
IBM InfoSphere Data Replication
Version 10.1.3

Replication and Event Publishing Guide
and Reference

SC19-3637-00

���

IBM InfoSphere Data Replication
Version 10.1.3

Replication and Event Publishing Guide
and Reference

SC19-3637-00

���

Note
Before using this information and the product that it supports, read the information in “Notices and trademarks” on page
567.

© Copyright IBM Corporation 2004, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Data conversion for Q
Replication and Event Publishing. . . . 1
Code pages for Q Replication. 1
Code pages for event publishing. 2

Chapter 2. Setting up user IDs and
passwords 3
Authentication requirements on Linux, UNIX, and
Windows 3
Authorization requirements for Q Replication and
Event Publishing 3

Authorization requirements for the Q Capture
program 3
Authorization requirements for the Q Apply
program 4
Authorization requirements for the Replication
Center and ASNCLP program 5

Connectivity requirements for Q Replication and
Event Publishing 6
Managing user IDs and passwords for remote servers
(Linux, UNIX, Windows) 6

Chapter 3. Setting up WebSphere MQ for
Q Replication and Event Publishing. . . 9
WebSphere MQ objects required for Q Replication
and Event Publishing 9

WebSphere MQ objects required for unidirectional
replication (remote) 9
WebSphere MQ objects required for
unidirectional replication (same system) 11
WebSphere MQ objects required for event
publishing 12
WebSphere MQ objects required for bidirectional
or peer-to-peer replication (two remote servers) . 14
WebSphere MQ objects required for peer-to-peer
replication (three or more remote servers) . . . 16

Required settings for WebSphere MQ objects . . . 18
Sample commands for creating WebSphere MQ
objects for Q Replication and Event Publishing . . 23
Running the replication programs on a WebSphere
MQ client 25
Validating WebSphere MQ objects for Q replication
and publishing 27
WebSphere MQ validation checks performed by
replication tools 29
Connectivity and authorization requirements for
WebSphere MQ objects 31
Storage requirements for WebSphere MQ for Q
Replication and Event Publishing 33
WebSphere MQ message size 33
Queue depth considerations for large object (LOB)
values 34
Queue manager clustering in Q Replication and
Event Publishing 34

Chapter 4. Configuring databases for Q
Replication and Event Publishing
(Linux, UNIX, Windows) 37
Required: Setting DATA CAPTURE CHANGES on
DB2 source tables and DB2 for z/OS system tables . 37
Configuring for older or remote DB2 databases . . 38
Configuring for GDPS Active/Active (z/OS) . . . 41
Setting environment variables (Linux, UNIX,
Windows) 42
Setting the TMPDIR environment variable (Linux,
UNIX) 43
Addressing memory issues for Q Capture and Q
Apply (AIX) 44
Configuring the source database to work with the Q
Capture program (Linux, UNIX, Windows) 45
Configuring the target database to work with the Q
Apply program (Linux, UNIX, Windows) 46
Optional: Binding the program packages (Linux,
UNIX, Windows) 47

Optional: Binding the Q Capture program
packages (Linux, UNIX, Windows) 48
Optional: Binding the Q Apply program
packages (Linux, UNIX, Windows) 48
Optional: Binding the Replication Alert Monitor
packages (Linux, UNIX, Windows) 49

Creating control tables for the Q Capture and Q
Apply programs 50
Creating control tables at a different version (Linux,
UNIX, Windows) 51
Configuring for older or remote DB2 databases . . 53

Chapter 5. Setting up unidirectional Q
Replication 57
Unidirectional replication 57
Grouping replication queue maps and Q
subscriptions 58
Creating replication queue maps 60
Creating Q subscriptions for unidirectional
replication 62

Creating target object profiles 62
Creating Q subscriptions for unidirectional
replication 64
Source columns for Q subscriptions
(unidirectional replication) 66
How often the Q Capture program sends a
message (unidirectional replication) 67
Search conditions to filter rows (unidirectional
replication) 68
Log record variables to filter rows (unidirectional
replication) 71
How source columns map to target columns
(unidirectional replication) 73
Using expressions in Q Replication 74
Index or key columns for targets (unidirectional
replication) 81

© Copyright IBM Corp. 2004, 2012 iii

Options for unexpected conditions in the target
table (unidirectional replication) 82
Error options for Q Replication 86

Chapter 6. Setting up multidirectional Q
Replication 89
Bidirectional replication 89
Peer-to-peer replication 91
Bidirectional replication versus peer-to-peer
replication 96
Creating Q subscriptions for bidirectional replication 97
Improving performance in bidirectional replication
with the IBMQREP_IGNTRAN table 98
Options for conflict detection (bidirectional
replication) 100
Creating Q subscriptions for peer-to-peer
replication 105

Creating Q subscriptions for peer-to-peer
replication with two servers 106
Creating Q subscriptions for peer-to-peer
replication with three or more servers 107

Starting bidirectional or peer-to-peer replication
with two servers 110
Starting peer-to-peer replication with three or more
servers. 111
Stopping bidirectional or peer-to-peer replication
with two servers 113
Stopping peer-to-peer replication with three or
more servers. 113

Chapter 7. Replicating Data Definition
Language (DDL) operations 115
Schema-level subscriptions and DDL replication 115
How Q Capture handles DDL operations at the
source database. 118
Creating schema-level subscriptions 122
Creating profiles for table-level Q subscriptions 123
DATA CAPTURE CHANGES and schema-level
subscriptions 124
Starting schema-level subscriptions 125
Changing table-level options used by schema-level
subscriptions 127
Stopping schema-level subscriptions. 127
Deleting schema-level subscriptions 129
Enabling automatic replication of newly added
columns from the source table. 130
Adding existing columns to a Q subscription
(unidirectional replication) 131
Adding existing columns to a Q subscription
(bidirectional or peer-to-peer replication) 133
Automatic replication of ALTER TABLE ALTER
COLUMN SET DATA TYPE operations. 135

Chapter 8. Q Replication to federated
targets 137
Setting up Q Replication to federated targets . . . 138

Configuring the federated server for Q
Replication 140
Creating federated objects for Q Replication . . 141

Creating Q Apply control tables for federated Q
Replication 142
Creating Q subscriptions for federated Q
Replication 144

Chapter 9. Q Replication from Oracle
sources 149
Setting up Q Replication from Oracle sources. . . 149
Oracle client support for Q Replication 151
Configuring the Oracle source 153

Configuring an Oracle source database to work
with a Q Capture program 153
How a Q Capture program works with the
Oracle LogMiner utility 154
Configuring the Oracle LogMiner utility . . . 156

Creating an ASNCLP configuration file 157
Creating Q Capture control tables for an Oracle
source 157
Creating Q subscriptions for Oracle sources . . . 159
Load options for Q Replication from an Oracle
source 161
Starting a Q Capture program for Oracle sources 163
How Q Capture handles alterations of Oracle
source tables 164
Oracle data types 165

Chapter 10. Manipulating data by
using stored procedures as a target . 169
Stored procedures for manipulating source data for
Q Replication 169
Writing stored procedures to manipulate source
data for Q Replication 171
Stored procedure parameter that identifies the type
of operation for Q Replication 172
Stored procedure parameter that identifies whether
each source column was suppressed. 174
Stored procedure parameters that identify the
transaction for Q Replication 175
Stored procedure parameters that map to source
columns for Q Replication 175

Chapter 11. Loading target tables for
Q Replication 179
Recommendations for loading target tables for Q
Replication 179
Automatic load option for Q Replication 180

Utilities used for automatic load option for Q
Replication 180
Automatic load considerations for z/OS . . . 181
Specifying nicknames for the automatic load
option for Q Replication 182
Ensuring that nicknames used for load have
correct concurrent access setting 182

Manually loading a target table 184
No load option for Q Replication 186
Load options for different types of Q Replication 187
Replicating load operations at the source table . . 190
How constraints on the source table affect
replication of load operations 192

iv Replication and Event Publishing Guide and Reference

Loading target tables in a data consolidation
scenario 193
Q Replication and Event Publishing for multiple
database partitions 195
Replication of DB2 partitioned tables: Version 9.7
Fix Pack 1 or earlier (Linux, UNIX, Windows) . . 195
Replication of DB2 partitioned tables: Version 9.7
Fix Pack 2 and later (Linux, UNIX, Windows) . . 197
CCD tables in Q Replication 198

Chapter 12. Creating publications . . 205
Grouping publishing queue maps and publications 205
Creating publishing queue maps 206
Creating publications 208

Creating publications 209
Source columns for publications 211
When the Q Capture program publishes a
message for publications. 211
Search conditions to filter rows in publications 212
Key columns for publications 214
Options for including unchanged columns in
messages for publications 215
Options for including before values in messages
for publications. 216

Chapter 13. Data type considerations 217
General data restrictions for Q Replication and
Event Publishing 217
Considerations for large object (LOB) data types
for Q Replication and Event Publishing 219
XML data type 220
Replication between XML and LOB columns . . . 221
Replication of new DB2 Version 9.7 data types
(Linux, UNIX, Windows) 222
Replication of tables with identity columns . . . 223

Chapter 14. Working with scripts and
commands generated by the
replication administration tools . . . 225
Running and saving scripts generated by the
replication administration tools 225
Running and saving commands (Replication
Center) 227

Chapter 15. Operating a Q Capture
program 229
Starting a Q Capture program 229
Starting Q Capture from a known point in the DB2
log 231
Specifying Q Capture restart points for individual
send queues or data partitions (z/OS) 233
Considerations for using the cold start mode . . . 235
Changing the Q Capture parameters 236

Methods of changing the Q Capture operating
parameters 236
Changing parameters while a Q Capture
program is running 237
Changing saved Q Capture parameters in the
IBMQREP_CAPPARMS table 238

Prompting a Q Capture program to ignore
unwanted transactions 239
Stopping a Q Capture program 244
Stopping a Q Capture program at a specified point 245
Starting Q subscriptions 248
Stopping Q subscriptions 249
Starting publications 250
Stopping publications 251
Managing Q Capture message activity at the send
queue level 252

Starting message activity on one or more send
queues 255
Stopping message activity on one or more send
queues 257

Chapter 16. Operating a Q Apply
program 261
Starting a Q Apply program 261
Changing the Q Apply parameters 263

Changing parameters while a Q Apply program
is running 263
Changing saved Q Apply parameters in the
IBMQREP_APPLYPARMS table 264

Stopping a Q Apply program 265
Stopping message processing on a receive queue 266
Starting message processing on a receive queue 267
Prompting a Q Apply program to ignore
transactions 268

Chapter 17. Changing a Q Replication
environment 273
Changing the properties of unidirectional Q
subscriptions 273
Adding existing columns to a Q subscription
(unidirectional replication) 275
Adding existing columns to a Q subscription
(bidirectional or peer-to-peer replication) 277
How Q Capture handles DDL operations at the
source database 279
Changing properties of replication queue maps . . 283
Changing queue names when the queue map is
used by Q subscriptions 285
Restarting failed Q subscriptions without dropping
and recreating them 286
Putting Q subscriptions into a temporary spill
mode for maintenance 286
Deleting Q subscriptions 287
Deleting replication queue maps 288
Dropping Q Capture or Q Apply control tables . . 289

Chapter 18. Changing an event
publishing environment 291
Changing properties of publications 291
Adding columns to existing publications 292
Deleting publications 294
Changing properties of publishing queue maps . . 295
Deleting publishing queue maps 296
Dropping Q Capture control tables 297

Contents v

Chapter 19. Checking the status of the
Q Replication and Event Publishing
programs 299
Checking the status of the Q Replication and Event
Publishing programs 299
Threads of the Q Capture, Q Apply, and
Replication Alert Monitor programs 301
Latency 303
Exceptions 305

Chapter 20. Maintaining a Q
Replication and Event Publishing
environment 307
Considerations for maintaining Q Replication and
Event Publishing source systems 307

Maintaining source tables in a Q Replication
and Event Publishing environment 307
Retaining log files for Q Replication and Event
Publishing 307
Considerations for managing compression
dictionaries in Q replication and event
publishing (z/OS) 310

Maintaining control tables in Q Replication and
Event Publishing 311

Pruning control tables in Q Replication and
Event Publishing 311
Considerations for using the RUNSTATS utility
on control tables for Q Replication and Event
Publishing 312
Reorganizing control tables 312
When replication programs cannot connect to
their DB2 server 313

Maintaining target tables 313
Considerations for rebinding packages and plans
for Q Replication and Event Publishing 315

Chapter 21. Comparing and repairing
tables. 317
Table compare utility (asntdiff) 317
Running the asntdiff utility in parallel mode
(z/OS). 322
Table repair utility (asntrep) 325
How the compare utility handles DB2 SQL
compatibility features. 325

Chapter 22. Using system services to
operate the Q replication and event
publishing programs 331
Using z/OS system services to run the Q
replication and event publishing programs . . . 331

Running the Q replication and event publishing
programs by using JCL 331
Running the Q replication and event publishing
programs with system-started tasks 337
Using Automatic Restart Manager (ARM) to
automatically restart replication and publishing
(z/OS). 338

Replication services (Windows) 339
Description of Windows services for replication 339

Creating a replication service 340
Starting a replication service 341
Stopping a replication service 341
Viewing a list of replication services 341
Dropping a replication service 341

Scheduling the replication programs. 342
Scheduling the replication and event publishing
programs (Linux, UNIX). 342
Scheduling the replication programs (Windows) 342
Scheduling the replication and event publishing
programs (z/OS) 343

Chapter 23. Naming rules and
guidelines for Q Replication and
Event Publishing—Overview 345
Naming rules for Q Replication and Event
Publishing objects 345
How lowercase object names are handled for Q
replication and publishing 347

Chapter 24. System commands for Q
Replication and Event Publishing. . . 349
asnqcap: Starting a Q Capture program 350

Descriptions of asnqcap parameters 351
Examples of asnqcap usage. 371

asnoqcap: Starting a Q Capture program for an
Oracle database 372
asnqccmd: Working with a running Q Capture
program 380
asnoqccmd: Working with a running Q Capture
program on Oracle databases 386
asnqapp: Starting a Q Apply program 389

Descriptions of asnqapp parameters 391
Examples of asnqapp usage 407

asnqacmd: Working with a running Q Apply
program 408
asnpwd: Creating and maintaining password files 413
asnscrt: Creating a replication service 417
asnsdrop: Dropping a replication service 420
asnslist: Listing replication services 421
asntdiff: Comparing data in source and target
tables (Linux, UNIX, Windows) 422
asntdiff: Comparing data in source and target
tables (z/OS) 426
asntdiff –f (input file) command option. 433
asntrc: Operating the replication trace facility. . . 436
asntrep: Repairing differences between source and
target tables 443
asnqanalyze: Operating the Q Replication Analyzer 446
asnqmfmt: Formatting and viewing Q replication
and publishing messages 454
asnqxmfmt: Formatting and viewing Event
Publishing messages (z/OS) 456

Chapter 25. Control tables for Q
Replication and Event Publishing. . . 459
Control tables at the Q Capture server 459

IBMQREP_ADMINMSG table 460
IBMQREP_CAPENQ table 461

vi Replication and Event Publishing Guide and Reference

IBMQREP_CAPENVINFO table 461
IBMQREP_CAPMON table 462
IBMQREP_CAPPARMS table 464
IBMQREP_CAPQMON table 469
IBMQREP_CAPTRACE table 471
IBMQREP_COLVERSION table 472
IBMQREP_EOLFLUSH table 473
IBMQREP_EXCLSCHEMA table 473
IBMQREP_IGNTRAN table. 474
IBMQREP_IGNTRANTRC table 475
IBMQREP_PART_HIST table (Linux, UNIX,
Windows) 476
IBMQREP_SCHEMASUBS table 477
IBMQREP_SENDQUEUES table 479
IBMQREP_SIGNAL table 483
IBMQREP_SRC_COLS table 488
IBMQREP_SRCH_COND table 489
IBMQREP_SUBS table 490
IBMQREP_SUBS_PROF table 496
IBMQREP_TABVERSION table 497

Control tables at the Q Apply server 498
IBMQREP_APPLYENQ table 499
IBMQREP_APPENVINFO table 500
IBMQREP_APPLYMON table 500
IBMQREP_APPLYPARMS table 504
IBMQREP_APPLYTRACE table 511
IBMQREP_DELTOMB table. 512
IBMQREP_DONEMSG table 513
IBMQREP_EXCEPTIONS table 513
IBMQREP_RECVQUEUES table 516
IBMQREP_SAVERI table. 518
IBMQREP_SPILLQS table 519
IBMQREP_SPILLEDROW table 520
IBMQREP_TARGETS table 520
IBMQREP_TRG_COLS table 529

Detailed structure of versioning columns for
peer-to-peer replication 530

Chapter 26. Structure of XML
messages for event publishing. . . . 533

XML message types and requirements 533
Message types 533
Technical requirements for XML messages . . . 533
How XML delimiters are handled in character
data 534

Structure of messages from Q Capture to a user
application 534

List of messages from Q Capture to a user
application 534
msg: Root element for XML messages from Q
Capture to a user application 535
Transaction message 536
Row operation message 545
Large object (LOB) message 547
Subscription deactivated message 549
Load done received message 550
Error report message 551
Heartbeat message 552
Subscription schema message (subSchema) . . 553
Add column message 556

Structure of messages from a user application to Q
Capture 557

List of messages from a user application to Q
Capture 558
msg: Root element for XML messages from a
user application to Q Capture 558
Invalidate send queue message 559
Load done message 560
Activate subscription message 560
Deactivate subscription message 561

Contacting IBM 563

How to read syntax diagrams 565

Notices and trademarks 567

Index 571

Contents vii

viii Replication and Event Publishing Guide and Reference

Chapter 1. Data conversion for Q Replication and Event
Publishing

In Q Replication and Event Publishing, data passes between various servers and
programs, and sometimes the data must be converted between different code
pages.

Code pages for Q Replication
In Q Replication, data passes between various servers and programs, and
sometimes the data must be converted. For example, the programs might have
different code pages, or the platform or processor might handle numeric values
differently.

Data is automatically converted at the column level as needed, even if the source
server and target server are in different code pages. Endianess and floating point
representations conversions are handled.

Recommendation: If possible, avoid any data conversion by using matching code
pages for the following programs or servers:
v Q Capture program
v Q Apply program
v Source server
v Target server

If the source server and target server must use different code pages, then use
matching code pages for the Q Capture program and the source server and use
matching code pages for the Q Apply program and the target server.

When data from the source table is replicated to the target table or stored
procedure, the Q Capture program sends the data over WebSphere® MQ in the
format of the source table. The source data is converted, if required, at the target.

On Linux, UNIX, and Windows, when the Q Apply program
receives the source data from the receive queue, it converts each column in the
transaction and all other data in the message to its own code page. The target
server expects the data to be in the code page and floating point representation of
the Q Apply program.

On z/OS, the Q Apply program does not convert the source
data to its own codepage. Instead, for each operation the Q Apply program tags
the source codepage of the data for DB2. DB2 then directly converts the data from
the source codepage to the target codepage.

If the source table is defined in EBCDIC or ASCII and the target table is defined in
UTF-8, SQL errors could occur if the target column is too small to hold the
expansion of bytes that occurs when EBCDIC or ASCII data is converted to UTF-8.
To avoid this error, the column in the target table should be defined to hold 3
bytes for every character stored at the source. For example, if the source column is
defined as CHAR(x), the target column should be defined as CHAR(3x).

© Copyright IBM Corp. 2004, 2012 1

Recommendation: zSeries® represents floating point values
differently than Intel based CPUs, which might cause some data to be lost. Avoid
using a float column as a key.

Restriction: The code pages for the Q Capture and Q Apply programs cannot be
UTF-16.

If you plan to replicate data between servers with different code pages, check the
IBM DB2 Administration Guide: Planning to determine if the code pages that you are
using are compatible.

Code pages for event publishing
In event publishing, the data is converted from the code page of the source server
to an XML message as UTF-8 (code page 1208, which is a standard encoding
scheme for XML), or to a delimited message in a user-specified code page (default
code page 1208).

When the user application sends an administration message (for example, a
subscription deactivated message) to the Q Capture program in XML format, the
XML parser converts the message to the code page of the Q Capture program.

2 Replication and Event Publishing Guide and Reference

Chapter 2. Setting up user IDs and passwords

To use the Q replication and event publishing programs, you need to set up user
IDs and passwords for accessing DB2® servers on distributed systems.

Authentication requirements on Linux, UNIX, and Windows
Q Replication does not require you to use any specific type of authentication. You
should use the compatible authentication type that best meets your business needs.

The following list provides more detail:

DB2 sources and targets

v Q Replication is a database application program.
v The underlying DB2 client-server facilities are as transparent to Q

Replication as they are to any database application.
v Q Replication connects to DB2 databases using the traditional ID and

password combination. You can use any authentication type that is
compatible with this.

v Q Replication has no requirement on authentication type other than this.

Oracle sources

v Q Capture for Oracle databases is an Oracle C++ Call Interface (OCCI)
database application program.

v Q Capture uses the usual Oracle user credentials that are required to
connect to an Oracle database. The operating system user credentials are
not used when connecting.

v The value of the capture_server or apply_server parameter corresponds
to an alias that is defined in a tnsnames.ora file. The value of the
capture_schema or apply_schema parameter corresponds to the user ID
that is provided when connecting.

v You must create a password file with the asnpwd utility. When Q
Capture for Oracle connects to the Oracle database, it retrieves the
password from this password file.

Authorization requirements for Q Replication and Event Publishing
The user IDs that run the Q Replication and Event Publishing programs need
authority to connect to servers, access or update tables, and perform other
operations.

Authorization requirements for the Q Capture program
All user IDs that run a Q Capture program must have authorization to access the
DB2 system catalog, access and update all Q Capture control tables, read the DB2
log, and run the Q Capture program packages.

For a list of authorization requirements on z/OS®, see DB2
authorizations for the Q Capture and Capture programs.

The following list summarizes the DB2 requirements and
operating system requirements for Linux, UNIX, and Windows:

© Copyright IBM Corp. 2004, 2012 3

Requirements
User IDs that run a Q Capture program must have the following
authorities and privileges:
v DBADM or SYSADM authority.
v WRITE privilege on the directory that is specified by the capture_path

parameter. The Q Capture program creates diagnostic files in this
directory.

v Authority to create global objects.

In a partitioned database environment, the user IDs must be able to
connect to database partitions and read the password file.

Authorization requirements for the Q Apply program
All user IDs that run a Q Apply program must have authorization to access the
DB2 system catalog, access and update targets, access and update the Q Apply
control tables, run the Q Apply program packages, and read the Q Apply
password file.

For a list of authorization requirements on z/OS, see DB2
authorizations for the Q Apply and Apply programs.

The following list summarizes the DB2 requirements and operating system
requirements for Linux, UNIX, and Windows, and for non-DB2 targets.

Requirements
User IDs that run a Q Apply program must have the following authorities
and privileges:
v DBADM or SYSADM authority.
v SELECT privilege for the source tables if the Q Apply program will be

used to load target tables.
v WRITE privilege on the directory that is specified by the apply_path

parameter. The Q Apply program creates diagnostic files in this
directory.

v Authority to create global objects.

If the Q Apply program uses the LOAD from CURSOR option of the
LOAD utility to load target tables, the Q Apply server must be a federated
server, and you must create nicknames, server definitions, and user
mappings on the Q Apply server. The user ID that is supplied in the user
mappings must have privilege to read from nicknames on the federated Q
Apply server and read from the source tables.

Requirements for non-DB2 targets
User IDs that run a Q Apply program must have the following authorities
and privileges:
v CREATE TABLE and CREATE INDEX on the remote database.
v WRITE privilege on nicknames in the federated database and, through

user mappings, WRITE privilege on the non-DB2 target.

4 Replication and Event Publishing Guide and Reference

Authorization requirements for the Replication Center and
ASNCLP program

User IDs that administer Q Replication and Event Publishing with the Replication
Center or ASNCLP command-line program require certain database authorizations
at the source and target servers.

You must have at least one user ID on all databases that are involved in the
replication configuration, and that user ID must have the authority to perform a
variety of administrative tasks at the Q Capture server, Q Apply server, and
Monitor control server if you use the Replication Alert Monitor.

The following authorities and privileges are required:
v CONNECT privilege for the Q Capture server, Q Apply server, and Monitor

control server
v All required table, table space, and index privileges to create control tables at the

Q Capture server, Q Apply server, and Monitor control server
v All required table, table space, and index privileges to create targets at the Q

Apply server
v SELECT, UPDATE, INSERT, and DELETE privileges for all control tables on the

Q Capture server, Q Apply server, and Monitor control server

v SELECT privilege for the following DB2 for z/OS system
catalog tables:
– SYSIBM.SYSCHECKS
– SYSIBM.SYSCOLUMNS
– SYSIBM.SYSDATABASE
– SYSIBM.SYSDUMMY1
– SYSIBM.SYSINDEXES
– SYSIBM.SYSINDEXPART
– SYSIBM.SYSKEYCOLUSE
– SYSIBM.SYSKEYS
– SYSIBM.SYSKEYTARGETS
– SYSIBM.SYSPARMS
– SYSIBM.SYSRELS
– SYSIBM.SYSROUTINES
– SYSIBM.SYSSTOGROUP
– SYSIBM.SYSTABCONST
– SYSIBM.SYSTABLEPART
– SYSIBM.SYSTABLES
– SYSIBM.SYSTABLESPACE
– SYSIBM.SYSTRIGGERS

v Privileges to bind plans on each DB2 database involved in replication or
publishing, including the Q Capture server, Q Apply server, and Monitor control
server

v The following stored procedure privileges:

EXECUTE authority on the following stored procedures:
– SYSIBM.SQLPROCEDURECOLS

Chapter 2. Setting up user IDs and passwords 5

– SYSPROC.DSNWZP
– SYSPROC.ADMIN_INFO_SSID

Privileges to create stored procedures using a shared library, and to call
stored procedures.

To simplify administration with the Replication Center, you can use the Manage
Passwords and Connectivity window to store user IDs for servers or systems, as
well as to change the IDs that you stored and to test connections. To open the
window, right-click the Replication Center folder and select Manage Passwords
for Replication Center.

Connectivity requirements for Q Replication and Event Publishing
To replicate or publish data in a distributed environment, you must set up and
configure connectivity. In most cases, you must also be able to connect to remote
DB2 databases or subsystems to use the ASNCLP command-line program,
Replication Center, or Replication Alert Monitor, to load target tables, or to insert
signals to activate or deactivate Q subscriptions or publications.

Connectivity requirements for DB2 databases or subsystems differ depending on
your replication or publishing environment:
v The ASNCLP or Replication Center must be able to make the following

connections:
– To the Q Capture server to administer Event Publishing.
– To the Q Capture server and Q Apply server to administer Q Replication.
– To the Monitor control server to set up the Replication Alert Monitor.

v If you plan to have the Q Apply program automatically load targets with source
data by using the EXPORT utility, the Q Apply program must be able to connect
to the Q Capture server. This connection requires a password file that is created
with the asnpwd command.

v The Q Capture program must be able to connect to partitioned databases. This
connection requires a password file that is created with the asnpwd command.

v If you are using the administration tools, system commands, or SQL to
administer replication from a remote workstation, the remote workstation must
be able to connect to the Q Capture server, Q Apply server, or Monitor control
server.

Managing user IDs and passwords for remote servers (Linux, UNIX,
Windows)

Replication and Event Publishing require a password file in some cases to store
user IDs and passwords for connecting to remote servers.

About this task

A password file is required in the following cases:
v The Apply program requires a password file to access data on remote servers

(the Capture program does not require a password file).
v The Q Apply program requires a password file to connect to the Q Capture

server for Q subscriptions that use the EXPORT utility to load targets.

6 Replication and Event Publishing Guide and Reference

v The Q Capture program requires a password file to connect to multiple-partition
databases.

v If the Q Capture program runs remotely from the source database or the Q
Apply program runs remotely from the target database, the programs require
password files to connect to the remote database.

v The asntdiff and asntrep commands require password files to connect to
databases where the utilities are comparing or repairing table differences.

v The Replication Alert Monitor requires a password file to connect to any Q
Capture, Capture, Q Apply, or Apply server that you want to monitor.

Important note about compatibility of password files: Password files that are
created by the asnpwd command starting with Version 9.5 Fix Pack 2 use a different
encryption method and cannot be read by older versions of the replication
programs and utilities. If you share a password file among programs and utilities
that are at a mixed level, with some older than these fix packs, do not recreate the
password file by using an asnpwd command that is at these fix packs or newer.
Replication programs and utilities at these fix packs or newer can continue to work
with older password files. Also, you cannot change an older password file to use
the later encryption method; you must create a new password file.

In general, replication and Event Publishing support the following scenarios:
v Creating a password file with one version and using it with a newer version. For

example, you can create a password file under V8.2 and use it with V9.1 and
V9.5.

v Creating a password file with one fix pack and using it with a newer fix pack
within the same version. For example, you can create a password file with V9.1
Fix Pack 3 and use it with V9.1 Fix Pack 5.

v Creating a password file on one system and using it on another system as long
as the following criteria are met:
– The systems use the same code page.
– The systems are all 32 bit or all 64 bit.

Encrypted password files are not supported for x64 Windows until 9.5 Fix Pack 2
or later.

Procedure

To manage user IDs and passwords for remote servers, follow these guidelines:
v Create an encrypted password file for replication and event publishing programs

that are running on Linux, UNIX, and Windows by using the asnpwd command.
The password file must be stored in the path that is set by the following
parameters:

Table 1. Password file requirements

Program Parameter

Apply apply_path

Q Apply apply_path

Q Capture capture_path

Replication Alert Monitor monitor_path

asntdiff or asntrep command DIFF_PATH

Chapter 2. Setting up user IDs and passwords 7

v If the Q Apply program and Replication Alert Monitor are running on the same
system, they can share the same password file. If you want the programs to
share a password file, specify the same path and file name for the programs, or
use symbolic links to share the same password file in the different directories.

v The Replication Center does not use the password file that is created with the
asnpwd command to connect to remote servers. The first time that the Replication
Center needs to access a database or subsystem, you are prompted for a user ID
and password, which is stored for future use. You can use the Manage
Passwords and Connectivity window to store user IDs for servers or systems, as
well as to change the IDs that you stored and to test connections. To open the
window, right-click the Replication Center folder and select Manage Passwords
for Replication Center.

8 Replication and Event Publishing Guide and Reference

Chapter 3. Setting up WebSphere MQ for Q Replication and
Event Publishing

Q Replication and Event Publishing use WebSphere MQ, formerly known as MQ
Series, to transmit transactional data and exchange other messages.

Recommendation: Create the queue managers, queues, and other objects for the
messaging infrastructure before you create replication objects such as control tables
and Q subscriptions, and before you start the Q Capture and Q Apply programs.
The following tools and samples are available to help:
v MQ Script Generators that you can use by clicking the Script Generator icon on

the Replication Center menu bar
v The CREATE MQ SCRIPT command in the ASNCLP command-line program

v The ASNQDEFQ sample job in the SASNSAMP data set

v The asnqdefq sample script in the SQLLIB/samples/repl/q
directory

For more information on WebSphere MQ, see the WebSphere MQ Information
Center at http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp.

WebSphere MQ objects required for Q Replication and Event
Publishing

Depending on the type of replication or publishing that you plan to perform, you
need various WebSphere MQ objects.

For detailed information about creating WebSphere MQ objects, see the WebSphere
MQ Information Center at http://publib.boulder.ibm.com/infocenter/wmqv7/
v7r0/index.jsp.

WebSphere MQ objects required for unidirectional replication
(remote)

Unidirectional Q Replication or Event Publishing between remote servers requires
a queue manager and queues for the Q Capture program and for the Q Apply
program.

Because the servers are distributed, you also need transmission queues and
channels for transmitting transactions and communicating across a network.

The following lists show the objects that are required for unidirectional replication
between two remote servers:

Non-channel objects on source system

v A queue manager
v A remote queue definition to serve as the send queue (this queue points

to a receive queue on the target system)
v A local queue to serve as the administration queue
v A local queue to serve as the restart queue

Non-channel objects on target system

© Copyright IBM Corp. 2004, 2012 9

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v A queue manager
v A local queue to serve as the receive queue
v A remote queue definition to serve as the administration queue (this

queue points to an administration queue on the source system)
v A model queue definition for any temporary local spill queues that the

Q Apply program creates and uses while it loads target tables

Note: If you have multiple Q Apply programs that share the same
queue manager, each Q Apply program must have its own model queue
with a name that is unique under that queue manager.

Channel from source to target

v A sender channel that is defined within the source queue manager
v An associated local transmission queue
v A matching receiver channel that is defined within the target queue

manager

Channel from target to source

v A sender channel that is defined within the target queue manager
v An associated local transmission queue
v A matching receiver channel that is defined within the source queue

manager

Figure 1 on page 11 shows the WebSphere MQ objects that are required for
unidirectional Q Replication between remote servers.

10 Replication and Event Publishing Guide and Reference

WebSphere MQ objects required for unidirectional replication
(same system)

When a Q Capture program replicates data to a Q Apply program on the same
system, you need only one queue manager. You can use the same local queue for
the send queue and receive queue, and the two programs can share one local
administration queue.

You do not need remote queue definitions, transmission queues, or channels.

The following list shows the WebSphere MQ objects that are required for
unidirectional Q Replication or event publishing on the same system:
v One queue manager that is used by both the Q Capture program and Q Apply

program
v One local queue to serve as both the send queue and receive queue
v One local queue to serve as the administration queue for both the Q Capture

program and Q Apply program
v One local queue to serve as the restart queue
v A model queue that Q Apply uses to create dynamic spill queues to store

changes to source tables during the target table loading process.

channel target
to source

channel target
from source

DB2

restart
queue

receive
queue

Source system Target system

source queue manager

Q Capture Q Apply

target queue manager

target
transmission

queue

remote
administration

queue

DB2

Target to source

Source to target

Administration
queue

source
transmission

queue

remote
send queue

R

R
channel source
from target

channel source
to target

spill
queue

Figure 1. WebSphere MQ objects that are required for unidirectional Q Replication between
remote servers. Objects that are required for the Q Capture program are defined within the
queue manager on the source system. Objects that are required for the Q Apply program are
defined within the queue manager on the target system. Two channel objects are required to
create a transmission path between the source and target systems for data messages and
informational messages from the Q Capture program. Two channel objects are also required
to create a transmission path from the target system to the source system for control
messages from the Q Apply program.

Chapter 3. Setting up WebSphere MQ 11

Figure 2 shows the WebSphere MQ objects that are required for unidirectional Q
Replication on the same system.

When you create control tables for both a Q Capture program and Q Apply
program that are replicating on the same system, you specify the same queue
manager for both sets of control tables. When you create a replication queue map,
you can specify the same local queue for both the send queue and receive queue.
The same administration queue that you specify when you create the Q Capture
control tables can also be specified as the Q Apply administration queue when you
create a replication queue map.

WebSphere MQ objects required for event publishing
Event publishing between remote servers requires a queue manager and queues for
the Q Capture program and for the user application. Because the servers are
distributed, you also need transmission queues and channels for transmitting
transactional data and communicating across a network.

The following lists show the objects that are required for event publishing between
two remote servers:

Non-channel objects on source system

v A queue manager

restart
queue

Q Apply

System

queue manager

Q Capture

DB2

Administration
queue

source table target table

Send and
receive queue

spill
queue

Figure 2. WebSphere MQ objects that are required for unidirectional Q Replication on the
same system. When the Q Capture program and Q Apply program run on the same system,
only one queue manager is required. One local queue serves as both send queue and
receive queue, and another local queue serves as the administration queue for both the Q
Capture program and Q Apply program.

12 Replication and Event Publishing Guide and Reference

v A remote queue to serve as the send queue (this queue points to a
receive queue on the target system)

v A local queue to serve as the administration queue
v A local queue to serve as the restart queue

Non-channel objects on target system

v A queue manager
v A local queue to serve as the receive queue
v A remote queue to serve as the administration queue (this queue points

to an administration queue on the source system)

Channel from source to target

v A sender channel that is defined within the source queue manager
v An associated local transmission queue
v A matching receiver channel that is defined within the target queue

manager

Channel from target to source

v A sender channel that is defined within the target queue manager
v An associated local transmission queue
v A matching receiver channel that is defined within the source queue

manager

Figure 3 on page 14 shows the WebSphere MQ objects that are required for event
publishing between remote servers.

Chapter 3. Setting up WebSphere MQ 13

If you create multiple channels from the Q Capture program to the user
application, you will need multiple transmission queues to hold messages that are
awaiting transit.

WebSphere MQ objects required for bidirectional or
peer-to-peer replication (two remote servers)

To replicate transactions in both directions between two servers, you define two
sets of the same WebSphere MQ objects that are required for unidirectional
replication. There is one exception: Only one queue manager is required on each
system.

For example, assume that you plan to replicate transactions between Server A and
Server B in both directions. You create the WebSphere MQ objects that link the Q
Capture program at Server A with the Q Apply program at Server B. You also
create the WebSphere MQ objects that link the Q Capture program at Server B with
the Q Apply program at Server A. Server A and Server B each connect to a single
queue manager on the systems where they run.

The following lists show the objects that are required for bidirectional or
peer-to-peer replication between two remote servers. Because the queue manager is
not part of the replication server but runs on the same system, the objects are
grouped by system:

channel target
to source

channel target
from source

restart
queue

receive
queue

Source system Target system

source queue manager

Q Capture

target queue manager

target
transmission

queue

remote
administration

queue

DB2

Target to source

Source to target

administration
queue

source
transmission

queue

remote
send queue

R

R
channel source
from target

channel source
to target

User application

Figure 3. WebSphere MQ objects that are required for event publishing between remote
servers. Objects that are required for the Q Capture program are defined within the queue
manager on the source system. Objects that are required for the user application are defined
within the queue manager on the target system. Two channel objects are required to create a
transmission path between the source and target systems for data messages and
informational messages from the Q Capture program. Two channel objects are also required
to create a transmission path from the target system to the source system for control
messages from the user application.

14 Replication and Event Publishing Guide and Reference

Non-channel objects at System A
v A queue manager
v A remote queue definition to serve as the send queue (this queue points to a

receive queue at System B)
v A local queue to serve as the administration queue
v A local queue to serve as the restart queue
v A local queue to serve as the receive queue
v A remote queue definition to serve as the administration queue (this queue

points to an administration queue at System B)
v A model queue definition for any temporary local spill queues that the Q Apply

program creates and uses while it loads target tables

Non-channel objects at System B
v A queue manager
v A remote queue definition to serve as the send queue (this queue points to a

receive queue at System A)
v A local queue to serve as the administration queue
v A local queue to serve as the restart queue
v A local queue to serve as the receive queue
v A remote queue definition to serve as the administration queue (this queue

points to an administration queue at System A)
v A model queue definition for any temporary local spill queues that the Q Apply

program creates and uses while it loads target tables

Channel objects

Channel objects from System A to System B

v A sender channel that is defined within the queue manager at System A
v An associated local transmission queue at System A
v A matching receiver channel that is defined within the queue manager at

System B

Channel objects from System B to System A

v A sender channel that is defined within the queue manager at System B
v An associated local transmission queue at System B
v A matching receiver channel that is defined within the queue manager at

System A

Figure 4 on page 16 shows the WebSphere MQ objects that are required for
bidirectional or peer-to-peer Q Replication between two remote servers.

Chapter 3. Setting up WebSphere MQ 15

WebSphere MQ objects required for peer-to-peer replication
(three or more remote servers)

In a peer-to-peer group with three or more remote servers, each server needs one
outgoing channel to each additional server in the group. Each server also needs
one incoming channel from each additional server in the group.

The Q Apply program at each server requires one remote administration queue per
outgoing channel. The Q Capture program requires only one local administration
queue because all incoming messages from Q Apply programs are handled by a
single queue manager and directed to one queue.

The number of send queues and receive queues depends on the number of servers
in the group.

target
transmission

queue

channel
A from B

channel
A to B

restart
queue

receive
queue

Server A Server B

queue manager

Q Capture Q Apply

queue manager

remote
administration

queue

DB2

B to A

Administration
queue

remote
send

queue

Q Apply

target
transmission

queue

A to B

administration
queue

DB2

Q Capture

receive
queue

remote
send

queue

remote
administration

queue

restart
queue

channel
B to A

channel
B from A

spill
queue

spill
queue

Figure 4. WebSphere MQ objects required for bidirectional or peer-to-peer Q Replication between two remote servers..
You must create two sets of the same WebSphere MQ objects that are required to connect a Q Capture program and
a Q Apply program in unidirectional Q Replication. One set of objects handles replication in one direction, and the
other set of objects handles replication in the opposite direction. Only one queue manager is required at each system.

16 Replication and Event Publishing Guide and Reference

For example, in a group with three remote servers, the Q Capture program at
Server A needs two send queues, one for transactions that are going to Server B
and one for transactions that are going to Server C. The Q Apply program at
Server A needs two receive queues, one for transactions that are coming from
Server B and one for transactions that are coming from Server C.

The following lists show the objects that are required at each system in
peer-to-peer replication with three or more servers:

Non-channel objects at each system
v One queue manager
v One remote send queue for each outgoing channel
v One local queue to serve as the administration queue for the Q Capture program
v One local queue to serve as the restart queue
v One local receive queue for each incoming channel
v One remote administration queue for the Q Apply program for each outgoing

channel
v A model queue definition for any temporary local spill queues that the Q Apply

program creates and uses while it loads target tables

Outgoing channel objects at each system

Create these objects for each additional server in the group. For example, in a
group with three servers, each server needs two outgoing channels.
v A sender channel that is defined within the local queue manager
v An associated local transmission queue
v A matching receiver channel that is defined within the queue manager on the

remote server that this channel connects to

Incoming channel objects at each system

Create these objects for each additional server in the group. For example, in a
group with three servers, each server needs two incoming channels.
v A receiver channel that is defined within the local queue manager
v A matching sender channel that is defined within the queue manager on the

remote server that this channel connects to

Figure 5 on page 18 shows the WebSphere MQ objects that are required at one
server that is involved in peer-to-peer between three remote servers, with one
logical table being replicated.

Chapter 3. Setting up WebSphere MQ 17

Required settings for WebSphere MQ objects
The WebSphere MQ objects that are used for Q Replication and Event Publishing
must have specific properties.

This topic describes required settings for WebSphere MQ objects that are used in
various scenarios, and has the following sections:
v “WebSphere MQ objects at the source” on page 19
v “WebSphere MQ objects at the target” on page 21

Recommendation: Create the queue managers, queues, and other objects for the
messaging infrastructure before you create replication objects such as control tables

transmission
queue 2

channel
A from B

Server C Server B

restart
queue

Server A

queue manager

send
queue 2

B to A

receive
queue 1

Q Apply

administration
queue

Q Capture

receive
queue 2

C to A

transmission
queue 1

send
queue 1

channel
A to C

channel
A to B spill

queue 2

DB2

A to B

A to C

Server A

spill
queue 1

administration
queue 2

administration
queue 1

channel
A from C

Figure 5. WebSphere MQ objects that are required at one server that is involved in
peer-to-peer replication with two other remote servers. At each system, you create one
queue manager. The Q Capture program requires one administration queue and one restart
queue. You create one remote send queue for each outgoing channel. The Q Apply program
requires a remote administration queue for each outgoing channel, and a local receive queue
for each incoming channel. You create one outgoing channel and one incoming channel for
each additional server in the group.

18 Replication and Event Publishing Guide and Reference

and Q subscriptions, and before you start the Q Capture and Q Apply programs.
The following tools and samples are available to help:
v MQ Script Generators that you can use by clicking the Script Generator icon on

the Replication Center menu bar
v The CREATE MQ SCRIPT command in the ASNCLP command-line program

v The ASNQDEFQ sample job in the SASNSAMP data set

v The asnqdefq sample script in the SQLLIB/samples/repl/q
directory

Note about persistent messages: Starting with Version 9.7 (or the PTF for APAR
level PK85947 or higher on DB2 for z/OS Version 9.1), Q Replication and Event
Publishing no longer require persistent WebSphere MQ messages. You can choose
to use nonpersistent messages by specifying message_persistence=n when you
start the Q Capture program or by changing the saved value of the
MESSAGE_PERSISTENCE column in the IBMQREP_CAPPARMS table.
Nonpersistent messages are not logged and cannot be recovered. The Q Capture
program always sends persistent messages to its restart queue and the Q Apply
program always sends persistent messages to the administration queue, regardless
of the setting for message_persistence. If you create nonpersistent queues with
DEFPSIST(N), these persistent messages override the setting for the queue.

For more detail about configuring WebSphere MQ objects, see the WebSphere MQ
Information Center at http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/
index.jsp.

WebSphere MQ objects at the source

Table 2 provides required values for selected parameters for WebSphere MQ objects
at the source.

Table 2. Required parameter values for WebSphere MQ objects at the source

Object name Required settings

Queue manager
MAXMSGL

(The maximum size of messages allowed on queues for
this queue manager.) This value must be at least as large
as the max_message_size that you define when you create
a replication queue map or publishing queue map. The
max_message_size defines the message buffer that is
allocated for each send queue. The value of MAXMSGL
should also be at least as large as the MAXMSGL that is
defined for each send queue, transmission queue, and the
administration queue.

Send queue
PUT (ENABLED)

Allows the Q Capture program to put data messages and
informational messages on the queue.

Chapter 3. Setting up WebSphere MQ 19

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Table 2. Required parameter values for WebSphere MQ objects at the source (continued)

Object name Required settings

Administration queue
GET (ENABLED)

Allows the Q Capture program to get messages from the
queue.

PUT(ENABLED)
Allows the Q Apply program to put informational
messages on the queue.

SHARE
Enables more than one application instance to get
messages from the queue.

Restart queue
PUT (ENABLED)

Allows the Q Capture programto put a restart message on
the queue.

GET (ENABLED)
Allows the Q Capture program to get the restart messages
from the queue.

Transmission queue
USAGE(XMITQ)

Transmission queue.

MAXDEPTH(500000)
The maximum number of messages that are allowed on
the transmission queue is 999999. It is unlikely that this
maximum would be needed because of the speed at which
the Q Apply program keeps up with Q Capture. Use a
setting that reflects the transaction workload that you
expect.

MAXMSGL
Ensure that the maximum size of messages for the queue
is not less than the MAXMSGL defined for the receive
queue on the target system, and the value of
max_message_size that you set when you create a
replication queue map.

Recommendation: Use one transmission queue for each send
queue-receive queue pair.

Sender channel
CHLTYPE(SDR)

A sender channel.

DISCINT(0)
Ensure that the disconnect interval is large enough to keep
this channel from timing out during periods when there
are no transactions to replicate.

CONVERT(NO)
Specify that the sending message channel agent should
not attempt conversion of messages if the receiving
message channel agent cannot perform this conversion.

HBINT Coordinate this value with the heartbeat_interval
parameter of the replication queue map or publishing
queue map. If you use the HBINT parameter to send
heartbeat flows, consider setting heartbeat_interval to 0
to eliminate heartbeat messages.

Receiver channel
CHLTYPE(RCVR)

A receiver channel.

20 Replication and Event Publishing Guide and Reference

WebSphere MQ objects at the target

Table 3 provides required values for selected parameters for WebSphere MQ objects
at the target.

Table 3. Required parameter values for WebSphere MQ objects at the target

Object name Required settings

Queue manager
MAXMSGL

(The maximum size of messages allowed on queues for
this queue manager.) This value must be at least as large
as the max_message_size that you define when you create
a replication queue map. The max_message_size defines
the message buffer that is allocated for each send queue.

Receive queue
GET(ENABLED)

Allows the Q Apply program to get messages from the
queue.

PUT(ENABLED)
Allows the Q Capture program to put data and
informational messages on the queue.

MAXMSGL
Ensure that the maximum size of messages for the queue
is at least as large as the MAXMSGL that is defined for
the transmission queue on the source system, and the
max_message_size and MEMORY_LIMIT that you set
when you create a replication queue map.

MAXDEPTH(500000)
Set the maximum number of messages that are allowed on
the receive queue to a number that reflects your
replication workload.

DEFSOPT(SHARED)
Allows multiple Q Apply threads to work with this
queue.

INDXTYPE(MSGID)
Specifies that the queue manager maintain an index of
messages based on the message identifier to expedite
MQGET operations on the queue.

Administration queue
PUT(ENABLED)

Allows the Q Apply program or user application to put
control messages on the queue.

Chapter 3. Setting up WebSphere MQ 21

Table 3. Required parameter values for WebSphere MQ objects at the target (continued)

Object name Required settings

Model (spill) queue
Queue name

By default, the Q Apply program looks for a model queue
named IBMQREP.SPILL.MODELQ. You can specify a
different name for a model queue to be used for a Q
subscription when you create or change the Q
subscription.

DEFTYPE(PERMDYN)
Specifies that spill queues are permanent dynamic queues.
They are created and deleted at the request of the Q
Apply program, but they will not be lost if you restart the
queue manager. Messages are logged and can be
recovered.

DEFSOPT(SHARED)
Allows more than one thread (different agent threads and
the spill agent thread) to access messages on the spill
queue at the same time.

MAXDEPTH(500000)
This is a recommended upper limit for the number of
messages on the spill queue. Adjust this number based on
the number of changes that are expected at the source
table while the target table is being loaded.

MSGDLVSQ(FIFO)
Specifies that messages on the spill queue are delivered in
first-in, first-out order.

Note: If you have multiple Q Apply programs that share the same
queue manager, each Q Apply program must have its own model
queue with a name that is unique under that queue manager.

Transmission queue
USAGE(XMITQ)

Transmission queue.

Sender channel
CHLTYPE(SDR)

A sender channel.

DISCINT(0)
Ensure that the disconnect interval is large enough to keep
this channel from timing out during periods of inactivity
when you expect few control messages to be sent by the Q
Apply program or user application.

CONVERT(NO)
Specify that the sending message channel agent should
not attempt conversion of messages if the receiving
message channel agent cannot perform this conversion.

Receiver channel
CHLTYPE(RCVR)

A receiver channel.

22 Replication and Event Publishing Guide and Reference

Sample commands for creating WebSphere MQ objects for Q
Replication and Event Publishing

You can use WebSphere MQ script (MQSC) commands and system commands to
create the WebSphere MQ objects that are required for Q Replication and Event
Publishing.

To create queue managers, you can use the following system commands:

Create queue manager
crtmqm -lp 50 -ls 10 queue_manager_name

This command creates a queue manager and specifies that it use 50
primary log files and 10 secondary log files.

Start queue manager
strmqm queue_manager_name

After you create and start a queue manager, you can use the MQSC commands in
Table 4 and Table 5 on page 24 to create the objects.

The tables contain WebSphere MQ objects that are needed to set up unidirectional
replication. You can use the same commands with minor modifications to create
objects for multidirectional replication or publishing.

Use the runmqsc queue_manager_name system command to begin an MQSC session,
and then issue the MQSC commands in the table interactively or by creating
scripts that run at each server.

You can also use the MQ Script Generator tools in the Replication Center to create
WebSphere MQ objects at each server.

Objects used by Q Capture program

Table 4. Sample MQSC commands for WebSphere MQ objects that are used by the Q Capture program (assumes a
source queue manager named CSQ1 and target queue manager named CSQ2)

Object Sample command

Send queue
A queue that directs data messages from a Q
Capture program. to a Q Apply program or user
application. In remote configurations, this is the
local definition on the source system of the
receive queue on the target system. Each send
queue should be used by only one Q Capture
program.

DEFINE QREMOTE(’ASN.SAMPLE_TO_TARGET.DATA’)
RNAME(’ASN.SAMPLE_TO_TARGET.DATA’)
RQMNAME(’CSQ2’)
XMITQ(’CSQ2’)
PUT(ENABLED)

Administration queue
A local queue that receives control messages
from a Q Apply program or a user application to
the Q Capture program. Each administration
queue should be read by only one Q Capture
program.

DEFINE QLOCAL(’ASN.ADMINQ’)
PUT(ENABLED)
GET(ENABLED)
SHARE

Chapter 3. Setting up WebSphere MQ 23

Table 4. Sample MQSC commands for WebSphere MQ objects that are used by the Q Capture program (assumes a
source queue manager named CSQ1 and target queue manager named CSQ2) (continued)

Object Sample command

Restart queue
A local queue that holds a single message that
tells the Q Capture program where to start
reading in the DB2 recovery log for each send
queue after a restart. Each Q Capture program
must have its own restart queue.

DEFINE QLOCAL(’ASN.RESTARTQ’)
PUT(ENABLED)
GET(ENABLED)

Transmission queue
A local queue that holds messages that are
waiting to go across a channel. This queue can
be named for the destination queue manager as
a reminder about where its messages go.

Recommendation: Use one transmission queue for each
send queue-receive queue pair.

DEFINE QLOCAL(’CSQ2’)
USAGE(XMITQ)
MAXDEPTH(500000)

Sender channel
The sending end of the channel from the source
system to the target system.

DEFINE CHANNEL(’CSQ1.TO.CSQ2’)
CHLTYPE(SDR)
CONNAME(’IP_address (port)’)
TRPTYPE(TCP)
XMITQ(’CSQ2’)
DISCINT(0)
CONVERT(NO)

Where IP_address is the IP address of the target system,
and port is an optional parameter that specifies an unused
port on the target system. The default port for WebSphere
MQ is 1414.

Receiver channel
The receiving end of the channel from the target
system to the source system.

DEFINE CHANNEL(’CSQ2.TO.CSQ1’)
CHLTYPE(RCVR)
TRPTYPE(TCP)

Objects used by Q Apply program

Table 5. Sample MQSC commands for WebSphere MQ objects that are used by the Q Apply program

Object Sample command

Receive queue
A queue that receives data and informational
messages from a Q Capture program to a Q
Apply program or user application. This is a
local queue on the target system.

DEFINE QLOCAL(’ASN.SAMPLE_TO_TARGET.DATA’)
GET(ENABLED)
PUT(ENABLED)
DEFSOPT(SHARED)
MAXDEPTH(500000)

Administration queue
A queue that directs control messages from the
Q Apply program or user application to a Q
Capture program. In remote configurations, this
queue is the local definition on the target system
of the administration queue on the source
system.

DEFINE QREMOTE(’ASN.ADMINQ’)
RNAME(’ASN.ADMINQ’)
RQMNAME(’CSQ1’)
XMITQ(’CSQ1’)
PUT(ENABLED)

24 Replication and Event Publishing Guide and Reference

Table 5. Sample MQSC commands for WebSphere MQ objects that are used by the Q Apply program (continued)

Object Sample command

Spill queue
A model queue that you define on the target
system to hold transaction messages from a Q
Capture program while a target table is being
loaded. The Q Apply program creates spill
queues dynamically during the loading process
based on your model queue definition, and then
deletes them. The default name for the model
queue is IBMQREP.SPILL.MODELQ. When you
create or change a Q subscription, you can
specify that you want to use a model queue with
a different name, and you can specify a different
model queue for each Q subscription.

DEFINE QMODEL(’IBMQREP.SPILL.MODELQ’)
DEFSOPT(SHARED)
MAXDEPTH(500000)
MSGDLVSQ(FIFO)
DEFTYPE(PERMDYN)

Transmission queue
A local queue that holds messages that are
waiting to go across a channel. This queue can
be named for the destination queue manager as
a reminder about where its messages go.

DEFINE QLOCAL(’CSQ1’)
USAGE(XMITQ)

Sender channel
The sending end of the channel from the target
system to the source system.

DEFINE CHANNEL(’CSQ2.TO.CSQ1’)
CHLTYPE(SDR)
CONNAME(’IP_address (port)’)
TRPTYPE(TCP)
XMITQ(’CSQ1’)
DISCINT(0)
CONVERT(NO)

Where IP_address is the IP address of the source system
and port is an optional parameter that specifies an unused
port on the source system. The default port for
WebSphere MQ is 1414.

Receiver channel
The receiving end of the channel from the source
system to the target system.

DEFINE CHANNEL(’CSQ1.TO.CSQ2’)
CHLTYPE(RCVR)
TRPTYPE(TCP)

Running the replication programs on a WebSphere MQ client
You can run the Q Capture, Q Apply, or Replication Alert Monitor programs on a
system that uses a WebSphere MQ client to connect to the queue manager that the
replication program works with.

Before you begin

v The user ID for the WebSphere MQ Message Channel Agent (MCA) should be
the same user ID that runs the replication programs on the client system. The
user ID for the MCA is set by using the MCAUSER parameter in the
server-connection channel definition. You can also specify MCAUSER(' '). This is
the default for z/OS SVRCONN2.

v If you changed the default installation path of WebSphere
MQ, you must modify the environment variable that points to the WebSphere
MQ runtime libraries. See Implications of a 64-bit queue manager in the
WebSphere MQ information center for best practices on setting the library path.

Chapter 3. Setting up WebSphere MQ 25

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqcac.doc/hq10340_.htm

v You must define a SVRCONN channel on the system where the queue manager
runs that will accept client connections from the system where the Q Capture or
Q Apply program runs.

v When you migrate a queue manager to version 7.1, you might need to take
additional steps to enable channel authentication. See Channel authentication in
the WebSphere MQ information center for details.

Restrictions

v A WebSphere MQ for z/OS subsystem cannot be a client.
v You cannot use the Replication Center or ASNCLP program to list default queue

managers for Q Capture or Q Apply when these programs run on a client.

About this task

When you configure a WebSphere MQ client, you set environment variables to
point to the system where the queue manager runs, or to a client channel
definition table that contains similar information. You also set an environment
variable to notify the replication programs that the queue manager is on a server.
When these variables are set, the Q Capture, Q Apply, or Replication Alert Monitor
program dynamically loads the WebSphere MQ client libraries.

For more information about setting up a WebSphere MQ client-server
configuration, see How do I set up a WebSphere MQ client? in the WebSphere MQ
information center.

Recommendation: For optimal performance, run the Q Capture and Q Apply
programs on the same system as the queue manager that they work with.

Procedure

To run a Q Replication program on a WebSphere MQ client:
1. On the client system, set the replication environment variable

ASNUSEMQCLIENT=true.
2. Define the WebSphere MQ client connectivity using one of the following

methods:

26 Replication and Event Publishing Guide and Reference

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/mi67190_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs10300_.htm

Method Description

MQSERVER
environment variable

Set the MQSERVER system environment variable to point to the
queue manager that the replication program works with. You can
set this variable in two different ways, depending on whether you
are using a client channel definition table:

No client channel definition table: Point to listener for
SVRCONN channel

You specify the listener on the WebSphere MQ server that
monitors for incoming client requests in the following
format: channel_name/transport_type/host(port). For
example, to set the MQSERVER variable to point to a
remote queue manager RQMGR2 with a SVRCONN
channel SYSTEM.DEF.SVRCONN on host MQHOST with
port 1414:

MQSERVER="SYSTEM.DEF.SVRCONN/TCP/MQHOST(1414)"

Client channel definition table; use queue manager name only
If you are using a client channel definition table, you need
only specify the queue manager name. For example, if the
replication program runs on a WebSphere MQ client
system and works with the remote queue manager
RQMGR2, set MQSERVER=RQMGR2 on the client system.

MQCHLLIB or
MQCHLTAB
environment
variables

These variables are only required when you are using a client
channel definition table. Set the MQCHLLIB or MQCHLTAB
environment variables to specify the path to the file containing the
client channel definition table. For more details, see "MQCHLLIB"
and "MQCHLTAB" in the WebSphere MQ information center.
Note: Because MQCHLLIB and MQCHLTAB have platform-specific
default values, you can omit setting these environment variables if
the client channel definition table is located on the client system in
the directory that the MQCHLLIB default value specifies (for
example, /var/mqm/ on Linux or UNIX), and under the file name
that the MQCHLTAB default value specifies (for example,
AMQCLCHL.TAB on Linux or UNIX).

Validating WebSphere MQ objects for Q replication and publishing
You can use the Replication Center to view, select, and validate the settings of the
WebSphere MQ queue managers and queues in your configuration. The ASNCLP
command-line program can also perform the validation checks. Both tools can send
test messages to validate the objects in a replication queue map.

Before you begin

v The queue manager where the objects are defined must be started.

v To set up administrative access to WebSphere MQ, run the
ASNADMSP sample job. For details, see Enabling the replication administration
tools to work with WebSphere MQ.

v On Linux and UNIX, add the path to the WebSphere MQ
libraries to the DB2LIBPATH environment variable and stop and start DB2
before you start the Replication Center. Not setting the path can result in
unexpected behavior; for example, the number of asnadmt processes might grow
without bound.

v The replication administration stored procedure that is
installed to support this function needs a user-defined temporary table space. If
no user-defined temporary table space is found with USE permission to the

Chapter 3. Setting up WebSphere MQ 27

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.repl.zoscust.doc/topics/iiyrczosreplctrlistqs.html
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.repl.zoscust.doc/topics/iiyrczosreplctrlistqs.html

group PUBLIC or the current user, then a new table space called
ASNADMINIFSPACE is created. The user that is connected to the database must
have authority to create the stored procedure. If a new table space is created, the
user must have authority to create the temporary table space and to grant usage
of the table space to ALL.

v If the replication administration tools are running on a WebSphere MQ client
system, you must make the client-server environment variables available to DB2
so that the replication administration stored procedure can access them. For
details, see “Running the replication programs on a WebSphere MQ client” on
page 25.

About this task

If you use the message testing function, the Replication Center or ASNCLP tries to
put a test message on the send queue and get the message from the receive queue.
The tool also tries to put a test message on the Q Apply administration queue and
get the message from the Q Capture administration queue.

Restriction: The message test fails if the Q Capture or Q Apply programs are
running.

Procedure

1. To validate WebSphere MQ objects for Q replication and publishing, use one of
the following methods:

Method Description

Replication Center 1. After you specify WebSphere MQ objects on a window or
wizard page, click Validate WebSphere MQ objects to check
that the queue managers and queues have the correct settings.
The Replication Center checks the objects and provides
messages that describe settings that need to be changed.

2. If you are creating or changing a replication queue map, you
can send test messages. In the Validate WebSphere MQ Queues
window, select Send test messages, and then click Start.

Messages that show the results of the tests are displayed in the
message area of the window.

28 Replication and Event Publishing Guide and Reference

Method Description

ASNCLP
command-line
program

1. Use the VALIDATE WSMQ ENVIRONMENT FOR command. Messages
that show the results of the tests are sent to the standard
output (stdout).

For example, to validate the send queue, receive queue, and Q
Apply administration queue that are specified for a replication
queue map named SAMPLE_ASN_TO_TARGET_ASN:

VALIDATE WSMQ ENVIRONMENT FOR REPLQMAP
SAMPLE_ASN_TO_TARGET_ASN

2. If you are creating or changing a replication queue map, use
the VALIDATE WSMQ MESSAGE FLOW FOR REPLQMAP command.
Messages that show the results of the tests are sent to the
standard output (stdout).

For example, to send test messages between the queues that are
specified for a replication queue map
SAMPLE_ASN_TO_TARGET_ASN:

VALIDATE WSMQ MESSAGE FLOW FOR REPLQMAP
SAMPLE_ASN_TO_TARGET_ASN

2. You can modify the queue manager or queues and use the validation function
again to verify your changes.

For more information about WebSphere MQ reason codes, see the WebSphere MQ
information center at http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/
index.jsp.

WebSphere MQ validation checks performed by replication tools
When you use the Replication Center or ASNCLP command-line program to
validate your WebSphere MQ setup, the tools can check whether the queues have
the correct properties and also send test messages to make sure replicated or
published data can be transmitted.

The tools use a stored procedure to connect to WebSphere MQ and perform the
validation tests. On z/OS, you must install the stored procedure by using the
ASNADMSP sample job in the SASNSAMP data set. On Linux, UNIX, and
Windows, the stored procedure is installed automatically, but there are
prerequisites for using it. See “Validating WebSphere MQ objects for Q replication
and publishing” on page 27 for details.

Table 6 describes the validation checks that the tools perform on the WebSphere
MQ objects themselves, and Table 7 on page 30 describes the validations checks
that are performed to make sure the objects are defined correctly in the control
tables.

Table 6. WebSphere MQ validation checks for correct queue properties

ASN message WebSphere MQ reason code Validation check

ASN2262E 2058 Does the specified queue
manager exist?

ASN2263E 2059 Is the queue manager
available for connection?

Chapter 3. Setting up WebSphere MQ 29

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02262e.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12610_1.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02263e.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12620_1.htm

Table 6. WebSphere MQ validation checks for correct queue properties (continued)

ASN message WebSphere MQ reason code Validation check

ASN2264E 2322 (See also Using the
command server.)

Is the command server for
the queue manager running?

ASN2267E 2085 Does the queue exist in the
specified queue manager?

ASN2268E All reason codes not listed. Did WebSphere MQ return
any of these reason codes?ASN2272W 2001, 2011, 2042, 2043, 2045,

2046, 2052, 2057, 2091, 2092,
2101, 2152, 2184, 2194, 2196,
2198, 2199, 2201

ASN2273W 2082 Does the specified alias
queue point to the correct
base queue?

ASN2274W None. See Creating a
transmission queue.

Does the transmission queue
exist for the remote send
queue or Q Apply
administration queue?

ASN2275W None. See Altering queue
manager attributes or
Changing local queue
attributes.

Is the maximum message size
(MAXMSGL) of the queue
larger than the maximum
message size (MAXMSGL) of
its queue manager?

Table 7. WebSphere MQ validation checks for correct replication setup

ASN message Validation check

ASN2276W Is the maximum message size (MAXMSGL)
of the send queue smaller than or equal to
the MAXMSGL of the receive queue?

ASN2277W Are the Q Capture administration and restart
queues either local queues or alias queues
that refer to local queues?

ASN2278W Is the send queue a local queue, remote
queue, or an alias queue that refers to a local
or remote queue?

ASN2279W Is the value of max_message_size for the
queue map smaller than or equal to the
maximum message size (MAXMSGL) of the
send queue?

ASN2281W If Q Capture and Q Apply share a queue
manager, are the send queue and Q Apply
administration queue defined as local queues
or alias queues that reference local queues?

ASN2282W If Q Capture and Q Apply share a queue
manager, are the send and receive queue the
same local queue or alias queues that refer to
the same local queue? Are the administration
queues the same local queue or alias queues
that refer to the same local queue?

30 Replication and Event Publishing Guide and Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02264e.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm14830_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsaw.doc/za10790_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsaw.doc/za10790_.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02267e.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12810_1.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02268e.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12040_1.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02272w.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12080_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12180_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12460_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12470_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12490_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12500_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12560_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12600_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12850_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12860_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12950_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm13440_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm13580_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm13690_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm13710_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm13730_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm13740_1.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm13750_1.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02273w.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqsao.doc/fm12800_1.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02274w.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzae.doc/ic12520_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzae.doc/ic12520_.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02275w.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqzag.doc/fa11210_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqzag.doc/fa11210_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqwag.doc/ia10830_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqwag.doc/ia10830_.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02276w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02277w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02278w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02279w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02281w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02282w.html

Table 7. WebSphere MQ validation checks for correct replication setup (continued)

ASN message Validation check

ASN2284W If Q Capture and Q Apply use different
queue managers, are the send queue and Q
Apply administration queue either remote
queues or alias queues that refer to a remote
queue?

ASN2285W If you specified a load phase for a Q
subscription, does a model queue exist for
creating spill queues?

ASN2286W Is the model queue correctly defined for
replication?

ASN2287W Do the send queue, receive queue, and
administration queues have the correct
settings for replication?

Connectivity and authorization requirements for WebSphere MQ
objects

Before you can replicate or publish data, you must configure connections between
queue managers on the systems where the Q Replication and Event Publishing
programs run. Also, ensure that user IDs that run the replication and publishing
programs are authorized to perform required actions on WebSphere MQ objects.
This topic describes the connectivity requirements and authorization requirements.

Connectivity requirements

Queue managers on each system that is involved in replication or publishing must
be able to connect to each other. In distributed environments, the Q Capture
program, Q Apply program, and user applications communicate by connecting to
queue managers and sending messages through remote queue definitions,
transmission queues, and channels.

Q Replication and Event Publishing also support clustering, where a group of
queue managers communicate directly over the network without the use of remote
queue definitions, transmission queues, and channels.

Client-server connections, where the queue manager runs on a different system
than the Q Capture program or Q Apply program for which it is managing
queues, are also supported.

For details about various queue manager configurations and how to set up
connections for each, see WebSphere MQ Intercommunication.

Authorization requirements

WebSphere MQ queues are the primary means of data exchange and
communication that is used by the Q Capture and Q Apply programs, and these
programs must be able to access data on the queues.

When you create WebSphere MQ objects, ensure that the user IDs that operate the
replication programs have the authority to perform required actions on these
objects. The following list summarizes these requirements for the Q Capture
program, Q Apply program, and Replication Alert Monitor.

Chapter 3. Setting up WebSphere MQ 31

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02284w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02285w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02285w.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.messages.asn.doc/doc/masn02287w.html

Note: Security administrators add users who need to administer WebSphere MQ
to the mqm group. This includes the root user on Linux and UNIX systems. Any
changes that you make to the authorities or membership of the mqm group are not
recognized until the queue manager is restarted, unless you issue the MQSC
command REFRESH SECURITY, or the programmable command format (PCF)
equivalent.

Authorization requirements for the Q Capture program
User IDs that run a Q Capture program must have authority to:
v Connect to the queue manager (MQCONN or MQCONNX) on the

system where the Q Capture program runs.
v Perform the following actions on the send queue: open (MQOPEN),

inquire about attributes (MQINQ), put messages (MQPUT), commit
messages (MQCMIT), and roll back messages (MQBACK).

v Perform the following actions on the Q Capture administration queue:
open (MQOPEN), inquire about attributes (MQINQ), and get messages
(MQGET).

v Perform the following actions on the restart queue: open (MQOPEN),
inquire about attributes (MQINQ), put messages (MQPUT), and get
messages (MQGET).

v Perform the following actions on the transmission queue: open
(MQOPEN), put messages (MQPUT), inquire about attributes (MQINQ).

Authorization requirements for the Q Apply program
User IDs that run a Q Apply program must have authority to:
v Connect to the queue manager (MQCONN or MQCONNX) on the

system where the Q Apply program runs.
v Perform the following actions on the receive queue: open (MQOPEN),

inquire about attributes (MQINQ), and get messages (MQGET).
v Perform the following actions on the Q Apply administration queue:

open (MQOPEN), inquire about attributes (MQINQ), and put messages
(MQPUT).

v Perform the following actions on temporary spill queues: open
(MQOPEN), put messages (MQPUT), get messages (MQGET), delete
(dlt), change (chg), and clear (clr).

Authorization requirements for the Replication Alert Monitor
If a Replication Alert Monitor is used to monitor the number of messages
on the receive queue (QAPPLY_QDEPTH alert condition) or the number of
messages on the spill queue (QAPPLY_SPILLQDEPTH alert condition), the
user ID that runs the monitor must have authority to connect to the queue
manager on the system where the Q Apply program runs.

For both the Q Capture program and Q Apply program, the user ID that is
associated with Message Channel Agents (MCAs) must have the authority to:
v Connect to the local queue manager.
v Perform the following actions on the local transmission queue: open (MQOPEN)

and put messages (MQPUT).

For information about WebSphere MQ authorization and privileges, see WebSphere
MQ Security.

32 Replication and Event Publishing Guide and Reference

Storage requirements for WebSphere MQ for Q Replication and Event
Publishing

Plan the WebSphere MQ resources to achieve the desired level of resilience to
network outages, target outages, or both. If messages cannot be transported, more
resource is used at the source. If messages cannot be applied, more resource is
used at the target.

By default, messages that are used in Q Replication and Event Publishing are
persistent. WebSphere MQ writes all persistent messages to logs. If you restart a
queue manager after a failure, the queue manager retrieves all of the logged
messages as necessary. More storage is required for persistent messages. You can
also choose to use nonpersistent messages by specifying message_persistence=n
when you start the Q Capture program.

For more information about WebSphere MQ log files, see the WebSphere MQ
Information Center at http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/
index.jsp.

WebSphere MQ message size
You can limit the size of WebSphere MQ messages when you create queues and
queue managers, and also when you set up replication or publishing. You must
coordinate the message size limits between WebSphere MQ and Q Replication and
Event Publishing.

In WebSphere MQ, you define the MAXMSGL (maximum message length) to limit
the size of messages.

The following list describes how MAXMSGL relates to memory limits for the Q
Capture program and the Q Apply program.

Q Capture program
You can limit the amount of memory that a Q Capture program uses to
buffer each message before putting it on a send queue. You define this
MAX_MESSAGE_SIZE when you create a replication queue map or
publishing queue map. The default is 64 KB.

Important: If you allow a larger message buffer for the Q Capture program
than the queues are set up to handle, replication or publishing cannot
occur. If the send queue is remote from the receive queue, the value of
MAX_MESSAGE_SIZE that is specified for the replication queue map or
publishing queue map and stored in the IBMQREP_SENDQUEUES table
must be at least 4 KB smaller than the MAXMSGL attribute of both the
transmission queue and the queue manager. This 4 KB difference accounts
for the extra information that is carried in the message header while the
message is on the transmission queue. If the send and receive queues are
defined within the same queue manager, you can use the same value for
MAX_MESSAGE_SIZE as the value for MAXMSGL for the queues.

Q Apply program
You can limit the amount of memory that a Q Apply program uses to
buffer multiple messages that it gets from a receive queue before agent
threads reassemble the messages into transactions. You set the
MEMORY_LIMIT option when you create a replication queue map. The
default is 2 MB.

Chapter 3. Setting up WebSphere MQ 33

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Attention: Ensure that the MAXMSGL for the local queue that will serve
as a receive queue is not larger than the MEMORY_LIMIT for the
replication queue map that contains the receive queue.

Message segmentation

The Q Capture program automatically divides transactions that exceed the
MAX_MESSAGE_SIZE into multiple messages by breaking up the transaction at a
row boundary. If you are replicating or publishing data from large object (LOB)
columns in a source table, the Q Capture program automatically divides the LOB
data into multiple messages. This ensures that the messages do not exceed the
MAX_MESSAGE_SIZE that is defined for the replication queue map or publishing
queue map that contains each send queue.

On some operating systems, WebSphere MQ allows you to define message
segmentation so that messages that are too large for queues or channels are
automatically divided. Q Replication and Event Publishing do not use this message
segmentation feature. If you set up WebSphere MQ objects to use message
segmentation, you must still ensure that the MAXMSGL for queues is equal to or
larger than the MAX_MESSAGE_SIZE for the replication queue map or publishing
queue map.

For more information about message size, see the WebSphere MQ System
Administration Guide for your platform.

Queue depth considerations for large object (LOB) values
Large object (LOB) values from a source table are likely to exceed the maximum
amount of memory that a Q Capture program allocates as a message buffer for
each send queue.

The default MAX_MESSAGE_SIZE (message buffer) for a send queue is 64
kilobytes. In DB2, LOB values can be up to 2 gigabytes so LOB values will
frequently be divided into multiple messages.

If you plan to replicate LOB data, ensure that the MAXDEPTH value for the
transmission queue and administration queue on the source system, and the
receive queue on the target system, is large enough to account for divided LOB
messages. You can reduce the number of messages that are required to send LOB
data by increasing the MAX_MESSAGE_SIZE for the send queue when you create
a replication queue map or publishing queue map.

A large LOB value that is split based on a relatively small message buffer will
create a very large number of LOB messages that can exceed the maximum
amount of messages (MAXDEPTH) that you set for a transmission queue or
receive queue. This will prompt a queue error. When a remote receive queue is in
error, the message channel agent on the target system sends a WebSphere MQ
exception report for each message that it is unable to deliver. These exception
reports can fill the Q Capture program's administration queue.

Queue manager clustering in Q Replication and Event Publishing
Q Replication will work in a queue manager cluster environment. Clustering
allows a group of queue managers to communicate directly over the network,
without the need for remote queue definitions, transmission queues, and channels.

34 Replication and Event Publishing Guide and Reference

A cluster configuration allows you to create multiple instances of a queue with the
same name on multiple queue managers in the same cluster. However, in Q
Replication, the receive queue on the target system must be defined only once
within a cluster. The Q Capture and Q Apply programs use a dense numbering
system to identify and retrieve missing messages. (Each message is assigned a
positive integer with no gaps between numbers.) Receive queue names must be
unique for a given pair of Q Capture and Q Apply programs. If two receive
queues have the same name, the dense numbering system will not work.

Q Replication will not work in conjunction with cluster distribution lists, which
use a single MQPUT command to send the same message to multiple destinations.

For more information, see WebSphere MQ Queue Manager Clusters.

Chapter 3. Setting up WebSphere MQ 35

36 Replication and Event Publishing Guide and Reference

Chapter 4. Configuring databases for Q Replication and Event
Publishing (Linux, UNIX, Windows)

Before you can replicate data, you must set environment variables and configure
the source and target databases. For event publishing, you need to configure only
the source database.

Required: Setting DATA CAPTURE CHANGES on DB2 source tables
and DB2 for z/OS system tables

You must set the DATA CAPTURE CHANGES attribute on any DB2 table that you
want to replicate. Also, on DB2 for z/OS Version 9 and later, you must set DATA
CAPTURE CHANGES on the SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, and
SYSIBM.SYSTABLEPART system catalog tables.

About this task

Setting DATA CAPTURE CHANGES on source tables prompts DB2 to log SQL
changes in an expanded format that is required for replication. The replication
administration tools will generate the DDL to alter the table if this option is not
set. However, you can set it when creating tables or alter the table yourself.

For DB2 for z/OS system tables, setting DATA CAPTURE CHANGES enables
detection and replication of changes to the structure of source tables such as
addition of new columns or changes in column data types.

Note: If the replication source is DB2 for z/OS Version 9 or later, the Q Capture
program stops if DATA CAPTURE CHANGES is not set on the
SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, and SYSIBM.SYSTABLEPART
system catalog tables.

Turning on DATA CAPTURE CHANGES for a table introduces a small amount of
extra logging. When this option is set for a table, DB2 logs both the full before and
after images of the row for each update. When the option is not set, DB2 logs only
the columns that changed because this amount of logging is all that is needed for
DB2 recovery. The amount of additional logging is proportional to row size, but
only for those tables for which DATA CAPTURE CHANGES is on.

Restrictions

If the table was altered, you cannot set DATA CAPTURE
CHANGES on that table or any other table in the same table space until the table
space is reorganized.

Procedure

Use the CREATE TABLE or ALTER TABLE statement to set DATA CAPTURE
CHANGES on replication source tables. Use the ALTER TABLE statement to set
DATA CAPTURE CHANGES on DB2 for z/OS system catalog tables.
When you create control tables with the replication administration tools at Version
10 on z/OS, the tools check for the DATA CAPTURE CHANGES attribute on the

© Copyright IBM Corp. 2004, 2012 37

required system tables. If the attribute is not set, the generated SQL for creating
control tables includes the following ALTER TABLE statements:
ALTER TABLE SYSIBM.SYSTABLES DATA CAPTURE CHANGES
ALTER TABLE SYSIBM.SYSCOLUMNS DATA CAPTURE CHANGES
ALTER TABLE SYSIBM.SYSTABLEPART DATA CAPTURE CHANGES

If you are not creating control tables, you can use these same statements to set this
required attribute.

Configuring for older or remote DB2 databases
You can configure InfoSphere® Replication Server or Data Event Publisher with
some older DB2 databases so that you can use the most recent replication features
without migrating these existing databases. You can also configure InfoSphere
Replication Server or Data Event Publisher to run on a different server than the
servers that host your DB2 databases. Both configurations use similar steps.

The following figure shows the basic configuration for using InfoSphere
Replication Server with an older version of DB2, in this example, InfoSphere
Replication Server Version 9.5 with DB2 Version 8.2.

The following figure shows the basic configuration for using remote DB2
databases.

Figure 6. A configuration of Replication Server with older DB2 databases

38 Replication and Event Publishing Guide and Reference

Before you begin

If you plan to use a newer version of Replication Server or Data Event Publisher
on the same system as an older DB2 database, see Installation scenarios for
important considerations during installation.

If you plan to use a Q Capture that is a different version or release than your Q
Apply, see Coexistence support in Version 9.7 Q Replication and Event Publishing

About this task

Installing Replication Server or Data Event Publisher does not upgrade any
existing DB2 databases, even if an existing DB2 is an older version. After
InfoSphere Replication Server or Data Event Publisher is installed and licensed, the
replication programs can work with any DB2 database that is at the same release
or lower (down to Version 8.2), regardless whether that database resides in another
DB2 instance or on another system. A new DB2 instance is created as part of the
installation, however the new DB2 instance never needs to be started and no
database needs to be created in it.

The following extra steps are required in a mixed-version or remote replication
configuration:
v The older or remote DB2 databases and nodes must be cataloged at the instance

that contains the replication programs.
v In mixed-version configurations, the replication control tables must be created to

match the higher-level version of the replication programs.
v In mixed-version configurations, the instance owner of the higher-level DB2 that

is installed with the latest replication programs must have permission to read
the DB2 logs of the older version DB2.

Restrictions

Figure 7. A configuration with remote DB2 databases

Chapter 4. Configuring databases (Linux, UNIX, Windows) 39

The replication administration tools will not create pre-Version 10.1 control tables
for a source or target database on DB2 for Linux, UNIX, and Windows Version
10.1.

For Q Capture or Q Apply that are local to DB2

v Replication from compressed or partitioned tables on DB2 for Linux,
UNIX, and Windows is only supported for DB2 Version 9.7 or later. DB2
uncompresses log records before passing them to the Q Capture
program. The data is passed uncompressed from source to target and the
target does not need to have compression set.

v To replicate load operations, the source database and Q Capture must be
at APAR PK78558 or newer on z/OS, or at Version 9.7 or newer on
Linux, UNIX, and Windows.

For Q Capture or Q Apply that are remote from DB2

v The Q Capture program, Q Apply program, and the source and target
databases must be on the same Linux, UNIX, or Windows platform and
must all have the same bit architecture, for example 32/32 bit or 64/64
bit.

v You cannot use the replication administration tools to list or validate
queues.

v The endianness and code page of the system where the remote Q
Capture program runs must match the endianness and code page of the
source database and operating system.

Procedure

1. Install Replication Server or Data Event Publisher and create an instance as
prompted by the installer. You can install the products on the same system as
an older DB2 version (down to Version j8.2) or you can install on a remote
system.

2. Catalog the DB2 node and database that is your source or target at the newly
installed instance by using the CATALOG NODE and CATALOG DATABASE commands.
Open a DB2 command window from the DB2 instance that is used by
replication or event publishing, and catalog the node and database of the older
or remote database.

3. Create an asnpwd password file to be used by the replication and publishing
programs.

4. If the source or target database is a lower version than Q Capture or Q Apply,
use the ASNCLP or Replication Center to create replication control tables that
match the version of the replication programs.

5. Use the Replication Center or ASNCLP to create the queue maps and Q
subscriptions.

6. If the database is to be a replication source, grant SYSADM or DBADM
permission to the user ID with which the Q Capture program connects to the
source. This gives the Q Capture program permission to retrieve DB2 log
records.

7. Start Q Capture and Q Apply from the replication instance, whether it is a new
version or the same version on a remote system. For example, start replication
from the newly installed instance by providing the alias for the older or remote
DB2 database that you specified in the CATALOG DATABASE command.

40 Replication and Event Publishing Guide and Reference

Configuring for GDPS Active/Active (z/OS)
Q Replication provides data synchronization for GDPS® Active/Active Sites and a
Network Management Interface (NMI) for monitoring the replication environment
from IBM® Tivoli® NetView® for z/OS.

The following sections provide detail about configuration and security for Q
Replication with GDPS Active/Active Sites.

Workload name

For Active/Active Sites, the workload name corresponds to the name of the
replication queue map that identifies the queues for sending and receiving
messages between sites. One replication queue map is required between the paired
Q Capture and Q Apply programs at each site. The two workloads that make up
the two directions of the bidirectional configuration are required to have the same
workload name and therefore the same queue map name. This requirement enables
NetView to identify the workload pair.

The replication queue map name is restricted to not exceed 64 characters in length
because of the limit for the workload name. The queue map name must start with
an alphabetical character, and the remaining characters can be alphanumeric. The
only special character that is supported is the underscore (_).

Q replication reports workload metrics only for workloads that are active at the
time of request for metrics through the Network Management Interface. Nothing
will be reported for workloads that are inactive or those that were stopped since
the last request. For metrics that are reported as incremental counters in the
common NetView workspaces, Q Replication reports both the incremental counters
from the sampling interval between successive NMI requests and the cumulative
totals for the counter since the workload was started.

Network Management Interface for monitoring replication

You can use Tivoli NetView for z/OS to monitor the health of the Q Replication
environment between sites in a GDPS Active/Active Sites solution. Tivoli
monitoring provides a unified and high-level view of the performance and status
of the different replication products that are part of the GDPS A/A solution (IMS™

Replication, Q Replication, Load Balancer Advisor). For more detailed replication
performance information, tuning, and troubleshooting, you would typically use the
Q Replication Dashboard.

Monitoring from Tivoli is performed using a new interface, Network Management
Interface, which is a request-reply protocol that uses an AF_UNIX socket. GDPS
A/A does not query the Q Capture or Q Apply monitor tables; instead, it uses this
new interface to issue NMI requests to the Q Capture and Q Apply programs to
obtain performance metrics.

The Network Management Interface is implemented by the Q Apply and Q
Capture programs, through which NMI client applications can request operational
metrics that include status and performance information, for example replication
latency. To enable this interface, you must set two parameters for both the Q
Capture program and Q Apply program, nmi_enable and nmi_socket_name.

nmi_enable
The nmi_enable parameter specifies whether the Q Capture or Q Apply

Chapter 4. Configuring databases (Linux, UNIX, Windows) 41

program is enabled to provide a Network Management Interface for
monitoring Q Replication statistics from Tivoli NetView. The NMI client
application must be on the same z/OS system as the Q Capture or Q
Apply program.

nmi_socket_name
The nmi_socket_name parameter specifies the name of the AF_UNIX socket
where the Q Capture or Q Apply program listens for requests for statistical
information from NMI client applications. You can specify this parameter
to change the socket name that the program automatically generates.

For more information on these two parameters, see the following topics:
v “Descriptions of asnqcap parameters” on page 351
v “Descriptions of asnqapp parameters” on page 391

When you start the Q Capture or Q Apply programs with the nmi_enable or
nmi_socket_name parameters, the values are used during the current session for
these programs. To save the parameter values between sessions, you must update
the respective parameter tables, IBMQREP_CAPPARMS for the Q Capture program
and IBMQREP_APPLYPARMS for the Q Apply program. Each of these tables
includes an NMI_ENABLE column and NMI_SOCKET_NAME column, which are
described in the following topics:
v “IBMQREP_CAPPARMS table” on page 464
v “IBMQREP_APPLYPARMS table” on page 504

Use SQL to update the value of these parameters in the control tables. For
example:
UPDATE schema.IBMQREP_CAPPARMS SET NMI_ENABLE=Y

Where schema is the schema name of the control tables for this Q Capture instance.

Security

When a NetView client connects, the Q Capture or Q Apply program authenticates
the client against the security facility that is installed on the system, for example
RACF®, TOP SECRECT, or ACF2. The programs use the following protocol:
v The program obtains the security identifier for the connected client by an ioctl()

call with command SECIGET.
v A call to RACROUTE checks for authorization of the client.
v A client is considered authorized when the security identifier has READ access

on the following profiles in the SERVERAUTH resource class:
– QREP.NETMGMT.sysname.procname.QAPPLY.DISPLAY

– QREP.NETMGMT.sysname.procname.QCAPTURE.DISPLAY

v If the client cannot access this profile, Q Replication performs another
authorization check to see whether the client has superuser authority (effective
UID of zero or permission to the BPX.SUPERUSER resource in the FACILITY
class). If so, the client is authorized.

Setting environment variables (Linux, UNIX, Windows)
You must set environment variables before you operate the Q Capture program,
the Q Apply program, or the Replication Alert Monitor program, before you use
the ASNCLP command-line program or Replication Center, or before you issue
system commands.

42 Replication and Event Publishing Guide and Reference

Procedure

To set the environment variables:
1. Set the environment variable for the DB2 instance name (DB2INSTANCE) that

contains the Q Capture server, Q Apply server, and Monitor control server.

v For Linux and UNIX, use the following command:
export DB2INSTANCE=db2_instance_name

v For Windows, use the following command:
SET DB2INSTANCE=db2_instance_name

2. If you created the source database with a code page other than the default code
page value, set the DB2CODEPAGE environment variable to that code page.

3. Optional: Set environment variable for the default DB2 database (DB2DBDFT)
to the Q Capture server or Q Apply server.

4. Make sure that the system variables include the directory
where the Q Replication program libraries and executable files are installed. In
the DB2 instance home directory, the default library path is SQLLIB/lib and the
default executable path is SQLLIB/bin. If you moved the libraries or executable
files, update your environment variables to include the new path.

5. AIX® and DB2 Extended Server Edition: Set the EXTSHM environment
variable to ON at the source and target databases on AIX, or at the source
database only on DB2 Extended Server Edition (if the Q Capture program must
connect to multiple database partitions), by entering the following commands:
$ export EXTSHM=ON
$ db2set DB2ENVLIST=EXTSHM

a. Ensure that the EXTSHM environment variable is set each time you start
DB2. Do this by editing the/home/db2inst/sqllib/profile.env file where
db2inst is the name of the DB2 instance that contains the target database. In
the file, add or change the line: DB2ENVLIST=’EXTSHM’

b. Add the following line to the /home/db2inst/sqllib/userprofile file:
export EXTSHM=ON

Setting the TMPDIR environment variable (Linux, UNIX)
You can specify a directory for the Q Capture and Q Apply programs to write
temporary files. Writing these files to a specified directory can protect them from
accidentally being deleted.

About this task

By default, replication programs use the /tmp directory for temporary files. In some
cases, these files might be deleted by other programs with root privilege. For
example, Linux or UNIX system administrators typically run time-based service
jobs to remove files in the /tmp directory.

Missing temporary files can prevent programs from communicating. For example,
if you issue the asnqacmd stop command to stop the Q Apply program and a
temporary file is missing, the command fails.

To avoid accidental deletion, you can use the TMPDIR environment variable to
specify a temporary directory.

Chapter 4. Configuring databases (Linux, UNIX, Windows) 43

Note: User IDs that run the replication and publishing programs must have write
access to either the /tmp directory or the directory specified by the TMPDIR
variable.

Procedure

To set the TMPDIR environment variable, specify a directory that is accessible to
the user ID that runs the replication or publishing programs. Ensure that files
cannot be deleted by other user IDs.
For example, the following command specifies the /home/repldba/tempfiles/
directory:
export TMPDIR=/home/repldba/tempfiles/

Addressing memory issues for Q Capture and Q Apply (AIX)
On AIX operating systems, you can ensure that the replication programs have
enough memory to operate by setting environment variables in addition to having
the right settings for Q Replication, WebSphere MQ, and DB2.

About this task

Setting the EXTSHM and LDR_CNTRL environment variables and using the ulimit
command might help the problems with memory. You can also increase the
MAXAGENTS parameter for DB2.

Procedure

To address memory issues for Q Capture and Q Apply:
1. Ensure that the following AIX system environment variables are maximized:

EXTSHM
The EXTSHM (Extended Shared Memory) variable essentially removes
the limitation of only 11 shared memory regions. 64-bit processes are
not affected by EXTSHM.
a. Set EXTSHM to ON at the source and target databases, or at the

source database only on if the Q Capture program must connect to
multiple database partitions, by entering the following command:
$ export EXTSHM=ON
$ db2set DB2ENVLIST=EXTSHM

b. Ensure that EXTSHM is set each time you start DB2. Do this by
editing the /home/db2inst/sqllib/profile.env file, where db2inst is
the name of the DB2 instance that contains the target database. In
the file, add or change the line: DB2ENVLIST=’EXTSHM’

c. Add the following line to the /home/db2inst/sqllib/userprofile
file:
export EXTSHM=ON

LDR_CNTRL
You can use the LDR_CNTRL environment variable to configure the Q
Apply program to use large pages for its data and heap segments.

Note: Take precautions before setting this value. If needed, check with
AIX support or your system administrator before making this change to
the AIX system.

44 Replication and Event Publishing Guide and Reference

For example, the first command adds four segments and the second
command adds three segments:
export LDR_CNTRL=MAXDATA=0x40000000

export LDR_CNTRL=MAXDATA=0x30000000

ulimit command
The ulimit command sets or reports user process resource limits, as
defined in the /etc/security/limits file. The ulimit -a value for the
DB2 instance owner means that the data and stack are not set to
unlimited. For 64-bit instances on AIX servers, there is no constraint on
database shared memory.

Recommendation: Make sure all ulimit parameters are set to
unlimited. Sometimes data/stack/nofiles are limited and cannot be set
to unlimited. In this case, consult the system administrator.

2. Ensure that you have the correct WebSphere MQ settings. If WebSphere MQ is
a 32-bit client (Version 5.3) , and AIX and DB2 are 64 bit, then the DB2 database
that contains the Q Capture or Q Apply control tables should be cataloged
using a loopback connection. If WebSphere MQ is V6.0 and DB2 is 32-bit, then
you also might need to set up a loopback connection. Loopback is costly
(TCP/IP is costly), but if nothing works, try the loopback connection to resolve
issues such as SQL1224N.

3. Ensure that you have the correct DB2 settings.
a. Check db2set and make sure EXTSHM is exported.
b. Check for errors caused by limits on operating system process, thread, or

swap space. These type of errors can be identified by a SQL1225N message.
If you receive this message, check the current value of the maxuproc
parameter, which specifies the maximum number of processes per user ID.
The following command checks the maxuproc value:
lsattr -E -l sys0

Set maxuproc to a higher value using the following command as user root:
chdev -l sys0 -a maxuproc=’new_value’

c. Increase the setting for the MAXAGENTS parameter in the database
manager (DBM) configuration.
When the number of worker agents reaches the MAXAGENTS value, all
subsequent requests that require a new agent are denied until the number
of agents falls below the value. This value applies to the total number of
agents, including coordinating agents, subagents, inactive agents, and idle
agents, that are working on all applications. The value of MAXAGENTS
should be at least the sum of the value for the MAXAPPLS parameter in
each database that is allowed to be accessed concurrently.

4. Ensure that the memory_limit parameter for a replication queue map is set to
32MB (the default) or lower. This is the current recommended value for each
receive queue.

Configuring the source database to work with the Q Capture program
(Linux, UNIX, Windows)

If archive logging is not enabled at the source database, you must enable it to
ensure that log entries will not be overwritten before a Q Capture program reads
them. For this change to take effect, you must also perform an offline backup of
the source database.

Chapter 4. Configuring databases (Linux, UNIX, Windows) 45

About this task

Important: Backing up a large database can take a long time. During this process,
applications will be disconnected from the database and new connections will not
be allowed.

Procedure

You can configure the source database from the Replication Center or command
line:

To configure a DB2 database to run the Q Capture program, use one of the
following methods:

Method Description

Replication Center Use the Turn On Archive Logging window to enable archive
logging. To open the window, right-click the Q Capture server that
you want to enable and select Enable Database for Replication.

Attention: If you click the Use Configure Logging wizard check
box, you must select the Archive logging radio button on the
Logging type page. The only option on the wizard that affects
replication is the option to turn on archive logging.

Command line 1. Check the "Log retain for recovery status" value in the database
configuration. If it is set to NO, turn on archival logging by
setting the LOGARCHMETH1 database configuration
parameter to a value other than OFF.

2. Optional: Use the update database configuration command to
increase values for the source database depending on your
replication or publishing needs. The following database
configuration values are adequate for many large replication
scenarios (if the database is configured to work with other
applications, your values might already be larger than these) :
APPLHEAPSZ 4096, LOGFILSIZ 2000, LOGPRIMARY 20,
LOCKLIST 200, DBHEAP 1000, STMTHEAP 4096, LOGBUFSZ
64, MAXAPPLS 300. You might need to adjust the value of
LOCKTIMEOUT if Q Capture replicates large object (LOB) or
XML data and you experience lock timeouts. For the
LOGSECOND parameter, a value of 20 is adequate for most
scenarios. If you expect to replicate long transactions, it is
recommended that you set LOGSECOND = -1 on DB2 Version
8.1 or newer to avoid most log space problems.

3. Issue the backup database command using appropriate
parameters for the source database.

Configuring the target database to work with the Q Apply program
(Linux, UNIX, Windows)

The Q Apply program is a highly parallel process that you can configure to meet a
variety of replication workloads. Depending upon how you configure the Q Apply
program, you will need to ensure that the MAXAPPLS (maximum number of
active applications) parameter is set appropriately. The Q Apply program uses
multiple agents based on a number that you specify to divide the workload of
applying transactions to targets. The database treats each agent as a separate
application that is trying to connect.

46 Replication and Event Publishing Guide and Reference

Before you begin

For 64-bit environments: If you are running Q Replication or
Event Publishing in a 64-bit environment on the HP-UX or Solaris platforms,
catalog the database (the Q Apply server) as a loop back database and create an
entry for this database in the password file. If you do not catalog the Q Apply
server as a loop back database, you will encounter a Semaphore Wait problem,
sqlcode 1224, when the Q Apply program reaches the shared memory limit.

Procedure

To set the MAXAPPLS parameter based on a given replication scenario:
1. Issue the following command: update database configuration for database

using MAXAPPLS n where database is the target database and n is the maximum
number of applications that will be allowed to run on the target database at the
same time. To determine n, use the following formula:
n >= (number of applications other than Q Apply that can use the database at the
same time) + (3 * the number of Q Apply programs on the database) + (number of
receive queues, each with a browser thread + total number of Q Apply agents for
all receive queues)

Here is an example of the results for this calculation based on a scenario where
two applications other than the Q Apply program can use the database at the
same time. There are two Q Apply programs, one that uses 3 agents to process
a single receive queue, and one that uses 12 agents to process four receive
queues (so a total of five browser threads to process the five receive queues).
n >= 2 + (3 * 2) + (5 + 15)

In this scenario, you would set MAXAPPLS to at least 28.
2. Optional: If you plan to have the Q Apply program automatically load targets

using the LOAD from CURSOR option of the LOAD utility, issue the following
command: update dbm cfg using FEDERATED YES.

3. Optional: Use the update database configuration command to increase values
for the target database depending on your replication needs. The following
database configuration values are adequate for many large replication scenarios
(if the database is configured to work with other applications, your values
might already be larger than these): APPLHEAPSZ 4096, LOGFILSIZ 2000,
LOGPRIMARY 20, LOCKLIST 200, DBHEAP 1000, STMTHEAP 4096,
LOCKTIMEOUT 30. For the LOGSECOND parameter, a value of 20 is adequate
for most scenarios. If you expect to replicate long transactions, it is
recommended that you set LOGSECOND = -1 on DB2 Version 8.1 or newer to
avoid most log space problems. For LOGBUFSZ, a value between 64 and 512 is
recommended.

Optional: Binding the program packages (Linux, UNIX, Windows)
On Linux, UNIX, and Windows, program packages are bound automatically the
first time that the Q Capture program, Q Apply program, or Replication Alert
Monitor connects to a database. You can bind the packages manually to specify
bind options or bind the packages at a time when you expect less contention at the
database.

Chapter 4. Configuring databases (Linux, UNIX, Windows) 47

Optional: Binding the Q Capture program packages (Linux,
UNIX, Windows)

On Linux, UNIX, and Windows, the Q Capture program packages are bound
automatically the first time that the program connects to the Q Capture server. You
can choose to specify bind options, or bind the packages manually during a time
when you expect less contention at this database. This procedure explains how to
manually bind the Q Capture program packages.

Procedure

To bind the Q Capture program packages:
1. Connect to the Q Capture server by entering the following command:

db2 connect to database

Where database is the Q Capture server.
2. Change to the directory where the Q Capture bind files are located.

v Linux, UNIX: db2homedir/SQLLIB/bnd, where db2homedir is the DB2 instance
home directory

v Windows: DB2_install_drive:\...\SQLLIB\bnd

3. Create and bind the Q Capture package to the database by entering the
following commands:
db2 bind @qcapture.lst isolation ur blocking all

Where ur specifies the list in uncommitted read format for greater performance.

This command creates packages, the names of which are in the file qcapture.lst.

Optional: Binding the Q Apply program packages (Linux,
UNIX, Windows)

On Linux, UNIX, and Windows, the Q Apply program packages are bound
automatically the first time that the program connects to the target database, and
to the source database if the Q Apply program is handling the target table loading.
You can bind manually to specify bind options or to bind when you expect less
contention at these databases.

Procedure

To bind the Q Apply program packages:
1. Change to the directory where the Q Apply bind files are located:

v db2homedir/SQLLIB/bnd, where db2homedir is the DB2
instance home directory

v DB2_installation_drive:\...\SQLLIB\bnd

2. For both the source and target databases, do the following steps:
a. Connect to the database by entering the following command:

db2 connect to database

Where database is the Q Apply server or Q Capture server.
If the database is cataloged as a remote database, you might need to specify
a user ID and password on the db2 connect to command.

48 Replication and Event Publishing Guide and Reference

b. Create and bind the Q Apply program package to the database by entering
the following commands:
db2 bind @qapply.lst isolation ur blocking all grant public

Where ur specifies the list in uncommitted read format.
c. Optional: If you plan to use the DB2 EXPORT utility to load target tables

from a DB2 source that is at Version 9.7 or newer, and the user ID that starts
the Q Apply program does not have BINDADD authority, perform the
following bind before Q Apply starts:
db2 bind @db2ubind.lst CONCURRENTACCESSRESOLUTION WAIT_FOR_OUTCOME
COLLECTION ASN

Required for Sybase targets: Manually bind the Q Apply program packages to the
federated database using cursor stability (CS) isolation level:
db2 bind @qapply.lst isolation CS blocking all grant public

Optional: Binding the Replication Alert Monitor packages
(Linux, UNIX, Windows)

On Linux, UNIX, and Windows, the Replication Alert Monitor packages are bound
automatically the first time that the program connects to the Monitor control
server, or to any Q Capture server or Q Apply server that you chose to monitor.
You can bind manually to specify bind options or to bind the packages manually
during a time when you expect less contention at these databases.

Procedure

To bind the Replication Alert Monitor packages:
1. Change to the directory where the Replication Alert Monitor bind files are

located:
v Linux, UNIX: db2homedir/SQLLIB/bnd, where db2homedir is the DB2 instance

home directory
v Windows: DB2_install_drive:\...\SQLLIB\bnd

2. For each Monitor control server, do the following steps:
a. Connect to the database by entering the following command:

db2 connect to database

Where database is the Q Apply server or Q Capture server.
If the database is cataloged as a remote database, you might need to specify
a user ID and password on the db2 connect to command.

b. Create and bind the Replication Alert Monitor package to the database by
entering the following commands:
db2 bind @asnmoncs.lst isolation cs blocking all grant public
db2 bind @asnmonur.lst isolation ur blocking all grant public

Where cs specifies the list in cursor stability format, and ur specifies the list
in uncommitted read format.

These commands create packages, the names of which are in the files
asnmoncs.lst and asnmonur.lst.

3. Connect to each server that you are monitoring and to which the Replication
Alert Monitor connects, and create and bind the Replication Alert Monitor
package to the database by entering the following command:
db2 bind @asnmonit.lst isolation ur blocking all grant public

Chapter 4. Configuring databases (Linux, UNIX, Windows) 49

Where ur specifies the list in uncommitted read format.

This command creates packages, the names of which are in the file asnmonit.lst.

Creating control tables for the Q Capture and Q Apply programs
Before you can publish or replicate data, you must create control tables for a Q
Capture program, a Q Apply program, or both. Control tables store information
about Q subscriptions and publications, message queues, operational parameters,
and user preferences.

Before you begin

v The ASNCLP command-line program or Replication Center must be able to
connect to the server where you want to create the control tables:
– If you are replicating from DB2 to DB2, then the administration tools must be

able to connect to the source and target server.
– If you are replicating from DB2 to a non-DB2 server, then the tools must be

able to connect to the source server, the DB2 federated server, and the
non-DB2 target server.

v You must have the names of the following WebSphere MQ objects:

Q Capture control tables

– A queue manager that the Q Capture program works with.
– A local queue to serve as the administration queue.
– A local queue to serve as the restart queue.

Q Apply control tables

– A queue manager that the Q Apply program works with.

Tip: Use the VALIDATE WEBSPHERE MQ ENVIRONMENT FOR command in the ASNCLP
or the validate controls in the Replication Center to ensure that the queue
managers and queues that you specify for the control tables exist and have the
correct properties.

Restrictions

For partitioned databases, all of the table spaces that are used by the control tables
must be in a single-partition table space that is on the catalog partition.

About this task

Each instance of the Q Capture program or Q Apply program has its own set of
control tables, identified by the Q Capture schema or Q Apply schema. For
example, the control table that stores operational parameters for a Q Capture
program with a schema of ASN1 would be named ASN1.IBMQREP_CAPPARMS.

By default, the control tables are placed in two table spaces on z/OS, one for tables
that require page-level locking and one for tables that require row-level locking.
The control tables are created by default in one table space on Linux, UNIX, and
Windows. You can customize where each control table is created, and you can
specify existing table spaces or create new table spaces.

Federated targets: If you are replicating to a non-DB2 target, see “Creating Q
Apply control tables for federated Q Replication” on page 142.

50 Replication and Event Publishing Guide and Reference

For peer-to-peer replication, the Q Capture program and Q Apply program run as
a pair at each server. Both sets of control tables must have the same schema.

Procedure

To create Q Capture or Q Apply control tables, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE CONTROL TABLES FOR command. For example,
the following commands set the environment and create control
tables in the SAMPLE database with a Q Capture schema of ASN1:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET QMANAGER "QM1" FOR CAPTURE SCHEMA;
SET CAPTURE SCHEMA SOURCE ASN1;
SET RUN SCRIPT LATER;

CREATE CONTROL TABLES FOR CAPTURE SERVER
USING RESTARTQ "ASN1.QM1.RESTARTQ"
ADMINQ "ASN1.QM1.ADMINQ" MEMORY LIMIT 64
MONITOR INTERVAL 600000;

The CREATE command specifies a restart queue and
administration queue, doubles the default amount of memory
available to build transactions to 64 MB, and reduces the default
interval for recording performance information to 600000
milliseconds (one minute).

Replication Center Use the Create Control Tables wizard. To open the wizards,
right-click the Q Capture Servers folder and click Create Q
Capture control tables, or right-click the Q Apply Servers folder
and click Create Q Apply control tables.

Creating control tables at a different version (Linux, UNIX, Windows)
You can use a version of replication or publishing that is newer than your DB2
version. To do so, you must create the replication control tables to match the
version of replication and publishing instead of the version of DB2. For example, if
you plan to use replication Version 9.7 with a DB2 Version 9.5 database, your
control tables must be at Version 9.7.

Before you begin

To create control tables at a different version, first you must install the replication
or publishing product without upgrading DB2.

About this task

The following diagram shows a configuration in which the Replication Center
creates Version 9.7 Q Apply control tables on a Version 9.1 DB2. You can also use
the ASNCLP command-line program to specify a different version for control
tables.

Chapter 4. Configuring databases (Linux, UNIX, Windows) 51

Note: When the Q Capture and Q Apply control tables are at different versions,
the value of the COMPATIBILITY column in the IBMQREP_CAPPARMS control
table determines the level of messages that are sent by Q Capture. The
compatibility level of the Q Capture server must be lower than, or at the same
level as, the architecture level of the consuming Q Apply program's control tables.
In the diagram, Q Capture compatibility is set to 0905 because the Q Capture
program and its control tables are at Version 9.5. In this case, the Q Capture
program sends Version 9.5 messages, and even though Q Apply is at Version 9.7
the two programs use Version 9.5 functionality.

Restrictions

v The replication or publishing product must be at a version that is the same as or
newer than the DB2 version. The DB2 must be Version 8.2 or higher.

v The version of the control tables must match the version of the replication or
publishing product.

v Specifying the version of the control tables is not supported on DB2 for z/OS.
On z/OS, the Replication Center always creates control tables that match the
version of the DB2 client on which the Replication Center runs. You can also use
the sample SQL that comes with the replication and publishing products on
z/OS to create control tables.

Q Capture

control tables

Q Apply

control tables

Replication
Center

Q Capture

program

Q Apply

program

DB2 level V9.5
Replication control
table level V9.5

DB2 level V9.1
Replication control
table level V9.7

V9.7

Engine level V9.5
COMPATIBILITY ‘0905’

Engine level V9.7

Figure 8. Creating replication control tables with a different version than DB2. A Version 9.7 Replication Center can
create control tables at either V9.7, V9.5, or V9.1. In the diagram, the Replication Center creates the default V9.5
control tables on a V9.5 DB2, but creates V9.7 control tables on a V9.1 DB2. The level of the Q Capture program is
thus V9.5, and the level of the Q Apply program is V9.7. However, because Q Capture is at a lower version than Q
Apply, compatibility for Q Capture must be set to 0905. At this setting, Q Capture sends V9.5 messages to Q Apply
and V9.5 functions are supported.

52 Replication and Event Publishing Guide and Reference

v Some replication and publishing functions depend on the DB2 level. For
example, you can only replicate from compressed tables or range-partitioned
tables if the source DB2 is at Version 9.7 or newer. DB2 uncompresses log
records before passing them to the Q Capture program. The data is passed
uncompressed from source to target and the target does not need to have
compression set.

Procedure

To create control tables at a different version, use one of the following methods:

Method Description

ASNCLP
command-line
program

In the CREATE CONTROL TABLES FOR command, use the
version keyword to specify the version, as in the following
example:

CREATE CONTROL TABLES FOR CAPTURE SERVER USING
RESTARTQ "ASN1.QM1.RESTARTQ" ADMINQ "ASN1.QM1.ADMINQ"
version 9.5

Replication Center On the Summary page of the Create Q Capture Control Tables
wizard or Create Q Apply Control Tables wizard, click Change
next to the listing of the Q Capture or Q Apply version. In the
Change Control Table version window, specify the version.

Configuring for older or remote DB2 databases
You can configure InfoSphere Replication Server or Data Event Publisher with
some older DB2 databases so that you can use the most recent replication features
without migrating these existing databases. You can also configure InfoSphere
Replication Server or Data Event Publisher to run on a different server than the
servers that host your DB2 databases. Both configurations use similar steps.

The following figure shows the basic configuration for using InfoSphere
Replication Server with an older version of DB2, in this example, InfoSphere
Replication Server Version 9.5 with DB2 Version 8.2.

The following figure shows the basic configuration for using remote DB2
databases.

Figure 9. A configuration of Replication Server with older DB2 databases

Chapter 4. Configuring databases (Linux, UNIX, Windows) 53

Before you begin

If you plan to use a newer version of Replication Server or Data Event Publisher
on the same system as an older DB2 database, see Installation scenarios for
important considerations during installation.

If you plan to use a Q Capture that is a different version or release than your Q
Apply, see Coexistence support in Version 9.7 Q Replication and Event Publishing

About this task

Installing Replication Server or Data Event Publisher does not upgrade any
existing DB2 databases, even if an existing DB2 is an older version. After
InfoSphere Replication Server or Data Event Publisher is installed and licensed, the
replication programs can work with any DB2 database that is at the same release
or lower (down to Version 8.2), regardless whether that database resides in another
DB2 instance or on another system. A new DB2 instance is created as part of the
installation, however the new DB2 instance never needs to be started and no
database needs to be created in it.

The following extra steps are required in a mixed-version or remote replication
configuration:
v The older or remote DB2 databases and nodes must be cataloged at the instance

that contains the replication programs.
v In mixed-version configurations, the replication control tables must be created to

match the higher-level version of the replication programs.
v In mixed-version configurations, the instance owner of the higher-level DB2 that

is installed with the latest replication programs must have permission to read
the DB2 logs of the older version DB2.

Restrictions

Figure 10. A configuration with remote DB2 databases

54 Replication and Event Publishing Guide and Reference

The replication administration tools will not create pre-Version 10.1 control tables
for a source or target database on DB2 for Linux, UNIX, and Windows Version
10.1.

For Q Capture or Q Apply that are local to DB2

v Replication from compressed or partitioned tables on DB2 for Linux,
UNIX, and Windows is only supported for DB2 Version 9.7 or later. DB2
uncompresses log records before passing them to the Q Capture
program. The data is passed uncompressed from source to target and the
target does not need to have compression set.

v To replicate load operations, the source database and Q Capture must be
at APAR PK78558 or newer on z/OS, or at Version 9.7 or newer on
Linux, UNIX, and Windows.

For Q Capture or Q Apply that are remote from DB2

v The Q Capture program, Q Apply program, and the source and target
databases must be on the same Linux, UNIX, or Windows platform and
must all have the same bit architecture, for example 32/32 bit or 64/64
bit.

v You cannot use the replication administration tools to list or validate
queues.

v The endianness and code page of the system where the remote Q
Capture program runs must match the endianness and code page of the
source database and operating system.

Procedure

1. Install Replication Server or Data Event Publisher and create an instance as
prompted by the installer. You can install the products on the same system as
an older DB2 version (down to Version j8.2) or you can install on a remote
system.

2. Catalog the DB2 node and database that is your source or target at the newly
installed instance by using the CATALOG NODE and CATALOG DATABASE commands.
Open a DB2 command window from the DB2 instance that is used by
replication or event publishing, and catalog the node and database of the older
or remote database.

3. Create an asnpwd password file to be used by the replication and publishing
programs.

4. If the source or target database is a lower version than Q Capture or Q Apply,
use the ASNCLP or Replication Center to create replication control tables that
match the version of the replication programs.

5. Use the Replication Center or ASNCLP to create the queue maps and Q
subscriptions.

6. If the database is to be a replication source, grant SYSADM or DBADM
permission to the user ID with which the Q Capture program connects to the
source. This gives the Q Capture program permission to retrieve DB2 log
records.

7. Start Q Capture and Q Apply from the replication instance, whether it is a new
version or the same version on a remote system. For example, start replication
from the newly installed instance by providing the alias for the older or remote
DB2 database that you specified in the CATALOG DATABASE command.

Chapter 4. Configuring databases (Linux, UNIX, Windows) 55

56 Replication and Event Publishing Guide and Reference

Chapter 5. Setting up unidirectional Q Replication

With unidirectional replication, you can replicate data in one direction from a
source table to a target table or manipulate the data at the target using stored
procedures. The target for the Q subscription can be either a DB2 server or a
non-DB2 server.

The Q Capture program replicates transactions from a source table and puts those
transactions on a send queue in compact format; then the Q Apply program gets
the compact messages from a receive queue and applies the transactions to a target
table or passes them to a stored procedure.

Unidirectional replication
With unidirectional replication, you replicate data from source tables to target
tables or stored procedures.

Unidirectional replication is a Q Replication configuration that has the following
characteristics:
v Transactions that occur at a source table are replicated over WebSphere MQ

queues to a target table or are passed as input parameters to a stored procedure
to manipulate the data.

v Transactions that occur at the target table are not replicated back to the source
table.

v The target table typically is read only or is not updated by applications other
than the Q Apply program.

The Q Capture program replicates transactions from a source table and puts those
transactions on a send queue in compact format; then the Q Apply program gets
the compact messages from a receive queue and applies the transactions to a target
table (either a DB2 table or a nickname on a DB2 federated server), or passes them
to a stored procedure.

From any source table, you can replicate either all of the columns and rows or only
a subset of the columns and rows. If you want to transform the data, you can
specify for the Q Apply program to pass the transactions from a source table as
input parameters to a stored procedure that you provide. The stored procedure can
update data in either a DB2 or non-DB2 server.

In unidirectional replication, the following objects exist between servers:

Replication queue maps
You must create at least one replication queue map to transport data from
the Q Capture program on the source server to the Q Apply program on
the target server (or the DB2 federated server if you are replicating to a
non-DB2 target table).

Q subscriptions
There is one Q subscription for every pair of source and target tables or
every pair of source tables and stored procedures. For example, if you have
a source table on SERVER_RED, a target table on SERVER_GREEN, and
another target table on SERVER_BLUE, there are two Q subscriptions:

© Copyright IBM Corp. 2004, 2012 57

v One from the source table on SERVER_RED to the target table on
SERVER_GREEN

v One from the source table on SERVER_RED to the target table on
SERVER_BLUE

Figure 11 shows what you get by mapping three source tables to three target tables
at one time for unidirectional replication. In this example, there are three separate
Q subscriptions. Changes from Source A are replicated to Target A, changes from
Source B are replicated to Target B, and so on. Changes from Source A cannot be
replicated to Target B. These source-and-target pairs use the same replication queue
map, Q Capture program, and Q Apply program.

Grouping replication queue maps and Q subscriptions
Before you define Q subscriptions and replication queue maps, you should first
plan how you want to group Q subscriptions and replication queue maps.

Each Q subscription pairs a single source table with a single target table or stored
procedure. When you define a Q subscription, you must also define which
replication queue map is used to transport the data from the source table to the
target table or stored procedure.

Among other things, each replication queue map identifies the WebSphere MQ
queue that the Q Capture program sends changes to and the WebSphere MQ
queue that the Q Apply program receives changes from before applying those
changes to the target table or passing them to a stored procedure. A single
replication queue map can be used to transport data for several Q subscriptions, so
you must decide which Q subscriptions use the same replication queue map to
transport data.

Source Target

Source A

Source B

Source C

Target A

Target B

Target C

Q
Capture

Q
Apply

Log

Q subscription from Source A to Target A

WebSphere
MQ

Q subscripton from Source B to Target B
Q subscription from Source C to Target C

Figure 11. Multiple Q subscriptions for unidirectional replication. In unidirectional replication,
changes from each source table are replicated over WebSphere MQ queues to a particular
target table.

58 Replication and Event Publishing Guide and Reference

When you plan how to group Q subscriptions and replication queue maps, follow
these rules:
v A WebSphere MQ queue cannot be shared by multiple Q Capture programs or

by multiple Q Apply programs.
v A single Q Capture program or Q Apply program can write to or read from

multiple queues. For example, a single Q Capture program can write data to
many send queues and a single Q Apply program can read and apply data from
many receive queues.

v You can create one or more replication queue maps between any pair of Q
Capture and Q Apply programs. Each Q Capture and Q Apply program can
work with multiple replication queue maps. For example, a single Q Capture
program can send messages to multiple send queues, and a Q Apply program
can retrieve messages from multiple receive queues.

How the Q Capture program works with the send queue

For a replication queue map, the Q Capture program captures changes for all
tables for which there are active Q subscriptions. The Q Capture program stores
these changes in memory until it reads the corresponding commit or abort record
from the database log. The Q Capture program then sends information about
committed transactions to all send queues that were defined for the Q
subscriptions.

How the Q Apply program works with the receive queue

The Q Apply program starts a browser thread for every receive queue that was
defined for a given Q Apply schema. For each browser, the transaction messages
that the Q Apply browser thread reads from the receive queue are applied by one
or more Q Apply agents, up to the maximum number of agents that you have
defined. Within the context of a receive queue, transactions will be executed
serially where dependencies between transactions exist, based on relationships
between unique constraints or foreign keys. Where no constraint dependencies
exist between transactions, transactions are executed in parallel as much as
possible.

Suggestions for grouping similar Q subscriptions with
replication queue maps

Generally speaking, for tables that are involved in transactions with one or more
applications, you should create Q subscriptions for these tables so that they all
share a common replication queue map. Grouping similar Q subscriptions with the
same replication queue map assures the transactional consistency of the data when
the Q Apply program applies it to the target tables or passes it to stored
procedures. Because the Q Apply program is already applying changes for these
transactions in parallel, you do not need to create multiple replication queue maps
to achieve a high degree of parallelism in the application of the data.

If you define Q subscriptions that are involved in related transactions to send data
through independent replication queue maps, the Q Capture program splits the
data between the multiple send queues. Multiple Q Apply browsers that are
associated with the receive queues apply the data independently.

Q subscriptions that have dependencies must share the same replication queue
map. The Q Apply browser at the receive queue detects dependencies between
transactions, so all Q subscriptions that involve dependent tables should use the

Chapter 5. Unidirectional 59

same receive queue. If dependent transactions are sent to different receive queues
through different replication queue maps, it is possible that the target database will
not be transactionally consistent with the source database.

If multiple applications update the source server but do not update the same
tables, and you configure a single pair of Q Capture and Q Apply programs to
replicate data from the source server to a target server, then you might consider
defining multiple replication queue maps for this pair of Q Capture and Q Apply
programs to use. All of the Q subscriptions that are associated in transactions for
each application are then replicated over one of these replication queue maps. Such
a configuration could provide advantages, such as failure isolation or increased
throughput. Still higher throughput and failure isolation might be gained by
configuring multiple pairs of Q Capture and Q Apply programs, each with their
own replication queue map. However, you must balance these gains against
increased CPU consumption and a more complex replication environment.

Creating replication queue maps
When you create Q subscriptions, you specify which WebSphere MQ queues to
send the data over by associating each Q subscription with a replication queue
map. You can create a replication queue map before you begin creating Q
subscriptions or as one of the steps of creating Q subscriptions.

Before you begin

v Plan how you want to group replication queue maps and Q subscriptions.
v On the server that contains the source tables for the Q subscriptions, create the

control tables for the Q Capture program.
v On the server that contains the target tables for the Q subscriptions, create the

control tables for the Q Apply program.
v Ensure that you have defined the appropriate objects in WebSphere MQ.

Restrictions

The same send queue cannot be used for both Q Replication and Event Publishing
because a send queue can transport compact messages (for Q Replication) or XML
messages (for Event Publishing), but not both.

Procedure

To create a replication queue map, use one of the following methods:

60 Replication and Event Publishing Guide and Reference

Method Description

ASNCLP
command-line
program

Use the CREATE REPLQMAP command. For example, the
following commands set the environment and create a replication
queue map SAMPLE_ASN1_TO_TARGET_ASN1 :

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;
SET SERVER TARGET TO DB TARGET;
SET APPLY SCHEMA ASN1;
SET RUN SCRIPT LATER;

CREATE REPLQMAP
SAMPLE_ASN1_TO_TARGET_ASN1 USING
ADMINQ "ASN1.QM1.ADMINQ"
RECVQ "ASN1.QM1_TO_QM2.DATAQ"
SENDQ "ASN1.QM1_TO_QM2.DATAQ"
NUM APPLY AGENTS 8 HEARTBEAT INTERVAL 5;

Replication Center Use the Create Replication Queue Map window. You can open the
window from the Servers page of the Create Q Subscription
wizard, or from the object tree expand the appropriate Q Capture
or Q Apply schema, right-click the Replication Queue Maps
folder, and select Create.

Tip: You can use either replication administration tool to validate the send queue,
receive queue, and administration queue that you specify for a replication queue
map and to send test messages between the queues. To validate, use the
VALIDATE WSMQ ENVIRONMENT FOR command in the ASNCLP or click
Validate queues on the Create Replication Queue Map window in the Replication
Center. To send test messages, use the VALIDATE WSMQ MESSAGE FLOW FOR
REPLQMAP command in the ASNCLP or the Validate WebSphere MQ Queues
window in the Replication Center.
When you create a replication queue map, you can specify the following options:

Send queue
The WebSphere MQ queue where the Q Capture program sends source
transactions and informational messages. When you define a replication
queue map, you must select a send queue that is configured to transport
compact messages.

Receive queue
The WebSphere MQ queue from which the Q Apply program receives
source transactions and informational messages.

Administration queue
The queue that the Q Apply program uses to send control messages to the
Q Capture program. The messages that the Q Apply program sends on this
queue have several purposes, including telling a Q Capture program to
start sending messages or initiating the loading process for a target table.

Maximum message length
The maximum size (in kilobytes) of a message that the Q Capture program
can put on this send queue. This maximum message length must be less
than or equal to the WebSphere MQ maximum message size attribute
(MAXMSGL) that is defined for the queue or queue manager.

Queue error action
The action that the Q Capture program take when a send queue is no
longer accepting messages because of an error, for example when the
queue is full:

Chapter 5. Unidirectional 61

v Stops running
v Stops putting messages on the queue in error but continues to put

messages on other queues

Number of Q Apply agents
The number of threads, or agents, that the Q Apply program uses for
concurrently applying transactions from this receive queue. To request that
transactions be applied in the order that they were received from the
source table, specify only one Q Apply agent. To have changes applied to
the target server in parallel, specify more than one Q Apply agent.

Maximum Q Apply memory usage
The maximum amount of memory (in megabytes) that the Q Apply
program uses as a buffer for messages from this receive queue.

Heartbeat interval
How often, in seconds, that the Q Capture program sends messages on this
queue to tell the Q Apply program that the Q Capture program is still
running when there are no transactions to replicate. The heartbeat is sent
on the first commit interval after the heartbeat interval expires. A value of
0 tells the Q Capture program not to send heartbeat messages.

This heartbeat interval is different from the WebSphere MQ parameter
HBINT (heartbeat interval) that you can define for a WebSphere MQ
channel.

Creating Q subscriptions for unidirectional replication
With Q Replication, you can set up replication of data from source tables to target
tables or manipulate the data at the target using stored procedures by creating Q
subscriptions. You must create a Q subscriptions for each source-to-target pair. The
target for the Q subscription can be either a DB2 server or a non-DB2 server.

Each Q subscription is a single object that identifies the following information:
v The source table that you want to replicate changes from
v The target table or stored procedure that you want to replicate changes to
v The columns and rows from the source table that you want to be replicated
v The replication queue map, which names the WebSphere MQ queues that

transport information between the source server and target server

You can create one or multiple Q subscriptions at one time.

Attention: Q subscriptions are separate objects from publications. Publications do
not publish data to the Q Apply program, but to an application of your choice. Q
subscriptions are for replicating data, and publications are for publishing data. If
you want to replicate changes from a source table and want the Q Apply program
to apply those source changes to a target table or pass them to a stored procedure
for data manipulation, define a Q subscription, not a publication.

Creating target object profiles
You can create profiles in the Replication Center or ASNCLP command-line
program to specify your own default naming convention for objects that the
administration tools create at the target server.

About this task

62 Replication and Event Publishing Guide and Reference

You can create profiles for the following objects:

Replication Center
Target tables, table spaces (or their equivalents for non-DB2 targets),
indexes, and nicknames

ASNCLP
Table spaces or indexes

The administration tools use the naming rules that are contained in the target
object profile to name objects that they create.

Procedure

To create target object profiles, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the SET PROFILE command to specify custom parameters for
table spaces or indexes that are created by the ASNCLP program.
For example, the following commands set the environment and
create a profile TBSPROFILE that sets the index options for tables
that follow the page locking mechanism:

ASNCLP SESSION SET TO Q REPLICATION;
SET PROFILE TBSPROFILE FOR OBJECT
PAGE LOCK INDEX OPTIONS ZOS
DB TARGETDB STOGROUP MYSTOGROUPPRIQTY
PERCENT OF SOURCE 70;

After you issue a SET PROFILE command, you can associate a
profile with a task command by specifying the profile's name in
the task command.

The scope of the profile lasts only as long as the current session.
Once you quit the ASNCLP session, the profile information is not
saved for the next session.

Chapter 5. Unidirectional 63

Method Description

Replication Center Use the Manage Target Object Profiles notebook. To open the
notebook, right-click a Q Apply server in the object tree and click
Manage Target Object Profiles.

The Replication Center has a default target object profile that you
can modify or override when you create new Q subscriptions.
Existing objects are not renamed.

The Replication Center stores one target object profile for each
target server. When you create a Q subscription, the Replication
Center uses the profile for the target server to determine the owner
and name of the target table. If a table with that owner and name
exists, the Replication Center uses the existing table as the target
for the Q subscription. If a table with that owner and name does
not exist, the Replication Center creates a table with that owner
and name for you.

The naming convention for target objects consists of three parts:

v A prefix

v A base, which is either the name of a related database object or a
timestamp

v A suffix

You can also specify whether to create target tables in new or
existing table spaces (or dbspaces for some non-DB2 targets). You
can specify operational parameters of the table space, including
whether the target-table table space should use the same
partitioning as the source-table table space, if the target server is a
DB2 subsystem on z/OS.

You can also define truncation rules for the names of these objects.
If an object name, which is the prefix, base, and suffix, exceeds the
maximum length for your operating system, the truncation rules
tell the Replication Center to shorten the base of the name from
either the left or the right until the name is at the maximum length
that your operating system allows.

Creating Q subscriptions for unidirectional replication
By creating Q subscriptions for unidirectional replication, you define how data
from source tables is replicated to target tables or is passed to parameters in a
stored procedure for data manipulation.

Before you begin

v Plan how you want to group replication queue maps and Q subscriptions.
v Create the control tables for the Q Capture program in the server that contains

the source table for the Q subscription.
v Create the control tables for the Q Apply program in the server that contains the

target for the Q subscription.
v Specify the queues for replicating and their attributes by creating a replication

queue map. (You can do this task before you create a Q subscription or while
you create a Q subscription.)

v Prepare the stored procedure if you want the Q Apply program to pass source
changes to a stored procedure instead of to a target table.

Restrictions

64 Replication and Event Publishing Guide and Reference

v Views cannot be sources or targets for Q subscriptions.
v IDENTITY columns in the target table cannot be defined as GENERATED

ALWAYS.

v Do not select ROWID columns for replication except when the ROWID column
is the only unique index that is specified for replication. Replication of ROWID
columns is not supported for bidirectional or peer-to-peer replication.

Recommendation: Use an IDENTITY column rather than a ROWID column as
the unique index for replication.
If you are replicating LOB columns, you must have an unique index besides the
ROWID unique index.

v Replication is supported from multiple-partition databases. There is no limit to
the number of partitions that replication supports.

v Replication is supported from tables that use value compression or row
compression. DB2 uncompresses log records before passing them to the Q
Capture program. The data is passed uncompressed from source to target and
the target does not need to have compression set.

v Replication is supported from materialized query tables (MQTs).

Procedure

To create a Q subscription for unidirectional replication from one source table to
one target table or stored procedure, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE QSUB command. For example, the following
commands set the environment and create a Q subscription for
unidirectional replication, EMPLOYEE0001, with the following
characteristics:

v The replication queue map is
SAMPLE_ASN1_TO_TARGETDB_ASN1.

v The Q Apply program loads the target tables using the EXPORT
and IMPORT utilities.

v The EMPNO column is used as the key column for replication to
determine the uniqueness of a row.

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;
SET SERVER TARGET TO DB TARGET;
SET APPLY SCHEMA ASN1;
SET RUN SCRIPT LATER;

CREATE QSUB USING REPLQMAP
SAMPLE_ASN1_TO_TARGETDB_ASN1
(SUBNAME EMPLOYEE0001 EMPLOYEE OPTIONS
HAS LOAD PHASE I TARGET NAME
TGTEMPLOYEE KEYS (EMPNO) LOAD TYPE 2)

Chapter 5. Unidirectional 65

Method Description

Replication Center Use the Create Q Subscriptions wizard. To open the wizard,
expand the appropriate Q Capture or Q Apply schema, right click
the Q Subscriptions folder, and select Create.

You can create one Q subscription or many by using the wizard.

Rows and columns page
When you create multiple Q subscriptions at one time, the
Replication Center assumes that you want to replicate all
columns and rows from each source table. On the Review
Q Subscriptions page of the wizard you can modify
individual Q subscriptions so that only a subset of the
source columns and rows are replicated.

Target tables page
When you create more than one Q subscription at a time,
the Target Tables page allows you to review the target
object profile. Modify the profile if necessary so that the
target tables for the Q subscriptions meet your needs.

The target object profile determines if an existing target
table is used or if a new one is created. The Replication
Center looks for an object that matches the naming
scheme that is defined in the profile, and, if one does not
exist, then the object is created.

Source columns for Q subscriptions (unidirectional
replication)

By default when you create Q subscriptions, changes to all columns that are in the
source table are replicated to the target table or stored procedure. However, when
you create a Q subscription for unidirectional replication, you can replicate a
subset of the columns that are in the source table instead of all of the columns.

You might want to replicate a subset of the columns under the following
circumstances:
v You do not want to make all of the columns that are in the source table available

to the target table or stored procedure.
v The target for the Q subscription does not support all of the data types that are

defined for the source table.
v The target table already exists and contains fewer columns than the source table.

Figure 12 on page 67 shows how a subset of columns are replicated.

66 Replication and Event Publishing Guide and Reference

To replicate a subset of the columns, select only the source columns that you want
to be replicated to the target. If you are creating a single Q subscription, the
administration tools give you options for how to replicate a subset of the columns
from the source table.

In the Replication Center, if you are creating multiple Q subscriptions at one time,
on the Review page of the Create Q Subscriptions wizard select the individual Q
subscription that you want to subset columns in and edit the properties for that Q
subscription.

Important for LOB columns: If you select columns that contain LOB data types
for a Q subscription, make sure that the source table enforces at least one unique
database constraint (for example, a unique index or primary key). You do not need
to select the columns that make up this uniqueness property for the Q
subscription.

How often the Q Capture program sends a message
(unidirectional replication)

When you create Q subscriptions, you can specify when the Q Capture program
sends messages to the Q Apply program. The Q Capture program can send a
message either only when the columns change that are part of the Q subscription
or every time that a column in the source table changes.

The following sections describe the two different types of events that can cause the
Q Capture program to send a message:
v “A message is sent only when columns in the Q subscriptions change”
v “A message is sent every time a change occurs in the source table” on page 68

If you replicate all of the columns that are in the source table, these two options
result in the same action.

A message is sent only when columns in the Q subscriptions
change

By default, the Q Capture program sends a message only when the change occurs
in columns that you selected for the Q subscriptions.

For example, assume that you have 100 columns in your source table and you
select 25 of those columns to be replicated in a Q subscription. If you specify that a
message is sent only when columns in Q subscriptions change, then any time a
change is made to any of the 25 columns that are part of the Q subscription, the Q

Source Target

Source
Target

Q
Capture

Q
Apply

Log

Q subscription

WebSphere
MQ

A
A

B C
C

D

Figure 12. Column subsetting in a Q subscription for unidirectional replication. Only columns
A and C are selected for replication. When a row is replicated from the source table to the
target table, the Q Capture program replicates only the values from columns A and C.

Chapter 5. Unidirectional 67

Capture program sends a message. Any time a change is made in any of the 75
columns that are not part of the Q subscription, the Q Capture program does not
send a message.

Recommendation: Replicate only the changes that occur in columns that are part
of Q subscriptions if changes in the source tables frequently occur in columns that
are not part of the Q subscriptions. Use this option if you do not want to keep a
history of when all changes occur at the source table. This option minimizes the
amount of data that is sent across the queues.

A message is sent every time a change occurs in the source
table

You can define Q subscriptions so that the Q Capture program sends a message
every time a change occurs in the source table. If you are replicating only a subset
of the columns in the source table, then the Q Capture program sends a message
even if the change occurs in a column that is not part of a Q subscription.

