operating
system.

Syntax

�� asnscrt -QC
-QA
-M
-C
-A

db2_instance account password asnqcap_command
asnqapp_command
asnmon_command
asncap_command
asnapply_command

��

Parameters

Table 27 defines the invocation parameters for the asnscrt command.

Table 27. asnscrt invocation parameter definitions for Windows operating systems

Parameter Definition

-QC Specifies that you are starting a Q Capture program.

-QA Specifies that you are starting a Q Apply program.

-M Specifies that you are starting a Replication Alert Monitor
program.

-C Specifies that you are starting a Capture program.

-A Specifies that you are starting an Apply program.

db2_instance Specifies the DB2 instance used to identify a unique DB2
replication service. The DB2 instance can be a maximum of
eight characters.

account Specifies the account name that you use to log on to
Windows. If the account is local it must begin with a period
and a backslash (.\). Otherwise the domain or machine name
must be specified (for example, domain_name\account_name).

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 265

Table 27. asnscrt invocation parameter definitions for Windows operating
systems (continued)

Parameter Definition

password Specifies the password used with the account name. If the
password contains special characters, type a backslash (\)
before each special character.

asnqcap_command Specifies the complete asnqcap command to start a Q capture
program. Use the documented asnqcap command syntax with
the appropriate asnqcap parameters.

If the DB2PATH environment variable is not defined, you
must specify a location for the work files by including the
capture_path parameter with the asnqcap command. If the
DB2PATH variable is defined and you specify a
capture_path, the capture_path parameter overrides the
DB2PATH variable.

The asnscrt command does not validate the syntax of the
asnqcap parameters that you enter.

asnqapp_command Specifies the complete asnqapp command to start a Q apply
program. Use the documented asnqapp command syntax with
the appropriate asnqapp parameters.

If the DB2PATH environment variable is not defined, you
must specify the location for the work files by including the
apply_path parameter with the asnqapp command. If the
DB2PATH variable is defined and you specify an apply_path,
the apply_path parameter overrides the DB2PATH variable.
The asnscrt command does not validate the syntax of the
asnqapp parameters that you enter.

asnmon_command Specifies the complete asnmon command to start a Replication
Alert Monitor program. Use the documented asnmon
command syntax with the appropriate asnmon parameters.

If the DB2PATH environment variable is not defined, you
must specify a location for the log files by including the
monitor_path parameter with the asnmon command. If the
DB2PATH variable is defined and you specify a
monitor_path, the monitor_path parameter overrides the
DB2PATH variable.

The asnscrt command does not validate the syntax of the
asnmon parameters that you enter.

asncap_command Specifies the complete asncap command to start a Capture
program. Use the documented asncap command syntax with
the appropriate asncap parameters.

If the DB2PATH environment variable is not defined, you
must specify a location for the work files by including the
capture_path parameter with the asncap command. If the
DB2PATH variable is defined and you specify a
capture_path, the capture_path parameter overrides the
DB2PATH variable.

The asnscrt command does not validate the syntax of the
asncap parameters that you enter.

266 SQL Replication Guide and Reference

Table 27. asnscrt invocation parameter definitions for Windows operating
systems (continued)

Parameter Definition

asnapply_command Specifies the complete asnapply command to start an Apply
program. Use the documented asnapply command syntax
with the appropriate asnapply parameters.

If the DB2PATH environment variable is not defined, you
must specify the location for the work files by including the
apply_path parameter with the asnapply command. If the
DB2PATH variable is defined and you specify an apply_path,
the apply_path parameter overrides the DB2PATH variable.

The asnscrt command does not validate the syntax of the
asnapply parameters that you enter.

Examples for asnscrt

The following examples illustrate how to use the asnscrt command.

Example 1

To create a DB2 replication service that invokes a Q Apply program under a DB2
instance called inst2 and uses a logon account of .\joesmith and a password of
my$pwd:
asnscrt -QA inst2 .\joesmith my\$pwd asnqapp apply_server=mydb2 apply_schema =as2

apply_path=X:\sqllib

Example 2

To create a DB2 replication service that invokes a Capture program under a DB2
instance called inst1:
asnscrt -C inst1 .\joesmith password asncap capture_server=sampledb

capture_schema=ASN capture_path=X:\logfiles

Example 3

To create a DB2 replication service that invokes an Apply program under a DB2
instance called inst2 and uses a logon account of .\joesmith and a password of
my$pwd:
asnscrt -A inst2 .\joesmith my\$pwd asnapply control_server=db2 apply_qual=aq2

apply_path=X:\sqllib

Example 4

To create a DB2 replication service that invokes a Replication Alert Monitor
program under a DB2 instance called inst3:
asnscrt -M inst3 .\joesmith password asnmon monitor_server=db3 monitor_qual=mq3

monitor_path=X:\logfiles

Example 5

To create a DB2 replication service that invokes a Capture program under a DB2
instance called inst4 and overrides the default work file directory with a fully
qualified capture_path:

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 267

asnscrt -C inst4 .\joesmith password X:\sqllib\bin\asncap capture_server=scdb
capture_schema=ASN capture_path=X:\logfiles

Example 6

To create a DB2 replication service that invokes a Q capture program under a DB2
instance called inst1:
asnscrt -QC inst1 .\joesmith password asnqcap capture_server=mydb1

capture_schema=QC1 capture_path=X:\logfiles

asnsdrop: Dropping a replication service
Use the asnsdrop command to drop replication services from the Windows Service
Control Manager (SCM) on the Windows operating system.

Syntax

�� asnsdrop service_name
ALL

��

Parameters

Table 28 defines the invocation parameters for the asnsdrop command.

Table 28. asnsdrop invocation parameter definitions for Windows operating systems

Parameter Definition

service_name Specifies the fully qualified name of the DB2 replication
service. Enter the Windows SCM to obtain the DB2
replication service name. On Windows operating systems,
you can obtain the service name by opening the Properties
window of the DB2 replication service.

If the DB2 replication service name contains spaces, enclose
the entire service name in double quotation marks.

ALL Specifies that you want to drop all DB2 replication services.

Examples for asnsdrop

The following examples illustrate how to use the asnsdrop command.

Example 1

To drop a DB2 replication service:
asnsdrop DB2.SAMPLEDB.SAMPLEDB.CAP.ASN

Example 2

To drop a DB2 replication service with a schema named A S N (with embedded
blanks), use double quotation marks around the service name:
asnsdrop "DB2.SAMPLEDB.SAMPLEDB.CAP.A S N"

Example 3

To drop all DB2 replication services:

268 SQL Replication Guide and Reference

asnsdrop ALL

asnslist: Listing replication services
Use the asnslist command to list replication services in the Windows Service
Control Manager (SCM). You can optionally use the command to list details about
each service. Run the asnslist command on the Windows operating system.

Syntax

�� asnslist
DETAILS

��

Parameters

Table 29 defines the invocation parameter for the asnslist command.

Table 29. asnslist invocation parameter definition for Windows operating systems

Parameter Definition

details Specifies that you want to list detailed data about all DB2
replication services on a system.

Examples for asnlist

The following examples illustrate how to use the asnslist command.

Example 1

To list the names of DB2 replication services on a system:
asnslist

Here is an example of the command output:
DB2.DB2.SAMPLE.QAPP.ASN
DB2.DB4.SAMPLE.QCAP.ASN

Example 2

To list details about all services on a system:
asnslist details

Here is an example of the command output:
DB2.DB2.SAMPLE.QAPP.ASN
Display Name: DB2 DB2 SAMPLE QAPPLY ASN
Image Path: ASNSERV DB2.DB2.SAMPLE.APP.AQ1 -ASNQAPPLY QAPPLY_SERVER=SAMPLE AP

PLY_SCHEMA=ASN QAPPLY_PATH=C:\PROGRA~1\SQLLIB
Dependency: DB2-0

DB2.DB4.SAMPLE.QCAP.ASN
Display Name: DB2 DB4 SAMPLE QAPPLY ASN
Image Path: ASNSERV DB2.DB4.SAMPLE.APP.AQ1 -ASNQCAP QCAPTURE_SERVER=SAMPLE CA

PTURE_SCHEMA=ASN QCAPTURE_PATH=C:\PROGRA~1\SQLLIB
Dependency: DB4-0

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 269

asntdiff: Comparing data in source and target tables (Linux, UNIX,
Windows)

Use the asntdiff command to compare two relational tables and generate a list of
differences between the two. Run the asntdiff command at an operating system
prompt or in a shell script.

This topic describes usage on Linux, UNIX, or Windows. For details on running
asntdiff on z/OS, see “asntdiff: Comparing data in source and target tables
(z/OS)” on page 274. For information on the asntdiff –f command option, which
enables you to compare tables whether or not they are involved in replication by
using an input file, see “asntdiff –f (input file) command option” on page 281.

The tables that you compare can reside on DB2 for Linux, UNIX, Windows, DB2
for z/OS, or DB2 for System i.

Syntax

�� asntdiff DB=server
SCHEMA=schema

�

�
DIFF_SCHEMA=difference_table_schema DIFF_TABLESPACE=tablespace

�

�
n

DIFF_DROP= y
MAXDIFF=difference_limit

WHERE=WHERE_clause �

�
DIFF_PATH=log_path PWDFILE=filename DIFF=table_name

�

�
RANGECOL= range_clause_option

��

range_clause_option:

src_colname FROM:date-time_lower-bound TO:date-time_upper-bound
src_colname FROM:date-time
src_colname TO:date-time

270 SQL Replication Guide and Reference

Parameters

Table 30 defines the invocation parameters for the asntdiff command.

Table 30. asntdiff invocation parameter definitions for Linux, UNIX, and Windows operating
systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores
information about the source and target tables to be
compared. The value differs depending on whether
you are using Q Replication or SQL Replication:

Q Replication
The name of the Q Capture server, which
contains the IBMQREP_SUBS table.

SQL Replication
The name of the Apply control server,
which contains the
IBMSNAP_SUBS_MEMBR table.

SCHEMA=schema Specifies the schema of the Q Capture control tables
for Q Replication, or the schema of the Apply
control tables for SQL Replication. The default is
ASN.

DIFF_SCHEMA=
difference_table_schema

Specifies the schema of the difference table. The
default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space of the difference table. If
this parameter is not specified, the table is created in
the default table space in the database where the
asntdiff command was run.

DIFF_DROP=y/n Specifies whether an existing difference table will be
dropped and recreated before it is reused to record
differences. If the table does not exist, the asntdiff
command creates it.

n (default)
The difference table will be used as is and
the existing rows will be deleted.

y The difference table will be dropped and
recreated.

MAXDIFF=difference_limit Specifies the maximum number of differences that
you want the asntdiff command to process before
it stops. The default value is 10000.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 271

Table 30. asntdiff invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

WHERE=WHERE_clause Specifies an SQL WHERE clause that uniquely
identifies one row of the control table that stores
information about the source and target tables that
will be compared. The WHERE clause must be in
double quotation marks. The value of this parameter
differs depending on whether you are using Q
Replication or SQL Replication:

Q Replication
The WHERE clause specifies a row in the
IBMQREP_SUBS table and uses the
SUBNAME column to identify the Q
subscription that contains the source and
target tables.

SQL Replication
The WHERE clause specifies a row in the
IBMSNAP_SUBS_MEMBR table and uses
the SET_NAME, APPLY_QUAL,
TARGET_SCHEMA, and TARGET_TABLE
columns to identify the subscription set
member that contains the source and target
tables.

DIFF_PATH=log_path Specifies the location where you want the asntdiff
command to write its log. The default value is the
directory from which you ran the command. The
value must be an absolute path name. Use double
quotation marks ("") to preserve case.

PWDFILE=filename Specifies the name of the password file that is used
to connect to databases. If you do not specify a
password file, the default value is asnpwd.aut (the
name of the password file that is created by the
asnpwd command). The asntdiff command searches
for the password file in the directory that is
specified by the DIFF_PATH parameter. If no value
for the DIFF_PATH parameter is specified, the
command searches for the password file in the
directory where the command was run.

DIFF=table_name Specifies the name of the table that is created in the
source database to store differences between the
source and target tables. The table has one row for
each difference that is detected. If you do not
include this parameter or the DIFF_SCHEMA
parameter, the difference table is named
ASN.ASNTDIFF.

272 SQL Replication Guide and Reference

Table 30. asntdiff invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

RANGECOL clause Specifies a range of rows from the source table that
you want to compare. You provide the name of a
DATE, TIME, or TIMESTAMP column in the source
table, and then use one of three different clauses for
specifying the range. The column name must be
enclosed in single quotation marks. The clause must
be enclosed in double quotation marks.

The timestamp uses the following format:
YYYY-MM-DD-HH.MM.SS.mmmmm. For example,
2010-03-10-10.35.30.55555 is the GMT timestamp for
March 10, 2010, 10:35 AM, 30 seconds, and 55555
microseconds.

Use one of the following clauses:

src_colname FROM: date-time_lower-bound TO:
date-time_upper-bound

Specifies a lower and upper bound for the
range of rows to compare.

The following example uses a TIMESTAMP
column:

"’SALETIME’
FROM: 2008-02-08-03.00.00.00000
TO: 2008-02-15-03.00.00.00000"

Remember: Both the FROM: and TO:
keywords are required and both keywords
must be followed by a colon (:).

src_colname FROM: date-time
Specifies that you want to compare all rows
with timestamps that are greater than or
equal to date-time.

For example:

"’SALE_TIME’
FROM: 2008-03-10-10.35.30.55555"

src_colname TO: date-time
Specifies that you want to compare all rows
with timestamps that are less than or equal
to the date-time.

For example:

"’SALETIME’
TO: 2008-03-20-12.00.00.00000"

Recommendation: For better performance, ensure
that you have an index on the source column that is
specified in the range clause.When you compare
tables that are involved in peer-to-peer replication,
you can use the IBM-generated IBMQREPVERTIME
column for the source column in the range clause.
Restriction: The RANGECOL parameter is not valid
for the asntdiff -f (input file) option. You can use
a SQL WHERE clause in the input file to achieve
similar results.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 273

Examples for asntdiff

The following examples show how to use the asntdiff command.

Example 1

In Q Replication, to find the differences between a source and target table that are specified in a Q
subscription named my_qsub, on a Q Capture server named source_db, with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"

Example 2

In SQL Replication, to find the differences between a source and target table that are specified in a
subscription set called my_set, with a target table named trg_table, on an Apply control server named
apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table

Example 3

In Q Replication, to find the differences between a range of rows in the source and target tables that are
specified in a peer-to-peer Q subscription named my_qsub, on a Q Capture server named source_db,
with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"
RANGECOL="’IBMQREPVERTIME’ FROM: ’2008-03-10-0.00.00.00000’
TO: ’2007-04-12-00.00.00.00000’"

Example 4

In SQL Replication, to find the differences between a range of rows in the source and target table that are
specified in a subscription set called my_set, with a target table named trg_table, on an Apply control
server named apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table
RANGECOL="’CREDIT_TIME’ FROM:’2008-03-10-12.00.00.00000’
TO: ’2008-03-11-12.00.00.00000’"

asntdiff: Comparing data in source and target tables (z/OS)
Use the asntdiff command to compare two relational tables and generate a list of
differences between the two. Run the asntdiff command with JCL or at a UNIX
System Services (USS) command prompt or shell script.

This topic describes usage on z/OS:
v For details on running asntdiff on Linux, UNIX, and Windows, see “asntdiff:

Comparing data in source and target tables (Linux, UNIX, Windows)” on page
270.

v For information on the asntdiff –f command option, which enables you to
compare tables whether or not they are involved in replication, see “asntdiff –f
(input file) command option” on page 281.

v For details on using asntdiff in parallel mode, see “Running the asntdiff utility
in parallel mode (z/OS)” on page 210.

The tables that you compare can reside on DB2 for z/OS, DB2 for Linux, UNIX,
Windows, or DB2 for System i.

274 SQL Replication Guide and Reference

Syntax

�� asntdiff DB=server DB2_SUBSYSTEM=subsystem
SCHEMA=schema

�

�
DIFF_SCHEMA=difference_table_schema DIFF_TABLESPACE=tablespace

�

�
n

DIFF_DROP= y
MAXDIFF=difference_limit

WHERE=WHERE_clause �

�
DIFF=table_name RANGECOL= range-clause-option

�

�
n

PARALLEL= y parallel-options

�

�
SQLID=source_authorization_ID
SOURCESQLID=source_authorization_ID

��

range-clause-option:

src_colname FROM:date-time_lower-bound TO:date-time_upper-bound
src_colname FROM:date-time
src_colname TO:date-time

parallel-options:

NUMTHREADS=level_of_parallelism NUMBLOCKS==number_of_blocks TARGET_SQLID=target_authorization_ID

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 275

Parameters

Table 31 defines the invocation parameters for the asntdiff command.

Table 31. asntdiff invocation parameter definitions for z/OS operating systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores
information about the source and target tables to be
compared. The value differs depending on whether
you are using Q Replication or SQL Replication:

Q Replication
The location name of the Q Capture server,
which contains the IBMQREP_SUBS table.

SQL Replication
The location name of the Apply control
server, which contains the
IBMSNAP_SUBS_MEMBR table.

Restriction: This parameter is not valid for the
asntdiff -f (input file) option. You can use the
SOURCE_SERVER and TARGET_SERVER
parameters with the -f option to specify the names
of the source and target database. On z/OS, these
are location names and you also must use the
DB2_SUBSYSTEM parameter to specify the name of
the subsystem where the asntdiff utility runs.

DB2_SUBSYSTEM=subsystem Specifies the name of the subsystem where you run
the asntdiff command.

SCHEMA=schema Specifies the schema of the Q Capture control tables
for Q Replication, or the schema of the Apply
control tables for SQL Replication. The default is
ASN.

DIFF_SCHEMA=
difference_table_schema

Specifies the schema of the difference table. The
default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space of the difference table. If
this parameter is not specified, the table is created in
the default table space in the subsystem where the
asntdiff command was run.

This is a two-part name, dbname.tablespace, where
dbname is the logical database name and tablespace is
the table space name.

DIFF_DROP=y/n Specifies whether an existing difference table will be
dropped and recreated before it is reused to record
differences. If the table does not exist, the asntdiff
command creates it.

n (default)
The difference table will be used as is and
the existing rows will be deleted.

y The difference table will be dropped and
recreated.

MAXDIFF=difference_limit Specifies the maximum number of differences that
you want the asntdiff command to process before
it stops. The default value is 10000.

276 SQL Replication Guide and Reference

Table 31. asntdiff invocation parameter definitions for z/OS operating systems (continued)

Parameter Definition

WHERE=WHERE_clause Specifies an SQL WHERE clause that uniquely
identifies one row of the control table that stores
information about the source and target tables that
will be compared. The WHERE clause must be in
double quotation marks. The value of this parameter
differs depending on whether you are using Q
Replication or SQL Replication:

Q Replication
The WHERE clause specifies a row in the
IBMQREP_SUBS table and uses the
SUBNAME column to identify the Q
subscription that contains the source and
target tables.

SQL Replication
The WHERE clause specifies a row in the
IBMSNAP_SUBS_MEMBR table and uses
the SET_NAME, APPLY_QUAL,
TARGET_SCHEMA, and TARGET_TABLE
columns to identify the subscription set
member that contains the source and target
tables.

Restriction: This parameter is not valid for the
asntdiff -f (input file) option. You can use the
SOURCE_SELECT and TARGET_SELECT
parameters with the -f option to specify the tables to
be compared, and can use a WHERE clause in the
SQL query that is provided with these parameters.

DIFF=table_name Specifies the name of the table that is created in the
source subsystem to store differences between the
source and target tables. The table has one row for
each difference that is detected. If you do not
include this parameter or the DIFF_SCHEMA
parameter, the difference table is named
ASN.ASNTDIFF.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 277

Table 31. asntdiff invocation parameter definitions for z/OS operating systems (continued)

Parameter Definition

RANGECOL clause Specifies a range of rows from the source table that
you want to compare. You provide the name of a
DATE, TIME, or TIMESTAMP column in the source
table, and then use one of three different clauses for
specifying the range. The column name must be
enclosed in single quotation marks. The clause must
be enclosed in double quotation marks.

The timestamp uses the following format:
YYYY-MM-DD-HH.MM.SS.mmmmm. For example,
2010-03-10-10.35.30.55555 is the GMT timestamp for
March 10, 2010, 10:35 AM, 30 seconds, and 55555
microseconds.

Use one of the following clauses:

src_colname FROM: date-time_lower-bound TO:
date-time_upper-bound

Specifies a lower and upper bound for the
range of rows to compare.

The following example uses a TIMESTAMP
column:

"’SALETIME’
FROM: 2008-02-08-03.00.00.00000
TO: 2008-02-15-03.00.00.00000"

Remember: Both the FROM: and TO:
keywords are required and both keywords
must be followed by a colon (:).

src_colname FROM: date-time
Specifies that you want to compare all rows
with timestamps that are greater than or
equal to date-time.

For example:

"’SALE_TIME’
FROM: 2008-03-10-10.35.30.55555"

src_colname TO: date-time
Specifies that you want to compare all rows
with timestamps that are less than or equal
to the date-time.

For example:

"’SALETIME’
TO: 2008-03-20-12.00.00.00000"

Recommendation: For better performance, ensure
that you have an index on the source column that is
specified in the range clause.When you compare
tables that are involved in peer-to-peer replication,
you can use the IBM-generated IBMQREPVERTIME
column for the source column in the range clause.
Restriction: The RANGECOL parameter is not valid
for the asntdiff -f (input file) option. You can use
a SQL WHERE clause in the input file to achieve
similar results.

278 SQL Replication Guide and Reference

Table 31. asntdiff invocation parameter definitions for z/OS operating systems (continued)

Parameter Definition

PARALLEL=y/n Specifies whether the asntdiff utility uses parallel
mode, in which multiple threads are used to
compare the tables, or operates in serial mode with
a single thread.

n (default)
The asntdiff utility uses serial mode.

y The asntdiff utility uses parallel mode. For
details on installation requirements,
required authorizations, and restrictions,
see “Running the asntdiff utility in parallel
mode (z/OS)” on page 210.

NUMTHREADS=number_of_threads Specifies the number of threads that the asntdiff
utility is allowed to create. The minimum value is
six. The recommended value is 21, which is also the
maximum value and the default value. Ensure that
the MAXTHREADS parameter value that is
specified in BPXPRMXX is larger than the specified
number of threads. Also, configure DB2 ZPARMS
CTHREAD, IDFORE, and IDBACK to allow each of
the created threads to connect to DB2.

NUMBLOCKS=number_of_blocks Specifies the number of partitions into which the
asntdiff utility divides the source and target tables
(that is, the result sets of the SOURCE_SELECT and
TARGET_SELECT parameters) for parallel compare.
A value of 0 (the default) means that the utility
automatically determines the number of blocks.

SQLID=authorization_ID Use this parameter when asntdiff is running in
non-parallel mode. The parameter specifies an
authorization ID that can be used to create the
difference table. Use this parameter if the ID that is
used to run the asntdiff command does not have
authorization to create tables. The value of the SQLID
parameter is used as the schema for the difference
table if you do not explicitly specify a schema by
using the DIFF_SCHEMA parameter.

SOURCE_SQLID=authorization_ID When you use asntdiff in parallel mode, this
parameter specifies an authorization ID that can be
used to execute stored procedures and packages and
run DDL and DML on temporary tables at the
source. Use this parameter if the ID that is used to
run the asntdiff command does not have the
necessary authorization.

TARGET_SQLID=authorization_ID When you use asntdiff in parallel mode, this
parameter specifies an authorization ID that can be
used to execute stored procedures and packages and
run DDL and DML on temporary tables at the
target. Use this parameter if the ID that is used to
run the asntdiff command does not have the
necessary authorization.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 279

Usage notes

The asntdiff command creates data sets (JCL) or temporary files (USS) for spilling data and for writing
differences before inserting them into the difference table. You specify the location of the data sets or
temporary files differently:

JCL

If you want ASNTDIFF to write to z/OS data sets, add these two DD statements to your
ASNTDIFF JCL, modifying the size specifications to match the size of your source table:
//SPLFILE DD DSN=&&SPILL,DISP=(NEW,DELETE,DELETE),
// UNIT=VIO,SPACE=(CYL,(11,7)),
// DCB=(RECFM=VS,BLKSIZE=6404)
//DIFFFILE DD DSN=&&DIFFLE,DISP=(NEW,DELETE,DELETE),
// UNIT=VIO,SPACE=(CYL,(11,7)),
// DCB=(RECFM=VS,BLKSIZE=6404)

USS On USS, temporary files are written by default to the hierarchical file system (HFS), in the home
directory of the user ID that executes the asntdiff command. The default names are DD:DIFFFILE
and DD:SPILLFILE. You can use a DIFFFILE DD statement to specify an alternative HFS path and
file name for those files, as shown in this example:
//DIFFFILE DD PATH=’/u/oeusr01/tdiffil2’,
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(ORDWR,OCREAT),
// PATHMODE=(SIRWXU,SIRGRP,SIROTH)

Redirecting the HFS requires you to create an empty file that can be written to or to use the
above PATHDISP and PATHOPTS settings to create a new file if one does not exist.

Examples for asntdiff

The first four examples show how to use the asntdiff command on USS; the fifth example provides JCL.
For more sample JCL, see the ASNTDIFF sample program in the SASNSAMP sample data set.

Example 1: Q Replication

In Q Replication, to find the differences between a source and target table that are specified in a Q
subscription named my_qsub, on a Q Capture server named source_db, with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"

Example 2: SQL Replication

In SQL Replication, to find the differences between a source and target table that are specified in a
subscription set called my_set, with a target table named trg_table, on an Apply control server named
apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table

Example 3: Comparing a range of rows in Q Replication

In Q Replication, to find the differences between a range of rows in the source and target tables that are
specified in a peer-to-peer Q subscription named my_qsub, on a Q Capture server named source_db,
with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"
RANGECOL="’IBMQREPVERTIME’ FROM: ’2008-03-10-0.00.00.00000’
TO: ’2007-04-12-00.00.00.00000’"

Example 4: Comparing a range of rows in SQL Replication

280 SQL Replication Guide and Reference

In SQL Replication, to find the differences between a range of rows in the source and target table that are
specified in a subscription set called my_set, with a target table named trg_table, on an Apply control
server named apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table
RANGECOL="’CREDIT_TIME’ FROM:’2008-03-10-12.00.00.00000’
TO: ’2008-03-11-12.00.00.00000’"

Example 5: Using asntdiff in parallel mode

To run the asntdiff utility in parallel mode to compare two tables with 21 parallel threads, you can use
the following JCL after locating and changing all occurrences of the following strings:
v The subsystem name DSN! to the name of your DB2 subsystem
v DSN!!0 to the name if your DB2 target library
v ASNQ!!0 to the name of your Replication Server target library
//ASNTDIF1 EXEC PGM=ASNTDIFF,PARM=’/-F’
//STEPLIB DD DSN=ASNQ!!0.SASNLOAD,DISP=SHR
// DD DSN=DSN!!0.SDSNLOAD,DISP=SHR
//MSGS DD PATH=’/usr/lpp/db2repl_10_01/msg/En_US/db2asn.cat’
//CEEDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD DUMMY
//SYSIN DD *
DB2_SUBSYSTEM=DSN!
SOURCE_SERVER=DQRG
SOURCE_SELECT="SELECT empno, department FROM employee

WHERE empno > 10000 ORDER BY 1"
TARGET_SERVER=D7DP
TARGET_SELECT="SELECT empno, department FROM employee

WHERE empno > 10000 ORDER BY 1"
PARALLEL=Y
NUMTHREADS=21
SOURCE_SQLID=SRCADM
TARGET_SQLID=TGTADM
DIFF_DROP=Y
MAXDIFF=20000
DEBUG=NO
/*
//

asntdiff –f (input file) command option
With the asntdiff -f command option, you use an input file to specify
information about any two tables that you want to compare, whether or not they
are being replicated.

The input file contains SQL SELECT statements for the source and target tables
that specify the rows that you want to compare. The standard asntdiff command
compares tables that are involved in replication by using subscription information
from the replication control tables.

The asntdiff -f option can compare any tables on z/OS, Linux, UNIX, or
Windows. You can run asntdiff -f from a Linux, UNIX, or Windows command
prompt, from z/OS as a batch job that uses JCL, or from z/OS under the UNIX
System Services (USS) environment.

In addition to the SELECT statements, the input file contains the source and target
database information, the difference table information, and optional parameters
that specify methods for processing the differences. You can use a password file

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 281

that is created by the asnpwd command to specify a user ID and password for
connecting to the source and target databases.

Note: The asntrep command for repairing table differences does not support the
input file option.

The format of the input file contents is as follows:
* Optional comment line
Optional comment line
SOURCE_SERVER=server_name
SOURCE_SELECT="SQL_SELECT_STATEMENT"
TARGET_SERVER=server_name
TARGET_SELECT="SQL_SELECT_STATEMENT"
PARAMETER=value
...

Follow these guidelines:
v Each parameter must follow the parameter=value format.
v Multiple parameter-value pairs can be specified on a single line, separated by a

blank. The parameter-value pairs also can be specified on a new line.
v To preserve blanks, surround parameter values with double quotation marks (").

Double quotation marks are also required for the source and target SELECT
statements.

v If you want to preserve mixed case or blanks in the names of single DB2 objects
(column or table names, DIFF_SCHEMA, DIFF_TABLESPACE) mask them with
\" \", for example \"MY NAME\" or \"ColumnName\" or \"name\".

v Comments must be prefixed with an asterisk (*) or pound sign (#). This line is
ignored. Comments must be on their own line and cannot be added to a line
that contains parameters.

v Surround the DIFF_PATH and PWDFILE parameters with double quotation
marks ("). A final path delimiter for DIFF_PATH is not required.

Syntax

�� asntdiff -f input_filename ��

Parameters

Table 32 defines the mandatory parameters to include in the input file for the
asntdiff -f command.

For descriptions of optional parameters that you can include in the input file (and
which are shared by the standard asntdiff command) see “asntdiff: Comparing
data in source and target tables (z/OS)” on page 274 or“asntdiff: Comparing data
in source and target tables (Linux, UNIX, Windows)” on page 270.

Table 32. asntdiff -f invocation parameter definitions for Linux, UNIX, Windows, and z/OS

Parameter Definition

input_filename Specifies the name of the file that contains the
source and target database information and SELECT
statements. Specify a directory path if the file is
located somewhere other than the directory from
which you run the asntdiff -f command.

282 SQL Replication Guide and Reference

Table 32. asntdiff -f invocation parameter definitions for Linux, UNIX, Windows, and
z/OS (continued)

Parameter Definition

SOURCE_SERVER=
source_server_name

Specifies the alias of the database where the source
table exists.

TARGET_SERVER=
target_server_name

Specifies the alias of the database where the target
table exists.

SOURCE_SELECT=
source_select_statement
TARGET_SELECT=
target_select_statement

Any valid SQL SELECT statement.

The result sets from the SQL statement at each table
must contain columns with matching data types and
lengths. The asntdiff command describes the
queries and compares the data from the two result
sets. The command does not explicitly check the
system catalog for type and length information. The
SELECT can be an open select as in (*), or a SELECT
statement that contains column names, SQL
expressions, and WHERE clauses that are permitted.

An ORDER BY clause is mandatory. The clause
must contain the numeric values of the positions of
the columns in the SQL statement.

Ensure that the column or columns in the ORDER
BY clause reference a unique key or unique
composite key. Otherwise the results are incorrect.
An index on the columns in the ORDER BY clause
might improve performance by eliminating the need
for a sort.

The entire statement must be enclosed in double
quotes to mark the beginning and the end.

The following examples show the mandatory parameters, SQL statements, and
optional parameters that you put in the input file.

Example 1

This example shows the use of an open SELECT statement on DB2 for z/OS. Note
the use of the \" to preserve mixed case in the table owner, and the use of optional
parameters in the input file. Also note the use of the DB2_SUBSYSTEM parameter.
SOURCE_SERVER=STPLEX4A_DSN7
SOURCE_SELECT=”select * from CXAIMS.ALDEC order by 1”
TARGET_SERVER=STPLEX4A_DSN7
TARGET_SELECT=”select * from \"Cxaims\".TARG_ALDEC order by 1”
DIFF_DROP=Y
DB2_SUBSYSTEM=DSN7
MAXDIFF=10000
DEBUG=YES

Example 2

This example demonstrates the use of SUBSTR and CAST functions in the SELECT
statements.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 283

SOURCE_SERVER=D7DP
SOURCE_SELECT=“select HIST_CHAR12,HIST_DATE,HIST_CHAR6,HIST_INT1,HIST_INT2,
HIST_INT3,SUBSTR(CHAR1,1,5) AS CHAR1,SUBSTR(CHAR2,1,10) AS CHAR2,HIST_INT3,
HIST_DEC1,HIST_DEC2,HIST_DEC3,CAST(INT1 AS SMALLINT) AS INT1
FROM BISVT.THIST17 ORDER BY 4”
TARGET_SERVER=STPLEX4A_DSN7
TARGET_SELECT=“select HIST_CHAR12,HIST_DATE,HIST_CHAR6,HIST_INT1,HIST_INT2,
HIST_INT3,CHAR1,CHAR2,HIST_INT3,HIST_DEC1,HIST_DEC2,HIST_DEC3,SML1
FROM BISVT.THIST17 ORDER BY 4”
DB2_SUBSYSTEM=DSN7
DIFF_DROP=Y
DEBUG=YES
MAXDIFF=10000

Example 3

This example compares the EMPLOYEE tables on SOURCEDB and TARGETDB
and includes several optional parameters.
SOURCE_SERVER=SOURCEDB
SOURCE_SELECT=“select FIRSTNME, LASTNAME, substr(WORKDEPT,1,1)
as WORKDEPT, EMPNO from EMPLOYEE order by 4"
TARGET_SERVER=TARGETDB
TARGET_SELECT=“select FIRSTNME, LASTNAME, substr(WORKDEPT,1,1)
as WORKDEPT, EMPNO from EMPLOYEE order by 4"
DIFF_DROP=Y
DIFF =\"diffTable\"
DEBUG=YES
MAXDIFF=10000
PWDFILE=”asnpwd.aut”
DIFF_PATH=”C:\utils\”

Example 4

This example compares the EMPLOYEE tables in a Linux or UNIX environment
and uses a casting function.
SOURCE_SERVER=SOURCEDB
SOURCE_SELECT=“select EMPNO, FIRSTNME, LASTNAME, cast(SALARY as INT)
as SALARY from EMPLOYEE order by 1"
TARGET_SERVER=TARGETDB
TARGET_SELECT=“select EMPNO, FIRSTNME, LASTNAME, cast(SALARY as INT)
as SALARY from EMPLOYEE order by 1"
DIFF_DROP=Y
DIFF =\"diffTable\"
DEBUG=YES
MAXDIFF=10000
PWDFILE=”asnpwd.aut”
DIFF_PATH=”home/laxmi/utils”

asntrc: Operating the replication trace facility
Use the asntrc command to run the trace facility on Linux, UNIX, Windows, and
UNIX System Services (USS) on z/OS. The trace facility logs program flow
information from Q Capture, Q Apply, Capture, Apply, and Replication Alert
Monitor programs. You can provide this trace information to IBM Software
Support for troubleshooting assistance. Run this command at an operating system
prompt or in a shell script.

You run this command at an operating system prompt or in a shell script.

284 SQL Replication Guide and Reference

Syntax

�� asntrc �

� on -db db_name -qcap On parameters
-schema qcapture_schema

-qapp
-schema qapply_schema

-cap
-schema capture_schema

-app
-qualifier apply_qualifier

-mon
-qualifier monitor_qualifier

off -db db_name -qcap
kill -schema qcapture_schema
clr -qapp
diag -schema qapply_schema
resetlock -cap

-schema capture_schema
-app

-qualifier apply_qualifier
-mon

-qualifier monitor_qualifier
dmp filename -db db_name -qcap

-schema qcapture_schema -holdlock
-qapp

-schema qapply_schema
-cap

-schema capture_schema
-app

-qualifier apply_qualifier
-mon

-qualifier monitor_qualifier
flw Format parameters
fmt -qcap
v7fmt -db db_name -schema qcapture_schema

-qapp
-schema qapply_schema

-cap
-schema capture_schema

-app
-qualifier apply_qualifier

-mon
-qualifier monitor_qualifier

stat
statlong -qcap

-db db_name -schema qcapture_schema
-qapp

-schema qapply_schema
-cap

-schema capture_schema
-app

-qualifier apply_qualifier
-mon

-qualifier monitor_qualifier
-fn filename

-db db_name -qcap Change settings parameters
-schema qcapture_schema

-qapp
-schema qapply_schema

-cap
-schema capture_schema

-app
-qualifier apply_qualifier

-mon
-qualifier monitor_qualifier

-help
-listsymbols

��

On parameters:

-b buffer_size -fn filename -fs filesize
�

�
-d diag_mask -df function_name|component_name diag_mask

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 285

Format parameters:

-fn filename -d diag_mask
�

�
-df function_name|component_name diag_mask -holdlock

Change settings parameters:

-d diag_mask -df function_name|component_name diag_mask

Parameters

Table 33 defines the invocation parameters for the asntrc command.

Table 33. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems

Parameter Definition

on Specify to turn on the trace facility for a specific Q
Capture, Q Apply, Capture, Apply, or Replication Alert
Monitor program. The trace facility creates a shared
memory segment used during the tracing process.

-db db_name
Specifies the name of the database to be traced:

v Specifies the name of the Q Capture server for the Q
Capture program to be traced.

v Specifies the name of the Q Apply server for the Q
Apply program to be traced.

v Specifies the name of the Capture control server for
the Capture program to be traced.

v Specifies the name of the Apply control server for the
Apply program to be traced.

v Specifies the name of the Monitor control server for
the Replication Alert Monitor program to be traced.

-qcap Specifies that a Q Capture program is to be traced. The
Q Capture program is identified by the -schema
parameter.

-schema qcapture_schema Specifies the name of the Q Capture program to be
traced. The Q Capture program is identified by the Q
Capture schema that you enter. Use this parameter with
the -qcap parameter.

-qapp Specifies that a Q Apply program is to be traced. The Q
Apply program is identified by the -schema parameter.

-schema qapply_schema Specifies the name of the Q Apply program to be
traced. The Q Apply program is identified by the Q
Apply schema that you enter. Use this parameter with
the -qapp parameter.

-cap Specifies that a Capture program is to be traced. The
Capture program is identified by the -schema parameter.

286 SQL Replication Guide and Reference

Table 33. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

-schema capture_schema Specifies the name of the Capture program to be traced.
The Capture program is identified by the Capture
schema that you enter. Use this parameter with the -cap
parameter.

-app Specifies that an Apply program is to be traced. The
Apply program is identified by the -qualifier
parameter.

-qualifier apply_qualifier Specifies the name of Apply program to be traced. This
Apply program is identified by the Apply qualifier that
you enter. Use this parameter with the -app parameter.

-mon Specifies that a Replication Alert Monitor program is to
be traced. The Replication Alert Monitor program is
identified by the -qualifier parameter.

-qualifier monitor_qualifier Specifies the name of Replication Alert Monitor
program to be traced. This Replication Alert Monitor
program is identified by the monitor qualifier that you
enter. Use this parameter with the -mon parameter.

off
Specify to turn off the trace facility for a specific Q
Capture, Q Apply, Capture, Apply, or Replication Alert
Monitor program and free the shared memory segment
in use.

kill Specify to force an abnormal termination of the trace
facility.

Use this parameter only if you encounter a problem and
are unable to turn the trace facility off with the off
parameter.

clr Specify to clear a trace buffer. This parameter erases the
contents of the trace buffer but leaves the buffer active.

diag Specify to view the filter settings while the trace facility
is running.

resetlock
Specify to release the buffer latch of a trace facility. This
parameter enables the buffer latch to recover from an
error condition in which the trace program terminated
while holding the buffer latch.

dmp filename Specify to write the current contents of the trace buffer
to a file.

-holdlock Specifies that the trace facility can complete a file dump
or output command while holding a lock, even if the
trace facility finds insufficient memory to copy the
buffer.

flw Specify to display summary information produced by
the trace facility and stored in shared memory or in a
file. This information includes the program flow and is
displayed with indentations that show the function and
call stack structures for each process and thread.

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 287

Table 33. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

fmt Specify to display detailed information produced by the
trace facility and stored in shared memory or in a file.
This parameter displays the entire contents of the traced
data structures in chronological order.

v7fmt Specify to display information produced by the trace
facility and stored in shared memory or in a file. This
trace information appears in Version 7 format.

stat Specify to display the status of a trace facility. This
status information includes the trace version,
application version, number of entries, buffer size,
amount of buffer used, status code, and program
timestamp.

statlong Specify to display the status of a trace facility with
additional z/OS version level information. This
additional information includes the service levels of
each module in the application and appears as long
strings of text.

-fn filename Specifies the file name containing the mirrored trace
information, which includes all the output from the
trace facility.

-help Displays the valid command parameters with
descriptions.

-listsymbols Displays the valid function and component identifiers
to use with the -df parameter.

-b buffer_size Specifies the size of the trace buffer (in bytes). You can
enter a K or an M after the number to indicate kilobytes
or megabytes, respectively; these letters are not case
sensitive.

-fs filesize Specifies the size limit (in bytes) of the mirrored trace
information file.

288 SQL Replication Guide and Reference

Table 33. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

-d diag_mask Specifies the types of trace records to be recorded by the
trace facility. Trace records are categorized by a
diagnostic mask number:

1 Flow data, which includes the entry and exit
points of functions.

2 Basic data, which includes all major events
encountered by the trace facility.

3 Detailed data, which includes the major events
with descriptions.

4 Performance data.
Important: The higher diagnostic mask numbers are not
inclusive of the lower diagnostic mask numbers.

You can enter one or more of these numbers to
construct a diagnostic mask that includes only the trace
records that you need. For example, specify -d 4 to
record only performance data; specify -d 1,4 to record
only flow and performance data; specify -d 1,2,3,4
(the default) to record all trace records. Separate the
numbers with commas.

Enter a diagnostic mask number of 0 (zero) to specify
that no global trace records are to be recorded by the
trace facility. Type -d 0 to reset the diagnostic level
before specifying new diagnostic mask numbers for a
tracing facility.

-df function_name|component_name
diag_mask

Specifies that a particular function or component
identifier is to be traced.

Type the diagnostic mask number (1,2,3,4) after the
function or component identifier name. You can enter
one or more of these numbers. Separate the numbers
with commas.

Examples for asntrc

The following examples illustrate how to use the asntrc command. These
examples can be run on Linux, UNIX, Windows, or z/OS operating systems.

Example 1

To trace a running Capture program:
1. Start the trace facility, specifying a trace file name with a maximum buffer and

file size:
asntrc on -db mydb -cap -schema myschema -b 256k -fn myfile.trc -fs 500m

2. Start the Capture program, and let it run for an appropriate length of time.
3. While the trace facility is on, display the data directly from shared memory.

To display the summary process and thread information from the trace facility:
asntrc flw -db mydb -cap -schema myschema

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 289

To view the flow, basic, detailed, and performance data records only from the
Capture log reader:
asntrc fmt -db mydb -cap -schema myschema -d 0

-df "Capture Log Read" 1,2,3,4

4. Stop the trace facility:
asntrc off -db mydb -cap -schema myschema

The trace file contains all of the Capture program trace data that was generated
from the start of the Capture program until the trace facility was turned off.

5. After you stop the trace facility, format the data from the generated binary file:
asntrc flw -fn myfile.trc

and
asntrc fmt -fn myfile.trc -d 0 -df "Capture Log Read" 1,2,3,4

Example 2

To start a trace facility of a Replication Alert Monitor program:
asntrc on -db mydb -mon -qualifier monq

Example 3

To trace only performance data of an Apply program:
asntrc on -db mydb -app -qualifier aq1 -b 256k -fn myfile.trc -d 4

Example 4

To trace all flow and performance data of a Capture program:
asntrc on dbserv1 -cap -schema myschema -b 256k

-fn myfile.trc -d 1,4

Example 5

To trace all global performance data and the specific Capture log reader flow data
of a Capture program:
asntrc on -db mydb -cap -schema myschema -b 256k -fn myfile.trc -d 4

-df "Capture Log Read" 1

Example 6

To trace a running Capture program and then display and save a point-in-time
image of the trace facility:
1. Start the trace command, specifying a buffer size large enough to hold the

latest records:
asntrc on -db mydb -cap -schema myschema -b 4m

2. Start the Capture program, and let it run for an appropriate length of time.
3. View the detailed point-in-time trace information that is stored in shared

memory:
asntrc fmt -db mydb -cap -schema myschema

4. Save the point-in-time trace information to a file:
asntrc dmp myfile.trc -db mydb -cap -schema myschema

5. Stop the trace facility:
asntrc off -db mydb -cap -schema myschema

290 SQL Replication Guide and Reference

Examples for asntrc with shared segments

The standalone trace facility, asntrc, uses a shared segment to communicate with
the respective Q Capture, Q Apply, Capture, Apply or Replication Alert Monitor
programs to be traced. The shared segment will also be used to hold the trace
entries if a file is not specified. Otherwise, matching options must be specified for
both the asntrc command and for the respective programs to be traced to match
the correct shared segment to control traces. The following examples show the
options that need to be specified when the trace facility is used in conjunction with
Q Capture, Q Apply, Capture, Apply or Alert Monitor programs.

With the Q Capture program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the capture_server
parameter with the asnqcap command:
asntrc -db ASN6 -schema EMI -qcap
asnqcap capture_server=ASN6 capture_schema=EMI

With the Q Apply program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the apply_server
parameter with the asnqapp command:
asntrc -db TSN3 -schema ELB -qapp
asnqapp apply_server=TSN3 apply_schema=ELB

With the Capture program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the capture_server
parameter with the asncap command:
asntrc -db DSN6 -schema JAY -cap
asncap capture_server=DSN6 capture_schema=JAY

With the Apply program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the control_server
parameter with the asnapply command:
asntrc -db SVL_LAB_DSN6 -qualifier MYQUAL -app
asnapply control_server=SVL_LAB_DSN6 apply_qual=MYQUAL

With the Replication Alert Monitor program, the database specified by the -db
parameter with the asntrc command needs to match the database specified by the
monitor_server parameter with the asnmon command:
asntrc -db DSN6 -qualifier MONQUAL -mon
asnmon monitor_server=DSN6 monitor_qual=MONQUAL

asntrep: Repairing differences between source and target tables
Use the asntrep command to synchronize a source and target table by repairing
differences between the two tables. Run the asntrep command on Linux, UNIX,
and Windows at an operating system prompt or in a shell script.

Syntax

�� asntrep DB=server DB2_SUBSYSTEM=subsystem
SCHEMA=schema

�

�
DIFF_SCHEMA=difference_table_schema DIFF_TABLESPACE=tablespace

�

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 291

� WHERE=WHERE_clause
DIFF_PATH=log_path PWDFILE=filename

�

�
DIFF=table_name

��

Parameters

Table 34 defines the invocation parameters for the asntrep command.

Table 34. asntrep invocation parameter definitions for Linux, UNIX, and Windows operating
systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores
information about the source and target tables that
you want to synchronize. The value differs
depending on whether you are using Q Replication
or SQL Replication:

Q Replication
The value is the name of the Q Capture
server, which contains the IBMQREP_SUBS
table.

SQL Replication
The value is the name of the Apply control
server, which contains the
IBMSNAP_SUBS_MEMBR table.

The value of this parameter is
a location name.

DB2_SUBSYSTEM=subsystem Specifies the name of the
subsystem where you run the asntrep utility.

SCHEMA=schema Specifies the schema of the Q Capture control tables
for Q Replication, or the Apply control tables for
SQL Replication.

DIFF_SCHEMA=
difference_table_schema

Specifies the schema that qualifies the difference
table. The default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space where a copy of the
difference table is placed in the target database or
subsystem. The copy is then used to repair the
target table. If this parameter is not specified, the
table will be created in the default table space in the
database or subsystem in which the asntrep
command was run.