For example, assume that you have 100 columns in your source table and you
select 25 of those columns to be replicated in a Q subscription. If you specify that a
message is sent every time a change occurs in the source table, then any time that
a change is made to any of the of the 100 columns in your source table, the Q
Capture program sends a message.

Recommendation: Use this option if you want to keep a history for audit
purposes of when all changes occur at the source table.

Search conditions to filter rows (unidirectional replication)
By default when you create Q subscriptions for unidirectional replication, all rows
from the source table are replicated to the target table or stored procedure.
However, when you create a Q subscription for unidirectional replication, you can
specify a WHERE clause with a search condition to identify the rows that you
want to be replicated.

When the Q Capture program detects a change in the DB2 recovery log that is
associated with a source table, the Q Capture program evaluates the change
against the search condition to determine whether to replicate the change to the
target table or stored procedure.

If you are creating a single Q subscription, then the Create Q Subscriptions wizard
in the Replication Center helps you add a WHERE clause to replicate a subset of
the rows from the source table. If you are creating multiple Q subscriptions at one
time, then, on the Review page of the Create Q Subscriptions wizard, select the
individual Q subscription for which you want to subset rows and edit the
properties for that Q subscription to add the WHERE clause.

If you define a Q subscription so that the target table is initially loaded with source
data, the search condition for the Q subscription is evaluated when the target table
is loaded. Because the row filter is used while loading the target table, the target
table initially contains a subset of the rows in the source table.

When you specify a WHERE clause, you can specify whether the column is
evaluated with values from the current log record. If you want a column in the
WHERE clause to be evaluated with values from the current log record, place a
single colon directly in front of the column name.

68 Replication and Event Publishing Guide and Reference

Example of WHERE clause that evaluates a column with values
from the current log record:
WHERE :LOCATION = ’EAST’ AND :SALES > 100000

In the above example, LOCATION and SALES are column names in the source table
that are evaluated with values from the current log record. Here, the Q Capture
program sends only the changes from the source table that involve sales in the
East that exceed $100,000. When you type a column name, the characters fold to
uppercase unless you enclose the name in double quotation marks. For example,
type "Location" if the column name is mixed case.

If the Q Capture program replicates a column that is part of the WHERE clause, it
might need to change the type of operation that needs to be sent to the target table
or stored procedure.

Example where the Q Capture program must change the type of
operation because of a WHERE clause:
WHERE :LOCATION = ’EAST’
AND :SALES > 100000

Suppose that the following change occurs at the source table:
INSERT VALUES (’EAST’, 50000)
UPDATE SET SALES = 200000 WHERE LOCATION = ’EAST’

Because the before value does not meet the search condition of the WHERE clause,
the Q Capture program sends the operation as an INSERT instead of an UPDATE.

Likewise, if the before value meets the search condition but the after value does
not, then the Q Capture program changes the UPDATE to a DELETE. For example, if
you have the same WHERE clause as before:
WHERE :LOCATION = ’EAST’
AND :SALES > 100000

Now suppose that the following change occurs at the source table:
INSERT VALUES (’EAST’, 200000)
UPDATE SET SALES = 50000 WHERE LOCATION = ’EAST’

The first change, the insert, is sent to the target table or stored procedure because it
meets the search condition of the WHERE clause (200000 > 100000 is true).
However, the second change, the update, does not meet the search condition
(50000 > 100000 is false). The Q Capture program sends the change as a DELETE so
that the value will be deleted from the target table or stored procedure.

Complex search conditions

Q Replication allows you to specify more complex WHERE clauses. However,
complex search conditions might impact performance. For example, you can
specify a more complex WHERE clause with a subselect that references other tables
or records from either the source table or another table.

Example of WHERE clause with a subselect:
WHERE :LOCATION = ’EAST’
AND :SALES > (SELECT SUM(EXPENSE) FROM STORES WHERE STORES.DEPTNO = :DEPTNO)

In the above example, the Q Capture program sends only the changes from the
East that resulted in a profit, where the value of the sale is greater than the total

Chapter 5. Unidirectional 69

expense. The subselect references the STORES table and the following columns in
the source table: LOCATION, SALES, and DEPTNO.

When you define a Q subscription with a subselect in a WHERE clause, the
following problems might occur:
v Performance might be slower because, for each change in the source table, the Q

Capture program computes a large select on the STORES table to compute the
SUM(EXPENSE) value. Also, this type of select might compete for locks on the
tables.

v The subselect might produce unexpected results. For example, because the
subselect is evaluated against the current database values, the example above
produces a wrong answer if the EXPENSE value changes in the database, whereas
columns in the WHERE clause are substituted with the older log record values.
If the table name that the subselect references does not change, then the search
condition produces the proper results.

Restrictions for search conditions
v Search conditions cannot contain column functions, unless the column function

appears within a subselect statement.
v Invalid WHERE clause with column functions:

#---
Incorrect: Don’t do this
#---

WHERE :LOCATION = ’EAST’ AND SUM(:SALES) > 1000000

The Replication Center validates search conditions when the Q Capture program
evaluates them, not when the Replication Center creates the Q subscription. If a
Q subscription contains an invalid search condition, then that Q subscription
will fail when the invalid condition is evaluated, and the Q subscription will be
deactivated.

v Search conditions cannot contain an ORDER BY or GROUP BY clause unless the
clause is within a subselect statement.
Invalid WHERE clause with GROUP BY:
#---
Incorrect: Don’t do this
#---

WHERE :COL1 > 3 GROUP BY COL1, COL2

Valid WHERE clause with GROUP BY:
WHERE :COL2 = (SELECT COL2 FROM T2 WHERE COL1=1 GROUP BY COL1, COL2)

v Search conditions cannot reference the actual name of the source table that you
are replicating changes from. Do not use the schema.tablename notation in a
WHERE clause for the actual name of the source table. However, you can
reference another table name in a subselect by using schema.tablename notation.
Invalid WHERE clause with actual name of source table and column name:
#---
Incorrect: Don’t do this
#---

WHERE :ADMINISTRATOR.SALES > 100000

In the above WHERE clause, the table that is being replicated is ADMINISTRATOR
and the column name is SALES. This invalid WHERE clause is intended to select
only the values of the SALES column of the administrator table, for which SALES
is greater than 100000.

70 Replication and Event Publishing Guide and Reference

Valid WHERE clause with column name:
WHERE :SALES > 100000

In the above WHERE clause, SALES is the column name.
v Search conditions cannot reference values that were in columns before a change

occurred; they can reference values only after a change occurred.
v Search conditions cannot contain EXISTS predicates.
v Search conditions cannot contain a quantified predicate, which is a predicate

using SOME, ANY, or ALL.
v Search conditions cannot reference LOB values.

Log record variables to filter rows (unidirectional replication)
You can use variables from the database recovery log such as authorization ID or
DML operation to filter which rows to replicate for unidirectional Q subscriptions.
You can also combine these variables with an SQL WHERE clause to create more
extensive row filters.

These variables describe how a change in the table came about, and include
information about the operation of the change, the user who owns the transaction,
and on z/OS the job name or plan name. You can use the following log record
variables:

$OPERATION The DML operation. Valid values are I
(insert), U (update), and D (delete).

$AUTHID The authorization ID of a transaction.

$AUTHTOKEN z/OS: The authorization token (job name) of
a transaction.

$PLANNAME z/OS: The plan name of a transaction.

You create a predicate that uses these variables, and when the Q Capture program
reads the log it determines whether or not to replicate transactions based on the
predicate. This function enables you to create filters that are based on more than
just the data in the base table. For example, you can filter on DML operations that
might suit feeding a data warehouse, for example specifying that only insert
operations are replicated ("$OPERATION IN ’I’"). You can also create ID-based
filters at the Q subscription level, for example "$AUTHID = ’HR’", rather than using
the Q Capture program's ability to ignore certain transactions, which operates at
the Q Capture instance level.

To specify a predicate, you use the ASNCLP command-line program with the
CHANGE CONDITION keyword of the CREATE QSUB or ALTER QSUB
command. For example:
CREATE QSUB USING REPLQMAP DALLAS_ASN_TO_TOKYO_ASN
(SUBNAME SALES0002 OPTIONS CHANGE CONDITION
"$AUTHID = ’HR’")

The predicate is stored in the CHANGE_CONDITION column of the
IBMQREP_SUBS table.

Combining log record variables with search conditions

You can use log record variables in conjunction with the other type of row filter
that Q Capture provides, the search condition that uses an SQL WHERE clause.

Chapter 5. Unidirectional 71

Unlike values in the search condition, predicates that are based on log records do
not need to be prefixed by the WHERE keyword.

If you specify a search condition with a WHERE clause and a predicate that uses
log record variables, Q Capture combines the two predicates by using the AND
operator. For example, the following search condition specifies that Q Capture only
replicate rows where the value in the STATE column is CA (postal abbreviation for
California):
WHERE :STATE = ’CA’

The following predicate with log record variables specifies that Q Capture replicate
transactions with all authorization IDs except HR:
$AUTHID <> ’HR’

When the Q Capture program detects the WHERE clause in the
SEARCH_CONDITION column of the IBMQREP_SUBS table and the log record
predicate in the CHANGE_CONDITION column, it combines the two into a single
predicate. Q Capture only replicates rows where the STATE is CA and the
authorization ID of the transaction is not HR:
WHERE :STATE = ’CA’ AND $AUTHID <> ’HR’

You could specify the entire combined predicate in the CHANGE CONDITION
keyword of the CREATE QSUB or ALTER QSUB command and the result would
be the same (as long as nothing was specified with the SEARCH CONDITION
keyword). However, log record variables can only be used with CHANGE
CONDITION.

Note: Although replication allows a CHANGE CONDITION of 2048 characters,
DB2 might not be able to process all possible predicates that can be written in 2048
characters. If the statement is too long (combined with SEARCH CONDITION) or
too complex, DB2 might return an SQL0101N error ("The statement is too long or
too complex. SQLSTATE=54001").

Load considerations

Predicates with log record variables are not used when loading the target table
because the variables are based on information that is not part of the source table,
from which the load utilities select data. Search conditions are used when loading
the target because they specify source table columns from which the load utility
can select.

In the example above, a load utility invoked by the Q Apply program would use
the following predicate when selecting source data to load into the target:
WHERE :STATE = ’CA’

If you want to load the target table with a subset of source data in addition to
using log record variables, make sure to build your predicates carefully.

Considerations for asntdiff utility

If you use the asntdiff utility to compare data in source and target tables, be aware
that many of the insert operations that the utility recommends to synchronize the
tables are due to the predicate with log record variables. Do not use the asntrep
utility to repair the table if you suspect that this is the case because the repair
would undo the effect of filtering at the source.

72 Replication and Event Publishing Guide and Reference

How source columns map to target columns (unidirectional
replication)

For existing target tables, you can specify how you want the data from source
columns to map to target columns. If a target table does not exist, the Replication
Center or ASNCLP program create the target table (or nickname if you have
non-DB2 target tables) with the same columns as the source table.

When you create Q subscriptions with the Replication Center, you can choose from
the following options for mapping source columns to target columns:

Map by column name and data type
Each column in the source table is mapped to the column in the target
table (or parameter in the stored procedure) that has an identical name and
data type.

Map by column position and data type
The first column in the source table that you selected for replication is
mapped to the first column in the target table or parameter in the stored
procedure, the second column in the source table that you selected for
replication is mapped to the second target column or parameter, and so on.
The columns in the target are mapped from left to right. The data types of
each pair of mapped columns must be the same.

If any columns do not map to identical column names and data types, you must
manually map those extra columns, which can include defining an SQL expression
to map different data types.

Note: Mapping rules that you create in a target object profile do not affect existing
Q subscriptions, only future Q subscriptions.

You cannot replicate more columns from the source table than are in the target
table. However, the target table can contain more columns than the number of
source columns that you selected for replication. If the target table contains extra
columns that are not mapped to source columns, those extra target columns cannot
be part of the target key and must be either nullable or be not null with a default
value.

Non-DB2 target tables

The following considerations pertain to mapping source columns to target tables in
non-DB2 relational databases:
v If you choose to have a new target table created for you, the target table will be

created with data types that are close to the DB2 source data type. For example,
if a DB2 source table has a column with the data type TIME, then an Oracle
table will be created with column data type as DATE, and the default mapping
for this in the nickname will be TIMESTAMP. For more detail on mappings that
are used for federated targets, see Default forward data type mappings in the
DB2 Information Center.

v If you choose to replicate to an existing target table, the source columns map to
the data types that are defined in the DB2 federated nickname, not to the data
types in the non-DB2 target table.

v

Chapter 5. Unidirectional 73

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.db.found.conn.fw.dtm.doc/topics/rfpapdat.html

Multiple Q subscriptions

If you are creating multiple Q subscriptions at a time, then you can use the Create
Q Subscriptions wizard in the Replication Center to specify a rule for how columns
in the source table map to columns in the target table or to parameters in the
stored procedure. When you create multiple Q subscriptions at a time, the
Replication Center assumes that you want to replicate all columns from the source
table, and so it applies the column mapping rule to all columns. If any columns do
not map according to the rule that you specify, then you must manually map those
extra columns.

Stored procedures

For existing stored procedures, you can specify how you want the data from
source columns to map to parameters. The source table cannot replicate more
columns than parameters in the stored procedure. Stored procedures cannot have
extra parameters that do not map to source columns.

Using expressions in Q Replication
You can use expressions to change data while it is being replicated from the source
to the target. Q Replication supports both SQL expressions and XML expressions.

SQL expressions in Q Replication
When you create a Q subscription for unidirectional replication, you can use SQL
expressions to transform data between the source and target tables, to map
multiple source columns to a single target column, or to create other types of
computed columns at the target.

Restrictions

The use of SQL expressions is not supported in the following situations:
v Bidirectional or peer-to-peer replication.
v Large object (LOB) columns
v Stored procedure targets
v Before values for CCD tables
v Aggregate functions such as SUM and MAX

Q Replication supports all types of DB2 SQL expressions, including the following
examples:

Concatenation
You can merge the contents of two or more source columns into a single
target column. For example, you could map two source columns, COL1
and COL2, to a target column called COLEXP. Rather than specifying a
single source column for the Q subscription, you would specify the SQL
expression CONCAT(:C1,:C2) and map the expression to the target column
COLEXP.

Substring
You can use the SQL substr() expression to apply only a portion of the data
in a source column. For example, this function can be used to replicate
data into a target column whose length is shorter than that of the source
column, or to extract portions of an address or other character string from
a source column.

74 Replication and Event Publishing Guide and Reference

Constant
You can populate target table columns with data from CONSTANT and
DERIVED CONSTANT expressions rather than from data in the source
table. For example, you could populate a column with the characters IBM,
or the value of a DB2 special register such as CURRENT TIMESTAMP.

Case You can use CASE expressions to achieve more complex data
transformations between the source and target tables.

Figure 13 shows how expressions can be used in Q Replication to create computed
columns.

Any number of source columns can be mapped to one target column, and a single
source column can be split and mapped to any number of target columns.

An expression can reference any column from the captured row at the source. You
prefix the source column name with a colon (:) and after the column name add a
space. For example, :COL1 .

For Q subscriptions that specify a load phase for the target table, the Q Apply
program uses DB2 to evaluate SQL expressions during the load phase, and also
while it is applying source changes from the spill queue. If you specify a manual
load, you must evaluate the expression during the loading process.

SQL expressions are supported for Classic data sources, federated targets, and
CCD target tables. For CCD tables, the Q Apply program evaluates SQL
expressions for both after-image and before-image columns.

Figure 13. Examples of Q replication support for SQL expressions. This diagram shows how
SQL expressions could be used to create a target table with different types of computed
columns from a source table. The legend below the source table shows the various
expressions that are used, such as concatenation (C1 || C2). In the target table, some of the
columns from the source table are mapped to combined columns or changed columns. Other
target table columns are created from expressions that are derived from constants rather
than from data in the source table.

Chapter 5. Unidirectional 75

Expressions in key columns

You can also specify SQL expressions for columns that are used as a key for
replication (IS_KEY=Y in the IBMQREP_TRG_COLS table), and for columns that
are part of a unique constraint at the target table but are not used as a key for
replication.

When you map source columns to target columns by using SQL expressions, you
can use any of the following combinations:
v One replication source key column that is mapped to one replication target key

column
v Any number of replication source key columns that are mapped to one

replication target key column
v One replication source key column that is divided and mapped to any number

of replication target key and non-key columns
v Replication key and non-key columns at the source that are combined and

mapped to one replication target non-key column

Restrictions:

v A combination of replication key and non-key columns at the source that are
mapped to one replication target key column is not supported. To resolve
conflicts correctly, the Q Apply program requires that data is always sent for any
column that is specified as a replication key at the target. If the key column at
the target is mapped to non-key columns at the source, the Q Capture program
might not always send the necessary data, especially when the value of
CHANGED_COLS_ONLY is Y (yes) and not all before values are sent.

Figure 14 on page 77 shows how expressions can be used in Q Replication to create
computed columns.

76 Replication and Event Publishing Guide and Reference

The index or key that you specify for a Q subscription does not need to match
between the source and target. When you pick columns as keys for replication, you
must choose all of the columns that match one of the unique constraints at the
target. This requirement enables the Q Apply program to correctly detect and
resolve conflicts. If no unique constraints exist at the target, then you should
choose all columns at the target as part of the key for replication (excluding some
column types, such as LOB and LONG).

Expression support in the replication administration tools

If you are using the ASNCLP command-line program to create a Q subscription,
you use the EXPRESSION keyword, which is part of the TRGCOLS option. You
specify the SQL expression and the name of the target column that the expression
maps to.

For example, the following commands set the environment and create a Q
subscription with a new target table that includes all of the columns in the source
table and specifies an expression that concatenates columns COL1 and COL2 and
maps to the target table column CEXP.
ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;
SET SERVER CAPTURE TO DB SAMPLE;

Figure 14. Examples of Q Replication support for SQL expressions in key columns. This
diagram shows how SQL expressions could be used to create a target table with different
types of computed columns from a source table. The legend below the source table shows
the various expressions that are used, such as substring [substr(KEY3,2,3)]. In the target
table, some of the columns from the source table are mapped to combined columns or
changed columns. Other target table columns are created from expressions that are derived
from constants rather than from data in the source table.

Chapter 5. Unidirectional 77

SET SERVER TARGET TO DB TARGET;
SET CAPTURE SCHEMA SOURCE ASNCAP1;
SET APPLY SCHEMA ASNAPP1;
CREATE QSUB USING REPLQMAP SAMPLE_ASNCAP1_TO_TARGET_ASNAPP1
(SUBNAME TESTEXP DATA.EMPLOYEE TARGET NAME DATA.TGTEMPLOYEE
TRGCOLS ALL EXPRESSION (“CONCAT(:COL1,:COL2)” TARGET CEXP));

You can also specify SQL expressions when you are changing an existing Q
subscription with the ALTER QSUB command.

In the Replication Center, you can create computed columns by using the
Expression window. You open the Expression window from the Column Mapping
window, which is launched from the Rows and Columns page of the Create Q
Subscriptions wizard. Click Validate to check the syntax of the expression.

Byte-level SQL expressions

If the source and target tables are in different code pages, SQL expressions that
evaluate data at the byte level (for example, a HEX function) might produce
different results in the target table depending upon whether the data was
replicated during an automatic load or during regular Q Apply program
operations:

During an automatic load
DB2 evaluates the SQL expression on the source data and then converts the
results to the target code page.

When a row is replicated
The Q Apply program converts the source data to the target code page and
then DB2 evaluates the SQL expression for the row.

An alternative to using the HEX function is to define the target column as FOR BIT
DATA. The Q Apply program then avoids code page conversion, and the source
data is saved in the target table in a hexadecimal representation.

XML expressions in Q Replication
When you create a Q subscription for unidirectional replication, you can use XML
expressions to transform XML data between the source and target tables.

Q Replication supports the XML data type. Support for expressions on XML
columns enables powerful transformations over XML data. For example, you can
change the shape of an XML object, replicate only a subset of it, and make it
conform to a different schema at the target. Expressions on XML data types might
be required in situations where the application at the target needs data in a
different form. Examples include application migrations, feeding a warehouse, and
application integration.

You can use the Replication Center or ASNCLP command-line program to specify
XML expressions when you create a Q subscription in the same way that you
specify SQL expressions.
v “Supported DB2 SQL/XML functions ” on page 79
v “Restrictions” on page 79
v “Examples of XML expressions” on page 80

78 Replication and Event Publishing Guide and Reference

Supported DB2 SQL/XML functions

Q Apply integrates XML expressions into the SQL statements that it uses to update
target tables. Q Apply does not parse expressions to determine whether they are
syntactically and semantically correct. If the use is incorrect, Q Apply reports the
DB2 SQL error or warning in the IBMQREP_EXCEPTIONS table when it tries to
run the statement and follows the error action that is defined for the Q
subscription.

Recommendation: Test the SQL statement to validate its syntax before adding it to
a Q subscription.

Table 8 provides examples of supported XML expressions and lists unsupported
expressions.

Table 8. Supported and unsupported XML expressions

Examples of supported XML expressions Unsupported XML expressions

v XMLATTRIBUTES scalar function

v XMLCOMMENT scalar function

v XMLCAST specification

v XMLCONCAT scalar function

v XMLDOCUMENT scalar function

v XMLELEMENT scalar function

v XMLFOREST scalar function

v XMLNAMESPACES declaration

v XMLPARSE scalar function

v XMLPI scalar function

v XMLQUERY scalar function

v XMLROW scalar function

v XMLSERIALIZE scalar function

v XMLTEXT scalar function

v XMLVALIDATE scalar function

Some of these functions, for example the
XMLAGG aggregate function, are not
supported because they use XML values
from different rows and Q Apply handles
data one row at a time. Other functions can
be used in queries but cannot be part of an
expression.

v PARAMETER scalar function: You can use
this function in the db2-fn:sqlquery
function; a query is not part of an
expression

v XMLAGG: aggregate function

v XMLEXISTS predicate: Can be used in the
WHERE clause of a query

v XMLGROUP: aggregate function

v XMLTABLE: aggregate function

v XMLXSROBJECTID: scalar function with
no XML value output

v XMLTRANSFORM: scalar function; not
supported because other output than an
XML value is possible.

Restrictions

Q Replication support for XML expressions has the following restrictions:
v You cannot replicate XML expressions on both XML columns and key columns.
v You cannot map large object (CLOB, BLOB, DBCLOB) columns to XML columns.
v You cannot map XML columns to non-LOB columns or to non-XML columns

such as CHAR and VARCHAR.
v Several functions are not supported when they are used across various DB2

platforms:
– XMLQUERY is not supported when the source is DB2 for z/OS and the target

is DB2 for Linux, UNIX, and Windows.
– XMLQUERY on DB2 for Linux, UNIX, and Windows supports XQuery

language expressions while XMLQUERY on DB2 z/OS supports XPath
language expressions.

Chapter 5. Unidirectional 79

– XMLVALIDATE on DB2 for Linux, UNIX, and Windows has a different syntax
than the corresponding DSN_XMLVALIDATE function on DB2 z/OS. In
addition, the schema that describes the transformed document must be
registered at both the source and target. The LOAD operation extracts
transformed data from the source before applying the transformed data at the
target. If the schema is not registered for use at the source, the LOAD
operation terminates and the Q subscription is disabled.

Examples of XML expressions

The following examples show some of the ways that XML expressions can be used
between the source and target:

Concatenation of XML documents and adding a new root node
You can use expressions to merge the data in two XML columns into an
XML document that is surrounded by a new root node. The following
example combines the data in the xmlcol1 and xmlcol2 columns at the
source by using the XMLCONCAT function and surrounds the data with a
new root element by using the XMLELEMENT function. In this case you
would map the xmlcol1 and xmlcol2 columns to a single target column
and specify the expression.

Source data xmlcol1: <book><author>Foo</author><title>bar</title></book>
xmlcol2: <book><author>Bar</author><title>Foo</title></book>

Expression XMLELEMENT(NAME “bookstore”, XMLCONCAT(:xmlcol1, :xmlcol2))

Resulting data at
target

<bookstore>
<book><author>Foo</author><title>bar</title></book>
<book><author>Bar</author><title>Foo</title></book>
</bookstore>

Transforming or subsetting data
You can use XQUERY to modify replicated XML documents. For example,
you can delete an element in the XML document or add new elements. The
following example deletes the <title> element and its contents from the
source XML document:

Source data <book><author>Foo</author><title>bar</title></book>

Expression XMLQUERY(
copy $oldval := $d
modify do delete
$oldval/book/title
return $oldval'
PASSING :xmlcol AS "d")

Resulting data at
target

<book><author>Foo</author></book>

Validating final XML documents
You might need to validate a changed XML document against a certain
schema located at the target database. By using the XMLVALIDATE
function in an expression you can perform the validation while the data is
replicated. The expression must contain XMLVALIDATE around any other
expression that indicates the schema location as a parameter, as in the
following example:

Source data <book><author>Foo</author><title>bar</title></book>

80 Replication and Event Publishing Guide and Reference

Expression XMLVALIDATE(
XMLQUERY('transform
copy $oldval := $d
modify do delete
$oldval/book/title
return $oldval'
PASSING :xmlcol AS "d")
ACCORDING TO XMLSCHEMA

ID modifiedBooks.xsd)

Resulting data at
target

<book><author>Foo</author></book>

Mapping CHAR and VARCHAR columns to XML columns
You can migrate CHAR and VARCHAR source data that contains XML
documents into the DB2 native XML format. The XMLPARSE function
parses the character data and replication stores the data in an XML column
at the target, as in the following example:

Source data <book><author>Foo</author><title>bar</title></book>

Expression XMLPARSE(DOCUMENT :xmlcol)

Resulting data at
target

<book><author>Foo</author><title>bar</title></book>

Index or key columns for targets (unidirectional replication)
The Q Apply program uses a primary key, unique constraint, or unique index at
the target to enforce the uniqueness of each row when it applies the row to target
tables or parameters in stored procedures.

If you are creating a single Q subscription, then the Create Q Subscriptions wizard
in the Replication Center helps you select the columns that uniquely identify rows
in the target. If you are creating multiple Q subscriptions at one time, then you can
use the Review page of the Create Q Subscriptions wizard to customize which
columns are used for uniqueness at the target.

If the Replication Center finds uniqueness in the source table, it recommends a
target index or key for you. You can accept the recommendation or specify the
columns that you want as the replication key for the target.

Restriction: Large-object (LOB) columns and LONG columns cannot be used as
keys (IS_KEY in the IBMQREP_SRC_COLS and IBMQREP_TRG_COLS control
tables).

The recommendation that the Replication Center makes depends on whether the
target table already exists. The following sections explain the logic that Replication
Center uses when recommending a target key or index:
v “Target key or index for new target tables”
v “Target key or index for existing target tables in Q subscriptions” on page 82

Target key or index for new target tables

When the Replication Center recommends a primary key, unique constraint, or
unique index for new target tables, it checks the source table for one of the
following definitions, in the following order:

Chapter 5. Unidirectional 81

1. A primary key
2. A unique constraint
3. A unique index

If the Replication Center finds one of these definitions for the source table and
those source columns are selected for replication, then the Replication Center uses
the source table's primary key (or unique constraint or index) as the target's key.
When the Replication Center generates the SQL to build the new target tables, the
Replication Center builds them with the key or index that you specify. You can use
the default index name and schema or change the defaults to match your naming
conventions.

If the Replication Center cannot find a primary key, unique constraint, or unique
index at the source, it will automatically create a unique index for the new target
table that is based on all valid, subscribed source columns.

Target key or index for existing target tables in Q subscriptions

When the Replication Center recommends a key or index for target tables that
already exist, it first checks whether a primary key, unique constraint, or unique
index already exists on the target table. If Replication Center finds uniqueness on
the target table, the Replication Center makes sure that those columns are part of
the columns that you chose to replicate from the source table. The Replication
Center also checks whether the source table uses those columns to enforce
uniqueness at the source table. If the source and target tables have at least one
exact match for key or index columns, then the Replication Center recommends
that those columns be used to establish target row uniqueness.

If no uniqueness exists on the target table, then the Replication Center checks the
source table for one of the following definitions, in the following order:
1. A primary key
2. A unique constraint
3. A unique index

If the Replication Center finds one of these definitions for the source table and
those source columns are selected for replication, then it recommends the primary
key, unique constraint, or unique index from the source table.

Options for unexpected conditions in the target table
(unidirectional replication)

The Q Apply program updates the targets with changes that occur at the source
table. If other applications are also making changes to the target, then the Q Apply
program might encounter rows in the target that are different than expected.

For example, the Q Apply program might try to update a row in the target that
another application has already deleted. The option that you choose depends on
the level of granularity at which you want to isolate and fix the problem.

In many scenarios, you will likely want the Q Apply program to either force the
change or ignore unexpected conditions in target data. However, in some
scenarios, you might never expect problems in the target data and, therefore, might
choose a different action, depending on the level at which you think you will need
to troubleshoot problems.

82 Replication and Event Publishing Guide and Reference

You can specify that the Q Apply program takes one of the following actions when
it encounters unexpected conditions in target data:
v “Force the change”
v “Ignore the unexpected condition”
v “Deactivate the corresponding Q subscription” on page 84
v “Have the Q Apply program stop reading from the corresponding receive

queue” on page 84
v “Stop the Q Apply program” on page 85

CCD target tables: If the CCD table is condensed and complete (CONDENSED=Y
and COMPLETE=Y), you can choose between forcing the change and ignoring the
unexpected condition. For all other CCD table types, the only valid choice is force.

Stored procedures: If the Q Apply program is passing the data to a stored
procedure, then the action that you should select depends on the behavior of the
stored procedure. In most scenarios where the Q Apply program is passing data to
a stored procedure, you often do not want to force changes by transforming the
row operation. In most scenarios involving stored procedures that are
manipulating the data, you might want to specify for the Q Apply program to
ignore unexpected conditions in target data. However, if you have a stored
procedure that rebuilds the SQL statements for that row and transforms only some
data (for example, it might transform only American dollars to European euros),
then you might consider forcing the change.

Regardless of which options you select for unexpected conditions, whenever the Q
Apply program encounters a problem when processing a row, the Q Apply
program logs the unexpected condition in the IBMQREP_APPLYTRACE table and
in its diagnostic log file. Also, a copy of the row in error is inserted into the
IBMQREP_EXCEPTIONS table.

Force the change

When the Q Apply program encounters an unexpected condition in the target data,
the Q Apply program forces the change from the source table into the target table
or the parameters for the stored procedure. The Q Apply program changes the
operation (for example, from an insert to an update) so that it can be applied to
the target table or passed to the stored procedure parameters. Then it tries to
reapply the change.

Recommendation: You might want the Q Apply program to force changes if the
data that the Q Apply program receives from the source table is always what you
want at the target.

Ignore the unexpected condition

When the Q Apply program encounters an unexpected condition in the target data,
the Q Apply program ignores the unexpected condition, does not apply the row,
logs the error and any rows that it did not apply, and then completes and commits
the rest of the transaction. Whatever data is at the target wins; the target data is
not overwritten. However, if you choose for the Q Apply program to ignore the
unexpected condition, some data is not applied to the target; all rows that the are
not applied are logged in the IBMQREP_EXCEPTIONS table.

Recommendation: You might want the Q Apply program to ignore an unexpected
condition in the target data under the following circumstances:

Chapter 5. Unidirectional 83

v Convergence of data at the source table and the target table is not important in
your scenario.

v All SQL states are expected and can be tolerated.

Deactivate the corresponding Q subscription

When the Q Apply program encounters an unexpected condition in the target data,
it deactivates (or stops) only the Q subscription where the unexpected condition
occurred but continues to apply changes for the other Q subscriptions. The Q
Apply program logs the error and any rows that it did not apply, and then
completes and commits the rest of the transaction. The Q Capture program stops
capturing changes that occur at the source table for the deactivated Q subscription.
This option provides you the finest level of granularity for troubleshooting
problems at a particular table. You can then check what went wrong for the Q
subscription and then activate the Q subscription when it is fixed. Keep in mind
that, when a Q subscription is deactivated, the target of that Q subscription needs
to be reloaded when the Q subscription is activated again.

Recommendations:
v You might want to choose to deactivate the corresponding Q subscription when

unexpected conditions in target data occur under the following circumstances:
– You have multiple Q subscriptions that are defined over unrelated tables that

are replicated using the same replication queue map.
– Few changes occur at the table (especially if this table is a parent and changes

rarely occur in the parent key columns).
v You might not want to choose to deactivate the corresponding Q subscription

when unexpected conditions in target data occur under the following
circumstances:
– The table in the Q subscription has referential integrity with other tables, and,

therefore, other tables might be impacted if the one Q subscription is
deactivated. If the table is a child table, then deletes or updates that occur at
the parent table might fail in the child table because of referential integrity
errors (if DELETE RESTRICT is on). All Q subscriptions might end up having
errors related to referential integrity and might eventually all get disabled as
a result of the errors.

– You do not want to reload the target when the Q subscription needs to be
reloaded when the Q subscription is activated again.

– Deactivating a Q subscription is too severe of a result in your scenario if an
unexpected condition in target data occurs.

Have the Q Apply program stop reading from the corresponding
receive queue

When the Q Apply program encounters an unexpected condition in the target data,
it stops applying changes for all of the Q subscriptions on the receive queue, not
just for the Q subscription that had the error. The Q Apply program logs the error
and any rows that it did not apply, but does not complete or commit the rest of the
transaction. Any transactions that are affected by the unexpected condition in
target data are rolled back.

The Q Apply program continues to read from any other receive queues but does
not attempt to read from the deactivated queue. The Q Capture program continues
to send data to the deactivated queue, so you must correct the problem and restart
the receive queue before it fills up. If the Q Capture program can no longer write

84 Replication and Event Publishing Guide and Reference

to the send queue, then the Q Capture program either deactivates all Q
subscriptions that use that send queue or it shuts down, depending on what error
option you specified for the replication queue map.

Recommendations:
v You might want to stop the Q Apply program from applying transactions from

the receive queue when unexpected conditions in target data occur under the
following circumstances:
– Unexpected conditions in target data are not tolerated in your scenario and

you do not expect them to occur often.
– You have multiple Q subscriptions that are defined over related tables and

those Q subscriptions share the same replication queue map. Therefore, when
one Q subscription has an unexpected condition in the target data, you want
all of the Q subscriptions to stop. You can then check what went wrong with
the one Q subscription and then, after the Q subscription is fixed, restart the
receive queue. If few changes are being replicated to the target table, then
using this option might be a good choice because it helps to preserve
transactions and helps related tables maintain referential integrity.

v You might not want to stop the Q Apply program from applying transactions
from the receive queue if this result is too severe in your scenario if an
unexpected condition in target data occurs.

Stop the Q Apply program

When the Q Apply program encounters an unexpected condition in the target data,
it shuts down, but the receive queue continues to receive source data from the Q
Capture program. The Q Apply program logs the error and any rows that it did
not apply, but does not complete or commit the rest of the transaction. Any
transactions that are affected by the unexpected condition in target data are rolled
back. If the Q Apply program reads from only one receive queue, then this option
has the same result as having the Q Apply program stop applying changes for all
the Q subscriptions on the receive queue.

Shutting down is the most severe response that you can set for the Q Apply
program if unexpected conditions in target data occur. The Q Capture program
continues to send data to the receive queue, so you must correct the problem and
restart the receive queue before the receive queue becomes full. If the Q Capture
program can no longer write to the send queue, then the Q Capture program
either deactivates all Q subscriptions that use that send queue or it shuts down,
depending on what error option you specified for the replication queue map.

Recommendations:
v You might want to stop the Q Apply program when unexpected conditions in

target data occur under the following circumstances:
– You have multiple Q subscriptions that are defined over related tables and

the data is transported over multiple replication queue maps. When one Q
subscription has an unexpected condition in the target data, you want all of
the Q subscriptions to stop. You can then check what went wrong with the
one Q subscription and then, after the Q subscription is fixed, restart the
receive queue. If few changes are being replicated to the target table, then
having this option might be a good choice because it helps to preserve
transactions and helps related tables maintain referential integrity.

– You want to easily monitor your configuration. This option of stopping the Q
Apply program is similar to stopping the Q Apply program from applying

Chapter 5. Unidirectional 85

transactions from the receive queue; however, your environment might be
easier to monitor if the Q Apply program shuts down instead of just stopping
reading from a particular receive queue. For example, you might want to
select this option while you are testing.

v You might not want to stop the Q Apply program if this result is too severe in
your scenario if an unexpected condition in target data occurs.

Error options for Q Replication
In Q Replication, you can specify what action the Q Apply program takes when it
encounters errors, such as SQL errors, in your environment. The option that you
choose depends on the level of granularity at which you want to isolate and fix the
problem. The same error options apply for both unidirectional and multidirectional
replication.

You can choose for one of the following actions to occur when the Q Apply
program encounters errors:
v “Deactivate the corresponding Q subscription”
v “Have the Q Apply program stop reading from the corresponding receive

queue” on page 87
v “Stop the Q Apply program” on page 87

Regardless of which error options you select, whenever the Q Apply program
encounters an error, the Q Apply program logs the error in the
IBMQREP_APPLYTRACE table and in its diagnostic log files, and a copy of any
rows that were not applied and the details about the error are inserted into the
IBMQREP_EXCEPTIONS table.

Deactivate the corresponding Q subscription

When the Q Apply program encounters an error, it deactivates (or stops) only the
Q subscription where the error occurred but continues to apply changes for the
other Q subscriptions. The Q Apply program logs the error and any rows that it
did not apply, and then completes and commits the rest of the transaction. The Q
Capture program stops capturing changes that occur at the source table for the
deactivated Q subscription. This option provides you the finest level of granularity
for troubleshooting problems at a particular table. You can check what went wrong
for the Q subscription and then activate the Q subscription when it is fixed. Keep
in mind that, when a Q subscription is deactivated, the target of that Q
subscription needs to be reloaded when the Q subscription is activated again.

Recommendations:
v You might want to choose to deactivate the corresponding Q subscription when

an error occurs under the following circumstances:
– You have two Q subscriptions that are defined over unrelated tables that are

replicated using the same replication queue map.
– Few changes occur at the table (especially if this table is a parent and changes

rarely occur in the parent key columns).
v You might not want to choose to deactivate the corresponding Q subscription

when an error occurs under the following circumstances:
– The table in the Q subscription has referential integrity with other tables, and,

therefore, other tables might be impacted if the one Q subscription is
deactivated. If the table is a child table, then deletes or updates that occur at
the parent table might fail in the child table because of referential integrity

86 Replication and Event Publishing Guide and Reference

errors (if DELETE RESTRICT is on). All Q subscriptions might end up having
errors related to referential integrity and might eventually all get disabled as
a result of the errors.

– You do not want to reload the target when the Q subscription needs to be
reloaded when the Q subscription is activated again.

– Deactivating a Q subscriptions is too severe of a result in your scenario if an
error occurs.

Have the Q Apply program stop reading from the corresponding
receive queue

When the Q Apply program encounters an error, it stops applying changes for all
of the Q subscriptions on the receive queue, not just for the Q subscription that
had the error. The Q Apply program logs the error and any rows that it did not
apply, but does not complete or commit the rest of the transaction. Any
transactions that are affected by the error are rolled back. If the Q Apply program
reads from other receive queues, then it continues to process data from the other
receive queues. If the Q Apply program does not read from other receive queues,
then it shuts down. The Q Capture program continues to send data to the receive
queue, so you must correct the problem and restart the receive queue before the
receive queue becomes full. If the Q Capture program can no longer write to the
send queue, then the Q Capture program either deactivates all Q subscriptions that
use that send queue or it shuts down, depending on what error option you
specified for the replication queue map.

Recommendations:
v You might want to stop the Q Apply program from applying transactions from

the receive queue when an error occurs under the following circumstances:
– Errors are not tolerated in your scenario and you do not expect them to occur

often.
– You have multiple Q subscriptions that are defined over related tables and

those Q subscriptions share the same replication queue map. Therefore, when
one Q subscription has an error, you want all of the Q subscriptions to stop.
You can check what went wrong with the one Q subscription and then, after
the Q subscription is fixed, restart the receive queue. If few changes are being
replicated to the target table, then using this option might be a good choice
because it helps to preserve transactions and helps related tables maintain
referential integrity.

v You might not want to stop the Q Apply program from applying transactions
from the receive queue if this result is too severe in your scenario if an error
occurs.

Stop the Q Apply program

When the Q Apply program encounters an error, it shuts down, but the receive
queue continues to receive source data from the Q Capture program. The Q Apply
program logs the error and any rows that it did not apply, but does not complete
or commit the rest of the transaction. Any transactions that are affected by the
error are rolled back. If the Q Apply program reads from only one receive queue,
then this option has the same result as having the Q Apply program stop applying
changes for all the Q subscriptions on the receive queue.

Shutting down is the most severe response that you can set for the Q Apply
program when errors occur. The Q Capture program for those Q subscriptions

Chapter 5. Unidirectional 87

continues to send data to the receive queue, so you must correct the problem and
restart the receive queue before the receive queue becomes full. If the Q Capture
program can no longer write to the send queue, then the Q Capture program
either deactivates all Q subscriptions that use that send queue or it shuts down,
depending on what error option you specified for the replication queue map.

Recommendations:
v You might want to stop the Q Apply program from applying transactions from

the receive queue when an error occurs under the following circumstances:
– Errors are not tolerated in your scenario and you do not expect them to occur

often.
– You have multiple Q subscriptions that are defined over related tables and

the data is transported over multiple replication queue maps. When one Q
subscription has a error, you want all of the Q subscriptions to stop. You can
check what went wrong with the one Q subscription and then, after the Q
subscription is fixed, restart the receive queue. If few changes are being
replicated to the target table, then using this option might be a good choice
because it helps to preserve transactions and helps related tables maintain
referential integrity.

v You might not want to stop the Q Apply program from applying transactions
from the receive queue if this result is too severe in your scenario if an error
occurs.

88 Replication and Event Publishing Guide and Reference

Chapter 6. Setting up multidirectional Q Replication

With Q Replication, you can replicate data back and forth between tables on two
or more servers while applications update the identical copies of a table at all
servers while keeping all copies of the table synchronized. This type of replication
is known as multidirectional replication.

Bidirectional replication
In bidirectional replication, Changes that are made to one copy of a table are
replicated to a second copy of that table, and changes that are made to the second
copy are replicated back to the first copy.

Bidirectional replication has the following characteristics:
v Applications on either server can update the same rows in those tables at the

same time. However, there is little or no potential for the same data in the
replicated tables to be updated simultaneously by both servers. Either the same
row is updated by one server at a time, or one server updates only certain
columns or rows of your data, and the other server updates different columns or
rows.

v You can choose which copy of the table wins if a conflict occurs.

The collection of both copies of a single table is called a logical table. Each server
has a copy of the table. Each copy of the table:
v Must have the same number of columns and rows
v Must have identical column names
v Must have compatible data types
v Can have different names and schemas

In this type of replication, you cannot manipulate the data by having the Q Apply
program pass the data to a stored procedure. There is at least one Q Capture
program and one Q Apply program running on each server that is part of a
bidirectional configuration.

Attention: The control tables for the Q Capture and Q Apply programs that are
on each individual server must have the same schema name. For example, if you
have a server named SERVER_RED and a server named SERVER_GREEN, then the
Q Capture and Q Apply programs that are on SERVER_RED must both have the
same schema, and the Q Capture and Q Apply programs that are on
SERVER_GREEN must both have the same schema.

Replication objects for bidirectional replication

In a bidirectional configuration, you must have the appropriate number of
replication queue maps and Q subscriptions:

Number of replication queue maps
Between each pair of servers that participate in bidirectional replication,
you need two replication queue maps. For example, if you have two
servers named SERVER_RED and SERVER_GREEN, you need two
replication queue maps:

© Copyright IBM Corp. 2004, 2012 89

v One to identify the WebSphere MQ queues that transport data from
SERVER_RED to SERVER_GREEN

v One to identify the WebSphere MQ queues that transport data from
SERVER_GREEN to SERVER_RED

Number of Q subscriptions
For every logical table that is replicated in bidirectional replication, you
need a pair of Q subscriptions between the two servers. For example, if
you have two servers named SERVER_RED and SERVER_GREEN, then
two Q subscriptions are built for you:
v One from the source table on SERVER_RED to the target table on

SERVER_GREEN
v One from the source table on SERVER_GREEN to the target table

SERVER_RED

If you have two logical tables, you need four Q subscriptions; for three
logical tables, you need six Q subscriptions, and so on.

Figure 15 shows bidirectional replication of one logical table between two servers.
For one logical table, you need two Q subscriptions and two replication queue
maps.

Conflict detection in bidirectional replication

In bidirectional replication, it is possible for data that is replicated from the source
table in one Q subscription to conflict with changes made to the corresponding
target table by an application other than the Q Apply program. Bidirectional
replication uses data values to detect and resolve conflicts. You can choose which
data values are used to detect conflicts. These data values can be key column
values only, changed column values, or all column values.

For example, imagine a scenario in which applications on one system make
changes to tables in a server (SERVER_RED) and that server replicates those
changes to identical tables in a server (SERVER_GREEN) on a standby system. The
first system fails, at which time your applications start using the tables on

DB2 DB2

Q
Capture

Q
Capture

Q
Apply

Q
Apply

LogFirst

SecondLog

Q subscription from first to second

WebSphere
MQ

Q subscription from second to first

Figure 15. Q subscriptions between two copies of a table for bidirectional replication.
Changes are replicated from each copy of the table to the other copy of that table over
WebSphere MQ queues.

90 Replication and Event Publishing Guide and Reference

SERVER_GREEN. When the first system comes back online, you want to replicate
changes from SERVER_GREEN to SERVER_RED. However, when the first system
shut down, it could have failed to replicate some data to the second system. That
data, which is now old, should be replaced by the data replicated from
SERVER_GREEN. When you replicate the new data, the Q Apply program for
SERVER_RED recognizes the conflicts and forces the changes that come from
SERVER_GREEN to SERVER_RED.

You can choose how the Q Apply programs on both servers check for conflicts
when they try to apply data to both copies of the table and what actions those
programs should take if they detect conflicts. The choices that you make for
conflict rules and conflict actions are critical decisions because they affect the
behavior of how rows are applied.

Peer-to-peer replication
In peer-to-peer replication (also known as multimaster replication) updates on any
one server are replicated to all other associated servers.

Peer-to-peer replication has the following characteristics:
v Replication occurs between tables on two or more servers.
v Applications on any of the servers can update the same rows and columns in

those tables at the same time.
v All servers are equal peers with equal ownership of the data; no server is the

"master" or source owner of the data.

You replicate copies of tables between multiple servers in peer-to-peer replication.
The collection of all copies of a single table is called a logical table. Each server has
a copy of the table. Each copy of the table:
v Must have the same number of columns and rows
v Must have identical column names
v Must have compatible data types
v Can have different names and schemas

In peer-to-peer replication, data convergence is assured between all copies of the
logical table, meaning that each copy of the table eventually achieves the same
state as the other copies and has the most recent committed values. Because
peer-to-peer replication is asynchronous, the copies of the tables might not
converge until your applications stop making changes to all tables, all changes are
replicated, and all messages are processed.

In this type of replication, you cannot manipulate the data by having the Q Apply
program pass the data to a stored procedure. There is at least one Q Capture
program and one Q Apply program running on each server that is part of a
peer-to-peer configuration.

Important: The control tables for the Q Capture and Q Apply programs that are on
each individual server must have the same schema name. For example, if you have
a server named SERVER_RED and a server named SERVER_GREEN, then the Q
Capture and Q Apply programs that are on SERVER_RED must both have the
same schema, and the Q Capture and Q Apply programs that are on
SERVER_GREEN must both have the same schema.

Chapter 6. Multidirectional 91

In a peer-to-peer configuration, conflict detection and resolution are managed
automatically by the Q Apply program in a way that assures data convergence;
you do not need to configure anything for conflict detection and resolution. Q
Replication maintains additional information to track the version of each data
change, and the Q Replication system uses this additional versioning information
to detect and resolve conflicts.

All tables that are replicated in peer-to-peer replication are altered to include two
columns that are used only by Q Replication: a timestamp column and a small
integer column. These columns are both maintained by triggers. These extra
replication columns and triggers are created when you create the Q subscriptions
for peer-to-peer replication. The versioning columns reflect which version of the
row is most current. By examining the values of the versioning columns, it is
possible to determine at which time the row was last updated, and by which
server.

Conflict detection and resolution is based on the contents of these versioning
columns. If a conflict is detected, the most recent version of the row is kept, which
is the one that contains the most recent timestamp value (after the times are
corrected for time zones).

When you create a Q subscription for peer-to-peer replication with the ASNCLP
command-line program or Replication Center, the following conflict handling
options are set automatically in the IBMQREP_TARGETS table:

Conflict rule
V (check version): The Q Apply program checks the version column before
applying a row.

Conflict action
F (force): The Q Apply program tries to force the change. This requires that
the Q Capture program send all columns, so the CHANGED_COLS_ONLY
value must be set to N (no) in the IBMQREP_SUBS table.

Attention: The V conflict rule and F conflict action are required for peer-to-peer
replication. Do not change these settings in the control tables.

Because versioning columns are used to detect conflicts in peer-to-peer replication,
columns with LOB data types are handled the same as columns with other data
types.

The following topics describe the number of replication queue maps and Q
subscriptions that are needed for peer-to-peer replication and how peer-to-peer
replication handles referential integrity:
v “Replication objects for peer-to-peer replication with two servers”
v “Replication objects for peer-to-peer replication with three or more servers” on

page 93
v “Conflict resolution and referential integrity” on page 95

Replication objects for peer-to-peer replication with two servers

In a peer-to-peer configuration with two servers, you must have the appropriate
number of replication queue maps and Q subscriptions:

Number of replication queue maps
Between each pair of servers that participate in peer-to-peer replication,

92 Replication and Event Publishing Guide and Reference

you need two replication queue maps. For example, if you have two
servers named SERVER_RED and SERVER_GREEN, you need two
replication queue maps:
v One to identify the WebSphere MQ queues that transport data from

SERVER_RED to SERVER_GREEN
v One to identify the WebSphere MQ queues that transport data from

SERVER_GREEN to SERVER_RED

Number of Q subscriptions
For every logical table that is replicated in peer-to-peer replication, you
need a pair of Q subscriptions between the two servers. For example, if
you have two servers named SERVER_RED and SERVER_GREEN, then
two Q subscriptions are built for you:
v One from the source table on SERVER_RED to the target table on

SERVER_GREEN
v One from the source table on SERVER_GREEN to the target table

SERVER_RED

If you have two logical tables, you need four Q subscriptions; for three
logical tables, you need six Q subscriptions, and so on.

Figure 16 shows peer-to-peer replication of one logical table between two servers.
For one logical table replicated between two servers, you need two Q
subscriptions: one to replicate data from peer table A to peer table B, and one to
replicate data from peer table B to peer table A. You also need at least two
replication queue maps.

Replication objects for peer-to-peer replication with three or
more servers

In a peer-to-peer configuration with three or more servers, you must have the
appropriate number of replication queue maps and Q subscriptions:

Number of replication queue maps
Between each pair of servers that participate in peer-to-peer replication,

DB2 DB2

Q
Capture

Q
Capture

Q
Apply

Q
Apply

LogPeer A

Peer BLog

Q subscription from A to B

WebSphere
MQ

Q subscription from B to A

Figure 16. Q subscriptions in peer-to-peer replication with two servers. Changes are
replicated from each copy of the table to the other copy of that table over WebSphere MQ
queues.

Chapter 6. Multidirectional 93

you need two replication queue maps. You can calculate the number of
replication queue maps that you need by using the equation n*(n-1), where
n is the number of servers. For example, if you have three servers named
SERVER_RED, SERVER_BLUE, and SERVER_GREEN, you need six
replication queue maps:
v One to identify the WebSphere MQ queues that transport data from

SERVER_RED to SERVER_GREEN
v One to identify the WebSphere MQ queues that transport data from

SERVER_GREEN to SERVER_RED
v One to identify the WebSphere MQ queues that transport data from

SERVER_RED to SERVER_BLUE
v One to identify the WebSphere MQ queues that transport data from

SERVER_BLUE to SERVER_RED
v One to identify the WebSphere MQ queues that transport data from

SERVER_BLUE to SERVER_GREEN
v One to identify the WebSphere MQ queues that transport data from

SERVER_GREEN to SERVER_BLUE

Number of Q subscriptions
For every logical table that is replicated in peer-to-peer replication, there is
a pair of Q subscriptions between the two servers. You can calculate the
number of Q subscriptions that are built for you by using the equation
n*(n-1), where n is the number of servers. For example, if you have three
servers named SERVER_RED, SERVER_GREEN, and SERVER_BLUE, then
six Q subscriptions are built for you:
v One from the source table on SERVER_RED to the target table on

SERVER_GREEN
v One from the source table on SERVER_GREEN to the target table on

SERVER_RED
v One from the source table on SERVER_RED to the target table on

SERVER_BLUE
v One from the source table on SERVER_BLUE to the target table on

SERVER_RED
v One from the source table on SERVER_BLUE to the target table on

SERVER_GREEN
v One from the source table on SERVER_GREEN to the target table on

SERVER_BLUE

If you have two logical tables, you need 12 Q subscriptions; for three
logical tables, you need 18 Q subscriptions, and so on.

Figure 17 on page 95 shows peer-to-peer replication of one logical table
between three servers. In this case, you need six Q subscriptions: two
going between each pair of servers. You also need at least six replication
queue maps.

94 Replication and Event Publishing Guide and Reference

Conflict resolution and referential integrity

In almost all cases, peer-to-peer replication assures that all copies of a replicated
table converge to the same state, even when conflicting changes occur at different
copies. However, unresolvable conflicts can occur when a conflict stems from
duplicate values in unique constraints that are defined on columns other than key
columns or from referential constraint violations. When an unresolvable conflict
occurs, the conflicting row is recorded in the IBMQREP_EXCEPTIONS table, and
the Q Apply program performs the error action that you specified for the Q
subscription.

If you want specific, unresolvable conflicts to be tolerated and the Q Apply
program not to perform the error action that you specified for the Q subscription,
then you can specify acceptable SQLSTATE values by setting the OKSQLSTATES
for the Q subscription. Note, however, that even if you specify specific SQL states
in the OKSQLSTATES, peer-to-peer replication still does not ensure convergence of
all copies of the table for conflicts that result from referential constraint violations
or from duplicate values in unique constraints that are defined on non-key
columns. You can use the table differencing utility and the table repair utility to
find and repair differences that are caused by any unresolvable conflicts that you
allow.

Conflicts cannot be resolved when changes occur at different copies of the
replicated table that introduce the same value for a unique constraint on columns
other than the key columns in the Q subscription. If you specify that SQLSTATE
23505 is allowed by adding the value to the OKSQLSTATES for the Q subscription,
then any unresolvable unique key conflicts do not cause the Q Apply program to
perform the error action that you specified for the Q subscription.

Conflicts cannot be resolved when changes occur in rows in different copies of
tables on which referential constraints are defined. These conflicts might be caused
by either delays in the propagation of messages that involve the rows or by true
conflicts. An example of a true conflict is when a parent row is deleted in one copy
and concurrently a child row is inserted in another copy. When the Q Apply
program tries to insert the child row at the copy where the parent row was

DB2 DB2

Q
Capture

Q
Capture

Q
Apply

Q
Apply

LogPeer A

Peer B

Log

WebSphere
MQ

DB2

Log

Peer C

Q
Capture

Q
Capture

Q
Apply

Q
Apply

Q
Apply

WebSphere
MQ

Q
Capture

WebSphere
MQ

Q
Capture

Q
Apply

Figure 17. Q subscriptions in peer-to-peer replication with three servers. Changes are
replicated from each copy of the table to all other copies of that table over WebSphere MQ
queues.

Chapter 6. Multidirectional 95

concurrently deleted, an unresolvable conflict occurs, and the Q Apply program
records the child row in the IBMQREP_EXCEPTIONS table with SQLSTATE 23503.
When the Q Apply program attempts to delete the parent row at the copy where
the child row was concurrently inserted, the delete fails if the referential
constraint's delete rule is to restrict deletes (DELETE RESTRICT). The Q Apply
program records the parent row in the IBMQREP_EXCEPTIONS table with
SQLSTATE 23504 or SQLSTATE 23001.

Another example of a true conflict is when a child row is concurrently inserted
and removed by the delete rule (CASCADE DELETE) of the referential integrity
when a delete of the parent row is applied. In this case, when the cascade delete of
the child row is replicated to the other copies of the table, the other copies might
not find that child row, and a SQLSTATE 02000 is reported. The same SQLSTATE
02000 might be caused by delays in the propagation of messages that involve the
rows. The insert of a child row at Copy 2 might arrive at Copy 3 before the insert
of the parent row at Copy 1 arrives at Copy 3.

Referential integrity for partitioned databases

In a multiple partitioned database environment with tables that have referential
integrity relationships, ensure that both the parent and child rows are on the same
partition. If the parent and child rows are in a referential integrity relationship and
are not on the same partition, the target might have referential integrity problems
that result in SQLSTATE 23504, 23001, or 23503 (which correspond to SQLCODE
530 and 532).

Avoiding deadlocks in the IBMQREP_DELTOMB table

The IBMQREP_DELTOMB table is used by the Q Apply program to record
conflicting deletes in peer-to-peer replication. If you experience deadlocks in this
control table on any of the servers, increase the value of the deadlock_retries
parameter for the Q Apply program. Also, try to reduce delete conflicts in your
workload if possible.

Bidirectional replication versus peer-to-peer replication
If you want to replicate data between tables on two servers, you have two choices
for multidirectional replication: bidirectional replication or peer-to-peer replication.

The following information will help you decide whether to choose bidirectional or
peer-to-peer replication to better meet your business needs. If your configuration
requires more than two servers, then peer-to-peer replication is the only choice
offered for multidirectional replication.

Scenarios that work best with bidirectional replication

Consider choosing bidirectional replication for the following circumstances:
v You do not expect conflicts to occur in your configuration, and you do not need

to check if conflicts do occur. For minimal overhead and network traffic, specify
for both servers to ignore conflicts.

v You do not expect conflicts to occur in your configuration, you want to check if
conflicts do occur as a safety measure, and it is acceptable to have one server
win if an unexpected data collision occurs.

v One server updates only certain columns of your data, and the other server
updates the other columns. If you specify that the Q Apply program is to check

96 Replication and Event Publishing Guide and Reference

both key and changed columns for conflicts, the Q Apply program merges
updates that affect different columns in the same row.

v One server updates only certain rows of your data, and the other server updates
other rows.

Scenarios that work best with peer-to-peer replication

Consider choosing peer-to-peer replication if conflicts might occur in columns with
LOB data types. Because versioning columns are used to detect conflicts in
peer-to-peer replication, columns with LOB data types are handled the same as
columns with other data types.

Creating Q subscriptions for bidirectional replication
You can create Q subscriptions that specify what changes to capture from either of
two tables, what queues to use for exchanging change messages, and how to
process the messages. Changes to either of the two tables replicate to the other
table.

Before you begin

v Plan how you want to group replication queue maps and Q subscriptions.
v On the server that has the first copy of the table, create the control tables for the

Q Capture and Q Apply programs. The control tables for the Q Capture and Q
Apply programs that are on each individual server must have the same schema.

v On the server that has the second copy of the table, create the control tables for
the Q Capture and Q Apply programs.

v Create the two replication queue maps that will transport data between each
server. You need one replication queue map for replicating data from the first
copy of the table to the second, and one for replicating data from the second
copy of the table back to the first. (You can do this task before you create Q
subscriptions or while you create Q subscriptions.)

Restrictions

v Stored procedures cannot participate in bidirectional replication.
v Because before values of LOB columns are not replicated in bidirectional

replication, conflicts for LOB columns are not detected.
v IDENTITY columns in the target table cannot be defined as GENERATED

ALWAYS.
v Q subscriptions for tables that have referential integrity relationships with each

other should be created at the same time (in the same CREATE QSUB command
when you are using the ASNCLP command-line program or in the same session
with the Create Q Subscriptions wizard in the Replication Center).

About this task

One Q subscription is created to replicate transactions from the first copy of the
table to the second copy of the table, and another Q subscription is created to
replicate transactions from the second copy of the table back to the first copy.
When you create Q subscriptions for bidirectional replication using the ASNCLP
command-line program or the Replication Center, the administration tool creates
both Q subscriptions at one time.

Procedure

Chapter 6. Multidirectional 97

To create Q subscriptions for bidirectional replication, use one of the following
methods:

Method Description

ASNCLP
command-line
program

Use the CREATE QSUB command for bidirectional replication. For
example, the following commands set the environment and create
two bidirectional Q subscriptions for the EMPLOYEE table at
servers SAMPLE and SAMPLE2:

SET SUBGROUP "bidirgroup";

SET BIDI NODE 1 SERVER DBALIAS SAMPLE SCHEMA RED;
SET BIDI NODE 2 SERVER DBALIAS SAMPLE2 SCHEMA BLUE;

SET CONNECTION SOURCE SAMPLE.RED
TARGET "SAMPLE2".BLUE REPLQMAP
"SAMPLE_RED_TO_SAMPLE2_BLUE";
SET CONNECTION SOURCE SAMPLE2.BLUE
TARGET SAMPLE.RED REPLQMAP
"SAMPLE2_BLUE_TO_SAMPLE_RED";

SET TABLES (SAMPLE.RED.RED.EMPLOYEE);

CREATE QSUB SUBTYPE B
FROM NODE SAMPLE.RED SOURCE
ALL CHANGED ROWS Y HAS LOAD PHASE I
TARGET CONFLICT RULE C CONFLICT ACTION F
FROM NODE SAMPLE2.BLUE SOURCE
ALL CHANGED ROWS N HAS LOAD PHASE E
TARGET CONFLICT RULE C CONFLICT ACTION I;

The SET CONNECTION statements specify the two replication
queue maps that are used. The FROM NODE statements specify
options that are unique to each Q subscription.

Replication Center Use the Create Q Subscriptions wizard. To open the wizard,
expand the appropriate Q Capture or Q Apply schema, right-click
the Q Subscriptions folder, and select Create.

On the Target Tables page, review the target object profile. Modify
the profile if necessary so that the target tables for the Q
subscriptions meet your needs.

The target object profile determines if an existing target table is
used or if a new one is created. The Replication Center looks for an
object that matches the naming scheme that is defined in the
profile. If a matching object does not exist, then the object is
created.

Improving performance in bidirectional replication with the
IBMQREP_IGNTRAN table

You can use the Q Capture program's ability to ignore specified transactions to
improve performance in a pure, two-server bidirectional configuration.

About this task

To avoid the recapture of transactions, by default the Q Apply program inserts
P2PNORECAPTURE signals into the IBMQREP_SIGNAL table for each transaction

98 Replication and Event Publishing Guide and Reference

that it applies. The signals are inserted at the Q Capture server that is shared by
the Q Apply program. When Q Capture reads the signals in the log, it ignores
these transactions.

When there are many bidirectional Q subscriptions, the number of signal inserts
can affect replication performance. To avoid this, you can specify that the programs
use the IBMQREP_IGNTRAN table to avoid recapture. This method tells the Q
Capture program to automatically ignore any changes that come from the Q Apply
program. You also start the Q Apply program with the insert_bidi_signal=N
startup parameter.

Use the following guidelines to determine which method to use to avoid recapture:

Table 9. Recapture avoidance methods for different bidirectional replication configurations

Configuration Recapture avoidance method

Multiple bidirectional configurations between
two servers, or a combination of
bidirectional, unidirectional, and peer-to-peer
configurations

You must accept the default method

The default method of signal inserts ensures
that all changes are propagated correctly
between servers.

If you start with a pure, two-server
bidirectional topology but plan to later add
branching unidirectional or peer-to-peer
configurations, you should also accept the
default method of recapture avoidance.

Pure, two-server bidirectional configuration Performance can be improved by using the
IBMQREP_IGNTRAN table to avoid
recapture

If you use the IBMQREP_IGNTRAN table
method, do not later add branching
unidirectional or peer-to-peer configurations
to the bidirectional configuration.

Procedure

To use the IBMQREP_IGNTRAN table to avoid recapture in bidirectional
replication:
1. Insert an identifier for the Q Apply program into the IBMQREP_IGNTRAN

table at the server that is shared by the Q Apply program and Q Capture
program in the bidirectional configuration. Use the following SQL depending
on your operating system:

insert into schema.IBMQREP_IGNTRAN (
PLANNAME,
IGNTRANTRC

) values (
’qapply_plan’,
’N’);

Where schema is the schema that is shared by the Q Apply program and
Q Capture program at the server, and qapply_plan is the plan name for
the Q Apply program, for example ASNQA910 for a Version 9.1 Q
Apply program.

Chapter 6. Multidirectional 99

insert into schema.IBMQREP_IGNTRAN (
AUTHID,
IGNTRANTRC

) values (
’qapply_authid’,
’N’);

Where schema is the schema shared by the Q Apply program and Q
Capture program at the server, and qapply_authid is the authorization ID
that started the Q Apply program.

To use the IBMQREP_IGNTRAN table option, the Q Apply program's
authorization ID must be unique and not shared by other applications, except
for the Q Capture program. Otherwise, the Q Capture program will incorrectly
ignore transactions from these other applications as well. On z/OS, this
situation is rare because plan names are unique. However, on Linux, UNIX,
and Windows it is not unusual to run the Q Apply program under the same
authorization ID as other applications.

If Q Apply was migrated to Version 10.1 on z/OS: The Q Apply plan name
for Version 10.1 on z/OS changed to ASNQA101 from ASNQA910. To ensure
that transactions from the Version 10.1 Q Apply program are ignored, after Q
Apply is migrated to Version 10.1 you must enter the new ASNQA101 plan
name in the IBMQREP_IGNTRAN table and then either reinitialize the Q
Capture program or stop and start Q Capture so that it reads the new plan
name. As a safeguard, you can put both the ASNQA101 and ASNQA910 plan
names in IBMQREP_IGNTRAN.
The Q Capture program ignores all replicated transactions that come from the
specified Q Apply plan name or authorization ID, but continues to read and
process signals from Q Apply in the IBMQREP_SIGNAL table.

2. When you start the Q Apply program, specify the insert_bidi_signal=n
startup parameter. The short form syntax is INS=N.

3. Optional: For improved performance when you use insert_bidi_signal=n,
ensure that the value of the IGNTRANTRC column in the
IBMQREP_IGNTRAN table is set to N (no tracing). A value of N, the default,
prevents the Q Capture program from inserting a row into the
IBMQREP_IGNTRANTRC table for each transaction that it does not recapture
and reduces maintenance overhead on the table.

Options for conflict detection (bidirectional replication)
The choices that you make for conflict rules and conflict actions affect the behavior
of how rows are applied. The conflict rules determine how much of the data is
checked to detect a conflict and the types of conflicts that are detected. When you
choose to have more data checked for conflicts, then the Q Capture program must
send more data to the Q Apply program to make that data available to be checked,
which might influence performance and network traffic.

For conflict detection in bidirectional replication, before values at the source server
are compared against the current values at the target server. Based on the level of
conflict detection that you choose, the Q Capture program sends a different
combination of before or after values to the Q Apply program. The information
here is provided to help you make a more informed decision about the level of
conflict detection.

100 Replication and Event Publishing Guide and Reference

Note: Because before values are used to detect conflicts in bidirectional replication
and Q Replication does not replicate before values for LOB data types, conflicts in
LOB columns are not detected.

The following sections describe your options for conflict detection in bidirectional
replication and the results of different combinations of conflict options:
v “How the Q Apply program checks for conflicts”
v “How conflicts are resolved at each server”
v “Outcomes of different choices for checking and resolving conflicts” on page 102

How the Q Apply program checks for conflicts

You can choose for the Q Apply program to check one of the following groups of
columns when determining conflicts:
v Only key columns
v Key columns and changed columns
v All columns

Only key columns
The Q Apply program attempts to update or delete the target row by
checking the values in the key columns. The Q Apply program detects the
following conflicts:
v A row is not found in the target table.
v A row is a duplicate of a row that already exists in the target table.

With this conflict rule, the Q Capture program sends the least amount of
data to the Q Apply program for conflict checking. No before values are
sent, and only the after values for any changed columns are sent.

Key and changed columns
The Q Apply program attempts to update or delete the target row by
checking the key columns and the columns that changed in the update.
The Q Apply program detects the following conflicts:
v A row is not found in the target table.
v A row is a duplicate of a row that already exists in the target table.
v A row is updated at both servers simultaneously and the same column

values changed.

If a row is updated at both servers simultaneously and the different
column values changed, then there is no conflict. With this conflict rule, the
Q Apply program merges updates that affect different columns into the
same row. Because the Q Apply program requires the before values for
changed columns for this conflict action, the Q Capture program sends the
before values of changed columns.

All columns
The Q Apply program attempts to update or delete the target row by
checking all columns that are in the target table. With this conflict rule, the
Q Capture program sends the greatest amount of data to the Q Apply
program for conflict checking.

How conflicts are resolved at each server

For each server, you can choose what action each server takes when a conflict
occurs. Each server can either force the conflicting row into its target table or

Chapter 6. Multidirectional 101

ignore the conflict. These options of force and ignore can be paired in two different
ways to provide different behaviors for the Q Apply program.

One server forces conflicts, the other server ignores conflicts
One server (the one with the conflict action of ignore) wins if a conflict
occurs; this server is the "master" or source owner of the data. If a row is
updated at both servers simultaneously and the same column values
changed, then the master server (the one with the conflict action of ignore)
ignores the conflict, and the row from the master server is forced in the
target table on the other server (the one with the conflict action of force).
For this conflict action, the Q Capture program sends the before values of
all columns to the Q Apply program. The Q Apply program logs all
conflicts in the IBMQREP_EXCEPTIONS table.

Both servers ignore conflicts
Any time a conflict occurs because a row is not found or a row is a
duplicate of a row that already exists in the target table, the Q Apply
program logs the conflict in the IBMQREP_EXCEPTIONS table, but
otherwise ignores the conflict. This conflict action specifies that the Q
Capture program does not send before values to the Q Apply program for
conflict checking. Only the after values for any changed columns are sent.

Recommendation: Set both servers to ignore conflicts if you do not expect
any conflicts to occur between the two servers and you want the least
overhead to be used for conflict detection by the Q Capture and Q Apply
programs.

Outcomes of different choices for checking and resolving
conflicts

Table 10 on page 103 describes the outcomes for different combinations of options
that you can choose from for conflict detection. In all cases, the first server is the
server that you have opened the wizard from.

102 Replication and Event Publishing Guide and Reference

Table 10. Outcomes of different combinations of options for conflict detection

How to check for conflicts How to resolve conflicts Outcome

Check all columns for conflicts. The first server takes precedence. For the Q subscription from the first
server to the second server: If any
change made to the source table at
the first server conflicts with data in
the target table at the second server,
the Q Apply program applies the
source change to the target table. The
Q Apply program logs the conflict in
the IBMQREP_EXCEPTIONS table,
deletes the conflicting row in the
target table, and inserts the row from
the source table.

For the Q subscription from the
second server to the first server: If
any change made to the source table
conflicts with data in the target table,
the Q Apply program logs the conflict
but does not force the change into the
target table.

The second server takes precedence. For the Q subscription from the first
server to the second server: If any
change made to the source table
conflicts with data in the target table,
the Q Apply program logs the conflict
but does not force the change into the
target table.

For the Q subscription from the
second server to the first server: If
any change made to the source table
conflicts with data in the target table,
the Q Apply program applies the
source change to the target table. The
Q Apply program deletes the
conflicting row in the target table and
inserts the row from the source table.
If there is a conflicting delete and the
row is not found at the target table,
the Q Apply program ignores the
delete from the source.

Neither server takes precedence. The Q Apply program logs all
conflicts in the
IBMQREP_EXCEPTIONS table and
continues processing. Over time, the
two copies of a logical table will
diverge.

Chapter 6. Multidirectional 103

Table 10. Outcomes of different combinations of options for conflict detection (continued)

How to check for conflicts How to resolve conflicts Outcome

Check only changed non-key columns
for conflicts.

The first server takes precedence. For the Q subscription from the first
server to the second server: If a
change to a non-key column in the
source table conflicts with a change
made to the corresponding column in
the target table, the Q Apply program
applies the source change to the
target table anyway. The Q Apply
program deletes the conflicting row in
the target table and inserts the row
from the source table. If there is a
conflicting delete and the row is not
found at the target table, the Q Apply
program ignores the delete from the
source.

For the Q subscription from the
second server to the first server: If a
change to a non-key column in the
source table conflicts with a change
made to the corresponding column in
the target table, the Q Apply program
logs the conflict but does not force
the change into the target table.

The second server takes precedence. For the Q subscription from the first
server to the second server: If a
change to a non-key column in the
source table conflicts with a change
made to the corresponding column in
the target table, the Q Apply program
logs the conflict but does not force
the change into the target table.

For the Q subscription from the
second server to the first server: If a
change to a non-key column in the
source table conflicts with a change
made to the corresponding column in
the target table, the Q Apply program
applies the source change to the
target table anyway. The Q Apply
program deletes the conflicting row in
the target table and inserts the row
from the source table. If there is a
conflicting delete and the row is not
found at the target table, the Q Apply
program ignores the delete from the
source.

Neither server takes precedence. The Q Apply program logs all
conflicts in the
IBMQREP_EXCEPTIONS table and
continues processing. Over time, the
two copies of a logical table will
diverge.

104 Replication and Event Publishing Guide and Reference

Table 10. Outcomes of different combinations of options for conflict detection (continued)

How to check for conflicts How to resolve conflicts Outcome

Check only key columns for conflicts. The first server takes precedence. For the Q subscription from the first
server to the second server: If a
change to the key at the source table
conflicts with the key at the target
table, the Q Apply program applies
the source change to the target table.
The Q Apply program deletes the
conflicting row in the target table and
inserts the row from the source table.
If there is a conflicting delete and the
row is not found at the target table,
the Q Apply program ignores the
delete from the source.

For the Q subscription from the
second server to the first server: If a
change to the key at the source table
conflicts with the key at the target
table, the Q Apply program logs the
conflict but does not force the change
into the target table.

The second server takes precedence. For the Q subscription from the first
server to the second server: If a
change to the key at the source table
conflicts with the key at the target
table, the Q Apply program logs the
conflict but does not force the change
into the target table.

For the Q subscription from the
second server to the first server: If a
change to the key at the source table
conflicts with the key at the target
table, the Q Apply program applies
the source change to the target table.
The Q Apply program deletes the
conflicting row in the target table and
inserts the row from the source table.
If there is a conflicting delete and the
row is not found at the target table,
the Q Apply program ignores the
delete from the source.

Neither server takes precedence. The Q Apply program logs all
conflicts in the
IBMQREP_EXCEPTIONS table and
continues processing. Over time, the
two copies of a logical table will
diverge.

Creating Q subscriptions for peer-to-peer replication
You can create Q subscriptions to map peer tables to one another so that changes
are replicated back and forth from each table. This task is part of the larger task of
setting up replication from sources to targets (multidirectional).

Chapter 6. Multidirectional 105

Creating Q subscriptions for peer-to-peer replication with two
servers

In peer-to-peer replication with two servers, changes that are made to one copy of
a table are replicated to a second copy of that table, and changes from the second
copy are replicated back to the first copy. In peer-to-peer replication, all rows and
columns are replicated, and the column names in each copy of the table must
match.

Before you begin

Before you create Q subscriptions for peer-to-peer replication, you must perform
the following actions:
v On each server that will participate in peer-to-peer replication, create the control

tables for the Q Capture and Q Apply programs. The control tables for the Q
Capture and Q Apply programs that are on each individual server must have
the same schema.

v Create the two replication queue maps that will transport data between the pair
of servers. You need one replication queue map for replicating data from the
first copy of the table to the second, and one for replicating data from the
second copy of the table back to the first. (You can do this task before you create
Q subscriptions or while you create Q subscriptions.)

Restrictions

v Stored procedures cannot participate in peer-to-peer replication.

v If the source table includes a LONG VARCHAR column
type, that table cannot participate in a peer-to-peer replication. For peer-to-peer
replication, the Replication Center or ASNCLP must add two columns to the
source table. DB2 for z/OS does not allow the replication administration tools to
add columns to a table that includes a LONG VARCHAR column.

v For peer-to-peer and bidirectional configurations, do not use the IMPORT utility.
The IMPORT utility logs the inserts and, therefore, the inserts will be recaptured.

v In peer-to-peer and bidirectional replication, you must use the same constraints
on both the source and target.

v IDENTITY columns in tables that are in peer-to-peer configurations must be
defined as GENERATED BY DEFAULT.

v Peer-to-peer replication is not supported on systems that use IBM HourGlass to
alter the date and time that is returned when a time request is made. This
software alters the version columns that are required for peer-to-peer.

About this task

One Q subscription is created from the first peer table to the second, and another
Q subscription is created from the second peer table back to the first. When you
create Q subscriptions for peer-to-peer replication using the ASNCLP
command-line program or Replication Center, the administration tool creates both
Q subscriptions at one time.

Procedure

To create Q subscriptions for peer-to-peer replication with two servers, use one of
the following methods:

106 Replication and Event Publishing Guide and Reference

Method Description

ASNCLP
command-line
program

Use the CREATE QSUB command for peer-to-peer replication. For
example, the following commands set the environment and create
two peer-to-peer Q subscriptions for the EMPLOYEE table at
servers SAMPLE and SAMPLPEER:

SET SUBGROUP "p2p2group";

SET PEER NODE 1 SERVER DBALIAS SAMPLE
SCHEMA GREEN;
SET PEER NODE 2 SERVER DBALIAS SAMPLPEER
SCHEMA MAGENTA;

SET CONNECTION SOURCE SAMPLE.GREEN
TARGET SAMPLPEER.MAGENTA REPLQMAP
"SAMPLE_GREEN_TO_SAMPLPEER_MAGENTA";
SET CONNECTION SOURCE SAMPLPEER.MAGENTA
TARGET SAMPLE.GREEN REPLQMAP
"SAMPLPEER_MAGENTA_TO_SAMPLE_GREEN";

SET TABLES (SAMPLE.GREEN.GREEN.EMPLOYEE);

CREATE QSUB SUBTYPE P;

The SET CONNECTION commands specify the two replication
queue maps that are used. The SET TABLES command specifies
the EMPLOYEE table at the SAMPLE server. A matching copy of
the table will be created at the SAMPLPEER server.

Replication Center Use the Create Q Subscriptions wizard. To open the wizard,
expand the appropriate Q Capture or Q Apply schema, right-click
the Q Subscriptions folder, and select Create.

Target Tables page
Review the target object profile. Modify the profile if
necessary so that the target tables for the Q subscriptions
meet your needs.

The target object profile determines if an existing target
table is used or if a new one is created. The Replication
Center looks for an object that matches the naming
scheme that is defined in the profile. If a matching object
does not exist, then the object is created.

Creating Q subscriptions for peer-to-peer replication with
three or more servers

In peer-to-peer replication with three or more servers, changes that are made to
each copy of a table are replicated to all other copies of that table. All rows and
columns are replicated, and the column names in each copy of the table must
match.

Before you begin

Before you create Q subscriptions for peer-to-peer replication, you must perform
the following actions:
v On each server that will participate in peer-to-peer replication, create the control

tables for the Q Capture and Q Apply programs. The control tables for the Q
Capture and Q Apply programs that are on each individual server must have
the same schema.

Chapter 6. Multidirectional 107

v Create the replication queue maps that will transport data between each pair of
servers. You need one replication queue map for each source-to-target pair. If
you have one table that you want to replicate between three servers, you need
six replication queue maps. If you have one table that you want to replicate
between four servers, you need twelve replication queue maps. (You can do this
task before you create Q subscriptions or while you create Q subscriptions.)

Restrictions

v Views and stored procedures cannot participate in peer-to-peer replication.

v If the source table includes a LONG VARCHAR column
type, that table cannot participate in a peer-to-peer replication. For peer-to-peer
replication, the Replication Center or ASNCLP must add two columns to the
source table. DB2 for z/OS does not allow the replication administration tools to
add columns to a table that includes a LONG VARCHAR column.

v For peer-to-peer and bidirectional configurations, do not use the IMPORT utility.
The IMPORT utility logs the inserts and, therefore, the inserts will be recaptured.

v In peer-to-peer and bidirectional replication, you must use the same constraints
on both the source and target.

v IDENTITY columns in tables that are in peer-to-peer configurations must be
defined as GENERATED BY DEFAULT.

v Peer-to-peer replication is not supported on systems that use IBM HourGlass to
alter the date and time that is returned when a time request is made. This
software alters the version columns that are required for peer-to-peer.

About this task

One Q subscription is created for each source-to-target pair. If you have one table
that you want to replicate to and from three servers, six Q subscriptions are
created. If you have one table that you want to replicate to and from four servers,
twelve Q subscriptions are created. The formula for determining the number of Q
subscriptions that are created is n*(n-1), where n is the number of servers. When
you create Q subscriptions for peer-to-peer replication by using the ASNCLP
command-line program or Replication Center, the administration tool creates all
necessary Q subscriptions at one time.

Procedure

To create Q subscriptions for peer-to-peer replication with three or more servers,
use one of the following methods:

108 Replication and Event Publishing Guide and Reference

Method Description

ASNCLP
command-line
program

Use the CREATE QSUB command for peer-to-peer replication. For
example, the following commands set the environment and create
six peer-to-peer Q subscriptions for the EMPLOYEE table at servers
SAMPLE, SAMPLE2, and SAMPLE3:

SET SUBGROUP "p2p3group";

SET PEER NODE 1 SERVER DBALIAS SAMPLE
SCHEMA GRAY;
SET PEER NODE 2 SERVER DBALIAS SAMPLE2
SCHEMA BROWN;
SET PEER NODE 3 SERVER DBALIAS SAMPLE3
SCHEMA YELLOW;

SET CONNECTION SOURCE SAMPLE.GRAY
TARGET SAMPLE2.BROWN REPLQMAP
"SAMPLE_GRAY_TO_SAMPLE2_BROWN";
SET CONNECTION SOURCE SAMPLE.GRAY
TARGET SAMPLE3.YELLOW REPLQMAP
"SAMPLE_GRAY_TO_SAMPLE3_YELLOW";
SET CONNECTION SOURCE SAMPLE2.BROWN
TARGET SAMPLE.GRAY REPLQMAP
"SAMPLE2_BROWN_TO_SAMPLE_GRAY";
SET CONNECTION SOURCE SAMPLE2.BROWN
TARGET SAMPLE3.YELLOW REPLQMAP
"SAMPLE2_BROWN_TO_SAMPLE3_YELLOW";
SET CONNECTION SOURCE SAMPLE3.YELLOW
TARGET SAMPLE.GRAY REPLQMAP
"SAMPLE3_YELLOW_TO_SAMPLE_GRAY";
SET CONNECTION SOURCE SAMPLE3.YELLOW
TARGET SAMPLE2.BROWN REPLQMAP
"SAMPLE3_YELLOW_TO_SAMPLE2_BROWN";

SET TABLES (SAMPLE.GRAY.GRAY.STAFF);

CREATE QSUB SUBTYPE P;

The SET CONNECTION commands specify the six replication
queue maps that are used. The SET TABLES command specifies
the EMPLOYEE table at the SAMPLE server. Matching copies of
the table will be created at the SAMPLE2 and SAMPLE3 servers.

Chapter 6. Multidirectional 109

Method Description

Replication Center Use the Create Q Subscriptions wizard. To open the wizard,
expand the appropriate Q Capture or Q Apply schema, right-click
the Q Subscriptions folder, and select Create.

Servers page
Each time that you specify a server to participate in
peer-to-peer replication, you must specify the replication
queue map from that new server to each of the other
servers that you already selected. You must also specify
the replication queue map from each existing server back
to the new server.

Target Tables page
Review the target object profile for each server other than
the server that contains the existing (base) tables. Modify
the profile if necessary so that the target tables for the Q
subscriptions meet your needs.

The target object profile determines if an existing target
table is used or if a new one is created. The Replication
Center looks for an object that matches the naming
scheme that is defined in the profile. If a matching object
does not exist, then the object is created.

Loading Target Table page
When you create Q subscriptions for peer-to-peer
replication with three or more servers, the Q subscriptions
are always created in an inactive state, and you must
activate them.

Starting bidirectional or peer-to-peer replication with two servers
To start bidirectional or peer-to-peer replication with two servers, you start the Q
Capture and Q Apply programs at both servers, and then make sure that Q
subscriptions are activated.

Before you begin

If a table that participates in a peer-to-peer Q subscription
contains data before the Q subscription is created, you must run the REORG
command against the table after you create the Q subscription and before you start
the Q Capture programs at the various peer servers.

About this task

By default, when you create Q subscriptions for bidirectional or peer-to-peer
replication with two servers, the new Q subscriptions are automatically started
when you start or reinitialize the Q Capture program. However, Q subscriptions
are only automatically started when they are new. If you stop replication of a
logical table and want to start replication again, you must follow this procedure to
manually start replication.

Important note about Version 9.7 changes: The initialization protocol for
multidirectional replication changed with Version 9.7 so that replication does not
pause while all Q subscriptions are being activated. Because of this change, if any
of the Q Capture or Q Apply programs in the configuration are migrated to
Version 9.7 and you need to add a new Q subscription or activate a disabled Q

110 Replication and Event Publishing Guide and Reference

subscription, all of the Q Capture and Q Apply programs in the configuration
must be at Version 9.7. If a Q Capture program is participating in both
unidirectional and bidirectional or peer-to-peer configurations and any of the
servers are migrated to V9.7, all components that are involved in both
unidirectional and multidirectional configurations must be migrated to V9.7.

Procedure

To start replication for a logical table in bidirectional or peer-to-peer replication
with two servers
1. Start the Q Capture and Q Apply programs at both servers. You can cold start

or warm start the Q Capture programs:

cold start
If you use a cold start, you must start the Q Capture programs at each
server before you start the Q Apply programs. At each server, make
sure the Q Capture program is started before you start the Q Apply
program by using the Check Status window in the Replication Center
or by checking the Q Capture log for an initialization message.

warm start
If you use a warm start, you can start the Q Capture and Q Apply
program at each server in any order.

If you created the Q subscriptions to be automatically started, replication begins
when you start the Q Capture and Q Apply programs.

2. If you created the Q subscriptions without automatic start or if you are
restarting replication, start one of the two Q subscriptions for the logical table.
The Q Capture and Q Apply programs automatically start the other Q
subscription.

If the Q subscriptions specify a load phase, the source table for the Q subscription
that you start is used to load the target table at the other server.

Starting peer-to-peer replication with three or more servers
After you create the Q subscriptions for a logical table in peer-to-peer replication
with three or more servers, you must start the group of Q subscriptions to start
replication.

Before you begin

v The Q Capture and Q Apply programs must be running at all servers in the
group. You can cold start or warm start the Q Capture programs:

cold start
If you use a cold start, you must start the Q Capture programs at each
server before you start the Q Apply programs. At each server, make sure
the Q Capture program is started before you start the Q Apply program
by using the Check Status window in the Replication Center or by
checking the Q Capture log for an initialization message.

warm start
If you use a warm start, you can start the Q Capture and Q Apply
program at each server in any order.

v If a table that participates in a peer-to-peer Q subscription
contains data before the Q subscription is created, you must run the REORG

Chapter 6. Multidirectional 111

command against the table after you create the Q subscription and before you
start the Q Capture programs at the various peer servers.

About this task

You also must start the group if you stopped all of the Q subscriptions for a logical
table and you want replication to start again.

Starting a peer-to-peer group with three or more servers is a staged process. First
you start the Q subscriptions for a logical table between two servers, and then you
add new servers one at a time until all the servers are actively replicating the
logical table.

You can only add one new server at a time to the group. Begin the process of
adding a new server only after the other servers are actively replicating the logical
table.

Important note about Version 9.7 changes: The initialization protocol for
multidirectional replication changed with Version 9.7 so that replication does not
pause while all Q subscriptions are being activated. Because of this change, if any
of the Q Capture or Q Apply programs in the configuration are migrated to
Version 9.7 and you need to add a new Q subscription or activate a disabled Q
subscription, all of the Q Capture and Q Apply programs in the configuration
must be at Version 9.7. If a Q Capture program is participating in both
unidirectional and bidirectional or peer-to-peer configurations and any of the
servers are migrated to V9.7, all components that are involved in both
unidirectional and multidirectional configurations must be migrated to V9.7.

Procedure

To start replication in a peer-to-peer group with three or more servers:
1. Choose two servers in the group to begin the activation process.
2. Start one of the two Q subscriptions for a logical table between the two servers.

The Q Capture and Q Apply programs automatically start the other Q
subscription for this logical table between the two servers. If the Q
subscriptions specify a load phase, the Q subscription that you start must be
the Q subscription with the source table that you want to load from. This table
is used to load the table at the other server.

3. After both Q subscriptions are active, choose a new server to bring into the
group.

4. Choose one of the servers that is actively replicating the logical table.
5. Start the Q subscription for the logical table that specifies the server that you

chose in Step 4 as its source, and the new server as its target.
The Q Capture and Q Apply programs start the other Q subscription for the
logical table between the new server and the server that is actively replicating.
The Q subscriptions for the logical table between the new server and the other
server that is actively replicating are also started.
At this point, replication begins in all directions between all servers.

6. Follow steps 3, 4, and 5 until all of the Q subscriptions in the group are active.

112 Replication and Event Publishing Guide and Reference

Stopping bidirectional or peer-to-peer replication with two servers
In bidirectional or peer-to-peer replication with two servers, you can stop
replication of a logical table without stopping the Q Capture or Q Apply programs.
To do so, you deactivate the Q subscriptions for the logical table. Replication of
other logical tables continues between the two servers.

Before you begin

The Q subscriptions for the logical table must be in A (active) state.

Restrictions

You cannot stop only one of the two Q subscriptions for a logical table. When you
stop one Q subscription, the other is automatically stopped.

Procedure

To stop replication of a logical table in bidirectional or peer-to-peer replication with
two servers, stop one of the two Q subscriptions.

Stopping peer-to-peer replication with three or more servers
In peer-to-peer replication with three or more servers, you can stop replication of a
logical table without stopping the Q Capture or Q Apply programs.

Before you begin

The Q subscriptions for the logical table must be in A (active) state.

About this task

You can stop replication of the logical table at one server, or at all servers in the
group.

To stop replication of a logical table at all servers in a group, follow this same
procedure, one server at a time, until all Q subscriptions for the logical table are
stopped.

Procedure

To stop replication of a logical table:
1. Choose a server in the group that is actively replicating the logical table.
2. Stop the Q subscription that specifies this server as its source.

Chapter 6. Multidirectional 113

114 Replication and Event Publishing Guide and Reference

Chapter 7. Replicating Data Definition Language (DDL)
operations

You can speed up and simplify the configuration and maintenance of DB2
continuous availability and disaster recovery solutions by taking advantage of the
Data Definition Language (DDL) replication features in InfoSphere Data
Replication Version 10.1.3 and later.

Automatic replication of Data Definition Language (DDL) operations eliminates or
greatly reduces the need for administrator interventions when tables are added or
changed at the primary database. When you take advantage of this feature, the
replication programs automatically subscribe newly created tables for replication
and create or drop these tables at targets.

DDL replication helps ensure that the failover database truly reflects the standby
database. The following topics provide more detail about DDL replication support.

Schema-level subscriptions and DDL replication
The mechanism for replicating Data Definition Language (DDL) changes such as
CREATE TABLE or DROP TABLE between databases is a schema-level subscription.

A schema-level subscription is a pattern based on "schema_name.object_name" that
indicates which schema-level statements are replicated. It tells the replication
programs to respond to DDL changes within certain database schemas – and
certain tables within these schemas – by capturing the DDL statements, publishing
them as WebSphere MQ messages, and replaying the DDL at a target database. A
schema-level subscription is different from a table-level Q subscription which is
associated with moving data from a particular source to a particular target.

Each part of the pattern can contain a wild card suffix that is represented by the
percentage sign character (%).

Another important component of schema-level subscriptions is a profile that
specifies how table-level Q subscriptions should be created. The profile is used by
both the ASNCLP command-line program and the replication programs to create Q
subscriptions for tables that match the pattern. You create both the schema-level
subscription and the profile with the ASNCLP program.

The CREATE SCHEMASUB command performs the following tasks:
v Creates a schema-level subscription that includes the schemas that you specify.
v Creates table-level Q subscriptions for all tables within the schemas.
v Saves the schema pattern and the profile so that the replication programs

automatically create table-level Q subscriptions with your specified options for
any tables that are added within the schema.

Schema-level subscription information is stored in the IBMQREP_SCHEMASUBS
table.

The following sections provide more detail about schema-level subscriptions and
DDL replication:
v “Using wild cards to specify the included schemas and tables” on page 116

© Copyright IBM Corp. 2004, 2012 115

v “Supported DDL operations for replication”
v “Relationship between schema-level subscriptions and queue maps” on page 117
v “Profiles for creating table-level Q subscriptions” on page 117
v “Creation of new target tables” on page 118

Using wild cards to specify the included schemas and tables

A schema-level subscription can include one or many schemas, and one or many
tables within those schemas. To specify multiple schemas and tables, you use the
percentage sign character (%) as a wild card. The wild card must be used as a
suffix; for example given a schema-level subscription for "ANU%.%", any table that
is created with a schema name that starts with the string "ANU" is automatically
replicated.

Wild cards greatly simplify the task of subscribing an entire database, and you can
also use wild cards to exclude certain schemas or tables from the schema-level
subscription.

Replicating an entire database
If you want to replicate all CREATE TABLE and DROP TABLE operations
for all tables in all schemas, you can do so by creating a schema-level
subscription for the schema-object pattern: "%. %". In the ASNCLP
program’s CREATE SCHEMASUB command, you can accomplish this by
simply using the ALL keyword, as in the following example:
CREATE SCHEMASUB SUBTYPE B FOR TABLES NODE 1 ALL OPTIONS options1;

This command says, "Create two schema-level Q subscriptions, one in each
direction, for a bidirectional replication configuration; replicate CREATE
TABLE and DROP TABLE for all tables in all schemas; and use the
options1 profile to create the necessary table-level Q subscriptions."

Excluding schemas and tables from replication
When you specify schema names and objects to exclude from the
schema-level subscription, the exclusions are stored in the
IBMQREP_EXCLSCHEMA control table. For example, given a schema-level
subscription for "%.%" but an entry in the IBMQREP_EXCLSCHEMA table
for "BOB," the statement CREATE TABLE BOB.T1 would not be replicated
even with a schema-level subscription active for "%.%".

IBMQREP_EXCLSCHEMA table: Specifies schemas and tables to exclude from replication.

SCHEMA_NAME OBJECT_NAME QMAP

BOB T% SITEA2B

Wild cards are not allowed when you are excluding schemas but can be
used to exclude tables. The exclusion only pertains to the schema-level
subscription that uses a specified replication queue map.

By default, DB2 and replication catalog tables are already excluded even if
you use a pattern of "%.%".

Supported DDL operations for replication

For the first release of schema-level subscriptions, the CREATE TABLE and DROP
TABLE operations are supported.

116 Replication and Event Publishing Guide and Reference

The ALTER TABLE ADD COLUMN and ALTER TABLE ALTER COLUMN SET
DATA TYPE operations can be automatically replicated with replication Version
10.1 on both z/OS and Linux, UNIX, and Windows. These operations are carried
out at the table level and are used for newly added columns; the operations are
not part of the schema-level subscription.

To add existing source table columns to Q subscriptions, you can use the Q
Replication Dashboard, Replication Center, or ASNCLP program. The replication
programs add columns to the Q subscription and can also add the columns to the
target table. See “Adding existing columns to a Q subscription (unidirectional
replication)” on page 131 and “Adding existing columns to a Q subscription
(bidirectional or peer-to-peer replication)” on page 133 for details.

You can also specify that LOAD operations at source tables are replicated. See
“Replicating load operations at the source table” on page 190 for details.

RENAME TABLE is not supported. If you rename a table, you must stop the
table-level Q subscription, update the Q subscription properties with the new table
name, and reinitialize the Q Capture program.

Relationship between schema-level subscriptions and queue
maps

You cannot have multiple table-level Q subscriptions for the same source table that
specify the same replication queue map, and schema-level subscription patterns for
the same queue map must not overlap. For example, the patterns, "SERGE.%" and
"%.T1" both match the table SERGE.T1. This type of overlap is not allowed, and
the ASNCLP program enforces the restriction when creating schema-level
subscriptions.

For example, if a schema subscription with the pattern "ANUPAMA.%" already
exists, you cannot add a schema-level subscription with the pattern "%.%", because
tables could match both patterns. The CREATE SCHEMASUB command would
fail.

You can have multiple schema-level subscriptions for the same set of tables, but to
different queue maps. For example:
v %.% in bidirectional replication on QUEUEMAP1, for disaster recovery
v ANUPAMA.% in unidirectional replication on QUEUEMAP2, for feeding a

warehouse

Profiles for creating table-level Q subscriptions

The profile that you create with the ASNCLP’s CREATE SUBSCRIPTION
OPTIONS command is used for two purposes:
v By the ASNCLP program to create table-level Q subscriptions for existing tables

that match the schema-level subscription pattern.
v By the replication programs to create table-level Q subscriptions in response to a

CREATE TABLE operation that matches the pattern.

Creating the profile is one of the first things that you do when setting up DDL
replication because you need to specify the profile in the CREATE SCHEMASUB
command. If you do not create a profile, the ASNCLP program and replication
programs use default profiles for unidirectional and bidirectional replication.

Chapter 7. DDL replication 117

Profiles are stored in the IBMQREP_SUBS_PROF table on the Q Capture server.

For more detail, see “Creating profiles for table-level Q subscriptions” on page 123.

Creation of new target tables

When it creates new target tables after a CREATE TABLE operation at the source,
the Q Apply program creates the target table with all indexes and constraints that
existed at the source, even if the indexes and constraints were created with several
ALTER statements and in multiple transactions.

Q Apply replays the DDL statements as they were executed at the source, except
that it issues a SET CURRENT DEFAULT SCHEMA statement before it creates each
table and then changes its ownership to be the same as the user who created the
object at the source database (otherwise the creator for the object would be the
user ID that started the Q Apply program).

For existing source tables, the ASNCLP program uses the options that are specified
in the SET PROFILE command to create new target tables when it processes a
CREATE SCHEMASUB command.

How Q Capture handles DDL operations at the source database
The Q Capture program automatically replicates some Data Definition Language
(DDL) operations at the source database. Other DDL changes require you to take
action at the target database.

The following table describes how Q Capture handles different types of DDL
operations and what you need to do for any affected Q subscriptions.

118 Replication and Event Publishing Guide and Reference

Table 11. How Q Capture handles DDL changes to the source database and what you need to do

DDL operation How it is handled What you need to do

CREATE TABLE
Version 10.1 on Linux,
UNIX, and Windows

Automatically
replicated if the
new source table
matches the
schema- and
table-naming
pattern in a
schema-level
subscription. When
the Q Capture
program detects a
CREATE TABLE
operation in the
log that matches a
schema-level
subscription, it
informs the Q
Apply program to
create a matching
target table. A
table-level Q
subscription is also
created that maps
the new source and
target tables.

z/OS or earlier versions on
Linux, UNIX, and
Windows

No automatic
replication of
CREATE TABLE
operations.

Version 10.1 on Linux, UNIX, and Windows
Ensure that newly created source table matches
the schema- and table-naming pattern in a
schema-level subscription.

z/OS or earlier versions on Linux, UNIX, and
Windows

Create a table-level Q subscription for the new
source table and use the replication
administration tools to create a matching target
table, or use an existing target table.

Chapter 7. DDL replication 119

Table 11. How Q Capture handles DDL changes to the source database and what you need to do (continued)

DDL operation How it is handled What you need to do

DROP TABLE
Version 10.1 on Linux,
UNIX, and Windows

Automatically
replicated if the
source table is part
of a schema-level
subscription. When
the Q Capture
program detects a
DROP TABLE
operation in the
log that matches a
schema-level
subscription, the
associated
table-level Q
subscriptions for
all queues are also
dropped.

z/OS or earlier versions on
Linux, UNIX, and
Windows

Q Capture leaves
the Q subscription
active, but there
are no log records
to read for the
source table. On
z/OS, the
ASN0197W
warning message
is issued.

Version 10.1 on Linux, UNIX, and Windows
Ensure that source table is included in a
schema-level subscription.

z/OS or earlier versions on Linux, UNIX, and
Windows

When you drop a table the Q subscription for
the table still exists. To remove, stop the Q
subscription and then delete the Q subscription.

120 Replication and Event Publishing Guide and Reference

Table 11. How Q Capture handles DDL changes to the source database and what you need to do (continued)

DDL operation How it is handled What you need to do

ALTER TABLE ADD
(COLUMN) Version 10.1 on z/OS and

Linux, UNIX, or Windows
or later If you set the value

of the
REPL_ADDCOL
column in the
IBMQREP_SUBS
table to Y (yes),
when you add new
columns to a table
the columns are
automatically
added to the Q
subscription and
added to the target
table if they do not
already exist.

Earlier versions
Q Capture leaves
the Q subscription
active, but does not
replicate the added
column until it
receives an
ADDCOL signal.

Version 10.1 on z/OS and Linux, UNIX, or Windows or
later Specify REPLICATE ADD COLUMN YES in the

ASNCLP CREATE QSUB command or click the
Automatically replicate new columns added to
the source table check box when you are
creating or changing the properties of a Q
subscriptions in the Replication Center. For
more detail, see these topics:

v Enabling replication of
ADD COLUMN and SET DATA TYPE
operations

v “Enabling automatic replication of newly
added columns from the source table” on
page 130

Earlier versions
Use the Q Replication Dashboard or ASNCLP
ALTER ADD COLUMN command, or manually
insert an ADDCOL signal to indicate that you
want to replicate the new column.

TRUNCATE TABLE

A TRUNCATE
operation is logged
similarly to a mass
delete, so the
operation is
replicated as a
series of single row
deletes.

Replication of
TRUNCATE
operations is not
supported.

No action is required. If the target table has
rows that are not in the source table, those
rows are not deleted.

If you need to perform TRUNCATE on a target
table in addition to its source, you must issue
the TRUNCATE statement directly against the
target table.

ALTER TABLE ALTER
COLUMN SET DATA TYPE

Automatically replicated for
Version 10.1 and later. The
data type of the
corresponding target table
column is changed and
replication continues
normally.

See Enabling replication of ADD COLUMN and
SET DATA TYPE operations.

See “Automatic replication of ALTER TABLE
ALTER COLUMN SET DATA TYPE operations”
on page 135.

Other DDL that alters the
structure of a table

Q Capture leaves the Q
subscription unchanged.

1. Stop the Q subscription.

2. Alter the source and target tables.

3. Start the Q subscription.

Chapter 7. DDL replication 121

Table 11. How Q Capture handles DDL changes to the source database and what you need to do (continued)

DDL operation How it is handled What you need to do

DDL that does not alter the
table structure

Examples:

v CREATE INDEX

v ALTER FOREIGN KEY

v ADD CONSTRAINT

Q Capture leaves the Q
subscription active.

Ensure that unique constraints, primary keys, and
referential integrity constraints match between the
source and target tables. If you change any of these
properties at the source, make a corresponding change
to the target to avoid unexpected behavior. Also, restart
the Q Apply program so that it recognizes the change.

Creating schema-level subscriptions
You create a schema-level subscription to replicate supported DDL operations such
as CREATE TABLE and DROP TABLE for one or more schemas in a database.

Before you begin

The user ID that starts the Q Apply program must have authority to create and
drop tables at the target database.

About this task

When you create this type of subscription, the replication programs automatically
create table-level Q subscriptions when they process log records for CREATE
TABLE operations that match the schema and table naming pattern for the
subscription. Other supported DDL operations within the schema are also
replicated.

For bidirectional replication, a schema-level subscription is required for each
replication direction. When you use the ASNCLP command-line program, it creates
the paired set of schema-level subscriptions with a single command.

The ASNCLP command can also create the required table-level Q subscriptions for
existing tables that meet the table naming pattern.

Restrictions

The following configurations are not supported:
v Peer-to-peer replication
v CCD targets
v Federated targets
v Stored procedure targets
v Replication between DB2 for z/OS and DB2 for Linux, UNIX, and Windows

The following types of DDL are not replicated:
v ADD, ATTACH, and DETACH operations for partitioned tables
v Database sequences.
v CREATE or DROP of triggers or Materialized Query Tables (MQT)

v CREATE TABLESPACE

Other restrictions:

122 Replication and Event Publishing Guide and Reference

v Table-level Q subscriptions that are part of a schema-level subscription cannot
use Q Capture search conditions or Q Apply SQL expressions.

v For bidirectional replication, a table must be used for DML or LOAD operations
on only one site until all automatically created table-level Q subscriptions are
created and active at both sites. For example, in a bidirectional configuration if
you create a table at site 1 and site 2, you can start loading the table at site 1,
but must not do any DML or LOAD at site 2 until all Q subscriptions are
created at site 2 and are in active (A) state.

Note: The list of unsupported operations does not include every possible DDL
replication limitation, but does list noteworthy exclusions. If something is not listed
as supported, it is not supported.

Procedure

To create a schema-level subscription, use the CREATE SCHEMASUB command in
the ASNCLP program.
The command creates table-level Q subscriptions for all tables within the schema
that meet the naming pattern that you specify. It also saves the schema pattern so
that the replication programs automatically create Q subscriptions for any tables
that are added within the schema.
You can create a schema-level subscription that includes multiple schemas by using
the percentage sign (%) as a wild card. To replicate all CREATE TABLE and DROP
TABLE operations within all schemas in the database, specify the ALL keyword
(which is equivalent to OWNER LIKE % NAME LIKE %, and is stored as %.%).
You can optionally include the name of a profile for creating table-level Q
subscriptions, and the ASNCLP and replication programs use the options that you
specify in the profile.
The following example creates a schema-level subscription called sampschemasub1
for bidirectional replication. The subscription includes all schemas and tables on
the SAMPLE1 database and uses the saved profile options1:
SET BIDI NODE 1 SERVER DBALIAS SAMPLE1;
SET BIDI NODE 2 SERVER DBALIAS SAMPLE2;

CREATE SCHEMASUB "sampschemasub1" SUBTYPE B FOR TABLES NODE 1 ALL OPTIONS options1;

Creating profiles for table-level Q subscriptions
You can create a profile that specifies what options the replication programs should
use when they automatically create table-level Q subscriptions for a schema-level
subscription.

About this task

The ASNCLP program also uses the profile when it automatically creates
table-level Q subscriptions for all tables within one or more specified schemas in
response to a CREATE SCHEMASUB command.

The profile provides values for establishing the Q subscription on both the Q
Capture and Q Apply servers. The replication programs use values from the profile
for populating the IBMQREP_SUBS table at the Q Capture server and the
IBMQREP_TARGETS table at the Q Apply server.

Q Capture reads the profile when the schema-level subscription is first started or
when Q Capture is reinitialized. Changing a profile does not change existing
table-level Q subscription. To modify existing Q subscriptions, you use the

Chapter 7. DDL replication 123

replication administration tools to change the Q subscription options and then
issue a reinit command so that Q Capture can read your changes.

If you do not create a profile, the replication programs use default profiles for
creating table-level Q subscriptions. These profiles differ depending on the type of
Q subscription (unidirectional or bidirectional) and are named ASNBIDI and
ASNUNI.

Important: Do not create a profile that would result in the creation of table-level Q
subscriptions that differ from existing table-level Q subscriptions within the same
schema-level subscription. All table-level subscriptions for a common schema-level
subscription must be consistent.

Procedure

To create a profile for table-level Q subscriptions, use the CREATE SUBSCRIPTION
OPTIONS command in the ASNCLP command-line program.
In the command, you specify options much as you would for creating an
individual table-level Q subscription. For example, the following command for
bidirectional replication specifies that in case of row conflicts, the row from the
source table is used (CONFLICT ACTION F), that load operations at source tables
are replicated (CAPTURE LOAD R) and that cascaded delete operations are not
replicated (IGNORE CASCADE DELETES):
SET BIDI NODE 1 SERVER SAMPLE;
SET BIDI NODE 2 SERVER SAMPLE2;

CREATE SUBSCRIPTION OPTIONS bidioptions
SUBTYPE B, CONFLICT ACTION F, CAPTURE LOAD W, IGNORE CASCADE DELETES;

If you specify this profile in the CREATE SCHEMASUB command, the ASNCLP
program uses the profile options when it creates table-level Q subscriptions for all
of the specified schemas and tables, and the Q Capture and Q Apply programs use
the profile when they create Q subscriptions for newly created source tables in
response to a CREATE TABLE operations.

DATA CAPTURE CHANGES and schema-level subscriptions
To enable replication of CREATE TABLE operations, newly created tables that are
part of a schema-level subscription must have the DATA CAPTURE CHANGES
attribute set.

DATA CAPTURE CHANGES ensures that DB2 provides additional information in
its recovery log regarding SQL changes to the table. You can enable DATA
CAPTURE CHANGES for newly created tables by using one of several methods:
v Explicitly specify DATA CAPTURE CHANGES in the CREATE TABLE

statement.

v Use the DATA CAPTURE CHANGES attribute with the
CREATE SCHEMA statement. With this option, all tables that are created within
the specified schema have DATA CAPTURE CHANGES set by default.

v Set the database-level configuration parameter
dft_schemas_dcc to YES. By default, dft_schemas_dcc is set to NO. When set to
YES, all newly created schemas by default have the DATA CAPTURE
CHANGES clause.

124 Replication and Event Publishing Guide and Reference

If the CREATE TABLE command explicitly specifies DATA CAPTURE NONE, the
replication programs assume that you do not want to replicate this table and issue
a warning message so that you can change the DATA CAPTURE attribute if
desired.

Starting schema-level subscriptions
You start a schema-level subscription to instruct the Q Capture program to begin
capturing SQL operations such as CREATE TABLE and DROP TABLE for tables
that are part of the subscription. You can also optionally start all of the included
table-level Q subscriptions.

About this task

Newly created schema-level subscriptions are in N (new) state and are
automatically started when the Q Capture program is started or reinitialized. You
might need to use this procedure if you stopped the subscription or it was stopped
because of an error.

Starting a schema-level subscription entails inserting a START SCHEMASUB signal
into the IBMQREP_SIGNAL table at one or more Q Capture servers. When Q
Capture processes the signal, the state of the corresponding schema-level
subscription changes to A (active) in the IBMQREP_SCHEMASUBS table.

When you use the ASNCLP program to start schema-level subscriptions, it
performs the signal inserts. If you use SQL to perform the inserts yourself, the
START SCHEMASUB signal must be inserted into the IBMQREP_SIGNAL table at
all Q Capture servers in bidirectional or peer-to-peer configurations.

Procedure

To start a schema-level subscription, use one of the following methods:

Chapter 7. DDL replication 125

Method Description

ASNCLP
command-line
program

Use the START SCHEMASUB command. You have two options:

Start only the schema-level subscription
This option instructs the Q Capture program to begin
replicating CREATE TABLE and DROP TABLE operations
for all tables that are part of the schema-level subscription.
The following example accomplishes this task for
schemasub1 between the bidirectional replication servers
SAMPLE1 and SAMPLE2:

ASNCLP SESSION SET TO Q REPLICATION;

SET BIDI NODE 1 SERVER DBALIAS SAMPLE1;
SET BIDI NODE 2 SERVER DBALIAS SAMPLE2;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

START SCHEMASUB schemasub1 NEW ONLY;

Start the schema-level subscription and all of the table-level Q
subscriptions that belong to it

This option instructs the Q Capture program to begin
replicating supported DDL operations for all tables that
are part of the schema-level subscription, and to start
replicating row changes for all of the table-level Q
subscriptions that are part of the schema-level
subscription.

In the following example, the other commands that are
needed in the script are the same as the previous example
and are not shown:

START SCHEMASUB schemasub1 ALL;

SQL Insert a START SCHEMASUB signal into the IBMQREP_SIGNAL
table at one or more Q Capture servers:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’START SCHEMASUB’,
’schema_subname’,
’P’);

Where schema identifies a Q Capture program, and schema_subname
is the name of the schema-level subscription that you want to start.

For bidirectional or peer-to-peer replication, you must insert the
signal into all Q Capture servers in the configuration.

126 Replication and Event Publishing Guide and Reference

Changing table-level options used by schema-level subscriptions
You cannot update the profile that is used to create table-level Q subscriptions, but
you can create a new profile with the changes that you require and then point the
schema-level subscription to start using the new profile.

About this task

The reason that profiles cannot be updated is that other schema-level subscriptions
might be using the profile that you want to change. To start using a new profile,
you use ASNCLP commands and a SQL update statement.

Changing to a new profile only affects future Q subscriptions that are created for
new tables. To update existing table-level Q subscriptions you need to issue
another SQL statement.

Procedure

1. Create a new profile for table-level Q subscriptions that contains the new
options. Use the CREATE SUBSCRIPTION OPTIONS command in the ASNCLP.
The following example creates a new profile called bidilist_new for a
bidirectional configuration. The new profile specifies an error action of S (Q
Apply stops), changing from the default error action of Q (Q Apply stops
reading from the receive queue).
SET BIDI NODE 1 SERVER SAMPLE1;
SET BIDI NODE 2 SERVER SAMPLE2;
CREATE SUBSCRIPTION OPTIONS bidilist_new
SUBTYPE B
ERROR ACTION S;

2. Update the IBMQREP_SCHEMASUBS table to point to the new options list. For
bidirectional replication, you update the IBMQREP_SCHEMASUBS table on
both servers.
Using the bidirectional configuration as an example, you would issue the
following update statement on both SAMPLE1 and SAMPLE2 servers:
UPDATE ASN.IBMQREP_SCHEMASUBS SET SUBPROFNAME = ’bidilist_new’
WHERE SCHEMA_SUBNAME = ’schemasub1’;

3. Update the existing table-level Q subscriptions to change the error action to S
by issuing the following SQL statement for the IBMQREP_TARGETS tables on
both servers.
UPDATE ASN.IBMQREP_TARGETS SET ERROR_ACTION = ’S’
nWHERE SCHEMA_SUBNAME = ’schemasub1’;

4. Reinitialize the schema-level subscription and all of its table-level Q
subscription by using the REINIT SCHEMASUB command with the ALL
keyword in the ASNCLP. This command prompts the Q Capture program to
read the changes that you made to the control tables.
SET BIDI NODE 1 SERVER SAMPLE1;
SET BIDI NODE 2 SERVER SAMPLE2;

REINIT SCHEMASUB schemasub1 ALL;

Stopping schema-level subscriptions
You stop a schema-level subscription to instruct the Q Capture program to quit
capturing SQL operations such as CREATE TABLE and DROP TABLE for tables
that are part of the subscription. You can also optionally stop all of the included
table-level Q subscriptions.

Chapter 7. DDL replication 127

About this task

Stopping a schema-level subscription entails inserting a STOP SCHEMASUB signal
into the IBMQREP_SIGNAL table at one or more Q Capture servers. When you use
the ASNCLP program to stop schema-level subscriptions, it performs these inserts.

When Q Capture processes the signal, the state of the corresponding schema-level
subscription changes to I (inactive) in the IBMQREP_SCHEMASUBS table. The
state of table-level Q subscriptions remains unchanged unless you explicitly stop
these subscriptions, which can be done in a single command by the ASNCLP
program.

If you use SQL to perform the inserts yourself, the STOP SCHEMASUB signal
must be inserted into the IBMQREP_SIGNAL table at all Q Capture servers in
bidirectional or peer-to-peer configurations.

Procedure

To stop a schema-level subscription, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the STOP SCHEMASUB command. You have two options:

Stop only the schema-level subscription
This option instructs the Q Capture program to stop
replicating CREATE TABLE and DROP TABLE operations
for all tables that are part of the schema-level subscription.
The following example accomplishes this task for
schemasub1 between the bidirectional replication servers
SAMPLE1 and SAMPLE2:

ASNCLP SESSION SET TO Q REPLICATION;

SET BIDI NODE 1 SERVER DBALIAS SAMPLE1;
SET BIDI NODE 2 SERVER DBALIAS SAMPLE2;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

STOP SCHEMASUB schemasub1 NEW ONLY;

Stop the schema-level subscription and all of the table-level Q
subscriptions that belong to it

This option instructs the Q Capture program to stop
replicating supported DDL operations for all tables that
are part of the schema-level subscription, and to stop
replicating row changes for all of the table-level Q
subscriptions that are part of the schema-level
subscription.

In the following example, the other commands that are
needed in the script are the same as the previous example
and are not shown:

STOP SCHEMASUB schemasub1 ALL;

128 Replication and Event Publishing Guide and Reference

Method Description

SQL Insert a STOP SCHEMASUB signal into the IBMQREP_SIGNAL
table at one or more Q Capture servers:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’STOP SCHEMASUB’,
’schema_subname’,
’P’);

Where schema identifies a Q Capture program, and schema_subname
is the name of the schema-level subscription that you want to stop.

For bidirectional or peer-to-peer replication, you must insert the
signal into all Q Capture servers in the configuration.

Deleting schema-level subscriptions
You can delete schema-level subscriptions that are not being actively processed and
optionally specify to delete all associated table-level Q subscriptions.

About this task

The DROP SCHEMASUB command in the ASNCLP program enables you to delete
just the schema-level subscription (use the NEW ONLY keywords), or delete all of
the table-level Q subscriptions (use the ALL keyword).

Procedure

1. Use the Q Replication Dashboard, Replication Center, or SQL to ensure that the
schema-level subscription is in inactive (I) state.

2. Use one of these methods to ensure that all of the associated table-level Q
subscriptions are inactive.

3. Issue the DROP SCHEMASUB command.
The following example deletes the schema-level subscription JASLY10 in a
bidirectional configuration and deletes all of the table-level Q subscription that
belong to it:
SET BIDI NODE 1 SERVER SAMPLE;
SET BIDI NODE 2 SERVER SAMPLE2;

DROP SCHEMASUB JASLY10 ALL;

Subscription-related entries are deleted from the Q Capture and Q Apply
control tables on both servers in the bidirectional configuration.

Chapter 7. DDL replication 129

Enabling automatic replication of newly added columns from the
source table

You can set up your Q subscriptions so that when new columns are added to the
source table, they are automatically added to the target table and replicated.

Before you begin

v The Q Capture and Q Apply servers must be at Version 10.1 or newer on both
z/OS and Linux, UNIX, and Windows.

v Some configurations steps are required on z/OS. See
Enabling replication of ADD COLUMN and SET DATA TYPE operations.

v Ensure that the user ID that runs the Q Apply program has ALTER privilege on
any target tables to which you want new columns to be added.

Restrictions

This function is not supported in the following situations:
v You are adding existing columns to a Q subscription
v You want to specify a before-image column name for a target consistent-change

data (CCD) table
v You want to specify a different name for the target column

In these cases, use the ADDCOL signal that is described in “Adding existing
columns to a Q subscription (unidirectional replication)” on page 131 and “Adding
existing columns to a Q subscription (bidirectional or peer-to-peer replication)” on
page 133.

Procedure

To enable automatic replication of newly added columns, use one of the following
methods:

Method Description

ASNCLP
command-line
program

In the CREATE QSUB command, specify REPLICATE ADD
COLUMN YES. The following example shows the setup commands
and then a CREATE QSUB command with this option:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DBALIAS SAMPLE;
SET SERVER TARGET TO DBALIAS TARGETDB;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

CREATE QSUB USING REPLQMAP SAMPLE_ASN_TO_TARGETDB_ASN
(SUBNAME EMPLOYEE0001 db2admin.EMPLOYEE
OPTIONS HAS LOAD PHASE I REPLICATE ADD COLUMN YES
KEYS (EMPNO) LOAD TYPE 1);

Replication Center Click the Automatically replicate new columns added to the
source table check box on one of these windows or wizard pages:

v Source Table Columns (single unidirectional Q subscription)

v Which source columns map to which target columns? (multiple
unidirectional Q subscriptions)

v Which profile settings for target tables? (bidirectional replication)

130 Replication and Event Publishing Guide and Reference

Adding existing columns to a Q subscription (unidirectional
replication)

You can add existing columns from the source table to a unidirectional Q
subscription while the replication programs are running. If the columns are not
existing and your servers are at Version 10.1 or later, you use a different procedure.

Before you begin

v The Q subscription that the columns are being added to must be in A (active)
state.

v If the data type of the column is LONG VARCHAR or
GRAPHIC, the source database or subsystem must be configured with DATA
CAPTURE CHANGES INCLUDE VARCHAR COLUMNS.

Restrictions

v The columns that you are adding must be nullable, or defined as NOT NULL
WITH DEFAULT.

v If you add columns with default values, you must run the REORG utility on the
source table before you begin replicating the new column. For more detail, see
Avoiding CHECKFAILED errors when adding columns to DB2 for z/OS target
tables.

v You cannot add more than 20 columns within one Q Capture commit interval as
specified by the commit_interval parameter.

v Federated targets: To add columns to an existing Q subscription, you can use
the ADDCOL signal but you must drop the Q subscription and recreate it after
you alter the target table because you cannot add columns to a nickname.

About this task

For Version 10.1 or later: You do not need to use this procedure when you are
adding new columns to the source table if the participating servers are at Version
10.1 or later on both z/OS and Linux, UNIX, and Windows. If you set the value of
the REPL_ADDCOL column in the IBMQREP_SUBS table to Y (yes), when you
add new columns to a table, the columns are automatically added to the Q
subscription, and added to the target table if they do not already exist. To make
this setting, specify REPLICATE ADD COLUMN YES in the ASNCLP CREATE
QSUB command or click the Automatically replicate new columns added to the
source table check box when you are creating or changing the properties of a Q
subscriptions in the Replication Center. For more detail, see these topics:

v Enabling replication of ADD COLUMN and SET DATA
TYPE operations

v “Enabling automatic replication of newly added columns from the source table”
on page 130

When you insert the signal at the Q Capture server, the column is automatically
added to the target table if you did not already add it. If you want to add multiple
columns to a Q subscription, you insert one signal for each new column. You can
add multiple columns in a single transaction. The Q Capture program can be
stopped when you insert the signals and it will read them from the log when it
restarts.

If you let the replication programs automatically add new columns to the target
table it helps ensure that they match the columns at the source. Columns are

Chapter 7. DDL replication 131

added to the target table with the same data type, null characteristic, and default
value as the matching columns in the source table. You can specify a different
name for the target column if you use the ALTER ADD COLUMN command in the
ASNCLP command-line program or an ADDCOL signal.

Procedure

To add columns to a unidirectional Q subscription, use one of the following
methods:

Method Description

ASNCLP
command-line
program.

Use the ALTER ADD COLUMN command. For example, the
following command adds the column BONUS to the
DEPARTMENT0001 Q subscription:

ALTER ADD COLUMN USING SIGNAL (BONUS)
QSUB DEPARTMENT0001
USING REPQMAP SAMPLE_ASN_TO_TARGET_ASN;

Q Replication
Dashboard

On the Subscriptions tab, select a Q subscriptions from the table
and click Actions > Add Columns.

SQL Use a command prompt or one of the DB2 command-line tools to
insert an ADDCOL signal into the IBMQREP_SIGNAL table at the
Q Capture server. For example:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’ADDCOL’,
’subname;column_name;before_column_name;

target_column_name’,
’P’);

schema
Identifies the Q Capture program that is processing the Q
subscription that you are adding a column to.

subname;column_name;before_column_name;target_column_name
The name of the Q subscription that you want to add the
column to and the name of the column that you are adding,
separated by a semicolon. These names are case-sensitive and
do not require double quotation marks to preserve case.
Follow these examples:

Add column in source table to Q subscription and to target
table QSUB1;COL10

Add column and before image of the column (for CCD
target tables)

QSUB1;COL10;XCOL10

Add column without before image but with different target
column name

QSUB1;COL10;;TRGCOL10 (Use the double semicolon (;;)
to indicate that you are omitting the before-image
column.)

132 Replication and Event Publishing Guide and Reference

After processing the signal, the Q Capture program begins capturing changes to
the new column when it reads log data that includes the column. Changes to the
column that are committed after the commit of the ADDCOL signal insert will be
replicated to the new column in the target table. Rows that existed in the target
table before the new column is added will have a NULL or default value for the
new column.

Adding existing columns to a Q subscription (bidirectional or
peer-to-peer replication)

You can add existing columns from the source table to a bidirectional or
peer-to-peer Q subscription while the replication programs are running. If the
columns are not existing and your servers are at Version 10.1 or later, you use a
different procedure.

Before you begin

v The Q subscriptions that specify the table must be in A (active) state at all
servers.

v If the data type of the column is LONG VARCHAR or
GRAPHIC, the source database or subsystem must be configured with DATA
CAPTURE CHANGES INCLUDE VARCHAR COLUMNS.

Restrictions

v Any columns that you add must be nullable, or defined as NOT NULL WITH
DEFAULT.

v If you add columns with default values, you must run the REORG utility on the
source table before you begin replicating the new column. For more detail, see
Avoiding CHECKFAILED errors when adding columns to DB2 for z/OS target
tables.

v You cannot alter the default value of a newly added column until the ADDCOL
signal for that column is processed.

v You cannot add more than 20 columns within one Q Capture commit interval as
specified by the commit_interval parameter.

About this task

For Version 10.1 or later: You do not need to use this procedure when you are
adding new columns to the source table if the participating servers are at Version
10.1 or later on both z/OS and Linux, UNIX, and Windows. If you set the value of
the REPL_ADDCOL column in the IBMQREP_SUBS table to Y (yes), when you
add new columns to a table, the columns are automatically added to the Q
subscription, and added to the target table if they do not already exist. To make
this setting, specify REPLICATE ADD COLUMN YES in the ASNCLP CREATE
QSUB command or click the Automatically replicate new columns added to the
source table check box when you are creating or changing the properties of a Q
subscriptions in the Replication Center. For more detail, see these topics:

v Enabling replication of ADD COLUMN and SET DATA
TYPE operations

v “Enabling automatic replication of newly added columns from the source table”
on page 130

To use this procedure, first you alter a table at one server to add a column. Then
you insert an SQL signal at the server. When the signal is processed, the versions

Chapter 7. DDL replication 133

of the table at the other servers are automatically altered to add the column, unless
you added it manually. The signal also adds the column to the Q subscription
definitions at all servers.

You can add any number of columns to the source table at a time. You can do this
while the Q Capture and Q Apply programs are running or stopped.

Recommendation: Insert one ADDCOL signal at a time and issue a COMMIT
before inserting the next ADDCOL signal or doing any other transactions.

Procedure

To add columns to replicate in bidirectional or peer-to-peer replication:
1. Alter the logical table at one of the servers to add the column.

If the ALTER TABLE operation that adds the column to the source table fails,
all the Q subscriptions in the peer-to-peer group will be deactivated.

2. Use one of the following methods to signal the Q Capture program that you
want to add the column to the Q subscription for the source table.

Method Description

ASNCLP command-line program Use the ALTER ADD COLUMN command.
For example, the following command adds
the column BONUS to the
DEPARTMENT0001 Q subscription:

ALTER ADD COLUMN USING SIGNAL (BONUS)
QSUB DEPARTMENT0001
USING REPQMAP SAMPLE_ASN_TO_TARGET_ASN;

Q Replication Dashboard On the Subscriptions tab, select a Q
subscriptions from the table and click
Actions > Add Columns.

134 Replication and Event Publishing Guide and Reference

Method Description

SQL Use a command prompt or one of the DB2
command-line tools to insert an ADDCOL
signal into the IBMQREP_SIGNAL table at
the Q Capture server. For example:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’ADDCOL’,
’subname;column_name’,
’P’);

schema
Identifies the Q Capture program at the
server where you altered the table.

subname;column_name
The name of a Q subscription that
originates at the Q Capture server
where you altered the table, and the
name of the column that you are
adding, separated by a semicolon. These
names are case-sensitive and do not
require double quotation marks to
preserve case.

Consider the following example. A peer-to-peer configuration has three servers:
ServerA, ServerB, and ServerC, and six Q subscriptions: subA2B, subB2A, subA2C,
subC2A, subB2C, and subC2B for the EMPLOYEE table.

You add a column, ADDRESS, to the EMPLOYEE table on ServerA. Then you
insert an ADDCOL signal for the Q subscription that handles transactions from
ServerA to ServerB, and specify subA2B;ADDRESS for the Q subscription name and
column name. Only one ADDCOL signal is required. The replication programs
automatically add the ADDRESS column to the EMPLOYEE tables at ServerB and
ServerC, and add the column definition to all six Q subscriptions.

Automatic replication of ALTER TABLE ALTER COLUMN SET DATA
TYPE operations

Starting with Version 10.1 on z/OS and Linux, UNIX, and Windows, ALTER
TABLE ALTER COLUMN SET DATA TYPE operations at the source table are
automatically replicated. The data type of the corresponding target table column is
changed and replication continues normally.

Prerequisites:

v The Q Capture and Q Apply servers must be at Version 10.1 or newer on both
z/OS and Linux, UNIX, and Windows. The exception is extending a
VARCHAR/VARGRAPHIC column. This operation is supported on older
versions.

Chapter 7. DDL replication 135

v Some configurations steps are required on z/OS. See
Enabling replication of ADD COLUMN and SET DATA TYPE operations.

v Ensure that the user ID that runs the Q Apply program has ALTER privilege on
any target tables to be changed.

In the following situations, when you change the data type of a source column you
must manually alter the target column:
v The Q Apply program is at Version 9.7 or earlier. You must alter the target

column data type before you alter the source table data type.
v The source column is mapped to an expression at the target. You must make any

required changes to the expression or the underlying target table column.
v The altered column is a string that is mapped to a longer string at the target for

code page conversion concerns. For example, consider a situation where the data
type of the source column is CHAR(10). The target column is set up as
CHAR(40) to handle code page conversion. If the source column is altered to
CHAR(20), the change is replicated. However, string data types cannot be
altered to a smaller size and the change from CHAR(40) to CHAR(20) would
fail. To avoid this situation, you must manually alter the target column to
CHAR(80) to prevent any row errors after code page conversion.

After the target column is altered, DB2 puts the table into REORG PENDING state,
which requires a REORG operation before the table can be used. The Q Apply
program calls the DB2 stored procedure ADMIN_REVALIDATE_DB_OBJECTS to
remove the table from REORG PENDING state. The exceptions to this REORG
requirement are extending the length of VARCHAR or VARGRAPHIC columns.

136 Replication and Event Publishing Guide and Reference

Chapter 8. Q Replication to federated targets

Q Replication to targets such as Oracle or Microsoft SQL Server works much like a
scenario where both source and target are DB2 servers.

WebSphere MQ is configured for a typical unidirectional replication scenario
between two DB2 databases. Transactions are replicated using the existing Q
Capture and Q Apply programs.

The primary difference is on the Q Apply side. With a target other than DB2, the Q
Apply program runs on a federated server, retrieving captured changes from
queues and writing them to target tables in the non-DB2 relational database by
using federated server nicknames.

When you configure Q Replication for federated targets, several Q Apply control
tables are created on the target system and accessed through nicknames just as
target tables are. Q Apply writes to these tables during the same unit of work as
the changes to target tables. One set of control tables is needed for each federated
target.

Figure 18 shows the relationships between the replication programs, DB2 servers,
and non-DB2 server in federated Q Replication.

The following federated Q Replication support is available:

Sources and targets
Unidirectional replication is supported from DB2 for z/OS, Linux, UNIX,
and Windows to target tables in Oracle, Sybase, Microsoft SQL Server,
Informix®, or Teradata relational databases that use the federated wrappers
that are defined for these targets. Transforming data by replicating to DB2
stored procedures that write to nicknames is supported. The Q Apply
program can load source data into one or more federated target tables in
parallel by using the EXPORT and IMPORT utilities. You can also specify

Source server Target server

Q Capture
program Q Apply

program

Log

Q Capture
control tables Q Apply

control tables

Source
table

Target table
nickname

Replication
queue map

Administration
queue

Q subscription

DB2 process

Non-DB2 server

Q Apply
control tables

Target
table

Q Apply control
table nicknames

Figure 18. Q Replication to a non-DB2 server through a federated server

© Copyright IBM Corp. 2004, 2012 137

that Q Apply use an ODBC select to fetch data from the source for loads,
and for Oracle targets, you can specify that Q Apply call the SQL*Plus
utility.

Q Replication also supports the use of SQL expressions to transform data
between sources table and non-DB2 target tables. The Q Apply program
performs data transformation before applying the data to the non-DB2
target table through the nicknames on the federated server.

Application of data to targets
Q Replication requires columns of like attributes (for example, INTEGER at
the source table to INTEGER at the nickname). Q Replication can replicate
source columns to nickname columns with different but compatible
attributes such as replication from small column data lengths at the source
to larger data lengths at the target (for example, replication from CHAR(4)
at the source to CHAR(8) at the target).

Utilities
The Replication Alert Monitor and table differencing and reconciliation
utilities (asntdiff and asntrep) are supported for federated targets. The
asntdiff utility compares the source table with the nickname, and the
asntrep utility updates the nickname to bring the source and target into
synch.

Note about terminology

In topics about federated Q Replication, the term "federated target" refers to the
Oracle, Sybase, Microsoft SQL Server, Informix, or Teradata database that contains
the target tables. In other DB2 federated topics, these targets are referred to as
"data sources." In other Q Replication topics, the term "target" refers to the DB2
database where the Q Apply program runs and the target tables are located. This
database contains the nicknames in federated Q Replication. Figure 19 depicts these
relationships.

Setting up Q Replication to federated targets
Setting up Q Replication to federated targets involves configuring the federated
server where the Q Apply program runs, creating WebSphere MQ objects, creating
federated objects, and creating Q Replication objects.

General restrictions

Figure 19. Sources and targets in federated Q Replication

138 Replication and Event Publishing Guide and Reference

v The asntdiff and asntrep utilities require the data types to be the same at
the DB2 source table and at the nickname at the federated server where
the Q Apply program runs.

v If you use the ADDCOL signal to add a column to an existing Q
subscription, the new column must already exist in the target table and
the corresponding nickname (you cannot add a column to a nickname).

v Ensure that the code pages of the source database, federated DB2
database, and non-DB2 target database match.

Data type restrictions

v Replication of large object (LOB) values is supported for Oracle targets
only, and these targets must use the NET8 wrapper.

v To replicate GRAPHIC, VARGRAPHIC, or DBCLOB data types, your
Oracle server and client must be Version 9 or newer. Your server
mapping must also be Version 9 or newer.

v Replication of LONG VARGRAPHIC data types is not supported.
v For Sybase, Microsoft SQL Server, and Informix, if the source table has a

column data type of LONG VARCHAR, the nickname is created with a
data type of VARCHAR(32672). The length allowed for a LONG
VARCHAR is greater than 32672 and this could result in truncation of
data.

Procedure

To set up Q Replication to federated targets:
1. Configure the federated server.
2. Create federated objects.
3. Create WebSphere MQ objects.
4. Create control tables.
5. Create Q subscriptions.

Figure 20 on page 140 shows the steps involved in setting up federated Q
Replication.

Chapter 8. Federated targets 139

Configuring the federated server for Q Replication
Before you can replicate to a federated target, you need to configure the DB2
instance and database on the system where the Q Apply program runs.

Before you begin

Ensure that the code pages of the source database, federated DB2 database, and
non-DB2 database database match.

Procedure

4. Start replication

1. Create WebSphere MQ objects

Create source and target queue managers

Create source and target queues

Create channels

2. Set up federated objects

Configure databases

Create wrapper

Create server definition

Create user mapping

3. Create replication objects

Create control tables

Create replication queue map

Create Q subscription

Start Q Capture program

Start Q Apply program

Start channels and listeners

Figure 20. Overview of steps to set up federated Q Replication

140 Replication and Event Publishing Guide and Reference

To configure the federated server for Q Replication:
1. Enable federated support in the DB2 instance where the Q Apply program runs

by using one of the following methods:

Method Description

Control Center Use the DBM Configuration window. To open the window,
in the object tree right-click the DB2 instance that contains
the Q Apply database and click Configure Parameters.
Under the Environment heading, click Federated and click
the ellipsis button to turn on federated support.

UPDATE DBM CFG command Ensure that you are attached to the instance that contains
the Q Apply server, and issue the following command:

UPDATE DBM CFG USING FEDERATED YES

You must stop and restart the instance for the change to take effect.
2. Set up and test the Oracle, Sybase, Microsoft SQL Server, or Informix client

configuration file on the system where Q Apply runs. See one of the following
topics for details:
v Setting up and testing the Oracle client configuration file
v Setting up and testing the Sybase client configuration file
v Preparing the federated server to access Microsoft SQL Server data sources
v Setting up and testing the Informix client configuration file

3. Set the environment variables for connecting to the Oracle, Sybase, Microsoft
SQL Server, or Informix server in the db2dj.ini file on the federated server
where the Q Apply program runs. See one of the following topics for details:
v Setting the Oracle environment variables
v Setting the Sybase environment variables
v Setting the Microsoft SQL Server environment variables
v Setting the Informix environment variables
v Setting the Teradata environment variables

4. Required for Sybase targets: Bind the Q Apply packages manually with
isolation level CS.

Creating federated objects for Q Replication
You must create or register wrappers, server definitions, and user mappings on the
federated server before the Q Apply program can communicate and exchange data
with the federated target.

Before you begin

v The DB2 instance that contains the Q Apply server must be configured for
federated support.

v Wrappers that are used for replication to federated targets must allow write
access to the federated target.

Restrictions

Q replication does not support replication to federated targets through a generic
wrapper such as the ODBC wrapper.

Procedure

To create federated objects for Q Replication:

Chapter 8. Federated targets 141

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.orc.doc/topics/tlsorc02.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.syb.doc/topics/tlssyb02.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.mss.doc/topics/tlsmss02.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.db.found.conn.fw.inf.doc/topics/tlsinf02.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.orc.doc/topics/tlsorc13.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.syb.doc/topics/tlssyb12.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.mss.doc/topics/tlsmss12.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.db.found.conn.fw.inf.doc/topics/tlsinf12.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.ter.doc/topics/tlster17.html

1. Register the appropriate wrapper for your Oracle, Sybase, Microsoft SQL
Server, or Informix database. See one of the following topics:
v Registering the Oracle wrapper
v Registering the Sybase wrapper
v Registering the Microsoft SQL Server wrapper
v Registering the Informix wrapper
v Registering the Teradata wrapper

2. Register the server definition for the Oracle, Sybase, Microsoft SQL Server, or
Informix target. See one of the following topics:
v Registering the server definitions for an Oracle data source
v Registering the server definitions for a Sybase data source
v Registering the server definitions for a Microsoft SQL Server data source
v Registering the server definitions for an Informix data source
v Registering the server definitions for a Teradata data source

3. Create a user mapping between the user ID on the federated server where the
Q Apply program runs and the user ID on the Oracle, Sybase, Microsoft SQL
Server, or Informix server. See one of the following topics:
v Creating the user mappings for an Oracle data source
v Creating a user mapping for a Sybase data source
v Creating a user mapping for a Microsoft SQL Server data source
v Creating the user mapping for an Informix data source
v Creating the user mapping for a Teradata data source

The user ID in the mapping must have the following authorities:
v Create tables in the target database (control tables and target table if you

choose).
v SELECT, INSERT, UPDATE, and DELETE authority for the control tables and

target table.

Restriction: The Replication Center and ASNCLP command-line program do
not support creating control tables or target tables in Oracle databases if the
server mapping has two-phase commit enabled.

Creating Q Apply control tables for federated Q Replication
Before you can replicate data to the federated target, you need to create control
tables to store information about Q subscriptions, message queues, operational
parameters, and user preferences.

Before you begin

v You must set up federated access by creating wrappers, server definitions, and
user mappings. The replication administration tools will work with the Oracle,
Sybase, Microsoft SQL Server, Informix, or Teradata target by using wrappers.

v By default, the remote authorization ID is used as the schema for the Q Apply
control tables that are created in the Oracle, Sybase, Microsoft SQL Server,
Informix, or Teradata target database. The user ID must have the authority to
create objects in this schema.

About this task

For federated targets, some Q Apply control tables are created in the target
database and accessed through nicknames just as target tables are. The rest of the

142 Replication and Event Publishing Guide and Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.orc.doc/topics/tlsorc03.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.syb.doc/topics/tlssyb03.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.mss.doc/topics/tlsmss03.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.db.found.conn.fw.inf.doc/topics/tlsinf03.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.ter.doc/topics/tfpter10.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.orc.doc/topics/tlsorc05.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.syb.doc/topics/tlssyb04.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.mss.doc/topics/tlsmss04.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.db.found.conn.fw.inf.doc/topics/tlsinf04.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.ter.doc/topics/tfpter11.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.orc.doc/topics/tlsorc07.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.syb.doc/topics/tlssyb06.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.mss.doc/topics/tlsmss06.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.db.found.conn.fw.inf.doc/topics/tlsinf06.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.found.conn.fw.ter.doc/topics/tfpter12.html

control tables are created in the federated server where the Q Apply program runs.
Table 12 shows the location of the control tables.

Table 12. Location of control tables for federated Q Replication

Tables in the federated server Tables in non-DB2 target server

v IBMQREP_APPLYENQ

v IBMQREP_APPLYTRACE

v IBMQREP_APPLYMON

v IBMQREP_APPLYPARMS

v IBMQREP_DONEMSG

v IBMQREP_EXCEPTIONS

v IBMQREP_RECVQUEUES

v IBMQREP_SAVERI

v IBMQREP_SPILLEDROW

v IBMQREP_SPILLQS

v IBMQREP_TRG_COLS

v IBMQREP_TARGETS

Informix: The data type of the MQMSGID column in the IBMQREP_DONEMSG
and IBMQREP_SPILLEDROW control tables is changed to BYTE on Informix to
stop the federated server from truncating binary data. In addition, no primary key
is defined for this table because Informix does not allow indexes to be created on
binary data.

Procedure

To create Q Apply control tables for federated Q Replication:

Use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE CONTROL TABLES FOR command. Specify the
FEDERATED keyword.

You can optionally use the RMT SCHEMA keyword to specify a
schema for the control tables on the federated target. The default is
the remote authorization ID. You can also optionally specify the
table space (Oracle), segment (Sybase), filegroup (SQL Server), or
dbspace (Informix) where these remote control tables will be
created.

For example, the following commands set the environment and
create Q Apply control tables for replication to an Oracle target
ORACLE_TARGET using a federated server FED_DB and a remote
authorization ID of FED_ASN:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER TARGET TO DB FED_DB
NONIBM SERVER ORACLE_TARGET;
SET QMANAGER QM2 FOR APPLY SCHEMA;
SET APPLY SCHEMA ASN;
CREATE CONTROL TABLES FOR APPLY SERVER
IN FEDERATED RMT SCHEMA FED_ASN;

Chapter 8. Federated targets 143

Method Description

Replication Center Use the Create Q Apply Control Tables wizard. To open the
wizard, right-click the Q Apply Servers folder and click Create Q
Apply Control Tables.

Start page
To specify the location of the control tables on the Q
Apply server or non-DB2 server, click Custom.

v For the Q Apply server, the control tables are created in
one table space. You can specify an existing table space
or create a new table space.

v At the federated target, the control tables are created in
the default table space (Oracle), segment (Sybase),
filegroup (Microsoft SQL Server), or dbspace (Informix),
or you can specify an existing table space, segment,
filegroup, or dbspace.

Server page
Select a federated server.

Target Tables page
Specify that the target tables are in a non-DB2 relational
database that is mapped to the Q Apply server, and
verify:

v The server name (the server definition for the non-DB2
relational server that is mapped to the DB2 federated
server).

v The remote schema that the Q Apply control tables will
be created under in the Oracle, Sybase, Microsoft SQL
Server, Informix, or Teradata database (the Schema field
shows the remote authorization ID for these targets, or
you can change the value).

Creating Q subscriptions for federated Q Replication
A Q subscription for federated Q Replication maps the DB2 table that contains
your source data to a copy of that table at the federated target. When you create a
Q subscription, you specify a queue map, target table options, and other
preferences. You create one Q subscription for each table that you want to
replicate.

Before you begin

To replicate to Informix targets, you must enable transaction logging with the
buffered_log option.

Restrictions

v Multidirectional replication is not supported for federated targets.
v Only DB2 stored procedures that write to nicknames are supported. The stored

procedure cannot write to both local DB2 tables and nicknames at the same time
because two-phase commit is not supported.

v Views or stored procedures in an Oracle, Sybase, Microsoft SQL Server, Informix,
or Teradata database are not supported as targets.

v If you want the Q Apply program to load the target table, you must specify the
EXPORT and IMPORT utilities for all targets except Oracle, for which you can

144 Replication and Event Publishing Guide and Reference

also use SQL*Plus. Before you use the loading function, nicknames that refer to
Teradata target tables must be empty. Nicknames that refer to tables in Oracle,
Microsoft SQL Server, Informix, and Sybase database versions that support
TRUNCATE operations do not have to be empty because Q Apply initiates a
TRUNCATE operation on the target table. Truncate operations are not supported
if the target table has referential integrity constraints.

Oracle targets: To use SQL*Plus, you must create a password file by using the
asnpwd command in the directory that is specified by the apply_path parameter
or the directory from which Q Apply is invoked with the following values for
these keywords:
– alias: The Oracle tnsnames.ora entry that refers to the Oracle server (the

same name that is used for the NODE option of the CREATE SERVER
command for setting up federation).

– id: The remote user ID for connecting to Oracle.
– password: The password for connecting to Oracle.

The file must have the default name asnpwd.aut. Before starting the Q
subscription, you should test connectivity with this command: $> sqlplus
id/password@alias.

v Replication to federated target tables with referential integrity constraints is
supported only if you manually define the constraints on the corresponding
nicknames. The ASNCLP or Replication Center do not automatically create these
constraints when the tools create nicknames. Also, the Q Apply program does
not drop referential integrity constraints on nicknames during the loading
process and then restore them.

Recommendation: Use the "no load" option for nicknames with referential
integrity constraints and load the target table outside of the replication
administration tools.

v For target nicknames with multiple indexes, the BEFORE_VALUES attribute for
the Q subscription must be Y and the CHANGED_COLS_ONLY value must be
N in the IBMQREP_SUBS table.

Procedure

To create Q subscriptions for federated Q Replication:

Use one of the following methods:

Chapter 8. Federated targets 145

Method Description

ASNCLP
command-line
program

Use the CREATE QSUB command for unidirectional replication.
For TARGET NAME specify the non-DB2 target table. Specify the
FEDERATED keyword. You can optionally specify a nickname
name and owner if you want to change the default. For example,
the following series of commands creates a Q subscription with
these characteristics:

v The source server is SAMPLE.

v The federated server where the Q Apply program runs (TARGET
keyword) is FED_DB.

v The non-DB2 target server (NONIBM SERVER keyword) is
ORACLE_TARGET.

v The replication queue map (REPLQMAP keyword) is
SAMPLE_ASN_TO_FED_DB_ASN.

v The Q subscription name (SUBNAME keyword) is FEDSUB.

v The target table on the Oracle database is EMPLOYEE.

v The nickname on the federated Q Apply server that points to the
EMPLOYEE table (NICKNAME keyword) is EMPNICKNAME

v The Q subscription specifies a manual (E) load phase (HAS
LOAD PHASE keyword)

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET SERVER TARGET TO DB FED_DB
NONIBM SERVER ORACLE_TARGET;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;
SET QMANAGER QM1 FOR CAPTURE SCHEMA;
SET QMANAGER QM2 FOR APPLY SCHEMA;
CREATE QSUB USING REPLQMAP
SAMPLE_ASN_TO_FED_DB_ASN
(SUBNAME FEDSUB TARGET NAME EMPLOYEE
FEDERATED NICKNAME EMPNICKNAME OPTIONS
HAS LOAD PHASE E);

146 Replication and Event Publishing Guide and Reference

Method Description

Replication Center Use the Create Q Subscriptions wizard. To open the wizard,
expand the appropriate Q Capture schema or Q Apply schema in
the object tree, right-click the Q Subscriptions folder, and click
Create.

Servers page
Specify the federated server where the Q Apply program
runs as the target server. The Q Apply program updates a
nickname at this server that is mapped to a table at the
non-DB2 relational database.

Target page
Specify the type of target that you want to replicate to:

Table in the non-DB2 database
The table will be updated by using a nickname.
You can let the Replication Center create a new
table, or specify an existing table.

DB2 stored procedure
A stored procedure allows you to manipulate
source data before it is applied to the nickname.
The stored procedure must already exist on the Q
Apply server and must only write to nicknames.

For multiple Q subscriptions: If you specified more than
one source table, the Target Tables page shows the profile
to be used for non-DB2 target tables, indexes, and table
spaces or segments, and for target nicknames at the
federated server. Click Change to open the Manage Target
Object Profile window and change the names.

Rows and Columns page
Use the Column mapping field if you need to change the
default mapping of source columns to columns in the
non-DB2 target table. The Column Mapping window
shows the default data type mappings between the
nickname at the federated server and the non-DB2 target
table and validates whether a source column can be
mapped to a target column.

Chapter 8. Federated targets 147

148 Replication and Event Publishing Guide and Reference

Chapter 9. Q Replication from Oracle sources

Q Replication provides log-based capture from Oracle source tables combined with
the high throughput and low latency of WebSphere MQ messaging and a highly
parallel Q Apply program.

A typical use for this solution is replicating data from an online transaction
processing database (OLTP) on Oracle to a read-only server. This approach allows
real-time queries of live business data for generating reports, while minimizing
overhead and avoiding contention at the OLTP server.

The following figure shows the Oracle LogMiner utility translating log records
from source tables into SQL statements, which the Q Capture program turns into
WebSphere MQ messages for delivery to the Q Apply program. A replication
queue map specifies which messages queues are used to deliver transactions, and
Q subscriptions map the Oracle source tables to DB2 target tables.

Setting up Q Replication from Oracle sources
Setting up Q Replication from Oracle sources involves configuring the Oracle
source database, creating WebSphere MQ objects, configuring the Q Capture and Q
Apply servers, and creating Q Replication objects.

Procedure

To set up Q Replication from Oracle sources:
1. Configure the Oracle source.
2. Create WebSphere MQ objects.

Oracle source server Target server

Q Capture
program

Q Apply
program

Log

Q Capture
control tables

Q Apply
control tables

Source
table

Target
table

Replication
queue map

Administration
queue

Q subscription

Oracle
process

Oracle
LogMiner

Figure 21. High-level overview of Q Replication from an Oracle source

© Copyright IBM Corp. 2004, 2012 149

3. Create control tables.
4. Set up for target table loading.
5. Create Q subscriptions.
6. Start the Q Capture program
7. Start the Q Apply program

Figure 22 on page 151 shows the steps involved in setting up Q Replication from
Oracle sources.

150 Replication and Event Publishing Guide and Reference

Oracle client support for Q Replication
If you are running Q Capture for Oracle sources you must use the correct Oracle
client libraries for your operating system.

4. Start replication

1. Configure Oracle source database

Set minimal supplemental logging

Set table-level supplemental logging

Set ARCHIVELOG mode

3. Create replication objects

Create Q Capture control tables on Oracle

Create Q Apply control tables

Create replication queue map

Create Q subscriptions

2. Create WebSphere MQ objects

Create source and target queue managers

Create source and target queues

Create channels

Start Q Apply program

Start Q Capture program

Start channels and listeners

Set environment for Oracle LogMiner

Figure 22. Overview of steps to set up Q Replication from Oracle

Chapter 9. Oracle sources 151

A full Oracle client is not required to run the Q Capture program with an Oracle
source database. You can use what Oracle refers to as an Instant Client, which is a
small compressed file that includes the essential DLLs or shared libraries that are
required by an Oracle client application.

To use the Instant Client with Q Capture for Oracle:
1. Extract the instant client compressed file to a dedicated directory (do not mix

with the full Oracle client directory).
2. Ensure that the instant client directory is included in one of the following

environment variables: PATH (Windows), LIBPATH (UNIX),
LD_LIBRARY_PATH (Linux or Solaris), or SHLIB_PATH (HP-UX).

3. If you have another client installed (possibly from an Oracle installation) that
does not match the required version below, this client should not be mixed
with the Instant Client in the environment variables, or you should ensure that
the path to the Instant Client directory occurs before the path to the installed
Oracle client directory.

The tables below list supported operating systems, along with the level of Oracle
client that is required for the Q Capture program. The Oracle client does not have
to match the Oracle server, but the release of the database server software should
be equal to or higher than the client software release.

InfoSphere Replication Server Version 9.7 Fix Pack 3a and earlier

The following table lists supported operating systems and required clients when
you are using InfoSphere Replication Server Version 9.7 Fix Pack 3a and earlier to
replicate from Oracle databases.

Table 13. Supported operating systems and required Oracle client library version for
InfoSphere Replication Server Version 9.7 FP3a and earlier

Operating system Oracle client library version

AIX 5.3 10.2.0.1 instant client

Linux 390 64 bit 10.2.0.1 instant client

Solaris 64 bit 10.2.0.1 instant client

Linux AMD 64 bit 10.2.0.3 instant client patched with 10.2.0.3.0
g++ 3.4.3 RHEL AS 4.0 64-bit (x86_64)
version

Windows 32 bit 10.2.0.3 instant client patched with 10.2.0.3.0
VS2005 OCCI version

HP IPF 64 bit 10.2.0.1 instant client

WebSphere Replication Server Version 9.5

The following table lists supported operating systems and required clients when
you are using WebSphere Replication Server Version 9.5 to replicate from Oracle
databases.

Table 14. Supported operating systems and required Oracle client library version for
WebSphere Replication Server Version 9.5

Operating system Oracle client library version

AIX 5.3 10.2.0.1 instant client

Linux 390 64 bit 10.2.0.1 instant client

152 Replication and Event Publishing Guide and Reference

Table 14. Supported operating systems and required Oracle client library version for
WebSphere Replication Server Version 9.5 (continued)

Operating system Oracle client library version

Solaris 64 bit 10.2.0.1 instant client

Linux AMD 64 bit 10.2.0.1 instant client

Windows 32 bit 10.2.0.3 instant client patched with 10.2.0.3.0
VS2005 OCCI version

HP IPF 64 bit 10.2.0.1 instant client

Configuring the Oracle source
To enable capture of transactions from the Oracle source database, you need to set
required logging options, set the IBMQREPLPATH environment variable, and
enable the Q Capture program to work with the Oracle LogMiner utility.

Configuring an Oracle source database to work with a Q
Capture program

You must enable archive logging, minimal supplemental logging, and table-level
supplemental logging at an Oracle source database before you start the Q Capture
program.

About this task

The following list describes each configuration requirement:

Archive logging
The Oracle source database must run in ARCHIVELOG mode. This mode
gives the LogMiner utility access to any redo logs that might be necessary
to bring the source and target servers into convergence. The Q Capture
program uses the LogMiner utility with the CONTINUOUS_MINE option.
To perform a continuous mine from the Oracle logs using LogMiner,
archive logging must be enabled. On initialization, if the Q Capture
program detects that the database is running in NOARCHIVELOG mode,
the program will not start.

Minimal supplemental logging
The LogMiner utility requires supplemental logging to be enabled. By
default, Oracle does not provide supplemental logging. You must enable at
least minimal supplemental logging before any redo logs are generated
that will be used by replication.

Table-level supplemental logging
The Q Capture program requires that table-level supplemental logging be
enabled for any Oracle source table that is part of a Q subscription. Data is
not captured for a table until table-level supplemental logging is enabled.

Procedure

To configure an Oracle source database to work with the Q Capture program,
perform these steps:
v Ensure that archive logging is enabled. To determine the database log mode

(ARCHIVELOG or NOARCHIVELOG), use the following statement:
SELECT LOG_MODE FROM SYS.V$DATABASE;

Chapter 9. Oracle sources 153

v Set minimal supplemental logging by using the following statement:
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

To check whether supplemental logging is enabled, query the V$DATABASE
view:
SELECT SUPPLEMENTAL_LOG_DATA_MIN FROM V$DATABASE;

If the query returns a value of YES or IMPLICIT, minimal supplemental logging
is enabled.

v For each source table, enable table-level supplemental logging by using the
following statement:
ALTER TABLE table_owner.table_name ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

For more information on enabling archive logging, see the "Managing Archived
Redo Logs" chapter in the Oracle Database Administrator's Guide. For more
information on enabling supplemental logging, see "Supplemental Logging" in
Oracle Database Utilities.

How a Q Capture program works with the Oracle LogMiner
utility

The Q Capture program uses the Oracle LogMiner utility to retrieve changed data
from Oracle source tables before turning the data into WebSphere MQ messages for
replicating or publishing.

The following figure shows the major objects and applications that are involved in
capturing data from Oracle source tables.

154 Replication and Event Publishing Guide and Reference

The following list describes how these objects work together:

Redo log
The Oracle redo log consists of preallocated files that contain all changes
made to the database. For Q Replication or Event Publishing, the database
must operate in ARCHIVELOG mode so that the database manager never
overwrites redo logs that are needed for replication or publishing.

LogMiner utility
The utility connects to the Oracle source database, reads archive logs and
active redo logs, and presents log record data in a pseudo-view called
V$LOGMNR_CONTENTS. The data is reproduced in an SQL format that is
used by the Q Capture program to re-create changes.

Dictionary
LogMiner uses a dictionary to translate binary log records into plain text
SQL statements. Q Replication and Event Publishing specify an online
dictionary. An online dictionary always reflects the current database
schema. For more details, see “How Q Capture handles alterations of
Oracle source tables” on page 164.

V$LOGMNR_CONTENTS
LogMiner creates the V$LOGMNR_CONTENTS view in response to SQL
queries from Q Capture. Q Capture uses rebuilt SQL statements from
V$LOGMNR_CONTENTS to create WebSphere MQ messages for
replication or publishing.

Q Capture program
The Q Capture program starts, stops, and issues queries to the LogMiner
utility. Q Capture administers the utility by using two Oracle PL/SQL

Flow of data

Internal communications

• Minimal supplemental
logging enabled

• Table-level
supplemental logging
enabled

• ARCHIVELOG mode

Oracle
Database

Redo

(active) logs

• Starts, stops LogMiner
(starting SCN from restart
queue)

• Fetches rows from
V$LOGMNR_CONTENTS

• Turns SQL_REDO
statements into WebSphere
MQ messages

Oracle
LogMiner

Q Capture
program

Replicated or
published data

V$LOGMNR_CONTENTS view
SQL_REDO column displays binary

log records translated into SQL

Archive
logs

Figure 23. How a Q Capture program works with LogMiner to retrieve changed data

Chapter 9. Oracle sources 155

packages: DBMS_LOGMNR_D to build the online dictionary, and
DBMS_LOGMNR to start and stop the utility, add and remove log files,
and prompt the utility to extract data from the log files. The user account
that runs the Q Capture program needs special permissions to administer
the LogMiner utility.

Configuring the Oracle LogMiner utility
To configure the Oracle LogMiner utility for Q Replication or Event Publishing,
you create a table space for LogMiner redo tables and create a LogMiner
administrator account with appropriate permissions.

About this task

The LogMiner presents changed data from the redo log in a relational pseudo-view
called V$LOGMNR_CONTENTS. By default, the utility uses the SYSTEM table
space for the V$LOGMNR_CONTENTS view. Oracle recommends that a different
table space be created and used for LogMiner operations.

To allow the Q Capture program to access LogMiner views, you must create
specific permissions. Permissions also must be granted to allow the LogMiner to
access data within Oracle system tables and views that are owned by the SYS user.

Sample SQL scripts are provided in the sqllib/samples/repl/oracle directory that
you can modify to specify a table space for LogMiner and to set the correct
permissions. You can also use the following procedure to accomplish these tasks.

Recommendation: While Oracle supports configurations where LogMiner runs in
a different database than the database instance that generates redo and archive
logs, IBM does not recommend this configuration for Q Replication. The Q Capture
program invokes LogMiner with the CONTINUOUS_MINE option. This option
prompts LogMiner to dynamically identify and add the log files that it needs. If
you run LogMiner on a remote mining database, you would need to manually
make active log and archive log files available to LogMiner.

Procedure

1. Create a table space for the LogMiner utility on the Oracle source database.
Follow these steps:
a. Issue the CREATE TABLESPACE SQL statement. You can modify the

following UNIX example to fit your environment:
CREATE TABLESPACE logmnrts$
DATAFILE
’/dbms/oracle10/product/10.1.0/oradata/ORA10SID/logmnr01.dbf’
SIZE 4M AUTOEXTEND ON
NOLOGGING EXTENT MANAGEMENT LOCAL;

b. Assign the new table space to the LogMiner utility. The following statement
assigns the logmnrts$ table space that was created in Step a:
EXECUTE SYS.DBMS_LOGMNR_D.SET_TABLESPACE(’logmnrts$’);

2. Create a LogMiner user account for Q Replication on the Oracle source. The
following sample statements create the user asn and grant the user appropriate
permissions ("asn" is not a required name for the user account; the name can be
changed to meet your requirements):
create user asn identified by asn
default tablespace users
temporary tablespace temp
profile default account unlock;

156 Replication and Event Publishing Guide and Reference

grant connect, resource to asn;
grant create session to asn;
alter user asn quota unlimited on logmnrts$;
grant select any transaction to asn;
grant execute_catalog_role to asn;
grant select any table to asn;
grant select on sys.v_$database to asn;
grant select on sys.v_$logmnr_contents to asn;
grant select on sys.v_$logmnr_dictionary to asn;
grant select on sys.v_$logmnr_logfile to asn;
grant select on sys.v_$logmnr_logs to asn;
grant select on sys.v_$logmnr_parameters to asn;
grant select on sys.v_$logmnr_session to asn;
grant select on sys.v_$logmnr_transaction to asn;
grant select on sys.v_$log to asn;
grant select on sys.v_$logfile to asn;
grant select on sys.v_$archived_log to asn;

Creating an ASNCLP configuration file
The ASNCLP command-line program uses a configuration file for connecting to
Oracle data sources. The configuration file is a plain text file.

About this task

You can define connection information for multiple data sources in the
configuration file. You can save the configuration file to your choice of location.
The SET SERVER command has a parameter for providing the ASNCLP program
with the location of the configuration file.

Procedure

To create an ASNCLP configuration file:
1. In a text file, add a unique name enclosed in square brackets to identify the

data source. The name must be eight characters or less. For example, [Oracle1].
2. Enter the TYPE, DATA SOURCE, HOST, PORT parameters in your

configuration file and replace the sample values with your own. The following
example shows values for an Oracle source:
[Oracle1]
Type=ORACLE
Data source=ORADB
Host=9.30.155.156
Port=1521

3. Save the file to a location of your choice. When you use the SET SERVER
command, you must enter the full path to the file. The following is an example
of the SET SERVER command that specifies an ASNCLP configuration file:
SET SERVER capture TO CONFIG SERVER ORADB

FILE "c:\ora_setup\asnservers.ini"
ID myuserid PASSWORD "mypassword";

Creating Q Capture control tables for an Oracle source
Before you can publish or replicate data from an Oracle source, you must create
control tables for a Q Capture program in the source Oracle database. Control tables
store information about Q subscriptions and publications, message queues,
operational parameters, and user preferences.

Before you begin

Chapter 9. Oracle sources 157

v The ASNCLP command-line program or Replication Center must be able to
connect to the source Oracle database where you want to create the Q Capture
control tables. To permit connections with the ASNCLP, create an ASNCLP
configuration file.

v You must have the names of the following WebSphere MQ objects:
– A queue manager that the Q Capture program works with
– A local, persistent queue to serve as the administration queue
– A local, persistent queue to serve as the restart queue

Tip: Use the VALIDATE WEBSPHERE MQ ENVIRONMENT FOR command in the ASNCLP
or the validate controls in the Replication Center to ensure that the queue
managers and queues that you specify for the control tables exist and have the
correct properties. For this VALIDATE command to work, the Q Capture program
and the WebSphere MQ objects must be located on the same server as the Oracle
database.

About this task

Each instance of the Q Capture program has its own set of control tables, which
are identified by the Q Capture schema. For example, the control table that stores
operational parameters for a Q Capture program with a schema of ASN1 would be
named ASN1.IBMQREP_CAPPARMS.

The Q Capture control tables are created natively in the Oracle database, by default
in a single table space. You can customize where each control table is created, and
you can specify existing table spaces or create new table spaces.

Procedure

To create Q Capture control tables on an Oracle source, use one of the following
methods:

Method Description

ASNCLP
command-line
program

Use the CREATE CONTROL TABLES FOR command. For example, the
following commands set the environment and create control tables
in the SAMPLE Oracle database with a Q Capture schema of
ASN1:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE CONFIG SERVER SAMPLE
FILE asnservers.ini ID id1 PASSWORD pwd1;
SET QMANAGER "QM1" FOR CAPTURE SCHEMA;
SET CAPTURE SCHEMA SOURCE ASN1;

CREATE CONTROL TABLES FOR CAPTURE SERVER
USING RESTARTQ "ASN1.QM1.RESTARTQ"
ADMINQ "ASN1.QM1.ADMINQ" MEMORY LIMIT 64
MONITOR INTERVAL 600000;

The CREATE command specifies a restart queue and administration
queue, doubles the default amount of memory that is available to
build transactions to 64 MB, and reduces the default interval for
recording performance information to 600000 milliseconds (one
minute).

158 Replication and Event Publishing Guide and Reference

Method Description

Replication Center When you create Q Capture control tables on an Oracle source or
add an existing Q Capture server to the Replication Center, use the
Specify an Oracle Server window.

Right-click the Q Capture Servers folder and click Create Q
Capture control tables. Click Add Oracle Server and specify the
Oracle source database at the Specify an Oracle Server window:

Database name
The Oracle service, or system identifier, of the database
that contains the Q Capture control tables

Database alias
An 8-character TNS_Alias for the database that contains
the Q Capture control tables

System name
The host name or IP address of the system where the
database runs

Port number
The port number where the database looks for incoming
connection requests

User ID
A user ID for connecting to the Oracle source server

Password
A password for connecting to the Oracle source server

Creating Q subscriptions for Oracle sources
A Q subscription maps the Oracle table that contains your source data to a copy of
that table at the DB2 or federated target. When you create a Q subscription, you
specify a replication queue map, target table options, and other preferences. You
create one Q subscription for each table that you want to replicate.

Before you begin

v Plan how you want to group replication queue maps and Q subscriptions.
v Create the control tables for the Q Capture program in the Oracle source server

that contains the source table for the Q subscription.
v Create the control tables for the Q Apply program in the server that contains the

target for the Q subscription.
v Specify the queues for replicating and their attributes by creating a replication

queue map. (You can do this task before you create a Q subscription or while
you create a Q subscription.)

v Prepare the stored procedure if you want the Q Apply program to pass source
changes to a stored procedure instead of to a target table.

If you choose to load the target tables automatically with data from an Oracle
source, you must use a federated database. The federation functions for Oracle and
other databases are built into InfoSphere Replication Server. The federation features
allow the Q Apply program to connect and pull data from the Oracle source into
the target tables. You must create the following objects in the federated database
that point to the Oracle source tables:
v Oracle wrapper
v Remote server definition

Chapter 9. Oracle sources 159

v User mapping

Restrictions

v Multidirectional Q subscriptions are not supported for Oracle sources.
v If you use a search condition to filter changes to replicate, the predicate must

use valid Oracle syntax.
v Truncate table operations at the Oracle source database are not replicated.

Procedure

To create Q subscriptions for Oracle sources:

Use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE QSUB command. For example, the following
commands set the environment and create a Q subscription with
the following characteristics:

v The Oracle source server is LONDON and the ASNCLP
connection information is stored in the asnservers.ini file
under the LONDON entry.

v The DB2 target server is DALLAS.

v The replication queue map is
LONDON_ASN_TO_DALLAS_ASN

v The source table is SALES and the target table is TGTSALES.

v The Q subscription name is SALES_REPORTING.

v The table is loaded automatically by using LOAD FROM
CURSOR option (HAS LOAD PHASE I and LOAD TYPE 1).

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO CONFIG SERVER LONDON

FILE asnservers.ini ID MYUSERID PASSWORD MYPASS;
SET SERVER TARGET TO DB DALLAS;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;
SET QMANAGER QM1 FOR CAPTURE SCHEMA;
SET QMANAGER QM2 FOR APPLY SCHEMA;
CREATE QSUB (SUBNAME SALES_REPORTING

REPLQMAP LONDON_ASN_TO_DALLAS_ASN SALES
OPTIONS HAS LOAD PHASE I TARGET NAME TGTSALES
TYPE USERTABLE NEW NICKNAME RMT SERVERNAME RMTLONDN
NICKSALES LOAD TYPE 1);

160 Replication and Event Publishing Guide and Reference

Method Description

Replication Center Use the Create Q Subscriptions wizard. To open the wizard,
expand the appropriate Q Capture schema or Q Apply schema in
the object tree, right-click the Q Subscriptions folder, and click
Create.

Servers page
Specify the Oracle server where the Q Capture program
runs as the source server.

Rows and Columns page
The Data type column shows the Oracle data type of the
column. The Q Capture program converts supported
Oracle data types to DB2 native data types. You can view
the data type mapping in the Column Mapping window.
For details, see Oracle data types.

Loading Target Tables page

If you want to perform an automatic load of the target
tables, you select the Automatic radio button and the
Always use LOAD FROM CURSOR option of the LOAD
utility radio button.

Use the controls in the Nickname area to prompt the
Replication Center to create a new nickname or to specify
an existing nickname for the loading process.

Load options for Q Replication from an Oracle source
When the source table for a Q subscription is in an Oracle database, you can
choose among automatic load, manual load, and no load options for the target
table.

The following table describes each option.

Chapter 9. Oracle sources 161

Table 15. Load options for Q subscriptions with Oracle sources

Option Description

Automatic To automatically load target tables, use the federated database function in InfoSphere
Replication Server to prompt the Q Apply program to pull data from the Oracle source
tables into DB2 target tables.

The Q Apply program uses the LOAD FROM CURSOR option of the DB2 LOAD utility.
The LOAD utility fetches data from Oracle by going through nicknames in the federated
database.

The configuration for loading differs depending on the DB2 target:

For target tables in DB2 for z/OS, you need a federated database on Linux, UNIX,
or Windows so that the LOAD utility can load the target tables on DB2 for z/OS.
Update the database manager configuration using FEDERATED YES, create a
federated database, and provide the database with information about your Oracle
database and tables.
Note: The server where the federated database resides must already have an
Oracle client installed and configured to connect to the Oracle database.

To set up the loading process, you can download two sample scripts from the
replication samples collection on IBM developerWorks:

001_federated_setup.db2
This script creates a federated database, an Oracle wrapper, federated
server definition, user mapping, and nickname for the Oracle source table.

002_zos_setup.db2
This script allows the z/OS target access to the federated nickname that is
created in 001_federated_setup.db2.

Note: Create Q subscriptions for any Oracle source tables before you use these
samples. The federated database and nickname must match the Oracle database
and source table so that Q Apply will use LOAD FROM CURSOR.

For distributed targets, you must enable federated database function in the target
database and provide the federated server with information about your Oracle
database and tables.

Before you create Q subscriptions that map Oracle source tables to DB2 target
tables, you first create the following objects in the federated server to enable access
to Oracle:

v Oracle wrapper

v Remote server definition

v User mapping

When you create Q subscriptions that use LOAD FROM CURSOR, you specify the
federated objects to use. You can have the ASNCLP command-line program or
Replication Center create the nicknames that point to the Oracle source tables, or
you can use existing nicknames.

Manual Manual loading, in which you load the target tables with a utility of your choice and then
signal the replication programs when the load is complete, is supported for Oracle sources.
For example, you might use the IBM Migration Toolkit to load the target tables with data
from the Oracle source, and then use the ASNCLP or Replication Center to indicate when
the load is finished.

162 Replication and Event Publishing Guide and Reference

https://www.ibm.com/developerworks/mydeveloperworks/files/app?lang=en#/person/110000ED47/file/5964bdfe-1a85-428e-a346-9473836e20f1

Table 15. Load options for Q subscriptions with Oracle sources (continued)

Option Description

No load When you specify the no load option for a Q subscription, the Q Apply program begins
applying transactions to a target table as soon as the Q subscription becomes active.

If you choose the no load option, make sure that the values of the primary key or unique
index from the source table are also present in the primary key or unique index of the
target table.

Starting a Q Capture program for Oracle sources
Start a Q Capture program to begin capturing transactions or row-level changes
from Oracle for active or new Q subscriptions or publications.

Before you begin

v Create a WebSphere MQ queue manager, queues, and other required objects.
v Ensure that you have authorization for Q Replication and event publishing

objects and WebSphere MQ objects.
v Create control tables on the Oracle source database for the appropriate Q

Capture schema.
v Configure the Oracle source database to work with the Q Capture program.

About this task

When you initially start a Q Capture program without specifying a start mode, it
uses the default start mode, warmsi. In this mode, the program tries to read the
log at the point where it left off. Because the program is being started for the first
time, it switches to cold start mode and begins processing Q subscriptions or
publications that are in N (new) or A (active) state. Any Q subscriptions or
publications that are in I (inactive) state must be activated for the program to begin
capturing changes.

You can start a Q Capture program even if no Q subscriptions or publications are
in A (active) state. When you activate the Q subscriptions or publications, the Q
Capture program begins capturing changes for those Q subscriptions or
publications.

When you start a Q Capture program, you can specify startup parameter values,
and the program will use the new values until you take one of the following
actions:
v Change the parameter values while the program is running.
v Stop and restart the program, which prompts it to read the

IBMQREP_CAPPARMS table and use the values saved there.

Procedure

To start a Q Capture program, use one of the following methods:

Chapter 9. Oracle sources 163

Method Description

asnoqcap command Use the asnoqcap command to start a Q Capture program for
Oracle sources and specify startup parameters. For example:

asnoqcap capture_server=server_name
capture_schema=schema
parameters

Where server_name is the name of the database that contains the Q
Capture control tables, schema identifies the Q Capture program
that you want to start, and parameters is one or more parameters
that you can specify at startup.

Windows services

You can create a replication service on Windows operating systems
to start the Q Capture program automatically when the system is
started.

You can verify whether a Q Capture program started by using one of the following
methods:
v Issue the asnoqccmd status command.
v Examine the Q Capture diagnostic log file

(capture_server.capture_schema.QCAP.log) for a message that indicates that the
program is capturing changes.

v Check the IBMQREP_CAPTRACE table for a message that indicates that the
program is capturing changes.

How Q Capture handles alterations of Oracle source tables
When you alter an Oracle source table, the Q Capture program continues to
replicate data as long as the existing column definitions are not changed. The table
alterations are not automatically replicated to the target.

The following table describes how Q Capture handles different types of DDL and
what you need to do for any affected Q subscriptions:

Table 16. How Q Capture handles DDL changes to source tables and what you need to do

DDL operation How it is handled What you need to do

ALTER TABLE ADD
(COLUMN)

Q Capture leaves the
Q subscription active,
but does not replicate
the added column
until it receives an
ADDCOL signal.

Use the ASNCLP ALTER ADD COLUMN
command, or manually insert an ADDCOL
signal, to indicate that you want to replicate
the new column.

DROP TABLE Q Capture leaves the
Q subscription active,
but there will be no
log records to read
for the source table.

Stop the Q subscription, and then drop the
Q subscription.

164 Replication and Event Publishing Guide and Reference

Table 16. How Q Capture handles DDL changes to source tables and what you need to
do (continued)

DDL operation How it is handled What you need to do

DDL that alters the
structure of a table

Examples:

v DROP COLUMN

v SET UNUSED

v MODIFY
COLUMN

v RENAME
COLUMN

The Q subscription
for any altered table
is stopped. Q Capture
keeps running.

1. Drop and recreate the Q subscription to
synchronize the source and target table
definitions in the Q Capture and Q
Apply control tables.

2. Restart the Q subscription to trigger a
new load of the target table.

DDL that does not
alter the table
structure

Examples:

v CREATE INDEX

v ADD/MODIFY
CONSTRAINT

v ADD DEFAULT
VALUE

Q Capture leaves the
Q subscription active.

Ensure that unique constraints, primary
keys, and referential integrity constraints
match between the source and target tables.
If you change any of these properties at the
source, make a corresponding change to the
target to avoid unexpected behavior.

Oracle data types
The Q Capture program converts the supported Oracle data types to DB2 native
data types. Some Oracle data types are not supported for Q Replication or Event
Publishing.

Supported Oracle data types

The following Oracle data types are supported for Q Replication and Event
Publishing:
v CHAR
v NCHAR
v VARCHAR2
v NVARCHAR2
v NUMBER
v DATE
v TIMESTAMP
v RAW
v CLOB
v NCLOB
v BLOB
v BINARY_FLOAT
v BINARY_DOUBLE

Support for LOB data types is available only for redo logs that are generated by a
database with compatibility set to a value of 9.2.0.0 or higher.

Chapter 9. Oracle sources 165

You cannot replicate LONG or LONG RAW columns. If you convert these columns
to LOB columns, you can replicate the data.

Data type mapping

The Q Capture program converts the supported Oracle data types to DB2 native
data types. The Q Capture program converts the data types according to the table
below.

Table 17. Oracle to DB2 data type mapping

Oracle data type Oracle
Lower
Length

Oracle
Upper
Length

Oracle
Lower
Scale

Oracle
Upper
Scale

Oracle
Bit Data

DB2 data type DB2 Length DB2 Scale DB2 Bit
Data

BLOB 0 0 0 0 - BLOB 2147483647 0 Y

CHAR 1 254 0 0 - CHAR 0 0 N

CHAR 255 2000 0 0 - VARCHAR 0 0 N

CLOB 0 0 0 0 - CLOB 2147483647 0 N

DATE 0 0 0 0 - TIMESTAMP 0 0 N

FLOAT 1 126 0 0 - DOUBLE 0 0 N

LONG 0 0 0 0 - CLOB 2147483647 0 N

LONG RAW 0 0 0 0 - BLOB 2147483647 0 Y

NUMBER 1 38 -84 127 - DOUBLE 0 0 N

NUMBER 1 31 0 31 - DECIMAL 0 0 N

NUMBER 1 4 0 0 - SMALLINT 0 0 N

NUMBER 5 9 0 0 - INTEGER 0 0 N

NUMBER - 10 0 0 - DECIMAL 0 0 N

RAW 1 2000 0 0 - VARCHAR 0 0 Y

ROWID 0 0 0 NULL - CHAR 18 0 N

TIMESTAMP - - - - - TIMESTAMP 10 - -

VARCHAR2 1 4000 0 0 - VARCHAR 0 0 N

Data type limitations

Some Oracle NUMBER values might be rounded by replication.
Oracle data types are converted to DB2 data types when they are
replicated. Because of differences between the mapped data types, Oracle
NUMBERS might be rounded depending on their length and scale.

Oracle NUMBER columns with the following attributes might be rounded:
v NUMBER columns that are defined with length 31 to 38 might be

rounded.
v NUMBER columns that are defined with length 1 to 31 and scale is -84

to 0, or scale is 31 to 127 might be rounded.

Note: When the length is not specified for a NUMBER, the NUMBER is
treated as having length 38 and scale 0.
The DB2 DOUBLE data type has a maximum of 17 significant digits. This
means that if a value has more than 17 significant figures, the value will be
rounded. For example, if your Oracle NUMBER value is
9876543210987654321, your DB2 DOUBLE value will be
9.8765432109876543E 16, which rounds off the last two digits of the Oracle

166 Replication and Event Publishing Guide and Reference

value.
To avoid rounding, specify both length (and scale if required) in NUMBER
when a column is declared.

Using Oracle TIMESTAMP columns as key for replication or publishing
requires 10.2.0.5 patch set

TIMESTAMP columns for Oracle source tables can only be used as keys for
replication or publishing (IS_KEY=Y) if you install the Oracle 10.2.0.5 patch
set. Without the upgrade, the LogMiner utility does not return the
subsecond value for timestamps, and when you replicate timestamp
values, the precision is in seconds rather than subseconds.

Chapter 9. Oracle sources 167

168 Replication and Event Publishing Guide and Reference

Chapter 10. Manipulating data by using stored procedures as
a target

When you create a Q subscription for unidirectional replication, you can specify
that the changes be replicated from the source table to a stored procedure instead
of directly to a target table. You can use the stored procedure to manipulate data
that is captured from the source before the data is applied to the target table.

Stored procedures for manipulating source data for Q Replication
Typically in Q subscriptions, data from a source table is mapped to a target table;
however, for Q subscriptions in unidirectional replication, you can instead have the
Q Apply program call a stored procedure and pass the source data as input
parameters to the stored procedure.

The source columns map to parameters in the stored procedure instead of to target
columns. By mapping source columns directly to parameters in a stored procedure,
you avoid the need to parse the incoming data and have a clean, simple
programming model.

When you specify that you want the target of a Q subscription to be a stored
procedure, you still have all of the options that you have for a Q subscription with
a target table. For example, with a stored procedure, you still choose error
options.The stored procedure can refer to either a DB2 table or a nickname in a
DB2 federated database.

The stored procedure returns a return code to the Q Apply program that indicates
whether the data was applied to the target table. The developer that creates the
stored procedure must ensure that the stored procedure returns an appropriate
SQL return code to the Q Apply program. The stored procedure is responsible for
getting the source data to its final destination.

Version 10.1 and later: The mandatory stored procedure parameter
src_commit_lsn must specify a data type of VARCHAR(16) under these conditions:
v The source database is DB2 10.1 for Linux, UNIX, and Windows or later
v The Q Capture program is at Version 10.1 or later and the value of the

compatibility parameter is 1001 or higher

If the source database and Q Capture program are at V10.1 but compatibility is
lower than 1001, the value of the src_commit_lsn parameter can be CHAR(10)
because Q Capture continues to use 10-byte log sequence numbers.

Example

The following example shows a signature of a stored procedure that accepts values
from five columns in the source table, two of which are key columns.
CREATE PROCEDURE storedprocedure_name(

INOUT operation integer,
IN suppression_ind VARCHAR(size),
IN src_commit_lsn CHAR(10),
IN src_trans_time TIMESTAMP,
XParm1,
Parm1,
XParm2

© Copyright IBM Corp. 2004, 2012 169

Parm2,
Parm3,
Parm4,
Parm5

)

This example shows the four mandatory parameters:

operation
This INOUT parameter identifies the type of operation.

suppression_ind
This IN parameter identifies the parameters that have been suppressed.

src_commit_lsn
This IN parameter identifies the log sequence number of when the source
server issued the COMMIT for the transaction.

src_trans_time
This IN parameter identifies the timestamp of when the source server
issued the COMMIT for the transaction.

The signature also contains the before and after values for key columns and only
the after values for non-key columns. The following parameters accept values from
source columns:
v Parameters Parm1 and Parm2 map to the key columns in the source table.
v Parameters XParm1 and XParm2 accept the before values of key columns in the

source table.
v Parameters Parm3, Parm4, and Parm5 map to non-key columns in the source table.

See the sample programs for examples of stored procedures for Q Replication that
are written in C and in SQL.

The stored procedure must not perform COMMIT or ROLLBACK functions
because the Q Apply program commits or rolls back transactions.

The Q Apply program handles LOB data for stored procedures similarly to how it
handles LOB data for target tables. For Q subscriptions with stored procedures,
LOB changes are replicated by sending them in multiple messages, depending on
the size of the LOB and the message size that you allowed the Q Capture program
to send. The stored procedure call that involves the first LOB message for a single
LOB change is the original row operation. All of the remaining LOB data for the
single LOB change is sent by additional calls to the stored procedure. The Q Apply
program transforms the operation into an update. The suppression_ind index
marks all parameters as suppressed, except for the parameter that maps to the
LOB column in the source table. The stored procedure is called each time a LOB
message is on the receive queue.

If a LOB value is small enough to be sent in a single message, the special update
operation with append (operation value 34) is not necessary. The stored procedure
writer must write logic to handle each operation code as well as column
suppression; the Q Apply program has all other logic for handling LOB values.

If a LOB value is too big to be sent in one message (because the size exceeds the
maximum message size) and, therefore, is split into several messages, the first
message is handled differently than the subsequent messages. The Q Apply

170 Replication and Event Publishing Guide and Reference

program appends any portions of a LOB value that are not sent in the first
message using the concatenation operation ||. A special operation code is passed
to indicate this special form of update.

Example of a LOB insert

In a stored procedure that has two LOB columns, C1 and C2, the following would
occur in an insert:

SQL Operation value

INSERT C1 = first portion C2 = some dummy value 16

UPDATE C1 = C1 || next portion 34

UPDATE C1 = C1 || next portion 34

UPDATE C2 = first portion 32

UPDATE C2 = C2 || next portion 34

UPDATE C2 = C2 || next portion 34

Writing stored procedures to manipulate source data for Q Replication
You can write a stored procedure so that you can use it as a target in a Q
subscription. You must write the stored procedure before you can declare it as the
target in a Q subscription.

Restrictions

v The stored procedure must not perform COMMIT or ROLLBACK functions.
v You cannot send the before value from a non-key column to a parameter in the

stored procedure.
v Because the Q Apply program knows only about the stored procedure and not

about the table that the stored procedure might pass the manipulated data into,
Q subscriptions that have stored procedures associated with them cannot
maintain referential integrity.

v If the stored procedure maintains a target table and you want the Q Apply
program to resolve conflicts, then do not create secondary unique indexes on the
target table.

About this task

The stored procedure consists of four mandatory parameters (one that identifies
the operation and three that identify the transaction) and additional parameters
that map to source columns. You can write a stored procedure that refers to either
a DB2 table or a nickname in a DB2 federated database.

Procedure

To write a stored procedure to be the target in a Q subscription and to set up the
stored procedure:
1. Write a stored procedure that contains four mandatory parameters and

additional parameters that map to source columns. The parameters in the
stored procedure are positional. The first parameter must have the parameter
mode INOUT. All other parameters must have parameter mode IN. See the
following topics:

Chapter 10. Stored procedure targets 171

v “Stored procedure parameter that identifies the type of operation for Q
Replication”

v “Stored procedure parameter that identifies whether each source column was
suppressed” on page 174

v “Stored procedure parameters that identify the transaction for Q Replication”
on page 175, which include the following two mandatory parameters:
– The log sequence number of when the source server issued the commit

statement for the transaction
– The timestamp of when the source server issued the commit statement for

the transaction
v “Stored procedure parameters that map to source columns for Q Replication”

on page 175

Tip: See the sample programs for examples of stored procedures for Q
Replication that are written in C and in SQL.

2. Run the CREATE PROCEDURE statement runs properly so that the name and
appropriate parameters of the stored procedure are registered with the DB2
database.
Tips:
v Use the GENERAL WITH NULLS parameter style when you declare the

stored procedure. This style increases portability of the stored procedure
across the DB2 family.

v Make sure that the stored procedure exists in the
sqllib/function directory.

3. Compile and bind the stored procedure at the target server.

Include the DBRM of the stored procedure in the Q Apply
package list.

4. Ensure that the Q Apply program has the proper authority to call the stored
procedure.
After the call to the stored procedure, the Q Apply program always checks the
SQL code before checking the return code to validate whether the stored
procedure is successful.

5. If the stored procedure maintains a target, ensure that the target exists.
6. Declare the stored procedure as the target in a Q subscription.

Stored procedure parameter that identifies the type of operation for Q
Replication

The attributes that you specify for the Q subscription determine how the Q Apply
program handles unexpected conditions in the target (in this case, in the stored
procedure).

Declare the first parameter in the stored procedure as an INOUT parameter that
the Q Apply program uses to pass in the type of operation (INSERT, UPDATE, DELETE,
or KEY UPDATE) and that the stored procedure uses to pass a return code back to the
Q Apply program about whether the operation was successful.

Tip: See the sample programs for examples of the operation parameter in stored
procedures that are written in C and SQL. Note how the operation parameter is
used to pass the return code back to the Q Apply program.

172 Replication and Event Publishing Guide and Reference

Table 18 shows the operation values that the Q Apply program passes to the stored
procedure and what each value means.

Table 18. SQL return codes that the Q Apply program passes to the stored procedure

Operation value Type of operation

64 Delete

16 Insert

32 Update to non-key columns

128 Update to key columns

34 Update and append

Set the INOUT operation integer parameter to the SQL code for the Q Apply
program to evaluate to see if the change was successfully applied to the target. If
the stored procedure does not return a SQL code to the Q Apply program, then the
Q Apply program does not know what happened inside the stored procedure.

The stored procedure must not perform COMMIT or ROLLBACK functions
because the Q Apply program commits or rolls back transactions.

If other applications are also making changes to the table that the stored procedure
is applying changes to, then the stored procedure might encounter unexpected
conditions in that table. For example, the stored procedure might try to update a
row that another application already deleted. You have the following choices for
how to resolve unexpected conditions that might occur when the stored procedure
attempts to insert the manipulated source data into the target table:
v “The Q Apply program handles the unexpected condition”
v “The stored procedure handles the unexpected condition”

The Q Apply program handles the unexpected condition

If you want the Q Apply program to handle the unexpected condition in the target
that the stored procedure maintains, then write the stored procedure so that it
returns one of the SQL codes listed below (Table 19 on page 174) to the Q Apply
program, and define the Q subscription for the Q Apply program to force changes
into the target that the stored procedure maintains. The Q Apply program forces
the source change. In the case of certain SQL return codes, the Q Apply program
transforms the row operation, logs the exception in the IBMQREP_EXCEPTIONS
table, and passes the transformed row operation back to the stored procedure.

The stored procedure handles the unexpected condition

If you do not want the Q Apply program to handle unexpected conditions in the
target by forcing source changes into the target, you can build other error-handling
logic into the stored procedure. The stored procedure must always return an SQL
code to the Q Apply program, but the stored procedure can return 0 (zero) so that
the Q Apply program does not know about unexpected conditions or actual
failures in the target table. After the stored procedure passes SQL return codes
back to the Q Apply program in the operation parameter, the Q Apply program
interprets each SQL code and starts the appropriate action (depending on how you
specified that the Q Apply program should handle unexpected conditions). The Q
Apply program handles return codes of +100 and -803 as conflicts, and any other
return code as an error. Table 19 on page 174 shows the types of +100 and -803
return codes that the stored procedure outputs, how the Q Apply program

Chapter 10. Stored procedure targets 173

interprets that type of return code, and what action the Q Apply program takes as
a result. The information in the table below assumes that you specified for the Q
Apply program to force target changes.

Table 19. SQL return codes that the stored procedure passes to the Q Apply program and
how the Q Apply program responds.

SQL return code
Type of
operation

What the return code
means How Q Apply reacts

0 Insert The row was inserted
successfully.

Q Apply processes the
next row.

0 Update The row was updated
successfully.

Q Apply processes the
next row.

0 Delete The row was deleted
successfully.

Q Apply processes the
next row.

+100 Delete The row was not found in
the target.

Q Apply does not retry
the call.

+100 Update The row was not found in
the target.

If you specified for Q
Apply to force changes, Q
Apply changes the update
into an insert and tries the
call again.

-803 Insert The row already exists in
the target

If you specified for Q
Apply to force changes, Q
Apply transforms the
insert into an update and
tries the call again.

-803 Key update The new key already
exists in the target.

If you specified for Q
Apply to force changes, Q
Apply transforms the
operation to an update
operation that has the
new keys and tries the
call again.

Stored procedure parameter that identifies whether each source
column was suppressed

After the parameter that identifies the operation (operation), declare the second
parameter (suppression_ind) in the stored procedure as an IN parameter that
identifies whether each source column was suppressed.

The IN parameter suppression_ind is a character array (colsupind) that holds a
character for each parameter except for the four mandatory parameters. The
character indicates whether the value of the source column was suppressed:

1 The value of the source column that correlates with the parameter was
suppressed.

0 The value of the source column that correlates with the parameter was not
suppressed

The array must be used inside the stored procedure for evaluating the functions
parameters. The Q Apply program checks to ensure that exactly one before value
exists for each parameter that maps to a key column.

174 Replication and Event Publishing Guide and Reference

Tip: See the sample programs for examples of the parameter that identifies
suppressed columns in stored procedures that are written in C and SQL.

Stored procedure parameters that identify the transaction for Q
Replication

After the parameter that identifies whether any source columns were
(suppression_ind), declare the next two parameters in the stored procedure as IN
parameters that take in information from the message header from the Q Apply
program that identifies the transaction. Because the Q Apply program passes rows
and not transactions to the stored procedure, the transactional parameters give you
information to help you identify which transaction this row change belongs to, and
the time stamps and log sequence numbers also help with error reporting or
diagnostics.

The following two parameters identify the transaction:

IN src_commit_lsn CHAR(10)
The log sequence number of when the source server issued the commit
statement for the transaction. The data type that you specify for this
parameter must be VARCHAR(16) if the source database is DB2 10.1 for
Linux, UNIX, and Windows or later and the Q Capture program is at
Version 10.1 or later with a value of 1001 or higher for the compatibility
parameter.

IN src_trans_time TIMESTAMP
The timestamp of when the source server issued the commit statement for
the transaction.

Tip: See the sample programs for examples of the two transactional parameters in
stored procedures that are written in C and SQL.

Stored procedure parameters that map to source columns for Q
Replication

After the parameters in the stored procedure that identify the transaction
(src_commit_lsn and src_trans_time), declare the next parameters in the stored
procedure as IN parameters that take in the source data from each column. You
can list the additional parameters that map to columns in any order.

After the operational and transactional parameters, include only parameters in the
stored procedure that map to the TARGET_COLNAME values in the
IBMQREP_TRG_COLS table. No other additional parameters are allowed in the
stored procedure, even if they are declared as OUT or INOUT parameters.

The names that are listed in the TARGET_COLNAME column must be the same
names as the stored procedure parameters. Table 20 shows an example of how the
source column names correspond to parameter names in the
IBMQREP_TRG_COLS table. The table shows only the three relevant columns from
the control table.

Table 20. Source column names and names of parameters in the stored procedure that are
stored in the IBMQREP_TRG_COLS table

... SOURCE_COLNAME TARGET_COLNAME IS_KEY ...

Col1 Parm1 Y

Chapter 10. Stored procedure targets 175

Table 20. Source column names and names of parameters in the stored procedure that are
stored in the IBMQREP_TRG_COLS table (continued)

... SOURCE_COLNAME TARGET_COLNAME IS_KEY ...

Col2 Parm2 Y

Col3 Parm3 N

Col4 Parm4 N

Col5 Parm5 N

You must declare some parameters in the stored procedure to be part of the key.
The parameters that you declare as target key columns must map to key columns
at the source; the source and target keys must match. The Q Apply program uses
these key columns to correctly order transactions that deal with the same rows.

If the parameter maps to a key column in the source table, then you must perform
the following actions:
v Declare the corresponding before-value column as a parameter.
v Ensure that the parameter for the key's before value appears directly in front of

the parameter for the key's after value.
v Start the name of the parameter for the key's before value with 'X' and then the

parameter name. For example, for the key column named Parm1, the parameter
for the before value is XParm1.

Do not declare parameters for before values of non-key columns.

Tip: If you have many source columns that you are mapping to parameters in the
stored procedure, consider naming the parameters with the names of the source
columns. If the parameters are named identically to the source columns to which
they correspond, then the Replication Center can automatically map the source
column names to the target parameter names.

Example of a valid signature of a stored procedure with key parameters: In this
example, Parm1 and Parm2 are parameters that map to key columns.
CREATE PROCEDURE storedprocedure_name(

INOUT operation integer,
IN suppression_ind VARCHAR(size),
IN src_commit_lsn CHAR(10),
IN src_trans_time TIMESTAMP,
XParm1,
Parm1,
XParm2,
Parm2,
Parm3,
Parm4,
Parm5

)

Example of an invalid stored procedure with key parameters: In this invalid
example, Parm1 and Parm2 are parameters that map to key columns. This example
is invalid because there is no parameter that accepts the before value of the key
parameter Parm2.
#---
Incorrect: Don’t do this
#---

CREATE PROCEDURE storedprocedure_name(
INOUT operation integer,
IN suppression_ind VARCHAR(size) ,

176 Replication and Event Publishing Guide and Reference

IN src_commit_lsn CHAR(10),
IN src_trans_time TIMESTAMP,
XParm1,
Parm1,
Parm2,
XParm3,
Parm3,
Parm4,
Parm5

)

Tip: See the sample programs for examples of parameters that map to source
columns in stored procedures that are written in C and SQL.

Version 10.1 and later: The mandatory stored procedure parameter
src_commit_lsn must specify a data type of VARCHAR(16) under these conditions:
v The source database is DB2 10.1 for Linux, UNIX, and Windows or later
v The Q Capture program is at Version 10.1 or later and the value of the

compatibility parameter is 1001 or higher

Chapter 10. Stored procedure targets 177

178 Replication and Event Publishing Guide and Reference

Chapter 11. Loading target tables for Q Replication

When you create a Q subscription, you can choose among several options for
loading target tables with data from the source.

Automatic load
The Q Apply program manages the loading of target tables. You can select
which load utility the Q Apply program calls, or you can let the Q Apply
program choose the best available utility for your operating system and
version.

Manual load
You handle the loading of target tables, and then signal the replication
programs when loading is done. This option is also known as external
load.

No load
You either do not load target tables, or you load target tables outside the
context of the replication programs.

Recommendations for loading target tables for Q Replication
Q Replication can be configured for automatic loading of target tables, and is
designed so that replication can continue during the loading process without any
loss of data.

Here are a few recommendation for making sure that the process goes smoothly:

Applications at the target
Do not allow applications to update the target tables while they are being
loaded. Data in the tables will be inconsistent while the tables are being
loaded, and the Q Apply program drops referential integrity constraints
until the target table and any other related target tables are loaded.

Applications can safely use target tables again when the Q Apply program
makes the following changes to the IBMQREP_TARGETS table:
v Sets the STATE column to A (active).
v Sets the STATE_INFO column to ASN7606I, which means that if the

target table had referential integrity constraints, they have been restored.

You can use the Manage Q Subscriptions window in the Replication Center
to verify that these two changes have been made. To open the window,
right-click the Q Capture server where the source table for the Q
subscription is located and select Manage > Q Subscriptions.

If the loading process fails, or if the Q Apply program stops during the
load, any data that was in the target table before the load began is deleted.
Changes that were made to the source table during the load process are
not lost, and will be applied to the target table after it is successfully
loaded.

Applications at the source
Load target tables during a time of relative inactivity at the source.

© Copyright IBM Corp. 2004, 2012 179

Automatic load option for Q Replication
You can choose to let the Q Apply program load the target table for a Q
subscription when the Q subscription is activated. This option, known as an
automatic load, is the default for Q Replication.

By default, when you specify an automatic load the Q Apply program chooses the
best available load utility for your operating system and version. If you prefer, you
can specify which load utility the Q Apply program uses when you create a Q
subscription.

During the automatic loading process, any source transactions that are captured
and sent to the Q Apply program are placed in a temporary spill queue by the Q
Apply program. This allows replication to continue during the loading process.
The Q Apply program applies these transactions after the target table is loaded.

Utilities used for automatic load option for Q Replication
If you choose an automatic load, you can let the Q Apply program select the best
available load utility, or you can specify a utility.

The following list shows the available load utilities.

LOAD from CURSOR
Uses an option of the DB2 LOAD utility to move data from the source
table to the target table without creating an intermediate exported file.

You can modify and use the following SQL statements to define the
wrapper, server, user mapping, and nickname that are needed for LOAD
from CURSOR:
CREATE WRAPPER DRDA;
CREATE SERVER MVS TYPE DB2/MVS VERSION 8 WRAPPER DRDA AUTHID AZUMA
PASSWORD AZUMA OPTIONS (ADD DBNAME ’ONOGAWA’, PASSWORD ’Y’);
CREATE USER MAPPING FOR USER
SERVER MVS
OPTIONS (REMOTE AUTHID ’AZUMA’,
REMOTE_PASSWORD ’AZUMA’);
CREATE NICKNAME T1NK FOR MVS.AZUMA.T1;

The following statement drops the nickname after the load is finished:
DROP NICKNAME T1NK;

Important: If you plan to use LOAD from CURSOR with a nickname to
load from a DB2 source that is at Version 9.7 or newer, you must ensure
that the following option is set for the server that owns the nickname:
db2 alter server server_name OPTIONS(ADD CONCURRENT_ACCESS_RESOLUTION ’W’);

EXPORT and LOAD utilities
Uses a combination of the DB2 EXPORT utility and the DB2 LOAD utility.

EXPORT and IMPORT utilities
Uses a combination of the DB2 EXPORT utility and the DB2 IMPORT
utility.

Important: If you plan to use the DB2 EXPORT utility to load target tables from a
DB2 source that is at Version 9.7 or newer, and the user ID that starts the Q Apply
program does not have BINDADD authority, you must perform the following bind
before Q Apply starts:
db2 bind @db2ubind.lst CONCURRENTACCESSRESOLUTION WAIT FOR OUTCOME COLLECTION ASN

180 Replication and Event Publishing Guide and Reference

If you use the EXPORT utility, the Q Apply program requires a password file to
connect to the Q Capture server, unless the source and target server are the same.
To create the password file, use the asnpwd command. The IXF or comma-delimited
file is created in the path that is specified by the apply_path parameter.

The Q Apply program uses LOAD from CURSOR on DB2
Version 7.1 for z/OS or later. InfoSphere Replication Server for z/OS, 10.1 works
only with DB2 for z/OS Version 8 and later.

If you specify a load utility that is not available, the Q Apply program stops the Q
subscription.

Restrictions

The following restrictions apply to the use of utilities for automatic loads:

LOB data
If you are replicating from tables with large object (LOB) data and the
servers are remote from each other, EXPORT/LOAD is not a valid load
option. If you are using bidirectional or peer-to-peer replication that
involves tables with LOB data and remote servers, the IMPORT utility is
not a valid option. Use LOAD from CURSOR in both of these situations.

Partitioned database targets with z/OS sources
If you are replicating from a z/OS source to a partitioned database on
Linux, UNIX, or Windows, the EXPORT/LOAD and EXPORT/IMPORT
utilities are not supported because EXPORT from z/OS only supports the
IXF file format while IMPORT/LOAD into partitioned databases only
supports the DEL (comma-delimited) file format. For automatic load you
must use LOAD from CURSOR in this situation.

Automatic load considerations for z/OS
When a Q Apply program that is running on the z/OS platform performs an
automatic load of target tables, you might need to consider setting the NUMTCB
parameter and the size of table spaces for multiple simultaneous loads.

Setting the NUMTCB parameter

The Q Apply program uses the LOAD from CURSOR utility to perform automatic
loading of target tables on z/OS. To invoke the utility, the Q Apply program calls
the DSNUTILS stored procedure that is shipped with DB2 for z/OS.

DSNUTILS must run in a Work Load Manager (WLM) environment. You must set
the NUMTCB parameter, which is used to start WLM, as follows:
NUMTCB=1

For more detail on DSNUTILS, see the DB2 for z/OS Utility Guide and Reference for
your version.

Table space considerations for parallel loads

On z/OS, if you activate multiple Q subscriptions at the same time and the Q
Apply program is performing an automatic load of target tables, the Q Apply
program will load the target tables in parallel. In this case, you must ensure that
each target table is in a separate table space.

Chapter 11. Loading target tables 181

An alternative to putting each target table in a separate table space is to start each
Q subscription sequentially so that the load for one Q subscription finishes before
the load for the next Q subscription begins.

To avoid a parallel load:
1. Start the first Q subscription.
2. Wait for the Q subscription state to change to A (active).

You can verify the Q subscription state by using the Manage Q Subscriptions
window in the Replication Center, or looking at the STATE column of the
IBMQREP_TARGETS control table.

3. Activate the next Q subscription.

Specifying nicknames for the automatic load option for Q
Replication

Some Q subscriptions that use the LOAD from CURSOR utility to load target
tables require nicknames. The nickname is defined on the Q Apply server to refer
to the source table on the Q Capture server.

Before you begin

v The Q Apply server must be a federated server.
v If you want the Replication Center or ASNCLP program to create nicknames,

you must create a server definition, wrapper, and user mapping.

About this task

When you create Q subscriptions, you can have the Replication Center or ASNCLP
program create nicknames, or you can specify existing nicknames.

Procedure

Ensuring that nicknames used for load have correct
concurrent access setting

If you use the LOAD from CURSOR utility to load target tables from a DB2
Version 9.7 or newer source and you manually create the nickname that is used for
loading, you need to ensure that the nickname uses the correct federated server
option for concurrent access.

About this task

Starting with Version 9.7, a new federated server option,
CONCURRENT_ACCESS_RESOLUTION=W, is used to ensure that LOAD from
CURSOR waits until all in-progress transactions that modify the source table are
completed before beginning the load. This behavior is known as "wait for
outcome." The change was required to account for the default currently committed
access behavior in DB2 for Linux, UNIX, and Windows Version 9.7 and newer.

Note the following considerations:
v If you let the Replication Center or ASNCLP create the nickname that is used for

LOAD from CURSOR, the server option
CONCURRENT_ACCESS_RESOLUTION=W is added to the server for that
nickname. In some situations you might need to manually create the nickname,

182 Replication and Event Publishing Guide and Reference

or the nickname that is used for loading might be shared by other applications.
In these situations, you must set CONCURRENT_ACCESS_RESOLUTION=W
manually for the nickname.

v The procedures for setting concurrent access are different if the Q Apply server
is at Version 9.7 or newer, or pre-Version 9.7.

v There is currently no solution to enforce wait for outcome
behavior when Q Apply on z/OS uses LOAD from CURSOR on a DB2 V9.7
source database on Linux, UNIX, or Windows to perform the load. In this case,
the best solution is to suspend any applications that update the source table
from the time the Q subscription is started until the load phase begins
(identified by Q subscription state change to L or A in the IBMQREP_SUBS
table).

Note: You can only set this option for a registered server of type DB2/UDB
Version 9.7 or newer.

Procedure

To ensure that nicknames that are used for load have correct concurrent access
setting, use one of the following procedures depending on whether the Q Apply
program is at Version 9.7 or newer, or older than Version 9.7:

Version of Q Apply
program Procedure

Version 9.7 or newer Issue the following command at the Q Apply server:

db2 alter server server_name
OPTIONS(ADD CONCURRENT_ACCESS_RESOLUTION ’W’);

Pre-Version 9.7 Note: If you are unable to follow this procedure, suspend any
applications that update the source table during the beginning of
the load.

1. From the Q Apply server, connect to the source database.

2. Bind the SQL packages that are used for Call Level Interface
(CLI) connections with a generic bind option in a specific
package by using the following command:

db2 bind @db2cli.lst generic
"CONCURRENTACCESSRESOLUTION WAIT_FOR_OUTCOME"
COLLECTION ASN

3. Add the following name-value pair to the db2cli.ini file at the
federated database, below the stanza that declares the options
for the server definition to which the nickname belongs:

[data_source_name]
CURRENTPACKAGESET=ASN

Where data_source_name is the source database that the
db2cli.bnd packages were bound against.

Recommendation: If you use a federated server for both replication and other
purposes, create a new dedicated server for use by replication that has the
CONCURRENT_ACCESS_RESOLUTION=W option set, and allow other
applications to use the existing server name.

Chapter 11. Loading target tables 183

Manually loading a target table
When you specify a manual load for a Q subscription, you load the target table
using a utility of your choice, and then notify the Q Capture program when the
table is loaded.

Before you begin

v Ensure that the HAS_LOADPHASE column in the IBMQREP_SUBS table has a
value of E to indicate that a manual load will be performed.

v Ensure that no applications are updating the target table that you plan to load.
Data in the tables will be inconsistent while the replication programs
synchronize the source and target tables after the loading process. The Q Apply
program drops referential integrity constraints until the target table and any
other related target tables are loaded.

About this task

While the target table is being loaded, the Q Capture program continues to send
transactions from the source table. The Q Apply program puts these transactions in
a temporary spill queue, and applies them after the load is complete. The Q Apply
program waits until any dependent Q subscriptions have completed their load
phase before putting referential integrity constraints back on the target table.

Recommendation: Load target tables during a time of relative inactivity at the
source.

Figure 24 on page 185 illustrates the stages of the manual loading process.

184 Replication and Event Publishing Guide and Reference

Procedure

To manually load a target table:
1. Start the Q subscription by using either the Replication Center or the START

QSUB command. If you chose automatic start when you created the Q
subscription, it will be started when the Q Capture program is reinitialized.

2. Verify that the Q Apply program is waiting for the target table to be loaded.
Use one of the following methods:

Method Description

Replication Center Use the Manage Q Subscriptions window. To open the window,
right-click the Q Capture server where the source table for the Q
subscription is located and select Manage > Q Subscriptions.

Locate the Q subscription on the window and verify that its state
is "Requires manual load."

SQL Issue a SELECT statement for the IBMQREP_TARGETS table at the
Q Apply server and verify that the value in the STATE column is
E.

3. Load the target table by using your chosen utility.

3

State = I
(Inactive) or

N (New)

State = L
(Loading)

State = A
(Active)

State = I
(Inactive)

State = A
(Active)

State = E
(External load)

Schema message

(Start sending transactions
from source table)

State = F
(Processing
spill queue)

Q Apply

Q Capture

LOADDONE_RCVD message

State = L
(Loading)

(All state changes are recorded
in the IBMQREP_SUBS table)

1

(All state changes are recorded
in the IBMQREP_TARGETS table)

2

4

Use Manage Q
Subscriptions window to
activate the Q subscription,
or;

Insert a CAPSTART signal in
IBMQREP_SIGNAL table

When target table is loaded,
signal the Q Capture program
by:

Using the Manage Q
Subscriptions window
(click), or;

Inserting a LOADDONE signal
in the IBMQREP_SIGNAL table

Load done The Q Apply program puts changes
from the source table in a temporary
spill queue while waiting for the
loading to finish

The Q Apply program starts
applying transactions from
the spill queue

Start loading the target table
when:

The Manage Q Subscriptions
window shows "Requires
manual load," or;

The IBMQREP_TARGETS
table shows state E

Start using the target table
when:

The Manage Q Subscriptions
window shows Active and
ASN7606I, or;

The IBMQREP_TARGETS
table shows state A and
STATE_INFO ASN7606I

Figure 24. Stages of the manual loading process

Chapter 11. Loading target tables 185

4. Notify the Q Capture program when the load is complete. Use one of the
following methods:

Method Description

ASNCLP
command-line
program

Use the LOAD DONE command. For example, the following
commands set the environment and generate the SQL signal to
inform a Q Capture program at the SAMPLE database that loading
is complete for the EMPLOYEE0001 Q subscription:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;
LOAD DONE QSUB SUBNAME EMPLOYEE0001;

Replication Center In the Manage Q Subscriptions window, select the Q subscription
for the target table that you loaded and click Load done.

SQL Insert a LOADDONE signal into the IBMQREP_SIGNAL table at
the Q Capture server, as follows:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’LOADDONE’,
’subname’,
’P’);

Where schema identifies the Q Capture program that you want to
signal, and subname is the name of the Q subscription for which
you are performing a manual load.

5. Verify that applications can safely use target tables again by checking to see if
the Q Apply program makes the following changes to the IBMQREP_TARGETS
table:
v Sets the STATE column to A (active).
v Sets the STATE_INFO column to ASN7606I, which means that any referential

integrity constraints on the target table are restored.
You can use the Manage Q Subscriptions window in the Replication Center to
verify that these two changes have been made. Look for Active and ASN7606I
in the row for the Q subscription.

No load option for Q Replication
The no load option is appropriate when the source and target tables are
synchronized before any Q subscriptions become active and replication begins.

When you specify the no load option for a Q subscription, the Q Apply program
begins applying transactions to a target table as soon as the Q subscription
becomes active.

If you choose the no load option, make sure that the values of the primary key or
unique index from the source table are also present in the primary key or unique
index of the target table.

186 Replication and Event Publishing Guide and Reference

You might specify no load when adding a large number of new tables during a
period of relative inactivity in the source and target databases or subsystems. After
you quiesce the source tables, you load the target tables, and then activate the Q
subscriptions.

You might also specify a no load option if you back up a source database and then
restore the database on the target server.

Load options for different types of Q Replication
Options for loading target tables depend on the type of Q Replication that you are
setting up.

The following sections explain what load options are available for each type of Q
Replication, which server is used for the initial load, and the steps that you must
take to begin the load:
v “Load options for unidirectional replication”
v “Load options for bidirectional and peer-to-peer replication with two servers” on

page 188
v “Load options for peer-to-peer replication with three or more servers” on page

189

Load options for unidirectional replication

This section explains the load options for unidirectional replication.

Load options
The available options depend on the target type:

DB2 targets
All load options are available.

CCD targets
If the CCD table is noncomplete, the only valid choice is no load. If
the CCD table is complete, all load options are available.

Non-DB2 targets
For automatic loads, the EXPORT and IMPORT utilities are
supported.You can also specify that Q Apply use an ODBC select
to fetch data from the source, and for Oracle targets, you can
specify that Q Apply call the SQL*Loader utility.

Which server is used for the initial load
Q Capture server

What you must do
By default, the Q Apply program begins the loading process when you
start the Q Capture program for the Q subscription's source table. If you
create the Q subscription so that it is not started automatically when the Q
Capture program starts, then you must start the Q subscription for the
load to begin.

Example

Assume that you want to replicate data in one direction from the
DEPARTMENT table at Server A to the DEPARTMENT table at Server B
and use the most automatic method. You want the Q Apply program to
handle the load and use the best available utility.

Chapter 11. Loading target tables 187

1. You create a Q subscription for the DEPARTMENT table that specifies
an automatic load that uses the best available utility.

2. You start the Q Capture program at Server A and the Q Apply program
at Server B.
The Q Apply program calls a load utility that copies the data from the
DEPARTMENT table at Server A to the DEPARTMENT table at Server
B. Once the loading process is finished, replication begins in one
direction from Server A to Server B.

Load options for bidirectional and peer-to-peer replication with
two servers

This section explains the load options for bidirectional and peer-to-peer replication
with two servers.

Load options
All load options are available. However, if you specify an automatic load,
by default the Q Apply program will choose between a combination of the
EXPORT and LOAD utilities and a combination of the EXPORT and
IMPORT utilities, depending on your operating system and version. You
can override this behavior and instruct the Q Apply program to use the
LOAD from CURSOR utility by opening the Q Subscription Properties
notebook for individual Q subscriptions.

Which server is used for the initial load
When you create the two Q subscriptions for bidirectional or peer-to-peer
replication with two servers, you choose which server will be the initial
load source. This server contains the table whose data you want to copy to
a table on the other server.

For subsequent loads (for example, if you stop the Q subscriptions for the
logical table and then start them), you specify which server will be the
load source when you decide which of the two Q subscriptions to start.
The source table for the Q subscription that you start will be the load
source.

What you must do
The process of initiating a load differs depending on whether you specify
an automatic or manual load:

Automatic load
If you created the Q subscriptions to start automatically when the
Q Capture program starts, you only need to start the Q Capture
and Q Apply programs at both servers for the loading process to
begin.

If you chose not to have the Q subscriptions start automatically,
you must take the following actions:
v Start the Q Capture and Q Apply programs at both servers.
v Start the Q subscription whose source table you specified as the

load source.

Manual load

1. Start the Q Capture and Q Apply programs at both servers.
2. Start the Q subscription whose source table you want to be the

load source.
The Q subscription will go into load pending state.

188 Replication and Event Publishing Guide and Reference

3. Load the target table for the Q subscription, using any method.
4. When you are done with the load, tell the Replication Center

that the load is finished or insert a LOADDONE signal into the
IBMQREP_SIGNAL table at the source server for the Q
subscription.

Example

Assume that you wanted to replicate the EMPLOYEE table in a
bidirectional setup on Server A and Server B, and use the most
automatic method. You want Server A to be the initial load source:
1. You create two Q subscriptions, EMP_A2B and EMP_B2A.

When you create EMP_A2B, you specify Server A as the initial
load source and specify an automatic load in which the Q
Apply program chooses the best available load utility.

2. You initiate the load by starting the Q Capture and Q Apply
programs at Server A and Server B.
The Q Apply program at Server B initiates the load for
EMP_A2B by calling a load utility to copy the data from the
EMPLOYEE table at Server A to the EMPLOYEE table at Server
B. When the loading completes, replication begins in both
directions between Server A and Server B.

Load options for peer-to-peer replication with three or more
servers

This section explains the load options for peer-to-peer replication with three or
more servers.

Load options
All load options are available. However, if you specify an automatic load,
by default the Q Apply program chooses between a combination of the
EXPORT and LOAD utilities, and a combination of the EXPORT and
IMPORT utilities, depending on your operating system and version. You
can override this behavior and instruct the Q Apply program to use the
LOAD from CURSOR utility by opening the Q Subscription Properties
notebook for individual Q subscriptions.

Which server is used for the initial load
In a peer-to-peer group with three or more servers, you start replication in
stages. First you start replication between two servers, and then you bring
additional servers into the group by starting replication between an active
server and a new server. Follow these guidelines:
v When you start replication between the first two servers, choose one

server as the load source. Start the Q subscription that specifies this
server as its source. The Q Apply program at the second server begins
the loading process for the table at the second server.

v To add a new server, choose one of the active servers as the load source.
Start the Q subscription that specifies this server as its source and the
new server as its target. The Q Apply program at the new server begins
the loading process for the table at the new server.

What you must do
In a peer-to-peer configuration with three or more servers, you cannot
create Q subscriptions that start automatically. You must manually start the
Q subscriptions in stages. Follow these steps:

Chapter 11. Loading target tables 189

1. Start the Q Capture and Q Apply programs at the first two servers in
the group.

2. Start one of the two Q subscriptions between the servers. The source
table for the Q subscription that you start will be the load source, and
the target table will be loaded.

3. Start the Q Capture and Q Apply programs at a new server.
4. Start a Q subscription that specifies one of the active servers as its

source, and the new server as its target. The source table for the Q
subscription that you start will be the load source, and the table at the
new server will be loaded.

5. Follow Steps 3 and 4 until all the servers in the group are loaded.

Manual load: If you choose a manual load, you must load the target table
after you start each Q subscription, and then notify the replication
programs when the target table is loaded.

Example

Assume that you want to initiate the loading process for a peer-to-peer Q
subscription group that includes Server A, Server B, and Server C, with a
single logical table, the DEPARTMENT table. You want the Q Apply
program to handle the loading and use the best available load utility. You
will use Server A as the load source for the tables at both Server B and
Server C.
1. You create six Q subscriptions, DEP_A2B, DEP_B2A, DEP_A2C,

DEP_C2A, DEP_B2C, and DEP_C2B, all specifying an automatic load
using the best available utility.

2. You start the Q Capture and Q Apply programs at Server A and Server
B.

3. You start the Q subscription DEP_A2B.
The Q Apply program at Server B calls a utility to load the
DEPARTMENT table at Server B with data from the DEPARTMENT
table at Server A. When the loading completes, replication begins in
both directions between Server A and Server B.

4. To begin the load at Server C, you first start the Q Capture and Q
Apply programs at Server C.

5. Next, you start the Q subscription DEP_A2C.
The Q Apply program at Server C calls a utility to load the
DEPARTMENT table at Server C with data from the DEPARTMENTS
table at Server A. When the loading completes, replication begins in all
directions between all three servers.

Replicating load operations at the source table
You can specify that load operations at the source table that use the DB2 LOAD
utility are replicated to the target table.

About this task

By default, when the Q Capture program reads a log record that indicates the
source table was successfully loaded, it issues a warning message. You can change
this default behavior when you create a Q subscription for a source table by
specifying that Q Capture replicate some types of load operations at the source
table.

190 Replication and Event Publishing Guide and Reference

When this function is enabled, Q Capture stops and starts the Q subscription for
the source table, prompting a load of the target table if one is specified for the Q
subscription and based on the load options that were set for the Q subscription.

When Q Capture detects the following DB2 operations, its subsequent actions are
based on whether you enabled replication of source table loads:

v LOAD SHRLEVEL NONE RESUME YES
v LOAD SHRLEVEL NONE REPLACE
v REORG TABLESPACE DISCARD

v LOAD REPLACE
v LOAD INSERT

The following options for replication of source table loads are stored in the
CAPTURE_LOAD column of the IBMQREP_SUBS table:

R (restart)
The Q subscription is restarted and the target table is loaded with the data
from the source table. The type of load is determined by the LOAD_TYPE
value in the IBMQREP_TARGETS control table.

W (warning)
Only a warning message is issued. The Q subscription is not restarted.

Restrictions

v The source database in DB2 for z/OS Version 9 must be at
DB2 APAR PK78558 or newer and the Q Capture program must be at the
equivalent of Version 9.7 or newer. Also, this function is not supported if the
source or target table share a table space with other tables. CAPTURE_LOAD is
a table-space-level option.

v The source database in DB2 for Linux, UNIX, and Windows
and the Q Capture program must be at Version 9.7 or newer.

v Replication of source table loads is not supported for peer-to-peer replication
with three or more servers.

v When you load a table that is involved in bidirectional replication, you must let
the replication of that load operation complete and the Q subscription state
change to active (A) before you start another load operation for the matching
table at the other server. Otherwise, the two load operations conflict and might
lead to unexpected behavior.

v Loading a source table while any Q subscriptions for the table are still in loading
state (for example, performing two consecutive load operations) causes the Q
subscriptions for the table to stop. Always wait until all Q subscriptions for the
source table are in active (A) state before performing another load operation.

Procedure

To replicate load operations at the source table, use one of the following methods:

Chapter 11. Loading target tables 191

Method Description

ASNCLP
command-line
program

In the CREATE QSUB command, specify the CAPTURE_LOAD
keyword with the R option, as in the following example:

CREATE QSUB USING REPLQMAP SAMPLE_ASN_TO_TARGET_ASN
(SUBNAME EMPLOYEE0001 EMPLOYEE OPTIONS HAS LOAD PHASE I
CAPTURE_LOAD R TARGET NAME TGTEMPLOYEE LOAD TYPE 2);

Replication Center Select the Reload the target table if the source table is reloaded
checkbox on the Loading the Target Tables page of the Create Q
Subscriptions wizard. The same control can also be found on the
Load tab of the Q Subscription Properties notebook.

How constraints on the source table affect replication of load
operations

Replication of load operations at the source table requires special consideration
when constraints are defined on the source table.

After the source table is loaded, READ access that is required by the DB2 LOAD
utility to load the data into the target table might be restricted:

On z/OS, access might be restricted if constraints are defined on the source
table and the LOAD utility is invoked with the REPLACE or RESUME
ENFORCE NO option. This situation prompts the LOAD utility to put the
table into CHECK PENDING state, and Q Apply stops the Q subscription.
To correct the problem you must run CHECK DATA on the source table to
make the table space accessible, and then start the Q subscription.

On Linux, UNIX, and Windows, access might be restricted if constraints
are defined on the source table and the LOAD utility is invoked with the
REPLACE or INSERT NO ACCESS option. This situation prompts the
LOAD utility to put the table into SET INTEGRITY CHECK PENDING
state, and Q Apply stops the Q subscription. To correct the problem, you
must run SET INTEGRITY on the source table to make the table space
accessible, and then start the Q subscription.

192 Replication and Event Publishing Guide and Reference

Attention: The INSERT ALLOW READ ACCESS option of the LOAD
utility is not recommended if you set the option to replication source table
loads. If the utility is invoked with this option and constraints are defined
on the source table, the table is put into SET INTEGRITY PENDING state
and READ ACCESS state. In these two states, the newly loaded data is not
accessible. If you expect to use this option, use one of the following
methods to prevent the source and target tables from losing
synchronization:
v Before the load commences, stop the Q subscription, load the source

table, and then start the Q subscription. This procedure triggers a
complete new load of the target table (full refresh).

v Set the CAPTURE_LOAD option of the Q subscription to W and load
the source table while the Q subscription is active. None of the newly
loaded data is replicated, and you can then do one of the following
things:
– Use the asntdiff and asntrep commands to find and resolve

differences between the source and target tables.
– Stop and start the Q subscription, triggering an automatic load of the

target.

Loading target tables in a data consolidation scenario
When multiple source tables are replicated to a single target table in Q Replication,
you use a special procedure to ensure that all of the data from multiple loads is
preserved in the target table.

About this task

This procedure allows you to incrementally load the target from multiple sources
and ensure that none of the loads overwrite data from previous loads.

When you create Q subscriptions for the source tables, you specify a load type that
uses the REPLACE option for one Q subscription, and a load type that uses the
RESUME option (z/OS) or INSERT option (Linux, UNIX, and Windows) for all of
the other Q subscriptions. Then you start the Q subscription with the REPLACE
load type first, and start the other Q subscriptions after the first load is finished.

The first load replaces any data in the target table, and the subsequent loads add
data from the other source tables without affecting the data from the first load.

Table 21 shows the load types that you should use in combination for this
procedure. The load type information is stored in the IBMQREP_TARGETS table.

Table 21. Load type combinations for data consolidation

Load type for first load (with REPLACE
option)

Load type for subsequent loads (with
RESUME or INSERT option)

1 (LOAD from CURSOR) 101

2 (EXPORT/IMPORT) 102

3 (EXPORT/LOAD) 103

Figure 25 on page 194 shows how the procedure works for one of these
combinations, LOAD from CURSOR with the REPLACE option for the first load

Chapter 11. Loading target tables 193

and LOAD from CURSOR with the RESUME option for the subsequent loads.

Procedure

1. When you create Q subscriptions for the consolidated target table, set
LOAD_TYPE to 1, 2, or 3 for one Q subscription in the group and LOAD_TYPE
to 101, 102, or 103 for all remaining Q subscriptions in the group, following the
combinations shown in Table 21 on page 193.

Note: Specify that the Q subscriptions with LOAD_TYPE of 101, 102, or 103 are
created in inactive (I) state. You can do this in the ASNCLP command-line
program by using the START AUTOMATICALLY NO keywords. In the
Replication Center, on the Loading the Target Tables page of the Create Q
Subscriptions wizard, clear the Start all Q subscriptions automatically
checkbox. The Q subscription with LOAD_TYPE of 1, 2, or 3 starts
automatically.

Also, do not set the conflict action and error action for the Q subscriptions to D
(stop the Q subscription).

2. After loading completes for the first Q subscription, start the remaining Q
subscriptions.
The Q Apply program sets the state of the Q subscription to A (active) when a
load completes. You can use the Q Replication Dashboard or the Manage Q
Subscriptions window in the Replication Center to verify the Q subscription
state.

If the target table is empty, or if you manually delete all of the rows, you can set
LOAD_TYPE to 101, 102, or 103 for all Q subscriptions in the group and start them
one at a time.

Q Capture
program

Source 1

Source 2

Source 3

Source 4

WebSphere
MQ

Q Apply
program

Rows from Source 1
(LOAD REPLACE)

Rows from Source 2
(LOAD RESUME)

Rows from Source 3
(LOAD RESUME)

Rows from Source 4
(LOAD RESUME)

Target table

Load
1: LOAD_TYPE=1

Load 2: LOAD_TYPE=101

Load 3: LOAD_TYPE=101
Load

4: LOAD_TYPE=101

Figure 25. Example of load procedure for a data consolidation scenario that uses LOAD from CURSOR

194 Replication and Event Publishing Guide and Reference

If you need to reload the data from only one source table (for example because one
Q subscription was in error), manually delete the rows in the target table using a
suitable range, set LOAD_TYPE to 101, 102, or 103 for the Q subscription that was
in error, and start the Q subscription.

If you need to do a full refresh of the entire target table, follow the procedure
above.

Q Replication and Event Publishing for multiple database partitions
Q Replication and Event Publishing support capture of data from DB2 source
tables that are spread across multiple database partitions.

When you create Q Capture control tables in a multiple partitioned database, all of
the table spaces used by those control tables must be on the catalog partition. If
you use an existing table space, the table space must be non-partitioned and on the
catalog partition.

The Q Capture program keeps a list of database partitions within the restart
message. Whenever the Q Capture program is started in warm mode, it reads the
list of database partitions from the restart message. Q Capture compares the
number of database partitions that are known to DB2 with the number of database
partitions that are listed in the restart message. If the numbers do not match, the Q
Capture program stops.

If you added one or more database partitions since the last time you ran the Q
Capture program, you must tell the Q Capture program about the new partitions.
You can do this by starting Q Capture with the add_partition parameter.

For example, the following command specifies that the Q Capture program on
server SAMPLE should start reading the log file for newly added partitions:
asnqcap capture_server=sample capture_schema=asn1 add_partition=y

Replication of DB2 partitioned tables: Version 9.7 Fix Pack 1 or earlier
(Linux, UNIX, Windows)

Q Replication supports DB2 tables that are partitioned by range (using the
PARTITION BY clause of the CREATE TABLE statement). These tables are
sometimes known as range-partitioned tables.

Version and fix pack requirements exist for the Q Capture program if a source
table is partitioned by range. This topic covers these requirements and support for
replication of partitioned tables when your replication programs are at Version 9.7
Fix Pack 1 or earlier. If only target tables (no source tables) are partitioned by
range, then Q Replication has no version or fix pack requirements specific to these
tables.

To capture changed data for range-partitioned tables, your Q Capture program
must be at Version 9.7 or later. It can capture changes from range-partitioned tables
on DB2 V9.1, V9.5, or V9.7. However, restrictions exist for range-partitioned tables
earlier than V9.7. The restrictions are also discussed in this topic.

Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table.

Chapter 11. Loading target tables 195

Replication and publishing treat all data partitions of a source table as a single
table. For example, when you create a Q subscription or publication that specifies a
partitioned table, you specify the entire table rather than one or more data
partitions of the table. All row operations for the table, regardless of the data
partition at which they occur, are replicated or published.

You can perform several alterations on a partitioned table, including adding a data
partition, attaching a data partition, or detaching a data partition. These ALTER
operations on the source table are not replicated to the target. You must alter the
target table independently of the source table if you want to maintain an identical
partitioning scheme.

Replication and publishing treat these ALTER operations differently:

Note for Version 9.5 and earlier: The Q Capture program does not recognize the
addition, attachment, or detachment of a data partition until the program is
reinitialized or stopped and restarted.

ADD Adds a new, empty data partition to the source table. If you require the
new data partition at the target, you must manually add it. Q Capture
program behavior and the procedure that you need to follow depend on
the release of your DB2:

Version 9.7 or higher
Add the data partition at the target before adding it at the source.
Q Capture automatically begins replicating changes to the data
partition.

Version 9.5 or 9.1
Add the data partition at both the source and target before
restarting Q Capture. Do not change data in the source data
partition until Q Capture is restarted.

ATTACH
Creates a new data partition at the source by using an existing table. The
ATTACH operation is not replicated and the data in the new data partition
is not replicated to the target. If you require the new data partition at the
target you must manually add it. If you require the attached data at the
target, you must manually load the data into the target before you attach
the data partition at the target.

Note: If the Q Capture program is stopped when a data partition is
attached, rows that are inserted into, updated, or deleted from the table
before it is attached as a partition are replicated. If Q Capture is running
when the data partition is attached, these rows are not replicated.
To ensure consistent behavior, before you attach a table as a new data
partition, set the DATA CAPTURE CHANGES clause for the table to OFF
if you need to make any changes to the table. For example, the following
statements create a table, insert values into the table, and then attach the
table as a data partition to an existing partitioned table:
db2 create table temp1 like t1;
-- NOTE: data capture changes is off by default
db2 insert into temp1 values (44,44);
-- NOTE: Turn on data capture changes after insert/update/deletes
-- and before attach partition
db2 alter table temp1 data capture changes;
db2 alter table t1 attach partition part4 starting from 41
ending at 50 from temp1;
db2 set integrity for t1 allow write access immediate checked;

196 Replication and Event Publishing Guide and Reference

DETACH
Turns an existing data partition into a separate table. The DETACH
operation is not replicated. The data that is deleted from the source table
by the DETACH operation is not deleted from the target table. If you need
to change the target data partition into a separate table, you need to do so
manually.

Note: DB2 logs updates that cause rows to move across data partitions as
delete/insert pairs. The Q subscription or publication option to suppress delete
operations from the source table (SUPPRESS_DELETES=Y) can cause a single
UPDATE operation at the source to appear as two rows at the target. It is
recommended that you avoid using the suppress delete option with partitioned
source tables.

Replication of DB2 partitioned tables: Version 9.7 Fix Pack 2 and later
(Linux, UNIX, Windows)

Q Replication supports DB2 tables that are partitioned by range (using the
PARTITION BY clause of the CREATE TABLE statement). These tables are
sometimes known as range-partitioned tables.

Version and fix pack requirements exist for the Q Capture program if a source
table is partitioned by range. This topic covers these requirements and support for
replication of partitioned tables when your replication programs are at Version 9.7
Fix Pack 2 or later. If only target tables (no source tables) are partitioned by range,
then Q Replication has no version or fix pack requirements specific to these tables.

To capture changed data for range-partitioned tables, your Q Capture program
must be at Version 9.7 or later. It can capture changes from range-partitioned tables
on DB2 V9.1, V9.5, or V9.7. However, restrictions exist for range-partitioned tables
earlier than V9.7. The restrictions are also discussed in this topic.

Important: If your replication programs are at Version 9.7 Fix Pack 2 or later and
you plan to replicate range-partitioned tables, you must run the Version 9.7 Fix
Pack 2 migration script, asnqcapluwv97fp2.sql. The script adds a new control
table, IBMQREP_PART_HIST, to help the replication programs handle data
partition changes such as add, attach, or detach. The script is located in the
sqllib/samples/repl/mig97/q/ directory. The Q Capture program does not use the
IBMQREP_PART_HIST table for partitioned source tables on DB2 Version 9.5 or
Version 9.1.

Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table.

Replication and publishing treat all data partitions of a source table as a single
table. For example, when you create a Q subscription or publication that specifies a
partitioned table, you specify the entire table rather than one or more data
partitions of the table. All row operations for the table, regardless of the data
partition at which they occur, are replicated or published.

You can perform several alterations on a partitioned table, including adding a data
partition, attaching a data partition, or detaching a data partition. These ALTER

Chapter 11. Loading target tables 197

operations on the source table are not replicated to the target. You must alter the
target table independently of the source table if you want to maintain an identical
partitioning scheme.

Replication and publishing treat these ALTER operations differently:

Note for Version 9.5 and earlier: The Q Capture program does not recognize the
addition, attachment, or detachment of a data partition until the program is
reinitialized or stopped and restarted.

ADD Adds a new, empty data partition to the source table. If you require the
new data partition at the target, you must manually add it. Q Capture
program behavior and the procedure that you need to follow depend on
the release of your DB2:

Version 9.7 or higher
Add the data partition at the target before adding it at the source.
Q Capture automatically begins replicating changes to the data
partition.

Version 9.5 or 9.1
Add the data partition at both the source and target before
restarting Q Capture. Do not change data in the source data
partition until Q Capture is restarted.

ATTACH
Creates a new data partition at the source by using an existing table. The
ATTACH operation is not replicated and the data in the new data partition
is not replicated to the target. If you require the new data partition at the
target you must manually add it. If you require the attached data at the
target, you must manually load the data into the target before you attach
the data partition at the target.

DETACH
Turns an existing data partition into a separate table. The DETACH
operation is not replicated. The data that is deleted from the source table
by the DETACH operation is not deleted from the target table. If you need
to change the target data partition into a separate table, you need to do so
manually.

Note: DB2 logs updates that cause rows to move across data partitions as
delete-insert pairs. The Q subscription or publication option to suppress delete
operations from the source table (SUPPRESS_DELETES=Y) can cause a single
UPDATE operation at the source to appear as two rows at the target. It is
recommended that you avoid using the suppress delete option with partitioned
source tables.

CCD tables in Q Replication
Consistent-change-data (CCD) tables provide committed transactional data that can
be read and used by other applications, for example InfoSphere DataStage® or the
Apply program for SQL replication.

By using a CCD table as your target type, you can also keep a history of source
changes. For example, you can track before and after comparisons of the data,
when changes occurred, and which user ID updated the source table.

198 Replication and Event Publishing Guide and Reference

You can specify CCD tables as both sources and targets in unidirectional Q
Replication. You can also specify a CCD table that is populated by the Q
Replication programs as a source for SQL replication.

The following sections provide more detail about CCD tables in Q Replication:
v “Condensed and complete attributes”
v “Load options for CCD tables” on page 200
v “Options for errors or conflicts” on page 200
v “Default columns in CCD tables” on page 200
v “Optional auditing columns” on page 201
v “ASNCLP sample for creating CCD target table” on page 202
v “Using CCD tables as Q Replication sources” on page 202

Important for Version 10.1 on Linux, UNIX, and Windows: If the source database
is DB2 10.1 for Linux, UNIX, and Windows with multiple DB2 pureScale®

members, Q Replication does not support CCD target tables. With Version 10.1 as a
source, CCD targets are only supported in single-member databases with the Q
Capture compatibility parameter set to 0907 or lower.

Condensed and complete attributes

Two attributes define a CCD table: condensed and complete. The following list
summarizes these attributes:

Complete (COMPLETE=Y)
A complete CCD table contains every row of interest from the source table
and is initialized with a full set of source data.

All target table loading options are valid for complete CCDs (automatic,
manual, or no load).

Noncomplete (COMPLETE=N)
A noncomplete CCD table contains only changes to the source table and
starts with no data.

The only valid load option for noncomplete CCD tables is no load.

Condensed (CONDENSED=Y)
A condensed CCD table contains one row for every key value in the source
table and contains only the latest value for the row.

For condensed CCD tables, a primary key is required to ensure there are
no duplicate rows. In case of an update conflict, all the source columns
will be forced into the row. The required settings for conflict rule and
conflict action are CONFLICT_RULE=K and CONFLICT_ACTION=F.

Noncondensed (CONDENSED=N)
A noncondensed CCD table contains multiple rows with the same key
value, one row for every UPDATE, INSERT, or DELETE operation at the
source table.

When added to the CCD table, all of the rows become INSERT operations.
Noncondensed CCD tables cannot have a unique index or primary key.

A CCD table that is used for keeping a history of changes to the source table is
complete (COMPLETE=Y) and noncondensed (CONDENSED=N).

Chapter 11. Loading target tables 199

Load options for CCD tables

The following load options apply to CCD target tables:

Complete
You can specify an automatic load by the Q Apply program, a manual
load, or no load.

Noncomplete
You must specify no load.

Options for errors or conflicts

The following options are available for handling unexpected conditions in CCD
target tables:

Condensed and complete
Two choices are valid for conflict detection:
v Force the source change into the target table (CONFLICT_ACTION=F).
v Ignore the condition and continue (CONFLICT_ACTION=I).

For all CCD table types, the only valid conflict option is to check only key columns
(CONFLICT_RULE=K).

Notes:

1. For noncomplete CCD targets, the IBMQREP_EXCEPTIONS table is not
updated after "row not found" or duplicate row conflicts because rows from the
source table might not exist in a noncomplete CCD target and rework might
occur frequently.

2. For complete CCD targets, the IBMQREP_EXCEPTIONS table is updated after
conflicts with one exception: duplicate row violations are not logged because
rows from delete operations remain in CCD targets and rework might occur
frequently.

3. For condensed CCD tables, a key update at the source table might result in the
removal of a row at the CCD target. The removed row is typically a "delete"
row (one with a value of D in the IBMSNAP_OPERATION column). This type
of row is removed only if it has the same key value as the new value of the key
update.

4. For condensed CCD tables, CONFLICT_ACTION=I implies that conflicts at the
target are ignored, with one exception: If a key update at the source table
results in a rework at the CCD target, a rework is necessary to keep the CCD
data consistent.

Default columns in CCD tables

By definition, a CCD table always includes the following columns in addition to
the replicated columns from the source table. These columns contain information
from the recovery log at the source database that provide more details about each
row change:

200 Replication and Event Publishing Guide and Reference

Column Description

IBMSNAP_INTENTSEQ Data type: CHAR(10) FOR BIT DATA;
Nullable: No

A sequence number that uniquely identifies
a change. This value is ascending in a
transaction.

The log sequence
number (LRSN or RBA) of each update,
delete, and insert.

IBMSNAP_OPERATION Data type: CHAR(1); Nullable: No

A flag that indicates the type of operation: I
(INSERT), U (UPDATE), or D (DELETE).

IBMSNAP_COMMITSEQ Data type: CHAR(10) FOR BIT DATA;
Nullable: No

A sequence number for each row within a
transaction.

The log sequence
number (LRSN or RBA) of the source
commit record.

IBMSNAP_LOGMARKER Data type: TIMESTAMP; Nullable: No

The approximate time at the source server
that the data was committed, measured in
Greenwich Mean Time (GMT).

You can use the Q Apply logmarkertz
parameter to specify that the timestamp uses
the local time of the Q Apply server.
Specifying logmarkertz=local is only useful
when the Q Capture and Q Apply servers
are in the same time zone with the same
Daylight Savings Time or other time change
in effect.

Optional auditing columns

When you create a noncomplete (COMPLETE=N) CCD table with the ASNCLP
command-line program or Replication Center, you can specify additional auditing
columns. The following table describes these columns:

Column Description

IBMSNAP_AUTHID Data type: VARCHAR(30); Nullable: Yes

The user ID that updated the source table.

This column is the
primary authorization ID.

Chapter 11. Loading target tables 201

Column Description

IBMSNAP_AUTHTKN Data type: VARCHAR(30); Nullable: Yes

The authorization token that is associated
with the transaction.

The correlation ID
(normally a job name) that ran the source
update.

IBMSNAP_PLANID Data type: VARCHAR(8); Nullable: Yes

The plan name that is
associated with the transaction. This column
will be null for DB2 for Linux, UNIX, and
Windows.

IBMSNAP_UOWID Data type: CHAR(10) FOR BIT DATA;
Nullable: Yes

The unit-of-work (UOW) identifier from the
log record for a row.

The unit-of-work
identifier, sometimes called the
unit-of-recovery ID (URID) of the
transaction.

ASNCLP sample for creating CCD target table

You can use the ASNCLP command-line program or Replication Center to create
CCD tables as part of the process of creating a Q subscription for the source table.
The following ASNCLP sample sets the environment and then creates a Q
subscription for the EMPLOYEE table in the SAMPLE database, also creating a
CCD target table:
ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET SERVER TARGET TO DB TARGET;
CREATE QSUB USING REPLQMAP REPQMAP1
(SUBNAME SUB1 EMPLOYEE TYPE CCD);

Using CCD tables as Q Replication sources

You can use a CCD target table that is populated by the Q Apply program as a
source table for another Q Replication target database. Typically, this configuration
uses three tiers, where the log record values from the source database at Tier 1 are
sent to the Q Apply program at Tier 2 and applied to a target CCD table. The CCD
table at Tier 2 is then mapped to a CCD table at Tier 3, and the original values
from Tier 1 are then propagated to Tier 3.

To set up a three-tier configuration like this, use the ASNCLP program to create a
Q subscription from Tier 1 to Tier 2. In the CREATE QSUB command, use the
TYPE CCD keywords to specify that the target CCD table at Tier 2 will be
populated with values taken directly from the recovery log at Tier 1. Then, when
you create the Q subscription from Tier 2 to Tier 3, replace the TYPE CCD
keywords in the CREATE QSUB command with TYPE USERTABLE so that the
CCD columns at Tier 2 are mapped to the matching columns at Tier 3.

202 Replication and Event Publishing Guide and Reference

The following examples of CREATE QSUB commands illustrate this method. The
first example uses the TYPE CCD keywords to create a Q subscription from Tier 1
to Tier 2:
CREATE QSUB USING TIER1_ASN_TO_TIER2_ASN
(SUBNAME EMPLOYEE0001 HR.EMPLOYEE
TARGET NAME HR.TIER2EMPLOYEE
TYPE CCD
KEYS (C1));

The second example omits the TYPE CCD keywords and instead uses TYPE
USERTABLE. This syntax prompts the Q Apply program to create a table with
identical columns at Tier 3 and then propagate the values in the Tier 2 CCD table
to matching columns at Tier 3:
CREATE QSUB USING TIER2_ASN_TO_TIER3_ASN
(SUBNAME EMPLOYEE0001 HR.TIER2EMPLOYEE
TARGET NAME HR.TIER3EMPLOYEE
TYPE USERTABLE
KEYS (C1));

Using a Q Replication CCD table as a source requires Version 9.7 Fix Pack 5 or
later on Linux, UNIX, and Windows and Version 10.1 on z/OS with the PTF that
corresponds to Fix Pack 5.

Chapter 11. Loading target tables 203

204 Replication and Event Publishing Guide and Reference

Chapter 12. Creating publications

With event publishing, you can publish changed rows or transactions from a
source table to a user application. The Q Capture program publishes changes from
a source table and puts those changes on a send queue. You are then responsible
for having an application of your choice retrieve those messages.

Tip: The asnqwxml sample program provides an example of a Web-based
application that consumes XML messages that the Q Capture program publishes.
The sample demonstrates how to use publications in a business scenario.

Grouping publishing queue maps and publications
Before you define publications and publishing queue maps, you should first plan
how you want to group them.

Each publication identifies a single source table from which changes will be
published in an XML format or delimited format such as comma-separated values
(CSV). When you define a publication, you must also define which publishing
queue map is used to transport the data for that source table. Among other things,
each publishing queue map identifies the WebSphere MQ queue that the Q
Capture program sends changes to. A single publishing queue map can be used to
transport data for several publications, so you must decide which publications use
the same publishing queue map to transport data.

When you plan how to group publications and publishing queue maps, keep in
mind the following rules:
v A WebSphere MQ queue cannot be shared by multiple Q Capture programs.
v A single Q Capture program can write to multiple send queues.
v You can create one or multiple publishing queue maps from a single Q Capture

program.

How the Q Capture program works with the send queue

For a publishing queue map, the Q Capture program captures changes from the
database log for all tables for which there are active publications. The Q Capture
program stores these changes in memory until it reads the corresponding commit
or abort record from the database log. The Q Capture program then sends
information on committed transactions to all WebSphere MQ send queues that
were defined for the publications.

Suggestions for grouping similar publications with publishing
queue maps

For tables that are involved in transactions with one or more applications, you
should create publications for these tables so that they all share a common
publishing queue map. Grouping similar publications with the same publishing
queue map assures the transactional consistency of the data that is sent to the send
queue.

It is important to have publications that have dependencies share the same
publishing queue map. If you define publications that are involved in related

© Copyright IBM Corp. 2004, 2012 205

transactions to send data through independent publishing queue maps, then the Q
Capture program splits the data between the multiple send queues.

If multiple applications update the source server but do not update the same
tables, and you configure a single Q Capture program to publish data from the
source server to a target server, then you might consider defining multiple
publishing queue maps for this Q Capture program to use. All of the publications
that are associated in transactions for each application are then published over one
of these publishing queue maps. Such a configuration could provide advantages,
such as failure isolation or increased throughput. You can gain higher throughput
and failure isolation by configuring each Q Capture program with its own
publishing queue map. However, you must balance these gains against increased
CPU consumption and a more complex publishing environment.

Creating publishing queue maps
When you create publications, you specify which WebSphere MQ queue to send
the data to by associating each publication with a publishing queue map. You can
create a publishing queue map before you begin creating publications or as one of
the steps while you are creating publications.

Before you begin

v Plan how you want to group publishing queue maps and publications.
v On the server that contains the source tables for the publications, create the

control tables for the Q Capture program.
v Ensure that you have defined the appropriate objects in WebSphere MQ.

Restrictions

The same send queue cannot be used for both Q replication and event publishing
because a send queue can transport compact messages (for Q replication) or XML
or delimited messages (for event publishing), but not both.

Procedure

To create a publishing queue map, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE PUBQMAP command. For example, the following
commands set the environment and create a publishing queue map
SAMPLE_EP1_TO_SUBSCRIBER:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;
SET RUN SCRIPT LATER;

CREATE PUBQMAP SAMPLE_EP1_TO_SUBSCRIBER
USING SENDQ "EP1.QM1.PUBDATAQ"
MESSAGE CONTENT TYPE R
MAX MESSAGE SIZE 128
HEARTBEAT INTERVAL 5;

Replication Center Use the Create Publishing Queue Map window. To open the
window, expand the Q Capture schema that identifies the Q
Capture program that uses the queue map. Right-click the
Publishing Queue Maps folder and select Create.

206 Replication and Event Publishing Guide and Reference

Tip: You can use either replication administration tool to validate the send queue
that you specify for a publishing queue map. Click Validate queue on the Create
Publishing Queue Map window or use the VALIDATE WSMQ ENVIRONMENT FOR
command in the ASNCLP.
When you create a publishing queue map, you specify the following options:

Send queue
The WebSphere MQ queue where the Q Capture program sends source
data and informational messages.

Message content
You can specify for the Q Capture program to send messages that contain
either of the following types of content:
v Individual row operations. (This type of message from the Q Capture

program is called a row operation message.)
v Full transactions. (This type of message from the Q Capture program is

called a transaction message.)

For either type of message content, the operation is not sent until the
transaction that it is part of has committed. The type of message content
that you choose determines how the Q Capture program sends data for all
publications that use this publishing queue map.

For LOB data types: Regardless of which option that you choose, LOB
data types are sent separately as individual physical messages that are
associated with either the transaction message or row operation message.

Maximum message length
The maximum size of a message (in kilobytes) that the Q Capture program
can put on this send queue. This maximum message length must be equal
to or less than the WebSphere MQ maximum message size attribute
(MAXMSGL) that is defined for the queue or queue manager.

Queue error action
The actions that the Q Capture program takes when a send queue is no
longer accepting messages because of an error, for example when the
queue is full:
v Stops running
v Stops putting messages on the queue in error but continues to put

messages on other queues

Heartbeat interval
How often, in seconds, that the Q Capture program sends messages on this
queue to tell the user application that the Q Capture program is still
running when there are no changes to publish. The heartbeat message is
sent on the first commit interval after the heartbeat interval expires. A
value of 0 tells the Q Capture program not to send heartbeat messages.

Note: This heartbeat interval is different from the WebSphere MQ
parameter HBINT (heartbeat interval) that you can define for a WebSphere
MQ channel.

Code page conversion errors
Whether character data is published when the data causes a code page
conversion error. By default, no data is sent for the character field that
failed code page conversion for XML messages. For delimited message
format, by default none of the data from character columns in the row is
sent when any single character field in the row fails code page conversion.

Chapter 12. Creating publications 207

Instead, all the character columns are sent as null values. Check the box to
specify that hexadecimal values be send rather than null values.

Message header
Whether to include a JMS-compliant (MQRFH2) header in all messages
that are put on the send queue. When you create a publication that uses
the send queue, you can specify a topic for the topic field in the header. A
topic is a character string that describes the nature of the data that is
published.

Delimited format
Whether you want the Q Capture program to publish messages in
delimited format. You can accept the default delimiters for column,
character data, new lines, and decimals, or use the four fields to specify
your own delimiters.

If you specify your own delimiters, each of the delimiter fields must have
a different value. You can select from the drop-down lists of valid
delimiters, type a character, or type a character code point. In a character
code point, you use the syntax 0xJJ or XJJ where JJ is the hexadecimal
representation of the code point. For example, for the delimiter # you can
use #, 0x23, or X23.

Code page for publishing delimited messages
Displays the code page that the Q Capture program uses to
publish delimited messages. If this code page differs from the code
page of the source table, the Q Capture program will convert the
data. To avoid code page conversion, specify the code page that is
used for the source table.

Column delimiter
Specifies a delimiter to separate the values in each column of the
source table. The default delimiter is a comma (,). A null column
value is represented by two consecutive column delimiters.

Character string delimiter
Specifies a delimiter to enclose all character data. The default
delimiter is a double quotation mark ("). If the character data
contains its delimiter, the delimiter is escaped by prefixing it with
the same delimiter.

New line value
Specifies a new-line delimiter to separate the change-data records
in one message. The default is a line feed (LF).

Decimal value
Specifies a character to use for the decimal point. The default is a
period (.).

Creating publications
With event publishing, you can publish changed rows or transactions from a
source table to a user application by creating publications.

Each publication is a single object that identifies:
v The source table that you want to publish changes from
v The columns and rows from the source table that you want to be published
v The publishing queue map, which names the WebSphere MQ queue that

changes are published to

208 Replication and Event Publishing Guide and Reference

In event publishing, you can create one or multiple publications at one time.

Attention: Publications are separate objects from Q subscriptions. Publications do
not publish data to the Q Apply program, but to an application of your choice.
Publications are for publishing data, and Q subscriptions are for replicating data. If
you want to replicate changes from a source table and want the Q Apply program
to apply those source changes to a target table or pass them to a stored procedure
for data manipulation, create a Q subscription, not a publication.

The following topics explain how to create one or many publications and further
customize the publications based on your business needs.

Creating publications
By creating a publication, you define how data is published as XML or delimited
messages from a source table to WebSphere MQ so that a subscribing application
can retrieve and use those messages.

Before you begin

v Plan how you want to group publishing queue maps and publications.
v On the server that contains the source table for the publication, create the control

tables for the Q Capture program.
v Create a publishing queue map. (You can do this task before you create a

publication or while you create a publication.)

Restrictions

v A view cannot be a source for a publication.

About this task

Figure 26 shows how a single publication connects a source table to a WebSphere
MQ send queue.

Figure 27 on page 210 shows how multiple publications can use the same
publishing queue map and Q Capture program.

DB2

Source

Log

PUBLICATION

Q
Capture

Event

WebSphere
MQ

Figure 26. Single publication. Changes from a source table are published over WebSphere
MQ queues.

Chapter 12. Creating publications 209

Procedure

To create publications, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the CREATE PUB command. For example, the following
commands set the environment and create the publication
DEPARTMENT0001:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;
SET RUN SCRIPT LATER;

CREATE PUB USING PUBQMAP
SAMPLE_EP1_TO_SUBSCRIBER
(PUBNAME "DEPARTMENT0001" JK.DEPARTMENT
ALL CHANGED ROWS Y SUPPRESS DELETES Y);

Replication Center Use the Create Publications wizard. To open the wizard, expand
the Q Capture schema that identifies the Q Capture program that
you want to capture changes for the publication. Right-click the
Publications folder and select Create.

You can create one publication or many by using the wizard.

When you create multiple publications at one time, the Replication
Center assumes that you want to publish all columns and rows
from each source table. At the end of the wizard, before the
Replication Center builds the publications, you can modify
individual publications so that only a subset of the source columns
and rows are published.

PUBLICATION from Source A

Event

PUBLICATION from Source C

PUBLICATION from Source B

DB2

Source A

Source B

Source C

Q
CaptureLog

WebSphere
MQ

Figure 27. Multiple publications. Changes from source tables are published over WebSphere
MQ queues.

210 Replication and Event Publishing Guide and Reference

Source columns for publications
By default when you create publications, changes to all columns that are in the
source table are published. However, you can publish a subset of the columns if
you do not want to make all of the columns that are in the source table available
to the user application.

You might also want to publish a subset of the columns if the user application for
a publication does not support all of the data types that are defined for the source
table.

To publish a subset of the columns, select only the source columns that you want
to be published to the user application. If you are creating a single publication,
then the Create Publications wizard in the Replication Center gives you options for
how to publish a subset of the columns from the source table. If you are creating
multiple publications at one time, then, on the Review page of the Create
Publications wizard, select the individual publication for which you want to
publish only a subset of the columns, and then edit the properties for that
publication.

Important for LOB columns: If you select columns that contain LOB data types
for a publication, make sure that the source table enforces at least one unique
database constraint (for example, a unique index or primary key). You do not need
to select the columns that make up this uniqueness property for the publication.

When the Q Capture program publishes a message for
publications

When you create publications, you can specify that the Q Capture program
publishes a message either every time that a column in the source table changes, or
only when columns that are part of a publication change.

The following sections describe the two different types of events that can cause the
Q Capture program to publish a message:
v “Message is sent only when columns in publications change”
v “Message is sent every time a change occurs in the source table” on page 212

Recommendation: In general, the appropriate choice is that only changes that
affect a selected column should be published. However, some applications need
only a portion of a row, such as the key columns, whenever a change occurs. This
published information can serve as an event notification, which can trigger other
actions to occur. If you publish all of the columns that are in the source table, then
these two options result in the same action.

Message is sent only when columns in publications change

By default, the Q Capture program publishes a message only when the change
occurs in columns that you selected for the publications.

Example: Assume that you have 100 columns in your source table and you select
25 of those columns to be published in a publication. If you specify for a message
to be sent only when columns in publications change, then any time a change is
made to any of the 25 columns that are part of the publication, the Q Capture
program publishes an message. Any time a change is made in any of the 75
columns that are not part of the publication, the Q Capture program does not
publish an message.

Chapter 12. Creating publications 211

Message is sent every time a change occurs in the source table

You can define publications so that the Q Capture program publishes a message
every time a change occurs in the source table. If you are publishing only a subset
of the columns in the source table, then the Q Capture program publishes a
message even if the change occurs in a column that is not part of a publication.

Example: Assume that you have 100 columns in your source table and you select
25 of those columns to be published in a publication. If you specify for a message
to be sent every time a change occurs in the source table, any time that a change is
made to any of the of the 100 columns in your source table, the Q Capture
program publishes an message.

Search conditions to filter rows in publications
By default when you create publications, all rows from the source table are
published. However, when you create a publication, you can specify a WHERE
clause with a search condition to identify the rows that you want to be published.

When the Q Capture program detects a change in the DB2 recovery log that is
associated with a source table, the Q Capture program evaluates the change
against the search condition to determine whether to publish the change.

If you are creating a single publication, then the Create publications wizard in the
Replication Center helps you add a WHERE clause to publish a subset of the rows
from the source table. If you are creating multiple publications at one time, then,
on the Review page of the Create Publications wizard, select the individual
publication for which you want to subset rows and edit the properties for that
publication to add the WHERE clause.

When you specify a WHERE clause, you can specify whether the column is
evaluated with values from the current log record. If you want a column in the
WHERE clause to be evaluated with values from the current log record, place a
single colon directly in front of the column name.

Example of WHERE clause that evaluates a column with values
from the current log record
WHERE :LOCATION = ’EAST’ AND :SALES > 100000

In the above example, LOCATION and SALES are column names in the source table
that are evaluated with values from the current log record. Here, the Q Capture
program sends only the changes from the source table that involve sales in the
East that exceed $100,000. When you type a column name, the characters fold to
uppercase unless you enclose the name in double quotation marks. For example,
type "Location" if the column name is mixed case.

If the Q Capture program publishes a column that is part of the WHERE clause, it
might need to change the type of operation that needs to be sent to the target table
or stored procedure.

Example where the Q Capture program must change the type of
operation because of a WHERE clause
WHERE :LOCATION = ’EAST’
AND :SALES > 100000

Suppose that the following change occurs at the source table:

212 Replication and Event Publishing Guide and Reference

INSERT VALUES (’EAST’, 50000)
UPDATE SET SALES = 200000 WHERE LOCATION = ’EAST’

Because the before value does not meet the search condition of the WHERE clause,
the Q Capture program sends the operation as an INSERT instead of an UPDATE.

Likewise, if the before value meets the search condition but the after value does
not, then the Q Capture program changes the UPDATE to a DELETE. For example, if
you have the same WHERE clause as before:
WHERE :LOCATION = ’EAST’
AND :SALES > 100000

Now suppose that the following change occurs at the source table:
INSERT VALUES (’EAST’, 200000)
UPDATE SET SALES = 50000 WHERE LOCATION = ’EAST’

The first change, the insert, is sent to the target table or stored procedure because it
meets the search condition of the WHERE clause (200000 > 100000 is true).
However, the second change, the update, does not meet the search condition
(50000 >100000 is false). The Q Capture program sends the change as a DELETE so
that the value will be deleted from the target table or stored procedure.

Complex search conditions

Event publishing allows you to specify more complex WHERE clauses. However,
complex search conditions might impact performance. For example, you can
specify a more complex WHERE clause with a subselect that references other tables
or records from either the source table or another table.

Example of WHERE clause with a subselect
WHERE :LOCATION = ’EAST’
AND :SALES > (SELECT SUM(EXPENSE) FROM STORES WHERE STORES.DEPTNO = :DEPTNO)

In the above example, the Q Capture program sends only the changes from the
East that resulted in a profit, where the value of the sale is greater than the total
expense. The subselect references the STORES table and the following columns in
the source table: LOCATION, SALES, and DEPTNO.

When you define a publication with a subselect in a WHERE clause, the following
problems might occur:
v Performance might be slower because, for each change in the source table, the Q

Capture program computes a large select on the STORES table to compute the
SUM(EXPENSE) value. Also, this type of select might compete for locks on the
tables.

v The subselect might produce unexpected results. For example, because the
subselect is evaluated against the current database values, the example above
produces a wrong answer if the EXPENSE value changes in the database, whereas
columns in the WHERE clause are substituted with the older log record values.
If the table name that the subselect references does not change, then the search
condition produces the proper results.

Restrictions for search conditions
v Search conditions cannot contain column functions, unless the column function

appears within a subselect statement.
Invalid WHERE clause with column functions:

Chapter 12. Creating publications 213

#---
Incorrect: Don’t do this
#---

WHERE :LOCATION = ’EAST’ AND SUM(:SALES) > 1000000

The Replication Center validates search conditions when the Q Capture program
evaluates them, not when the Replication Center creates the publication. If a
publication contains an invalid search condition, then that publication will fail
when the invalid condition is evaluated, and the publications will be
deactivated.

v Search conditions cannot contain an ORDER BY or GROUP BY clause unless the
clause is within a subselect statement.
Invalid WHERE clause with GROUP BY:
#---
Incorrect: Don’t do this
#---

WHERE :COL1 > 3 GROUP BY COL1, COL2

Valid WHERE clause with GROUP BY:
WHERE :COL2 = (SELECT COL2 FROM T2 WHERE COL1=1 GROUP BY COL1, COL2)

v Search conditions cannot reference the actual name of the source table that you
are publishing changes from. Do not use the schema.tablename notation in a
WHERE clause for the actual name of the source table. However, you can
reference another table name in a subselect by using schema.tablename notation.
Invalid WHERE clause with actual name of source table and column name:
#---
Incorrect: Don’t do this
#---

WHERE :ADMINISTRATOR.SALES > 100000

In this example of a WHERE clause that has the actual names of the source table
and columns, the table that is published is ADMINISTRATOR and SALES is the
column name. This invalid WHERE clause is intended to select only the values
of the SALES column of the ADMINISTRATOR table, for which SALES is greater than
100000.
Valid WHERE clause with column name:
WHERE :SALES > 100000

In this example of a WHERE clause that has a column name, SALES is the
column name.

v Search conditions cannot reference values that were in columns before a change
occurred; they can reference only after values.

v Search conditions cannot contain EXISTS predicates.
v Search conditions cannot contain a quantified predicate, which is a predicate

using SOME, ANY, or ALL.
v Search conditions cannot reference LOB values.

Key columns for publications
For each publication, you must specify which columns in the source table are key
columns. Event publishing requires key columns to enforce that each row is

214 Replication and Event Publishing Guide and Reference

unique. You can have the Replication Center recommend which columns in the
source table should be used to identify uniqueness, or you can select the key
columns yourself.

If you are creating a single publication, then the Create Publications wizard in the
Replication Center launches the Select Key Column window to help you select the
key columns from the source table. If you are creating publications at one time,
then you can use the Review page of the Create Publications wizard to customize
which key columns to use.

Options for including unchanged columns in messages for
publications

When you create publications that publish a subset of the source columns, you can
specify what column values from each row the Q Capture program includes in the
message that it publishes.

The following sections describe the values that the Q Capture program can include
in the message:
v “Only changed columns are sent”
v “Both changed and unchanged columns are sent”

This option applies only to values in non-key columns. The Q Capture program
always publishes values in key columns.

Only changed columns are sent

By default when you create publications, the Q Capture program sends the values
in the columns that you selected for the publications only if the column values
change.

Example: Assume that you have 100 columns in your source table and you select
25 of those columns to be published in a publication. If you specify that only
changed columns are sent, then any time that a change occurs in any of the 25
selected columns, the Q Capture program publishes only the columns that
changed. For instance, if changes occur in 17 of the 25 selected columns, then the
Q Capture program sends those 17 changed values.

Recommendation: Use this option to minimize the amount of unnecessary data
that goes across the queues.

Both changed and unchanged columns are sent

You can also define publications so that the Q Capture program always sends the
values in the columns that you selected for the publications, whether those values
changed or not.

Example: Assume that you have 100 columns in your source table and you select
25 of those columns to be published in a publication. If you specify that both
changed and unchanged columns are sent, then any time that a change occurs in
any of the 25 selected columns, the Q Capture program publishes all of the
selected columns. For instance, if changes occur in 17 of the 25 selected columns,
then the Q Capture program still sends the values from all 25 columns.

Chapter 12. Creating publications 215

Options for including before values in messages for
publications

When an update occurs in columns that are not part of the target key, the Q
Capture program either sends the value in the column after the change occurred,
or it sends both the value in the column before the change occurred and the value
in the column after the change occurred. When an update occurs in a key column,
the before value and after value are always sent.

Because a delete operation always applies to a row and not to a specific column
value, deletes are handled differently. For deletes, only before values are ever sent.
Before values of key columns are always sent. If you specify for the message to
include column values from before and after the change, then, if values in non-key
columns are deleted, the before values of the non-key columns are sent.

The sections below describe your two options for before values and after values:
v “Send new data values only”
v “Send both old and new data values”

Send new data values only

By default when an update occurs at the source table, the Q Capture program
publishes the values that are in the non-key columns after the change occurs. If
you specify for the message to include only new data values (values from after the
change), then the message does not include the values that were in the non-key
columns before the change occurred.

Recommendation: If the application that receives the messages for the publications
never uses the value that was in each non-key column before the change, then
specify that the Q Capture program send only column values from after the
change.

Send both old and new data values

If you specify that the message is to include both old and new data values (values
from both before and after the change), then when a non-key column is updated,
the Q Capture program publishes the value that is in the column before the change
occurs and the value that is in the column after the change occurs.

Recommendation: If the application that receives the messages for the publications
uses the value that was in each column before the change, then specify for the Q
Capture program to send column values from before and after the change.

Restrictions for LOB data types: Before values for columns with LOB data types
are not sent in the messages. If you specify for the message to include both before
and after values, then this option does not apply for columns with LOB data types,
and their before values are not sent.

216 Replication and Event Publishing Guide and Reference

Chapter 13. Data type considerations

When you replicate or publish certain data types, such as LONG VARCHAR or
LOB data types, you should be aware of certain conditions and restrictions.

General data restrictions for Q Replication and Event Publishing
Some data types are not supported in Q Replication and Event Publishing and
some data types can be used only under certain circumstances.

Data encryption restrictions
You can replicate or publish some types of encrypted data:

EDITPROC
DB2 for z/OS source tables that are defined with an edit routine
(EDITPROC) to provide additional data security are supported. To
use these tables as sources, the DB2 subsystem that contains the
tables must be at Version 8 or higher with APAR PK13542 or
higher.

Encrypt scalar function
Column data can be encrypted and decrypted using the encrypt
scalar function in DB2 for Linux, UNIX, and Windows. To use this
with replication or publishing, the data type must be VARCHAR
FOR BIT DATA at the source. This data replicates successfully as
long as the source and target use the same code page and the
decrypt functions are available. Replication of columns with
encrypted data should only be used with servers that support the
DECRYPT_BIN or DECRYPT_CHAR function.

FIELDPROC
Q Replication supports columns that are defined on DB2 for z/OS tables
with field procedures (FIELDPROC) to transform values. The DB2
subsystem that contains the tables with FIELDPROC columns must be at
APAR PK75340 or higher.

If possible, you should create the following index on your
SYSIBM.SYSFIELDS table to improve performance:
CREATE INDEX "SYSIBM"."FIELDSX"
ON "SYSIBM"."SYSFIELDS"
(TBCREATOR ASC,
TBNAME ASC,
NAME ASC)
USING STOGROUP SYSDEFLT PRIQTY 100 SECQTY 100
CLOSE NO;
COMMIT;

Data type restrictions
Currently, the following data cannot be replicated or published:
v Spatial data types

v Any column on which a VALIDPROC is defined
v You can replicate BINARY or VARBINARY data types when the source

and target are on z/OS. Replication of these data types from a z/OS
source to a DB2 for Linux, UNIX, and Windows target or federated
target is not supported. BINARY and VARBINARY data types are

© Copyright IBM Corp. 2004, 2012 217

supported as targets of source expressions only if the source datatype is
CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, or ROWID.

You can replicate or publish the following types of data only under certain
circumstances:

LONG VARCHAR and LONG VARGRAPHIC
Columns with long variable character (LONG VARCHAR) and long
variable graphic (LONG VARGRAPHIC) data types have the following
restrictions:
v LONG VARCHAR and LONG VARGRAPHIC cannot be replicated from

DB2 for Linux, UNIX, and Windows to DB2 for z/OS. Fields in DB2 for
z/OS that contain long variable characters have a smaller maximum
length than the fields in DB2 for Linux, UNIX, and Windows. Therefore,
replication of these types of fields to DB2 for z/OS from DB2 for Linux,
UNIX, and Windows might result in truncation.

v When you specify DATA CAPTURE CHANGES for a source table when
the table is created, any LONG VARCHAR and LONG VARGRAPHIC
columns are automatically enabled for replication. If you add LONG
VARCHAR columns to the table after you create a Q subscription and
the table previously had no LONG columns, you must use the ALTER
TABLE statement to enable DATA CAPTURE CHANGES INCLUDE
LONGVAR COLUMNS for the new LONG VARCHAR or LONG
VARGRAPHIC columns.

User-defined data types
You can replicate or publish user-defined distinct data types, but not
user-defined structured and reference data types. User-defined distinct data
types (distinct data types in DB2) are converted to the base data type
before they are replicated. If the target table is created when the Q
subscription is created, user-defined distinct data types are converted to
the base data type in the new target table.