292 SQL Replication Guide and Reference

Table 34. asntrep invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

WHERE=WHERE_clause Specifies a SQL WHERE clause that uniquely
identifies one row of the control table that stores
information about the source and target tables that
you are synchronizing. The WHERE clause must be
in double quotation marks. The value of this
parameter differs depending on whether you are
using Q Replication or SQL Replication:

Q Replication
The WHERE clause specifies a row in the
IBMQREP_SUBS table and uses the
SUBNAME column to identify the Q
subscription that contains the source and
target tables.

SQL Replication
The WHERE clause specifies a row in the
IBMSNAP_SUBS_MEMBR table and uses
the SET_NAME, APPLY_QUAL,
TARGET_SCHEMA, and TARGET_TABLE
columns to identify the subscription set
member that contains the source and target
tables.

DIFF_PATH=log_path Specifies the location where you want the asntrep
utility to write its log. The default value is the
directory where you ran the command. The value
must be an absolute path name. Use double
quotation marks ("") to preserve case.

PWDFILE=filename Specifies the name of the password file that is used
to connect to databases. If you do not specify a
password file, the default value is asnpwd.aut (the
name of the password file that is created by the
asnpwd command). The asntrep utility searches for
the password file in the directory that is specified
by the DIFF_PATH parameter. If no value for the
DIFF_PATH parameter is specified, the command
searches for the password file in the directory where
the command was run.

DIFF=table_name Specifies the name of the table that was created in
the source database by the asntdiff command to
store differences between the source and target
tables. The information that is stored in this table is
used to synchronize the source and target tables.

Examples for asntrep

The following examples illustrate how to use the asntrep command.

Example 1

In Q Replication, to synchronize a source and target table that are specified in a Q
subscription named my_qsub, on a Q Capture server named source_db, with a Q
Capture schema of asn, and whose differences are stored in a table called
q_diff_table:

Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS) 293

asntrep db=source_db schema=asn where="subname = ’my_qsub’" diff=q_diff_table

Example 2

In SQL Replication, to synchronize a source and target table that are specified in a
subscription set called my_set, with a target table named trg_table, on an Apply
control server named apply_db, with an Apply schema of asn, and whose
differences are stored in a table called sql_diff_table:
asntrep DB=apply_db SCHEMA=asn WHERE="set_name = ’my_set’
and target_table = ’trg_table’" diff=sql_diff_table

294 SQL Replication Guide and Reference

Chapter 22. System commands for SQL replication (System i)

Some replication commands are specific to the System i operating system on
System i servers. You can enter these commands at an operating system command
prompt or through a command line program.

The following topics describe these commands.

ADDDPRREG: Adding a DPR registration (System i)
Use the Add DPR registration (ADDDPRREG) command to register a table as a source
table for DB2 DataPropagator for iSeries.

Restriction: You can register a table only if the ASN (Capture schema) library is in
the same Auxiliary Pool (either base or independent ASP) where the ASN library is
located.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� ADDDPRREG SRCTBL (library-name/file-name) �

�
ASN

CAPCTLLIB (library-name)
*SRCTBL

CDLIB (library-name)

�

�
*DEFAULT

CDNAME (cdname)
*USERTABLE

SRCTYPE (*POINTINTIME)
*BASEAGR
*CHANGEAGR
*REPLICA
*USERCOPY
*CCD

�

�
*YES

REFRESH (*NO)
*NONE

TEXT (' description ')

�

�

�

*ALL
*NONE

(1)
CAPCOL (column-name)

*NO
CAPRRN (*YES)

�

© Copyright IBM Corp. 1994, 2012 295

�
*AFTER

IMAGE (*BOTH) *DEFAULT
PREFIX (*NULL)

character

�

�

*YES
CONDENSED (*NO)

*AGGREGATE

*YES
COMPLETE (*NO)

�

�
*LOCAL

SRCTBLRDB (rdbname)

�

�
*SRCTBL

RMTJRN (library-name/journal-name)

�

�

*NONE
CONFLICT (*STANDARD)

*ENHANCED

*NO
UPDDELINS (*YES)

�

�
*ALLCHG

GENCDROW (*REGCOLCHG)
*YES

RECAP (*NO)

�

�
*NO

STOPONERR (*YES)

��

Notes:

1 You can specify up to 300 column names.

Table 35 lists the invocation parameters.

Table 35. ADDDPRREG command parameter definitions for System i

Parameter Definition and prompts

SRCTBL Specifies the table that you want to register as a source table. The
Capture program supports any physical file in a System i library or
collection that is externally defined and in single format. This parameter
is required.

library-name/file-name
Represents the qualified name of the table that you want to register.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which
the Capture control tables reside.

ASN (default)
The Capture control tables reside in the ASN library.

library-name
The name of the library that contains the Capture control tables.
You can create this library by using the CRTDPRTBL command with
the CAPCTLLIB parameter.

296 SQL Replication Guide and Reference

Table 35. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

CDLIB Specifies the library in which the change-data (CD) table for this
registered source is created.

*SRCTBL (default)
Creates the CD table in the library in which the source table resides.

library-name
Creates the CD table in this specified library name.

CDNAME Specifies the name of the change-data (CD) table.

*DEFAULT (default)
Creates the CD table with the default name, which is based on the
current timestamp. For example, if the current timestamp is January
23, 2002 at 09:58:26, the default name is ASN020123095826CD.

cdname
Creates the CD table with this specified name.

Chapter 22. System commands for SQL replication (System i) 297

Table 35. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTYPE Specifies the type of source table that you are registering. Choose a
source type based on your replication configuration:

v Use the default of USERTABLE for a basic data distribution or a data
consolidation configuration.

v Use REPLICA for an update-anywhere configuration.

v Use POINTINTIME, BASEAGR, CHANGEAGR, USERCOPY, or CCD
if you have a multi-tier configuration and want the target table to be a
source for a subsequent tier in your replication configuration.

If you are registering an existing target table as a source, the registration
fails if the target table does not contain the IBMSNAP table columns
indicated by the specified source type.

*USERTABLE (default)
A user database table, which is the most common type of registered
table. The table cannot contain any columns that start with a DB2
DataPropagator for System i column identifier of either IBMSNAP
or IBMQSQ.

*POINTINTIME
A point-in-time copy table, which includes content that matches all
or part of the content of a source table and a DB2 DataPropagator
for System i system column that identifies the time when a
particular row was last inserted or updated at the source system.
The table must contain the IBMSNAP_LOGMARKER timestamp
column and can optionally contain an INTEGER column called
IBMQSQ_RRN.

*BASEAGR
A base aggregate copy, which contains data aggregated at intervals
from a user table or from a point-in-time table. The base aggregate
table must contain the IBMSNAP_HLOGMARKER and
IBMSNAP_LLOGMARKER timestamp columns.

*CHANGEAGR
A change aggregate copy table, which contains data aggregations
that are based on changes recorded for a source table. The table
must contain the IBMSNAP_HLOGMARKER and
IBMSNAP_LLOGMARKER timestamp columns.

*REPLICA
A target table for a replica subscription. Register this type of table
so that changes from the target table are replicated back to the
original source table. This table cannot contain any DB2
DataPropagator for System i system columns or any columns that
start with the DB2 DataPropagator for System i column identifier of
either IBMSNAP or IBMQSQ. The table contains all of the columns
from the original source table.

*USERCOPY
A target table with content that matches all or part of the content of
a source table. The user copy table contains only user data columns.

298 SQL Replication Guide and Reference

Table 35. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTYPE
(Continued) *CCD

A consistent-change data (CCD) table, which contains
transaction-consistent data from the source table. The table must
contain columns that are defined as follows:

v IBMSNAP_INTENTSEQ CHAR(10) FOR BIT DATA NOT NULL

v IBMSNAP_OPERATION CHAR(1) NOT NULL

v IBMSNAP_COMMITSEQ CHAR(10) FOR BIT DATA NOT NULL

v IBMSNAP_LOGMARKER TIMESTAMP NOT NULL

REFRESH Specifies whether the full-refresh capability is enabled. You can use this
value to turn off the capability of the Apply program to perform a full
refresh from the source database.

*YES (default)
Full refreshes are allowed.

*NO
Full refreshes are not allowed.

If the target table is a base aggregate or change aggregate, you
should set this parameter to *No.

TEXT Specifies the textual description that is associated with this registration.

*NONE (default)
No description is associated with the entry.

description
The textual description of this registration. You can enter a
maximum of 50 characters and must enclose the text in single
quotation marks.

CAPCOL Specifies the columns for which changes are captured for this registered
table.

*ALL (default)
Changes are captured for all columns.

*NONE
Changes are not captured for this table. Use this value to specify
that you want this table registered for full refresh only. The
change-data (CD) table is not created with this registered table, and
the Capture program will not capture changes for the table.

column-name
The column names for which changes are captured. You can type
up to 300 column names. Separate the column names with spaces.

CAPRRN Specifies whether the relative record number (RRN) of each changed
record is captured.

*NO (default)
The relative record number is not captured.

*YES
The relative record number is captured. An additional column called
IBMQSQ_RRN is created in the change-data (CD) table.

Set this parameter to *YES only if there are no unique keys in the
source table.

Chapter 22. System commands for SQL replication (System i) 299

Table 35. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

IMAGE Specifies whether the change-data (CD) table contains both before and
after images of the changes to the source table. This applies globally to
all columns specified on the Capture columns (CAPCOL) parameter.

This IMAGE parameter is not valid when the CAPCOL parameter is set
to *NONE.

The source table must be journaled with *BOTH images even if you
specify *AFTER on this parameter.

*AFTER (default)
The Capture program records only after images of the source table
in the CD table.

*BOTH
The Capture program records both before images and after images
of the source table in the CD table.

PREFIX Specifies the prefix character identifying before-image column names in
the change-data (CD) table. You must ensure that none of the registered
column names of the source table begins with this prefix character.

*DEFAULT (default)
The default prefix (@) is used.

*NULL
No before images are captured. This value is not valid if the
IMAGE parameter is set to *BOTH.

character
Any single alphabetic character that is valid in an object name.

CONDENSED Specifies whether the source table is condensed. A condensed table
contains current data with no more than one row for each primary key
value in the table.

*YES (default)
The source table is condensed.

*NO
The source table is not condensed.

*AGGREGATE
The source table type is either *BASEAGR (base aggregate) or
*CHANGEAGR (change aggregate). If this value is used, you must
set the COMPLETE parameter to *No

COMPLETE Specifies whether the source table is complete, which means that the
table contains a row for every primary key value of interest.

*YES (default)
The source table is complete.

*NO
The source table is not complete.

300 SQL Replication Guide and Reference

Table 35. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTBLRDB Specifies whether you want to use remote journaling, in which the
source table and the remote journal reside on different systems. Use this
parameter to specify the location of the source table.

*LOCAL (default)
The source table resides locally (on the machine where you are
running the ADDDPRREG command).

rdbname
The name of the relational database where the source table exists.
You can use the Work with RDB Directory Entries (WRKRDBDIRE)
command to find this relational database name.

RMTJRN Specifies the name of the remote journal when the name of this journal
and the name of the journal on the source system are different. You
must issue this command from the system where the remote journal
resides.

*SRCTBL (default)
The remote journal name is the same as the journal name of the
source table.

library-name/journal-name
The qualified library and journal name that reside on this system
and are used for journaling the remote source table.

You can specify a remote journal name only if you specified a remote
source table location by using the SRCTBLRDB parameter.

CONFLICT Specifies the conflict level that is used by the Apply program when
detecting conflicts in a replica subscription.

*NONE (default)
No conflict detection.

*STANDARD
Moderate conflict detection. The Apply program searches for
conflicts in rows that are already captured in the replica
change-data (CD) tables.

*ENHANCED
Enhanced conflict detection. This option provides the best data
integrity among all replicas and source tables.

UPDDELINS Determines how the Capture program stores updated source data in the
change-data (CD) table.

*NO (default)
The Capture program stores each source change in a single row in
the CD table.

*YES
The Capture program stores each source change by using two rows
in the CD table, one for the delete and one for the insert. The Apply
program processes the delete row first and the insert row second.

Chapter 22. System commands for SQL replication (System i) 301

Table 35. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

GENCDROW Specifies whether the Capture program captures changes from all rows
in the source table.

*ALLCHG (default)
The Capture program captures changes from all rows in the source
table (including changes in unregistered columns) and adds these
changes to the change-data (CD) table.

*REGCOLCHG
The Capture program captures changes only if the changes occur in
registered columns. The Capture program then adds these rows to
the CD table.

You cannot specify *REGCOLCHG if the CAPCOL parameter is set
to *ALL or *NONE.

RECAP Specifies whether the changes made by the Apply program are
recaptured by the Capture program.

*YES (default)
Changes made to the source table by the Apply program are
captured and entered into the change-data (CD) table.

*NO
Changes that were made to the source table by the Apply program
are not captured and, therefore, do not appear in the CD table. You
should use this option when registering REPLICA type tables.

STOPONERR Specifies whether the Capture program stops when it encounters an
error.1

*NO (default)
The Capture program does not stop when it encounter an error. The
Capture program issues messages, deactivates the registration that
caused the error, and then continues processing.

*YES
The Capture program issues messages and then stops when it
encounters an error.

Note:

1. If this parameter is set to Yes (Y), the Capture journal job stops while other journal jobs
continue to run. If this parameter is set to No (N), the Capture program stops the
registration file that contains the error.

This parameter also sets the columns in the register table rows. The STATE column is set
to 'S' and the STATE_INFO column to is set 200Axxxx where xxxx is the reason code. To
set the registration back to the Action ('A') state, perform the following steps:

v Correct the ASN200A message. Refer to the appropriate System i documentation for
the corrected action.

v Use the Replication Center or the System i command STRSQL to set the columns in
the IBMSNAP_REGISTER table row. Set the STATE column to 'A', and the
STATE_INFO column to null.

v If Capture is running, issue the INZDPRCAP command to reinitialize data replication
for that journal.

Examples for ADDDPRREG

The following examples illustrate how to use the ADDDPRREG command.

Example 1:

302 SQL Replication Guide and Reference

To register a source table named EMPLOYEE from the HR library under the
default Capture schema:
ADDDPRREG SRCTBL(HR/EMPLOYEE)

Example 2:

To register a source table named EMPLOYEE from the HR library under the BSN
Capture schema and to create a CD table named CDEMPLOYEE under the
HRCDLIB library:
ADDDPRREG SRCTBL(HR/EMPLOYEE) CAPCTLLIB(BSN) CDLIB(HRCDLIB) CDNAME(CDEMPLOYEE)

Example 3:

To register a source table with a source type of point-in-time that is named SALES
from the DEPT library under the BSN Capture schema:
ADDDPRREG SRCTBL(DEPT/SALES) CAPCTLLIB(BSN) SRCTYPE(*POINTINTIME)

Example 4:

To register a source table named SALES from the DEPT library and to specify that
the CD table contains both before and after images of source table changes:
ADDDPRREG SRCTBL(DEPT/SALES) IMAGE(*BOTH)

Example 5:

To register a source table named SALES from the DEPT library of the relational
database named RMTRDB1 using remote journals:
ADDDPRREG SRCTBL(DEPT/SALES) SRCTBLRDB(RMTRDB1) RMTJRN(RMTJRNLIB/RMTJRN)

Example 6:

To register the EMPLOYEE source table from the HR library and to capture
changes only for the EMPNO, NAME, DEPT, and NETPAY columns:
ADDDPRREG SRCTBL(HR/EMPLOYEE) CAPCOL(EMPNO NAME DEPT NETPAY)

ADDDPRSUB: Adding a DPR subscription set (System i)
Use the Add DPR subscription set (ADDDPRSUB) command to create a subscription
set with either one member or no members.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� ADDDPRSUB APYQUAL (apply-qualifier) SETNAME (set-name) �

Chapter 22. System commands for SQL replication (System i) 303

�
*NONE

SRCTBL (library-name/file-name)
*NONE

TGTTBL (library-name/file-name) �

�
*LOCAL

CTLSVR (rdb-name)
*LOCAL

SRCSVR (rdb-name)

�

�
*USERCOPY

TGTTYPE (*POINTINTIME)
*BASEAGR
*CHANGEAGR
*CCD
*REPLICA

*INTERVAL
TIMING (*EVENT)

*BOTH

�

�
*NONE

EVENT (event-name)

�

�
INTERVAL (num *MIN) (num *HOUR) (num *DAY) (num *WEEK)

�

�
*YES

ACTIVATE (*NO)
*YES

CRTTGTTBL (*NO)
*YES

CHKFMT (*NO)

�

�
ASN

CAPCTLLIB (library-name)
*CAPCTLLIB

TGTCCLIB (library-name)

�

�
*NONE

FEDSVR (server-name) *DEFAULT
CMTCNT (*NULL)

num-transactions

�

�
*NO

TGTKEYCHG (*YES)

�

*ALL
COLUMN (*NONE)

(1)
column-name

�

�
*YES

UNIQUE (*NO)

�

*SRCTBL
KEYCOL (*RRN)

*NONE

(2)
column-name

�

�

�

*COLUMN

(3)
TGTCOL ((column-name new-name))

�

�

�

*NONE

(4)
CALCCOL ((column-name expression))

*NO
ADDREG (*YES)

�

304 SQL Replication Guide and Reference

�
*ALL

ROWSLT (WHERE-clause)

�

�
0

MAXSYNCH
(num *MIN) (num *HOUR) (num *DAY) (num *WEEK)

�

�

� �

*NONE *NONE

(5) *TGTSVR (6)
SQLBEFORE (SQL-statement *SRCSVR SQL-states)

�

�

� �

*NONE *NONE

(7) *TGTSVR (8)
SQLAFTER (SQL-statement SQL-states)

��

Notes:

1 You can specify up to 300 column names.

2 You can specify up to 120 column names.

3 You can specify up to 300 column names.

4 You can specify up to 100 column names and expressions.

5 You can specify up to 3 SQL statements.

6 You can specify up to 10 SQLSTATES.

7 You can specify up to 3 SQL statements.

8 You can specify up to 10 SQLSTATES.

Table 36 lists the invocation parameters.

Table 36. ADDDPRSUB command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that identifies which Apply program
processes this subscription set. Subscription sets under an Apply
qualifier run in a separate job. This parameter is required.

apply-qualifier
The name of the Apply qualifier.

SETNAME Specifies the subscription-set name. This parameter is required.

set-name
The name of the subscription set. The subscription-set name that
you enter must be unique for the specified Apply qualifier or the
ADDDPRSUB command produces an error. Because the Apply program
handles the set of target tables as a group, when one target table
fails for any reason, the entire subscription set fails.

Chapter 22. System commands for SQL replication (System i) 305

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTBL Specifies the name of the source table that is used to copy information
into your subscription set. You must register this table at the Capture
control server before this table can become a member of a subscription
set. This parameter is required.

*NONE (default)
This subscription set does not have a source member. Use when
creating a subscription set without members.

library-name/file-name
The qualified name of the source table. Use when creating a
subscription set with one member.

TGTTBL Specifies the name of the target table. The target table is automatically
created if you set the CRTTGTTBL parameter to *YES and the target
table does not already exist. This parameter is required.

*NONE (default)
This subscription set does not have a target member. Use when
creating a subscription set without members.

library-name/file-name
The qualified name of the target table. Use when creating a
subscription set with one member.

CTLSVR Specifies the relational database name of the system that contains the
Apply control tables.

*LOCAL (default)
The Apply control tables reside locally (on the machine from which
you are running the ADDDPRSUB command).

rdb-name
The name of the relational database where the Apply control tables
reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

SRCSVR Specifies the relational database name of the system that contains the
Capture control tables.

*LOCAL (default)
The source table is registered on the local machine (the machine
from which you are running the ADDDPRSUB command).

rdb-name
The name of the relational database where the Capture control
tables reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

306 SQL Replication Guide and Reference

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE Specifies the target table type. After you create a target table as one of
these types, you can use this parameter value on the SRCTBL
parameter of the Add DPR Registration (ADDDPRREG) command to
register this target table as a source table for multi-tier replication.

*USERCOPY (default)
The target table is a user copy, which is a target table with content
that matches all or part of the content of a source table. A user copy
is handled like a point-in-time copy but does not contain any of the
DB2 DataPropagator for System i system columns that are present
in the point-in-time target table.

This value is not valid when a value of *RRN is specified on the
KEYCOL parameter.

The table that you specified with the SRCTBL parameter must be
one of the following types: user database, point-in-time copy, or
consistent-change data (CCD).

Important: If the target table already exists, DB2 DataPropagator for
System i does not automatically journal changes to it. You must
start journaling outside of DB2 DataPropagator for System i.

*POINTINTIME
The target table is a point-in-time copy. A point-in-time copy is a
target table with content that matches all or part of the content of
the source table and includes the DB2 DataPropagator for System i
system column (IBMSNAP_LOGMARKER), which identifies when a
particular row was inserted or updated at the Capture control
server.

*BASEAGR
The target table is a base aggregate copy, which is a target table that
contains data that is aggregated (calculated) from a source table.
The source table for a base aggregate target must be either a user
table or a point-in-time table. This target table must contain the
IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system
timestamp columns.

*CHANGEAGR
The table is a change aggregate copy, which is a target table that
contains data that is aggregated (calculated) based on the contents
of a change-data (CD) table. This target table is created with the
IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system
timestamp columns.

Chapter 22. System commands for SQL replication (System i) 307

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE
(Continued) *CCD

The table is a consistent-change data (CCD) table, which is a target
table created from a join of data in the change-data (CD) table and
the unit-of-work (UOW) table. A CCD table provides
transaction-consistent data for the Apply program and must include
the following columns:

v IBMSNAP_INTENTSEQ

v IBMSNAP_OPERATION

v IBMSNAP_COMMITSEQ

v IBMSNAP_LOGMARKER

*REPLICA
The target table is a replica table, which is used only for
update-anywhere replication. The replica target table receives
changes from the master source table, and changes to the replica
target table are propagated back to the master source table. A
replica table is automatically registered as a source table.

TIMING Specifies the type of timing (scheduling) that the Apply program uses to
process the subscription set.

*INTERVAL (default)
The Apply program processes the subscription set at a specific time
interval (for example, once a day).

*EVENT
The Apply program processes the subscription set when a specific
event occurs.

*BOTH
The Apply program processes the subscription set either at a
specific interval or when an event occurs, whichever occurs first.

EVENT Specifies an event. The event that you enter must match an event name
in the IBMSNAP_SUBS_EVENT) table.

*NONE (default)
No event is used.

event-name
A unique character string that represents an event described in the
IBMSNAP_SUBS_EVENT table.

308 SQL Replication Guide and Reference

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

INTERVAL Specifies the time interval (weeks, days, hours, and minutes) from start
time to start time between refreshes of the target copy. This is a two-part
value. The first part is a number; the second part is the unit of time:

*MIN
Minutes

*HOUR
Hours

*DAY
Days

*WEEK
Weeks

You can specify combinations of numbers with units of time. For
example, ((2 *WEEK) (3 *DAY) (35 *MIN)) specifies a time interval of
two weeks, three days, and 35 minutes. If you specify multiple
occurrences of the same unit of time, the last occurrence is used.

ACTIVATE Specifies whether the subscription set is active. The Apply program does
not process this subscription set unless this parameter is set to *YES.

*YES (default)
The subscription set is active.

*NO
The subscription set is not active.

CRTTGTTBL Specifies whether the target table (or view) is created.

*YES (default)
Creates the target table (or view) if it does not exist. Otherwise, the
existing table or view becomes the target, and the format of this
existing table or view is checked if the value of the CHKFMT
parameter is set to *YES. An additional index, with the values that
you specified by the UNIQUE and KEYCOL parameters, is created
for a target table if no such index currently exists. The command
fails if an existing target table contains rows that violate the
conditions of the additional index.

*NO
Does not create the target table or view. You must create the table or
view with the correct attributes before starting the Apply program.

If the table or view exists and you set CHKFMT to *YES, the ADDDPRSUB
command ensures that the format of the existing table matches the
subscription-set definition that you set. If CHKFMT is *NO, you must
ensure that the format of the existing table matches the subscription-set
definition.

Important: If the table or view already exists, DB2 DataPropagator for
System i does not automatically journal changes to the existing object.
You must start journaling outside of DB2 DataPropagator for System i.

Chapter 22. System commands for SQL replication (System i) 309

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

CHKFMT Specifies whether DB2 DataPropagator for System i checks the
subscription set and the target table to ensure that the columns match.
This parameter is ignored if the CRTTGTTBL parameter is *YES; this
parameter is also ignored if the CRTTGTTBL parameter is set to *NO
and the target table does not exist.

*YES (default)
DB2 DataPropagator for System i verifies that the columns defined
for this subscription set match the columns in the target table. This
command fails if a mismatch is detected.

*NO
DB2 DataPropagator for System i ignores the differences between
the subscription set and the existing target table. You must ensure
that the target table is compatible with the subscription set.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which
the Capture control tables reside. These Capture control tables process
the source for this subscription set.

ASN (default)
The Capture control tables reside in the ASN library.

library-name
The name of a library that contains the Capture control tables. This
is the library in which the source table was registered.

TGTCCLIB Specifies the target control library.

*CAPCTLLIB (default)
The target control library is the same library in which the Capture
control tables reside.

library-name
The name of a library that contains the target control tables.

If you are using a target table as a source for another subscription set
(such as an external CCD table), this parameter value is the Capture
schema when this table is used as a source.

FEDSVR Specifies whether a federated database system is the source for this
subscription set.

*NONE (default)
The source server is not a federated database system.

server-name
The name of the federated database system for this subscription set
(for non-DB2 relational sources).

310 SQL Replication Guide and Reference

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

CMTCNT Specifies the commitment count, which is the number of transactions
that the Apply program processes before a commit.

*DEFAULT (default)
The command determines the value to use. If the TGTTYPE is set
to *REPLICA, then the CMTCNT is zero (0). If the TGTTYPE is
anything other than *REPLICA, the CMTCNT is null.

*NULL
The subscription set is read-only. The Apply program will fetch
answer sets for the subscription-set members one member at a time,
until all data has been processed and then will issue a single
commit for the entire subscription set.

num-transactions
Specifies the number of transactions processed before the Apply
program commits the changes. This parameter is valid only if the
TGTTYPE parameter is set to *REPLICA.

TGTKEYCHG Specifies how the Apply program handles updates when changes occur
in source columns that are part of the target key columns for the target
table. This parameter works in conjunction with the USEDELINS
parameter on the ADDDPRREG command:

v If USEDELINS is YES and TGTKEYCHG is YES, updates are not
allowed.

v If USEDELINS is YES and TGTKEYCHG is NO, updates become
delete and insert pairs.

v If USEDELINS is NO and TGTKEYCHG is YES, the Apply program
handles this condition with special logic.

v If USEDELINS is NO and TGTKEYCHG is NO, the Apply program
processes the changes as normal updates.

*NO (default)
Updates to the source table are staged by the Capture program and
processed by the Apply program to the target table.

*YES
The Apply program updates the target table based on the before
images of the target key column, meaning that the Apply program
changes the predicate to the old values instead of the new.

Chapter 22. System commands for SQL replication (System i) 311

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

COLUMN Specifies the columns to be included in the target table. The column
names must be unqualified. Choose the column names from the list of
column names that you specified with the CAPCOL parameter when
you registered the source table.

If you set the IMAGE parameter to *BOTH when registering this table,
you can specify before-image column names. The before-image column
names are the original column names with a prefix. This prefix is the
character that you specified in the PREFIX parameter of the ADDDPRREG
command.

*ALL (default)
All of the columns that you registered in the source are included in
the target table.

*NONE
No columns from the source table are included in the target table.
You can use *NONE when you want only computed columns in the
target table. This value is required if the CALCCOL parameter
contains summary functions but no GROUP BY is performed.

column-name
The names of up to 300 source columns that you want to include in
the target table. Separate the column names with spaces.

UNIQUE Specifies whether the target table has unique keys as indicated by the
KEYCOL parameter.

*YES (default)
The target table supports one net change per key; only one row
exists in the target table for that key regardless of how many
changes are made to the key.

This value specifies that the table contains current data rather than
a history of changes to the data. A condensed table includes no
more than one row for each primary key value in the table and can
be used to supply current information for a refresh.

*NO
The target table supports multiple changes per key. The changes are
appended to the target table.

This value specifies that the table contains a history of changes to
the data rather than current data. A non-condensed table includes
more than one row for each key value in the table and can be used
to supply a history of changes to the data. A non-condensed table
cannot supply current data for a refresh.

312 SQL Replication Guide and Reference

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

KEYCOL Specifies columns that describe the key of the target table. The column
names must be unqualified. For *POINTINTIME, *REPLICA, and
*USERCOPY target tables (as specified on the TGTTYPE parameter),
you must identify one or more columns as the target key for the target
table. This target key is used by the Apply program to identify each
unique row that changes during change-capture replication.

*SRCTBL (default)
The key columns in the target table are the same as those in the
source table. The ADDDPRREG command uses the key that is specified
in the source table if the source table is keyed. The following key
columns are used:

v Key columns that you defined through DDS when creating the
table with the Create Physical File (CRTPF) command

v Primary and unique keys that you defined with the CREATE
TABLE and ALTER TABLE SQL statements

v Unique keys that you defined with the CREATE INDEX SQL
statements

If you use a column as a key more than once and with different
ordering, the target table key is defined with ascending order.

*RRN
The key column in the target table is the IBMQSQ_RRN column.
The target table is created with an IBMQSQ_RRN column, and this
column is used as the key. When the Apply program runs, if the
source table is a user table and the target table is a point-in-time or
user copy, the IBMQSQ_RRN column in the target table is updated
with the relative record number of the associated record in the
source table. Otherwise, the IBMQSQ_RRN column in the target
table is updated with the value of the IBMQSQ_RRN column in the
source table.

*NONE
The target copy does not contain a target key. You cannot specify
*NONE if the target table type is *POINTINTIME, *REPLICA, or
*USERCOPY.

column-name
The names of the target columns that you want to use as the target
key columns. You can specify up to 120 column names. Separate the
column names with spaces.

Chapter 22. System commands for SQL replication (System i) 313

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTCOL Specifies the new names for all the columns that the Apply program
updates in the target table. These names override the column names
taken from the source table. The column names must be unqualified. If
you specified a value of *NONE for the COLUMN parameter, do not
use this parameter.

Use this parameter to give more meaningful names to the target table
columns. Specify each source column name and the name of the
corresponding column on the target table.

*COLUMN (default)
The target columns are the same as the columns you specified in
the COLUMN parameter.

column-name
The column names from the source table that you want to change at
the target. You can list up to 300 column names.

new-name
The new names of the target columns. You can list up to 300 new
column names. If you do not use this parameter, the name of the
column on the target table will be the same as the source column
name.

CALCCOL Specifies the list of user-defined or calculated columns in the target
table. The column names must be unqualified. Enclose each column
name and expression pair in parenthesis.

You must specify a column name for each SQL expression. If you want
to define any column as an SQL expression without a GROUP BY
statement, you must set the COLUMN parameter to *NONE.

*NONE (default)
No user-defined or calculated columns are included in the target
table.

column-name
The column names of the user-defined or calculated columns in the
target table. You can list up to 100 column names.

expression
The expressions for the user-defined or calculated columns in the
target table. You can list up to 100 SQL column expressions.

ADDREG Specifies whether the target table is automatically registered as a source
table. Use this parameter to register CCD target type tables.

*NO (default)
The target table is not registered as a source table. DB2
DataPropagator for System i ignores this parameter value if the
target type is *REPLICA. Replica target tables are always
automatically registered as source tables.

*YES
The target table is registered as a source table. This command fails
if you already registered the target table.

Do not set this parameter to *YES if the target table type is *USERCOPY,
*POINTINTIME, *BASEAGR, or *CHANGEAGR.

If you set the CRTTGTTBL parameter to *NO, you must create the
target table before attempting to register it as a source.

314 SQL Replication Guide and Reference

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

ROWSLT Specifies the predicates to be placed in an SQL WHERE clause. The
Apply program uses these predicates to determine which rows in the
change-data (CD) table of the source to apply to the target table. Use
this parameter if you want only a subset of the source changes to be
replicated to the target table.

*ALL (default)
The Apply program applies all changes in the CD table to the target
table.

WHERE-clause
The SQL WHERE clause that specifies which rows from the CD
table the Apply program applies to the target table. Do not include
the WHERE keyword; it is implied on this parameter. This WHERE
clause must be valid on the data server you are using to run the
clause.

Note: The WHERE clause on this parameter is unrelated to any WHERE
clauses specified on the SQLBEFORE or SQLAFTER parameters.

MAXSYNCH Specifies the maximum synch minutes. This parameter is the
time-threshold limit used to regulate the amount of change data that the
Capture and Apply programs process during a subscription cycle. You
can specify the time-threshold limit by using a two-part value. The first
part is a number; the second part is the unit of time:

*MIN
Minutes

*HOUR
Hours

*DAY
Days

*WEEK
Weeks

You can specify combinations of numbers with units of time. For
example, ((1 *WEEK) (2 *DAY) (35 *MIN)) specifies a time interval of
one week, two days, and 35 minutes. If you specify multiple occurrences
of the same unit of time, the last occurrence is used.

The default is zero (0), which indicates that all of the change data is to
be applied.

Chapter 22. System commands for SQL replication (System i) 315

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

SQLBEFORE Specifies the SQL statements that run before the Apply program
refreshes the target table. This parameter has three elements:

Element 1: SQL code

*NONE (default)
No SQL statement is specified.

SQL-statement
The SQL statement that you want to run. Ensure that the syntax of
the SQL statement is correct. DB2 DataPropagator for System i does
not validate the syntax. In addition, you must use the proper SQL
naming conventions. SQL file references must be in the form of
LIBRARY.FILE instead of the system naming convention
(LIBRARY/FILE). You can specify up to three SQL statements.

Element 2: Server to run on

*TGTSVR (default)
The SQL statement runs at the target server on which the target
table is located.

*SRCSVR
The SQL statement runs at the Capture control server on which
the source table is located.

Element 3: Allowed SQLSTATE values

*NONE (default)
Only an SQLSTATE value of 00000 is considered successful.

SQL-states
A list of one to ten allowable SQLSTATE values. Separate the
SQLSTATE values with spaces. An SQLSTATE value is a five-digit
hexadecimal number ranging from 00000 to FFFFF.

The SQL statement is successful if it completes with an SQLSTATE value
of 00000 or with one of the allowable SQLSTATE values that you listed.

316 SQL Replication Guide and Reference

Table 36. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

SQLAFTER Specifies SQL statements that run after the Apply program refreshes the
target table. This parameter has three elements:

Element 1: SQL code

*NONE (default)
No SQL statement is specified.

SQL-statement
The SQL statement that you want to run. Ensure that the syntax of
the SQL statement is correct. DB2 DataPropagator for System i does
not validate the syntax. In addition, you must use the proper SQL
naming conventions. SQL file references must be in the form of
LIBRARY.FILE instead of the system naming convention
(LIBRARY/FILE). You can specify up to three SQL statements.

Element 2: Server to run on

*TGTSVR (default)
The SQL statement runs at the target server on which the target
table is located.

Element 3: Allowed SQLSTATE values

*NONE (default)
Only an SQLSTATE value of 00000 is considered successful.

SQL-states
A list of one to ten allowable SQLSTATE values. Separate the
SQLSTATE values with spaces. An SQLSTATE value is a five-digit
hexadecimal number ranging from 00000 to FFFFF.

The SQL statement is successful if it completes with an SQLSTATE value
of 00000 or with one of the allowable SQLSTATE values that you listed.

Examples for ADDDPRSUB

The following examples illustrate how to use the ADDDPRSUB command.

Example 1:

To create a subscription set named SETHR under the AQHR Apply qualifier:
ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)

TGTTBL(TGTLIB/TGTEMPL)

This subscription set, which contains one subscription-set member, replicates data
from the registered source table named EMPLOYEE under the HR library to the
target table named TGTEMPL under the TGTLIB library.

Example 2:

To create a subscription set named SETHR with only two columns, EMPNO (the
key) and NAME, from the registered source table named EMPLOYEE and replicate
these columns to an existing target table named TGTEMPL:
ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)

TGTTBL(TGTLIB/TGTEMPL) CRTTGTTBL(*NO) COLUMN(EMPNO NAME) KEYCOL(EMPNO)

Example 3:

Chapter 22. System commands for SQL replication (System i) 317

To create a subscription set named SETHR with data from the registered source
table named EMPLOYEE and to replicate this data to a replica type target table
named TGTREPL:
ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)

TGTTBL(TGTLIB/TGTREPL) TGTTYPE(*REPLICA)

Example 4:

To create a subscription set named NOMEM with no subscription-set members:
ADDDPRSUB APYQUAL(AQHR) SETNAME(NOMEM) SRCTBL(*NONE) TGTTBL(*NONE)

ADDDPRSUBM: Adding a DPR subscription-set member (System i)
Use the Add DPR subscription-set member (ADDDPRSUBM) command to add a
member to an existing subscription set.

You can create the subscription set with the ADDDPRSUB command, with the system
commands on UNIX, Windows, or z/OS, or through the Replication Center. All the
source tables in the subscription set must already be journaled and registered
before you can use this command.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� ADDDPRSUBM APYQUAL (apply-qualifier) SETNAME (set-name) �

� SRCTBL (library-name/file-name) TGTTBL (library-name/file-name) �

�
*LOCAL

CTLSVR (rdb-name)
*LOCAL

SRCSVR (rdb-name)

�

�
*USERCOPY

TGTTYPE (*POINTINTIME)
*BASEAGR
*CHANGEAGR
*CCD
*REPLICA

*ALL
ROWSLT (WHERE-clause)

�

�
*YES

CRTTGTTBL (*NO)
*YES

CHKFMT (*NO)

�

318 SQL Replication Guide and Reference

�
*NO

TGTKEYCHG (*YES)

�

*ALL
COLUMN (*NONE)

(1)
column-name

�

�
*YES

UNIQUE (*NO)

�

*SRCTBL
KEYCOL (*RRN)

*NONE

(2)
column-name

�

�

�

*COLUMN

(3)
TGTCOL ((column-name new-name))

�

�

�

*NONE

(4)
CALCCOL ((column-name expression))

�

�
*NO

ADDREG (*YES)

��

Notes:

1 You can specify up to 300 column names.

2 You can specify up to 120 column names.

3 You can specify up to 300 column names.

4 You can specify up to 100 column names and expressions.

Table 37 lists the invocation parameters.

Table 37. ADDDPRSUBM command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that identifies which Apply program
processes this subscription set. Subscription sets under an Apply
qualifier run in a separate job. This parameter is required.

apply-qualifier
The name of the Apply qualifier.

SETNAME Specifies the name of the subscription set. This parameter is required.

set-name
The name of the subscription set. The subscription-set name that
you enter must be unique for the specified Apply qualifier or the
ADDDPRSUBM command produces an error. Because the Apply
program handles the set of target tables as a group, when one target
table fails for any reason, the entire set fails.

Chapter 22. System commands for SQL replication (System i) 319

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTBL Specifies the name of the table that is the source for this subscription-set
member. You must register this table at the Capture control server before
this table can become a member of a subscription set. This parameter is
required.

library-name/file-name
The qualified name of the source table.

TGTTBL Specifies the name of the target table for this subscription-set member.
The target table is automatically created if you set the CRTTGTTBL
parameter to *YES and the target table does not already exist. This
parameter is required.

library-name/file-name
The qualified name of the target table.

CTLSVR Specifies the relational database name of the system that contains the
Apply control tables.

*LOCAL (default)
The Apply control tables reside locally (on the machine from which
you are running the ADDDPRSUBM command).

rdb-name
The name of the relational database where the Apply control tables
reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

SRCSVR Specifies the relational database name of the system that contains the
Capture control tables.

*LOCAL (default)
The source table is registered on the local machine (the machine
from which you are running the ADDDPRSUBM command).

rdb-name
The name of the relational database where the Capture control
tables reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

320 SQL Replication Guide and Reference

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE Specifies the target table type. These are SQL replication terms that
describe the contents of the target table. After you create a target table
as one of these types, you can use this parameter value on the SRCTBL
parameter of the Add DPR Registration (ADDDPRREG) command to
register this target table as a source table.

*USERCOPY (default)
The target table is a user copy, which is a target table with content
that matches all or part of the content of a source table. A user copy
is handled like a point-in-time table but does not contain any of the
DB2 DataPropagator for System i system columns that are present
in the point-in-time target table.

This value is not valid when a value of *RRN is specified on the
KEYCOL parameter.

The table that you specified with the SRCTBL parameter must be
one of the following types: user database, point-in-time table, or
consistent-change data (CCD).

Important: If the target table already exists, DB2 DataPropagator for
System i does not automatically journal changes to it. You must
start journaling outside of DB2 DataPropagator for System i.

*POINTINTIME
The target table is a point-in-time table. A point-in-time table is a
target table with content that matches all or part of the content of
the source table and includes the DB2 DataPropagator for System i
system column (IBMSNAP_LOGMARKER), which identifies when a
particular row was inserted or updated at the Capture control
server.

*BASEAGR
The target table is a base aggregate table, which is a target table
that contains data that is aggregated (calculated) from a source
table. The source table for a base aggregate target must be either a
user table or a point-in-time table. This target table must contain the
IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system
timestamp columns.

*CHANGEAGR
The table is a change aggregate table, which is a target table that
contains data that is aggregated (calculated) based on the contents
of a change-data (CD) table. This target table is created with the
IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system
timestamp columns.

Chapter 22. System commands for SQL replication (System i) 321

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE
(Continued) *CCD

The table is a consistent-change data (CCD) table, which is a target
table created from a join of data in the change-data (CD) table and
the unit-of-work (UOW) table. A CCD table provides
transaction-consistent data for the Apply program and must include
the following columns:

v IBMSNAP_INTENTSEQ

v IBMSNAP_OPERATION

v IBMSNAP_COMMITSEQ

v IBMSNAP_LOGMARKER

*REPLICA
The target table is a replica table, which is used only for
update-anywhere replication. The replica target table receives
changes from the master source table, and changes to the replica
target table are propagated back to the master source table. A
replica table is automatically registered as a source table.

ROWSLT Specifies the predicates to be placed in an SQL WHERE clause. The
Apply program uses these predicates to determine which rows in the
change-data (CD) table of the source to apply to the target table. Use
this parameter if you want only a subset of the source changes to be
replicated to the target table.

*ALL (default)
The Apply program applies all changes in the CD table to the target
table.

WHERE-clause
The SQL WHERE clause that specifies which rows from the CD
table the Apply program applies to the target table. Do not include
the WHERE keyword; it is implied on this parameter. This WHERE
clause must be valid on the data server you are using to run the
clause.

Note: The WHERE clause on this parameter is unrelated to any WHERE
clauses specified on the SQLBEFORE or SQLAFTER parameters.

322 SQL Replication Guide and Reference

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

CRTTGTTBL Specifies whether the target table (or view) is created.

*YES (default)
Creates the target table (or view) if it does not exist. Otherwise, the
existing table or view becomes the target, and the format of this
existing table or view is checked if the value of the CHKFMT
parameter is set to *YES. An additional index, with the values that
you specified by the UNIQUE and KEYCOL parameters, is created
for a target table if no such index currently exists. The command
fails if an existing target table contains rows that violate the
conditions of the additional index.

*NO
Does not create the target table or view. You must create the table or
view with the correct attributes before starting the Apply program.

If the table or view exists and you set CHKFMT to *YES, the ADDDPRSUBM
command ensures that the format of the existing table matches the
subscription-set definition that you set. If CHKFMT is *NO, you must
ensure that the format of the existing table matches the subscription-set
definition.

Important: If the table or view already exists, DB2 DataPropagator for
System i does not automatically journal changes to the existing object.
You must start journaling outside of DB2 DataPropagator for System i.

CHKFMT Specifies whether DB2 DataPropagator for System i checks the definition
of the subscription-set member against the existing target table to ensure
that the columns match. This parameter is ignored if the CRTTGTTBL
parameter is *YES; this parameter is also ignored if the CRTTGTTBL
parameter is set to *NO and the target table does not exist.

*YES (default)
DB2 DataPropagator for System i verifies that the columns defined
for this subscription-set member match the columns in the target
table. This command fails if a mismatch is detected.

*NO
DB2 DataPropagator for System i ignores differences between the
subscription-set member and the existing target table. You must
ensure that the target table is compatible with the subscription-set
member.

Chapter 22. System commands for SQL replication (System i) 323

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTKEYCHG Specifies how the Apply program handles updates when changes occur
in source columns that are part of the target key columns for the target
table. This parameter works in conjunction with the USEDELINS
parameter on the ADDDPRREG command:

v If USEDELINS is YES and TGTKEYCHG is YES, updates are not
allowed.

v If USEDELINS is YES and TGTKEYCHG is NO, updates become
delete and insert pairs.

v If USEDELINS is NO and TGTKEYCHG is YES, the Apply program
handles this condition with special logic.

v If USEDELINS is NO and TGTKEYCHG is NO, the Apply program
processes the changes as normal updates.

*NO (default)
Updates to the source table are staged by the Capture program and
processed by the Apply program to the target table.

*YES
The Apply program updates the target table based on the before
images of the target key column, meaning that the Apply program
changes the predicate to the old values instead of the new.

COLUMN Specifies the columns to be included in the target table. The column
names must be unqualified. Choose the column names from the list of
column names that you specified on the CAPCOL parameter when you
registered the source table.

If you set the IMAGE parameter to *BOTH when registering this table,
you can specify before-image column names. The before-image column
names are the original column names with a prefix. This prefix is the
character that you specified in the PREFIX parameter of the ADDDPRREG
command.

*ALL (default)
All of the columns that you registered in the source are included in
the target table.

*NONE
No columns from the source table are included in the target table.
You can use *NONE when you want only computed columns in the
target table. This value is required if the CALCCOL parameter
contains summary functions but no grouping is performed.

column-name
The names of up to 300 source columns that you want to include in
the target table. Separate the column names with spaces.

324 SQL Replication Guide and Reference

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

UNIQUE Specifies whether the target table has unique keys as indicated by the
KEYCOL parameter.

*YES (default)
The target table supports one net change per key; only one row
exists in the target table for that key regardless of how many
changes are made to the key.

This value specifies that the table contains current data rather than
a history of changes to the data. A condensed table includes no
more than one row for each primary key value in the table and can
be used to supply current information for a refresh.

*NO
The target table supports multiple changes per key. The changes are
appended to the target table.

This value specifies that the table contains a history of changes to
the data rather than current data. A non-condensed table includes
more than one row for each key value in the table and can be used
to supply a history of changes to the data. A non-condensed table
cannot supply current data for a refresh.

Chapter 22. System commands for SQL replication (System i) 325

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

KEYCOL Specifies columns that describe the key of the target table. The column
names must be unqualified. For *POINTINTIME, *REPLICA, and
*USERCOPY target tables (as specified on the TGTTYPE parameter),
you must identify one or more columns as the target key for the target
table. This target key is used by the Apply program to identify each
unique row that changes during change-capture replication.

*SRCTBL (default)
The key columns in the target table are the same as those in the
source table. The ADDDPRREG command uses the key that is specified
in the source table if the source table has a key. The following key
columns are used:

v Key columns that you defined through DDS when creating the
table with the Create Physical File (CRTPF) command

v Primary and unique keys that you defined with the CREATE
TABLE and ALTER TABLE SQL statements

v Unique keys that you defined with the CREATE INDEX SQL
statements

If you use a column as a key more than once and with different
ordering, the target table key is defined with ascending order.

*RRN
The key column in the target table is the IBMQSQ_RRN column.
The target table is created with an IBMQSQ_RRN column, and this
column is used as the key. When the Apply program runs, if the
source table is a user table and the target table is a point-in-time
table or user copy, the IBMQSQ_RRN column in the target table is
updated with the relative record number of the associated record in
the source table. Otherwise, the IBMQSQ_RRN column in the target
table is updated with the value of the IBMQSQ_RRN column in the
source table.