GRAPHIC data type
Columns with the GRAPHIC data type at the source and target might not
match when you use the asntdiff utility to check that the source and target
tables are the same. DB2 columns with the GRAPHIC data type have blank
padding after the graphic data. This padding might be single-byte or
double-byte spaces, depending on the code page that the database was
created in. This padding potentially can cause data to not match between
the source and the target tables, especially if the source and target tables
are in different code pages. This padding applies only to GRAPHIC data
types and not other graphic data types such as VARGRAPHIC or LONG
VARGRAPHIC.

To compare columns with GRAPHIC data types, you must remove the
blank padding in the data before you compare the source and target tables
by using the DB2 scalar function:
rtrim(column)

This function eliminates the code page differences for single-byte or
double-byte spaces and ensures that the asntdiff utility compares the
GRAPHIC data in a consistent manner.

TIMESTAMP WITH TIME ZONE
You can replicate the TIMESTAMP WITH TIMEZONE data type that was
introduced in DB2 for z/OS Version 10, with some restrictions. Table 22 on
page 219 shows the supported mappings

218 Replication and Event Publishing Guide and Reference

Table 22. Supported column mappings for TIMESTAMP WITH TIMEZONE data type

Target column

TIMESTAMP WITH
TIMEZONE

TIMESTAMP WITHOUT
TIMEZONE

Source
column

TIMESTAMP WITH
TIMEZONE

Allowed if source
column length is less
than or equal to target
column length

Not allowed

TIMESTAMP WITHOUT
TIMEZONE

Not allowed. Allowed

Note: DB2 for Linux, UNIX, and Windows does not support TIMESTAMP
WITH TIMEZONE.

Considerations for large object (LOB) data types for Q Replication and
Event Publishing

Replication handles binary large object (BLOB), character large object (CLOB), and
double-byte character large object (DBCLOB) data types differently depending on
the setting of the Q Capture lob_send_option parameter and the size of the LOB
data.

The parameter has these values:

I (inline)
LOB data is sent within the transaction message. This method can improve
performance. You might need to adjust the value of the max_message_size
option for the replication queue map to ensure that the messages are large
enough to hold LOB values.

S (separate)
LOB data is sent after the transaction message in one or more LOB
messages. The number of messages depends on the value of
max_message_size.

Regardless of the setting for lob_send_option, starting with DB2 10.1 for Linux,
UNIX, and Windows the Q Capture program can read LOB data directly from the
DB2 recovery log rather than having to connect to the database and fetch from the
source table. This method can also improve performance.

For source databases at DB2 Version 10.1 or later, LOB data is read from the log
under these circumstances:
v The data fits within a source table row, which is affected by the INLINE

LENGTH setting in the definition of a LOB column. This setting indicates the
maximum byte size of a LOB value that can be stored in a base table row.

v The LOB column was created with the LOGGED attribute, which specifies that
changes to the column are written to the log even if the size of the data exceeds
the value of INLINE LENGTH.

When a LOB value does not fit into a message, the LOB_TOO_BIG_ACTION value
in the IBMQREP_SENDQUEUES table determines what action Q Capture takes:

Q (default)
The Q Capture program follows the error action that is defined for the
send queue.

Chapter 13. Data type considerations 219

E The Q Capture program sends empty LOB values if the data does not fit in
a single transaction message. If the substitute value does not fit into a
message, Q Capture follows the error action for the queue.

With lob_send_option=S, the Q Capture program sends LOB values for all LOB
columns that are part of a Q subscription or publication for every row in a
transaction. This behavior results in more WebSphere MQ messages if a LOB value
is updated multiple times in a transaction or if the CHANGED_COLS_ONLY
option in the Q subscription or publication is set to N. For key updates, LOB values
for all LOB columns that are part of a Q subscription or publication are sent
regardless of the CHANGED_COLS_ONLY setting.

Recommendation: If you are replicating the DBCLOB data type, set
lob_send_option=I, especially if you expect DBCLOB values that are larger than
16KB.

Federated targets: You can replicate LOBs to Oracle targets, but not to any other
non-DB2 target.

Other important information regarding LOB replication:
v You must have a unique index in your source table to replicate LOB data.
v An entire LOB is replicated or published, even if only a small portion of the

LOB is changed.
v Q Replication and Event Publishing do not support DB2 Extenders™ for Text,

Audio, Video, Image, or other extenders where additional control files that are
associated with the extender's LOB column data are maintained outside of the
database.

v The before values for LOB or ROWID columns are not replicated or published.
When the Q Capture program sees an indication of a LOB change (a LOB
descriptor) in the DB2 recovery log, the Q Capture program sends the LOB
value from the source table.

XML data type
DB2 Version 9.1 and later supports native storage of XML documents. You can
replicate or publish the XML documents.

The XML documents are replicated within the transaction message, similar to how
other columns are replicated. If the XML documents are large, you might need to
increase the maximum message size for the WebSphere MQ messages. If an XML
documents exceeds the maximum message size for the send queue, the XML
document is not sent. You can set the XML_TOO_BIG_ACTION for the send queue
in the following ways in the IBMQREP_SENDQUEUES table to define the action
that Q Capture takes:

Q (default)
The Q Capture program follows the error action that is defined for the
send queue.

E The Q Capture program sends an XML placeholder. If the XML
placeholder does not fit into a message, Q Capture follows the error action
for the queue.

The Q Apply program adds a row to the IBMQREP_EXCEPTIONS table any time
that XML documents cannot be sent.

220 Replication and Event Publishing Guide and Reference

Requirements

You must have a unique index in your source table to replicate XML data.

In addition to replicating to the DB2 XML data type, you can replicate XML
documents to federated targets that support XML data types, or you can map the
source XML column to a CLOB or BLOB column at the target.

Restrictions

The XML data type has the following restrictions:
v You cannot filter rows based on the contents of an XML document.
v You cannot replicate XML columns that you defined as a unique index.
v The documents are not validated by the Q Apply program.
v You cannot replicate the XML schema registrations.

v On z/OS, you cannot perform an automatic load for tables
that contain XML columns. The DSNUTILS program that performs the automatic
load does not support the XML data type.

v You cannot replicate XML columns from Oracle sources.
v User-defined unique indexes on XPATH expressions on XML columns are not

supported. To replicate these columns, drop the unique index and use a
non-unique index.

Replication between XML and LOB columns
Q Replication supports mappings between XML and large object (LOB) columns,
with restrictions in some cases.

No restrictions
The following mapping is supported without restriction:
v BLOB to XML

Supported with restrictions
The following mappings are supported, but no automatic load (type I) is
allowed because moving data from XML to BLOB or CLOB columns is not
supported by the DB2 LOAD or IMPORT utilities that are used in
automatic loads:
v XML to BLOB
v XML to CLOB

You can use automatic loads with CLOB to XML, but if you specify the
EXPORT and LOAD utilities the source and target databases must be in
the same code page:
v CLOB to XML

Attention: If you are replicating CLOB to XML, data loss can occur if
both of the following conditions are true:
v The source database uses a non-UTF-8 code page, and the target

database uses code page 1208 (codeset UTF-8).
v The Q subscription specifies an automatic load that uses the EXPORT

and IMPORT utilities.

In this situation, you must use the LOAD from CURSOR utility for the Q
subscription.

Chapter 13. Data type considerations 221

Not supported
The following mappings are not supported:
v XML to DBCLOB
v DBCLOB to XML

Replication of new DB2 Version 9.7 data types (Linux, UNIX, Windows)
Q Replication supports new data types that were introduced with DB2 for Linux,
UNIX, and Windows Version 9.7 to make it easier to migrate applications to DB2.

Some of the new data types require special considerations for a replication
environment. The following sections provide details:
v “TIMESTAMP with extended precision”
v “DATE with compatibility option” on page 223
v “NUMBER” on page 223

TIMESTAMP with extended precision

Q replication supports replication of TIMESTAMP data with extended precision
that ranges from TIMESTAMP(0) to TIMESTAMP(12). If both the source and target
databases and Q Capture and Q Apply are Version 9.7 or newer, the source data is
padded or truncated at the target database to satisfy a mapping of non-matching
TIMESTAMP columns. Mapping of non-matching TIMESTAMP columns is
supported only for unidirectional replication.

If a V9.7 Q Capture program is sending data to an older Q Apply program
(COMPATIBILITY in the IBMQREP_CAPPARMS table is less than 0907), Q Capture
sends only TIMESTAMP(6) data to match the capability of the target. This situation
might require Q Capture to pad or truncate the source data, depending on the size
of the V9.7 source TIMESTAMP column.

For example, if you replicated a source at V9.7 to a target at V9.5 and a source
table included a TIMESTAMP(12) column, the V9.7 Q Capture program would
truncate six digits from the fractional seconds portion of the TIMESTAMP value.
The truncation is necessary because DB2 V9.5 does not support extended precision,
and so for V9.5 databases TIMESTAMP values have a fractional seconds portion
that equates to TIMESTAMP(6). Table 23 shows a value at the source and resulting
truncated value at the target.

Table 23. Truncation of TIMESTAMP(12) during replication

Source value in TIMESTAMP(12) Target value in TIMESTAMP(6)

2009-07-10-10.33.42.458499823012 2009-07-10-10.33.42.458499

In this same scenario, if the source data is in the TIMESTAMP(0) to
TIMESTAMP(5) range, DB2 automatically pads the data to the pre-V9.7 level of six
digits for fractional seconds.

Note: When handling these new data types, Q Replication
treats a DB2 for z/OS source or target the same as DB2 for Linux, UNIX, and
Windows Version 9.5 or older.

222 Replication and Event Publishing Guide and Reference

If Q Apply is at V9.7 or newer and Q Capture is older, DB2 automatically pads or
truncates source TIMESTAMP values to match the precision of the target
TIMESTAMP column. Table 24 shows an example of padding.

Table 24. Padding of older TIMESTAMP value during replication

Source value in TIMESTAMP Target value in TIMESTAMP(12)

2009-07-10-10.33.42.458499 2009-07-10-10.33.42.458499000000

DATE with compatibility option

The date compatibility option stores the DATE type with an additional time
portion (HH:MM:SS). This format conforms to the date representation by other
relational database management systems such as Oracle, where the DATE data
type includes YYYY-MM-DD HH:MM:SS.

Q Replication treats databases without date compatibility the same as DB2
databases prior to V9.7, and the same as DB2 for z/OS subsystems. When date
compatibility is enabled, DB2 handles columns that are defined as DATE in the
same way that it handles columns defined as TIMESTAMP(0).

Enable the DATE as TIMESTAMP(0) support by setting bit position number 7
(0x40) of the DB2_COMPATIBILITY_VECTOR registry variable before you create a
database. With unidirectional Q Replication you can create the following column
mappings between DATE and TIMESTAMP(0):

DATE to TIMESTAMP(0)
If the source database does not have date compatibility enabled, the target
value is padded to YYYY-MM-DD-00:00:00.

TIMESTAMP(0) to DATE
If the target database does not have date compatibility enabled, the
TIMESTAMP(0) value is truncated to YYYY-MM-DD.

NUMBER

The NUMBER data type supports applications that use the Oracle NUMBER data
type. DB2 treats NUMBER data internally as DECFLOAT if no precision or scale
are specified, and as DECIMAL with precision or scale if these attributes are
specified.

Because Q Replication already supports DECFLOAT and DECIMAL, for
unidirectional replication you can map columns defined with any of these three
numeric types to each other: NUMBER to DECFLOAT or DECIMAL, DECFLOAT
to NUMBER or DECIMAL, and DECIMAL to NUMBER or DECFLOAT.

Replication of tables with identity columns
Q Replication allows identity columns in both source and target tables, but because
of DB2 restrictions you might need to take extra steps if your source table has
columns that are defined with the AS IDENTITY GENERATED ALWAYS clause.

Identity columns are handled differently by replication depending on whether they
are in the source or target table:

Source table
If you have an identity column in a source table and you want to replicate

Chapter 13. Data type considerations 223

it to a target table, create a Q subscription for the source table as usual.
The target table is created with numeric columns to hold the values. For
example, a source column that is defined as GENERATE ALWAYS might
be replicated to a BIGINT column at the target. The columns in the target
table cannot be identity columns themselves, so you cannot replicate an
identity column in a source table to an identity column in a target table.

Target table
If you have an identity column in a target table, do not include that
column in your Q subscription. The column is populated automatically
when replication inserts into or updates the target table. The behavior of
the identity column is the same as for inserts and updates by any other
application. If you replicate the same source table to multiple target tables
that have identity columns, the identity values in those target tables are
independent of each another.

DB2 does not allow inserts into columns that are defined with the AS IDENTITY
GENERATED ALWAYS clause, and so this clause is not supported for Q
Replication target tables. However, options exist for replicating these columns:
v Create the target table without the IDENTITY clause.
v Create the target table with a column that is defined with AS IDENTITY

GENERATED BY DEFAULT.

For columns that are defined with AS IDENTITY GENERATED BY DEFAULT, the
range of values must be distinct between the source and the target because DB2
does not guarantee uniqueness of identity columns between two different DB2
databases.

For example, the identity column at one site could be set to even numbers (START
WITH 2, INCREMENT BY 2) and at the other site the identity column could be set
to odd numbers (START WITH 1, INCREMENT BY 2). You could also assign
ranges to sites (for example, 1 to 10,000 at one site and 20,000 to 40,000 at the
other). The odd-even approach ensures that in a conflict situation, two different
rows that accidentally have the same generated identity key do not overwrite one
another when the conflict action is to force the change.

The data type of the identity column (SMALLINT, INTEGER, or BIGINT) should
be determined by application needs, for example the largest number that you
expect in the column.

The identity columns should be NO CYCLE if numbers cannot be reused. Put a
plan in place for what to do when the maximum value is reached (SQLSTATE
23522). If you use CYCLE, make sure that a new use of a number does not cause
problems for any existing use of the number, including what happens during
replication.

224 Replication and Event Publishing Guide and Reference

Chapter 14. Working with scripts and commands generated
by the replication administration tools

The ASNCLP command-line program and Replication Center generate SQL scripts
for defining and changing replication objects. The Replication Center also generates
operational commands for such tasks as starting and stopping the replication
programs, pruning control tables, changing parameters, or checking program
status.

You can use the replication administration tools to run the scripts and commands
that they generate, or you can save the scripts and commands, modify them, and
run them later.

Running and saving scripts generated by the replication
administration tools

To create replication and publishing objects, you run SQL scripts that are generated
by the ASNCLP command-line program or Replication Center. You can modify the
scripts, use the tools to run the scripts, or run the scripts from a DB2 command
line.

About this task

When editing the generated SQL scripts, be careful not to change the termination
characters. Also, do not change the script separators if there are multiple scripts
saved to a file.

You might want to customize the SQL scripts for your environment to perform the
following tasks:
v Create multiple copies of the same replication action, customized for multiple

servers.
v Combine definitions together and run as a batch job.
v Defer the replication action until a specified time.
v Create libraries of SQL scripts for backup, site-specific customization, or to run

standalone at distributed sites, such as for an occasionally connected
environment.

Procedure

1. Use one of the following methods to run or save scripts that are generated by
the replication administration tools:

© Copyright IBM Corp. 2004, 2012 225

Method Description

ASNCLP
command-line
program

Use the SET RUN SCRIPT command to control whether to
automatically run SQL statements that are generated by each
ASNCLP task command before processing the next command or to
manually run them later in a DB2 command prompt.

NOW This option automatically runs the generated SQL.

LATER This option saves the generated SQL to a file. You can
specify the file path and name by using the SET OUTPUT
command.

For example the following command specifies to automatically run
the SQL script but stop processing the ASNCLP commands if an
error occurs:

SET RUN SCRIPT NOW STOP ON SQL ERROR ON

Replication Center Use the Run Now or Save Script window.

The Run now radio button is initially selected so that when you
click OK the Replication Center issues the SQL statements to create
or change an object.

Subsequently, the window selects the last processing option that
you picked. For example, if you previously choose to save the
scripts to a file, the next time this window is displayed the Save to
file radio button is selected and the same system and path appear
in the Run specifications box.

You can also schedule SQL scripts to run as
tasks in the Task Center on Linux, UNIX, and Windows.

The Apply button allows you to run the script and leave this
window open so that you can still save the script as a file or as a
task.

2. Optional: Use one of the following methods to run the files containing SQL
scripts from a DB2 command line:
v Use this command if the SQL script has a semicolon (;) as a termination

character:
db2 -tvf filename

v Use this command if the SQL script has some other character as the
delimiter:
db2 -tdchar -vf filename

Where char is a termination character such as a pound sign (#).

If you run the SQL scripts from a DB2 command line, you must connect to
servers manually when you run the SQL script. The script is generated with
CONNECT statements. Before you run the SQL script, you must edit the SQL
statements to specify the user ID and password for the server. For example,
look for a line that resembles the following example and add your information
by typing over the placeholders (XXXX):
CONNECT TO database_name USER XXXX USING XXXX ;

226 Replication and Event Publishing Guide and Reference

Running and saving commands (Replication Center)
You can run commands directly from the Replication Center, save and run
commands as batch files from a command line, or save commands as task objects
for the Task Center.

Procedure

To work with commands that are generated by the Replication Center, use the Run
Now or Save Command window.
1. Optional: In the text area, modify the command.
2. Choose one of the following options:

v To run the command immediately, click Run now, fill in the Run
specifications fields, and click OK.

v To save the command, click Save to file, fill in the Run specifications fields,
and click OK. The Replication Center creates a file with the name and
extension that you specify, or you can save the command to an existing file.

v To save the command as a task object for the Task Center, click Save as task,
fill in the Run specifications fields, and click OK.

Chapter 14. Working with scripts and commands generated by the replication administration tools 227

228 Replication and Event Publishing Guide and Reference

Chapter 15. Operating a Q Capture program

A Q Capture program captures transactions or row-level changes from source
tables that are part of a Q subscription or publication, and then sends this
transactional data as messages over WebSphere MQ queues.

You can operate a Q Capture program using the Replication Center, system
commands, and system services, and you can change the Q Capture operating
parameters in several ways.

Starting a Q Capture program
You start a Q Capture program to begin capturing transactions or row-level
changes from the DB2 recovery log for active or new Q subscriptions or
publications, and sending the transactional data as messages over WebSphere MQ
queues.

Before you begin

v If you are starting a Q Capture program from a remote workstation, configure
connections to the Q Capture server.

v Create a WebSphere MQ queue manager, queues, and other required objects.
v Ensure that you have authorization for Q Replication and event publishing

objects and WebSphere MQ objects.
v Create control tables for the appropriate Q Capture schema.
v Configure the source database or subsystem to work with the Q Capture

program.

Important: Ensure that archive logging is turned on at the database that you are
using as the Q Capture server. Use the Turn On Archive Logging window in the
Replication Center to configure the Q Capture server for archive logging, and
perform an offline backup of the database.

v If any Q subscriptions that specify an automatic load that uses the EXPORT
utility are in N (new) or A (active) state, create a password file on the Q Apply
server to allow the utility to connect to the Q Capture server.

About this task

When you initially start a Q Capture program without specifying a start mode, it
uses the default start mode, warmsi. In this mode, the program tries to read the
log at the point where it left off. Because this is the first time that the program is
started, Q Capture switches to cold start mode and begins processing Q
subscriptions or publications that are in N (new) or A (active) state. Any Q
subscriptions or publications that are in I (inactive) state must be activated for the
program to begin capturing changes.

You can start a Q Capture program even if no Q subscriptions or publications are
in A (active) state. When you activate the Q subscriptions or publications, the Q
Capture program begins capturing changes.

© Copyright IBM Corp. 2004, 2012 229

When you start a Q Capture program, you can specify startup parameter values
and the program will use the new values until you take one of the following
actions:
v Change the parameter values while the program is running.
v Stop and restart the program, which prompts it to read the

IBMQREP_CAPPARMS table and use the values saved there.

Procedure

To start a Q Capture program, use one of the following methods:

Method Description

z/OS console or TSO

On z/OS, you can start a Q Capture program by using JCL or as a
system-started task. You can specify new invocation parameter
values when you start a Q Capture program with JCL.

z/OS has a 100-byte limit for the total length of parameters that
you can specify in the PARMS= field. To overcome this limitation,
replication programs now allow you to specify as many additional
parameters as needed in the SYSIN data set.

When the SYSIN DD statement is included in the invocation JCL,
the Q Capture program automatically concatenates what is
specified in the SYSIN dataset to the PARMS= parameters. You can
only specify Q Capture parameters in the SYSIN data set. Any LE
parameters must be specified in the PARMS= field or in LE
_CEE_ENVFILE=DD, followed by a slash(/).

Example:

//* asterisk indicates a comment line
// QCAP EXEC PGM=ASNQCAP,PARMS=’LE/Q Capture parameters’
//* Parameters can be any or no LE parameters and any or
//* no Q Capture parameters
//SYSIN DD *
//* additional Q Capture parameters, one or more
//* parameters on each line

CAPTURE_SERVER=DSN!! CAPTURE_SCHEMA=CAPCAT
DEBUG=Y LOGSTDOUT=N

asnqcap command Use the asnqcap command to start a Q Capture program and
specify startup parameters. For example:

asnqcap capture_server=server_name
capture_schema=schema
parameters

Where server_name is the name of the database or subsystem that
contains the Q Capture control tables, schema identifies the Q
Capture program that you want to start, and parameters is one or
more parameters that you can specify at startup.

Windows services

You can create a replication service on Windows operating systems
to start the Q Capture program automatically when the system is
started.

You can verify whether a Q Capture program started by using one of the following
methods:
v Examine the Q Capture diagnostic log file

(capture_server.capture_schema.QCAP.log on z/OS and

230 Replication and Event Publishing Guide and Reference

db2instance.capture_server.capture_schema.QCAP.log on Linux, UNIX, and
Windows) for a message that indicates that the program is capturing changes.

v Check the IBMQREP_CAPTRACE table for a message that indicates that the
program is capturing changes.

v If you are running in batch mode, examine the z/OS console
or z/OS job log for messages that indicate that the program started.

v Use the Q Capture Messages window in the Replication Center to see a message
that indicates that the program started. To open the window, right-click the Q
Capture server that contains the Q Capture program whose messages you want
to view and select Reports > Q Capture Messages.

Starting Q Capture from a known point in the DB2 log
You can use command-line parameters to start the Q Capture program at a known
point in the DB2 log without triggering a load of the target table.

About this task

Typically, when the Q Capture program is stopped you use a warm restart to begin
reading the DB2 recovery log where Q Capture left off. You typically use a cold
restart to begin reading at the end of the log. A cold restart automatically prompts
the Q Apply program to reload the target table with the latest data from the
source.

In some situations, you might want to restart the Q Capture program from a
known point in the log. For example, in a high availability failover scenario you
can record information from the DB2 log on one server and then use a command
to start capturing data on the backup server after the second server takes over.

Procedure

To start the Q Capture program from a known point in the DB2 log:
1. Determine the point in the log where you want Q Capture to start reading. You

will need the values for two command parameters:

lsn The log sequence number (LSN) of the oldest uncommitted transaction
that you want to capture.

maxcmtseq
The LSN of the most recently committed transaction that was put on
the send queue.

2. Use JCL or the asnqcap command and specify both the lsn and maxcmtseq
parameters.
You must use both parameters in the same JCL statement or command
invocation, and you cannot use these parameters if the value of startmode is
cold.
For example, to start the Q Capture program on a server named SAMPLE with
an lsn value of 0000:C60F:2722:E137:0001 and a maxcmtseq value of
0000:C60F:2722:E080:0001, use one of the following methods:

JCL
//QCAPDEC EXEC PGM=ASNQCAP,REGION=0M,TIME=NOLIMIT,
// PARM=’STORAGE(FF,FF,FF)/SSTR CAPTURE_SCHEMA=QDECODER
// STALE=20 STARTALLQ=N’
.
.

Chapter 15. Operating a Q Capture program 231

.
//SYSIN DD *

MAXCMTSEQ=0000:C60F:2722:E080:0001
LSN=0000:C60F:2722:E137:0001

//SYSTERM DD DUMMY

asnqcap command
asnqcap SAMPLE LSN=0000:0000:0000:115b:7704
MAXCMTSEQ=41c2:2264:0000:0004:0000

The following examples show how you can restart Q Capture from various points
in the log, and find the values of lsn and maxcmtseq in different scenarios.

Example 1:

To start from the end of the log without triggering a load (full refresh) of the target
table, specify one of the following values in the asnqcap command, depending on
your DB2 version:

Version 9.7 and below
lsn=FFFF:FFFF:FFFF:FFFF:FFFF and maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF.

Version 10.1 or higher with compatibility of 1001 or higher, or Version 9.8
lsn=FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF and
maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF.

Example 2:

In some cases you might not be able to use a warm restart, for example if the
restart message or restart queue is lost or corrupted. To find the values of lsn and
maxcmtseq at the point where the Q Capture program stopped reading the log, use
one of the following methods:

Method Description

asnqmfmt command Run the asnqmfmt command to format the restart message, which contains the point where Q
Capture stopped reading.

Specify the queue manager that the Q Capture programs works with, and the name of the
restart queue. For example:

asnqmfmt asn.qm1.restartq qm1

In the command output, look for the values in the restartLSN and
qRestartMsg.lastCommitSEQ fields. For example:

restartLSN=0000:0000:0000:03ab:65ab
qRestartMsg.lastCommitSEQ: 4a02:3396:0000:0002:0000

You use the value of qRestartMsg.restartLSN for the lsn parameter and the value of
qRestartMsg.lastCommitSEQ for the maxcmtseq parameter.
Note: Starting with Version 9.5 Fix Pack 3, the format of the restart message changed to
indicate restart points for each send queue that a Q Capture program works with. If you are
using a version at this level or later, the restart LSN and last commit indicator appear as in
the following example:

sendq lastCommitSEQ: 4a02:3396:0000:0002:0000
sendq restartLSN=0000:0000:0000:03ab:65ab

You use the value of sendq restartLSN for the lsn parameter and the value of sendq
lastCommitSEQ for the maxcmtseq parameter.

232 Replication and Event Publishing Guide and Reference

Method Description

Q Capture diagnostic
log

Look for message ASN7109I in the log. The log file is found in the directory specified by the
capture_path parameter or by default in SQLLIB\bin.

The value of lsn is described as "the lowest log sequence number of a transaction still to be
committed." The value of maxcmtseq is described as "the highest log sequence number of a
successfully processed transaction."

For example:

2006-01-11-16.12.49.583183 <asnqwk>ASN7109I "Q Capture" : "ASN" : "WorkerThread" :
At program termination, the highest log sequence number of a successfully processed
transaction is "43C5:9F00:0000:0001:0000" and the lowest log sequence number of a
transaction still to be committed is "0000:0000:0000:2B39:606D".

Example 3:

To start Q Capture from the beginning of its last run, look for message ASN7108I
in the Q Capture diagnostic log for the values of lsn and maxcmtseq at the time
that Q Capture started.

For example:
2006-01-11-16.12.31.360146 <asnqwk> ASN7108I "Q Capture" : "ASN" : "WorkerThread" :
At program initialization, the highest log sequence number of a successfully
processed transaction is "43C5:9EE5:0000:0001:0000" and the lowest log sequence
number of a transaction still to be committed is "0000:0000:0000:2B38:82F6".

You can also look for message ASN7699I in the Q Apply diagnostic log to obtain
the value for maxcmtseq if you want to avoid having the Q Capture program
resend transactions that Q Apply already received.

Specifying Q Capture restart points for individual send queues or data
partitions (z/OS)

When you start a Q Capture program in warm mode, you can override the global
restart information in the restart message and specify different restart points for
individual send queues and for individual partitions in a partitioned source
database.

Before you begin

The user ID that starts the Q Capture program must have authorization to open
and read the restart file.

About this task

To specify restart points for individual send queues or individual data partitions,
you use a Q Capture initialization parameter that enables you to override the
restart information in the restart message with information from a file.

The parameter, override_restartq, prompts Q Capture to look in the restart file as
well as the restart message for the point where it should start reading in the log
for a given send queue or data partition when it starts. Any restart information
that is contained in the file overrides the restart information in the restart message.

The ability to start Q Capture from different points for individual send queues or
data partitions can help in the following situations:

Chapter 15. Operating a Q Capture program 233

v You want to restart Q Capture so that it republishes data for one or more targets
that are served by different send queues without affecting other targets. In case
of disaster recovery where the primary site connects to multiple target sites, the
fallback procedure would consist of restarting Q Capture from different points
for each send queue that connects to a different target site to resend any changes
that were lost.

v In a partitioned database environment, you want to start Q Capture from a
known point in the log that differs from the point that Q Capture saved in its
restart message, or start Q Capture in warm mode when its restart message is
lost or corrupted.

v If the file system that stores WebSphere MQ objects is lost or the Q Capture
restart message is accidentally deleted and multiple send queues are used, you
can restart Q Capture from individual restart points.

Procedure

To start Q Capture from a specified point in the log for one or more send queues:
1. Do one of the following:

v If are specifying a restart point at the send queue or partition level for the
first time, create a restart file in the directory that is specified by the
capture_path parameter, or in the directory from which Q Capture was
started if nothing is specified for capture_path. Use the following naming
convention:

capture_server.capture_schema.QCAP.QRESTART. Q Capture creates
the data set with these attributes: DCB=(RECFM=FB,LRECL=128).

db2_instance.capture_server.capture_schema.QCAP.QRESTART

v If the QCAP.QRESTART file already exists, follow the steps below to update
its contents.

2. Look on the standard output or Q Capture log file for informational message
ASN7207I, which Q Capture issues just before it stops. This message contains
the following information for each send queue:
v Queue name
v Restart LSN (the lowest LSN of a transaction still to be committed)
v commitSEQ (the last successfully committed transaction)
v Partition number for partitioned databases on Linux, UNIX, and Windows

The following example shows an ASN7207I message:
ASN7207I "Q Capture" : "QALLTYPE" : "WorkerThread" : The restartq override
file contents follow: queue name restart lsn maxcmtseq partition
(only for partitioned databases).
QALLTYPEL12 0000:0000:4F07:634E:0000 0000:0000:4F00:547A:0000

3. For each send queue or data partition for which you want Q Capture to start
capturing transactions from the recovery log at a specific point, enter a line in
the QCAP.QRESTART file in the following format:

Send queue
name

Space restartLSN Space commitSEQ Space
(optional)

partition
(optional)

The following example shows the contents of a restart file for two send queues,
SQ1 and SQ2, on data partitions 0 and 1:
SQ1 0000:0000:4F07:634E:0000 0000:0000:4F00:547A:0000 0
SQ2 0000:0000:4FB9:0864:0000 0000:0000:4FB9:0864:0000 1

234 Replication and Event Publishing Guide and Reference

The data partition information is not needed for z/OS or for non-partitioned
databases on Linux, UNIX, and Windows. Colons (:) are optional in the
restartLSN and commitSEQ values.

4. Save the QCAP.QRESTART file.
5. Start the Q Capture program with startmode=warmns and

override_restartq=y.
Q Capture reads the restart file when it initializes, and starts reading the
recovery log at the specified restartLSN for each send queue for which
information exists in the file. For any other send queues, Q Capture uses the
global restart information in the restart message.
When Q Capture starts, it clears the restart file. When Q Capture stops, it
writes the most recent restart information to the file and to the standard output,
its log file, and the IBMQREP_CAPTRACE table.

Note: You cannot specify override_restartq=y if you also specify the lsn and
maxcmtseq parameters. These parameters are used to start Q Capture from a
specified point in the log for all send queues, rather than for individual send
queues.

The next time that you need to start Q Capture from a specified point for a given
send queue or data partition, you can open QCAP.QRESTART and modify any lines
that pertain to the send queues that you want to be started from a given point by
changing the restartLSN or commitSEQ values.

During warm starts when override_restartq is specified, Q Capture follows this
protocol depending on whether a restart message exists in the restart queue:

Restart message exists
The restart file must contain one line for each send queue in the restart
message whose restartLSN and commitSEQ you want to modify. Q
Capture replaces the send queue restartLSN and commitSEQ information
in the restart message with corresponding restart information from the file.

Restart message does not exist
The restart file must contain one line for each send queue that was in the
restart message. Q Capture builds the restart message from restart
information in the restart file.

Considerations for using the cold start mode
You can prevent unwanted loading of the target table and other possible issues by
considering these issues related to the cold start mode.

When you cold start a Q Capture program any time after the Q Capture program
starts initially, the Q Capture program starts reading the DB2 log from the end
instead of from the last restart point. The following results can occur:

The source and target can become out of sync, which requires you to load the
target The Q Capture program might skip log records for data that it otherwise

would have passed to the Q Apply program. If these records contain
updates or inserts to the source table, the only way to synchronize the
source and target tables is to load the target table (sometimes called a full
refresh). Loading the target can cause you to lose historical data.

The load can take a long time
The load requires significant time and effort for environments that contain
many tables or large amounts of data. For these environments, the full

Chapter 15. Operating a Q Capture program 235

refresh can cause costly outages, especially on production systems. Use the
cold start option as a last resort except when you start a Q Capture
program initially.

You can follow these guidelines to prevent unexpected cold starts:

Set the startmode parameter
The startmode parameter should not have the value cold. Specify the
warmns or warmsi start mode whenever possible. When you specify these
start modes, the Q Capture program will not cold start if the warm start
information is not available.

Monitor the status of the Q Capture programs with the Replication Alert
Monitor

For example, you can use the QCAPTURE_STATUS alert condition to send
you an e-mail alert whenever the monitor detects that a Q Capture
program stopped. If the program is down long enough, you might require
a cold start to synchronize the source and target tables because the Q
Capture program behind in reading log records.

Retain sufficient DB2 log data and ensure the data is available to Q Capture
If log files are not available to the Q Capture program, the program cannot
continue to capture the changes that are made to the source tables and
might require a cold start.

Changing the Q Capture parameters
You can change the Q Capture operating parameters when you start the program,
while the program is running, or by updating the IBMQREP_CAPPARMS control
table.

Methods of changing the Q Capture operating parameters
This topic provides a brief description of the three different ways that you can
change the parameters, followed by an example to help clarify the differences.

Changing saved parameters in the IBMQREP_CAPPARMS table
The Q Capture parameter values are saved in the IBMQREP_CAPPARMS
control table. After installation, this table is filled with the shipped default
values for the program. A Q Capture program reads the table when it
starts. You can use other methods to change the parameter values when
you start a Q Capture program or while it is running, but these changes
stay only in memory. When you stop and restart the Q Capture program, it
uses the parameter values that are saved in the IBMQREP_CAPPARMS
table. You can update this table using the Q Replication Dashboard or SQL.

Setting parameter values at startup
When you start a Q Capture program, you can override the parameter
values that are saved in the IBMQREP_CAPPARMS table. You can use JCL
or the asnqcap system command to set values for the operating parameters.
Your changes take effect when the program starts, but last only while the
program is running.

Dynamically changing parameters while a Q Capture program is running
You can dynamically change parameter values without needing to stop
capturing changes from the source. Use the chgparms parameter of the
MODIFY command on z/OS or asnqccmd command on Linux, UNIX,
Windows or UNIX System Services on z/OS to change values while a Q

236 Replication and Event Publishing Guide and Reference

Capture program is running. Your changes last only until the program
stops running, or until the next change-parameters request.

Three ways to change Q Capture operating parameters

Assume that you want to shorten the default setting for the commit_interval
parameter of 500 milliseconds (one half second) for a Q Capture program that is
identified by schema ASN1:
1. Update the IBMQREP_CAPPARMS table for Q Capture schema ASN1. Set the

commit interval to 250 milliseconds. You can use the Programs tab in the Q
Replication Dashboard, or the following SQL:
update asn1.ibmqrep_capparms set commit_interval=250

When you start this Q Capture program in the future, the commit interval
defaults to 250 milliseconds.

2. You want to see the effect of a longer commit interval on replication
throughput (the number of transactions published for a given period of time).
Rather than change the saved value in the control table, you start the Q
Capture program with commit_interval set to 1000 milliseconds (one second).
You can use the asnqcap command:
asnqcap capture_server=srcdb1 capture_schema="ASN1" commit_interval=1000

While the program runs using a 1-second commit interval, you monitor its
performance.

3. Based on performance, you decide to lower the commit interval. Instead of
stopping the Q Capture program, you dynamically change the parameter while
the program is running to 750 milliseconds (0.75 seconds), and monitor the
change. You can use the chgparms parameter with the MODIFY command or
asnqccmd command:
f myqcap,chgparms commit_interval=750

asnqccmd capture_server=srcdb1 capture_schema="ASN1" chgparms
commit_interval=750

You can continue to monitor the throughput and latency statistics and tune the
commit_interval parameter. When you find the value that meets your
requirements, you can update the IBMQREP_CAPPARMS table (as described in
step 1). The next time you start a Q Capture program, it uses the new value as the
default commit interval.

Changing parameters while a Q Capture program is running
You can modify the behavior of a Q Capture program while it continues to capture
changes from the source. The Q Capture program begins using the new settings
almost immediately, but the changes are not saved in the IBMQREP_CAPPARMS
control table. If you stop and then restart the program, it uses the saved values in
the control table.

About this task

You can change the following Q Capture parameters while the program is running:
v autostop

v commit_interval

v logreuse

v logstdout

Chapter 15. Operating a Q Capture program 237

v memory_limit

v monitor_interval

v monitor_limit

v prune_interval

v qfull_num_retries

v qfull_retry_delay

v signal_limit

v sleep_interval

v term

v trace_limit

Restriction: The amount of memory that the Q Capture
program can use to build messages is determined when the Q Capture program
starts, based on the value of the memory_limit parameter and the REGION size
that is specified in the JCL. The value of memory_limit cannot be altered with the
Q Capture program is running. To change the value you must first stop the Q
Capture program.

Procedure

To dynamically change parameters while a Q Capture program is running, use the
chgparms parameter with the MODIFY command on z/OS or asnqccmd command on
Linux, UNIX, Windows, and UNIX System Services for z/OS.

MODIFY
f myqcap,chgparms parameter=value

Where myqcap is the Q Capture job name.

asnqccmd
asnqccmd capture_server=server
capture_schema=schema
chgparms parameters

Where server is the name of the Q Capture server, schema identifies a
running Q Capture program, and parameters is one or more parameters that
you want to change.

When you change the values, a delay of 1 to 2 seconds can occur between the time
that you issue the command and the time that a Q Capture program changes its
operation.

Changing saved Q Capture parameters in the
IBMQREP_CAPPARMS table

A Q Capture program stores its operating parameters in the
IBMQREP_CAPPARMS control table. To change the saved parameter values, you
must update the control table.

About this task

If you override these saved parameters when you start the program or while it is
running, the changes stay only in memory. The next time that you start the Q
Capture program, it uses the values saved in the control table.

238 Replication and Event Publishing Guide and Reference

The IBMQREP_CAPPARMS table contains a single row. If this table has no row, or
more than one row, the Q Capture program will not run.

If you want to change one or more saved parameter values, you can update the
IBMQREP_CAPPARMS table. Because a Q Capture program reads this table when
it starts, you must stop and restart the program for the updates to take effect.
Reinitializing a Q Capture program will not prompt the program to read new
values in the IBMQREP_CAPPARMS table.

Procedure

To change saved Q Capture parameters in the IBMQREP_CAPPARMS table, use
one of the following methods:

Method Description

Q Replication
Dashboard

On the Programs tab, click Properties and then select a Q Capture
server from the Program field to view or change saved values.

SQL From a command prompt or one of the DB2 command line tools
issue an SQL UPDATE statement for the IBMQREP_CAPPARMS
table. For example, to change the defaults for monitor_interval
and logstdout:

update schema.ibmqrep_capparms
set monitor_interval=600, logstdout=Y

Where schema identifies the Q Capture program whose saved
parameter values you want to change.

Replication Center Use the Change Parameters – Saved window. To open the window,
right-click the Q Capture server that contains the Q Capture
program whose saved parameters you want to view or change and
select Change Parameters > Saved.
Note: Starting with Version 10.1, not all new Q Capture
parameters were added to the Replication Center. To see all
parameters, use the Q Replication Dashboard.

Prompting a Q Capture program to ignore unwanted transactions
You can specify that a Q Capture program ignore unwanted transactions, and these
transactions are not captured for replication or publishing.

About this task

You can specify which transactions to ignore by using one or more of the following
identifiers:
v Transaction ID
v Authorization ID

v Authorization token

v Plan name

For example, your operation might run very large purge jobs once a month and
you prefer to run these jobs against each database rather than replicate the data. In
this case you could use a specific and unique authorization ID for the purge jobs,
and specify that Q Capture ignore transactions from that ID.

Chapter 15. Operating a Q Capture program 239

To prompt the Q Capture program to ignore a single transaction based on its
transaction identifier, you use an asnqcap command parameter when you start the
Q Capture program.

To ignore transactions based on authorization ID, authorization token, or plan
name, you use SQL to insert the identifiers into the IBMQREP_IGNTRAN control
table at the Q Capture server. You can use a wild card character (%) to ignore
groups of transactions (see below for more detail).

Caution: Ignoring a transaction that will ultimately be aborted causes no data
integrity issues. But ignoring a transaction that was committed at the source server
typically causes divergence between source and target servers, and you might need
to take other actions to synchronize the servers, for example triggering a new load
of the target table or using the asntdiff table compare utility.

Procedure

To prompt the Q Capture program to ignore transactions:
1. Use one of the following methods depending on the identifier you plan to use:

240 Replication and Event Publishing Guide and Reference

Identifier Procedure

Transaction ID Use the asnqcap command with the ignore_transid parameter to
specify one transaction to be ignored. The format of the command
is as follows:

asnqcap capture_server=q_capture_server
capture_schema=q_capture_schema
ignore_transid=transaction_ID

DB2 sources
The transaction_ID is a 10-byte hexadecimal identifier in
the following format:

0000:xxxx:xxxx:xxxx:mmmm

Where xxxx:xxxx:xxxx is the transaction ID, and
mmmm is the data-sharing member ID. You can
find the member ID in the last 2 bytes of the log
record header in the LOGP output. The member
ID is 0000 if data-sharing is not enabled.

For example, the following command specifies
that a transaction be ignored in a data-sharing
environment, with a member ID of 0001:

asnqcap capture_server=sample
capture_schema=ASN
ignore_transid
=0000:BD71:1E23:B089:0001

Version 9.7 and below
nnnn:0000:xxxx:xxxx:xxxx

Where xxxx:xxxx:xxxx is the transaction
ID, and nnnn is the partition identifier
for partitioned databases (this value is
0000 for non-partitioned databases).

For example, the following command
specifies that a transaction be ignored in
a non-partitioned database:

asnqcap capture_server=sample
capture_schema=ASN
ignore_transid
=0000:0000:0000:0000:BE97

Chapter 15. Operating a Q Capture program 241

Identifier Procedure

Transaction ID

(Continued)

Version 10.1 or higher with compatibility of 1001 or higher, or
Version 9.8

0000:llll:xxxx:xxxx:xxxx

Where xxxx:xxxx:xxxx is the transaction ID, and llll is the
log stream identifier for databases with the DB2 pureScale
Feature. The first four characters are always 0000.

For example, the following command specifies that a
transaction be ignored in a database with the DB2
pureScale Feature:

asnqcap capture_server=sample
capture_schema=ASN
ignore_transid
=0000:0001:0000:0000:BE97

Oracle sources
The transaction ID is the value of XID from the
V$CONTENTS view of the Oracle Log Miner utility. The
ID is a RAW(8) value. When displayed in text, it is
formatted as a hexadecimal string (16 digits total).

To ignore more than one transaction, stop the Q Capture program
and start it in warm mode with another transaction identifier
specified.

242 Replication and Event Publishing Guide and Reference

Identifier Procedure

Authorization ID,
authorization token
(z/OS), or plan name
(z/OS)

Use SQL to insert one or more of the identifiers into the
IBMQREP_IGNTRAN control table. Insert the appropriate
identifiers into the following columns:

AUTHID
The authorization ID.
Oracle sources: The authorization ID is the value of
USERNAME from the V$CONTENTS view of the Oracle
Log Miner utility.

AUTHTOKEN
The authorization token (job name).

PLANNAME
The plan name.

For example, the following statement specifies that the Q Capture
program ignore a transaction with an authorization ID of repldba:

insert into schema.IBMQREP_IGNTRAN (
AUTHID,
AUTHTOKEN,
PLANNAME)

values (
’repldba’,
NULL,
NULL);

You can use a wild card character, the percentage sign (%), to
represent any number of characters or none, which allows you to
ignore groups of authorization IDs, authorization tokens, or plan
names.

For example, the following insert statement tells Q Capture to
ignore any transaction with plan names that ends with the string
"PLAN11":

INSERT INTO
IBMQREP_IGNTRAN (AUTHID, AUTHTOKEN, PLANNAME, IGNTRANTRC)
VALUES (null, null, ’%PLAN11’, ’N’)

This example tells Q Capture to ignore any transaction with an
authorization ID that starts with "AUTH" and contains the
substring "ID". Also, the authorization token has to match a string
starting with "TOK11" (z/OS only):

INSERT INTO
IBMQREP_IGNTRAN (AUTHID, AUTHTOKEN, PLANNAME, IGNTRANTRC)
VALUES (’AUTH%ID%’, ’TOK11%’, null, ’N’)

If the percentage sign is part of the data, use a backslash character
(\) to escape the percentage sign. For example, this statement
specifies that Q Capture ignore the authorization ID AUTH%ID:

INSERT INTO
IBMQREP_IGNTRAN (AUTHID, AUTHTOKEN, PLANNAME, IGNTRANTRC)
VALUES (’AUTH\%ID’, null, null, ’N’)

Pattern matching is case sensitive.

2. Optional: Specify whether you want the Q Capture program to insert a row
into the IBMQREP_IGNTRANTRC table when it ignores a transaction. By
default, this tracing is disabled. To turn on the tracing, use the following SQL
statement:

Chapter 15. Operating a Q Capture program 243

update schema.IBMQREP_IGNTRAN set IGNTRANTRC=’Y’
WHERE identifier = transaction_identifier

The identifier would be any one of the AUTHID, AUTHTOKEN, or
PLANNAME columns that was used to identify the transaction or transactions
to skip.
When you use the Q Apply parameter insert_bidi_signal=n, setting
IGNTRANTRC to N (no tracing) prevents the Q Capture program from
inserting a row into the IBMQREP_IGNTRANTRC table for each transaction
that it does not recapture and reduces maintenance overhead on the table.

Stopping a Q Capture program
You can stop a Q Capture program, and it will stop reading from the recovery log
and building transactions in memory.

About this task

When you stop Q Capture, messages that were put on queues will be committed
to WebSphere MQ before the program stops. Uncommitted WebSphere MQ
transactions or row changes that were in memory when you stopped the program
will be recaptured from the log when the Q Capture program restarts, based on a
restart point stored in the restart message.

Tip: You do not need to stop a Q Capture program to add or delete a Q
subscription or publication:
v If you want to add one or two Q subscriptions or publications while the

program is running, create the Q subscriptions or publications so that they do
not start automatically, and then activate them.

v If you want to add a large number of Q subscriptions or publications, create
them so that they start automatically, and then reinitialize the Q Capture
program.

v You can delete a Q subscription or publication without stopping the Q Capture
program by deactivating the Q subscription or publication and then deleting it.

Procedure

To stop a Q Capture program, use one of the following methods:

Method Description

stop parameter Use this parameter with the MODIFY command on z/OS or asnqccmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to stop a Q Capture program:

MODIFY
f myqcap,stop

Where myqcap is the Q Capture job name.

asnqccmd
asnqccmd capture_server=server_name
capture_schema=schema stop

Where server_name is the name of the database or
subsystem where the Q Capture program is running, and
schema identifies the Q Capture program that you want to
stop.

244 Replication and Event Publishing Guide and Reference

Method Description

SQL Use a command prompt or one of the DB2 command-line tools to
insert a STOP signal into the IBMQREP_SIGNAL table at the Q
Capture server:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE)

values (
CURRENT TIMESTAMP,

’CMD’,
’STOP’,
’NULL’,
’P’);

Where schema identifies the Q Capture program that you want to
stop.

Windows services

You can create a DB2 replication service on the Windows operating
system and use the Windows Service Control Manager or the net
stop command to stop a Q Capture program.

Stopping a Q Capture program at a specified point
You can perform a scheduled and controlled stop of the Q Capture program, for
example when you are bringing down a site during a planned outage.

About this task

The ability to stop Q Capture at a specified point ensures that all changes up to
that point are delivered or applied to a target before you stop replication. This
ability is useful in situations where you are rerouting the replication workload
from an active site to a standby site at a specified point in time.

The Q Capture stop command and STOP signal offer two parameters that you can
use for a controlled shutdown:

captureupto
The captureupto parameter specifies a point when Q Capture will stop
reading the recovery log. You can provide a timestamp in the database
time zone. Q Capture stops after publishing all transactions that were
committed prior to that time. You can also specify the value
CURRENT_TIMESTAMP to prompt Q Capture to stop reading the log at
the current local time. You can also specify EOL to indicate the Q Capture
should stop after it reaches the end of the log.

stopafter
If you specify the stopafter parameter, Q Capture suspends reading the
log until one of two conditions that you specify is true:

data_applied
Q Capture stops after all changes up to the specified stopping
point are applied at the target. At this point, applications can be
rerouted from the take-down site to the failover site.

data_sent
Q Capture stops after all messages are removed from the

Chapter 15. Operating a Q Capture program 245

transmission queue that points to the target system, or until the Q
Apply program has processed all messages in the case of a shared
local send queue-receive queue. For remote configurations, this
method ensures that all published messages exist only on the local
queue at the target system. At this point, you can perform
maintenance such as a WebSphere MQ stoppage on the take-down
site without risking loss of messages. The benefit of this mode is
that it can operate even if Q Apply is not actively reading from
queues (although there must be enough disk space on the failover
system for all messages to be delivered).

You can specify captureupto and stopafter alone or in combination.

The timestamp must be specified in the time zone of the Q Capture server, in a full
or partial timestamp format. The full timestamp uses the following format:
YYYY-MM-DD-HH.MM.SS.mmmmmm. For example, 2010-04-10-10.35.30.555555 is
the local timestamp for April 10, 2010, 10:35 a.m., 30 seconds, and 555555
microseconds. You can specify the partial timestamp in one of the following
formats:

YYYY-MM-DD-HH.MM.SS
For example, 2010-04-10-23.35.30 is the partial local timestamp for
April 10, 2010, 11:35 p.m., 30 seconds.
YYYY-MM-DD-HH.MM
For example, 2010-04-10-13.30 is the partial local timestamp for
April 10, 2010, 1:30 p.m.
YYYY-MM-DD-HH
For example, 2010-04-10-01 is the partial local timestamp for
April 10th, 2010, 1:00 a.m.
HH.MM
For example, 14:55 is the partial local timestamp for today at 2:55 p.m.
HH
For example, 14 is the partial local timestamp for today at 2 p.m.

Note: If you specify the data_sent parameter and Q Capture detects that another
application is sharing the transmission queue, it issues a warning message and
stops because it cannot reliably determine when all of its messages are removed
from the queue.

Procedure

To stop a Q Capture program at a specified point, use one of the following
methods:

246 Replication and Event Publishing Guide and Reference

Method Description

stop command with
captureupto option,
stopafter option, or
both

Use these parameters with the MODIFY command on z/OS or
with the asnqccmd command on Linux, UNIX, Windows, and UNIX
System Services on z/OS to stop a Q Capture program at a
specified point:

MODIFY
The command format is as follows:

F Q_CAPTURE_JOBNAME,STOP
CAPTUREUPTO=timestamp|
CURRENT_TIMESTAMP|EOL
STOPAFTER=DATA_SENT|DATA_APPLIED

Where Q_CAPTURE_JOBNAME is the name of the Q
Capture job.

asnqccmd
The command format is as follows:

asnqccmd capture_server=server_name
capture_schema=schema stop
captureupto=timestamp|CURRENT_TIMESTAMP|EOL
stopafter=data_sent|data_applied

Where server_name is the name of the database or
subsystem where the Q Capture program is running, and
schema identifies the Q Capture program that you want to
stop.

The following examples show different ways of using the
controlled-stop parameters:

f QCAP1,STOP CAPTUREUPTO=2010-04-05-22:30:00.000000

asnqccmd capture_server=sample capture_schema="bsn" stop
captureupto=2010-04-05-22:30:00.000000

Q Capture publishes all changes committed up to and including
22:30:00 on 2010-04-05.

f QCAP1,STOP STOPAFTER=DATA_SENT

asnqccmd capture_server=sample capture_schema="bsn" stop
stopafter=data_sent

Q Capture stops reading the log immediately and waits until all
messages have been sent from the transmission queue or local
send-receive queue before the program stops.

f QCAP1,STOP CAPTUREUPTO=2010-04-05-22:30:00.000000
STOPAFTER=DATA_APPLIED

asnqccmd capture_server=sample capture_schema="bsn" stop
captureupto=2010-04-05-22:30:00.000000 stopafter=data_applied

Q Capture publishes all changes committed up to and including
22:30:00 on 2010-04-05, and waits until Q Apply finishes applying
all data that was published up to that time before stopping.

Chapter 15. Operating a Q Capture program 247

Method Description

STOP signal with
captureupto option,
stop after option, or
both

Use a command prompt or one of the DB2 command-line tools to
insert a STOP signal with one or more of the controlled-stop
parameters into the IBMQREP_SIGNAL table at the Q Capture
server. The signal format is as follows:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE)

values (
CURRENT TIMESTAMP,

’CMD’,
’STOP’,
’timestamp|CURRENT_TIMESTAMP|EOL;DATA_SENT|DATA_APPLIED’,
’P’);

Where schema identifies the Q Capture program that you want to
stop and timestamp specifies the time that you want Q Capture to
stop reading the log and then stop (or stop after a condition is
met).

When Q Capture is waiting for a response from Q Apply or for the transmission
queue to drain, it goes into a suspended state with the following characteristics:
v An informational message is issued.
v The log reader is suspended.
v Heartbeat messages are still sent.
v Administration messages are still processed.
v Statistics are still written to the monitor tables.
v Q Capture continues to respond to MODIFY or asnqccmd commands, including

reporting the suspended state on a status command.

Interrupting a suspended Q Capture requires the default stop command with no
parameters, or an operating system signal (for example f jobname stop on z/OS or
Ctrl-C on Linux, UNIX, and Windows). Signals to the IBMQREP_SIGNALS table to
cancel the controlled shutdown do not work because the log reader is suspended.

Starting Q subscriptions
You start Q subscriptions to instruct the Q Capture program to begin capturing
changes to source tables and putting the change messages on WebSphere MQ
queues.

About this task

Before the Q Capture program can start replicating data from source tables, the Q
subscriptions that specify those source tables must be in A (active) or N (new)
state. By default, newly created Q subscriptions are in N state and are started
automatically when the Q Capture program is started or reinitialized. Follow this
procedure to start existing Q subscriptions and put them in A state.

248 Replication and Event Publishing Guide and Reference

The Q Capture program must be running to read the CAPSTART signal. If the Q
Capture program is stopped when you start Q subscriptions, the program
processes the signal only if it is warm started. The signal or message will be lost if
you use cold start.

If any of the Q subscriptions that you want to start specify an automatic load that
uses the EXPORT utility, you must create a password file on the Q Apply server to
allow the utility to connect to the Q Capture server.

Procedure

To start Q subscriptions, use one of the following methods:

Method Description

ASNCLP command-line program Use the START QSUB command. For
example, the following commands set the
environment and generate SQL to start the
DEPARTMENT0001 Q subscription:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;
START QSUB SUBNAME DEPARTMENT0001;

Q Replication Dashboard On the Subscriptions tab, select one or more
Q subscriptions and click Start.

Replication Center Use the Manage Q Subscriptions window. To
open the window, right-click the Q Capture
server where the source table for the Q
subscription is located and select Manage >
Q Subscriptions.

SQL Use a command prompt or one of the DB2
command line tools to insert a CAPSTART
signal into the IBMQREP_SIGNAL table at
the Q Capture server:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’CAPSTART’,
’subname’,
’P’);

Where schema identifies a Q Capture
program, and subname is the name of the Q
subscription that you want to start.

Stopping Q subscriptions
You stop a Q subscription to instruct the Q Capture program to stop capturing
changes for the Q subscription. Stopping lets you delete or suspend activity for Q
subscriptions without stopping the Q Capture program.

Before you begin

Chapter 15. Operating a Q Capture program 249

The Q Capture program must be running to read the CAPSTOP signal. If the Q
Capture program is stopped when you stop a Q subscription, the program will
process the signal only if it is warm started. The signal will be lost if you use cold
start.

About this task

When you stop a Q subscription, the Q Capture program stops capturing changes
for the Q subscription and changes its state to I (inactive) in the IBMQREP_SUBS
table.

Procedure

To stop Q subscriptions, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the STOP QSUB command. For example, the following
commands set the environment and generate SQL to stop the
DEPARTMENT0001 Q subscription:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;

STOP QSUB SUBNAME DEPARTMENT0001;

Q Replication
Dashboard

On the Subscriptions tab, select one or more Q subscriptions and
click Stop.

Replication Center Use the Manage Q Subscriptions window. To open the window,
right-click the Q Capture server where the source table for the Q
subscription is located and select Manage > Q Subscriptions.

SQL Use a command prompt or one of the DB2 command-line tools to
insert a CAPSTOP signal into the IBMQREP_SIGNAL table at the
Q Capture server:

insert into schema.IBMQREP_SIGNAL (
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’CAPSTOP’,
’subname’,
’P’);

Where schema identifies a Q Capture program, and subname is the
name of the Q subscription that you want to stop.

Starting publications
When you start publications, the Q Capture program starts capturing source
changes and putting the change messages on WebSphere MQ queues.

Before you begin

v The Q Capture program must be running to read the CAPSTART signal or
activate subscription message. If the Q Capture program is stopped when you

250 Replication and Event Publishing Guide and Reference

start publications, it will process the signal or message only if it is warm started.
The signal or message will be lost if you use cold start.

v Before the Q Capture program can start publishing changes from source tables,
the publications that specify those source tables must be in A (active) or N (new)
state.

About this task

By default, newly created publications are in N (new) state, and they are
automatically started when the Q Capture program is started or reinitialized. If
you change this default, you must start publications after you create them.

Procedure

To start publications, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the START PUB command. For example, the following
commands set the environment and generate SQL to start the
publication EMPLOYEE0001:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;

START PUB PUBNAME EMPLOYEE0001;

Replication Center Use the Manage Publications window. To open the window,
right-click the Q Capture server where the source table for the
publication is located and select Manage > Publications.

SQL Use a command prompt or one of the DB2 command line tools to
insert a CAPSTART signal into the IBMQREP_SIGNAL table at the
Q Capture server:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’CAPSTART’,
’pubname’,
’P’);

Where schema identifies a Q Capture program and pubname is the
name of the publication that you want to start.

Stopping publications
You stop a publication to instruct the Q Capture program to stop capturing
changes for the publication. Stopping lets you delete or suspend activity for
publications without stopping the Q Capture program.

Before you begin

Chapter 15. Operating a Q Capture program 251

The Q Capture program must be running to read the CAPSTOP signal. If the Q
Capture program is stopped when you stop a publication, it will process the signal
only if it is warm started. The signal will be lost if you use cold start.

About this task

When you stop a publication, the Q Capture program stops capturing changes for
the publication and changes its state to I (inactive) in the IBMQREP_SUBS table.

Procedure

To stop publications, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the STOP PUB command. For example, the following commands
set the environment and generate SQL to stop the publication
EMPLOYEE0001:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;

STOP PUB PUBNAME EMPLOYEE0001;

Replication Center Use the Manage Publications window. To open the window,
right-click the Q Capture server where the source table for the
publication is located and select Manage > Publications.

SQL Use a command prompt or one of the DB2 command-line tools to
insert a CAPSTOP signal into the IBMQREP_SIGNAL table at the
Q Capture server:

insert into schema.IBMQREP_SIGNAL (
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’CAPSTOP’,
’pubname’,
’P’);

Where schema identifies a Q Capture program and pubname is the
name of the publication that you want to deactivate.

Managing Q Capture message activity at the send queue level
You can manage Q Capture message activity at the send queue level to prevent
outages when an error occurs on a queue, to prevent the need for a full refresh
(new load) of replicated tables because of a queue error, and to guarantee delivery
of published events.

The Q Capture program maintains individual restart information for each send
queue. If a queue stops because of an error or for scheduled maintenance, Q
Capture can replay changes that occurred while the queue was stopped. This
feature eliminates the need to reload target tables that use a disabled send queue.

252 Replication and Event Publishing Guide and Reference

You can also set up the Q Capture program so that it continues to put messages on
send queues when one or more queues are disabled. Q Capture provides
commands to stop putting messages on individual send queues so that you can fix
errors or perform maintenance, and to restart selected send queues when you are
ready to resume replication or publishing.

The following sections provide more detail on Q Capture features that allow you
to manage individual send queues:
v “Using multiple send queues”
v “Setting the error action for send queues to Q” on page 254
v “Keeping disabled queues inactive when Q Capture starts” on page 254
v “Send queue information in the restart message” on page 254

Using multiple send queues

Typically, you configure Q Capture to spread messages over multiple send queues
for two reasons:

Dividing the replication workload by application
Changes from the tables that service each application are replicated
independently of the changes for other application tables, minimizing CPU
and administration overhead.

Data distribution
A single Q Capture program captures the changes once, and then writes
them onto each send queue for delivery to its associated remote server.

Figure 28 shows a unidirectional replication setup where the changes are divided
among four send queues, each queue handling the activity from the source tables
that serve a different application.

Receive
queue 1

Q Apply
program

Send
queue 3Tables for

application 3

Tables for
application 1

Tables for
application 4

Log

Tables for
application 2 Q Capture

program
sendq

restartLSN

Send
queue 1

Send
queue 4

Source database

Send
queue 2

Receive
queue 2

Receive
queue 3

Receive
queue 4

Stopq
command

Q Capture continues to send messages
Q Capture stops sending messages
No new messages from source

Figure 28. Managing message activity for a single send queue. The stopq command was issued for Send queue 2,
which prompts the Q Capture program to stop putting messages on the queue. While activity at the source is stopped,
you can perform maintenance on the tables for application 2 without stopping replication for applications 1, 3, and 4.
After maintenance is complete, you can issue the startq command and Q Capture finds the restart point for Send
queue 2 (sendqrestartLSN) in the recovery log, and begins capturing changes for the now-active send queue at that
point.

Chapter 15. Operating a Q Capture program 253

Setting the error action for send queues to Q

To prevent a single send queue failure from affecting replication or publishing on
other queues, set the error action for the replication or publishing queue maps that
specify the queues to Q (Stop send queue in the Replication Center). With this
error action, when one send queue is disabled (for example by running out of
space for messages), the Q Capture program stops putting messages on the
disabled queue, but continues to put messages on the other send queues.

After the problem on the disabled send queue is resolved, you can use the startq
command to prompt Q Capture to resume reading the recovery log for Q
subscriptions or publications that use the send queue, and to resume putting
messages on the queue.

Keeping disabled queues inactive when Q Capture starts

By default, the Q Capture program activates all inactive send queues when it
starts, or when you use the Q Capture reinit command to reload all Q
subscriptions from the Q Capture control tables. If you need to keep any disabled
send queues in inactive (I) state, you can start Q Capture with the startallq
parameter set to N.

Send queue information in the restart message

Q Capture maintains a restart message on its restart queue to keep track of restart
points in the recovery log. Starting with Version 9.5 Fix Pack 3, the message
contains restart information for each send queue.

Important: If your Q Capture program is at Version 9.5 Fix Pack 3 or newer (on
z/OS this is Version 9.1 with the PTF that corresponds to V9.5 Fix Pack 3), the
program can start in warm mode by using restart information from an older level
of Q Capture. But Q Capture programs that are older than Version 9.5 Fix Pack 3
cannot use the new restart message format to restart in warm mode. If you need to
restart an older level of Q Capture in warm mode, you must start Q Capture from
a known point in the log by specifying the lsn and maxcmtseq parameters. Look for
message ASN7109I in the Q Capture diagnostic log. For more details, see “Starting
Q Capture from a known point in the DB2 log” on page 231.

You can format the newer restart message by using the asnqmfmt or asnqxmfmt
commands. The following example shows a restart message that contains restart
information for three send queues, Q1, Q2, and Q3.
**** Descriptor for message number: 1

StrucId MD
MsgId 414d5120535a5051544553542020202048c1cd6620004e02
CorrelId 51505542214d41494e4c494e450000000000000000000000
Version 1
Report 0
MsgType 8
Expiry -1
Feedback 0
Encoding 273
CodedCharSetId 819
Format COMPACT
Priority 0
Persistence 1

**** Message number: 1
**** Message size: 640

qRestartMsg for MAINLINE log reader.
qRestartMsg.capServer : QTEST

254 Replication and Event Publishing Guide and Reference

qRestartMsg.capSchema : ASN
qRestartMsg.qRestartsgSize : 640
Number of partition at restart: 1
restartLSN=0000:0000:0000:1e46:2be0 nodeId=0
qRestartMsg.lastCommitSEQ: 0000:0000:0000:0000:0000
qRestartMsg.lastCommitTime: 2008-09-11-17.22.42.287478
qRestartMsg.reuseSEQ: 0000:0000:0000:0000:0000
qRestartMsg.reuseTime: 2008-09-11-17.22.42
Number of send queues at restart: 3
[0] sendq name: Q2

sendq activation time: 1221178963
sendq next msg seq no: 00000000000000000000000000000003
sendq lastCommitSEQ: 0000:0000:0000:0000:0000
sendq lastCommitTime: 2008-09-11-17.22.42.287478
sendq restartLSN=0000:0000:0000:1e46:2be0 nodeId=0

[1] sendq name: Q1
sendq activation time: 1221178963
sendq next msg seq no: 00000000000000000000000000000003
sendq lastCommitSEQ: 0000:0000:0000:0000:0000
sendq lastCommitTime: 2008-09-11-17.22.42.287478
sendq restartLSN=0000:0000:0000:1e46:2be0 nodeId=0

[2] sendq name: Q3
sendq activation time: 1221178963
sendq next msg seq no: 00000000000000000000000000000003
sendq lastCommitSEQ: 0000:0000:0000:0000:0000
sendq lastCommitTime: 2008-09-11-17.22.42.287478
sendq restartLSN=0000:0000:0000:1e46:2be0 nodeId=0

Starting message activity on one or more send queues
You can prompt the Q Capture program to resume putting messages on one or
more inactive send queues without needing to do a full refresh (new load) for
target tables that use the queue.

About this task

The ability to start one or more send queues is useful in situations where you set
the error action for the replication or publishing queue map to Q, which tells the Q
Capture program to continue putting messages on active queues if an error occurs
on one or more other send queues.

When you start message activity on one or more send queues, Q Capture finds the
restart point in the recovery log for any queues that were stopped and can rapidly
catch up those queues with active queues. Because Q Capture keeps Q
subscriptions active while the queues are stopped, when the queues are started
there is no need to perform a full refresh (load) of target tables.

Note: While Q Capture is bringing restarted queues up to date, overall latency is
affected because Q Capture does not put messages on other queues until it reads
the log past the maximum commit point for these already-active queues.

Procedure

To start one or more send queues, use one of the following methods:

Chapter 15. Operating a Q Capture program 255

Method Description

startq command You can use the z/OS MODIFY command or asnqccmd command to
issue startq. The command enables you to start a single send
queue or all of the queues that a Q Capture program works with.

In the examples below, the first MODIFY command prompts Q
Capture to resume putting messages on the send queue
asn.qm1.dataq. The second command restarts all queues:

f myqcap,startq=asn.qm1.dataq

f myqcap,startq=all

The following commands use asnqccmd for the same actions:

asnqccmd capture_server=sourcedb capture_schema="asn"
startq="asn.qm1.dataq"

asnqccmd capture_server=sourcedb capture_schema="asn"
startq=all

Reinitializing the Q
Capture program

The Q Capture reinit command starts inactive send queues if the
Q Capture program was started with the startallq=y option (the
default).

Stopping and starting
the Q Capture
program

When Q Capture starts, by default it resets the state of all send
queues to active (A). Stopping and starting Q Capture also prompts
the program to refresh all Q subscriptions or publications from its
control tables and find any changes that you made.

You can start Q Capture with the startallq=n parameter to keep
any disabled send queues in inactive (I) state.

Starting a Q
subscription

Starting a Q subscription starts an inactive send queue if the Q
subscription that you are starting is the only active Q subscription
that is using the inactive send queue.

SQL Use a command prompt or one of the DB2 command line tools to
insert a STARTQ signal into the IBMQREP_SIGNAL table at the Q
Capture server:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’STARTQ’,
’send_queue_name’,
’P’);

Where schema identifies a Q Capture program, and
send_queue_name is the name of the send queue that you want to
start.

When Q Capture receives the command to start message activity on one or more
send queues, it takes the following actions:
v Changes the state of the queues to active (A) in the IBMQREP_SENDQUEUES

table.
v Gets the restart information for the queues from its restart message.

256 Replication and Event Publishing Guide and Reference

v Resumes reading the log at the oldest restart point among all send queues,
putting messages only on the restarted send queues until they catch up with all
other active send queues and all queues have the same restart point

Stopping message activity on one or more send queues
You can prompt the Q Capture program to stop putting messages on selected send
queues when you need to temporarily stop replication or publishing on one or
more queues.

About this task

For example, you might need to fix a disabled queue or stop message activity
while you perform WebSphere MQ administrative tasks.

When you stop message activity on one or more send queues, the Q Capture
program continues to replicate or publish changes for active Q subscriptions or
publications that use other send queues. Stopping selected queues can be
preferable to stopping the Q Capture program when a queue error occurs or when
maintenance is required.

You can use the startq command to prompt Q Capture to resume putting
messages on the stopped queues. Because Q Capture keeps restart information for
each queue, a new load (full refresh) of target tables is not required when you use
this method.

Procedure

To stop message activity on a send queue, use one of the following methods:

Chapter 15. Operating a Q Capture program 257

Method Description

stopq command You can use the z/OS MODIFY command or asnqccmd command to
issue stopq. The command enables you to stop a single send queue
or all of the queues that a Q Capture program works with.

In the examples below, the first MODIFY command prompts Q
Capture to stop putting messages on the send queue
asn.qm1.dataq. The second command stops message activity on all
send queues:

F MYQCAP,STOPQ=ASN.QM1.DATAQ

F MYQCAP,STOPQ=ALL

The following commands use asnqccmd for the same actions:

asnqccmd capture_server=sourcedb capture_schema="asn"
stopq="asn.qm1.dataq"

asnqccmd capture_server=sourcedb capture_schema="asn"
stopq=all

When you specify to stop an individual queue, you can also
specify the captureupto parameter, stopafter parameter, or both to
instruct Q Capture to stop putting messages on the queue in a
controlled manner from a specified point:

captureupto
Specify with a full or partial timestamp to instruct Q
Capture to publish up to the specified point and then stop
putting messages on the queue. Alternatively, you can
specify CURRENT_TIMESTAMP, or specify EOL to
prompt Q Capture to stop putting messages on the queue
after it reaches the end of the active log.

stopafter
Specifies that Q Capture stop putting messages on the
queue after one of the following conditions is true:

data_applied
All changes up to the specified stopping point
are applied at the target.

data_sent
All messages are removed from the transmission
queue that points to the target system, or the Q
Apply program has processed all messages in the
case of a shared local send queue-receive queue.

For example, the following MODIFY and asnqccmd commands
instruct Q Capture to publish up to 12:00 and then stop putting
messages on the ASN.QM1.DATAQ send queue.

F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=12:00

asnqccmd capture_server=sourcedb capture_schema="asn"
stopq="asn.qm1.dataq" captureupto=12:00

258 Replication and Event Publishing Guide and Reference

Method Description

stopq command

(Continued)

The following syntax can also be used with stopq and MODIFY:

F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=EOL
F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=CURRENT_TIMESTAMP
F QCAP1,STOPQ=ASN.QM1.DATAQ STOPAFTER=DATA_APPLIED
F QCAP1,STOPQ=ASN.QM1.DATAQ STOPAFTER=DATA_SENT
F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=EOL STOPAFTER
=DATA_APPLIED
F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=EOL STOPAFTER
=DATA_SENT
F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=CURRENT_TIMESTAMP
STOPAFTER=DATA_APPLIED

F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=CURRENT_TIMESTAMP
STOPAFTER=DATA_SENT

F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=12:00 STOPAFTER
=DATA_APPLIED
F QCAP1,STOPQ=ASN.QM1.DATAQ CAPTUREUPTO=12:00
STOPAFTER=DATA_SENT

SQL Use a command prompt or one of the DB2 command line tools to
insert a STOPQ signal into the IBMQREP_SIGNAL table at the Q
Capture server:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’STOPQ’,
’send_queue_name’,
’P’);

Where schema identifies a Q Capture program, and
send_queue_name is the name of the send queue that you want to
stop.

After the Q Capture program receives the command, it takes the following actions:
v Stops publishing changes for all active Q subscriptions or publications that are

associated with stopped send queues.
v Continues to put messages on active send queues.
v Changes the state of the stopped queues to inactive (I) in the

IBMQREP_SENDQUEUES table.
v Stops updating restart information in its restart message for any send queues

that are stopped.

If all send queues are stopped, the Q Capture program continues reading the log
for signals such as CAPSTART, continues to insert into its monitor tables, and
waits for commands.

Chapter 15. Operating a Q Capture program 259

260 Replication and Event Publishing Guide and Reference

Chapter 16. Operating a Q Apply program

A Q Apply program reads messages that contain transactions from source tables
and applies them to targets that are defined by Q subscriptions. You can operate
the Q Apply program by using the Replication Center, system commands, and
system services, and you can change the Q Apply operating parameters in several
ways.

Starting a Q Apply program
When you start a Q Apply program, it begins reading transaction messages from
queues and applying the transactions to target tables or stored procedures.

Before you begin

v If you are starting the Q Apply program from a remote workstation, configure
connections to the Q Apply server.

v Create and configure a WebSphere MQ queue manager, queues and other
necessary objects.

v Ensure that you have authorization for Q Replication objects and WebSphere
MQ objects.

v Create Q Apply control tables.
v Configure the target database or subsystem to work with the Q Apply program.
v If you have Q subscriptions that specify an automatic load that uses the

EXPORT utility, create a password file so that Q Apply can connect to the Q
Capture server.

About this task

When you start a Q Apply program, you can specify startup parameters and the
program will use the new values until you take one of the following actions:
v You change the parameter values while the program is running
v You stop and restart the program, which prompts it to read the

IBMQREP_APPLYPARMS table and use the values saved there.

Procedure

To start a Q Apply program, use one of the following methods:

© Copyright IBM Corp. 2004, 2012 261

Method Description

z/OS console or TSO

On z/OS, you can start a Q Apply program by using JCL or as a
system-started task. You can specify new invocation parameter
values when you start a Q Apply program with JCL.

z/OS has a 100-byte limit for the total length of parameters that
you can specify in the PARMS= field. To overcome this limitation,
replication programs now allow you to specify as many additional
parameters as needed in the SYSIN data set.

When the SYSIN DD statement is included in the invocation JCL,
the Q Apply program automatically concatenates what is specified
in the SYSIN dataset to the PARMS= parameters. You can only
specify Q Apply parameters in the SYSIN data set. Any LE
parameters must be specified in the PARMS= field or in LE
_CEE_ENVFILE=DD, followed by a slash(/).

Example:

//* asterisk indicates a comment line
// QAPP EXEC PGM=ASNQAPP,PARMS=’LE/Q Apply parameters’
//* Parameters can be any or no LE parameters and any or
//* no Q Apply parameters
//SYSIN DD *
//* additional Q Apply parameters, one or more
//* parameters on each line

APPLY_SERVER=DSN!! APPLY_SCHEMA=APPCAT
DEBUG=Y LOGSTDOUT=N

asnqapp command From a command line, use the asnqapp command to start a Q
Apply program and optionally specify startup parameters:

asnqapp apply_server=server_name
apply_schema=schema
parameters

Where server_name is the name of the database or subsystem where
the Q Apply control tables are defined and where the Q Apply
program will apply changes to targets, schema identifies the Q
Apply program that you want to start, and parameters is one or
more parameters that you can specify at startup.

Windows Service

You can create a replication service on the Windows operating
system to start the Q Apply program automatically when the
system starts.

You can verify whether a Q Apply program started by using one of the following
methods:
v Examine the Q Apply diagnostic log file (apply_server.apply_schema.QAPP.log

on z/OS and db2instance.apply_server.apply_schema.QAPP.log on Linux,
UNIX, and Windows) for a message that indicates that the program is capturing
changes.

v Check the IBMQREP_APPLYTRACE table for a message that indicates that the
program is capturing changes.

v If you are running in batch mode, examine the z/OS console
or z/OS job log for messages that indicate that the program started.

v Use the Q Apply Messages window in the Replication Center to see a message
that indicates that the program started. To open the window, right-click the Q
Apply server that contains the Q Apply program whose messages you want to
view and select Reports > Q Apply Messages.

262 Replication and Event Publishing Guide and Reference

Changing the Q Apply parameters
You can change the Q Apply operating parameters when you start the program,
while the program is running, or by updating the IBMQREP_APPLYPARMS
control table.

For a brief description of the three different ways that you can change the
parameters and an example to help clarify the differences, see “Methods of
changing the Q Capture operating parameters” on page 236. The methods are the
same for a Q Apply program.

Changing parameters while a Q Apply program is running
You can modify the behavior of a Q Apply program while it continues to apply
transactions to targets. The Q Apply program begins using the new settings almost
immediately, but the changes are not saved in the IBMQREP_APPLYPARMS
control table. If you stop and then restart the Q Apply program, it uses the values
saved in the control table.

About this task

You can change the following Q Apply parameters while the program is running:
v autostop

v logreuse

v logstdout

v monitor_interval

v monitor_limit

v prune_interval

v term

v trace_limit

v deadlock_retries

Procedure

To dynamically change parameters while a Q Apply program is running, use the
chgparms parameter with the MODIFY command on z/OS or asnqacmd command on
Linux, UNIX, Windows, and UNIX System Services for z/OS

MODIFY
f myqapp,chgparms parameter=value

Where myqapp is the Q Apply job name.

asnqacmd
asnqccmd apply_server=server
apply_schema=schema
chgparms parameters

Where server is the name of the Q Apply server, schema identifies a running
Q Apply program, and parameters is one or more parameters that you want
to change.

A delay of 1 to 2 seconds can occur between the time that you issue the command
and the time that a Q Apply program changes its operation.

Chapter 16. Operating a Q Apply program 263

Changing saved Q Apply parameters in the
IBMQREP_APPLYPARMS table

A Q Apply program stores its operating parameters in the
IBMQREP_APPLYPARMS control table. If you override these saved parameters
when you start the program or while it is running, the changes stay only in
memory. The next time that you start the Q Apply program, it will use the values
saved in the control table. To change the saved parameter values, you must update
the control table.

About this task

The IBMQREP_APPLYPARMS table contains a single row. If this table has no row,
or more than one row, the Q Apply program will not run.

If you want to change one or more saved parameter values, you can update
individual columns in the IBMQREP_APPLYPARMS table. Because a Q Apply
program reads this table when it starts, you must stop and restart the program for
changes to take effect.

Procedure

To change saved parameters for a Q Apply program in the
IBMQREP_APPLYPARMS table:

Use one of the following methods:

Option Description

Q Replication
Dashboard

On the Programs tab, click Properties and then select a Q Apply
server from the Program field to view or change saved values.

SQL From a command prompt or one of the DB2 command line tools,
issue an SQL UPDATE statement for the IBMQREP_APPLYPARMS
table. For example, to change the defaults for prune_interval and
deadlock_retries:

update schema_name.ibmqrep_applyparms
set prune_interval=600,
deadlock_retries=10

Where schema identifies the Q Apply program whose saved
parameter values you want to change.

Replication Center Use the Change Parameters – Saved window to view or change
any of the values in the IBMQREP_APPLYPARMS table. To open
the window, right-click the Q Apply server that contains the Q
Apply program whose saved parameters you want to view or
change and select Change Parameters > Saved.
Note: Starting with Version 10.1, not all new Q Apply parameters
were added to the Replication Center. To see all parameters, use
the Q Replication Dashboard.

264 Replication and Event Publishing Guide and Reference

Stopping a Q Apply program
You can stop a Q Apply program by using the Replication Center or system
commands.

About this task

When you stop a Q Apply program, it takes the following actions:
v Stops reading messages from all receive queues
v Rolls back transactions that have been partially applied to targets but not

committed
v Shuts down in an orderly manner

While a Q Apply program is stopped, messages from running Q Capture programs
continue to collect on receive queues. When you start the Q Apply program again,
it begins reading these messages, and re-reads any messages that contain
rolled-back transactions. The program then goes back to applying transactions to
targets. Transactions are applied only once, and no replicated data is lost.

Attention:

v If you stop the Q Apply program while a target table is being loaded, make sure
that no applications are allowed to update the target table until the Q Apply
program is started again and the table is loaded. When you restart the program,
it deletes the contents of the target table and then starts loading the table again.
Any updates to target tables that occur while the Q Apply program is stopped
are lost.

v During the loading process, the Q Apply program drops referential integrity
constraints on target tables. These constraints are not reapplied until the
program starts again and the table is loaded. Any updates to target tables that
occur while the Q Apply program is stopped will not be checked for referential
integrity.

If you want to stop a Q Apply program from reading messages from a single
receive queue, use the asnqacmd stopq command.

Procedure

To stop a Q Apply program, use one of the following methods:

Chapter 16. Operating a Q Apply program 265

Method Description

stop parameter Use this parameter with the MODIFY command on z/OS or asnqacmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to stop a Q Apply program:

MODIFY
f myqapp,stop

Where myqapp is the Q Apply job name.

asnqacmd
asnqacmd apply_server=server_name
apply_schema=schema stop

Where server_name is the name of the database or
subsystem where the Q Apply program is running, and
schema identifies the Q Apply program that you want to
stop.

Windows Service

You can create a DB2 replication service on the Windows operating
system and use the Windows Service Control Manager or the net
stop command to stop a Q Apply program.

Stopping message processing on a receive queue
You can use the stopq parameter or Replication Center to prompt a Q Apply
program to stop message processing on a receive queue.

Before you begin

v The Q Apply program must be running.
v The receive queue must be in A (active) state.

About this task

When you stop processing for one queue:
v The Q Apply program continues to apply transactions from other receive

queues.
v If any Q subscriptions that use the queue are active, messages continue to arrive

on the receive queue for which processing was stopped.

You can start processing messages on the receive queue again, and no messages
will be lost.

If you stop message processing on a receive queue, the Q Apply program changes
the state of the queue to I (inactive) in the IBMQREP_RECVQUEUES table. Even if
the Q Apply program is stopped and then restarted, it will resume reading from
the queue only if you issue an asnqacmd startq command.

When you stop processing messages on a receive queue, the Q Apply program
finishes applying in-memory transactions from the queue. The Q Apply program
rolls back transactions that were partially applied to targets. Transactions that are
rolled back will be processed the next time that the Q Apply program is started.
No data is lost.

Procedure

266 Replication and Event Publishing Guide and Reference

To stop message processing on a receive queue:

Use one of the following methods:

Method Description

stopq parameter Use this parameter with the MODIFY command on z/OS or asnqacmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to stop message processing on a receive queue:

MODIFY
f myqapp,stopq

Where myqapp is the Q Apply job name.

asnqacmd
asnqacmd apply_server=server_name
apply_schema=schema stopq

Where server_name is the name of the database or
subsystem where the Q Apply program is running, and
schema identifies the Q Apply program for which you
want to stop message processing.

Replication Center Use the Manage Receive Queues window. To open the window,
right-click the Q Apply server where the receive queue is located
and select Manage > Receive Queues.

To verify that the Q Apply program stopped reading messages from the queue:
v Use the Manage Receive Queues window to see whether the state of the queue

changed to I (inactive).
v Check the Q Apply diagnostic log file for a message that indicates that

processing stopped for the queue.
v Look at the IBMQREP_RECVQUEUES control table to see whether the state of

the queue changed to I (inactive) in the STATE column:
SELECT RECVQ, STATE FROM schema.IBMQREP_RECVQUEUES
WHERE RECVQ = ’receive_queue_name’;

Starting message processing on a receive queue
You can use the Replication Center or a command to instruct the Q Apply program
to start processing messages on a receive queue.

Before you begin

v The Q Apply program must be running.
v The receive queue must be in I (inactive) state.

About this task

You might need to instruct a Q Apply program to start processing messages on a
receive queue for several reasons:
v A conflict, SQL error, or persistent deadlocks occurred at the target, which

prompted the Q Apply program to stop reading from the receive queue.
v You instructed the Q Apply program to stop processing messages from the

receive queue.

Chapter 16. Operating a Q Apply program 267

Note: You can use the Replication Center or the startallq invocation parameter to
prompt the Q Apply program to start reading from all receive queues when the
program starts, even if the queues are in inactive (I) state.

Procedure

To start message processing on a receive queue:

Use one of the following methods:

Method Description

startq parameter Use this parameter with the MODIFY command on z/OS or asnqacmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to start message processing on a receive queue:

MODIFY
f myqapp,startq

Where myqapp is the Q Apply job name.

asnqacmd
asnqacmd apply_server=server_name
apply_schema=schema startq

Where server_name is the name of the database or
subsystem where the Q Apply program is running, and
schema identifies the Q Apply program for which you
want to start message processing.

Replication Center Use the Manage Receive Queues window. To open the window,
right-click the Q Apply server where the receive queue is located
and select Manage > Receive Queues.

To verify that the Q Apply program started reading messages from the queue:
v Use the Manage Receive Queues window to see whether the state of the queue

changed to A (active).
v Check the Q Apply diagnostic log file for a message that indicates that

processing started for the queue.
v Look at the IBMQREP_RECVQUEUES control table to see whether the state of

the queue changed to A (active) in the STATE column:
SELECT RECVQ, STATE FROM schema.IBMQREP_RECVQUEUES
WHERE RECVQ = ’receive_queue_name’;

Prompting a Q Apply program to ignore transactions
You can prompt a Q Apply program to ignore transactions, and these transactions
are taken off the receive queue but not applied to target tables.

About this task

To ignore one or more transactions, you use an asnqapp command parameter when
you start the Q Apply program. You can also specify to ignore one or more
transactions on a receive queue when you start the receive queue by using the
startq command.

Stopping the program from applying transactions is useful in unplanned situations,
for example:

268 Replication and Event Publishing Guide and Reference

v Q Apply receives an error while applying a row of a transaction and either shuts
down or stops reading from the receive queue. On startup, you might want Q
Apply to skip the entire transaction in error.

v After the failover from a disaster recovery situation, you might want to skip a
range of transactions on the receive queue from the failover node to the fallback
node.

v A large number of DELETE operations are replicated, slowing Q Apply
processing. If you do not need to delete the rows from the target table, you
could skip the transactions that contain the deleted rows and improve overall
performance.

You can also prompt the Q Capture program to ignore transactions. This action is
more typical when you can plan which transactions do not need to be replicated.

Note: Ignoring a transaction that was committed at the source server typically
causes divergence between tables at the source and target. You might need to take
other actions to synchronize the tables.

Restrictions

The ability to ignore transactions at the target is not supported for Classic
replication sources.

Procedure

To prompt a Q Apply program to ignore transactions, use one of the following
methods:

Chapter 16. Operating a Q Apply program 269

Situation Method

On program startup Use the asnqapp command with the skiptrans parameter to
prompt Q Apply to not apply one or more transactions from one
or more receive queues when it initializes. The format of the
command is as follows:

asnqapp apply_server=server apply_schema=schema
skiptrans=receive queue name;transaction_ID

You can find transaction_ID either in the qTransMsgHeader.uow_id
entry in the asnqmfmt command output for a receive queue or in
the SRC_TRANS_ID column of the IBMQREP_EXCEPTIONS table
if a transaction in error needs to be ignored. The ID is a 10-byte
hexadecimal identifier in the following format:

0000:xxxx:xxxx:xxxx:mmmm

Where xxxx:xxxx:xxxx is the transaction ID, and mmmm is
the data-sharing member ID. You can find the member ID
in the last 2 bytes of the log record header in the LOGP
output. The member ID is 0000 if data sharing is not
enabled.

For example, the following JCL specifies that a transaction
be ignored in a data-sharing environment, with a member
ID of 0001:

//QAPP EXEC PGM=ASNQAPP,
//PARM=’/APPLY_SERVER=DSN1 APPLY_SCHEMA=APPCAT
//SKIPTRANS=Q1;0000:1171:12c3:0890:0001

If the allowed command-line limit is exceeded by the
above syntax, you can also use the SYSIN data set to
specify the transactions to skip. The following sample DD
statement for the Q Apply job specifies to ignore one
transaction on the queue Q1 and a range of transactions
on the queue Q3:

//SYSIN DD *
SKIPTRANS=Q1;0000:1171:12c3:0890:000,
Q3;0000:0000:0000:79bc:0000-0000:0000:0000:79fc:0000

nnnn:0000:xxxx:xxxx:xxxx

Where xxxx:xxxx:xxxx is the transaction ID, and nnnn is
the partition identifier for partitioned databases (this value
is 0000 for non-partitioned databases).

For example, the following command specifies that a
transaction be ignored in a non-partitioned database:

asnqapp capture_server=target
apply_schema=ASN
skiptrans="recvq1;0000:0000:0000:0000:BE97"

You can also specify to skip a range of transactions by separating
the transaction IDs with a hyphen, for example:

skiptrans=
"Q1;0000:0000:0000:0000:51b0-0000:0000:0000:0000:51g0"

270 Replication and Event Publishing Guide and Reference

Situation Method

While starting a
receive queue

When you start a receive queue with the startq parameter of the
asnqacmd or MODIFY command, specify the skiptrans parameter to
skip one or a range of transactions from the receive queue that you
are starting. The format of the command for asnqacmd is as
follows:

asnqacmd apply_server=server apply_schema=schema
startq=queue_name;skiptrans="transaction_ID"

For example, the following command prompts Q Apply to ignore
one transaction on receive queue Q1:

asnqacmd apply_server=target apply_schema=ASN
startq=Q1;skiptrans="0000:0000:0000:0000:51a1"

When one or more transactions are successfully ignored, the Q Apply program
issues messages ASN7670I or ASN7671I in its log and in the
IBMQREP_APPLYTRACE table.

Note about target table loading: If you start Q Apply with the skiptrans
parameter, transactions that are part of an automatic target table load (one that is
performed by Q Apply) are also not applied. If you specified a manual load, these
transactions could be applied to target tables as part of a load operation that is
external to the receive queue. You might need to manually delete these rows from
the target if required.

Chapter 16. Operating a Q Apply program 271

272 Replication and Event Publishing Guide and Reference

Chapter 17. Changing a Q Replication environment

You can change the properties of replication objects such as Q subscriptions and
replication queue maps after you define them, in most cases without stopping
replication.

Changing the properties of unidirectional Q subscriptions
You can change the properties of Q subscriptions without stopping replication.
First you make your changes. Then you reinitialize either a single Q subscription
or reinitialize the Q Capture program if you are changing multiple Q subscriptions.

Restrictions

Not all properties of Q subscriptions can be changed.
v If you are using the ASNCLP command-line program to make changes, check

the syntax of the ALTER QSUB command for unidirectional replication to see
which properties you can change.

v In the Replication Center, controls are disabled on the Q Subscription Properties
notebook for properties that you cannot change.

About this task

If you reinitialize a Q Capture program, this action will also reinitialize any
publications that are defined within the Q Capture schema. Reinitializing a Q
Capture program also requires more system resources.

If you only need to change the properties of one or two unidirectional Q
subscriptions, it is less costly in terms of resources to reinitialize one Q
subscription at a time.

Procedure

To change the properties of unidirectional Q subscriptions without stopping
replication:
1. Change one or more Q subscriptions. Use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the ALTER QSUB command. For example, the following
commands set the environment and change the unidirectional
EMPLOYEE0001 Q subscription at the SAMPLE server:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;
SET SERVER CAPTURE TO SAMPLE;
SET SERVER TARGET TO TARGET;
SET CAPTURE SCHEMA SOURCE ASN1;
SET APPLY SCHEMA ASN1;
ALTER QSUB EMPLOYEE0001 REPLQMAP SAMPLE_ASN1_TO_TARGETDB_ASN1
USING OPTIONS ALL CHANGED ROWS N HAS LOAD PHASE I
SUPPRESS DELETES N CONFLICT ACTION F;

Replication Center Use the Q Subscription Properties notebook. To open the notebook,
right-click a Q subscription and select Properties.

© Copyright IBM Corp. 2004, 2012 273

2. If you are changing a single Q subscription, reinitialize the Q subscription. Use
one of the following methods:

Method Description

Replication Center Use the Manage Q Subscriptions window. To open the window,
right-click the Q Capture server where the source table for the Q
subscription is located and select Manage > Q Subscriptions.

SQL Insert a REINIT_SUB signal into the IBMQREP_SIGNAL table at
the Q Capture server:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’REINIT_SUB’,
’subname’,
’P’);

Where schema identifies the Q Capture program that is processing
the Q subscription, and subname is the name of the Q subscription
that you want to reinitialize.

3. If you are changing multiple Q subscriptions, reinitialize the Q Capture
program. Use one of the following methods:

Method Description

reinit parameter Use this parameter with the MODIFY command on z/OS or asnqccmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to reinitialize all of the Q subscriptions for one Q Capture
schema:

MODIFY
f myqcap,reinit

Where myqcap is the Q Capture job name.

asnqccmd
asnqccmd capture_server=server_name
capture_schema=schema reinit

Where server_name is the name of the database or
subsystem where the Q Capture program is running, and
schema identifies the Q Capture program for which you
want to reinitialize all Q subscriptions.

Replication Center Use the Reinitialize Q Capture window. To open the window,
right-click the Q Capture server that contains the Q Capture
program that you want to reinitialize and select Reinitialize Q
Capture Program.

274 Replication and Event Publishing Guide and Reference

Adding existing columns to a Q subscription (unidirectional
replication)

You can add existing columns from the source table to a unidirectional Q
subscription while the replication programs are running. If the columns are not
existing and your servers are at Version 10.1 or later, you use a different procedure.

Before you begin

v The Q subscription that the columns are being added to must be in A (active)
state.

v If the data type of the column is LONG VARCHAR or
GRAPHIC, the source database or subsystem must be configured with DATA
CAPTURE CHANGES INCLUDE VARCHAR COLUMNS.

Restrictions

v The columns that you are adding must be nullable, or defined as NOT NULL
WITH DEFAULT.

v If you add columns with default values, you must run the REORG utility on the
source table before you begin replicating the new column. For more detail, see
Avoiding CHECKFAILED errors when adding columns to DB2 for z/OS target
tables.

v You cannot add more than 20 columns within one Q Capture commit interval as
specified by the commit_interval parameter.

v Federated targets: To add columns to an existing Q subscription, you can use
the ADDCOL signal but you must drop the Q subscription and recreate it after
you alter the target table because you cannot add columns to a nickname.

About this task

For Version 10.1 or later: You do not need to use this procedure when you are
adding new columns to the source table if the participating servers are at Version
10.1 or later on both z/OS and Linux, UNIX, and Windows. If you set the value of
the REPL_ADDCOL column in the IBMQREP_SUBS table to Y (yes), when you
add new columns to a table, the columns are automatically added to the Q
subscription, and added to the target table if they do not already exist. To make
this setting, specify REPLICATE ADD COLUMN YES in the ASNCLP CREATE
QSUB command or click the Automatically replicate new columns added to the
source table check box when you are creating or changing the properties of a Q
subscriptions in the Replication Center. For more detail, see these topics:

v Enabling replication of ADD COLUMN and SET DATA
TYPE operations

v “Enabling automatic replication of newly added columns from the source table”
on page 130

When you insert the signal at the Q Capture server, the column is automatically
added to the target table if you did not already add it. If you want to add multiple
columns to a Q subscription, you insert one signal for each new column. You can
add multiple columns in a single transaction. The Q Capture program can be
stopped when you insert the signals and it will read them from the log when it
restarts.

If you let the replication programs automatically add new columns to the target
table it helps ensure that they match the columns at the source. Columns are

Chapter 17. Changing a Q Replication environment 275

added to the target table with the same data type, null characteristic, and default
value as the matching columns in the source table. You can specify a different
name for the target column if you use the ALTER ADD COLUMN command in the
ASNCLP command-line program or an ADDCOL signal.

Procedure

To add columns to a unidirectional Q subscription, use one of the following
methods:

Method Description

ASNCLP
command-line
program.

Use the ALTER ADD COLUMN command. For example, the
following command adds the column BONUS to the
DEPARTMENT0001 Q subscription:

ALTER ADD COLUMN USING SIGNAL (BONUS)
QSUB DEPARTMENT0001
USING REPQMAP SAMPLE_ASN_TO_TARGET_ASN;

Q Replication
Dashboard

On the Subscriptions tab, select a Q subscriptions from the table
and click Actions > Add Columns.

SQL Use a command prompt or one of the DB2 command-line tools to
insert an ADDCOL signal into the IBMQREP_SIGNAL table at the
Q Capture server. For example:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’ADDCOL’,
’subname;column_name;before_column_name;

target_column_name’,
’P’);

schema
Identifies the Q Capture program that is processing the Q
subscription that you are adding a column to.

subname;column_name;before_column_name;target_column_name
The name of the Q subscription that you want to add the
column to and the name of the column that you are adding,
separated by a semicolon. These names are case-sensitive and
do not require double quotation marks to preserve case.
Follow these examples:

Add column in source table to Q subscription and to target
table QSUB1;COL10

Add column and before image of the column (for CCD
target tables)

QSUB1;COL10;XCOL10

Add column without before image but with different target
column name

QSUB1;COL10;;TRGCOL10 (Use the double semicolon (;;)
to indicate that you are omitting the before-image
column.)

276 Replication and Event Publishing Guide and Reference

After processing the signal, the Q Capture program begins capturing changes to
the new column when it reads log data that includes the column. Changes to the
column that are committed after the commit of the ADDCOL signal insert will be
replicated to the new column in the target table. Rows that existed in the target
table before the new column is added will have a NULL or default value for the
new column.

Adding existing columns to a Q subscription (bidirectional or
peer-to-peer replication)

You can add existing columns from the source table to a bidirectional or
peer-to-peer Q subscription while the replication programs are running. If the
columns are not existing and your servers are at Version 10.1 or later, you use a
different procedure.

Before you begin

v The Q subscriptions that specify the table must be in A (active) state at all
servers.

v If the data type of the column is LONG VARCHAR or
GRAPHIC, the source database or subsystem must be configured with DATA
CAPTURE CHANGES INCLUDE VARCHAR COLUMNS.

Restrictions

v Any columns that you add must be nullable, or defined as NOT NULL WITH
DEFAULT.

v If you add columns with default values, you must run the REORG utility on the
source table before you begin replicating the new column. For more detail, see
Avoiding CHECKFAILED errors when adding columns to DB2 for z/OS target
tables.

v You cannot alter the default value of a newly added column until the ADDCOL
signal for that column is processed.

v You cannot add more than 20 columns within one Q Capture commit interval as
specified by the commit_interval parameter.

About this task

For Version 10.1 or later: You do not need to use this procedure when you are
adding new columns to the source table if the participating servers are at Version
10.1 or later on both z/OS and Linux, UNIX, and Windows. If you set the value of
the REPL_ADDCOL column in the IBMQREP_SUBS table to Y (yes), when you
add new columns to a table, the columns are automatically added to the Q
subscription, and added to the target table if they do not already exist. To make
this setting, specify REPLICATE ADD COLUMN YES in the ASNCLP CREATE
QSUB command or click the Automatically replicate new columns added to the
source table check box when you are creating or changing the properties of a Q
subscriptions in the Replication Center. For more detail, see these topics:

v Enabling replication of ADD COLUMN and SET DATA
TYPE operations

v “Enabling automatic replication of newly added columns from the source table”
on page 130

To use this procedure, first you alter a table at one server to add a column. Then
you insert an SQL signal at the server. When the signal is processed, the versions

Chapter 17. Changing a Q Replication environment 277

of the table at the other servers are automatically altered to add the column, unless
you added it manually. The signal also adds the column to the Q subscription
definitions at all servers.

You can add any number of columns to the source table at a time. You can do this
while the Q Capture and Q Apply programs are running or stopped.

Recommendation: Insert one ADDCOL signal at a time and issue a COMMIT
before inserting the next ADDCOL signal or doing any other transactions.

Procedure

To add columns to replicate in bidirectional or peer-to-peer replication:
1. Alter the logical table at one of the servers to add the column.

If the ALTER TABLE operation that adds the column to the source table fails,
all the Q subscriptions in the peer-to-peer group will be deactivated.

2. Use one of the following methods to signal the Q Capture program that you
want to add the column to the Q subscription for the source table.

Method Description

ASNCLP command-line program Use the ALTER ADD COLUMN command.
For example, the following command adds
the column BONUS to the
DEPARTMENT0001 Q subscription:

ALTER ADD COLUMN USING SIGNAL (BONUS)
QSUB DEPARTMENT0001
USING REPQMAP SAMPLE_ASN_TO_TARGET_ASN;

Q Replication Dashboard On the Subscriptions tab, select a Q
subscriptions from the table and click
Actions > Add Columns.

278 Replication and Event Publishing Guide and Reference

Method Description

SQL Use a command prompt or one of the DB2
command-line tools to insert an ADDCOL
signal into the IBMQREP_SIGNAL table at
the Q Capture server. For example:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’ADDCOL’,
’subname;column_name’,
’P’);

schema
Identifies the Q Capture program at the
server where you altered the table.

subname;column_name
The name of a Q subscription that
originates at the Q Capture server
where you altered the table, and the
name of the column that you are
adding, separated by a semicolon. These
names are case-sensitive and do not
require double quotation marks to
preserve case.

Consider the following example. A peer-to-peer configuration has three servers:
ServerA, ServerB, and ServerC, and six Q subscriptions: subA2B, subB2A, subA2C,
subC2A, subB2C, and subC2B for the EMPLOYEE table.

You add a column, ADDRESS, to the EMPLOYEE table on ServerA. Then you
insert an ADDCOL signal for the Q subscription that handles transactions from
ServerA to ServerB, and specify subA2B;ADDRESS for the Q subscription name and
column name. Only one ADDCOL signal is required. The replication programs
automatically add the ADDRESS column to the EMPLOYEE tables at ServerB and
ServerC, and add the column definition to all six Q subscriptions.

How Q Capture handles DDL operations at the source database
The Q Capture program automatically replicates some Data Definition Language
(DDL) operations at the source database. Other DDL changes require you to take
action at the target database.

The following table describes how Q Capture handles different types of DDL
operations and what you need to do for any affected Q subscriptions.

Chapter 17. Changing a Q Replication environment 279

Table 25. How Q Capture handles DDL changes to the source database and what you need to do

DDL operation How it is handled What you need to do

CREATE TABLE
Version 10.1 on Linux,
UNIX, and Windows

Automatically
replicated if the
new source table
matches the
schema- and
table-naming
pattern in a
schema-level
subscription. When
the Q Capture
program detects a
CREATE TABLE
operation in the
log that matches a
schema-level
subscription, it
informs the Q
Apply program to
create a matching
target table. A
table-level Q
subscription is also
created that maps
the new source and
target tables.

z/OS or earlier versions on
Linux, UNIX, and
Windows

No automatic
replication of
CREATE TABLE
operations.

Version 10.1 on Linux, UNIX, and Windows
Ensure that newly created source table matches
the schema- and table-naming pattern in a
schema-level subscription.

z/OS or earlier versions on Linux, UNIX, and
Windows

Create a table-level Q subscription for the new
source table and use the replication
administration tools to create a matching target
table, or use an existing target table.

280 Replication and Event Publishing Guide and Reference

Table 25. How Q Capture handles DDL changes to the source database and what you need to do (continued)

DDL operation How it is handled What you need to do

DROP TABLE
Version 10.1 on Linux,
UNIX, and Windows

Automatically
replicated if the
source table is part
of a schema-level
subscription. When
the Q Capture
program detects a
DROP TABLE
operation in the
log that matches a
schema-level
subscription, the
associated
table-level Q
subscriptions for
all queues are also
dropped.

z/OS or earlier versions on
Linux, UNIX, and
Windows

Q Capture leaves
the Q subscription
active, but there
are no log records
to read for the
source table. On
z/OS, the
ASN0197W
warning message
is issued.

Version 10.1 on Linux, UNIX, and Windows
Ensure that source table is included in a
schema-level subscription.

z/OS or earlier versions on Linux, UNIX, and
Windows

When you drop a table the Q subscription for
the table still exists. To remove, stop the Q
subscription and then delete the Q subscription.

Chapter 17. Changing a Q Replication environment 281

Table 25. How Q Capture handles DDL changes to the source database and what you need to do (continued)

DDL operation How it is handled What you need to do

ALTER TABLE ADD
(COLUMN) Version 10.1 on z/OS and

Linux, UNIX, or Windows
or later If you set the value

of the
REPL_ADDCOL
column in the
IBMQREP_SUBS
table to Y (yes),
when you add new
columns to a table
the columns are
automatically
added to the Q
subscription and
added to the target
table if they do not
already exist.

Earlier versions
Q Capture leaves
the Q subscription
active, but does not
replicate the added
column until it
receives an
ADDCOL signal.

Version 10.1 on z/OS and Linux, UNIX, or Windows or
later Specify REPLICATE ADD COLUMN YES in the

ASNCLP CREATE QSUB command or click the
Automatically replicate new columns added to
the source table check box when you are
creating or changing the properties of a Q
subscriptions in the Replication Center. For
more detail, see these topics:

v Enabling replication of
ADD COLUMN and SET DATA TYPE
operations

v “Enabling automatic replication of newly
added columns from the source table” on
page 130

Earlier versions
Use the Q Replication Dashboard or ASNCLP
ALTER ADD COLUMN command, or manually
insert an ADDCOL signal to indicate that you
want to replicate the new column.

TRUNCATE TABLE

A TRUNCATE
operation is logged
similarly to a mass
delete, so the
operation is
replicated as a
series of single row
deletes.

Replication of
TRUNCATE
operations is not
supported.

No action is required. If the target table has
rows that are not in the source table, those
rows are not deleted.

If you need to perform TRUNCATE on a target
table in addition to its source, you must issue
the TRUNCATE statement directly against the
target table.

ALTER TABLE ALTER
COLUMN SET DATA TYPE

Automatically replicated for
Version 10.1 and later. The
data type of the
corresponding target table
column is changed and
replication continues
normally.

See Enabling replication of ADD COLUMN and
SET DATA TYPE operations.

See “Automatic replication of ALTER TABLE
ALTER COLUMN SET DATA TYPE operations”
on page 135.

Other DDL that alters the
structure of a table

Q Capture leaves the Q
subscription unchanged.

1. Stop the Q subscription.

2. Alter the source and target tables.

3. Start the Q subscription.

282 Replication and Event Publishing Guide and Reference

Table 25. How Q Capture handles DDL changes to the source database and what you need to do (continued)

DDL operation How it is handled What you need to do

DDL that does not alter the
table structure

Examples:

v CREATE INDEX

v ALTER FOREIGN KEY

v ADD CONSTRAINT

Q Capture leaves the Q
subscription active.

Ensure that unique constraints, primary keys, and
referential integrity constraints match between the
source and target tables. If you change any of these
properties at the source, make a corresponding change
to the target to avoid unexpected behavior. Also, restart
the Q Apply program so that it recognizes the change.

Changing properties of replication queue maps
A replication queue map includes options for how Q subscriptions that use a
paired send queue and receive queue are processed. By updating a queue map and
then reinitializing the send queue, receive queue, or both, you can change some of
these settings without stopping replication.

About this task

Properties for replication queue maps are saved in the control tables. When you
reinitialize a send queue, the Q Capture program obtains the latest settings from
the IBMQREP_SENDQUEUES table. When you reinitialize a receive queue, the Q
Apply program obtains the latest settings from the IBMQREP_RECVQUEUES
table. The new settings affect all Q subscriptions that use the replication queue
map.

If the Q Capture program is stopped when you make changes to the queue map,
you do not need to reinitialize the send queue because Q Capture reads the
changes when it starts. If the Q Apply program is stopped when you make
changes, you do not need to reinitialize the receive queue.

Procedure

To update a replication queue map and prompt the Q Capture program or Q
Apply program to recognize the changes:
1. Change the properties of the queue map by using one of the following

methods:

Method Description

ASNCLP
command-line
program

Use the ALTER REPLQMAP command. For example, the following
commands set the environment and change the replication queue
map SAMPLE_ASN1_TO_TARGETDB_ASN1 by setting the
number of Q Apply agent threads to four and specifying that the Q
Capture program should stop if an error occurs on a queue:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;
SET SERVER TARGET TO DB TARGETDB;
SET APPLY SCHEMA ASN1;
SET RUN SCRIPT LATER;
ALTER REPLQMAP SAMPLE_ASN1_TO_TARGET_ASN1
USING NUM APPLY AGENTS 4 ERROR ACTION S;

Replication Center Use the Replication Queue Map Properties window. To open the
window, right-click a replication queue map and select Properties.

Chapter 17. Changing a Q Replication environment 283

Method Description

Q Replication
Dashboard

Use the Queues page. Select the Q Capture-Q Apply program pair,
and then on the Properties tab make your changes and click Save.

2. If you change the WebSphere MQ queues in the queue map, use the replication
administration tools to validate any new queues and to test the message flow
between the queues.

3. Reinitialize the send queue, receive queue, or both, depending on which
properties you changed. If you need to reinitialize both queues, you can do so
in any order. Use one of the following methods:

Method Description

Replication Center
(send queue)

Use the Manage Send Queues window. To open the window,
right-click the Q Capture server where the send queue is located
and select Manage > Send Queues.

Replication Center
(receive queue)

Use the Manage Receive Queues window. To open the window,
right-click the Q Apply server where the receive queue is located
and select Manage > Receive Queues.

reinitq parameter
(send queue)

Use this parameter with the MODIFY command on z/OS or asnqccmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to reinitialize a send queue whose properties you
changed in the queue map:

MODIFY
f myqcap,reinitq=queue_name

Where myqcap is the Q Capture job name.

asnqccmd
asnqccmd capture_server=server_name
capture_schema=schema reinitq=queue_name

Where server_name is the name of the database or
subsystem where the Q Capture program is running,
capture_schema identifies the Q Capture program that uses
the send queue, and queue_name is the name of the send
queue that you want to reinitialize.

reinitq parameter
(receive queue)

Use this parameter with the MODIFY command on z/OS or asnqacmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to reinitialize a receive queue whose properties you
changed in the queue map:

MODIFY
f myqapp,reinitq=queue_name

Where myqapp is the Q Apply job name.

asnqacmd
asnqacmd apply_server=server_name
apply_schema=schema_name
reinitq=queue_name

Where server_name is the name of the database or
subsystem where the Q Apply program is running,
schema_name identifies the Q Apply program that uses the
receive queue, and queue_name is the name of the receive
queue that you want to reinitialize.

284 Replication and Event Publishing Guide and Reference

Changing queue names when the queue map is used by Q
subscriptions

If a replication queue map is already part of a Q subscription, you must manually
update the control tables if you want to change the name of the send queue or
receive queue in the queue map.

About this task

If a queue map is not being used for any Q subscriptions, you can always use the
Replication Center or ASNCLP program to change queue names in the queue map.

Procedure

1. Stop the Q Capture program and let the Q Apply program process all
messages in the receive queue.

2. Optional: If any of the Q subscriptions that use the queue map are active, stop
the Q Apply program. This step is not required if you want to change the
name of only the send queue.

3. Optional: If you created the Q Capture control tables by using the replication
administration tools prior to Version 9.7 Fix Pack 2, use the following
command to drop a foreign key constraint from the IBMQREP_SUBS table
that refers to the IBMQREP_SENDQUEUES table:
ALTER TABLE schema.IBMQREP_SUBS DROP CONSTRAINT FKSENDQ

This constraint is no longer part of control tables that are created starting with
Version 9.7 Fix Pack 2.

4. Use SQL to change the send queue name in the IBMQREP_SENDQUEUES
table. Typically the send queue and corresponding receive queue have the
same name. If this is the case, make sure to also change the receive queue
name.
For example, the following statement changes the send queue and receive
queue name from Q2 to Q3 in the IBMQREP_SENDQUEUES table (in a later
step the name of the receive queue is changed in the Q Apply control tables):
UPDATE schema.IBMQREP_SENDQUEUES SET SENDQ=’Q3’,RECVQ=’Q3’ WHERE SENDQ=’Q2’

5. Update the send queue name in the IBMQREP_SUBS table. For example:
UPDATE schema.IBMQREP_SUBS SET SENDQ=’Q3’ WHERE SUBNAME=’EMPLOYEE0001’;

6. On the Q Apply server, update the queue names in three control tables:
IBMQREP_RECVQUEUES, IBMQREP_TARGETS, and IBMQREP_TRG_COLS.
For example:
UPDATE schema.IBMQREP_RECVQUEUES SET RECVQ=’Q3’,SENDQ=’Q3’ WHERE RECVQ=’Q2’
UPDATE schema.IBMQREP_TARGETS SET RECVQ=’Q3’ WHERE RECVQ=’Q2’
UPDATE schema.IBMQREP_TRG_COLS SET RECVQ=’Q3’ WHERE RECVQ=’Q2’

7. Optional: If you dropped the foreign key in Step 2, restore it by using the
following command:
ALTER TABLE schema.IBMQREP_SUBS ADD CONSTRAINT FKSENDQ FOREIGN KEY(SENDQ)
REFERENCES schema.IBMQREP_SENDQUEUES(SENDQ)

8. Optional: If you dropped and restored the foreign key, run
the CHECK DATA utility to bring the table space that contains the
IBMQREP_SUBS table out of CHECK-pending status.

9. Optional: If you stopped the Q Apply program in Step 2, start the Q Apply
program.

10. Start the Q Capture program in warm mode.

Chapter 17. Changing a Q Replication environment 285

Restarting failed Q subscriptions without dropping and recreating
them

When Q subscriptions fail to start and leave the control tables in an inconsistent
state, you can reset the Q subscription state manually to avoid having to drop and
recreate the Q subscriptions.

About this task

This procedure is especially helpful for bidirectional or peer-to-peer replication.

For example, Q subscriptions might fail to start because a WebSphere MQ channel
was not started or the WebSphere MQ configuration was defined incorrectly. In
these cases, the Q subscription is correctly defined, but the subscription schema
message from Q Capture to Q Apply is not delivered.

This failure can cause inconsistent Q subscription states between the source Q
Capture and target Q Apply control tables. You might receive an error message for
which the "User response" section recommends that you drop and recreate the
failed Q subscriptions after you fix the WebSphere MQ problem.

You can avoid dropping and recreating the Q subscriptions by resetting their state
in the control tables. The procedure below ensures that the Q subscriptions states
are cleared (back to inactive or I) before they are restarted, just as when they were
first created.

Procedure

To restart failed Q subscriptions without dropping and recreating them:
1. Address the problem that prevented the Q subscriptions from starting. You

might need to upgrade software or make small changes to source tables, target
tables, or both, or change associated database elements. Use any reason codes
or response information in error messages to help diagnose the problem.

2. Reset the status markers within the control tables by running the following
SQL statements:

Q Capture server
UPDATE schema.IBMQREP_SUBS
SET STATE=’I’, STATE_TRANSITION=NULL,
GROUP_MEMBERS=NULL WHERE SUBNAME=’Q_subscription_name’

Q Apply server
UPDATE schema.IBMQREP_TARGETS
SET STATE=’I’ WHERE SUBNAME=’Q_subscription_name’

3. Start the Q subscriptions.

Putting Q subscriptions into a temporary spill mode for maintenance
You can place Q subscriptions into a temporary spill mode to perform maintenance
on target tables without stopping the capture of changes at the source or affecting
replication to other tables.

About this task

When you place a Q subscription in spill mode, changes are not applied to the
target table but instead are spilled to a dynamically created spill queue. Changes

286 Replication and Event Publishing Guide and Reference

continue to be captured and applied for other Q subscriptions. When maintenance
is complete, you can send a resume command to the Q Apply program

The temporary spill queue is created based on the definition of the model queue
that is used for load operations. Ensure that the maximum depth of the queue is
large enough to hold the spilled rows until the rows can be applied after resuming
operations.

Note about transactional consistency: If you choose to spill replicated data from
one table, be aware that any transactions that involve that table and other tables
can become inconsistent in spill mode. For example, assume that you wanted to
perform maintenance on target table T1, and issued a spillsub command.
Consider a source transaction that updates tables T1 and T2:
UPDATE T1;
UPDATE T2;
COMMIT;

The UPDATE T1 operation is spilled, but the UPDATE T2 operation is applied to the
target table, and a database commit and WebSphere MQ commit are issued. If you
look at the target tables, only the update to T2 exists. So, a partial transaction was
applied and committed to the database, and transactional consistency was not
respected. If you expect transactional consistency at all times, you should not use
the spillsub feature.

Restrictions

Spill mode is not allowed if the Q subscription involves a table that has referential
integrity dependencies. You must drop and restore RI constraints on the target
table.

Recommendation: Use the same receive queue for all Q subscriptions that involve
RI-related tables. If you need to perform maintenance, stop message processing on
the receive queue instead of spilling an individual Q subscription.

Procedure

1. Place the Q subscription into spill mode by using the spillsub parameter with
the MODIFY command or asnqacmd command:
F Q_Apply_job_name,spillsub="receive_queue_name:Q_subscription_name"

2. To resume normal operations, use the resumesub parameter:
F Q_Apply_job_name,resumesub="receive_queue_name:Q_subscription_name"

When all rows in the spill queue are applied, the Q Apply program places the Q
subscription back in active (A) state.

Deleting Q subscriptions
You can delete a Q subscription that is not being actively processed.

Before you begin

The Q subscription that you want to delete must be in I (inactive) or N (new) state.

About this task

Chapter 17. Changing a Q Replication environment 287

When you delete a Q subscription, you have the option of dropping the target
table that it refers to. You can also drop the table space for the target table.

If the target table is in a non-DB2 database, you can specify whether to drop the
nickname for the target table when the Q subscription is deleted.

Note: Deleting a Q subscription does not delete the replication queue map that it
uses.

Procedure

To delete one or more Q subscriptions, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the DROP QSUB command. For example, the following
commands set the environment and drop the Q subscription for
unidirectional replication EMPLOYEE0001:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET SERVER TARGET TO DB TARGET;

DROP QSUB (SUBNAME EMPLOYEE0001
USING REPLQMAP SAMPLE_ASN1_TO_TARGETDB_ASN1);

Use the SET DROP command to specify whether to drop the target
table and its table space.

Replication Center Use the Delete Q Subscriptions window. To open the window,
right-click a Q subscription and select Delete.

You can optionally use this window to drop the target tables for Q
subscriptions that you delete. If you drop a target table, you can
optionally use the window to drop the associated table space if no
other tables are using the table space.

Deleting replication queue maps
You can delete a replication queue map that is no longer needed by any Q
subscriptions.

Procedure

To delete a replication queue map:
1. Make sure that no Q subscriptions are using the replication queue map.

a. Optional: Use the Show Related window in the Replication Center to see if
any Q subscriptions are using the replication queue map. To open the
window, right-click the queue map and select Show Related.

b. If any Q subscriptions are using the queue map, delete the Q subscriptions.
2. Delete the queue map. Use one of the following methods:

288 Replication and Event Publishing Guide and Reference

Method Description

ASNCLP
command-line
program

Use the DROP REPLQMAP command. For example, the following
commands set the environment and drop the queue map
SAMPLE_ASN1_TO_TARGET_ASN1:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;
SET SERVER TARGET TO DB TARGET;
SET APPLY SCHEMA ASN1;
SET RUN SCRIPT LATER;

DROP REPLQMAP
SAMPLE_ASN1_TO_TARGETDB_ASN1;

Replication Center Use the Delete Replication Queue Maps window. To open the
window, right-click the replication queue map and select Delete.

Dropping Q Capture or Q Apply control tables
When you drop Q Capture or Q Apply control tables, the action also removes the
associated Q Capture or Q Apply schema from the Replication Center object tree.
Dropping control tables also removes the associated Q Capture or Q Apply
program instances.

About this task

Dropping control tables also deletes the following objects:

Q Capture control tables
Both Q subscriptions and publications are removed because definitions for
these two objects are stored in the same control tables. Dropping control
tables also removes replication queue maps and publishing queue maps.

Q Apply control tables
Q subscriptions and replication queue maps are removed. All nicknames
that were created for non-DB2 target tables are also removed.

Q subscriptions and replication queue maps are defined on both the Q Capture
server and Q Apply server. If you are dropping only Q Capture control tables or Q
Apply control tables, any Q subscriptions or replication queue maps that are also
defined in control tables on the opposite server must be removed before you drop
the control tables.

Procedure

To drop Q Capture or Q Apply control tables:
1. Stop the Q Capture program or Q Apply program that uses the control tables

that you want to drop.
2. If you are dropping only Q Capture control tables or only Q Apply control

tables, take the following actions:
v Deactivate any Q subscriptions that are also defined on the opposite server.
v Delete the Q subscriptions.
v Delete any replication queue maps that are also defined on the opposite

server.
3. Use one of the following methods to drop the control tables:

Chapter 17. Changing a Q Replication environment 289

Method Description

ASNCLP
command-line
program

Use the DROP CONTROL TABLES ON command. For example,
the following commands set the environment and drop the control
tables on the Q Apply server TARGET that are identified by the
schema ASN1:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER APPLY TO DB TARGET;
SET APPLY SCHEMA ASN1;

DROP CONTROL TABLES ON APPLY SERVER;

Replication Center Use the Drop Q Capture Schema or Drop Q Apply Schema
window. To open the windows, right-click the schema and select
Drop.

If you are dropping the last schema on a Q Capture server or Q
Apply server, that server no longer contains a set of control tables
and is removed from the Replication Center object tree.

290 Replication and Event Publishing Guide and Reference

Chapter 18. Changing an event publishing environment

You can change the properties of event publishing objects such as publications and
publication queue maps after you define them, in most cases without stopping
publishing.

Changing properties of publications
You can change the properties of publications without stopping publishing. First
you make your changes. Then you reinitialize either a single publication or
reinitialize the Q Capture program if you are changing multiple publications.

Restrictions

Not all properties of publications can be changed.
v If you are using the ASNCLP command-line program to make changes, check

the syntax of the ALTER PUB command to see which properties you can change.
v In the Replication Center, controls are disabled on the Publication Properties

notebook for properties that you cannot change.

About this task

If you reinitialize a Q Capture program, this action will also reinitialize any Q
subscriptions that are defined within the Q Capture schema. Reinitializing a Q
Capture program also requires more system resources. If you only need to change
the attributes of one or two publications, it is less costly in terms of resources to
reinitialize one publication at a time.

Procedure

To change the properties of publications without stopping publishing:
1. Use one of the following methods to change the publication:

Method Description

ASNCLP
command-line
program

Use the ALTER PUB command. For example, the following
commands set the environment and change the publication
EMPLOYEE0001 by sending all columns in a row that are part of
the publication whenever any of them have changed, and to not
send deleted rows:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;
SET RUN SCRIPT LATER;

ALTER PUB EMPLOYEE0001
FOR JK.EMPLOYEE OPTIONS
CHANGED COLS ONLY N SUPPRESS DELETES Y;

Replication Center Use the Publication Properties notebook. To open the notebook,
right-click a publication and select Properties.

2. If you are changing a single publication, reinitialize the publication by using
one of the following methods:

© Copyright IBM Corp. 2004, 2012 291

Option Description

Replication Center Use the Manage Publications window. To open the window,
right-click the Q Capture server where the source table for the
publication is located and select Manage > Publications .

SQL Insert a REINIT_SUB signal into the IBMQREP_SIGNAL table at
the Q Capture server:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’REINIT_SUB’,
’pubname’,
’P’);

Where schema identifies the Q Capture program that is processing
the publication, and pubname is the name of the publication that
you want to reinitialize.

3. If you are changing multiple publications, reinitialize the Q Capture program
by using one of the following methods:

Method Description

reinit parameter Use this parameter with the MODIFY command on z/OS or asnqccmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to reinitialize all of the publications for one Q Capture
schema:

MODIFY
f myqcap,reinit

Where myqcap is the Q Capture job name.

asnqccmd
asnqccmd capture_server=server_name
capture_schema=schema reinit

Where server_name is the name of the database or
subsystem where the Q Capture program is running, and
schema identifies the Q Capture program for which you
want to reinitialize all publications.

Replication Center Use the Reinitialize Q Capture window. To open the window,
right-click the Q Capture server that contains the Q Capture
program that you want to reinitialize and select Reinitialize Q
Capture Program.

Adding columns to existing publications
You can add columns dynamically to an existing publication while continuing to
publish changes from the source table.

Before you begin

v The publication that the columns are being added to must be in A (active) state
when the signal is inserted.

292 Replication and Event Publishing Guide and Reference

v If the data type of the column is LONG VARCHAR or GRAPHIC, the source
database or subsystem must be configured with DATA CAPTURE CHANGES
INCLUDE VARCHAR COLUMNS.

Restrictions

v The columns that you are adding must be nullable, or defined as NOT NULL
WITH DEFAULT.

v You cannot add more than 20 columns during a single WebSphere MQ commit
interval, which is set by the Q Capture COMMIT_INTERVAL parameter.

About this task

The columns can already exist at the source table, or you can add the columns to
the table and then add the columns to the publication in the same transaction.

To add a new column, you insert an SQL signal at the Q Capture server. The SQL
signal contains details about the column. If you want to add multiple columns to a
publication, you insert one signal for each new column. You can add multiple
columns in a single transaction.

You can add columns to all publications that subscribe to a source table by
specifying the SOURCE option instead of the PUB option.

Tip: If you plan to quiesce the source database or instance before adding columns,
you can use the Replication Center or asnccmd chgparms command to set the
TERM parameter for the Q Capture program to N (no). Setting TERM=N prompts
the program to continue running while the database or instance is in quiesce
mode. When DB2 is taken out of quiesce mode, the Q Capture program goes back
to capturing changes from the last restart point in the log without requiring you to
restart the program.

Procedure

To add columns to an existing publication, use one of the following methods:

Method Description

ASNCLP
command-line
program.

Use the ALTER ADD COLUMN command. For example, the following
command adds the column BONUS to the DEPARTMENT0001
publication:

ALTER ADD COLUMN USING SIGNAL (BONUS)
PUB DEPARTMENT0001;

Chapter 18. Changing an event publishing environment 293

Method Description

SQL Use a command prompt or one of the DB2 command-line tools to
insert an ADDCOL signal into the IBMQREP_SIGNAL table at the
Q Capture server. For example:

insert into schema.IBMQREP_SIGNAL(
SIGNAL_TIME,
SIGNAL_TYPE,
SIGNAL_SUBTYPE,
SIGNAL_INPUT_IN,
SIGNAL_STATE

) values (
CURRENT TIMESTAMP,

’CMD’,
’ADDCOL’,
’pubname;column_name’,
’P’);

schema Identifies the Q Capture program that is processing the
publication that you are adding a column to.

pubname;column_name
The name of the publication that you want to add the
column to and the name of the column that you are
adding, separated by a semicolon. These names are
case-sensitive and do not require double quotation marks
to preserve case.

After processing the signal, the Q Capture program sends an add column message
to the user application and begins capturing changes to the new column when the
Q Capture program reads log data that includes the column. Changes to the
column that are committed after the commit of the ADDCOL signal insert will be
published.

Deleting publications
You can delete a publication that is not being actively processed by a Q Capture
program.

Before you begin

The publication that you want to delete must be in I (inactive) or N (new) state.

About this task

Deleting a publication does not delete the publishing queue map that it uses.

Procedure

To delete one or more publications, use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the DROP PUB command. For example, the following
commands set the environment and drop the publication
EMPLOYEE0001:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;
SET RUN SCRIPT LATER;

DROP PUB (PUBNAME EMPLOYEE0001);

294 Replication and Event Publishing Guide and Reference

Method Description

Replication Center Use the Delete Publications window. To open the window,
right-click a publication and select Delete.

Changing properties of publishing queue maps
A publishing queue map points to one send queue, and includes settings for how a
Q Capture program handles the publications that use the send queue. By updating
a queue map and then reinitializing the send queue, you can change some of these
settings without having to stop publishing of changes from the source table.

About this task

Properties for publishing queue maps are saved in the IBMQREP_SENDQUEUES
control table. When you reinitialize a send queue, the Q Capture program obtains
the latest settings from this table. The new settings affect all of the publications
that use the send queue.

Procedure

To update a publishing queue map without stopping publishing:
1. Change the properties of the queue map by using one of the following

methods:

Method Description

ASNCLP
command-line
program

Use the ALTER PUBQMAP command. For example, the following
commands set the environment and alter the publishing queue
map SAMPLE_EP1_TO_SUBSCRIBER by changing the message
type from row to transaction and specifying six seconds between
heartbeat messages:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;
SET RUN SCRIPT LATER;

ALTER PUBQMAP SAMPLE_EP1_TO_SUBSCRIBER
USING MESSAGE CONTENT TYPE T
HEARTBEAT INTERVAL 6;

Replication Center Use the Publishing Queue Map Properties window. To open the
window, right-click a publishing queue map and click Properties.

Q Replication
Dashboard

Use the Queues page. Select the Q Capture program, and then on
the Properties tab make your changes and click Save.

2. If you change the WebSphere MQ queue that is used as the send queue, use the
replication administration tools to validate the new queue.

3. Use one of the following methods to prompt a Q Capture program to recognize
the changes that you made without stopping the Q Capture program:

Chapter 18. Changing an event publishing environment 295

Method Description

reinitq parameter Use this parameter with the MODIFY command on z/OS or asnqccmd
command on Linux, UNIX, Windows, and UNIX System Services
on z/OS to reinitialize a send queue whose properties you
changed:

MODIFY
f myqcap,reinitq=queue_name

Where myqcap is the Q Capture job name.

asnqccmd
asnqccmd capture_server=server_name
capture_schema=schema reinitq=queue_name

Where server_name is the name of the database or
subsystem where the Q Capture program is running,
capture_schema identifies the Q Capture program that uses
the send queue, and queue_name is the name of the send
queue that you want to reinitialize.

Replication Center Use the Manage Send Queues window. To open the window,
right-click the Q Capture server where the send queue that you
want to reinitialize is located and select Manage > Send Queues.

Deleting publishing queue maps
You can delete a publishing queue map that is no longer needed by any
publications.

Procedure

To delete a publishing queue map:
1. Ensure that no publications are using the publishing queue map.

a. Optional: Use the Show Related window in the Replication Center to see if
any publications are using the publishing queue map. To open the window,
right-click the publishing queue map and select Show Related.

b. If any publications are using the queue map, delete the publications.
2. Delete the publishing queue map. Use one of the following methods:

Method Description

ASNCLP
command-line
program

Use the DROP PUBQMAP command. For example, the following
commands set the environment and drop the publishing queue
map SAMPLE_EP1_TO_SUBSCRIBER:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE EP1;
SET RUN SCRIPT LATER;

DROP PUBQMAP SAMPLE_EP1_TO_SUBSCRIBER;

Replication Center Use the Delete Publishing Queue Maps window. To open the
window, right-click the publishing queue map and select Delete.

296 Replication and Event Publishing Guide and Reference

Dropping Q Capture control tables
When you drop Q Capture control tables, you also remove any publications, Q
subscriptions, publishing queue maps, or replication queue maps that are defined
in the control tables.

Before you begin

v The Q Capture program that uses the control tables must be stopped.
v Q subscriptions or replication queue maps in the Q Capture control tables are

also defined in the Q Apply control tables. You must drop the Q subscriptions or
queue maps before you drop the Q Capture the control tables.

About this task

Dropping Q Capture control tables also removes the associated Q Capture schema
from the Replication Center object tree and removes the associated Q Capture
program instance.

Procedure

To drop Q Capture control tables:
1. Stop the Q Capture program that uses the control tables that you want to drop.
2. Use one of the following methods to drop the control tables:

Method Description

ASNCLP
command-line
program

Use the DROP CONTROL TABLES ON command. For example, the
following commands set the environment and drop the control
tables on the Q Capture server SAMPLE that are identified by the
schema ASN1:

ASNCLP SESSION SET TO Q REPLICATION;
SET SERVER CAPTURE TO DB SAMPLE;
SET CAPTURE SCHEMA SOURCE ASN1;

DROP CONTROL TABLES ON CAPTURE SERVER;

Replication Center Use the Drop Q Capture Schema window. To open the window,
right-click the schema and select Drop.

If you are dropping the last schema on a Q Capture server, that
server no longer contains a set of control tables and is removed
from the Replication Center object tree.

Chapter 18. Changing an event publishing environment 297

298 Replication and Event Publishing Guide and Reference

Chapter 19. Checking the status of the Q Replication and
Event Publishing programs

The following topics provide information about how you can check the status of
your Q Replication and Event Publishing environment.

Checking the status of the Q Replication and Event Publishing
programs

You can use the Q Replication Dashboard or system commands to check the
current status of the Q Capture program and Q Apply program. You can use a
system command to check the current status of the Replication Alert Monitor.

About this task

The Q Replication Dashboard provides live visual cues so you can detect status
changes for the Q Capture and Q Apply program, and you can also configure
email alerts to notify you if either of the programs stops. With system commands,
you can view messages about the state of program threads. These messages can
help you determine whether the programs are working correctly. For the Q
Capture and Q Apply programs, you can optionally use commands to view more
detailed reports about current program operations.

Procedure

To check the status of the Q Replication and Event Publishing programs:

Use one of the following methods:

Q Replication Dashboard
You can view the status of the Q Capture and Q Apply programs from the
Summary tab, or you can click the Programs tab to get more detailed
status information. From the Alert Manager tab, you can enable email
alerts for Q Capture status and Q Apply status, and the dashboard sends
an email to one or more specified contacts if the programs stop.

Command line

Q Capture
Use the status parameter with the MODIFY command on z/OS or
asnqccmd command on Linux, UNIX, Windows, and UNIX System
Services on z/OS to view messages that indicate the state of each
Q Capture thread.

To view more detailed status about the program and its operations,
use the show details parameter.

MODIFY
f myqcap,status show details

Where myqcap is the Q Capture job name.

© Copyright IBM Corp. 2004, 2012 299

asnqccmd
asnqccmd capture_server=server
capture_schema=schema
status show details

Where server_name is the name of the database or
subsystem where the Q Capture program is running, and
schema identifies the Q Capture program that you want to
check.

Q Apply
Use the status parameter with the MODIFY command on z/OS or
asnqacmd command on Linux, UNIX, Windows, and UNIX System
Services on z/OS to view messages that indicate the state of each
Q Apply thread.

To view more detailed status about the program and its operations,
use the show details parameter.

MODIFY
f myqapp,status show details

Where myqapp is the Q Apply job name.

asnqacmd
asnqacmd apply_server=server
apply_schema=schema
status show details

Where server_name is the name of the database or
subsystem where the Q Apply program is running, and
schema identifies the Q Apply program that you want to
check.

Replication Alert Monitor
Use the status parameter with the MODIFY command on z/OS or
asnqmcmd command on Linux, UNIX, Windows, and UNIX System
Services on z/OS to view messages that indicate the state of each
monitor program thread.

MODIFY
f mymon,status

Where mymon is the monitor job name.

asnmcmd
asnmcmd monitor_server=server
monitor_qual=qualifier
status show details

Where server_name is the name of the database or
subsystem where the monitor program is running, and
qualifier identifies the monitor program that you want to
check.

300 Replication and Event Publishing Guide and Reference

Threads of the Q Capture, Q Apply, and Replication Alert Monitor
programs

When you check the status of the Q Replication and Event Publishing programs,
you can tell whether the programs are working correctly by the messages that you
receive about the program threads.

The following list shows the threads for the Q Capture, Q Apply, and Replication
Alert Monitor programs. After each thread name are abbreviations that denote
whether the thread interacts with the database ("DB") or WebSphere MQ ("MQ"):

Q Capture program

A Q Capture program has the following threads:

Logreader (DB)
For DB2, reads the database recovery log and captures changes for
subscribed tables. For Oracle sources, starts the Oracle LogMiner
utility, reads from the V$LOGMNR_CONTENTS view to find
changes for subscribed tables. Rebuilds log records into
transactions in memory before passing them to the worker thread
when the commit for a transaction is processed.

Worker (DB; MQ)
Receives completed transactions from the log reader thread, turns
transactions into WebSphere MQ messages, and puts the messages
on send queues. Maintains program restart information.

Administration (DB; MQ)
Handles control messages that are put by the Q Apply program or
a user application on the administration queue, and writes
statistics to the monitor tables.

Prune (DB)
Deletes old data from some of the Q Capture control tables.

Holdlock (DB on all platforms except z/OS)
Handles signals sent to the Q Capture program. Prevents two Q
Capture programs with the same schema from running on a server.

Worker, logreader, administration, and prune threads are typically in
running or resting states. Holdlock thread is always in a waiting state. If
the worker thread is in a running state but data is not being captured, you
can use the Q Replication Dashboard, Q Capture Messages window in the
Replication Center, or IBMQREP_CAPTRACE table to look for messages
that might explain why data is not being captured. Alternatively look in
the IBMQREP_CAPMON or IBMQREP_CAPQMON tables to verify that
log records are being processed.

Q Apply program

A Q Apply program has the following threads:

Browser (DB; MQ)
Reads transaction messages from a receive queue, maintains
dependencies between transactions, and launches one or more
agent threads. The Q Apply program launches one browser thread
for each receive queue. This thread is identified by the characters
BRxxxxx, where xxxxx specifies the number of browser threads for
a Q Apply program.

Chapter 19. Checking the status of the Q Replication and Event Publishing programs 301

Agent (DB; MQ)
Rebuilds transactions in memory and applies them to targets. You
set the number of agent threads that will be used for parallel
processing of transactions when you create a replication queue
map.

Spill agent (DB; MQ)
Created on demand when changes for a Q subscription need to be
applied from a spill queue. Situations where this thread is created
include when a table has finished being loaded or when a
resumesub command is received. Rebuilds transactions that were
held in a spill queue and applies them to targets. Spill agents
terminate after the spill queue is emptied and the Q subscription
becomes active.

Administration (DB; MQ)
Maintains the Q Apply control tables. Responsible for starting new
browsers when a startq command is received.

Monitor (DB; MQ)
Logs information about the Q Apply program's performance in the
IBMQREP_APPLYMON control table.

Prune (DB; MQ)
Deletes rows from the IBMQREP_DONEMSG control table after the
messages to which the rows pertain are deleted from the receive
queue and the corresponding data is applied. This thread is used
when the prune_method parameter is set to a value of 2, the default.

Holdlock (DB on all platforms except z/OS)
Prevents two Q Apply programs with the same schema from
running on a server.

Browser, agent, and admin threads are typically in a running state. If agent
threads are in a running state but data is not being applied, you can use
the Q Replication Dashboard, Q Apply Messages window, or
IBMQREP_APPLYTRACE table to look for messages that might explain
why data is not being applied.

Replication Alert Monitor

A Replication Alert Monitor program has the following threads:

Worker
Monitors the control tables to see whether user-defined alert
conditions have been met and sends alert notifications.

Administration
Handles internal messages and error messages.

Serialization
Handles signals between the monitor program threads.

Worker and administration threads are typically in working or resting
states. Serialization threads are typically in a waiting state. If the worker
thread is in a working state but you are not receiving expected alert
notifications, you can use the IBMSNAP_MONTRACE and
IBMSNAP_MONTRAIL control tables to look for messages and other
information that might explain why alerts are not being sent.

302 Replication and Event Publishing Guide and Reference

When you check the status of the Q Capture, Q Apply, and Replication Alert
Monitor programs, if the messages do not indicate typical states for your threads,
you might need to take further action as described in Table 26.

Table 26. Descriptions of thread states and suggested actions

Thread state Description Suggested action

Running The thread is actively processing. No action.

Exists The thread exists but cannot start. If the thread does not leave this
state, stop the program and restart
it.

Started The thread started but cannot
initialize.

Investigate potential system
resource problems, such as too
many threads or not enough
processing power.

Initializing The thread is initialized but cannot
work.

If the thread does not leave this
state, stop the program and restart
it.

Resting The thread is sleeping and will
wake up when there is work to do.

No action.

Stopped The thread is not running. Use the Q Capture Messages
window, Q Apply Messages
window, or Monitor Messages
window in the Replication Center to
search for messages that explain
why the thread stopped. Or look for
similar messages in the
IBMQREP_CAPTRACE,
IBMQREP_APPLYTRACE, or
IBMSNAP_MONTRACE control
tables.

Latency
Latency is a measure of the time it takes for transactions to replicate from the Q
Capture server to the Q Apply server. The Q Capture and Q Apply programs save
performance data that lets you track latency between various stages of the
replication process. These statistics can help you pinpoint problems and tune your
environment.

By using the Latency window in the Replication Center, you can see how long it
takes for transactions to move between the DB2 recovery log and the send queue,
the send queue and the receive queue, and the receive queue and the target table.
You can use the Q Capture Latency window to view an approximate measure of
how a Q Capture program is keeping up with changes to the log.

Recommendation: Any latency measure that involves transactions that are
replicated between remote Q Capture and Q Apply servers can be affected by clock
differences between the source and target systems. To get a true measure, ensure
that the clocks are synchronized.

The following sections provide more detail about each measure of latency:

Q Capture latency
Q Capture latency measures the difference between a given point in time
and the timestamp of the last committed transaction. This measure uses the

Chapter 19. Checking the status of the Q Replication and Event Publishing programs 303

value of the MONITOR_TIME and CURRENT_LOG_TIME columns in the
IBMQREP_CAPMON control table. When examined in aggregate, these
latency measurements can help you determine how well a Q Capture
program is keeping up with the database log.

For example, if a Q Capture program inserted a row of performance data
into the IBMQREP_CAPMON table (MONITOR_TIME) at 10 a.m. and the
timestamp of the last committed transaction (CURRENT_LOG_TIME) is
9:59 a.m., then the Q Capture latency is one minute. To improve
log-reading performance, consider creating an additional Q Capture
schema and moving some Q subscriptions or publications to the new
schema. Each additional schema adds another worker thread to read the
log.

Q Capture transaction latency
Q Capture transaction latency measures the time between the Q Capture
program reading the commit statement for a transaction in the DB2
recovery log, and the message containing the transaction being put on a
send queue. This statistic can give you an idea of how long it takes the Q
Capture program to reassemble transactions in memory, filter out rows and
columns based on settings for the Q subscription or publication, and then
put the transaction messages on a queue. To reduce Q Capture transaction
latency, consider making the following adjustments:
v Increasing the value of the memory_limit parameter, which sets the total

amount of memory allocated by a Q Capture program.
v Raising the max_message_size parameter, which is defined when you

create or change a replication queue map or publication queue map.
This parameter sets the amount of memory that a Q Capture program
allocates for building transaction messages for each send queue. If the
maximum message size is too small, the Q Capture program divides
transactions into multiple messages, requiring more processing time and
increasing latency.

Queue latency
Queue latency measures the time between the Q Capture program putting
a transaction on a send queue and the Q Apply program getting the
transaction from the receive queue. This statistic might give you an idea of
WebSphere MQ performance, although in distributed environments
network performance might also be a factor. Also, a longer commit interval
prompts the Q Capture program to wait before committing some
transactions that have been put on the send queue. This delay can
contribute to queue latency.

Q Apply latency
Q Apply latency measures the time it takes for a transaction to be applied
to a target table after the Q Apply program gets the transaction from a
receive queue. The more agent threads that you have specified for a receive
queue, the smaller this number should be. Note, however, that the Q
Apply program delays applying a transaction involving dependent tables
until all previous transactions that it depends on have been applied. This
delay can increase Q Apply latency.

End-to-end latency
End-to-end latency measures the time between the Q Capture program
reading the log record for a transaction commit statement and the Q Apply
program committing the transaction at the target. This statistic is an overall
measure of Q replication latency.

304 Replication and Event Publishing Guide and Reference

To open the Latency window, right-click the Q Apply server that contains the Q
Apply program that you want to view statistics for and select Reports > Latency.

To open the Q Capture Latency window, right-click the Q Capture server that
contains the Q Capture program that you want to view statistics for and select
Reports > Q Capture Latency.

Exceptions
Exceptions are rows that a Q Apply program did not apply to targets or reworked
because of conflicts or SQL errors. The Q Apply program saves these rows, along
with details about the conflict or error, in the IBMQREP_EXCEPTIONS table.

Conflicts can occur when an application other than the Q Apply program is
updating the target. For example, the Q Apply program might try to insert a row
that already exists at the target. If the conflict action for the Q subscription is F
(force), Q Apply turns the INSERT into an UPDATE, and the original INSERT
statement is logged in the IBMQREP_EXCEPTIONS table.

SQL errors cover a broad range of potential problems. For example, if the recovery
log at the target server filled up, SQL errors would be generated when the Q
Apply program tried to apply rows.

You can use the Exceptions window in the Replication Center to view details about
problem rows. You can also use the data that the Q Apply program saves in its
control table to recover rows that were not applied, and to learn more about
possible problems in your replication environment.

The following list shows the types of problems that can prevent the Q Apply
program from applying rows:

Unexpected SQL errors
Rows that caused SQL errors that were not defined as acceptable for the Q
subscription.

Acceptable SQL errors
Rows that caused SQL errors that were defined as acceptable. You define
acceptable SQL errors when you create a Q subscription.

Value-based conflicts
Rows that caused conflicts such as an attempt to delete or update a row
that did not exist at the target, or to insert a row that already existed. The
Q Apply program records the type of conflict detection that was used
(check only key values, check changed non-key columns as well as key
columns, check all non-key columns as well as key columns), and whether
the row was applied despite being saved. When you create a Q
subscription, you can specify that the Q Apply program should apply
some rows even when they cause conflicts.

Version-based conflicts
Rows that caused conflicts in peer-to-peer replication, such as an attempt
to update a row with the values from older row, or an attempt to insert a
row when a newer row with the same key already existed at the target.

When the Q Apply program saves rows in the IBMQREP_EXCEPTIONS table, it
records the time when the error or conflict occurred, the reason for the error, and

Chapter 19. Checking the status of the Q Replication and Event Publishing programs 305

the type of SQL operation that resulted in the problem. The Q Apply program also
saves the names of the receive queue and Q subscription, and source commit
information for the transaction.

For unexpected SQL errors and acceptable SQL errors, the Q Apply program saves
the SQL code and SQL state code returned by DB2 for the transaction, as well as
the error message tokens from the SQLCA structure that is used for executing the
transaction. For value-based conflicts and version-based conflicts, the Q Apply
program records the reason that the row could not be applied. Rows that are not
applied are saved in SQL format in the TEXT column of the
IBMQREP_EXCEPTIONS table.

In peer-to-peer replication, the Q Apply program saves rows that it did not apply
at the server where the conflict or SQL error occurred.

To open the Exceptions window, right-click the Q Apply server that contains the Q
Apply program that you want to view exceptions for and select Reports >
Exceptions.

306 Replication and Event Publishing Guide and Reference

Chapter 20. Maintaining a Q Replication and Event Publishing
environment

Q Replication and Event Publishing work with your database system and require
limited changes to your existing database activities. Maintenance of source
systems, control tables, and target tables can ensure that your entire system
continues to run smoothly.

Considerations for maintaining Q Replication and Event Publishing
source systems

You need to consider the availability of source tables and log data to Q Replication
and Event Publishing so that the Q Capture and Q Apply programs are always
able to proceed.

The replication source system contains the following objects:
v The source tables from which you want to replicate or publish data.
v The log data that the Q Capture program reads to capture changes that are

made to source tables.

Maintaining source tables in a Q Replication and Event
Publishing environment

Replication sources are database tables. Source tables for Q Replication and Event
Publishing require the same maintenance as other database tables on your system.

Q Replication and Event Publishing do not require direct access to source tables
during most processing. However, Q Replication and Event Publishing must access
your source tables directly in the following situations:
v The Q Apply program performs a load.
v The Q Capture program captures LOB data.

To maintain source tables for Q Replication and Event Publishing:
v Continue to run your existing utilities and maintenance routines on these tables.
v Make sure that read access is available to your source tables to avoid disrupting

the Q Apply program during a load.

Retaining log files for Q Replication and Event Publishing
If you need to know which log files are required by the Q Capture program, you
can use a Q Capture command on Linux, UNIX, and Windows, or you can find the
oldest required log manually by reading a Q Capture control table and using a
DB2 utility on z/OS.

Why you must retain log data for Q Replication and Event
Publishing
You need to retain log data for both DB2 recovery and for Q Replication or event
publishing. Also, be absolutely certain that the Q Capture programs and DB2 are
completely finished with a set of logs before you delete them.

Your DB2 recovery logs:

© Copyright IBM Corp. 2004, 2012 307

v Provide DB2 recovery capabilities
v Provide information to your running Q Capture programs

Log data resides in log buffers, active logs, or archive logs. Each time the Q
Capture program warm starts it requires all the DB2 logs that were created since it
stopped and any DB2 logs that it did not completely process.

If you run the Q Capture program continuously, it is typically up to date with the
DB2 recovery log. If you also retain log files for a week or longer, you can continue
to use your existing log retention procedures. However, you should change your
log retention procedures to accommodate Q Replication and Event Publishing if:
v You typically delete log records as soon as DB2 completes a backup, and these

log records are no longer needed for forward recovery.
v You face storage constraints and need to delete your archived recovery logs

frequently.
v You run the Q Capture program periodically instead of continuously.

Determining the oldest log file that Q Capture needs (z/OS)
You can read a Q Capture control table and use a DB2 utility to determine the log
sequence number for the oldest log record that the Q Capture program needs on
z/OS operating systems.

About this task

Use DB2 to reference the log sequence number with the log file that contains the
oldest log record. The Q Capture program needs this log file and more recent ones.

Procedure

To determine the oldest log file that the Q Capture program requires:
1. Run the following SQL statement to obtain the log sequence number for the

most recent transaction the Q Capture program has seen, processed, and
recorded in its control tables:
SELECT max(RESTART_SEQ)
FROM schema.IBMQREP_CAPMON
WITH UR;

This is an example of a log sequence number:
0000555551F031230000

Ignore the first four characters of the log sequence number, which are always
0000. The next 12 characters correspond to the active log sequence number.
(This 12–character value is the relative byte address (RBA) in non-data sharing
environments and is the log record sequence number (LRSN) in data sharing
environments.) The last four characters are 0000 in non-data sharing
environments; these last four characters correspond to the member ID in data
sharing environments.

2. Use the DSNJU004 utility to invoke the Print Log Map utility. This utility
displays information about the bootstrap data sets (BSDS). For example:
ACTIVE LOG COPY 1 DATA SETS
START RBA/TIME END RBA/TIME DATE LTIME DATA SET INFORMATION
#------------------ -------------- -------- ------ -------------------------
555551F03000 555551F05FFF 1998.321 12:48 DSN=DSNC710.LOGCOPY1.DS02
2001.57 15:46:32.2 2001.057 15:47:03.9 PASSWORD=(NULL) STATUS=TRUNCATED,REUSABLE
555551F06000 555551F09FFF 1998.321 12:49 DSN=DSNC710.LOGCOPY1.DS03
2001.57 15:47:32.2 2001.057 15:48:12.9 PASSWORD=(NULL) STATUS=TRUNCATED,REUSABLE

308 Replication and Event Publishing Guide and Reference

3. Compare your 12–character active log number of the RESTART_SEQ value to
the Start RBA and corresponding End RBA range in each displayed row.

4. Find the row for which the 12–character active log number from the
IBMQREP_CAPMON table falls within the start RBA and end RBA. In the
example:
555551F03000 555551F05FFF 1998.321 12:48 DSN=DSNC710.LOGCOPY1.DS02
2001.57 15:46:32.2 2001.057 15:47:03.9 PASSWORD=(NULL)STATUS=TRUNCATED,REUSABLE

5. Note the corresponding Data Set Information for that active log number. In the
example:
DSNC710.LOGCOPY1.DS02

6. Note the date and time of this data set. The Q Capture program needs this data
set and more recent data sets to restart.

Determining the oldest log file that Q Capture needs (Linux,
UNIX, Windows)
You can use a command to determine the oldest log file that the Q Capture
program needs and which log files you can safely remove on Linux, UNIX, and
Windows operating systems.

Before you begin

The Q Capture program must be running for you to issue the command.

About this task

The command uses the db2flsn utility to determine the oldest DB2 log file that is
needed. The Q Capture program needs this log file and more recent log files to
perform a restart at any particular time. You must retain this log file and more
recent log files to ensure continuous operation of the Q Capture programs. You can
delete any older logs.

Procedure

To determine the oldest log file that the Q Capture program needs:

Use the asnqccmd command with the following parameters while the Q Capture
program is running:
asnqccmd capture_server=server_name capture_schema=schema status show details

The command returns a report on Q Capture program status, including the
following details:
v Path to DB2 log files
v Oldest DB2 log file needed for Q Capture restart
v Current DB2 log file captured

Here is sample output for these details:
Path to DB2 log files (DB2LOG_PATH) = /home2/szp/szp/

NODE0000/SQL00002/SQLOGDIR/
Oldest DB2 log file needed for Q Capture restart (OLDEST_DB2LOG) = S0000043.LOG
Current DB2 log file captured (CURRENT_DB2LOG) = S0000046.LOG

Recommendation: Run the Q Capture program whenever DB2 is up. This should
keep the Q Capture program reading as close as possible to the end of the DB2
log, where the most recent log records are. Reading near the end of the log
minimizes the number of older log files that the Q Capture program needs.

Chapter 20. Maintaining a Q Replication and Event Publishing environment 309

Considerations for managing compression dictionaries in Q
replication and event publishing (z/OS)

If you are using DB2 compression dictionaries, you must coordinate the use of
utilities with your Q Capture programs.

Updating DB2 compression dictionaries

When the Q Capture program requests log records, DB2 must decompress
the log records of any table that is stored in a compressed table space. DB2
uses the current compression dictionary for decompression. In some cases
the compression dictionary might be unavailable. The Q Capture program
takes different actions in each case:

If the compression dictionary is temporarily unavailable
DB2 returns an error to the Q Capture program. The Capture
program makes several attempts to continue processing. If the
dictionary remains unavailable, the Q Capture program issues an
ASN0011E message and terminates.

If the compression dictionary is permanently unavailable
A compression dictionary might be lost if you use the REORG
utility without specifying KEEPDICTIONARY=YES. In this case,
the Q Capture program issues an ASN0011E message, deactivates
the Q subscription, and terminates.

With APAR PK19539 (DB2 for z/OS Version 8), DB2 will keep one backup
of the compression dictionary in memory when you use the REORG utility
without specifying KEEPDICTIONARY=YES. So you do not need to
specify KEEPDICTIONARY=YES unless:
v You restart DB2.
v You use the REORG utility twice for the same table space before the Q

Capture program reads all of the old log records for that table.

To avoid these situations in DB2 for z/OS Version 7, let the Q Capture
program process all log records for a table before performing any activity
that affects the compression dictionary for that table. Some of the following
activities can affect compression dictionaries:
v Altering a table space to change its compression setting
v Using DSN1COPY to copy compressed table spaces from one subsystem

to another, including from data sharing to non-data-sharing
environments

v Running the REORG utility on the table space

Latching DB2 compression dictionaries

You should also consider the availability of your compression dictionary.
When the Q Capture program reads compressed log records, DB2 takes a
latch on the source compressed table space to access the dictionary. The Q
Capture program stops if the compressed table space on the source system
is in the STOPPED state when the DB2 Log Read Interface needs this latch.
Conversely, a utility that requires complete access to the source table space
or that requires the table space to be in a STOPPED state can be locked out
by the latch held by the Q Capture program while it is reading the
dictionary.

To prevent any temporary lockout due to an unavailable latch, suspend the
Q Capture program when a source compressed table space needs to be
used exclusively by a DB2 (or vendor) utility.

310 Replication and Event Publishing Guide and Reference

Maintaining control tables in Q Replication and Event Publishing
Control tables store object definitions and other replication-specific control
information. Although the size of some control tables remains static, other control
tables can grow and shrink depending on the size of your database and your
replication requirements.

Pruning control tables in Q Replication and Event Publishing
Some Q Replication and Event Publishing control tables grow regularly. The
replication programs prune most of these control tables, and you can also use a
system command or the Replication Center to do additional pruning.

About this task

Table 27 lists control tables that the Q Capture program prunes that can grow
regularly.

Table 27. Control tables that the Q Capture program prunes

Control table Parameter that specifies which rows are
eligible for pruning

IBMQREP_CAPMON monitor_limit

IBMQREP_CAPQMON monitor_limit

IBMQREP_CAPTRACE trace_limit

IBMQREP_SIGNAL signal_limit

The prune_interval parameter specifies how often the Q Capture program checks
for rows that are eligible for pruning.

Table 28 lists control tables that the Q Apply program prunes that can grow
regularly.

Table 28. Control tables that the Q Apply program prunes

Control table Parameter that specifies which rows are
eligible for pruning

IBMQREP_APPLYMON monitor_limit

IBMQREP_APPLYTRACE trace_limit

The IBMQREP_EXCEPTIONS table can also grow regularly. Use SQL to manually
prune rows that contain exceptions that you have already processed.

The prune_interval parameter specifies how often the Q Apply program checks
for rows that are eligible for pruning.

The Replication Alert Monitor prunes the IBMSNAP_ALERTS table, which can
grow regularly. The alert_prune_limit parameter specifies how much data is kept
in the table. The rate of growth depends on your replication configuration and
parameters.

Procedure

To do additional pruning of control tables:

Chapter 20. Maintaining a Q Replication and Event Publishing environment 311

Use one of the following methods:

Method Description

System command Use the prune parameter with the MODIFY command on z/OS or
one of the following commands on Linux, UNIX, Windows, and
UNIX System Services on z/OS:

Q Capture control tables
asnqccmd

Q Apply control tables
asnqacmd

Monitor control tables
asnmcmd

Replication Center Use one of the following windows:

Q Capture control tables
Use the Prune Q Capture Control Tables window. To open
the window, right-click a Q Capture server in the contents
pane and select Prune Q Capture Control Tables.

Q Apply control tables
Use the Prune Q Apply Control Tables window. To open
the window, right-click a Q Apply server in the contents
pane and select Prune Q Apply Control Tables.

Monitor control tables
Use the Prune Monitor Control Tables window. To open
the window, right-click a Monitor qualifier in the contents
pane and select Prune Monitor Control Tables.

Considerations for using the RUNSTATS utility on control
tables for Q Replication and Event Publishing

The optimizer can improve access to your Q Replication and Event Publishing
control tables.

The RUNSTATS utility updates statistics about the physical characteristics of your
tables and associated indexes. Continue to run the RUNSTATS utility on your
existing tables at the same frequency as before you used Q Replication. However,
run the RUNSTATS utility on control tables that grow regularly (and are pruned
regularly) only one time when these tables contain substantial amounts of data.
RUNSTATS reports meaningful information about these dynamic tables when these
tables are at their maximum production-level size, and the optimizer gains the
necessary statistics to determine the best strategy for accessing data.

Reorganizing control tables
Regularly reorganize any control tables that frequently change size to eliminate
fragmented data and reclaim space.

About this task

Reorganize the following control tables once a week:
v IBMQREP_APPLYMON
v IBMQREP_CAPMON
v IBMQREP_CAPQMON
v IBMQREP_APPLYTRACE

312 Replication and Event Publishing Guide and Reference

v IBMQREP_CAPTRACE
v IBMSNAP_MONTRAIL
v IBMSNAP_MONTRACE
v IBMQREP_SIGNAL

Depending on your replication environment and configurations, you might also
need to reorganize the following tables:
v IBMQREP_DELTOMB (peer-to-peer configurations)
v IBMQREP_DONEMSG
v IBMQREP_EXCEPTIONS
v IBMSNAP_ALERTS (replication alert monitoring)

Note: Use caution when reorganizing the IBMQREP_SIGNAL table while the
replication programs are active. If the state of a Q subscription or publication is
changed while the REORG utility is running, contention at the IBMQREP_SIGNAL
table could cause problems.

Procedure

To reorganize control tables:

v Use the REORG utility with the PREFORMAT option. The
PREFORMAT option speeds up the insert processing of the Q Capture program.

v Use the REORG command.

When replication programs cannot connect to their DB2
server

To run correctly, the Q Capture program, Q Apply program, and Replication Alert
Monitor must be able to connect to the DB2 server that contains their control
tables. When a replication program cannot access its control tables, it issues an
appropriate error message and shuts down.

Connectivity issues typically require you to restart the program when connectivity
returns. For example, if a Q Apply program shuts down because the DB2 server
that contains its control tables has been shut down or quiesced, simply restart the
Q Apply program when the DB2 server is running.

If the program can connect to the DB2 server but receives an SQL error when the
program tries to access its control tables, take the appropriate corrective action for
that SQL error and then restart the program. For example, if the SQL error
indicates that a control table needs to be recovered, use a standard DB2 recovery
procedure to forward recover the table and then restart the program.

Maintaining target tables
Maintaining target tables is similar to maintaining other tables. However, you need
to consider the operations of the Q Apply program in your maintenance routine
for these tables.

About this task

When you need to perform maintenance on a target table such as reorganizing a
table, you want to prevent applications such as the Q Apply program from using

Chapter 20. Maintaining a Q Replication and Event Publishing environment 313

the table until the maintenance is finished. The Q Apply program might stop
because of an error if it tries to make an update to a table during maintenance.

You can choose from several options that allow you to perform maintenance on the
target tables and meet your requirements. If you need to reorganize a single table
at a time, you can set the Q subscription for that table to use a temporary spill
mode. Your configuration and requirements determine which option you choose.

Procedure

To maintain target tables:
v Maintain the tables on the target server in the same way that you maintain other

tables on your database system.
v Use your current backup and maintenance routines on these target tables,

whether your target tables are existing database tables or tables that you
specified to be automatically generated by Q Replication.

v Choose the option that best meets your requirements. Some methods affect more
tables than other methods.

Option Description

Place a Q subscription into
spill mode

This option places a Q subscription for a single target table into the spill state. The Q
Apply program holds changes from the source table in a temporary spill queue.
While the changes are spilled, you can maintain the target table. The spill queue is
created based on your model queue definition. You might need to adjust the
maximum depth of your model queue to ensure the queue is large enough to hold
the spilled rows.

Use the spillsub and resumesub parameters to place the Q subscription into the spill
state and to later resume normal operations. You can use these parameters with the
MODIFY command on z/OS or asnqacmd command on Linux, UNIX, Windows, and
UNIX System Services on z/OS. The following example uses MODIFY:

f myqapp,spillsub=receive_queue_name:q_subscription_name

Restriction: If your tables have referential integrity constraints, you must use another
method such as stopping message processing on the receive queue.

Stop processing messages
on a receive queue

You can use the stopq parameter with the MODIFY command on z/OS or asnqacmd
command on Linux, UNIX, Windows, and UNIX System Services on z/OS to instruct
the Q Apply program to stop processing messages for the receive queue. The receive
queue continues to receive transactions, which are held until the receive queue is
reactivated.

This method affects all of the tables that use the receive queue. If you need to
maintain tables that share a receive queue or your tables have referential integrity
constraints, this method is recommended.

Use the stopq parameter to stop message processing and the startq parameter to
resume message processing when maintenance is finished.

Stop the Q Apply program Your configuration might require that you stop the Q Apply program to be able to
maintain your target tables. This affects all of the target tables for that Q Apply
server. The messages for Q subscriptions are placed on their receive queues and will
be processed when the Q Apply program is started again.

314 Replication and Event Publishing Guide and Reference

Considerations for rebinding packages and plans for Q Replication
and Event Publishing

Packages for Q Replication and Event Publishing must remain bound with
isolation UR (uncommitted reads) to maintain optimal system performance.

Many of the packages and plans for Q Replication and Event Publishing are bound
using isolation UR. Your internal maintenance programs that are used for
automatic rebinding of these packages and plans can cause contention problems
between the Q Capture program and Q Apply program. If your internal
maintenance programs rebind the replication packages with standard options such
as CS (cursor stability), they will interfere with the Q Capture program and the Q
Apply program.

The Q Capture program, Q Apply program, and Common packages are
bound automatically. You can use the z/OS sample ASNQBNDL to bind
ASNCOMMON, ASNQCAPTURE, ASNQAPPLY, and ASNMON packages
at a DB2 subsystem.

Q Replication and Event Publishing specify the VERSION AUTO setting
when packages are precompiled. DB2 for z/OS automatically frees any
packages that are older than the two most current versions.

The packages for the Q Capture program, the Q Apply program, and the
Replication Alert Monitor, are bound automatically the first time that the
program connects to its control tables.

Chapter 20. Maintaining a Q Replication and Event Publishing environment 315

316 Replication and Event Publishing Guide and Reference

Chapter 21. Comparing and repairing tables

The asntdiff and asntrep commands detect and repair differences between tables.
In Q Replication and SQL Replication, the commands enable you to find
differences quickly and synchronize tables without performing a full refresh, or
load, of the target table.

About this task

Source and target tables can lose synchronization, for example if a target table is
unexpectedly changed by a user or application, or if you experienced an extended
network or target system outage.

The asntdiff and asntrep commands run independently of the Q Capture, Q
Apply, Capture, and Apply programs. They use DB2 SQL to fetch data from the
source table and the target table and do not use WebSphere MQ queues. The
compare and repair utilities do not depend on logs, triggers, or isolation level.

Procedure

To compare and repair tables, run the asntdiff command, and then run the
asntrep command.

Table compare utility (asntdiff)
The asntdiff command compares the columns in one table to their corresponding
columns in another table and generates a list of differences between the two in the
form of a DB2 table.

To use the compare utility, you run the asntdiff command and specify the name
of a Q subscription (Q Replication) or subscription set member (SQL Replication)
that contains the source and target tables that you want to compare. You can also
use SQL statements in an input file to specify the tables to compare.

The following sections explain how to use the asntdiff command:
v “Overview of the asntdiff command”
v “When to use the compare utility” on page 318
v “Where differences are stored” on page 318
v “Required authorizations” on page 319
v “Restrictions for key columns at source and target” on page 320
v “Data type considerations” on page 320
v “Effects of filtering” on page 321
v “Comparisons based on queries instead of subscriptions” on page 322
v “Comparing a subset of table rows” on page 322

Overview of the asntdiff command

You can run the asntdiff command on Linux, UNIX, Windows, and z/OS
operating systems. The command compares tables on Linux, UNIX, Windows,

© Copyright IBM Corp. 2004, 2012 317

z/OS, or System i® operating systems. The asntdiff command can be used with
federated sources and targets if the corresponding columns in the two tables have
the same data types.

The ASNTDIFF sample job in the SASNSAMP data set
provides further information that is specific to the z/OS platform.

For Q Replication, the target must be a user copy table or a consistent-change-data
(CCD) table that is condensed and complete. Stored procedure targets are not
supported. For SQL Replication, the target must be a user table, point-in-time table,
replica table, user-copy table, or consistent-change-data (CCD) table that is
condensed and complete.

When you run the command, you specify an SQL WHERE clause that uniquely
identifies the Q subscription or subscription set member:

Q Replication
The WHERE clause identifies a row in the IBMQREP_SUBS control table at
the Q Capture server, based on the value of the SUBNAME column. For
example:
where="subname = ’my_qsub’"

SQL Replication
The WHERE clause identifies a row in the IBMSNAP_SUBS_MEMBR table
at the Apply control server, based on the value of the SET_NAME column.
For example:
where="set_name = ’my_set’ and source_table=’EMPLOYEE’"

You might need to use more predicates in the WHERE clause to uniquely
identify the subscription set member. For example, you might need to add
the APPLY_QUAL, the SOURCE_OWNER, the TARGET_OWNER, or the
TARGET_TABLE column from the IBMSNAP_SUBS_MEMBR table to the
clause.

When to use the compare utility

The best time to use the utility is when the source and target tables are stable. You
might want to run the utility when the Q Capture and Q Apply programs or
Capture and Apply programs are idle. For example, you could run the utility when
the Q Capture program reached the end of the DB2 recovery log and all changes
are applied at the target. If applications are still updating the source, the
comparison might not be accurate.

If the replication programs are running, you might need to run the asntdiff
command more than once to get a complete picture of evolving differences
between the source and target tables.

Where differences are stored

The asntdiff command creates a difference table in the source database or
subsystem to store differences that it finds.

The difference table is named schema.ASNTDIFF, where schema is the value
specified in the DIFF_SCHEMA parameter. If the schema is not specified, it
defaults to ASN. You can also use the DIFF parameter to specify a table name.

318 Replication and Event Publishing Guide and Reference

By default, the difference table is created in the default DB2 user table space. You
can specify a different, existing table space by using the DIFF_TABLESPACE
parameter.

The difference table has two or more columns. One column is named DIFF, with a
blank space at the end on Linux, UNIX, and Windows. The value in the DIFF
column is a character that indicates an insert, update, or delete operation followed
by a numeric value that indicates which table contains a row with differences. The
other columns contain the value of replication key columns. There is one row in
the difference table for each unmatched row in the target table.

The difference table uses three identifiers that indicate the operation that is needed
to change the target table so that it matches the source table:

D (delete)
Indicates that a row with the key value exists only at the target and not at
the source.

U (update)
Indicates that rows with the same key value exist at both the source and
target, but at least one non-key column is different at the target.

I (insert)
Indicates that a row with the key value exists only at the source and not at
the target.

A value of ? 1 indicates that there is an invalid character in one or more source
columns.

A value of ? 2 indicates that there is an invalid character in one or more target
columns.

Example:

The following list of values is returned by comparing an EMPLOYEE table at the
source with a target copy of the same table. The key column for replication is the
employee number, EMPNO:
DIFF EMPNO
U 2 000010
I 2 000020
I 2 000040
D 2 000045
I 2 000050
D 2 000055

The first row in the example shows that a row with the key value 000010 exists at
both the source and target tables, but at least one non-key column at the target has
a different value. The next two rows show that rows with the key values 000020
and 000040 exist only at the source. The fourth row shows that a row with the key
value 000045 exists only at the target.

The values ? 1 and ? 2 are not shown in the example.

Required authorizations

These database authorizations are required for the compare utility:
v Access privileges to the tables that are being compared, and to the replication

control tables unless the -f (file) option is used

Chapter 21. Comparing and repairing tables 319

v Read privileges for the password file if the PWDFILE
keyword is used

v WRITE privileges for the directory that is specified by the DIFF_PATH keyword
v To create the difference table, CREATETAB authority on the source database and

USE privilege on the table space. In addition, one of the following privileges is
needed:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on an existing schema if the table is created in this

schema

On z/OS, if the user ID that runs asntdiff does not have authority to create
tables, you can use the SQLID keyword to specify an authorization ID that can
be used to create the difference table.

v DROPIN privilege on the schema to drop the difference table unless
DIFF_DROP=N is used

v SELECT, DELETE, and INSERT privileges on the difference table (at the source).
The default schema name is ASN and the default table name is ASNTDIFF.

Restrictions for key columns at source and target

The asntdiff utility supports multiple-byte character sets when the database is
defined with SYSTEM or IDENTITY. However, the columns that are used as keys
for replication at the source and target tables must use single-byte characters for
the utility to compare the tables.

In a Linux, UNIX, or Windows database that uses Unicode, the characters in key
data cannot be greater than the base U.S. English ASCII subset (first 256 ASCII
characters) or the asntdiff utility cannot compare the tables.

Data type considerations

You need to consider the data types of the tables that you are comparing when
using asntdiff.

Different data types in sources and targets
The compare utility can build two SELECT SQL statements that are based
on the description of a subscription. To obtain the differences between the
source and target tables, the utility compares the data that result from
executing both statements. The data types and lengths of the columns for
both SQL statements must be the same.

SQL Replication
The utility builds the SQL statement for the source by using the
EXPRESSION column in the IBMSNAP_SUBS_COLS table.

Q Replication
The data types for both the source and the target must be the
same.

Unsupported data types
The compare utility does not support comparisons between the following
data types:

Nonkey columns
DECFLOAT, BLOB_FILE, CLOB_FILE, DBCLOB_FILE

320 Replication and Event Publishing Guide and Reference

Key columns
DECFLOAT, BLOB, CLOB, DBCLOB, VARGRAPHIC, GRAPHIC,
LONG_VARGRAPHIC, BLOB_FILE, CLOB_FILE, DBCLOB_FILE,
XML

Comparing the GRAPHIC data type
Columns with the GRAPHIC data type at the source and target might not
match when you use the utility to compare the source and target tables.
DB2 columns with the GRAPHIC data type have blank padding after the
graphic data. This padding might be single-byte or double-byte spaces,
depending on the code page that the database was created in. This
padding might cause data to not match between the source and the target
tables, especially if the source and target tables are in different code pages.
This padding applies only to GRAPHIC data types and not other graphic
data types such as VARGRAPHIC or LONG VARGRAPHIC.

To compare columns with GRAPHIC data types, you must remove the
blank padding in the data before you compare the source and target tables
by using the DB2 scalar function rtrim(<column>. This function eliminates
the code page differences for single-byte or double-byte spaces and ensures
that the utility compares the GRAPHIC data in a consistent manner.

TIMESTAMP WITH TIMEZONE restriction
The compare utility does not support comparisons that involved the
TIMESTAMP WITH TIMEZONE data type that was introduced in DB2 for
z/OS Version 10.

Effects of filtering

In some cases, differences between source and target tables are intentional, for
example, if you use a search condition in Q Replication to filter which rows are
replicated. The utility will not show differences between source and target tables
that are a result of predicates or suppressed deletes.

Row filtering
The compare utility uses information from the replication control tables to
avoid showing intentional differences:

SQL Replication
The utility uses the PREDICATES column in the
IBMSNAP_SUBS_MEMBR table to select rows from the source
tables. The value of the UOW_CD_PREDICATES column is ignored
(asntdiff looks directly at the source table, where the Apply
program looks at the CD table).

Q Replication
The utility uses the value of the SEARCH_CONDITION column in
the IBMQREP_SUBS table to build the WHERE clause for the
SELECT statement.

Suppressed delete operations
In Q Replication, you can choose to suppress replication of delete
operations from the source table. If you do not replicate delete operations,
rows that exist in the target table might not exist in the source table. When
the SUPPRESS_DELETES value for a Q subscription is Y, the asntdiff utility
ignores the rows that are unique to the target and reports no differences. A
warning is issued to indicate how many rows were suppressed.

Chapter 21. Comparing and repairing tables 321

The asntdiff -f (input file) option does not support SUPPRESS_DELETES
because it bases the table comparison on a SQL SELECT statement rather
than the Q subscription definition.

Comparisons based on queries instead of subscriptions

The asntdiff -f command option enables you to do differencing by using SQL
SELECT statements that are read from an input file. This option provides greater
flexibility to do differencing between two generic tables. The asntdiff -f option
does not use replication definitions to determine which tables and rows to compare
as the standard asntdiff command does.

The asntdiff -f option works for all tables on Linux, UNIX, Windows, and z/OS.
For details on this option, see “asntdiff –f (input file) command option” on page
433.

In addition to the SELECT statements, the input file contains the source and target
database information, the difference table information, and optional parameters
that specify methods for processing the differences. You can use a password file
that is created by the asnpwd command to specify a user ID and password for
connecting to the source and target databases.

Note: To compare DB2 XML columns by using the asntdiff -f option, you need
to serialize the XML column as a character large-object (CLOB) data type by using
the XMLSERIALIZE scalar function. For example, this SELECT statement in the
input file compares the XMLColumn column in the source table Table 1 to the
same column in another database table (the TARGET_SELECT would use the same
function):
SOURCE_SELECT="select ID, XMLSERIALIZE(XMLColumn AS CLOB) AS XMLColumn
from Table1 order by 1"

Comparing a subset of table rows

You can use the asntdiff RANGECOL parameter to compare only some of the
rows in the two tables. This parameter specifies a range of rows from the source
table that are bounded by two timestamps. You provide the name of a DATE,
TIME, or TIMESTAMP column in the source table, and then use one of three
different clauses for specifying the range. When you compare tables that are
involved in peer-to-peer replication, you can use the IBM-generated
IBMQREPVERTIME column for the source column in the range clause.

The RANGECOL parameter is not valid for the asntdiff -f (input file) option.
You can use a SQL WHERE clause in the input file to achieve similar results.

Running the asntdiff utility in parallel mode (z/OS)
By using the PARALLEL=Y option with the asntdiff command, you can run the
table compare utility in a parallel mode that provides optimal performance when
comparing very large tables.

In parallel mode, the asntdiff utility uses as many as 21 threads to compare the
data in two specified tables, significantly decreasing processing time while
maintaining the accuracy of the comparison. With this mode:
v The utility internally partitions the two tables and compares these partitions in

parallel.

322 Replication and Event Publishing Guide and Reference

v Row retrieval for each partition pair occurs in parallel.
v The differences that are found in each partition pair are then combined to obtain

the overall result.

Using this method reduces processing time and reduces memory use because it
avoids materializing large intermediate results. The parallel mode also minimizes
network traffic because the checksum calculations are pushed down to each
database.

To use asntdiff in parallel mode, it is recommended but optional that the two
tables have date, time, or timestamp columns and a unique index or primary key.
Both tables must be on DB2 for z/OS and must use the same code page and
collation sequence.

The following sections provide more detail about the use of parallel mode.
v “Installation requirements”
v “Required authorizations”
v “Restrictions” on page 324
v “Usage tips” on page 324

Installation requirements

To use the asntdiff utility in parallel mode, you must install a stored procedure
(ASNTDSP) at the systems that contain any table to be compared. The ASNTDSP
sample job is included in the SASNSAMP dataset. For best results, use an
application environment with NUMTCB = 8 - 15.

The following code defines ASNTDSP:
CREATE PROCEDURE ASN.TDIFF
(IN SELECTSTMT VARCHAR(32700),

IN GTTNAME VARCHAR(128),
IN OPTIONS VARCHAR(1331),
OUT RETURN_BLOCK_CRC VARCHAR(21),
OUT RETURN_NUM_ROWS INTEGER,
OUT RETURN_CODE INTEGER,
OUT RETURN_MESSAGE VARCHAR(30000))

PARAMETER CCSID EBCDIC
EXTERNAL NAME ASNTDSP
LANGUAGE C
PARAMETER STYLE GENERAL WITH NULLS
COLLID ASNTDIFF
WLM ENVIRONMENT !!WLMENV4!!
MODIFIES SQL DATA
ASUTIME NO LIMIT
STAY RESIDENT YES
PROGRAM TYPE MAIN
SECURITY USER
RUN OPTIONS ’TRAP(OFF),STACK(,,ANY,),POSIX(ON)’
COMMIT ON RETURN NO;

Required authorizations

These database authorizations and privileges or higher are required to run asntdiff
in parallel mode:
v SELECT on the tables that are being compared.
v These privileges for the difference table:

Chapter 21. Comparing and repairing tables 323

– CREATEIN and DROPIN on an existing schema if the table is created in this
schema

– If the parameter DIFF_TABLESPACE is not specified, CREATETAB and
CREATETS authority on the default database DSNDB04. Note that on DB2 for
z/OS Version 10, if the IN clause is not specified with CREATE TABLE,
CREATETAB privilege on database DSNDB04 is required.

– If the parameter DIFF_TABLESPACE is explicitly specified, CREATETAB
authority on the database that contains the DIFF_TABLESPACE and USE
privilege on the table space that is specified by DIFF_TABLESPACE

v To create the created global temporary tables in the work file databases,
CREATETMTAB privileges at any databases that are involved

v SELECT, DELETE, and INSERT privileges on the database where the difference
table is created. The default schema name is ASN and the default table name is
ASNTDIFF.

v SELECT privileges on the catalog tables SYSIBM.SYSDUMMY1,
SYSIBM.SYSTABLES, SYSIBM.SYSKEYS, and SYSIBM.SYSINDEXES

v EXECUTE privileges on procedure ASN.TDIFF
v EXECUTE privileges on package ASNTDIFF.ASNTDSP
v EXECUTE privileges on plan ASNRD101

Make sure that the necessary DB2 authorizations are granted to the user ID that
runs asntdiff before you start the utility. You can use the TARGET_SQLID and
SOURCE_SQLID parameters to change the value of CURRENT SQLID to an
authorization ID that has sufficient authorities.

Restrictions
v The two tables that are being compared must have the same code page and

collation sequence. Otherwise, use the PARALLEL=N option (the default) to
compare the tables.

v When used in parallel mode, the asntdiff utility should be run from z/OS as a
batch job that uses JCL.

v The tables that are being compared must reside on z/OS.
v Only the -F PARM option is supported when asntdiff runs in parallel mode.
v The supported SELECT statements that you use with the SOURCE_SELECT and

TARGET_SELECT parameters must use this strucure:
SELECT xxx FROM yyy (WHERE zzz) ORDER BY aaa

The WHERE clause is optional.
v Supported data types for nonkey columns are DATE, TIME, TIMESTAMP,

VARCHAR, CHAR, LONG VARCHAR, FLOAT, REAL, DECIMAL, NUMERIC,
BIGINT, INTEGER, SMALLINT, ROWID, VARBINARY, BINARY, VARGRAPH,
GRAPHIC, LONGRAPH.

v Supported data types for key columns are DATE, TIME, TIMESTAMP,
VARCHAR, CHAR, LONG VARCHAR, FLOAT, REAL, DECIMAL, NUMERIC,
BIGINT, INTEGER, SMALLINT, ROWID, VARBINARY, BINARY.

For other restrictions, see “asntdiff –f (input file) command option” on page 433.

Usage tips
v Columns that are used in WHERE clauses and ORDER BY clauses should use an

index. The columns that you specify in the ORDER BY clause must follow the

324 Replication and Event Publishing Guide and Reference

same index column order and ascending/descending attributes. Use the
RUNSTATS and REORG utilities to keep table access information current.

v In parallel mode, the asntdiff utility does support a mix of ascending and
descending order in the ORDER BY clause. The mix should be same as in the
index. However, the utility might not give you optimal performance when the
index uses this mixture. Results will still be correct.

v For optimal performance:
– Increase the system resource limit for application threads and set

NUMTHREADS to 21.
– Do not use column alias and expressions against the key columns in

SOURCE_SELECT and TARGET_SELECT.

Table repair utility (asntrep)
The asntrep command repairs differences between source and target tables on all
DB2 servers by deleting, inserting, and updating rows. The command runs on
Linux, UNIX, or Windows operating systems.

The asntrep command uses the difference table that is generated by the asntdiff
command to take the following actions:
v Delete rows from the target table that have no matching key in the source table
v Insert rows that are in the source table but have no matching key in the target

table
v Update target rows that have matching keys in the source but different non-key

data

For Q Replication, the target must be a table; it cannot be a stored procedure. For
SQL Replication, the target must be a user table, a point-in-time table, a replica
table, or a user-copy table. If you use the asntrep utility with a Q subscription for
peer-to-peer replication, you must repair all of the copies of a logical table two
copies at a time.

You run the asntrep command after you run the asntdiff command. The asntrep
command copies the difference table from the source database or subsystem to the
target, and then uses the copy to repair the target table.

To use the asntrep command, you provide the same WHERE clause that you used
for the asntdiff command to identify the Q subscription or subscription set
member that contains the source and target tables that you want to synchronize.
The repair utility does not support the use of an input file as does the compare
utility.

During the repair process, referential integrity constraints on the target table are
not dropped. An attempt to insert or delete a row from a target table can fail if the
insert or delete operation violates a referential integrity constraint. Also, a
duplicate source row might be impossible to repair at the target if the target has a
unique index.

How the compare utility handles DB2 SQL compatibility features
DB2 for Linux, UNIX, and Windows Version 9.7 introduced SQL compatibility
enhancements such as variable-length timestamps, the VARCHAR2 data type with
special character string processing, and DATE-TIMESTAMP compatibility. Some
considerations are required to use the asntdiff command with these new features.

Chapter 21. Comparing and repairing tables 325

The following sections describe these considerations:
v “Comparing TIMESTAMP non-key columns with different precisions ”
v “Comparing TIMESTAMP key columns with different precision”
v “Considerations when using the DATE data type as TIMESTAMP(0)” on page

328
v “Behavior when using the rangecol parameter ” on page 327
v “Compatibility option for text based strings ” on page 328
v “asntdiff file option (asntdiff –f) ” on page 329

Comparing TIMESTAMP non-key columns with different
precisions

When asntdiff compares two tables that have TIMESTAMP columns of different
precision, it creates a truncated version of the longer TIMESTAMP column and
then compares the two equal-length values.

In the following example, Table A and Table B have TIMESTAMP columns of
different lengths:

Table A Table B

Col1 - TIMESTAMP(6)
2009-02-05-12.46.01.126412

Col1 - TIMESTAMP(12)
2009-02-05-12.46.01.126412000000

In this situation, asntdiff compares 2009-02-05-12.46.01.126412 from Table A with
the truncated value of 2009-02-05-12.46.01.126412 from Table B, and reports
matching values.

In the next example, Table A has a longer TIMESTAMP column than Table B
because the target value was truncated as a result of replication (typically this
occurs when the target database is pre-Version 9.7 and only supports the default
TIMESTAMP precision of six-digits):

Table A Table B

Col1 - TIMESTAMP(12)
2009-02-05-12.46.01.126412123456

Col1 - TIMESTAMP(6)
2009-02-05-12.46.01.126412

Here, asntdiff compares a truncated version of the source value,
2009-02-05-12.46.01.126412, with the target value of 2009-02-05-12.46.01.126412 and
reports a match. Whenever asntdiff truncates a TIMESTAMP column, the utility
issues warning message ASN4034W.

Comparing TIMESTAMP key columns with different precision

When asntdiff compares key columns with different TIMESTAMP precision, the
same basic concepts hold: A version of the longer timestamp column is truncated
to the length of the shorter timestamp column for the purpose of comparing.

In the following example, Table A has a TIMESTAMP(6) key column and a
character column, and Table B has a TIMESTAMP(12) key column and a character
column.

326 Replication and Event Publishing Guide and Reference

Table A Table B

KEYCol1 - TIMESTAMP(6)
2009-02-05-12.46.01.126412

KEYCol1 - TIMESTAMP(12)
2009-02-05-12.46.01.126412000000

Col2 CHAR(12)
"test String"

Col2 CHAR(12)
"String test"

The utility compares the Table A key value of 2009-02-05-12.46.01.126412 with a
truncated version of the Table B key value, 2009 -02-05-12.46.01.126412, and reports
a match. It then compares the nonkey column values "test String" and "String test"
and reports a "U 2" (update needed) in the difference table to signify that rows
with the same key value exist at both the source and target, but at least one
non-key column is different at the target:

DIFF Col1 TIMESTAMP(6)

U 2 2009-02-05-12.46.01.126412

The second column in the difference table always contains the key value. Because
the difference table DDL is based on the source table, asntdiff uses the source
TIMESTAMP(6) value. If the source table had the longer TIMESTAMP column, for
example a TIMESTAMP(12), the utility would truncate the TIMESTAMP(12) to a
TIMESTAMP(6) in order to compare the keys. However, it would use the source
table's TIMESTAMP(12) definition to create the difference table. The key value that
is written to the difference table is, however, the key value that has been used
during comparison: TIMESTAMP(6). This value is then padded to a
TIMESTAMP(12).

In this situation, when you use the asntrep utility to repair differences between the
source and target tables, asntrep assumes that the target key-column value is a
result of replication, and thus if DB2 pads with 0s, a matching key on the target
side is found and can be updated.

Behavior when using the rangecol parameter

The asntdiff rangecol invocation parameter, which enables you to compare a
subset of rows in two tables based on a specified timestamp column, also requires
special attention when the timestamp column is variable length and also a key
column.

Table A

KEYCol1 - TIMESTAMP(12) Col2 CHAR(12)

2009-02-05-12.46.01.126412123456 "test String"

2009-02-05-12.46.02.126412123456 "test String"

2009-02-05-12.46.03.126412123456 "test String"

Table B

KEYCol1 - TIMESTAMP(6) Col2 CHAR(12)

2009-02-05-12.46.01.126412 "String test"

2009-02-05-12.46.02.126412 "String test"

Chapter 21. Comparing and repairing tables 327

KEYCol1 - TIMESTAMP(6) Col2 CHAR(12)

2009-02-05-12.46.03.126412 "String test"

Using Table A and Table B above as examples, consider the following rangecol
portion of an asntdiff invocation in which the TIMESTAMP(6) is used to specify
which rows to compare:
RANGECOL="'KEYCol1’ FROM: ’2009-02-05-12.46.01.126412’
TO: ’2009-02-05-12.46.03.126412’"

The range clause is rewritten by asntdiff into a SQL SELECT statement with a
BETWEEN clause:
WHERE ("KEYCol1" BETWEEN ’2009-02-05-12.46.01.126412’
AND ’2009-02-05-12.46.03.126412’)

To include all rows in the above scenario, use the source key values in the range
clause. As a general rule, always use the longer TIMESTAMP column value in the
range clause. For example, the following statement considers all six rows on both
target and source side:
RANGECOL="'KEYCol1’ FROM: ’2009-02-05-12.46.01.126412123456’
TO: ’2009-02-05-12.46.03.126412123456’"

Note: The scenarios described are only valid when the target table content has
exclusively been populated by the Q Apply or Apply program. Any manual
interaction with the target table could result in unexpected asntdiff results. As
always, a thorough analysis of the results in the differencing table is required
before you use the asntrep command to repair differences.

Considerations when using the DATE data type as
TIMESTAMP(0)

The asntdiff utility does not support comparison of DATE and TIMESTAMP(0)
data types. If the DATE data type compatibility feature is not enabled for the
database that features the table with the DATE column, asntdiff gives the following
message and terminates abnormally: "ASN4003E The data type or the length ... are
not compatible."

The following example shows two databases, the second of which is enabled to use
TIMESTAMP(0) columns for dates:

Database 1, Table A
Database 2
(compatibility vector 0x40), Table B

DATE
02/05/2009

TIMESTAMP(0)
2009-02-05-12.46.01

To compare these two tables, you must use the asntdiff file option and manually
cast either of the two data types to a compatible data type.

Compatibility option for text based strings

With the compatibility option for character data enabled, an insert of an empty
string into a text-based column results in a null value.

328 Replication and Event Publishing Guide and Reference

Database 1, Table A
KEYCol1 - TIMESTAMP(6)

Database 1, Table A
Col2 VARCHAR(12)

2009-02-05-12.46.01.126412 ""

Database 2
(compatibility vector 0x20), Table B
KEYCol1 - TIMESTAMP(6)

Database 2
(compatibility vector 0x20), Table B
Col2 VARCHAR(12)

2009-02-05-12.46.01.126412 NULL

By default asntdiff flags a difference in Col2 and reports an update needed in the
difference table. If you do not want asntdiff to report this as a difference, you can
use the asntdiff file option with the following SQL statement in the
SOURCE_SELECT parameter:
SELECT Col2 CASE WHEN Col2 = \’\’ THEN NULL ELSE Col2 END FROM Database1

In any case, the warning message ASN4035W is issued once to make you aware of
this scenario.

asntdiff file option (asntdiff –f)

To override any of the default behaviors mentioned above, it is recommended to
employ the asntdiff file option that was introduced in Version 9.7.

The option allows you to use any SQL expression, for example you could use a
CAST statement to avoid the truncation when comparing different length
timestamp columns.

The following example pads the TIMESTAMP(6) to a TIMESTAMP(12):
SOURCE_SELECT= "SELECT CAST(KEYCol1 AS TIMESTAMP(12)) AS KEYCol1, Col2
FROM TABLE_A ORDER BY 1"
TARGET_SELECT= "SELECT KEYCol1, Col2 FROM TABLE_B ORDER BY 1"

Chapter 21. Comparing and repairing tables 329

330 Replication and Event Publishing Guide and Reference

Chapter 22. Using system services to operate the Q
replication and event publishing programs

You can operate the replication programs for Q replication and event publishing by
using system services that are designed for each operating system.

The z/OS operating system can use the job control language (JCL), system-started
tasks, or the automatic restart manager (ARM), to operate the replication programs.
The Windows operating system can operate the replication programs by using a
system service. You can schedule replication programs on the Linux operating
system, the UNIX operating system, the Windows operating system, and the z/OS
operating system.

Using z/OS system services to run the Q replication and event
publishing programs

On z/OS, you can start the replication programs by using JCL or system-started
tasks. You can use the Automatic Restart Manager (ARM) to restart failed
replication programs.

Running the Q replication and event publishing programs by
using JCL

When replicating data on z/OS, you can use JCL to operate the replication
programs.

Specifying the CAPTURE_PATH parameter (z/OS)
Before you can run the Q Capture program using JCL, you must specify the
CAPTURE_PATH parameter, which contains the path that references the data set where
the transaction log is stored.

About this task

If you do not specify the parameter, the Q Capture program writes log files to the
home directory of the user who submits the JCL.

Procedure

To specify the CAPTURE_PATH parameter on z/OS, use one of the following methods:

JCL Use the PARM field of the JCL statement that will start the Q Capture
program. For example:
// PARM=’/CAPTURE_SERVER=DSN7 CAPTURE_PATH=//JAYQC // LOGSTDOUT
capture_schema=JAY’

In this example, the Q Capture program writes its log files to the
USER1.JAYQC.D7DP.JAY.QCAP.LOG file. USER1 is the user who submits
the JCL.

If you want the data set for the log to have a specific high level qualifier,
use this example:
// PARM=’/capture_server=DSN7 capture_schema=JAY //
CAPTURE_PATH=//’’OEUSR01’

© Copyright IBM Corp. 2004, 2012 331

Now the Q Capture program writes its log files to the
OEUSR01.DSN7.JAY.QCAP.LOG file.

If you want to specify the path to SYSADM.XYZ, use one of the following
examples:
// PARM=’/CAPTURE_server=DSN7 Capture_path=//’’SYSADM.XYZ //
capture_schema=JAY’

// PARM=’/CAPTURE_server=DSN7 capture_schema=JAY //
capture_PATH=//’’SYSADM.XYZ’

Ensure that the path name does not exceed the 44 character limit for MVS
data sets. The user ID that runs this JCL must be authorized to write to the
above data set.

SQL Issue an insert statement to the IBMQREP_CAPPARMS table. For example:
INSERT INTO JAY.IBMQREP_CAPPARMS (qmgr, restartq, adminq, startmode,
memory_limit, commit_interval, autostop, monitor_interval,monitor_limit,
trace_limit, signal_limit, prune_interval, sleep_interval, logreuse,
logstdout, term, capture_path, arch_level)

VALUES
(’CSQ1’, ’IBMQREP.ASN.RESTARTQ’,’IBMQREP.ASN.ADMINQ’,

’WARMSI’, 32, 500, ’N’, 300000, 10080, 10080, 10080, 300, 5000,
’N’, ’N’, ’Y’, ’//JAYQC’, ’901’);

If you want the data set for the log to have a specific high level qualifier,
use this example:
INSERT INTO JAY.IBMQREP_CAPPARMS (qmgr, restartq, adminq, startmode,
memory_limit, commit_interval, autostop, monitor_interval,monitor_limit,
trace_limit, signal_limit, prune_interval, sleep_interval, logreuse,
logstdout, term, capture_path, arch_level)

VALUES
(’CSQ1’, ’IBMQREP.ASN.RESTARTQ’, ’IBMQREP.ASN.ADMINQ’,

’WARMSI’, 32, 500, ’N’,300000, 10080, 10080, 10080, 300, 5000, ’N’,
’N’, ’Y’, ’//’’OEUSR01’,’901’);

To specify the path to SYSADM.XYZ, use this example:
INSERT INTO JAY.IBMQREP_CAPPARMS (qmgr, restartq, adminq, startmode,
memory_limit, commit_interval, autostop, monitor_interval,monitor_limit,
trace_limit, signal_limit, prune_interval, sleep_interval, logreuse,
logstdout, term, capture_path, arch_level)

VALUES
(’CSQ1’, ’IBMQREP.ASN.RESTARTQ’,’IBMQREP.ASN.ADMINQ’,

’WARMSI’, 32, 500, ’N’,300, 10080, 10080, 10080, 300, 5000,
’N’, ’N’, ’Y’, ’//’’SYSADM.XYZ’,’901’);

Starting the Q Capture program with JCL
The WebSphere Replication Server for z/OS Version 9 samples library contains
sample JCL and scripts that you can modify and use to start the Q Capture
program.

Recommendation: Copy the jobs from the SASNSAMP library to a different
library before making changes. See the Program Directory for a complete list of the
sample jobs found in the library.

Procedure

To start a Q Capture program by using JCL:
1. Specify the appropriate optional invocation parameters in the PARM field of

the Q Capture job.

332 Replication and Event Publishing Guide and Reference

You must set the TZ (time zone) and LANG (language) environment variables
in the JCL if you did not set them in the system-wide /etc/profile file or in
the profile file in the home directory of the running replication program. For
more information about setting these variables, see Replication installation and
customization for z/OS. The following example from the invocation JCL
includes setting the TZ and LANG variables:
//CAPJFA EXEC PGM=ASNQCAP,
// PARM=’ENVAR(’TZ=PST8PDT’,’LANG=en_US’)/CAPTURE_SERVER=DQRG
// capture_schema=JFA’

2. Specify a directory path with the TMPDIR environment variable if you want
the replication programs to write temporary files to a directory other than the
/tmp directory

Starting the Q Apply program with JCL
The WebSphere Replication Server for z/OS Version 9 samples library contains
sample JCL and scripts that you can modify and use to start the Q Apply program.

Recommendation: Copy the jobs from the SASNSAMP library to a different
library before making changes. See the Program Directory for a complete list of the
sample jobs found in the library.

Procedure

To start a Q Apply program by using JCL:

Specify the appropriate optional invocation parameters in the PARM field of the Q
Apply job. The following example shows the invocation JCL for the Q Apply
program:
//PLS EXEC PGM=ASNQAPP, // PARM=’APPLY_SERVER=DQRG APPLY_SCHEMA=JAY’

Starting the Replication Alert Monitor by using JCL
The samples library contains sample JCL and scripts that you can modify and use
to start the Replication Alert Monitor.

Recommendation: Copy the jobs from the SASNSAMP library to a different
library before making changes. See the Program Directory for a complete list of the
sample jobs found in the library.

Procedure

To start the Replication Alert Monitor by using JCL:

Specify the appropriate optional invocation parameters in the PARM field of the
Replication Alert Monitor job. The following example shows the invocation JCL for
the Replication Alert Monitor:
//monasn EXEC PGM=ASNMON,PARM=’monitor_server=DSN
monitor_qual=monqual’

Running the Q replication and event publishing programs with
JCL in batch mode
To run the Q Capture, Q Apply, and Replication Alert Monitor programs on with
JCL in batch mode, you customize the JCL in library SASNSAMP for the
appropriate program.

Procedure

Chapter 22. Using system services to operate the Q replication and event publishing programs 333

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.repl.zoscust.doc/topics/iiyrczoscncover.html
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.repl.zoscust.doc/topics/iiyrczoscncover.html

To run replication programs in batch mode:
1. Customize the JCL in library SASNSAMP for the appropriate program. Table 29

shows which sample job to use to start each program:

Table 29. Sample jobs to start the replication programs in JCL

Sample Program

ASNQSTRA Q Apply

ASNQSTRC Q Capture

ASNSTRM Replication Alert Monitor

ASNQTON Trace (for the Q Capture program or the Q
Apply program)

2. Prepare the JCL for z/OS by specifying the appropriate optional invocation
parameters in the PARM field of the DPROPR jobs (Q Capture, Q Apply,
Replication Alert Monitor and asntrc).

Working with running Q replication and event publishing
programs by using the MVS MODIFY command
After you start the Q Capture program, the Q Apply program, or the Replication
Alert Monitor, you can use the MODIFY command to stop the program or to perform
related tasks.

About this task

For descriptions of the parameters that you can use with MODIFY, see asnqccmd:
Working with a running Q Capture program, asnqacmd: Working with a running
Q Apply program, and asnmcmd: Working with a running Replication Alert
Monitor.

Procedure

To work with running programs on z/OS:

Run the MODIFY command from the z/OS console. You can use the abbreviation f,
as shown in the following syntax example:

�� f jobname , Parameters ��

f jobname , replaces the actual command name: asnqccmd, asnqacmd, or asnmcmd. The
operational parameters that apply to each of the commands can be used with the f
keyword.

For example, to stop a running Q Apply program that uses the PLS job name, you
would use the following command:
F PLS,stop

Table 30 shows the Q Capture commands that you can run with the f keyword. In
all examples, the job name is myqcap.

Table 30. Sample MODIFY commands for the Q Capture program

Parameter Sample command that uses f keyword

prune f myqcap,prune

qryparms f myqcap,qryparms

334 Replication and Event Publishing Guide and Reference

Table 30. Sample MODIFY commands for the Q Capture program (continued)

Parameter Sample command that uses f keyword

reinit f myqcap,reinit

reinitq f myqcap,reinitq=send_queue_name

startq f myqcap,startq=send_queue_name

startq all f myqcap,startq all

stopq f myqcap,stopq=send_queue_name

status f myqcap,status

status show details f myqcap,status show details

stop f myqcap,stop

chgparms f myqcap,chgparms autostop=y/n
f myqcap,chgparms commit_interval=n
f myqcap,chgparms logreuse=y/n
f myqcap,chgparms logstdout=y/n
f myqcap,chgparms monitor_interval=n
f myqcap,chgparms monitor_limit=n
f myqcap,chgparms prune_interval=n
f myqcap,chgparms qfull_num_retries=n
f myqcap,chgparms qfull_retry_delay=n
f myqcap,chgparms sleep_interval=n
f myqcap,chgparms signal_limit=n
f myqcap,chgparms term=y/n
f myqcap,chgparms trace_limit=n

Table 31 shows the Q Apply commands that you can run with the f keyword. In all
examples, the job name is myqapp.

Table 31. Sample MODIFY commands for the Q Apply program

Parameter Sample command that uses f keyword

loaddonesub f myqapp,loaddonesub=receive_queue_name:q_sub_name

prune f myqapp,prune

qryparms f myqapp,qryparms

stopq f myqapp,stopq=receive_queue_name

startq f myqapp,startq=receive_queue_name

startq;skiptrans f myqapp,startq="receive_queue_name;skiptrans=transaction_ID"

reinitq f myqapp,reinit=receive_queue_name

stop f myqapp,stop

status f myqapp,status

status show details f myqapp,status show details

spillsub f myqapp,spillsub=receive_queue_name:q_sub_name

resumesub f myqapp,resumesub=receive_queue_name:q_sub_name

Chapter 22. Using system services to operate the Q replication and event publishing programs 335

Table 31. Sample MODIFY commands for the Q Apply program (continued)

Parameter Sample command that uses f keyword

chgparms f myqapp,chgparms autostop=y/n
f myqapp,chgparms logreuse=y/n
f myqapp,chgparms logstdout=y/n
f myqapp,chgparms monitor_interval=n
f myqapp,chgparms monitor_limit=n
f myqapp,chgparms prune_interval=n
f myqapp,chgparms term=y/n
f myqapp,chgparms trace_limit=n
f myqapp,chgparms deadlock_retries=n
f myqapp,chgparms discardconflicts=y/n
f myqapp,chgparms dropris=y/n

Table 32 shows asntrc program commands that you can run with the f keyword. In
all examples, the job name is myqcap.

Table 32. Sample MODIFY commands for the asntrc program

Task Sample command that uses f keyword

Start a program trace with the asntrc
command

f myqcap,asntrc on
f myqcap,asntrc statlong

Format an asntrc fmt report and direct the
output to a z/OS data set

F myqcap, asntrc fmt -ofn
//’USRT001.TRCFMT’

Format an asntrc flw report and direct the
output to a z/OS data set

F myqcap, asntrc flw -ofn
//’USRT001.TRCFLW’

Stop a program trace F myqcap, asntrc off

Recommendation: Preallocate asntrc flw and fmt output files so that they are large
enough to contain the asntrc reports. Use these attributes:
v Data set name: USRT001.TRCFMT or USRT001.TRCFLW

v Primary allocated cylinders: 2
v Normal allocated extents: 1
v Data class: None (Current utilization)
v Used cylinders: 2
v Record format: VB used extents: 1
v Record length: 1028
v Block size: 6144
v 1st extent cylinders: 2
v Secondary cylinders: 1
v SMS compressible: NO

Table 33 shows the Replication Alert Monitor commands that you can run with the
f keyword. In all examples, the job name is mymon.

Table 33. Sample MODIFY commands for the Replication Alert Monitor program

Parameter Sample command that uses f keyword

reinit f mymon,reinit

status f mymon,status

qryparms f mymon,qryparms

336 Replication and Event Publishing Guide and Reference

Table 33. Sample MODIFY commands for the Replication Alert Monitor program (continued)

Parameter Sample command that uses f keyword

suspend f mymon,suspend

resume f mymon,resume

stop f mymon,stop

chgparms f mymon,chgparms monitor_interval=n
f mymon,chgparms autoprune=y
f mymon,chgparms trace_limit=n
f mymon,chgparms alert_prune_limit=n
f mymon,chgparms max_notifications_per_alert=n
f mymon,chgparms max_notifications_minutes=n

For information about MODIFY, see z/OS MVS System Commands.

Running the Q replication and event publishing programs with
system-started tasks

You can use system-started tasks to operate the Q Capture program, Q Apply
program, and Replication Alert Monitor.

Procedure

To start a program as a system-started task for the z/OS operating system:
1. Create a procedure (procname) in your PROCLIB.
2. Create an entry in the RACF STARTED class for procname. This entry associates

procname with the RACF user ID to be used to start the Q Capture program.
Make sure that the necessary DB2 authorization is granted to this user ID
before you start the program.

3. From the z/OS console, run the command start procname. The following
sample procedure is for the Q Capture program:
// PARM=’CAPTURE_SERVER=DSN7 capture_schema=ASN startmode=cold’
//STEPLIB DD DSN=qrhlqual.SASNLOAD,DISP=SHR
// DD DSN=dsnhlqual.SDSNLOAD,DISP=SHR
//* DD DSN=mqhlqual.SCSQANLE,DISP=SHR
//* DD DSN=mqhlqual.SCSQLOAD,DISP=SHR
//* DD DSN=xmlhlqual.SIXMMOD1,DISP=SHR
//CAPSPILL DD DSN=&&CAPSPILL,DISP=(NEW,DELETE,DELETE),
// UNIT=VIO,SPACE=(CYL,(50,70)),
// DCB=(RECFM=VB,BLKSIZE=6404)
//MSGS DD PATH=’/usr/lpp/db2repl_10_01/msg/En_US/db2asn.cat’
//CEEDUMP DD SYSOUT=* //SYSPRINT DD SYSOUT=* //SYSUDUMP DD DUMMY

qrhlqual
The Q Replication target library high-level qualifier

dsnhlqual
The DB2 target library high-level qualifier

mqhlqual
The WebSphere MQ target library high-level qualifier

xmlhlqual
The XML Toolkit library high-level qualifier

Chapter 22. Using system services to operate the Q replication and event publishing programs 337

JCL that executes the Q Capture program must add the WebSphere MQ
libraries to the STEPLIB if they are not installed in the LNKLST. You can also
add the XML Toolkit libraries if you want replication to use ICU instead of
UCS for code page conversions.

Using Automatic Restart Manager (ARM) to automatically
restart replication and publishing (z/OS)

You can use the Automatic Restart Manager (ARM) recovery system on z/OS to
restart the Q Capture, Q Apply, Capture, Apply, and Replication Alert Monitor
programs.

Before you begin

Ensure that ARM is installed and that the replication programs are set up correctly.
To use ARM with a replication program, ensure that the program is APF
authorized. For example, to use ARM with the Q Apply, Apply, or Replication
Alert Monitor program, you must copy the appropriate load module into an APF
authorized library. (The Q Capture and Capture programs must be APF authorized
regardless of whether or not you are using ARM.)

About this task

ARM is a z/OS recovery function that can improve the availability of specific
batch jobs or started tasks. When a job or task fails, or the system on which it is
running fails, ARM can restart the job or task without operator intervention.

ARM uses element names to identify the applications with which it works. Each
ARM-enabled application generates a unique element name for itself that it uses in
all communication with ARM. ARM tracks the element name and has its restart
policy defined in terms of element names. For details about setting up ARM, see
z/OS MVS Sysplex Services Guide.

Procedure

To use ARM to automatically restart replication and publishing programs:
1. Specify one of the following element names when you configure ARM:

Program Element name

Q Capture ASNQCxxxxyyyy

Q Apply ASNQAxxxxyyyy

Capture ASNTC xxxxyyyy

Apply ASNTA xxxxyyyy

Replication Alert Monitor ASNAM xxxxyyyy

Where xxxx is the DB2 subsystem name and yyyy is the data-sharing member
name (the latter is needed only for data-sharing configurations). The element
name is always 16 characters long, padded with blanks.

2. Optional: If you have more than one instance of a replication or publishing
program running within a data-sharing member, specify the arm parameter
when you start the programs to create a unique ARM element name for each
program instance.
The arm parameter takes a three-character value that is appended to the
element names that are listed in the previous table. The syntax is arm=zzz,

338 Replication and Event Publishing Guide and Reference

where zzz can be any length of alphanumeric string. The replication program,
however, will concatenate only up to three characters to the current name and
pad with blanks, if necessary, to make a unique 16-byte name.

The replication programs use the element name to register with ARM during
initialization. They do not provide ARM with an event exit when they register. The
event exit is not needed because the replication programs do not run as a z/OS
subsystem. ARM restarts registered programs if they terminate abnormally (for
example, if a segment violation occurs). A registered replication program
de-registers if it terminates normally (for example, due to a STOP command) or if
it encounters an invalid registration.

Tip: If you start the Q Capture, Q Apply, Capture, Apply, or Replication Alert
Monitor program with the parameter term=n, the program does not stop when
DB2 is quiesced or stopped. In this case, the program does not de-register from
ARM. It continues to run but does not perform its actual work until DB2 is
unquiesced or started.

Replication services (Windows)
You can run the replication programs as a system service on the Windows
operating system by using the Windows Service Control Manager (SCM).

Description of Windows services for replication
On the Windows operating system, a replication service is a program that starts
and stops the Q Capture, Q Apply, Capture, Apply, or Replication Alert Monitor
programs.

When you create a replication service, it is added to the SCM in Automatic mode
and the service is started. Windows registers the service under a unique service
name and display name.

The following terms describe naming rules for replication services:

Replication service name

The replication service name uniquely identifies each service and is used to
stop and start a service. It has the following format:
DB2.instance.alias.program.qualifier_or_schema

Table 34 describes the inputs for the replication service name.

Table 34. Inputs for the replication service name

Input Description

instance The name of the DB2 instance.

alias The database alias of the Q Capture server, Q Apply
server, Capture control server, Apply control server, or
Monitor control server.

program One of the following values: QCAP (for Q Capture
program), QAPP (for Q Apply program), CAP (for
Capture program), APP (for Apply program), or MON
(for Replication Alert Monitor program).

qualifier_or_schema One of the following identifiers: Q Capture schema, Q
Apply schema, Capture schema, Apply qualifier, or
Monitor qualifier.

Chapter 22. Using system services to operate the Q replication and event publishing programs 339

Example: The following service name is for a Q Apply program that has
the schema ASN and is working with database DB1 under the instance
called INST1:
DB2.INST1.DB1.QAPP.ASN

Display name for the replication service

The display name is a text string that you see in the Services window and
it is a more readable form of the service name. For example:
DB2 - INST1 DB1 QAPPLY ASN

If you want to add a description for the service, use the Service Control Manager
(SCM) after you create a replication service. You can also use the SCM to specify a
user name and a password for a service.

Creating a replication service
You can create a replication service to start a Q Capture program, Q Apply
program, Capture program, Apply program, and the Replication Alert Monitor
program on Windows operating systems.

Before you begin

v Before you create a replication service, make sure that the DB2 instance service
is running. If the DB2 instance service is not running when you create the
replication service, the replication service is created but it is not started
automatically.

v After you install DB2, you must restart your Windows server before you start a
replication service.

About this task

When you create a service, you must specify the account name that you use to log
on to Windows and the password for that account name.

You can add more than one replication service to your system. You can add one
service for each schema on every Q Capture, Q Apply, or Capture control server,
and for each qualifier on every Apply control server and Monitor control server,
respectively. For example, if you have five databases and each database is an Q
Apply control server and a Monitor control server, you can create ten replication
services. If you have multiple schemas or qualifiers on each server, you could
create more services.

Procedure

To create a replication service:

Use the asnscrt command.
When you create a service, you must specify the account name that you use to log
on to Windows and the password for that account name.

Tip: If your replication service is set up correctly, the service name is sent to
stdout after the service is started successfully. If the service does not start, check
the log files for the program that you were trying to start. By default, the log files
are in the directory specified by the DB2PATH environment variable. You can
override this default by specifying the path parameter

340 Replication and Event Publishing Guide and Reference

(capture_path,apply_path,monitor_path) for the program that is started as a
service. Also, you can use the Windows Service Control Manager (SCM) to view
the status of the service.

Starting a replication service
After you create a replication service, you can stop it and start it again.

About this task

Important: If you started a replication program from a service, you will get an
error if you try to start the program by using the same schema or qualifier.

Procedure

To start a replication service, use one of the following methods.
v The Windows Service Control Manager (SCM)
v net stop command

Stopping a replication service
After you create a replication service, you can stop it and start it again.

About this task

When you stop a replication service, the program associated with that service stops
automatically. However, if you stop a program by using a replication system
command (asnqacmd, asnqccmd, asnccmd, asnacmd, or asnmcmd), the service that
started the program continues to run. You must stop it explicitly.

Procedure

To stop a replication service, use one of the following methods.
v The Windows Service Control Manager (SCM)
v net stop command

Viewing a list of replication services
You can view a list of all your replication services and their properties by using the
asnlist command.

Procedure

To view a list of replication services, use the asnlist command. You can optionally
use the details parameter to view a list of replication services and descriptions of
each service.

Dropping a replication service
If you no longer need a replication service you can drop it so that it is removed
from the Windows Service Control Manager (SCM).

About this task

If you want to change the start-up parameters for a program that is started by a
service, you must drop the service and then create a new one using new start-up
parameters.

Chapter 22. Using system services to operate the Q replication and event publishing programs 341

Procedure

To drop a service for replication commands, use the asnsdrop command.

Scheduling the replication programs
You can schedule the Q Capture program, the Q Apply program or the Replication
Alert Monitor program to start at prescribed times.

Scheduling the replication and event publishing programs
(Linux, UNIX)

To start a replication program at a specific time on a Linux or UNIX operating
system, use the at command.

About this task

Table 35 shows commands that are used to start the replication programs at 3:00
p.m. on Friday.

Table 35. Scheduling commands for the replication programs (Linux, UNIX)

Replication program Linux or UNIX command

Q Capture at 3pm Friday asnqcap autoprune=n

Q Apply at 3pm Friday asnqapply applyqual=myqual

Replication Alert Monitor at 3pm Friday asnmon
monitor_server=db2srv1
monitor_qualifier=mymon

Scheduling the replication programs (Windows)
You can use the Windows Service Control Manager, the Windows Task Manager, or
the at command to start the replication programs at a scheduled time on Windows
operating systems. This topic describes the use of the at command.

Procedure

To start a replication program at a specific time on a Windows operating system:
1. Start the Windows Schedule Service.
2. Create a password file in the directory of the replication program

(CAPTURE_PATH, APPLY_PATH, or MONITOR_PATH). The password file
must contain entries for the servers where the replication program that you are
starting is running.

3. Issue the at command. Send the output to a file to check for errors.
Table 36 shows commands that are used to start the replication programs at
3:00 p.m. on Friday. Note the "^" character when redirecting to a file.

Table 36. Scheduling commands for the replication programs (Windows)

Replication program Windows command

Q Capture c:\>at 15:00 db2cmd asnqcap
capture_server=qcapdb
capture_schema=schema
capture_path=c:\capture ^>
c:\capture\asnqcap.out

342 Replication and Event Publishing Guide and Reference

Table 36. Scheduling commands for the replication programs (Windows) (continued)

Replication program Windows command

Q Apply c:\>at 15:00 db2cmd asnqapp
apply_server=qappdb
apply_schema=applyqual
apply_path=c:\apply ^>
c:\apply\asnqapp.out

Replication Alert Monitor c:\>at 15:00 db2cmd asnmon
monitor_server=mondb
monitor_qual=monqual monitor_path=c:\
monitor ^> c:\monitor\asnmon.out

Scheduling the replication and event publishing programs
(z/OS)

You can use either the $TA JES2 command or the AT NetView command to start the
Q Capture and Q Apply programs at a specific time on z/OS.

Procedure

To schedule replication and event publishing programs on the z/OS operating
system:
1. Create a procedure that calls the program for z/OS in the PROCLIB.
2. Modify the Resource Access Control Facility (RACF) module (or appropriate

definitions for your MVS security package) to associate the procedure with a
user ID.

3. Link-edit the module in SYS1.LPALIB.
4. Use either the $TA JES2 command or the AT NetView command to start the Q

Capture program or the Q Apply program at a specific time. See MVS/ESA
JES2 Commands for more information about using the $TA JES2 command. See
the NetView for MVS Command Reference for more information about using the
AT NetView command.

Chapter 22. Using system services to operate the Q replication and event publishing programs 343

344 Replication and Event Publishing Guide and Reference

Chapter 23. Naming rules and guidelines for Q Replication
and Event Publishing—Overview

When you create objects for Q Replication and Event Publishing, you must observe
certain restrictions for the types of characters and length of each object's name.

You should also be aware of how lowercase and uppercase characters are handled.

Naming rules for Q Replication and Event Publishing objects
The name for each Q Replication and Event Publishing object must conform to
naming rules.

Table 37 lists the limits for names of objects in Q Replication and Event Publishing.

Table 37. Name limits for objects in Q Replication and Event Publishing

Object Name limits Length limit

Source and target
tables

DB2: The names of DB2 source tables
and target tables must follow the
naming rules for DB2 table names.

non-DB2: The names of non-DB2
target tables must follow the table
naming rules that are required by the
DB2 federated server to set up
nicknames.

Both short and long
schema names are
supported for tables
on DB2 for z/OS.
Table names can
include up to:

v 18 bytes for
subsystems that
are running DB2
for z/OS Version 8
compatibility
mode or earlier

v 128 bytes for
subsystems that
are running DB2
for z/OS Version 8
new-function
mode

30 or fewer
characters

Source and target
columns

DB2: The names of the DB2 source
and target columns must follow the
naming rules for DB2 column names.

non-DB2: The names of non-DB2
target columns must follow the
column naming rules that are
required by the DB2 federated server
to set up nicknames.

CCD targets: Before-image
columns have a one-character
prefix added to them. To
avoid ambiguous
before-image column names,
ensure that source column
names are unique to 127
characters and that the
before-image column names
will not conflict with existing
column names when the
before-image character prefix
is added to the column name.

© Copyright IBM Corp. 2004, 2012 345

Table 37. Name limits for objects in Q Replication and Event Publishing (continued)

Object Name limits Length limit

Table owner Both short and long schema names
are supported for table owner.

Table owner names can be up
to 128 bytes.

Send queue The name of the send queue can
include any characters that DB2 and
WebSphere MQ allow for VARCHAR
data types. Send queue names cannot
contain spaces.

48 or fewer characters

Receive queue The name of the receive queue can
include any characters that DB2 and
WebSphere MQ allow for VARCHAR
data types. Receive queue names
cannot contain spaces.

48 or fewer characters

Restart queue The name of the restart queue can
include any characters that DB2 and
WebSphere MQ allow for VARCHAR
data types.

Restart queue names cannot contain
spaces.

48 or fewer characters

Q subscription The name of a Q subscription can
include any characters that DB2
allows for VARCHAR data type
columns. All Q subscription names
must be unique. Because the name of
the Q subscription is stored at both
the source and target server, be sure
that the name is compatible with the
code pages for both the source and
target servers.

Q subscription names cannot contain
spaces or semicolons (;).

30 or fewer characters

SUBGROUP The name of the SUBGROUP for
bidirectional and peer-to-peer
replication can include any characters
that DB2 allows for VARCHAR data
type columns.
Recommendation: Use a unique
group name for the set of Q
subscriptions for a logical table.

30 or fewer characters

Publication The name of a publication can
include any characters that DB2
allows for VARCHAR data type
columns. For each Q Capture
program, all publication names must
be unique. Be sure that the name of
the publication is compatible with the
code page for the subscribing
application.

Publication names cannot contain
spaces or semicolons (;).

30 or fewer characters

346 Replication and Event Publishing Guide and Reference

Table 37. Name limits for objects in Q Replication and Event Publishing (continued)

Object Name limits Length limit

Q Capture schema The name of the Q Capture schema
can include only the following valid
characters:

v A through Z (uppercase letters)

v a through z (lowercase letters)

v Numerals (0 through 9)

v The underscore character (_)

The Q Capture schema can be
a string of up to 128
characters.

Subsystems that are running
Version 8 compatibility mode
or earlier: 18 or fewer
characters

Q Apply schema The name of the Q Apply schema can
include only the following valid
characters:

v A through Z (uppercase letters)

v a through z (lowercase letters)

v Numerals (0 through 9)

v The underscore character (_)

The Q Apply schema can be a
string of up to 128 characters.

Subsystems that are running
Version 8 compatibility mode
or earlier: 18 or fewer
characters

Monitor qualifier The name of the monitor qualifier can
include only the following valid
characters:

v A through Z (uppercase letters)

v a through z (lowercase letters)

v Numerals (0 through 9)

v The underscore character (_)

The name of the monitor
qualifier can be a string of 18
or fewer characters.

How lowercase object names are handled for Q replication and
publishing

The system commands for Q Replication and Event Publishing and the Replication
Center, by default, convert all names that you provide to uppercase. Enclose a
mixed-case character name in double quotation marks (or whatever character the
target system is configured to use) to preserve the case and save the name exactly
as you typed it.

For example, if you type myqual or MyQual or MYQUAL, the name is saved as MYQUAL.
If you type those same names and enclose them in double quotation marks, they
are saved as myqual or MyQual or MYQUAL, respectively. Some operating systems do
not recognize double quotation marks and you might need to use an escape
character, typically a backslash (\).

Important: When setting up Windows services for the Q
Capture program, the Q Apply program, or the Replication Alert Monitor, you
must use unique names for the Q Capture schema, Q Apply schema, and Monitor
qualifier. You cannot use case to differentiate names. You must use a unique path
to differentiate between names that are otherwise identical. For example, assume
that you have three Q Apply schemas: myschema , MySchema, and MYSCHEMA. The
three names use the same characters but different case. If these three qualifiers are
in the same directory on the Q Apply server, they will cause name conflicts.

For WebSphere MQ objects, all naming rules are the same as specified by
WebSphere MQ.

Chapter 23. Naming rules and guidelines for Q Replication and Event Publishing—Overview 347

348 Replication and Event Publishing Guide and Reference

Chapter 24. System commands for Q Replication and Event
Publishing

You can use system commands on Linux, UNIX, Windows, and UNIX System
Services (USS) on z/OS to start, operate, and modify the replication programs.

You can specify parameters in any order as a name=value pair. Parameters and their
arguments are not case sensitive. Use double quotation marks ("") if you want to
preserve case.

Specifying yes/no (Boolean) parameters without an argument is supported, but not
recommended. For example, specifying logreuse is the same as logreuse=y. But to
specify no logreuse, you must use logreuse=n.

Invoking commands with a question mark (for example, asnoqcap ?), displays a
help message that shows the command syntax.

Table 38 helps you match common tasks with the system commands.

Table 38. Q Replication and Event Publishing tasks and their corresponding system
commands

If you want to ... Use this system command

Start a Q Capture program and specify startup parameters
(Linux, UNIX, Windows, z/OS)

“asnqcap: Starting a Q Capture
program” on page 350

Start a Q Capture program for Oracle sources and specify
startup parameters (Linux, UNIX, Windows)

“asnoqcap: Starting a Q
Capture program for an Oracle
database” on page 372

Work with a running Q Capture program (Linux, UNIX,
Windows, z/OS)

v Check parameter values

v Change parameters

v Prune the control tables

v Check Q Capture status

v Stop Q Capture

v Reinitialize all Q subscriptions or publications

v Reinitialize one send queue

“asnqccmd: Working with a
running Q Capture program”
on page 380

Work with a running Q Capture program for Oracle
sources (Linux, UNIX, Windows)

v Check parameter values

v Change parameters

v Prune the control tables

v Check Q Capture status

v Stop Q Capture

v Reinitialize all Q subscriptions or publications

v Reinitialize one send queue

“asnoqccmd: Working with a
running Q Capture program on
Oracle databases” on page 386

Start a Q Apply program and specify startup parameters
(Linux, UNIX, Windows, z/OS)

“asnqapp: Starting a Q Apply
program” on page 389

© Copyright IBM Corp. 2004, 2012 349

Table 38. Q Replication and Event Publishing tasks and their corresponding system
commands (continued)

If you want to ... Use this system command

Work with a running Q Apply program (Linux, UNIX,
Windows, z/OS)

v Check parameter values

v Change parameters

v Check Q Apply status

v Prune the control tables

v Stop Q Apply

v Stop Q Apply reading from a queue

v Start Q Apply reading from a queue

v Reinitialize one receive queue

“asnqacmd: Working with a
running Q Apply program” on
page 408

asnqcap: Starting a Q Capture program
Use the asnqcap command to start a Q Capture program on Linux, UNIX,
Windows, and UNIX System Services (USS) on z/OS. Run this command at an
operating system prompt or in a shell script. Any startup parameters that you
specify will apply to this session only.

After you start the Q Capture program, it runs continuously until you stop it or it
detects an unrecoverable error.

Syntax

�� asnqcap capture_server=db_name
capture_schema=schema

�

�
capture_path=path n

add_partition= y
arm=identifier

�

�
n

autostop= y
n

caf= y

commit_interval=n n
hs= y

�

�
n

igncasdel= y
ignore_transid=transaction_ID n

igntrig= y

�

�
I

lob_send_option= S
logrdbufsz=n logread_prefetch= n

y

�

�
n

logreuse= y
n

logstdout= y
lsn=formatted_lsn

�

350 Replication and Event Publishing Guide and Reference

�
maxcmtseq=formatted_lsn memory_limit=n y

msg_persistence= n

�

�
y

migrate= n
monitor_interval=n monitor_limit=n

�

�
n

nmi_enable= y
nmi_socket_name=n n

override_restartq= y

�

�
part_hist_limit=n asnpwd.aut

pwdfile= filename
prune_interval=n

�

�
qfull_num_retries=n qfull_retry_delay=n signal_limit=n

�

�
sleep_interval=n stale=n y

startallq= n

�

�
warmsi

startmode= warmns
cold

y
term= n

trace_limit=n
�

�
trans_batch_sz=n warnlogapi=n warntxsz=n

��

Descriptions of asnqcap parameters
These descriptions provide detail on the asnqcap parameters, their defaults, and
why you might want to change the default in your environment.

Chapter 24. System commands for Q Replication and Event Publishing 351

v “add_partition
(Linux, UNIX,
Windows)”

v “arm (z/OS)”

v “autostop” on page
353

v “caf (z/OS)” on
page 353

v “capture_path” on
page 353

v “capture_schema”
on page 354

v “capture_server”
on page 354

v “commit_interval”
on page 355

v “hs (z/OS)” on
page 356

v “ignore_transid” on
page 356

v “igncasdel” on
page 356

v “ignsetnull” on
page 357

v “igntrig” on page
357

v “lob_send_option”
on page 358

v “logrdbufsz” on
page 359

v “logread_prefetch
(Linux, UNIX,
Windows)” on
page 359

v “logreuse” on page
359

v “logstdout” on
page 360

v “lsn” on page 360

v “maxcmtseq” on
page 361

v “memory_limit” on
page 362

v “migrate (Linux,
UNIX, Windows)”
on page 362

v “monitor_interval”
on page 363

v “msg_persistence”
on page 364

v “override_restartq”
on page 364

v “part_hist_limit
(Linux, UNIX,
Windows)” on
page 365

v “prune_interval”
on page 365

v “qfull_num_
retries” on page
366

v “qfull_retry_delay”
on page 366

v “signal_limit” on
page 367

v “sleep_interval” on
page 367

v “stale” on page 368

v “startallq” on page
368

v “startmode” on
page 368

v “term” on page 369

v “trace_limit” on
page 370

v “trans_batch_sz”
on page 370

v “warnlogapi
(z/OS)” on page
370

v “warntxsz” on
page 371

add_partition (Linux, UNIX, Windows)

Default: add_partition=n

Method of changing: When Q Capture starts

The add_partition parameter specifies whether a Q Capture program starts
reading the DB2 recovery log for partitions that were added since the last time the
Q Capture program was restarted.

Specify add_partition=y when starting a Q Capture program to have the Q
Capture program read the log. On each new partition, when the Q Capture
program is started in warm start mode, Q Capture will read the log file starting
from the first log sequence number (LSN) that DB2 used after the first database
CONNECT statement is issued for the DB2 instance.

Oracle sources: The add_partition parameter does not apply to Q Capture on
Oracle sources, and has no effect if specified.

arm (z/OS)

Default: None

Method of changing: When Q Capture starts

Specifies a three-character alphanumeric string that is used to identify a single
instance of the Q Capture program to the Automatic Restart Manager. The value
that you supply is appended to the ARM element name that Q Capture generates
for itself: ASNQCxxxxyyyy (where xxxx is the data-sharing group attach name, and
yyyy is the DB2 member name). You can specify any length of string for the arm

352 Replication and Event Publishing Guide and Reference

parameter, but the Q Capture program will concatenate only up to three characters
to the current name. If necessary, the Q Capture program will pad the name with
blanks to make a unique 16-byte name.

autostop

Default: autostop=n

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The autostop parameter controls whether a Q Capture program terminates when it
reaches the end of the active DB2 or Oracle redo log. By default, a Q Capture
program does not terminate after reaching the end of the log.

Typically, the Q Capture program is run as a continuous process whenever the
source database is active, so in most cases you would keep the default
(autostop=n). Set autostop=y only for scenarios where the Q Capture program is
run at set intervals, such as when you synchronize infrequently connected systems,
or in test scenarios.

If you set autostop=y, the Q Capture program retrieves all eligible transactions and
stops when it reaches the end of the log. You need to start the Q Capture program
again to retrieve more transactions.

caf (z/OS)

Default: caf =n

Method of changing: When Q Capture starts

The Q Capture program runs with the default of Recoverable Resource Manager
Services (RRS) connect (caf =n). You can override this default and prompt the Q
Capture program to use the Call Attach Facility (CAF) by specifying the caf =y
option. This option specifies that the Q Capture program overrides the default RRS
connect and runs with CAF connect.

If RRS is not available you receive a message and the Q Capture program switches
to CAF. The message warns that the program was not able to connect because RRS
is not started. The program attempts to use CAF instead. The program runs
correctly with CAF connect.

capture_path

Default: None

Methods of changing: When Q Capture starts; IBMQREP_CAPPARMS table

The capture_path parameter specifies the directory where a Q Capture program
stores its work files and log file. By default, the path is the directory where you
start the program. You can change this path.

Because the Q Capture program is a POSIX application, the default path
depends on how you start the program:

Chapter 24. System commands for Q Replication and Event Publishing 353

v If you start a Q Capture program from a USS command line prompt, the
path is the directory where you started the program.

v If you start a Q Capture program using a started task or through JCL,
the default path is the home directory in the USS file system of the user
ID that is associated with the started task or job.

To change the path, you can specify either a path name or a high-level
qualifier (HLQ), such as //QCAPV9. When you use an HLQ, sequential files
are created that conform to the file naming conventions for z/OS
sequential data set file names. The sequential data sets are relative to the
user ID that is running the program. Otherwise these file names are similar
to the names that are stored in an explicitly named directory path, with the
HLQ concatenated as the first part of the file name. For example,
sysadm.QCAPV9.filename. Using an HLQ might be convenient if you want
to have the Q Capture log and LOADMSG files be system-managed (SMS).

If you want the Q Capture started task to write to a .log data set with a
user ID other than the ID that is executing the task (for example
TSOUSER), you must specify a single quotation mark (‘) as an escape
character when using the SYSIN format for input parameters to the started
task. For example, if you wanted to use the high-level qualifier JOESMITH,
then the user ID TSOUSER that is running the Q Capture program must
have RACF authority to write data sets by using the high-level qualifier
JOESMITH, as in the following example:
//SYSIN DD *
CAPTURE_PATH=//’JOESMITH
/*

If you start a Q Capture program as a Windows service, by default the
program starts in the sqllib\bin subdirectory under the installation
directory.

capture_schema

Default: capture_schema=ASN

The capture_schema parameter lets you distinguish between multiple instances of
the Q Capture program on a Q Capture server.

The schema identifies one Q Capture program and its control tables. Two Q
Capture programs with the same schema cannot run on a server.

Creating more than one copy of a Q Capture program on a Q Capture server
allows you to improve throughput by dividing data flow into parallel streams, or
meet different replication requirements while using the same source.

capture_server

Default: None

Default: capture_server=value of DB2DBDFT environment
variable, if it is set

The capture_server parameter identifies the database or subsystem where a Q
Capture program runs, and where its control tables are stored. The control tables
contain information about sources, Q subscriptions, WebSphere MQ queues, and

354 Replication and Event Publishing Guide and Reference

user preferences. Because a Q Capture program reads the source database log, it
must run at the source database or subsystem.

Oracle sources: If you do not specify a Q Capture server, this parameter defaults
to the value of the ORACLE_SID environment variable.

You must specify the capture_server parameter. For data
sharing you can provide the group attach name instead of a subsystem name so
that you can run the replication job in any LPAR.

commit_interval

Default: commit_interval=500 milliseconds (a half second) for DB2 sources; 1000
milliseconds (1 second) for Oracle sources

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The commit_interval parameter specifies how often, in milliseconds, a Q Capture
program commits transactions to WebSphere MQ. By default, a Q Capture program
waits 500 milliseconds (a half second) between commits. At each interval, the Q
Capture program issues an MQCMIT call. This signals the WebSphere MQ queue
manager to make messages that were placed on send queues available to the Q
Apply program or other user applications.

All of the transactions that are grouped within an MQCMIT call are considered to
be a WebSphere MQ unit of work,'or transaction. Typically, each WebSphere MQ
transaction contains several database transactions. If the database transaction is
large, the Q Capture program will not issue an MQCMIT call even if the commit
interval is reached. The Q Capture program will commit only after the entire large
database transaction is put on the send queue.

When the number of committed database transactions that are read by a Q Capture
program reaches 128, the program issues an MQCMIT call regardless of your
setting for commit_interval.

Finding the best commit interval is a compromise between latency (the delay
between the time transactions are committed at the source and target databases)
and CPU overhead associated with the commit process:

To reduce latency, shorten the commit interval
Transactions will be pushed through with less delay. This is especially
important if changes to the source database are used to trigger events. If
the number of transactions published per commit interval is high, you
might want to have the Q Capture program commit fewer transactions at a
time to WebSphere MQ. See Determining the number of transactions
published per commit interval for more detail.

To reduce CPU overhead, lengthen the commit interval
A longer commit interval lets you send as many database transactions as
possible for each WebSphere MQ transaction. A longer commit interval also
reduces I/O that is caused by logging of messages. If you lengthen the
commit interval, you might be limited by the memory allocated for a Q
Capture program, the maximum depth (number of messages) for send
queues, and the queue manager's maximum uncommitted messages

Chapter 24. System commands for Q Replication and Event Publishing 355

(MAXUMSGS) attribute. If a Q Capture program waits longer between
commits, the publication of some transactions might be delayed, which
could increase latency.

hs (z/OS)

Default: hs=n

Method of changing: When Q Capture starts

The hs parameter specifies whether the Q Capture program creates one or more
spill files in hiperspace (high performance data space) if Q Capture exceeds its
memory limit during an attempt to write a row in memory. By default (hs=n) Q
Capture creates the spill file on disk or virtual input/output (VIO).

Recommendation: Allocate enough memory to the Q Capture job to avoid the
need for spill files.

ignore_transid

Default: None

Method of changing: When Q Capture starts

The ignore_transid=transaction_ID parameter specifies that the Q Capture
program ignores the transaction that is identified by transaction_ID. The
transactions are not replicated or published. You can use this parameter if you
want to ignore a very large transaction that does not need to be replicated, for
example a large batch job. The value for transaction_ID is a 10-byte hexadecimal
identifier in the following format:

0000:xxxx:xxxx:xxxx:mmmm

Where xxxx:xxxx:xxxx is the transaction ID, and mmmm is the data-sharing
member ID. You can find the member ID in the last 2 bytes of the log
record header in the LOGP output. The member ID is 0000 if data-sharing
is not enabled.

nnnn:0000:xxxx:xxxx:xxxx

Where xxxx:xxxx:xxxx is the transaction ID, and nnnn is the partition
identifier for partitioned databases (this value is 0000 if for non-partitioned
databases).

Tip: The shortened version transid is also acceptable for this parameter.

igncasdel

Default: igncasdel=n

Method of changing: When Q Capture starts; at the Q subscription level using
replication administration tools (value stored in IBMQREP_SUBS table)

The igncasdel parameter specifies whether the Q Capture program replicates
delete operations that result from the delete of parent rows on tables with

356 Replication and Event Publishing Guide and Reference

referential integrity relationships (cascading deletes). You can use this option to
reduce the amount of data that needs to be propagated when the delete of the
parent row will be cascaded at the target.

By default, when a parent row is deleted Q Capture replicates the delete
operations from child rows. The Q Apply program reorders transactions to ensure
that no child row is deleted at the target before its parent row is deleted. If you
specify igncasdel=y, Q Capture replicates only the delete of the parent row. Use
this option to avoid redundant delete operations by the Q Apply program when
replication of the parent row delete would cause cascading deletes at the target
table.

You can also specify this option at the Q subscription level by using the replication
administration tools to change the value of the IGNCASDEL column in the
IBMQREP_SUBS table from the default of N to Y. If you specify Y in the
IBMQREP_SUBS table, the setting for the igncasdel parameter is overridden for
the individual Q subscription.

ignsetnull

Default: igntrig=n

Method of changing: When Q Capture starts; at the Q subscription level using
replication administration tools (value stored in IBMQREP_SUBS table)

The ignsetnull parameter specifies that the Q Capture program should not
replicate UPDATE operations that result from the deletion of parent rows in tables
with referential integrity relationships when the ON DELETE SET NULL rule is in
effect.

By default, when a parent row is deleted and the ON DELETE SET NULL rule is
in effect, Q Capture replicates these UPDATE operations in which one or more
column values are set to NULL. If ON DELETE SET NULL is in effect at the target,
you can set ignsetnull=y and Q Capture ignores these UPDATE operations.

You can also specify this option at the Q subscription level by using the replication
administration tools to change the value of the IGNSETNULL column in the
IBMQREP_SUBS table from the default of N to Y. If you specify Y in the
IBMQREP_SUBS table, the setting for the ignsetnull parameter is overridden for
the individual Q subscription.

igntrig

Default: igntrig=n

Method of changing: When Q Capture starts; at the Q subscription level using
replication administration tools (value stored in IBMQREP_SUBS table)

The igntrig parameter specifies that the Q Capture program should discard
trigger-generated rows. When a trigger on the source table generates a secondary
SQL statement after an SQL operation, both the initial and secondary SQL
statements are replicated to the target. These secondary statements create conflicts
because the trigger on the target table generates the same rows when source
changes are applied. Setting igntrig=y prompts the Q Capture program to not
capture any trigger-generated SQL statements.

Chapter 24. System commands for Q Replication and Event Publishing 357

You can also specify the option at the Q subscription level by changing the value
of the IGNTRIG column in the IBMQREP_SUBS table from the default of n to y. If
you specify Y in the IBMQREP_SUBS table, the setting for the igntrig parameter is
overridden for the individual Q subscription.

If you use igntrig=n, be sure to define triggers on target tables as identical to
triggers on the source table. If not, conflicts can occur when Q Apply updates a
target table that has a non-matching trigger.

You can also specify this option at the Q subscription level by using the replication
administration tools to change the value of the IGNTRIG column in the
IBMQREP_SUBS table from the default of N to Y. If you specify Y in the
IBMQREP_SUBS table, the setting for the igntrig parameter is overridden for the
individual Q subscription.

Note about INSTEAD OF triggers: If the source table is updated by INSTEAD OF
triggers on a view and the igntrig parameter is set to y, the Q Capture program
does not replicate the change to the source table.

lob_send_option

Default: lob_send_option=I

Methods of changing: When Q Capture starts; IBMQREP_CAPPARMS table

The lob_send_option parameter specifies whether the Q Capture program sends
LOB values inline (I) within a transaction message or in a separate message (S). By
default, large object (LOB) values are sent within the transaction message. The Q
Capture program manages the amount of memory that it consumes when it
replicates or publishes LOB data types. If you are replicating LOB data, the value
of max_message_size determines how often the Q Capture program accesses the
source table to fetch the LOB data in multiple chunks (one chunk per message). A
low maximum message size can impede Q Capture performance in replicating or
publishing LOB data.

Linux, UNIX, Windows: Starting with DB2 Version 10.1, the Q Capture program
can fetch LOB data directly from the DB2 recovery log even if the data exceeds the
value of the INLINE LENGTH option in the definition of a LOB column in a
CREATE TABLE or ALTER TABLE statement. In previous versions, Q Capture
connected to the source database to fetch LOB data if the data was larger than
INLINE LENGTH. See Improving performance when replicating LOB data for
more details.

If you set lob_send_option=S to have LOB values sent in a separate LOB message,
the LOB values might not fit into a single LOB message. If the size of the LOB
value exceeds the maximum message size for the Q Capture program, then the
LOB message is divided into two or more smaller messages. If you expect to
replicate or publish many LOB values or BLOB values, allocate sufficient memory
and storage, and set the queue depth accordingly.

Use the following guidelines for setting max_message_size:
v One typical large transaction should fit into one message, so set the value of

max_message_size to be slightly higher than the maximum size of a typical
transaction.

358 Replication and Event Publishing Guide and Reference

v For very large transactions that exceed the value of max_message_size , ensure
that you set max_message_size so that at least one row of the transaction fits into
one message.

v The value of max_message_size must be less than or equal to the parameter
MAXMSGL, which sets the maximum message size for a queue.

When the Q Capture program is using the separate LOB mode, LOB values for all
LOB columns that are part of a Q subscription or publication are sent for every
row in a transaction. This behavior results in more WebSphere MQ messages if a
LOB value is updated multiple times in a transaction or if the
CHANGED_COLS_ONLY option in the Q subscription or publication is set to N.

LOB values for all LOB columns that are part of a Q subscription or publication
are sent for key updates regardless of the CHANGED_COLS_ONLY setting.

logrdbufsz

Default: logrdbufsz=66KB for z/OS; 256KB for Linux, UNIX, and Windows

Methods of changing: When Q Capture starts; IBMQREP_CAPPARMS table

The logrdbufsz parameter specifies the size of the buffer in KB that the Q Capture
program passes to DB2 when Q Capture retrieves log records. DB2 fills the buffer
with available log records that Q Capture has not retrieved. For partitioned
databases, Q Capture allocates a buffer of the size that is specified by logrdbufsz
for each partition.

The default values should be optimal for most situations. However, you may want
to increase this value if you have a high volume of data changes and sufficient
memory available.

logread_prefetch (Linux, UNIX, Windows)

Default: logread_prefetch=y for partitioned databases; n for nonpartitioned
databases

Method of changing: When Q Capture starts

The logread_prefetch parameter specifies whether the Q Capture program uses
separate threads to prefetch log records from each partition in a partitioned
database. By default (logread_prefetch=y), Q Capture uses separate log-reader
threads to connect to each partition. Using separate threads can increase Q Capture
throughput but might increase CPU usage.

If you specify logread_prefetch=n, a single Q Capture log reader thread connects
to all partitions.

logreuse

Default: logreuse=N

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

Chapter 24. System commands for Q Replication and Event Publishing 359

Each Q Capture program keeps a diagnostic log file that tracks its work history,
such as start and stop times, parameter changes, errors, pruning, and the points
where it left off while reading the database log.

By default, the Q Capture program adds to the existing log file when the program
restarts. This default lets you keep a history of the program's actions. If you don't
want this history or want to save space, set logreuse=y. The Q Capture program
clears the log file when it starts, then writes to the blank file.

The log is stored by default in the directory where the Q Capture program is
started, or in a different location that you set using the capture_path parameter.

The log file name is capture_server.capture_schema.QCAP.log.
For example, SAMPLE.ASN.QCAP.log. Also, if capture_path is specified with slashes
(//) to use a High Level Qualifier (HLQ), the file naming conventions of z/OS
sequential data set files apply, and capture_schema is truncated to eight characters.

The log file name is
db2instance.capture_server.capture_schema.QCAP.log. For example,
DB2.SAMPLE.ASN.QCAP.log.

Oracle sources: The log file name is capture_server.capture_schema.QCAP.log.
For example, ORASAMPLE.ASN.QCAP.log.

logstdout

Default: logstdout=n

By default, a Q Capture program writes its work history only to the log. You can
change the logstdout parameter if you want to see the program's history on the
standard output (stdout) in addition to the log.

Error messages and some log messages (initialization, stop, subscription activation,
and subscription deactivation) go to both the standard output and the log file
regardless of the setting for this parameter.

lsn

Default: None

Method of changing: When Q Capture starts

The lsn parameter specifies the log sequence number at which the Q Capture
program starts during a warm restart. You specify both the lsn and maxcmtseq
parameters to start Q Capture from a known point in the DB2 log. When
specifying the lsn parameter, you also must specify the maxcmtseq parameter in the
same command invocation, and you cannot use these parameters if the value of
startmode is cold.

This value represents the earliest log sequence number that the Q Capture program
found for which a commit or abort record has not yet been found. You can obtain
the value for lsn from the restart message by using the asnqmfmt command. You
can also use the value in the RESTART_SEQ column of the IBMQREP_CAPMON

360 Replication and Event Publishing Guide and Reference

table. If you use the latter method, choose an entry in the monitor table that is
older than the time that Q Capture stopped to ensure that any lost messages are
recaptured.

To start from the end of the log without triggering a load (full refresh) of the target
table, specify one of the following values, depending on your DB2 version:

Version 9.7 and below
lsn=FFFF:FFFF:FFFF:FFFF:FFFF and maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF.

Version 10.1 or higher with compatibility of 1001 or higher, or Version 9.8
lsn=FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF and
maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF.

You can also specify lsn and maxcmtseq without colons to save space.

maxcmtseq

Default: None

Method of changing: When Q Capture starts

The maxcmtseq parameter is used to specify the commit log record position of the
last transaction that was successfully sent by the Q Capture program before
shutdown. You can specify both the maxcmtseq and lsn parameters to start Q
Capture from a known point in the DB2 log. When specifying the maxcmtseq
parameter, you also must specify the lsn parameter in the same command
invocation, and you cannot use these parameters if the value of startmode is cold.

The value of maxcmtseq is an internal log marker that is different for each type of
database system. The marker is encoded as a 10-character string:

On z/OS, the value is the LSN of the commit log record, to which Q
Capture might append a sequence number because on z/OS with data
sharing several log records might have the same LSN.

On Linux, UNIX, and Windows, the value is a timestamp with nanosecond
precision that uniquely identifies a transaction. The value is encoded as
two integers, seconds, and nanoseconds.

You can find the value for maxcmtseq in one of these places:
v From the restart message, by using the asnqmfmt command
v From the Q Capture output log file, messages ASN7108I and ASN7109
v From the IBMQREP_APPLYMON table (OLDEST_COMMIT_LSN for z/OS

sources and OLDEST_COMMIT_SEQ for Linux, UNIX, and Windows sources)

To start from the end of the log without triggering a load (full refresh) of the target
table, specify one of the following values, depending on your DB2 version:

Version 9.7 and below
lsn=FFFF:FFFF:FFFF:FFFF:FFFF and maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF.

Version 10.1 or higher with compatibility of 1001 or higher, or Version 9.8
lsn=FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF and
maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF.

Chapter 24. System commands for Q Replication and Event Publishing 361

You can also specify lsn and maxcmtseq without colons to save space.

memory_limit

Default: memory_limit=0 on z/OS; 500 MB on Linux, UNIX, and Windows

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The memory_limit parameter specifies the amount of memory that a Q Capture
program can use to build database transactions in memory. By default, the
memory_limit is set to 0 on z/OS and the Q Capture program calculates a memory
allocation that is based on the Q Capture region size in the JCL or started task. On
Linux, UNIX, and Windows, a Q Capture program uses a maximum of 500 MB by
default. When the memory amount allocated by this parameter is used, a Q
Capture program spills in-memory transactions to a file that is located in the
capture_path directory. On z/OS, the Q Capture program spills to VIO or to the
file that is specified in the CAPSPILL DD card.

The maximum allowed value for this parameter is 100 GB.

You can adjust the memory limit based on your needs:

To improve the performance of a Q Capture program, increase the memory limit
If your goal is higher throughput, maximize the memory limit whenever
possible.

To conserve system resources, lower the memory limit
A lower memory limit reduces competition with other system operations.
However, setting the memory limit too low will use more space on your
system for the spill file and prompt more I/O that can slow your system.

You can use data in the IBMQREP_CAPMON table to find the best memory limit
for your needs. For example, check the value for CURRENT_MEMORY to see how
much memory a Q Capture program is using to reconstruct transactions from the
log. Or, check the value for TRANS_SPILLED to find out how many transactions a
Q Capture program spilled to a file when it exceeded the memory limit. You can
use the Q Capture Throughput window in the Replication Center to check these
values. See the Replication Center online help for details.

migrate (Linux, UNIX, Windows)

Default: migrate=y

Method of changing: When Q Capture starts

The migrate parameter specifies that the Q Capture program starts from the
beginning of the log after DB2 for Linux, UNIX, and Windows is upgraded. Use
this option after you upgrade DB2 to a new release, such as Version 9.5 or Version
9.7. The migrate parameter is not required after you upgrade DB2 with a fix pack.

Use the migrate parameter only the first time that Q Capture is started and specify
startmode=warmns.

362 Replication and Event Publishing Guide and Reference

monitor_interval

Default: monitor_interval=60000 milliseconds (1 minute) on z/OS and 30000
milliseconds (30 seconds) on Linux, UNIX, and Windows

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The monitor_interval parameter tells a Q Capture program how often to insert
performance statistics into two of its control tables. The IBMQREP_CAPMON table
shows statistics for overall Q Capture program performance, and the
IBMQREP_CAPQMON table shows Q Capture program statistics for each send
queue.

By default, rows are inserted into these tables every 300000 milliseconds (5
minutes). Typically, a Q Capture program commits WebSphere MQ transactions at
a much shorter interval (the default commit interval is a half second). Thus, if you
use shipped defaults for the monitor interval and commit interval, each insert into
the monitor tables contains totals for 120 commits. If you want to monitor Q
Capture activity at a more granular level, use a monitor interval that is closer to
the commit interval.

Important for Q Replication Dashboard users: When possible, you should
synchronize the Q Capture monitor_interval parameter with the dashboard
refresh interval (how often the dashboard retrieves performance information from
the Q Capture and Q Apply monitor tables). The default refresh interval for the
dashboard is 10 seconds (10000 milliseconds). If the value of monitor_interval is
higher than the dashboard refresh interval, the dashboard refreshes when no new
monitor data is available.

monitor_limit

Default: monitor_limit=10080 minutes (7 days)

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The monitor_limit parameter specifies how old the rows must be in the
IBMQREP_CAPMON and IBMQREP_CAPQMON tables before they are eligible for
pruning.

By default, rows that are older than 10080 minutes (7 days) are pruned. The
IBMQREP_CAPMON and IBMQREP_CAPQMON tables contain statistics about a
Q Capture program's activity. A row is inserted at each monitor interval. You can
adjust the monitor limit based on your needs:

Increase the monitor limit to keep statistics
If you want to keep records of the Q Capture program's activity beyond
one week, set a higher monitor limit.

Lower the monitor limit if you look at statistics frequently
If you monitor the Q Capture program's activity on a regular basis, you
probably do not need to keep one week of statistics and can set a lower
monitor limit, which prompts more frequent pruning.

Chapter 24. System commands for Q Replication and Event Publishing 363

msg_persistence

Default: msg_persistence=y

Methods of changing: When Q Capture starts; IBMQREP_CAPPARMS table

The msg_persistence parameter specifies whether a Q Capture program writes
persistent (logged) or nonpersistent (unlogged) data messages to WebSphere MQ
queues. (Data messages contain replicated data from source tables.) By default, Q
Capture uses persistent data messages. The queue manager logs persistent
messages and can recover the messages after a system failure or restart.

In some cases you might want to avoid the CPU and storage overhead of
persistent messages. In that case, specify msg_persistence=n.

The Q Capture and Q Apply program always put persistent messages onto their
administration queues. Q Capture always puts a persistent message onto its restart
queue. Therefore logging of messages on these queues is not affected by the setting
for msg_persistence.

If you created a send queue with the DEFPSIST(Y) option so that the queue carries
persistent messages by default, you can still specify msg_persistence=n and Q
Capture sends nonpersistent messages, which overrides the queue default.

If you choose nonpersistent messages and data messages are lost because of a
problem that forces the queue manager to restart, you need to do one of the
following things to keep the source and target tables synchronized:
v Stop and start the Q Capture program and specify a known point in the

recovery log so that Q Capture rereads the log at a point before the messages
were lost.

v Stop and start the Q subscription to prompt a new load (full refresh) of the
target table.

override_restartq

Default: override_restartq=n

Method of changing: When Q Capture starts

The override_restartq parameter specifies whether the Q Capture program gets
its warm start information from a data set or file rather than from the restart
message. By default, Q Capture gets its restart information from the restart
message. If you specify override_restartq=y, Q Capture reads the restart file
when it starts, and gets the starting point for each send queue and data partition
from the file. The file is saved in the directory that is specified by the capture_path
parameter, or in the directory from which Q Capture was started if nothing is
specified for capture_path. The data set name differs by platform:

capture_server.capture_schema.QCAP.QRESTART

db2_instance.capture_server.capture_schema
.QCAP.QRESTART

364 Replication and Event Publishing Guide and Reference

To use this parameter, the user ID that starts Q Capture must have the
authorization to open and read from the restart file.

part_hist_limit (Linux, UNIX, Windows)

Default: part_hist_limit=10080 minutes (seven days)

Method of changing: When Q Capture starts;

The part_hist_limit parameter specifies how long you want old data to remain in
the IBMQREP_PART_HIST table before the data becomes eligible for pruning. This
parameter also controls how far back in the log you can restart the Q Capture
program because Q Capture uses IBMQREP_PART_HIST to determine what log
records to read for a partitioned source table.

The Q Capture program uses the partition history that is stored in the
IBMQREP_PART_HIST table to help handle partition changes such as add, attach,
or detach. One row, identified by a log sequence number (LSN), is inserted for
each partition in the source table on two occasions:
v The first Q subscriptions or subscription-set member for the table is activated.
v The table is altered to add, attach, or detach a partition.

If you are replicating partitioned tables on Linux, UNIX, or Windows, ensure that
the part_hist_limit value is large enough to allow for possible recapture of past
log records in the case of a system failure or other outage.

prune_interval

Default: prune_interval=300 seconds (5 minutes)

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The prune_interval parameter determines how often a Q Capture program looks
for eligible rows to prune from the IBMQREP_CAPMON, IBMQREP_CAPQMON,
IBMQREP_SIGNAL, and IBMQREP_CAPTRACE tables. By default, a Q Capture
program looks for rows to prune every 300 seconds (5 minutes).

Your pruning frequency depends on how quickly these control tables grow, and
what you intend to use them for:

Shorten the prune interval to manage monitor tables
A shorter prune interval might be necessary if the IBMQREP_CAPMON
and IBMQREP_CAPQMON tables are growing too quickly because of a
shortened monitor interval. If these and other control tables are not pruned
often enough, they can exceed their table space limits, which forces a Q
Capture program to stop. However, if the tables are pruned too often or
during peak times, pruning can interfere with application programs that
run on the same system.

Lengthen the prune interval for record keeping
You might want to keep a longer history of a Q Capture program's
performance by pruning the IBMQREP_CAPTRACE and other tables less
frequently.

Chapter 24. System commands for Q Replication and Event Publishing 365

The prune interval works in conjunction with the trace_limit, monitor_limit, and
signal_limit parameters, which determine when data is old enough to prune. For
example, if the prune_interval is 300 seconds and the trace_limit is 10080
seconds, a Q Capture program will try to prune every 300 seconds. If the Q
Capture program finds any rows in the IBMQREP_CAPTRACE table that are older
than 10080 minutes (7 days), it prunes them.

pwdfile

Default: pwdfile=capture_path/asnpwd.aut

Method of changing: When Q Capture starts

The pwdfile parameter specifies the name of the password file that is used to
connect to multiple-partition databases. If you do not use the pwdfile parameter to
specify the name of a password file, the Q Capture program looks for a file with
the name of asnpwd.aut in the directory that is specified by the capture_path
parameter. If no capture_path parameter is specified, this command searches for
the password file in the directory from which the command was invoked.

You can create a password file by using the asnpwd command. Use the following
example to create a password file with the default name of asnpwd.aut in the
current directory: asnpwd INIT.

qfull_num_ retries

Default: qfull_num_ retries=30

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

You can use the qfull_num_ retries parameter to specify the number of times that
a Q Capture program tries to put a message on a queue when the initial MQPUT
operation fails because the queue is full. The default is 30 retries, and the
maximum is 1,000 retries. A value of 0 instructs the Q Capture program to stop
whenever an MQPUT operation fails. The alternate syntax for the
qfull_num_retries parameter is RN.

For example' the following command specifies that a Q Capture program retry the
MQPUT operation 100 times before stopping:
asnqcap capture_server=SAMPLE capture_schema=ASN1 qfull_num_retries=100

qfull_retry_delay

Default: qfull_retry_delay=250 milliseconds

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

You can use the qfull_retry_delay parameter to specify how long in milliseconds
the Q Capture program waits between MQPUT attempts when the initial MQPUT
operation fails because the queue is full. The allowed value range is 10
milliseconds to 3600000 milliseconds (1 hour). The default delay is 250 milliseconds
or the value of the commit_interval parameter, whichever is less. (The default for
commit_interval is 500 milliseconds.) If the specified value is larger than the

366 Replication and Event Publishing Guide and Reference

commit_interval value, it will be set lower to the commit_interval value. The
alternate syntax for the qfull_retry_delay parameter is RD.

For example, the following command specifies that a Q Capture program retry the
MQPUT operation 50 times before stopping, with a delay of 10000 milliseconds (10
seconds):
asnqcap capture_server=SAMPLE capture_schema=ASN1 qfull_num_retries=50
qfull_retry_delay=10000

signal_limit

Default: signal_limit=10080 minutes (7 days)

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The signal_limit parameter specifies how long rows remain in the
IBMQREP_SIGNAL table before they can be pruned.

By default, a Q Capture program prunes rows that are older than 10080 minutes (7
days) at each pruning interval.

The IBMQREP_SIGNAL table contains signals inserted by a user or a user
application. It also contains corresponding signals t'at are inserted by a Q Capture
program after it receives control messages from the Q Apply program or a user
application. The Q Capture program sees the signals when it reads the log record
for the insert into the IBMQREP_SIGNAL table.

These signals tell a Q Capture program to stop running, to activate or deactivate a
Q subscription or publication, to ignore a database transaction in the log, or to
invalidate a send queue. In addition, the LOADDONE signal tells a Q Capture
program that a target table is loaded.

You can adjust the signal limit depending on your environment. Shorten the limit
to manage the size of the IBMQREP_SIGNAL table. For bidirectional Q Replication,
the Q Apply program inserts a signal into the IBMQREP_SIGNAL table for every
transaction that it receives and applies to make sure that the Q Capture program
does not recapture the transaction. If you have a large number of bidirectional Q
subscriptions, the table might grow large and you might want to lower the default
signal limit so that it can be pruned more frequently. Lengthen the limit to use this
table for record-keeping purposes.

sleep_interval

Default: sleep_interval=500 milliseconds (0.5 seconds) for DB2 sources; 2000
milliseconds (2 seconds) for Oracle sources

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The sleep_interval parameter specifies the number of milliseconds that a Q
Capture program waits after reaching the end of the active log and assembling any
transactions that remain in memory.

Chapter 24. System commands for Q Replication and Event Publishing 367

By default, a Q Capture program sleeps for 5000 milliseconds (5 seconds). After
this interval, the program starts reading the log again. You can adjust the sleep
interval based on your environment:

Lower the sleep interval to reduce latency
A smaller sleep interval can improve performance by lowering latency (the
time that it takes for a transaction to go from source to target), reducing
idle time, and increasing throughput in a high-volume transaction
environment.

Increase the sleep interval to save resources
A larger sleep interval gives you potential CPU savings in an environment
where the source database has low traffic, or where targets do not need
frequent updates.

stale

Default: stale=3600

Method of changing: When Q Capture starts;

The stale parameter specifies the number of seconds that the Q Capture program
waits to issue a warning message or take other action after it detects a
long-running transaction with no commit or rollback log record. The program
behavior depends on the platform of the source. On z/OS, Q Capture issues
warning messages if has not seen a commit or rollback record for one hour
(stale=3600). On both z/OS and Linux, UNIX, and Windows, if a transaction has
been running for the number of seconds that are specified by stale and Q Capture
did not see any row operations in the log for the transaction, it issues warning
messages and increments the log sequence number that it considers to be the
oldest "in-flight" transaction that was not committed or rolled back. If some rows
were captured for the transaction, only warning messages are issued.

startallq

Default: startallq=y

Methods of changing: When Q Capture starts; IBMQREP_CAPPARMS table

The startallq parameter specifies whether the Q Capture program activates all
send queues during startup. You can use this parameter to keep a disabled send
queue inactive.

By default, when Q Capture starts it activates all send queues that are not already
in active (A) state. If you specify startallq=n, when Q Capture starts it does not
activate send queues that are in inactive (I) state.

startmode

Default: startmode=warmsi

Methods of changing: When Q Capture starts; IBMQREP_CAPPARMS table

The startmode parameter specifies the steps that a Q Capture program takes when
it starts. The program starts in either warm or cold mode. With a warm start, the Q
Capture program continues capturing changes where it left off after its last run

368 Replication and Event Publishing Guide and Reference

(there are three types of warm start). If you choose cold start, the program starts
reading at the end of the log. Choose from one of the four start modes, depending
on your environment:

cold The Q Capture program clears the restart queue and administration queue,
and starts processing all Q subscriptions or publications that are in N
(new) or A (active) state. With a cold start, the Q Capture program starts
reading the DB2 recovery log or Oracle redo log at the end.

Generally, use a cold start only the first time that you start a Q Capture
program. Warmsi is the recommended start mode. You can use a cold start
if this is not the first time that you started a Q Capture program, but you
want to begin capturing changes from the end of the active log instead of
from the last restart point. On a cold start, Q Capture stops and then starts
unidirectional Q subscriptions that have a load phase specified. For
bidirectional and peer-to-peer replication, Q Capture only stops the Q
subscriptions on a cold start. To start these Q subscriptions, you must use
the replication administration tools or insert a CAPSTART signal for each
Q subscription that you want to start.

Important: To avoid unwanted cold starts, be sure that this start mode is
not specified in the IBMQREP_CAPPARMS table.

warmsi (warm start; switch first time to cold start)
The Q Capture program starts reading the log at the point where it left off,
except if this is the first time that you are starting it. In that case the Q
Capture program switches to a cold start. The warmsi start mode ensures
that a Q Capture program cold starts only when it initially starts.

warmns (warm start; never switch to cold start)
The Q Capture program starts reading the log at the point where it left off.
If it cannot warm start, it does not switch to cold start. Use this start mode
to prevent a Q Capture program from cold starting unexpectedly. This start
mode allows you to repair problems (such as unavailable databases or
table spaces) that are preventing a warm start. With warmns, if a Q
Capture program cannot warm start, it shuts down and leaves all tables
intact.

During warm starts, the Q Capture program will only load those Q subscriptions
or publications that are in not in I (inactive) state.

term

Default: term=y

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The term parameter controls whether a Q Capture program keeps running when
DB2 or the queue manager are unavailable.

By default (term=y), the Q Capture program terminates when DB2 or the queue
manager are unavailable. You can change the default (term=n) if you want a Q
Capture program to keep running while DB2 or the queue manager are
unavailable. When DB2 or the queue manager are available, Q Capture begins
sending transactions where it left off without requiring you to restart the program.

Chapter 24. System commands for Q Replication and Event Publishing 369

Oracle sources: The default value for term is n (the Q Capture program continues
to run when the Oracle database is unavailable). Setting the value to y has no
effect.

Note: Regardless of the setting for term, if the WebSphere MQ sender or receiver
channels stop, the Q Capture program keeps running because it cannot detect
channel status. This situation causes replication to stop because the two queue
managers cannot communicate. If you find that replication has stopped without
any messages from the Q Replication programs, check the channel status by using
the WebSphere MQ DISPLAY CHSTATUS command.

trace_limit

Default: trace_limit=10080 minutes (7 days)

Methods of changing: When Q Capture starts; while Q Capture is running;
IBMQREP_CAPPARMS table

The trace_limit parameter specifies how long rows remain in the
IBMQREP_CAPTRACE table before they can be pruned.

The Q Capture program inserts all informational, warning, and error messages into
the IBMQREP_CAPTRACE table. By default, rows that are older than 10080
minutes (7 days) are pruned at each pruning interval. Modify the trace limit
depending on your need for audit information.

trans_batch_sz

Default: trans_batch_sz=1

Methods of changing: When Q Capture starts;

The trans_batch_sz parameter specifies the number of source database
transactions that Q Capture groups together in a WebSphere MQ message. You can
use this parameter to reduce CPU consumption at the source when the replication
workload typically consists of small transactions, for example one or two rows.

The default is 1 (no batching) and the maximum batch size is 128. Q Capture
respects the value of trans_batch_sz unless the Q Capture commit interval is
reached before the number of transactions reaches this value, or unless the total
size of transactions in the batch exceeds the value of the max_message_size
parameter for the send queue or the value of the WebSphere MQ maximum
message length (MAXMSGL) for the send queue.

Note: Using this parameter in combination with other parameters or
consistent-change data (CCD) targets might product undesired results. For details,
see trans_batch_sz parameter.

warnlogapi (z/OS)

Default: warnlogapi=0

Methods of changing: When Q Capture starts; IBMQREP_CAPPARMS table

The warnlogapi parameter specifies the number of milliseconds that the Q Capture
program waits for the DB2 for z/OS instrumentation facility interface (IFI) or DB2

370 Replication and Event Publishing Guide and Reference

for Linux, UNIX, and Windows log read API to return log records before Q
Capture prints a warning to the standard output.

warntxsz

Default: warntxsz=0 MB

Methods of changing: When Q Capture starts

You can use the warntxsz parameter to detect very large transactions. This
parameter prompts the Q Capture program to issue a warning message when it
encounters transactions that are larger than a specified size. You provide a
threshold value in megabytes, and transactions that exceed the threshold prompt a
warning message. Q Capture issues multiple warning messages if the transaction
size is a multiple of the warntxsz value. For example, if you set warntxsz to 10 MB
and Q Capture encounters a 30 MB transaction, three warnings are issued (one for
10 MB, one for 20 MB, and one for 30 MB).

Q Capture issues the ASN0664W message when the size of a transaction exceeds
the warntxsz value. The default value of 0 MB means warnings are never issued.

Examples of asnqcap usage
These examples illustrate how to use the asnqcap command.

Overriding the default start mode and log parameters

To start a Q Capture program on a server called sourcedb with a schema of alpha,
to start the program using the cold start mode, and to temporarily override the
default settings for logreuse and logstdout, issue the following command:
asnqcap capture_server=sourcedb capture_schema="alpha" startmode=cold
logreuse=y logstdout=y

Overriding the default commit interval

To start a Q Capture program and instruct it to commit messages on queues more
frequently than the default, issue the following command:
asnqcap capture_server=sourcedb capture_schema="alpha" commit_interval=250

Changing the memory allocation

To start a Q Capture program and temporarily increase the default amount of
memory that it uses to build transactions, issue the following command:
asnqcap capture_server=sourcedb capture_schema="alpha" memory_limit=64

Specifying the log and work file location

To start a Q Capture program and direct its work files to the /home/files/qcapture
directory, issue the following command:
asnqcap capture_server=sourcedb capture_schema="alpha"
capture_path="/home/files/qcapture"

Chapter 24. System commands for Q Replication and Event Publishing 371

Specifying lsn and maxcmtseq

To start a Q Capture program on a server named testdb, and to specify that after a
warm restart the program start at a log sequence number (lsn) of
0000:0000:0000:115b:7704 and maxcmtseq of 41c2:2264:0000:0004:0000, issue the
following command:
asnqcap capture_server=testdb lsn=0000:0000:0000:115b:7704
maxcmtseq=41c2:2264:0000:0004:0000:

Starting from the end of the log

To start a Q Capture program from the end of the log without triggering a load
(full refresh) of the target table, issue the following command:
asnqcap capture_server=testdb lsn=FFFF:FFFF:FFFF:FFFF:FFFF
maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF

Ignoring a specific transaction

To start a Q Capture program on z/OS data sharing and specify that the program
ignore a transaction with a transaction ID of BD71:1E23:B089 (the data-sharing
member ID is 0001), issue the following command:
asnqcap capture_server=sample capture_schema=ASN
ignore_transid=0000:BD71:1E23:B089:0001

asnoqcap: Starting a Q Capture program for an Oracle database
Use the asnoqcap command to start a Q Capture program for Oracle databases on
Linux, UNIX, or Windows systems. Run this command at an operating system
prompt or in a shell script. Any startup parameters that you specify will apply to
this session only.