*NONE
The target copy does not contain a target key. You cannot specify
*NONE if the target table type is *POINTINTIME, *REPLICA, or
*USERCOPY.

column-name
The names of the target columns that you want to use as the target
key columns. You can specify up to 120 column names. Separate the
column names with spaces.

326 SQL Replication Guide and Reference

Table 37. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTCOL Specifies the new names for all the columns that the Apply program
updates in the target table. These names override the column names
taken from the source table. The column names must be unqualified. If
you specified a value of *NONE for the COLUMN parameter, do not
use the TGTCOL parameter.

Use this parameter to give more meaningful names to the target table
columns. Specify each source column name and the name of the
corresponding column on the target table.

*COLUMN (default)
The target columns are the same as the columns you specified in
the COLUMN parameter.

column-name
The column names from the source table that you want to change at
the target. You can list up to 300 column names.

new-name
The new names of the target columns. You can list up to 300 new
column names. If you do not use this parameter, the name of the
column on the target table will be the same as the source column
name.

CALCCOL Specifies the list of user-defined or calculated columns in the target
table. The column names must be unqualified. Enclose each column
name and expression pair in parenthesis.

You must specify a column name for each SQL expression. If you want
to define any column as an SQL expression without a GROUP BY
clause, you must set the COLUMN parameter to *NONE.

*NONE (default)
No user-defined or calculated columns are included in the target
table.

column-name
The column names of the user-defined or calculated columns in the
target table. You can list up to 100 column names.

expression
The expressions for the user-defined or calculated columns in the
target table. You can list up to 100 SQL column expressions.

ADDREG Specifies whether the target table is automatically registered as a source
table. Use this parameter to register CCD target type tables.

*NO (default)
The target table is not registered as a source table. DB2
DataPropagator for System i ignores this parameter value if the
target type is *REPLICA. Replica target tables are always
automatically registered as source tables.

*YES
The target table is registered as a source table. This command fails
if you already registered the target table.

Do not set this parameter to *YES if the target table type is *USERCOPY,
*POINTINTIME, *BASEAGR, or *CHANGEAGR.

If you set the CRTTGTTBL parameter to *NO, you must create the
target table before attempting to register it as a source.

Chapter 22. System commands for SQL replication (System i) 327

Examples for ADDDPRSUBM

The following examples illustrate how to use the ADDDPRSUBM command.

Example 1:

To add a subscription-set member to a subscription set named SETHR under the
AQHR Apply qualifier:
ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX) TGTTBL(TGTHR/TGTTAX)

Example 2:

To add a subscription-set member with only two columns, AMOUNT and NAME,
from the registered source table named YTDTAX and to replicate these columns to
an existing target table named TGTTAX:
ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX) TGTTBL(TGTLIB/TGTTAX)

CRTTGTTBL(*NO) COLUMN(AMOUNT NAME) CHKFMT(*YES)

This command verifies that the AMOUNT and NAME columns defined for this
subscription-set member match the columns in the target table.

Example 3:

To add a subscription-set member to subscription set named SETHR and to
replicate this data to a consistent-change data target table named TGTYTD:
ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX) TGTTBL(TGTLIB/TGTYTD)

TGTTYPE(*CCD) ADDREG (*YES)

This command registers the target table as a source table for DB2 DataPropagator
for System i.

ANZDPR: Operating the Analyzer (System i)
Use the Analyze DPR (ANZDPR) command to analyze a failure from a Capture or
Apply program, to verify the setup of your replication configuration, or to obtain
problem diagnosis and performance tuning information.

Run this command after you set up your replication configuration.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� ANZDPR

�

*LOCAL

(1)
RDB (rdb-name)

�

328 SQL Replication Guide and Reference

�
*CURLIB ANZDPR

OUTFILE (library-name file-name)

�

�

*STANDARD
ANZLVL (*SIMPLE)

*DETAILED

3
CAPTRC (no-of-days)

�

�
3

APYTRC (no-of-days)
3

APYTRAIL (no-of-days)

�

�
3

SIGTBL (no-of-days)
3

CAPMON (no-of-days)

�

�
*ALL

APYQUAL (apply-qualifier)

�

�
*ALL

CAPCTLLIB (library-name)

��

Notes:

1 You can specify up to 10 databases.

Table 38 lists the invocation parameters.

Table 38. ANZDPR command parameter definitions for System i

Parameter Definition and prompts

RDB Specifies the databases to be analyzed.

*LOCAL (default)
The database on your local system.

rdb-name
The RDB Directory Entry name, which indicates the database.

You can enter up to 10 databases. If you want to analyze multiple
databases including the database on your local system, make sure that
*LOCAL is the first entry in the list. Also, verify that you can connect to
all these databases from your current system.

Chapter 22. System commands for SQL replication (System i) 329

Table 38. ANZDPR command parameter definitions for System i (continued)

Parameter Definition and prompts

OUTFILE Specifies the library and file name used to store the analyzer output.
This command writes the output to an HTML file.

*CURLIB (default)
The current library.

library-name
The name of the library.

ANZDPR (default)
The output is written to an HTML file named ANZDPR.

file-name
The name of the HTML output file.

If the file name already exists, the file is overwritten. If the file name
does not exist, the command creates the file with attributes of
RCDLEN(512) and SIZE(*NOMAX).

ANZLVL Specifies the level of analysis to be reported. The level of analysis can
be:

*STANDARD (default)
Generates a report that includes the contents of the control
tables as well as Capture and Apply program status
information.

*SIMPLE
Generates the information in the standard report but excludes
subcolumn details. Use this option if you want to generate a
smaller report that requires less system resources.

*DETAILED
Generates a report with the most complete analysis. The
detailed report includes the information from the standard
report in addition to subscription set information.

CAPTRC Specifies the date range (0 to 30 days) of entries to be reported from the
IBMSNAP_CAPTRACE table. The default is 3.

no-of-days
The number of days to be reported.

APYTRC Specifies the date range (0 to 30 days) of entries to be reported from the
IBMSNAP_APPLYTRACE table. The default is 3.

no-of-days
The number of days to be reported.

APYTRAIL Specifies the date range (0 to 30 days) of entries to be reported from the
IBMSNAP_APPLYTRAIL table. The default is 3.

no-of-days
The number of days to be reported.

SIGTBL Specifies the date range (0 to 30 days) of entries to be reported from the
IBMSNAP_SIGNAL table. The default is 3.

no-of-days
The number of days to be reported.

CAPMON Specifies the date range (0 to 30 days) of entries to be reported from the
IBMSNAP_CAPMON table. The default is 3.

no-of-days
The number of days to be reported.

330 SQL Replication Guide and Reference

Table 38. ANZDPR command parameter definitions for System i (continued)

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifiers to be analyzed.

*ALL (default)
All Apply qualifiers are analyzed.

apply-qualifier
The name of the Apply qualifier to be analyzed. You can enter up to
10 Apply qualifiers.

CAPCTLLIB Specifies the Capture schemas, which are the names of the Capture
control libraries that you want to analyze. You can analyze a specific
Capture control library, or you can choose the default of *ALL to
analyze all the Capture control libraries.

*ALL (default)
All of the Capture control libraries will be analyzed.

library-name
The name of the specific Capture control library that you want to
analyze.

Examples for ANZDPR

The following examples illustrate how to use the ANZDPR command.

Example 1:

To run the Analyzer on both your local database and a remote database named
RMTRDB1 using a standard level of analysis:
ANZDPR RDB(*LOCAL RMTRDB1) OUTFILE(MYLIB/ANZDPR) ANZLVL(*STANDARD) CAPTRC(1)

APYTRC(1) APYTRAIL(1) SIGTBL(1) CAPMON(1) APYQUAL(*ALL)

This example generates one day of entries from the IBMSNAP_CAPTRACE,
IBMSNAP_APPLYTRACE, IBMSNAP_APPLYTRAIL, IBMSNAP_SIGNAL, and
IBMSNAP_CAPMON tables for all Apply qualifiers and writes the output to an
HTML file named ANZDPR in the library called MYLIB.

Example 2:

To run the Analyzer with all default values:
ANZDPR

CHGDPRCAPA: Changing DPR Capture attributes (System i)
Use the Change DPR Capture Attributes (CHGDPRCAPA) command to change the
global operating parameters that are used by the Capture program and are stored
in the IBMSNAP_CAPPARMS table.

These parameter changes do not take effect until you perform one of the following
actions:
v Issue an INZDPRCAP command.
v End and then restart the Capture program.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

Chapter 22. System commands for SQL replication (System i) 331

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� CHGDPRCAPA
ASN

CAPCTLLIB(library-name)

�

�
*SAME

RETAIN (retention-limit)
*SAME

LAG (lag-limit)

�

�
*SAME

FRCFRQ (force-frequency)

�

�
*SAME

CLNUPITV (prune-interval)
*SAME

TRCLMT (trace-limit)

�

�
*SAME

MONLMT (monitor-limit)
*SAME

MONITV (monitor-interval)

�

�
*SAME

MEMLMT (memory-limit)

��

Table 39 lists the invocation parameters.

Table 39. CHGDPRCAPA command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library in
which the Capture control tables reside.

ASN (default)
The Capture control tables are in the ASN library.

library-name
The name of a library that contains the Capture control tables.

332 SQL Replication Guide and Reference

Table 39. CHGDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

RETAIN Specifies the new retention limit, which is the number of minutes that
data is retained in the change-data (CD), unit-of-work (UOW),
IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN tables before this
data is removed. This value is stored in the RETENTION_LIMIT
column of the IBMSNAP_CAPPARMS table.

This value works with the CLNUPITV parameter value. When the
CLNUPITV value is reached, the CD, UOW, IBMSNAP_SIGNAL, and
IBMSNAP_AUTHTKN data is removed if this data is older than the
retention limit.

Ensure that the Apply intervals are set to copy changed information
before the data reaches this RETAIN parameter value to prevent
inconsistent data in your tables. If the data becomes inconsistent, the
Apply program performs a full refresh.

The default is 10 080 minutes (seven days). The maximum is 35000000
minutes.

*SAME (default)
This value is not changed.

retention-limit
The new retention limit value.

LAG Specifies the new lag limit, which is the number of minutes that the
Capture program can fall behind in processing before restarting. This
value is stored in the LAG_LIMIT column of the
IBMSNAP_CAPPARMS table.

When the lag limit is reached (that is, when the timestamp of the
journal entry is older than the current timestamp minus the lag limit),
the Capture program initiates a cold start for the tables that it is
processing for that journal. The Apply program then performs a full
refresh to provide the Capture program with a new starting point.

The default is 10 080 minutes (seven days). The maximum is 35000000
minutes.

*SAME (default)
This value is not changed.

lag-limit
The new lag limit value.

Chapter 22. System commands for SQL replication (System i) 333

Table 39. CHGDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

FRCFRQ Specifies how often (from 30 to 600 seconds) the Capture program
writes changes to the change-data (CD) and UOW tables. This value is
stored in the COMMIT_INTERVAL column of the
IBMSNAP_CAPPARMS table.

The Capture program makes these changes available to the Apply
program either when the buffers are filled or when the FRCFRQ time
limit expires, whichever is sooner.

Use this parameter to make changes more readily available to the
Apply program on servers with a low rate of source table changes.
The FRCFRQ parameter value is a global value used for all defined
source tables. Setting the FRCFRQ value to a low number can affect
system performance.

The default is 30 seconds.

*SAME (default)
This value is not changed.

force-frequency
The new commit interval value, which is the number of seconds
that the Capture program keeps CD and UOW table changes in
buffer space before making these changes available to the Apply
program.

CLNUPITV Specifies the maximum amount of time (in hours) before the Capture
program prunes old records from the change-data (CD), UOW,
IBMSNAP_SIGNAL, IBMSNAP_CAPMON, IBMSNAP_CAPTRACE,
and IBMSNAP_AUTHTKN tables.

This parameter works in conjunction with the RETAIN parameter to
control pruning of the CD, UOW, IBMSNAP_SIGNAL, and
IBMSNAP_AUTHTKN tables, with the MONLMT parameter to
control pruning of the IBMSNAP_CAPMON table, and with the
TRCLMT parameter to control pruning of the IBMSNAP_CAPTRACE
table. (Use the STRDPRCAP command to set the RETAIN, MONLMT,
and TRCLMT parameters for a Capture program.)

The value of this parameter is automatically converted from hours to
seconds and is stored in the PRUNE_INTERVAL column of the
IBMSNAP_CAPPARMS table. If the PRUNE_INTERVAL column is
changed manually (not by using the CHGDPRCAPA command), you
might see changes because of rounding when you prompt by using
the F4 key.

*SAME (default)
This Capture attribute value is not changed.

prune-interval
The pruning interval expressed as a specific number of hours (1
to 100).

334 SQL Replication Guide and Reference

Table 39. CHGDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

TRCLMT Specifies the trace limit (in minutes). This value is stored in the
TRACE_LIMIT column of the IBMSNAP_CAPPARMS table.

The Capture programs prune any IBMSNAP_CAPTRACE rows that
are older than the trace limit. The default is 10 080 minutes (seven
days of trace entries).

*SAME (default)
This value is not changed.

trace-limit
The number of minutes of trace data kept in the
IBMSNAP_CAPTRACE table after pruning.

MONLMT Specifies the monitor limit (in minutes). This value is stored in the
MONITOR_LIMIT column of the IBMSNAP_CAPPARMS table.

The Capture program prunes any IBMSNAP_CAPMON rows that are
older than the monitor limit.

The default is 10 080 minutes (seven days of monitor entries).

*SAME (default)
This value is not changed.

monitor-limit
The number of minutes of monitor data kept in the
IBMSNAP_CAPMON table after pruning.

MONITV Specifies how frequently (in seconds) the Capture program inserts
rows into the IBMSNAP_CAPMON table. This value is stored in the
MONITOR_INTERVAL column of the IBMSNAP_CAPPARMS table.

The default is 300 seconds (five minutes).

*SAME (default)
This value is not changed.

monitor-interval
The number of seconds between row insertion into the
IBMSNAP_CAPMON table. The monitor interval must be at least
120 seconds (two minutes). If you specify a number that is less
than 120, this command automatically sets this parameter value to
120.

MEMLMT Specifies the maximum size (in megabytes) of memory that the
Capture journal job can use. This value is stored in the
MEMORY_LIMIT column of the IBMSNAP_CAPPARMS table.

The default is 32 megabytes.

*SAME (default)
This value is not changed.

memory-limit
The maximum number of megabytes for memory.

Examples for CHGDPRCAPA

The following examples illustrate how to use the CHGDPRCAPA command.

Example 1:

Chapter 22. System commands for SQL replication (System i) 335

To change the frequency of row insertion to 6 000 seconds (100 minutes) by the
Capture program into the IBMSNAP_CAPMON table:
CHGDPRCAPA CAPCTLLIB(ASN) MONITV(6000)

This frequency value is stored in the IBMSNAP_CAPPARMS table that is located
in the default ASN library.

Example 2:

To change the retention limit, lag limit, trace limit, and monitor limit in the
IBMSNAP_CAPPARMS table located in a Capture control library called LIB1:
CHGDPRCAPA CAPCTLLIB(LIB1) RETAIN(6000) LAG(3000) TRCLMT(3000) MONLMT(6000)

Example 3:

To change the commit interval, which indicates how frequently the Capture
program writes changes to the CD and UOW tables:
CHGDPRCAPA CAPCTLLIB(ASN) FRCFRQ(360)

CRTDPRTBL: Creating the replication control tables (System i)
Use the Create DPR Tables (CRTDPRTBL) command to create replication control
tables that are accidentally deleted or corrupted.

Important: The CRTDPRTBL command is the only command that you should use to
create System i control tables. Do not use the Replication Center or ASNCLP
command-line program to create the control tables.

Restriction: If you create an alternate Capture schema, you must created it in the
same Auxiliary Storage Pool (either base or independent) where the ASN library is
located.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� CRTDPRTBL
ASN

CAPCTLLIB (library-name)

��

Table 40 on page 337 lists the invocation parameters.

336 SQL Replication Guide and Reference

Table 40. CRTDPRTBL command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library where
the newly created Capture control tables are placed.

ASN (default)
The Capture control tables are placed in the ASN library.

library-name
The name of the library where the Capture control tables are placed.

Examples for CRTDPRTBL

The following examples illustrate how to use the CRTDPRTBL command.

Example 1:

To create new replication control tables in the default ASN library:
CRTDPRTBL CAPCTLLIB(ASN)

Example 2:

To create new replication control tables for a Capture schema called DPRSALES:
CRTDPRTBL CAPCTLLIB(DPRSALES)

ENDDPRAPY: Stopping Apply (System i)
Use the End DPR Apply (ENDDPRAPY) command to stop an Apply program on your
local system.

You should stop the Apply program before any planned system down time. You
might also want to end the Apply program during periods of peak system activity.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

�� ENDDPRAPY
*CURRENT

USER(user-name)
*CNTRLD

OPTION(*IMMED)

�

�
*USER

APYQUAL(apply-qualifier)
*LOCAL

CTLSVR(rdb-name)

��

Table 41 on page 338 lists the invocation parameters.

Chapter 22. System commands for SQL replication (System i) 337

Table 41. ENDDPRAPY command parameter definitions for System i

Parameter Definition and prompts

USER This parameter is ignored unless the APYQUAL parameter has a value
of *USER, in which case this parameter specifies the Apply qualifier
associated with the Apply program.

*CURRENT (default)
The Apply program of the user associated with the current job.

user-name
The Apply program of the specified user.

When prompting on the ENDDPRAPY command, you can press the F4
key to see a list of users who defined subscriptions.

OPTION Specifies how to stop the Apply program.

*CNTRLD (default)
The Apply program completes all of its tasks before stopping. These
tasks might take a considerable period of time if the Apply program
is completing a subscription set.

*IMMED
The Apply program completes all of its tasks with the ENDJOB
OPTION(*IMMED) command. The tasks end immediately, without any
cleanup. Use this option only after a controlled end is unsuccessful,
because it can cause undesirable results. (Unless the Apply program
was asleep when you issued the ENDDPRAPY command, you should
verify the target table contents.)

If the Apply program was performing a full refresh to the target
table, the target table might be empty as a result of ending the
Apply program before the table was refreshed with the source table
contents. If the target table is empty, you must force a full refresh
for this replication target.

You might find that a subscription set is considered IN USE (the
STATUS column in the IBMSNAP_SUBS_SET table has a value of 1).
If it is, reset the value to 0 or -1. This allows the subscription set to
be run again by the Apply program.

APYQUAL Specifies the Apply qualifier that is used by the Apply program.

*USER (default)
The user name specified on the USER parameter is the Apply
qualifier.

apply-qualifier
The name used to group the subscription sets that this Apply
program runs. You can specify a maximum of 18 characters for the
Apply qualifier name. This name follows the same naming
conventions as a relational database name. You identify the
subscriptions being run by the records in the IBMSNAP_SUBS_SET
table with this value in the APPLY_QUAL column.

When prompting on the ENDDPRAPY command, you can press the F4
key to see a list of Apply qualifier names with existing
subscriptions.

338 SQL Replication Guide and Reference

Table 41. ENDDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

CTLSVR Specifies the relational database name of the system that contains the
Apply control tables.

*LOCAL (default)
The Apply control tables reside locally (from the machine on which
you are running the ENDDPRAPY command).

rdb-name
The name of the relational database where the Apply control tables
reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

When prompting on the ENDDPRAPY command, you can press the F4
key to choose from the list of databases in the RDB directory.

Usage notes

The ENDDPRAPY command uses the value of the APYQUAL and CTLSVR
parameters to search the IBMSNAP_APPLY_JOB table for the job name, job
number, and job user for the referenced Apply program, and ends that job.

ENDDPRAPY issues an error message if the following conditions occur:
v If the IBMSNAP_APPLY_JOB table does not exist or is corrupted.
v If there is no record in the IBMSNAP_APPLY_JOB table for the Apply qualifier

and control server name.
v If the Apply job already ended.
v If the user ID running the command is not authorized to end the Apply job.

Examples for ENDDPRAPY

The following examples illustrate how to use the ENDDPRAPY command.

Example 1:

To end the Apply program that uses the AQHR Apply qualifier:
ENDDPRAPY OPTION(*CNTRLD) APYQUAL(AQHR)

The Apply program ends after all of its tasks are completed.

Example 2:

To end the Apply program immediately:
ENDDPRAPY OPTION(*IMMED) APYQUAL(AQHR)

The tasks of the Apply program end immediately, without any cleanup.

Example 3:

To end an Apply program that uses Apply control tables that reside on a relational
database named DB1X:
ENDDPRAPY OPTION(*CNTRLD) APYQUAL(AQHR) CTLSVR(DB1X)

Chapter 22. System commands for SQL replication (System i) 339

ENDDPRCAP: Stopping Capture (System i)
Use the End DPR Capture (ENDDPRCAP) command to stop the Capture program.

Use this command to stop the Capture program before shutting down the system.
You might also want to stop the program during periods of peak system use to
increase the performance of other programs that run on the system.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� ENDDPRCAP
*CNTRLD

OPTION(*IMMED)

�

�
ASN

CAPCTLLIB (library-name)
*NO

RGZCTLTBL (*YES)

��

Table 42 lists the invocation parameters.

Table 42. ENDDPRCAP command parameter definitions for System i

Parameter Definition and prompts

OPTION Specifies how to stop the Capture program.

*CNTRLD (default)
The Capture program stops normally after completing all tasks.

The ENDDPRCAP command might take longer when you specify the
*CNTRLD option because the Capture program completes all of its
subordinate processes before stopping.

*IMMED
The Capture program stops normally after completing all tasks with
the ENDJOB OPTION(*IMMED) command.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which
the Capture control tables are located. This library includes the
IBMSNAP_REGISTER table, which stores the registration information of
the source tables.

ASN (default)
The Capture control tables are in the ASN library. The ASN library
is the default library.

library-name
The name of a library that contains the Capture control tables.

340 SQL Replication Guide and Reference

Table 42. ENDDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

RGZCTLTBL Specifies whether a Reorganize Physical File Member (RGZPFM) command
is performed on the control tables (including the change-data (CD) and
unit-of-work (UOW) tables) when the Capture program ends. The
system does not recover disk space unless the RGZPFM command process
is performed on the tables. The RGZPFM command will not be performed
if the control tables are being accessed by an Apply program or by other
application programs.

*NO (default)
The RGZPFM command is not performed.

*YES
The RGZPFM command is performed.

Usage notes

If you use the ENDJOB command, temporary objects might be left in the QDP4
library. These objects have the types *DTAQ and *USRSPC, and are named
QDP4nnnnnn, where nnnnnn is the job number of the job that used them. You can
delete these objects when the job that used them (identified by the job number in
the object name) is not active.

If the job under the Capture control library will not end after issuing this
command, use the ENDJOB command with *IMMED option to end this job and all
the journal jobs running in the DB2 DataPropagator for System i subsystem. Do
not end Apply jobs running in the same subsystem if you want to end only the
Capture program.

In rare cases when the Capture control job ends abnormally, the journal jobs
created by Capture control job (which is named according to the CAPCTLLIB
parameter) might still be left running. The only way to end these jobs is to use the
ENDJOB command with either the *IMMED or *CNTRLD option.

Examples for ENDDPRCAP

The following examples illustrate how to use the ENDDPRCAP command.

Example 1:

To end the Capture program, which uses Capture control tables in the ASN library,
after all processing tasks are completed:
ENDDPRCAP OPTION(*CNTRLD) CAPCTLLIB(ASN) RGZCTLTBL(*NO)

Example 2:

To end the Capture program immediately for the Capture schema BSN:
ENDDPRCAP OPTION(*IMMED) CAPCTLLIB(BSN) RGZCTLTBL(*NO)

Example 3:

To end the Capture program after all processing tasks are completed and to
reorganize the Capture control tables:
ENDDPRCAP OPTION(*CNTRLD) CAPCTLLIB(ASN) RGZCTLTBL(*YES)

Chapter 22. System commands for SQL replication (System i) 341

GRTDPRAUT: Authorizing users (System i)
Use the Grant DPR Authority (GRTDPRAUT) command to authorize a list of users to
access the replication control tables in order to run the Capture and Apply
programs.

For example, the authority requirements for the user who is running the Capture
and Apply programs might differ from the authority requirements for the user
who defines replication sources and targets.

You must have *ALLOBJ authority to grant authorities.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� GRTDPRAUT
ASN

CAPCTLLIB (library-name)

�

� USER(user-name)
*PUBLIC

*REGISTRAR
AUT(*SUBSCRIBER)

*CAPTURE
*APPLY

�

�
*ALL

APYQUAL(*USER)
apply-qualifier

��

Table 43 lists the invocation parameters.

Table 43. GRTDPRAUT command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the library that contains the
replication control tables to which the user is granted authority.

ASN (default)
The Capture control tables reside in the ASN library.

library-name
The name of the library that contains the replication control tables.

USER Specifies the users who have authority.

user-name
The names of up to 50 users who have authority.

*PUBLIC
Indicates that *PUBLIC authority is granted to the file, but (if
insufficient for the task) is used only for those users who have no
specific authority, who are not on the authorization list associated
with the file, and whose group profile does not have any authority.

342 SQL Replication Guide and Reference

Table 43. GRTDPRAUT command parameter definitions for System i (continued)

Parameter Definition and prompts

AUT Specifies the type of authority being granted.

*REGISTRAR (default)
The users are granted the authorities to define, change, and remove
registrations.

For a complete list of authorities with AUT(*REGISTRAR), see
Table 44 on page 344.

*SUBSCRIBER
The users are granted authority to define, change, and remove
subscription sets.

For a complete list of authorities with AUT(*SUBSCRIBER), see
Table 45 on page 345.

*CAPTURE
The users are granted authority to run the Capture program.

For a complete list of authorities granted with AUT(*CAPTURE),
see Table 46 on page 346.

*APPLY
The users are granted authority to run the Apply program.

The command does not grant authority to any of the objects that
reside on other databases accessed by the Apply program.

When an Apply program is invoked, the user associated with the
DRDA application server job must also be granted *APPLY
authority. If the source is a System i server, you should run the
GRTDPRAUT command on the source server system, with the
application server job user specified on the USER parameter and
the Apply qualifier specified on the APYQUAL parameter.

Authorities are not granted to the target tables unless the target
server is the same as the control server and both reside on the
system where the command is run.

For a complete list of authorities granted with AUT(*APPLY), see
Table 47 on page 348.

Chapter 22. System commands for SQL replication (System i) 343

Table 43. GRTDPRAUT command parameter definitions for System i (continued)

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier to be used by the user as specified with the
USER parameter. This parameter is used only when AUT(*APPLY) or
AUT(*SUBSCRIBER) is specified.

*ALL (default)
The user is granted authority to run the Apply program or to define
and remove subscription sets for all Apply qualifiers.

*USER
The users specified on the USER parameter are granted authority to
the subscription sets with an Apply qualifier that is the same as the
user name.

apply-qualifier
The user is granted authority to run the Apply program or define
and remove subscription sets for the Apply qualifiers associated
with this Apply qualifier.

v The user is granted authority to all replication sources,
change-data (CD) tables, and consistent-change data (CCD) tables
associated with records in the IBMSNAP_PRUNCNTL table that
have a value in the APPLY_QUAL column matching the value
input with the APYQUAL parameter.

v The user is granted authority to the subscription sets listed in the
IBMSNAP_SUBS_MEMBR table that reside on this system.

Usage notes

You cannot use the GRTDPRAUT command while the Capture or Apply programs are
running, or when applications that use the source tables are active because
authorizations cannot be changed on files that are in use.

The following tables list the authorities granted when you specify:
v AUT(*REGISTRAR)
v AUT*(SUBSCRIBER)
v AUT(*CAPTURE)
v AUT(*APPLY)

on the GRTDPRAUT command.

The following table lists the authorities granted when you specify the
AUT(*REGISTRAR) parameter on the GRTDPRAUT command.

Table 44. Authorities granted with GRTDPRAUT AUT(*REGISTRAR)

Library Object Type Authorizations

QSYS capctllib *LIB *USE, *ADD

capctllib1 QSQJRN *JRN *OBJOPR,
*OBJMGT

capctllib1 QZS8CTLBLK *USRSPC *CHANGE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR, *READ,
*ADD, *UPDT,
*DLT

344 SQL Replication Guide and Reference

Table 44. Authorities granted with GRTDPRAUT AUT(*REGISTRAR) (continued)

Library Object Type Authorizations

capctllib1 IBMSNAP_REGISTERX *FILE *OBJOPR, *READ,
*ADD, *UPDT,
*DLT

capctllib1 IBMSNAP_REGISTERX1 *FILE *OBJOPR, *READ,
*ADD, *UPDT,
*DLT

capctllib1 IBMSNAP_REGISTERX2 *FILE *OBJOPR, *READ,
*ADD, *UPDT,
*DLT

capctllib1 IBMSNAP_REG_EXT *FILE *OBJOPR, *READ,
*ADD, *UPDT,
*DLT

capctllib1 IBMSNAP_REG_EXTX *FILE *OBJOPR, *READ,
*ADD, *UPDT,
*DLT

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX1 *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX2 *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX3 *FILE *OBJOPR, *READ

ASN ASN4B* *SQLPKG *USE

ASN ASN4C* *SQLPKG *USE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB
parameter of the GRTDPRAUT command; this command updates authority to only one
Capture control library at a time.

The following table lists the authorities granted when you specify the
AUT(*SUBSCRIBER) parameter on the GRTDPRAUT command.

Table 45. Authorities granted with GRTDPRAUT AUT(*SUBSCRIBER)

Library Object Type Authorizations

QSYS ASN *LIB *OBJOPR, *READ,
*ADD, *EXECUTE

QSYS capctllib *LIB *OBJOPR, *READ,
*ADD, *EXECUTE

ASN IBMSNAP_SUBS_SET *FILE *CHANGE

ASN IBMSNAP_SUBS_COLS *FILE *CHANGE

ASN IBMSNAP_SUBS_EVENT *FILE *CHANGE

ASN IBMSNAP_SUBS_STMTS *FILE *CHANGE

ASN IBMSNAP_SUBS_MEMBR *FILE *CHANGE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_REG_EXT *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

Chapter 22. System commands for SQL replication (System i) 345

Table 45. Authorities granted with GRTDPRAUT AUT(*SUBSCRIBER) (continued)

Library Object Type Authorizations

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR, *READ,
*DLT, *ADD,
*EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX *FILE *USE

ASN ASN4A* *SQLPKG *USE

ASN ASN4U* *SQLPKG *USE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB
parameter of the GRTDPRAUT command; this command updates authority to only one
Capture control library at a time.

The following table lists the authorities granted when you specify the
AUT(*CAPTURE) parameter on the GRTDPRAUT command.

Table 46. Authorities granted with GRTDPRAUT AUT(*CAPTURE)

Library Object Type Authorizations

QSYS capctllib *LIB *OBJOPR,
*OBJMGT, *READ,
*EXECUTE

QSYS QDP4 *LIB *OBJOPR, *ADD,
*READ, *EXECUTE

capctllib1 QZSN *MSGQ *CHANGE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR,
*OBJMGT, *READ,
*ADD, *UPD,
*EXECUTE

capctllib1 IBMSNAP_REGISTERX *FILE *OBJOPR,
*OBJMGT, *READ,
*ADD, *UPD,
*EXECUTE

capctllib1 IBMSNAP_REGISTERX1 *FILE *OBJOPR,
*OBJMGT, *READ,
*ADD, *UPD,
*EXECUTE

capctllib1 IBMSNAP_REGISTERX2 *FILE *OBJOPR,
*OBJMGT, *READ,
*ADD, *UPD,
*EXECUTE

capctllib1 IBMSNAP_REG_EXT *FILE *OBJOPR,
*OBJMGT, *READ,
*ADD, *UPD,
*EXECUTE

capctllib1 IBMSNAP_REG_EXTX *FILE *OBJOPR,
*OBJMGT, *READ,
*ADD, *UPD,
*EXECUTE

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR,
*OBJMGT, *READ,
*UPD, *EXECUTE

346 SQL Replication Guide and Reference

Table 46. Authorities granted with GRTDPRAUT AUT(*CAPTURE) (continued)

Library Object Type Authorizations

capctllib1 IBMSNAP_PRUNCNTLX *FILE *OBJOPR,
*OBJMGT, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX1 *FILE *OBJOPR,
*OBJMGT, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX2 *FILE *OBJOPR,
*OBJMGT, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX3 *FILE *OBJOPR,
*OBJMGT, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_CAPTRACE *FILE *CHANGE

capctllib1 IBMSNAP_CAPTRACEX *FILE *CHANGE

capctllib1 IBMSNAP_RESTART *FILE *CHANGE

capctllib1 IBMSNAP_RESTARTX *FILE *CHANGE

capctllib1 IBMSNAP_AUTHTKN *FILE *CHANGE

capctllib1 IBMSNAP_AUTHTKNX *FILE *CHANGE

capctllib1 IBMSNAP_UOW *FILE *OBJOPR,
*OBJMGT, *READ,
*UPD, *DLT, *ADD,
*EXECUTE

capctllib1 IBMSNAP_UOW_IDX *FILE *CHANGE

capctllib1 IBMSNAP_PRUNE_SET *FILE *CHANGE

capctllib1 IBMSNAP_PRUNE_SETX *FILE *CHANGE

capctllib1 IBMSNAP_CAPPARMS *FILE *READ, *EXECUTE

capctllib1 IBMSNAP_SIGNAL *FILE *CHANGE

capctllib1 IBMSNAP_SIGNALX *FILE *CHANGE

capctllib1 IBMSNAP_CAPMON *FILE *CHANGE

capctllib1 IBMSNAP_CAPMONX *FILE *CHANGE

capctllib1 IBMSNAP_PRUNE_LOCK *FILE *CHANGE

ASN ASN4B* *SQLPKG *USE

ASN ASN4C* *SQLPKG *USE

ASN QZS8CTLBLK *USRSPC *CHANGE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB
parameter of the GRTDPRAUT command; this command updates authority to only one
Capture control library at a time.

The following table lists the authorities granted when you specify the
AUT(*APPLY) parameter on the GRTDPRAUT command.

Chapter 22. System commands for SQL replication (System i) 347

Table 47. Authorities granted with GRTDPRAUT AUT(*APPLY)

Library Object Type Authorizations

QSYS ASN *LIB *OBJOPR, *READ,
*EXECUTE

QSYS capctllib *LIB *OBJOPR, *READ,
*EXECUTE

QDP4 QZSNAPV2 *PGM *OBJOPR, *READ,
*OBMGT,
*OBJALTER,
*EXECUTE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTERX *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTERX1 *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTERX2 *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTER_EXT *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTER_EXTX *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

capctllib1 IBMSNAP_SIGNAL *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

capctllib1 IBMSNAP_SIGNALX *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

capctllib1 IBMSNAP_PRUNE_LOCK *FILE *CHANGE

capctllib1 IBMSNAP_UOW *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

capctllib1 IBMSNAP_AUTHTKN *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

capctllib1 IBMSNAP_AUTHTKNX *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

ASN IBMSNAP_SUBS_SET *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

ASN IBMSNAP_SUBS_SETX *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

ASN IBMSNAP_APPLYTRAIL *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

ASN IBMSNAP_APPLYTRACE *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

348 SQL Replication Guide and Reference

Table 47. Authorities granted with GRTDPRAUT AUT(*APPLY) (continued)

Library Object Type Authorizations

ASN IBMSNAP_APPLYTRACX *FILE *OBJOPR, *READ,
*UPD, *EXECUTE

ASN IBMSNAP_SUBS_COLS *FILE *USE

ASN IBMSNAP_SUBS_EVENT *FILE *USE

ASN IBMSNAP_SUBS_STMTS *FILE *USE

ASN IBMSNAP_SUBS_MEMBR *FILE *USE

ASN ASN4A* *SQLPKG *USE

ASN ASN4U* *SQLPKG *USE

ASN IBMSNAP_APPLY_JOB *FILE *OBJOPR, *READ,
*UPD, *ADD,
*EXECUTE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB
parameter of the GRTDPRAUT command; this command updates authority to only one
Capture control library at a time.

Examples for GRTDPRAUT

The following examples illustrate how to use the GRTDPRAUT command.

Example 1:

To authorize a user named USER1 to define and modify registrations:
GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*REGISTRAR)

Example 2:

To authorize a user named USER1 to define and modify subscription sets:
GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*SUBSCRIBER)

Example 3:

To authorize a user named USER1 to run Capture programs:
GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*CAPTURE)

Example 4:

To authorize a user named USER1 to define and modify existing subscription sets
that are associated with Apply qualifier A1:
GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*SUBSCRIBER) APYQUAL(A1)

Example 5:

To authorize a user to run the Apply program on the control server system for all
subscription sets associated with Apply qualifier A1, where the target server is the
same as the control server:
1. Run the following command on the system where the Apply program will run:

GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*APPLY) APYQUAL(A1)

2. Run the appropriate GRTDPRAUT command on the source server system:

Chapter 22. System commands for SQL replication (System i) 349

v If the application server job on the source server used by the Apply program
runs under user profile USER1, run the following command on the source
server systems:
GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*APPLY) APYQUAL(A1)

v If the application server job on the source server used by the Apply program
runs under a different user profile, for example, QUSER, the command is:
GRTDPRAUT CAPCTLLIB(ASN) USER(QUSER) AUT(*APPLY) APYQUAL(A1)

INZDPRCAP: Reinitializing DPR Capture (System i)
Use the Initialize DPR Capture (INZDPRCAP) command to initialize the Capture
program by directing the Capture program to work with an updated list of source
tables.

Source tables under the control of a Capture program can change while the
Capture program is running. Use the INZDPRCAP command to ensure that the
Capture program processes the most up-to-date replication sources.

The Capture program must be running before you can run this command.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� INZDPRCAP
ASN

CAPCTLLIB (library-name)

�

�

�

*ALL

JRN(library-name/journal-name)

��

Table 48 lists the invocation parameters.

Table 48. INZDPRCAP command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which
the Capture control tables reside.

ASN (default)
The Capture control tables reside in the ASN library. The ASN
library is the default library.

library-name
The name of a library that contains the Capture control tables.

350 SQL Replication Guide and Reference

Table 48. INZDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

JRN Specifies a subset of up to 50 journals that you want the Capture
program to work with. The Capture program starts processing all the
source tables that are currently journaled to this journal.

*ALL (default)
The Capture program works with all the journals.

library-name/journal-name
The qualified name of the journal that you want the Capture
program to work with.

Examples for INZDPRCAP

The following examples illustrate how to use the INZDPRCAP command.

Example 1:

To initialize a Capture program using the QSQJRN journal under a library named
TRAINING:
INZDPRCAP CAPCTLLIB(ASN) JRN(TRAINING/QSQJRN)

The Capture control tables reside in the default ASN schema.

Example 2:

To initialize a Capture program that works with all the journals:
INZDPRCAP CAPCTLLIB(BSN) JRN(*ALL)

The Capture control tables reside in a schema called BSN.

OVRDPRCAPA: Overriding DPR Capture attributes (System i)
Use the Override DPR Capture attributes (OVRDPRCAPA) command to alter the
behavior of a running Capture program.

This command alters the program behavior by overriding the values that were
passed to the Capture program from the IBMSNAP_CAPPARMS table or from the
STRDPRCAP command when the Capture program started.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� OVRDPRCAPA
ASN

CAPCTLLIB (library-name) �

Chapter 22. System commands for SQL replication (System i) 351

�
*SAME

RETAIN (retention-limit)
*SAME

FRCFRQ (force-frequency)

�

�
*SAME

CLNUPITV (prune-interval)
*SAME

TRCLMT (trace-limit)

�

�
*SAME

MONLMT (monitor-limit)
*SAME

MONITV (monitor-interval)

�

�
*SAME

MEMLMT (memory-limit)
*SAME

PRUNE (*IMMED)
*DELAYED
*NO

��

Table 49 lists the invocation parameters.

Table 49. OVRDPRCAPA command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which
the Capture control tables reside. This library includes the
IBMSNAP_REGISTER table, which stores the registration information of
the source tables. This parameter is required.

ASN (default)
The Capture control tables reside in the ASN library.

library-name
The name of a library that contains the Capture control tables. You
can create this library by using the CRTDPRTBL command with the
CAPCTLLIB parameter.

352 SQL Replication Guide and Reference

Table 49. OVRDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

RETAIN Specifies the number of minutes that data is retained in the change-data
(CD), UOW, IBMSNAP_SIGNAL), and IBMSNAP_AUTHTKN tables
before the data is removed.

This value works with the CLNUPITV parameter value from the Start
DPR Capture (STRDPRCAP) command. First, the Capture program deletes
any CD, UOW, IBMSNAP_SIGNAL, or IBMSNAP_AUTHTKN rows that
are older than the oldest currently running Apply program. Then, a new
or remaining row from the CD, UOW, IBMSNAP_SIGNAL, or
IBMSNAP_AUTHTKN table is subsequently deleted when its age
reaches the value of the RETAIN parameter.

Ensure that the Apply intervals are set to copy changed information
before the data reaches this RETAIN parameter value to prevent
inconsistent data in your tables. If the data becomes inconsistent, the
Apply program performs a full refresh.

The default is 10 080 minutes (seven days). The maximum is 35000000
minutes.

*SAME (default)
This value is not changed.

retention-limit
The new retention limit value.

FRCFRQ Specifies how often (from 30 to 600 seconds) the Capture program
writes changes to the change-data (CD) and unit-of-work (UOW) tables.

The Capture program makes these changes available to the Apply
program either when the buffers are filled or when the FRCFRQ time
limit expires, whichever is sooner. This parameter value affects the
amount of time that it takes for the Capture program to respond to
changes from the Initialize DPR Capture (INZDPRCAP) command.

Use this parameter to make changes more readily available to the Apply
program on servers with a low rate of source table changes. The
FRCFRQ parameter value is a global value used for all registered source
tables. Setting the FRCFRQ value to a low number can affect system
performance.

The default is 30 seconds.

*SAME (default)
This value is not changed.

force-frequency
The new number of seconds that the Capture program keeps CD
and UOW table changes in buffer space before making these
changes available to the Apply program.

Chapter 22. System commands for SQL replication (System i) 353

Table 49. OVRDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

CLNUPITV Specifies the maximum amount of time (in hours) before the Capture
program prunes old records from the change-data (CD), unit-of-work
(UOW), IBMSNAP_SIGNAL, IBMSNAP_CAPMON,
IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables.

This parameter works with the RETAIN parameter to control pruning of
the CD, UOW, IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN tables,
with the MONLMT parameter to control pruning of the
IBMSNAP_CAPMON table, and with the TRCLMT parameter to control
pruning of the IBMSNAP_CAPTRACE table.

(Use the STRDPRCAP command to set the RETAIN, MONLMT, and
TRCLMT parameters for a Capture program.)

The value of the CLNUPITV parameter is automatically converted from
hours to seconds and is stored in the PRUNE_INTERVAL column of the
IBMSNAP_CAPPARMS table.

*SAME (default)
This Capture attribute value is not changed.

prune-interval
The pruning interval expressed as a specific number of hours (1 to
100).

TRCLMT Specifies the trace limit, which indicates how frequently the
IBMSNAP_CAPTRACE table is pruned.

*SAME (default)
The Capture program continues and uses the current trace limit
value.

trace-limit
The number of minutes between each pruning operation of the
IBMSNAP_CAPTRACE table.

MONLMT Specifies the monitor limit, which indicates how frequently the
IBMSNAP_CAPMON table is pruned.

*SAME (default)
The Capture program continues and uses the current monitor limit
value.

monitor-limit
The number of minutes between each pruning operation of the
IBMSNAP_CAPMON table.

MONITV Specifies the monitor interval (in seconds), which indicates how
frequently the Capture program inserts rows into the
IBMSNAP_CAPMON table.

*SAME (default)
The Capture program continues and uses the current monitor
interval value.

monitor-interval
The number of seconds between row insertion into the
IBMSNAP_CAPMON table. The monitor interval must be at least
120 seconds (two minutes). If you type a number that is less than
120, the command automatically sets this parameter value to 120.

354 SQL Replication Guide and Reference

Table 49. OVRDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

MEMLMT Specifies the maximum size (in megabytes) of memory that the Capture
journal job can use.

*SAME (default)
The Capture program continues and uses the current memory limit
value.

memory-limit
The maximum number of megabytes for memory.

PRUNE Use this parameter to change the way that the Capture program prunes
rows from the change-data (CD), unit-of-work (UOW),
IBMSNAP_SIGNAL, IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and
IBMSNAP_AUTHTKN tables.

*SAME (default)
The Capture program continues and uses the pruning parameters
that you specified when you started the STRDPRCAP command.

*IMMED
The Capture program starts pruning the tables immediately,
regardless of the value of the CLNUPITV parameter that you
specified when you started the STRDPRCAP command.

*DELAYED
The Capture program prunes the old rows at the end of the
specified pruning interval.

PRUNE(*DELAYED) does not affect the frequency of pruning if you
set the second part of the CLNUPITV parameter to *IMMED or
*DELAYED on the STRDPRCAP command. However,
PRUNE(*DELAYED) does initiate pruning if you set the second part
of the CLNUPITV parameter to *NO when you started the
STRDPRCAP command.

*NO
The Capture program does not initiate pruning. This value
overrides the CLNUPITV parameter setting from the STRDPRCAP
command.

Examples for OVRDPRCAPA

The following examples illustrate how to use the OVRDPRCAPA command.

Example 1:

To change the pruning parameters of the CD, UOW, IBMSNAP_SIGNAL,
IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables
(which reside under the default ASN library) and to change the
IBMSNAP_CAPMON monitor interval and memory limit of Capture journal jobs
in a running Capture program:
OVRDPRCAPA CAPCTLLIB(ASN) CLNUPITV(12) MONITV(600) MEMLMT(64)

Example 2:

To initiate pruning of the CD, UOW, IBMSNAP_SIGNAL, IBMSNAP_CAPMON,
IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables, which reside in the
BSN library:
OVRDPRCAPA CAPCTLLIB(BSN) PRUNE(*IMMED)

Chapter 22. System commands for SQL replication (System i) 355

RMVDPRREG: Removing a DPR registration (System i)
Use the Remove DPR registration (RMVDPRREG) command to remove a single source
table from the IBMSNAP_REGISTER table so that the source table is no longer
used for replication.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� RMVDPRREG SRCTBL(library-name/file-name) �

�
ASN

CAPCTLLIB (library-name)

��

Table 50 lists the invocation parameters.

Table 50. RMVDPRREG command parameter definitions for System i

Parameter Definition and prompts

SRCTBL Identifies the registration that you want to remove. This is a required
parameter.

library-name/file-name
The qualified name of the registered file.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which
the Capture control tables reside.

ASN (default)
The Capture control tables are in the ASN library.

library-name
The name of a library containing the Capture control tables.

Examples for RMVDPRREG

The following examples illustrate how to use the RMVDPRREG command.

Example 1:

To remove the registration for the source table named EMPLOYEE of the HR
library in the default ASN Capture schema:
RMVDPRREG SRCTBL(HR/EMPLOYEE)

Example 2:

To remove the registration for the source table named SALES of the DEPT library
under a Capture schema called BSN:
RMVDPRREG SRCTBL(DEPT/SALES) CAPCTLLIB(BSN)

356 SQL Replication Guide and Reference

RMVDPRSUB: Removing a DPR subscription set (System i)
Use the Remove DPR subscription set (RMVDPRSUB) command to remove a
subscription set. If you set the RMVMBRS parameter to *YES, this command
removes the subscription set and all of its members.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� RMVDPRSUB APYQUAL (apply-qualifier) SETNAME (set-name) �

�
*LOCAL

CTLSVR (rdb-name)
*NO

RMVREG (*YES)

�

�
*NO

DLTTGTTBL (*YES)
*NO

RMVMBRS (*YES)

��

Table 51 lists the invocation parameters.

Table 51. RMVDPRSUB command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that the Apply program uses to identify the
subscription set. This parameter is required.

apply-qualifier
The name of the Apply qualifier.

SETNAME Specifies the name of the subscription set. This parameter is required.

set-name
The name of the subscription set. You receive an error message if
you enter a subscription-set name that does not exist for the
specified Apply qualifier.

CTLSVR Specifies the relational database name of the system that contains the
Apply control tables.

*LOCAL (default)
The Apply control tables reside locally (on the machine from which
you are running the RMVDPRSUB command).

rdb-name
The name of the relational database where the Apply control tables
reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

Chapter 22. System commands for SQL replication (System i) 357

Table 51. RMVDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

RMVREG Specifies whether this command removes the registrations that are
associated with the target tables of all the subscription-set members in
the subscription set. Use this parameter only if you have set the
RMVMBRS parameter to *YES.

*NO (default)
The registrations are not removed.

*YES
The registrations are removed.

DLTTGTTBL Specifies whether this command drops the target tables of the
subscription-set members after the subscription set is removed. Use this
parameter only if you set the RMVMBRS parameter to *YES.

*NO (default)
The target tables are not dropped.

*YES
The target tables are dropped.

RMVMBRS Specifies whether this command removes the subscription set and all the
members in that subscription set.

*NO (default)
The subscription set is not removed if there are existing members in
the subscription set.

*YES
The subscription set and all its subscription-set members are
removed.

Examples for RMVDPRSUB

The following examples illustrate how to use the RMVDPRSUB command.

Example 1:

To remove a subscription set named SETHR that contains no subscription-set
members:
RMVDPRSUB APYQUAL(AQHR) SETNAME(SETHR)

Example 2:

To remove a subscription set named SETHR and all its subscription-set members:
RMVDPRSUB APYQUAL(AQHR) SETNAME(SETHR) RMVMBRS(*YES)

Example 3:

To remove a subscription set named SETHR, all its subscription-set members, and
the associated registrations:
RMVDPRSUB APYQUAL(AQHR) SETNAME(SETHR) RMVREG(*YES) RMVMBRS(*YES)

RMVDPRSUBM: Removing a DPR subscription-set member (System i)
Use the Remove DPR subscription-set member (RMVDPRSUBM) command to remove a
single subscription-set member from a subscription set.

358 SQL Replication Guide and Reference

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� RMVDPRSUBM APYQUAL (apply-qualifier) SETNAME (set-name) �

� TGTTBL (library-name/file-name)
*LOCAL

CTLSVR (rdb-name)

�

�
*NO

RMVREG (*YES)
*NO

DLTTGTTBL (*YES)

��

Table 52 lists the invocation parameters.

Table 52. RMVDPRSUBM command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that the Apply program uses to identify the
subscription set. This parameter is required.

apply-qualifier
The name of the Apply qualifier.

SETNAME Specifies the name of the subscription set. This parameter is required.

set-name
The name of the subscription set. You receive an error message if
you enter a subscription-set name that does not exist for the
specified Apply qualifier.

TGTTBL Specifies the target table that is registered for the subscription-set
member. This parameter is required.

library-name/file-name
The qualified name of the target table.

CTLSVR Specifies the relational database name of the system that contains the
Apply control tables.

*LOCAL (default)
The Apply control tables reside locally (on the machine from which
you are running the RMVDPRSUBM command).

rdb-name
The name of the relational database where the Apply control tables
reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

RMVREG Specifies whether this command removes the registration that is
associated with the target table for the subscription-set member.

*NO (default)
The registration is not removed.

*YES
The registration is removed.

Chapter 22. System commands for SQL replication (System i) 359

Table 52. RMVDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

DLTTGTTBL Specifies whether this command drops the target table of the
subscription-set member after the subscription-set member is removed.

*NO (default)
The target table is not dropped.

*YES
The target table is dropped.

Examples for RMVDPRSUBM

The following examples illustrate how to use the RMVDPRSUBM command.

Example 1:

To remove a subscription-set member, which uses a target table named EMP, from
the SETEMP subscription set on the relational database named RMTRDB1:
RMVDPRSUBM APYQUAL(AQHR) SETNAME(SETEMP) TGTTBL(TGTEMP/EMP) CTLSVR(RMTRDB1)

Example 2:

To remove a subscription-set member from the SETHR subscription set, remove the
registration, and then drop the table:
RMVDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) TGTTBL(TGTHR/YTDTAX) RMVREG(*YES)

DLTTGTTBL(*YES)

RVKDPRAUT: Revoking authority (System i)
The Revoke DPR Authority (RVKDPRAUT) command revokes authority to the
replication control tables so that users can no longer define or modify replication
sources and subscription sets.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� �RVKDPRAUT USER(user-name)
ASN *PUBLIC

CAPCTLLIB (library-name)

��

Table 53 on page 361 lists the invocation parameters.

360 SQL Replication Guide and Reference

Table 53. RVKDPRAUT command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library under
which user authority is being revoked.

ASN (default)
The Capture control tables reside in the ASN library.

library-name
The name of the library that contains the replication control tables.

USER Specifies the users whose authority is revoked. This parameter is
required.

user-name
Specifies the names of up to 50 users whose authority is revoked.

*PUBLIC
Specifies that authority is revoked from all users without specific
authority, who are not on the authorization list, and whose group
profile does not have any authority.

Usage notes

The command returns an error message if any of the following conditions exist:
v A specified user does not exist.
v The user running the command is not authorized to the specified user profiles.
v The user running the command does not have permission to revoke authorities

to the DB2 DataPropagator for System i control tables.
v The DB2 DataPropagator for System i control tables do not exist.
v The Capture or Apply programs are running.

Examples for RVKDPRAUT

The following examples illustrate how to use the RVKDPRAUT command.

Example 1:

To revoke the authority from a user named HJONES to the control tables under the
ASN library:
RVKDPRAUT CAPCTLLIB(ASN) USER(HJONES)

Example 2:

To revoke the authority from all users that were not specified in the GRTDPRAUT
command so that they cannot access the control tables in the ASN library:
RVKDPRAUT CAPCTLLIB(ASN) USER(*PUBLIC)

STRDPRAPY: Starting Apply (System i)
Use the Start DPR Apply (STRDPRAPY) command to start an Apply program on your
local system. The Apply program continues to run until you stop it or until it
detects an unrecoverable error.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

Chapter 22. System commands for SQL replication (System i) 361

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

�� STRDPRAPY
*CURRENT

USER(*JOBD)
user-name

�

�
*LIBL/QZSNDPR

JOBD(library-name/job-description-name)

�

�
*USER

APYQUAL(apply-qualifier)
*LOCAL

CTLSVR(rdb-name)

�

�
*NONE

TRACE(*ERROR)
*ALL
*PRF
*REWORK

�

�
*NONE

FULLREFPGM(library-name/program-name)

�

�
*NONE

SUBNFYPGM(library-name/program-name)
*YES

INACTMSG(*NO)

�

�
*YES

ALWINACT(*NO)
6

DELAY(delay-time)

�

�
300

RTYWAIT(retry-wait-time)
*NO

COPYONCE(*YES)

�

�
*NO

TRLREUSE(*YES)
*NO

OPTSNGSET(*YES)

��

Table 54 on page 363 lists the invocation parameters.

362 SQL Replication Guide and Reference

Table 54. STRDPRAPY command parameter definitions for System i

Parameter Definition and prompts

USER Specifies the name of the user ID for which to start the Apply program.
When you run this command, you must be authorized (have *USE
rights) to the specified user profile; the Apply program runs under this
specified user profile.

The control tables are located on the relational database specified by the
CTLSVR parameter. The same control tables are used regardless of the
value specified on the USER parameter.

*CURRENT (default)
The user ID associated with the current job is the same user ID
associated with this Apply program.

*JOBD
The user ID specified in the job description associated with this
Apply program. The job description cannot specify USER(*RQD).

user-name
The user ID associated with this Apply program. The following
IBM-supplied objects are not valid on this parameter: QDBSHR,
QDFTOWN, QDOC, QLPAUTO, QLPINSTALL, QRJE, QSECOFR,
QSPL, QSYS, or QTSTRQS.

When prompting on the STRDPRAPY command, you can press the F4
key to see a list of users who defined subscription sets.

JOBD Specifies the name of the job description to use when submitting the
Apply program.

*LIBL/QZSNDPR (default)
The default job description provided with DB2 DataPropagator for
System i.

library-name/job-description-name
The name of the job description used for the Apply program.

APYQUAL Specifies the Apply qualifier to be used by the Apply program. All
subscriptions sets that are grouped together with this Apply qualifier are
run by the Apply program.

*USER (default)
The USER parameter value that you enter is used as the name of
the Apply qualifier.

apply-qualifier
The name used to group the subscription sets that are to be run by
this Apply program. You can specify a maximum of 18 characters
for the Apply qualifier name. This name follows the same naming
conventions as a relational database name.

When prompting on the STRDPRAPY command, you can press the F4
key to see a list of Apply qualifier names with existing subscription
sets.

Chapter 22. System commands for SQL replication (System i) 363

Table 54. STRDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

CTLSVR Specifies the relational database name of the system that contains the
Apply control tables.

*LOCAL (default)
The Apply control tables reside locally (on the machine where you
are running the STRDPRAPY command).

rdb-name
The name of the relational database where the Apply control tables
reside. You can use the Work with RDB Directory Entries
(WRKRDBDIRE) command to find this name.

When prompting on the STRDPRAPY command, you can press the F4
key to see a list of available RDB names.

TRACE Specifies whether the Apply program should generate a trace. The
Apply program writes the trace data to a spool file called QPZSNATRC.

*NONE (default)
No trace is generated.

*ERROR
The trace contains error information only.

*ALL
The trace contains error and execution flow information.

*PRF
The trace contains information that can be used to analyze
performance at different stages of the Apply program execution.

*REWORK
The trace contains information about rows that were reworked by
the Apply program.

FULLREFPGM Specifies whether the Apply program is to invoke an exit routine to
initialize a target table. When the Apply program is ready to perform a
full refresh of a target table, the Apply program invokes the specified
exit routine rather than performing the full refresh itself.

When a full-refresh exit routine is used by the Apply program, the value
of the ASNLOAD column in the IBMSNAP_APPLYTRAIL table is Y.

*NONE (default)
A full-refresh exit routine is not used.

library-name/program-name
The qualified name of the program that is called by the Apply
program performing a full refresh of a target table. For example, to
call program ASNLOAD in library DATAPROP, the qualified name
is DATAPROP/ASNLOAD.

364 SQL Replication Guide and Reference

Table 54. STRDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

SUBNFYPGM Specifies whether the Apply program is to invoke an exit routine when
the program finishes processing a subscription set. Input to the exit
routine includes the subscription set name, Apply qualifier, completion
status, and statistics with the number of rejects.

The notify program allows you to examine the unit-of-work (UOW)
table to determine when transactions have been rejected and when to
take further actions, such as issuing a message or generating an event.

*NONE (default)
An exit routine is not used.

library-name/program-name
The qualified name of the exit routine program called by the Apply
program when processing a subscription set. For example, to call
program APPLYDONE in library DATAPROP, the qualified name is
DATAPROP/APPLYDONE.

INACTMSG Specifies whether the Apply program is to generate a message whenever
the program completes its work and becomes inactive for a period of
time.

*YES (default)
The Apply program generates message ASN1044 before beginning a
period of inactivity. Message ASN1044 indicates how long the
Apply program remains inactive.

*NO
No message is generated.

ALWINACT Specifies whether the Apply program can run in an inactive (sleep)
state.

*YES (default)
The Apply program sleeps if there is nothing to process.

*NO
If the Apply program has nothing to process, the job that submitted
and started the Apply program ends.

DELAY Specifies the delay time (in seconds) at the end of each Apply program
cycle when continuous replication is used.

6 (default)
The delay time is six seconds.

delay-time
The delay time, entered as a number between 0 and 6 inclusive.

RTYWAIT Specifies how long (in seconds) the Apply program is to wait after it
encounters an error before it retries the operation that failed.

300 (default)
The retry wait time is 300 seconds (five minutes).

retry-wait-time
The wait time, entered as a number between 0 and 35000000
inclusive, before the Apply program retries the failed operation.

Chapter 22. System commands for SQL replication (System i) 365

Table 54. STRDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

COPYONCE Specifies whether the Apply program executes one copy cycle for each
subscription set that is eligible at the time the Apply program is
invoked. Then the Apply program terminates. An eligible subscription
set meets the following criteria:

v (ACTIVATE > 0) in the IBMSNAP_SUBS_SET table. When the
ACTIVATE column value is greater than zero, the subscription set is
active indefinitely or is used for a one-time-only subscription
processing.

v (REFRESH_TYPE = R or B) or (REFRESH_TYPE = E and the specified
event occurred). The REFRESH_TYPE column value is stored in the
IBMSNAP_SUBS_SET table.

The MAX_SYNCH_MINUTES limit from the IBMSNAP_SUBS_SET table
and the END_OF_PERIOD timestamp from the
IBMSNAP_SUBS_EVENT table are honored if specified.

*NO (default)
The Apply program does not execute one copy cycle for each
eligible subscription set.

*YES The Apply program executes one copy cycle for each eligible
subscription set and then terminates.

TRLREUSE Specifies whether the Apply program empties the
IBMSNAP_APPLYTRAIL table when the Apply program starts.

*NO (default)
The Apply program does not empty the
IBMSNAP_APPLYTRAIL table during program startup.

*YES The Apply program empties the IBMSNAP_APPLYTRAIL table
during program startup.

OPTSNGSET Specifies whether the performance of the Apply program is optimized if
only one subscription set is processed. This parameter does not pertain
to replica target tables.

If you set this parameter to *YES, the Apply program fetches the
members and columns of a subscription set only once and reuses this
fetched information when processing the same subscription set in two or
more consecutive processing cycles.

*NO (default)
The performance of the Apply program is not optimized if only
one subscription set is processed.

*YES The performance of the Apply program is optimized if only
one subscription set is processed. The Apply program reuses
the subscription set information during subsequent processing
cycles, requiring fewer CPU resources and improving
throughput rates.

366 SQL Replication Guide and Reference

Usage notes

You can set up the system to start the subsystem automatically by adding the
command that is referred to in the QSTRUPPGM value on your system. If you use
the QDP4/QZSNDPR subsystem, it is started as part of the STRDPRAPY command
processing.

If the relational database (RDB) specified by the CTLSVR parameter is a DB2 for
i5/OS database, the tables on the server are found in the ASN library. If the RDB is
not a DB2 for i5/OS database, you can access the tables by using ASN as the
qualifier.

Error conditions when starting the Apply program

The STRDPRAPY command issues an error message if any of the following conditions
occur:
v If the user does not exist.
v If the user running the command is not authorized to the user profile specified

on the command or the job description.
v If an instance of the Apply program is already active on the local system for this

combination of Apply qualifier and control server.
v If the RDB name specified by the CTLSVR parameter is not in the relational

database directory.
v If the control tables do not exist on the RDB specified by the CTLSVR

parameter.
v If no subscription sets are defined for the Apply qualifier specified by the

APYQUAL parameter.

An Apply program must be started for each unique Apply qualifier in every
IBMSNAP_SUBS_SET table. You can start multiple Apply programs by specifying a
different Apply qualifier each time that you issue the STRDPRAPY command. These
Apply programs will run under the same user profile.

Identifying Apply program jobs

Each Apply program is identified by using both the Apply qualifier and the control
server names. When run, the job started for the Apply program does not have
sufficient external attributes to correctly identify which Apply program is
associated with a particular Apply qualifier and control server combination.
Therefore, the job is identified in the following way:
v The job is started under the user profile associated with the USER parameter.
v The first 10 characters of the Apply qualifier are truncated and become the job

name.
v DB2 DataPropagator for System i maintains an IBMSNAP_APPLY_JOB table

named in the ASN library on the local system. The table maps the Apply
qualifier and control server values to the correct Apply program job.

v You can view the job log. The Apply qualifier and control server names are used
in the call to the Apply program.

In general, you can identify the correct Apply program job by looking at the list of
jobs running in the QZSNDPR subsystem if both:
v The first 10 characters of the Apply qualifier name are unique.
v The Apply program is started for the local control server only.

Chapter 22. System commands for SQL replication (System i) 367

Examples for STRDPRAPY

The following examples illustrate how to use the STRDPRAPY command.

Example 1:

To start the Apply program that uses the AQHR Apply qualifier and Apply control
tables that reside locally and to generate a trace file that contains error and
execution flow information:
STRDPRAPY APYQUAL(AQHR) CTLSVR(*LOCAL) TRACE(*ALL)

Example 2:

To start an Apply program with Apply control tables that reside locally and to
specify that the job that started this Apply program automatically end when the
Apply program has nothing left to process:
STRDPRAPY APYQUAL(AQHR) CTLSVR(*LOCAL) ALWINACT(*NO)

Example 3:

To start an Apply program that empties the IBMSNAP_APPLYTRAIL table during
program startup:
STRDPRAPY APYQUAL(AQHR) CTLSVR(*LOCAL) TRLREUSE(*YES)

Example 4:

To start an Apply program with all default values:
STRDPRAPY

STRDPRCAP: Starting Capture (System i)
Use the Start DPR Capture (STRDPRCAP) command to start capturing changes to
System i database tables on System i servers.

Because this command processes all replication sources in the
IBMSNAP_REGISTER table, make sure that you are running this command with
the proper authority.

After you start the Capture program, it runs continuously until you stop it or it
detects an unrecoverable error.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� STRDPRCAP
*YES

RESTART(*NO)

�

368 SQL Replication Guide and Reference

�
*LIBL/QZSNDPR

JOBD(library-name/job-description-name)

�

�
120

WAIT (value)

�

�
*DFT *IMMED

CLNUPITV (hours-to-wait *DELAYED)
*NO

�

�
ASN

CAPCTLLIB (library-name)

�

�

�

*ALL

(1)
JRN (library-name/journal-name)

�

�
*DFT

TRCLMT (trace-limit)
*DFT

MONLMT (monitor-limit)

�

�
*DFT

MONITV (monitor-interval)
*DFT

MEMLMT (memory-limit)

�

�
*DFT

RETAIN (retention-limit)
*DFT

LAG (lag-limit)

�

�
*DFT

FRCFRQ (force-frequency)

��

Notes:

1 You can specify up to 50 journals.

Table 55 on page 370 lists the invocation parameters.

Chapter 22. System commands for SQL replication (System i) 369

Table 55. STRDPRCAP command parameter definitions for System i

Parameter Definition and prompts

RESTART Specifies how the Capture program handles warm and cold starts.

*YES (default)
The Capture program continues processing the changes from the
point where it was when it ended previously. This is also known
as a warm start and is the normal mode of operation.

*NO
The Capture program removes all information from the
change-data (CD) tables. The Capture program also removes all
information from the unit-of-work (UOW) table when you specify
JRN(*ALL).

All subscriptions for affected source tables are fully refreshed
before change capturing resumes. This process is also known as a
cold start.

By specifying RESTART(*NO) and JRN(library-name/journal-name),
you can cold start the Capture program for specified journals.

JOBD Specifies the name of the job description to use when submitting the
Capture program.

*LIBL/QZSNDPR (default)
Specifies the default job description provided with DB2
DataPropagator for System i.

library-name/job-description-name
The name of the job description used for the Capture program.

WAIT Specifies the maximum number of seconds (60 to 6 000) to wait before
the Capture program checks its status. You can use this value to tune
the responsiveness of the Capture program.

A low value reduces the time that the Capture program takes before
ending or initializing, but can have a negative effect on system
performance. A higher value increases the time that the Capture
program takes before ending or initializing, but can improve system
performance. A value that is too high can result in decreased
responsiveness while the Capture program is performing periodic
processing. The amount of the decrease in responsiveness depends on
the amount of change activity to source tables and the amount of
other work occurring on the system.

120 (default)
The Capture program waits 120 seconds.

value
The maximum number of seconds that the Capture program
waits.

370 SQL Replication Guide and Reference

Table 55. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

CLNUPITV Specifies the maximum amount of time (in hours) before the Capture
program prunes old records from the change-data (CD), unit-of-work
(UOW), IBMSNAP_SIGNAL, IBMSNAP_CAPMON,
IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables.

This parameter works with the RETAIN parameter to control pruning
of the CD, UOW, IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN
tables, with the MONLMT parameter to control pruning of the
IBMSNAP_CAPMON table, and with the TRCLMT parameter to
control pruning of the IBMSNAP_CAPTRACE table.

(Use the STRDPRCAP command to set the RETAIN, MONLMT, and
TRCLMT parameters for a Capture program. Use the CHGDPRCAPA or
OVRDPRCAPA command to change these parameter settings.)

There are two parts to the CLNUPITV parameter:

*DFT (default)
The Capture program uses the value of the PRUNE_INTERVAL
column from the IBMSNAP_CAPPARMS table.

hours-to-wait
The pruning interval expressed as a specific number of hours (1
to 100).

*IMMED (default)
The Capture program prunes old records at the beginning of the
specified interval (or immediately), and at each interval thereafter.

*DELAYED
The Capture program prunes old records at the end of the
specified interval, and at each interval thereafter.

*NO
The Capture program does not prune records.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in
which the Capture control tables reside.

ASN (default)
The default library in which the Capture control tables reside.

library-name
The name of the library in which the Capture control tables
reside.

JRN Specifies a subset of up to 50 journals that you want the Capture
program to work with. The Capture program starts processing all the
source tables that are currently journaled to this journal.

*ALL (default)
The Capture program starts working with all of the journals that
have any source tables journaled to them.

library-name/journal-name
The qualified name of the journal that you want the Capture
program to work with. When entering multiple journals, separate
the journals with spaces.

Chapter 22. System commands for SQL replication (System i) 371

Table 55. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

TRCLMT Specifies the trace limit (in minutes). The Capture program prunes any
IBMSNAP_CAPTRACE table rows that are older than the trace limit.
The default is 10 080 minutes (seven days of trace entries).

*DFT (default)
The Capture program uses the TRACE_LIMIT column value from
the IBMSNAP_CAPPARMS table.

trace-limit
The number of minutes of trace data kept in the
IBMSNAP_CAPTRACE table after pruning.

MONLMT Specifies the monitor limit (in minutes). The Capture programs prunes
any IBMSNAP_CAPMON table rows that are older than the monitor
limit. The default is 10 080 minutes (seven days of monitor entries).

*DFT (default)
The Capture program uses the MONITOR_LIMIT column value
from the IBMSNAP_CAPPARMS table.

monitor-limit
The number of minutes of monitor data kept in the
IBMSNAP_CAPMON table after pruning.

MONITV Specifies how frequently (in seconds) the Capture program inserts
rows into the IBMSNAP_CAPMON table. The default is 300 seconds
(five minutes).

*DFT (default)
The Capture program uses the MONITOR_INTERVAL column
value from the IBMSNAP_CAPPARMS table.

monitor-interval
The number of seconds between row insertion into the
IBMSNAP_CAPMON table. The monitor interval must be at least
120 seconds (two minutes). If you type a number that is less than
120, this parameter value is set to 120.

MEMLMT Specifies the maximum size (in megabytes) of memory that the
Capture journal job can use. The default is 32 megabytes.

*DFT (default)
The Capture program uses the MEMORY_LIMIT column value
from the IBMSNAP_CAPPARMS table.

memory-limit
The maximum number of megabytes for memory.

372 SQL Replication Guide and Reference

Table 55. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

RETAIN Specifies the new retention limit, which is the number of minutes that
data is retained in the change-data (CD), unit-of-work (UOW),
IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN tables before it is
removed. This value works with the CLNUPITV parameter value.
When the CLNUPITV value is reached, the CD, UOW,
IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN data is removed if
this data is older than the retention limit.

Ensure that the Apply intervals are set to copy changed information
before the data reaches this RETAIN parameter value to prevent
inconsistent data in your tables. If the data becomes inconsistent, the
Apply program performs a full refresh.

The default is 10 080 minutes (seven days). The maximum is 35000000
minutes.

*DFT (default)
The Capture program uses the RETENTION_LIMIT column value
from the IBMSNAP_CAPPARMS table.

retention-limit
The number of minutes that the CD, UOW, IBMSNAP_SIGNAL,
and IBMSNAP_AUTHTKN data is retained.

LAG Specifies the new lag limit, which is the number of minutes that the
Capture program can fall behind in processing before restarting.

When the lag limit is reached (that is, when the timestamp of the
journal entry is older than the current timestamp minus the lag limit),
the Capture program initiates a cold start for the tables that it is
processing in that journal. The Apply program then performs a full
refresh to provide the Capture program with a new starting point.

The default is 10 080 minutes (seven days). The maximum is 35000000
minutes.

*DFT (default)
The Capture program uses the LAG_LIMIT column value from
the IBMSNAP_CAPPARMS table.

lag-limit
The number of minutes that the Capture program is allowed to
fall behind.

Chapter 22. System commands for SQL replication (System i) 373

Table 55. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

FRCFRQ Specifies how often (30 to 600 seconds) that the Capture program
writes changes to the change-data (CD) and unit-of-work (UOW)
tables. The Capture program makes these changes available to the
Apply program either when the buffers are filled or when the
FRCFRQ time limit expires, whichever is sooner.

Use this parameter to make changes more readily available to the
Apply program on servers with a low rate of source table changes.
The FRCFRQ parameter value is a global value used for all defined
source tables. Setting the FRCFRQ value to a low number can affect
system performance.

The default is 30 seconds.

*DFT (default)
The Capture program uses the COMMIT_INTERVAL column
value from the IBMSNAP_CAPPARMS table.

force-frequency
The number of seconds that the Capture program keeps CD and
UOW table changes in buffer space before making these changes
available to the Apply program.

Usage notes

The CLNUPITV parameter on the STRDPRCAP command specifies the maximum
number of hours that the Capture program waits before pruning old records from
the change-data (CD), unit-of-work (UOW), IBMSNAP_SIGNAL,
IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables.

You can run the STRDPRCAP command manually, or you can run the command
automatically as a part of the initial program load (IPL startup program).

If the job description specified with the JOBD parameter uses job queue
QDP4/QZSNDPR and the DB2 DataPropagator for System i subsystem is not
active, the STRDPRCAP command starts the subsystem. If the job description is
defined to use a different job queue and subsystem, you must start this subsystem
manually with the Start Subsystem (STRSBS) command either before or after
running the STRDPRCAP command:
STRSBS QDP4/QZSNDPR

You can set up the system to start the subsystem automatically by adding the
STRSBS command to the program that is referred to in the QSTRUPPGM system
value on your system.

Restarting Capture by using warm or cold starts

The value of the RESTART parameter on the STRDPRCAP command controls how
the Capture program handles warm and cold starts.

Warm start process
Warm start information is saved in most cases. Occasionally, warm start
information is not saved. In this case, the Capture program uses the CD
tables, UOW table, or the IBMSNAP_PRUNCNTL table to resynchronize to
the time that it was stopped.

374 SQL Replication Guide and Reference

Automatic cold starts
Sometimes the Capture program automatically switches to a cold start,
even if you specified a warm start. On System i systems, cold starts work
on a journal-by-journal basis. So, for example, if a journal exceeds the lag
limit, all replication sources that use the journal are started in cold mode,
whereas replication sources that use a different journal are not started in
cold mode.

Examples for STRDPRCAP

The following examples illustrate how to use the STRDPRCAP command.

Example 1:

To initiate a warm start of a Capture program for two different journals:
STRDPRCAP RESTART(*YES) JRN(HR/QSQJRN ACCTS/QSQJRN)

Example 2:

To start a Capture program for one specified journal:
STRDPRCAP CAPCTLLIB(BSN) JRN(MARKETING/QSQJRN)

The Capture control tables reside under a library named BSN.

Example 3:

To start a Capture program without pruning for two journals:
STRDPRCAP RESTART(*YES) CLNUPITV(*DFT *NO) JRN(HR/QSQJRN ACCTS/QSQJRN)

Example 4:

To start a Capture program for one specified journal under the default Capture
control library and to change the default trace limit pruning, monitor limit
pruning, IBMSNAP_CAPMON table insertion, and memory limit parameters:
STRDPRCAP CAPCTLLIB(ASN) JRN(SALES/QSQJRN) TRCLMT(1440) MONLMT(1440)

MONITV(3600) MEMLMT(64)

Example 5:

To initiate a cold start of a Capture program:
STRDPRCAP RESTART(*NO)

WRKDPRTRC: Using the DPR trace facility (System i)

Use the DPR trace (WRKDPRTRC) command only if you are instructed to use the
command by IBM software support. The command runs the trace facility to log
program flow information for specified Apply programs.

After you type the command name on the command line, you can press the F4 key
to display the command syntax.

Chapter 22. System commands for SQL replication (System i) 375

To display a complete description of this command and all of its parameters, move
the cursor to the command at the top of the screen and press the F1 key. To
display a description of a specific parameter, place the cursor on that parameter
and press the F1 key.

Syntax

�� WRKDPRTRC
*ON

OPTION (*OFF)
*CHG
*FMT
*STC
*STCG
*STCL
*DMP

*FLW
FMTOPT (*FMT)

*V7FMT

�

�
*

BUFSZ (buffer-size)
*NONE

FILE (file-name)

�

�
*

FSZ (file-size)
ID (*APPLY)

�

�
APYQUAL (apply-qualifier)

�
(1)

DIALVL (1)
2
3
4
*SAME

�

�

�
(2) *ALL

FNCLVL (function-name/diagnostic-level)
component-name/diagnostic-level

��

Notes:

1 You can specify multiple values.

2 You can specify up to 20 functions or components.

Table 56 on page 377 lists the invocation parameters.

376 SQL Replication Guide and Reference

Table 56. WRKDPRTRC command parameter definitions for System i

Parameter Definition

OPTION Specify one trace facility function.

*ON (default)
Turn the trace facility on. This option automatically
creates a shared memory segment for tracing.

*OFF
Turn the trace facility off.

*CHG
Change the values of the trace facility parameters.

*FMT
Format the trace facility output from shared
memory.

*STC
Display the status of a trace facility. This status
information includes the trace version, application
version, number of entries, buffer size, amount of
buffer used, status code, and program timestamp.

This parameter option is equivalent to the stat
option of the asntrc command used on UNIX,
Windows, and z/OS operating systems.

*STCG
Display the status of a trace facility in Replication
Center readable format.

*STCL
Display the status of a trace facility with additional
version level information. This additional
information includes the service levels of each
module in the application and appears as long
strings of text.

This parameter option is equivalent to the statlong
option of the asntrc command used on UNIX,
Windows, and z/OS operating systems.

*DMP
Write the current contents of the trace buffer to a
file.

When prompting on the WRKDPRTRC command, you can
press the F4 key to see a list of trace options.

FMTOPT Specifies the options of the format ID and is used with
the OPTION(*FMT) parameter.

*FLW (default)
Display the flow of the function calls.

*FMT
Display the format of the trace buffer or trace file.
Shows all the detailed data.

*V7FMT
Format the trace buffer or trace file information in
Version 7 format.

When prompting on the WRKDPRTRC command, you can
press the F4 key to see a list of format options.

Chapter 22. System commands for SQL replication (System i) 377

Table 56. WRKDPRTRC command parameter definitions for System i (continued)

Parameter Definition

BUFSZ Specifies the size (in bytes) of the trace buffer. You can
enter an M, K, or G after the number to indicate
megabytes, kilobytes, or gigabytes, respectively.

The default is two megabytes.

* (default)
Use the two megabyte default size.

buffer-size
The buffer size in bytes.

FILE Specifies whether the trace output is written to a file.

*NONE (default)
The trace output goes to shared memory only.

file-name
The name of the output file. If you are using the
OPTION(*DMP) parameter, this file name
represents the name of a dump file.

FSZ Specifies the size (in bytes) of the file where the trace
data is stored. You can enter an M, K, or G after the
number to indicate megabytes, kilobytes, or gigabytes,
respectively.

The default is two gigabytes.

* (default)
Use the two gigabyte default size.

file-size
The file size in bytes.

ID Specifies the type of program to be traced.

*APPLY (default)
An Apply program trace.

APYQUAL Specifies the name of Apply program to be traced.

apply-qualifier
The name of the Apply qualifier.

378 SQL Replication Guide and Reference

Table 56. WRKDPRTRC command parameter definitions for System i (continued)

Parameter Definition

DIALVL Specifies the types of trace records to be recorded by the
trace facility. Trace records are categorized by a
diagnostic mask number:

1 Flow data, which includes the entry and exit
points of functions.

2 Basic data, which includes all major events
encountered by the trace facility.

3 Detailed data, which includes the major events
with descriptions.

4 Performance data.

*SAME
This command uses the diagnostic level
settings from the previous trace facility.

You can enter one or more diagnostic mask numbers.
The numbers that you enter must be in ascending order.
Do not type spaces between the numbers.

Important: The number levels are not inclusive.

When you start the trace facility, the default is
DIALVL(1234). When you subsequently invoke the trace
facility, the default is *SAME.

When prompting on the WRKDPRTRC command, you can
press the F4 key to see a list of available diagnostic
levels.

FNCLVL Specifies if a particular function or component identifier
is to be traced.

*ALL (default)
All functions and components are included in the
trace facility.

function-name/diagnostic-level
The name of the function to be traced and the
corresponding diagnostic mask numbers.

component-name/diagnostic-level
The name of the component to be traced and the
corresponding diagnostic mask numbers.

You can enter up to 20 function or component names.

Examples for WRKDPRTRC

The following examples illustrate how to use the WRKDPRTRC command.

Example 1:

To start an Apply trace on the Apply qualifier AQ1 for all functions and
components with output written to a file called TRCFILE:
WRKDPRTRC OPTION(*ON) FILE(TRCFILE) ID(*APPLY) APYQUAL(AQ1)

Example 2:

Chapter 22. System commands for SQL replication (System i) 379

To end an Apply trace on the Apply qualifier AQ1:
WRKDPRTRC OPTION(*OFF) ID(*APPLY) APYQUAL(AQ1)

Example 3:

To change an Apply trace on the Apply qualifier AQ1 to diagnostic levels 3 and 4
(detailed and performance data) for all functions and components:
WRKDPRTRC OPTION(*CHG) ID(*APPLY) APYQUAL(AQ1) DIALVL(34)

Example 4:

To display the status of an Apply trace on the Apply qualifier AQ1:
WRKDPRTRC OPTION(*STC) ID(*APPLY) APYQUAL(AQ1)

Example 5:

To display the function calls on the Apply qualifier AQ1 at diagnostic levels 3 and
4:
WRKDPRTRC OPTION(*FMT) FMTOPT(*FLW) ID(*APPLY) APYQUAL(AQ1) DIALVL (34)

Example 6:

To write the Apply trace information of the Apply qualifier AQ1 to a dump file
named DMPFILE:
WRKDPRTRC OPTION(*DMP) FILE(DMPFILE) ID(*APPLY) APYQUAL(AQ1)

380 SQL Replication Guide and Reference

Chapter 23. SQL Replication table structures

Relational database tables are used to store information for the replication program
at each server: Capture control server, Apply control server, Monitor control server,
and target server. These tables are called control tables.

Tables at a glance
The following diagrams can be used for quick reference to the control tables for the
Capture control server, Apply control server, and Monitor control server.

Figure 7 on page 382, Figure 8 on page 383, andFigure 9 on page 384 show the
tables at the Capture control server, the columns in each table, and the indexes on
each table. Figure 10 on page 385 and Figure 11 on page 386 show the tables at the
Apply control server, the columns in each table, and the indexes on each table.
Figure 12 on page 387 and Figure 13 on page 388 show the tables at the Monitor
control server, the columns in each table, and the indexes on each table.

© Copyright IBM Corp. 1994, 2012 381

Figure 7. Tables used at the Capture control server. These tables are used by the Capture program, Apply program,
and Capture triggers at the Capture control server. The columns that make up each table's main index are listed in
parentheses under the table name.

382 SQL Replication Guide and Reference

Figure 8. Tables used at the Capture control server (continued). These tables are used by the Capture program, Apply
program, and Capture triggers at the Capture control server. The columns that make up each table's main index are
listed in parentheses under the table name.

Chapter 23. SQL Replication table structures 383

Control tables used at the Capture control server (image 3 of 3)

SEQ INTEGER NOT NULL

(SEQ)

schema.IBMSNAP_SEQTABLE

schema.IBMSNAP_SIGNAL

SIGNAL_TIME

SIGNAL_TYPE

SIGNAL_SUBTYPE

SIGNAL_INPUT_IN

SIGNAL_STATE

SIGNAL_LSN

TIMESTAMP NOT NULL

WITH DEFAULT

VARCHAR(30) NOT NULL

VARCHAR(30)

VARCHAR(500)

CHAR(1) NOT NULL

CHAR(10) FOR BIT DATA

schema.IBMSNAP_UOW

(IBMSNAP_COMMITSEQ, IBMSNAP_LOGMARKER)

IBMSNAP_UOWID

IBMSNAP_COMMITSEQ

IBMSNAP_LOGMARKER

IBMSNAP_AUTHTKN

IBMSNAP_AUTHID

IBMSNAP_REJ_CODE

IBMSNAP_APPLY_QUAL

CHAR(10) FOR BIT DATA

NOT NULL

CHAR(10) FOR BIT DATA

NOT NULL

TIMESTAMP NOT NULL

VARCHAR(30) NOT NULL

VARCHAR(30) NOT NULL

CHAR(1) NOT NULL

WITH DEFAULT

CHAR(18) NOT NULL

WITH DEFAULT

1

schema.IBMSNAP_RESTART

(no index)

MAX_COMMITSEQ

MAX_COMMIT_TIME

MIN_INFLIGHTSEQ

CURR_COMMIT_TIME

CAPTURE_FIRST_SEQ

CHAR(10) FOR BIT DATA

NOT NULL

TIMESTAMP NOT NULL

CHAR(10) FOR BIT DATA

NOT NULL

TIMESTAMP NOT NULL

CHAR(10) FOR BIT DATA

NOT NULL

(JRN_LIB, JRN_NAME)

MAX_COMMITSEQ

MAX_COMMIT_TIME

MIN_INFLIGHTSEQ

CURR_COMMIT_TIME

CAPTURE_FIRST_SEQ

UID

SEQNBR

JRN_LIB

JRN_NAME

STATUS

CHAR(10) FOR BIT DATA

NOT NULL

TIMESTAMP NOT NULL

CHAR(10) FOR BIT DATA

NOT NULL

TIMESTAMP NOT NULL

CHAR(10) FOR BIT DATA

NOT NULL

INTEGER NOT NULL

BIGINT NOT NULL

CHAR(10) NOT NULL

CHAR(10) NOT NULL

CHAR(1)

OS/400 only

UNIX, Windows, and z/OS only

Informix only

1 VARCHAR(30) for DB2 for z/OS V8 compatibility mode or earlier;
VARCHAR(128) for DB2 for z/OS V8 new-function mode.

Figure 9. Tables used at the Capture control server (continued). These tables are used by the Capture program, Apply
program, and Capture triggers at the Capture control server. The columns that make up each table's main index are
listed in parentheses under the table name.

384 SQL Replication Guide and Reference

Figure 10. Tables used at the Apply control server. These tables are used by the Apply program at the Apply control
server. The columns that make up each table's main index are listed in parentheses under the table name.

Chapter 23. SQL Replication table structures 385

Figure 11. Tables used at the Apply control server (continued). These tables are used by the Apply program at the
Apply control server. The columns that make up each table's main index are listed in parentheses under the table
name.

386 SQL Replication Guide and Reference

Figure 12. Tables used at the Monitor control server. These tables are used by the Replication Alert Monitor program
at the Monitor control server. The columns that make up each table's main index are listed in parentheses under the
table name.

Chapter 23. SQL Replication table structures 387

Tables at the Capture control server
The tables stored at the Capture control server contain information about your
registered sources and how the Capture program or triggers process the sources.

For Linux, UNIX, Windows, and z/OS, you build these control tables to your
specifications by using the ASNCLP command-line program or Replication Center.
For System i, these control tables are created automatically for you in the ASN
library when you install DataPropagator for System i. You can use the System i
commands to create Capture control tables in alternate capture schemas.

Table 57 describes the control tables at the Capture server.

Table 57. Quick reference for tables used at the Capture control server

Table name Description

“IBMSNAP_CAPSCHEMAS table”
on page 397

Contains the names of all Capture schemas

IBMSNAP_AUTHTKN table (System
i)

Contains information to support update-anywhere
replication.

“IBMSNAP_CAPENQ table (z/OS,
Linux, UNIX, Windows)” on page
391

For each Capture schema, this table is used to ensure
that:

v For DB2 for Linux, UNIX and
Windows, only one Capture program is running
per database.

v For non-data-sharing DB2 for
z/OS, only one Capture program is running per
subsystem.

v For data-sharing DB2 for
z/OS, only one Capture program is running per
data-sharing group.

Figure 13. Tables used at the Monitor control server (continued). These tables are used by the Replication Alert
Monitor program at the Monitor control server. The columns that make up each table's main index are listed in
parentheses under the table name.

388 SQL Replication Guide and Reference

Table 57. Quick reference for tables used at the Capture control server (continued)

Table name Description

“CD table” on page 400 Contains information about changes that occur at the
source. This table is not created until you register a
replication source.

“CCD table (non-DB2)” on page 399 Contains information about changes that occur at the
source and additional columns to identify the
sequential ordering of those changes.

“IBMSNAP_CAPMON table” on
page 391

Contains operational statistics that help monitor the
progress of the Capture program.

“IBMSNAP_CAPPARMS table” on
page 393 Contains parameters that you can specify to control

the operations of the Capture program.

“IBMSNAP_CAPTRACE table” on
page 398

Contains messages from the Capture program.

“IBMQREP_IGNTRAN table” on
page 401

Can be used to inform the Capture program about
transactions that you do not want to be captured
from the DB2 recovery log.

“IBMQREP_IGNTRANTRC table” on
page 402

Records information about transactions that were
specified to be ignored.

IBMQREP_PART_HIST table Maintains a history of changes to partitioned source
tables on Linux, UNIX, and Windows systems. This
table is used by SQL replication and Q Replication.

“IBMSNAP_PARTITIONINFO table”
on page 403

Contains information that enables the Capture
program to restart from the earliest required log
sequence number.

“IBMSNAP_PRUNE_LOCK table”
on page 406

Used to serialize the Capture program's access of CD
tables during a cold start or during retention-limit
pruning (pruning when the retention limit is reached
or exceeded).

“IBMSNAP_PRUNE_SET table” on
page 407

Coordinates the pruning of CD tables.

“IBMSNAP_PRUNCNTL table” on
page 404

Coordinates synch point updates between the
Capture and Apply programs.

IBMSNAP_REG_EXT (System i)

An extension of the register table. Contains additional
information about replication sources, such as the
journal name and the remote source table's database
entry name.

“IBMSNAP_REGISTER table” on
page 409

Contains information about replication sources, such
as the names of the replication source tables, their
attributes, and their corresponding CD and CCD
table names.

“IBMSNAP_REG_SYNCH table
(non-DB2 relational)” on page 415

Used when replicating from a non-DB2 relational
data source. An update trigger on this table simulates
the Capture program by initiating an update of the
SYNCHPOINT value for all the rows in the register
table before the Apply program reads the information
from the register table.

“IBMSNAP_RESTART table” on
page 416

Contains information that enables the Capture
program to resume capturing from the correct point
in the log or journal. For System i environments, this
table is also used to determine the starting time of
theRCVJRNE (Receive Journal Entry) command.

Chapter 23. SQL Replication table structures 389

Table 57. Quick reference for tables used at the Capture control server (continued)

Table name Description

“IBMSNAP_SEQTABLE table
(Informix)” on page 418

Contains a sequence of unique numbers that SQL
Replication uses as the equivalent of log sequence
numbers for Informix tables.

“IBMSNAP_SIGNAL table” on page
418

Contains all signals used to prompt the Capture
program. These signals can be sent manually or by
the Apply program.

“IBMSNAP_UOW table” on page
422

Provides additional information about transactions
that have been committed to a source table.

IBMSNAP_AUTHTKN table (System i)
The IBMSNAP_AUTHTKN table is used in the System i environment only. This
table is used during update-anywhere replication to keep track of the transactions
that have been processed by a particular Apply program. The Capture program
prunes this table based on the retention limit that you set.

Server: Capture control server

Default schema: ASN

Index: JRN_LIB, JRN_NAME

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 58 provides a brief description of the columns in the IBMSNAP_AUTHTKN
table.

Table 58. Columns in the IBMSNAP_AUTHTKN table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier that identifies which Apply program processed the
transaction. This qualifier is used during update-anywhere replication to prevent
the Apply program from replicating the same changes repeatedly.

IBMSNAP_AUTHTKN Data type: CHAR(26); Nullable: No

The job name that is associated with the transaction. Capture for System i
matches the name in this column with the name of the job that issued the
transaction to determine whether the transaction was issued by either the Apply
program or a user application. If the job names match, then Capture for System i
copies the Apply qualifier that's in the APPLY_QUAL column of this table to the
APPLY_QUAL column in the corresponding row of the UOW table. If the names
do not match, then Capture for System i sets the APPLY_QUAL column of the
UOW row to null. This column is not automatically copied to other tables; you
must select it and copy it as a user data column.

JRN_LIB Data type: CHAR(10); Nullable: No

The library name of the journal from which the transactions came.

JRN_NAME Data type: CHAR(10); Nullable: No

The name of the journal from which the transactions came.

390 SQL Replication Guide and Reference

Table 58. Columns in the IBMSNAP_AUTHTKN table (continued)

Column name Description

IBMSNAP_LOGMARKER Data type: TIMESTAMP; Nullable: No

The approximate time that the transaction was committed at the Capture control
server.

IBMSNAP_CAPENQ table (z/OS, Linux, UNIX, Windows)
For a single Capture schema, the IBMSNAP_CAPENQ table ensures that only one
Capture program is running per database, subsystem, or data-sharing group.

Server: Capture control server

Default schema: ASN

Index: None

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

The IBMSNAP_CAPENQ table is not used on non-DB2 relational or System i
servers.

While running, the Capture program exclusively locks this table.

Table 59 provides a brief description of the column in the IBMSNAP_CAPENQ
table.

Table 59. Column in the IBMSNAP_CAPENQ table

Column name Description

LOCKNAME Data type: CHAR(9); Nullable: Yes

This column contains no data.

IBMSNAP_CAPMON table
The Capture program inserts a row in the IBMSNAP_CAPMON table after each
interval to provide you with operational statistics. The Replication Center uses
information in this table (and in other tables) so that you can monitor the status of
the Capture program.

Server: Capture control server

Default schema: ASN

Index: MONITOR_TIME

In the IBMSNAP_CAPPARMS table, the value that you specify for
MONITOR_INTERVAL indicates how frequently the Capture program makes
inserts into the Capture monitor table, and the value that you specify for the
MONITOR_LIMIT indicates the number of minutes that rows remain in the table
before they are eligible for pruning.

Chapter 23. SQL Replication table structures 391

Table 60 provides a brief description of the columns in the IBMSNAP_CAPMON
table.

Table 60. Columns in the IBMSNAP_CAPMON table

Column name Description

MONITOR_TIME Data type: TIMESTAMP; Nullable: No

The timestamp (at the Capture control server) when the row was inserted into
this table.

RESTART_TIME Data type: TIMESTAMP; Nullable: No

The timestamp when the current invocation of the Capture program was
restarted.

CURRENT_MEMORY Data type: INT; Nullable: No

The amount of memory (in bytes) that the Capture program used.

CD_ROWS_INSERTED Data type: INT; Nullable: No

The number of rows that the Capture program inserted into the CD table for all
source tables.

RECAP_ROWS_SKIPPED Data type: INT; Nullable: No

For update-anywhere replication, this is the number of rows that the Capture
program processed but did not insert into the CD table. The rows were skipped
because the registration was defined for the Capture program to not recapture
changes that have been replicated to this table that did not originate at this
source server.

TRIGR_ROWS_SKIPPED Data type: INT; Nullable: No

The number of rows that the Capture program processed but did not insert into
the CD table. The rows were skipped because you defined a trigger on the
registration for the Capture program to suppress certain rows.