After you start the Q Capture program, it runs continuously until you stop it or it
detects an unrecoverable error.

Syntax

�� asnoqcap capture_server=db_name
capture_schema=schema

�

�
capture_path=path n

autostop= y
commit_interval=n

�

�
ignore_transid=transaction_ID I

lob_send_option= S

�

�
n

logreuse= y
n

logstdout= y
lsn=n maxcmtseq=n

�

�
memory_limit=n monitor_interval=n monitor_limit=n

�

372 Replication and Event Publishing Guide and Reference

�
asnpwd.aut

pwdfile= filename
prune_interval=n qfull_num_retries=n

�

�
qfull_retry_delay=n signal_limit=n sleep_interval=n

�

�
stale=n y

startallq= n
warmsi

startmode= warmns
cold

�

�
y

term= n
trace_limit=n

��

Parameters

The following table defines the invocation parameters for the asnoqcap command.

Table 39. Definitions for asnoqcap invocation parameters

Parameter Definition

capture_server=dbname Specifies the name of the database that contains the Q
Capture control tables.

If you do not specify a Q Capture server, this parameter
defaults to the value of the ORACLE_SID environment
variable.

capture_schema=schema Specifies a name that identifies the Q Capture program that
you want to start. The default schema is ASN.

capture_path=path Specifies the location where you want a Q Capture program
to write its log and work files. The default is the directory
where you invoked the asnoqcap command. This location is
an absolute path name, and you must enclose it in double
quotation marks to preserve case.

autostop=y/n Specifies whether a Q Capture program stops after reaching
the end of the active Oracle redo log.

y The Q Capture program stops when it reaches the
end of the active Oracle redo log.

n (default)
The Q Capture program does not stop after reaching
the end of the active Oracle redo log.

commit_interval=n Specifies how often, in milliseconds, a Q Capture program
issues an MQCMIT call. This call signals the WebSphere MQ
queue manager to make data messages and informational
messages that have been placed on queues available to a Q
Apply program or subscribing application. The default is
1000 milliseconds (1 second).

Chapter 24. System commands for Q Replication and Event Publishing 373

Table 39. Definitions for asnoqcap invocation parameters (continued)

Parameter Definition

ignore_transid=
transaction_ID

Specifies that the Q Capture program ignores the transaction
that is identified by transaction_ID. The transactions are not
replicated or published.

The transaction ID is the value of XID from the
V$CONTENTS view of the Oracle LogMiner utility. The ID is
a RAW(8) value. When displayed in text, the transaction ID is
formatted as a hexadecimal string (16 digits total).
Tip: The shortened version transid is also acceptable for this
parameter.

lob_send_option=I/S Specifies whether the Q Capture program sends LOB values
inlined (I) within a transaction message, or the Q Capture
program sends LOB values in a separate message (S). By
default, LOB values are sent within the transaction message.

logreuse=y/n Specifies whether a Q Capture program reuses or appends
messages to its diagnostic log file. The log file name is
capture_server.capture_schema.QCAP.log.

y On restart, the Q Capture program reuses its log file
by clearing the file and then writing to the blank file.

n (default)
The Q Capture program appends messages to the
log file, even after the Q Capture program is
restarted.

logstdout=y/n Specifies whether a Q Capture program sends log messages
to both its diagnostic log file and the console.

y The Q Capture program sends log messages to both
its log file and the console (stdout).

n (default)
The Q Capture program directs most log messages
to the log file only.

Initialization, stop, and subscription activation and
deactivation messages go to both the console (stdout) and the
log file regardless of the setting for this parameter.

374 Replication and Event Publishing Guide and Reference

Table 39. Definitions for asnoqcap invocation parameters (continued)

Parameter Definition

lsn=n Specifies the log record from which the Q Capture program
starts reading during a warm restart. This value represents
the earliest log record that the Q Capture program found for
which a commit or abort record was not yet found.

You can find the value for the lsn parameter in the ASN7108I
and ASN7109I messages. For example, in the following
message the value for lsn is "the lowest log sequence number
of a transaction still to be committed" or
0000:0000:0F1B:8629:0000:

2010-03-08-13.34.36.913067 ASN7108I "Q Capture" :
"ASN3" : "WorkerThread" : At program initialization,
the highest log sequence number of a successfully
processed transaction is "0000:0000:0F1B:8486:0000"
and the lowest log sequence number of a transaction
still to be committed is "0000:0000:0F1B:8629:0000".

The lsn value consists of five sets of four hexadecimal
characters, with the first four sets representing the Oracle
system change number (SCN) and the last set a sequence
number that is generated by Q Capture. For example, the
following lsn value combines the hex version of SCN 123456
(1E240) with a sequence number of 0000:

Hex of SCN 123456 Sequence number
0000:0000:0001:E240: 0000

Q Capture ignores the leading zeros and colons (:). You could
also specify the above lsn value in the following ways:

lsn=1E2400000
lsn=1E240:0000
lsn=1:E240:0000
lsn=000000000001E2400000
lsn=0000:0000:0001:E240:0000

If you specify 0 for the lsn and maxcmtseq parameters, Q
Capture starts reading the log at the current SCN. You can
specifiy the lsn value from the ASN7108I or ASN7109I
message for both lsn and maxcmtseq, or specify the value
from the message for lsn and maxcmtseq=0, and Q Capture
starts reading at the given log sequence number.

Specify lsn=FFFF:FFFF:FFFF:FFFF:FFFF to start from the end
of the log without triggering a load (full refresh) of the target
table.

Chapter 24. System commands for Q Replication and Event Publishing 375

Table 39. Definitions for asnoqcap invocation parameters (continued)

Parameter Definition

maxcmtseq=n Specifies the newest log record from a successfully committed
transaction that the Q Capture program read during its last
run. You can use the maxcmtseq value along with the value
for the lsn parameter to start Q Capture from a known point
in the log.

You can find this value in the ASN7108I and ASN7109I
messages. For example, in the following message the value
for maxcmtseq is "the highest log sequence number of a
successfully processed transaction" or
0000:0000:0F1B:8486:0000:

2010-03-08-13.34.36.913067 ASN7108I "Q Capture" :
"ASN3" : "WorkerThread" : At program initialization,
the highest log sequence number of a successfully
processed transaction is "0000:0000:0F1B:8486:0000"
and the lowest log sequence number of a transaction
still to be committed is "0000:0000:0F1B:8629:0000".

The format of the maxcmtseq value is the same as that of lsn
(see above).

If you build the maxcmtseq value manually, you can specify
the sequence number as 0000 because Q Capture starts
reading the first log record from a given SCN. If you use the
value in the ASN7108I and ASN7109I messages, the sequence
number might be other than 0000.

If you specify 0 for the lsn and maxcmtseq parameters, Q
Capture starts reading the log at the current SCN.

memory_limit=n Specifies the amount of memory, in megabytes, that a Q
Capture program can use to build transactions. After this
allocation is used, in-memory transactions spill to a file. The
default is 500 MB.

The maximum allowed value for this parameter is 100 GB.

msg_persistence=y/n Specifies whether a Q Capture program writes persistent
(logged) messages to WebSphere MQ queues.

y (default)
Q Capture write persistent messages to all queues.
The messages are logged by the queue manager and
can be recovered.

n Q Capture write nonpersistent messages to all
queues. The messages are not logged and cannot be
recovered.

Note: If you specify msg_persistence=n, ensure that queues
are empty before stopping the queue manager by first
stopping Q Capture and then verifying that Q Apply has
emptied all queues.

376 Replication and Event Publishing Guide and Reference

Table 39. Definitions for asnoqcap invocation parameters (continued)

Parameter Definition

monitor_interval=n Specifies how often, in milliseconds, a Q Capture program
adds a row to the IBMQREP_CAPMON and
IBMQREP_CAPQMON tables. The default is 30000
milliseconds (30 seconds).
Important for Q Replication Dashboard users: When
possible, you should synchronize the Q Capture
monitor_interval parameter with the dashboard refresh
interval (how often the dashboard retrieves performance
information from the Q Capture and Q Apply monitor
tables). The default refresh interval for the dashboard is 10
seconds (10000 milliseconds). If the value of
monitor_interval is higher than the dashboard refresh
interval, the dashboard refreshes when no new monitor data
is available.

monitor_limit=n Specifies the number of minutes that rows remain in the
IBMQREP_CAPMON and the IBMQREP_CAPQMON tables
before they can be pruned. At each pruning interval, the Q
Capture program prunes rows in these tables if they are older
than this limit based on the current timestamp. The default is
10080 minutes (seven days).

pwdfile=filename Specifies the name of the password file that is used to
connect to multiple partition databases. If you do not specify
a password file, the default is asnpwd.aut.

This command searches for the password file in the directory
specified by the capture_path parameter. If no capture_path
parameter is specified, this command searches for the
password file in the directory where the command was
invoked.

asnpwd: Creating and maintaining password files describes
how to create and change a password file.

prune_interval=n Specifies how often, in seconds, a Q Capture program looks
for rows that are old enough to prune in the
IBMQREP_SIGNAL, IBMQREP_CAPTRACE,
IBMQREP_CAPMON and IBMQREP_CAPQMON tables. The
default is 300 seconds (five minutes).

qfull_num_ retries=n Specifies the number of retries to attempt. The default is 30
retries, and the maximum is 1,000 retries. A value of 0
instructs the Q Capture program to stop whenever an
MQPUT operation fails. The alternate syntax for the
qfull_num_retries parameter is RN.

qfull_retry_delay=n Specifies how long in milliseconds the Q Capture program
waits between MQPUT attempts. The allowed value range is
10 milliseconds to 3600000 milliseconds (1 hour). The default
delay is 250 milliseconds or the value of the commit_interval
parameter, whichever is less. (The default for
commit_interval is 500 milliseconds.) The alternate syntax for
the qfull_retry_delay parameter is RD.

signal_limit=n Specifies the number of minutes that rows remain in the
IBMQREP_SIGNAL table before they can be pruned. At each
pruning interval, the Q Capture program prunes rows in the
IBMQREP_SIGNAL table if they are older than the signal
limit based on the current timestamp. The default is 10080
minutes (seven days).

Chapter 24. System commands for Q Replication and Event Publishing 377

Table 39. Definitions for asnoqcap invocation parameters (continued)

Parameter Definition

sleep_interval=n Specifies the number of milliseconds that a Q Capture
program is idle after processing the active log and any
transactions that remain in memory. The default is 2000
milliseconds (2 seconds).

stale=n Specifies the number of seconds that the Q Capture program
waits to issue a warning message or take other action after it
detects a long-running transaction with no commit or rollback
log record. The program behavior depends on the platform of
the source. If a transaction has been running for the number
of seconds that are specified by stale and Q Capture did not
see any row operations in the log for the transaction, it issues
warning messages, does not replicate the transaction, and
increments the log sequence number that it considers to be
the oldest "in-flight" transaction that was not committed or
rolled back. If some rows were captured for the transaction,
only warning messages are issued.

startallq=y/n Specifies whether the Q Capture program activates all send
queues during startup. You can use this parameter to keep a
disabled send queue inactive.

y (default)
When the Q Capture program starts, it activates all
send queues that are not already in active (A) state.

n When the Q Capture program starts, it does not
activate send queues that are in inactive (I) state.

startmode=mode Specifies the actions that a Q Capture program takes when it
starts.

warmsi (default)
The Q Capture program starts reading the log at the
point where it left off, except when you start the
program for the first time. When you start the
program for the first time, the Q Capture program
switches to a cold start. The warmsi start mode
ensures that the Q Capture program cold starts only
when it initially starts.

warmns
The Q Capture program starts reading the log at the
point where it left off. If the Q Capture program
cannot warm start, it does not switch to cold start.
The warmns start mode prevents the Q Capture
program from cold starting unexpectedly. When the
Q Capture program warm starts, it resumes
processing where it ended. If errors occur after the Q
Capture program starts, the program terminates and
leaves all tables intact.

cold The Q Capture program clears the restart queue and
administration queue, and starts processing all Q
subscriptions or publications that are in N (new) or
A (active) state. With a cold start, the Q Capture
program starts reading the Oracle active redo log at
the end.

During warm starts, the Q Capture program will load only
those Q subscriptions or publications that are not in I
(inactive) state.

378 Replication and Event Publishing Guide and Reference

Table 39. Definitions for asnoqcap invocation parameters (continued)

Parameter Definition

term=y/n Specifies whether the Q Capture program terminates if the
source database is quiesced. The term parameter has no effect
on Oracle sources. The default value is N, which indicates
that the capture program continues running if Oracle is
quiesced or stopped. When Oracle is taken out of quiesce
mode, the Q Capture program continues processing at the
point where it left off when Oracle was quiesced. If the
Oracle source is shut down and restarted, the Q Capture
program must be stopped and restarted.

trace_limit=n Specifies the number of minutes that rows remain in the
IBMQREP_CAPTRACE table before they can be pruned. At
each pruning interval, the Q Capture program prunes rows in
this table if they are older than the trace limit based on the
current timestamp. The default is 10080 minutes (seven days).

Examples for asnoqcap

The following examples illustrate how to use the asnoqcap command.

Example - Overriding the default start mode and log parameters

To start a Q Capture program on a server called sourcedb with a schema of alpha,
and to start the program in the cold start mode, and to temporarily override the
default settings for logreuse and logstdout, issue the following command:
asnoqcap capture_server=sourcedb capture_schema="alpha" startmode=cold
logreuse=y logstdout=y

Example - Overriding the default commit message interval

To start a Q Capture program and instruct it to commit messages on queues more
frequently than the default, issue the following command:
asnoqcap capture_server=sourcedb capture_schema="alpha" commit_interval=250

Example - Changing the memory allocation

To start a Q Capture program and temporarily increase the default amount of
memory that it uses to build transactions, issue the following command:
asnoqcap capture_server=sourcedb capture_schema="alpha" memory_limit=64

Example - Specifying the log and work file location

To start a Q Capture program and direct its work files to the /home/files/qcapture
directory, issue the following command:
asnoqcap capture_server=sourcedb capture_schema="alpha"
capture_path="/home/files/qcapture"

Example - Specifying lsn and maxcmtseq

To start a Q Capture program on a server named testdb, and to specify that after a
warm restart that the program start at an Oracle system change number (specified
by the lsn parameter) of 0000:0000:0F1B:8629:0000 and maxcmtseq of
0000:0000:0F1B:8486:0000, issue the following command:

Chapter 24. System commands for Q Replication and Event Publishing 379

asnoqcap capture_server=testdb lsn=0000:0000:0F1B:8629:0000
maxcmtseq=0000:0000:0F1B:8486:0000

Example - Starting from the end of the log

To start a Q Capture program from the end of the log without triggering a load
(full refresh) of the target table, issue the following command:
asnoqcap capture_server=testdb lsn=FFFF:FFFF:FFFF:FFFF:FFFF
maxcmtseq=FFFF:FFFF:FFFF:FFFF:FFFF

Example - Ignoring a specific transaction

To start a Q Capture program on an Oracle server and specify that the program
ignore a transaction with a transaction ID of BD71:1E23:B089:0001, issue the
following command:
asnoqcap capture_server=ora_sample capture_schema=ASN
ignore_transid=BD71:1E23:B089:0001

asnqccmd: Working with a running Q Capture program
Use asnqccmd to send a command to a running Q Capture program on Linux,
UNIX, Windows, and UNIX System Services (USS) on z/OS. Run this command at
an operating system prompt or in a shell script.

For information on using the MVS™ MODIFY command to send commands to a
running Q Capture program on z/OS, see Working with running Q Replication
and Event Publishing programs by using the MVS MODIFY command.

Syntax

�� asnqccmd capture_server=db_name
capture_schema=schema

�

� chgparms parameters
prune
qryparms
reinit
reinitq=send_queue
startq send_queue

all
stopq send_queue

captureupto= YYYY-MM-DD-HH.MM.SS.mmmmmm stopafter= data_sent
current_timestamp data_applied
eol

all
status

show details
stop

captureupto= YYYY-MM-DD-HH.MM.SS.mmmmmm stopafter= data_sent
current_timestamp data_applied
eol

��

Parameters:

n
autostop= y

commit_interval=n n
logreuse= y

�

�
n

logstdout= y
memory_limit=n monitor_interval=n

�

380 Replication and Event Publishing Guide and Reference

�
monitor_limit=n prune_interval=n signal_limit=n

�

�
sleep_interval=n y

term= n
trace_limit=n

Parameters

Table 40 defines the invocation parameters for the asnqccmd command.

Table 40. Definitions for asnqccmd invocation parameters

Parameter Definition

capture_server=db_name Specifies the name of the database or subsystem that contains
the Q Capture control tables.

Specifies the name of the DB2
subsystem where the Q Capture program is running. For data
sharing, the value of capture_server might be the group
attach name that was used to run Q Capture in any LPAR
without changing the JCL for the started task.

If you do not specify a Q Capture
server, this parameter defaults to the value from the
DB2DBDFT environment variable.

capture_schema=schema Specifies a name that identifies the Q Capture program that
you want to work with.

Chapter 24. System commands for Q Replication and Event Publishing 381

Table 40. Definitions for asnqccmd invocation parameters (continued)

Parameter Definition

chgparms Specify to change one or more of the following operational
parameters of a Q Capture program while it is running:

v autostop

v commit_interval

v logreuse

v logstdout

v memory_limit

v monitor_interval

v monitor_limit

v prune_interval

v qfull_num_retries

v qfull_retry_delay

v signal_limit

v sleep_interval

v term

v trace_limit

Important: The parameter that you are changing must
immediately follow the chgparms parameter.

Restriction: The value of memory_limit
cannot be altered while the Q Capture program is running. To
change the value you must stop the Q Capture program.

You can specify multiple parameters in one asnqccmd
chgparms command, and you can change these parameter
values as often as you want. The changes temporarily
override the values in the IBMQREP_CAPPARMS table, but
they are not written to the table. When you stop and restart
the Q Capture program, it uses the values in
IBMQREP_CAPPARMS. “Descriptions of asnqcap
parameters” on page 351 includes details about the
parameters that you can override with this command.

prune Specify to instruct a Q Capture program to prune the
IBMQREP_CAPMON, IBMQREP_CAPQMON,
IBMQREP_CAPTRACE, and IBMQREP_SIGNAL tables once.
This pruning is in addition to any regularly scheduled
pruning that is specified by the prune_interval parameter.

qryparms Specify if you want the current operational parameter values
for a Q Capture program written to the standard output
(stdout).

reinit Specify to have a Q Capture program deactivate and then
activate all Q subscriptions and publications using the latest
values in the IBMQREP_SUBS, IBMQREP_SRC_COLS, and
IBMQREP_SENDQUEUES tables. This command allows you
to change some attributes for multiple Q subscriptions or
publications while a Q Capture program is running. This
command will not prompt a new load of targets.

382 Replication and Event Publishing Guide and Reference

Table 40. Definitions for asnqccmd invocation parameters (continued)

Parameter Definition

reinitq=send_queue Specify to have the Q Capture program refresh one send
queue using the latest attributes from the
IBMQREP_SENDQUEUES table. This command affects all Q
subscriptions or publications that use this send queue. Only
the following attributes will be refreshed: ERROR_ACTION,
HEARTBEAT_INTERVAL, MAX_MESSAGE_SIZE.

startq=send_queue/all Specify to start putting messages on one or all disabled send
queues. Q Capture sets the queue state to active (A) and
resumes putting messages on a specified queue or all inactive
queues. Q Capture restarts reading the log at the oldest
restart point among all send queues, and catches up the
queues that were stopped until all queues have the same
restart point.

status Specify to receive messages that indicate the state of each Q
Capture thread (main, administration, prune, holdl,
transaction, and worker).

show details Specify after the status parameter to view a more detailed
report about Q Capture program status, with the following
information:

v Whether the Q Capture program is running

v Time since the program started

v Location of the Q Capture diagnostic log

v Number of active Q subscriptions

v Value of the CURRENT_LOG_TIME and
CURRENT_MEMORY. These values might be newer than
what is inserted into the IBMQREP_CAPMON control
table.

v Logical log sequence number of the last transaction that the
Q Capture program published to a send queue

v Amount of memory in megabytes that Q Capture used
during the latest monitor interval to build transactions
from log records

v Path to DB2 log files

v Oldest DB2 log file needed for a Q Capture restart

v Current® DB2 log file captured

Chapter 24. System commands for Q Replication and Event Publishing 383

Table 40. Definitions for asnqccmd invocation parameters (continued)

Parameter Definition

stop Specify to stop the Q Capture program in an orderly way and
commit the messages that it processed up to that point.

You can specify the captureupto parameter, stopafter
parameter, or both to stop Q Capture in a controlled manner
from a specified point:

captureupto
Specify with a full or partial timestamp to instruct Q
Capture to stop reading the log at a specified point
and then stop. Alternatively, you can specify
CURRENT_TIMESTAMP, or specify EOL to prompt
Q Capture to stop after it reaches the end of the
active log.

stopafter
Specifies that Q Capture stop after one of the
following conditions is true:

data_applied
Q Capture stops after all changes up to the
specified stopping point are applied at the
target.

data_sent
Q Capture stops after all messages are
removed from the transmission queue that
points to the target system, or after the Q
Apply program has processed all messages
in the case of a shared local send
queue-receive queue.

384 Replication and Event Publishing Guide and Reference

Table 40. Definitions for asnqccmd invocation parameters (continued)

Parameter Definition

stopq=send_queue/all Specify to stop putting messages on one or all send queues.
Q Capture sets the queue state to inactive (I) and stops
putting messages on a specified queue or all queues. The Q
Capture program continues to publish changes for Q
subscriptions that are associated with active send queues. If
all send queues are stopped, Q Capture continues reading the
log for signals such as CAPSTART, continues to insert into its
monitor tables, and waits for commands.

When you specify to stop an individual queue, you can also
specify the captureupto parameter, stopafter parameter, or
both to instruct Q Capture to stop putting messages on the
queue in a controlled manner from a specified point:

captureupto
Specify with a full or partial timestamp to instruct Q
Capture to publish up to the specified point and
then stop putting messages on the queue.
Alternatively, you can specify
CURRENT_TIMESTAMP, or specify EOL to prompt
Q Capture to stop putting messages on the queue
after it reaches the end of the active log.

stopafter
Specifies that Q Capture stop putting messages on
the queue after one of the following conditions is
true:

data_applied
All changes up to the specified stopping
point are applied at the target.

data_sent
All messages are removed from the
transmission queue that points to the target
system, or the Q Apply program has
processed all messages in the case of a
shared local send queue-receive queue.

Example 1

To instruct a Q Capture program to refresh all Q subscriptions and publications
using the latest values in the Q Capture control tables:
asnqccmd capture_server=sourcedb capture_schema="alpha" reinit

This command will start all inactive queues if the Q Capture program was started
with startallq=y (the default setting).

Example 2

To instruct a Q Capture program to refresh the ERROR_ACTION,
HEARTBEAT_INTERVAL, and MAX_MESSAGE_SIZE attributes for all Q
subscriptions and publications that use a send queue called Q1:
asnqccmd capture_server=sourcedb capture_schema="alpha" reinitq="Q1"

Chapter 24. System commands for Q Replication and Event Publishing 385

Example 3

To temporarily shorten the default pruning interval for a running Q Capture
program to one minute, and temporarily lengthen the default amount of time that
the Q Capture program sleeps after processing Q subscriptions and publications:
asnqccmd capture_server=sourcedb capture_schema="alpha" chgparms
prune_interval=60 sleep_interval=10000

Example 4

To receive detailed messages about the status of the Q Capture program:
asnqccmd capture_server=sourcedb capture_schema="alpha" status show details

Example 5

To prompt a Q Capture program to stop reading the recovery log October 15, 2010
at 3:30 p.m., wait until all transactions that were committed to the target database
up to that time are applied, and then stop:
asnqccmd capture_server=sourcedb capture_schema="alpha" stop
captureupto="2010-10-15-15.30" stopafter=data_applied

Example 6

To prompt a Q Capture program to stop reading the recovery log immediately and
then stop after all messages are drained from the transmission queue (or the
shared local send-receive queue):
asnqccmd capture_server=sourcedb capture_schema="alpha" stop stopafter=data_sent

asnoqccmd: Working with a running Q Capture program on Oracle
databases

Use the asnoqccmd command to send a command to a Q Capture program that is
running on an Oracle database on a Linux, UNIX, or Windows system. Run this
command at an operating system prompt or in a shell script.

Syntax

�� asnoqccmd capture_server=db_name
capture_schema=schema

�

� chgparms parameters
prune
qryparms
reinit
reinitq=send_queue
status

show details
stop

��

Parameters:

n
autostop= y

commit_interval=n n
logreuse= y

�

386 Replication and Event Publishing Guide and Reference

�
n

logstdout= y
memory_limit=n monitor_interval=n

�

�
monitor_limit=n prune_interval=n signal_limit=n

�

�
sleep_interval=n y

term= n
trace_limit=n

Parameters

The following table defines the invocation parameters for the asnoqccmd command.

Table 41. Definitions for asnoqccmd invocation parameters

Parameter Definition

capture_server=db_name Specifies the name of the Oracle database that contains the Q
Capture control tables.

If you do not specify a Q Capture server, this parameter
defaults to the value from the ORACLE_SID environment
variable.

capture_schema=schema Specifies a name that identifies the Q Capture program that
you want to work with. The default schema is ASN.

chgparms Specify this parameter to change one or more of the following
operational parameters of a Q Capture program while it is
running on an Oracle database:

v autostop

v commit_interval

v logreuse

v logstdout

v memory_limit

v monitor_interval

v monitor_limit

v prune_interval

v qfull_num_retries

v qfull_retry_delay

v signal_limit

v sleep_interval

v trace_limit

You can specify multiple parameters in one asnoqccmd
chgparms command, and you can change these parameter
values as often as you want. The changes temporarily
override the values in the IBMQREP_CAPPARMS table, but
they are not written to the table. When you stop and restart
the Q Capture program, it uses the values in
IBMQREP_CAPPARMS. “asnoqcap: Starting a Q Capture
program for an Oracle database” on page 372 includes
descriptions of the parameters that you can override with this
command.
Requirement: The parameter that you are changing must
immediately follow the chgparms parameter.

Chapter 24. System commands for Q Replication and Event Publishing 387

Table 41. Definitions for asnoqccmd invocation parameters (continued)

Parameter Definition

prune Specify this parameter to instruct a Q Capture program to
prune the IBMQREP_CAPMON, IBMQREP_CAPQMON,
IBMQREP_CAPTRACE, and IBMQREP_SIGNAL tables once.
This pruning is in addition to any regularly scheduled
pruning that is specified by the prune_interval parameter.

qryparms Specify this parameter if you want the current operational
parameter values for a Q Capture program to be written to
the standard output (stdout).

reinit Specify this parameter to have a Q Capture program
deactivate and then activate all Q subscriptions and
publications using the latest values in the IBMQREP_SUBS,
IBMQREP_SRC_COLS, and IBMQREP_SENDQUEUES tables.
This command allows you to change some attributes for
multiple Q subscriptions or publications while a Q Capture
program is running. This command will not prompt a new
load of targets.

reinitq=send_queue Specify this parameter to have the Q Capture program refresh
one send queue using the latest attributes from the
IBMQREP_SENDQUEUES table. This command affects all Q
subscriptions or publications that use this send queue. Only
the following attributes will be refreshed: ERROR_ACTION,
HEARTBEAT_INTERVAL, MAX_MESSAGE_SIZE.

status Specify this parameter to receive messages that indicate the
state of each Q Capture thread (main, administration, prune,
holdl, worker, and transaction).

show details Specify this parameter after the status parameter to view a
more detailed report about Q Capture program status, with
the following information:

v Whether the Q Capture program is running

v Time since the program started

v Location of the Q Capture diagnostic log

v Number of active Q subscriptions

v Value of the CURRENT_LOG_TIME and
CURRENT_MEMORY. These values might be newer than
the values that are inserted into the IBMQREP_CAPMON
control table.

v Logical log sequence number of the last transaction that the
Q Capture program published to a send queue. This
number is shown as a hexadecimal translation of the
original decimal Oracle system change number (SCN).

v Amount of memory in megabytes that Q Capture used
during the latest monitor interval to build transactions
from log records

v Path to Oracle redo log files

v Oldest Oracle redo log file that is needed for a Q Capture
restart

v Current Oracle redo log file captured

stop Specify this parameter to stop the Q Capture program in an
orderly way and commit the messages that it processed up to
that point.

388 Replication and Event Publishing Guide and Reference

Example - Refresh all Q subscriptions and publications

To instruct a Q Capture program to refresh all Q subscriptions and publications
with the latest values in the Q Capture control tables, issue the following
command:
asnoqccmd capture_server=sourcedb capture_schema="alpha" reinit

Example - Refresh send queue attributes

To instruct a Q Capture program to refresh the ERROR_ACTION,
HEARTBEAT_INTERVAL, and MAX_MESSAGE_SIZE attributes for all Q
subscriptions and publications that use a send queue called Q1, issue the following
command:
asnoqccmd capture_server=sourcedb capture_schema="alpha" reinitq="Q1"

Example - Change specified parameters

To temporarily shorten the default pruning interval for a running Q Capture
program to one minute, and to temporarily lengthen the default amount of time
that the Q Capture program sleeps after processing Q subscriptions and
publications, issue the following command:
asnoqccmd capture_server=sourcedb capture_schema="alpha" chgparms
prune_interval=60 sleep_interval=10000

Example - Show Q Capture status details

To receive detailed messages about the status of the Q Capture program, issue the
following command:
asnoqccmd capture_server=sourcedb capture_schema="alpha" status show details

asnqapp: Starting a Q Apply program
Use the asnqapp command on Linux, UNIX, Windows, and UNIX System Services
(USS) on z/OS to start a Q Apply program. Run this command at an operating
system prompt or in a shell script. Any startup parameters that you specify will
apply to this session only.

After you start the Q Apply program, it runs continuously until you stop it or it
detects an unrecoverable error.

Syntax

�� asnqapp apply_server=db_name
apply_schema=schema

�

�
apply_path=path applydelay=n

�

Chapter 24. System commands for Q Replication and Event Publishing 389

�
WAIT

applyupto= gmt_timestamp , NOWAIT
WAIT

CURRENT_TIMESTAMP , NOWAIT
y

autostop= n

arm=identifier
�

�
n

buffered_inserts= y
n

caf= y
classic_load_file_sz=n

�

�
commit_count=n deadlock_retries=n

�

�
dftmodelq=model_spill_queue_name n

ignbaddata= y

�

�
y

insert_bidi_signal= n
loadcopy_path=filepath

�

�
load_data_buff_sz=n gmt

logmarkertz= local
n

logreuse= y

�

�
n

logstdout= y
max_parallel_loads=n

monitor_interval=n
�

�
monitor_limit=n nickname_commit_ct=n n

nmi_enable= y

�

�
nmi_socket_name=n y

oracle_empty_str= n
n

p2p_2nodes= y

�

�
prune_batch_size=n prune_interval=n 1

prune_method= 2

�

�
asnpwd.aut

pwdfile= filename
y

report_exception= n
richklvl=n

�

�
y

term= n
skiptrans= skiptrans-clause

�

�
spill_commit_count=n startallq= y

n
n

trace_ddl= y

�

�
trace_limit=n

��

390 Replication and Event Publishing Guide and Reference

skiptrans-clause::

�

,

receive_queue ; transaction_ID
begin_transaction_ID-end_transaction_ID

Descriptions of asnqapp parameters
These descriptions provide detail on the asnqapp parameters, their defaults, and
why you might want to change the default in your environment.

v “apply_server”

v “apply_schema”

v “apply_path” on
page 392

v “applydelay” on
page 393

v “applyupto” on
page 393

v “arm” on page 395

v “autostop” on page
395

v “buffered_inserts”
on page 395

v “caf” on page 396

v “commit_count” on
page 396

v “deadlock_retries”
on page 396

v “dftmodelq” on
page 397

v “ignbaddata” on
page 397

v “insert_bidi_signal”
on page 398

v “loadcopy_path”
on page 398

v

“load_data_buff_sz”
on page 399

v “logmarkertz” on
page 399

v “logreuse” on page
399

v “logstdout” on
page 400

v

“max_parallel_loads”
on page 400

v “monitor_interval”
on page 401

v “monitor_limit” on
page 401

v

“nickname_commit_ct”
on page 402

v “p2p_2nodes” on
page 402

v “pwdfile” on page
404

v “prune_interval”
on page 403

v “report_exception”
on page 404

v “richklvl” on page
404

v “skiptrans” on
page 405

v

“spill_commit_count”
on page 405

v “startallq” on page
405

v “term” on page 406

v “trace_limit” on
page 406

v “trace_ddl” on
page 406

apply_server

Default: None

Default: apply_server=value of DB2DBDFT environment
variable, if it is set

The apply_server parameter identifies the database or subsystem where a Q Apply
program runs, and where its control tables are stored. The control tables contain
information about targets, Q subscriptions, WebSphere MQ queues, and user
preferences. The Q Apply server must be the same database or subsystem that
contains the targets.

apply_schema

Default: apply_schema=ASN

The apply_schema parameter lets you distinguish between multiple instances of the
Q Apply program on a Q Apply server.

Chapter 24. System commands for Q Replication and Event Publishing 391

The schema identifies one Q Apply program and its control tables. Two Q Apply
programs with the same schema cannot run on a server.

A single Q Apply program can create multiple browser threads. Each browser
thread reads messages from a single receive queue. Because of this, you do not
need to create multiple instances of the Q Apply program on a server to divide the
flow of data that is being applied to targets.

On z/OS, no special characters are allowed in the Q Apply
schema except for the underscore (_).

apply_path

Default: None

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The apply_path parameter specifies the directory where a Q Apply program stores
its work files and log file. By default, the path is the directory where you start the
program. You can change this path.

If you start a Q Apply program as a Windows service, by default the
program starts in the \SQLLIB\bin directory.

Because the Q Apply program is a POSIX application, the default path
depends on how you start the program:
v If you start a Q Apply program from a USS command line prompt, the

path is the directory where you started the program.
v If you start a Q Apply program using a started task or through JCL, the

default path is the home directory in the USS file system of the user ID
that is associated with the started task or job.

To change the path, you can specify either a path name or a high-level
Qualifier (HLQ), such as //QAPP. When you use an HLQ, sequential files
are created that conform to the file naming conventions for z/OS
sequential data set file names. The sequential data sets are relative to the
user ID that is running the program. Otherwise these file names are similar
to the names that are stored in an explicitly named directory path, with the
HLQ concatenated as the first part of the file name. For example,
sysadm.QAPPV9.filename. Using an HLQ might be convenient if you want
to have the Q Apply log and LOADMSG files be system-managed (SMS).

If you want the Q Apply started task to write to a .log data set with a user
ID other than the ID that is executing the task (for example TSOUSER),
you must specify a single quotation mark (‘) as an escape character when
using the SYSIN format for input parameters to the started task. For
example, if you wanted to use the high-level qualifier JOESMITH, then the
user ID TSOUSER that is running the Q Apply program must have RACF
authority to write data sets by using the high-level qualifier JOESMITH, as
in the following example:
//SYSIN DD *
APPLY_PATH=//’JOESMITH
/*

392 Replication and Event Publishing Guide and Reference

You can set the apply_path parameter when you start the Q Apply program, or
you can change its saved value in the IBMQREP_APPLYPARMS table. You cannot
alter this parameter while the Q Apply program is running.

applydelay

Default: applydelay=0 seconds

Method of changing: When Q Apply starts

The applydelay parameter controls the amount of time in seconds that the Q
Apply program waits before replaying each transaction at the target. The delay is
based on the source commit time of the transaction. Q Apply delays applying
transactions until the current time reaches or exceeds the source transaction
commit time plus the value of applydelay. Changes at the source database are
captured and sent to the receive queue, where they wait during the delay period.

This parameter can be used, for example, to maintain multiple copies of a source
database at different points in time for failover in case of problems at the source
system. For example, if a user accidentally deletes data at the primary system, a
copy of the database exists where the data is still available.

The applydelay parameter has no effect on the applyupto or autostop parameters.

Important: If you plan to use the applydelay parameter, ensure that the receive
queue has enough space to hold messages that accumulate during the delay
period.

applyupto

Default: None

Method of changing: When Q Apply starts

The applyupto parameter identifies a timestamp that instructs the Q Apply
program to stop after processing transactions that were committed at the source on
or before one of the following times:
v A specific timestamp that you provide
v The CURRENT_TIMESTAMP keyword, which signifies the time that the Q

Apply program started

You can optionally specify the WAIT or NOWAIT keywords to control when Q
Apply stops:

WAIT (default)
Q Apply does not stop until it receives and processes all transactions up to
the specified GMT timestamp or the value of CURRENT_TIMESTAMP,
even if the receive queue becomes empty.

NOWAIT
Q Apply stops after it processes all transactions on the receive queue, even
if it has not seen a transaction with a commit timestamp that matches or
exceeds the specified GMT timestamp or the value of
CURRENT_TIMESTAMP.

Chapter 24. System commands for Q Replication and Event Publishing 393

The applyupto parameter applies to all browser threads of a Q Apply instance.
Each browser thread stops when it reads a message on its receive queue with a
source commit timestamp that matches or exceeds the specified time. The Q Apply
program stops when all of its browser threads determine that all transactions with
a source commit timestamp prior to and including the applyupto timestamp have
been applied. All transactions with a source commit time greater than the specified
GMT timestamp stay on the receive queue and are processed the next time the Q
Apply program runs.

The timestamp must be specified in Greenwich mean time (GMT) in a full or
partial timestamp format. The full timestamp uses the following format:
YYYY-MM-DD-HH.MM.SS.mmmmmm. For example, 2007-04-10-10.35.30.555555 is the
GMT timestamp for April 10th, 2007, 10:35 AM, 30 seconds, and 555555
microseconds.

You can specify the partial timestamp in one of the following formats:

YYYY-MM-DD-HH.MM.SS
For example, 2007-04-10-23.35.30 is the partial GMT timestamp for April
10th, 2007, 11:35 PM, 30 seconds.

YYYY-MM-DD-HH.MM
For example, 2007-04-10-14.30 is the partial GMT timestamp for April
10th, 2007, 1:30 PM.

YYYY-MM-DD-HH
For example, 2007-04-10-01 is the partial GMT timestamp for April 10th,
2007, 1:00 AM.

HH.MM For example, 14:55 is the partial GMT timestamp for today at 2:55 PM.

HH For example, 14 is the partial GMT timestamp for today at 2 PM.

The partial timestamp could be used to specify a time in the format HH.MM. This
format could be helpful if you schedule a task to start the Q Apply program every
day at 1 AM Pacific Standard Time (PST) and you want to stop the program after
processing the transactions that were committed at the source with a GMT
timestamp on or before 4 AM PST. For example, run the following task at 1 AM
PST and set the applyupto parameter to end the task at 4 AM PST:
asnqapp apply_server=MYTESTSERVER apply_schema=ASN applyupto=12.00

During daylight saving time, the difference between GMT and local time might
change depending on your location. For example, the Pacific timezone is GMT-8
hours during the fall and winter. During the daylight saving time in the spring
and summer, the Pacific timezone is GMT-7 hours.

Restriction: You cannot specify both the autostop parameter and the applyupto
parameter.

You might want to set the heartbeat interval to a value greater than zero so that
the Q Apply program can tell if the time value specified in the applyupto
parameter has passed.

394 Replication and Event Publishing Guide and Reference

arm

Default: None

Method of changing: When Q Apply starts

You can use the arm=identifier parameter to specify a unique identifier for the Q
Apply program that the Automatic Restart Manager uses to automatically start a
stopped Q Apply instance. The three-character alphanumeric value that you supply
is appended to the ARM element name that Q Apply generates for itself:
ASNQAxxxxyyyy (where xxxx is the data-sharing group attach name, and yyyy is
the DB2 member name). You can specify any length of string for the arm parameter,
but the Q Apply program will concatenate only up to three characters to the
current name. If necessary, the Q Apply program pads the name with blanks to
make a unique 16-byte name.

autostop

Default: autostop=n

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

The autostop parameter lets you direct a Q Apply program to automatically stop
when there are no transactions to apply. By default (autostop=n), a Q Apply
program keeps running when queues are empty and waits for transactions to
arrive.

Typically, the Q Apply program is run as a continuous process whenever the target
database is active, so in most cases you would keep the default (autostop=n). Set
autostop=y only for scenarios where the Q Apply program is run at set intervals,
such as when you synchronize infrequently connected systems, or in test scenarios.

If you set autostop=y, the Q Apply program shuts down after all receive queues
are emptied once. When the browser thread for each receive queue detects that the
queue has no messages, the thread stops reading from the queue. After all threads
stop, the Q Apply program stops. Messages might continue to arrive on queues for
which the browser thread has stopped, but the messages will collect until you start
the Q Apply program again.

Restriction: You cannot specify both the autostop parameter and the applyupto
parameter.

buffered_inserts

Default: buffered_inserts=n

Method of changing: When Q Apply starts

The buffered_inserts parameter specifies whether the Q Apply program uses
buffered inserts, which can improve performance in some partitioned databases
that are dominated by INSERT operations. If you specify buffered_inserts=y, Q
Apply internally binds appropriate files with the INSERT BUF option. This bind
option enables the coordinator node in a partitioned database to accumulate
inserted rows in buffers rather than forwarding them immediately to their

Chapter 24. System commands for Q Replication and Event Publishing 395

destination partitions. When a buffer is filled, or when another SQL statement such
as an UPDATE, DELETE, or INSERT to a different table, or COMMIT/ROLLBACK
are encountered, all the rows in the buffer are sent together to the destination
partition.

You might see additional performance gains by combining the use of buffered
inserts with the commit_count parameter.

When buffered inserts are enabled, Q Apply does not perform exception handling.
Any conflict or error prompts Q Apply to stop reading from the queue. To recover
past the point of an exception, you must start message processing on the queue
and start Q Apply with buffered_inserts=n.

caf

Default: caf=n

Method of changing: When Q Apply starts

The Q Apply program runs with the default of Recoverable Resource Manager
Services (RRS) connect. You can override this default and prompt the Q Apply
program to use the Call Attach Facility (CAF) by specifying the caf=y option.

If RRS is not available you receive a message and the Q Apply program switches
to CAF. The message warns that the program was not able to initialize a
connection because RRS is not started. The program attempts to use CAF instead.
The program runs correctly with CAF connect.

commit_count

Default: commit_count=1

Method of changing: When Q Apply starts

The commit_count parameter specifies the number of transactions that each Q
Apply agent thread applies to the target table within a commit scope. By default,
the agent threads commit after each transaction that they apply.

By increasing commit_count and grouping more transactions within the commit
scope, you might see improved performance.

Recommendation: Use a higher value for commit_count only with row-level
locking. This parameter requires careful tuning when used with a large number of
agent threads because it could cause lock escalation resulting in lock timeouts and
deadlock retries.

deadlock_retries

Default: deadlock_retries=3

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

The deadlock_retries parameter specifies how many times the Q Apply program
tries to reapply changes to target tables when it encounters an SQL deadlock or

396 Replication and Event Publishing Guide and Reference

lock timeout. The default is three tries. This parameter also controls the number of
times that the Q Apply program tries to insert, update, or delete rows from its
control tables after an SQL deadlock.

After the limit is reached, if deadlocks persist the browser thread stops. You might
want to set a higher value for deadlock_retries if applications are updating the
target database frequently and you are experiencing a high level of contention. Or,
if you have a large number of receive queues and corresponding browser threads,
a higher value for deadlock_retries might help resolve possible contention in
peer-to-peer and other multidirectional replication environments, as well as at
control tables such as the IBMQREP_DONEMSG table.

Restriction: You cannot lower the default value for deadlock_retries.

dftmodelq

Default: None

Method of changing: When Q Apply starts

By default, the Q Apply program uses IBMQREP.SPILL.MODELQ as the name for
the model queue that it uses to create spill queues for the loading process. To
specify a different default model queue name, specify the dftmodelq parameter.
The following list summarizes the behavior of the parameter:

If you specify dftmodelq when you start Q Apply
For each Q subscription, Q Apply will check to see if you specified a
model queue name for the Q subscription by looking at the value of the
MODELQ column in the IBMQREP_TARGETS control table:
v If the value is NULL or IBMQREP.SPILL.MODELQ, then Q Apply will

use the value that you specify for the dftmodelq parameter.
v If the column contains any other non-NULL value, then Q Apply will

use the value in the MODELQ column and will ignore the value that
you specify for the dftmodelq parameter.

If you do not specify dftmodelq when you start Q Apply
Q Apply will use the value of the MODELQ column in the
IBMQREP_TARGETS table. If the value is NULL, Q Apply will default to
IBMQREP.SPILL.MODELQ.

ignbaddata

Default: None

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

Note: This parameter applies only if the Q Apply program uses International
Components for Unicode (ICU) for code page conversion (if the code page of the
source database and the code page that Q Apply uses are different).

The ignbaddata parameter specifies whether the Q Apply program checks for
illegal characters in data from the source and continues processing even if it finds
illegal characters.

If you specify ignbaddata=y, Q Apply checks for illegal characters and takes the
following actions if any are found:

Chapter 24. System commands for Q Replication and Event Publishing 397

v Does not apply the row with the illegal characters.
v Inserts a row into the IBMQREP_EXCEPTIONS table that contains a hexadecimal

representation of the illegal characters.
v Continues processing the next row and does not follow the error action that is

specified for the Q subscription.

A value of n prompts Q Apply to not check for illegal characters and not report
exceptions for illegal characters. With this option, the row might be applied to the
target table if DB2 does not reject the data. If the row is applied, Q Apply
continues processing the next row. If the bad data prompts an SQL error, Q Apply
follows the error action that is specified for the Q subscription and reports an
exception.

insert_bidi_signal

Default: insert_bidi_signal=y

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The insert_bidi_signal parameter specifies whether the Q Capture and Q Apply
programs use signal inserts to prevent recapture of transactions in bidirectional
replication.

By default, the Q Apply program inserts P2PNORECAPTURE signals into the
IBMQREP_SIGNAL table to instruct the Q Capture program at its same server not
to recapture applied transactions at this server.

When there are many bidirectional Q subscriptions, the number of signal inserts
can affect replication performance. By specifying insert_bidi_signal=n, the Q
Apply program does not insert P2PNORECAPTURE signals. Instead, you insert Q
Apply's AUTHTKN information into the IBMQREP_IGNTRAN table, which
instructs the Q Capture program at the same server to not capture any transactions
that originated from the Q Apply program, except for inserts into the
IBMQREP_SIGNAL table.

For improved performance when you use insert_bidi_signal=n, update the
IBMQREP_IGNTRAN table to change the value of the IGNTRANTRC column to N
(no tracing). This change prevents the Q Capture program from inserting a row
into the IBMQREP_IGNTRANTRC table for each transaction that it does not
recapture.

loadcopy_path

Default: loadcopy_path=Value of apply_path parameter

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

Use with the DB2 High Availability Disaster Recovery (HADR) feature: You can
use the loadcopy_path parameter instead of the
DB2_LOAD_COPY_NO_OVERRIDE registry variable when the Q Apply server is
the primary server in a HADR configuration and tables on the primary server are
loaded by the Q Apply program calling the DB2 LOAD utility. HADR sends log
files to the standby site, but when a table on the primary server is loaded by the
DB2 LOAD utility, the inserts are not logged. Setting LOADCOPY_PATH to an
NFS directory that is accessible from both the primary and secondary servers

398 Replication and Event Publishing Guide and Reference

prompts Q Apply to start the LOAD utility with the option to create a copy of the
loaded data in the specified path. The secondary server in the HADR configuration
then looks for the copied data in this path.

load_data_buff_sz

Default: load_data_buff_size=8

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

Use with multidimensional clustering (MDC) tables: Specifies the number of 4KB
pages for the DB2 LOAD utility to use as buffered space for transferring data
within the utility during the initial loading of the target table. This parameter
applies only to automatic loads using the DB2 LOAD utility.

By default, the Q Apply program starts the utility with the option to use a buffer
of 8 pages, which is also the minimum value for this parameter. Load performance
for MDC targets can be significantly improved by specifying a much higher
number of pages.

logmarkertz

Default: logmarkertz=gmt

Methods of changing: When Q Apply starts

The logmarkertz parameter controls the time zone that the Q Apply program uses
when it inserts source commit data into the IBMSNAP_LOGMARKER column of
consistent-change data (CCD) tables or point-in-time (PIT) tables. By default
(logmarkertz=gmt), Q Apply inserts a timestamp in Greenwich mean time (GMT)
to record when the data was committed at the source. If the Q Capture and Q
Apply servers are in the same time zone with the same Daylight Savings Time or
other time change in effect, you can specify logmarkertz=local and Q Apply inserts
a timestamp in the local time of the Q Apply server.

Note: Because the value in the IBMSNAP_LOGMARKER column records the time
that a row was committed at the source database, specifying logmarkertz=local is
useful only when the Q Capture and Q Apply servers are in the same time zone
with the same Daylight Savings Time or other time change in effect.

Existing rows in CCD or PIT targets that were generated before the use of
logmarkertz=local are not converted by Q Apply and remain in GMT unless you
manually convert them.

The logmarkertz parameter does not affect stored procedure targets. The
src_commit_timestamp IN parameter for stored procedure targets always uses
GMT-based timestamps.

logreuse

Default: logreuse=n

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

Chapter 24. System commands for Q Replication and Event Publishing 399

Each Q Apply program keeps a log file that tracks its work history, such as when it
starts and stops reading from queues, changes parameter values, prunes control
tables, or encounters errors.

By default, the Q Apply program adds to the existing log file when the program
restarts. This default lets you keep a history of the program's actions. If you don't
want this history or want to save space, set logreuse=y. The Q Apply program
clears the log file when it starts, then writes to the blank file.

The log is stored by default in the directory where the Q Apply program is started,
or in a different location that you set using the apply_path parameter.

The log file name is apply_server.apply_schema.QAPP.log. For
example, SAMPLE.ASN.APP.log. Also, if apply_path is specified with slashes (//) to
use a High Level Qualifier (HLQ), the file naming conventions of z/OS sequential
data set files apply, and apply_schema is truncated to eight characters.

The log file name is
db2instance.apply_server.apply_schema.QAPP.log. For example,
DB2.SAMPLE.ASN.QAPP.log.

logstdout

Default: logstdout=n

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

By default, a Q Apply program writes its work history only to the log. You can
change the logstdout parameter if you want to see program history on the
standard output (stdout) in addition to the log.

Error messages and some log messages (initialization, stop, subscription activation,
and subscription deactivation) go to both the standard output and the log file
regardless of the setting for this parameter.

You can specify the logstdout parameter when you start a Q Apply program with
the asnqapp command. If you use the Replication Center to start a Q Apply
program, this parameter is not applicable.

max_parallel_loads

Default: max_parallel_loads=1 (z/OS); 15 (Linux, UNIX, Windows)

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The max_parallel_loads parameter specifies the maximum number of automatic
load operations of target tables that Q Apply can start at the same time for a given
receive queue. The default for max_parallel_loads differs depending on the
platform of the target server:

On z/OS the default is one load at a time because of potential issues with
the DSNUTILS stored procedure that Q Apply uses to call the DB2 LOAD
utility. Depending on your environment you can experiment with values
higher than max_parallel_loads=1. If errors occur, reset the value to 1.

400 Replication and Event Publishing Guide and Reference

On Linux, UNIX, and Windows the default is 15 parallel loads.

monitor_interval

Default: monitor_interval=60000 milliseconds (1 minute) on z/OS; 30000
milliseconds (30 seconds) on Linux, UNIX, and Windows

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

The monitor_interval parameter tells a Q Apply program how often to insert
performance statistics into the IBMQREP_APPLYMON table. You can view these
statistics by using the Q Apply Throughput and Latency windows.

You can adjust the monitor_interval based on your needs:

If you want to monitor a Q Apply program's activity at a more granular level,
shorten the monitor interval

For example, you might want to see the statistics for the number of
messages on queues broken down by each 10 seconds rather than
one-minute intervals.

Lengthen the monitor interval to view Q Apply performance statistics over
longer periods

For example, if you view latency statistics for a large number of
one-minute periods, you might want to average the results to get a broader
view of performance. Seeing the results averaged for each half hour or
hour might be more useful in your replication environment.

Important for Q Replication Dashboard users: When possible, you should
synchronize the Q Apply monitor_interval parameter with the dashboard refresh
interval (how often the dashboard retrieves performance information from the Q
Capture and Q Apply monitor tables). The default refresh interval for the
dashboard is 10 seconds (10000 milliseconds). If the value of monitor_interval is
higher than the dashboard refresh interval, the dashboard refreshes when no new
monitor data is available.

monitor_limit

Default: monitor_limit=10080 minutes (7 days)

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

The monitor_limit parameter specifies how old the rows must be in the
IBMQREP_APPLYMON table before the rows are eligible for pruning.

By default, rows that are older than 10080 minutes (7 days) are pruned. The
IBMQREP_APPLYMON table provides statistics about a Q Apply program's
activity. A row is inserted at each monitor interval. You can adjust the monitor
limit based on your needs:

Increase the monitor limit to keep statistics
If you want to keep records of the Q Apply program's activity beyond one
week, set a higher monitor limit.

Chapter 24. System commands for Q Replication and Event Publishing 401

Lower the monitor limit if you look at statistics frequently.
If you monitor the Q Apply program's activity on a regular basis, you
probably do not need to keep one week of statistics and can set a lower
monitor limit.

You can set the monitor_limit parameter when you start the Q Apply program or
while the program is running. You can also change its saved value in the
IBMQREP_APPLYPARMS table.

nickname_commit_ct

Default: nickname_commit_ct=10

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

Federated targets: The nickname_commit_ct parameter specifies the number of rows
after which the DB2 IMPORT utility commits changes to nicknames that reference
a federated target table during the loading process. This parameter applies only to
automatic loads for federated targets that use the IMPORT utility.

By default, Q Apply specifies that the IMPORT utility commits changes every 10
rows during the federated loading process. You might see improved load
performance by raising the value of nickname_commit_ct. For example, a setting of
nickname_commit_ct=100 would lower the CPU overhead by reducing interim
commits. However, more frequent commits protect against problems that might
occur during the load, enabling the IMPORT utility to roll back a smaller number
of rows if a problem occurs.

The nickname_commit_ct parameter is a tuning parameter used to improve DB2
IMPORT performance by reducing the number of commits for federated targets.

p2p_2nodes

Default: p2p_2nodes=n

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The p2p_2nodes parameter allows the Q Apply program to optimize for
performance in a peer-to-peer configuration with only two active servers by not
logging conflicting deletes in the IBMQREP_DELTOMB table. Only use the setting
p2p_2nodes=y for peer-to-peer replication with two active servers.

By default, the Q Apply program records conflicting DELETE operations in the
IBMQREP_DELTOMB table. With p2p_2nodes=y the Q Apply program does not use
the IBMQREP_DELTOMB table. This avoids any unnecessary contention on the
table or slowing of Q Apply without affecting the program's ability to correctly
detect conflicts and ensure data convergence.

Important: The Q Apply program does not automatically detect whether a
peer-to-peer configuration has only two active servers. Ensure that the option
p2p_2nodes=y is used only for a two-server peer-to-peer configuration. Using the
option for configurations with more than two active servers might result in
incorrect conflict detection and data divergence.

402 Replication and Event Publishing Guide and Reference

prune_interval

Default: prune_interval=300 seconds (5 minutes)

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

The prune_interval parameter determines how often a Q Apply program looks for
old rows to delete from the IBMQREP_APPLYMON and IBMQREP_APPLYTRACE
tables. By default, a Q Apply program looks for rows to prune every 300 seconds
(5 minutes).

Your pruning frequency depends on how quickly these control tables grow, and
what you intend to use them for:

Shorten the prune interval to manage monitor tables
A shorter prune interval might be necessary if the IBMQREP_APPLYMON
table is growing too quickly because of a shortened monitor interval. If this
table is not pruned often enough, it can exceed its table space limit, which
forces a Q Apply program to stop. However, if the table is pruned too
often or during peak times, pruning can interfere with application
programs that run on the same system.

Lengthen the prune interval for record keeping
You might want to keep a longer history of a Q Apply program's
performance by pruning the IBMQREP_APPLYTRACE and
IBMQREP_APPLYMON tables less frequently.

The prune interval works in conjunction with the trace_limit and monitor_limit
parameters, which determine when data is old enough to prune. For example, if
the prune_interval is 300 seconds and the trace_limit is 10080 seconds, a Q
Apply program will try to prune every 300 seconds. If the Q Apply program finds
any rows in the IBMQREP_APPLYTRACE table that are older than 10080 minutes
(7 days), it prunes them.

The prune_interval parameter does not affect pruning of the
IBMQREP_DONEMSG table. Pruning of this table is controlled by the
prune_method and prune_batch_size parameters.

prune_method

Default: prune_method=2

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The prune_method parameter specifies the method that the Q Apply program uses
to delete unneeded rows from the IBMQREP_DONEMSG table. By default,
(prune_method=2), Q Apply prunes groups of rows based on the prune_batch_size
value. A separate prune thread records which messages were applied, and then
issues a single range-based DELETE.

When you specify prune_method=1, Q Apply prunes rows from the
IBMQREP_DONESG table one at a time. First Q Apply queries the table to see if
data from a message was applied, then it deletes the message from the receive
queue, and then prunes the corresponding row from IBMQREP_DONEMSG by
issuing an individual SQL statement.

Chapter 24. System commands for Q Replication and Event Publishing 403

pwdfile

Default: pwdfile=apply_path/asnpwd.aut

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The pwdfile parameter specifies the name of the encrypted password file that the
Q Apply program uses to connect to the Q Capture server. This connection is
required only when a Q subscription specifies an automatic load that uses the
EXPORT utility. When you use the asnpwd command to create the password file,
the default file name is asnpwd.aut. If you create the password file with a different
name or change the name, you must change the pwdfile parameter to match. The
Q Apply program looks for the password file in the directory specified by the
apply_path parameter.

No password file is required.

You can set the pwdfile parameter when you start the Q Apply program, and you
can change its saved value in the IBMQREP_APPLYPARMS table. You cannot
change the value while the Q Apply program is running.

report_exception

Default: report_exception=y

Methods of changing: When Q Apply starts

The report_exception parameter controls whether the Q Apply program inserts
data into the IBMQREP_EXCEPTIONS table when a conflict or SQL error occurs at
the target table but the row is applied to the target anyway because the conflict
action that was specified for the Q subscription was F (force). By default,
(report_exception=y), Q Apply inserts details in the IBMQREP_EXCEPTIONS
table for each row that causes a conflict or SQL error at the target, regardless of
whether the row was applied or not. You can specify report_exception=n and Q
Apply will not insert data into the IBMQREP_EXCEPTIONS table when a row
causes a conflict but is applied. With report_exception=n, Q Apply continues to
insert data about rows that were not applied.

When report_exception=n, the Q Apply program also tolerates codepage
conversion errors when writing SQL text into the IBMQREP_EXCEPTIONS table
and continues normal processing.

richklvl

Default: richklvl=2

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The richklvl parameter specifies the level of referential integrity checking. By
default (richklvl=2), the Q Apply program checks for RI-based dependencies
between transactions to ensure that dependent rows are applied in the correct
order.

If you specify richklvl=5, Q Apply checks for RI-based dependencies when a key
value is updated in the parent table, a row is updated in the parent table, or a row
is deleted from the parent table.

404 Replication and Event Publishing Guide and Reference

A value of 0 prompts Q Apply to not check for RI-based dependencies.

When a transaction cannot be applied because of a referential integrity violation,
the Q Apply program automatically retries the transaction until it is applied in the
same order that it was committed at the source table.

spill_commit_count

Default: spill_commit_count=10

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The spill_commit_count parameter specifies how many rows are grouped together
in a commit scope by the Q Apply spill agents that apply data that was replicated
during a load operation. Increasing the number of rows that are applied before a
COMMIT is issued can improve performance by reducing the I/O resources that
are associated with frequent commits. Balance the potential for improvement with
the possibility that fewer commits might cause lock contention at the target table
and the IBMQREP_SPILLEDROW control table.

skiptrans

Default: None

Method of changing: When Q Apply starts

The skiptrans parameter specifies that the Q Apply program should not apply one
or more transactions from one or more receive queues based on their transaction
ID.

Stopping the program from applying transactions is useful in unplanned situations,
for example:
v Q Apply receives an error while applying a row of a transaction and either stops

or stops reading from the receive queue. On startup, you might want Q Apply
to ignore the entire transaction in error.

v After the failover from a disaster recovery situation, you might want to ignore a
range of transactions on the receive queue from the failover node to the fallback
node.

You can also prompt the Q Capture program to ignore transactions. This action
would be more typical when you can plan which transactions do not need to be
replicated.

Note: Ignoring a transaction that was committed at the source server typically
causes divergence between tables at the source and target. You might need use the
asntdiff and asntrep utilities to synchronize the tables.

startallq

Default: startallq=n (z/OS); y (Linux, UNIX, Windows)

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The startallq parameter specifies how Q Apply processes receive queues when it
starts. With startallq=y, Q Apply puts all receive queues in active state and

Chapter 24. System commands for Q Replication and Event Publishing 405

begins reading from them when it starts. When you specify startallq=n, Q Apply
processes only the active receive queues when it starts.

You can use startallq=y to avoid having to issue the startq command for
inactive receive queues after the Q Apply program starts. You can use startallq=n
to keep disabled queues inactive when you start Q Apply.

term

Default: term=y

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

The term parameter controls whether a Q Apply program keeps running when
DB2 or the queue manager are unavailable.

By default (term=y), the Q Apply program terminates when DB2 or the queue
manager are unavailable. You can change the default (term=n) if you want a Q
Apply program to keep running while DB2 or the queue manager are unavailable.
When DB2 or the queue manager are available, Q Apply begins applying
transactions where it left off without requiring you to restart the program.

Note: Regardless of the setting for term, if the WebSphere MQ sender or receiver
channels stop, the Q Apply program keeps running because it cannot detect
channel status. This situation causes replication to stop because the two queue
managers cannot communicate. If you find that replication has stopped without
any messages from the Q replication programs, check for WebSphere MQ errors.
For example, check the channel status by using the WebSphere MQ DISPLAY
CHSTATUS command.

trace_ddl

Default: trace_ddl=n

Methods of changing: When Q Apply starts; IBMQREP_APPLYPARMS table

The trace_ddl parameter specifies whether, when DDL operations at the source
database are replicated, the SQL text of the operation that the Q Apply program
performs at the target database is logged. By default (trace_ddl=n), Q Apply does
not log the SQL text. If you specify trace_ddl=y, Q Apply issues an ASN message
to the Q Apply log file, standard output, and IBMQREP_APPLYTRACE table with
the text of the SQL statement. The SQL text is truncated to 1024 characters.

trace_limit

Default: trace_limit=10080 minutes (7 days)

Methods of changing: When Q Apply starts; while Q Apply is running;
IBMQREP_APPLYPARMS table

The trace_limit parameter specifies how long rows remain in the
IBMQREP_APPLYTRACE table before the rows can be pruned.

The Q Apply program inserts all informational, warning, and error messages into
the IBMQREP_APPLYTRACE table. By default, rows that are older than 10080

406 Replication and Event Publishing Guide and Reference

minutes (7 days) are pruned at each pruning interval. Modify the trace limit
depending on your need for audit information.

Examples of asnqapp usage
These examples illustrate how to use the asnqcap command.

Specifying a path to work files and password file

To start a Q Apply program on a server named targetdb, with a schema of alpha,
with work files located in the /home/files/qapply directory, and using a password
file called pass1.txt:
asnqapp apply_server=targetdb apply_schema="alpha"
apply_path="/home/files/qapply" pwdfile="pass1.txt"

Shortening the monitor interval to match Q Replication
Dashboard

To start a Q Apply program and shorten the interval for inserting rows into the
IBMQREP_APPLYMON table from the default of 60000 milliseconds (60 seconds)
on z/OS to 10000 milliseconds (10 seconds) to match the default refresh interval
for the Q Replication Dashboard:
asnqapp apply_server=targetdb apply_schema="alpha" monitor_interval=10000

Prompting Q Apply to stop after all queues have been emptied

To start a Q Apply program and instruct it to stop running after all queues have
been emptied once:
asnqapp apply_server=targetdb apply_schema="alpha" autostop=y

Stopping Q Apply with at a specified timestamp

To start a Q Apply program and instruct it to stop running after it processes
transactions that were committed at the source up to a specified timestamp:
asnqapp apply_server=targetdb apply_schema="alpha" applyupto="2011-04-02-20"

This example uses the partial timestamp format to stop the Q Apply program
when it reads a transaction with a timestamp after 8 p.m. on April 2, 2011
Greenwich mean time.

Starting Q Apply and instructing the program when to stop

To start a Q Apply program and instruct it to stop running after it reads a
transaction with a timestamp that matches the time that you started Q Apply, or
after the receive queue is empty (whichever occurs first):
asnqapp apply_server=targetdb apply_schema="alpha"
applyupto=CURRENT_TIMESTAMP,NOWAIT

Prompting Q Apply to skip specified transactions

To start a Q Apply program and specify that it not apply one transaction on
receive queue Q1 and a range of transactions on receive queue Q2:
asnqapp apply_server=targetdb apply_schema=ASN
skiptrans="Q1;0000:0000:0000:0000:51a1,
Q2;0000:0000:0000:0000:51b0-0000:0000:0000:0000:51c0"

Chapter 24. System commands for Q Replication and Event Publishing 407

asnqacmd: Working with a running Q Apply program
Use asnqacmd on Linux, UNIX, Windows, and UNIX System Services (USS) on
z/OS to send a command to a running Q Apply program. Run this command at an
operating system prompt or in a shell script.

For information on using the MVS MODIFY command to send commands to a
running Q Apply program on z/OS, see Working with running Q Replication and
Event Publishing programs by using the MVS MODIFY command.

Syntax

�� asnqacmd apply_server=db_name
apply_schema=schema

�

� chgparms parameters
loaddonesub=receive_queue:sub_name
prune
qryparms
status

show details
stop
stopq=receive_queue
startq=receive_queue
startq="receive_queue;skiptrans= skiptrans-clause "
reinitq=receive_queue
resumesub=receive_queue:sub_name
spillsub=receive_queue:sub_name

��

Parameters:

y
autostop= n

deadlock_retries=n n
logreuse= y

�

�
n

logstdout= y
monitor_interval=n monitor_limit=n

�

�
prune_interval=n y

term= n
trace_limit=n

skiptrans-clause::

transaction_ID
begin_transaction_ID-end_transaction_ID

408 Replication and Event Publishing Guide and Reference

Parameters

Table 42 defines the invocation parameters for the asnqacmd command.

Table 42. Definitions for the asnqacmd invocation parameters

Parameter Definition

apply_server=db_name Specifies the name of the database or subsystem that contains
the Q Apply control tables.

Specifies the name of the DB2
subsystem where the Q Apply program will run. For data
sharing, use the group attach name to run Q Apply in any
LPAR without changing the JCL for the started task.

If you do not specify a Q Apply server,
this parameter defaults to the value from the DB2DBDFT
environment variable.

apply_schema=schema Specifies a name that identifies the running Q Apply program
that you want to work with.

chgparms Specify to change one or more of the following operational
parameters of the Q Apply program while it is running:

v autostop

v deadlock_retries

v

v

v logreuse

v logstdout

v monitor_interval

v monitor_limit

v prune_interval

v term

v trace_limit

Important: The parameters that you are changing must
immediately follow the chgparms parameter.

You can specify multiple parameters when you specify
chgparms, and you can change these parameter values as
often as you wish. The changes temporarily override the
values in the IBMQREP_APPLYPARMS table, but they are not
written to the table. When you stop and restart the Q Apply
program, it uses the values in
IBMQREP_APPLYPARMS.“Descriptions of asnqapp
parameters” on page 391 includes details about the
parameters that you can override with this command.

Chapter 24. System commands for Q Replication and Event Publishing 409

Table 42. Definitions for the asnqacmd invocation parameters (continued)

Parameter Definition

loaddonesub=
receive_queue:sub_name

Specify to inform the Q Apply program that a manual load of
the target table for the Q subscription is done. Use this
parameter only if a manual load is specified for the Q
subscription (HAS_LOADPHASE column in the
IBMQREP_SUBS table has a value of E). When Q Apply
receives the command, it starts processing messages in the
spill queue for the Q subscription. When all spilled messages
are processed, Q Apply changes the Q subscription state to A
(active).
Bidirectional or peer-to-peer replication: Issue this command
for the same Q subscription that you started to begin the
group activation process. This Q subscription is also the one
whose source table was used as the load source.

prune Specify to instruct the Q Apply program to prune the
IBMQREP_APPLYMON and IBMQREP_APPLYTRACE tables
once. This pruning is in addition to any regularly scheduled
pruning as specified by the prune_interval parameter.

qryparms Specify if you want the current operational parameter values
for the Q Apply program written to the standard output
(stdout).

status Specify to see a message about the state of each Q Apply
thread (main, housekeeping, monitor, browsers, and agents).

410 Replication and Event Publishing Guide and Reference

Table 42. Definitions for the asnqacmd invocation parameters (continued)

Parameter Definition

show details Specify after the status parameter to view a more detailed
report about Q Apply program status, with the following
information about the Q Apply instance:

v Whether the Q Apply program is running

v Time since the program started

v Location of the Q Apply diagnostic log

v Number of active Q subscriptions

v Time period used to calculate averages

The following information is also displayed for each active
receive queue:

v Queue name

v Number of active Q subscriptions

v All transactions applied as of (time) (OLDEST_TRANS)

v Restart point for Q Capture (MAXCMTSEQ)

v All transactions applied as of (LSN)

v Oldest in-progress transaction (OLDEST_INFLT_TRANS)

v Average end-to-end latency

v Average Q Capture latency

v Average queue latency

v Average Q Apply latency

v Amount of memory in bytes that the browser thread used
for reading transactions from the queue

v Number of messages on the queue (queue depth)

v Percent fullness of queue

v Which agent threads are processing transactions

v Which agent threads are waiting for transactions

v Which agents are processing internal messages

v Which agents are initializing

stop Specify to stop the Q Apply program in an orderly way and
commit the messages that it has processed up to that point.

stopq=receive_queue Specify to instruct the Q Apply program to stop processing
messages for a receive queue. All in-memory transactions are
processed.

startq=receive_queue Specify to instruct the Q Apply program to start processing
messages on a receive queue.

startq=
"receive_queue;
skiptrans=
transaction_ID"

Specify to instruct the Q Apply program to not apply one or
a range of transactions from a receive queue when you start
message processing on the receive queue. For details on how
to specify the transaction identifier or range of identifiers, see
the skiptrans parameter section in “asnqapp: Starting a Q
Apply program” on page 389.

reinitq=receive_queue Specify to have the Q Apply program update the attributes
for NUM_APPLY_AGENTS and MEMORY_LIMIT from the
IBMQREP_RECVQUEUES table for all Q subscriptions that
use a particular receive queue. This command works only if
the Q Apply program is reading from the receive queue that
is named in the IBMQREP_RECVQUEUES table when you
issue the command.

Chapter 24. System commands for Q Replication and Event Publishing 411

Table 42. Definitions for the asnqacmd invocation parameters (continued)

Parameter Definition

resumesub=
recv_queue:sub_name

Specify to resume applying spilled rows to the target table.
Specify the name of the receive queue and Q subscription
that identify the target table. The spillsub parameter is used
to put the Q subscription in a spilling state (S) and the
resumesub parameter is used to resume normal operations.

Spill agents apply the rows from the temporary spill queue
until the queue is emptied. While the spill agents are
processing rows, incoming rows are added to the spill queue.
When the spill queue is emptied, the state of the Q
subscription is set to active (A) and normal operation
resumes.

spillsub=
recv_queue:sub_name

Specify to have all row changes for a Q subscription
redirected to a temporary spill queue. You can perform
maintenance on the target table such as reorganizing the
table. Specify the name of the receive queue and Q
subscription that identify the target table.

The temporary spill queue is created based on the definition
of your model queue. Ensure that the maximum depth of the
queue is large enough to hold the spilled rows until the rows
can be applied after resuming operations.

Example 1

To update all Q subscriptions that use a receive queue named Q1 with the latest
values for number of Q Apply agents and memory limit from the
IBMQREP_RECVQUEUES table:
asnqacmd apply_server=targetdb apply_schema="alpha" reinitq=Q1

Example 2

To instruct a running Q Apply program to stop after all queues are emptied once,
and to shorten the monitor interval and the trace limit:
asnqacmd apply_server=targetdb apply_schema="alpha" chgparms autostop=y
monitor_interval=60000 trace_limit=5000

Example 3

To receive messages about the state of each Q Apply thread:
asnqacmd apply_server=targetdb apply_schema="alpha" status

Example 4

To receive detailed messages about the Q Apply program and active receive
queues:
asnqacmd apply_server=targetdb apply_schema="alpha" status show details

Example 5

To prune the IBMQREP_APPLYMON and IBMQREP_APPLYTRACE tables once:
asnqacmd apply_server=targetdb apply_schema="alpha" prune

412 Replication and Event Publishing Guide and Reference

Example 6

To place a Q subscription in spill mode for performing maintenance on the target
table:
asnqacmd apply_server=targetdb apply_schema="BSN"

spillsub="BSN.QM1_TO_QM2.recvq:EmployeeSub"

When you are finished maintaining the target table, use the resumesub parameter
to resume normal operation.

Example 7

To prompt the Q Apply program to skip a range of transactions when it starts
processing receive queue Q2:
asnqacmd apply_server=targetdb apply_schema=ASN

startq="Q2;skiptrans=0000:0000:0000:0000:51a1-0000:0000:0000:0000:51a8"

asnpwd: Creating and maintaining password files
Use the asnpwd command to create and change password files on Linux, UNIX,
and Windows. Run this command at the command line or in a shell script.

Command help appears if you enter the asnpwd command without any parameters,
followed by a ?, or followed by incorrect parameters.

Syntax

�� asnpwd init Init parameters
add Add parameters
modify Modify parameters
delete Delete parameters
list List parameters

��

Init parameters:

encrypt all
password

asnpwd.aut
using filepath_name

Add parameters:

alias db_alias id userid password password �

�
asnpwd.aut

using filepath_name

Modify parameters:

alias db_alias id userid password password �

Chapter 24. System commands for Q Replication and Event Publishing 413

�
asnpwd.aut

using filepath_name

Delete parameters:

alias db_alias
asnpwd.aut

using filepath_name

List parameters:

asnpwd.aut
using filepath_name

Parameters

Table 43 defines the invocation parameters for the asnpwd command.

Important note about compatibility of password files: Password files that are
created by the asnpwd command starting with Version 9.5 Fix Pack 2 use a new
encryption method and cannot be read by older versions of the replication
programs and utilities. If you share a password file among programs and utilities
that are at mixed level, with some older than these fix packs, do not recreate the
password file by using an asnpwd utility that is at these fix packs or newer.
Replication programs and utilities at these fix packs or newer can continue to work
with older password files. Also, you cannot change an older password file to use
the new encryption method; you must create a new password file.

Usage note: On 64-bit Windows operating systems, the ADD, MODIFY, DELETE,
and LIST options are not supported for password files that were created by using
the asnpwd command before Version 9.5 Fix Pack 2.

Table 43. asnpwd invocation parameter definitions for Linux, UNIX, and Windows operating
systems

Parameter Definition

init Specify to create an empty password file. This command
will fail if you specify the init parameter with a password
file that already exists.

add Specify to add an entry to the password file. There can only
be one entry in the password file per db_alias. This
command will fail if you specify the add parameter with an
entry that already exists in the password file. Use the modify
parameter to change an existing entry in the password file.

modify Specify to modify the password or user ID for an entry in
the password file.

delete Specify to delete an entry from the password file.

list Specify to list the aliases and user ID entries in a password
file. This parameter can be used only if the password file
was created by using the encrypt password parameter.
Passwords are never displayed by the list command.

414 Replication and Event Publishing Guide and Reference

Table 43. asnpwd invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

encrypt Specifies which entries in a file to encrypt.

all (default)
Encrypt all entries in the specified file such that you
cannot list the database aliases, user names, and
passwords that are in the file. This option reduces the
exposure of information in password files.

password
Encrypt the password entry in the specified file. This
option allows users to list the database aliases and user
names stored in their password file. Passwords can
never be displayed.

using filepath Specifies the path and name of the password file. Follow the
file naming conventions of your operating system. An
example of a valid password file on Windows is
C:\sqllib\mypwd.aut.

If you specify the path and name of the password file, the
path and the password file must already exist. If you are
using the init parameter and you specify the path and
name of the password file, the path must already exist and
the command will create the password file for you.

If you do not specify this parameter, the default file name is
asnpwd.aut and the default file path is the current directory.

alias db_alias Specifies the alias of the database to which the user ID has
access. The alias is always folded to uppercase, regardless of
how it is entered.

id userid Specifies the user ID that has access to the database.

password password Specifies the password for the specified user ID. This
password is case sensitive and is encrypted in the password
file.

Return Codes

The asnpwd command returns a zero return code upon successful completion. A
nonzero return code is returned if the command is unsuccessful.

Examples for asnpwd

The following examples illustrate how to use the asnpwd command.

Example 1

To create a password file with the default name of asnpwd.aut in the current
directory:
asnpwd INIT

Example 2

To create a password file named pass1.aut in the c:\myfiles directory:
asnpwd INIT USING c:\myfiles\pass1.aut

Chapter 24. System commands for Q Replication and Event Publishing 415

Example 3

To create a password file named mypwd.aut with the encrypt all parameter:
asnpwd INIT ENCRYPT ALL USING mypwd.aut

Example 4

To create a password file named mypwd.aut with the encrypt password parameter:
asnpwd INIT ENCRYPT PASSWORD USING mypwd.aut

Example 5

To create a default password file with the encrypt password parameter:
asnpwd INIT ENCRYPT PASSWORD

Example 6

To add a user ID called oneuser and its password to the password file named
pass1.aut in the c:\myfiles directory and to grant this user ID access to the db1
database:
asnpwd ADD ALIAS db1 ID oneuser PASSWORD mypwd using c:\myfiles\pass1.aut

Example 7

To modify the user ID or password of an entry in the password file named
pass1.aut in the c:\myfiles directory:
asnpwd MODIFY AliaS sample ID chglocalid PASSWORD chgmajorpwd

USING c:\myfiles\pass1.aut

Example 8

To delete the database alias called sample from the password file named pass1.aut
in the c:\myfiles directory:
asnpwd delete alias sample USING c:\myfiles\pass1.aut

Example 9

To see command help:
asnpwd

Example 10

To list the entries in a default password file:
asnpwd LIST

Example 11

To list the entries in a password file named pass1.aut:
asnpwd LIST USING pass1.aut

The output from this command depends on how the password file was initialized:
v If it was initialized by using the encrypt all parameter, the following message

is issued:

416 Replication and Event Publishing Guide and Reference

ASN1986E "Asnpwd" : "". The password file "pass1.aut" contains
encrypted information that cannot be listed.

v If it was not initialized by using the encrypt all parameter, the following details
are listed:
asnpwd LIST USING pass1.aut
Alias: SAMPLE ID: chglocalid
Number of Entries: 1

asnscrt: Creating a replication service
Use the asnscrt command to create a replication service in the Windows Service
Control Manager (SCM) and invoke the asnqcap, asnqapp, asnmon, asncap, and
asnapply commands. Run the asnscrt command on the Windows operating
system.

Syntax

�� asnscrt -QC
-QA
-M
-C
-A

db2_instance account password asnqcap_command
asnqapp_command
asnmon_command
asncap_command
asnapply_command

��

Parameters

Table 44 defines the invocation parameters for the asnscrt command.

Table 44. asnscrt invocation parameter definitions for Windows operating systems

Parameter Definition

-QC Specifies that you are starting a Q Capture program.

-QA Specifies that you are starting a Q Apply program.

-M Specifies that you are starting a Replication Alert Monitor
program.

-C Specifies that you are starting a Capture program.

-A Specifies that you are starting an Apply program.

db2_instance Specifies the DB2 instance used to identify a unique DB2
replication service. The DB2 instance can be a maximum of
eight characters.

account Specifies the account name that you use to log on to
Windows. If the account is local it must begin with a period
and a backslash (.\). Otherwise the domain or machine name
must be specified (for example, domain_name\account_name).

password Specifies the password used with the account name. If the
password contains special characters, type a backslash (\)
before each special character.

Chapter 24. System commands for Q Replication and Event Publishing 417

Table 44. asnscrt invocation parameter definitions for Windows operating
systems (continued)

Parameter Definition

asnqcap_command Specifies the complete asnqcap command to start a Q capture
program. Use the documented asnqcap command syntax with
the appropriate asnqcap parameters.

If the DB2PATH environment variable is not defined, you
must specify a location for the work files by including the
capture_path parameter with the asnqcap command. If the
DB2PATH variable is defined and you specify a
capture_path, the capture_path parameter overrides the
DB2PATH variable.

The asnscrt command does not validate the syntax of the
asnqcap parameters that you enter.

asnqapp_command Specifies the complete asnqapp command to start a Q apply
program. Use the documented asnqapp command syntax with
the appropriate asnqapp parameters.

If the DB2PATH environment variable is not defined, you
must specify the location for the work files by including the
apply_path parameter with the asnqapp command. If the
DB2PATH variable is defined and you specify an apply_path,
the apply_path parameter overrides the DB2PATH variable.
The asnscrt command does not validate the syntax of the
asnqapp parameters that you enter.

asnmon_command Specifies the complete asnmon command to start a Replication
Alert Monitor program. Use the documented asnmon
command syntax with the appropriate asnmon parameters.

If the DB2PATH environment variable is not defined, you
must specify a location for the log files by including the
monitor_path parameter with the asnmon command. If the
DB2PATH variable is defined and you specify a
monitor_path, the monitor_path parameter overrides the
DB2PATH variable.

The asnscrt command does not validate the syntax of the
asnmon parameters that you enter.

asncap_command Specifies the complete asncap command to start a Capture
program. Use the documented asncap command syntax with
the appropriate asncap parameters.

If the DB2PATH environment variable is not defined, you
must specify a location for the work files by including the
capture_path parameter with the asncap command. If the
DB2PATH variable is defined and you specify a
capture_path, the capture_path parameter overrides the
DB2PATH variable.

The asnscrt command does not validate the syntax of the
asncap parameters that you enter.

418 Replication and Event Publishing Guide and Reference

Table 44. asnscrt invocation parameter definitions for Windows operating
systems (continued)

Parameter Definition

asnapply_command Specifies the complete asnapply command to start an Apply
program. Use the documented asnapply command syntax
with the appropriate asnapply parameters.

If the DB2PATH environment variable is not defined, you
must specify the location for the work files by including the
apply_path parameter with the asnapply command. If the
DB2PATH variable is defined and you specify an apply_path,
the apply_path parameter overrides the DB2PATH variable.

The asnscrt command does not validate the syntax of the
asnapply parameters that you enter.

Examples for asnscrt

The following examples illustrate how to use the asnscrt command.

Example 1

To create a DB2 replication service that invokes a Q Apply program under a DB2
instance called inst2 and uses a logon account of .\joesmith and a password of
my$pwd:
asnscrt -QA inst2 .\joesmith my\$pwd asnqapp apply_server=mydb2 apply_schema =as2

apply_path=X:\sqllib

Example 2

To create a DB2 replication service that invokes a Capture program under a DB2
instance called inst1:
asnscrt -C inst1 .\joesmith password asncap capture_server=sampledb

capture_schema=ASN capture_path=X:\logfiles

Example 3

To create a DB2 replication service that invokes an Apply program under a DB2
instance called inst2 and uses a logon account of .\joesmith and a password of
my$pwd:
asnscrt -A inst2 .\joesmith my\$pwd asnapply control_server=db2 apply_qual=aq2

apply_path=X:\sqllib

Example 4

To create a DB2 replication service that invokes a Replication Alert Monitor
program under a DB2 instance called inst3:
asnscrt -M inst3 .\joesmith password asnmon monitor_server=db3 monitor_qual=mq3

monitor_path=X:\logfiles

Example 5

To create a DB2 replication service that invokes a Capture program under a DB2
instance called inst4 and overrides the default work file directory with a fully
qualified capture_path:

Chapter 24. System commands for Q Replication and Event Publishing 419

asnscrt -C inst4 .\joesmith password X:\sqllib\bin\asncap capture_server=scdb
capture_schema=ASN capture_path=X:\logfiles

Example 6

To create a DB2 replication service that invokes a Q capture program under a DB2
instance called inst1:
asnscrt -QC inst1 .\joesmith password asnqcap capture_server=mydb1

capture_schema=QC1 capture_path=X:\logfiles

asnsdrop: Dropping a replication service
Use the asnsdrop command to drop replication services from the Windows Service
Control Manager (SCM) on the Windows operating system.

Syntax

�� asnsdrop service_name
ALL

��

Parameters

Table 45 defines the invocation parameters for the asnsdrop command.

Table 45. asnsdrop invocation parameter definitions for Windows operating systems

Parameter Definition

service_name Specifies the fully qualified name of the DB2 replication
service. Enter the Windows SCM to obtain the DB2
replication service name. On Windows operating systems,
you can obtain the service name by opening the Properties
window of the DB2 replication service.

If the DB2 replication service name contains spaces, enclose
the entire service name in double quotation marks.

ALL Specifies that you want to drop all DB2 replication services.

Examples for asnsdrop

The following examples illustrate how to use the asnsdrop command.

Example 1

To drop a DB2 replication service:
asnsdrop DB2.SAMPLEDB.SAMPLEDB.CAP.ASN

Example 2

To drop a DB2 replication service with a schema named A S N (with embedded
blanks), use double quotation marks around the service name:
asnsdrop "DB2.SAMPLEDB.SAMPLEDB.CAP.A S N"

Example 3

To drop all DB2 replication services:

420 Replication and Event Publishing Guide and Reference

asnsdrop ALL

asnslist: Listing replication services
Use the asnslist command to list replication services in the Windows Service
Control Manager (SCM). You can optionally use the command to list details about
each service. Run the asnslist command on the Windows operating system.

Syntax

�� asnslist
DETAILS

��

Parameters

Table 46 defines the invocation parameter for the asnslist command.

Table 46. asnslist invocation parameter definition for Windows operating systems

Parameter Definition

details Specifies that you want to list detailed data about all DB2
replication services on a system.

Examples for asnlist

The following examples illustrate how to use the asnslist command.

Example 1

To list the names of DB2 replication services on a system:
asnslist

Here is an example of the command output:
DB2.DB2.SAMPLE.QAPP.ASN
DB2.DB4.SAMPLE.QCAP.ASN

Example 2

To list details about all services on a system:
asnslist details

Here is an example of the command output:
DB2.DB2.SAMPLE.QAPP.ASN
Display Name: DB2 DB2 SAMPLE QAPPLY ASN
Image Path: ASNSERV DB2.DB2.SAMPLE.APP.AQ1 -ASNQAPPLY QAPPLY_SERVER=SAMPLE AP

PLY_SCHEMA=ASN QAPPLY_PATH=C:\PROGRA~1\SQLLIB
Dependency: DB2-0

DB2.DB4.SAMPLE.QCAP.ASN
Display Name: DB2 DB4 SAMPLE QAPPLY ASN
Image Path: ASNSERV DB2.DB4.SAMPLE.APP.AQ1 -ASNQCAP QCAPTURE_SERVER=SAMPLE CA

PTURE_SCHEMA=ASN QCAPTURE_PATH=C:\PROGRA~1\SQLLIB
Dependency: DB4-0

Chapter 24. System commands for Q Replication and Event Publishing 421

asntdiff: Comparing data in source and target tables (Linux, UNIX,
Windows)

Use the asntdiff command to compare two relational tables and generate a list of
differences between the two. Run the asntdiff command at an operating system
prompt or in a shell script.

This topic describes usage on Linux, UNIX, or Windows. For details on running
asntdiff on z/OS, see “asntdiff: Comparing data in source and target tables
(z/OS)” on page 426. For information on the asntdiff –f command option, which
enables you to compare tables whether or not they are involved in replication by
using an input file, see “asntdiff –f (input file) command option” on page 433.

The tables that you compare can reside on DB2 for Linux, UNIX, Windows, DB2
for z/OS, or DB2 for System i.

Syntax

�� asntdiff DB=server
SCHEMA=schema

�

�
DIFF_SCHEMA=difference_table_schema DIFF_TABLESPACE=tablespace

�

�
n

DIFF_DROP= y
MAXDIFF=difference_limit

WHERE=WHERE_clause �

�
DIFF_PATH=log_path PWDFILE=filename DIFF=table_name

�

�
RANGECOL= range_clause_option

��

range_clause_option:

src_colname FROM:date-time_lower-bound TO:date-time_upper-bound
src_colname FROM:date-time
src_colname TO:date-time

422 Replication and Event Publishing Guide and Reference

Parameters

Table 47 defines the invocation parameters for the asntdiff command.

Table 47. asntdiff invocation parameter definitions for Linux, UNIX, and Windows operating
systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores
information about the source and target tables to be
compared. The value differs depending on whether
you are using Q Replication or SQL Replication:

Q Replication
The name of the Q Capture server, which
contains the IBMQREP_SUBS table.

SQL Replication
The name of the Apply control server,
which contains the
IBMSNAP_SUBS_MEMBR table.

SCHEMA=schema Specifies the schema of the Q Capture control tables
for Q Replication, or the schema of the Apply
control tables for SQL Replication. The default is
ASN.

DIFF_SCHEMA=
difference_table_schema

Specifies the schema of the difference table. The
default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space of the difference table. If
this parameter is not specified, the table is created in
the default table space in the database where the
asntdiff command was run.

DIFF_DROP=y/n Specifies whether an existing difference table will be
dropped and recreated before it is reused to record
differences. If the table does not exist, the asntdiff
command creates it.

n (default)
The difference table will be used as is and
the existing rows will be deleted.

y The difference table will be dropped and
recreated.

MAXDIFF=difference_limit Specifies the maximum number of differences that
you want the asntdiff command to process before
it stops. The default value is 10000.

Chapter 24. System commands for Q Replication and Event Publishing 423

Table 47. asntdiff invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

WHERE=WHERE_clause Specifies an SQL WHERE clause that uniquely
identifies one row of the control table that stores
information about the source and target tables that
will be compared. The WHERE clause must be in
double quotation marks. The value of this parameter
differs depending on whether you are using Q
Replication or SQL Replication:

Q Replication
The WHERE clause specifies a row in the
IBMQREP_SUBS table and uses the
SUBNAME column to identify the Q
subscription that contains the source and
target tables.

SQL Replication
The WHERE clause specifies a row in the
IBMSNAP_SUBS_MEMBR table and uses
the SET_NAME, APPLY_QUAL,
TARGET_SCHEMA, and TARGET_TABLE
columns to identify the subscription set
member that contains the source and target
tables.

DIFF_PATH=log_path Specifies the location where you want the asntdiff
command to write its log. The default value is the
directory from which you ran the command. The
value must be an absolute path name. Use double
quotation marks ("") to preserve case.

PWDFILE=filename Specifies the name of the password file that is used
to connect to databases. If you do not specify a
password file, the default value is asnpwd.aut (the
name of the password file that is created by the
asnpwd command). The asntdiff command searches
for the password file in the directory that is
specified by the DIFF_PATH parameter. If no value
for the DIFF_PATH parameter is specified, the
command searches for the password file in the
directory where the command was run.

DIFF=table_name Specifies the name of the table that is created in the
source database to store differences between the
source and target tables. The table has one row for
each difference that is detected. If you do not
include this parameter or the DIFF_SCHEMA
parameter, the difference table is named
ASN.ASNTDIFF.

424 Replication and Event Publishing Guide and Reference

Table 47. asntdiff invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

RANGECOL clause Specifies a range of rows from the source table that
you want to compare. You provide the name of a
DATE, TIME, or TIMESTAMP column in the source
table, and then use one of three different clauses for
specifying the range. The column name must be
enclosed in single quotation marks. The clause must
be enclosed in double quotation marks.

The timestamp uses the following format:
YYYY-MM-DD-HH.MM.SS.mmmmm. For example,
2010-03-10-10.35.30.55555 is the GMT timestamp for
March 10, 2010, 10:35 AM, 30 seconds, and 55555
microseconds.

Use one of the following clauses:

src_colname FROM: date-time_lower-bound TO:
date-time_upper-bound

Specifies a lower and upper bound for the
range of rows to compare.

The following example uses a TIMESTAMP
column:

"’SALETIME’
FROM: 2008-02-08-03.00.00.00000
TO: 2008-02-15-03.00.00.00000"

Remember: Both the FROM: and TO:
keywords are required and both keywords
must be followed by a colon (:).

src_colname FROM: date-time
Specifies that you want to compare all rows
with timestamps that are greater than or
equal to date-time.

For example:

"’SALE_TIME’
FROM: 2008-03-10-10.35.30.55555"

src_colname TO: date-time
Specifies that you want to compare all rows
with timestamps that are less than or equal
to the date-time.

For example:

"’SALETIME’
TO: 2008-03-20-12.00.00.00000"

Recommendation: For better performance, ensure
that you have an index on the source column that is
specified in the range clause.When you compare
tables that are involved in peer-to-peer replication,
you can use the IBM-generated IBMQREPVERTIME
column for the source column in the range clause.
Restriction: The RANGECOL parameter is not valid
for the asntdiff -f (input file) option. You can use
a SQL WHERE clause in the input file to achieve
similar results.

Chapter 24. System commands for Q Replication and Event Publishing 425

Examples for asntdiff

The following examples show how to use the asntdiff command.

Example 1

In Q Replication, to find the differences between a source and target table that are specified in a Q
subscription named my_qsub, on a Q Capture server named source_db, with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"

Example 2

In SQL Replication, to find the differences between a source and target table that are specified in a
subscription set called my_set, with a target table named trg_table, on an Apply control server named
apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table

Example 3

In Q Replication, to find the differences between a range of rows in the source and target tables that are
specified in a peer-to-peer Q subscription named my_qsub, on a Q Capture server named source_db,
with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"
RANGECOL="’IBMQREPVERTIME’ FROM: ’2008-03-10-0.00.00.00000’
TO: ’2007-04-12-00.00.00.00000’"

Example 4

In SQL Replication, to find the differences between a range of rows in the source and target table that are
specified in a subscription set called my_set, with a target table named trg_table, on an Apply control
server named apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table
RANGECOL="’CREDIT_TIME’ FROM:’2008-03-10-12.00.00.00000’
TO: ’2008-03-11-12.00.00.00000’"

asntdiff: Comparing data in source and target tables (z/OS)
Use the asntdiff command to compare two relational tables and generate a list of
differences between the two. Run the asntdiff command with JCL or at a UNIX
System Services (USS) command prompt or shell script.

This topic describes usage on z/OS:
v For details on running asntdiff on Linux, UNIX, and Windows, see “asntdiff:

Comparing data in source and target tables (Linux, UNIX, Windows)” on page
422.

v For information on the asntdiff –f command option, which enables you to
compare tables whether or not they are involved in replication, see “asntdiff –f
(input file) command option” on page 433.

v For details on using asntdiff in parallel mode, see “Running the asntdiff utility
in parallel mode (z/OS)” on page 322.

The tables that you compare can reside on DB2 for z/OS, DB2 for Linux, UNIX,
Windows, or DB2 for System i.

426 Replication and Event Publishing Guide and Reference

Syntax

�� asntdiff DB=server DB2_SUBSYSTEM=subsystem
SCHEMA=schema

�

�
DIFF_SCHEMA=difference_table_schema DIFF_TABLESPACE=tablespace

�

�
n

DIFF_DROP= y
MAXDIFF=difference_limit

WHERE=WHERE_clause �

�
DIFF=table_name RANGECOL= range-clause-option

�

�
n

PARALLEL= y parallel-options

�

�
SQLID=source_authorization_ID
SOURCESQLID=source_authorization_ID

��

range-clause-option:

src_colname FROM:date-time_lower-bound TO:date-time_upper-bound
src_colname FROM:date-time
src_colname TO:date-time

parallel-options:

NUMTHREADS=level_of_parallelism NUMBLOCKS==number_of_blocks TARGET_SQLID=target_authorization_ID

Chapter 24. System commands for Q Replication and Event Publishing 427

Parameters

Table 48 defines the invocation parameters for the asntdiff command.

Table 48. asntdiff invocation parameter definitions for z/OS operating systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores
information about the source and target tables to be
compared. The value differs depending on whether
you are using Q Replication or SQL Replication:

Q Replication
The location name of the Q Capture server,
which contains the IBMQREP_SUBS table.

SQL Replication
The location name of the Apply control
server, which contains the
IBMSNAP_SUBS_MEMBR table.

Restriction: This parameter is not valid for the
asntdiff -f (input file) option. You can use the
SOURCE_SERVER and TARGET_SERVER
parameters with the -f option to specify the names
of the source and target database. On z/OS, these
are location names and you also must use the
DB2_SUBSYSTEM parameter to specify the name of
the subsystem where the asntdiff utility runs.

DB2_SUBSYSTEM=subsystem Specifies the name of the subsystem where you run
the asntdiff command.

SCHEMA=schema Specifies the schema of the Q Capture control tables
for Q Replication, or the schema of the Apply
control tables for SQL Replication. The default is
ASN.

DIFF_SCHEMA=
difference_table_schema

Specifies the schema of the difference table. The
default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space of the difference table. If
this parameter is not specified, the table is created in
the default table space in the subsystem where the
asntdiff command was run.

This is a two-part name, dbname.tablespace, where
dbname is the logical database name and tablespace is
the table space name.

DIFF_DROP=y/n Specifies whether an existing difference table will be
dropped and recreated before it is reused to record
differences. If the table does not exist, the asntdiff
command creates it.

n (default)
The difference table will be used as is and
the existing rows will be deleted.

y The difference table will be dropped and
recreated.

MAXDIFF=difference_limit Specifies the maximum number of differences that
you want the asntdiff command to process before
it stops. The default value is 10000.

428 Replication and Event Publishing Guide and Reference

Table 48. asntdiff invocation parameter definitions for z/OS operating systems (continued)

Parameter Definition

WHERE=WHERE_clause Specifies an SQL WHERE clause that uniquely
identifies one row of the control table that stores
information about the source and target tables that
will be compared. The WHERE clause must be in
double quotation marks. The value of this parameter
differs depending on whether you are using Q
Replication or SQL Replication:

Q Replication
The WHERE clause specifies a row in the
IBMQREP_SUBS table and uses the
SUBNAME column to identify the Q
subscription that contains the source and
target tables.

SQL Replication
The WHERE clause specifies a row in the
IBMSNAP_SUBS_MEMBR table and uses
the SET_NAME, APPLY_QUAL,
TARGET_SCHEMA, and TARGET_TABLE
columns to identify the subscription set
member that contains the source and target
tables.

Restriction: This parameter is not valid for the
asntdiff -f (input file) option. You can use the
SOURCE_SELECT and TARGET_SELECT
parameters with the -f option to specify the tables to
be compared, and can use a WHERE clause in the
SQL query that is provided with these parameters.

DIFF=table_name Specifies the name of the table that is created in the
source subsystem to store differences between the
source and target tables. The table has one row for
each difference that is detected. If you do not
include this parameter or the DIFF_SCHEMA
parameter, the difference table is named
ASN.ASNTDIFF.

Chapter 24. System commands for Q Replication and Event Publishing 429

Table 48. asntdiff invocation parameter definitions for z/OS operating systems (continued)

Parameter Definition

RANGECOL clause Specifies a range of rows from the source table that
you want to compare. You provide the name of a
DATE, TIME, or TIMESTAMP column in the source
table, and then use one of three different clauses for
specifying the range. The column name must be
enclosed in single quotation marks. The clause must
be enclosed in double quotation marks.

The timestamp uses the following format:
YYYY-MM-DD-HH.MM.SS.mmmmm. For example,
2010-03-10-10.35.30.55555 is the GMT timestamp for
March 10, 2010, 10:35 AM, 30 seconds, and 55555
microseconds.

Use one of the following clauses:

src_colname FROM: date-time_lower-bound TO:
date-time_upper-bound

Specifies a lower and upper bound for the
range of rows to compare.

The following example uses a TIMESTAMP
column:

"’SALETIME’
FROM: 2008-02-08-03.00.00.00000
TO: 2008-02-15-03.00.00.00000"

Remember: Both the FROM: and TO:
keywords are required and both keywords
must be followed by a colon (:).

src_colname FROM: date-time
Specifies that you want to compare all rows
with timestamps that are greater than or
equal to date-time.

For example:

"’SALE_TIME’
FROM: 2008-03-10-10.35.30.55555"

src_colname TO: date-time
Specifies that you want to compare all rows
with timestamps that are less than or equal
to the date-time.

For example:

"’SALETIME’
TO: 2008-03-20-12.00.00.00000"

Recommendation: For better performance, ensure
that you have an index on the source column that is
specified in the range clause.When you compare
tables that are involved in peer-to-peer replication,
you can use the IBM-generated IBMQREPVERTIME
column for the source column in the range clause.
Restriction: The RANGECOL parameter is not valid
for the asntdiff -f (input file) option. You can use
a SQL WHERE clause in the input file to achieve
similar results.

430 Replication and Event Publishing Guide and Reference

Table 48. asntdiff invocation parameter definitions for z/OS operating systems (continued)

Parameter Definition

PARALLEL=y/n Specifies whether the asntdiff utility uses parallel
mode, in which multiple threads are used to
compare the tables, or operates in serial mode with
a single thread.

n (default)
The asntdiff utility uses serial mode.

y The asntdiff utility uses parallel mode. For
details on installation requirements,
required authorizations, and restrictions,
see “Running the asntdiff utility in parallel
mode (z/OS)” on page 322.

NUMTHREADS=number_of_threads Specifies the number of threads that the asntdiff
utility is allowed to create. The minimum value is
six. The recommended value is 21, which is also the
maximum value and the default value. Ensure that
the MAXTHREADS parameter value that is
specified in BPXPRMXX is larger than the specified
number of threads. Also, configure DB2 ZPARMS
CTHREAD, IDFORE, and IDBACK to allow each of
the created threads to connect to DB2.

NUMBLOCKS=number_of_blocks Specifies the number of partitions into which the
asntdiff utility divides the source and target tables
(that is, the result sets of the SOURCE_SELECT and
TARGET_SELECT parameters) for parallel compare.
A value of 0 (the default) means that the utility
automatically determines the number of blocks.

SQLID=authorization_ID Use this parameter when asntdiff is running in
non-parallel mode. The parameter specifies an
authorization ID that can be used to create the
difference table. Use this parameter if the ID that is
used to run the asntdiff command does not have
authorization to create tables. The value of the SQLID
parameter is used as the schema for the difference
table if you do not explicitly specify a schema by
using the DIFF_SCHEMA parameter.

SOURCE_SQLID=authorization_ID When you use asntdiff in parallel mode, this
parameter specifies an authorization ID that can be
used to execute stored procedures and packages and
run DDL and DML on temporary tables at the
source. Use this parameter if the ID that is used to
run the asntdiff command does not have the
necessary authorization.

TARGET_SQLID=authorization_ID When you use asntdiff in parallel mode, this
parameter specifies an authorization ID that can be
used to execute stored procedures and packages and
run DDL and DML on temporary tables at the
target. Use this parameter if the ID that is used to
run the asntdiff command does not have the
necessary authorization.

Chapter 24. System commands for Q Replication and Event Publishing 431

Usage notes

The asntdiff command creates data sets (JCL) or temporary files (USS) for spilling data and for writing
differences before inserting them into the difference table. You specify the location of the data sets or
temporary files differently:

JCL

If you want ASNTDIFF to write to z/OS data sets, add these two DD statements to your
ASNTDIFF JCL, modifying the size specifications to match the size of your source table:
//SPLFILE DD DSN=&&SPILL,DISP=(NEW,DELETE,DELETE),
// UNIT=VIO,SPACE=(CYL,(11,7)),
// DCB=(RECFM=VS,BLKSIZE=6404)
//DIFFFILE DD DSN=&&DIFFLE,DISP=(NEW,DELETE,DELETE),
// UNIT=VIO,SPACE=(CYL,(11,7)),
// DCB=(RECFM=VS,BLKSIZE=6404)

USS On USS, temporary files are written by default to the hierarchical file system (HFS), in the home
directory of the user ID that executes the asntdiff command. The default names are DD:DIFFFILE
and DD:SPILLFILE. You can use a DIFFFILE DD statement to specify an alternative HFS path and
file name for those files, as shown in this example:
//DIFFFILE DD PATH=’/u/oeusr01/tdiffil2’,
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(ORDWR,OCREAT),
// PATHMODE=(SIRWXU,SIRGRP,SIROTH)

Redirecting the HFS requires you to create an empty file that can be written to or to use the
above PATHDISP and PATHOPTS settings to create a new file if one does not exist.

Examples for asntdiff

The first four examples show how to use the asntdiff command on USS; the fifth example provides JCL.
For more sample JCL, see the ASNTDIFF sample program in the SASNSAMP sample data set.

Example 1: Q Replication

In Q Replication, to find the differences between a source and target table that are specified in a Q
subscription named my_qsub, on a Q Capture server named source_db, with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"

Example 2: SQL Replication

In SQL Replication, to find the differences between a source and target table that are specified in a
subscription set called my_set, with a target table named trg_table, on an Apply control server named
apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table

Example 3: Comparing a range of rows in Q Replication

In Q Replication, to find the differences between a range of rows in the source and target tables that are
specified in a peer-to-peer Q subscription named my_qsub, on a Q Capture server named source_db,
with a Q Capture schema of asn:
asntdiff db=source_db schema=asn where="subname = ’my_qsub’"
RANGECOL="’IBMQREPVERTIME’ FROM: ’2008-03-10-0.00.00.00000’
TO: ’2007-04-12-00.00.00.00000’"

Example 4: Comparing a range of rows in SQL Replication

432 Replication and Event Publishing Guide and Reference

In SQL Replication, to find the differences between a range of rows in the source and target table that are
specified in a subscription set called my_set, with a target table named trg_table, on an Apply control
server named apply_db, with an Apply schema of asn, and to name the difference table diff_table:
asntdiff DB=apply_db schema=asn where="set_name = ’my_set’
and target_table = ’trg_table’" diff=diff_table
RANGECOL="’CREDIT_TIME’ FROM:’2008-03-10-12.00.00.00000’
TO: ’2008-03-11-12.00.00.00000’"

Example 5: Using asntdiff in parallel mode

To run the asntdiff utility in parallel mode to compare two tables with 21 parallel threads, you can use
the following JCL after locating and changing all occurrences of the following strings:
v The subsystem name DSN! to the name of your DB2 subsystem
v DSN!!0 to the name if your DB2 target library
v ASNQ!!0 to the name of your Replication Server target library
//ASNTDIF1 EXEC PGM=ASNTDIFF,PARM=’/-F’
//STEPLIB DD DSN=ASNQ!!0.SASNLOAD,DISP=SHR
// DD DSN=DSN!!0.SDSNLOAD,DISP=SHR
//MSGS DD PATH=’/usr/lpp/db2repl_10_01/msg/En_US/db2asn.cat’
//CEEDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD DUMMY
//SYSIN DD *
DB2_SUBSYSTEM=DSN!
SOURCE_SERVER=DQRG
SOURCE_SELECT="SELECT empno, department FROM employee

WHERE empno > 10000 ORDER BY 1"
TARGET_SERVER=D7DP
TARGET_SELECT="SELECT empno, department FROM employee

WHERE empno > 10000 ORDER BY 1"
PARALLEL=Y
NUMTHREADS=21
SOURCE_SQLID=SRCADM
TARGET_SQLID=TGTADM
DIFF_DROP=Y
MAXDIFF=20000
DEBUG=NO
/*
//

asntdiff –f (input file) command option
With the asntdiff -f command option, you use an input file to specify
information about any two tables that you want to compare, whether or not they
are being replicated.

The input file contains SQL SELECT statements for the source and target tables
that specify the rows that you want to compare. The standard asntdiff command
compares tables that are involved in replication by using subscription information
from the replication control tables.

The asntdiff -f option can compare any tables on z/OS, Linux, UNIX, or
Windows. You can run asntdiff -f from a Linux, UNIX, or Windows command
prompt, from z/OS as a batch job that uses JCL, or from z/OS under the UNIX
System Services (USS) environment.

In addition to the SELECT statements, the input file contains the source and target
database information, the difference table information, and optional parameters
that specify methods for processing the differences. You can use a password file

Chapter 24. System commands for Q Replication and Event Publishing 433

that is created by the asnpwd command to specify a user ID and password for
connecting to the source and target databases.

Note: The asntrep command for repairing table differences does not support the
input file option.

The format of the input file contents is as follows:
* Optional comment line
Optional comment line
SOURCE_SERVER=server_name
SOURCE_SELECT="SQL_SELECT_STATEMENT"
TARGET_SERVER=server_name
TARGET_SELECT="SQL_SELECT_STATEMENT"
PARAMETER=value
...

Follow these guidelines:
v Each parameter must follow the parameter=value format.
v Multiple parameter-value pairs can be specified on a single line, separated by a

blank. The parameter-value pairs also can be specified on a new line.
v To preserve blanks, surround parameter values with double quotation marks (").

Double quotation marks are also required for the source and target SELECT
statements.

v If you want to preserve mixed case or blanks in the names of single DB2 objects
(column or table names, DIFF_SCHEMA, DIFF_TABLESPACE) mask them with
\" \", for example \"MY NAME\" or \"ColumnName\" or \"name\".

v Comments must be prefixed with an asterisk (*) or pound sign (#). This line is
ignored. Comments must be on their own line and cannot be added to a line
that contains parameters.

v Surround the DIFF_PATH and PWDFILE parameters with double quotation
marks ("). A final path delimiter for DIFF_PATH is not required.

Syntax

�� asntdiff -f input_filename ��

Parameters

Table 49 defines the mandatory parameters to include in the input file for the
asntdiff -f command.

For descriptions of optional parameters that you can include in the input file (and
which are shared by the standard asntdiff command) see “asntdiff: Comparing
data in source and target tables (z/OS)” on page 426 or“asntdiff: Comparing data
in source and target tables (Linux, UNIX, Windows)” on page 422.

Table 49. asntdiff -f invocation parameter definitions for Linux, UNIX, Windows, and z/OS

Parameter Definition

input_filename Specifies the name of the file that contains the
source and target database information and SELECT
statements. Specify a directory path if the file is
located somewhere other than the directory from
which you run the asntdiff -f command.

434 Replication and Event Publishing Guide and Reference

Table 49. asntdiff -f invocation parameter definitions for Linux, UNIX, Windows, and
z/OS (continued)

Parameter Definition

SOURCE_SERVER=
source_server_name

Specifies the alias of the database where the source
table exists.

TARGET_SERVER=
target_server_name

Specifies the alias of the database where the target
table exists.

SOURCE_SELECT=
source_select_statement
TARGET_SELECT=
target_select_statement

Any valid SQL SELECT statement.

The result sets from the SQL statement at each table
must contain columns with matching data types and
lengths. The asntdiff command describes the
queries and compares the data from the two result
sets. The command does not explicitly check the
system catalog for type and length information. The
SELECT can be an open select as in (*), or a SELECT
statement that contains column names, SQL
expressions, and WHERE clauses that are permitted.

An ORDER BY clause is mandatory. The clause
must contain the numeric values of the positions of
the columns in the SQL statement.

Ensure that the column or columns in the ORDER
BY clause reference a unique key or unique
composite key. Otherwise the results are incorrect.
An index on the columns in the ORDER BY clause
might improve performance by eliminating the need
for a sort.

The entire statement must be enclosed in double
quotes to mark the beginning and the end.

The following examples show the mandatory parameters, SQL statements, and
optional parameters that you put in the input file.

Example 1

This example shows the use of an open SELECT statement on DB2 for z/OS. Note
the use of the \" to preserve mixed case in the table owner, and the use of optional
parameters in the input file. Also note the use of the DB2_SUBSYSTEM parameter.
SOURCE_SERVER=STPLEX4A_DSN7
SOURCE_SELECT=”select * from CXAIMS.ALDEC order by 1”
TARGET_SERVER=STPLEX4A_DSN7
TARGET_SELECT=”select * from \"Cxaims\".TARG_ALDEC order by 1”
DIFF_DROP=Y
DB2_SUBSYSTEM=DSN7
MAXDIFF=10000
DEBUG=YES

Example 2

This example demonstrates the use of SUBSTR and CAST functions in the SELECT
statements.

Chapter 24. System commands for Q Replication and Event Publishing 435

SOURCE_SERVER=D7DP
SOURCE_SELECT=“select HIST_CHAR12,HIST_DATE,HIST_CHAR6,HIST_INT1,HIST_INT2,
HIST_INT3,SUBSTR(CHAR1,1,5) AS CHAR1,SUBSTR(CHAR2,1,10) AS CHAR2,HIST_INT3,
HIST_DEC1,HIST_DEC2,HIST_DEC3,CAST(INT1 AS SMALLINT) AS INT1
FROM BISVT.THIST17 ORDER BY 4”
TARGET_SERVER=STPLEX4A_DSN7
TARGET_SELECT=“select HIST_CHAR12,HIST_DATE,HIST_CHAR6,HIST_INT1,HIST_INT2,
HIST_INT3,CHAR1,CHAR2,HIST_INT3,HIST_DEC1,HIST_DEC2,HIST_DEC3,SML1
FROM BISVT.THIST17 ORDER BY 4”
DB2_SUBSYSTEM=DSN7
DIFF_DROP=Y
DEBUG=YES
MAXDIFF=10000

Example 3

This example compares the EMPLOYEE tables on SOURCEDB and TARGETDB
and includes several optional parameters.
SOURCE_SERVER=SOURCEDB
SOURCE_SELECT=“select FIRSTNME, LASTNAME, substr(WORKDEPT,1,1)
as WORKDEPT, EMPNO from EMPLOYEE order by 4"
TARGET_SERVER=TARGETDB
TARGET_SELECT=“select FIRSTNME, LASTNAME, substr(WORKDEPT,1,1)
as WORKDEPT, EMPNO from EMPLOYEE order by 4"
DIFF_DROP=Y
DIFF =\"diffTable\"
DEBUG=YES
MAXDIFF=10000
PWDFILE=”asnpwd.aut”
DIFF_PATH=”C:\utils\”

Example 4

This example compares the EMPLOYEE tables in a Linux or UNIX environment
and uses a casting function.
SOURCE_SERVER=SOURCEDB
SOURCE_SELECT=“select EMPNO, FIRSTNME, LASTNAME, cast(SALARY as INT)
as SALARY from EMPLOYEE order by 1"
TARGET_SERVER=TARGETDB
TARGET_SELECT=“select EMPNO, FIRSTNME, LASTNAME, cast(SALARY as INT)
as SALARY from EMPLOYEE order by 1"
DIFF_DROP=Y
DIFF =\"diffTable\"
DEBUG=YES
MAXDIFF=10000
PWDFILE=”asnpwd.aut”
DIFF_PATH=”home/laxmi/utils”

asntrc: Operating the replication trace facility
Use the asntrc command to run the trace facility on Linux, UNIX, Windows, and
UNIX System Services (USS) on z/OS. The trace facility logs program flow
information from Q Capture, Q Apply, Capture, Apply, and Replication Alert
Monitor programs. You can provide this trace information to IBM Software
Support for troubleshooting assistance. Run this command at an operating system
prompt or in a shell script.

You run this command at an operating system prompt or in a shell script.

436 Replication and Event Publishing Guide and Reference

Syntax

�� asntrc �

� on -db db_name -qcap On parameters
-schema qcapture_schema

-qapp
-schema qapply_schema

-cap
-schema capture_schema

-app
-qualifier apply_qualifier

-mon
-qualifier monitor_qualifier

off -db db_name -qcap
kill -schema qcapture_schema
clr -qapp
diag -schema qapply_schema
resetlock -cap

-schema capture_schema
-app

-qualifier apply_qualifier
-mon

-qualifier monitor_qualifier
dmp filename -db db_name -qcap

-schema qcapture_schema -holdlock
-qapp

-schema qapply_schema
-cap

-schema capture_schema
-app

-qualifier apply_qualifier
-mon

-qualifier monitor_qualifier
flw Format parameters
fmt -qcap
v7fmt -db db_name -schema qcapture_schema

-qapp
-schema qapply_schema

-cap
-schema capture_schema

-app
-qualifier apply_qualifier

-mon
-qualifier monitor_qualifier

stat
statlong -qcap

-db db_name -schema qcapture_schema
-qapp

-schema qapply_schema
-cap

-schema capture_schema
-app

-qualifier apply_qualifier
-mon

-qualifier monitor_qualifier
-fn filename

-db db_name -qcap Change settings parameters
-schema qcapture_schema

-qapp
-schema qapply_schema

-cap
-schema capture_schema

-app
-qualifier apply_qualifier

-mon
-qualifier monitor_qualifier

-help
-listsymbols

��

On parameters:

-b buffer_size -fn filename -fs filesize
�

�
-d diag_mask -df function_name|component_name diag_mask

Chapter 24. System commands for Q Replication and Event Publishing 437

Format parameters:

-fn filename -d diag_mask
�

�
-df function_name|component_name diag_mask -holdlock

Change settings parameters:

-d diag_mask -df function_name|component_name diag_mask

Parameters

Table 50 defines the invocation parameters for the asntrc command.

Table 50. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems

Parameter Definition

on Specify to turn on the trace facility for a specific Q
Capture, Q Apply, Capture, Apply, or Replication Alert
Monitor program. The trace facility creates a shared
memory segment used during the tracing process.

-db db_name
Specifies the name of the database to be traced:

v Specifies the name of the Q Capture server for the Q
Capture program to be traced.

v Specifies the name of the Q Apply server for the Q
Apply program to be traced.

v Specifies the name of the Capture control server for
the Capture program to be traced.

v Specifies the name of the Apply control server for the
Apply program to be traced.

v Specifies the name of the Monitor control server for
the Replication Alert Monitor program to be traced.

-qcap Specifies that a Q Capture program is to be traced. The
Q Capture program is identified by the -schema
parameter.

-schema qcapture_schema Specifies the name of the Q Capture program to be
traced. The Q Capture program is identified by the Q
Capture schema that you enter. Use this parameter with
the -qcap parameter.

-qapp Specifies that a Q Apply program is to be traced. The Q
Apply program is identified by the -schema parameter.

-schema qapply_schema Specifies the name of the Q Apply program to be
traced. The Q Apply program is identified by the Q
Apply schema that you enter. Use this parameter with
the -qapp parameter.

-cap Specifies that a Capture program is to be traced. The
Capture program is identified by the -schema parameter.

438 Replication and Event Publishing Guide and Reference

Table 50. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

-schema capture_schema Specifies the name of the Capture program to be traced.
The Capture program is identified by the Capture
schema that you enter. Use this parameter with the -cap
parameter.

-app Specifies that an Apply program is to be traced. The
Apply program is identified by the -qualifier
parameter.

-qualifier apply_qualifier Specifies the name of Apply program to be traced. This
Apply program is identified by the Apply qualifier that
you enter. Use this parameter with the -app parameter.

-mon Specifies that a Replication Alert Monitor program is to
be traced. The Replication Alert Monitor program is
identified by the -qualifier parameter.

-qualifier monitor_qualifier Specifies the name of Replication Alert Monitor
program to be traced. This Replication Alert Monitor
program is identified by the monitor qualifier that you
enter. Use this parameter with the -mon parameter.

off
Specify to turn off the trace facility for a specific Q
Capture, Q Apply, Capture, Apply, or Replication Alert
Monitor program and free the shared memory segment
in use.

kill Specify to force an abnormal termination of the trace
facility.

Use this parameter only if you encounter a problem and
are unable to turn the trace facility off with the off
parameter.

clr Specify to clear a trace buffer. This parameter erases the
contents of the trace buffer but leaves the buffer active.

diag Specify to view the filter settings while the trace facility
is running.

resetlock
Specify to release the buffer latch of a trace facility. This
parameter enables the buffer latch to recover from an
error condition in which the trace program terminated
while holding the buffer latch.

dmp filename Specify to write the current contents of the trace buffer
to a file.

-holdlock Specifies that the trace facility can complete a file dump
or output command while holding a lock, even if the
trace facility finds insufficient memory to copy the
buffer.

flw Specify to display summary information produced by
the trace facility and stored in shared memory or in a
file. This information includes the program flow and is
displayed with indentations that show the function and
call stack structures for each process and thread.

Chapter 24. System commands for Q Replication and Event Publishing 439

Table 50. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

fmt Specify to display detailed information produced by the
trace facility and stored in shared memory or in a file.
This parameter displays the entire contents of the traced
data structures in chronological order.

v7fmt Specify to display information produced by the trace
facility and stored in shared memory or in a file. This
trace information appears in Version 7 format.

stat Specify to display the status of a trace facility. This
status information includes the trace version,
application version, number of entries, buffer size,
amount of buffer used, status code, and program
timestamp.

statlong Specify to display the status of a trace facility with
additional z/OS version level information. This
additional information includes the service levels of
each module in the application and appears as long
strings of text.

-fn filename Specifies the file name containing the mirrored trace
information, which includes all the output from the
trace facility.

-help Displays the valid command parameters with
descriptions.

-listsymbols Displays the valid function and component identifiers
to use with the -df parameter.

-b buffer_size Specifies the size of the trace buffer (in bytes). You can
enter a K or an M after the number to indicate kilobytes
or megabytes, respectively; these letters are not case
sensitive.

-fs filesize Specifies the size limit (in bytes) of the mirrored trace
information file.

440 Replication and Event Publishing Guide and Reference

Table 50. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS
operating systems (continued)

Parameter Definition

-d diag_mask Specifies the types of trace records to be recorded by the
trace facility. Trace records are categorized by a
diagnostic mask number:

1 Flow data, which includes the entry and exit
points of functions.

2 Basic data, which includes all major events
encountered by the trace facility.

3 Detailed data, which includes the major events
with descriptions.

4 Performance data.
Important: The higher diagnostic mask numbers are not
inclusive of the lower diagnostic mask numbers.

You can enter one or more of these numbers to
construct a diagnostic mask that includes only the trace
records that you need. For example, specify -d 4 to
record only performance data; specify -d 1,4 to record
only flow and performance data; specify -d 1,2,3,4
(the default) to record all trace records. Separate the
numbers with commas.

Enter a diagnostic mask number of 0 (zero) to specify
that no global trace records are to be recorded by the
trace facility. Type -d 0 to reset the diagnostic level
before specifying new diagnostic mask numbers for a
tracing facility.

-df function_name|component_name
diag_mask

Specifies that a particular function or component
identifier is to be traced.

Type the diagnostic mask number (1,2,3,4) after the
function or component identifier name. You can enter
one or more of these numbers. Separate the numbers
with commas.

Examples for asntrc

The following examples illustrate how to use the asntrc command. These
examples can be run on Linux, UNIX, Windows, or z/OS operating systems.

Example 1

To trace a running Capture program:
1. Start the trace facility, specifying a trace file name with a maximum buffer and

file size:
asntrc on -db mydb -cap -schema myschema -b 256k -fn myfile.trc -fs 500m

2. Start the Capture program, and let it run for an appropriate length of time.
3. While the trace facility is on, display the data directly from shared memory.

To display the summary process and thread information from the trace facility:
asntrc flw -db mydb -cap -schema myschema

Chapter 24. System commands for Q Replication and Event Publishing 441

To view the flow, basic, detailed, and performance data records only from the
Capture log reader:
asntrc fmt -db mydb -cap -schema myschema -d 0

-df "Capture Log Read" 1,2,3,4

4. Stop the trace facility:
asntrc off -db mydb -cap -schema myschema

The trace file contains all of the Capture program trace data that was generated
from the start of the Capture program until the trace facility was turned off.

5. After you stop the trace facility, format the data from the generated binary file:
asntrc flw -fn myfile.trc

and
asntrc fmt -fn myfile.trc -d 0 -df "Capture Log Read" 1,2,3,4

Example 2

To start a trace facility of a Replication Alert Monitor program:
asntrc on -db mydb -mon -qualifier monq

Example 3

To trace only performance data of an Apply program:
asntrc on -db mydb -app -qualifier aq1 -b 256k -fn myfile.trc -d 4

Example 4

To trace all flow and performance data of a Capture program:
asntrc on dbserv1 -cap -schema myschema -b 256k

-fn myfile.trc -d 1,4

Example 5

To trace all global performance data and the specific Capture log reader flow data
of a Capture program:
asntrc on -db mydb -cap -schema myschema -b 256k -fn myfile.trc -d 4

-df "Capture Log Read" 1

Example 6

To trace a running Capture program and then display and save a point-in-time
image of the trace facility:
1. Start the trace command, specifying a buffer size large enough to hold the

latest records:
asntrc on -db mydb -cap -schema myschema -b 4m

2. Start the Capture program, and let it run for an appropriate length of time.
3. View the detailed point-in-time trace information that is stored in shared

memory:
asntrc fmt -db mydb -cap -schema myschema

4. Save the point-in-time trace information to a file:
asntrc dmp myfile.trc -db mydb -cap -schema myschema

5. Stop the trace facility:
asntrc off -db mydb -cap -schema myschema

442 Replication and Event Publishing Guide and Reference

Examples for asntrc with shared segments

The standalone trace facility, asntrc, uses a shared segment to communicate with
the respective Q Capture, Q Apply, Capture, Apply or Replication Alert Monitor
programs to be traced. The shared segment will also be used to hold the trace
entries if a file is not specified. Otherwise, matching options must be specified for
both the asntrc command and for the respective programs to be traced to match
the correct shared segment to control traces. The following examples show the
options that need to be specified when the trace facility is used in conjunction with
Q Capture, Q Apply, Capture, Apply or Alert Monitor programs.

With the Q Capture program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the capture_server
parameter with the asnqcap command:
asntrc -db ASN6 -schema EMI -qcap
asnqcap capture_server=ASN6 capture_schema=EMI

With the Q Apply program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the apply_server
parameter with the asnqapp command:
asntrc -db TSN3 -schema ELB -qapp
asnqapp apply_server=TSN3 apply_schema=ELB

With the Capture program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the capture_server
parameter with the asncap command:
asntrc -db DSN6 -schema JAY -cap
asncap capture_server=DSN6 capture_schema=JAY

With the Apply program, the database specified by the -db parameter with the
asntrc command needs to match the database specified by the control_server
parameter with the asnapply command:
asntrc -db SVL_LAB_DSN6 -qualifier MYQUAL -app
asnapply control_server=SVL_LAB_DSN6 apply_qual=MYQUAL

With the Replication Alert Monitor program, the database specified by the -db
parameter with the asntrc command needs to match the database specified by the
monitor_server parameter with the asnmon command:
asntrc -db DSN6 -qualifier MONQUAL -mon
asnmon monitor_server=DSN6 monitor_qual=MONQUAL

asntrep: Repairing differences between source and target tables
Use the asntrep command to synchronize a source and target table by repairing
differences between the two tables. Run the asntrep command on Linux, UNIX,
and Windows at an operating system prompt or in a shell script.

Syntax

�� asntrep DB=server DB2_SUBSYSTEM=subsystem
SCHEMA=schema

�

�
DIFF_SCHEMA=difference_table_schema DIFF_TABLESPACE=tablespace

�

Chapter 24. System commands for Q Replication and Event Publishing 443

� WHERE=WHERE_clause
DIFF_PATH=log_path PWDFILE=filename

�

�
DIFF=table_name

��

Parameters

Table 51 defines the invocation parameters for the asntrep command.

Table 51. asntrep invocation parameter definitions for Linux, UNIX, and Windows operating
systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores
information about the source and target tables that
you want to synchronize. The value differs
depending on whether you are using Q Replication
or SQL Replication:

Q Replication
The value is the name of the Q Capture
server, which contains the IBMQREP_SUBS
table.

SQL Replication
The value is the name of the Apply control
server, which contains the
IBMSNAP_SUBS_MEMBR table.

The value of this parameter is
a location name.

DB2_SUBSYSTEM=subsystem Specifies the name of the
subsystem where you run the asntrep utility.

SCHEMA=schema Specifies the schema of the Q Capture control tables
for Q Replication, or the Apply control tables for
SQL Replication.

DIFF_SCHEMA=
difference_table_schema

Specifies the schema that qualifies the difference
table. The default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space where a copy of the
difference table is placed in the target database or
subsystem. The copy is then used to repair the
target table. If this parameter is not specified, the
table will be created in the default table space in the
database or subsystem in which the asntrep
command was run.

444 Replication and Event Publishing Guide and Reference

Table 51. asntrep invocation parameter definitions for Linux, UNIX, and Windows operating
systems (continued)

Parameter Definition

WHERE=WHERE_clause Specifies a SQL WHERE clause that uniquely
identifies one row of the control table that stores
information about the source and target tables that
you are synchronizing. The WHERE clause must be
in double quotation marks. The value of this
parameter differs depending on whether you are
using Q Replication or SQL Replication:

Q Replication
The WHERE clause specifies a row in the
IBMQREP_SUBS table and uses the
SUBNAME column to identify the Q
subscription that contains the source and
target tables.

SQL Replication
The WHERE clause specifies a row in the
IBMSNAP_SUBS_MEMBR table and uses
the SET_NAME, APPLY_QUAL,
TARGET_SCHEMA, and TARGET_TABLE
columns to identify the subscription set
member that contains the source and target
tables.

DIFF_PATH=log_path Specifies the location where you want the asntrep
utility to write its log. The default value is the
directory where you ran the command. The value
must be an absolute path name. Use double
quotation marks ("") to preserve case.

PWDFILE=filename Specifies the name of the password file that is used
to connect to databases. If you do not specify a
password file, the default value is asnpwd.aut (the
name of the password file that is created by the
asnpwd command). The asntrep utility searches for
the password file in the directory that is specified
by the DIFF_PATH parameter. If no value for the
DIFF_PATH parameter is specified, the command
searches for the password file in the directory where
the command was run.

DIFF=table_name Specifies the name of the table that was created in
the source database by the asntdiff command to
store differences between the source and target
tables. The information that is stored in this table is
used to synchronize the source and target tables.

Examples for asntrep

The following examples illustrate how to use the asntrep command.

Example 1

In Q Replication, to synchronize a source and target table that are specified in a Q
subscription named my_qsub, on a Q Capture server named source_db, with a Q
Capture schema of asn, and whose differences are stored in a table called
q_diff_table:

Chapter 24. System commands for Q Replication and Event Publishing 445

asntrep db=source_db schema=asn where="subname = ’my_qsub’" diff=q_diff_table

Example 2

In SQL Replication, to synchronize a source and target table that are specified in a
subscription set called my_set, with a target table named trg_table, on an Apply
control server named apply_db, with an Apply schema of asn, and whose
differences are stored in a table called sql_diff_table:
asntrep DB=apply_db SCHEMA=asn WHERE="set_name = ’my_set’
and target_table = ’trg_table’" diff=sql_diff_table

asnqanalyze: Operating the Q Replication Analyzer
Use the asnqanalyze command to gather information about the state of a Q
replication or event publishing environment. You can also use the command to
produce a formatted HTML report about Q Capture or Q Apply control tables,
DB2 catalogs, diagnostic log files for the replication programs, and WebSphere MQ
queue managers.

The command runs on Linux, UNIX, or Windows operating systems. However, it
can connect to a locally cataloged DB2 subsystem on z/OS to analyze the control
tables.

The asnqanalyze command has three parts:
v The GATHER option, which performs the analysis and stores the results in one

or more XML files in the directory from where the command was run.
v The REPORT option, which produces an HTML report from the output of the

GATHER option.
v The GENERATE HTML REPORT option, which generates an HTML report of

the data in the Q Capture and Q Apply control tables without using the
GATHER option.

You use GATHER once for each schema that is involved in the Q replication
configuration. Then, you specify the output files from each GATHER invocation in
the REPORT option. You can use the GENERATE HTML REPORT option to
generate a raw HTML report rather than the detailed report that is generated by
the GATHER plus REPORT options.

Run the asnqanalyze command at an operating system prompt.

Syntax

�� asnqanalyze GATHER gather-options
REPORT report-options
GENERATE HTML REPORT generate-html-report-options

��

gather options:

single-database-options
multiple-database-options

446 Replication and Event Publishing Guide and Reference

single-database-options:

DATABASE=dbname
CONFIGSERVER=srvrname

FILE=filename

�

� � INSTANCE=db2_instance
SUBSYSTEM=db2_subsystem
USERID=user_ID
PASSFILE=password_file
SCHEMA=schema
CAPLOGDIR=q_capture_log_directory
APPLOGDIR=q_apply_log_directory
PORT=port
CHANNEL=channel
HOSTNAME=hostname

OFF
WARNERRSONLY= ON

ON
GETCOLS= OFF

ON
GETMONITOR= OFF
LOGDAYS=number_of_days

ON
ZIP= OFF

-o output_file_name

multiple-database-options:

�LIST (database-options)
OFF

WARNERRSONLY= ON
ON

GETCOLS= OFF
ON

GETMONITOR= OFF
LOGDAYS=number_of_days

ON
ZIP= OFF

�

�
-o output_file_name

database-options:

DATABASE=dbname
CONFIGSERVER=srvrname

FILE=filename

�

� SCHEMA=schema ID=user_ID
PASSFILE=password_file

Chapter 24. System commands for Q Replication and Event Publishing 447

report-options:

�REPORT XML_input_file
-ZIP zip_file_name

generate-html-report-options:

GENERATE HTML REPORT DATABASE=dbname CONFIGSERVER=srvrname �

� optional parms
-o output_file_name

optional parms

� USERID=user_ID
PASSFILE=password_file
SCHEMA=schema

ON
GETCOLS= OFF

ON
GETMONITOR= OFF

Parameters for gather command, single database

Table 52 defines the invocation parameters for the asnqanalyze gather command
for the single_database_options.

Table 52. asnqanalyze gather invocation parameter definitions for Linux, UNIX, and Windows
operating systems

Parameter Description

DATABASE=dbname The Q Capture server or Q Apply server whose control tables,
database catalogs, or log files are analyzed.

CONFIGSERVER=srvrname The Q Capture server or Q Apply server to be analyzed when
asnqanalyze uses a Type 4 connection to the server.

FILE=file_name The configuration file where the port, hostname, and other
connection information are located. This is required for
databases that use a Type 4 connection.

INSTANCE=db2_instance The DB2 instance of the database to be
analyzed. Default: DB2

SUBSYSTEM=
db2_subsystem

The DB2 subsystem to be analyzed.
Default: DSN1

USERID=user_ID The user ID to connect to the database.

448 Replication and Event Publishing Guide and Reference

Table 52. asnqanalyze gather invocation parameter definitions for Linux, UNIX, and Windows
operating systems (continued)

Parameter Description

PASSFILE=password_file The name of the file that stores the password for the user ID.
To create a password file, create an ASCII file that contains
only the password. Save this file in the directory where you
are running the gather command. The password cannot be
followed by any trailing blanks, special characters, or carriage
returns. Q Analyzer cannot use encrypted password files that
are created by the asnpwd command. You must specify a path
to the password file if you run the asnqanalyze command
from a directory other than where the file is stored.
Tip: You might want to use a password file because
commands that are issued at the prompt might be logged in
the history and passwords are logged. A password file also
saves you from typing your password each time that you run
the Q Analyzer.

SCHEMA=schema The schema of the Q Capture or Q Apply control tables to be
analyzed. Default: ASN

CAPLOGDIR=
capture_log_directory

The directory where the Q Capture program writes its
diagnostic log file. If Q Capture is not running on the same
system where you issue the asnqanalyze command, you must
send the log file to a directory on the system where Q
Capture runs, and this parameter specifies that directory. If
you use FTP to send the log file, use ASCII mode.

If no log files were transferred, the IBMQREP_CAPTRACE
table is read for logging information. The data in this table is
not as detailed as the data in the diagnostic log files.

APPLOGDIR=
apply_log_directory

The directory where the Q Apply program writes its
diagnostic log file. If Q Apply is not running on the same
system where you issue the asnqanalyze command, you must
send the log file to a directory on the system where Q Apply
runs, and this parameter specifies that directory. If you use
FTP to send the log file, use ASCII mode.

If no log files were transferred, the IBMQREP_APPLYTRACE
table is read for logging information. The data in this table is
not as detailed as the data in the diagnostic log files.

PORT=port The port number on which the listener program of the
WebSphere MQ queue manager listens for incoming
messages. You need to specify a port only if the server to be
analyzed is remote from the computer on which you run the
asnqanalyze command. Default: 1414

Attention: The queue manager must be running to be
analyzed by the gather command.

CHANNEL=channel The remote server connection channel that the queue manager
is using. You need to specify a channel only if the server to be
analyzed is remote from the computer on which you run the
asnqanalyze command. Default: SYSTEM.DEF.SVRCONN

HOSTNAME=hostname The host name or IP address of the remote system where the
server to be analyzed resides. This parameter is required to
connect to a remote WebSphere MQ queue manager.

Chapter 24. System commands for Q Replication and Event Publishing 449

Table 52. asnqanalyze gather invocation parameter definitions for Linux, UNIX, and Windows
operating systems (continued)

Parameter Description

WARNERRSONLY=ON/OFF The type of records to retrieve from the diagnostic log file.

OFF (default)
All records are retrieved, including error, warning,
and informational messages and descriptions of
program actions.

ON Only error and warning messages are retrieved.

GETCOLS=ON/OFF Specifies whether the Q Analyzer collects information about
all columns or only the columns that are being replicated.

ON (default)
Information about all columns in the source and
target tables is collected whether or not the columns
are being replicated.

OFF Information about replicated columns is collected.

GETMONITOR=ON/OFF Specifies whether data in the IBMQREP_CAPMON,
IBMQREP_CAPQMON, and IBMQREP_APPLYMON tables is
retrieved.

ON (default)
Data is retrieved.

OFF Data is not retrieved.

LOGDAYS=integer Specifies how many days of records to retrieve from the log
files and IBMQREP_CAPTRACE, IBMQREP_APPLYTRACE,
IBMQREP_SIGNAL, IBMQREP_CAPMON,
IBMQREP_CAPQMON, and IBMQREP_APPLYMON tables.
Default: 3

ZIP=ON/OFF Specifies whether to compress the generated XML files into
one zip file (the default). If you specify ZIP=OFF the command
generates individual XML files.

-o output_file_name Specifies the name of the file that is produced by the gather
option. If you do not specify a file name, the default name is
as follows:

Compressed file
database_name.schema.zip

Uncompressed file
database_name.schema.xml

Parameters for gather command, multiple databases

Table 53 on page 451 defines the invocation parameters for the asnqanalyze gather
command for the multiple_database_options. Use the LIST=(database_options)
parameter to indicate that multiple databases are being provided.

450 Replication and Event Publishing Guide and Reference

Table 53. asnqanalyze gather invocation parameter definitions for Linux, UNIX, and Windows
operating systems

Parameter Description

LIST=(database_options) Indicates that multiple databases are
being provided. The database options (database_options) need
to be specified within single parentheses following the
parameter.

DATABASE=dbname The Q Capture server or Q Apply server whose control tables,
database catalogs, or log files are analyzed.

CONFIGSERVER=srvrname The Q Capture server or Q Apply server whose control tables,
database catalogs, or log files are analyzed with the Generate
HTML Report option. Either the DATABASE or the CONFIGSERVER
parameter should be specified. If asnqanalyze is used for a
database that uses a Type 4 connection then the CONFIGSERVER
parameter is used.

SCHEMA=schema The schema of the Q Capture or Q Apply control tables to be
analyzed. Default: ASN

USERID=user_ID The user ID to connect to the database.

INIFILE=file_name The configuration file where the port, host name are located.
This is required for databases that use a Type 4 connection.

PASSFILE=password_file The name of the file that stores the password for the user ID.
To create a password file, create an ASCII file that contains
only the password. Save this file in the directory where you
are running the gather command. The password cannot be
followed by any trailing blanks, special characters, or carriage
returns. Q Analyzer cannot use encrypted password files that
are created by the asnpwd command. You must specify a path
to the password file if you run the asnqanalyze command
from a directory other than where the file is stored.
Tip: You might want to use a password file because
commands that are issued at the prompt might be logged in
the history and passwords are logged. A password file also
saves you from typing your password each time that you run
the Q Analyzer.

GETCOLS=ON/OFF Specifies whether the Q Analyzer collects information about
all columns or only the columns that are being replicated.

ON (default)
Information about all columns in the source and
target tables is collected whether or not the columns
are being replicated.

OFF Information about replicated columns is collected.

GETMONITOR=ON/OFF Specifies whether data in the IBMQREP_CAPMON,
IBMQREP_CAPQMON, and IBMQREP_APPLYMON tables is
retrieved.

ON (default)
Data is retrieved.

OFF Data is not retrieved.

ZIP=ON/OFF Specifies whether to compress the generated XML files into
one zip file (the default). If you specifyZIP=OFF the command
generates individual XML files.

Chapter 24. System commands for Q Replication and Event Publishing 451

Table 53. asnqanalyze gather invocation parameter definitions for Linux, UNIX, and Windows
operating systems (continued)

Parameter Description

-o output_file_name Specifies the name of the file that is produced by the
asnqanalyze gather command. If you do not specify a file
name, the default name is as follows:

Compressed file
database_name.schema.zip

Uncompressed file
database_name.schema.xml

Parameters for report command

Table 54 defines the invocation parameters for the asnqanalyze report command.

Table 54. asnqanalyze report invocation parameter definitions for Linux, UNIX, and Windows

Parameter Description

XML_input_file Specifies one or more space-separated XML files that were
produced by the asnqanalyze gather command. Specify a
path to the XML file if you run the asnqanalyze report
command from a directory other than where the file is stored.
The command prompts you for the database alias of the
server where the file was created.

-ZIPzip_file Specifies that a zipped file that was generated by the
asnqanalyze gather command is provided as input. The zip
file can have one or more XML files. The REPORT function
unzips the file and analyzes each XML file.

Parameters for generate html report command

Table 55 defines the invocation parameters for the asnqanalyze generate html

report command.

Table 55. asnqanalyze gather invocation parameter definitions for Linux, UNIX, and Windows
operating systems

Parameter Description

DATABASE=dbname The Q Capture server or Q Apply server whose control tables,
database catalogs, or log files are analyzed.

CONFIGSERVER=srvrname Specifies the Q Capture server or Q Apply server to be
analyzed when asnqanalyze uses a Type 4 connection to the
server.

INIFILE=file_name The configuration file where the port, host name are located.
This is required for databases that use a Type 4 connection.

USERID=user_ID The user ID to connect to the database.

452 Replication and Event Publishing Guide and Reference

Table 55. asnqanalyze gather invocation parameter definitions for Linux, UNIX, and Windows
operating systems (continued)

Parameter Description

PASSFILE=password_file The name of the file that stores the password for the user ID.
To create a password file, create an ASCII file that contains
only the password. Save this file in the directory where you
are running the gather command. The password cannot be
followed by any trailing blanks, special characters, or carriage
returns. Q Analyzer cannot use encrypted password files that
are created by the asnpwd command. You must specify a path
to the password file if you run the asnqanalyze command
from a directory other than where the file is stored.
Tip: You might want to use a password file because
commands that are issued at the prompt might be logged in
the history and passwords are logged. A password file also
saves you from typing your password each time that you run
the Q Analyzer.

SCHEMA=schema The schema of the Q Capture or Q Apply control tables to be
analyzed. Default: ASN

GETCOLS=ON/OFF Specifies whether the Q Analyzer collects information about
all columns or only the columns that are being replicated.

ON (default)
Information about all columns in the source and
target tables is collected whether or not the columns
are being replicated.

OFF Information about replicated columns is collected.

GETMONITOR=ON/OFF Specifies whether data in the IBMQREP_CAPMON,
IBMQREP_CAPQMON, and IBMQREP_APPLYMON tables is
retrieved.

ON (default)
Data is retrieved.

OFF Data is not retrieved.

-o output_file_name Specifies the name of the file that is produced by the
asnqanalyze gather command. If you do not specify a file
name, the default name is as follows:

Compressed file
database_name.schema.zip

Uncompressed file
database_name.schema.xml

Example 1

The following command analyzes the Q Capture control tables, DB2 catalogs, and
queue manager on the Q Capture server SAMPLE, for a user ID of db2admin with
a password file pwdfile.txt and gathers only information about replicated
columns.

In this example, the command is run from the SQLLIB\bin directory where the Q
Capture program by default stores its log file, so there is no need to specify the
CAPLOGDIR parameter. The password file is also saved in this directory, so you
do not need to specify a directory path for this file.

Chapter 24. System commands for Q Replication and Event Publishing 453

Because the command is run from the same system as the queue manager, the
PORT, CHANNEL, and HOSTNAME parameters also are not specified.
asnqanalyze gather DATABASE=SAMPLE USERID="db2admin"
PASSFILE="pwdfile.txt" GETCOLS=OFF

Example 2

The following command analyzes the Q Apply control tables, DB2 catalogs, and
queue manager on the Q Apply server TARGET, which is a remote DB2 for z/OS
subsystem DSN4 that is cataloged locally as DSN4_TGT. The Q Apply diagnostic
log file was sent by FTP to the same directory from where the command is run
and where the password file is stored.

This command also specifies that six days of data should be gathered from the
IBMQREP_APPLYTRACE and IBMQREP_APPLYMON tables and that the output
should be an uncompressed XML file named target.zip.
asnqanalyze gather DATABASE=TARGET SUBSYSTEM=DSN4
USERID=db2admin PASSFILE=pwdfile.txt HOSTNAME="Z145HG"
LOGDAYS=6 ZIP=OFF -o target.zip

Example 3

To produce an HTML report that uses the output of the gather command in
Example 1:
asnqanalyze report SAMPLE.ASN.xml

Example 4

The following examples show two different ways to use the asnqanalyze generate
html report command.
v Generate a raw HTML report for database V95DB, control tables under schema

ASN. Get the information from the IBMQREP_SRC_COLS and
IBMQREP_TRG_COLS tables and also the monitor tables:
ASNQANALYZE GENERATE HTML REPORT DATABASE=V95DB
GETCOLS=ON GETMONITOR=ON -o qanalyzer_report.html

v Generate a raw HTML report for the control tables in database V95DB, under
schema ASNTEMP.
ASNQANALYZE GENERATE HTML REPORT DATABASE=v95db SCHEMA=ASNTEMP

(The output is sent to the file V95DB.ASNTEMP.html)

asnqmfmt: Formatting and viewing Q replication and publishing
messages

Use the asnqmfmt command to format and view messages that are used in Q
Replication and Event Publishing. Run this command on Linux, UNIX, Windows,
or UNIX System Services (USS) on z/OS at an operating system prompt or in a
shell script.

Important: The format of Q Capture restart messages changed with z/OS APAR
PK78112 or Linux, UNIX, and Windows Version 9.5 Fix Pack 3. You cannot use an
asnqmfmt program that is older than this level to format messages that are in the
new format. Also, a newer asnqmfmt program cannot format the older restart
messages.

454 Replication and Event Publishing Guide and Reference

You can operate the message formatting program with JCL.
You can find sample JCL in the sample qrhlqual.SASNSAMP(ASNQMFMT).

For Event Publishing, you must run the asnqmfmt command from the directory that
contains the mqcap.xsd schema definition file. The default location for the file is
SQLLIB/samples/repl/q.

Syntax

�� asnqmfmt queue_name queue_manager_name
-o

filepath_name

�

�
-hex -l number -delmsg -mqmd

�

�
-oenc output_encoding_name -help

��

Parameters

Table 56 describes the invocation parameters for asnqmfmt:

Table 56. asnqmfmt invocation parameter definitions

Parameter Definition

queue_name Specifies the name of a WebSphere MQ queue whose
messages you want to format, view, and optionally delete.

queue_manager_name Specifies the name of a WebSphere MQ queue manager
where the queue is defined.

-o filepath_name Specifies the name of the file that contains the formatted
output. If the -o parameter is not specified, the formatted
messages will be written to the standard output (stdout).
The output file will be written to a z/OS data set if its name
starts with //. By default, the file is created in the directory
from which the asnqmfmt command was invoked. You can
change the directory by specifying a path with the file
name.

-hex Specifies that the messages are formatted in hexadecimal. If
you do not specify this parameter, messages will be
displayed according to their message format type, either
compact, delimited, or XML.

-l number Specifies the number of messages that you want to format.

-delmsg Specifies that the messages will be deleted from the queue
after they are formatted.

-mqmd Specifies that you want to view the WebSphere MQ message
descriptor for each message that is formatted.

-oenc output_encoding_name Specifies a code page to be used for formatting the
messages. If you do not specify this parameter, messages
will be formatted in the default code page for the operating
system where the command is invoked.

-help Displays the valid command parameters with descriptions.

Chapter 24. System commands for Q Replication and Event Publishing 455

Examples for asnqmfmt

The following examples illustrate how to use the asnqmfmt command.

Example 1

To view on the standard output all messages that are on send queue Q1 that is
defined in queue manager QMGR1:
asnqmfmt Q1 QMGR1

Example 2

To view all messages that are on send queue Q1 in a file called Q1_messages that is
stored in the C:\qrepl directory (Windows):
asnqmfmt Q1 QMGR1 -o C:\qrepl\Q1_messages

Example 3

To view on the standard output a hexadecimal version of all messages that are on
administration queue ADMNQ1 that is defined in the queue manager QMGR1:
asnqmfmt ADMNQ1 QMGR1 -hex

Example 4

To view on the standard output the message body and message descriptor of all
messages that are on administration queue ADMNQ1 that is defined in the queue
manager QMGR1, and then delete the messages from the queue:
asnqmfmt ADMNQ1 QMGR1 -delmsg -mqmd

Example 5

To view the first 100 messages that are on receive queue Q2 that is defined in the
queue manager QMGR2 in a file called Q2_messages that is stored in the C:\qrepl
directory (Windows):
asnqmfmt Q2 QMGR2 -l 100 -o C:\qrepl\Q2_messages

asnqxmfmt: Formatting and viewing Event Publishing messages (z/OS)
Use the asnqxmfmt command to format and view delimited or XML messages that
are used in Event Publishing. This command runs on z/OS and UNIX System
Services (USS) for z/OS only. The STEPLIB must include the WebSphere MQ and
XML Toolkit libraries if they are not installed in the LNKLST. Currently asnqxmfmt
requires XML4C 1.4 version (HXML14A.SIXMMOD1).

You can operate the message formatting program with JCL.
You can find sample JCL in the sample qrhlqual.SASNSAMP(ASNQXMFMT).

Syntax

�� asnqxmfmt queue_name queue_manager_name
-o

filepath_name

�

456 Replication and Event Publishing Guide and Reference

�
-hex -l number -delmsg -mqmd

�

�
-oenc output_encoding_name -help

��

Parameters

Table 57 describes the invocation parameters for asnqxmfmt:

Table 57. asnqxmfmt invocation parameter definitions

Parameter Definition

queue_name Specifies the name of a WebSphere MQ queue whose
messages you want to format, view, and optionally delete.

queue_manager_name Specifies the name of a WebSphere MQ queue manager
where the queue is defined.

-o filepath_name Specifies the name of the file that contains the formatted
output. If the -o parameter is not specified, the formatted
messages will be written to the standard output (stdout).
The output file will be written to a z/OS data set if its name
starts with //. By default, the file is created in the directory
from which the asnqxmfmt command was invoked. You can
change the directory by specifying a path with the file
name.

-hex Specifies that the messages are formatted in hexadecimal. If
you do not specify this parameter, messages will be
displayed according to their message format type, either
delimited or XML.

-l number Specifies the number of messages that you want to format.

-delmsg Specifies that the messages will be deleted from the queue
after they are formatted.

-mqmd Specifies that you want to view the WebSphere MQ message
descriptor for each message that is formatted.

-oenc output_encoding_nam Specifies a code page to be used for formatting the
messages. If you do not specify this parameter, messages
will be formatted in the default code page for the operating
system where the command is invoked.

-help Displays the valid command parameters with descriptions.

Examples for asnqxmfmt

The following examples illustrate how to use the asnqxmfmt command.

Example 1

To view on the standard output all messages that are on send queue Q1 that is
defined in queue manager QMGR1:
asnqxmfmt Q1 QMGR1

Example 2

To view on the standard output a hexadecimal version of all messages that are on
administration queue ADMNQ1 that is defined in the queue manager QMGR1:

Chapter 24. System commands for Q Replication and Event Publishing 457

asnqxmfmt ADMNQ1 QMGR1 -hex

Example 3

To view on the standard output the message body and message descriptor of all
messages that are on administration queue ADMNQ1 that is defined in the queue
manager QMGR1, and then delete the messages from the queue:
asnqxmfmt ADMNQ1 QMGR1 -delmsg -mqmd

458 Replication and Event Publishing Guide and Reference

Chapter 25. Control tables for Q Replication and Event
Publishing

Control tables are relational database tables that are used to store information for
the Q Replication and Event Publishing programs. These control tables are stored
at the Q Capture server, Q Apply server, and Monitor control server.

Control tables at the Q Capture server
The control tables at the Q Capture server contain information about data sources,
options for Q subscriptions or publications, operating parameters for the Q
Capture program, Q Capture performance statistics, and other metadata. These
tables are built according to options that you specify in the replication
administration tools.

Table 58 describes the control tables at the Q Capture server.

Table 58. Control tables at the Q Capture server

Table name Description

“IBMQREP_ADMINMSG table” on
page 460

An internal table that contains administrative
messages received by a Q Capture program.

“IBMQREP_CAPENQ table” on page
461

Ensures that only one Q Capture program with a
given schema is running per Q Capture server.

“IBMQREP_CAPENVINFO table” on
page 461

Stores environment variables and other information
that replication tools use to access remote programs.

“IBMQREP_CAPMON table” on
page 462

Contains statistics about the performance of a Q
Capture program.

“IBMQREP_CAPPARMS table” on
page 464

Contains parameters that you can specify to control
the operations of a Q Capture program.

“IBMQREP_CAPQMON table” on
page 469

Contains statistics about the performance of a Q
Capture program for each send queue.

“IBMQREP_CAPTRACE table” on
page 471

Contains informational, warning, and error messages
from a Q Capture program.

“IBMQREP_COLVERSION table” on
page 472

Enables the Q Capture and Capture programs to keep
track of different versions of a source table.

“IBMQREP_EOLFLUSH table” on
page 473

An internal table that forces a flush of the log read
buffer for Oracle sources.

“IBMQREP_EXCLSCHEMA table”
on page 473

Contains information about tables that are excluded
from schema-level Q subscriptions.

IBMQREP_IGNTRAN table Can be used to inform the Q Capture program about
transactions that you do not want to be captured
from the DB2 recovery log or Oracle redo log.

IBMQREP_IGNTRANTRC table Records information about transactions that were
specified to be ignored.

“IBMQREP_PART_HIST table
(Linux, UNIX, Windows)” on page
476

Maintains a history of changes to partitioned source
tables on Linux, UNIX, and Windows systems. This
table is used by Q Replication and SQL replication.

© Copyright IBM Corp. 2004, 2012 459

Table 58. Control tables at the Q Capture server (continued)

Table name Description

“IBMQREP_SCHEMASUBS table”
on page 477

Contains information about schema-level Q
subscriptions, including the replication queue map
that they use, the saved profile if one is used, and the
state.

“IBMQREP_SENDQUEUES table” on
page 479

Contains information about the WebSphere MQ
queues that a Q Capture program uses to send
transaction, row operation, large object, or
informational messages.

“IBMQREP_SIGNAL table” on page
483

Contains signals that are used to prompt a Q Capture
program. These signals are inserted by a user or
subscribing application, or by a Q Capture program
after it receives a control message from the Q Apply
program or a subscribing application.

“IBMQREP_SRC_COLS table” on
page 488

Identifies columns in the source table that are
replicated or published for a Q subscription or
publication.

“IBMQREP_SRCH_COND table” on
page 489

An internal table that a Q Capture program uses to
evaluate the search condition that you specified for a
Q subscription or publication.

“IBMQREP_SUBS table” on page 490 Contains information about Q subscriptions and
publications, including subscription type, source
tables, search conditions, data sending options, target
loading options, and states.

“IBMQREP_TABVERSION table” on
page 497

Enables the Q Capture and Capture programs to keep
track of different versions of a source table.

IBMQREP_ADMINMSG table
The IBMQREP_ADMINMSG table is an internal table that a Q Capture program
uses to record the time and identifier of administrative messages that it receives.

Server: Q Capture server

Default schema: ASN

Primary key: MQMSGID

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 59 provides a brief description of the columns in the IBMQREP_ADMINMSG
table.

Table 59. Columns in the IBMQREP_ADMINMSG table

Column name Description

MQMSGID Data type: CHAR(24) FOR BIT DATA; Nullable: No

The WebSphere MQ message identifier of the message.

MSG_TIME Data type: TIMESTAMP; Nullable: No, with default

The timestamp at the Q Capture server when the message was inserted into this
table. Default: Current timestamp.

460 Replication and Event Publishing Guide and Reference

IBMQREP_CAPENQ table
The IBMQREP_CAPENQ table ensures the uniqueness of the schema that is used
to identify a Q Capture program and its control tables.

Server: Q Capture server

Default schema: ASN

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The IBMQREP_CAPENQ table ensures that:

v For DB2 for Linux, UNIX, and Windows, only one Q
Capture program with a given schema is running per database.

v For non-data-sharing DB2 for z/OS, only one Q Capture
program with a given schema is running per subsystem.

v For data-sharing DB2 for z/OS, only one Q Capture program
with a given schema is running per data-sharing group.

When a Q Capture program is running, it exclusively locks this table. Starting the
Q Capture program twice will place the second instance on a lock wait over this
table. The table is created empty.

Table 60 provides a brief description of the column in the IBMQREP_CAPENQ
table.

Table 60. Column in the IBMQREP_CAPENQ table

Column name Description

LOCKNAME Data type: INTEGER; Nullable: Yes

This column contains no data.

IBMQREP_CAPENVINFO table
The IBMQREP_CAPENVINFO table contains eight rows that are used to store the
value of runtime environment variables and other information that the replication
administration tools use to access remote programs.

Server: Q Capture server

Default schema: ASN

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 61 on page 462 provides a brief description of the columns in the
IBMQREP_CAPENVINFO table.

Chapter 25. Control tables for Q Replication and Event Publishing 461

Table 61. Columns in the IBMQREP_CAPENVINFO table

Column name Description

NAME Data type: VARCHAR(30); Nullable: No

STARTTIME
The timestamp when the Q Capture program started.

HOSTNAME
The TCP/IP host name of the server where the Q Capture program is
running.

LOGFILE
The path and file name of the Q Capture diagnostic log file.

TMPDIR
The path of the directory where the Inter-Process Communication (IPC)
key of the Q Capture program is located.

ASNUSEMQCLIENT
The value of the Q Replication ASNUSEMQCLIENT environment variable.

MQSERVER
The value of the WebSphere MQ MQSERVER environment variable.

MQCHLLIB
The value of the WebSphere MQ MQCHLLIB environment variable.

MQCHLTAB
The value of the WebSphere MQ MQCHLTAB environment variable.

VALUE Data type: VARCHAR(3800); Nullable: Yes

For each row in the IBMQREP_CAPENVINFO table, the VALUE column
contains the value that is associated with the corresponding NAME column.

IBMQREP_CAPMON table
The Q Capture program inserts a row in the IBMQREP_CAPMON table to record
performance statistics during a given period of time. The value that you specify for
MONITOR_INTERVAL in the IBMQREP_CAPPARMS table tells the Q Capture
program how often to insert a row into the IBMQREP_CAPMON table. The
MONITOR_LIMIT value indicates the number of minutes that rows remain in this
table before they are eligible for pruning.

Server: Q Capture server

Default schema: ASN

Non-unique index: MONITOR_TIME DESC

Important: Do not use SQL to alter this table. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 62 on page 463 provides a brief description of the columns in the
IBMQREP_CAPMON table.

462 Replication and Event Publishing Guide and Reference

Table 62. Columns in the IBMQREP_CAPMON table

Column name Description

MONITOR_TIME Data type: TIMESTAMP; Nullable: No

The timestamp at the Q Capture server when the row was inserted into this
table.

CURRENT_LOG_TIME Data type: TIMESTAMP; Nullable: No

The timestamp at the Q Capture server of the latest database commit that was
seen by the Q Capture log reader.

CAPTURE_IDLE This column is deprecated.

CURRENT_MEMORY Data type: INTEGER; Nullable: No

The amount of memory (in bytes) that the Q Capture program used to
reconstruct transactions from the log.

ROWS_PROCESSED Data type: INTEGER; Nullable: No

The number of rows (individual insert, update, or delete operations) that the Q
Capture program read from the log.

TRANS_SKIPPED Data type: INTEGER; Nullable: No

The number of transactions (containing changed rows) that were not put on
queues because the changes were to columns that are not part of a Q
subscription or publication (the ALL_CHANGED_ROWS parameter in the
IBMQREP_SUBS table was set to No, the default).

TRANS_PROCESSED Data type: INTEGER; Nullable: No

The number of transactions that the Q Capture program processed.

TRANS_SPILLED Data type: INTEGER; Nullable: No

The number of transactions that the Q Capture program spilled to a file after
exceeding the MEMORY_LIMIT threshold.

MAX_TRANS_SIZE Data type: INTEGER; Nullable: No

The largest transaction, in bytes, that the Q Capture program processed.

QUEUES_IN_ERROR Data type: INTEGER; Nullable: No

The number of queues that were not accepting messages.

RESTART_SEQ
DB2 sources

Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

Oracle sources
Data type: RAW(10); Nullable: No

The log sequence number at which the Q Capture program starts during a warm
restart. This value represents the earliest log sequence number that the Q
Capture program found for which a commit or abort record has not yet been
found.

CURRENT_SEQ
DB2 sources

Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

Oracle sources
Data type: RAW(10); Nullable: No

The most recent log sequence number in the recovery log that the Q Capture
program read.

Chapter 25. Control tables for Q Replication and Event Publishing 463

Table 62. Columns in the IBMQREP_CAPMON table (continued)

Column name Description

LAST_EOL_TIME Data type: TIMESTAMP; Nullable: Yes

The time at the Q Capture control server when the Q Capture program reached
the end of the log.

LOGREAD_API_TIME Data type: INTEGER; Nullable: Yes

The number of milliseconds that the Q Capture program spent using the DB2 log
read application program interface (API) to retrieve log records.

NUM_LOGREAD_CALLS Data type: INTEGER; Nullable: Yes

The number of log read API calls that Q Capture made. For Oracle sources, this
counter shows the number of times that Q Capture fetched log records from the
LogMiner utility.

NUM_END_OF_LOGS Data type: INTEGER; Nullable: Yes

The number of times that Q Capture reached the end of the log.

LOGRDR_SLEEPTIME Data type: INTEGER; Nullable: Yes

The number of milliseconds that the Q Capture log reader thread slept because
there were no changes to capture or because Q Capture is operating at its
memory limit.

MQCMIT_TIME Data type: INTEGER; Nullable: No, with default

The number of milliseconds during the monitor interval that the Q Capture
program spent interacting with the WebSphere MQ API for committing messages
on all send queues.

IBMQREP_CAPPARMS table
The IBMQREP_CAPPARMS table contains a single row that you can modify to
control the operations of the Q Capture program. For example, you can set the
processing method that the Q Capture program uses when it starts. Or, you can set
the amount of time that the Q Capture program waits before committing messages
that are on send queues. The Q Capture program reads changes to this table only
during startup.

Server: Q Capture server

Default schema: ASN

Unique index: QMGR

This table contains information that you can update by using SQL.

Important: If this table has no row, or more than one row, the Q Capture program
will not run.

Table 63 on page 465 provides a brief description of the columns in the
IBMQREP_CAPPARMS table.

464 Replication and Event Publishing Guide and Reference

Table 63. Columns in the IBMQREP_CAPPARMS table

Column name Description

QMGR Data type: VARCHAR(48); Nullable: No

The name of the WebSphere MQ queue manager that the Q Capture program
uses.

REMOTE_SRC_SERVER Data type: VARCHAR(18); Nullable: Yes

Reserved for future use.

RESTARTQ Data type: VARCHAR(48); Nullable: No

The name of the queue that stores restart messages for the Q Capture log reader.
The name must be unique for each Q Capture program.

ADMINQ Data type: VARCHAR(48); Nullable: No

The name of the queue that receives control messages from the Q Apply
program or a user application. The name must be unique for each Q Capture
program.

STARTMODE Data type: VARCHAR(6); Nullable: No, with default

The steps that the Q Capture program takes when it starts.

cold The Q Capture program clears the restart queue and administration
queue, and starts processing all Q subscriptions or publications that are
in N (new) or A (active) state. With a cold start, the Q Capture program
starts reading the DB2 recovery log or Oracle active redo log at the end.

warmsi (default)
The Q Capture program starts reading the log at the point where it left
off, except if this is the first time you are starting it. In that case the Q
Capture program switches to a cold start. The warmsi start mode
ensures that the Q Capture program cold starts only when it initially
starts.

warmns
The Q Capture program starts reading the log at the point where it left
off. If it cannot warm start, it does not switch to cold start. The warmns
start mode prevents the Q Capture program from cold starting
unexpectedly. When the Q Capture program warm starts, it resumes
processing where it ended. If errors occur after the Q Capture program
starts, the program terminates and leaves all tables intact.

During warm starts, the Q Capture program will process only Q subscriptions or
publications that are not in I (inactive) state.

MEMORY_LIMIT Data type: INTEGER; Nullable: No, with default

The amount of memory, in megabytes, that the Q Capture program can use to
build transactions. After this allocation is used, in-memory transactions spill to a
file. Default: 0 for z/OS, 500 MB for Linux, UNIX, and Windows

A value of 0 tells the Q Capture program to calculate a
memory allocation from the Q Capture region size in the JCL or started task.

COMMIT_INTERVAL Data type: INTEGER; Nullable: No, with default

How often, in milliseconds, the Q Capture program issues an MQCMIT call.
This call signals the WebSphere MQ queue manager to make data messages and
informational messages that have been placed on queues available to the Q
Apply program or user applications. Default: 500

Chapter 25. Control tables for Q Replication and Event Publishing 465

Table 63. Columns in the IBMQREP_CAPPARMS table (continued)

Column name Description

AUTOSTOP Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Capture program stops when it reaches the
end of the active DB2 log.

Y The Q Capture program stops when it reaches the end of the active
DB2 log.

N (default)
The Q Capture program continues running when it reaches the end of
the active DB2 log.

MONITOR_INTERVAL Data type: INTEGER; Nullable: No, with default

How often, in milliseconds, the Q Capture program adds rows to the
IBMQREP_CAPMON and IBMQREP_CAPQMON tables. Default: 60000
milliseconds (1 minute) on z/OS; 30000 milliseconds (30 seconds) on Linux,
UNIX, and Windows

MONITOR_LIMIT Data type: INTEGER; Nullable: No, with default

The number of minutes that rows remain in the IBMQREP_CAPMON and the
IBMQREP_CAPQMON tables before they are eligible for pruning. At each
pruning interval, rows in these tables are pruned if they are older than this limit
based on the current timestamp. Default: 10080

TRACE_LIMIT Data type: INTEGER; Nullable: No, with default

The number of minutes that rows remain in the IBMQREP_CAPTRACE table
before they can be pruned. At each pruning interval, rows in the
IBMQREP_CAPTRACE table are pruned if they are older than this limit based
on the current timestamp. Default: 10080

SIGNAL_LIMIT Data type: INTEGER; Nullable: No, with default

The number of minutes that rows remain in the IBMQREP_SIGNAL table before
they can be pruned. At each pruning interval, rows in the IBMQREP_SIGNAL
table are pruned if they are older than this limit based on the current timestamp.
Default: 10080

PRUNE_INTERVAL Data type: INTEGER; Nullable: No, with default

How often, in seconds, the Q Capture program automatically prunes rows in the
IBMQREP_CAPMON, IBMQREP_CAPQMON, IBMQREP_SIGNAL, and
IBMQREP_CAPTRACE tables that are no longer needed. Default: 300

SLEEP_INTERVAL Data type: INTEGER; Nullable: No, with default

The number of milliseconds that the Q Capture program is idle after processing
the active log and any transactions that remain in memory. Default: 500
milliseconds (0.5 seconds) for DB2 sources; 2000 milliseconds (2 seconds) for
Oracle sources

LOGREUSE Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Capture program reuses the Q Capture log
file or appends to it.

Y On restart, the Q Capture program reuses its log file by clearing the file
then writing to the blank file.

N (default)
The Q Capture program appends new information to an existing Q
Capture log file when it restarts.

466 Replication and Event Publishing Guide and Reference

Table 63. Columns in the IBMQREP_CAPPARMS table (continued)

Column name Description

LOGSTDOUT Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Capture program sends log messages to
outputs other than its log file.

Y The Q Capture program sends log messages to both the log file and
console (stdout).

N (default)
The Q Capture program directs most log file messages to the log file
only.

Initialization, stop, and subscription activation and deactivation messages go to
both the console (stdout) and the log file.

TERM Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Capture program stops if the source DB2 or
queue manager is unavailable.

Y (default)
The Q Capture program stops if DB2 or the queue manager are
unavailable.

N The Q Capture program keeps running if DB2 or the queue manager
are unavailable. When DB2 or the queue manager are available, Q
Capture begins sending transactions where it left off without requiring
you to restart the program.

Oracle sources: The term parameter has no effect on Oracle sources. The default
value for Oracle capture is N, which indicates that the Q Capture program
continues to run if Oracle is unavailable.

CAPTURE_PATH Data type: VARCHAR(1040); Nullable: Yes

The path where the files that are created by the Q Capture program are stored.

ARCH_LEVEL Data type: CHAR(4); Nullable: No, with default

The version of the control tables. For Version 9.7 Fix Pack 3, the value is 0973.
Other ARCH_LEVEL values are 0802, 0901, 0905, and 0907.

Attention: When updating the IBMQREP_CAPPARMS table, do not change the
value in this column.

COMPATIBILITY Data type: CHAR(4); Nullable: No, with default

The version of messages that the Q Capture program sends to a Q Apply
program.

0907 (default)
Version 9.7 messages are sent. This compatibility value is also used
when the source and target servers are at Replication Server Version 10
on z/OS.

0905 Version 9.5 messages are sent.

0901 Version 9.1 messages are sent.

0802 Version 8 messages are sent.

Chapter 25. Control tables for Q Replication and Event Publishing 467

Table 63. Columns in the IBMQREP_CAPPARMS table (continued)

Column name Description

LOB_SEND_OPTION Data type: CHAR(1); Nullable: No, with default

A flag that indicates how the Q Capture program sends LOB data.

I (default)
Inline. The LOB values are sent within the transaction message. The
inlined LOB values can improve performance.

S Separate. The LOB values are sent in one or more separate LOB
messages that follow the transaction message.

QFULL_NUM_RETRIES Data type: INTEGER; Nullable: No, with default

This column specifies the number of times that the Q Capture program will retry
an MQPUT for the send queue.

Default: 30; Maximum: 1000

QFULL_RETRY_DELAY Data type: INTEGER; Nullable: No, with default

This column specifies the amount of time that the Q Capture program will sleep
before the next retry. The value is specified in milliseconds.

Default: 250 (milliseconds); Minimum: 20; Maximum: 3600000

MSG_PERSISTENCE Data type: CHAR(1); Nullable: No, with default

A flag that specifies whether a Q Capture program writes persistent (logged) or
nonpersistent (unlogged) messages to WebSphere MQ queues.

Y (default)
Q Capture write persistent messages to all queues. The messages are
logged by the queue manager and can be recovered.

N Q Capture write nonpersistent messages to all queues. The messages
are not logged and cannot be recovered.

LOGRDBUFSZ Data type: INTEGER; Nullable: No, with default

The size of the buffer in KB that the Q Capture program passes to DB2 when Q
Capture retrieves log records. DB2 fills the buffer with available log records that
Q Capture has not retrieved. Default: DB2 for z/OS 66KB; DB2 for Linux, UNIX,
and Windows 256KB.

CAPTURE_ALIAS Data type: VARCHAR(8); Nullable: Yes

The alias name for the database or subsystem that is used as the Q Capture
server. This is the alias as cataloged on the system where the replication
administration tools run and used to connect to the source database or
subsystem to create Q Capture control tables. This column is populated by the
Replication Center or ASNCLP command-line program when control tables are
created.

STARTALLQ Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Capture program whether to activate all send queues that
are not already in active state when Q Capture starts. Send queues that are
already active are always processed when Q Capture starts.

Y (default)
When the Q Capture program starts, it activates all send queues that
are not already in active (A) state.

N When the Q Capture program starts, it does not activate send queues
that are in inactive (I) state.

468 Replication and Event Publishing Guide and Reference

Table 63. Columns in the IBMQREP_CAPPARMS table (continued)

Column name Description

WARNTXSZ Data type: INTEGER; Nullable: No

Specifies whether the Q Capture program issues warning messages when it
encounters transactions that are larger than a specified size. You provide a
threshold value in megabytes, and transactions that exceed the threshold prompt
a warning message. Q Capture issues multiple warning messages if the
transaction size is a multiple of the WARNTXSZ value. For example, if you set
WARNTXSZ to 10 MB and Q Capture encounters a 30 MB transaction, three
warnings are issued (one for 10 MB, one for 20 MB, and one for 30 MB).

The default value of 0 MB means warnings are never issued.

LOGRD_ERROR_ACTION Data type: CHAR(1); Nullable: No, with default

A flag that specifies the action that the Q Capture program takes when it
encounters a compression dictionary error while reading the recovery log. A
"permanent" error means that the table space was reorganized twice with
KEEPDICTIONARY=NO. A "transient" error means all other compression
dictionary errors.

D (default)
For a permanent dictionary error, deactivate the Q subscription. For a
transient dictionary error, stop the Q Capture program.

E For either type of error, deactivate the Q subscription.

S For either type of error, stop the Q Capture program.

IBMQREP_CAPQMON table

Server: Q Capture server

Default schema: ASN

Non-unique index: MONITOR_TIME

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The Q Capture program inserts rows in the IBMQREP_CAPQMON table to record
statistics about its performance for each send queue. The value that you specify for
MONITOR_INTERVAL in the IBMQREP_CAPPARMS table indicates how
frequently the Q Capture program makes these inserts. The MONITOR_LIMIT
value sets the number of minutes that rows remain in the IBMQREP_CAPQMON
table before they are eligible for pruning.

Table 64 provides a brief description of the columns in the IBMQREP_CAPQMON
table.

Table 64. Columns in the IBMQREP_CAPQMON table

Column name Description

MONITOR_TIME Data type: TIMESTAMP; Nullable: No

The timestamp at the Q Capture server when the row was inserted into this
table.

Chapter 25. Control tables for Q Replication and Event Publishing 469

Table 64. Columns in the IBMQREP_CAPQMON table (continued)

Column name Description

SENDQ Data type: VARCHAR(97); Nullable: No

The name of the send queue that this row of monitor statistics tells you about.

ROWS_PUBLISHED Data type: INTEGER; Nullable: No

The number of rows (individual insert, update, or delete operations) that the Q
Capture program put on this send queue.

TRANS_PUBLISHED Data type: INTEGER; Nullable: No

The number of transactions that the Q Capture program put on this send queue.

CHG_ROWS_SKIPPED Data type: INTEGER; Nullable: No

The number of changed rows that were not put on this send queue because the
changes were to columns that are not part of a Q subscription or publication
(the ALL_CHANGED_ROWS parameter in the IBMQREP_SUBS table was set to
No, the default).

DELROWS_SUPPRESSED Data type: INTEGER; Nullable: No

The number of delete row operations that were not put on this send queue
because the Q subscription or publication was created with the option to
suppress deletes.

ROWS_SKIPPED Data type: INTEGER; Nullable: No

The number of rows that the Q Capture program did not transmit to this send
queue because they did not meet the search condition defined in the Q
subscription or publication.

LOBS_TOO_BIG Data type: INTEGER; Nullable: No

The number of LOB values that did not fit in a transaction message for a
monitor interval. If the error action for the queue is set to E, an empty LOB
value is sent. If the error action for the queue is set to S, the Q Capture program
stops.

XMLDOCS_TOO_BIG Data type: INTEGER; Nullable: No

The number of XML documents that did not fit in a transaction message for a
monitor interval. If the error action for the queue is set to E, a placeholder XML
document is inserted instead. If the error action for the queue is set to S, the Q
Capture program stops.

QFULL_ERROR_COUNT Data type: INTEGER; Nullable: No

The number of times that the Q Capture program retried putting messages
(MQPUT) on the send queue that is specified in the SENDQ column.

MQ_BYTES Data type: INTEGER; Nullable: Yes

The number of bytes put on the send queue during the monitor interval,
including data from the source table and the message header.

MQ_MESSAGES Data type: INTEGER; Nullable: Yes

The number of messages put on the send queue during the monitor interval.

CURRENT_SEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The most recent log sequence number in the recovery log that the Q Capture
program read for this send queue. Q Capture updates this column if the send
queue is active.

470 Replication and Event Publishing Guide and Reference

Table 64. Columns in the IBMQREP_CAPQMON table (continued)

Column name Description

RESTART_SEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The log sequence number from which the Q Capture program starts putting
messages on this send queue during a warm restart. This value represents the
earliest log sequence number that the Q Capture program found that did not
have a commit or abort record. Q Capture updates this column if the send
queue is active.

MQPUT_TIME Data type: INTEGER; Nullable: No, with default

The number of milliseconds during the monitor interval that the Q Capture
program spent interacting with the WebSphere MQ API for putting messages on
this send queue.

IBMQREP_CAPTRACE table
The IBMQREP_CAPTRACE table contains informational, warning, and error
messages from the Q Capture program.

Server: Q Capture server

Default schema: ASN

Non-unique index: TRACE_TIME

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 65 provides a brief description of the columns in the IBMQREP_CAPTRACE
table.

Table 65. Columns in the IBMQREP_CAPTRACE table

Column name Description

OPERATION Data type: CHAR(8); Nullable: No

The type of message from the Q Capture program:

INFO Describe actions that the Q Capture program takes.

WARNING
Describe conditions that could cause errors for the Q Capture program.

ERROR
Describe errors encountered by the Q Capture program.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time at the Q Capture server that the message was put on a send queue.

DESCRIPTION Data type: VARCHAR(1024); Nullable: No Data type: INTEGER; Nullable: Yes

The reason code for the replication or Event Publishing error message.

The ASN message ID followed by the message text. This column contains
English-only text.

REASON_CODE Data type: INTEGER; Nullable: Yes

The reason code for the replication or publishing error message.

Chapter 25. Control tables for Q Replication and Event Publishing 471

Table 65. Columns in the IBMQREP_CAPTRACE table (continued)

Column name Description

MQ_CODE Data type: INTEGER; Nullable: Yes

The reason code for the WebSphere MQ error message.

IBMQREP_COLVERSION table
The IBMQREP_COLVERSION table is used by the Q Capture and Capture
programs to keep track of different versions of a source table.

Server: Q Capture server

Default schema: ASN

Index: LSN, TABLEID1, TABLEID2, POSITION

Index: TABLEID1 ASC, TABLEID2 ASC

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The Q Capture or Capture program inserts rows into this table when the Q
subscription or registration for a source table is first activated, and then each time
the source table is altered.

Table 66 provides a brief description of the columns in the
IBMQREP_COLVERSION table.

Table 66. Columns in the IBMQREP_COLVERSION table

Column name Description

LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The point in the DB2 recovery log where the Q Capture program or Capture
program detected a new version of the source table.

TABLEID1 Data type: SMALLINT; Nullable: No

The object identifier (OBID) in SYSIBM.SYSTABLES.

TABLEID2 Data type: SMALLINT; Nullable: No

The database identifier (DBID) in SYSIBM.SYSTABLES.

POSITION Data type: SMALLINT; Nullable: No

The ordinal position of the column in the table, starting at 0 for the first column
in the table.

NAME Data type: VARCHAR(128); Nullable: No

The name of the column.

TYPE Data type: SMALLINT; Nullable: No

An internal data type identifier for the column (SQLTYPE in
SYSIBM.SYSCOLUMNS).

LENGTH Data type: INTEGER; Nullable: No

The maximum data length for this column.

472 Replication and Event Publishing Guide and Reference

Table 66. Columns in the IBMQREP_COLVERSION table (continued)

Column name Description

NULLS Data type: CHAR(1); Nullable: No

A flag that identifies whether the column allows null values:

Y The column allows null values.

N The column does not allow null values.

DEFAULT Data type: VARCHAR(1536); Nullable: Yes

The default value of the column (DEFAULTVALUE) in SYSIBM.SYSCOLUMNS.
This column is NULL if there is no default.

CODEPAGE Data type: INTEGER; Nullable: Yes

The code page that is used for data in this column. The value is 0 if the column
is defined as FOR BIT DATA or is not a string type. Default: NULL

SCALE Data type: INTEGER; Nullable: Yes

The scale of decimal data in decimal columns. The value is 0 for non-decimal
columns. Default: NULL

IBMQREP_EOLFLUSH table
IBMQREP_EOLFLUSH is an internal table that the Q Capture program writes to
when Oracle LogMiner has not responded within the time that is specified by the
commit_interval parameter. Writing to this table helps determine if any buffered
but unreturned log records are available for Q Capture to process.

Server: Q Capture server for Oracle sources

Default schema: ASN

Important: Do not use SQL to alter this table. Altering this table inappropriately
can cause unexpected results. The format of this table can change without notice.

The following table describes the column in the IBMQREP_EOLFLUSH table.

Table 67. Column in the IBMQREP_EOLFLUSH table

Column name Description

EOL_TIMEOUT Data type: TIMESTAMP; Nullable: No

The timestamp at the Q Capture server when the row was inserted into this
table.

IBMQREP_EXCLSCHEMA table
The IBMQREP_EXCLSCHEMA table stores information about tables that are
excluded from schema-level Q subscriptions. Each row provides the table names
for which SQL operations are not to be replicated even if a corresponding
schema-level Q subscription exists in the IBMQREP_SCHEMASUBS table. By
default, DB2 and replication catalog tables are excluded.

Server: Q Capture server

Default schema: ASN

Chapter 25. Control tables for Q Replication and Event Publishing 473

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 68 provides a brief description of the columns in the
IBMQREP_EXCLSCHEMA table.

Table 68. Columns in the IBMQREP_EXCLSCHEMA table

Column name Description

SCHEMA_NAME Data type: VARCHAR(128); Nullable: No

The name of the schema within which certain tables are excluded from a
schema-level Q subscription. Wild cards are not allowed in this column other
than a single percentage sign (%) to indicate that the replication programs should
review all schemas for tables to exclude from schema-level Q subscriptions.

z/OS: The value in the CREATOR column of the SYSIBM.SYSTABLES system
table for the source tables that are excluded from a schema-level Q subscription.

OBJECT_NAME Data type: VARCHAR(128); Nullable: No, with default.

Identifies the tables within a schema that are excluded from replication even if a
corresponding schema-level Q subscription exists. You can use a percentage sign
(%) as a wild card to identify multiple tables within one or all schemas. By
default, DB2 and replication catalog tables are automatically excluded. Default: %

QMAPNAME Data type: VARCHAR(128); Nullable: No

The replication queue map that is used for the schema-level Q subscription.

IBMQREP_IGNTRAN table
The IBMQREP_IGNTRAN table can be used to inform the Q Capture or Capture
program about transactions that you do not want to be captured from the DB2
recovery log. You use SQL to insert rows in the table that inform the programs to
ignore transactions based on authorization ID, authorization token (z/OS only), or
plan name (z/OS only).

Server: Q Capture server, Capture control server

Default schema: ASN

Unique index: AUTHID ASC, AUTHTOKEN ASC, PLANNAME ASC

Table 69 provides a brief description of the columns in the IBMQREP_IGNTRAN
table.

Table 69. Columns in the IBMQREP_IGNTRAN table

Column name Description

AUTHID Data type: CHAR(128); Nullable: Yes

The primary authorization ID for the transaction that you want to ignore.

AUTHTOKEN Data type: CHAR(30); Nullable: Yes

The authorization token (job name) for the transaction that
you want to ignore.

PLANNAME Data type: CHAR(8); Nullable: Yes

The plan name for the transaction that you want to ignore.

474 Replication and Event Publishing Guide and Reference

Table 69. Columns in the IBMQREP_IGNTRAN table (continued)

Column name Description

IGNTRANTRC Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Capture or Capture program whether to trace transactions
that were ignored based on the AUTHID, AUTHTOKEN, or PLANNAME value
that was specified in the IBMQREP_IGNTRAN table:

N (default)
Tracing is disabled.

Y Tracing is enabled. Each time a transaction is ignored, a row is inserted
into the IBMQREP_IGNTRANTRC table and a message is issued.

IBMQREP_IGNTRANTRC table
The IBMQREP_IGNTRANTRC table records information about transactions that
were specified to be ignored.

Server: Q Capture server, Capture control server

Default schema: ASN

Index: IGNTRAN_TIME ASC

Important: Do not alter this table by using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

A row is inserted in the IBMQREP_IGNTRANTRC table when a transaction is
ignored in the DB2 recovery log. This table is pruned according to the trace_limit
parameter for the Q Capture or Capture program.

Table 70 provides a brief description of the columns in the
IBMQREP_IGNTRANTRC table.

Table 70. Columns in the IBMQREP_IGNTRANTRC table

Column name Description

IGNTRAN_TIME Data type: TIMESTAMP; Nullable: No, with default

The time when the transaction was ignored. Default: Current timestamp

AUTHID Data type: CHAR(128); Nullable: Yes

The primary authorization ID of the transaction that was ignored.

AUTHTOKEN Data type: CHAR(30); Nullable: Yes

The authorization token (job name) for the transaction that
was ignored.

PLANNAME Data type: CHAR(8); Nullable: Yes

The plan name for the transaction that was ignored.

TRANSID Data type: CHAR(10) FOR BIT DATA; Nullable: No

The transaction identifier for the transaction that was ignored.

Chapter 25. Control tables for Q Replication and Event Publishing 475

Table 70. Columns in the IBMQREP_IGNTRANTRC table (continued)

Column name Description

COMMITLSN Data type: CHAR(10) FOR BIT DATA; Nullable: No

The commit log sequence number or time sequence for the transaction that was
ignored.

IBMQREP_PART_HIST table (Linux, UNIX, Windows)
The IBMQREP_PART_HIST table maintains a history of changes to partitioned
source tables on Linux, UNIX, or Windows systems. This table is used by Q
replication and SQL replication.

The Q Capture and Capture programs use the partition history to help them
handle partition changes such as add, attach, or detach. One row, identified by a
log sequence number (LSN), is inserted for each partition in the source table on
two occasions:
v The first Q subscriptions or subscription-set member for the table is activated.
v The table is altered to add, attach, or detach a partition.

Older rows in this table are pruned based on the value of the part_hist_limit
parameter.

Server: Q Capture server

Default schema: ASN

Primary key: LSN, TABSCHEMA, TABNAME, DATAPARTITIONID, TBSPACEID,
PARTITIONOBJECTID

Index: TABSCHEMA, TABNAME, LSN

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 71 provides a brief description of the columns in the IBMQREP_PART_HIST
table.

Table 71. Columns in the IBMQREP_PART_HIST table

Column name Description

LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The point in the DB2 recovery log where the Q Capture program or Capture
program detected a new version of the source table. This log sequence number
(LSN) expresses one of the following values:

v The LSN of the CAPSTART signal insert for the first Q subscription or
subscription-set member for the table.

v For Q subscriptions in N (new) state, the restartLSN value from the Q
Capture restart message, the value of the Q Capture lsn parameter, or the
LSN obtained from DB2 for the Q Capture migrate=Y parameter. Q
subscriptions in N state are automatically started when Q Capture starts.

v The LSN of an ADD, ATTACH, or DETACH operation on a table partition.

476 Replication and Event Publishing Guide and Reference

Table 71. Columns in the IBMQREP_PART_HIST table (continued)

Column name Description

HISTORY_TIME Data type: TIMESTAMP; Nullable: No

The time that Q Capture or Capture detected new partition information for a
table.

TABSCHEMA Data type: VARCHAR(128); Nullable: No

The schema name or high-level qualifier of the source table.

TABNAME Data type: VARCHAR(128); Nullable: No

The name of the source table.

DATAPARTITIONID Data type: INTEGER; Nullable: No

An identifier for the data partition. This value is read from the
SYSCAT.DATAPARTITIONS system table.

TBSPACEID Data type: INTEGER; Nullable: No

An identifier for the table space in which the table data is stored. This value is
read from the SYSCAT.DATAPARTITIONS system table.

PARTITIONOBJECTID Data type: INTEGER; Nullable: No

Identifier for the data partition within the table space. This value is read from
the SYSCAT.DATAPARTITIONS system table.

IBMQREP_SCHEMASUBS table
The IBMQREP_SCHEMASUBS table contains information about schema-level Q
subscriptions, including the replication queue map that they use, the saved profile
if one is used, and the state.

Server: Q Capture server

Default schema: ASN

Primary key: SCHEMA_SUBNAME

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 72 provides a brief description of the columns in the
IBMQREP_SCHEMASUBS table.

Table 72. Columns in the IBMQREP_SCHEMASUBS table

Column name Description

SCHEMA_SUBNAME Data type: VARCHAR(64); Nullable: No

An identifier for the schema-level Q subscription.

QMAPNAME Data type: VARCHAR(128); Nullable: No

The name of the replication queue map that is used by this schema-level Q
subscription.

Chapter 25. Control tables for Q Replication and Event Publishing 477

Table 72. Columns in the IBMQREP_SCHEMASUBS table (continued)

Column name Description

SCHEMA_NAME Data type: VARCHAR(128); Nullable: No

An identifier for a set of schemas of which this schema-level Q subscription is
one. This column can optionally contain the percentage sign (%) as a wild card
suffix. (The single pattern "%" can be used to indicate all schemas.)

z/OS: The value in the CREATOR column of the SYSIBM.SYSTABLES system
table for the source tables that are to be included in the schema-level Q
subscription.

OBJECT_NAME Data type: VARCHAR(128); Nullable: No, with default

An identifier for a set of tables that belong to this schema-level Q subscription.
This column can optionally contain the percentage sign (%) as a wild card suffix.
Default: %

SUBPROFNAME Data type: VARCHAR(128); Nullable: No, with default

An identifier for the saved profile that can be used to specify options for the
table-level Q subscriptions within this schema-level Q subscription. Default:
ASNBIDI

SUBGROUP Data type: VARCHAR(30); Nullable: Yes

An identifier that relates all Q subscriptions that are required to replicate a table
in all directions in a multidirectional replication configuration. All schema-level
Q subscriptions that are part of the same configuration (for example, a
bidirectional replication configuration between two sites) must specify the same
name for SUBGROUP at all servers that are involved in the configuration.

SOURCE_NODE Data type: SMALLINT; Nullable: No, with default

An identifying number for the source server in a bidirectional or peer-to-peer Q
subscription. Default: 0

TARGET_NODE Data type: SMALLINT; Nullable: No, with default

An identifying number for the target server in a bidirectional or peer-to-peer Q
subscription. Default: 0

STATE Data type: CHAR(1); Nullable: No, with default

A flag that is inserted by the Q Capture program to indicate the current state of
the schema-level subscription. The initial state is N (new). The STATE_INFO
field is initially set to ASN7247I (new schema-level subscription).

N (default)
The schema-level subscription is new. The Q Capture program
automatically activates this subscription when the program is started or
reinitialized. Activation means that SQL operations such as CREATE
TABLE and DROP TABLE are replicated for tables that match the
pattern for the subscription.

I The schema-level subscription is inactive. The Q Capture program saw
a STOP_SCHEMASUB signal in the log, or an error occurred and the
schema-level subscription was deactivated. The Q Capture program
stopped sending messages for this subscription but continued with
others.

A The schema-level subscription is active. The Q Capture program is
sending messages based on the options that are defined for the
subscription.

478 Replication and Event Publishing Guide and Reference

Table 72. Columns in the IBMQREP_SCHEMASUBS table (continued)

Column name Description

STATE_TIME Data type: TIMESTAMP; Nullable: No, with default

The timestamp of the last change in the state of the schema-level Q subscription.
Default: Current timestamp

STATE_INFO Data type: CHAR(8); Nullable: Yes

The identifier for the message that was issued about the state of the
schema-level Q subscription. For details, see the IBMQREP_CAPTRACE table or
the Q Capture diagnostic log.

IBMQREP_SENDQUEUES table
The IBMQREP_SENDQUEUES table contains information about the WebSphere
MQ queues that are used by a Q Capture program to send data and informational
messages. Each instance of the Q Capture program can work with multiple send
queues. Each send queue is uniquely defined in the IBMQREP_SENDQUEUES
table.

Server: Q Capture server

Default schema: ASN

Primary key: SENDQ

Unique index: PUBQMAPNAME

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 73 provides a brief description of the columns in the
IBMQREP_SENDQUEUES table.

Table 73. Columns in the IBMQREP_SENDQUEUES table

Column name Description

PUBQMAPNAME Data type: VARCHAR(128); Nullable: No

The name of the publishing queue map that includes this send queue. For Q
subscriptions, this name must match the value of REPQMAPNAME in the
IBMQREP_RECVQUEUES table.

SENDQ Data type: VARCHAR(48); Nullable: No

The unique name for this send queue. The name can stand for the local
definition of a remote queue, or for a local queue. Queue names cannot contain
blanks.

RECVQ Data type: VARCHAR(48); Nullable: Yes

The name of the receive queue for this Q subscription. This is a local queue on
the Q Apply server. Queue names cannot contain blanks.

DESCRIPTION Data type: VARCHAR(254); Nullable: Yes

A user-supplied description of the publishing queue map that contains this send
queue.

Chapter 25. Control tables for Q Replication and Event Publishing 479

Table 73. Columns in the IBMQREP_SENDQUEUES table (continued)

Column name Description

MESSAGE_FORMAT Data type: CHAR(1); Nullable: No, with default

The format that is used to encode messages that are put on the send queue.

C (default)
The Q Capture program encodes transactions from the source database
in a compact format that is designed to be read by the Q Apply
program.

X The Q Capture program encodes transactions from the source database
in Extensible Markup Language (XML) format.

J The Q Capture program encodes transactions from the source database
in Extensible Markup Language (XML) format with an MQRFH2
header.

D The Q Capture program encodes transactions from the source database
in delimited format.

MSG_CONTENT_TYPE Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether messages put on the queue will contain an entire
database transaction or a row operation only.

T (default)

R Messages contain a single update, insert, or delete operation, and
information about the transaction to which it belongs.

STATE Data type: CHAR(1); Nullable: No, with default

A flag that is inserted by the Q Capture program to show the status of the send
queue.

A (default)
Active. Transactions are being written to this queue.

I Inactive. A severe error was encountered on this queue.

STATE_TIME Data type: TIMESTAMP; Nullable: No, with default

The timestamp at the Q Capture server of the send queue's last state change.
Default: Current timestamp

STATE_INFO Data type: CHAR(8); Nullable: Yes

The number for the ASN message about the queue state. For details, see the
IBMQREP_CAPTRACE table, or the Q Capture diagnostic log.

480 Replication and Event Publishing Guide and Reference

Table 73. Columns in the IBMQREP_SENDQUEUES table (continued)

Column name Description

ERROR_ACTION Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Capture program what to do when the send queue is no
longer accepting messages. For example, the queue might be full, or the queue
manager might have reported a severe error for this queue.

S (default)
The Q Capture program stops.

I This value is deprecated and is treated the same as a value of S.

Q The Q Capture program continues to put messages on other send
queues but stops putting messages on this queue and sets the state for
this queue to inactive (I). Q Capture also leaves the state of all Q
subscriptions or publications that specify this queue as active (A).

After you fix the send queue error, you must take one of the following
actions:

v Issue a startq command to tell Q Capture to start putting messages
on the queue (set its state to active).

v Stop and start the Q Capture program.

v Use the Q Capture reinit command to reload all Q subscriptions
from the Q Capture control tables.

LOB_TOO_BIG_ACTION A flag that tells the Q Capture program what to do when a single large object
(LOB) value would exceed the maximum message size that is allowed for this
send queue.

Q (default)
The Q Capture program follows the error action that is defined for the
send queue.

E The Q Capture program sends empty LOB values if the data does not
fit in a single transaction message. If the substitute value does not fit
into a message, Q Capture follows the error action for the queue.

XML_TOO_BIG_ACTION A flag that tells the Q Capture program what to do when a single XML
document would exceed the maximum message size allowed for this send
queue.

Q (default)
The Q Capture program follows the error action that is defined for the
send queue.

E The Q Capture program sends an XML placeholder. If the XML
placeholder does not fit into a message, Q Capture follows the error
action for the queue.

Chapter 25. Control tables for Q Replication and Event Publishing 481

Table 73. Columns in the IBMQREP_SENDQUEUES table (continued)

Column name Description

HEARTBEAT_INTERVAL Data type: INTEGER; Nullable: No, with default

How often, in seconds, the Q Capture program sends messages on this queue to
tell the Q Apply program or a user application that the Q Capture program is
still running when there are no changes to publish. The value must be a
multiple of the COMMIT_INTERVAL value, or it will be rounded to the nearest
multiple (COMMIT_INTERVAL is set in the IBMQREP_CAPPARMS table). A
value of 0 (the default) tells the Q Capture program not to send heartbeat
messages.

For delimited messages (MESSAGE_FORMAT=D), the value of
HEARTBEAT_INTERVAL must be 0.
Note: The HEARTBEAT_INTERVAL defined in the IBMQREP_SENDQUEUES
table is different from the HBINT (heartbeat interval) parameter that you can
define for a WebSphere MQ channel. For more information, see the WebSphere
MQ Script (MQSC) Command Reference.

MAX_MESSAGE_SIZE Data type: INTEGER; Nullable: No, with default

The maximum size (in kilobytes) of the buffer that is used for sending messages
over this send queue. The size of the buffer must not be larger than the
WebSphere MQ maximum message length (MAXMSGL) attribute that is defined
for any queues that will contain the message, or all Q subscriptions and
publications that use this send queue will be invalidated. Default: 64 KB

APPLY_SERVER Data type: VARCHAR(18); Nullable: Yes

The name of the database where the Q Apply program runs and targets are
defined. For z/OS, this is a location name.

APPLY_ALIAS Data type: VARCHAR(8); Nullable: Yes

The DB2 database alias that corresponds to the Q Apply server that is named in
the APPLY_SERVER column.

APPLY_SCHEMA Data type: VARCHAR(128); Nullable: Yes

The schema of the Q Apply program that is applying transactions from this send
queue.

MESSAGE_CODEPAGE Data type: INTEGER; Nullable: Yes

The code page that is used to encode messages for Event Publishing.

COLUMN_DELIMITER Data type: CHAR(1); Nullable: Yes

A single character that is used to separate header entries and column data
within a delimited message. Default: comma (,)

STRING_DELIMITER Data type: CHAR(1); Nullable: Yes

A single character that is used to surround string data in a delimited message.
Default: double quotation mark (")

RECORD_DELIMITER Data type: CHAR(1); Nullable: Yes

A single character that is used to separate change-data records in a delimited
message. Default: new line character

DECIMAL_POINT Data type: CHAR(1); Nullable: Yes

A single character that is used to separate the fractional portion of numerical
data in a delimited message. Default: period (.)

482 Replication and Event Publishing Guide and Reference

Table 73. Columns in the IBMQREP_SENDQUEUES table (continued)

Column name Description

SENDRAW_IFERROR Data type: CHAR(1); Nullable: No, with default

For Event Publishing: Specifies whether character data is published when the
data causes a code page conversion error. An example of invalid character data
is an incomplete double-byte character and missing shift-in byte ('0F'x) in a
string stored in a Japanese or Korean code page. The following string should
have ’830F’ at the end, but does not: x’0E4481448244’.

N (default)
No data is sent for the character field that failed code page conversion.
For delimited message format, none of the data from character columns
in the row is sent when any single character field in the row fails code
page conversion. Instead, all the character columns are sent as null
values and an indicator at the start of the row is set to
IBM-INVALID-COLUMN-####-@-NULL, where #### represents the first
column in which the Q Capture program detected invalid data and @ is
either B (before value) or A (after value). All large object (LOB) or XML
columns are sent as null values.

Y The character data is sent in hex string format. For delimited messages,
the identifier field is set to IBM-INVALID-COLUMN-####-@-HEX, and
all the character columns in the row are sent in hex string format. The
field represents the first column in which the Q Capture program
detected invalid data and @ is either B (before value) or A (after value).
All LOB or XML columns are sent as null values.

IBMQREP_SIGNAL table
The IBMQREP_SIGNAL table allows a user, user application, or the Q Apply
program to communicate with a Q Capture program.

Server: Q Capture server

Default schema: ASN

This table contains information that you can update by using SQL.

A user or user application can insert rows into the IBMQREP_SIGNAL table to
request that the Q Capture program begin capturing changes from the log for a
source table, or take other actions such as deactivate a Q subscription or ignore a
transaction. The Q Apply program or a user application can make the same
requests by sending control messages to the Q Capture program, which then
inserts the corresponding signals into the IBMQREP_SIGNAL table. The Q Capture
program receives the signals when it reads the log record for the insert into the
IBMQREP_SIGNAL table.

Records in this table with a SIGNAL_STATE of C (complete) or records with a
timestamp that is eligible for pruning are deleted when the Q Capture program
prunes.

Table 74 on page 484 provides a brief description of the columns in the
IBMQREP_SIGNAL table.

Chapter 25. Control tables for Q Replication and Event Publishing 483

Table 74. Columns in the IBMQREP_SIGNAL table

Column name Description

SIGNAL_TIME Data type: TIMESTAMP; Nullable: No, with default

A timestamp that is used to uniquely identify the row. The Q Capture program
uses this value to find the correct row in the signal table to indicate when it
completed processing the Q Capture signal. Default: Current timestamp

SIGNAL_TYPE Data type: VARCHAR(30); Nullable: No

A flag that indicates the type of signal that was posted:

CMD A row that is inserted by the administrative commands, asnqccmd, the
Replication Center, or another application. See the SIGNAL_SUBTYPE
column for a list of the available signal subtypes.

USER A signal posted by a user. The Q Capture program updates the
SIGNAL_LSN column with the log sequence number of when the signal
was inserted. The Q Capture program also updates the value in the
SIGNAL_STATE column from pending (P) to received (R).

SIGNAL_SUBTYPE Data type: VARCHAR(30); Nullable: Yes

The type of action that a CMD-type signal is requesting that the Q Capture
program perform.

CAPSTART
Start capturing changes for a Q subscription or publication.

CAPSTOP
Stop capturing changes for a Q subscription or publication.

QINERROR
Execute the error action defined for the send queue in the
IBMQREP_SENDQUEUES table.

LOADDONE
Acknowledge receipt of this signal from the Q Apply program or user
application. The LOADDONE signal notifies the Q Capture program
that the target table is loaded.

STOP Stop capturing changes and terminate.

IGNORETRANS
Ignore the DB2 transaction that contains this signal.

REINIT_SUB
Deactivate and then activate one Q subscription or publication using the
latest values in the IBMQREP_SUBS, IBMQREP_SRC_COLS, and
IBMQREP_SENDQUEUES tables. This signal will not prompt a new
load of targets.

484 Replication and Event Publishing Guide and Reference

Table 74. Columns in the IBMQREP_SIGNAL table (continued)

Column name Description

SIGNAL_SUBTYPE

(Continued)

ADDCOL
Add one column to an active, unidirectional Q subscription or to a
publication.

STARTQ
Start putting messages on a specified queue or all inactive queues.

STOPQ
Stop putting messages on a specified queue or all inactive queues.

P2PNEW2MEMB
An internal signal that is used to initialize a peer-to-peer Q subscription.
The signal is inserted at a new server and contains the number of active
servers in the peer-to-peer configuration.

P2PMEMB2NEW
An internal signal that is used to initialize a peer-to-peer Q subscription.
The signal is inserted at active servers.

P2PMEMB2INIT
An internal signal that is used to initialize a peer-to-peer Q subscription.
The signal is inserted at active servers.

P2PSPOOLING
An internal signal that is used to initialize a peer-to-peer Q subscription.
The signal is inserted at the server that initiated a new subscription.

P2PLOADDONE
An internal signal that is used to initialize a peer-to-peer Q subscription.
The signal is inserted at a new server.

P2PSUBSTOP
An internal signal that is used to deactivate a peer-to-peer Q
subscription. The signal is inserted at the server that is being
deactivated.

P2PSUBSTOPPING
An internal signal that is used to deactivate a peer-to-peer Q
subscription. The signal is inserted at the remaining active servers.

P2PREADYTOSTOP
An internal signal that is used to deactivate a peer-to-peer Q
subscription. The signal is inserted at the server that is being
deactivated.

P2PNORECAPTURE
A signal that is inserted by the Q Apply program to prevent the Q
Capture program from recapturing changes. Used in bidirectional
replication.
Note: P2PNORECAPTURE signals are pruned according to the
prune_interval parameter, unlike other signal subtypes, which are
pruned according to the signal_limit parameter.

REPLICATE_LOAD
An internal signal that the Q Capture and Q Apply programs use when
they replicate load operations at the source table. This signal might also
be used when Q Apply changes a Q subscription state, for example
when it processes an ADDCOL signal or reinit command.

Chapter 25. Control tables for Q Replication and Event Publishing 485

Table 74. Columns in the IBMQREP_SIGNAL table (continued)

Column name Description

SIGNAL_SUBTYPE

(Continued)

P2PCREATESUB
An internal signal that is inserted by the Q Apply program when a
CREATE TABLE operation is replicated in a multidirectional replication
configuration. The signal instructs the paired Q Capture program at its
server to create a Q subscription in the other direction.

P2PDROPSUB
An internal signal that is inserted by the Q Apply program when a
DROP TABLE operation is replicated in a multidirectional replication
configuration. The signal instructs the paired Q Capture program at its
server to drop a Q subscription in the other direction.

START_SCHEMASUB
A signal that instructs the Q Capture program to start capturing SQL
operations such as CREATE and DROP for tables in a specified schema.

STOP_SCHEMASUB
A signal that instructs the Q Capture program to stop capturing SQL
operations such as CREATE and DROP for tables in a specified schema.

REINIT_SCHEMASUB
A signal that instructs the Q Capture program to reload any changes or
additions in the IBMQREP_SUBS_PROF table to the profiles for
schema-level Q subscriptions. These changes apply only to new tables
(and their Q subscriptions) that are created in the specified schema.

486 Replication and Event Publishing Guide and Reference

Table 74. Columns in the IBMQREP_SIGNAL table (continued)

Column name Description

SIGNAL_INPUT_IN Data type: VARCHAR(500); Nullable: Yes

If the SIGNAL_TYPE=USER, then this column contains user-defined input. If the
SIGNAL_TYPE=CMD, then this value depends on the SIGNAL_SUBTYPE value:

CMD + CAPSTART
The Q subscription or publication name.

CMD + CAPSTOP
The Q subscription or publication name.

CMD + LOADDONE
The Q subscription or publication name.

CMD + STOP
NULL (no value is required). You can specify CAPTUREUPTO to
prompt Q Capture to stop capturing changes that were committed at or
before a provided timestamp and then shut down. You can also specify
STOPAFTER to prompt Q Capture to stop capturing changes
immediately and then shut down either when all messages are drained
from the transmission queue (or a shared local send-receive queue), or
after all changes up to the stopping point are applied at the target. For
details, see “Stopping a Q Capture program at a specified point” on
page 245.

CMD + IGNORETRANS
NULL (no value is required).

CMD + QINERROR
For a user application, the name of the send queue that is in error. For
the Q Apply program, the name of the send queue that is in error and
the ASN message number and space-separated tokens.

CMD + REINIT_SUB
The Q subscription or publication name.

CMD + ADDCOL
The Q subscription or publication name and the name of the source
table column that you are adding, separated by a semicolon. Use the
format ‘subname;column_name;before_column_name;target_column_name'.
Follow these examples:

Add column in source table to Q subscription and to target table
QSUB1;COL10

Add column and before image of the column (for CCD target tables)
QSUB1;COL10;XCOL10

Add column without before image but with different target column
name QSUB1;COL10;;TRGCOL10 (Use the double semicolon (;;) to

indicate that you are omitting the before-image column.)

CMD + STARTQ
The queue name or ALL.

CMD + STOPQ
The queue name or ALL.

Chapter 25. Control tables for Q Replication and Event Publishing 487

Table 74. Columns in the IBMQREP_SIGNAL table (continued)

Column name Description

SIGNAL_INPUT_IN

(Continued)

CMD + START_SCHEMASUB
The schema-level subscription name.

CMD + STOP_SCHEMASUB
The schema-level subscription name.

CMD + REINIT_SCHEMASUB
The schema-level subscription name.

SIGNAL_STATE Data type: CHAR(1); Nullable: No, with default

A flag that indicates the status of the signal.

P (default)
The signal is pending; the Q Capture program did not receive it yet.

R The Q Capture program received the signal.

C The Q Capture program completed processing the signal.

F The signal failed. For example, the Q Capture program cannot perform
a CAPSTART because the Q subscription or publication is faulty.

SIGNAL_LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The logical log sequence number of the log record for the insert into the SIGNAL
table.

IBMQREP_SRC_COLS table
The IBMQREP_SRC_COLS table lists columns at the source table for which
changes are to be captured.

Server: Q Capture server

Default schema: ASN

Primary key: SUBNAME, SRC_COLNAME

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 75 provides a brief description of the columns in the IBMQREP_SRC_COLS
table.

Table 75. Columns in the IBMQREP_SRC_COLS table

Column name Description

SUBNAME Data type: VARCHAR(30); Nullable: No

The name of the Q subscription or publication for this source table.

SRC_COLNAME Data type: VARCHAR(128); Nullable: No

The name of the column in the source table for which changes will be captured.

488 Replication and Event Publishing Guide and Reference

Table 75. Columns in the IBMQREP_SRC_COLS table (continued)

Column name Description

IS_KEY Data type: SMALLINT; Nullable: No, with default

A flag that indicates whether the column is part of the key to be used for
replication or publishing. Any set of columns that are unique at the source can
be used.

0 (default)
The column is not part of the unique key. Its order in the transaction
message will be the same as its order in the source table.

n The column is part of the unique key. In a multiple-column key, the
column's order in the transaction message will be encoded based on the
number n that you specify.

At least one of the columns from the source table should have a value greater
than 0 in the IBMQREP_SRC_COLS table or the Q subscription or publication
will be invalid.
Restriction: Large-object (LOB) columns and LONG columns cannot be used in
the replication or publishing key.

COL_OPTIONS_FLAG Data type: CHAR(10); Nullable: No, with default

The first character determines whether the before-image value of the column is
published or replicated. The first character can have the following values:

N No before-image values are sent for this column.

D Before-image values are sent for delete operations.

U Before-image values are sent for update operations.

Y Before-image values are sent for both delete and update operations.

Default: NNNNNNNNNN

IBMQREP_SRCH_COND table
IBMQREP_SRCH_COND is an internal table that is used by the Q Capture
program to evaluate the search condition for a Q subscription or publication.

Server: Q Capture server

Default schema: ASN

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 76 provides a brief description of the column in the IBMQREP_SRCH_COND
table.

Table 76. Column in the IBMQREP_SRCH_COND table

Column name Description

ASNQREQD Data type: CHAR(8); Nullable: Yes

This column contains no data.

Chapter 25. Control tables for Q Replication and Event Publishing 489

IBMQREP_SUBS table
The IBMQREP_SUBS table contains information about Q subscriptions or
publications, including the type of subscription or publication, search conditions,
data-sending options, load options, and the subscription or publication state.

Server: Q Capture server

Default schema: ASN

Primary key: SUBNAME

Non-unique index: SUB_ID

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 77 provides a brief description of the columns in the IBMQREP_SUBS table.

Table 77. Columns in the IBMQREP_SUBS table

Column name Description

SUBNAME Data type: VARCHAR(132); Nullable: No

The Q subscription or publication name. For each instance of the Q Capture
program, all Q subscription or publication names must be unique.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The schema name or high-level qualifier of the source table for this Q
subscription or publication.

SOURCE_NAME Data type: VARCHAR(128); VARCHAR(18) for DB2 for z/OS Version 7 and
Version 8 compatibility mode; Nullable: No

The name of the source table for this Q subscription or publication.

TARGET_SERVER Data type: VARCHAR(18); Nullable: Yes

The name of the database or subsystem where the Q Apply program runs and
targets are defined. For z/OS, this is a location name.

TARGET_ALIAS Data type: VARCHAR(8); Nullable: Yes

The DB2 database alias that corresponds to the Q Apply server that is named in
the TARGET_SERVER column.

TARGET_OWNER Data type: VARCHAR(128); Nullable: Yes

The schema name or high-level qualifier of the target table or stored procedure
for a Q subscription.

TARGET_NAME Data type: VARCHAR(128); Nullable: Yes

The name of the target table for a Q subscription.

490 Replication and Event Publishing Guide and Reference

Table 77. Columns in the IBMQREP_SUBS table (continued)

Column name Description

TARGET_TYPE Data type: INTEGER; Nullable: Yes

A flag that indicates the type of replication target.

1 User table

2 Consistent-change-data (CCD) table

3 Reserved for future use.

4 Reserved for future use.

5 Stored procedure

APPLY_SCHEMA Data type: VARCHAR(128); Nullable: Yes

The schema of the Q Apply program that is applying transactions for this Q
subscription.

SENDQ Data type: VARCHAR(48); Nullable: No

The name of the WebSphere MQ queue that the Q Capture program uses to send
transactional data for this Q subscription or publication. Each source table is
paired with one send queue.

SEARCH_CONDITION Data type: VARCHAR(2048); Nullable: Yes

The search condition that is used to filter rows for the Q subscription or
publication. This must be an annotated select WHERE clause, with a single colon
directly in front of the names of the source columns.

SUB_ID Data type: INTEGER; Nullable: Yes

An integer that is generated by the Q Capture program and used to uniquely
identify a Q subscription in the subscription schema message to the Q Apply
program.

SUBTYPE Data type: CHAR(1); Nullable: No, with default

A flag that indicates the type of replication that a Q subscription is involved in,
or whether this is a publication.

A flag that indicates the type of replication that a Q subscription is involved.

U (default)
Unidirectional replication. This is the value used for publications.

B Bidirectional replication.

P Peer-to-peer replication.

ALL_CHANGED_ROWS Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Capture program sends a message when a
row in the source table changes, even if none of the columns that are part of a Q
subscription changed:

N (default)
The Q Capture program sends a message only when columns that are
part of a Q subscription change.

Y When any row in the source table changes, the Q Capture program
sends the columns from that row that are part of a Q subscription, even
if none of them changed.

BEFORE_VALUES Data type: CHAR(1); Nullable: No, with default

This column is deprecated for Version 9 Fix Pack 1.

Chapter 25. Control tables for Q Replication and Event Publishing 491

Table 77. Columns in the IBMQREP_SUBS table (continued)

Column name Description

CHANGED_COLS_ONLY Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Capture program publishes columns that are
part of a Q subscription or publication only if they have changed. This field
applies to update operations only.

Y (default)
When the Q Capture program sends an updated row, it sends only the
changed columns that are part of a Q subscription or publication.

N The Q Capture program sends all columns in a row that are part of a Q
subscription or publication whenever any of them has changed.

HAS_LOADPHASE Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the target table for the Q subscription or
publication will be loaded with data from the source:

N (default)
The target will not be loaded.

I An automatic load. The Q Apply program calls one of several different
utilities, depending on the LOAD_TYPE that is specified in the
IBMQREP_TARGETS table, and on the platform of the Q Apply server
and Q Capture server.

E A manual load. An application other than the Q Apply program loads
the target table. In this case, the user or Replication Center inserts the
LOADDONE signal into the IBMQREP_SIGNAL table at the Q Capture
server, or the Q Capture program inserts this signal after it receives the
load done message.

492 Replication and Event Publishing Guide and Reference

Table 77. Columns in the IBMQREP_SUBS table (continued)

Column name Description

STATE Data type: CHAR(1); Nullable: No, with default

A flag that is inserted by the Q Capture program to indicate the current state of
the Q subscription or publication. The initial state is new, and the STATE_INFO
field is initially set to ASN7024I (new Q subscription or publication).

N (default)
The Q subscription or publication is new. The Q Capture program
automatically activates this Q subscription or publication when the
program is started or reinitialized.

I The Q subscription or publication is inactive. The Q Capture program
saw a CAPSTOP signal in the log, or an error occurred and the Q
subscription or publication was deactivated. The Q Capture program
stopped sending messages for this Q subscription or publication but
continued with others.

L The Q subscription is loading. The Q Capture program processed the
CAPSTART signal and sent the subscription schema message to the Q
Apply program or user application. The Q Capture program is sending
transaction messages that include before values for all columns, and it
is waiting for the LOADDONE signal.

A The Q subscription or publication is active. If there is a load phase, the
Q Capture program processed the LOADDONE signal and sent a load
done received message to the Q Apply program or user application.
The Q Capture program is sending data messages based on the options
defined for the Q subscription or publication.

T An internal state that indicates that the Q Capture program read a
CAPSTART signal in the log for this peer-to-peer Q subscription, and
the Q subscription is being initialized within the peer-to-peer group.

G An internal state that indicates that the Q Capture program read a
CAPSTOP signal in the log for this peer-to-peer Q subscription, and the
Q subscription is being deactivated within the peer-to-peer group.

U An internal state that indicates that the Q Capture program created this
Q subscription, and the Q subscription is waiting to be activated.

STATE_TIME Data type: TIMESTAMP; Nullable: No, with default

The timestamp of the last change in Q subscription or publication state. Default:
Current timestamp

STATE_INFO Data type: CHAR(8); Nullable: Yes

The number for the ASN message about the Q subscription state. For details, see
the IBMQREP_CAPTRACE table, or the Q Capture diagnostic log.

STATE_TRANSITION Data type: VARCHAR(256) FOR BIT DATA; Nullable: Yes

An internal value used to store half state and related information.

SUBGROUP Data type: VARCHAR(30); Nullable: Yes

The name of the peer-to-peer group that includes this Q subscription. This
column does not apply for a publication.

SOURCE_NODE Data type: SMALLINT; Nullable: No, with default

An identifying number for the source server in a peer-to-peer Q subscription.
This column does not apply for a publication. Default: 0

Chapter 25. Control tables for Q Replication and Event Publishing 493

Table 77. Columns in the IBMQREP_SUBS table (continued)

Column name Description

TARGET_NODE Data type: SMALLINT; Nullable: No, with default

An identifying number for the target server in a peer-to-peer Q subscription.
This column does not apply for a publication. Default: 0

GROUP_MEMBERS Data type: CHAR(254) FOR BIT DATA; Nullable: Yes

This column is updated by the Q Capture program when members join or leave
a peer-to-peer group.

OPTIONS_FLAG Data type: CHAR(4) FOR BIT DATA; Nullable: No, with default

Reserved for future.

SUPPRESS_DELETES Data type: CHAR(1);Nullable: No, with default

A flag that tells the Q Capture program whether to send rows that were deleted
from the source table:

N (default)
Send deleted rows.

Y Do not send deleted rows.

DESCRIPTION Data type: VARCHAR(200); Nullable: Yes

A user-supplied description of the Q subscription or publication.

TOPIC Data type: VARCHAR(256); Nullable: Yes

A user-supplied topic to be included in the JMS-compliant (MQRFH2) message
header for each XML message that is sent for the publication.

CAPTURE_LOAD Data type: CHAR(1); Nullable: No, with default

The action that the Q Capture program takes when the recovery log shows a
load operation that uses the DB2 LOAD utility occurred at the source table:

W (default)
Q Capture issues a warning message after the load completes.

R Q Capture issues a warning message and then stops and starts the Q
subscription for the source table, prompting a load of the target table if
one is specified for the Q subscription.

494 Replication and Event Publishing Guide and Reference

Table 77. Columns in the IBMQREP_SUBS table (continued)

Column name Description

CHANGE_CONDITION Data type: VARCHAR(2048); Nullable: Yes, with default

An SQL predicate that uses log record variables to filter which rows are
replicated or published. This predicate does not require a WHERE clause like
that used in the SEARCH_CONDITION column, but it can include the following
log record variables:

$OPERATION
The DML operation. Valid values are I (insert), U (update), and D
(delete).

$AUTHID
The authorization ID of a transaction.

$AUTHTOKEN
The authorization token (job name) of a committed transaction.

$PLANNAME
The plan name of a committed transaction.

For example, the following predicate tells Q Capture to only replicate or publish
log records for insert operations committed by user HR for the affected Q
subscription:

$OPERATION = ’I’ AND $AUTHID = ’HR’

If a WHERE clause is specified in the SEARCH_CONDITION column, the value
of CHANGE_CONDITION and SEARCH_CONDITION are combined into a
single predicate by using the AND operator. However, you can leave the
SEARCH_CONDITION column empty and specify the full predicate that
includes a WHERE clause in this column. The value in this column is not used
when the Q Apply program loads the target table.

For more detail on specifying filters that use log records, see “Log record
variables to filter rows (unidirectional replication)” on page 71.

REPL_ADDCOL Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Capture program whether to automatically add new
source table columns to the Q subscription for the table. The columns are also
added to the target table if they do not exist.

N (default)
Do not automatically add new columns to the Q subscription.

Y When an ALTER TABLE ADD COLUMN statement is detected,
automatically add any new columns to the Q subscription for the
source table, and to the target table if the columns do not exist.

Chapter 25. Control tables for Q Replication and Event Publishing 495

Table 77. Columns in the IBMQREP_SUBS table (continued)

Column name Description

IGNSETNULL Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Capture program whether to
replicate UPDATE operations that result from the delete of parent rows in tables
with referential integrity relationships (ON DELETE SET NULL rule). For
Version 10.1 and later on Linux, UNIX, and Windows only.

N (default)
When a parent row is deleted at the source, Q Capture replicates the
UPDATE operations from child rows in which one or more column
values are set to NULL.

Y Q Capture does not replicate UPDATE operations at child tables that
result from the ON DELETE SET NULL rule. Only the deletion of the
parent row is replicated. This option can be useful if you have the ON
DELETE SET NULL rule in force at the target database and do not need
these updates replicated.

SCHEMA_SUBNAME Data type: VARCHAR(64); Nullable: Yes

The name of the schema-level subscription that this table-level Q subscription
belongs to. This column is populated by the ASNCLP command-line program
when a schema-level subscription is created, and by the Q Capture program
when it detects a CREATE TABLE operation within the schema.

SUB_CREATOR Data type: VARCHAR(12); Nullable: Yes

Identifies how this Q subscription was created. The values are "asnclp,"
"replcenter" (the Replication Center), and "asnqcap" (the Q Capture program).
When the Q Capture control tables are migrated from a release before Version 10
on Linux, UNIX, and Windows, the column value is NULL.

CAPTURE_TRUNCATE Data type: CHAR(1); Nullable: No, with default

Reserved for future use.

IBMQREP_SUBS_PROF table
The IBMQREP_SUBS_PROF table stores the default values for automatically
creating table-level Q subscriptions when tables are added to databases with a
schema-level Q subscriptions. When you create a schema-level Q subscription, the
replication administration tools populate this table with default options for
unidirectional, bidirectional, or peer-to-peer configurations.

Server: Q Capture server

Default schema: ASN

Primary key: SUBPROFNAME

Important: After a profile is inserted in this table, the profile should not be
modified because the default values for newly created table-level Q subscriptions
should be consistent with existing Q subscriptions. If you want to change the
profile for a schema-level Q subscription, use the ASNCLP command-line program
to create a new profile with a different name and associate it with this
schema-level Q subscription.

496 Replication and Event Publishing Guide and Reference

Table 78 provides a brief description of the columns in the IBMQREP_SUBS_PROF
table.

Table 78. Columns in the IBMQREP_SUBS_PROF table

Column name Description

SUBPROFNAME Data type: VARCHAR(128); Nullable: No

A unique identifier for the table-level Q subscription profile. Any name that is
prefixed by "ASN" is reserved because the following profiles are automatically
used for unidirectional or bidirectional replication: ASNUNI and ASNBIDI.

SUBNAME_PREFIX Data type: VARCHAR(4); Nullable: Yes

The identifier that is prefixed to table-level Q subscription names when Q
Capture automatically creates Q subscriptions that are based on schema-level Q
subscriptions. For example, if the source table name is T3 and the value of
SUBNAME_PREFIX is PROD, the Q subscription name that would be generated
by the Q Capture program would be PRODT30001. (If this column is null, Q
Capture generates Q subscription names comprised of the source table name
plus 000n, where n >= 1.)

SUBTYPE

For details about these columns, see the descriptions in “IBMQREP_SUBS table”
on page 490.

CHANGED_COLS_ONLY

HAS_LOADPHASE

SUPPRESS_DELETES

CAPTURE_LOAD

CONFLICT_RULE

For details about these columns, see the descriptions in “IBMQREP_TARGETS
table” on page 520.

CONFLICT_ACTION

ERROR_ACTION

OKSQLSTATES

LOAD_TYPE

MODELQ

IBMQREP_TABVERSION table
The IBMQREP_TABVERSION table is used by the Q Capture and Capture
programs to keep track of different versions of a source table. The Q Capture or
Capture program inserts rows into this table when the Q subscription or
registration for a source table is first activated, and then each time the source table
is altered.

Server: Q Capture server

Default schema: ASN

Index: LSN, TABLEID1, TABLEID2, VERSION

Index: SOURCE_OWNER ASC, SOURCE_NAME ASC

Index: TABLEID1 ASC, TABLEID2 ASC

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Chapter 25. Control tables for Q Replication and Event Publishing 497

Table 79 provides a brief description of the columns in the
IBMQREP_TABVERSION table.

Table 79. Columns in the IBMQREP_TABVERSION table

Column name Description

LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: No

The point in the DB2 recovery log where the Q Capture program or Capture
program detected a new version of the source table.

TABLEID1 Data type: SMALLINT; Nullable: No

The database identifier (DBID) in SYSIBM.SYSTABLES.

TABLEID2 Data type: SMALLINT; Nullable: No

The object identifier (OBID) in SYSIBM.SYSTABLES.

VERSION Data type: INTEGER; Nullable: No

A number generated by the Q Capture or Capture program to keep track of the
different versions of a source table.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The schema or high-level qualifier of the source table.

SOURCE_NAME Data type: VARCHAR(128); Nullable: No

The name of the source table.

Control tables at the Q Apply server
The control tables at the Q Apply server contain Q Apply operating parameters, Q
subscription definitions, performance statistics, and other metadata. These tables
are built according to options that you specify in the replication administration
tools.

Table 80 describes the control tables at the Q Apply server.

Table 80. Control tables at the Q Apply server

Table name Description

“IBMQREP_APPLYENQ table” on
page 499

Ensures that only one Q Apply program with a given
schema is running per Q Apply server.

“IBMQREP_APPENVINFO table” on
page 500

Stores environment variables and other information
that replication tools use to access remote programs.

“IBMQREP_APPLYMON table” on
page 500

Contains statistics about the performance of a Q
Apply program for each receive queue.

“IBMQREP_APPLYPARMS table” on
page 504

Contains parameters that you can specify to control
the operations of a Q Apply program.

“IBMQREP_APPLYTRACE table” on
page 511

Contains informational, warning, and error messages
from the Q Apply program.

“IBMQREP_DELTOMB table” on
page 512

An internal table used by the Q Apply program to
record conflicting deletes in peer-to-peer replication.

“IBMQREP_DONEMSG table” on
page 513

An internal table used by the Q Apply program to
record which messages were processed.

“IBMQREP_EXCEPTIONS table” on
page 513

Contains row changes that could not be applied
because of conflicts, errors, or rollbacks.

498 Replication and Event Publishing Guide and Reference

Table 80. Control tables at the Q Apply server (continued)

Table name Description

“IBMQREP_RECVQUEUES table” on
page 516

Identifies queues that a Q Apply program uses to
receive transaction messages and send control
message, and contains some operation parameters for
the Q Apply program.

“IBMQREP_SAVERI table” on page
518

An internal table that the Q Apply program uses to
store referential integrity constraints that are dropped
while targets are being loaded.

“IBMQREP_SPILLEDROW table” on
page 520

An internal table that the Q Apply program uses to
keep track of rows sent to a temporary spill queue.

“IBMQREP_SPILLQS table” on page
519

Identifies temporary spill queues that will hold
changes to source tables before they are applied to
targets.

“IBMQREP_TRG_COLS table” on
page 529

Contains information about the mapping between
source and target columns.

“IBMQREP_TARGETS table” on
page 520

Contains information about target tables or stored
procedures, and options for Q subscriptions.

IBMQREP_APPLYENQ table
The IBMQREP_APPLYENQ table is used to ensure the uniqueness of the schema
that is used to identify a Q Apply program and its control tables.

Server: Q Apply server

Default schema: ASN

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The IBMQREP_APPLYENQ table ensures that:

v For DB2 for Linux, UNIX, and Windows, only one Q Apply
program with a given schema is running per database.

v For non-data-sharing DB2 for z/OS, only one Q Apply
program with a given schema is running per subsystem.

v For data-sharing DB2 for z/OS, only one Q Apply program
with a given schema is running per data-sharing group.

While running, a Q Apply program exclusively locks this table. Starting the Q
Apply program twice will place the second instance on a lock wait over this table.
The table is created empty.

Table 81 provides a brief description of the column in the IBMQREP_APPLYENQ
table.

Table 81. Column in the IBMQREP_APPLYENQ table

Column name Description

LOCKNAME Data type: INTEGER; Nullable: Yes

This column contains no data.

Chapter 25. Control tables for Q Replication and Event Publishing 499

IBMQREP_APPENVINFO table
The IBMQREP_APPENVINFO table contains eight rows that are used to store the
value of runtime environment variables and other information that the replication
administration tools use to access remote programs.

Server: Q Apply server

Default schema: ASN

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 82 provides a brief description of the columns in the
IBMQREP_APPENVINFO table.

Table 82. Columns in the IBMQREP_APPENVINFO table

Column name Description

NAME Data type: VARCHAR(30); Nullable: No

STARTTIME
The timestamp when the Q Apply program started.

HOSTNAME
The TCP/IP host name of the server where the Q Apply program is
running.

LOGFILE
The path and file name of the Q Apply diagnostic log file.

TMPDIR
The path of the directory where the Inter-Process Communication (IPC)
key of the Q Apply program is located.

ASNUSEMQCLIENT
The value of the Q Replication ASNUSEMQCLIENT environment variable.

MQSERVER
The value of the WebSphere MQ MQSERVER environment variable.

MQCHLLIB
The value of the WebSphere MQ MQCHLLIB environment variable.

MQCHLTAB
The value of the WebSphere MQ MQCHLTAB environment variable.

VALUE Data type: VARCHAR(3800); Nullable: Yes

For each row in the IBMQREP_APPENVINFO table, the VALUE column
contains the value that is associated with the corresponding NAME column.

IBMQREP_APPLYMON table
The Q Apply program periodically inserts rows in the IBMQREP_APPLYMON
table to record performance statistics, one row for each receive queue.

Server: Q Apply server

Default schema: ASN

Non-unique index: MONITOR_TIME DESC

500 Replication and Event Publishing Guide and Reference

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The value that you specify for MONITOR_INTERVAL in the
IBMQREP_APPLYPARMS table determines how often the Q Apply program inserts
rows into this control table. The MONITOR_LIMIT value determines how long
rows remain in the table before they are eligible for pruning.

Table 83 provides a brief description of the columns in the IBMQREP_APPLYMON
table.

Table 83. Columns in the IBMQREP_APPLYMON table

Column name Description

MONITOR_TIME Data type: TIMESTAMP; Nullable: No

The timestamp at the Q Apply server when the row was inserted into the
IBMQREP_APPLYMON table.

RECVQ Data type: VARCHAR(48); Nullable: No

The name of the receive queue that this row of Q Apply performance statistics
pertains to.

QSTART_TIME Data type: TIMESTAMP; Nullable: No

The timestamp at the Q Apply server when the receive queue was started.

CURRENT_MEMORY Data type: INTEGER; Nullable: No

The amount of memory in bytes that the Q Apply browser thread used for
reading transactions from this queue.

QDEPTH Data type: INTEGER; Nullable: No

The queue depth (number of messages on the queue). The Q_PERCENT_FULL
column expresses the fullness of the queue as a percentage.

END2END_LATENCY Data type: INTEGER; Nullable: No

The average elapsed milliseconds between the time that transactions were
committed to the source table and the time that they were committed to the
target.

QLATENCY Data type: INTEGER; Nullable: No

The average elapsed milliseconds between the time that the Q Capture program
put messages on the send queue and the time that the Q Apply program got
them from the receive queue.

APPLY_LATENCY Data type: INTEGER; Nullable: No

The average elapsed milliseconds between the time that the Q Apply program
read transactions from the receive queue and the time that they were committed
to the target.

TRANS_APPLIED Data type: INTEGER; Nullable: No

The total number of transactions from this receive queue that the Q Apply
committed to the target.

ROWS_APPLIED Data type: INTEGER; Nullable: No

The total number of insert, update, and delete operations from this receive queue
that the Q Apply program applied to the target.

Chapter 25. Control tables for Q Replication and Event Publishing 501

Table 83. Columns in the IBMQREP_APPLYMON table (continued)

Column name Description

TRANS_SERIALIZED Data type: INTEGER; Nullable: No

The total number of transactions that conflicted with another transaction (either
because of a row conflict or a referential integrity conflict). In these cases, the Q
Apply program suspends parallel processing and applies the row changes within
the transaction in the order they were committed at the source.

RI_DEPENDENCIES Data type: INTEGER; Nullable: No

The total number of referential integrity conflicts that were detected, forcing
transactions to be serialized.

RI_RETRIES Data type: INTEGER; Nullable: No

The number of times that the Q Apply program had to re-apply row changes
because of referential integrity conflicts when the transactions that they were
part of were executed in parallel.

DEADLOCK_RETRIES Data type: INTEGER; Nullable: No

The number of times that the Q Apply program re-applied row changes because
of lock timeouts and deadlocks.

ROWS_NOT_APPLIED Data type: INTEGER; Nullable: No

The number of rows that could not be applied, and were entered in the
IBMQREP_EXCEPTIONS table.

MONSTER_TRANS Data type: INTEGER; Nullable: No

The number of transactions that exceeded the MEMORY_LIMIT for the receive
queue set in the IBMQREP_RECVQUEUES table.

MEM_FULL_TIME Data type: INTEGER; Nullable: No

The number of seconds that the Q Apply program could not build transactions
from this receive queue because its agents were using all available memory to
apply transactions.

APPLY_SLEEP_TIME Data type: INTEGER; Nullable: No

The number of milliseconds that Q Apply agents for this receive queue were idle
while waiting for work.

SPILLED_ROWS Data type: INTEGER; Nullable: No

The number of rows that the Q Apply program sent to temporary spill queues
while targets were being loaded or while Q subscriptions were placed into a spill
state by the spillsub parameter of the MODIFY or asnqacmd command.

SPILLEDROWSAPPLIED Data type: INTEGER; Nullable: No

The number of spilled rows that were applied to the target.

502 Replication and Event Publishing Guide and Reference

Table 83. Columns in the IBMQREP_APPLYMON table (continued)

Column name Description

OLDEST_TRANS Data type: TIMESTAMP; Nullable: No

A timestamp that is based on the local time at the Q Apply server that helps
determine how far Q Apply has caught up with respect to the source. At each
monitor interval OLDEST_TRANS represents:

v If Q Apply is processing transactions, the source commit time for which all
transactions to that point have been applied to the target. (Other more recent
transactions might also have been applied. Because the Q Apply program
processes transactions in parallel, the commit times of these more recent
transactions do not refer to a point at which all previous transactions have
been applied.)

v The latest heartbeat time, if no transactions are being processed and the
heartbeat message arrived after the oldest applied transaction.

v The value 1900-01-01-00.00.00.000000 if the Q Apply program has not seen any
messages (transaction or heartbeat).

OLDEST_INFLT_TRANS Data type: TIMESTAMP; Nullable: No

At each monitor interval OLDEST_INFLT_TRANS represents:

v If Q Apply is processing transactions, the source commit time of the oldest
currently in-flight transaction. An in-flight transaction has not been fully
applied and committed at the target.

v The value NULL, if Q Apply is not processing transactions.

v The value NULL, if Q Apply has not seen any transaction messages so far.

OLDEST_INFLT_TRANS does not consider heartbeat messages. It only considers
transaction messages. This value also does not reflect how far Q Apply has
caught up with respect to the source because the source commit time belongs to
a transaction that has not yet been fully processed or committed.

OKSQLSTATE_ERRORS Data type: INTEGER; Nullable: No

The number of row changes that caused an SQL error that is defined as
acceptable in the OKSQLSTATES field of the IBMQREP_TARGETS table. The Q
Apply program ignores these errors.

HEARTBEAT_LATENCY Data type: INTEGER; Nullable: No

The average elapsed milliseconds between the time that heartbeat messages
were sent by the Q Capture program and the time that they were received by the
Q Apply program.

KEY_DEPENDENCIES Data type: INTEGER; Nullable: No

The total number of replication key constraints that were detected, forcing
transactions to be serialized.

UNIQ_DEPENDENCIES Data type: INTEGER; Nullable: No

The total number of unique index constraints that were detected, forcing
transactions to be serialized.

UNIQ_RETRIES Data type: INTEGER; Nullable: No

The number of times that the Q Apply program tried to re-apply rows that were
not applied in parallel because of unique index constraints.

JOB_DEPENDENCIES Data type: INTEGER; Nullable: No

The number of transactions that are delayed because of correlation ID
dependencies.

Chapter 25. Control tables for Q Replication and Event Publishing 503

Table 83. Columns in the IBMQREP_APPLYMON table (continued)

Column name Description

CAPTURE_LATENCY Data type: INTEGER; Nullable: No

The average elapsed milliseconds between the time transactions were committed
to the source table and the time Q Capture puts the last message for the
transactions on the send queue.

OLDEST_COMMIT_LSN Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

The commit log sequence number (LSN) from the source recovery log that
corresponds to the oldest transaction that was applied. All transactions with
lower LSNs were applied. Some more recent transactions might also be applied.
If no source transactions are committed yet, the value of this column is all
zeroes, for example: x'00000000000000000000'.

You can use the OLDEST_COMMIT_LSN value on z/OS as
the value for the maxcmtseq parameter when you need to restart the Q Capture
program from a known point in the recovery log.

ROWS_PROCESSED Data type: INTEGER; Nullable: Yes

The number of rows that were read from receive queues and applied but not yet
committed to the target.

Q_PERCENT_FULL Data type: SMALLINT; Nullable: Yes, with default

The fullness of the receive queue expressed as a percentage, where the
MAXDEPTH attribute of the queue is 100 percent. The QUEUE_DEPTH column
expresses the fullness as a number of messages.

OLDEST_COMMIT_SEQ Data type: VARCHAR(16) FOR BIT DATA; Nullable: Yes

An internal log marker that represents the last transaction that was applied by
the Q Apply program before which all previous transactions have also been
applied. The value is a formatted timestamp with nanosecond precision that is
encoded as two integers, seconds, and nanoseconds into a 10-byte sequence.

You can use the OLDEST_COMMIT_SEQ value on Linux, UNIX, and Windows
as the value for the maxcmtseq parameter when you need to restart the Q
Capture program from a known point in the recovery log.

MQ_BYTES Data type: INTEGER; Nullable: Yes

The number of bytes of data read from all receive queues during the monitor
interval, including message data and the message header.

MQGET_TIME Data type: INTEGER; Nullable: Yes

The number of milliseconds during the monitor interval that the Q Apply
program spent interacting with the WebSphere MQ API for getting messages
from all receive queues. The value includes unsuccessful MQGET calls.

NUM_MQGETS Data type: INTEGER; Nullable: Yes

The number of times that the Q APPLY program successfully used the MQGET
call to retrieve a message from all receive queues during the monitor interval.
MQGET calls that failed to retrieve a message from the receive queue are not
counted.

IBMQREP_APPLYPARMS table
The IBMQREP_APPLYPARMS table contains parameters that you can modify to
control the operation of the Q Apply program. For example, you can specify the

504 Replication and Event Publishing Guide and Reference

name of the queue manager that the Q Apply program works with, or how long
the Q Apply program retains data in the IBMQREP_APPLYMON table before
pruning. The Q Apply program reads changes to this table only during startup.

Server: Q Apply server

Default schema: ASN

Unique index: QMGR

This table contains information that you can update by using SQL.

The IBMQREP_APPLYPARMS table contains a single row. If this table has no row,
or more than one row, the Q Apply program will not run.

Table 84 provides a brief description of the columns in the
IBMQREP_APPLYPARMS table.

Table 84. Columns in the IBMQREP_APPLYPARMS table

Column name Description

QMGR Data type: VARCHAR(48); Nullable: No

The name of the WebSphere MQ queue manager that the Q Apply program
works with.

MONITOR_LIMIT Data type: INTEGER; Nullable: No, with default

The number of minutes that rows remain in the IBMQREP_APPLYMON table
before they are eligible for pruning. At each pruning interval, rows in the
IBMQREP_APPLYMON table are pruned if they are older than this limit based
on the current timestamp. Default: 10080

TRACE_LIMIT Data type: INTEGER; Nullable: No, with default

The number of minutes that rows remain in the IBMQREP_APPLYTRACE table
before they are eligible for pruning. At each pruning interval, rows in the
IBMQREP_APPLYTRACE table are pruned if they are older than this limit based
on the current timestamp. Default: 10080

MONITOR_INTERVAL Data type: INTEGER; Nullable: No, with default

How often, in milliseconds, the Q Apply program adds a row to the
IBMQREP_APPLYMON table. Default: 60000 milliseconds (1 minute) on z/OS;
30000 milliseconds (30 seconds) on Linux, UNIX, and Windows

PRUNE_INTERVAL Data type: INTEGER; Nullable: No, with default

How often, in seconds, the Q Apply program automatically prunes rows in the
IBMQREP_APPLYMON and IBMQREP_APPLYTRACE tables. Default: 300

AUTOSTOP Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Apply program whether to stop when all receive queues
have been emptied once.

N (default)
The Q Apply program continues running after all receive queues have
been emptied once.

Y The Q Apply program stops when all receive queues have been emptied
once.

Chapter 25. Control tables for Q Replication and Event Publishing 505

Table 84. Columns in the IBMQREP_APPLYPARMS table (continued)

Column name Description

LOGREUSE Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Apply program reuses the Q Apply log file
or appends to it.

N (default)
The Q Apply program appends new information to an existing Q Apply
log file when it restarts.

Y On restart, the Q Apply program reuses its log file by clearing the file
then writing to the blank file.

LOGSTDOUT Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Apply program sends log messages to
outputs other than its log file.

N (default)
The Q Apply program directs most log messages to the log file only.

Y The Q Apply program sends log messages to both the log file and the
console (stdout).

Initialization, stop, and subscription activation and deactivation messages go to
both the console (stdout) and the log file regardless of the setting for this
parameter.

APPLY_PATH Data type: VARCHAR(1040); Nullable: Yes, with default

The path where files created by the Q Apply program are stored. By default, this
is the directory where the Q Apply program is started.

ARCH_LEVEL Data type: CHAR(4); Nullable: No, with default

The version of the control tables. For Replication Server Version 10 on z/OS the
value is 100Z. Other ARCH_LEVEL values are 0802, 0901, 0905, 0907, and 0973
for Replication Server Version 9.7 Fix Pack 3 on Linux, UNIX, and Windows.

Attention: When updating the IBMQREP_APPLYPARMS table, do not change
the value in this column.

TERM Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the Q Apply program stops if the target DB2 or
queue manager are unavailable.

Y (default)
The Q Apply program stops if DB2 or the queue manager are
unavailable.

N The Q Apply program continues running if DB2 or the queue manager
are unavailable. When DB2 or the queue manager are available, Q
Apply begins applying transactions where it left off without requiring
you to restart the program.

PWDFILE Data type: VARCHAR(48); Nullable: Yes, with default

The name of the encrypted password file that the Q Apply program uses to
connect to the Q Capture program if the Q subscription calls for an internal load
of the target. The asnpwd command creates this file by default in the directory
specified in the APPLY_PATH column.

506 Replication and Event Publishing Guide and Reference

Table 84. Columns in the IBMQREP_APPLYPARMS table (continued)

Column name Description

DEADLOCK_RETRIES Data type: INTEGER; Nullable: No, with default

The number of times the Q Apply program tries to reapply changes to target
tables, or make inserts into its control tables, after SQL deadlocks. If the deadlock
occurs at a target table, the Q Apply program keeps trying until it reaches the
limit that you set. After the limit is reached, if deadlocks persist the browser
thread stops. Default: 3 tries.

SQL_CAP_SCHEMA Data type: VARCHAR(128); Nullable: Yes, with default

The schema of the Capture control tables that the Q Apply program uses to
manage CCD target tables that are registered as SQL replication sources. This
column must contain a value in for the Q Apply program to manage data
distribution (fan-out) configurations.

LOADCOPY_PATH Data type: VARCHAR(1040); Nullable: Yes, with default

Specifies the path where the DB2 LOAD utility creates a copy of loaded data on
the primary server for a configuration that involves the DB2 High Availability
Disaster Recovery (HADR) utility. Setting this parameter prompts Q Apply to
start the LOAD utility with the option to create the copy when Q Apply loads
the target table. The secondary server in the HADR configuration then looks for
the copied data in this path.

NICKNAME_COMMIT_CT Data type: INTEGER; Nullable: Yes, with default

Specifies the number of rows after which the DB2 IMPORT utility commits
changes to nicknames that reference the target table during the loading process.
This parameter applies only to automatic loads for federated targets that use the
IMPORT utility.

The default is nickname_commit_ct=10.

This parameter can be used to tune the performance of the DB2 IMPORT utility
by reducing the number of commits for federated targets.

SPILL_COMMIT_COUNT Data type: INTEGER; Nullable: Yes, with default

Specifies how many rows are grouped together in a commit scope by the Q
Apply spill agents that apply data that was replicated during a load operation.
The default is spill_commit_count=10. Increasing the number of rows that are
applied before a COMMIT is issued can improve performance by reducing the
I/O resources that are associated with frequent commits. Balance the potential
for improvement with the possibility that fewer commits might cause lock
contention at the target table and the IBMQREP_SPILLEDROW control table.

LOAD_DATA_BUFF_SIZE Data type: INTEGER; Nullable: Yes, with default

Specifies the number of 4KB pages for the DB2 LOAD utility to use as buffered
space for transferring data within the utility during the initial loading of the
target table. This parameter applies only to automatic loads using the DB2
LOAD utility.

By default, the Q Apply program starts the utility with the option to use a buffer
of 8 pages. Load performance for multidimensional clustering (MDC) tables that
are replication targets can be significantly improved by specifying a much higher
number of pages.

Chapter 25. Control tables for Q Replication and Event Publishing 507

Table 84. Columns in the IBMQREP_APPLYPARMS table (continued)

Column name Description

CLASSIC_LOAD_FILE_SIZE Data type: INTEGER; Nullable: Yes with default

Specifies the estimated number of rows in tables or views
from a Classic replication data source that are to be loaded into target tables. The
Q Apply program uses this estimate to calculate the DASD allocation of the data
set that is used as input to the load utility. The default is 500,000 rows. Use this
parameter when the default allocation is too small.

This parameter applies only to automatic loads of z/OS target tables from
Classic sources.

MAX_PARALLEL_LOADS Data type: INTEGER; Nullable: Yes, with default

Specifies the maximum number of automatic load operations of target tables that
Q Apply can start at the same time for a given receive queue. The default differs
depending on the platform of the target server:

On z/OS the default is one load at a time because of potential issues
with the DSNUTILS stored procedure that Q Apply uses to call the DB2
LOAD utility. Depending on your environment you can experiment
with values higher than max_parallel_loads=1. If errors occur, reset the
value to 1.

On Linux, UNIX, and Windows the default is 15 parallel loads.

COMMIT_COUNT Data type: INTEGER; Nullable: Yes, with default

Specifies the number of transactions that each Q Apply agent thread applies to
the target table within a commit scope. By default (commit_count=1), the agent
threads commit after each transaction that they apply. By increasing
commit_count and grouping more transactions within the commit scope, you
might see improved performance.
Recommendation: Use a higher value for commit_count only with row-level
locking. This parameter requires careful tuning when used with a large number
of agent threads because it could cause lock escalation resulting in lock timeouts
and deadlock retries.

INSERT_BIDI_SIGNAL Data type: CHAR(1); Nullable: Yes, with default

Whether the Q Capture and Q Apply programs use P2PNORECAPTURE signal
inserts to prevent recapture of transactions in bidirectional replication.

Y (default)
The Q Apply program inserts P2PNORECAPTURE signals into the
IBMQREP_SIGNAL table to instruct the Q Capture program at its same
server not to recapture applied transactions at this server.

N The Q Apply program does not insert P2PNORECAPTURE signals.
Instead, you insert Q Apply's AUTHTKN information into the
IBMQREP_IGNTRAN table, which instructs the Q Capture program at
the same server to not capture any transactions that originated from the
Q Apply program, except for inserts into the IBMQREP_SIGNAL table.

APPLY_ALIAS Data type: VARCHAR(8); Nullable: Yes

The alias name for the database or subsystem that is used as the Q Apply server.
This is the alias as cataloged on the system where the replication administration
tools run and used to connect to the target database or subsystem to create Q
Apply control tables. This column is populated by the Replication Center or
ASNCLP command-line program when control tables are created.

508 Replication and Event Publishing Guide and Reference

Table 84. Columns in the IBMQREP_APPLYPARMS table (continued)

Column name Description

STARTALLQ Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Apply program whether to activate all receive queues that
are not already in active state when Q Apply starts. Receive queues that are
already active are always processed when Q Apply starts.

Y When the Q Apply program starts, it activates all receive queues that
are not already in active (A) state.

N When the Q Apply program starts, it does not activate receive queues
that are in inactive (I) state.

The default value for this column is N for z/OS and Y for Linux, UNIX, and
Windows.

PRUNE_BATCH_SIZE Data type: INTEGER; Nullable: No, with default

The number of rows that are deleted from the IBMQREP_DONEMSG table in
one commit scope when PRUNE_METHOD is 2. The default is 1000 rows. The
minimum value is 2 rows.

PRUNE_METHOD Data type: INTEGER; Nullable: No, with default

The method that the Q Apply program uses to delete
unneeded rows from the IBMQREP_DONEMSG table.

1 Q Apply deletes a message from the receive queue, queries the
IBMQREP_DONESG table to see if data from the message was applied,
and then prunes the corresponding row from IBMQREP_DONEMSG by
issuing an individual SQL statement.

2 (default)
Q Apply prunes groups of rows based on the PRUNE_BATCH_SIZE
value. A separate prune thread records which messages have been
applied, then issues a single range-based DELETE against the
IBMQREP_DONEMSG table.

IGNBADDATA Data type: CHAR(1); Nullable: No, with default
Note: This column applies only if the Q Apply program uses International
Components for Unicode (ICU) for code page conversion (if the code page of the
source database and the code page that Q Apply uses are different).Whether the
Q Apply program checks for illegal characters in data from the source and
continues processing even if it finds illegal characters.

Y Q Apply checks for illegal characters.

N (default)
Q Apply does not check for illegal characters and does not report
exceptions for illegal characters.

Chapter 25. Control tables for Q Replication and Event Publishing 509

Table 84. Columns in the IBMQREP_APPLYPARMS table (continued)

Column name Description

RICHKLVL Data type: INTEGER; Nullable: No, with default

The level of referential integrity checking. By default, the Q Apply program
checks for RI-based dependencies between transactions to ensure that dependent
rows are applied in the correct order.

0 Q Apply does not check for RI-based dependencies.

2 (default)
Q Apply checks for RI-based dependencies when a key value is updated
in the parent table or a row is deleted from the parent table.

5 Q Apply checks for RI-based dependencies when a key value is updated
in the parent table, a row is updated in the parent table, or a row is
deleted from the parent table.

TRACE_DDL Data type: CHAR(1); Nullable: No, with default

When DDL operations at the source database are replicated, this column
indicates whether the SQL text of the operation that the Q Apply program
performs at the target database is logged.

N (default)
Replicated DDL operations are not logged.

Y The Q Apply program issues an ASN message to its log file, standard
output, and IBMQREP_APPLYTRACE table with the text of the SQL
statement that was used to replicate the source DDL. The SQL text is
truncated to 1024 characters.

REPORT_EXCEPTIONS Data type: CHAR(1); Nullable: No, with default

A flag that controls whether the Q Apply program inserts data into the
IBMQREP_EXCEPTIONS table when a conflict or SQL error occurs at the target
table but the row is applied anyway because the conflict action that was
specified for the Q subscription was F (force).

Y (default)
Q Apply inserts data into the IBMQREP_EXCEPTIONS table whether or
not the row that caused the exception is applied.

N Q Apply does not insert data into the IBMQREP_EXCEPTIONS table
when the row that caused an exception is applied; data is inserted only
when the row is not applied. With this setting, Q Apply also tolerates
codepage conversion errors when writing SQL text into the
IBMQREP_EXCEPTIONS table and continues normal processing.

510 Replication and Event Publishing Guide and Reference

Table 84. Columns in the IBMQREP_APPLYPARMS table (continued)

Column name Description

ORACLE_EMPTY_STR Data type: CHAR(1); Nullable: No, with default

A flag that specifies whether the Q Apply program replaces an empty string in
VARCHAR columns with a space. DB2 allows empty strings in VARCHAR
columns. When a source DB2 VARCHAR column is mapped to an Oracle target,
or to a DB2 server that is running with Oracle compatibility mode, the empty
string is converted to a NULL value. The operation fails when the target column
is defined with NOT NULL semantics.

With oracle_empty_str=y, Q Apply replaces the NULL value with a space just
before applying the data to the target and after any codepage conversion. If you
are using SQL expressions in any Q subscriptions, take the following
considerations into account:

Y Q Apply replaces the NULL value with a one-character space just before
applying the data to the target and after any codepage conversion.

N (default)
Q Apply applies the NULL value even though this action can result in
an error if the target column does not accept nulls.

LOGMARKERTZ Data type: CHAR(8); Nullable: No, with default

A value that determines the time zone that the Q Apply program uses when it
inserts source commit data into the IBMSNAP_LOGMARKER column of
consistent-change data (CCD) tables or point-in-time (PIT) tables.

GMT (default)
Q Apply records the source commit timestamp in Greenwich Median
Time.

LOCAL
Q Apply inserts the source commit timestamp in the local time of the Q
Apply server

Note: Because the value in the IBMSNAP_LOGMARKER column records the
time that a row was committed at the source database, specifying
logmarkertz=local is useful only when the Q Capture and Q Apply servers are in
the same time zone with the same Daylight Savings Time or other time change
in effect.

IBMQREP_APPLYTRACE table
The IBMQREP_APPLYTRACE table contains informational, warning, and error
messages from the Q Apply program. You can set up automatic pruning of this
table by using the TRACE_LIMIT parameter in the IBMQREP_APPLYPARMS table.

Server: Q Apply server

Default schema: ASN

Non-unique index: TRACE_TIME

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 85 on page 512 provides a brief description of the columns in the
IBMQREP_APPLYTRACE table.

Chapter 25. Control tables for Q Replication and Event Publishing 511

Table 85. Columns in the IBMQREP_APPLYTRACE table

Column name Description

OPERATION Data type: CHAR(8); Nullable: No

The type of message from the Q Apply program:

INFO Describe actions that the Q Apply program takes.

WARNING
Describe conditions that could cause errors for the Q Apply program.

ERROR
Describe errors encountered by the Q Apply program.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time at the Q Apply server when the row was inserted into this table.

DESCRIPTION Data type: VARCHAR(1024); Nullable: No

The ASN message ID followed by the message text. This column contains
English-only text.

REASON_CODE Data type: INTEGER; Nullable: Yes

The reason code for the replication error message.

MQ_CODE Data type: INTEGER; Nullable: Yes

The reason code for the WebSphere MQ error message.

IBMQREP_DELTOMB table
The IBMQREP_DELTOMB table is an internal table used by the Q Apply program
to record conflicting deletes in peer-to-peer replication. This table is pruned by the
Q Apply program.

Server: Q Apply server

Default schema: ASN

Non-unique index: TARGET_NAME, TARGET_OWNER, VERSION_TIME DESC,
KEY_HASH

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 86 provides a brief description of the columns in the IBMQREP_DELTOMB
table.

Table 86. Columns in the IBMQREP_DELTOMB table

Column name Description

TARGET_OWNER Data type: VARCHAR(128); Nullable: No

The owner name of the target table for which the conflicting delete was recorded

TARGET_NAME Data type: VARCHAR(128); Nullable: No

The name of the table for which the conflicting delete was recorded

VERSION_TIME Data type: TIMESTAMP; Nullable: No

The timestamp of the conflicting delete at the originating server.

512 Replication and Event Publishing Guide and Reference

Table 86. Columns in the IBMQREP_DELTOMB table (continued)

Column name Description

VERSION_NODE Data type: SMALLINT; Nullable: No

Identifies the server in a peer-to-peer group where the conflicting delete
originated.

KEY_HASH Data type: INTEGER; Nullable: No

The hash value of the key for the conflicting delete.

PACKED_KEY Data type: VARCHAR (4096); Nullable: No

The packed key value of the conflicting delete.

IBMQREP_DONEMSG table
The IBMQREP_DONEMSG table is an internal table used by the Q Apply program
to record all transaction or administrative messages that have been received.

Server: Q Apply server

Default schema: ASN

Primary key: RECVQ, MGMSGID

Important: Important: Do not alter this table using SQL. Altering this table
inappropriately can cause unexpected results and loss of data.

The records in this table help ensure that messages are not processed more than
once (for example in the case of a system failure) before being deleted. The Q
Apply program removes entries in this table on startup and during regular
execution.

Table 87 provides a brief description of the columns in the IBMQREP_DONEMSG
table.

Table 87. Columns in the IBMQREP_DONEMSG table

Column name Description

RECVQ Data type: VARCHAR(97); Nullable: No

The name of the receive queue where the message arrived.

MQMSGID Data type: CHAR(24) FOR BIT DATA; Nullable: No

The WebSphere MQ message identifier of the message.

IBMQREP_EXCEPTIONS table
The IBMQREP_EXCEPTIONS table contains the SQL code and other information
for row changes that could not be applied because of a conflict or SQL error.

Server: Q Apply server

Default schema: ASN

Non-unique index: EXCEPTION_TIME

Chapter 25. Control tables for Q Replication and Event Publishing 513

The SQLCODE, SQLSTATE, and SQLERRMC fields are set to NULL for rows that
were rolled back by the Q Apply program.

The size of this table depends on the number of conflicts or errors that you expect.
You can use SQL to delete unneeded rows from the table.

Table 88 provides a brief description of the columns in the
IBMQREP_EXCEPTIONS table.

Table 88. Columns in the IBMQREP_EXCEPTIONS table

Column name Description

EXCEPTION_TIME Data type: TIMESTAMP; Nullable: No, with default

The local timestamp at the Q Apply server when the error or conflict occurred.
Default: Current timestamp

RECVQ Data type: VARCHAR(48); Nullable: No

The name of the receive queue where the transaction message arrived.

SRC_COMMIT_LSN Data type: VARCHAR(48) FOR BIT DATA, VARCHAR(10) FOR BIT DATA for
z/OS Version 7; Nullable: No

The logical log sequence number at the Q Capture server for the transaction.

SRC_TRANS_TIME Data type: TIMESTAMP; Nullable: No

The GMT timestamp at the Q Capture server for when the transaction was
committed at the source database.

SUBNAME Data type: VARCHAR(128); Nullable: No

The name of the Q subscription that the transaction belonged to.

514 Replication and Event Publishing Guide and Reference

Table 88. Columns in the IBMQREP_EXCEPTIONS table (continued)

Column name Description

REASON Data type: CHAR(12); Nullable: No

A description of the error or conflict that caused the transaction to be logged into
the IBMQREP_EXCEPTIONS table.

NOTFOUND
An attempt to delete or update a row that did not exist.

DUPLICATE
An attempt to insert a row that was already present.

CHECKFAILED
The conflict detection rule was to check all values or check changed
values, and a nonkey value was not as expected.

LOBXMLTOOBIG
A large object (LOB) value or XML document was too large to fit into a
transaction message. The TEXT column specifies which data type was
too large.

SQLERROR
An SQL error occurred, and it was not on the list of acceptable errors in
the OKSQLSTATES column of the IBMQREP_TARGETS table.

OKSQLSTATE
An SQL error occurred, and it was on the list of acceptable errors in the
OKSQLSTATES column of the IBMQREP_TARGETS table.

P2PDUPKEY
In peer-to-peer replication, a key update failed because a target row
with the same key already existed, but was newer.

P2PNOTFOUND
In peer-to-peer replication, a delete or update failed because the target
row didn't exist.

P2PVERLOSER
In peer-to-peer replication, a delete or update failed because the target
row was newer than the row in the change message.

P2PINSERTED
In peer-to-peer replication, a key update was successfully applied as an
insert because the old key row and the new key row were not found.
The new key row was inserted into the target table.

SQLCODE Data type: INTEGER; Nullable: Yes

The SQL code returned by DB2 for the transaction.

SQLSTATE Data type: CHAR(5); Nullable: Yes

The SQL state number returned by DB2 for the transaction.

SQLERRMC Data type: CHAR(70) FOR BIT DATA; Nullable: Yes

The error message tokens from the SQLCA structure used for executing the
transaction.

OPERATION Data type: VARCHAR(18); Nullable: No

The type of SQL operation that failed. Possible values are INSERT,
INSERT(LOAD), DELETE, DELETE(LOAD), UPDATE, UPDATE(LOAD), KEY
UPDATE, KEY UPDATE(LOAD).

Chapter 25. Control tables for Q Replication and Event Publishing 515

Table 88. Columns in the IBMQREP_EXCEPTIONS table (continued)

Column name Description

TEXT Data type: CLOB; Nullable: No

A SQL statement that describes the row that caused an error.

IS_APPLIED Data type: CHAR(1); Nullable: No

A flag that indicates whether the row was applied to the target table even
though it was entered into the IBMQREP_EXCEPTIONS table.

Y The row was applied because the conflict action that was specified for
the Q subscription was F (force).

N The transaction was not applied.

CONFLICT_RULE Data type: CHAR(1); Nullable: Yes

The type of conflict detection that resulted in the row being entered in the
IBMQREP_EXCEPTIONS table.

K Only key values were checked.

C Changed nonkey values as well as key values were checked.

A All values were checked.

SRC_TRANS_ID Data type: VARCHAR(48); Nullable: Yes

The identifier for the transaction that the row that could not be applied belongs
to.

IBMQREP_RECVQUEUES table
The IBMQREP_RECVQUEUES table contains information about the WebSphere
MQ local queues that are used by a Q Apply program to receive transactions from
the source. Each Q Apply program can work with multiple receive queues. Each
receive queue is uniquely identified by a row in the Q Apply receive queues table.

Server: Q Apply server

Default schema: ASN

Primary key: RECVQ

Unique index: REPQMAPNAME

Important: Do not alter this table by using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 89 provides a brief description of the columns in the
IBMQREP_RECVQUEUES table.

Table 89. Columns in the IBMQREP_RECVQUEUES table

Column name Description

REPQMAPNAME Data type: VARCHAR(128); Nullable: No

The name of the replication queue map that includes this receive queue.

RECVQ Data type: VARCHAR(48); Nullable: No

The name of the receive queue for this Q subscription.

516 Replication and Event Publishing Guide and Reference

Table 89. Columns in the IBMQREP_RECVQUEUES table (continued)

Column name Description

SENDQ Data type: VARCHAR(48); Nullable: Yes

The name of the send queue that is used by the Q Capture program for this Q
subscription.

ADMINQ Data type: VARCHAR(48); Nullable: No

The name of the administration queue that is used by the Q Apply program to
send control and error messages to the Q Capture program.

NUM_APPLY_AGENTS Data type: INTEGER; Nullable: No, with default

The number of agent threads that the Q Apply program uses to concurrently
apply transactions from this receive queue. A value of 1 requests that
transactions be executed in the order that they were received from the source
table. Default: 16. Maximum number of agent threads: 128.

MEMORY_LIMIT Data type: INTEGER; Nullable: No, with default

The maximum amount of memory in megabytes that the Q Apply program can
use as a buffer for messages that it gets from this receive queue. The default
value is 32 MB; the maximum value is 2 GB.

CAPTURE_SERVER Data type: VARCHAR(18); Nullable: No

The name of the database where the Q Capture program that uses this receive
queue runs.

This is a location name.

CAPTURE_ALIAS Data type: VARCHAR(8); Nullable: No

The DB2 database alias that corresponds to the Q Capture server that is named
in the CAPTURE_SERVER column.

CAPTURE_SCHEMA Data type: VARCHAR(128); Nullable: No, with default

The schema of the Q Capture program that uses this receive queue. Default: ASN

STATE Data type: CHAR(1); Nullable: No, with default

A flag that shows the receive queue's current status.

A (default)
Active: The Q Apply program is processing and applying the
transactions from this queue.

I Inactive: A severe error was encountered on the queue.

STATE_TIME Data type: TIMESTAMP; Nullable: No, with default

The timestamp at the Q Apply server of the last state change for this receive
queue. Default: Current timestamp

STATE_INFO Data type: CHAR(8); Nullable:Yes

The number for the ASN message about the queue state. For details, see the
IBMQREP_APPLYTRACE table, or the Q Apply diagnostic log.

DESCRIPTION Data type: VARCHAR(254); Nullable: Yes

A user-supplied description of the replication queue map that contains this
receive queue.

Chapter 25. Control tables for Q Replication and Event Publishing 517

Table 89. Columns in the IBMQREP_RECVQUEUES table (continued)

Column name Description

SOURCE_TYPE Data type: CHAR(1); Nullable: Yes

The value of this attribute indicates the type of data source for each record.

C Classic data source

D DB2 data source

MAXAGENTS_CORRELID Data type: INTEGER; Nullable: Yes

The maximum number of Q Apply agents that can concurrently apply
transactions that have the same correlation ID. The correlation ID identifies
transactions that were started from the same z/OS job on the Q Capture server.
You can use the MAXAGENTS_CORRELID value to limit parallelism for batch
jobs that might have many dependencies that could cause lock contention. You
can set the value by using the CREATE REPLQMAP or ALTER REPLQMAP commands.

The value for the MAXAGENTS_CORRELID column cannot be greater than the
value for the NUM_APPLY_AGENTS. If MAXAGENTS_CORRELID value is 1,
the transactions will be applied serially. If the value is greater than one, for
example 4, the first four transactions will be applied in parallel and the
following transactions are marked as dependent to any one of the transactions.
When a transaction finishes, a dependent transaction with the same correlation
ID is applied.

BROWSER_THREAD_ID Data type: VARCHAR(9); Nullable: Yes

The correlation ID for the browser thread that is processing this receive queue.

IBMQREP_SAVERI table
The IBMQREP_SAVERI table is an internal table that the Q Apply program uses to
save information about referential integrity constraints for target tables. The Q
Apply program drops referential integrity constraints while target tables are being
loaded. The constraints are saved in this control table, and then restored after
tables are loaded.

Server: Q Apply server

Default schema: ASN

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 90 provides a brief description of the columns in the IBMQREP_SAVERI
table.

Table 90. Columns in the IBMQREP_SAVERI table

Column name Description

SUBNAME Data type: VARCHAR(132); Nullable: No

The name of the Q subscription to which the target tables belong.

RECVQ Data type: VARCHAR(48); Nullable: No

The name of the receive queue that is specified for the Q subscription.

518 Replication and Event Publishing Guide and Reference

Table 90. Columns in the IBMQREP_SAVERI table (continued)

Column name Description

CONSTNAME Data type: VARCHAR (128), VARCHAR(18) for z/OS Version 7; Nullable: No

The unique name of the constraint.

TABSCHEMA Data type: VARCHAR(128); Nullable: No

The schema or high-level qualifier of the child table on which the constraint is
defined.

TABNAME Data type: VARCHAR(128); Nullable: No

The name of the child table on which the constraint is defined.

REFTABSCHEMA Data type: VARCHAR(128); Nullable: No

The schema of the parent table on which the constraint is defined.

REFTABNAME Data type: VARCHAR(128); Nullable: No

The name of the parent table on which the constraint is defined.

ALTER_RI_DDL Data type: VARCHAR(1680); Nullable: No

The ALTER TABLE statement that is used to restore referential integrity
constraints.

TYPE_OF_LOAD Data type: CHAR(1); Nullable: No

A flag that indicates the type of load phase.

I An automatic load.

E A manual load.

DELETERULE Data type: CHAR(1); Nullable: Yes

The delete rule that is defined for the constraint.

A NO ACTION

C CASCADE

N SET NULL

R RESTRICT

UPDATERULE Data type: CHAR(1); Nullable: Yes

The delete rule that is defined for the constraint.

A NO ACTION

R RESTRICT

IBMQREP_SPILLQS table
The IBMQREP_SPILLQS table is an internal table used by the Q Apply program to
record the temporary spill queues that it creates to hold messages while target
tables are being loaded. The Q Apply program removes spill queues when they are
no longer needed.