CHG_ROWS_SKIPPED Data type: INT; Nullable: No

The number of rows that the Capture program processed but did not insert into
the CD table. The rows were skipped because the registration was defined for
the Capture program to only capture changes that occur in registered columns.

TRANS_PROCESSED Data type: INT; Nullable: No

The number of transactions at the source system that the Capture program
processed.

TRANS_SPILLED Data type: INT; Nullable: No

The number of transactions at the source system that the Capture program
spilled to disk due to memory restrictions.

MAX_TRAN_SIZE Data type: INT; Nullable: No

The largest transaction that occurred at the source system. Knowing the
transaction size might influence you to change the memory parameters.

LOCKING_RETRIES Data type: INT; Nullable: No

The number of times a deadlock caused rework.

JRN_LIB (System i) Data type: CHAR(10); Nullable: Yes

The library name of the journal that the Capture program
was processing.

392 SQL Replication Guide and Reference

Table 60. Columns in the IBMSNAP_CAPMON table (continued)

Column name Description

JRN_NAME (System i) Data type: CHAR(10); Nullable: Yes

The name of the journal that the Capture program was processing.

LOGREADLIMIT Data type: INT; Nullable: No

The number of times that the Capture program paused from reading log records
because 1000 records had been read, but no completed transactions had yet been
encountered within those 1000 records.

CAPTURE_IDLE Data type: INT; Nullable: No

The number of times that the Capture program slept because it didn't have any
work to process.

SYNCHTIME Data type: TIMESTAMP; Nullable: No

The current value of SYNCHTIME read from the global row of the register table
when the monitor record was inserted into this table.

CURRENT_LOG_TIME Data type: TIMESTAMP; Nullable: No

The timestamp at the Capture server of the latest database commit that was seen
by the Capture log reader.

RESTART_SEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: No, with default

The logical log sequence number in the recovery log at which the Capture
program starts during a warm restart. This value represents the earliest log
sequence number that the Capture program found for which a commit or abort
record has not yet been found.

CURRENT_SEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: No, with default

The most recent logical log sequence number in the recovery log that the
Capture program read.

LAST_EOL_TIME Data type: TIMESTAMP; Nullable: Yes

The time at the Capture server when the Capture program reached the end of
the log.

LOGREAD_API_TIME Data type: INTEGER; Nullable: Yes

The number of milliseconds that the Capture program spent using the DB2 log
read application program interface (API) to retrieve log records.

NUM_LOGREAD_CALLS Data type: INTEGER; Nullable: Yes

The number of log read API calls that the Capture program made.

IBMSNAP_CAPPARMS table
The IBMSNAP_CAPPARMS table contains parameters that you can modify to
control the operations of the Capture program. You can define these parameters to
set values such as the length of time that the Capture program retains data in the
CD and UOW tables before pruning and the amount of time that the Capture
program is allowed to lag in processing log records. If you make changes to the
parameters in this table, the Capture program reads your modifications only
during startup.

Server: Capture control server

Chapter 23. SQL Replication table structures 393

Default schema: ASN

Index: None

This table contains information that you can update by using SQL.

Table 61 provides a brief description of the columns in the IBMSNAP_CAPPARMS
table.

Table 61. Columns in the IBMSNAP_CAPPARMS table

Column name Description

RETENTION_LIMIT Data type: INT; Nullable: Yes

The length of time that rows remain in the CD, UOW, and signal tables before
they become eligible for pruning, in cases where they have not been pruned
based on the normal criteria. Normally, CD and UOW rows are pruned after
they are applied to all targets, and signal rows are pruned when their cycle is
complete (SIGNAL_STATE = C).

LAG_LIMIT Data type: INT; Nullable: Yes

The number of minutes that the Capture program is allowed to lag when
processing log records before it shuts itself down. During periods of high update
frequency, full refreshes can be more economical than updates.

COMMIT_INTERVAL Data type: INT; Nullable: Yes

How often, in seconds, the Capture program commits data to the Capture
control tables, including the UOW and CD tables. This value should be less than
the DB2 lockout value to prevent contention between the Capture and pruning
threads.

PRUNE_INTERVAL Data type: INT; Nullable: Yes

How often, in seconds, the Capture program automatically prunes
(AUTOPRUNE = Y) rows in the CD, UOW, signal, trace, and Capture monitor
tables that are no longer needed. A lower prune interval saves space, but
increases processing costs. A higher prune interval requires more CD and UOW
table space, but decreases processing costs.

TRACE_LIMIT Data type: INT; Nullable: Yes

The number of minutes that rows remain in the IBMSNAP_CAPTRACE table
before they are eligible for pruning. During the pruning process, the rows in the
Capture trace table are pruned if the number of minutes (current timestamp - the
time a row was inserted in the Capture trace table) exceeds the value of
TRACE_LIMIT.

MONITOR_LIMIT Data type: INT; Nullable: Yes

The number of minutes that rows remain in the IBMSNAP_CAPMON table
before they are eligible for pruning. During the pruning process, rows in the
Capture monitor table are pruned if the value of minutes (current timestamp -
MONITOR_TIME) exceeds the value of MONITOR_LIMIT.

MONITOR_INTERVAL Data type: INT; Nullable: Yes

How often, in seconds, that the monitor thread adds a row to the Capture
monitor IBMSNAP_CAPMON table. For Capture for System i, enter an interval
greater than 120 seconds.

MEMORY_LIMIT Data type: SMALLINT; Nullable: Yes

The amount of memory, in megabytes, that the Capture program is allowed to
use. After this allocation is used up, memory transactions will spill to a file.

394 SQL Replication Guide and Reference

Table 61. Columns in the IBMSNAP_CAPPARMS table (continued)

Column name Description

REMOTE_SRC_SERVER Data type: CHAR(18); Nullable: Yes

Reserved for future options of SQL Replication. Currently this column contains
the default value of null.

AUTOPRUNE Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program automatically prunes rows
that are no longer needed from the CD, UOW, signal, trace, and Capture monitor
tables:

Y Autopruning is on.

N Autopruning is off.

TERM Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program terminates when DB2 is
quiesced or stopped:

Y The Capture program terminates when DB2 is quiesced or stopped.

N The Capture program stays active and waits for DB2 to be restarted or
unquiesced.

AUTOSTOP Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program stops capturing changes as
soon as it reaches the end of the active logs:

Y The Capture program stops as soon as it reaches the end of the active
logs.

N The Capture program continues running when it reaches the end of the
active logs.

LOGREUSE Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program overwrites the Capture log
file or appends to it.

Y The Capture program reuses the log file by first deleting it and then
recreating it when the Capture program is restarted.

N The Capture program appends new information to the Capture log file.

LOGSTDOUT Data type: CHAR(1); Nullable: Yes

A flag that indicates where the Capture program directs the log file messages:

Y The Capture program directs log file messages to both the standard out
(STDOUT) and the log file.

N The Capture program directs most log file messages to the log file only.
Initialization messages go to both the standard out (STDOUT) and the
log file.

SLEEP_INTERVAL (z/OS, Linux,
UNIX, Windows)

Data type: SMALLINT; Nullable: Yes

The number of seconds that the Capture program sleeps when it reaches the end
of the active logs (in Linux, UNIX and Windows, or in z/OS non-data-sharing
environments), or when an inefficient amount of data has been returned (in
z/OS data-sharing environments).

CAPTURE_PATH Data type: VARCHAR(1040); Nullable: Yes

The path where the output from the Capture program is sent.

Chapter 23. SQL Replication table structures 395

Table 61. Columns in the IBMSNAP_CAPPARMS table (continued)

Column name Description

STARTMODE Data type: VARCHAR(10); Nullable: Yes

The processing procedure that the Capture program uses when it is started:

cold The Capture program deletes all rows in its CD tables and UOW table
during initialization. All subscriptions to these replication sources are
fully refreshed during the next Apply processing cycle (that is, all data
is copied from the source tables to the target tables). If the Capture
program tries to cold start but you disabled full refresh, the Capture
program will start but the Apply program will fail and will issue an
error message.

warmsi The Capture program warm starts; except if this is the first time you are
starting the Capture program then it switches to a cold start. The
warmsi start mode ensures that cold starts happen only when you
initially start the Capture program.

warmns
The Capture program warm starts. If it can't warm start, it does not
switch to cold start. The warmns start mode prevents cold starts from
occurring unexpectedly and is useful when problems arise (such as
unavailable databases or table spaces) that require repair and that
prevent a warm start from proceeding. When the Capture program
warm starts, it resumes processing where it ended. If errors occur after
the Capture program started, the Capture program terminates and
leaves all tables intact.

ARCH_LEVEL Data type: CHAR(4); Nullable: No

The version of the Capture control tables:

1001 Version 10 on Linux, UNIX, and Windows

100Z Version 10 on z/OS

0973 Version 9.7 Fix Pack 3 on Linux, UNIX, and Windows

Attention: When updating the IBMSNAP_CAPPARMS table, do not change the
value in this column.

COMPATIBILITY Data type: CHAR(4); Nullable: No, with default

Determines the length of log sequence numbers in the Capture control tables, CD
tables and UOW tables. The 16-byte log sequence numbers are used starting with
Version 10 on Linux, UNIX, and Windows.

1001 16-byte log sequence numbers are used

0801 10-byte log sequence numbers are used

The Apply program uses the value in this column to determine the length of log
sequence numbers to use in its control tables and CCD target tables.

LOGRDBUFSZ Data type: INTEGER; Nullable: No, with default

Linux, UNIX, and Windows only: The size in KB of the buffer that the Capture
program passes to DB2 when Capture retrieves log records. DB2 fills the buffer
with available log records that Capture has not retrieved. Default: 256 KB.

396 SQL Replication Guide and Reference

IBMSNAP_CAPSCHEMAS table
The IBMSNAP_CAPSCHEMAS table holds the names of all Capture schemas. It
allows the administration tools and other utilities to quickly find all of the tables
for a given Capture control server. A row is automatically inserted each time you
create a new Capture schema.

Server: Capture control server

Index: CAP_SCHEMA_NAME

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results.

The following two tables show operating system-specific layouts of the
IBMSNAP_CAPSCHEMAS table.

Table 62. Columns in the IBMSNAP_CAPSCHEMAS table for all operating systems other than System i

Column name Description

CAP_SCHEMA_NAME Data type: VARCHAR(128); Nullable: Yes

The name of a Capture schema. A row exists for each Capture schema.

Table 63. Columns in the Capture schemas table for System i

Column name Description

CAP_SCHEMA_NAME Data type: VARCHAR(30); Nullable: Yes

The name of a Capture schema. A row exists for each Capture schema.

STATUS Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program that is identified by this
Capture schema is running:

Y The Capture program is running.

N The Capture program is not running.

IBMQREP_COLVERSION table
The IBMQREP_COLVERSION table is used by the Q Capture and Capture
programs to keep track of different versions of a source table.

Server: Q Capture server

Default schema: ASN

Index: LSN, TABLEID1, TABLEID2, POSITION

Index: TABLEID1 ASC, TABLEID2 ASC

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The Q Capture or Capture program inserts rows into this table when the Q
subscription or registration for a source table is first activated, and then each time
the source table is altered.

Chapter 23. SQL Replication table structures 397

Table 64 provides a brief description of the columns in the
IBMQREP_COLVERSION table.

Table 64. Columns in the IBMQREP_COLVERSION table

Column name Description

LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The point in the DB2 recovery log where the Q Capture program or Capture
program detected a new version of the source table.

TABLEID1 Data type: SMALLINT; Nullable: No

The object identifier (OBID) in SYSIBM.SYSTABLES.

TABLEID2 Data type: SMALLINT; Nullable: No

The database identifier (DBID) in SYSIBM.SYSTABLES.

POSITION Data type: SMALLINT; Nullable: No

The ordinal position of the column in the table, starting at 0 for the first column
in the table.

NAME Data type: VARCHAR(128); Nullable: No

The name of the column.

TYPE Data type: SMALLINT; Nullable: No

An internal data type identifier for the column (SQLTYPE in
SYSIBM.SYSCOLUMNS).

LENGTH Data type: INTEGER; Nullable: No

The maximum data length for this column.

NULLS Data type: CHAR(1); Nullable: No

A flag that identifies whether the column allows null values:

Y The column allows null values.

N The column does not allow null values.

DEFAULT Data type: VARCHAR(1536); Nullable: Yes

The default value of the column (DEFAULTVALUE) in SYSIBM.SYSCOLUMNS.
This column is NULL if there is no default.

CODEPAGE Data type: INTEGER; Nullable: Yes

The code page that is used for data in this column. The value is 0 if the column
is defined as FOR BIT DATA or is not a string type. Default: NULL

SCALE Data type: INTEGER; Nullable: Yes

The scale of decimal data in decimal columns. The value is 0 for non-decimal
columns. Default: NULL

IBMSNAP_CAPTRACE table
The Capture trace table contains messages from the Capture program.

Server: Capture control server

Default schema: ASN

398 SQL Replication Guide and Reference

Index: TRACE_TIME

The following two tables show operating system-specific layouts of the
IBMSNAP_CAPTRACE table.

Table 65. Columns in the IBMSNAP_CAPTRACE table for Linux, UNIX, Windows, and z/OS

Column name Description

OPERATION Data type: CHAR(8); Nullable: No

The type of Capture program operation, for example, initialization, capture, or
error condition.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time at the Capture control server that the row was inserted in the Capture
trace table.

DESCRIPTION Data type: VARCHAR(1024); Nullable: No

The message ID followed by the message text. It can be an error message, a
warning message, or an informational message. This column contains
English-only text.

Table 66. Columns in the Capture trace table for System i

Column name Description

OPERATION Data type: CHAR(8); Nullable: No

The type of operation that the Capture program performed, for example,
initialization, capture, or error condition.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time that the row was inserted in the Capture trace table. TRACE_TIME
rows that are eligible for trace limit pruning will be deleted when the Capture
program prunes the CD and UOW tables.

JOB_NAME Data type: CHAR(26); Nullable: No

The fully qualified name of the job that wrote this trace entry.

Position
Description

1–10 The Capture schema name or the journal job name

11–20 The ID of the user who started the Capture program

21–26 The job number

JOB_STR_TIME Data type: TIMESTAMP; Nullable: No

The starting time of the job that is named in the JOB_NAME column.

DESCRIPTION Data type: VARCHAR(298); Nullable: No

The message ID followed by the message text. The message ID is the first seven
characters of the DESCRIPTION column. The message text starts at the ninth
position of the DESCRIPTION column.

CCD table (non-DB2)
Consistent-change-data (CCD) tables at the Capture control server are tables that
contain information about changes that occur at a non-DB2 source and additional

Chapter 23. SQL Replication table structures 399

columns to identify the sequential ordering of those changes. A CCD table at the
Capture control server is a table that is populated by a program other than the
Apply program.

Server: Capture control server

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause a loss of data.

The Capture control server can be either:
v An internal CCD table for a non-DB2 relational source.

For change-capture replication, the Capture triggers insert changes in this table
as updates occur at the non-DB2 relational source. The name of this type of CCD
table is stored on the same row in the IBMSNAP_REGISTER table as the
replication source that it holds changes from. This table is automatically pruned
by the pruning trigger that is created when you register a non-DB2 relational
source.

v An external CCD table for non-relational and multi-vendor data.
External programs can create CCD tables to be used by SQL Replication as
replication sources. For example, IMS DataPropagator captures IMS changes in a
CCD table, so that copies of IMS data can be recreated in a relational database.
The external programs must initialize, maintain, and supply the correct values
for the control columns. If you have externally populated CCD tables that are
not maintained by a program such as IMS DataPropagator or DataRefresher, you
must maintain these tables yourself so that the Apply program can read the
CCD tables as sources and function correctly.

Table 67 provides a brief description of the columns in the CCD table.

Table 67. Columns in the CCD table

Column name Description

IBMSNAP_INTENTSEQ A sequence number that uniquely identifies a change. This value is globally
ascending.

IBMSNAP_OPERATION A flag that indicates the type of operation for a record:

I Insert

U Update

D Delete

IBMSNAP_COMMITSEQ A sequence number that provides transactional order.

IBMSNAP_LOGMARKER The approximate time that the data was committed.

user key columns If the CCD table is condensed, this column contains the columns that make up
the target key.

user non-key columns The non-key data columns from the source table. The column names that are in
the source table do not need to match these column names, but the data types
must be compatible.

user computed columns User-defined columns that are derived from SQL expressions. You can use
computed columns with SQL functions to convert source data types to different
target data types.

CD table
Change-data (CD) tables record all committed changes made to a replication
source. Pruning of the CD table is coordinated by the IBMSNAP_PRUNE_SET

400 SQL Replication Guide and Reference

table. Unlike other Capture control tables, CD tables are created when you define a
replication source; they are not created automatically when you generate the
control tables for the Capture control server.

Server: Capture control server

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause a loss of data.

Table 68 provides a list and a brief description of the columns in the CD table.

Table 68. Columns in the CD table

Column name Description

IBMSNAP_COMMITSEQ The log sequence number of the captured commit statement. This column, which
is also in the UOW table, is included in the CD table to allow the Apply
program to process user copy target tables without needing to join the CD table
with the UOW table. In cases where a join between the CD table and the UOW
table is required, the join is done by using the IBMSNAP_COMMITSEQ column.

IBMSNAP_INTENTSEQ The log sequence number of the log record of the change (insert, update, or
delete). This value is globally ascending. If you selected for updates to be
processes as delete/insert pairs, the IBMSNAP_INTENTSEQ value for the delete
row is manufactured to be slightly smaller than the corresponding value for the
insert row.

IBMSNAP_OPERATION A flag that indicates the type of operation for a record:

I Insert

U Update

D Delete

user column after-image In most cases, the after-image column contains the value that is in the source
column after the change occurs. This column has the same name, data type, and
null attributes as the source column. In the case of an update, this column
reflects the new value of the data that was updated. In the case of a delete, this
column reflects the value of the data that was deleted. In the case of an insert,
this column reflects the value of the data that was inserted.

user column before-image This column only exists in the CD table if you registered the source to include
before-image column values. In most cases, the before-image column contains
the value that was in the source column before the change occurred. This
column has the same name as the source column, prefixed by the value in the
BEFORE_IMG_PREFIX column in the IBMSNAP_REGISTER table. It also has the
same data type as the source column; however, it always allows null values for
insert operations regardless of the source column's null attributes. In the case of
an update, this column reflects the data that was updated. In the case of a
delete, this column reflects the data that was deleted. In the case of an insert,
this column is null.

IBMQREP_IGNTRAN table
The IBMQREP_IGNTRAN table can be used to inform the Q Capture or Capture
program about transactions that you do not want to be captured from the DB2
recovery log. You use SQL to insert rows in the table that inform the programs to
ignore transactions based on authorization ID, authorization token (z/OS only), or
plan name (z/OS only).

Server: Q Capture server, Capture control server

Default schema: ASN

Chapter 23. SQL Replication table structures 401

Unique index: AUTHID ASC, AUTHTOKEN ASC, PLANNAME ASC

Table 69 provides a brief description of the columns in the IBMQREP_IGNTRAN
table.

Table 69. Columns in the IBMQREP_IGNTRAN table

Column name Description

AUTHID Data type: CHAR(128); Nullable: Yes

The primary authorization ID for the transaction that you want to ignore.

AUTHTOKEN Data type: CHAR(30); Nullable: Yes

The authorization token (job name) for the transaction that
you want to ignore.

PLANNAME Data type: CHAR(8); Nullable: Yes

The plan name for the transaction that you want to ignore.

IGNTRANTRC Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Capture or Capture program whether to trace transactions
that were ignored based on the AUTHID, AUTHTOKEN, or PLANNAME value
that was specified in the IBMQREP_IGNTRAN table:

N (default)
Tracing is disabled.

Y Tracing is enabled. Each time a transaction is ignored, a row is inserted
into the IBMQREP_IGNTRANTRC table and a message is issued.

IBMQREP_IGNTRANTRC table
The IBMQREP_IGNTRANTRC table records information about transactions that
were specified to be ignored.

Server: Q Capture server, Capture control server

Default schema: ASN

Index: IGNTRAN_TIME ASC

Important: Do not alter this table by using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

A row is inserted in the IBMQREP_IGNTRANTRC table when a transaction is
ignored in the DB2 recovery log. This table is pruned according to the trace_limit
parameter for the Q Capture or Capture program.

Table 70 provides a brief description of the columns in the
IBMQREP_IGNTRANTRC table.

Table 70. Columns in the IBMQREP_IGNTRANTRC table

Column name Description

IGNTRAN_TIME Data type: TIMESTAMP; Nullable: No, with default

The time when the transaction was ignored. Default: Current timestamp

402 SQL Replication Guide and Reference

Table 70. Columns in the IBMQREP_IGNTRANTRC table (continued)

Column name Description

AUTHID Data type: CHAR(128); Nullable: Yes

The primary authorization ID of the transaction that was ignored.

AUTHTOKEN Data type: CHAR(30); Nullable: Yes

The authorization token (job name) for the transaction that
was ignored.

PLANNAME Data type: CHAR(8); Nullable: Yes

The plan name for the transaction that was ignored.

TRANSID Data type: CHAR(10) FOR BIT DATA; Nullable: No

The transaction identifier for the transaction that was ignored.

COMMITLSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The commit log sequence number or time sequence for the transaction that was
ignored.

IBMSNAP_PARTITIONINFO table
The IBMSNAP_PARTITIONINFO table augments the IBMSNAP_RESTART table in
a multi-partitioned environment, and contains information that enables the Capture
program to restart from the earliest required log sequence number within each
partition's set of log files.

Server: Capture control server

Default schema: ASN

Index: PARTITIONID, USAGE

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data. If you delete
the row from this table, the Capture program is forced to cold start.

In a multi-partitioned environment, the IBMSNAP_PARTITIONINFO table and the
IBMSNAP_RESTART table replace the IBMSNAP_WARM_START table from SQL
Replication Version 7 and earlier versions. A row is inserted into this table every
time a partition is added. The Capture program will start reading the log file of
any new partitions from the first log sequence number that DB2 used after the first
database CONNECT was issued.

If you have never started the Capture program, then this table is empty, and the
Capture program must perform a cold start.

Table 71 on page 404 provides a brief description of the columns in the
IBMSNAP_PARTITIONINFO table.

Chapter 23. SQL Replication table structures 403

Table 71. Columns in the IBMSNAP_PARTITIONINFO table

Column name Description

PARTITIONID Data type: INT; Nullable: No

The partition ID for each valid partition.

USAGE Data type: CHAR(1); Nullable: No

The usage of the log sequence number (LSN). An "R" in this column indicates
that the LSN has been restarted.

SEQUENCE Data type: CHAR(10) for bit data; Nullable: No

The restart LSN for the partition that has the partition ID.

STATUS Data type: CHAR(1); Nullable: Yes

The status of the partition. An A in this column indicates that the partition is
active. This column is reserved for future use.

LAST_UPDATE Data type: TIMESTAMP; Nullable: Yes

The timestamp when the restart LSN for the partition that has the partition ID
was last updated.

IBMSNAP_PRUNCNTL table
The pruning control table contains detailed information regarding all subscription
set members that are defined for this Capture schema. This table is used in
conjunction with the IBMSNAP_PRUNE_SET table during pruning. It is also used
during the initialization handshake process between the Apply and Capture
programs.

Server: Capture control server

Default schema: ASN

Index: SOURCE_OWNER, SOURCE_TABLE, SOURCE_VIEW_QUAL,
APPLY_QUAL, SET_NAME, TARGET_SERVER, TARGET_TABLE,
TARGET_OWNER

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

For DB2 sources, you can invoke pruning by issuing the prune command or have it
done automatically. For non-DB2 relational sources, pruning is done by the
pruning trigger that was created when you registered the source.

Table 72 provides a brief description of the columns in the IBMSNAP_PRUNCNTL
table.

Table 72. Columns in the IBMSNAP_PRUNCNTL table

Column name Description

TARGET_SERVER Data type: CHAR(18); Nullable: No

The server name where target table or view for this member resides.

TARGET_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier for the target table or view for this member.

404 SQL Replication Guide and Reference

Table 72. Columns in the IBMSNAP_PRUNCNTL table (continued)

Column name Description

TARGET_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: No

The name of the target table or view for this member.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Capture program sets this timestamp during the initialization handshake
process with the Apply program. The value comes from the timestamp of the
commit log record that is associated with the transaction of the CAPSTART
signal insert. It will not be updated again unless a subsequent initialization
process takes place.

SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The Capture program sets this value during the initialization handshake process
with the Apply program. The value comes from the log sequence number of the
commit log record that is associated with the transaction of the CAPSTART
signal insert. It will not be updated again unless a subsequent initialization
process takes place.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier of the source table or view for this member.

SOURCE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: No

The name of the source table or view for this member.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

This column is used to support multiple registrations for different source views
with identical SOURCE_OWNER and SOURCE_TABLE column values. This
value is set to 0 for physical tables that are defined as sources and is greater than
0 for views that are defined as sources.

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier that identifies which Apply program is processing this
member.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that this subscription-set member belongs to.

CNTL_SERVER Data type: CHAR(18); Nullable: No

The name of the server where the Apply control tables reside for this Apply
program, which is identified by the APPLY_QUAL.

Chapter 23. SQL Replication table structures 405

Table 72. Columns in the IBMSNAP_PRUNCNTL table (continued)

Column name Description

TARGET_STRUCTURE Data type: SMALLINT; Nullable: No

A value that identifies the type of target table or view:

1 Source table

3 CCD table

4 Point-in-time table

5 Base aggregate table

6 Change aggregate table

7 Replica table

8 User copy table

9 CCD table without a join of the IBMSNAP_UOW and CD tables

CNTL_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the Apply control server named in the
CNTL_SERVER column.

PHYS_CHANGE_OWNER Data type: VARCHAR(128); Nullable: Yes

The value in the PHYS_CHANGE_OWNER column from the
IBMSNAP_REGISTER table that is associated with the source of this particular
subscription-set member.

PHYS_CHANGE_TABLE Data type: VARCHAR(128); VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier;Nullable: Yes

The value in the PHYS_CHANGE_TABLE column from the
IBMSNAP_REGISTER table that is associated with the source of this particular
subscription-set member.

MAP_ID Data type: VARCHAR(10); Nullable: No

A uniqueness factor that provides a shorter, more easily used index into this
table. It is also used to associate CAPSTART inserts into the signal table with the
appropriate row in the pruning control table.

IBMSNAP_PRUNE_LOCK table
The IBMSNAP_PRUNE_LOCK table is used to serialize the access of CD tables
during a cold start or retention-limit pruning. This table ensures that the Apply
program does not access the CD table during these critical phases. There are no
rows in this table.

Server: Capture control server

Default schema: ASN

Index: None

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

406 SQL Replication Guide and Reference

IBMSNAP_PRUNE_SET table
The IBMSNAP_PRUNE_SET table tracks the progress of the Capture and Apply
programs for each subscription set to help coordinate the pruning of the CD and
UOW tables. Unlike the IBMSNAP_PRUNCNTL table, which has one row for each
source-to-target mapping, the IBMSNAP_PRUNE_SET table has one row for each
subscription set.

Server: Capture control server

Default schema: ASN

Index: TARGET_SERVER, APPLY_QUAL, SET_NAME

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 73 provides a brief description of the columns in the IBMSNAP_PRUNE_SET
table.

Table 73. Columns in the IBMSNAP_PRUNE_SET table

Column name Description

TARGET_SERVER Data type: CHAR(18); Nullable: No

The server name where target tables or views for this set reside.

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier that identifies which Apply program is processing this set.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has
processed data up to this timestamp for the subscription set.

SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The Apply program uses this column to record its progress, indicating that it has
processed data up to this synchpoint value for the subscription set.

IBMSNAP_REG_EXT (System i)
The IBMSNAP_REG_EXT table is a System i-specific table that provides
supplemental information for the IBMSNAP_REGISTER table. For every row in the
IBMSNAP_REGISTER table, there is a matching row in the IBMSNAP_REG_EXT
table that contains additional System i-specific columns.

Server: Capture control server

Default schema: ASN

Index: VERSION, SOURCE_OWNER, SOURCE_TABLE, SOURCE_VIEW_QUAL

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Chapter 23. SQL Replication table structures 407

This table is maintained by a trigger program (program QZSNJLV8 in library
QDP4) on the IBMSNAP_REGISTER table. The trigger is defined at the time the
IBMSNAP_REGISTER table is created.

The information from this table is used to track where and how you defined your
replication sources on an System i server.

Table 74 provides a brief description of the columns in the IBMSNAP_REG_EXT
table.

Table 74. Columns in the IBMSNAP_REG_EXT table

Column name Description

VERSION Data type: INT; Nullable: No

The version of DB2 DataPropagator for System i that you used to register the
source.

SOURCE_OWNER Data type: VARCHAR(30); Nullable: No

The high-level qualifier of the source table or view that you registered.

SOURCE_TABLE Data type: VARCHAR(128); Nullable: No

The name of the source table or view that you registered.

SOURCE_NAME Data type: CHAR(10); Nullable: Yes

A ten-character system name of the source table or view that you used to
issue the commands.

SOURCE_MBR Data type: CHAR(10); Nullable: Yes

The name of the source table member, which is used for issuing Receive
Journal Entry (RCVJRNE) commands and ALIAS support.

SOURCE_TABLE_RDB Data type: CHAR(18); Nullable: Yes

When you use remote journals, this column contains the database name of the
system where the source table actually resides. For local journals, this column
is null.

JRN_LIB Data type: CHAR(10); Nullable: Yes

The library name of the journal that the source table uses.

JRN_NAME Data type: CHAR(10); Nullable: Yes

The name of the journal that is used by a source table. An asterisk followed
by nine blanks in this column means that the source table is currently not in a
journal, and it is not possible for the Capture program to capture data for this
source.

FR_START_TIME Data type: TIMESTAMP; Nullable: Yes

The time when the Apply program began to perform a full refresh.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

Supports the view of subscriptions by matching the similar column in the
register table. This value is set to equal 0 for physical tables that are defined
as a source and is greater than 0 for views that are defined as sources. You
must have this column to support multiple subscriptions for different source
views containing identical SOURCE_OWNER and SOURCE_TABLE column
values.

408 SQL Replication Guide and Reference

Table 74. Columns in the IBMSNAP_REG_EXT table (continued)

Column name Description

CMT_BEHAVIOR_CASE Data type: SMALLINT; Nullable: No, with default; Default: 0

An integer that represents how the application programs that are updating the
source table use commitment control. The Capture program uses this value to
manage its memory usage for CD rows that it has constructed but is not yet
ready to write to the CD tables.

-1 The commitment control pattern is not yet established for the
applications. This is the initial value in the column.

0 None of the applications that update the source uses commitment
control.

1 All of the applications that update the source use commitment
control. Therefore, two different applications never update the same
source table under commitment control at the same time.

2 For concurrent applications that update the source, some use
commitment control and others do not. It is possible that two
applications are updating the source table by using commitment
control concurrently.

MAX_ROWS_BTWN_CMTS Data type: SMALLINT; Nullable: No, with default; Default: 0

The maximum number of rows that the Capture program can process before it
commits data to the CD table.

IBMSNAP_REGISTER table
The IBMSNAP_REGISTER table contains information about replication sources,
such as the names of the replication source tables, their attributes, and the names
of the CD and CCD tables associated with them. A row is automatically inserted
into this table every time you define a new replication source table or view for the
Capture program to process.

Server: Capture control server

Default schema: ASN

Index: SOURCE_OWNER, SOURCE_TABLE, SOURCE_VIEW_QUAL

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

The register table is the place you should look if you need to know how you
defined your replication sources.

Table 75 provides a brief description of the columns in the IBMSNAP_REGISTER
table.

Table 75. Columns in the IBMSNAP_REGISTER table

Column name Description

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier of the source table or view that you registered.

Chapter 23. SQL Replication table structures 409

Table 75. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

SOURCE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: No

The name of the source table or view that you registered.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

This column is used to support multiple registrations for different source views
with identical SOURCE_OWNER and SOURCE_TABLE column values. This
value is set to 0 for physical tables that are defined as sources, and is greater
than 0 for views that are defined as sources.

GLOBAL_RECORD Data type: CHAR(1); Nullable: No

SOURCE_STRUCTURE Data type: SMALLINT; Nullable: No

A value that identifies the structure of the source table or view:

1 User table

3 CCD table

4 Point-in-time table

5 Base aggregate table

6 Change aggregate table

7 Replica table

8 User copy table

9 CCD table without a join of the IBMSNAP_UOW and CD tables

SOURCE_CONDENSED Data type: CHAR(1); Nullable: No

A flag that indicates whether the source table is a condensed table, meaning that
all rows with the same key are condensed to one row:

Y The source is condensed.

N The source is not condensed.

A The source is a base-aggregate or change-aggregate table.

SOURCE_COMPLETE Data type: CHAR(1); Nullable: No

A flag that indicates how the source table stores rows of primary key values:

Y The source table contains a row for every primary key value of interest.

N The source table contains a subset of rows of primary key values.

CD_OWNER Data type: VARCHAR(128); Nullable: Yes

The high-level qualifier of the source's CD table.

For tables as sources
For all registered source tables that are not external CCD tables, this
column contains the high-level qualifier of the CD table associated with
that source table.

For views as sources
This column contains the high-level qualifier of the CD view.

For external CCD tables as sources
This column is null.

410 SQL Replication Guide and Reference

Table 75. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

CD_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: Yes

The name of the source's CD table.

For tables as sources
For all registered source tables that are not external CCD tables, this
column contains the name of the CD table that holds captured updates
of the source table.

For views as sources
This column contains the name of the CD view.

For external CCD tables as sources
This column is null.

PHYS_CHANGE_OWNER Data type: VARCHAR(128); Nullable: Yes

The high-level qualifier of the table or view that the Apply program uses for
change-capture replication:

For tables as sources
For all registered source tables that are not external CCD tables, this
column contains the high-level qualifier of the physical CD table that is
associated with that source table.

For views as sources
This column contains the high-level qualifier of the physical CD table
that is associated with that source view.

For external CCD tables as sources
This column contains the high-level qualifier of the external CCD table
or view.

PHYS_CHANGE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: Yes

The name of the table or view that the Apply program uses for change-capture
replication:

For tables as sources
For all registered source tables that are not external CCD tables, this
column contains the name of the physical CD table that is associated
with that source table.

For views as sources
This column contains the name of the physical CD table that is
associated with that source view.

For external CCDs as sources
This column contains the name of the external CCD table or view.

CD_OLD_SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

This column is used for the initial handshake between the Apply program and
the Capture program. The Capture program then begins capturing data from this
log sequence number in the source log. This column is also used to show that
retention-limit pruning has occurred for a CD table. If this value is null, then the
registration is inactive.

CD_NEW_SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The Capture program advances this column as it inserts new rows into the CD
table. The Apply program uses this column to see if there are new changes to be
replicated.

Chapter 23. SQL Replication table structures 411

Table 75. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

DISABLE_REFRESH Data type: SMALLINT; Nullable: Yes

A flag that indicates whether full refreshes are allowed:

0 Full refreshes are allowed.

1 Full refreshes are prevented.

CCD_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 for z/OS Version 8
new-function mode subsystems; Nullable: Yes

For a source that has an internal CCD table associated with it, this column
contains the high-level qualifier of the internal CCD. For an external CCD table,
this column is null.

CCD_TABLE Data type: VARCHAR(128); Nullable: Yes

For a source that has an internal CCD table associated with it, this column
contains the name of the internal CCD. For an external CCD table, this column is
null.

CCD_OLD_SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The log sequence number when the CCD table was reinitialized. This column is
related to full-refresh processing against CCD tables. The value in this column
needs to be changed only when the CCD table is initially or subsequently fully
refreshed. This value can be much older than any row remaining in the CCD
table. If this column is not maintained, the Apply program that uses the CCD
table as a replication source does not know that the CCD table was reinitialized,
so it fails to reinitialize complete copies of the CCD source.

SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

In the global row (where GLOBAL_RECORD = Y), the synch point represents the
log sequence number of the last log or journal record processed by the Capture
program. In any row in the IBMSNAP_REGISTER table that contains registration
information about a CCD table (internal or external), the synch point value is
advanced by the program that maintains the CCD table to indicate that there is
new data available in that CCD table.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

In the global row (where GLOBAL_RECORD = Y), the synchtime represents the
timestamp from the last log or journal record processed by the Capture program.
If the Capture program has reached the end of the DB2 log, the synchtime is
advanced to the current DB2 timestamp. In any row in the IBMSNAP_REGISTER
table that contains registration information about a CCD table (internal or
external), the synchtime value is advanced by the program that maintains the
CCD table to indicate the currency of data available in that CCD table.

CCD_CONDENSED Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the internal CCD that is associated with this source
is condensed, meaning that all rows with the same key are condensed to one
row:

Y The internal CCD is condensed.

N The internal CCD is not condensed.

NULL No internal CCD table is defined for this source.

412 SQL Replication Guide and Reference

Table 75. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

CCD_COMPLETE Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the internal CCD table that is associated with this
source is complete, meaning that it initially contained all the rows from the
source table:

N The internal CCD is not complete.

NULL No internal CCD table is defined for this source.

ARCH_LEVEL Data type: CHAR(4); Nullable: No

The architectural level of the replication control tables:

0801 Version 8 SQL Replication

0803 Version 8 SQL Replication with enhanced support for Oracle sources

0805 Version 8 SQL Replication with support for DB2 for z/OS new-function
mode

DESCRIPTION Data type: CHAR(254); Nullable: Yes

A description of the replication source.

BEFORE_IMG_PREFIX Data type: VARCHAR(4); Nullable: Yes

The one-character prefix that identifies before-image column names in the CD
table. The combination of the before-image prefix and the CD column name must
be unambiguous, meaning that a prefixed CD column name cannot be the same
as a current or potential after-image column name. The length in bytes of the
BEFORE_IMG_PREFIX is:

1 For an ASCII or an EBCDIC single byte prefix character.

2 For an ASCII double byte prefix character.

4 For an EBCDIC DBCS prefix character. This length allows for shift-in
and shift-out characters.

CONFLICT_LEVEL Data type: CHAR(1); Nullable: Yes

A flag that indicates the level of conflict detection for this source:

0 The Apply program does not check for conflicts. Data consistency must
be enforced by your application to avoid potential conflicting updates.

1 Standard detection with cascading transaction rejection. The Apply
program checks for conflicts based on the changes captured to this
point. The Apply program will reverse any conflicting transaction at the
replica, as well as any transactions with dependencies on the conflicting
transaction. Changes captured after the Apply program begins conflict
detection will not be checked during this Apply cycle.

2 Enhanced detection with cascading transaction rejection. The Apply
program waits until the Capture program captures all changes from the
log or journal (see description of the SYNCHTIME column) and then
does a standard conflict detection as when set to 1. During the wait
time, the Apply program holds a LOCK on the source tables to ensure
that no changes are made during the conflict detection process.

Chapter 23. SQL Replication table structures 413

Table 75. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

CHG_UPD_TO_DEL_INS Data type: CHAR(1); Nullable: Yes

A flag that indicates how the Capture program stores updates in the CD table.

Y The Capture program stores updates by using two rows in the CD table,
one for the delete and one for the insert. The Apply program processes
the delete first and the insert second. When this Y flag is set, every
update to a replication source is stored in the CD table by using two
rows. This flag ensures that updates made to partitioning columns or
columns referenced by a subscription-set predicate are processed
correctly.

N Each update to the source table is stored in a single row in the CD
table.

CHGONLY Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program captures all changes that
occur at the source or only changes that occur in registered columns. Typically
you should have this option set to Y to minimize the number of rows that the
Capture program inserts into the CD table, but you might want to set this option
to N in order to track exactly which rows in the source table were updated. For
example, you might just be capturing the primary key column values to audit
which rows have been changed in a source table.

Y The Capture program only captures changes that occur in registered
columns in the source table.

N The Capture program captures changes from all columns in the source
table.

RECAPTURE Data type: CHAR(1); Nullable: Yes

This column is for update-anywhere replication and contains a flag that indicates
whether changes that originate from a table or view are recaptured and
forwarded to other tables or views.

For tables at the master site:

N Updates to the master that were applied from a replica are not
recaptured and will not be replicated to other replicas.

Y Updates to the master that were applied from a replica and will be
replicated to other replicas.

For tables at a replica site:

Y Updates to the replica that were applied from the master are recaptured
and are available to be replicated to another table that uses the replica
as its source.

N Updates to the replica that were applied from the master are not
recaptured.

OPTION_FLAGS Data type: CHAR(4); Nullable: No

Reserved for future options of SQL Replication. Currently this column contains
the default value of NNNN.

414 SQL Replication Guide and Reference

Table 75. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

STOP_ON_ERROR Data type: CHAR(1); Nullable: Yes, with default; Default: Y.

A flag that indicates whether the Capture program will terminate or just stop
processing the registration if it encounters errors while trying to start, initiate,
reinitiate, or insert a row into the CD table:

Y The Capture program terminates when an error occurs while it is trying
to start, initiate, reinitiate, or insert a row into the CD table.

N The Capture program stops the registration but does not terminate
when an error occurs while it is trying to start, reinitialize, or insert a
row into the CD table; it continues to process other registrations.

STATE Data type: CHAR(1); Nullable: Yes, with default; Default: I.

A flag that indicates what state the registration is in:

S The Capture program has stopped processing this registration. The
Apply program will not work with this registration until you repair the
registration and place it in the I (inactive) state.

A The registration is active.

I The registration is inactive.

STATE_INFO Data type: CHAR(8); Nullable: Yes;

If the Capture program stopped processing the registration, this column contains
the error message that was issued regarding the failure.

IBMSNAP_REG_SYNCH table (non-DB2 relational)
The IBMSNAP_REG_SYNCH table uses an update trigger to initiate an update of
the SYNCHPOINT value for all the rows in the IBMSNAP_REGISTER table when
the Apply program is preparing to fetch data from a non-DB2 relational data
source.

Server: Capture control server

Default schema: ASN

Index: TRIGGER_ME

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 76 provides a brief description of the columns in the
IBMSNAP_REG_SYNCH table.

Table 76. IBMSNAP_REG_SYNCH table columns

Column name Description

TRIGGER_ME Data type: CHAR(1); Nullable: No

A flag of Y that indicates whether a trigger was initiated to update the
SYNCHPOINT value for all rows in the register table.

Chapter 23. SQL Replication table structures 415

Table 76. IBMSNAP_REG_SYNCH table columns (continued)

Column name Description

TIMESTAMP For Microsoft SQL Server and Sybase sources, this column contains the unique
number that is generated by the system when an update occurs on a timestamp
column at that table. This value is used to derive the SYNCHPOINT value that is
recorded in the IBMSNAP_REGISTER table.

IBMSNAP_RESTART table
The IBMSNAP_RESTART table contains information that enables the Capture
program to restart from the earliest required log or journal record. This table
replaces the IBMSNAP_WARM_START table from SQL replication Version 7 and
earlier versions. It contains one row, which is updated at every commit point;
therefore, the Capture program can always restart from exactly the right place
without recapturing information that it already processed and inserted into the CD
and UOW tables.

Server: Capture control server

Default schema: ASN

Index: None

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data. If you delete
the row from this table, the Capture program is forced to cold start.

If you have never started the Capture program, then this table is empty and the
Capture program must perform a cold start.

The following two sections show operating system-specific layouts of the
IBMSNAP_RESTART table.

z/OS, Linux, UNIX, Windows

Table 77. Columns in the IBMSNAP_RESTART table for z/OS, Linux, UNIX, and Windows

Column name Description

MAX_COMMITSEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

An internal value that represents the point in the recovery log to which the
Capture program has captured and committed to the CD and UOW tables.

MAX_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The timestamp that is associated with the value in the MAX_COMMITSEQ
column.

MIN_INFLIGHTSEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

An internal value that represents the point at which the Capture program starts
during a warm restart. This value represents the earliest log sequence number
that the Capture program found for which a commit or abort record has not yet
been found.

416 SQL Replication Guide and Reference

Table 77. Columns in the IBMSNAP_RESTART table for z/OS, Linux, UNIX, and Windows (continued)

Column name Description

CURR_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The local current timestamp when this table was updated by the Capture
program.

CAPTURE_FIRST_SEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

An internal value that represents the point from which the Capture program
started during the last cold start that the Capture program performed. This value
is used to detect if a database RESTORE occurred, which might require the
Capture program to perform a cold start because the database log manager
might reuse the log sequence numbers during certain RESTORE operations.

System i

For System i, the IBMSNAP_RESTART table is used to determine the starting time
of the RCVJRNE (Receive Journal Entry) command. A row is inserted into the restart
table for each journal that is used by a replication source or a group of replication
sources.

Index: JRN_LIB, JRN_NAME

Table 78. Columns in the IBMSNAP_RESTART table for System i

Column name Description

MAX_COMMITSEQ Data type: CHAR(10) for bit data; Nullable: No

The journal record number of the most current commit from the UOW table.

MAX_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The timestamp that is associated with the journal record number in the
MAX_COMMITSEQ column, or the current timestamp if the Capture program is
caught up with the logs and has no work to perform.

MIN_INFLIGHTSEQ Data type: CHAR(10) for bit data; Nullable: No

The logical log sequence number that the Capture program starts from during a
warm restart.

CURR_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The current timestamp at the point when this table is updated.

CAPTURE_FIRST_SEQ Data type: CHAR(10) for bit data; Nullable: No

The journal record number that the Capture program starts from after a cold
start.

UID Data type: INTEGER; Nullable: No

A unique number that is used as a prefix for the contents of the
IBMSNAP_UOWID column located in the UOW table.

SEQNBR Data type: BIGINT; Nullable: No

The sequence number of the last journal entry that the Capture program
processed.

Chapter 23. SQL Replication table structures 417

Table 78. Columns in the IBMSNAP_RESTART table for System i (continued)

Column name Description

JRN_LIB Data type: CHAR(10); Nullable: No

The library name of the journal that the Capture program is processing.

JRN_NAME Data type: CHAR(10); Nullable: No

The name of the journal that the Capture program is processing.

STATUS Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program is processing a particular
journal job:

Y The Capture program is processing the journal job.

N The Capture program is not processing the journal job.

IBMSNAP_SEQTABLE table (Informix)
The IBMSNAP_SEQTABLE table contains a sequence of unique numbers that SQL
Replication uses as the equivalent of log sequence numbers for Informix tables.
These unique identifiers are used in the IBMSNAP_REGISTER table in place of
synch point values so that the Capture program, Apply program, and Replication
Alert Monitor can communicate the point that they left off during their last cycle.

Server: Capture control server

Default schema: ASN

Unique index: SEQ

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 79 provides a brief description of the column in the IBMSNAP_SEQTABLE
table.

Table 79. Column in the IBMSNAP_SEQTABLE table

Column name Description

SEQ Data type: INTEGER; Nullable: No

A unique number used as the log or journal identifiers (synch points) for
Informix tables.

IBMSNAP_SIGNAL table
The signal table stores signals that prompt the Capture program to perform certain
actions. The signals are entered by either you or the Apply program.

Server: Capture control server

Default schema: ASN

Non-unique index: SIGNAL_TIME

This table contains information that you can update by using SQL.

418 SQL Replication Guide and Reference

The IBMSNAP_SIGNAL table is created with the DATA CAPTURE CHANGES
attribute, which means that all insert, update, and delete operations performed on
this table are visible to the Capture program as log records read from the DB2
recovery log. The Capture program ignores all update and delete log records for
the IBMSNAP_SIGNAL table, but it recognizes all validly created and committed
log records of signal inserts as "signals" that require its attention. The actions that
the Capture program performs for a log record from a signal insert depends on
what is specified in the IBMSNAP_SIGNAL table for that insert. The values in the
IBMSNAP_SIGNAL table provide the instructions to the Capture program
regarding the desired action.

Records in this table with a SIGNAL_STATE value of C for complete or records
with a timestamp eligible for retention-limit pruning are deleted when the Capture
program prunes.

Table 80 provides a brief description of the columns in the IBMSNAP_SIGNAL
table.

Table 80. Columns in the IBMSNAP_SIGNAL table

Column name Description

SIGNAL_TIME Data type: TIMESTAMP; Nullable: No, with default; Default: current timestamp.

A timestamp that is used to uniquely identify the row. The Capture program
uses this unique value to find the correct row in the signal table to indicate when
it has completed processing the Capture signal. This timestamp column is
created as NOT NULL WITH DEFAULT, and therefore a Capture signal can
generally be inserted in such a way that DB2 supplies the current timestamp as
the SIGNAL_TIME value.

SIGNAL_TYPE Data type: VARCHAR(30); Nullable: No

A flag that indicates the type of signal that was posted:

CMD A signal posted by you, the Apply program, or another application,
which is a well known system command or signal. See the
SIGNAL_SUBTYPE column for this table for a list of the available signal
subtypes.

USER A signal posted by you or another user. The Capture program updates
the value in the SIGNAL_LSN column with the LSN from the log of
when the signal was inserted, and it updates the value in the
SIGNAL_STATE column to from P (pending) to R (received).

Chapter 23. SQL Replication table structures 419

Table 80. Columns in the IBMSNAP_SIGNAL table (continued)

Column name Description

SIGNAL_SUBTYPE Data type: VARCHAR(30); Nullable: Yes

The action that the Capture program performs when a signal from a system
command (SIGNAL_TYPE = CMD) occurs.

CAPSTART
The Capture program starts capturing changes at the registered source
for a particular subscription-set member, which is identified by the
MAP_ID (from the IBMSNAP_PRUNCNTL table) in the
SIGNAL_INPUT_IN column. For example, the Apply program issues
this signal before it performs a full refresh on all target tables in the set
to let the Capture program know that the set is ready to begin
change-capture replication. The Apply program posts this signal.

STOP The Capture program stops capturing changes and terminates. This
command can only be issued by you, not the Apply program.

CAPSTOP
The Capture program stops capturing changes for a particular registered
source, which is identified by source_owner.source_table in the
SIGNAL_INPUT_IN column. This command can only be issued by you,
not the Apply program.

UPDANY
The Apply program (identified by the Apply qualifier in the
SIGNAL_INPUT_IN column) lets the Capture program know that it is
working with two Capture programs in an update-anywhere
configuration. The Apply program posts this signal.

When the signal type is USER, the signal subtype is not used or recognized by
the Capture program and therefore is not a required field. It can be set to any
value that you want.

SIGNAL_INPUT_IN Data type: VARCHAR(500); Nullable: Yes

If the SIGNAL_TYPE = USER, then this column contains user-defined input. If
the SIGNAL_TYPE = CMD, then the meaning of this value depends on the
SIGNAL_SUBTYPE for this signal:

CMD + CAPSTART
The mapping identifier. Because the Capture triggers and not the
Capture program process non-DB2 relational sources, there is a trigger
called SIGNAL_TRIGGER that fires after the IBMSNAP_SIGNAL table
is updated, which updates the IBMSNAP_PRUNCNTL table with the
next value in the sequence.

CMD + UPDANY
The Apply qualifier that identifies the Apply program in the
update-anywhere configuration.

CMD + CAPSTOP
The name of the source owner and source table that the Capture
program should stop capturing changes for (source_owner.source_table).

420 SQL Replication Guide and Reference

Table 80. Columns in the IBMSNAP_SIGNAL table (continued)

Column name Description

SIGNAL_STATE Data type: CHAR(1); Nullable: No

A flag that indicates the status of the signal:

P The signal is pending; the Capture program has not received it yet.
When you post a signal, set the SIGNAL_STATE to P.

R The Capture program has received the signal. The Capture program sets
the SIGNAL_STATE set to R (instead of changing it to C for complete)
when it receives a signal where SIGNAL_TYPE = USER, or one where
SIGNAL_TYPE = CMD and SIGNAL_SUBTYPE = STOP.

C The Capture program has completed processing the signal. The Capture
program sets this value to C when SIGNAL_TYPE = CMD for all
SIGNAL_SUBTYPE values except STOP.

SIGNAL_LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The log sequence number of the commit record. This value is set only by the
Capture program.

On System i, a signal table is associated with each journal used
for source tables. These tables are called journal signal tables and have the same
structure as the global IBMSNAP_SIGNAL table. The name of the journal signal
table is schema.IBMSNAP_SIGNAL_xxxx_yyyy, where xxxx is the journal library,
and yyyy is the journal name. This table is created automatically and is journaled
to the source journal on the source server.

IBMQREP_TABVERSION table
The IBMQREP_TABVERSION table is used by the Q Capture and Capture
programs to keep track of different versions of a source table. The Q Capture or
Capture program inserts rows into this table when the Q subscription or
registration for a source table is first activated, and then each time the source table
is altered.

Server: Q Capture server

Default schema: ASN

Index: LSN, TABLEID1, TABLEID2, VERSION

Index: SOURCE_OWNER ASC, SOURCE_NAME ASC

Index: TABLEID1 ASC, TABLEID2 ASC

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 81 on page 422 provides a brief description of the columns in the
IBMQREP_TABVERSION table.

Chapter 23. SQL Replication table structures 421

Table 81. Columns in the IBMQREP_TABVERSION table

Column name Description

LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The point in the DB2 recovery log where the Q Capture program or Capture
program detected a new version of the source table.

TABLEID1 Data type: SMALLINT; Nullable: No

The database identifier (DBID) in SYSIBM.SYSTABLES.

TABLEID2 Data type: SMALLINT; Nullable: No

The object identifier (OBID) in SYSIBM.SYSTABLES.

VERSION Data type: INTEGER; Nullable: No

A number generated by the Q Capture or Capture program to keep track of the
different versions of a source table.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The schema or high-level qualifier of the source table.

SOURCE_NAME Data type: VARCHAR(128); Nullable: No

The name of the source table.

IBMSNAP_UOW table
The IBMSNAP_UOW table provides additional information about transactions that
have been committed to a source table. For all target table types other than user
copy and type 9 CCD, the Apply program joins the IBMSNAP_UOW and change
data (CD) tables based on matching IBMSNAP_COMMITSEQ values when it
applies changes to the target tables. If you cold start the Capture program, all of
this entries in this table are deleted.

Server: Capture control server

Default schema: ASN

Index: IBMSNAP_COMMITSEQ, IBMSNAP_LOGMARKER

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

v Because Capture for System i can start capturing data for a subset of the
replication sources, it does not delete all the rows in the IBMSNAP_UOW table
if you do a partial cold start.

v There are some user programs that do not use commitment control. In such
cases, Capture for System i arbitrarily inserts a new UOW row after a number of
rows are written to the CD table. This artificial commitment boundary helps
reduce the size of the UOW table.

v The UOW table is pruned by retention limits, not information from the
IBMSNAP_PRUNE_SET table.

422 SQL Replication Guide and Reference

The Capture program requires that there is one IBMSNAP_UOW table for each
Capture schema. The Capture program inserts one new row into this table for
every log or journal record that is committed at the replication source.

The Capture program also prunes the UOW table based on information that the
Apply program inserts into the IBMSNAP_PRUNE_SET table.

Table 82 provides a brief description of the columns in the IBMSNAP_UOW table.

Table 82. Columns in the IBMSNAP_UOW table

Column name Description

IBMSNAP_UOWID Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The unit-of-work identifier from the log record header for this unit of work. You
can select that this column be part of a noncomplete CCD target table.

IBMSNAP_COMMITSEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The log record sequence number of the captured commit statement. For all
target table types other than user copy, the Apply program joins the UOW and
CD tables based on the values in this column when it applies changes to the
target tables.

IBMSNAP_LOGMARKER Data type: TIMESTAMP; Nullable: No

The approximate time (at the Capture control server) that the data was
committed.

IBMSNAP_AUTHTKN Data type: VARCHAR(30); Nullable: No

The authorization token that is associated with the transaction. This ID is useful
for database auditing. For DB2 for z/OS, this column is the correlation ID. For
DB2 for i5/OS, this column is the job name of the job that caused a transaction.
This column is not automatically copied to other tables; you must select it and
copy it as a user data column. You can select that this column be part of a
noncomplete CCD target table.

IBMSNAP_AUTHID Data type: VARCHAR(128); Nullable: No

The authorization ID that is associated with the transaction. It is useful for
database auditing. For DB2 for z/OS, this column is the primary authorization
ID. For DB2 for i5/OS, this column has the name of the user profile ID under
which the application that caused the transaction ran. This column holds the
ten-character ID padded with blanks. This column is not automatically copied to
other tables; you must select it and copy it as a user data column. You can select
for this column to be part of a noncomplete CCD target table.

Chapter 23. SQL Replication table structures 423

Table 82. Columns in the IBMSNAP_UOW table (continued)

Column name Description

IBMSNAP_REJ_CODE Data type: CHAR(1); Nullable: No, with default; Default: 0.

A flag that indicates whether any rows were rejected and rolled back. This value
is set only during update-anywhere replication if conflict detection is specified
as standard or enhanced when you defined your replication source. You can
select that this column be part of a noncomplete CCD target table.

0 No known conflicts occurred in the transaction.

1 A conflict occurred because the same row in the master and replica was
updated. The value of WHOS_ON_FIRST in the Apply control tables is
F. The transaction at the replica was rejected and rolled back.

2 The transaction was rejected and rolled back because it was dependent
on a prior transaction that was rejected. The value of
WHOS_ON_FIRST in the Apply control tables is F. The prior
transaction was rejected because the same row in the master and replica
was updated, and the transaction at the replica was rejected and rolled
back.

3 The transaction was rejected and rolled back because it contained at
least one referential-integrity constraint violation. Because this
transaction violates the referential constraints defined on the source
table, the Apply program will mark this subscription set as failed.
Updates cannot be copied until you correct the referential integrity
definitions.

4 The transaction was rejected and rolled back because it was dependent
on a prior transaction that was rejected. The prior transaction was
rejected because it contained at least one referential-integrity constraint
violation.

5 A conflict occurred because the same row in the master and replica was
updated. The value of WHOS_ON_FIRST in the Apply control tables is
S. The transaction at the replica was rejected and rolled back.

6 The transaction was rejected and rolled back because it was dependent
on a prior transaction that was rejected. The value of
WHOS_ON_FIRST in the Apply control tables is S. The prior
transaction was rejected because the same row in the master and replica
was updated, and the transaction at the replica was rejected and rolled
back.

IBMSNAP_APPLY_QUAL Data type: CHAR(18); Nullable: No, with default; Default: current user name.

The Apply qualifier that identifies which Apply program applied the changes.
You can select that this column be part of a noncomplete CCD target table.

Tables at the Apply control server
The tables stored at the Apply control server contain information about your
subscription definitions. For Linux, UNIX, Windows, and z/OS, you build these
control tables to your specifications by using the ASNCLP command-line program
or Replication Center. For System i, these control tables are created automatically
for you when install DataPropagator for System i.

Table 83 on page 425 describes the control tables at the Apply server.

424 SQL Replication Guide and Reference

Table 83. Control tables at the Apply server

Table name Description

“ASN.IBMSNAP_APPENQ table” Used to ensure that only one Apply program is
running per Apply qualifier.

“ASN.IBMSNAP_APPLEVEL table”
on page 426

Stores the version of the Apply control tables.

ASN.IBMSNAP_APPLY_JOB table
(System i)

Used to ensure that there is a unique Apply qualifier
for each instance of the Apply program running at an
Apply control server.

“ASN.IBMSNAP_APPLYMON table”
on page 427

Contains information on the status of the Apply
program.

“ASN.IBMSNAP_APPLYTRACE
table” on page 432

Contains important messages from the Apply
program.

“ASN.IBMSNAP_APPLYTRAIL
table” on page 432

Contains audit-trail information about the Apply
program.

“ASN.IBMSNAP_APPPARMS table”
on page 428

Contains parameters that you can modify to control
the operations of the Apply program.

“ASN.IBMSNAP_FEEDETL table” on
page 438

Identifies SQL Replication subscription-set members
that are used by InfoSphere DataStage to feed a data
warehouse.

“ASN.IBMSNAP_SUBS_COLS table”
on page 439

Maps columns in the target table or view to the
corresponding columns in the source table or view.

“ASN.IBMSNAP_SUBS_EVENT
table” on page 440

Contains events that you define to control when the
Apply program processes a subscription set.

“ASN.IBMSNAP_SUBS_MEMBR
table” on page 441

Identifies a source and target table pair and specifies
processing information for that pair.

“ASN.IBMSNAP_SUBS_SET table”
on page 445

Contains processing information for each set of
subscription-set members that the Apply program
processes as a group.

“ASN.IBMSNAP_SUBS_STMTS
table” on page 450

Contains SQL statements or stored procedure calls
that you define for a subscription set. They are
invoked before or after the Apply program processes
the set.

ASN.IBMSNAP_APPENQ table
The Apply enqueue table is used to ensure that only one Apply program is
running per Apply qualifier. The Apply program exclusively locks a row in this
table until the Apply program is shut down. This table is not used on System i.

Server: Apply control server

Index: APPLY_QUAL

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 84 on page 426 provides a brief description of the column in the
IBMSNAP_APPENQ table.

Chapter 23. SQL Replication table structures 425

Table 84. Column in the IBMSNAP_APPENQ table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: Yes

Uniquely identifies a group of subscription sets that are processed by the same
Apply program. This value is case sensitive. You must specify this value when
you define a subscription set.

ASN.IBMSNAP_APPLEVEL table
The IBMSNAP_APPLEVEL table stores the version of the Apply control tables. The
value that is stored here is used with the value of the ARCH_LEVEL and
COMPATIBILITY columns in the IBMSNAP_CAPPARMS table to determine the
length of log sequence numbers that are used in both Capture and Apply control
tables.

Server: Apply control server

Table 85 provides a brief description of the column in the IBMSNAP_APPLEVEL
table.

Table 85. Column in the IBMSNAP_APPLEVEL table

Column name Description

ARCH_LEVEL Data type: CHAR(4); Nullable: No, with default

The version of the Apply control tables. For Version 10.1 on Linux, UNIX, and
Windows, the default is 1001.

ASN.IBMSNAP_APPLY_JOB (System i)
The IBMSNAP_APPLY_JOB table, which is System i-specific, is used to guarantee a
unique APPLY_QUAL value for all instances of the Apply program running at the
Apply control server. A row is added to this table every time an instance of the
Apply program is started. If you start a new instance of the Apply program with
an APPLY_QUAL value that already exists, the start command fails.

Server: Apply control server

Index: None

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 86 provides a brief description of the columns in the IBMSNAP_APPLY_JOB
table.

Table 86. Columns in the IBMSNAP_APPLY_JOB table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

A unique identifier for a group of subscription sets. This value is supplied by the
user when defining a subscription set. Each instance of the Apply program is
started with an APPLY_QUAL value. This value is used during update-anywhere
replication to prevent circular replication of the changes made by the Apply
program.

426 SQL Replication Guide and Reference

Table 86. Columns in the IBMSNAP_APPLY_JOB table (continued)

Column name Description

CONTROL_SERVER Data type: CHAR(18); Nullable: No

The name of the database where the Apply control tables and view are defined.

JOB_NAME Data type: CHAR(10); Nullable: No

The fully qualified name of the job that wrote this trace entry:

Position 1–10
APPLY_QUAL

Position 11-20
The ID of the user who started the Apply program

Position 21-26
The job number

USER_NAME Data type: CHAR(10); Nullable: No

The name of the user who started a new instance of the Apply program.

JOB_NUMBER Data type: CHAR(6); Nullable: No

The job number of the current job for a particular journal. If the journal is not
active, this column contains the job number of the last job that was processed.

ASN.IBMSNAP_APPLYMON table
The IBMSNAP_APPLYMON table contains information about the status of the
Apply program, including which subscription sets and subscription-set members
Apply is currently processing.

Server: Apply control server

Non-unique index: MONITOR_TIME, APPLY_QUAL, WHOS_ON_FIRST

Do not alter this table using SQL. Altering this table inappropriately can cause
unexpected results and loss of data.

Table 87 provides a brief description of the columns in the IBMSNAP_APPLYMON
table.

Table 87. Columns in the IBMSNAP_APPLYMON table

Column name Description

MONITOR_TIME Data type: TIMESTAMP; Nullable: No

The timestamp at the Apply control server when the most current row of Apply
status information was inserted.

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier to which this row of Apply status information pertains.

Chapter 23. SQL Replication table structures 427

Table 87. Columns in the IBMSNAP_APPLYMON table (continued)

Column name Description

WHOS_ON_FIRST Data type: CHAR(1); Nullable: Yes

An indicator of the type of subscription that the Apply program was processing.

F Update anywhere. The source table is the replica and the target is the
master table.

S The source table is the master and the target is a table other than
master. Could be an update-anywhere or read-only subscription.

STATE Data type: SMALLINT; Nullable: Yes

The state of the Apply program:

0 Fetching from source

1 Applying to target

2 Sleeping

3 Reading control tables

4 Updating control tables

CURRENT_SETNAME Data type: CHAR(18); Nullable: Yes

The set that Apply was processing. This column contains a null value if Apply is
not processing a subscription set.

CURRENT_TABOWNER Data type: VARCHAR(128); Nullable: Yes

The owner of the target or source table that Apply is working with. This column
contains a null value if Apply is reading or updating control table, sleeping, or
applying to target tables in transactional order.

CURRENT_TABNAME Data type: VARCHAR(128); Nullable: Yes

The target or source table that Apply is working with. This column contains a
null value if Apply is reading or updating a control table, sleeping, or applying
to target tables in transactional order.

ASN.IBMSNAP_APPPARMS table
The IBMSNAP_APPPARMS table contains parameters that you can modify to
control the operations of the Apply program. You can define these parameters to
set values such as the name of the Apply control server on which the subscription
definitions and Apply program control tables reside. If you make changes to the
parameters in this table, the Apply program reads your modifications only during
startup.

Server: Apply control server

Index: APPLY_QUAL

This table contains information that you can update by using SQL.

Table 88 on page 429 provides a brief description of the columns in the
IBMSNAP_APPPARMS table.

428 SQL Replication Guide and Reference

Table 88. Columns in the IBMSNAP_APPPARMS table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier matches the parameters to the Apply program to which
these parameters apply.

APPLY_PATH Data type: VARCHAR(1040); Nullable: Yes

The location of the work files used by the Apply program. The default is the
directory where the program was started.

CAF Data type: CHAR(1); Nullable: Yes Default: Y

A flag that specifies whether the Apply program uses Call Attach Facility (CAF)
connect.

Y (default)
The Apply program overrides the Recoverable Resource Manager
Services (RRS) connect and runs with CAF connect.

N The Apply program uses Recoverable Resource Manager Services (RRS)
connect.

COPYONCE Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates whether the Apply program executes one copy cycle for
each subscription set that is eligible at the time the Apply program is invoked.

Y The Apply program executes one copy cycle for each eligible
subscription set.

N The Apply program does not execute one copy cycle for each eligible
subscription set.

DELAY Data type: INT; Nullable: Yes, with default; Default: 6

The delay time (in seconds) at the end of each Apply cycle when continuous
replication is used. This parameter is ignored if copyonce is specified.

ERRWAIT Data type: INT; Nullable: Yes, with default; Default: 300

The number of seconds (1 to 300) that the Apply program waits before retrying
after the program encounters an error condition. This parameter is ignored if
copyonce is specified.

INAMSG Data type: CHAR(1); Nullable: Yes, with default; Default: Y

A flag that indicates whether the Apply program issues a message when it is
inactive.

Y The Apply program issues a message when inactive.

N The Apply program does not issue a message when inactive.

LOADXIT Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates whether the Apply program invokes the IBM-supplied exit
routine (ASNLOAD) that uses the export and load utilities to refresh target
tables.

Y The Apply program invokes ASNLOAD.

N The Apply program does not invoke ASNLOAD.

Chapter 23. SQL Replication table structures 429

Table 88. Columns in the IBMSNAP_APPPARMS table (continued)

Column name Description

LOGREUSE Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates whether the Apply program overwrites the Apply log file or
appends to it.

Y The Apply program reuses the log file by first deleting it and then
recreating it when the Apply program is restarted.

N The Apply program appends new information to the Apply log file.

LOGSTDOUT Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates where the Apply program directs the log file messages:

Y The Apply program directs log file messages to both the standard out
(STDOUT) and the log file.

N The Apply program directs most log file messages to the log file only.
Initialization messages go to both the standard out (STDOUT) and the
log file.

MONITOR_ENABLED Data type: CHAR(1); Nullable: No

A flag that indicates whether the Apply program makes inserts into the
IBMSNAP_APPLYMON table to record its status:

Y The Apply program makes inserts into IBMSNAP_APPLYMON on a
schedule that is based on the MONITOR_INTERVAL column value.

N (default)
The Apply program does not make inserts into IBMSNAP_APPLYMON.

MONITOR_INTERVAL Data type: INTEGER; Nullable: No, with default; Default: 60000 milliseconds (1
minute)

How often, in milliseconds, the Apply program adds a row to the
IBMSNAP_APPLYMON table.

NOTIFY Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates whether the Apply program should invoke the exit routine
(ASNDONE) that returns control to you after the Apply program finishes
copying a subscription set.

Y The Apply program invokes ASNDONE.

N The Apply program does not invoke ASNDONE.

OPT4ONE Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates whether the performance of the Apply program is
optimized if only one subscription set is defined for the Apply program.

Y The performance of the Apply program is optimized for one
subscription set.

N The performance of the Apply program is not optimized for one
subscription set.

This parameter is ignored if copyonce is specified.

430 SQL Replication Guide and Reference

Table 88. Columns in the IBMSNAP_APPPARMS table (continued)

Column name Description

SLEEP Data type: CHAR(1); Nullable: Yes, with default; Default: Y

A flag that indicates how the Apply program is to proceed if no new
subscription sets are eligible for processing:

Y The Apply program goes to sleep.

N The Apply program stops.
This parameter is ignored if copyonce is specified.

SQLERRCONTINUE Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates whether the Apply program continues processing after it
checks the SQLSTATE file for errors.

Y The Apply program checks the SQLSTATE file for any SQL errors
during processing. If an error is found, Apply stops processing.

N The Apply program does not check the SQLSTATE file and continues
processing.

SPILLFILE Data type: VARCHAR(10); Nullable: Yes, with default.

A flag that indicates where the fetched answer set is stored.

Valid values are:

mem (default)
A memory file. If there is insufficient memory for the answer set, the
Apply program uses a disk file.

disk A disk file.

Valid values are:

disk (default)
A disk file.

TERM Data type: CHAR(1); Nullable: Yes, with default; Default: Y

A flag that indicates whether the Apply program terminates if it cannot connect
to its control server.

Y (default)
By default, the Apply program terminates if it cannot connect to its
control server.

N The Apply program does not terminate. Instead, Apply logs an error,
waits for the amount of time set by the errwait parameter, then retries
the connection.

This parameter is ignored if copyonce is specified.

TRLREUSE Data type: CHAR(1); Nullable: Yes, with default; Default: N

A flag that indicates whether the Apply program invokes the IBM-supplied exit
routine (ASNLOAD) that uses the export and load utilities to refresh target
tables:

Y The Apply program invokes ASNLOAD.

y The Apply program does not invoke ASNLOAD.

Chapter 23. SQL Replication table structures 431

Table 88. Columns in the IBMSNAP_APPPARMS table (continued)

Column name Description

REFRESH_COMMIT_CNT Data type: INTEGER; Nullable: Yes, with default; Default: null

Specifies the number of rows that the Apply program inserts into the target table
before it issues a COMMIT statement. Values can range from 0 to 134217727. A
default value of null or 0 means that only one commit is issued after all rows
have been inserted; no intermediate commits are issued. This option is not
supported for CCD sources.

ASN.IBMSNAP_APPLYTRACE table
The IBMSNAP_APPLYTRACE table contains messages from the Apply program.
The Apply program does not automatically prune this table, but you can automate
pruning by adding an SQL statement that runs after one of the subscription sets.

Server: Apply control server

Index: APPLY_QUAL, TRACE_TIME

Table 89 provides a brief description of the column in the
IBMSNAP_APPLYTRACE table.

Table 89. Columns in the IBMSNAP_APPLYTRACE table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program inserted the message.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time at the Apply control server when the row was inserted into this table.

OPERATION Data type: CHAR(8); Nullable: No

The type of Apply program operation, for example, initialization, apply, or error
condition.

DESCRIPTION Data type: VARCHAR(1024); Nullable: No

The message ID followed by the message text. The message ID is the first seven
characters of the DESCRIPTION column. The message text starts at the ninth
position of the DESCRIPTION column.

ASN.IBMSNAP_APPLYTRAIL table
The IBMSNAP_APPLYTRAIL table contains audit trail information of all
subscription set cycles performed by the Apply program. This table records a
history of updates that are performed against subscriptions. It is a repository of
diagnostic and performance statistics. The Apply trail table is one of the best places
to look if a problem occurs with the Apply program. The Apply program does not
automatically prune this table, but you can easily automate pruning by adding an
after SQL statement to one of the subscription sets.

Server: Apply control server

Index: LASTRUN, APPLY_QUAL

432 SQL Replication Guide and Reference

Table 90 provides a brief description of the columns in the
IBMSNAP_APPLYTRAIL table.

Table 90. Columns in the IBMSNAP_APPLYTRAIL table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program was processing the subscription set.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that the Apply program was processing.

SET_TYPE Data type: CHAR(1); Nullable: No

The value that appeared in the SET_TYPE column of the IBMSNAP_SUBS_SET
table after the most recent Apply cycle.

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in
update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master.
In the case of update conflicts between the replica and the master table,
the replica will have its conflicting transactions rejected. F is not used
for read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the
target table is the replica or other copy. In the case of update conflicts
between the master and the replica table, the replica will have its
conflicting transactions rejected. S is used for all read-only
subscriptions.

ASNLOAD Data type: CHAR(1); Nullable: Yes

The value used to start the Apply program:

Y Indicates that the Apply program was started with the parameter
loadxit=y causing the ASNLOAD user exit routine to be called to
perform a full refresh on a subscription set.

N Indicates that the ASNLOAD exit routine was not called because either
a full refresh was not needed or the Apply program was not started
with the loadxit parameter.

NULL Indicates that an Apply program error occurred before the Apply
program could determine whether the ASNLOAD exit routine should
be called.

FULL_REFRESH Data type: CHAR(1); Nullable: Yes

A flag that indicates whether a full refresh occurred:

Y Indicates that a full refresh was done for a subscription set.

N Indicates that a full refresh was not done for a subscription set.

NULL Indicates that an error occurred before the Apply program could
determine whether or not a full refresh was needed.

EFFECTIVE_MEMBERS Data type: INT; Nullable: Yes

The number of subscription-set members that are changed during an Apply
cycle, either by a full refresh or by the replication of inserts, updates, and
deletes. This number ranges between zero and the number of defined
subscription-set members.

Chapter 23. SQL Replication table structures 433

Table 90. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

SET_INSERTED Data type: INT; Nullable: No

The total number of rows inserted into subscription-set members during the
subscription cycle.

SET_DELETED Data type: INT; Nullable: No

The total number of rows deleted from subscription-set members during the
subscription cycle.

SET_UPDATED Data type: INT; Nullable: No

The total number of rows updated in subscription-set members during the
subscription cycle.

SET_REWORKED Data type: INT; Nullable: No

The total number of rows that the Apply program reworked during the last
cycle. The Apply program reworks changes under the following conditions:

v If an insert fails because the row already exists in the target table, the Apply
program converts the insert to an update of the existing row.

v If the update fails because the row does not exist in the target table, the Apply
program converts the update to an insert.

SET_REJECTED_TRXS Data type: INT; Nullable: No

The total number of transactions that were rejected due to an update-anywhere
conflict. This column is used only for update-anywhere subscription sets where
conflict detection is defined as standard or advanced.

434 SQL Replication Guide and Reference

Table 90. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

STATUS Data type: SMALLINT; Nullable: No

A value that represents the work status for the Apply program after a given
cycle:

-1 The replication failed. The Apply program backed out the entire set of
rows that it had applied, and no data was committed. If the startup
parameter SQLERRCONTINUE = Y, the SQLSTATE that is returned to
the Apply program during the last cycle is not one of the acceptable
errors you indicated in the input file for SQLERRCONTINUE (apply
qualifier.SQS).

0 The Apply program processed the subscription set successfully. If the
startup parameter SQLERRCONTINUE = Y, the Apply program did not
encounter any SQL errors that you indicated for the
SQLERRCONTINUE startup parameter (in apply_qualifier.SQS) and did
not reject any rows.

2 The Apply program is processing the subscription set in multiple
cycles. It successfully processed a single logical subscription that was
divided according to the MAX_SYNCH_MINUTES control column.

16 The Apply program processed the subscription set successfully and
returned a status of 0; however, it encountered some SQL errors that
you indicated for the SQLERRCONTINUE startup parameter (in
apply_qualifier.SQS) and rejected some of the rows. See the
apply_qualifier.ERR file for details about the rows that failed.

Example: You set SQLERRCONTINUE = Y and indicate that the
allowable SQL state is 23502 (SQL code -407). A 23502 error occurs, but
no other errors occur. The Apply program finishes processing the
subscription set, and it sets the status to 16. On the next execution, a
23502 error occurs, but then a 07006 (SQL code -301) occurs. Now the
Apply program stops processing the subscription set, backs out the
entire set of rows it had applied, and sets the status to -1 (because no
data was committed).

18 The Apply program is processing the subscription set in multiple cycles
and returned a status of 2, which means that it successfully processed a
single logical subscription that was divided according to the
MAX_SYNCH_MINUTES control column. However, it encountered
some SQL errors that you indicated for the SQLERRCONTINUE startup
parameter (in apply_qualifier.SQS) and rejected some of the rows. See the
apply_qualifier.ERR file for details about the rows that failed.

LASTRUN Data type: TIMESTAMP; Nullable: No

The estimated time that the last subscription began. The Apply program sets the
LASTRUN value each time a subscription set is processed. It is the approximate
time at the Apply control server that the Apply program begins processing the
subscription set.

LASTSUCCESS Data type: TIMESTAMP; Nullable: Yes

The Apply control server timestamp for the beginning of the last successful
processing of a subscription set.

SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has
processed data up to this synch point value for the subscription set.

Chapter 23. SQL Replication table structures 435

Table 90. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has
processed data up to this timestamp for the subscription set.

SOURCE_SERVER Data type: CHAR(18); Nullable: No

The DB2 database name where the source tables and views are defined.

SOURCE_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the source server named in the
SOURCE_SERVER column.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: Yes

The high-level qualifier of the source table or view that the Apply program was
processing. This value is set only when the Apply cycle fails.

SOURCE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: Yes

The name of the source table or view that the Apply program was processing.
This value is set only when the Apply cycle fails.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: Yes

The value of the source view qualifier for the source table or view that the
Apply program was processing. This value is set only when the Apply cycle
fails.

TARGET_SERVER Data type: CHAR(18); Nullable: No

The database name of the server where target tables or views are stored.

TARGET_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the target server named in the
TARGET_SERVER column.

TARGET_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier of the target table that the Apply program was
processing. This value is set only when the Apply cycle fails.

TARGET_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: No

The name of the target table that the Apply program was processing. This value
is set only when the Apply cycle fails.

CAPTURE_SCHEMA Data type: VARCHAR(128); Nullable: No

The schema name of the Capture server tables for this subscription set.

TGT_CAPTURE_SCHEMA Data type: VARCHAR(128); Nullable: Yes

If the target table is also the source for another subscription set (such as an
external CCD table in a multi-tier configuration or a replica table in an
update-anywhere configuration), this column contains the Capture schema that
will be used when the table is acting as a source.

FEDERATED_SRC_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the source for the subscription
set, which applies only to non-DB2 relational sources.

436 SQL Replication Guide and Reference

Table 90. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

FEDERATED_TGT_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the target for the subscription
set, which applies only to non-DB2 relational target servers.

JRN_LIB Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture
servers, is the library name of the journal that the source table uses.

JRN_NAME Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture
servers, is the name of the journal used by a source table. An asterisk followed
by nine blanks in this column means that the source table is currently not in a
journal, in which case it is not possible to capture data for this source table.

COMMIT_COUNT Data type: SMALLINT; Nullable: Yes

The value of the COMMIT_COUNT from the last Apply cycle, which is recorded
in the IBMSNAP_SUBS_SET table.

OPTION_FLAGS Data type: CHAR(4); Nullable: No

Reserved for future options of SQL Replication. Currently this column contains
the default value of NNNN.

EVENT_NAME Data type: CHAR(18); Nullable: Yes

A unique character string used to represent the event that triggered the set to be
processed.

ENDTIME Data type: TIMESTAMP; Nullable: No, with default; Default: current
timestamp.

The timestamp at the Apply control server when the Apply program finished
processing the subscription set. To find out how long a set took to process,
subtract LASTRUN from ENDTIME.

SOURCE_CONN_TIME Data type: TIMESTAMP; Nullable: Yes

The timestamp at the Capture control server when the Apply program first
connects to fetch source data.

SQLSTATE Data type: CHAR(5); Nullable: Yes

The SQL state code for a failed execution. Otherwise, NULL.

SQLCODE Data type: INT; Nullable: Yes

The SQL error code for a failed execution. Otherwise, NULL.

SQLERRP Data type: CHAR(8); Nullable: Yes

The database product identifier of the server where an SQL error occurred that
caused a failed execution. Otherwise, NULL.

SQLERRM Data type: VARCHAR(70); Nullable: Yes

The SQL error information for a failed execution.

APPERRM Data type: VARCHAR(760); Nullable: Yes

The Apply error message ID and text for a failed execution.

Chapter 23. SQL Replication table structures 437

ASN.IBMSNAP_FEEDETL table
The ASN.IBMSNAP_FEEDETL table identifies SQL Replication subscription-set
members that are used by InfoSphere DataStage to feed a data warehouse. The
table also stores DataStage-related synchpoint information for the subscription-set
members that is used to track DataStage progress.

Server: Apply control server

Primary key: APPLY_QUAL, SET_NAME, SOURCE_OWNER, SOURCE_TABLE,
TARGET_OWNER, TARGET_TABLE

Important: Use caution when you update this table with SQL. Altering this table
inappropriately can cause unexpected results and loss of data.

Table 91 provides a brief description of the columns in the IBMSNAP_FEEDETL
table.

Table 91. Columns in the IBMSNAP_FEEDETL table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes this subscription-set
member.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set to which this member belongs.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier for the source table or view for this member.

SOURCE_TABLE Data type: VARCHAR(128); Nullable: No

The name of the source table or view for this member.

TARGET_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier for the target table or view for this member.

TARGET_TABLE Data type: VARCHAR(128); Nullable: No

The name of the target table or view for this member.

MIN_SYNCHPOINT Data type: CHAR(10) FOR BIT DATA; Nullable: No

The start point for a range of rows that are extracted from the CCD table
member and fed to DataStage. The first time the extract job runs, the value is
x'00000000000000000000'. At end of a successful DataStage cycle, this column is
updated with the MAX_SYNCHPOINT value for the row.

MAX_SYNCHPOINT Data type: CHAR(10) FOR BIT DATA; Nullable: No

The end point for a range of rows that are extracted from the CCD table member
and fed to DataStage. At the start of the cycle, this column is updated with the
value in the SYNCHPOINT column of the IBMSNAP_SUBSET table for the
subscription set that contains the CCD table member. At the end of the cycle, this
value is inserted into the MIN_SYNCHPOINT column and becomes the start
point for the next DataStage cycle.

DSX_CREATE_TIME Data type: TIMESTAMP; Nullable: No

The time when the new DataStage definition (.dsx) file is created.

438 SQL Replication Guide and Reference

Table 91. Columns in the IBMSNAP_FEEDETL table (continued)

Column name Description

DSX_UPDATE_TIME Data type: TIMESTAMP; Nullable: No

The time when the DataStage definition (.dsx) file is updated.

ASN.IBMSNAP_SUBS_COLS table
The IBMSNAP_SUBS_COLS table contains information about the columns of the
subscription-set members that are copied in a subscription set. Rows are
automatically inserted into or deleted from this table when information changes in
one or more columns of a source and target table pair. Use this table if you need
information about specific columns in a subscription-set member.

Server: Apply control server

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST, TARGET_OWNER,
TARGET_TABLE, TARGET_NAME

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 92 provides a brief description of the columns in the IBMSNAP_SUBS_COLS
table.

Table 92. Columns in the IBMSNAP_SUBS_COLS table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes this subscription-set member.

SET_NAME Data type: CHAR(18); Nullable: No

The name of a subscription set that this member belongs to.

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in
update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master. In
the case of update conflicts between the replica and the master table, the
replica will have its conflicting transactions rejected. F is not used for
read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the
target table is the replica or other copy. In the case of update conflicts
between the master and the replica table, the replica will have its
conflicting transactions rejected. S is used for all read-only subscriptions.

TARGET_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier for a target table or view.

TARGET_TABLE Data type: VARCHAR(128); VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: No

The table or view to which data is being applied.

Chapter 23. SQL Replication table structures 439

Table 92. Columns in the IBMSNAP_SUBS_COLS table (continued)

Column name Description

COL_TYPE Data type: CHAR(1); Nullable: No

A flag that indicates the type of column:

A An after-image column.

B A before-image column.

C A computed column or an SQL expression that uses scalar functions.

F A computed column that uses column functions.

L A LOB indicator value.

P A before-image predicate column.

R A relative record number column, provided by the system and used as a
primary key column. Used only by DB2 DataPropagator for System i.

TARGET_NAME Data type: VARCHAR(128); Nullable: No

The name of the target table or view column. It does not need to match the
source column name.

Internal-CCD column names cannot be renamed. They must match the
source-table column names.

IS_KEY Data type: CHAR(1); Nullable: No

A flag that indicates whether the column is part of the target key, which can be
either a unique index or primary key of a condensed target table:

Y The column is all or part of the target key.

N The column is not part of the target key.

COLNO Data type: SMALLINT; Nullable: No

The numeric location of the column in the original source, to be preserved
relative to other user columns in displays and subscriptions.

EXPRESSION Data type: VARCHAR(1024); Nullable: No

The source column name or an SQL expression used to create the target column
contents.

ASN.IBMSNAP_SUBS_EVENT table
The IBMSNAP_SUBS_EVENT table contains information about the event triggers
that are associated with a subscription set. It also contains names and timestamps
that are associated with the event names.

Server: Apply control server

Index: EVENT_NAME, EVENT_TIME

This table contains information that you can update by using SQL.

You insert a row into this table when you create a new event to start an Apply
program.

Table 93 on page 441 provides a brief description of the columns in the
IBMSNAP_SUBS_EVENT table.

440 SQL Replication Guide and Reference

Table 93. Columns in the IBMSNAP_SUBS_EVENT table

Column name Description

EVENT_NAME Data type: CHAR(18); Nullable: No

The unique identifier of an event. This identifier is used to trigger replication for
a subscription set.

EVENT_TIME Data type: TIMESTAMP; Nullable: No

An Apply control server timestamp of a current or future posting time. User
applications that signal replication events provide the values in this column.

END_SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

A log sequence number that tells the Apply program to apply only data that has
been captured up to this point. You can find the exact END_SYNCHPOINT that
you want to use by referring to the signal table and finding the precise log
sequence number associated with a timestamp. Any transactions that are
committed beyond this point in the log are not replicated until a later event is
posted. If you supply values for END_SYNCHPOINT and END_OF_PERIOD,
the Apply program uses the END_SYNCHPOINT value because it then does not
need to perform any calculations from the control tables to find the maximum
log sequence number to replicate.

END_OF_PERIOD Data type: TIMESTAMP; Nullable: Yes

A timestamp used by the Apply program, which applies only data that has been
logged up to this point. Any transactions that are committed beyond this point
in the log are not replicated until a later event is posted.

ASN.IBMSNAP_SUBS_MEMBR table
The IBMSNAP_SUBS_MEMBR table contains information about the individual
source and target table pairs defined for a subscription set. A single row is
automatically inserted into this table when you add a subscription set member. Use
this table to identify a specific source and target table pair within a subscription
set.

Server: Apply control server

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST, SOURCE_OWNER,
SOURCE_TARGET, SOURCE_VIEW_QUAL, TARGET_OWNER, TARGET_TABLE

Important: Use caution when you update this table using SQL. Altering this table
inappropriately can cause unexpected results and loss of data.

Table 94 provides a brief description of the columns in the
IBMSNAP_SUBS_MEMBR table.

Table 94. Columns in the IBMSNAP_SUBS_MEMBR table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes this subscription-set
member.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that this member belongs to.

Chapter 23. SQL Replication table structures 441

Table 94. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in
update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master.
In the case of update conflicts between the replica and the master table,
the replica will have its conflicting transactions rejected. F is not used
for read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the
target table is the replica or other copy. In the case of update conflicts
between the master and the replica table, the replica will have its
conflicting transactions rejected. S is used for all read-only
subscriptions.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier for the source table or view for this member.

SOURCE_TABLE Data type: VARCHAR(128); VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: No

The name of the source table or view for this member.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

Supports the view of physical tables by matching the similar column in the
IBMSNAP_REGISTER table. This value is set to 0 for physical tables that are
defined as sources and is greater than 0 for views that are defined as sources.
This column is used to support multiple subscriptions for different source views
with identical SOURCE_OWNER and SOURCE_TABLE column values.

TARGET_OWNER Data type: VARCHAR(128); Nullable: No

The high-level qualifier for the target table or view for this member.

TARGET_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8
compatibility mode subsystems or earlier; Nullable: No

The name of the target table or view for this member.

TARGET_CONDENSED Data type: CHAR(1); Nullable: No

A flag that indicates:

Y For any given primary key value, the target table shows only one row.

N All changes must remain to retain a complete update history.

A The target table is a base aggregate or change aggregate tables.

TARGET_COMPLETE Data type: CHAR(1); Nullable: No

A flag that indicates:

Y The target table contains a row for every primary key value of interest.

N The target table contains some subset of rows of primary key values.

442 SQL Replication Guide and Reference

Table 94. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

TARGET_STRUCTURE Data type: SMALLINT; Nullable: No

The structure of the target table:

1 User table

3 CCD table

4 Point-in-time table

5 Base aggregate table

6 Change aggregate table

7 Replica

8 User copy

9 CCD table without a join of the IBMSNAP_UOW and CD tables

PREDICATES Data type: VARCHAR(1024); Nullable: Yes

Lists the predicates to be placed in a WHERE clause for the table in the
TARGET_TABLE column. This WHERE clause creates a row subset of the source
table. Predicates are recognized only when WHOS_ON_FIRST is set to S. The
predicate cannot contain an ORDER BY clause because the Apply program
cannot generate an ORDER BY clause. Aggregate tables require a dummy
predicate followed by a GROUP BY clause.

Because the Apply program uses these predicates for both full-refresh and
change-capture replication, this column cannot contain predicates that involve
columns in the CD or UOW table. Predicates that contain CD or UOW table
references are stored in the UOW_CD_PREDICATES column.

MEMBER_STATE Data type: CHAR(1); Nullable: Yes

A flag that indicates what state the member is in:

N (New) The member is new to this subscription set. Also, any members
that were recently enabled will appear in this state.

L (Loaded) The members of this subscription set have been loaded, but
there has not yet been a change capture cycle.

S (Synchronized) The member has been advanced from the new (N) state
to the loaded (L) state, and is now synchronized with all the other
subscription-set members that are in the synchronized state. When all
members of a subscription set are in the synchronized state, change
replication can occur at the subscription set level.

D (Disabled) The member is disabled for this subscription set.

Chapter 23. SQL Replication table structures 443

Table 94. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

TARGET_KEY_CHG Data type: CHAR(1); Nullable: No

A flag that indicates how the Apply program handles updates when, at the
source table, you change the source columns for the target key columns of a
target table:

Y The Apply program updates the target table based on the before images
of the target key column, meaning that the Apply program changes the
predicate to the old values instead of the new. Make sure you have
registered each before-image column of the target key so it is present in
the CD table. For the corresponding registration entry in the register
table, make sure the value in the CHG_UPD_TO_DEL_INS column is
set to N.

N The Apply program uses logic while processing updates and deletes
that assume that the columns that make up the target key are never
updated.

UOW_CD_PREDICATES Data type: VARCHAR(1024); Nullable: Yes

Contains predicates that include columns from the CD or UOW table that the
Apply program needs only for change-capture replication, and not for full
refreshes. During change-capture replication, the Apply program processes the
predicates in this column and those in the PREDICATES column. During a full
refresh, the Apply program processes only the predicates in the PREDICATES
column.

JOIN_UOW_CD Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Apply program does a join of the CD and
UOW tables when processing a user copy target table. This flag is needed when
you define a subscription-set member with predicates that use columns from the
UOW table that are not in the CD table. If the target table type is anything
except user copy, then the Apply program uses a join of the CD and UOW
tables when processing the member, and it ignores this column when processing
the member.

Y The Apply program uses a join of the CD and UOW tables when
processing the member.

N The Apply program does not use a join of the CD and UOW tables
when processing the member; it reads changes only from the CD table.

NULL The Apply program ignores this column when processing the member.
If the target table is a user copy and the value in this column is null,
then the Apply program does not do a join of the CD and UOW tables
when processing the member.

444 SQL Replication Guide and Reference

Table 94. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

LOADX_TYPE Data type: SMALLINT; Nullable: Yes

The type of load for this member. The value in this column is used to override
the defaults. This value is used only when the Apply invocation parameter
loadxit=y is specified.

NULL

The LOAD from CURSOR function is used for
this member.

The ASNLOAD exit determines the most
appropriate utility for this member (option 3, 4, or 5).

1 ASNLOAD is not used for this member. This effectively turns
ASNLOAD option off for a particular subscription-set member even if
you specified LOADX on startup.

2 A user-defined or user-modified ASNLOAD exit code is used.

3 The LOAD from CURSOR function is used for this member.

4
EXPORT and LOAD is used for this member.

5
EXPORT and IMPORT is used for this member.

6 The target table will not be loaded for this member.

Restriction: The LOAD utility is not supported for
range-clustered tables. To do a full refresh of a range-clustered table, you can
either use the DB2 IMPORT utility or the Apply program to do a full refresh of
the table through SQL.

LOADX_SRC_N_OWNER Data type: VARCHAR(128); Nullable: Yes

The user-created nickname owner. This value is required when all of the
following conditions exist:

v The LOAD from CURSOR function is used for this member (LOADX_TYPE is
3)

v The target server is Linux, UNIX, or Windows

v The source is not a nickname

LOADX_SRC_N_TABLE Data type: VARCHAR(128); Nullable: Yes

The user-created nickname table. This value is required when all of the
following conditions exist:

v The LOAD from CURSOR function is used for this member (LOADX_TYPE is
3)

v The target server is Linux, UNIX, or Windows

v The source is not a nickname

ASN.IBMSNAP_SUBS_SET table
The IBMSNAP_SUBS_SET table lists all of the subscription sets that are defined at
the Apply control server and documents the replication progress for these sets.
Rows are inserted into this table when you create your subscription set definition.

Server: Apply control server

Chapter 23. SQL Replication table structures 445

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data.

Table 95 provides a brief description of the columns in the IBMSNAP_SUBS_SET
table.

Table 95. Columns in the IBMSNAP_SUBS_SET table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes this subscription set.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set.

SET_TYPE Data type: CHAR(1); Nullable: No

A flag that indicates whether the set is read only or read/write:

R The set is read only.

U The set is an update-anywhere configuration, and therefore is
read/write.

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in
update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master.
In the case of update conflicts between the replica and the master table,
the replica will have its conflicting transactions rejected. F is not used
for read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the
target table is the replica or other copy. In the case of update conflicts
between the master and the replica table, the replica will have its
conflicting transactions rejected. S is used for all read-only
subscriptions.