Server: Q Apply server

Default schema: ASN

Primary key: SPILLQ

Chapter 25. Control tables for Q Replication and Event Publishing 519

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 91 provides a brief description of the columns in the IBMQREP_SPILLQS
table.

Table 91. Columns in the IBMQREP_SPILLQS table

Column name Description

SPILLQ Data type: VARCHAR(48); Nullable: No

The name of the temporary spill queue that is used for this Q subscription.

SUBNAME Data type: VARCHAR(132); Nullable: No

The name of the Q subscription.

RECVQ Data type: VARCHAR(48); Nullable: No

The name of the receive queue that is used for this Q subscription.

IBMQREP_SPILLEDROW table
The IBMQREP_SPILLEDROW table is an internal table used by the Q Apply
program to record messages that are sent to a temporary spill queue while targets
are being loaded.

Server: Q Apply server

Default schema: ASN

Primary key: SPILLQ, MQMSGID

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The Q Apply program deletes rows in this table after the messages they represent
are taken from the spill queue and applied to the target table.

Table 92 provides a brief description of the columns in the
IBMQREP_SPILLEDROW table.

Table 92. Columns in the IBMQREP_SPILLEDROW table

Column name Description

SPILLQ Data type: VARCHAR2(48); Nullable: No

The name of the spill queue where the message was temporarily stored.

MQMSGID Data type: CHAR(24) FOR BIT DATA; Nullable: No

The WebSphere MQ message identifier of the message.

IBMQREP_TARGETS table
The IBMQREP_TARGETS table stores Q subscriptions information for the Q Apply
program, including type and state, default error actions, and rules for handling
row conflicts.

Server: Q Apply server

520 Replication and Event Publishing Guide and Reference

Default schema: ASN

Unique index: SUBNAME, RECVQ

Non-unique index: TARGET_OWNER ASC, TARGET_NAME ASC, RECVQ ASC,
SOURCE_OWNER ASC, SOURCE_NAME ASC

Non-unique index: RECVQ, SUB_ID

Non-unique index: SPILLQ, STATE

Important: Do not alter this table by using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

Table 93 provides a brief description of the columns in the IBMQREP_TARGETS
table.

Table 93. Columns in the IBMQREP_TARGETS table

Column name Description

SUBNAME Data type: VARCHAR(132); Nullable: No

The name of the Q subscription. It must be unique for each source-target pair,
and cannot contain blanks.

RECVQ Data type: VARCHAR(48); Nullable: No

The name of the receive queue used for this Q subscription.

SUB_ID Data type: INTEGER; Nullable: Yes

An integer that is generated by the Q Capture program and used to uniquely
identify a Q subscription in the subscription schema message to the Q Apply
program.

SOURCE_SERVER Data type: VARCHAR(18); Nullable: No

The name of the database or subsystem that contains the source table for this Q
subscription. For z/OS, this is a location name.

The value of the Data source entry in the ASNCLP configuration file for Classic
replication, which is the name of the query processor on the Classic data server.

SOURCE_ALIAS Data type: VARCHAR(8); Nullable: No

The DB2 database alias that corresponds to the Q Capture server that is named
in the SOURCE_SERVER column.

SOURCE_OWNER Data type: VARCHAR(128); Nullable: No

The schema name or high-level qualifier of the source table for this Q
subscription.

SOURCE_NAME Data type: VARCHAR(128); Nullable: No

The name of the source table for this Q subscription.

SRC_NICKNAME_OWNER Data type: VARCHAR(128); Nullable: Yes

The schema of the nickname that is assigned to the source table for automatic
loads that uses the LOAD from CURSOR utility when the Q Apply program is
running on a non-z/OS platform.

Chapter 25. Control tables for Q Replication and Event Publishing 521

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

SRC_NICKNAME Data type: VARCHAR(128); Nullable: Yes

The nickname that is assigned to the source table for automatic loads that uses
the LOAD from CURSOR utility when the Q Apply program is running on a
non-z/OS platform.

TARGET_OWNER Data type: VARCHAR(128); Nullable: No

The schema name or high-level qualifier of the target table or stored procedure
for this Q subscription.

TARGET_NAME Data type: VARCHAR(128); Nullable: No

The name of the target table for this Q subscription.

TARGET_TYPE Data type: INTEGER; Nullable: No, with default

A flag that indicates the type of replication target.

1 (default)
User table

2 Consistent-change-data (CCD) table

3 Reserved for future use.

4 Reserved for future use.

5 Stored procedure

FEDERATED_TGT_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the non-DB2 relational database that contains the Q subscription
target.

522 Replication and Event Publishing Guide and Reference

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

STATE Data type: CHAR(1); Nullable: No, with default

A flag that is inserted by the Q Apply program to describe the current state of
the Q subscription.

I (default)
The Q Apply is not applying changes to the target because the Q
subscription is new or in error. The Q Apply program discards all
transactions that it receives for the Q subscription and waits for a new
subscription schema message.

L The Q Capture program has begun activating the Q subscription by
sending a subscription schema message, and is sending changes from
the source table.

E The target table is being loaded by an external application. The Q Apply
program is putting change messages in a spill queue while it waits for
the table to be loaded.

D The target table is loaded and the Q Apply program is ready to send a
load done message to the Q Capture program. This state is used for
automatic loads only.

F The Q Apply program is applying messages from the spill queue.

T The Q Apply program is terminating because of an error. It deactivates
the Q subscription, then empties and deletes the spill queue.

A The Q Apply program is applying changes to the target.

R The Q Apply program is resuming operations after a Q subscription
was placed in the spilled state (S) by the spillsub parameter of the
MODIFY or asnqacmd command, or during the initial Q subscription load
phase when a load done received message was received from the Q
Capture program. The resumesub parameter places the Q subscription in
the resuming state (R) after target table maintenance is complete.

This state means that the Q Apply program is processing rows that are
in the spill queue. Until the Q Apply program empties the spill queue,
incoming rows continue to be spilled. When the Q Apply program
empties the spill queue, the Q subscription is placed in the active (A)
state and normal operations resume.

S The Q Apply program is placing rows for the Q subscription in a
temporary spill queue. Specifying the spillsub parameter places the Q
subscription in the spilling state so that you can perform maintenance
on the target table.

W For peer-to-peer configurations with more than two servers and a load
phase: The Q Apply program has seen a subscription schema message,
is actively spilling changes to the source table, and is waiting for a
confirmation (another schema message) from the Q Capture program to
start loading.

P An SQL error was detected while Q Apply was applying messages from
a spill queue and the Q subscription was in F state. The Q Apply agent
thread that was processing the spill queue stops. Future changes for the
Q subscription are placed in the same spill queue until the resumesub
parameter of the MODIFY or asnqacmd commands is issued.

U An internal state that indicates that the Q Apply program created this Q
subscription, and the Q subscription has not been activated yet.

Chapter 25. Control tables for Q Replication and Event Publishing 523

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

STATE_TIME Data type: TIMESTAMP; Nullable: No, with default

The timestamp at the Q Apply server of the last change in state for this Q
subscription. Default: Current timestamp

STATE_INFO Data type: CHAR(8); Nullable: Yes

The number for the ASN message about the Q subscription state. For details, see
the IBMQREP_APPLYTRACE table or the Q Apply diagnostic log.

SUBTYPE Data type: CHAR(1); Nullable: No, with default

A flag that indicates the type of replication that the Q subscription is involved in.

U (default)
Unidirectional replication.

B Bidirectional replication.

P Peer-to-peer replication.

CONFLICT_RULE Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Apply program how to look for conflicting changes to the
target table. Inserts are always checked using the K (check only keys) rule
because there are no before values and keys must be used to detect conflicts.

K (default)
Check only keys. The Q Apply program looks for conflicts by
comparing the current value of the primary key in the target table with
the old key value sent from the source table.

C Check changed columns. Before updating target columns, the Q Apply
program makes sure their current value matches the before values in the
source columns. For deletes, the Q Apply program checks all columns.

A Check all columns. Before updating or deleting a row, the Q Apply
program makes sure that the current values in all columns match the
old values in the source table.

V Check version. In peer-to-peer replication, the Q Apply program checks
the version column before applying a row.

524 Replication and Event Publishing Guide and Reference

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

CONFLICT_ACTION Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Apply program what to do when a row change conflicts:

I (default)
The Q Apply program does not apply the conflicting row but applies
other rows in the transaction.

F The Q Apply program tries to force the change. This requires that the Q
Capture program send all columns, so the CHANGED_COLS_ONLY
value must be set to N (no) in the IBMQREP_SUBS table. This is the
default value while a target table is being loaded.

D The Q Apply program does not apply the conflicting row but applies
other rows in the transaction. Then it disables the Q subscription, stops
applying transactions to the target, and sends an error report to the Q
Capture program on the administration queue.

S The Q Apply program rolls back the transaction, commits, and then
stops.

Q The Q Apply program stops reading from the queue.

All conflicting rows are inserted into the IBMQREP_EXCEPTIONS table.

ERROR_ACTION Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Apply program what to do in case of an error such as an
SQL error (other than a conflict) that prevent it from applying a row change.
This flag does not affect Q Apply behavior for errors that are not related to
applying a row change, for example WebSphere MQ errors related to reading
from a queue.

Q (default)
The Q Apply program stops reading from the queue.

D The Q Apply program does not apply the conflicting row but applies
other rows in the transaction. Then it disables the Q subscription, stops
applying transactions to the target, and sends an error report to the Q
Capture program on the administration queue.

S The Q Apply program rolls back the transaction, commits, and then
stops.

B The Q Apply program starts putting change messages for the Q
subscription in a temporary spill queue while the SQL error is being
fixed. Use the resumesub parameter of the MODIFY command or asnqacmd
command to prompt Q Apply to start applying messages from the spill
queue to targets. To use this error action you must specify a model
queue for the Q subscription when you create or change it with the
replication administration tools. This error action is not supported for
tables with referential integrity constraints.

All conflicting rows are inserted into the IBMQREP_EXCEPTIONS table.

SPILLQ Data type: VARCHAR(48); Nullable: Yes

The name of the temporary spill queue that the Q Apply program creates when
it loads targets.

Chapter 25. Control tables for Q Replication and Event Publishing 525

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

OKSQLSTATES Data type: VARCHAR(128); Nullable: Yes

A list of space-separated SQLSTATE values that the Q Apply program does not
consider as errors. You specify these values when you define a Q subscription.

Values that are entered for OKSQLSTATES prompt the Q Apply program to
bypass the error action that is specified for the Q subscription. OKSQLSTATES
values do not affect conflicts such as duplicates and row-not-found errors, which
are handled by the conflict action that is specified for the Q subscription.
Restriction: The OKSQLSTATES feature is not supported when all of these
conditions are true:

v The Q subscription uses expressions.

v At least one key column is used in the expression.

v The evaluation of the expression fails because of bad data or another reason.

SUBGROUP Data type: VARCHAR(30); Nullable: Yes

The name of the peer-to-peer replication group that includes this Q subscription.

SOURCE_NODE Data type: SMALLINT; Nullable: No, with default

An identifying number for the source server in a peer-to-peer Q subscription.
Default: 0

TARGET_NODE Data type: SMALLINT; Nullable: No, with default

An identifying number for the target server in a peer-to-peer Q subscription.
Default: 0

GROUP_INIT_ROLE Data type: CHAR(1); Nullable: Yes

The role of this target server in the process of initializing a peer-to-peer Q
subscription.

I The initiator of the peer-to-peer group, where the CAPSTART signal is
entered into the IBMQREP_SIGNAL table to initialize the subscription.

M A server in the peer-to-peer group that is not used to initialize the
subscription.

N A new server that is in the process of joining the peer-to-peer group.

HAS_LOADPHASE Data type: CHAR(1); Nullable: No, with default

A flag that indicates whether the target table will be loaded with data from the
source.

N (default)
The target will not be loaded.

I An automatic load. The Q Apply program loads the target table.

E A manual load. An application other than the Q Apply program loads
the target table.

526 Replication and Event Publishing Guide and Reference

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

LOAD_TYPE Data type: SMALLINT; Nullable: No, with default

A flag to indicate which utility is called to load the target table when
HAS_LOADPHASE is I (automatic load).

0 (default)
The Q Apply program selects the load utility from among the options
below.

1 Use the LOAD from CURSOR utility. The utility is invoked with an
option to delete all data in the target table before replacing it with data
from the source (this is called the replace option).

101 Use the LOAD from CURSOR utility. The utility is invoked with an
option to append source data to the target table without deleting target
table contents. This is called the resume option on z/OS targets and the
insert option on Linux, UNIX, and Windows targets.

2 Use the EXPORT and IMPORT utilities. The utilities are invoked with
an option to delete all data in the target table before replacing it with
data from the source (this is called the replace option).

102 Linux, UNIX, and Windows targets: Use the EXPORT and IMPORT
utilities. The LOAD utility is invoked with an option to append source
data to the target table without deleting target table contents (this is
called the insert option).

3 Use the EXPORT and LOAD utilities. The utilities are invoked with an
option to delete all data in the target table before replacing it with data
from the source (this is called the replace option).

103 Linux, UNIX, and Windows targets: Use the EXPORT and LOAD
utilities. The LOAD utility is invoked with an option to append source
data to the target table without deleting target table contents (this is
called the insert option).

4 Select from a replication source and use the LOAD utility, or for Oracle
targets use the SQL*Loader utility (unidirectional replication only). The
utilities are invoked with an option to delete all data in the target table
before replacing it with data from the source (replace option).
Oracle targets: To use SQL*Loader, you must create a password file by
using the asnpwd command in the directory that is specified by the
apply_path parameter or the directory from which Q Apply is invoked
with the following values for these keywords:

v alias: The Oracle tnsnames.ora entry that refers to the Oracle server
(the same name that is used for the NODE option of the CREATE
SERVER command for setting up federation).

v id: The remote user ID for connecting to Oracle.

v password: The password for connecting to Oracle.

The file must have the default name asnpwd.aut. Before starting the Q
subscription, you should test connectivity with this command: $>
sqlplus id/password@alias.

104 Select from a replication source and use the LOAD utility, or for Oracle
targets use the SQL*Plus utility. The utilities are invoked with an option
to append source data to the target table without deleting target table
contents (resume or insert option). To use SQL*Plus, follow the
instructions in the entry for LOAD_TYPE 4 above.

Chapter 25. Control tables for Q Replication and Event Publishing 527

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

LOAD_TYPE

(Continued)

5 Linux, UNIX, and Windows targets: Select from a replication source
and use the IMPORT utility. The utility is invoked with an option to
delete all data in the target table before replacing it with data from the
source (this is called the replace option).

105 Linux, UNIX, and Windows targets: Select from a replication source
and use the IMPORT utility. The utility is invoked with an option to
append source data to the target table without deleting target table
contents (this is called the insert option).

DESCRIPTION Data type: VARCHAR(254); Nullable: Yes

A user-supplied description of the Q subscription.

SEARCH_CONDITION Data type: VARCHAR(2048); Nullable: Yes

The search condition that is used to filter rows for the Q subscription. This must
be an annotated select WHERE clause, with a single colon directly in front of the
names of the source columns.

MODELQ Data type: VARCHAR(36); Nullable: Yes, with default

The name of the model queue that the Q Apply program uses to create spill
queues during the target loading process. Default: IBMQREP.SPILL.MODELQ

CCD_CONDENSED Data type: CHAR(1); Nullable: Yes, with default

A flag that indicates whether a CCD target table is condensed or noncondensed.

N (default)
The CCD table is noncondensed, which means that it contains multiple
rows with the same key value, one row for every change that occurs to
the source table.

Y The CCD table is condensed, which means that it contains one row for
every key value in the source table and contains only the latest value
for the row.

CCD_COMPLETE Data type: CHAR(1); Nullable: Yes, with default

A flag that indicates whether a CCD target table is complete or noncomplete.

N (default)
The CCD table is noncomplete, which means that it contains only
changes to the source table and starts with no data.

Y The CCD table is complete, which means that it contains every row of
interest from the source table and is initialized with a full set of source
data.

SOURCE_TYPE Data type: CHAR(1); Nullable: Yes

The value of this attribute indicates the type of data source for each record.

C Classic data source

D DB2 data source

SCHEMA_SUBNAME Data type: VARCHAR(64); Nullable: Yes

The name of the source schema-level Q subscription if this table-level Q
subscription was created by the Q Apply program or ASNCLP command-line
program. The value is null otherwise.

528 Replication and Event Publishing Guide and Reference

Table 93. Columns in the IBMQREP_TARGETS table (continued)

Column name Description

SUB_CREATOR Data type: VARCHAR(12); Nullable: Yes

Identifies how this Q subscription was created. The values are "asnclp,"
"replcenter" (the Replication Center), and "asnqapp" (the Q Apply program).
When the Q Apply control tables are migrated from a release before Version 10
on Linux, UNIX, and Windows, the column value is NULL.

IBMQREP_TRG_COLS table
The IBMQREP_TRG_COLS table identifies the mapping between a column in the
source table and a column in the target table, or between the source column and a
parameter if the target is a stored procedure.

Server: Q Apply server

Default schema: ASN

Unique index: RECVQ, SUBNAME, TARGET_COLNAME

Important: Do not alter this table using SQL. Altering this table inappropriately
can cause unexpected results and loss of data.

The Q Apply program enters values in this table based on information that it
receives in the schema message from the Q Capture program.

Table 94 provides a brief description of the columns in the IBMQREP_TRG_COLS
table.

Table 94. Columns in the IBMQREP_TRG_COLS table

Column name Description

RECVQ Data type: VARCHAR(48); Nullable: No

The name of the receive queue that is used for this Q subscription.

SUBNAME Data type: VARCHAR(132); Nullable: No

The name of the Q subscription.

SOURCE_COLNAME Data type: VARCHAR(1024); Nullable: No

This column can contain one of the following values:

v The name of the source column that is being replicated or published

v An SQL or XML expression that is used to create the target column contents

v An auditing column in a consistent-change-data (CCD) table

TARGET_COLNAME Data type: VARCHAR(128); Nullable: No

The name of the target column. If the target is a stored procedure, this column
contains the name of the parameter to which the Q Apply program passes the
source column value.

TARGET_COLNO Data type: INTEGER; Nullable: Yes

A number assigned to a target column. If the target is a stored procedure, this
column contains a number assigned to the parameter to which the Q Apply
program passes the source column value.

Chapter 25. Control tables for Q Replication and Event Publishing 529

Table 94. Columns in the IBMQREP_TRG_COLS table (continued)

Column name Description

MSG_COL_CODEPAGE Data type: INTEGER; Nullable: Yes

An identifier for the code page that is used to encode the value of the source
column.

MSG_COL_NUMBER Data type: SMALLINT; Nullable: Yes

The source column's order of appearance in a change message, starting from 0.

MSG_COL_TYPE Data type: SMALLINT; Nullable: Yes

The DB2 data type of the target column.

MSG_COL_LENGTH Data type: SMALLINT; Nullable: Yes

The maximum data length defined on the target column.

IS_KEY Data type: CHAR(1); Nullable: No

A flag that indicates whether the source column is part of the key for the source
table. If the value of this flag does not match the target table key definition, the
Q Apply program rejects the schema message and invalidates the Q subscription:

Y The column is part of the source table key.

N The column is not part of the source table key.
Restriction: Large-object (LOB) columns and LONG columns cannot be used in
the replication or publishing key.

MAPPING_TYPE Data type: CHAR(1); Nullable: Yes, with default

A flag that indicates the type of mapping between the source column and the
target column.

R (default)
A regular mapping where the value in the source column corresponds
to the value in the target column.

E An SQL expression is used to generate the target column contents.

A An auditing column in a CCD table. The column does not exist at the
source table.

SRC_COL_MAP Data type: VARCHAR(2000); Nullable: Yes, with default

The column position, data type, length, and code page for all of the columns that
are used in an SQL expression. Default value: NULL

BEF_TARG_COLNAME Data type: VARCHAR(128); Nullable: Yes, with default

Specifies the before-image column name, if one exists (for CCD targets only).
Default value: NULL

Detailed structure of versioning columns for peer-to-peer replication
Tables that participate in peer-to-peer replication require two versioning columns, a
timestamp column and a small integer column, which are maintained by triggers.
These two columns allow the Q Capture and Q Apply programs to perform
version-based conflict checking that is required for peer-to-peer replication.

The columns also allow the two programs to resolve conflicts so that the tables
within a Q subscription group maintain convergence. The values in these columns
reflect which version of a row is most current.

530 Replication and Event Publishing Guide and Reference

These extra columns and triggers are created when you use the ASNCLP
command-line program or Replication Center to create Q subscriptions for
peer-to-peer replication. When you create a Q subscription for peer-to-peer
replication, you must subscribe to both of these columns.

Table 95 provides a brief description of the extra columns in user tables that are
required for peer-to-peer replication.

Table 95. Extra columns required for peer-to-peer replication

Column name Description

IBMQREPVERNODE Data type: SMALLINT; Nullable: No, with default

A number that identifies the database or subsystem that contains the table within
a peer-to-peer group. Default: 0

IBMQREPVERTIME Data type: TIMESTAMP; Nullable: No, with default

A timestamp that records when a change occurs in the table. Default:
0001-01-01-00.00.00

Chapter 25. Control tables for Q Replication and Event Publishing 531

532 Replication and Event Publishing Guide and Reference

Chapter 26. Structure of XML messages for event publishing

In event publishing, a Q Capture program and a user application exchange
Extensible Markup Language (XML) messages.

The following topics explain more about the XML messages that are exchanged
and their structure:

XML message types and requirements
A Q Capture program uses XML messages to send transactions or row-level
changes to a user application. The Q Capture program and user application also
use XML messages to communicate.

The following topics describe the XML message types and their technical
requirements:

Message types
A Q Capture program sends data messages and informational messages to a user
application, and the user application sends control messages to the Q Capture
program.

Table 96 describes the three types of messages.

Table 96. Messages sent by a Q Capture program and user application

Type of message Direction Description

Data Q Capture to user
application

Contains one of the following things from
the source table:

v All or part of a transaction

v A single row operation

v All or part of a large object (LOB) value
from a row operation within a
transaction

Informational Q Capture to user
application

Provides information about the status of
the Q Capture program or a publication.

Control User application to Q
Capture

Asks the Q Capture program to activate or
deactivate a publication, invalidate a send
queue, or confirm that a target table is
loaded.

Technical requirements for XML messages
The Q Capture program generates messages in the form of XML document
instances according to the following guidelines.
v Messages are encoded in Unicode by using UTF-8 (code page 1208) as specified

in the XML 1.0 (2nd edition), W3C Recommendation, 6 October 2000.
v Message structure follows the XML Schema Language (Part 1: Structure and Part

2: Datatypes), W3C Recommendation, 2 May 2001.

© Copyright IBM Corp. 2004, 2012 533

Changes from the source database are converted into messages by using the
version of IBM's International Components for Unicode (ICU4C) that is shipped
with DB2.

To interpret control messages from the subscribing application, the Q Capture
program uses the IBM XML parser XML4C version 5.3.

How XML delimiters are handled in character data
In data messages from a Q Capture program, the values from subscribed columns
appear between XML tags that describe the column data type.

For example, the values 222 and Hello from a source table are encoded as
<integer>222</integer> and <varchar>Hello</varchar>.

Because the angle bracket (< or >) and ampersand (&) characters are predefined
XML delimiters, the Q Capture program translates these characters when they
occur in column values as follows:
v < to <
v > to >
v & to &

Also, when the apostrophe (') or double quotation mark (") appear in attribute
values, the Q Capture program translates these characters as follows:
v ' to '
v " to "

The resulting messages are valid XML document instances.

Structure of messages from Q Capture to a user application
A Q Capture program sends both data messages and informational messages to a
user application. The data messages convey changes to a source table that is part
of a publication. The informational messages either confirm a user application's
request with a control message, report on the status of the Q Capture program, or
report publication errors.

List of messages from Q Capture to a user application
The Q Capture program sends two types of messages to a user application: data
messages and control messages.

Data messages
Contain changes to a source table. Table 97 provides a quick reference to
the types of data messages.

Informational messages
Report on the status of a Q Capture program or publication. Table 98 on
page 535 provides a quick reference to the types of informational messages.

Table 97. Data messages from the Q Capture program to a user application

Message type Description

Transaction Contains one or more insert, delete, or update operations
to a source table. These operations belong to the same
database transaction. Also contains commit information
for the transaction.

534 Replication and Event Publishing Guide and Reference

Table 97. Data messages from the Q Capture program to a user application (continued)

Message type Description

Row operation Contains a single insert, delete, or update operation to a
source table. Also contains commit information about the
database transaction that this row is part of.

Large object (LOB) Contains some or all of the data from a LOB value in the
source table. LOB messages are sent separately from the
transaction messages and row operation messages that
the LOB values belong to.

Table 98. Informational messages from the Q Capture program to a user application

Message type Description

Subscription deactivated Tells the user application that the Q Capture program
deactivated a publication.

Load done received Acknowledges that the Q Capture program received the
message that the target table is loaded.

Error report Tells the user application that the Q Capture program
encountered a publication error.

Heartbeat Tells the user application that the Q Capture program is
still running when it has no data messages to send.

Subscription schema Contains information about the source table and its
columns. Also contains data-sending options, send queue
name, and information about the Q Capture program
and source database.

Add column Contains information about a column that was added to
an existing publication.

msg: Root element for XML messages from Q Capture to a
user application

The msg element is the root element for all data messages and informational
messages from the Q Capture program to a user application.

Table 99 describes the msg element.

Table 99. Element description for the msg element (Q Capture program to a user application)

Name Properties

msg Not empty, complex type, complex content

Structure
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="XML_schema_instance"

xsi:noNamespaceSchemaLocation="schema_document"
version="version" dbName="database_name">

elements

</msg>

Chapter 26. Structure of XML messages for event publishing 535

Details

XML_schema_instance
The URL of the XML schema instance. For event publishing, the URL is
www.w3.org/2001/XMLSchema-instance. XML data type: string.

schema_document
The file name of the XML schema document. XML namespace is not supported
in event publishing because messages refer to one XML schema only. Messages
from a Q Capture program to a user application refer to the mqcap.xsd schema
document. XML data type: string.

version
The version of the XML message schema. XML data type: string.

database_name
The name of the source database or subsystem. XML data type: string.

elements
One of the elements that the msg element contains. Only one of these elements
appears in each message:
v trans
v rowOp
v lob
v subDeactivated
v loadDoneRcvd
v heartbeat
v errorRpt
v subSchema

Example:

The following example shows a message element.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd"
version="1.0.0" dbName="DB1">

elements

</msg>

Where elements represents one of the following elements: trans, rowOp, lob,
subDeactivated, loadDoneRcvd, heartbeat, errorRpt, or subSchema.

Transaction message
A transaction message contains one or more insert, update, or delete row
operations on the source table. The transaction message also contains information
about the time that the transaction was committed at the source database, and a
time-based log sequence number.

If a transaction message exceeds the maximum message size defined for the send
queue, the Q Capture program can divide it into multiple transaction messages.
Each message in a divided transaction is numbered by using the segment number
attribute of the transaction element (trans). All of the messages in a divided
transaction share the same value for commit time and commit logical sequence
number.

536 Replication and Event Publishing Guide and Reference

Within a transaction message, the trans element contains a hierarchy of other
elements that describe the type of row operation, the attributes of each column, the
data type of the column value, and the value itself. The following sections describe
the elements contained by the trans element.
v “Transaction element (trans)”
v “Row operation elements (insertRow, updateRow, and deleteRow)” on page 538
v “Column element (col)” on page 540
v “Elements for a single-column value” on page 541
v “Elements for a double-column value” on page 543
v “Before-value and after-value elements (beforeVal and afterVal)” on page 544

Transaction element (trans)

The transaction element (trans) is contained by the msg element, and it contains
one of the three row operation elements (insertRow, updateRow, or deleteRow).

Table 100 describes the trans element.

Table 100. Element description for trans

Name Properties

trans Not empty, complex type, complex content

Structure
<trans isLast="is_last_indicator" segmentNum="segment_number"

cmitLSN="commit_logical_sequence_number" cmitTime="commit_time"
authID="authorization_ID" correlationID="correlation_ID"
planName="plan_name">

elements

</trans>

Details

is_last_indicator
A boolean value that indicates whether the transaction message is the last
message in a database transaction. If it is the last message, the value is 1 (true).
If it is not the last message, the value is 0 (false). XML data type: boolean.

If a database transaction contains row operations with LOB columns, and there
are LOB values to be published, then these LOB values are sent in separate
LOB messages after the last transaction message. In this case, the last message
in a database transaction is not the last transaction message, but a LOB
message.

segment_number
A positive integer that indicate the message's segment number in a divided
transaction message. XML data type: positiveInteger.

commit_logical_sequence_number
The commit logical sequence number (a time-based log sequence number) of
the COMMIT statement for the transaction. XML data type: string.

commit_time
The timestamp of the COMMIT statement for the transaction in Greenwich
mean time (GMT), formatted in microseconds. XML data type: dateTime.

Chapter 26. Structure of XML messages for event publishing 537

authorization_ID
The user ID of the user who updated the source table. XML data type: string.

correlation_ID

The correlation ID (normally a job name) that ran the
source update. XML data type: string.

plan_name

The plan name that is associated with the transaction. XML
data type: string.

elements
Each trans element contains one or more of these elements:
v insertRow
v updateRow
v deleteRow

Example

The following example shows a transaction element that contains one or more of
the insert row, update row, or delete row elements.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd"
version="1.0.0" dbName="DB1">
<trans isLast="1" segmentNum="1" cmitLSN="0000:0000::0000:06d6:87ab"

cmitTime="2003-10-31T12:12:12.000122">

insertRow, updateRow, or deleteRow

</trans></msg>

Where insertRow, updateRow, or deleteRow represents the elements that are explained
in “Row operation elements (insertRow, updateRow, and deleteRow).”

Row operation elements (insertRow, updateRow, and deleteRow)

Within a transaction element, the row operation elements (insertRow, updateRow,
and deleteRow) describe the type of SQL operation that is performed on a row of
the source table. Each of these elements contains one or more column elements
(col) that describe changes to subscribed columns.

Table 101 describes the insertRow, deleteRow, and updateRow elements.

Table 101. Element description for insertRow, deleteRow, and updateRow

Name Properties

insertRow Not empty, complex type, complex content

deleteRow Not empty, complex type, complex content

updateRow Not empty, complex type, complex content

Structure
<insertRow subName="publication_name" srcOwner="source_owner"

srcName="source_name" rowNum="row_number" hasLOBCols="LOB_indicator">

elements

538 Replication and Event Publishing Guide and Reference

</insertRow>

<deleteRow subName="publication_name" srcOwner="source_owner"
srcName="source_name" rowNum="row_number" hasLOBCols="LOB_indicator">

elements

</deleteRow>

<updateRow subName="publication_name" srcOwner="source_owner"
srcName="source_name" rowNum="row_number" hasLOBCols="LOB_indicator">

elements

</updateRow>

Details

publication_name
The name of the publication to which this row operation belongs. XML data
type: string.

source_owner
The schema of the source table where the row operation originated. XML data
type: string.

source_name
The name of the source table. XML data type: string.

row_number
If a row operation includes large object (LOB) columns, this attribute will be
generated to identify the position number of the row operation in the database
transaction. This attribute does not have a default value. XML data type:
positiveInteger.

LOB_indicator
A boolean value that indicates whether the row operation contains LOB
columns. If it contains LOB columns, the value is 1 (true). The default value is
0 (false). XML data type: boolean.

elements
One or more column elements (col) contained by the insertRow, updateRow, or
deleteRow element.

Example

The following example shows insertRow, updateRow, and deleteRow elements
within a transaction message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<trans isLast="1" segmentNum="1" cmitLSN="0000:0000::0000:06d6:87ab"
cmitTime="2003-10-31T12:12:12.000122">
<insertRow subName="S1" srcOwner="USER1" srcName="T1">

column_element

</insertRow>

<deleteRow subName="S1" srcOwner="USER1" srcName="T1">

Chapter 26. Structure of XML messages for event publishing 539

column_element

</deleteRow>

<updateRow subName="S1" srcOwner="USER1" srcName="T1">

column_element

</updateRow> </trans>
</msg>

Where column_element represents the column element that is explained in “Column
element (col).”

Column element (col)

The column element (col) describes the name of a subscribed column in the source
table, and it also tells whether the column is part of the key to be used for
publishing. A col element within an insert or delete operation contains a single
value only. Within an update operation, the col element can contain a before value
and an after value, depending on the options for sending data that you specified
for the publication.

If you specified for the publication queue map to send bad data if code page
conversion fails, the invalidData and rawData attributes are set to 1 for col
elements for insert operations. For update operations, the invalidData and rawData
attributes are set to 1 on either the beforeVal or afterVal elements.

Table 102 describes the col element.

Table 102. Element description for col

Name Properties

col Not empty, complex type, complex content

Structure
<col name="column_name" isKey="key_indicator" invalid_data_options>

single_or_double_column_value

</col>

Details

column_name
The name of a subscribed column in the source table. XML data type: string.

key_indicator
Optional: A boolean value that indicates whether the column is part of the key
to be used for publishing. The default is 0 (false). If it is a key column, the
value is 1 (true). XML data type: boolean.

invalid_data_options
Optional: If you specify for the publication queue map to publish data when
code page conversion errors are encountered, the data is published in a
hexadecimal format. For insert operations, the invalidData and rawData
attributes are set to 1 (true) on the col element. For update operations, the
invalidData and rawData attributes are set to 1 (true) on either the beforeVal or
afterVal elements. The default is 0 (false). XML data type: boolean.

540 Replication and Event Publishing Guide and Reference

single_or_double_column_value
If the column element is part of an insert or delete operation at the source
table, it will contain one of the single-column- value elements. For update
operations, the column element can contain a double-column value, which
includes both a before value and an after value.

Example

The following example shows an insert operation that contains single column
values, and an update operation that contains double column values.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<trans isLast="1" segmentNum="1" cmitLSN="0000:0000::0000:06d6:87ab"
cmitTime="2003-10-31T12:12:12.000122">
<insertRow subName="S1" srcOwner="USER1" srcName="T1">

<col name="COL1" isKey="1">

single_column_value

</col>
<col name="COL2">

single_column_value

</col>
</insertRow>
<updateRow subName="S1" srcOwner="USER1" srcName="T1">

<col name="COL1" isKey="1">

double_column_value

</col>
<col name="COL2">

double_column_value

</col>
</updateRow> </trans>

</msg>

Where single_column_value represents the elements that are explained in “Elements
for a single-column value,” and double_column_value represents the elements that
are explained in “Elements for a double-column value” on page 543.

Elements for a single-column value

A single-column-value element contains an actual value from the source table. The
Q Capture program uses single-column-value elements for insert and delete
operations. These elements are named for the data type of the source column, and
do not contain other elements. If the value from the source table is NULL, the
element is empty and the xsi:nil attribute is set to 1 (true).

Table 103 on page 542 describes the single-column-value elements. All of the
elements are of complex type, and simple content. The blob, clob, and dbclob
elements, which convey LOB data, are always empty because the data from a large
object is sent in a separate LOB message. The blob, clob, and dbclob elements do
not have the xsi:nil attribute.

Chapter 26. Structure of XML messages for event publishing 541

Table 103. Element descriptions for single column value

Name XML data type Value's data format

smallint short

integer integer

bigint long

float float (32 bits)

double (64 bits)

[-]d.dddddE[-|+]dd
[-]d.ddddddddddddddE[-|+]dd

real float

double double

decimal decimal

date date YYYY-MM-DD

time time HH:MM:SS.SSS

timestamp dateTime YYYY-MM-DDTHH:MM:SS.SSS

char string

varchar string

long varchar string

bitchar hexBinary

bitvarchar hexBinary

bitlongvarchar hexBinary

graphic string

vargraphic string

longvargraphic string

rowid hexBinary

blob hexBinary

clob string

dbclob string

Structure
<data_type xsi:nil="null_indicator">value</data_type>

Details

data_type
The data type of the column in the source table. This data type is used to name
the element.

null_indicator
Optional: An integer that indicates whether the source column contains a
NULL value. The default is 0 (false). If the source column contains a NULL
value, the value of this attribute is 1 (true). The blob, clob, and dbclob elements
do not have this attribute. XML data type: boolean.

value
The actual value in the source column. If the source value is NULL or a LOB
value, the element is empty.

Example

542 Replication and Event Publishing Guide and Reference

The following example shows an insert operation with single column values of 222
in a key column with an integer data type and Hello in a nonkey column with a
varchar data type. The example also shows a delete operation of the row with a
single-column value of 222 in a key column with an integer data type.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">
<trans isLast="1" segmentNum="1" cmitLSN="0000:0000::0000:06d6:87ab"

cmitTime="2003-10-31T12:12:12.000122">
<insertRow subName="S1" srcOwner="USER1" srcName="T1">

<col name="COL1" isKey="1">
<integer>222</integer>

</col>
<col name="COL2">

<varchar>Hello</varchar>
</col>

</insertRow>
<deleteRow subName="S1" srcOwner="USER1" srcName="T1">

<col name="COL1" isKey="1">
<integer>222</integer>

</col>
</deleteRow>

</trans>
</msg>

Elements for a double-column value

Double-column-value elements are used in update operations when the Q Capture
program needs to send both before and after values from source columns. In
messages, the Q Capture program sends before values of key columns that have
changed. It sends before values of nonkey columns that have changed if the
BEFORE_VALUES data-sending option is set to "Yes" for the publication. If the
before and after values are the same, only the after-value element (afterValue) is
used.

All double-column-value elements except blob, clob, and dbclob are not empty,
have a complex type, and have complex content. The elements blob, clob, and
dbclob are always empty and not nullable. Double-column-value elements have no
attributes. For a description of the double-column-value elements, see “Elements
for a single-column value” on page 541.

Structure
<data_type>

elements

</data_type>

Details

data_type
The data type of the column in the source table. This data type is used to name
the element. If the data type is blob, clob, or dbclob, the elements are empty
and not nullable.

elements
One or both of the beforeValue or afterValue elements, or empty for blob, clob,
and dbclob.

Chapter 26. Structure of XML messages for event publishing 543

Example

The following example shows double-column-value elements for:
v A key column (integer data type) that has changed.
v A nonkey column (varchar data type) that has changed, but the

BEFORE_VALUES data-sending option for the publication is set to "No."
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<trans isLast="1" segmentNum="1" cmitLSN="0000:0000::0000:06d6:87ab"
cmitTime="2003-10-31T12:12:12.000122">
<updateRow subName="S1" srcOwner="USER1" srcName="T1">

<col name="COL1" isKey="1">
<integer>

beforeValue
afterValue

</integer>
</col>
<col name="COL2">

<varchar>

afterValue

</varchar>
</col>

</updateRow>
</trans>

</msg>

Where beforeValue and afterValue represent the elements that are explained in
“Before-value and after-value elements (beforeVal and afterVal).”

Before-value and after-value elements (beforeVal and afterVal)

Before-value and after-value elements (beforeVal and afterVal) contain actual
values from the source table. These elements are used in update operations for key
columns that have changed, and for changed nonkey columns when the
BEFORE_VALUES data-sending-option for the publication is set to "Yes." If the
publication calls for before values to be sent and the value in the source column
has not changed, only the afterVal element is used. If the value from the source
table is NULL, the elements are empty and the xsi:null attribute is set to 1 (true).

Table 104 describes the beforeVal and afterVal elements.

Table 104. Element descriptions for beforeVal and afterVal

Name Properties

beforeVal Nullable, complex type, simple content

afterVal Nullable, complex type, simple content, optional

Structure
<beforeVal xsi:nil="null_indicator" invalidData="invalid_indicator"

rawData="rawdata_indicator">value</beforeVal>
<afterVal xsi:nil="null_indicator" invalidData="invalid_indicator"

rawData="rawdata_indicator">value</afterVal>

544 Replication and Event Publishing Guide and Reference

Details

null_indicator
Optional: An integer that indicates whether the value in the source column is
NULL. The default is 0 (false). If the source column contains a NULL value,
the value of this attribute is 1 (true). XML data type: boolean.

value
The actual value in the source column. If the source value is NULL, the
element will be empty.

invalid_indicator
Optional: If you specify for the publication queue map to publish data when
code page conversion errors are encountered, the data is published in a
hexadecimal format. If the before value cannot be converted, the invalidData
and rawData attributes are set to 1 (true) on the beforeVal element. The default
is 0 (false). XML data type: boolean.

rawdata_indicator
Optional: If you specify for the publication queue map to publish data when
code page conversion errors are encountered, the data is published in a
hexadecimal format. If the after value cannot be converted, the invalidData and
rawData attributes are set to 1 (true) on the afterVal element. The default is 0
(false). XML data type: boolean.

Example

The following example shows an update operation where the key column's value
of 222 did not change (only the afterVal element is used), and where a varchar
column in the same row changed from "Hello" to NULL. In this case, the
BEFORE_VALUES option for the publication is set to "Yes."
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">
<trans isLast="1" segmentNum="1" cmitLSN="0000:0000::0000:06d6:87ab"

cmitTime="2003-10-31T12:12:12.000122">
<updateRow subName="S1" srcOwner="USER1" srcName="T1">

<col name="COL1" isKey="1">
<integer>

<afterVal>222</afterVal>
</integer>

</col>
<col name="COL2">

<varchar>
<beforeVal>Hello</beforeVal>
<afterVal xsi:nil="1"/>

</varchar>
</col>

</updateRow>
</trans>

</msg>

Row operation message
A row operation message contains one insert, update, or delete operation from the
source table. In a row operation message, the message element (msg) contains a
row operation element (rowOp).

A row operation message must not exceed the maximum message size that is
defined for the send queue. Row operation messages that exceed this size cannot
be divided into multiple messages. In row operation messages, any inserts,

Chapter 26. Structure of XML messages for event publishing 545

updates, or deletes that belong to a transaction have the same commit time and
commit logical sequence number. If LOB messages follow the row operation
message, the row operation message contains an attribute to indicate that it is not
the last message in the row operation from the source database.

Table 105 describes the rowOp element.

Table 105. Element description for rowOp

Name Properties

rowOp Not empty, complex type, complex content

Structure
<rowOp cmitLSN="commit_logical_sequence_number"

cmitTime="commit_time" isLast="is_last_indicator"
authID="authorization_ID" correlationID="correlation_ID"
planName="plan_name">

elements

</rowOp>

Details

commit_logical_sequence_number
The commit logical sequence number (a time-based log sequence number) of
the COMMIT statement for the transaction. XML data type: string.

commit_time
The timestamp of the COMMIT statement for the transaction in Greenwich
mean time (GMT), formatted in microseconds. XML data type: dateTime.

is_last_indicator
Optional: A boolean value that indicates whether the row operation message is
the last message in a row operation from the source database. If LOB messages
follow the row operation message, the value is set to 0 (false). This attribute
has no default value. XML data type: boolean.

authorization_ID
The user ID of the user who updated the source table. XML data type: string.

correlation_ID
z/OS only: The correlation ID (normally a job name) that ran the source
update. XML data type: string.

plan_name
z/OS only: The plan name that is associated with the transaction that the row
belongs to. XML data type: string.

elements
Each rowOp element contains one of these elements:
v insertRow
v updateRow
v deleteRow

Example

The following example shows a row operation element that contains an insertRow,
updateRow, or deleteRow element.

546 Replication and Event Publishing Guide and Reference

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0" dbName="DB1">
<rowOp cmitLSN="0000:0000::0000:06d6:87ab"

cmitTime="2003-10-31T12:12:12.000122">

insertRow, deleteRow, or updateRow

</rowOp></msg>

Where insertRow, updateRow, or deleteRow represents the elements that are explained
in “Transaction message” on page 536.

Large object (LOB) message
A large object (LOB) message transmits some or all of the data from a column in the
source table that contains a large object value: BLOB (binary large object), CLOB
(character large object), or DBCLOB (double-byte character large object).

Each LOB message contains data from at most one LOB value in the source table.
The Q Capture program can divide a LOB value into multiple LOB messages if the
value exceeds the LOB message buffer size determined by the Q Capture program.
The buffer size can be up to the maximum message size defined for the send
queue. All messages that contain part of the same LOB value have the same
publication name, source table owner, source table name, row number, and column
name.

Messages that contain LOB values are sent after the messages that contain the
transaction or row operation that the LOB values belong to. The isLast attribute
denotes the last message of a divided LOB value, which is also the last message in
a transaction or row operation.

Within a LOB message, the large object element (lob) is contained by the message
element (msg), and contains a single LOB column value element.

Table 106 describes the lob element.

Table 106. Element description for lob

Name Properties

lob Not empty, complex type, complex content

Structure
<lob isLast="is_last_indicator" subName="publication_name"

srcOwner="source_owner" srcName="source_name" rowNum="row_number"
colName="column_name" totalDataLen="LOB_data_length"
dataLen="segment_data_length">

LOB_column_value

</lob>

Details

is_last_indicator
A boolean value that indicates whether this is the last message in a transaction
or row operation. If this is the last message, the value is 1 (true). If it is not the
last message, the value is 0 (false). XML data type: boolean.

Chapter 26. Structure of XML messages for event publishing 547

publication_name
The name of the XML publication that includes the LOB value. XML data type:
string.

source_owner
The schema of the source table where the LOB originated. XML data type:
string.

source_name
The name of the source table. XML data type: string.

row_number
Within the database transaction, the position number of the row operation that
contains the LOB value. XML data type: positiveInteger.

column_name
The name of the column in the source table that contains the LOB value. XML
data type: string.

LOB_data_length
The total length of the LOB value contained in the source table, in bytes. XML
data type: nonNegativeInteger.

segment_data_length
The length of the LOB data contained in a single message segment, in bytes.
XML data type: nonNegativeInteger.

LOB_column_value
One of the three LOB column value elements that describe the data type of the
LOB value. The three elements are blob, clob, and dbclob.

Example

The following example shows a LOB message.
<xml version="1.0" encoding="UTF-8" ?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd"
version="1.0.0" dbName="DB1">
<lob isLast="0" subName="S1" srcOwner="USER1" srcName="T1" rowNum="3"

colName="LOBCOL" totalDataLen="92675" dataLen="100">

LOB_column_value

</lob>
</msg>

Where LOB_column_value describes one of the three elements that are explained in
“LOB column value.”

LOB column value

The three LOB column value elements each contain actual LOB data from the
source table. The elements are named for their data type, either blob, clob, or
dbclob. If the value from the source table is NULL, the elements are empty and the
xsi:nil attribute is set to 1 (true).

Table 107 on page 549 describes the LOB column value elements.

548 Replication and Event Publishing Guide and Reference

Table 107. Element description for LOB column values

Name Properties

blob Nullable, complex type, simple content

clob Nullable, complex type, simple content

dbclob Nullable, complex type, simple content

Structure
<data_type xsi:nil="null_indicator">

LOB_value

</data_type>

Details

data_type
The data type of the column in the source table. This data type is used to name
the element.

null_indicator
Optional: A boolean value that indicates whether the value in the source
column is NULL. The default is 0 (false). If the source column contains a
NULL value, the value of this attribute is 1 (true). XML data type: boolean.

LOB_value
Actual data from the large object in the source table.

Example

The following example shows a LOB message that includes 100 bytes of the 92,675
total bytes of data from a CLOB (character large object) value.
<xml version="1.0" encoding="UTF-8" ?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd"
version="1.0.0" dbName="DB1>
<lob isLast="0" subName="S1" srcOwner="USER1" srcName="T1" rowNum="3"

colName="LOBCOL" totalDataLen="92675" dataLen="100">

<clob>LOB data</clob>

</lob>
</msg>

Subscription deactivated message
A subscription deactivated message confirms that the Q Capture program
received the deactivate subscription message from the user application.

In a subscription deactivated message, the message element (msg) contains a
subscription deactivated element (subDeactivated).

Table 108 describes the subDeactivated element.

Table 108. Element description for subDeactivated

Name Properties

subDeactivated Empty, complex type

Chapter 26. Structure of XML messages for event publishing 549

Structure
<subDeactivated subName="publication_name" srcOwner="source_owner"

srcName="source_name" stateInfo="state_information"/>

Details

publication_name
The name of the publication that was deactivated. XML data type: string.

source_owner
The schema of the source table for the publication. XML data type: string.

source_name
The name of the source table. XML data type: string.

state_information
Additional information regarding the state of the publication. This attribute
contains an ASN message number. XML data type: string.

Example

The following example shows a subscription deactivated message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<subDeactivated subName="S1" srcOwner="USER1" srcName="T1"
stateInfo="ASN7019I"/>

</msg>

Load done received message
The load done received message acknowledges that the Q Capture program
received the load done message from the user application. The load done message
signifies that a target table is loaded.

In a load done received message, the message element (msg) contains a load done
received element (loadDoneRcvd).

Table 109 describes the loadDoneRcvd element.

Table 109. Element description for loadDoneRcvd

Name Properties

loadDoneRcvd Empty, complex type

Structure
<loadDoneRcvd subName="publication_name" srcOwner="source_owner"

srcName="source_name" stateInfo="state_information"/>

Details

publication_name
The name of the publication for which the target table was loaded. XML data
type: string.

source_owner
The schema of the source table for the publication. XML data type: string.

550 Replication and Event Publishing Guide and Reference

source_name
The name of the source table. XML data type: string.

state_information
Additional information regarding the state of the publication. This attribute
contains an ASN message number. XML data type: string.

Example

The following example shows a load done received message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<loadDoneRcvd subName="S1" srcOwner="USER1" srcName="T1"
stateInfo="ASN7019I"/>

</msg>

Error report message
The Q Capture program sends an error report message when it cannot perform
the request of a user application that was made through a control message.

For example, the Q Capture program sends an error report message if it cannot
activate or deactivate a publication or acknowledge a load done message. The Q
Capture program also writes these errors to its log. If the Q Capture program
cannot send an error report message because the send queue is not available, it
will still write the error to its log. Error report messages are not generated by
errors related to WebSphere MQ.

In an error report message, the message element (msg) contains an error report
element (errorRpt).

Table 110 describes the errorRpt element.

Table 110. Element description for errorRpt

Name Properties

errorRpt Empty, complex type

Structure
<errorRpt subName="publication_name" srcOwner="source_owner"

srcName="source_name" errorMsg="message_text"/>

Details

publication_name
The name of the publication that generated an error. XML data type: string.

source_owner
The schema of the source table for the publication. XML data type: string.

source_name
The name of the source table. XML data type: string.

message_text
The text of the error message. XML data type: string.

Chapter 26. Structure of XML messages for event publishing 551

Example

The following example shows an error report message generated after the Q
Capture program was unable to activate a publication
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<errorRpt subName="S1" srcOwner="USER1" srcName="T1"
errorMsg="message_text"/>

</msg>

Where message_text is the text of the error message.

Heartbeat message
A heartbeat message tells the user application that a Q Capture program is still
running. The Q Capture program puts these messages on active send queues each
time the heartbeat interval for the publishing queue map that contains the send
queue is reached if there are no messages to put on the queue. If the Q Capture
program reaches the end of the log before this interval occurs, it sends a heartbeat
message with no information about the last commit time.

In a heartbeat message, the message element (msg) contains a heartbeat element
(heartbeat).

Table 111 describes the heartbeat element.

Table 111. Element description for heartbeat

Name Properties

heartbeat Empty, complex type

Structure
<heartbeat sendQName="send_queue_name" lastCmitTime="last_commit_time"/>

Details

send_queue_name
The name of the send queue where the Q Capture program put the heartbeat
message. XML data type: string.

last_commit_time
Optional: The timestamp of the last committed transaction in Greenwich mean
time (GMT). This attribute is optional and has no default value. XML data
type: dateTime.

Example

The following example shows a heartbeat message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

552 Replication and Event Publishing Guide and Reference

<heartbeat sendQName="Q1" lastcmitTime="2003-10-31T12:12:12.000122"/>

</msg>

Subscription schema message (subSchema)
The Q Capture program sends a subscription schema message to acknowledge
that it activated or reinitialized a publication. The message conveys details about
the publication, including the names of the source table and send queue,
data-sending options, and information about the load phase. The subscription
schema message is sent in response to an activate subscription message, a reinit
command, or a REINIT_SUB signal.

Within a subscription schema message, the message element (msg) contains a
subscription schema element (subSchema), which contains one or more column
elements (col). The following sections describe the two elements.
v “Subscription schema element (subSchema)”
v “Column element (col) in a subscription schema message” on page 555

Subscription schema element (subSchema)

Through its attributes, the subSchema element provides details about a publication.
The subSchema element contains one or more column elements (col).

Table 112 describes the subSchema element.

Table 112. Element description for subSchema

Name Properties

subSchema Not empty, complex type, simple content

Structure
<subSchema subname="publication_name"

srcOwner="source_owner"
srcName="source_name"
sendQName="send_queue_name"
allChangedRows="ALL_CHANGED_ROWS_option"
beforeValues="BEFORE_VALUES_option"
changedColsOnly="CHANGED_COLS_ONLY_option"
hasLoadPhase="load_phase_option"
dbServerType="operating_system"
dbRelease="DB2_release_level"
dbInstance="DB2_instance_name"
capRelease="Q_capture_release_level">

column_elements

</subSchema>

Details

publication_name
The name of the publication that was activated or reinitialized. XML data type:
string.

source_owner
The schema of the source table for the publication. XML data type: string.

Chapter 26. Structure of XML messages for event publishing 553

source_name
The name of the source table. XML data type: string.

send_queue_name
The name of the send queue that is specified for the publication. XML data
type: string.

ALL_CHANGED_ROWS_option
Optional: A boolean value that indicates whether the ALL_CHANGED_ROWS
data-sending option is specified for the publication. The default is 0 (false). If
the option is specified, the value is 1 (true). XML data type: boolean.

BEFORE_VALUES_option
Optional: A boolean value that indicates whether the BEFORE_VALUES
data-sending option is specified for the publication. The default is 0 (false). If
the option is specified, the value is 1 (true). XML data type: boolean.

CHANGED_COLS_ONLY_option
Optional: A boolean value that indicates whether the CHANGED_COLS_ONLY
data-sending option is specified for the publication. The default is 0 (false). If
the option is specified, the value is 1 (true). XML data type: boolean.

load_phase_option
Optional: An indicator of whether the publication has a load phase. The
default is "none" for no load phase. If a load phase is specified, the value is
"external." XML data type: loadPhaseEnumType.

operating_system
Optional: The operating system of the source database or subsystem. The
default is QDB2/6000 (DB2 for AIX). XML data type: dbServerTypeEnumType.

DB2_release_level
The DB2 release level of the source database or subsystem. XML data type:
string.

DB2_instance_name
The name of the DB2 instance that contains the source database. XML data
type: string.

Q_capture_release_level
The release level of the Q Capture program. XML data type: string.

column_elements
One or more column elements (col) that convey information about each
column in the source table.

Table 113 provides additional details about two XML data types used in attributes
for the subSchema element.

Table 113. Additional data type descriptions for subSchema attributes

Type name Base Type Values

loadPhaseEnumType string none, external

dbServerTypeEnumType string QDB2, QDB2/6000, QDB2/HPUX,
QDB2/NT, QDB2/SUN, QDB2/LINUX,
QDB2/Windows

Note: QDB2 by itself implies DB2 for
z/OS.

554 Replication and Event Publishing Guide and Reference

Example

The following subscription schema message would be sent for a publication that
specifies the BEFORE_VALUES data-sending option and a load phase.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">
<subSchema subname="S1"

srcOwner="USER1"
srcName="T1"
sendQName="Q1"
beforeValues="yes"
hasLoadPhase="external"
dbServerType="QDB2/6000"
dbRelease="8.2.0"
dbInstance="DB2INST"
capRelease="8.2.0">

column_element

</subSchema>
</msg>

Where column_element represents one or more column elements, which are
explained in “Column element (col) in a subscription schema message.”

Column element (col) in a subscription schema message

Within the subscription schema message, the column element (col) conveys
information about each column in the source table.

Table 114 describes the col element within a schema message.

Table 114. Element description for col

Name Properties

col Empty, complex type

Structure
<col name="column_name"

type="data_type"
len="data_length"
precision="data_precision"
scale="decimal_scale"
codepage="codepage_number"
isKey="key_indicator"/>

Details

column_name
The name of the column in the source table. XML data type: string.

data_type
The data type of the source column. This must be one of the data types
defined for the dataTypeEnumType XML data type. For a list, see Table 115 on
page 556. XML data type: dataTypeEnumType.

Chapter 26. Structure of XML messages for event publishing 555

Table 115. Additional data type description for dataTypeEnumType

Type name Base type Values

dataTypeEnumType string smallint, integer, bigint, float, real, double, decimal,
char, varchar, longvarchar, bitchar, bitvarchar,
bitlongvarchar, graphic, vargraphic, longvargraphic,
time, timestamp, date, rowid, blob, clob, dbclob

data_length
Optional: The maximum length of the data in the source column. XML data
type: unsignedInt.

data_precision
Optional: For decimal data types, the precision of the number. XML data type:
unsignedShort.

decimal_scale
Optional: For decimal data types, the scale of the number. XML data type:
unsignedShort.

codepage_number
Optional: The code page for character data types. The default is 0. XML data
type: unsignedShort.

key_indicator
Optional: A boolean value that indicates whether this is a key column. The
default is 0 (false). If it is a key column, the value is 1 (true). XML data type:
boolean.

Example

The following example shows two column elements within a subscription schema
message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<subSchema subname="S1"
srcOwner="USER1"
srcName="T1"
sendQName="Q1"
beforeValues="yes"
hasLoadPhase="external"
dbServerType="QDB2/6000"
dbRelease="8.2.0"
dbInstance="DB2INST"
capRelease="8.2.0">

<col name="COL1" type="integer" len="4"/>
<col name="COL2" type="varchar" len="50" codepage="1208"/>

</subSchema>
</msg>

Add column message
An add column message tells the user application that a Q Capture program added
a column to an existing publication. This message is sent in response to a user or
user application inserting an ADDCOL signal into the IBMQREP_SIGNAL table.

In an add column message, the message element (msg) contains an add column
element (addColumn). The add column element contains a column schema (col)
element that conveys information about the source table column that was added.

556 Replication and Event Publishing Guide and Reference

Table 116 describes the addColumn element.

Table 116. Element description for addColumn

Name Properties

addColumn Not empty, complex type, simple content

Structure
<addColumn subName="publication_name" srcOwner="source_owner"

srcName="source_name">

column_element

</addColumn>

Details

publication_name
The name of the publication that the column was added to. XML data type:
string.

srcOwner
The schema of the source table for the publication. XML data type: string

srcName
The name of the source table. XML data type: string.

column_element
A column schema (col) element that contains details about the column that was
added, such as name, data type, data length, and whether the column is a key
column.

Example

The following example shows an add column message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0"
dbName="DB1">

<addColumn subName="S1" srcOwner="USER1" srcName="T1">

column_element

</addColumn>
</msg>

Where column_element represents the column element that is explained in “Column
element (col) in a subscription schema message” on page 555.

Structure of messages from a user application to Q Capture
A user application communicates with a Q Capture program by sending messages
to its administration queue. These messages are known as control messages. The
user application uses these messages to report that a target table is loaded, or to
request that the Q Capture program activate or deactivate a publication, or
invalidate a send queue.

The following topics describe the structure of control messages from a user
application to a Q Capture program.

Chapter 26. Structure of XML messages for event publishing 557

List of messages from a user application to Q Capture

Table 117 describes the four types of control messages from a user application to a
Q Capture program.

Table 117. Control messages from a user application to a Q Capture program

Message type Description

Invalidate send queue Requests that a Q Capture program invalidate a send
queue by performing the queue error action that you
specified.

Load done Tells a Q Capture program that the target table for a
publication is loaded.

Activate subscription Requests that a Q Capture program activate a
publication.

Deactivate subscription Requests that a Q Capture program deactivate a
publication.

msg: Root element for XML messages from a user application
to Q Capture

The msg element is the root element for all control messages from a user
application to a Q Capture program.

Table 118 describes the msg element.

Table 118. Element description for msg (user application to a Q Capture program)

Name Properties

msg Not empty, complex type, complex content

Structure
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="XML_schema_instance"

xsi:noNamespaceSchemaLocation="schema_document"
version="version">

elements

<msg>

Details

XML_schema_instance
The URL of the XML schema instance. For event publishing, the URL is
www.w3.org/2001/XMLSchema-instance. XML data type: string.

schema_document
The file name of the XML schema document. XML namespace is not supported
in event publishing because messages refer to one XML schema only. Messages
from a user application to a Q Capture program refer to the mqsub.xsd schema
document. XML data type: string.

version
The version of the XML message schema. For DB2 UDB Version 8.2, the
version is 1.0.0. XML data type: string.

558 Replication and Event Publishing Guide and Reference

elements
One of the elements that the msg element contains. Only one of these elements
appears in each message:
v invalidateSendQ
v loadDone
v activateSub
v deactivateSub

Example

The following example shows a message from a user application to the Q Capture
program.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqsub.xsd" version="1.0.0">

elements

</msg>

Where elements represents one of the following elements: invalidateSendQ,
loadDone, activateSub, deactivateSub.

Invalidate send queue message
A subscribing application sends the Q Capture program an invalidate send queue
message when it detects an error on a send queue and wants the Q Capture
program to perform the error action specified for the XML publication.

Table 119 describes the invalidateSendQ element.

Table 119. Element description for invalidateSendQ

Name Properties

invalidateSendQ Empty, complex type

Structure
<invalidateSendQ sendQName="send_queue_name"/>

Details

send_queue_name
The name of the send queue that the Q Capture program is being asked to
invalidate. XML data type: string.

Example

The following example shows an invalidate send queue message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqsub.xsd" version="1.0.0">

<invalidateSendQ sendQName="S1"/>

</msg>

Chapter 26. Structure of XML messages for event publishing 559

Load done message

A load done message notifies the Q Capture program that a target table is loaded.
The Q Capture program responds to a load done message by sending a load done
received message.

Table 120 describes the loadDone element.

Table 120. Element description for loadDone

Name Properties

loadDone Empty, complex type

Structure
<loadDone subName="publication_name"/>

Details

publication_name
The name of the publication that completed its load phase. XML data type:
string.

Example

The following example shows a load done message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqsub.xsd" version="1.0.0">

<loadDone subName="S1"/>

</msg>

Activate subscription message
An activate subscription message tells a Q Capture program to begin capturing
changes for a publication.

Table 121 describes the activateSub element.

Table 121. Element description for activateSub

Name Properties

activateSub Empty, complex type

Structure
<activateSub subName="publication_name"/>

Details

publication_name
The name of the publication that the Q Capture program is being asked to
activate. XML data type: string.

Example

The following example shows an activate subscription message.

560 Replication and Event Publishing Guide and Reference

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqsub.xsd" version="1.0.0">

<activateSub subName="S1"/>

</msg>

Deactivate subscription message
A deactivate subscription message tells the Q Capture program to stop capturing
changes for a publication.

Table 122 describes the deactivateSub element.

Table 122. Element description for deactivateSub

Name Properties

deactivateSub Empty, complex type

Structure
<deactivateSub subName="publication_name"/>

Details

publication_name
The name of the publication that the Q Capture program is being asked to
deactivate. XML data type: string.

Example

The following example shows a deactivate subscription message.
<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqsub.xsd" version="1.0.0">

<deactivateSub subName="S1"/>

</msg>

Chapter 26. Structure of XML messages for event publishing 561

562 Replication and Event Publishing Guide and Reference

Contacting IBM

You can contact IBM for customer support, software services, product information,
and general information. You also can provide feedback to IBM about products
and documentation.

The following table lists resources for customer support, software services, training,
and product and solutions information.

Table 123. IBM resources

Resource Description and location

IBM Support Portal You can customize support information by
choosing the products and the topics that
interest you at www.ibm.com/support/
entry/portal/Software/
Information_Management/
InfoSphere_Information_Server

Software services You can find information about software, IT,
and business consulting services, on the
solutions site at www.ibm.com/
businesssolutions/

My IBM You can manage links to IBM Web sites and
information that meet your specific technical
support needs by creating an account on the
My IBM site at www.ibm.com/account/

Training and certification You can learn about technical training and
education services designed for individuals,
companies, and public organizations to
acquire, maintain, and optimize their IT
skills at http://www.ibm.com/software/sw-
training/

IBM representatives You can contact an IBM representative to
learn about solutions at
www.ibm.com/connect/ibm/us/en/

Federation, replication, and event publishing products support

For support, go to:
v IBM InfoSphere Federation Server

www.ibm.com/software/data/integration/support/federation_server/
v IBM InfoSphere Replication Server

www.ibm.com/software/data/integration/support/replication_server/
v IBM InfoSphere Data Event Publisher

www.ibm.com/software/data/integration/support/data_event_publisher/

Classic products support

For support, go to:
v IBM InfoSphere Classic Federation Server for z/OS

www.ibm.com/software/data/integration/support/classic_federation_server_z/

© Copyright IBM Corp. 2004, 2012 563

http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/businesssolutions/
http://www.ibm.com/businesssolutions/
http://www.ibm.com/account/
http://www.ibm.com/software/sw-training/
http://www.ibm.com/software/sw-training/
http://www.ibm.com/connect/ibm/us/en/
http://www.ibm.com/software/data/integration/support/info_server/
http://www.ibm.com/software/data/integration/support/replication_server/
http://www.ibm.com/software/data/integration/support/data_event_publisher/
http://www.ibm.com/software/data/integration/support/classic_federation_server_z/

v IBM InfoSphere Classic Replication Server for z/OS
www.ibm.com/software/data/infosphere/support/replication-server-z/

v IBM InfoSphere Classic Data Event Publisher for z/OS
www.ibm.com/software/data/integration/support/data_event_publisher_z/

v IBM InfoSphere Data Integration Classic Connector for z/OS
www.ibm.com/software/data/integration/support/data_integration_classic_connector_z/

Providing feedback

The following table describes how to provide feedback to IBM about products and
product documentation.

Table 124. Providing feedback to IBM

Type of feedback Action

Product feedback You can provide general product feedback
through the Consumability Survey at
www.ibm.com/software/data/info/
consumability-survey

Documentation feedback To comment on the information center, click
the Feedback link on the top right side of
any topic in the information center. You can
also send comments about PDF file books,
the information center, or any other
documentation in the following ways:

v Online reader comment form:
www.ibm.com/software/data/rcf/

v E-mail: comments@us.ibm.com

564 Replication and Event Publishing Guide and Reference

http://www.ibm.com/software/data/infosphere/support/replication-server-z/
http://www.ibm.com/software/data/integration/support/data_event_publisher_z/
http://www.ibm.com/software/data/integration/support/data_integration_classic_connector_z/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/rcf/

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

��
default_choice

required_item
optional_choice1
optional_choice2

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

© Copyright IBM Corp. 2004, 2012 565

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

Fragment-name:

required_item
optional_item

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown.

v Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

566 Replication and Event Publishing Guide and Reference

Notices and trademarks

This information was developed for products and services offered in the U.S.A.

Notices

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2004, 2012 567

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

568 Replication and Event Publishing Guide and Reference

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Notices and trademarks 569

http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

The United States Postal Service owns the following trademarks: CASS, CASS
Certified, DPV, LACSLink, ZIP, ZIP + 4, ZIP Code, Post Office, Postal Service, USPS
and United States Postal Service. IBM Corporation is a non-exclusive DPV and
LACSLink licensee of the United States Postal Service.

Other company, product or service names may be trademarks or service marks of
others.

570 Replication and Event Publishing Guide and Reference

Index

Special characters
$TA JES2 command 343

A
abstract data types

description 217
activation

subscription messages 560
add column message 556
add_partition parameter

Q Capture (Linux, UNIX,
Windows) 350, 352

ADDCOL signal 131, 275
admin threads 301
administration queues 23

Q Apply 23
Q Capture 23
required settings 18

administration threads 301
adminq parameter

Q Capture 352
adminq parameter, Q Capture 350
after values

for key columns 169
included in publications 216
meeting search conditions 68
parameters for key 175

agent threads
latency 303
message size 33
replication programs 301

ALTER COLUMN SET DATA TYPE
operations 135

ALTER PUB command 291
ALTER QSUB command 273
apply_path parameter

description 391
Q Apply 389

apply_schema parameter
parameters 391
working with a running Q Apply

program 408
apply_server parameter

starting a Q Apply program 389
applydelay parameter

Q Apply 389, 391
applyupto parameter 389, 391
applyupto parameter, Q Apply 391
archive logging

configuring 46
ARCHIVELOG mode

Oracle 153
ARM (Automatic Restart Manager) 338
arm parameter

Q Apply 391
ASNCLP commands

creating configuration file 157
saving SQL scripts 225

ASNCLP scripts
generating 225

asnoqcap command 372
asnoqccmd command 386
asnpwd 413
asnpwd command

managing remote server access 6
asnqacmd command 408
asnqanalyze command 446
asnqapp command

Q Apply 389
asnqcap command

Q Capture 350
asnqccmd command 380
asnqmfmt command 454
asnqxmfmt command

Q Replication 456
asnscrt 417
asnsdrop 420
asnslist command 421
asntdiff command 322, 422, 426, 433

running in parallel mode 322
asntdiff utility

overview 317
with DB2 compatibility features 326

asntrc 436
asntrep command 443
asntrep utility

usage guide 325
asntrepair utililty

usage guide 317
asntrepair utility

overview 317
ASNUSEMQCLIENT variable 25
AT NetView command 343
auditing

CCD (consistent-change-data)
tables 198

authorizations
for Q Apply program 4
for Q Capture program 3
for replication, Linux, UNIX,

Windows 4
for replication, overview 3
for replication, z/OS 4
Oracle LogMiner 156
Replication Center and ASNCLP 5
WebSphere MQ 31

Q Apply program 31
Q Capture program 31
Replication Alert Monitor 31

automatic load
considerations z/OS 181
definition 179
overview 180
specifying nicknames 182
utilities used for 180

Automatic Restart Manager (ARM) 338
autostop parameter

descriptions of Q Apply
parameters 391

autostop parameter (continued)
descriptions of Q Capture

parameters 352
starting a Q Apply program 389
starting a Q Capture program 372

autostop parameter, Q Capture 350

B
batch mode

JCL 333
before values

bidirectional replication, conflict
detection 100

IBMQREP_SUBS table 490
included in publications 216
LOB data types 219
non-key columns 175
restrictions for LOB data types 100
ROWID columns 219
stored procedures 169
XML data type 220

bidirectional replication
adding columns to replicate 133, 277
conflict detection 89, 100
description 89
error options 86
improving performance 98
load options 187
Q subscriptions 97
replication objects 89
WebSphere MQ objects 14

BLOB data type
column values 547
large object (LOB) message 547
replicating 219

browser threads
replication programs 301

byte-level SQL expressions 74, 78

C
caf parameter

Q Apply 389, 391
caf parameter, Q Capture 350
capture_path parameter 350
CAPTURE_PATH parameter

specifying on z/OS 331
capture_path parameter, Q Capture 352,

372
capture_schema parameter 372
capture_schema parameter, Q

Capture 350, 352
capture_server parameter 350, 372
capture_server parameter, Q

Capture 352
captureupto parameter

Q Capture 380
captureupto parameter, Q Capture 245
CCD (consistent-change-data) tables 198

© Copyright IBM Corp. 2004, 2012 571

changing
event publishing environment 291
Q Apply parameters 263
Q Capture parameters 236
Q Replication environment 273

channel objects, required settings 18
chgparms parameter

Q Apply 408
Q Capture 380, 386

CHLTYPE parameter
WebSphere MQ 18

classic_load_file_size parameter
Q Apply 389

classic_load_file_sz parameter
Q Apply 389, 391

CLOB data type
column values 547
large object (LOB) message 547
replicating 219

code pages 1
for event publishing

description 2
for Event Publishing

overview 1
for Q Replication

description 1
overview 1

Q Apply program 1
Q Capture program

for event publishing 2
for Q Replication 1

XML messages for event
publishing 2

col element in subscription schema
message 553

cold starts
preventing 235
startmode parameter 352

column (vertical) subsetting
event publishing 211
publications 211
Q Replication 66
Q subscriptions 66

columns
key columns

event publishing 215
publications 215
Q Replication 81
Q subscriptions 81

mapping
in Q Replication 73
in Q subscriptions 73

published in publications 215
publishing

event publishing 211
publications 211

replicating
Q Replication 66
Q subscriptions 66

subsetting
event publishing 211
publications 211
Q Replication 66
Q subscriptions 66

commands
running or saving (Replication

Center) 227

commit_count parameter
Q Apply 389, 391

commit_interval parameter
Q Capture 352

commit_interval parameter, Q
Capture 350, 372

compression dictionaries
z/OS 310

computed columns 74, 78
CONCURRENT_ACCESS_RESOLUTION 182
conflict detection

bidirectional replication
options 100
overview 89

peer-to-peer replication 91
conflicts

in IBMQREP_EXCEPTIONS
table 305

value-based and version-based 305
consistent-change-data (CCD) tables 198
control messages 533
control tables 297, 490

analyzing 446
creating for Oracle 157
dropping 289, 297
Event Publishing

overview 459
maintaining 311
pruning 311
Q Apply

dropping 289
Q Apply server

IBMQREP_APPENVINFO 500
IBMQREP_APPLYENQ 499
IBMQREP_APPLYMON 500
IBMQREP_APPLYPARMS 505
IBMQREP_APPLYTRACE 511
IBMQREP_DELTOMB 512
IBMQREP_DONEMSG 513
IBMQREP_EXCEPTIONS 513
IBMQREP_RECVQUEUES 516
IBMQREP_SAVERI 518
IBMQREP_SPILLEDROW 520
IBMQREP_SPILLQS 519
IBMQREP_TARGETS 520
IBMQREP_TRG_COLS 529
list 498

Q Capture
dropping 289, 297

Q Capture for Oracle server
IBMQREP_EOLFLUSH 473

Q Capture server 464
IBMQREP_ADMINMSG 460
IBMQREP_CAPENQ 461
IBMQREP_CAPENVINFO 461
IBMQREP_CAPMON 462
IBMQREP_CAPPARMS 464
IBMQREP_CAPQMON 469
IBMQREP_CAPTRACE 471
IBMQREP_COLVERSION 472
IBMQREP_EXCLSCHEMA 473
IBMQREP_IGNTRAN 474
IBMQREP_IGNTRANTRC 475
IBMQREP_PART_HIST 476
IBMQREP_SCHEMASUBS 477
IBMQREP_SENDQUEUES 479
IBMQREP_SIGNAL 483

control tables (continued)
Q Capture server (continued)

IBMQREP_SRC_COLS 488
IBMQREP_SRCH_COND 489
IBMQREP_SUBS 490
IBMQREP_SUBS_PROF 496
IBMQREP_TABVERSION 497
list 459

Q Replication
overview 459

reorganizing 312
RUNSTATS utility 312

control tables, creating 50
control tables, creating at different

version 51
conversion

data for event publishing
description 2

data for Q Replication
description 1

CREATE PUB command 209
CREATE PUBQMAP command 206
CREATE QSUB command 64
CREATE REPLQMAP command 60
creating 206

publications
overview 208

Q subscriptions
peer-to-peer replication,

overview 106
unidirectional replication,

overview 62
WebSphere MQ objects for

replication 9
CURRENTLY COMMITTED access

behavior 182
customer support

contacting 563

D
DATA CAPTURE CHANGES and 124
DATA CAPTURE CHANGES

attribute 37
data conversion

event publishing, description 2
Q Replication, description 1

data exceptions, overview 305
data manipulation

Q Replication
stored procedures,

description 169
stored procedures, overview 169

stored procedures for Q subscriptions
description 169
overview 169

data messages 533
data transformation 74, 78

stored procedures, description 169
stored procedures, overview 169

data type changes, replicating 135
data types

considerations
when publishing 217
when replicating 217

large object (LOB)
restrictions with XML data 221

572 Replication and Event Publishing Guide and Reference

data types (continued)
LOB, replicating 219
replication

BLOB 219
CLOB 219
DBCLOB 219

restrictions 217
XML

replicating 220
restrictions with LOB data 221

data_applied parameter, Q Capture 245
data_sent parameter, Q Capture 245
database partitions

multiple 195
DATE data type

replicating 222
DB2 databases

replication
older versions 38, 53

DB2 extenders
restrictions 219

DB2CODEPAGE environment
variable 43

db2dj.ini file 140
DB2ENVLIST environment variable 25
DB2INSTANCE environment variable

setting 43
DBCLOB data type

column values 547
large object (LOB) message 547
replicating 219

DDL
changes to source tables 118, 279

DDL operations, replicating 115, 122
deactivating

subscription message 561
deadlock_retries parameter

Q Apply 389, 391
DEFPSIST parameter, WebSphere MQ 18
DEFSOPT parameter, WebSphere MQ 18
DEFTYPE parameter, WebSphere MQ 18
dftmodelq parameter

Q Apply 391
difference table 317
DISCINT parameter, WebSphere MQ 18
distinct data types 217
DSNUTILS stored procedure for

z/OS 181

E
EDITPROC clauses 217
end-to-end latency 303
environment variables

federated server 140
setting for Linux, UNIX, and

Windows 43
error messages

reports 551
errors

handling for Q Replication 86
handling in unidirectional

replication 82
handling logic for stored

procedures 172
messages 551
peer-to-peer replication 91

errors (continued)
recovering 313

event publishing
adding columns to replicate 292
changing 291
checking status 299
code pages 2
columns included in message 215
compression dictionaries 310
creating publications 208
data conversion

description 2
grouping publishing queue maps and

publications 205
including before values 216
key columns for publications 215
maintaining

source logs, manually finding
oldest required (z/OS) 308

messages
activate subscription message 560
add column message 556
control messages 533
data messages 533
deactivate subscription

message 561
error report message 551
informational messages 533
invalidate send queue

message 559
large object (LOB) message 547
list of messages from Q

Capture 534
list of types 533
load done message 560
load done received message 550
structure of, from Q Capture 534
structure of, to Q Capture 557
subscription deactivated

message 549
subscription schema message

(subSchema) 553
to Q Capture 558
transaction message 536

publications
filtering rows 212
search conditions 212
WHERE clauses 212

set up 205
setting up passwords 3
source columns for publications 211
subsetting source columns 211
system services 331
WebSphere MQ objects required

remote 12
when Q Capture sends a

message 211
XML messages

delimiters in character data 534
heartbeat message 552
msg: root element 535, 558
overview of types 533
row operation message 545
structure, overview 533
technical requirements 533

Event Publishing
authorization requirements

overview 3
Q Capture 3
Replication Center and

ASNCLP 5
connectivity requirements 6
control tables

maintaining 311
overview 459
pruning 311

errors, recovering 313
ignoring transactions 239
maintaining

cold starts, preventing 235
overview 307
source logs, retaining 307
source objects 307
source systems 307

multiple database partitions 195
object names

case 347
naming rules 345

Oracle source
column mapping 165
data types 165

packages, binding
overview 48
Q Capture 48
Replication Alert Monitor 49

queue manager clustering 35
rebinding packages and plans 315
REORG command 312
restrictions, data types 217
RUNSTATS utility 312
storage requirements, WebSphere

MQ 33
storing user IDs and passwords 6
WebSphere MQ

objects 9
setting up, overview 9

event publishing commands
asnpwd 413
asnqanalyze 446
asnscrt 417
asnsdrop 420
asntrc 436

Event Publishing commands
asnoqcap 372
asnoqccmd 386
asnqcap 350
asnqccmd 380
asnqmfmt 454
asnqxmfmt 456
asnslist 421
asntdiff 322, 422, 426, 433
asntrep 443
list 349
roadmap 349

exceptions
replication 305

EXPORT and IMPORT utilities 180
EXPORT and LOAD utilities 180
expressions

Q Replication 74
SQL 74
XML 78

Index 573

EXTSHM environment variable 43
memory 44

F
federated targets

creating required objects 141
overview 137
restrictions 138
software requirements 138
task overview 138

FIELDPROC clauses 217
filtering

rows
search conditions, event

publishing 212
search conditions, Q

Replication 68

G
GDPS Active/Active, configuring Q

Replication for 41
GENERATED ALWAYS columns 223
grouping replication objects

publishing queue maps and
publications 205

replication queue maps and Q
subscriptions 58

H
HBINT parameter

WebSphere MQ 18
heartbeat XML message 552
HEX function 74, 78
historical data

CCD tables 198
holdlock threads 301
horizontal (row) subsetting

Q Replication 68
Q subscriptions 68

I
IBMQREP_ADMINMSG control

table 460
IBMQREP_APPENVINFO control

table 500
IBMQREP_APPLYENQ control table 499
IBMQREP_APPLYMON control

table 500
IBMQREP_APPLYPARMS control table

description 505
IBMQREP_APPLYTRACE control

table 511
IBMQREP_CAPENQ control table 461
IBMQREP_CAPENVINFO control

table 461
IBMQREP_CAPMON control table 462
IBMQREP_CAPPARMS control table

description 464
IBMQREP_CAPQMON control

server 469
IBMQREP_CAPTRACE control table 471

IBMQREP_COLVERSION control
table 472

IBMQREP_DELTOMB control table 512
IBMQREP_DONEMSG control table 513
IBMQREP_EOLFLUSH control table 473
IBMQREP_EXCEPTIONS control

table 513
IBMQREP_EXCLSCHEMA control

table 473
IBMQREP_IGNTRAN control table 239,

474
IBMQREP_IGNTRAN table 98
IBMQREP_IGNTRANTRC control

table 239, 475
IBMQREP_PART_HIST control table 476
IBMQREP_RECVQUEUES control

table 516
IBMQREP_SAVERI control table 518
IBMQREP_SCHEMASUBS control

table 477
IBMQREP_SENDQUEUES control

table 479
IBMQREP_SIGNAL control table 483
IBMQREP_SPILLEDROW control

table 520
IBMQREP_SPILLQS control table 519
IBMQREP_SRC_COLS control table 488
IBMQREP_SRCH_COND control

table 489
IBMQREP_SUBS control table 490
IBMQREP_SUBS_PROF control

table 496
IBMQREP_TABVERSION control

table 497
IBMQREP_TARGETS control table 520
IBMQREP_TRG_COLS control table 529
identity columns 223
ignbaddata parameter

Q Apply 391
ignore_transid parameter 98
ignoring transactions 239, 268

Q Apply program 268
igntrig parameter, Q Capture 350
informational messages 533
insert_bidi_signal parameter

Q Apply 389, 391
invalidate send queue message 559
IS_KEY column 81

J
JCL

batch mode 333
for starting Q Apply 333
for starting Q Capture 332
for starting Replication Alert

Monitor 333

K
key columns

for event publishing 215
for publications 215
for Q Replication 81
for Q subscriptions 81

L
large object (LOB) data types

restrictions with XML 221
latency

overview 303
LDR_CNTRL variable 44
legal notices 567
load done message 560
load done received message 550
LOAD from CURSOR utility 180, 182
load operations

replicating source table loads 190,
192

load options
automatic 180

considerations z/OS 181
overview 180

bidirectional replication 187
no 186
Oracle sources 161
overview 179
peer-to-peer replication

three or more servers 187
two servers 187

unidirectional replication 187
load options, replication

consolidated tables 193
load_data_buff_size parameter, Q

Apply 389
load_data_buff_sz parameter, Q

Apply 389, 391
loadcopy_path parameter

Q Apply 389, 391
loading non-DB2 tables 144
LOB data type

column values 547
large object (LOB) message 547
messages 547
queue depth considerations 34
replicating 219
restrictions for bidirectional

replication 100
lob_send_option parameter, Q

Capture 350
log files

finding oldest required 309
logarchmeth1 configuration parameter

settings 46
logical tables

bidirectional replication 89
peer-to-peer replication 91

logmarkertz parameter
Q Apply 389, 391

LogMiner utility 153
logreuse parameter

Q Apply 389, 391
Q Capture 352

logstdout parameter
Q Apply 389, 391
Q Capture 352

logstdout parameter, Q Capture 350, 372
LONG VARCHAR data type

overview 217
LONG VARGRAPHIC data type

overview 217
lsn parameter 231

574 Replication and Event Publishing Guide and Reference

M
maintenance 311

Event Publishing environment
control tables 311
overview 307
source objects 307

Q Replication environment
cold starts, preventing 235
control tables 311
overview 307
source objects 307

manual load
definition 179

mapping
source columns to target columns

Q replication 73
max_parallel_loads parameter, Q

Apply 389, 391
maxagents database manager

configuration parameter 44
maxappls configuration parameter

memory issues 44
Q Apply 47

maxcmtseq parameter 231
MAXDEPTH parameter

WebSphere MQ 18
MAXMSGL parameter

WebSphere MQ 18
maxuproc parameter 44
MCAUSER parameter 25
memory_limit parameter

Q Capture 352
memory_limit parameter, Q

Capture 350, 372
message buffers

large object (LOB) values 34
message_persistence parameter

Q Capture 352
message_persistence parameter, Q

Capture 350
messages

activate subscription message 560
add column message 556
before values in publications 216
columns included in

publications 215
control messages 533
data messages 533
deactivate subscription message 561
error report message 551
event publishing

to Q Capture 558
formatting and viewing 454, 456
from a Q Capture program

for Q subscriptions 67
from Q Capture program

when Q Capture sends a message
for publications 211

informational messages 533
invalidate send queue message 559
large object (LOB) message 547
list of messages from Q Capture 534
list of types 533
load done message 560
load done received message 550
structure

from Q Capture 534

messages (continued)
structure (continued)

to Q Capture 557
subscription deactivated

message 549
subscription schema message 553
transaction message 536
WebSphere MQ

size limit 33
migration

databases
avoiding 38, 53

minimal supplemental logging 153
MODIFY command 334
monitor qualifier

naming rules 345
monitor_interval parameter

Q Apply 389, 391
Q Capture 352

monitor_interval parameter, Q
Capture 350, 372

monitor_limit parameter
Q Apply 389, 391
Q Capture 350, 352

monitor_limit parameter, Q Capture 372
MQCHLLIB variable 25
MQCHLTAB variable 25
MQSC samples 23
MQSERVER variable 25
msg root element

XML messages 535, 558
MSGDLVSQ parameter

WebSphere MQ 18
multidirectional replication

bidirectional replication 89
choosing between bidirectional and

peer-to-peer replication 96
peer-to-peer replication 91
setting up 89

N
naming conventions 345

for Q Replication and Event
Publishing 345

target object profiles for Q
Replication 62

nickname_commit_count parameter
Q Apply 389, 391

nickname_commit_ct parameter
Q Apply 389, 391

nicknames
automatic load 182

no load
definition 179
description 186

NUMBER data type
replicating 222

NUMTCB parameter
z/OS loads 181

O
OKSQLSTATES

peer-to-peer replication 91

old data values
included in publications 216

operating
Q Apply program 261, 408
Q Capture program 229, 380, 386

operation parameters
stored procedures 172

Oracle
source table changes 164

Oracle client support 152
Oracle LogMiner utility 153

configuring 154
configuring a source database 156

Oracle sources
creating ASNCLP configuration

file 157
loading target tables 161
restrictions 149
task overview 149

Oracle targets, using SQL*Plus 144, 520
oracle_empty_str parameter

Q Apply 391
override_restartq parameter, Q

Capture 233

P
p2p_2nodes parameter

Q Apply 389, 391
packages

binding
overview 48
Q Apply program (Linux, UNIX,

Windows) 48
Q Capture program (Linux, UNIX,

Windows) 48
Replication Alert Monitor (Linux,

UNIX, Windows) 49
parallel loads

z/OS 181
parameters

CAPTURE_PATH, specifying on
z/OS 331

invocation
Q Apply program 389
Q Capture program 350, 372

Q Apply program
apply_path 391
apply_schema 391
apply_server 391
applydelay 389, 391
autostop 391
changing 263
changing while running 408
classic_load_file_sz 389, 391
commit_count 389, 391
deadlock_retries 391
load_data_buff_sz 389
load_data_buff_sze 391
loadcopy_path 389, 391
logmarkertz 389, 391
logreuse 391
logstdout 391
max_parallel_loads 389, 391
monitor_interval 391
monitor_limit 391
nickname_commit_ct 389, 391

Index 575

parameters (continued)
Q Apply program (continued)

nmi_enable 391
nmi_socket_name 391
prune_batch_size 389
prune_method 389
pwdfile 391
qmgr 391
report_exception 391
skiptrans 389, 391
spill_commit_count 389, 391
term 391
trace_ddl 391
trace_limit 391

Q Capture program
add_partition 352
adminq 352
autostop 352
caf 352
capture_path 352
capture_schema 352
capture_server 352
changing 236
changing while running 380, 386
commit_interval 352
descriptions 352
logreuse 352
logstdout 352
memory_limit 352
message_persistence 352
methods of changing 236
monitor_interval 352
monitor_limit 352
nmi_enable 352
nmi_socket_name 352
prune_interval 352
qfull_num_ retries 352
qfull_retry_delay 352
qmgr 352
restartq 352
signal_limit 352
sleep_interval 352
startmode 352
term 352
trace_limit 352
warntxsz 352

stored procedures, replication
identifying suppressed

columns 174
identifying transaction 175
identifying type of operation 172
map to source columns 175
mapping to key columns, Q

subscriptions 81
Q Replication, description 169
Q replication, overview 169

WebSphere MQ 18
part_hist_limit parameter, Q

Capture 350
partitioned tables

replication 195, 197
password file 6

creating 413, 436
passwords

setting up, overview 3
storing 6

peer-to-peer replication 106

peer-to-peer replication (continued)
adding columns to replicate 133, 277
conflict detection 91
description 91
error options 86
Q subscriptions

overview 106
referential integrity 91
replication objects

three or more servers 91
two servers 91

starting 110, 111, 113
stopping 113
three or more remote servers

WebSphere MQ objects 16
three or more servers

load options 187
objects 91

two remote servers
WebSphere MQ objects 14

two servers
load options 187
objects 91

versioning columns 530
planning

storage requirements, WebSphere
MQ 33

problem rows 305
profiles

target object profiles for Q
replication 62

prune parameter
Q Apply 408
Q Capture 380, 386

prune threads 301
prune_batch_size parameter

Q Apply 389
prune_interval parameter

Q Apply 389
Q Capture 350, 352, 372

prune_method parameter
Q Apply 389

pruning
Q Apply program

asnqacmd command 408
publications 251

adding columns to replicate 292
changing properties 291
columns included in message 215
creating 209

overview 208
deleting 294
filtering rows 212
grouping with publishing queue

maps 205
including before values 216
key columns 215
naming rules 345
Q Capture messages 211
reinitializing 291
search conditions 212
starting 250
subsetting source columns 211
WHERE clauses 212

publishing
before values in publications 216
converted data 2

publishing (continued)
event publishing

columns included in message 215
when Q Capture sends a

message 211
grouping publishing queue maps and

publications 205
publications

columns included in message 215
when Q Capture sends a

message 211
setting up event publishing 205
subset of data

filtering rows in publications 212
subset source columns for

publications 211
with the Q Capture program

columns included in
publication 215

when Q Capture sends a
message 211

XML publications
before values 216

publishing queue maps 206
changing 295
deleting 296
grouping with publications 205

pwdfile parameter
Q Apply 389, 391

pwdfile parameter, Q Capture 350, 372

Q
Q Apply control tables

creating 50
dropping 289
list 498

Q Apply latency 303
Q Apply program

agent threads
defined 301

asnqacmd command 408
authorization requirements 4
bidirectional replication 89
browser threads

defined 301
checking run-time parameter

values 408
checking status 299, 408
code pages 1
conflict detection, bidirectional

replication 100
data conversion 1
error options 86
federated configuration 140
handling unexpected conditions 82
ignoring transactions 268
invocation parameters 389
memory on AIX 44
MODIFY command 334
operating 261
packages, binding 48
parameters

apply_path 391
apply_schema 391
apply_server 391
applydelay 389, 391

576 Replication and Event Publishing Guide and Reference

Q Apply program (continued)
parameters (continued)

applyupto 389, 391
arm 391
autostop 391
caf 389, 391
changing 263
changing dynamically 263
changing saved 264
classic_load_file_sz 389, 391
commit_count 389, 391
deadlock_retries 391
description 391
dftmodelq 389, 391
ignbaddata 389, 391
insert_bidi_signal 389, 391
load_data_buff_size 391
load_data_buff_sz 389
loadcopy_path 389, 391
logmarkertz 389, 391
logreuse 391
logstdout 391
max_parallel_loads 389, 391
monitor_interval 391
monitor_limit 391
nickname_commit_ct 389, 391
nmi_enable 391
nmi_socket_name 391
oracle_empty_str 391
p2p_2nodes 389, 391
prune_batch_size 389
prune_interval 389, 391
prune_method 389
pwdfile 391
qmgr 391
report_exception 391
richklvl 389, 391
skiptrans 389, 391
spill_commit_count 389, 391
term 391
trace_ddl 391
trace_limit 391

peer-to-peer replication 91
prune command 408
running in batch mode 333
scheduling 342

Linux, UNIX 342
Windows 342

schema
rules for bidirectional

replication 89
rules for peer-to-peer

replication 91
spill mode for Q subscriptions 286
started task 337
starting 261

asnqapp command 389
starting message processing 267, 408
starting with JCL 333
starting, peer-to-peer (three

servers) 111, 113
starting, peer-to-peer (two

servers) 110
stopping 265, 408
stopping message processing 266,

408

Q Apply program (continued)
stopping, peer-to-peer (two

servers) 113
stored procedures

description 169
overview 169

unidirectional replication 57
working with receive queues 58

Q Apply program`
scheduling 343
z/OS 343

Q Apply schemas
dropping 289
naming rules 345
rules for bidirectional replication 89
rules for peer-to-peer replication 91

Q Apply server
federated configuration 140
IBMQREP_APPENVINFO control

table 500
IBMQREP_APPLYENQ control

table 499
IBMQREP_APPLYMON control

table 500
IBMQREP_APPLYPARMS control

table 505
IBMQREP_APPLYTRACE control

table 511
IBMQREP_DELTOMB control

table 512
IBMQREP_DONEMSG control

table 513
IBMQREP_EXCEPTIONS control

table 513
IBMQREP_RECVQUEUES control

table 516
IBMQREP_SAVERI control table 518
IBMQREP_SPILLEDROW control

table 520
IBMQREP_SPILLQS control table 519
IBMQREP_TARGETS control

table 520
IBMQREP_TRG_COLS control

table 529
list of control tables 498

Q Capture
parameters

startallq 252
Q Capture control tables

creating 50
dropping 289, 297
list 459
Oracle 157

Q Capture for Oracle server
IBMQREP_EOLFLUSH control

table 473
Q Capture latency 303
Q Capture messages

before values in publications 216
columns included in message 215
when Q Capture sends a message

for publications 211
for Q subscriptions 67

Q Capture program 231
authorization requirements 3
before values in publications 216
bidirectional replication 89

Q Capture program (continued)
checking run-time parameter

values 380, 386
checking status 299, 380, 386
code pages 1

for event publishing 2
cold starts

preventing 235
startmode parameter 352

columns sent in publications 215
configuring for Oracle sources 153
data conversion

for event publishing 2
for Q Replication 1

finding oldest required log file 309
handling table structure changes 118,

279
ignoring transactions 239
memory on AIX 44
messages 558
MODIFY command 334
operating 229
packages, binding 48
parameters

add_partition 352
adminq 352
autostop 352
capture_path 352
capture_schema 352
capture_server 352
captureupto 245
changing 236
changing dynamically 237
changing saved 238
commit_interval 352
data_applied 245
data_sent 245
description 352
hs 352
igncasdel 352
igntrig 352
logread_prefetch 352
logreuse 352
logstout 352
memory_limit 352
message_persistence 352
methods of changing 236
monitor_interval 352
nmi_enable 352
nmi_socket_name 352
override_restartq 233, 352
part_hist_limit 352
prune_interval 352
qmgr 352
restartq 352
signal_limit 352
sleep_interval 352
stale 352
startallq 352
startmode 352
stopafter 245
term 352
trace_limit 352
trans_batch_sz 352
warnifi 352
warnlogapi 352
warntxsz 352

Index 577

Q Capture program (continued)
peer-to-peer replication 91
prune command 380, 386
reinitializing 273, 291, 380, 386
reinitializing a send queue 380, 386
running in batch mode 333
scheduling 342, 343

Linux, UNIX 342
Q Capture messages 67
Windows 342

schema
rules for bidirectional

replication 89
rules for peer-to-peer

replication 91
sending commands to a running 380,

386
started task 337
starting 229

asnoqcap command 372
asnqcap command 350

starting for Oracle sources 163
starting with JCL 332
starting, peer-to-peer (three

servers) 111, 113
starting, peer-to-peer (two

servers) 110
stopping 244, 380, 386
stopping, peer-to-peer (two

servers) 113
unidirectional replication 57
when Q Capture sends a message

for publication 211
for Q subscriptions 67

working with Oracle LogMiner 154
working with send queues

in event publishing 205
in Q Replication 58

XML messages 534
z/OS 343

Q Capture schemas
dropping 289, 297
naming rules 345
rules for bidirectional replication 89
rules for peer-to-peer replication 91

Q Capture server
code pages for event publishing 2
IBMQREP_ADMINMSG control

table 460
IBMQREP_CAPENQ control

table 461
IBMQREP_CAPENVINFO control

table 461
IBMQREP_CAPMON control

table 462
IBMQREP_CAPPARMS control

table 464
IBMQREP_CAPQMON control

table 469
IBMQREP_CAPTRACE control

table 471
IBMQREP_COLVERSION control

table 472
IBMQREP_EXCLSCHEMA control

table 473
IBMQREP_IGNTRAN control

table 474

Q Capture server (continued)
IBMQREP_IGNTRANTRC control

table 475
IBMQREP_PART_HIST control

table 476
IBMQREP_SCHEMASUBS control

table 477
IBMQREP_SENDQUEUES control

table 479
IBMQREP_SIGNAL control table 483
IBMQREP_SRC_COLS control

table 488
IBMQREP_SRCH_COND control

table 489
IBMQREP_SUBS control table 490
IBMQREP_SUBS_PROF control

table 496
IBMQREP_TABVERSION control

table 497
list of control tables 459

Q Capture transaction latency 303
Q Capture, stopping at a specified

point 245
Q replication

checking status 299
compression dictionaries 310
DDL replication 115
maintaining

source logs, manually finding
oldest required (z/OS) 308

Oracle sources 149
Oracle client support 152

schema-level subscriptions 115, 122,
123, 124, 125, 128

setting up passwords 3
stored procedures

parameters, map to source
columns 175

system services 331
Q Replication

authorization requirements
for Q Apply 4
for Q Capture 3
overview 3
Replication Center and

ASNCLP 5
bidirectional replication

conflict detection 89, 100
description 89

changing 273
code pages 1
computed columns 74, 78
conflict detection

bidirectional replication 89
peer-to-peer replication 91

conflict detection, bidirectional
replication 100

connectivity requirments 6
control tables

list, Q Apply 498
list, Q Capture 459
maintaining 311
overview 459
pruning 311

data conversion
description 1

error options 86

Q Replication (continued)
errors, recovering 313
expressions 74
federated targets

overview 137
restrictions 138
software requirements 138
task overview 138

grouping replication queue maps and
Q subscriptions 58

ignoring transactions 239, 268
loading consolidated tables 193
maintaining

cold starts, preventing 235
overview 307
source logs, retaining 307
source objects 307
source systems 307

multidirectional replication
bidirectional replication 89
choosing between bidirectional and

peer-to-peer replication 96
peer-to-peer replication 91
setting up 89

multiple database partitions 195
object names

case 347
naming rules 345

Oracle source
column mapping 165
data types 165

Oracle sources
restrictions 149
task overview 149

packages
Replication Alert Monitor (Linux,

UNIX, Windows) 49
packages, binding

overview 48
Q Apply (Linux, UNIX,

Windows) 48
Q Capture (Linux, UNIX,

Windows) 48
peer-to-peer replication

conflict detection 91
creating Q subscriptions,

overview 106
description 91
versioning columns 530

Q Apply program
bidirectional replication 89
peer-to-peer replication 91
unidirectional replication 57

Q Capture program
bidirectional replication 89
peer-to-peer replication 91
unidirectional replication 57

Q subscriptions
error options 86
filtering rows 68
naming rules 345
search conditions 68
WHERE clauses 68

queue manager clustering 35
rebinding packages and plans 315
recommendations for loading target

tables 179

578 Replication and Event Publishing Guide and Reference

Q Replication (continued)
REORG command 312
restrictions

data types 217
IDENTITY columns 64, 97, 106,

107
RUNSTATS utility 312
storage requirements, WebSphere

MQ 33
stored procedures

overview 169
parameters, identifying

transaction 175
parameters, suppressed

columns 174
parameters, type of operation 172

storing user IDs and passwords 6
target object profiles 62
unidirectional replication

creating Q subscriptions,
overview 62

description 57
filtering rows 68
index columns for targets 81
key columns for targets 81
mapping source and target

columns 73
Q Capture messages 67
search conditions 68
setting up 57
source columns for Q

subscriptions 66
subsetting source columns 66
unexpected conditions in

targets 82
WebSphere MQ

objects 9
setting up, overview 9

Q Replication Analyzer
description 446
parameters 446

Q replication commands
asnqanalyze 446
asnscrt 417
asnspwd 413
asnstrc 436

Q Replication commands
asnoqcap 372
asnoqccmd 386
asnqacmd 408
asnqapp 389

usage examples 407
asnqcap 350

usage examples 371
asnqccmd 380
asnqmfmt 454
asnsdrop 420
asnslist 421
asntdiff 322, 422, 426, 433
asntrep 443
list 349
road map 349

Q subscriptions 249
adding columns to replicate 131, 133,

275, 277
bidirectional

creating 97

Q subscriptions (continued)
bidirectional replication 89
CCD targets 198
changing properties 273
conflict detection, bidirectional

replication 100
creating 64

federated replication 144, 159
peer-to-peer replication,

overview 106
unidirectional replication,

overview 62
data type restrictions 217
deleting 287
error options 86
filtering rows 68
grouping with replication queue

maps 58
in bidirectional replication

conflict detection 100
index columns for targets 81
key columns for targets 81
naming rules 345
options

mapping source and target
columns 73

Q Capture messages 67
peer-to-peer replication 91

creating 106
placing in spill mode 286
reinitializing 273
restarting without redefining 286
restrictions

IDENTITY columns 64, 97, 106,
107

schema-level
starting 125

search conditions 68
starting 248
stored procedures

description 169
overview 169
parameters, identifying

transaction 175
parameters, map to source

columns 175
parameters, suppressed

columns 174
parameters, type of operation 172

subsetting source columns 66
target object profiles 62
unexpected conditions in targets 82
unidirectional replication 57
WHERE clauses 68

qmgr parameter
Q Apply 389
Q Capture 352

qmgr parameter, Q Capture 350
qryparms parameter

Q Apply 408
Q Capture 380, 386

queue depth for large object (LOB)
values 34

queue latency 303
queue manager

description 23
required settings 18

queue manger
clustering 35

QUEUE_DEPTH alert condition 25
queues

administration 23
for Q Apply 23
for Q Capture 23

receive
description 23

restart 23
send 23
spill 23

R
range-partitioned tables

replication 195, 197
recapturing

avoiding 98
receive queues

description 23
naming rules 345
reinitializing 283
required settings 18
starting 267
stopping 266
working with the Q Apply

program 58
referential constraints

peer-to-peer replication 91
referential integrity

peer-to-peer replication 91
reinit parameter

Q Capture 380, 386
reinitq parameter

Q Apply 408
Q Capture 380, 386

remote DB2 databases
replication 38, 53

REORG command 312
REPL_ADDCOL option 131, 275
replicating data type changes 135
replicating DDL operations 115, 122
replication

administration stored procedure 25
bidirectional replication

conflict detection 100
description 89

BLOB data types 219
CLOB data types 219
converted data 1
data types

XML 220
DBCLOB data types 219
mapping source and target columns

Q Replication 73
multidirectional replication, setting

up 89
peer-to-peer replication 91
Q subscriptions

creating for peer-to-peer
replication 106

creating for unidirectional
replication, overview 62

messages from Q Capture 67
stored procedures,

description 169

Index 579

replication (continued)
Q subscriptions (continued)

stored procedures, overview 169
ROWID columns 219
source tables

loads 190, 192
subset of data

filtering rows in Q
subscriptions 68

source columns for Q
Replication 66

to stored procedure in Q
subscription 175

unidirectional replication
description 57
setting up 57
unexpected conditions 82
using stored procedures,

overview 169
XML data type 220

Replication Alert Monitor
MODIFY command 334
packages

binding 49
running in batch mode 333
scheduling 342

Linux, UNIX 342
Windows 342

started task 337
starting with JCL 333

Replication Alert Monitor program
checking status 299

Replication Center
running or saving commands 227
saving SQL scripts 225
target object profiles 62

replication commands
asnoqcap 372
asnoqccmd 386
asnqacmd 408
asnqanalyze 446
asnqapp 389
asnqcap 350
asnqccmd 380
asnqmfmt 454
asnslist 421
asntdiff 322, 422, 426, 433
asntrep 443

replication programs
scheduling 342

replication queue maps
bidirectional replication 89
changing 283
changing queue names 285
creating 60
deleting 288
grouping with Q subscriptions 58
peer-to-peer replication 91
unidirectional replication 57

replication services
creating 340
description 339
display name 339
dropping 341
listing 421
name 339
starting 341

replication services (continued)
stopping 341
viewing 341

report_exception parameter
Q Apply 391

restart messages
Q Capture 252

restart queues
description 23

restarting
Q Capture program 231

restartq parameter
Q Capture 352

restartq parameter, Q Capture 350
restrictions

abstract data types 217
data types 217
DB2 Extenders large objects 219
distinct data types 217
EDITPROC clauses 217
FIELDPROC clauses 217
LONG VARCHAR data types 217
spatial data types 217
user-defined data types 217
VALIDPROC clauses 217

resumesub parameter
Q Apply 408

resuming Q subscriptions in spill
modej 286

richklvl parameter 389, 391
Q Apply 391

row (horizontal) subsetting
event publishing 212
search conditions 68

row identifier columns
replication 219

row operation XML message 545
rows

filtering
event publishing 212
Q Replication 68

RUNSTATS utility
Q Replication 312

S
sample commands

WebSphere MQ objects 23
schema-level subscriptions 115

changing table-level options 127
creating 122
creating profiles 123
DATA CAPTURE CHANGES

and 124
deleting 129
starting 125
stopping 128
table-level options 123

schemas
for the Q Apply program

rules for bidirectional
replication 89

rules for peer-to-peer
replication 91

for the Q Capture program
rules for bidirectional

replication 89

schemas (continued)
for the Q Capture program (continued)

rules for peer-to-peer
replication 91

naming rules
for bidirectional replication 89
for peer-to-peer replication 91

SCM (Service Control Manager)
creating replication services 340
description 339
dropping replication services 341
starting replication services 341
stopping replication services 341
viewing replication services 341

send queues
description 23
managing activity by queue 252
naming rules 345
reinitializing 283, 295
required settings 18
restart points 252
starting 255
stopping 257
working with the Q Capture program

in event publishing 205
in Q Replication 58

serialization
threads 301

server definitions
federated replication 141

Service Control Manager (SCM)
creating replication services 340
description 339
dropping replication services 341
starting a replication service 341
stopping a replication service 341
viewing replication services 341

SET DATA TYPE operations 135
setting up

multidirectional replication 89
passwords 3
unidirectional replication 57
user IDs 3

SHARE parameter
WebSphere MQ 18

signal_limit parameter
Q Capture 352

signal_limit parameter, Q Capture 350,
372

signals
ADDCOL 131, 133, 275, 277, 292

skiptrans parameter
Q Apply 389, 391, 408

sleep_interval parameter
Q Capture 352

sleep_interval parameter, Q
Capture 350, 372

software services
contacting 563

source columns
adding

existing publications 292
replication 133, 277
unidirectional replication 131, 275

mapping to stored procedure 175
mapping to target columns

Q replication 73

580 Replication and Event Publishing Guide and Reference

source columns (continued)
parameter identifying suppressed

columns 174
published in publication 215
publishing a subset

event publishing 211
publications 211

replicating a subset 66
source databases

configuring Oracle 153
enabling for replication 46

source logs
manually finding oldest required

(z/OS) 308
retaining 307

source servers
code pages

for event publishing 2
for Q Replication 1

when Q Capture sends a message
for publications 211
for Q subscriptions 67

source systems
definition 307
maintaining 307

source tables
adding columns to replicate

bidirectional or peer-to-peer
replication 133, 277

existing publications 292
unidirectional replication 131, 275

changing in Oracle 164
for bidirectional replication 89
for peer-to-peer replication 91
for unidirectional replication

description 57
in publications

filtering rows 212
search conditions 212
when Q Capture sends a

message 211
WHERE clauses 212

in Q subscriptions
filtering rows 68
mapping source and target

columns 73
Q Capture messages 67
search conditions 68

maintaining 307
mapping to stored procedures 175
mapping to targets, Q Replication 73
naming rules 345
replicating loads 190, 192
structure changes 118, 279

source-target pairs
for bidirectional replication

description 89
for peer-to-peer replication

description 91
for unidirectional replication 57
mapping columns, Q Replication 73

spatial data
restrictions 217

spill mode for Q subscriptions 286
spill queues

description 23
required settings 18

spill_commit_count parameter
Q Apply 389, 391

spillsub parameter
Q Apply 408

SQL errors
acceptable 305
unexpected 305

SQL expressions 74, 78
SQL Replication commands

asnpwd 413
asnscrt 417
asnsdrop 420
asntrc 436

SQL scripts
saving with ASNCLP 225
saving with Replication Center 225

SQL states
acceptable in Q Replication

setting for peer-to-peer 91
SQL*Plus 144, 520
SQLSTATE

acceptable in Q Replication
setting for peer-to-peer 91

stale parameter, Q Capture 350
START PUB command 250
START QSUB command 248
startallq parameter 252
started tasks 337
starting

known points in logs 231
Q Apply program 389

startmode parameter
Q Capture 352

startmode parameter, Q Capture 350,
372

startq command 255, 267
startq parameter

Q Apply 408
status of replication programs,

checking 299
status parameter

Q Apply 408
Q Capture 380, 386

stop command, Q Capture 245
stop parameter

Q Apply 408
Q Capture 380, 386

stopafter parameter
Q Capture 380

stopafter parameter, Q Capture 245
stopping

publications 251
Q subscriptions 249

stopq command
Q Apply 266
Q Capture 257

stopq parameter
Q Apply 408

storage
WebSphere MQ 33

stored procedures
parameters

identifying suppressed
columns 174

identifying the type of
operation 172

identifying transaction 175

stored procedures (continued)
parameters (continued)

map to source columns 175
Q Replication

description 169
error options 86
overview 169
parameters for key columns 81
unexpected conditions in

targets 82
Q subscriptions

description 169
error options 86
overview 169
parameters for key columns 81
unexpected conditions in

targets 82
writing 171

subscription deactivated message 549
subscription schema message 553
subscriptions

for DDL replication 115
schema-level 115

changing table-level options 127
creating 122
creating profiles 123
DATA CAPTURE CHANGES

and 124
deleting 129
stopping 128

subsetting
source columns

publications 211
Q subscriptions 66

source rows
publications 212
Q subscriptions 68

supplemental logging
enabling 153

support
customer 563

suppression parameter
stored procedure for Q

Replication 174
Sybase targets

binding Q Apply packages 48, 140
synchronization

asntdiff and asntrepair utilities 317
SYSIBM.SYSCOLUMNS table 37
SYSIBM.SYSTABLEPART table 37
SYSIBM.SYSTABLES table 37
system commands

asnoqcap 372
asnoqccmd 386
asnpwd 413
asnqacmd 408
asnqanalyze 446
asnqapp 389
asnqcap 350
asnqccmd 380
asnqmfmt 454
asnqxmfmt 456
asnscrt 417
asnsdrop 420
asnslist 421
asntdiff 322, 422, 426, 433
asntrc 436

Index 581

system commands (continued)
asntrep 443

T
table compare utility

running in parallel mode 322
table differencing utility 317, 422, 426,

433
DATE data type

replicating 326
NUMBER data type

replicating 326
TIMESTAMP data type

replicating 326
with DB2 compatibility features 326

table repair utility 325, 443
table-level supplemental logging 153
tables

IBMQREP_ADMINMSG 460
IBMQREP_APPENVINFO 500
IBMQREP_APPLYENQ 499
IBMQREP_APPLYMON 500
IBMQREP_APPLYPARMS 505
IBMQREP_APPLYTRACE 511
IBMQREP_CAPENQ 461
IBMQREP_CAPENVINFO 461
IBMQREP_CAPMON 462
IBMQREP_CAPPARMS 464
IBMQREP_CAPQMON 469
IBMQREP_CAPTRACE 471
IBMQREP_COLVERSION 472
IBMQREP_DELTOMB 512
IBMQREP_DONEMSG 513
IBMQREP_EOLFLUSH 473
IBMQREP_EXCEPTIONS 513
IBMQREP_EXCLSCHEMA 473
IBMQREP_IGNTRAN 474
IBMQREP_IGNTRANTRC 475
IBMQREP_PART_HIST 476
IBMQREP_RECVQUEUES 516
IBMQREP_SAVERI 518
IBMQREP_SCHEMASUBS 477
IBMQREP_SENDQUEUES 479
IBMQREP_SIGNAL 483
IBMQREP_SPILLEDROW 520
IBMQREP_SPILLQS 519
IBMQREP_SRC_COLS 488
IBMQREP_SRCH_COND 489
IBMQREP_SUBS 490
IBMQREP_SUBS_PROF 496
IBMQREP_TABVERSION 497
IBMQREP_TARGETS 520
IBMQREP_TRG_COLS 529

target databases
configuring 47

target keys
publications 215
Q Replication 81
Q subscriptions 81

target object profiles 62
target servers

target object profiles 62
target tables

authorization requirements 4
CCDs 198
connectivity requirements 6

target tables (continued)
for bidirectional replication 89
for peer-to-peer replication 91
for unidirectional replication

description 57
unexpected conditions 82

IBMQREP_TARGETS control
table 498, 520

in Q subscriptions
unexpected conditions 82

index columns, Q subscriptions 81
key columns

publications 215
Q subscriptions 81

load options
automatic 180
automatic load 179
bidirectional replication 187
manual load 179
no load 179, 186
overview 179
peer-to-peer replication 187
recommendations 179
unidirectional replication 187

maintaining 313
mapping to sources

Q replication 73
naming rules 345
repairing 325
target key

publications 215
Q subscriptions 81

target object profiles 62
temporary directories

TMPDIR environment variable 43
term parameter 391

Q Apply 389
Q Capture 352

term parameter, Q Capture 350, 372
threads

Q Replication
administration 301
agent 301
browser 301
checking status 301
holdlock 301
prune 301
serialization 301
worker 301

TIMESTAMP data type
replication 222

TIMESTAMP WITH TIMEZONE 217
Tivoli NetView for z/OS, using with Q

Replication 41
TMPDIR environment variable 43
trace_ddl parameter

Q Apply 391
trace_limit parameter

Q Apply 389, 391
Q Capture 352

trace_limit parameter, Q Capture 350,
372

trademarks
list of 567

transaction latency
Q Capture 303

transactional parameters, stored
procedure for Q Replication 175

transactions
ignoring

Q Apply 268
Q Capture 239

messages 536
transforming data

Q Replication
stored procedures,

description 169
stored procedures, overview 169

stored procedures for Q subscriptions
overview 169

troubleshooting
checking program status 301

troubleshooting commands
asnqanalyze 446

U
ulimit command 44
unexpected conditions in targets

handling with stored procedures 172
Q subscriptions 82
unidirectional replication 82

unidirectional replication
adding columns to replicate 131, 275
description 57
error options 86
load options 187
Q subscriptions

creating, overview 62
filtering rows 68
index columns for targets 81
key columns for targets 81
mapping source and target

columns 73
Q Capture messages 67
search conditions 68
source columns 66
unexpected conditions in the

targets 82
WHERE clauses 68

setting up
description 57
grouping replication queue maps

and Q subscriptions 58
stored procedures

description 169
overview 169

WebSphere MQ objects required
remote 9
same system 11

user applications
list of messages from 558

user IDs
storing 6

user mappings
federated replication 141

user-defined types (UDTs)
Q Replication 217

utilities
EXPORT and IMPORT 180
EXPORT and LOAD 180
LOAD from CURSOR 180
message formatter 454, 456

582 Replication and Event Publishing Guide and Reference

utilities (continued)
Q Replication Analyzer 446
table compare 322
table differencing 422, 426, 433
table repair 443

V
V$LOGMNR_CONTENTS view 156
VALIDATE WSMQ ENVIRONMENT

FOR command 60, 206
VALIDPROC clauses 217
value-based conflicts 305
version-based conflicts 305
versioning columns 530
vertical (column) subsetting

event publishing 211
publications 211
Q Replication 66
Q subscriptions 66

W
warm start

effect on log data 307
startmode parameter 352
startmode parameter, three

types 350, 372
warntxsz parameter

Q Capture 352
web sites

non-IBM 565
WebSphere MQ

authorization requirements 31
Q Apply program 31
Q Capture program 31
Replication Alert Monitor 31

message segmentation 33
message size limit

Q Apply 33
Q Capture 33

objects
administration queue 23
authorization requirements 31
bidirectional replication 14
connectivity requirements 31
event publishing, remote 12
list of 23
peer-to-peer replication (three or

more remote servers) 16
peer-to-peer replication (two

remote servers) 14
receive queue 23
required settings 18
restart queue 23
send queue 23
spill queue 23
unidirectional replication,

remote 9
unidirectional replication, same

system 11
validating 27

parameters
CHLTYPE 18
DEFPSIST 18
DEFSOPT 18

WebSphere MQ (continued)
parameters (continued)

DEFTYPE 18
DISCINT 18
HBINT 18
MAXDEPTH 18
MAXMSGL 18
MSGDLVSQ 18
SHARE 18

setting up Event Publishing 9
setting up Q Replication 9
storage requirements 33
validating objects 27
validation checks 29

WebSphere MQ clients 25
WHERE clause

filtering data
rows in publications 212
rows in Q subscriptions 68

Windows service
creating 417, 420

Windows Service Control Manager (SCM)
asnslist command 421
description 339
listing replication services 421

worker threads 301
wrappers for federated replication 141

X
XML data type

publishing 220
replicating 220
restrictions with LOB data 221

XML expressions 78
XML messages

event publishing
delimiters in character data 534
technical requirements 533

heartbeat message 552
msg: root element 535, 558
overview of types 533
row operation message 545
structure

overview 533

Z
z/OS

load considerations 181
specifying CAPTURE_PATH 331

Index 583

584 Replication and Event Publishing Guide and Reference

����

Printed in USA

SC19-3637-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

In
fo

Sp
he

re
Da

ta
Re

pl
ic

at
io

n
Ve

rs
io

n
10

.1
.3

Re
pl

ic
at

io
n

an
d

Ev
en

tP
ub

lis
hi

ng
Gu

id
e

an
d

Re
fe

re
nc

e
�
�

�

	Contents
	Chapter 1. Data conversion for Q Replication and Event Publishing
	Code pages for Q Replication
	Code pages for event publishing

	Chapter 2. Setting up user IDs and passwords
	Authentication requirements on Linux, UNIX, and Windows
	Authorization requirements for Q Replication and Event Publishing
	Authorization requirements for the Q Capture program
	Authorization requirements for the Q Apply program
	Authorization requirements for the Replication Center and ASNCLP program

	Connectivity requirements for Q Replication and Event Publishing
	Managing user IDs and passwords for remote servers (Linux, UNIX, Windows)

	Chapter 3. Setting up WebSphere MQ for Q Replication and Event Publishing
	WebSphere MQ objects required for Q Replication and Event Publishing
	WebSphere MQ objects required for unidirectional replication (remote)
	WebSphere MQ objects required for unidirectional replication (same system)
	WebSphere MQ objects required for event publishing
	WebSphere MQ objects required for bidirectional or peer-to-peer replication (two remote servers)
	WebSphere MQ objects required for peer-to-peer replication (three or more remote servers)

	Required settings for WebSphere MQ objects
	Sample commands for creating WebSphere MQ objects for Q Replication and Event Publishing
	Running the replication programs on a WebSphere MQ client
	Validating WebSphere MQ objects for Q replication and publishing
	WebSphere MQ validation checks performed by replication tools
	Connectivity and authorization requirements for WebSphere MQ objects
	Storage requirements for WebSphere MQ for Q Replication and Event Publishing
	WebSphere MQ message size
	Queue depth considerations for large object (LOB) values
	Queue manager clustering in Q Replication and Event Publishing

	Chapter 4. Configuring databases for Q Replication and Event Publishing (Linux, UNIX, Windows)
	Required: Setting DATA CAPTURE CHANGES on DB2 source tables and DB2 for z/OS system tables
	Configuring for older or remote DB2 databases
	Configuring for GDPS Active/Active (z/OS)
	Setting environment variables (Linux, UNIX, Windows)
	Setting the TMPDIR environment variable (Linux, UNIX)
	Addressing memory issues for Q Capture and Q Apply (AIX)
	Configuring the source database to work with the Q Capture program (Linux, UNIX, Windows)
	Configuring the target database to work with the Q Apply program (Linux, UNIX, Windows)
	Optional: Binding the program packages (Linux, UNIX, Windows)
	Optional: Binding the Q Capture program packages (Linux, UNIX, Windows)
	Optional: Binding the Q Apply program packages (Linux, UNIX, Windows)
	Optional: Binding the Replication Alert Monitor packages (Linux, UNIX, Windows)

	Creating control tables for the Q Capture and Q Apply programs
	Creating control tables at a different version (Linux, UNIX, Windows)
	Configuring for older or remote DB2 databases

	Chapter 5. Setting up unidirectional Q Replication
	Unidirectional replication
	Grouping replication queue maps and Q subscriptions
	Creating replication queue maps
	Creating Q subscriptions for unidirectional replication
	Creating target object profiles
	Creating Q subscriptions for unidirectional replication
	Source columns for Q subscriptions (unidirectional replication)
	How often the Q Capture program sends a message (unidirectional replication)
	Search conditions to filter rows (unidirectional replication)
	Log record variables to filter rows (unidirectional replication)
	How source columns map to target columns (unidirectional replication)
	Using expressions in Q Replication
	SQL expressions in Q Replication
	XML expressions in Q Replication

	Index or key columns for targets (unidirectional replication)
	Options for unexpected conditions in the target table (unidirectional replication)
	Error options for Q Replication

	Chapter 6. Setting up multidirectional Q Replication
	Bidirectional replication
	Peer-to-peer replication
	Bidirectional replication versus peer-to-peer replication
	Creating Q subscriptions for bidirectional replication
	Improving performance in bidirectional replication with the IBMQREP_IGNTRAN table
	Options for conflict detection (bidirectional replication)
	Creating Q subscriptions for peer-to-peer replication
	Creating Q subscriptions for peer-to-peer replication with two servers
	Creating Q subscriptions for peer-to-peer replication with three or more servers

	Starting bidirectional or peer-to-peer replication with two servers
	Starting peer-to-peer replication with three or more servers
	Stopping bidirectional or peer-to-peer replication with two servers
	Stopping peer-to-peer replication with three or more servers

	Chapter 7. Replicating Data Definition Language (DDL) operations
	Schema-level subscriptions and DDL replication
	How Q Capture handles DDL operations at the source database
	Creating schema-level subscriptions
	Creating profiles for table-level Q subscriptions
	DATA CAPTURE CHANGES and schema-level subscriptions
	Starting schema-level subscriptions
	Changing table-level options used by schema-level subscriptions
	Stopping schema-level subscriptions
	Deleting schema-level subscriptions
	Enabling automatic replication of newly added columns from the source table
	Adding existing columns to a Q subscription (unidirectional replication)
	Adding existing columns to a Q subscription (bidirectional or peer-to-peer replication)
	Automatic replication of ALTER TABLE ALTER COLUMN SET DATA TYPE operations

	Chapter 8. Q Replication to federated targets
	Setting up Q Replication to federated targets
	Configuring the federated server for Q Replication
	Creating federated objects for Q Replication
	Creating Q Apply control tables for federated Q Replication
	Creating Q subscriptions for federated Q Replication

	Chapter 9. Q Replication from Oracle sources
	Setting up Q Replication from Oracle sources
	Oracle client support for Q Replication
	Configuring the Oracle source
	Configuring an Oracle source database to work with a Q Capture program
	How a Q Capture program works with the Oracle LogMiner utility
	Configuring the Oracle LogMiner utility

	Creating an ASNCLP configuration file
	Creating Q Capture control tables for an Oracle source
	Creating Q subscriptions for Oracle sources
	Load options for Q Replication from an Oracle source
	Starting a Q Capture program for Oracle sources
	How Q Capture handles alterations of Oracle source tables
	Oracle data types

	Chapter 10. Manipulating data by using stored procedures as a target
	Stored procedures for manipulating source data for Q Replication
	Writing stored procedures to manipulate source data for Q Replication
	Stored procedure parameter that identifies the type of operation for Q Replication
	Stored procedure parameter that identifies whether each source column was suppressed
	Stored procedure parameters that identify the transaction for Q Replication
	Stored procedure parameters that map to source columns for Q Replication

	Chapter 11. Loading target tables for Q Replication
	Recommendations for loading target tables for Q Replication
	Automatic load option for Q Replication
	Utilities used for automatic load option for Q Replication
	Automatic load considerations for z/OS
	Specifying nicknames for the automatic load option for Q Replication
	Ensuring that nicknames used for load have correct concurrent access setting

	Manually loading a target table
	No load option for Q Replication
	Load options for different types of Q Replication
	Replicating load operations at the source table
	How constraints on the source table affect replication of load operations
	Loading target tables in a data consolidation scenario
	Q Replication and Event Publishing for multiple database partitions
	Replication of DB2 partitioned tables: Version 9.7 Fix Pack 1 or earlier (Linux, UNIX, Windows)
	Replication of DB2 partitioned tables: Version 9.7 Fix Pack 2 and later (Linux, UNIX, Windows)
	CCD tables in Q Replication

	Chapter 12. Creating publications
	Grouping publishing queue maps and publications
	Creating publishing queue maps
	Creating publications
	Creating publications
	Source columns for publications
	When the Q Capture program publishes a message for publications
	Search conditions to filter rows in publications
	Key columns for publications
	Options for including unchanged columns in messages for publications
	Options for including before values in messages for publications

	Chapter 13. Data type considerations
	General data restrictions for Q Replication and Event Publishing
	Considerations for large object (LOB) data types for Q Replication and Event Publishing
	XML data type
	Replication between XML and LOB columns
	Replication of new DB2 Version 9.7 data types (Linux, UNIX, Windows)
	Replication of tables with identity columns

	Chapter 14. Working with scripts and commands generated by the replication administration tools
	Running and saving scripts generated by the replication administration tools
	Running and saving commands (Replication Center)

	Chapter 15. Operating a Q Capture program
	Starting a Q Capture program
	Starting Q Capture from a known point in the DB2 log
	Specifying Q Capture restart points for individual send queues or data partitions (z/OS)
	Considerations for using the cold start mode
	Changing the Q Capture parameters
	Methods of changing the Q Capture operating parameters
	Changing parameters while a Q Capture program is running
	Changing saved Q Capture parameters in the IBMQREP_CAPPARMS table

	Prompting a Q Capture program to ignore unwanted transactions
	Stopping a Q Capture program
	Stopping a Q Capture program at a specified point
	Starting Q subscriptions
	Stopping Q subscriptions
	Starting publications
	Stopping publications
	Managing Q Capture message activity at the send queue level
	Starting message activity on one or more send queues
	Stopping message activity on one or more send queues

	Chapter 16. Operating a Q Apply program
	Starting a Q Apply program
	Changing the Q Apply parameters
	Changing parameters while a Q Apply program is running
	Changing saved Q Apply parameters in the IBMQREP_APPLYPARMS table

	Stopping a Q Apply program
	Stopping message processing on a receive queue
	Starting message processing on a receive queue
	Prompting a Q Apply program to ignore transactions

	Chapter 17. Changing a Q Replication environment
	Changing the properties of unidirectional Q subscriptions
	Adding existing columns to a Q subscription (unidirectional replication)
	Adding existing columns to a Q subscription (bidirectional or peer-to-peer replication)
	How Q Capture handles DDL operations at the source database
	Changing properties of replication queue maps
	Changing queue names when the queue map is used by Q subscriptions
	Restarting failed Q subscriptions without dropping and recreating them
	Putting Q subscriptions into a temporary spill mode for maintenance
	Deleting Q subscriptions
	Deleting replication queue maps
	Dropping Q Capture or Q Apply control tables

	Chapter 18. Changing an event publishing environment
	Changing properties of publications
	Adding columns to existing publications
	Deleting publications
	Changing properties of publishing queue maps
	Deleting publishing queue maps
	Dropping Q Capture control tables

	Chapter 19. Checking the status of the Q Replication and Event Publishing programs
	Checking the status of the Q Replication and Event Publishing programs
	Threads of the Q Capture, Q Apply, and Replication Alert Monitor programs
	Latency
	Exceptions

	Chapter 20. Maintaining a Q Replication and Event Publishing environment
	Considerations for maintaining Q Replication and Event Publishing source systems
	Maintaining source tables in a Q Replication and Event Publishing environment
	Retaining log files for Q Replication and Event Publishing
	Why you must retain log data for Q Replication and Event Publishing
	Determining the oldest log file that Q Capture needs (z/OS)
	Determining the oldest log file that Q Capture needs (Linux, UNIX, Windows)

	Considerations for managing compression dictionaries in Q replication and event publishing (z/OS)

	Maintaining control tables in Q Replication and Event Publishing
	Pruning control tables in Q Replication and Event Publishing
	Considerations for using the RUNSTATS utility on control tables for Q Replication and Event Publishing
	Reorganizing control tables
	When replication programs cannot connect to their DB2 server

	Maintaining target tables
	Considerations for rebinding packages and plans for Q Replication and Event Publishing

	Chapter 21. Comparing and repairing tables
	Table compare utility (asntdiff)
	Running the asntdiff utility in parallel mode (z/OS)
	Table repair utility (asntrep)
	How the compare utility handles DB2 SQL compatibility features

	Chapter 22. Using system services to operate the Q replication and event publishing programs
	Using z/OS system services to run the Q replication and event publishing programs
	Running the Q replication and event publishing programs by using JCL
	Specifying the CAPTURE_PATH parameter (z/OS)
	Starting the Q Capture program with JCL
	Starting the Q Apply program with JCL
	Starting the Replication Alert Monitor by using JCL
	Running the Q replication and event publishing programs with JCL in batch mode
	Working with running Q replication and event publishing programs by using the MVS MODIFY command

	Running the Q replication and event publishing programs with system-started tasks
	Using Automatic Restart Manager (ARM) to automatically restart replication and publishing (z/OS)

	Replication services (Windows)
	Description of Windows services for replication
	Creating a replication service
	Starting a replication service
	Stopping a replication service
	Viewing a list of replication services
	Dropping a replication service

	Scheduling the replication programs
	Scheduling the replication and event publishing programs (Linux, UNIX)
	Scheduling the replication programs (Windows)
	Scheduling the replication and event publishing programs (z/OS)

	Chapter 23. Naming rules and guidelines for Q Replication and Event Publishing—Overview
	Naming rules for Q Replication and Event Publishing objects
	How lowercase object names are handled for Q replication and publishing

	Chapter 24. System commands for Q Replication and Event Publishing
	asnqcap: Starting a Q Capture program
	Descriptions of asnqcap parameters
	Examples of asnqcap usage

	asnoqcap: Starting a Q Capture program for an Oracle database
	asnqccmd: Working with a running Q Capture program
	asnoqccmd: Working with a running Q Capture program on Oracle databases
	asnqapp: Starting a Q Apply program
	Descriptions of asnqapp parameters
	Examples of asnqapp usage

	asnqacmd: Working with a running Q Apply program
	asnpwd: Creating and maintaining password files
	asnscrt: Creating a replication service
	asnsdrop: Dropping a replication service
	asnslist: Listing replication services
	asntdiff: Comparing data in source and target tables (Linux, UNIX, Windows)
	asntdiff: Comparing data in source and target tables (z/OS)
	asntdiff –f (input file) command option
	asntrc: Operating the replication trace facility
	asntrep: Repairing differences between source and target tables
	asnqanalyze: Operating the Q Replication Analyzer
	asnqmfmt: Formatting and viewing Q replication and publishing messages
	asnqxmfmt: Formatting and viewing Event Publishing messages (z/OS)

	Chapter 25. Control tables for Q Replication and Event Publishing
	Control tables at the Q Capture server
	IBMQREP_ADMINMSG table
	IBMQREP_CAPENQ table
	IBMQREP_CAPENVINFO table
	IBMQREP_CAPMON table
	IBMQREP_CAPPARMS table
	IBMQREP_CAPQMON table
	IBMQREP_CAPTRACE table
	IBMQREP_COLVERSION table
	IBMQREP_EOLFLUSH table
	IBMQREP_EXCLSCHEMA table
	IBMQREP_IGNTRAN table
	IBMQREP_IGNTRANTRC table
	IBMQREP_PART_HIST table (Linux, UNIX, Windows)
	IBMQREP_SCHEMASUBS table
	IBMQREP_SENDQUEUES table
	IBMQREP_SIGNAL table
	IBMQREP_SRC_COLS table
	IBMQREP_SRCH_COND table
	IBMQREP_SUBS table
	IBMQREP_SUBS_PROF table
	IBMQREP_TABVERSION table

	Control tables at the Q Apply server
	IBMQREP_APPLYENQ table
	IBMQREP_APPENVINFO table
	IBMQREP_APPLYMON table
	IBMQREP_APPLYPARMS table
	IBMQREP_APPLYTRACE table
	IBMQREP_DELTOMB table
	IBMQREP_DONEMSG table
	IBMQREP_EXCEPTIONS table
	IBMQREP_RECVQUEUES table
	IBMQREP_SAVERI table
	IBMQREP_SPILLQS table
	IBMQREP_SPILLEDROW table
	IBMQREP_TARGETS table
	IBMQREP_TRG_COLS table

	Detailed structure of versioning columns for peer-to-peer replication

	Chapter 26. Structure of XML messages for event publishing
	XML message types and requirements
	Message types
	Technical requirements for XML messages
	How XML delimiters are handled in character data

	Structure of messages from Q Capture to a user application
	List of messages from Q Capture to a user application
	msg: Root element for XML messages from Q Capture to a user application
	Transaction message
	Row operation message
	Large object (LOB) message
	Subscription deactivated message
	Load done received message
	Error report message
	Heartbeat message
	Subscription schema message (subSchema)
	Add column message

	Structure of messages from a user application to Q Capture
	List of messages from a user application to Q Capture
	msg: Root element for XML messages from a user application to Q Capture
	Invalidate send queue message
	Load done message
	Activate subscription message
	Deactivate subscription message

	Contacting IBM
	How to read syntax diagrams
	Notices and trademarks
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