ACTIVATE Data type: SMALLINT; Nullable: No

A flag that indicates whether the Apply program will process the set during its
next cycle:

0 The subscription set is deactivated. The Apply program will not process
the set.

1 The subscription set is active indefinitely. The Apply program will
process the set during each Apply cycle until you deactivate the set or
until the Apply program is unable to process it.

2 The subscription set is active for only one Apply cycle. The Apply
program will process the set once and then deactivate the set.

SOURCE_SERVER Data type: CHAR(18); Nullable: No

The database name of the Capture control server where the source tables and
views are defined.

SOURCE_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the Capture control server that is named in the
SOURCE_SERVER column.

446 SQL Replication Guide and Reference

Table 95. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

TARGET_SERVER Data type: CHAR(18); Nullable: No

The database name of the server where target tables or views are stored.

TARGET_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the target server named in the
TARGET_SERVER column.

STATUS Data type: SMALLINT; Nullable: No

A value that represents the work status for the Apply program after a given
cycle:

-1 The replication failed. The Apply program backed out the entire set of
rows it had applied, and no data was committed. If the startup
parameter SQLERRCONTINUE = Y, the SQLSTATE that is returned to
the Apply program during the last cycle is not one of the acceptable
errors you indicated in the input file for SQLERRCONTINUE (apply
qualifier.SQS).

0 The Apply program processed the subscription set successfully. If the
startup parameter SQLERRCONTINUE = Y, the Apply program did not
encounter any SQL errors that you indicated for the
SQLERRCONTINUE startup parameter (in apply qualifier.SQS) and did
not reject any rows.

1 The Apply program is processing the subscription set.

2 The Apply program is processing the subscription set in multiple
cycles. It successfully processed a single logical subscription that was
divided according to the MAX_SYNCH_MINUTES control column.

16 The Apply program processed the subscription set successfully and
returned a status of 0; however, it encountered some SQL errors that
you indicated for the SQLERRCONTINUE startup parameter (in
apply_qualifier.SQS) and rejected some of the rows. See the apply
qualifier.ERR file for details about the rows that failed.

Example: You set SQLERRCONTINUE = Y and indicate that the
allowable SQL state is 23502 (SQL code -407). A 23502 error occurs, but
no other errors occur. The Apply program finishes processing the
subscription set, and it sets the status to 16. On the next execution, a
23502 error occurs, but then a 07006 (SQL code -301) occurs. Now the
Apply program stops processing the subscription set, backs out the
entire set of rows it had applied, and sets the status to -1 (because no
data was committed).

18 The Apply program is processing the subscription set in multiple cycles
and returned a status of 2, meaning that it successfully processed a
single logical subscription that was divided according to the
MAX_SYNCH_MINUTES control column. However, it encountered
some SQL errors that you indicated for the SQLERRCONTINUE startup
parameter (in apply_qualifier.SQS) and rejected some of the rows. See the
apply_qualifier.ERR file for details about the rows that failed.

LASTRUN Data type: TIMESTAMP; Nullable: No

The estimated time that the last subscription set began. The Apply program sets
the LASTRUN value each time a subscription set is processed. It is the
approximate time at the Apply control server when the Apply program begins
processing the subscription set.

Chapter 23. SQL Replication table structures 447

Table 95. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

REFRESH_TYPE Data type: CHAR(1); Nullable: No

The type of scheduling that is used to prompt the Apply program to process this
subscription set:

R The Apply program uses time-based scheduling. It uses the value in
SLEEP_MINUTES to determine when to start processing the
subscription set.

E The Apply program uses event-based scheduling. It checks the time
value in the IBMSNAP_SUBS_EVENT table to determine when to start
processing the subscription set. Before any replication (change capture
or full refresh) can begin, an event must occur.

B The Apply program uses both time-based and event-based scheduling.
Therefore, it processes the subscription set based on either the time or
event criteria.

SLEEP_MINUTES Data type: INT; Nullable: Yes

Specifies the time (in minutes) of inactivity between subscription set processing.
The processing time is used only when REFRESH_TYPE is R or B. If the value of
SLEEP_MINUTES is NULL, the Apply program will process the set
continuously. The Apply program will process the set as often as possible, but
will also process all other active subscription sets with the same Apply qualifier.

EVENT_NAME Data type: CHAR(18); Nullable: Yes

A unique character string used to represent the name of an event. Use this
identifier to update the subscription events table when you want to trigger
replication for a subscription set. The event name is used only when
REFRESH_TYPE is E or B.

LASTSUCCESS Data type: TIMESTAMP; Nullable: Yes

The Apply control server timestamp for the beginning of the last successful
processing of a subscription set.

SYNCHPOINT Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has
processed data up to this synchpoint value for the subscription set.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has
processed data up to this timestamp for the subscription set.

CAPTURE_SCHEMA Data type: VARCHAR(128); Nullable: No

The schema name of the Capture control tables that process the source for this
subscription set.

TGT_CAPTURE_SCHEMA Data type: VARCHAR(128); Nullable: Yes

If the target table is also the source for another subscription set (such as an
external CCD table in a multi-tier configuration or a replica table in an
update-anywhere configuration), then this column contains the Capture schema
that is used when the table is acting as a source.

FEDERATED_SRC_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the source for the subscription
set, which applies only to non-DB2 relational sources.

448 SQL Replication Guide and Reference

Table 95. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

FEDERATED_TGT_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the target for the subscription
set, which applies only to non-DB2 relational targets.

JRN_LIB Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture
servers, is the library name of the journal that the source table uses.

JRN_NAME Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture
servers, is the name of the journal used by a source table. An asterisk followed
by nine blanks in this column means that the source table is currently not in a
journal, in which case it is not possible to capture data for this source table.

OPTION_FLAGS Data type: CHAR(4); Nullable: No

Reserved for future options of SQL Replication. Currently this column contains
the default value of NNNN.

COMMIT_COUNT Data type: SMALLINT; Nullable: Yes

A flag that indicates the type of processing that the Apply program performs for
a subscription set:

NULL This is the default setting for a read-only subscription set. The Apply
program will process fetched answer sets for the n subscription-set
members one member at a time, until all data has been processed, and
then will issue a single commit at the end of the data processing for the
whole set. The advantage of using this COMMIT_COUNT setting is
that the processing might complete faster.

Integer not NULL
The Apply program processes the subscription set in a transactional
mode. After all answer sets are fetched, the contents of the spill files
will be applied in the order of commit sequence, ordering each
transaction by the IBMSNAP_INTENTSEQ value order. This type of
processing allows all spill files to be open and processed at the same
time. A commit will be issued following the number of transactions
specified in this column. For example, 1 means commit after each
transaction, 2 means commit after each two transactions, and so on. An
integer of 0 means that a single commit will be issued after all fetched
data is applied. The advantage of using transactional mode processing
is that the processing allows for referential integrity constraints at the
target, and interim commits can be issued.

Transaction-mode processing only changes the Apply program's
behavior for sets with user-copy, point-in-time, and CCD target tables.
Sets containing replica tables are always processed in transaction mode.

MAX_SYNCH_MINUTES Data type: SMALLINT; Nullable: Yes

A time-threshold limit to regulate the amount of change data to fetch and apply
during a subscription cycle. The Apply program breaks the subscription set
processing into mini-cycles based on the IBMSNAP_LOGMARKER column in
the UOW or CCD table at the Capture server and issues a COMMIT at the
target server after each successful mini-cycle. The limit is automatically
recalculated if the Apply program encounters a resource constraint that makes
the set limit unfeasible. MAX_SYNCH_MINUTES values that are less than 1 will
be treated the same as a MAX_SYNCH_MINUTES value equal to null.

Chapter 23. SQL Replication table structures 449

Table 95. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

AUX_STMTS Data type: SMALLINT; Nullable: No

The number of SQL statements that you define in the IBMSNAP_SUBS_STMTS
table that can run before or after the Apply program processes a subscription
set.

ARCH_LEVEL Data type: CHAR(4); Nullable: No

The architectural level of the replication control tables. This column identifies the
rules under which a row was created. This level is defined by IBM.

0801 Version 8 or later SQL Replication

0803 Version 8 SQL Replication with enhanced support for Oracle sources

0805 Version 8 SQL Replication with support for DB2 for z/OS new-function
mode

ASN.IBMSNAP_SUBS_STMTS table
The IBMSNAP_SUBS_STMTS table contains the user-defined SQL statements or
stored procedure calls that will be executed before or after each subscription-set
processing cycle. Execute immediately (EI) statements or stored procedures can be
executed at the source or target server only. This table is populated when you
define a subscription set that uses SQL statements or stored procedure calls.

Server: Apply control server

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST, BEFORE_OR_AFTER,
STMT_NUMBER

Important: Use caution when you update this table by using SQL. Altering this
table inappropriately can cause unexpected results and loss of data. The number of
entries for a subscription should be reflected in the AUX_STMTS column of the
IBMSNAP_SUBS_SET table. If AUX_STMTS is zero for a subscription set, the
corresponding entries in the IBMSNAP_SUBS_STMTS table are ignored by the
Apply program.

Table 96 provides a brief description of the columns in the
IBMSNAP_SUBS_STMTS table.

Table 96. Columns in the IBMSNAP_SUBS_STMTS table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes the SQL statement or stored
procedure.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that the SQL statement or stored procedure is
associated with.

450 SQL Replication Guide and Reference

Table 96. Columns in the IBMSNAP_SUBS_STMTS table (continued)

Column name Description

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in
update-anywhere replication scenarios.

F (first) The target table is the user table or parent replica. The source
table is the dependent replica and, in the case of update conflicts
between the source table and the target table, the source table will have
its conflicting transactions rejected. F is not used for read-only
subscriptions.

S (second) The source table is the user table, parent replica, or other
source. The target table is the dependent replica or other copy and, in
the case of update conflicts between the source table and the target
table, the target table will have its conflicting transactions rejected. S is
used for all read-only subscriptions.

BEFORE_OR_AFTER Data type: CHAR(1); Nullable: No

A value that indicates when and where the statement is issued:

A The statement is executed at the target server after all of the answer-set
rows are applied.

B The statement is executed at the target server before any of the
answer-set rows are applied.

S The statement is executed at the Capture control server before opening
the answer-set cursors.

G Reserved for use by SQL Replication.

X Reserved for use by SQL Replication.

STMT_NUMBER Data type: SMALLINT; Nullable: No

Defines the relative order of execution within the scope of the
BEFORE_OR_AFTER column value.

EI_OR_CALL Data type: CHAR(1); Nullable: No

A value that indicates:

E The SQL statement should be run as an EXEC SQL EXECUTE
IMMEDIATE.

C The SQL statement contains a stored procedure name to run as an EXEC
SQL CALL.

SQL_STMT Data type: VARCHAR(1024); Nullable: Yes

One of the following values:

Statement
The SQL statement should run as an EXEC SQL EXECUTE IMMEDIATE
statement if EI_OR_CALL is E.

Procedure
The eight-byte name of an SQL stored procedure, without parameters,
or the CALL keyword that runs as an EXEC SQL CALL statement if
EI_OR_CALL is C.

Chapter 23. SQL Replication table structures 451

Table 96. Columns in the IBMSNAP_SUBS_STMTS table (continued)

Column name Description

ACCEPT_SQLSTATES Data type: VARCHAR(50); Nullable: Yes

One to ten five-byte SQLSTATE values that you specified when you defined the
subscription set. These non-zero values are accepted by the Apply program as a
successful execution. Any other values will cause a failed execution.

Tables at the target server
Various types of target tables are stored at the target server. If you do not use an
existing table as your target table, the ASNCLP command-line program or
Replication Center build the target table to your specifications based on how you
define the subscription-set member.

Table 97 describes the tables at the target server.

Table 97. Quick reference for target tables

Table name Description

“Base aggregate table” Contains data that has been aggregated from a source
table.

“Change aggregate table” on page
453

Contains data that has been aggregated from a CD
table.

“CCD targets” on page 77 Contains information about changes that occur at the
source and contains additional columns to identify
the sequential ordering of those changes.

“Point-in-time table” on page 455 A copy of the source data, with an additional column
that records the specific time in the source log that
the data was committed.

“Replica table” on page 456 A type of target table used for update-anywhere
replication.

“User copy table” on page 456 A copy of the source table.

Base aggregate table
A base aggregate table is a target table that contains the results of aggregate
functions that are performed on data located at the source table.

schema.base_aggregate

Server: target server

Important: If you use SQL to update this table, you run the risk of losing your
updates if a full refresh is performed by the Apply program.

Table 98 provides a brief description of the columns in the base aggregate table.

Table 98. Columns in the base aggregate table

Column name Description

user columns The aggregate data that was computed from the source table.

IBMSNAP_LLOGMARKER The current timestamp at the source server when the aggregation of the
data in the source table began.

452 SQL Replication Guide and Reference

Table 98. Columns in the base aggregate table (continued)

Column name Description

IBMSNAP_HLOGMARKER The current timestamp at the source server when the aggregation of the
data in the source table completed.

Change aggregate table
A change aggregate table is a target table that contains the results of aggregate
functions that are performed on data in the change-data (CD) table. This table is
similar to the base aggregate table, except that the functions being performed at
the CD table are done only for changes that occur during a specific time interval.

schema.change_aggregate

Server: target server

Important: If you use SQL to update this table, you run the risk of losing your
updates if a full refresh is performed by the Apply program.

Table 99 provides a brief description of the columns in the change aggregate table.

Table 99. Columns in the change aggregate table

Column name Description

user key columns The columns that make up the target key.

user nonkey columns The nonkey data columns from the source table. The column names in this
target table do not need to match the column names in the source table, but
the data types must match.

user computed columns User-defined columns that are derived from SQL expressions. You can use
computed columns with SQL functions to convert source data types to
different target data types.

IBMSNAP_LLOGMARKER The oldest IBMSNAP_LOGMARKER or IBMSNAP_LLOGMARKER value
present in the (CD+UOW) or CCD table rows being aggregated.

IBMSNAP_HLOGMARKER The newest IBMSNAP_LOGMARKER or IBMSNAP_HLOGMARKER value
present in the (CD+UOW) or CCD table rows being aggregated.

CCD targets
Consistent-change-data (CCD) target tables provide committed transactional data
that can be read and used by other applications, for example InfoSphere DataStage.
You might also use a CCD table to audit the source data or keep a history of how
the data is used.

For example, you can track before and after comparisons of the data, when
changes occurred, and which user ID made the update to the source table.

To define a read-only target table that keeps a history of your source table, define
the target CCD table to include the following attributes:

Noncondensed
To keep a record of all of the source changes, define the CCD table to be
noncondensed, so it stores one row for every change that occurs. Because
noncondensed tables contain multiple rows with the same key value, do
not define a unique index. A noncondensed CCD table holds one row per
UPDATE, INSERT, or DELETE operation, thus maintaining a history of the

Chapter 23. SQL Replication table structures 453

operations performed on the source table. If you capture UPDATE
operations as INSERT and DELETE operations (for partitioning key
columns), the CCD table will have two rows for each update, a row for the
DELETE and a row for the INSERT.

Complete or noncomplete
You can choose whether you want the CCD table to be complete or
noncomplete. Because noncomplete CCD tables do not contain a complete
set of source rows initially, create a noncomplete CCD table to keep a
history of updates to a source table (the updates since the Apply program
began to populate the CCD table).

Include UOW columns
For improved auditing capability, include the extra columns from the UOW
table. If you need more user-oriented identification, columns for the DB2
for z/OS correlation ID and primary authorization ID or the System i job
name and user profile are available in the UOW table.

Important for Version 10.1 on Linux, UNIX, and Windows: If the source database
is DB2 10.1 for Linux, UNIX, and Windows with multiple DB2 pureScale members,
CCD targets are supported only if both the Capture and Apply programs are at
Version 10.1 and the Capture compatibility parameter is set to 1001. With only a
single DB2 pureScale member and compatibility set to 0801, CCD targets are
supported even if the Apply program is at a version lower than 10.1.

By definition, a CCD table always includes the following columns in addition to
the replicated columns from the source table:

Column Description

IBMSNAP_INTENTSEQ Data type: VARCHAR(16) FOR BIT DATA;
Nullable: No

A sequence number that uniquely identifies
a change. This value is ascending in a
transaction.

The log sequence
number (LRSN or RBA) of each update,
delete, and insert.

IBMSNAP_OPERATION Data type: CHAR(1); Nullable: No

A flag that indicates the type of operation: I
(INSERT), U (UPDATE), or D (DELETE).

IBMSNAP_COMMITSEQ Data type: VARCHAR(16) FOR BIT DATA;
Nullable: No

A sequence number for each row within a
transaction.

The log sequence
number (LRSN or RBA) of the source
commit record.

IBMSNAP_LOGMARKER Data type: TIMESTAMP; Nullable: No

The approximate time that the data was
committed.

454 SQL Replication Guide and Reference

When you create a noncomplete (COMPLETE=N) CCD table with the ASNCLP
command-line program or Replication Center, you can specify additional auditing
columns. The following table describes these columns:

Column Description

IBMSNAP_AUTHID Data type: VARCHAR(30); Nullable: Yes

The user ID that updated the source table.

This column is the
primary authorization ID.

IBMSNAP_AUTHTKN Data type: VARCHAR(30); Nullable: Yes

The authorization token that is associated
with the transaction.

The correlation ID
(normally a job name) that ran the source
update.

IBMSNAP_PLANID Data type: VARCHAR(8); Nullable: Yes

The plan name that is
associated with the transaction. This column
will be null for DB2 for Linux, UNIX, and
Windows.

IBMSNAP_UOWID Data type: VARCHAR(16) FOR BIT DATA;
Nullable: Yes

The unit-of-work (UOW) identifier from the
log record for a row.

The unit-of-work
identifier, sometimes called the
unit-of-recovery ID (URID) of the
transaction.

Point-in-time table
The point-in-time table contains a copy of the source data, with an additional
system column (IBMSNAP_LOGMARKER) containing the timestamp of
approximately when the particular row was inserted or updated at the source
server.

schema.point_in_time

Server: target server

Important: If you use SQL to update this table, you run the risk of losing your
updates if a full refresh is performed by the Apply program.

Table 100 provides a brief description of the columns in the point-in-time table.

Table 100. Columns in the point-in-time table

Column name Description

user key columns The columns that make up the target key.

Chapter 23. SQL Replication table structures 455

Table 100. Columns in the point-in-time table (continued)

Column name Description

user nonkey columns The nonkey data columns from the source table or view. The column names in
this target table do not need to match the column names in the source table, but
the data types must match.

user computed columns User-defined columns that are derived from SQL expressions. You can use
computed columns with SQL functions to convert source data types to different
target data types.

IBMSNAP_LOGMARKER The approximate commit time at the Capture control server. This column is null
following a full refresh.

Replica table
The replica table must have the same key columns as the source table. Because of
these similarities, the replica table can be used as a source table for other
subscription sets. Converting a target table into a source table is done
automatically when you define a replica target type and specify the CHANGE
DATA CAPTURE attribute.

schema.replica

Server: target server

This table contains information that you can update by using SQL.

Table 101 provides a brief description of the columns in the replica table.

Table 101. Columns in the replica table

Column name Description

user key columns The columns that make up the target key, which must be the same primary key
as the master table.

user nonkey columns The nonkey data columns from the source table. The column names in this target
table do not need to match the column names in the source table, but the data
types must match.

User copy table
The user copy table is a target table that contains a copy of the columns in the
source table. This target table can be a row or column subset of the source table,
but it cannot contain any additional columns.

schema.user_copy

Server: target server

Important: If you use SQL to update this table, you run the risk of losing your
updates if a full refresh is performed by the Apply program.

Except for subsetting and data enhancement, a user copy table reflects a valid state
of the source table, but not necessarily the most current state. References to user
copy tables (or any other type of target table) reduce the risk of contention
problems that results from a high volume of direct access to the source tables.
Accessing local user copy tables is much faster than using the network to access
remote source tables for each query.

456 SQL Replication Guide and Reference

Table 102 provides a brief description of the columns in the user copy table.

Table 102. Columns in the user copy table

Column name Description

user key columns The columns that make up the target key.

user nonkey columns The nonkey data columns from the source table or view. The column names in
this target table do not need to match the column names in the source table, but
the data types must match.

user computed columns User-defined columns that are derived from SQL expressions. You can use
computed columns with SQL functions to convert source data types to different
target data types.

Chapter 23. SQL Replication table structures 457

458 SQL Replication Guide and Reference

Appendix A. UNICODE and ASCII encoding schemes for SQL
replication (z/OS)

SQL replication for OS/390 and z/OS Version 7 or later supports both UNICODE
and ASCII encoding schemes.

To exploit the UNICODE encoding scheme, you must have at least DB2 for OS/390
and z/OS Version 7 and you must manually create or convert your SQL replication
source, target, and control tables as described in the following sections. However,
your existing replication environment will work with SQL replication for OS/390
and z/OS Version 7 or later even if you do not modify any encoding schemes. If
your system is a UNICODE system, you must add ENCODING(EBCDIC) on the
BIND PLAN and PACKAGE commands for the Capture, Apply, and Replication
Alert Monitor programs.

Rules for choosing an encoding scheme
If your source, CD, and target tables use the same encoding scheme, you can
minimize the need for data conversions in your replication environment.

When you choose encoding schemes for the tables, follow the single CCSID rule:

The table space data is encoded by using ASCII or EBCDIC or UNICODE
CCSIDs. The encoding scheme of all the tables referenced by an SQL
statement must be the same. Also, all tables that you use in views and
joins must use the same encoding scheme.

If you do not follow the single CCSID rule, DB2 will detect the violation and
return SQLCODE -873 during bind or execution.

Which tables should be ASCII or UNICODE depends on your client/server
configuration. Specifically, follow these rules when you choose encoding schemes
for the tables:
v Source or target tables on DB2 for OS/390 can be EBCDIC, ASCII, or UNICODE.

They can be copied from or to tables that have the same or different encoding
scheme in any supported DBMS (DB2 family, or non-DB2 with DataJoiner).

v On a DB2 for OS/390 source server, CD and UOW tables on the same server do
not have to use the same encoding scheme if, when the subscription set-member
is created, the target type is USERCOPY and JOIN_UOW_CD does not equal Y.
Otherwise, the CD and UOW tables must use the same encoding scheme.

v The IBMSNAP_SIGNAL table should be encoded EBCDIC so that the Capture
program does not have to translate signals to EBCDIC when it selects them from
the signal table.

v All the control tables (ASN.IBMSNAP_SUBS_xxxx) on the same control server
must use the same encoding scheme.

v Other control tables can use any encoding scheme.

Setting encoding schemes
To specify the proper encoding scheme for tables, modify the SQL that is used to
generate the tables.

© Copyright IBM Corp. 1994, 2012 459

It is recommended that you stop the Capture and Apply programs before you
change the encoding scheme of existing tables.

Note: The DB2 for z/OS V8 SQL Reference contains more information about CCSID.

To set encoding schemes:
1. Create new source and target tables with the proper encoding scheme. It is

recommended that afterwards that you initialize Capture with a cold start and
restart the Apply program.

2. If you have already created your source and target tables, change the encoding
schemes of the existing target and source tables. Existing tables must have the
same encoding scheme within a table space
a. Use the Reorg Tablespace utility to unload the existing table space.
b. Drop the existing table space.
c. Re-create the table space specifying the new encoding scheme.
d. Use the Load utility to load the old data into the new table space. See the

DB2 for z/OS V8 Utility Guide and Reference for more information on the
Load and Reorg utilities.

3. Use the Replication Center to create new control tables with the proper
encoding scheme.

4. Use the Reorg and Load utilities to modify the encoding scheme for existing
control tables and CD tables.

5. When you create new replication sources or subscription sets by using the
ASNCLP or Replication Center, specify the proper encoding scheme.

460 SQL Replication Guide and Reference

Appendix B. Starting the SQL Replication programs from
within an application (Linux, UNIX, Windows)

You can start any of the replication programs (Capture program, Apply program,
Replication Alert Monitor) for one replication cycle from within your application
by calling routines.

To use these routines you must specify the AUTOSTOP option for the Capture
program and the COPYONCE option for the Apply program because the API
support only synchronous execution.

Samples of the API and their respective makefiles are in the following directories:

sqllib\samples\repl

sqllib/samples/repl

Those directories contain the following files for starting the Capture program:

capture_api.c
The sample code for starting the Capture program on Windows, Linux, or
UNIX.

capture_api_nt.mak
The makefile for sample code on Windows.

capture_api_unix.mak
The makefile for sample code on UNIX.

Those directories contain the following files for starting the Apply program:

apply_api.c
The sample code for starting the Apply program on Windows, Linux, or
UNIX.

apply_api_nt.mak
The makefile for sample code on Windows.

apply_api_unix.mak
The makefile for sample code on UNIX.

Those directories contain the following files for starting the Replication Alert
Monitor:

monitor_api.c
The sample code for starting the Replication Alert Monitor on Windows,
Linux, or UNIX.

monitor_api_nt.mak
The makefile for sample code on Windows.

monitor_api_unix.mak
The makefile for sample code on UNIX.

© Copyright IBM Corp. 1994, 2012 461

462 SQL Replication Guide and Reference

Appendix C. How the Capture program processes journal
entry types for SQL replication (System i)

The following table describes how the Capture program processes different journal
entry types.

Table 103. Capture program processing by journal entry

Journal
code1 Entry type Description Processing

C CM Set of record changes committed Insert a record in the UOW
stable.

C RB Rollback No UOW row inserted.

F AY Journaled changes applied to
physical file member

Issue an ASN2004 message and
full refresh of file.

F CE Change end of data for physical
file

Issue an ASN2004 message and
full refresh of file.

F CR Physical file member cleared Issue an ASN2004 message and
full refresh of file.

F EJ Journaling for physical file
member ended

Issue an ASN200A message and
full refresh of the file. A
full-refresh occurs whenever the
Capture program reads an EJ
journal entry, regardless of
whether the user or the system
caused journaling to end. Refer
to the appropriate System i
documentation for information
about implicit end-journal events
for a file.

F IZ Physical file member initialized Issue an ASN2004 message and
full refresh of file.

F MD Member removed from physical
file (DLTLIB, DLTF, or RMVM)

Issue an ASN200A message and
attempt a full refresh.

F MF Storage for physical file member
freed

Issue an ASN200A message and
full refresh of file.

F MM Physical file containing member
moved (Rename Object
(RNMOBJ) of library, Move
Object (MOVOBJ) of file)

Issue an ASN200A message and
attempt a full refresh.

F MN Physical file containing member
renamed (RNMOBJ of file,
Rename Member (RNMM))

Issue an ASN200A message and
attempt a full refresh.

F MR Physical file member restored Issue an ASN2004 message and
full refresh of file.

F RC Journaled changes removed
from physical file member

Issue an ASN2004 message and
full refresh of file.

F RG Physical file member
reorganized

If the RRN of the source table is
being used as the replication
key, issue an ASN2004 message
and full refresh of file.

© Copyright IBM Corp. 1994, 2012 463

Table 103. Capture program processing by journal entry (continued)

Journal
code1 Entry type Description Processing

J NR Identifier for next journal
receivers

Reset the Capture program.

J PR Identifier for previous journal
receivers

Increment the unique sequence
number counter.

R DL Record deleted from physical file
member

Insert a DLT record in the CD
table.

R DR Record deleted for rollback Insert a DLT record in the CD
table.

R PT Record added to physical file
member

Insert an ADD record in the CD
table.

R PX Record added directly to
physical file member

Insert an ADD record in the CD
table.

R UB Before-image of record updated
in physical file member

See note 2.

R UP After-image of record updated
in physical file member

See note 2.

R BR Before-image of record updated
for rollback

See note 3.

R UR After-image of record updated
for rollback

See note 3.

Note:

1. The following values are used for the journal codes:
C Commitment control operation
F Database file operation
J Journal or journal receiver operation
R Operation on specific record

2. The R-UP image and the R-UB image form a single UPD record in the CD table if the
PARTITION_KEYS_CHG column in the register table is N. Otherwise, the R-UB image
inserts a DLT record in the CD table and the R-UP image inserts an ADD record in the
CD table.

3. The R-UR image and the R-BR image form a single UPD record in the CD table if the
PARTITION_KEYS_CHG column in the register table is N. Otherwise, the R-BR image
inserts a DLT record in the CD table and the R-UR image inserts an ADD record in the
CD table.

All other journal entry types are ignored by the Capture program.

464 SQL Replication Guide and Reference

Contacting IBM

You can contact IBM for customer support, software services, product information,
and general information. You also can provide feedback to IBM about products
and documentation.

The following table lists resources for customer support, software services, training,
and product and solutions information.

Table 104. IBM resources

Resource Description and location

IBM Support Portal You can customize support information by
choosing the products and the topics that
interest you at www.ibm.com/support/
entry/portal/Software/
Information_Management/
InfoSphere_Information_Server

Software services You can find information about software, IT,
and business consulting services, on the
solutions site at www.ibm.com/
businesssolutions/

My IBM You can manage links to IBM Web sites and
information that meet your specific technical
support needs by creating an account on the
My IBM site at www.ibm.com/account/

Training and certification You can learn about technical training and
education services designed for individuals,
companies, and public organizations to
acquire, maintain, and optimize their IT
skills at http://www.ibm.com/software/sw-
training/

IBM representatives You can contact an IBM representative to
learn about solutions at
www.ibm.com/connect/ibm/us/en/

Federation, replication, and event publishing products support

For support, go to:
v IBM InfoSphere Federation Server

www.ibm.com/software/data/integration/support/federation_server/
v IBM InfoSphere Replication Server

www.ibm.com/software/data/integration/support/replication_server/
v IBM InfoSphere Data Event Publisher

www.ibm.com/software/data/integration/support/data_event_publisher/

Classic products support

For support, go to:
v IBM InfoSphere Classic Federation Server for z/OS

www.ibm.com/software/data/integration/support/classic_federation_server_z/

© Copyright IBM Corp. 1994, 2012 465

http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/businesssolutions/
http://www.ibm.com/businesssolutions/
http://www.ibm.com/account/
http://www.ibm.com/software/sw-training/
http://www.ibm.com/software/sw-training/
http://www.ibm.com/connect/ibm/us/en/
http://www.ibm.com/software/data/integration/support/info_server/
http://www.ibm.com/software/data/integration/support/replication_server/
http://www.ibm.com/software/data/integration/support/data_event_publisher/
http://www.ibm.com/software/data/integration/support/classic_federation_server_z/

v IBM InfoSphere Classic Replication Server for z/OS
www.ibm.com/software/data/infosphere/support/replication-server-z/

v IBM InfoSphere Classic Data Event Publisher for z/OS
www.ibm.com/software/data/integration/support/data_event_publisher_z/

v IBM InfoSphere Data Integration Classic Connector for z/OS
www.ibm.com/software/data/integration/support/data_integration_classic_connector_z/

Providing feedback

The following table describes how to provide feedback to IBM about products and
product documentation.

Table 105. Providing feedback to IBM

Type of feedback Action

Product feedback You can provide general product feedback
through the Consumability Survey at
www.ibm.com/software/data/info/
consumability-survey

Documentation feedback To comment on the information center, click
the Feedback link on the top right side of
any topic in the information center. You can
also send comments about PDF file books,
the information center, or any other
documentation in the following ways:

v Online reader comment form:
www.ibm.com/software/data/rcf/

v E-mail: comments@us.ibm.com

466 SQL Replication Guide and Reference

http://www.ibm.com/software/data/infosphere/support/replication-server-z/
http://www.ibm.com/software/data/integration/support/data_event_publisher_z/
http://www.ibm.com/software/data/integration/support/data_integration_classic_connector_z/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/rcf/

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

��
default_choice

required_item
optional_choice1
optional_choice2

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

© Copyright IBM Corp. 1994, 2012 467

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

Fragment-name:

required_item
optional_item

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown.

v Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

468 SQL Replication Guide and Reference

Notices and trademarks

This information was developed for products and services offered in the U.S.A.

Notices

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1994, 2012 469

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

470 SQL Replication Guide and Reference

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Notices and trademarks 471

http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

The United States Postal Service owns the following trademarks: CASS, CASS
Certified, DPV, LACSLink, ZIP, ZIP + 4, ZIP Code, Post Office, Postal Service, USPS
and United States Postal Service. IBM Corporation is a non-exclusive DPV and
LACSLink licensee of the United States Postal Service.

Other company, product or service names may be trademarks or service marks of
others.

Trademarks
IBM trademarks and certain non-IBM trademarks are marked on their first
occurrence in this information with the appropriate symbol.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency, which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

472 SQL Replication Guide and Reference

http://www.ibm.com/legal/copytrade.shtml

The United States Postal Service owns the following trademarks: CASS, CASS
Certified, DPV, LACSLink, ZIP, ZIP + 4, ZIP Code, Post Office, Postal Service,
USPS and United States Postal Service. IBM Corporation is a non-exclusive DPV
and LACSLink licensee of the United States Postal Service.

Other company, product, or service names may be trademarks or service marks of
others.

Notices and trademarks 473

474 SQL Replication Guide and Reference

Index

Special characters
; delimiter 235
$TA JES2 command 220
delimiter 235

A
abstract data types

restrictions for replication 91
activation

subscription sets 65
add_partition parameter

overview 110, 111
ADDDPRREG command

description 295
ADDDPRSUB command 303
ADDDPRSUBM command 318
ADDJOBSCDE command 220
administration

authorization requirements 13
after-image columns

before-image columns in Q
Replication 45

aggregate tables
base aggregate 76, 452
change aggregate 76, 453

ALTER COLUMN SET DATA TYPE
operations 164

ALWINACT parameter 361, 365
Analyzer

for System i
invocation parameters 329

System i
creating SQL packages 28
invocation parameters 328

Analyzer reports
ANZDPR command 328
asnanalyze command 258

ANZDPR command 328
ANZDPRJRN command 38
APP log files 131
applheapsz configuration parameter

running the capture program 25
applications

starting replication programs
from 461

Apply control tables
APPPARMS (Apply parameters)

changing 140
ASN.IBMSNAP_FEEDETL 438
IBMSNAP_APPENQ 425
IBMSNAP_APPLEVEL 426
IBMSNAP_APPLY_JOB 426
IBMSNAP_APPLYMON 427
IBMSNAP_APPLYTRACE 432
IBMSNAP_APPLYTRAIL 432
IBMSNAP_APPPARMS 428

using 139
IBMSNAP_SUBS_COLS 439
IBMSNAP_SUBS_EVENT 440

Apply control tables (continued)
IBMSNAP_SUBS_SET 445
IBMSNAP_SUBS_STMTS 450
SUBS_MEMBR (subscription

members) 441
Apply parameters table

changing 140
Apply program

authorization requirements 15
changing parameter values 139
commands

asnacmd 257
asnapply 251
SQL replication 239

communicating with
Capture program 225
Capture triggers 227
Replication Alert Monitor 229
Replication Center 225

connectivity 20
data blocking 66
for System i

ALWINACT parameter 365
APYQUAL parameter 363
COPYONCE parameter 366
CTLSVR parameter 364
DELAY parameter 365
FULLREFPGM parameter 364
INACTMSG parameter 365
JOBD parameter 363
OPTSNGSET parameter 366
RTYWAIT parameter 365
SUBNFYPGM parameter 365
TRACE parameter 364
TRLREUSE parameter 366
USER parameter 363

Linux
binding 26
configuring 26
setting up 25

mini-cycles 66
MODIFY command 155
operating 127
referential integrity failures 141
run-time processing statements 102
scheduling 219
setting defaults for parameters 139
System i

ALWINACT parameter 361
APYQUAL parameter 361
checking status 232
COPYONCE parameter 361
creating SQL packages 28
CTLSVR parameter 361
DELAY parameter 361
FULLREFPGM parameter 361
INACTMSG parameter 361
JOBD parameter 361
OPTSNGSET parameter 361
RTYWAIT parameter 361
scheduling 220

Apply program (continued)
System i (continued)

setting up 33
starting 129, 361
stopping 140, 337
SUBNFYPGM parameter 361
TRACE parameter 361
TRLREUSE parameter 361
USER parameter 361

table-mode processing 68
transaction-mode processing 68
UNIX

apply_path parameter 131
apply_qual parameter 131
binding 26
caf parameter 131
checking status 231
configuring 26
control_server parameter 131
copyonce parameter 131
default parameters 130
delay parameter 131
errwait parameter 131
inamsg parameter 131
loadxit parameter 131
logreuse parameter 131
logstdout parameter 131
notify parameter 131
opt4one parameter 131
pwdfile parameter 131
setting up 25
sleep parameter 131
spillfile parameter 131
sqlerrcontinue parameter 131
starting 127, 461
stopping 140
term parameter 131
trlreuse parameter 131

user IDs 15
Windows

apply_path parameter 131
apply_qual parameter 131
binding 26
caf parameter 131
checking status 231
configuring 26
control_server parameter 131
copyonce parameter 131
default parameters 130
delay parameter 131
errwait parameter 131
inamsg parameter 131
loadxit parameter 131
logreuse parameter 131
logstdout parameter 131
notify parameter 131
opt4one parameter 131
pwdfile parameter 131
setting up 25
sleep parameter 131
spillfile parameter 131

© Copyright IBM Corp. 1994, 2012 475

Apply program (continued)
Windows (continued)

sqlerrcontinue parameter 131
starting 127, 461
stopping 140
term parameter 131
trlreuse parameter 131

z/OS
apply_path parameter 131
apply_qual parameter 131
caf parameter 131
checking status 231
control_server parameter 131
copyonce parameter 131
db2_subsystem parameter 131
default 130
delay parameter 131
errwait parameter 131
inamsg parameter 131
loadxit parameter 131
logreuse parameter 131
logstdout parameter 131
notify parameter 131
opt4one parameter 131
parameters 130
pwdfile parameter 131
setting up 29
sleep parameter 131
spillfile parameter 131
starting 127, 154
stopping 140
term parameter 131
trlreuse parameter 131

Apply qualifiers
changing in subscription sets 179
naming rules 237
number of associated subscription

sets 62
use when starting the Apply program

Linux, UNIX, and Windows 127
System i 129

apply_path parameter 131
apply_qual parameter 131
APPPARMS (Apply parameters) table

changing 140
APYQUAL parameter 361, 363
ARM (Automatic Restart Manager) 158
ASCII tables 459
ASN.IBMSNAP_FEEDETL table 438
asnacmd command 257
asnanalyze command 258
asnapply command 251
asncap command

starting capture 239
asnccmd command

operating capture 248
ASNDONE exit routine

rejected transactions 52
using

Linux, UNIX, and Windows 142
System i 142

asndone.smp file 142
ASNLOAD exit routine

customizing behavior 147
description 144
ensuring wait for outcome

behavior 150

ASNLOAD exit routine (continued)
error handling 144
System i 149
UNIX 144
using asnload.ini file 148
using load from cursor function 147
Windows 144
z/OS 146

asnload.ini file 148
ASNPLXFY utility 159
asnpwd 261
asnpwd command

managing remote server access 17
asnscrt 265
asnsdrop 268
asnslist command 269
asntdiff command 210, 270, 274, 281

running in parallel mode 210
asntdiff utility

overview 205
with DB2 compatibility features 214

asntrc 284
asntrep command 291
asntrep utility

usage guide 213
asntrepair utililty

usage guide 205
asntrepair utility

overview 205
asynchlogrd parameter

overview 110
AT command

Apply program 219, 220
Capture program 219, 220
Replication Alert Monitor 219, 220

AT NetView command
Apply z/OS 220
Capture z/OS 220

attributes
changing for registered objects 162
changing for subscription sets 171

auditing
cold start 77, 453
gap in data 77, 453
source data 45

authorizations
for administration 13
for Apply program 15
for Capture program 14
for Capture triggers 17

automatic pruning 198
Automatic Restart Manager (ARM) 158
autoprune parameter

overview 110
autostop parameter 110

B
backup database command 25
base aggregate tables

definition 74
structure 452
usage 76

batch jobs
memory 1
running 153

before-image columns
change-aggregate tables 85
description 45
restrictions 45

before-image prefix 47
binding

Apply program
Linux 26
UNIX 26
Windows 26

Capture program
Linux 26
UNIX 26
Windows 26

BLOB data type
replication considerations 92

BLOB data types
replication considerations 92

blocking factor 66

C
caf parameter 110, 131
calculated columns 85
CALL procedures

before and after run-time
processing 102

defining for subscription set 69
CAP log files 110
CAPCTLLIB parameter 368, 371
CAPPARMS (Capture parameters) table

changing 122
using 119

CAPSTART signals 187
CAPSTOP signals 188
Capture

multiple database partitions 29
using multiple database partitions 24

Capture control server
multiple Capture schemas 23

Capture control tables
CAPPARMS (Capture parameters)

changing 122
using 119

CCD (consistent-change-data) 400
CD (change-data) 401
IBMSNAP_AUTHTKN 390
IBMSNAP_CAPENQ 391
IBMSNAP_CAPMON 391
IBMSNAP_CAPPARMS

structure 393
IBMSNAP_CAPSCHEMAS 397
IBMSNAP_CAPTRACE 398
IBMSNAP_PARTITIONINFO 403
IBMSNAP_PRUNCNTL 404
IBMSNAP_PRUNE_LOCK 406
IBMSNAP_PRUNE_SET 407
IBMSNAP_REG_EXT 407
IBMSNAP_REG_SYNCH 415
IBMSNAP_REGISTER 409
IBMSNAP_RESTART 416
IBMSNAP_SEQTABLE 418
IBMSNAP_SIGNAL 418
IBMSNAP_UOW 422

Capture log file 110
Capture parameters (CAPPARMS) table

changing 122

476 SQL Replication Guide and Reference

Capture parameters (CAPPARMS) table
(continued)

using 119
Capture program

altering behavior while running 121
authorization requirements 14
changing parameter values 119
changing schemas 167
cold start prevention 201
commands 239

asncap 239
asnccmd 248

communicating with
Apply program 225, 226
Replication Alert Monitor 229
Replication Center 225

connectivity 20
for System i

CAPCTLLIB parameter 371
CLNUPITV parameter 371
cold start parameters 370
FRCFRQ parameter 374
JOBD parameter 370
JRN parameter 371
LAG parameter 373
MEMLMT parameter 372
MONITV parameter 372
MONLMT parameter 372
RESTART parameter 370
RETAIN parameter 373
TRCLMT parameter 372
WAIT parameter 370
warm start parameters 370

for UNIX
add_partition parameter 111

for Windows
add_partition parameter 111

for z/OS
add_partition parameter 111

Linux
binding 26
setting up 25

memory used by 1
MODIFY command 155
running more than one 23
scheduling 219
setting defaults for parameters 119
setting environment variables 25
signals 183
System i

authorization requirements 13
CAPCTLLIB parameter 368
changing attributes 331
checking status 232
CLNUPITV parameter 368
cold start parameters 368
creating SQL packages 27
default parameters 108
FRCFRQ parameter 368
JOBD parameter 368
journal entry types 463
journals and journal receivers,

managing 35
JRN parameter 368
LAG parameter 368
MEMLMT parameter 368
MONITV parameter 368

Capture program (continued)
System i (continued)

MONLMT parameter 368
operating 105
overriding attributes of 351
progress of 232
reinitializing 350
RESTART parameter 368
RETAIN parameter 368
scheduling 220
setting up 33
starting 107, 368
stopping 123, 340
TRCLMT parameter 368
WAIT parameter 368
warm start parameters 368

UNIX
add_partition parameter 110
asynchlogrd parameter 110
autoprune parameter 110
autostop parameter 110
binding 26
caf parameter 110
capture_path parameter 110
capture_schema parameter 110
capture_server parameter 110
checking status 231
cold start parameters 110
commit_interval parameter 110
configuring 25
default parameters 108
lag_limit parameter 110
logreuse parameter 110
logstdout parameter 110
memory_limit parameter 110
monitor_interval parameter 110
monitor_limit parameter 110
operating 105
prune_interval parameter 110
reinitializing 124
resuming 125
retention_limit parameter 110
setting up 25
sleep_interval parameter 110
starting 105, 461
startmode parameter 110
stopping 123
suspending 124
term parameter 110
trace_limit parameter 110
warm start parameters 110

user ID 14
where to start it 110
Windows

add_partition parameter 110
asynchlogrd parameter 110
autoprune parameter 110
autostop parameter 110
binding 26
caf parameter 110
capture_path parameter 110
capture_schema parameter 110
capture_server parameter 110
checking status 231
cold start parameters 110
commit_interval parameter 110
configuring 25

Capture program (continued)
Windows (continued)

default parameters 108
lag_limit parameter 110
logreuse parameter 110
logstdout parameter 110
memory_limit parameter 110
monitor_interval parameter 110
monitor_limit parameter 110
operating 105
prune_interval parameter 110
reinitializing 124
resuming 125
retention_limit parameter 110
setting up 25
sleep_interval parameter 110
starting 105, 461
startmode parameter 110
stopping 123
suspending 124
term parameter 110
trace_limit parameter 110
warm start parameters 110

z/OS
add_partition parameter 110
asynchlogrd parameter 110
autoprune parameter 110
autostop parameter 110
caf parameter 110
capture_path parameter 110
capture_schema parameter 110
capture_server parameter 110
checking status 231
cold start parameters 110
commit_interval parameter 110
default parameters 108
lag_limit parameter 110
logreuse parameter 110
logstdout parameter 110
memory_limit parameter 110
monitor_interval parameter 110
monitor_limit parameter 110
operating 105
prune_interval parameter 110
reinitializing 124
resuming 125
retention_limit parameter 110
setting up 29
sleep_interval parameter 110
starting 105
startmode parameter 110
stopping 123
suspending 124
term parameter 110
trace_limit parameter 110
warm start parameters 110

Capture schemas
changing 167
naming rules 237
using multiple 23

Capture signals 183
Capture triggers

authorization requirements 17
communicating with

Apply program 225, 227
Replication Center 225

conflicts with preexisting triggers 8

Index 477

Capture triggers (continued)
names of 8
planning 8

capture_path parameter 110
capture_schema parameter 110
capture_server parameter 110
catalog tables, registering 39
CCD (consistent-change-data) tables

adding UOW columns 77, 453
external

multi-tier replication 80
internal

multiple targets 79
locks on 9
non-DB2 relational data sources

using CCD tables 41
nonrelational data sources

maintaining CCD tables 58
using CCD tables 39

replication sources 80
structure

Capture control server 400
usage

history or audit 77, 453
multi-tier replication 80

CD (change-data) tables
for joins 56
for views 55
pruning 199
storage requirements 5
structure 401
summarizing contents 76

CD (change-data) views 55
change aggregate tables

definition 74
structure 453
usage 76

change-capture replication
description 43
registration option 43

change-data (CD) tables
pruning 199
storage requirements 5
structure 401
summarizing contents 76

changing Capture parameters
System i 331

CHGDPRCAPA command 331
CHGJRN command 37
CLNUPITV parameter 368, 371
CLOB data type

replication considerations 92
code pages

compatible 10
DB2CODEPAGE environment

variable 10
translation 9

cold start, Capture program
for System i 370

cold startmode 110
cold starts

Capture program
System i 368
UNIX 110
Windows 110
z/OS 110

preventing 201

column (vertical) subsetting
at the source 43
at the target 85

columns
adding to registered source

tables 162
after-image 45
available for replication 43
before-image 45
calculated 85
computed 103
defining in target table 85
mapping from sources to targets 86
registering in source table 43
relative record numbers on System

i 55
renaming 86, 103
subsetting

at the source 43
at the target 85

commands
asnacmd 257
asnapply 251
asncap 239
asnccmd 248

commit_interval parameter
overview 110
tuning 1

communication amongSQL Replication
components 225

compression dictionaries
z/OS 195

computed columns
CD table 76
creating 103
source table 76

CONCURRENT_ACCESS_RESOLUTION 150
configuration

Apply program
Linux 26
UNIX 26
Windows 26

Capture program
UNIX 25
Windows 25

connectivity
SQL Replication 20

configuration parameters
APPLHEAPSZ 25
DBHEAP 25
LOGBUFSZ 25
LOGFILSIZ 25
LOGPRIMARY 25
LOGSECOND 25
MAXAPPLS 25

conflict detection
levels of 52
overview 52
peer-to-peer replication 7
planning 7
requirements 45
update-anywhere replication 7

conflicts
preventing 7

connecting
to System i server 20

connectivity
between DB2 operating systems 20
failure recovery for control

tables 201
consistent-change-data (CCD) tables

adding UOW columns 77, 453
external

multi-tier replication 80
internal

multiple targets 79
locks on 9
non-DB2 relational data sources

using CCD tables 41
nonrelational data sources

maintaining CCD tables 58
using CCD tables 39

replication sources 80
structure

Capture control server 400
usage

history or audit 77, 453
multi-tier replication 80

control tables
Apply control server 424
ASN.IBMSNAP_FEEDETL 438
authorization requirements System

i 33
Capture server 388
CCD (consistent-change-data)

Capture control server 400
CD (change-data) 401
connectivity failure recovery 201
creating 21

for non-DB2 relational sources 23
in IASP groups 22
multiple database operating

system 21
multiple database partitions 24
multiple sets 23
on System i 22, 336

dynamic 196
granting authority System i 13, 342
I/O error recovery 201
IBMSNAP_APPENQ 425
IBMSNAP_APPLEVEL 426
IBMSNAP_APPLY_JOB 426
IBMSNAP_APPLYMON 427
IBMSNAP_APPLYTRACE 432
IBMSNAP_APPLYTRAIL 432
IBMSNAP_APPPARMS 428
IBMSNAP_AUTHTKN 390
IBMSNAP_CAPENQ 391
IBMSNAP_CAPMON

pruning 202
structure 391

IBMSNAP_CAPPARMS
structure 393

IBMSNAP_CAPSCHEMAS 397
IBMSNAP_CAPTRACE

pruning 202
structure 398

IBMSNAP_PARTITIONINFO 403
IBMSNAP_PRUNCNTL 404
IBMSNAP_PRUNE_LOCK 406
IBMSNAP_PRUNE_SET 407
IBMSNAP_REG_EXT 407
IBMSNAP_REG_SYNCH 415

478 SQL Replication Guide and Reference

control tables (continued)
IBMSNAP_REGISTER 409
IBMSNAP_RESTART 416
IBMSNAP_SEQTABLE 418
IBMSNAP_SIGNAL 418
IBMSNAP_SUBS_COLS 439
IBMSNAP_SUBS_EVENT 440
IBMSNAP_SUBS_SET 445
IBMSNAP_SUBS_STMTS 450
IBMSNAP_UOW 422
maintaining 196
pruning 200
Q Capture server

IBMQREP_COLVERSION 397
IBMQREP_IGNTRAN 401
IBMQREP_IGNTRANTRC 402
IBMQREP_TABVERSION 421

quick reference
Apply control server 424
at a glance 381
Capture server 388
target server 452

rebinding, packages and plans 197
reorganizing 197
revoking authority System i 360
RUNSTATS utility 197
static 197
storage requirements 5
SUBS_MEMBR (subscription

members) 441
target server 452

control_server parameter 131
copying replication configurations 190
copyonce parameter 131
COPYONCE parameter 361, 366
correlation ID 56
CRTDPRTBL command 336
CRTJRN command 33
CRTJRNRCV command 33
CTLSVR parameter 361, 364
current receiver size 3, 35
CURRENTLY COMMITTED access

behavior 150
customer support

contacting 465
customizing

SQL scripts 235

D
data

advanced subsetting techniques 97
manipulating 101
preventing double-deletes 56
retrieving

source tables 201
subsetting

during registration 97
using predicates 99
using views 98
using views to specify

predicates 99
transforming

at registration 101
at subscription 101
creating computed columns 103
renaming columns 86, 103

data blocking 66
DATA CAPTURE CHANGES

attribute 19
data consistency 83
data encryption restrictions 91
data manipulation

at registration 101
at subscription 101
creating computed columns 103
renaming columns 86, 103

data type changes, handling 164
data types

mapping between columns 86
replicating

large objects (LOB) 92
data-sharing mode 159
database partitions

Capture 29
DATE data type

replicating 93
DB2 extenders

restrictions 92
DB2 for z/OS

planning 11
DB2 Query Patroller and replication 32
DB2 replication

authorization requirements 13
DB2 tables

registering 39
DB2 views

registering 58
db2_subsystem parameter 131
DB2CODEPAGE environment

variable 10, 25
DB2DBDFT environment variable 25
DB2INSTANCE environment variable

replication 25
DBADM (database administration)

authority
authorization 13

DBCLOB data type
replication considerations 92

DBHEAP database configuration
parameter

preparing 25
deactivating

registered objects 164
subscription sets 65, 181

defaults
for Apply parameters (Linux, UNIX,

Windows, z/OS) 130, 131
for Apply parameters (System i) 130
for Capture parameters (Linux, UNIX,

Windows, z/OS) 108
for Capture parameters (System

i) 108
for Capture parameters (UNIX,

Windows, z/OS) 110
delay parameter 131
DELAY parameter 361, 365
delete journal receiver exit program 195
delete journal receiver exit routine

about 38
delimiters

generated SQL scripts 235
diagnostic files

storage 6, 7

difference table 205
differential refresh replication 43
disk space

requirements 3
distinct data types 91
distributed recovery points 186
double-deletes 56
DPR registrations

adding 295
removing 356

DSPJRN command 232
dynamic control tables 196

E
editors

SQL scripts 235
ENDDPRAPY command 337
ENDDPRCAP command 123, 340
environment variables

Capture program 25
DB2CODEPAGE 10, 25
DB2DBDFT 25
DB2INSTANCE 25
LIBPATH 25

ERR files 131
errwait parameter 131
Event Publishing

storing user IDs and passwords 17
event publishing commands

asnpwd 261
asnscrt 265
asnsdrop 268
asntrc 284

Event Publishing commands
asnslist 269
asntdiff 210, 270, 274, 281
asntrep 291

event-based scheduling 69
events

coordinating 183
exit routines

ASNDONE
using 142

ASNLOAD
customizing 147
System i 149
UNIX 144
using 144
Windows 144
z/OS 146

delete journal receiver (System i) 38
external CCD tables

multi-tier replication 80

F
files

*.APP.log files 131
*.CAP.log files 110
*.err files 131
*.sqs files 131
asndone.smp file 142
asnload.ini file 148

Index 479

fragmentation
horizontal

at the source 43
at the target 85

peer-to-peer replication 7
update-anywhere replication 7
vertical

at the source 43
at the target 85

FRCFRQ parameter 368, 374
full refresh

System i problems with time
mismatch 36

full-refresh copying
Apply for System i 364
Apply System i 55, 361
registration option 43

FULLREFPGM parameter 361, 364

G
gap detection 77, 453
GENERATED ALWAYS columns 95
generated SQL scripts 235
global record 409, 410
GRTDPRAUT command

granting privileges to SQL
packages 28

syntax 342
GRTOBJAUT command 28

H
handling data type changes 164
heterogeneous replication

registering sources 41
restrictions

aggregate tables 76
CCD tables 45
multi-tier replication 80
update-anywhere 48, 83

historical data
CCD tables 77, 453
source data 45

horizontal (row) subsetting
at the source 43
at the target 85

I
I/O

error recovery 201
IASP groups 22
IBMQREP_COLVERSION control

table 397
IBMQREP_IGNTRAN control table 401
IBMQREP_IGNTRANTRC control

table 402
IBMQREP_TABVERSION control

table 421
IBMSNAP_APPENQ table 425
IBMSNAP_APPLEVEL table

structure 426
IBMSNAP_APPLY_JOB table 426
IBMSNAP_APPLYMON table 427

IBMSNAP_APPLYTRACE table
pruning 200
structure 432

IBMSNAP_APPLYTRAIL table
pruning 200
structure 432

IBMSNAP_APPPARMS table 428
using 139

IBMSNAP_AUTHTKN table 390
IBMSNAP_CAPENQ table 391
IBMSNAP_CAPMON table

pruning 202
structure 391

IBMSNAP_CAPPARMS table
structure 393

IBMSNAP_CAPSCHEMAS table 397
IBMSNAP_CAPTRACE table

pruning 202
structure 398

IBMSNAP_PARTITIONINFO table 403
IBMSNAP_PARTITIONINFOtable 403
IBMSNAP_PRUNCNTL table 404
IBMSNAP_PRUNE_LOCK table 406
IBMSNAP_PRUNE_SET table 407
IBMSNAP_REG_EXT table 407
IBMSNAP_REG_SYNCH table 415
IBMSNAP_REGISTER table 409
IBMSNAP_RESTART table 416
IBMSNAP_SEQTABLE table 418
IBMSNAP_SIGNAL table

structure 418
IBMSNAP_SUBS_COLS table 439
IBMSNAP_SUBS_EVENT table

structure 440
IBMSNAP_SUBS_MEMBR table 150
IBMSNAP_SUBS_SET table 445
IBMSNAP_SUBS_STMTS table 450
IBMSNAP_UOW table

pruning 422
structure 422

identity columns 95
IMS data sources

maintaining CCD tables 58
registering 39
using CCD tables 39

IMS DataPropagator 39
inactive subscription sets 65
INACTMSG parameter 361, 365
inamsg parameter 131
Independent Auxiliary Storage Pool

(IASP) groups 22
indexes

target keys 87
inner-joins as sources 56
internal CCD tables

multiple targets 79
interval timing 69
invocation parameters

Analyzer
for System i 329
System i 328

Apply program
for System i 362
System i 129, 361
UNIX 131
Windows 131
z/OS 131

invocation parameters (continued)
Capture program

for System i 332, 369
System i 105, 107, 331, 368
UNIX 110
Windows 110
z/OS 110

replication commands
for System i 296, 305, 319, 336,

337, 340, 350, 352, 356, 357, 359,
360, 362, 369, 376

System i 295, 303, 318, 336, 337,
340, 342, 350, 351, 356, 357, 359,
360, 361, 368, 375

INZDPRCAP command 350

J
JCL

batch mode 153
starting the Apply program 153
starting the Capture program 153
starting the Replication Alert

Monitor 153
JOBD parameter 361, 363, 368, 370
JOIN_UOW_CD column 99
joins

sources 56
journal jobs

checking status 232
journal message queues 37
journal receivers

access 195
creating for source tables 33
current, size 3
delete journal receiver exit routine 38
maintaining 193
managing 35
system management 35
threshold 35
user management 37

journal signal tables
CAPSTOP 188
stopping 186

journals
creating 33
creating for source tables 33
default message queue 37
entry types 463
managing 35
QSQJRN journal 33
registering as sources 39
setup 33
starting 33
using 33
using remote journal function 53
using with different system times 35

JRN parameter 368, 371

L
LAG parameter 368, 373
lag_limit parameter 110
LANG environment variable

setting 10
large replication jobs 66

480 SQL Replication Guide and Reference

legal notices 469
LIBPATH variable 25
LOAD from CURSOR 150
load from cursor function 147
loadxit parameter 131
LOB data type

replication considerations 92
update-anywhere restrictions 83

locks
on CCD tables 9

log files
planning impact to 8

log records
archived before captured 3
compression dictionaries (z/OS) 195
maintaining 193
multi database partitions 193
retaining 193

logbufsz database configuration
parameter

Capture 25
logfilsiz database configuration parameter

Capture 25
logging

requirements
DB2 source servers 3
non-DB2 relational source

servers 8
target servers 4

logical partitioning keys
description 48

logprimary database configuration file
Capture 25

logreuse parameter
Apply 131
Capture 110

logsecond configuration parameter
Capture 25

logstdout parameter
Apply 131
Capture 110

long name support
planning 11

LONG VARCHAR data type
replication 91

LONG VARGRAPHIC data type
replication 91

M
mapping

data types between tables 86
source columns to target columns 86
sources to targets 71

master tables (update-anywhere)
overview 83
recapturing changes 48

MAX_SYNCH_MINUTES column
data blocking 66

maxappls configuration parameter
Capture 25

MEMLMT parameter 368, 372
memory

Apply program 3
batch jobs 1
Capture program 1
planning 1

memory (continued)
reading log records 1
registrations 1
subscription sets 3
transactions 1
using IBMSNAP_CAPMON table to

tune 1
memory_limit parameter

overview 110
tuning 1

merging
subscription sets 177
triggers 8

message queues
journals 37

Microsoft SQL Server
replication restrictions 45

migration
planning 1

mini-cycles 66
MODIFY command 153, 155
monitor qualifiers

naming rules 237
monitor_interval parameter

Capture 110
monitor_limit parameter 110
monitoring

status of programs 232
System i 232

MONITV parameter 368, 372
MONLMT parameter 368, 372
multi database partitions

log records 193
multi-tier replication

defining subscription sets 80
MVS console 153, 154

N
names

Apply qualifier rules 237
Capture schema rules 237
Monitor qualifier rules 237
of Capture triggers 8
subscription sets 172
Windows services 237

national language support (NLS)
code pages for SQL Replication 10

networks
connectivity 20

nicknames
for load from cursor function 147
registering

non-DB2 relational tables 41
restrictions

aggregate tables 76
multi-tier replication 80
update-anywhere 48, 83
with CCD tables 45

non-DB2 relational data sources
locks 9
registering 41
restrictions

aggregate tables 76
multi-tier replication 80
update-anywhere 48, 52, 83

source servers 8

non-DB2 relational data sources
(continued)

using CCD tables 41
non-DB2 relational servers

connecting 21
nonrelational data sources

maintaining CCD tables 58
using CCD tables 39

notify parameter 131
NUMBER data type

replicating 93

O
objects

changing attributes 162
deactivating 164
reactivating 165
registering 161
stop capturing changes 164

opt4one parameter
Apply operating parameters 131

OPTSNGSET parameter 361, 366
overriding attributes

Capture program 351
OVRDPRCAPA command 351

P
packages

rebinding 197
parameters

invocation
Analyzer for System i 328
Apply program for System i 129,

361
Apply program for UNIX 131
Apply program for Windows 131
Apply program for z/OS 131
Capture program for System

i 331, 368
Capture program for UNIX 110
Capture program for

Windows 110
Capture program for z/OS 110
replication commands for System

i 295, 303, 318, 336, 337, 340,
342, 350, 351, 356, 357, 359, 360,
361, 368, 375

parameters, invocation
Analyzer

for System i 329
Apply program

for System i 362
Capture program

for System i 332, 369
replication commands

for System i 296, 305, 319, 336,
337, 340, 350, 352, 356, 357, 359,
360, 362, 369, 376

partitioned tables
replication 29, 31

password file 17
creating 261, 284

passwords
storing 17

Index 481

peer-to-peer replication
conflict detection 7

performance
tuning 11

planning
coexistence of triggers 8
conflict detection 7, 52
locks on CCD tables 9
log impact 8
memory 1
migration 1
storage requirements 3
transaction throughput rates 8

plans
rebinding 197

point-in-time tables
structure 455
usage 75

predicates
defining for target tables 85
subsetting 99

PREDICATES column 99
prefixes

before-image 47
primary keys

logical partitioning 48
relative record numbers System i 55
used as target key 87

promoting
replication configurations 190

prune_interval parameter 110
pruning

CD (change-data) tables 199
control tables 200
IBMSNAP_APPLYTRACE table 200
IBMSNAP_APPLYTRAIL table 200
IBMSNAP_CAPMON table 202
IBMSNAP_CAPTRACE table 202
IBMSNAP_UOW table 422
signal (SIGNAL) table 202
UOW (unit-of-work) table 199

pwdfile parameter 131

Q
Q Capture server

IBMQREP_COLVERSION control
table 397

IBMQREP_IGNTRAN control
table 401

IBMQREP_IGNTRANTRC control
table 402

IBMQREP_TABVERSION control
table 421

Q Replication
storing user IDs and passwords 17

Q replication commands
asnscrt 265
asnspwd 261
asnstrc 284

Q Replication commands
asnsdrop 268
asnslist 269
asntdiff 210, 270, 274, 281
asntrep 291

QTIME differences 35

R
range-partitioned tables

replication 29, 31
RCVJRNE command 35
reactivation

objects 165
registrations 165
tables 165

read dependencies 52
rebinding

packages
Linux, UNIX, Windows, and

z/OS 197
recapturing

update-anywhere changes 48
receiver size

current 3
recovery points

distributed 186
referential integrity

read-write targets 83
referential integrity failures 141
refreshing

single tables 150
registering

DB2 tables 39
IMS data sources 39
non-DB2 relational data sources 41
objects 161
options for sources

after-image columns 45
before-image columns 45
before-image prefix 47
change-capture replication 43
column (vertical) subsetting 43
conflict detection 52
full-refresh copying 43
recapturing changes

(update-anywhere) 48
relative record numbers 55
row (horizontal) subsetting 43
stop Capture on error 47
updates as deletes and inserts 48
using remote journals 53

tables 161
views

overview 55, 58
procedure 161

registrations
adding 295
adding columns 162
attributes, changing 162
deactivating 164
reactivating 165
removing 166, 356
stop capturing changes 164

registry variables
DB2CODEPAGE 10, 25
DB2DBDFT 25
DB2INSTANCE 25

reinitializing
Capture program

UNIX 124
Windows 124
z/OS 124

relative record numbers
as primary key System i 55

relative record numbers (continued)
support System i 55
used as target key 87

relative timing 69
remote journals

different system times 35
sources 53

remote source tables 53
renaming

columns 86, 103
reorganization

control tables 197
replica tables

defining read-write targets 83
definition 74
recapturing changes 48
structure 456

Replication Alert Monitor
communicating with

Apply program 229
Capture 229
Replication Center 228

MODIFY command 155
scheduling 219, 220
UNIX

checking status 231
starting 461

Windows
checking status 231
starting 461

z/OS
checking status 231

Replication Analyzer
for System i

invocation parameters 329
System i

creating SQL packages 28
invocation parameters 328

Replication Center
communicating with

Apply program 225
Capture program 225
Capture triggers 225
Replication Alert Monitor 228

connectivity 20
promote functions 190

replication commands
$TA JES2

Apply z/OS 220
Capture z/OS 220

ADDJOBSCDE 220
asnslist 269
asntdiff 210, 270, 274, 281
asntrep 291
AT 219, 220
AT NetView

Apply z/OS 220
Capture z/OS 220

backup database 25
CRTJRNRCV 33
DSPJRN 232
System i

ADDDPRREG 295
ADDDPRSUB 303
ADDDPRSUBM 318
ANZDPR 328
ANZDPRJRN 38

482 SQL Replication Guide and Reference

replication commands (continued)
System i (continued)

CHGDPRCAPA 331
CHGJRN 37
CRTDPRTBL 336
CRTJRN 33
ENDDPRAPY 337
ENDDPRCAP 123, 340
GRTDPRAUT 28, 342
GRTOBJAUT 28
INZDPRCAP 350
OVRDPRCAPA 351
RCVJRNE 35
RMVDPRREG 356
RMVDPRSUB 357
RMVDPRSUBM 359
RVKDPRAUT 360
SBMJOB 220
STRDPRAPY 130, 361
STRDPRCAP 368
STRJRNPF 33
WRKDPRTRC 375
WRKJOB 232
WRKSBMJOB 232
WRKSBSJOB 232

UNIX
asnanalyze 258

update database configuration 25
Windows

asnanalyze 258
z/OS

MODIFY 153
replication environments

copying 190
replication events coordination 183
replication services

creating 222
description 221
display name 221
dropping 223
listing 269
name 221
starting 222
stopping 223
viewing 223

replication sources
CCD (consistent-change-data)

tables 80
joins 56
maintaining CCD tables 58
mapping to targets 71
registering

columns 43
DB2 tables 39
IMS data sources 39
non-DB2 relational data

sources 41
rows 43
views 58

subscribing to 63
RESTART parameter 368, 370
restrictions

abstract data types 91
ASCII tables 459
CCD tables 83
column names, limits 45
data encryption 91

restrictions (continued)
DB2 Extenders large objects 92
distinct data types 91
existing target tables 84
heterogeneous replication 45, 80, 83
LOB data types 83
LONG columns in Oracle tables 91
LONG VARCHAR data types 91
LONG VARGRAPHIC data types 91
Microsoft SQL Server 45
non-DB2 relational data sources 48,

52
Oracle sources 91
spatial data types 91
stored procedures 102
Sybase 45
Unicode tables 459
user-defined data types 91
views 58
WHERE clause 85

resuming
Capture program

UNIX 125
Windows 125
z/OS 125

RETAIN parameter 368, 373
retention_limit parameter 110
RMVDPRREG command 356
RMVDPRSUB command 357
RMVDPRSUBM command 359
roll-forward recovery

Capture program 25
row (horizontal) subsetting

at the source 43
at the target 85

row identifier columns
LOB data type 92

row-capture rules
change-Capture replication 43

rows
available for replication 43
defining in target tables 85
registering in source tables 43
subsetting

at the source 43
at the target 85

RRN 55
RTYWAIT parameter 361, 365
run-time processing 69, 102
RUNSTATS utility

SQL Replication 197
RVKDPRAUT command 360

S
SBMJOB command 220
schedules

replication programs 219
subscription sets 69

schemas
changing 167
naming rules 237

SCM (Service Control Manager)
creating replication services 222
description 221
dropping replication services 223
starting replication services 222

SCM (Service Control Manager)
(continued)

stopping replication services 223
viewing replication services 223

Service Control Manager (SCM)
creating replication services 222
description 221
dropping replication services 223
starting a replication service 222
stopping a replication service 223
viewing replication services 223

SET DATA TYPE operations 164
setting

environment variables
Capture 25

setting up
Apply programs

Linux 25
UNIX 25
Windows 25

Capture programs
Linux 25
UNIX 25
Windows 25

journals 33
SIGNAL (signal) table

pruning 202
signals

CAPSTART 187
CAPSTOP 188
setting distributed recovery

points 186
STOP 185, 186
USER 183

sleep parameter 131
sleep_interval parameter 110
software services

contacting 465
source logs

maintaining 193
source servers

DB2
log impact 3

non-DB2 relational
log impact 8

source systems
maintaining 193

source tables
adding columns 162
creating journals for 33
maintaining 193
retrieving lost data 201

sources
CCD (consistent-change-data)

tables 80
maintaining CCD tables 58
mapping to targets 71
registering

DB2 tables 39
IMS data sources 39
non-DB2 relational 41
views 55, 58

registering columns 43
registering rows 43
registration options

after-image columns 45
before-image columns 45

Index 483

sources (continued)
registration options (continued)

before-image prefix 47
change-capture replication 43
column (vertical) subsetting 43
conflict detection 52
full-refresh copying 43
recapturing changes

(update-anywhere) 48
relative record numbers 55
row (horizontal) subsetting 43
stop Capture on error 47
updates as deletes and inserts 48
using remote journals 53

subscribing to 63
spatial data

types 91
special data types

replicating
large objects (LOB) 92

spill files
storage for Apply 6
storage for Capture 6

spillfile parameter 131
splitting

subscription sets 174
SQL files

editing 235
SQL packages

creating for Apply program 28
creating for Capture program 27
creating for Replication Analyzer 28

SQL Replication
checking status 231
planning overview 1
Sybase triggers 9

SQL Replication commands
asnpwd 261
asnscrt 265
asnsdrop 268
asntrc 284

SQL Replication
componentcommunication 225

SQL scripts
customizing 235

SQL statements
defining for subscription set 69
run-time processing 102

sqlerrcontinue parameter 131
SQS files

Apply operating parameters 131
staged replication

overview 80
staging

data 80
starting

Apply program
System i 129, 361
UNIX 127, 461
Windows 127, 461
z/OS 127, 154

Capture program
System i 107, 368
UNIX 105, 461
Windows 105, 461
z/OS 105

starting (continued)
Replication Alert Monitor

UNIX 461
Windows 461

startmode parameter
overview 110

static control tables 197
status

Apply program 231, 232
Capture program 231, 232
journal jobs 232
Replication Alert Monitor 231

stop Capture on error option 47
stop capturing changes 164
STOP signals 185, 186
stopping

Apply program
System i 140, 337
UNIX 140
Windows 140
z/OS 140

Capture program
System i 123, 340
UNIX 123
Windows 123
z/OS 123

storage
Apply diagnostic files 6
Apply spill files 6
Capture diagnostic files 6
Capture spill files 6
CD table 5
control tables 5
database log and journal data 3
diagnostic files 7
requirements 3
target tables 5
UOW table 5

stored procedures
defining for subscription set 69
manipulating data 102

STRDPRAPY command 130, 361
STRDPRCAP command 368
STRJRNPF command 33
SUBNFYPGM parameter 361, 365
SUBS_EVENT (subscription events) table

posting events 69
SUBS_MEMBR (subscription members)

table 147, 441
subscribing to sources 63
subscription cycle 66
subscription events (SUBS_EVENT) table

posting events 69
subscription members (SUBS_MEMBR)

table 147, 441
subscription sets

activation level 65
adding 303
adding members 71, 170
changing

Apply qualifiers 179
attributes 171
names 172

columns 85
creating 63
creating new 169
data consistency 83

subscription sets (continued)
deactivating 181
disabling members 170
enabling members 171
merging 177
mini-cycles 66
multi-tier replication 80
number of Apply qualifiers 62
processing mode 68
referential integrity 83
removing 182, 357
rows 85
run-time processing statements 102
scheduling

event-based 69
time-based 69

splitting 174
SQL statements 69
stored procedures 69
update-anywhere replication 83

subscription-set members
adding 71, 170, 318
applying subset of columns 85
applying subset of rows 85
defining target key 87
disabling 170
enabling 171
mapping between columns 86
mapping data types 86
multi-tier replication 80
number per subscription set 62
refreshing one member 150
removing 359
selecting target types 74
update-anywhere replication 83

subsetting
advanced techniques

during registration 97
using predicates 99

columns at target 85
registered columns 43
registered rows of changes 43
rows of changes at target 85
source data

using views 98
support

customer 465
suspending

Capture program
UNIX 124
Windows 124
z/OS 124

Sybase
replication restrictions 45

Sybase triggers, required changes 9
synchronization

asntdiff and asntrepair utilities 205
SYSADM (system administration)

authority
authorizatoin required 13

SYSIBM.SYSCOLUMNS table 19
SYSIBM.SYSTABLEPART table 19
SYSIBM.SYSTABLES table 19
system change journal management 35
system commands

asnacmd 257
asnapply 251

484 SQL Replication Guide and Reference

system commands (continued)
asncap 239
asnccmd 248
asnpwd 261
asnscrt 265
asnsdrop 268
asnslist 269
asntdiff 210, 270, 274, 281
asntrc 284
asntrep 291

System i
servers

connecting 20
System i data sources

referential integrity 54
with remote journaling 53

system-started tasks 153

T
table compare utility

running in parallel mode 210
table differencing utility 205, 270, 274,

281
DATE data type

replicating 214
NUMBER data type

replicating 214
TIMESTAMP data type

replicating 214
with DB2 compatibility features 214

table repair utility 213, 291
table-mode processing 4, 68
tables

adding columns 162
ASN.IBMSNAP_FEEDETL 438
AUTHTKN (Apply-qualifier

cross-reference) 390
base aggregate 452
CCD (consistent-change-data)

Capture control server 400
CD (change-data) 401
change aggregate 453
changing attributes 162
conflict detection for 7
control tables

connectivity failure recovery 201
dynamic 196
I/O error recovery 201
maintaining 196
pruning 200
reorganizing 197
RUNSTATS utility 197
static 197

deactivating 164
IBMQREP_COLVERSION 397
IBMQREP_IGNTRAN 401
IBMQREP_IGNTRANTRC 402
IBMQREP_TABVERSION 421
IBMSNAP_APPENQ 425
IBMSNAP_APPLEVEL 426
IBMSNAP_APPLY_JOB 426
IBMSNAP_APPLYMON 427
IBMSNAP_APPLYTRACE 432
IBMSNAP_APPLYTRAIL 432
IBMSNAP_APPPARMS 428
IBMSNAP_CAPENQ 391

tables (continued)
IBMSNAP_CAPMON 202, 391
IBMSNAP_CAPPARMS 393
IBMSNAP_CAPSCHEMAS 397
IBMSNAP_CAPTRACE 202, 398
IBMSNAP_PARTITIONINFO 403
IBMSNAP_PRUNCNTL 404
IBMSNAP_PRUNE_LOCK 406
IBMSNAP_PRUNE_SET 407
IBMSNAP_REG_EXT 407
IBMSNAP_REG_SYNCH 415
IBMSNAP_REGISTER 409
IBMSNAP_RESTART 416
IBMSNAP_SEQTABLE 418
IBMSNAP_SIGNAL 418
IBMSNAP_SUBS_COLS 439
IBMSNAP_SUBS_EVENT 440
IBMSNAP_SUBS_SET 445
IBMSNAP_SUBS_STMTS 450
IBMSNAP_UOW 422
loading 150
maintaining CCD tables 58
point-in-time 455
reactivating 165
registering

DB2 39
non-DB2 relational 41
procedure 161

removing registrations 166
replica 7, 456
stop capturing changes 164
SUBS_MEMBR (subscription

members) 147, 441
target tables 203

maintaining 203
targets 84
user copy 456

target indexes 87
target keys

overview 87
target servers

log impact 4
target tables

applying subset of columns 85
applying subset of rows 85
base aggregate

definition 74
structure 452
usage 76

CCD (consistent-change-data)
overview 74

change aggregate
definition 74
structure 453
usage 76

defining columns 85
defining rows 85
defining target key 87
fragmenting 85
maintaining 203
mapping to sources 71
multiple 79
new columns for 103
point-in-time

definition 74
structure 455
usage 75

target tables (continued)
repairing 213
replica

conflict detection for 7
definition 74
structure 456
usage 83

storage requirements 5
table structures, quick reference 452
user copy

definition 74
structure 456
usage 75

user defined 74, 84
target-key columns

updating 89
term parameter

Apply 131
Capture 110

termination characters
generated SQL scripts 235

three-tier replication configuration 80
throughput

rates
Capture triggers 8

time mismatch (System i) 36
time-based scheduling 69
TIMESTAMP data type

replication 93
tips and hints

checking if Apply processed a set
successfully 131

deleting rows from the Apply trail
table 131

estimating use of space 3
using sleep versus copyonce

parameters 131
using stored procedures for additional

processing of sets 142
using stored procedures with

ASNDONE 142
verifying change capture began 105

trace facility
System i 375

TRACE parameter 361, 364
trace_limit parameter

overview 110
trademarks 472

list of 469
transaction-mode processing 4, 68
transactions

memory used by 1
throughput

Capture triggers 8
transforming data

at registration 101
at subscription 101
creating computed columns 103
renaming columns 86, 103

translating data 10
TRCLMT parameter 368, 372
triggers

capturing data 8
merging 8

trlreuse parameter 131
TRLREUSE parameter 361, 366

Index 485

troubleshooting commands
WRKDPRTRC 375

TSO
starting the Apply program 154
using JCL 153

tuning
commit_interval parameter 1
memory_limit parameter 1
performance 11

U
Unicode

tables 459
unit-of-work (UOW) table

columns in CCD tables 77, 453
pruning 199
storage requirements 5

UOW (unit-of-work) table
columns in CCD tables 77, 453
pruning 199
storage requirements 5

UOW_CD_PREDICATES column 99
update database configuration

command 25
update-anywhere replication

conflict detection
overview 52
planning for 7
requirements 45, 52

defining subscription sets 83
fragmentation for 7
recapturing changes 48

updated primary key columns 48
updates

as deletes and inserts 48
conflicts 52

user copy table
definition 74
structure 456
usage 75

user IDs
authorization 14
for Apply program 15
for Capture program 14
for Capture triggers 17
storing 17

USER parameter 361, 363
USER signals 183
user-defined tables

target tables 84
types of target tables 74

user-defined types (UDTs)
replication restrictions 91

utilities
table compare 210
table differencing 270, 274, 281
table repair 291

V
vertical (column) subsetting

at the source 43
at the target 85

views
changing attributes 162

views (continued)
registering

as sources 58
overview 55
procedure 161

restrictions 55, 58
using correlation ID 56

W
WAIT parameter 368, 370
warm start

Capture program
System i 368
UNIX 110
Windows 110
z/OS 110

warm start, Capture program
for System i 370

warmns startmode 110
warmsi startmode 110
web sites

non-IBM 467
WHERE clause

PREDICATES column restriction 99
row subsets 85

Windows service
creating 265, 268

Windows Service Control Manager (SCM)
asnslist command 269
description 221
listing replication services 269

Windows services names 237
WRKDPRTRC command 375
WRKJOB command 232
WRKSBMJOB command 232
WRKSBSJOB command 232

486 SQL Replication Guide and Reference

����

Printed in USA

SC19-3638-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

In
fo

Sp
he

re
Da

ta
Re

pl
ic

at
io

n
Ve

rs
io

n
10

.1
.3

SQ
L

Re
pl

ic
at

io
n

Gu
id

e
an

d
Re

fe
re

nc
e

�
�

�

	Contents
	Chapter 1. Planning for SQL Replication
	Migration planning
	Memory planning
	Memory used by the Capture program
	Memory used by the Apply program

	Storage planning
	Log impact for DB2 source servers
	Log impact for target servers
	Storage requirements of target tables and control tables
	Space requirements for spill files for the Capture program
	Space requirements for spill files for the Apply program
	Space requirements for diagnostic log files (z/OS, Linux, UNIX, Windows)

	Conflict detection planning
	Non-DB2 relational source planning
	Transaction throughput rates for Capture triggers
	Log impact for non-DB2 relational source servers
	Coexistence of existing triggers with Capture triggers
	Locks for Oracle source servers
	Required changes for Sybase triggers on little-endian platforms

	Code page conversion planning
	Replication between databases with compatible code pages
	Code pages for SQL Replication

	Replication planning for DB2 for z/OS
	Performance tuning

	Chapter 2. Authorization requirements for SQL Replication
	Authentication requirements on Linux, UNIX, and Windows
	Authorization requirements for administration
	Authorization requirements for the Capture program
	Authorization requirements for the Apply program
	Authorization requirements for Capture triggers on non-DB2 relational databases
	Managing user IDs and passwords for remote servers (Linux, UNIX, Windows)

	Chapter 3. Configuring servers for SQL Replication
	Required: Setting DATA CAPTURE CHANGES on DB2 source tables and DB2 for z/OS system tables
	Connectivity requirements for SQL Replication
	Connecting to System i servers from Windows
	Connecting to non-DB2 relational servers

	Creating control tables for SQL Replication
	Creating control tables for SQL Replication
	Creating control tables (System i)
	Creating control tables for non-DB2 relational sources
	Creating multiple sets of Capture control tables
	Creating control tables in a multiple-partitioned database

	Setting up the replication programs
	Setting up the replication programs (Linux, UNIX, Windows)
	Setting environment variables for the replication programs (Linux, UNIX, Windows)
	Preparing the DB2 database to run the Capture program (Linux, UNIX, Windows)
	Optional: Binding the Capture program packages (Linux, UNIX, Windows)
	Optional: Binding the Apply program packages (Linux, UNIX, Windows)

	Creating SQL packages to use with remote systems (System i)
	Creating SQL packages for the Apply program (System i)
	Creating SQL packages for the Replication Analyzer (System i)
	Granting privileges to the SQL packages (System i)

	Setting up the replication programs (z/OS)
	Capture for multiple database partitions
	Replication of partitioned tables: Version 9.7 Fix Pack 1 or earlier (Linux, UNIX, Windows)
	Replication of partitioned DB2 tables: Version 9.7 Fix Pack 2 or later (Linux, UNIX, Windows)
	Running DB2 Query Patroller in a SQL Replication environment
	Setting up journals (System i)
	Setting up journals for source tables (System i)
	Managing journals and journal receivers (System i)

	Chapter 4. Registering tables and views as SQL Replication sources
	Registering DB2 tables as sources
	Registering non-DB2 relational tables as sources
	Registration options for source tables
	Registering a subset of columns (vertical subsetting)
	Change-capture replication and full-refresh copying
	After-image columns and before-image columns
	Before-image prefix
	Stop the Capture program on error
	Options for how the Capture program stores updates
	Preventing the recapture of changes (update-anywhere replication)
	Masters with only one replica
	Multiple replicas that are mutually exclusive partitions of the master
	Masters that replicate changes to multiple replicas
	Replicas that replicate changes to other replicas (multi-tier)

	Options for conflict detection (update-anywhere replication)
	Registering tables that use remote journaling (System i)
	Referential integrity on the target table when the source is System i
	Using relative record numbers (RRN) instead of primary keys (System i)

	How views behave as replication sources
	Views over a single table
	Views over a join of two or more tables

	Registering views of tables as sources
	Maintaining CCD tables as sources

	Chapter 5. Subscribing to sources for SQL Replication
	Planning how to group sources and targets
	Planning the number of subscription-set members
	Planning the number of subscription sets per Apply qualifier

	Creating subscription sets
	Processing options for subscription sets
	Specifying whether the subscription set is active
	Specifying how many minutes worth of data the Apply program retrieves
	Load options for target tables with referential integrity
	Specifying how the Apply program replicates changes for subscription-set members
	Defining SQL statements or stored procedures for the subscription set
	Options for scheduling replication of subscription sets
	Scheduling the subscription set
	Creating subscription-set members
	Target table types
	Read-only target tables
	Defining middle tiers in a multi-tier configuration
	Defining read-write targets (update-anywhere)
	Using an existing table as the target table

	Common properties for all target table types
	Replicating a subset of source columns
	Replicating a subset of source rows
	How source columns map to target columns
	Target key
	How the Apply program updates the target key columns with the target-key change option

	Chapter 6. Replicating special data types in SQL Replication
	General data restrictions for SQL Replication
	Large object data types
	Replication of new DB2 Version 9.7 data types (Linux, UNIX, Windows)
	Replication of tables with identity columns

	Chapter 7. Subsetting data in an SQL Replication environment
	Subsetting data during registration
	Subsetting source data using views
	Defining triggers on CD tables to prevent specific rows from being captured

	Subsetting data during subscription

	Chapter 8. Manipulating data in an SQL Replication environment
	Enhancing data by using stored procedures or SQL statements
	Mapping source and target columns that have different names
	Creating computed columns

	Chapter 9. Operating the Capture program for SQL Replication
	Starting the Capture program (Linux, UNIX, Windows, and z/OS)
	Starting the Capture program from a known point in the DB2 log
	Starting the Capture program (System i)
	Default operating parameters for the Capture program
	Descriptions of Capture operating parameters
	Methods of changing Capture parameters
	Altering the behavior of a running Capture program
	Changing saved operating parameters in the IBMSNAP_CAPPARMS table
	Stopping the Capture program
	Reinitializing Capture
	Suspending the Capture program (Linux, UNIX, Windows, z/OS)
	Resuming Capture (Linux, UNIX, Windows, z/OS)

	Chapter 10. Operating the Apply program for SQL Replication
	Starting the Apply program (Linux, UNIX, Windows, z/OS)
	Starting an Apply program (System i)
	Default operating parameters for the Apply program
	Descriptions of Apply operating parameters
	Methods of changing Apply operating parameters
	Changing saved Apply parameters in the IBMSNAP_APPPARMS table (z/OS, Linux, UNIX, Windows)
	Stopping the Apply program
	Where the Apply program stores details about referential integrity failures
	Modifying the ASNDONE exit routine (z/OS, Linux, UNIX, Windows)
	Modifying the ASNDONE exit routine (System i)
	Refreshing target tables by using the ASNLOAD exit routine
	Refreshing target tables with the ASNLOAD exit routine (Linux, UNIX, Windows)
	Refreshing target tables with the ASNLOAD exit routine (z/OS)
	Customizing ASNLOAD exit behavior (z/OS, Linux, UNIX, Windows)
	Using the IBMSNAP_SUBS_MEMBR table to set ASNLOAD options
	Using the configuration file for ASNLOAD (Linux, UNIX, Windows)

	Refreshing target tables with the ASNLOAD exit routine (System i)
	Refreshing one table in a multi-table subscription set
	Ensuring that utilities used for full refresh wait for committed data

	Chapter 11. Operating the replication programs (z/OS)
	Using system-started tasks to operate the replication programs
	Using JCL to operate replication programs
	Starting the Apply program on z/OS with JCL
	Working with running SQL replication programs by using the MVS MODIFY command
	Starting the Capture program on z/OS with JCL
	Using Automatic Restart Manager (ARM) to automatically restart replication and publishing (z/OS)
	Migrating your replication environment to data-sharing mode (z/OS)

	Chapter 12. Changing an SQL Replication environment
	Registering new objects
	Changing registration attributes for registered objects
	Adding columns to source tables
	Handling of ALTER TABLE ALTER COLUMN SET DATA TYPE operations
	Stop capturing changes for registered objects
	Making registrations eligible for reactivation
	Removing registrations
	Changing Capture schemas
	Creating new subscription sets
	Adding new subscription-set members to existing subscription sets
	Disabling subscription-set members from existing subscription sets
	Enabling subscription-set members to existing subscription sets
	Changing properties of subscription sets
	Changing subscription set names
	Splitting a subscription set
	Merging subscription sets
	Changing Apply qualifiers of subscription sets
	Deactivating subscription sets
	Removing subscription sets
	Coordinating replication events with database application events
	Setting an event END_SYNCHPOINT by using the USER type signal
	When to use the Capture CMD STOP signal
	Coordinating a source table change with the Capture program
	Setting a distributed recovery point

	Performing a CAPSTART handshake signal outside of the Apply program
	Performing a CAPSTOP signal

	Adjusting for Daylight Savings Time (System i)
	Options for promoting your replication configuration to another system

	Chapter 13. Maintaining an SQL Replication environment
	Maintaining source systems
	Access to source tables and views
	Source logs and journal receivers
	Retaining log data (Linux, UNIX, Windows)
	Access to journal receivers (System i)
	Considerations for managing compression dictionaries (z/OS)

	Maintaining control tables
	The RUNSTATS utility for SQL Replication (Linux, UNIX, Windows, z/OS)
	Rebinding packages and plans (z/OS, Linux, UNIX, Windows)
	Reorganizing your control tables
	Pruning dynamic control tables maintained by the Capture programs (Linux, UNIX, Windows, z/OS)
	CD and UOW table pruning
	Recommendations for pruning other dynamic control tables
	Preventing replication failures and recovering from errors
	Preventing cold starts of the Capture program
	Recovering from I/O errors and connectivity failures on your control tables
	Retrieving lost source data
	IBMSNAP_CAPMON and IBMSNAP_CAPTRACE table pruning
	IBMSNAP_SIGNAL table pruning

	Maintaining target tables

	Chapter 14. Comparing and repairing tables
	Table compare utility (asntdiff)
	Running the asntdiff utility in parallel mode (z/OS)
	Table repair utility (asntrep)
	How the compare utility handles DB2 SQL compatibility features

	Chapter 15. Scheduling SQL Replication programs on various operating systems
	Scheduling programs on Linux and UNIX operating systems
	Scheduling programs on Windows operating systems
	Scheduling programs on z/OS operating systems
	Scheduling programs on the System i operating system

	Chapter 16. Replication services (Windows)
	Description of Windows services for replication
	Creating a replication service
	Starting a replication service
	Stopping a replication service
	Viewing a list of replication services
	Dropping a replication service

	Chapter 17. How the SQL Replication components communicate
	The Replication Center, ASNCLP, the Capture program or triggers, and the Apply program
	The Capture program and the Apply program
	The Capture triggers and the Apply program
	The administration tools and the Replication Alert Monitor
	The Replication Alert Monitor, the Capture program, and the Apply program

	Chapter 18. Checking the status of the SQL Replication programs
	Checking the status of replication programs (z/OS, Linux, UNIX, Windows)
	Checking the status of the Capture and Apply journal jobs (System i)
	Monitoring the progress of the Capture program (System i)

	Chapter 19. Customizing and running SQL scripts for replication
	Chapter 20. Naming rules for SQL Replication objects
	Chapter 21. System commands for SQL Replication (Linux, UNIX, Windows, z/OS)
	asncap: Starting Capture
	asnccmd: Operating Capture
	asnapply: Starting Apply
	asnacmd: Operating Apply
	asnanalyze: Operating the Analyzer
	asnpwd: Creating and maintaining password files
	asnscrt: Creating a replication service
	asnsdrop: Dropping a replication service
	asnslist: Listing replication services
	asntdiff: Comparing data in source and target tables (Linux, UNIX, Windows)
	asntdiff: Comparing data in source and target tables (z/OS)
	asntdiff –f (input file) command option
	asntrc: Operating the replication trace facility
	asntrep: Repairing differences between source and target tables

	Chapter 22. System commands for SQL replication (System i)
	ADDDPRREG: Adding a DPR registration (System i)
	ADDDPRSUB: Adding a DPR subscription set (System i)
	ADDDPRSUBM: Adding a DPR subscription-set member (System i)
	ANZDPR: Operating the Analyzer (System i)
	CHGDPRCAPA: Changing DPR Capture attributes (System i)
	CRTDPRTBL: Creating the replication control tables (System i)
	ENDDPRAPY: Stopping Apply (System i)
	ENDDPRCAP: Stopping Capture (System i)
	GRTDPRAUT: Authorizing users (System i)
	INZDPRCAP: Reinitializing DPR Capture (System i)
	OVRDPRCAPA: Overriding DPR Capture attributes (System i)
	RMVDPRREG: Removing a DPR registration (System i)
	RMVDPRSUB: Removing a DPR subscription set (System i)
	RMVDPRSUBM: Removing a DPR subscription-set member (System i)
	RVKDPRAUT: Revoking authority (System i)
	STRDPRAPY: Starting Apply (System i)
	STRDPRCAP: Starting Capture (System i)
	WRKDPRTRC: Using the DPR trace facility (System i)

	Chapter 23. SQL Replication table structures
	Tables at a glance
	Tables at the Capture control server
	IBMSNAP_AUTHTKN table (System i)
	IBMSNAP_CAPENQ table (z/OS, Linux, UNIX, Windows)
	IBMSNAP_CAPMON table
	IBMSNAP_CAPPARMS table
	IBMSNAP_CAPSCHEMAS table
	IBMQREP_COLVERSION table
	IBMSNAP_CAPTRACE table
	CCD table (non-DB2)
	CD table
	IBMQREP_IGNTRAN table
	IBMQREP_IGNTRANTRC table
	IBMSNAP_PARTITIONINFO table
	IBMSNAP_PRUNCNTL table
	IBMSNAP_PRUNE_LOCK table
	IBMSNAP_PRUNE_SET table
	IBMSNAP_REG_EXT (System i)
	IBMSNAP_REGISTER table
	IBMSNAP_REG_SYNCH table (non-DB2 relational)
	IBMSNAP_RESTART table
	IBMSNAP_SEQTABLE table (Informix)
	IBMSNAP_SIGNAL table
	IBMQREP_TABVERSION table
	IBMSNAP_UOW table

	Tables at the Apply control server
	ASN.IBMSNAP_APPENQ table
	ASN.IBMSNAP_APPLEVEL table
	ASN.IBMSNAP_APPLY_JOB (System i)
	ASN.IBMSNAP_APPLYMON table
	ASN.IBMSNAP_APPPARMS table
	ASN.IBMSNAP_APPLYTRACE table
	ASN.IBMSNAP_APPLYTRAIL table
	ASN.IBMSNAP_FEEDETL table
	ASN.IBMSNAP_SUBS_COLS table
	ASN.IBMSNAP_SUBS_EVENT table
	ASN.IBMSNAP_SUBS_MEMBR table
	ASN.IBMSNAP_SUBS_SET table
	ASN.IBMSNAP_SUBS_STMTS table

	Tables at the target server
	Base aggregate table
	Change aggregate table
	CCD targets
	Point-in-time table
	Replica table
	User copy table

	Appendix A. UNICODE and ASCII encoding schemes for SQL replication (z/OS)
	Rules for choosing an encoding scheme
	Setting encoding schemes

	Appendix B. Starting the SQL Replication programs from within an application (Linux, UNIX, Windows)
	Appendix C. How the Capture program processes journal entry types for SQL replication (System i)
	Contacting IBM
	How to read syntax diagrams
	Notices and trademarks
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

